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Abstract 
The advancing defossilisation of the energy system requires far-reaching interventions and their sound 
planning to ensure an efficient, safe and sustainable system transformation. The application of 
electricity demand models with high temporal and spatial resolution is a key element for evaluating 
different transformation pathways. As a literature review reveals, however, models and data 
describing electricity demand are only available in very fragmentary or outdated form. This thesis 
addresses this research gap and focuses on the development, validation, exemplary application and 
evaluation of subsector load profiles. The potential benefit is evident: subsector load profiles serve as 
generic profiles which allow to model national or regional power systems. They are used for demand 
forecasting, for the planning and design of power generation plants and for the procurement of energy. 
Moreover, they can be used to analyse efficiency and demand side flexibility potentials of individual 
subsectors – a field of increasing relevance in the scientific literature. There are multiple fields of 
application for electricity load profiles spanning across all steps of the value chain. Addressing different 
research gaps, this thesis is divided into six modules.  

The first module presents the development of 32 subsector load profiles (TUB BLP) from the sectors of 
industry as well as commerce, trade and services (CTS). Based on a large number of real metered load 
profiles, the subsector load profiles are developed using multiple regression and then validated using 
real data and literature-based load profiles (e.g. VDEW standard load profiles). The performance of the 
regression model approach is also compared with the model quality of a feed-forward artificial neural 
network. The accuracy of the subsector load profiles varies between subsectors, which is due to the 
underlying explainable variance in the data and the subsector-specific heterogeneity. Overall, 
however, a comparison with real metered load profiles shows in the vast majority of cases a very 
reasonable model performance according to Lewis' benchmark as well as a mostly significantly higher 
mapping accuracy of the developed TUB BLP compared to available standard load profiles. In 
combination with a description of the load characteristics and the demand drivers, the TUB BLP of each 
subsector were made freely available for further scientific use. 

In the second module, the TUB BLP are used and evaluated in the Python-based application 
disaggregator. The disaggregator allows the modelling of electricity demand in Germany in high 
temporal and spatial resolution. Using demand drivers, the annual electricity consumption from the 
industrial, commercial and residential sectors is disaggregated to subsectors and counties. 
Subsequently, the annual electricity consumption is converted into electricity load profiles of quarter-
hourly resolution using subsector load profiles. On the one hand, standard load profiles and generic 
load profiles are used as subsector load profiles; on the other hand, the TUB BLP developed in the first 
module are used. The model results of the different load profile approaches are compared with real 
data at federal and county level. It is shown that the disaggregator can reproduce the load behaviour 
at both federal and county level in a good to very good approximation. In addition, it can be seen that 
the use of TUB BLP significantly improves the load modelling compared to standard load profiles. There 
are various possible explanations for remaining structural deviations in the model results: In addition 
to a possible inaccuracy of the residential profile used, some important subsectors could not be 
modelled in a distinguished manner in the form of TUB BLP due to a lack of data.  

In the third module, an engineering-based approach is developed for modelling technology-specific 
load profiles of five CTS subsectors. Due to the increased sophistication and effort of the engineering-
based approach, this approach is applied in modules 3-5 to only five relevant subsectors out of the 
original 32 considered in module 1. These five subsectors of offices, trade, accommodation, hospitals 
and education account for about 62 % of the electricity consumption of the CTS sector. Occupancy 
profiles are developed based on international and national standards (ISO, DIN, SIA), which are 
converted into load profiles for each application technology in conjunction with technology-specific 
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simultaneity profiles. By means of a literature-based annual electricity demand, a subsector-specific 
scaling of the load profiles is then carried out. A comparison of the engineering-based subsector load 
profiles with the TUB BLP developed in the first module allows the adjustment of the weighting of 
international and national standards as well as individual assumptions to increase the accuracy of the 
model. As a result, technology-specific load profiles for five subsectors are presented, which represent 
essential load characteristics and form the foundation for the modelling steps of the next two modules. 

In the fourth module, the previously developed technology-specific load profiles of five subsectors are 
projected to the year 2035 with the help of literature-based scenarios. In addition to the efficiency 
development of the individual application technologies, a technology shift from night storage heaters 
to heat pumps with a corresponding profile change is also taken into account. It can be seen that the 
resulting (cumulative) load profiles alter in some subsectors. The projected load profiles of some 
subsectors show more pronounced load peaks. The energy consumption shares of individual 
technologies also change, which in turn influences the load flexibility potentials in the fifth module. 

In the fifth module, technical demand side flexibility (DSF) potentials of the above five CTS subsectors 
are quantified in high temporal and spatial resolution. The DSF potentials are specified per subsector 
and application technology (air conditioning, ventilation, process cooling, space heating and hot water) 
for the years 2018 and 2035 and described in terms of minimum/maximum switchable loads, 
minimum/maximum shiftable energy quantities, shift duration and temporal availabilities. The five 
subsectors are responsible for about 74 % of the technical DSF potential of the entire CTS sector. A 
comparison with literature values underlines the plausibility of the chosen approach. The high 
switchable loads identified for the subsectors offices and trade, as well as the temporally stable 
shiftable energy quantities of hospitals and accommodation, can make a cost-effective contribution to 
the reduction of the residual load, the avoidance of grid bottlenecks and the integration of renewable 
energies in the overall system. 

In the last module, the beneficial applicability of developed subsector load profiles is demonstrated in 
two use cases: In the first use case, the substitution of old standard load profiles by newly developed 
TUB BLP is assessed for the electricity procurement and balancing group management. Therefore, the 
model outputs of the disaggregator (once using standard load profiles only, once using TUB BLP) are 
priced on the spot market, simulating a specific procurement strategy. Any model deviations that arise 
between the disaggregator output and real reference loads are considered by the imbalance 
settlement price. The assessment comfirms that the total costs from procurement and balancing 
energy are significantly reduced for the entire system by using TUB BLP (and replacing standard load 
profiles) in the outlined case. However, the assessment also shows that arbitrage profits, which result 
from short-term trading or imbalance settlement, are smaller in the majority of cases through the 
application of TUB BLP. These unilaterally generated arbitrage profits result in an incentive, especially 
for distribution system operators in the synthetic load profile procedure, to continue to use partially 
outdated standard load profiles and not to switch to new, more accurate subsector load profiles. In 
the second use case, the flexibility potentials identified in the engineering-based modelling approach 
are economically evaluated in their use for peak load reduction. For this purpose, Germany's residual 
load in 2018 is compared with the temporally high-resolution DSF potentials in order to determine the 
maximum peak load reduction through load shifting. Technical restrictions of the load reduction 
potentials and shiftable energy quantities are taken into account. The maximum peak load reduction 
is evaluated with the annual power costs for gas turbine power plants that can be replaced by using 
the CTS DSF potentials. These cost savings are compared with the estimated costs for exploiting the 
DSF potentials. It is shown that commercial DSF offers a considerable cost saving potential reducing 
necessary peak load capacity. In addition, other use cases promise further economic benefits.    
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Kurzfassung 
Die voranschreitende Defossilisierung des Energiesystems erfordert weitreichende Eingriffe und deren 
fundierte Planung, um eine effiziente, sichere und nachhaltige Systemtransformation zu 
gewährleisten. Die Anwendung von Stromnachfragemodellen in zeitlich und räumlich hoher Auflösung 
stellt einen entscheidenden Baustein dar, um verschiedene Transformationspfade zu bewerten. Wie 
eine Literaturauswertung zeigt, liegen die Stromnachfrage beschreibende Modelle und Daten jedoch 
nur sehr lückenhaft oder veraltet vor. Die vorliegende Dissertation setzt an dieser Forschungslücke an 
und fokussiert auf die Entwicklung, Validierung, Anwendung und Bewertung von 
wirtschaftszweigspezifischen Lastprofilen, sogenannten Branchenlastprofilen (BLP). Der potenzielle 
Nutzen liegt auf der Hand: branchenspezifische Lastprofile dienen als generische Profile, mit denen 
sich nationale oder regionale Stromsysteme modellieren lassen. Sie werden für Bedarfsprognosen, für 
die Planung und Auslegung von Stromerzeugungsanlagen und für die Beschaffung von Energie 
verwendet. Darüber hinaus können sie zur Analyse von Effizienz- und Flexibilitätspotenzialen einzelner 
Branchen verwendet werden - ein Bereich, der in der wissenschaftlichen Literatur zunehmend an 
Bedeutung gewinnt. Die Anwendungsfelder für Stromlastprofile sind vielfältig und erstrecken sich über 
alle Stufen der Wertschöpfungskette. Die vorliegende Dissertation gliedert sich in sechs Module, die 
jeweils unterschiedliche Forschungslücken adressieren.  

Im ersten Modul wird die Entwicklung von 32 Branchenlastprofilen (TUB BLP) aus den Sektoren 
Industrie sowie Gewerbe, Handel, Dienstleistungen (GHD) vorgestellt. Basierend auf einer Vielzahl real 
gemessener Lastgänge werden die Branchenlastprofile mittels multipler Regression entwickelt und 
anschließend anhand von Realdaten sowie mit literaturbasierten Lastprofilen (z.B. mit VDEW 
Standardlastprofilen) validiert. Die Modellgüte des regressionsanalytischen Ansatzes wird zudem mit 
der Modellgüte eines vorwärtsgerichteten künstlichen neuronalen Netzes verglichen. Die 
Abbildungsgenauigkeit der Branchenlastprofile variiert zwischen den Wirtschaftszweigen, was auf die 
in den Daten zugrundeliegende erklärbare Varianz sowie auf die wirtschaftszweigspezifische 
Heterogenität zurückzuführen ist. Insgesamt zeigt sich im Vergleich mit real gemessenen Lastprofilen 
jedoch in der überwiegenden Mehrzahl der Fälle eine nach Lewis‘ Benchmark sehr passable 
Modellgüte sowie eine gegenüber verfügbaren Standardlastprofilen meist deutliche höhere 
Abbildungsgenauigkeit der entwickelten TUB BLP. In Verbindung mit einer Beschreibung der 
Lastcharakteristika und der Einflussgrößen wurden die TUB BLP jedes Wirtschaftszweigs zur weiteren 
wissenschaftlichen Nutzung frei zugänglich zur Verfügung gestellt.  

Im zweiten Modul werden die TUB BLP in der Python-basierten Anwendung disaggregator eingesetzt 
und evaluiert. Der disaggregator erlaubt die zeitlich und räumlich hochaufgelöste Modellierung der 
Stromnachfrage in Deutschland. Anhand von energienachfragebestimmenden Größen werden dabei 
statistische Jahresstromverbräuche der Sektoren Industrie, GHD und Haushalte auf Wirtschaftszweige 
und Landkreise disaggregiert. Anschließend werden die jährlichen Stromverbräuche mittels 
wirtschaftszweigspezifischen Lastprofilen in Stromverbrauchsverläufe von bis zu viertelstündlicher 
Auflösung überführt. Als wirtschaftszweigspezifische Lastprofile werden einerseits Standardlastprofile 
und generische Lastprofile eingesetzt; andererseits werden die im ersten Modul entwickelten TUB BLP 
eingesetzt. Die Modellergebnisse der unterschiedlichen Lastprofilansätze werden mit Realdaten auf 
Bundes- und Landkreisebene verglichen. Es zeigt sich, dass der disaggregator das Lastverhalten sowohl 
auf Bundes- als auch auf Landkreisebene in guter bis sehr guter Näherung widergeben kann. Zudem 
zeigt sich, dass die Verwendung von TUB BLP gegenüber Standardlastprofilen die Lastmodellierung 
deutlich verbessert. Für verbleibende strukturelle Abweichungen in den Modellergebnissen kommen 
verschiedene Erklärungsansätze infrage: Neben einer möglichen Ungenauigkeit des verwendeten 
Haushaltsprofils (ZVE-Profil) konnten einzelne wichtige Wirtschaftszweige aufgrund von Datenmangel 
nicht differenziert in Form von TUB BLP abgebildet werden.  
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Im dritten Modul wird ein ingenieursbasierter Ansatz zur Modellierung technologiespezifischer 
Lastgänge von fünf Wirtschaftszweigen des Sektors GHD entwickelt. Aufgrund der höheren 
Komplexität und des höheren Aufwands des ingenieurbasierten Ansatzes wurde dieser Ansatz in den 
Modulen 3 bis 5 auf fünf relevante Wirtschaftszweige von den ursprünglich 32 in Modul 1 betrachteten 
angewandt. Diese fünf Wirtschaftszweige Büroähnliche Betriebe, Handel, Beherbergung, 
Krankenhäuser und Schulen bilden etwa 62 % des Stromverbrauchs des Sektors GHD ab. Auf Basis 
internationaler und nationaler Standards (ISO, DIN, SIA) werden Anwesenheitsprofile entwickelt, die 
in Verbindung mit technologiespezifischen Gleichzeitigkeitsprofilen in Lastprofile je 
Querschnittstechnologie überführt werden. Mittels Anwendungsbilanzen erfolgt anschließend eine 
wirtschaftszweigspezifische Skalierung der Lastprofile. Ein Abgleich der wirtschaftszweigspezifischen 
Lastprofile mit im ersten Modul entwickelten TUB BLP erlaubt die Anpassung der Gewichtung der 
internationalen und nationalen Standards sowie einzelner Annahmen zur Erhöhung der 
Abbildungsgenauigkeit. Im Ergebnis werden technologiespezifische Lastprofile für fünf 
Wirtschaftszweige vorgestellt, die wesentliche Lastcharakteristika abbilden und die die Ausgangsbasis 
für die Modellierungsschritte der nächsten beiden Module bilden.  

Im vierten Modul werden die zuvor entwickelten technologiespezifischen Lastprofile der fünf 
Wirtschaftszweige mithilfe literaturbasierter Szenarien in das Jahr 2035 fortgeschrieben. Neben der 
Effizienzentwicklung der einzelnen Querschnittstechnologien wird dabei auch ein Technologiewechsel 
von Nachtspeicherheizungen zu Wärmepumpen mit entsprechender Profiländerung berücksichtigt. Es 
zeigt sich, dass sich das resultierende (Summen-)Lastprofil je Wirtschaftszweig ändert. So weisen die 
fortgeschriebenen Lastprofile einzelner Wirtschaftszweige stärker ausgeprägte Lastspitzen auf. Auch 
ändern sich die Energieverbrauchsanteile einzelner Technologien, was wiederum Einfluss auf die 
Identifikation von Lastflexibilisierungspotenzialen im fünften Modul hat.  

Im fünften Modul werden technische Lastflexibilisierungspotenziale der fünf genannten 
Wirtschaftszweige des Sektors GHD in hoher zeitlicher und räumlicher Auflösung quantifiziert. Die 
Lastflexibilisierungspotenziale werden je Wirtschaftszweig und Technologie (Klimakälte, Lüftung, 
Prozesskälte, Raumwärme und Warmwasser) für die Jahre 2018 sowie 2035 angegeben und bezüglich 
minimal/maximal schaltbarer Lasten, minimal/maximal verschiebbarer Energiemengen, der 
Verschiebungsdauer und zeitlicher Verfügbarkeiten beschrieben. Die fünf Branchen verantworten 
etwa 74 % des technischen Lastflexibilisierungspotenzials des gesamten Sektors GHD. Ein Vergleich mit 
generischeren Potenzialerhebungen aus der Literatur unterstreicht die Plausibilität des gewählten 
Ansatzes. Die im Ergebnis identifizierten hohen Lastflexibilisierungspotenziale der Wirtschaftszweige 
Bürobetriebe und Handel sowie die zeitlich stabilen verschiebbaren Energiemengen der 
Krankenhäuser und der Beherbergung können einen kostengünstigen Beitrag zur Reduktion der 
Residuallast, der Vermeidung von Netzengpässen und der Integration erneuerbarer Energien im 
Gesamtsystem leisten.  

Im letzten Modul wird die vorteilhafte Anwendbarkeit der erstellten Branchenlastprofile in zwei 
Anwendungsfällen unter Beweis gestellt. Im ersten Anwendungsfall wird die Substitution von 
veralteten Standardlastprofilen durch neu entwickelte TUB BLP für die Strombeschaffung und das 
Bilanzkreismanagement untersucht. Dazu werden die Modelloutputs des disaggregator (einmal nur 
mit Standardlastprofilen, einmal mit TUB BLP) auf dem Spotmarkt bepreist und damit eine bestimmte 
Beschaffungsstrategie simuliert. Etwaige Modellabweichungen, die sich zwischen dem disaggregator 
-Output und den realen Referenzlasten ergeben, werden durch den regelzonenübergreifenden 
einheitlichen Bilanzausgleichsenergiepreis (reBAP) berücksichtigt. Die Analyse kommt zu dem 
Ergebnis, dass die Gesamtkosten aus Beschaffung und Ausgleichsenergie durch die Anwendung von 
TUB BLP (und dem Ersatz von Standardlastprofilen) im skizzierten Fall deutlich für das Gesamtsystem 
reduziert werden. Allerdings zeigt die Abschätzung auch, dass Arbitragegewinne, die sich über den 
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kurzfristigen Handel oder Ausgleichsenergieabruf ergeben können, in der Mehrzahl der Fälle kleiner 
ausfallen durch die Anwendung von TUB BLP. Diese einseitig erwirtschafteten Arbitragegewinne 
ergeben insbesondere für Verteilnetzbetreiber im synthetischen Lastprofilverfahren einen Anreiz, 
weiterhin teilweise veraltete Standardlastprofile zu verwenden und nicht auf neue, bessere 
Branchenlastprofile umzustellen. Im zweiten Anwendungsfall werden die im Rahmen des 
ingenieursbasierten Modellansatzes identifizierten Flexibilitätspotenziale im potenziellen Einsatz zur 
Spitzenlastreduktion ökonomisch bewertet. Dabei wird die Residuallast Deutschlands im Jahr 2018 mit 
den zeitlich hochaufgelösten Flexibilitätspotenzialen gegenübergestellt, um die maximale 
Spitzenlastreduktion durch Lastverschiebung zu ermitteln. Technische Restriktionen der 
Lastreduktionspotenziale sowie verschiebbarer Energiemengen werden berücksichtigt. Die maximale 
Spitzenlastreduktion wird bewertet mit den jährlichen Leistungskosten für Gasturbinenkraftwerke, die 
durch den Einsatz der GHD-Lastflexibilisierungspotenziale ersetzt werden können. Diesen 
Kosteneinsparungen werden die geschätzten Kosten zur Hebung der Lastflexibilisierungspotenziale 
gegenübergestellt. Es zeigt sich, dass GHD-Lastflexibilisierungspotenziale ein erhebliches 
Kosteneinsparungspotenzial aufweisen durch die Reduktion notwendiger Spitzenlastkapazitäten. 
Zudem versprechen zusätzliche Anwendungsfälle weiteren ökonomischen Nutzen.  
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1. Introduction 
In view of today’s intensifying challenges like climate change and the phase-out of nuclear energy, the 
German ‘Energiewende’ is profoundly transforming the energy landscape. Against the background of 
growing international ambitions, e.g. through the Paris Climate Agreement, the German federal 
government strives to become climate neutral by 2045 (Bundesregierung, 2021). As depicted in the 
government’s energy concept (Bundesregierung, 2010), there are two central strategies in order to 
achieve self-defined goals: the expansion of renewable energies and the increase in energy efficiency. 
These central strategies are aimed towards specific goals, e.g. reaching 80 % renewable energy share 
of gross electricity consumption (SPD, Bündis 90/Die Grünen, FDP, 2021, p. 56) as well as the reduction 
of primary energy consumption for 30 % in the year 20301 (BMWi, 2021, p. 12).  

The transition of a formally centralized energy system supplied by conventional and dispatchable 
power plants towards a system with high shares of intermittent and distributed renewable energy 
systems poses considerable challenges to the system planning and operation. In this regard, the 
assessment of different transformation pathways requires models of high temporal and spatial 
resolution. While comprehensive high-resolution models and data are already available for the 
generation side, the demand side is less well represented (Gotzens et al., 2020, p. 1). However, the 
electricity demand has been and will be a critical factor in the electricity system (Wietschel et al., 
2011a). Hence, it is essential to assess the structure and predictability of the demand side in high 
temporal and spatial resolution. Until recently, there were no openly available models which are able 
to depict the sector-specific final energy demand in high temporal and spatial resolution in Germany. 
Existing projects are of closed access and thus intransparent, still ongoing or lacking in extent or detail 
(Fraunhofer ISI, 2019), (ifeu GmbH et al., n.d.), (Umweltbundesamt, 2014), (Fraunhofer ISE, 2020), 
(Fischer, 2019). The recent BMWi2-funded research project DemandRegio was targeted to fill this 
research gap: The project sought to develop models which enable a depiction and forecast of 
subsector-specific final energy demands in Germany in high spatial and temporal resolution (Gotzens 
et al., 2020, p. 1). The project’s results are the foundation for various relevant research questions 
about, for instance, energy storage and network expansion requirements, business model 
developments, sector coupling, efficiency as well as demand side management potentials.  

As part of the research project DemandRegio, the final energy demand of two sectors has been closely 
analysed and modelled: the industrial as well as the commerce, trade and services (CTS) sector, with a 
final energy consumption (FEC) of 750 TWh (28.9 % of total FEC) and 401 TWh (15.5 % of total FEC)3, 
respectively (Umweltbundesamt, 2019). The regional mapping of final energy demand follows a top-
down approach, which requires the collection and harmonization of various federal and regional 
statistics. The final energy demand has been regionally disaggregated using the energy consumption 
of individual subsectors (Destatis, 2019), the number of employees of individual subsectors (FfE and 
Bundesagentur für Arbeit, 2019) and – as a more detailed complement – a regionally specific energy 
consumption of industrial subsectors (FfE, 2019). In order to transform this regionally disaggregated 
annual energy consumption to a temporally resolved energy load, two approaches have been adopted: 
an engineering-based approach and a real data-based approach. The former requires detailed 
information about the underlying processes or applications and their specific energy consumption 
patterns and is potentially subject to a high degree of ambiguity. In contrast, the latter requires real 
metered load data comprising the aggregation of underlying processes and applications with their 
aggregated energy consumption patterns.  

                                                           
1 As compared to the primary energy consumption in the year 1990.  
2 Germany’s Federal Ministry of Economics and Energy (BMWi) 
3 As of 2017, the total final energy consumption of Germany amounts for 2.591 TWh.  
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Building on the research project DemandRegio, the present thesis aims to develop and apply subsector 
load profiles in the sectors of industry as well as CTS in Germany. In addition, this thesis seeks to project 
selected load profiles to the year 2035 and derive demand side flexibility potentials. The following 
research questions will be addressed:  

(1) How can the electricity load profiles of selected industrial and CTS subsectors be (a) modelled 
and (b) projected, and what is their electricity demand pattern? 

(2) How do newly developed subsector load profiles perform in their application within the 
electricity demand modelling in high spatial and temporal resolution? 

(3) What is the current and future technical demand side flexibilization potential of five relevant 
CTS subsectors? 

(4) What is the estimated economic value of (a) applying these newly developed subsector load 
profiles and (b) the identified demand side flexibilization potentials? 

Facing significant requirements in the quantity and quality of underlying load data, data collection 
poses a major challenge in the present thesis. Based on collected real load data, statistical as well as 
machine learning methods will be applied in order to identify relevant demand drivers and to generate 
typical subsector load profiles. Ensuring compatibility and usability of results, the definition of 
subsectors will be mainly based on the classification of economic subsectors by Destatis (Destatis, 
2008) and consumer groups defined by the working group on energy balances (“AGEB,” 2019). The 
coverage of subsectors will be restricted to available data. A number of 32 newly developed profiles 
can be validated or at least checked for plausibility by comparison with national and international 
subsector load profiles as well as by comparison with aggregated load data of different regional 
entities. In an extension, five engineering-based subsector load profiles will be developed and assessed 
with regards to demand side flexibility potentials. Results will be openly published, enabling the 
scientific community to use (and complement) the demand models in further research projects. 

Up to now, a systematic literature research indicates a significant interest in the field of energy demand 
modelling of single facilities or regions, due to an increase in numbers of publications in the 
international scientific community (Verwiebe et al., 2021b, p. 2) (see chapter 2.3.1). The particular 
development of subsector load profiles, however, seems to be given less attention to in scientific 
literature (see chapter 2.3.3), which could result from the immense data requirements mentioned 
above. A recent analysis and survey have revealed, that there is distinct need for open data in the 
German energy sector, particularly for demand data in high temporal and spatial resolution (see 
chapter 2.1), which also gets confirmed by Behm et al. (2020, p. 15). Outdated standard load profiles 
form the industry standard, but are associated with structural deviations (see chapter 2.3.2) (Ecke and 
Kauffmann, 2013; Hinterstocker et al., 2014, pp. 1–2; Spiegel, 2018, pp. 796–797). This identified gap 
for demand data is being addressed by DemandRegio as well as the present thesis. The potential 
benefit is evident: subsector load profiles serve as generic profiles which allow to model national or 
regional power systems. They are used for demand forecasting, for the planning and design of power 
generation plants and for the procurement of energy (Schellong, 2016a, p. 375). Moreover, they can 
be used to analyse efficiency and demand side flexibility potentials of individual subsectors – a field of 
increasing relevance in the scientific literature (see chapter 2.3.5) (Gartner et al., 2019; Gils, 2015; 
Langrock et al., 2015). There are multiple fields of application for electricity load profiles spanning 
across all steps of the value chain (see chapter 2.2.4).  

This thesis is structured as follows. Chapter 2 will introduce the theoretical foundation for the energy 
demand modelling research. Relevant literature in the field of energy demand modelling will be 
introduced and research gaps identified. The conceptual background of chapter 2 will help to 
determine the scope of the present thesis, with regards to the energy demand sectors modelled, the 
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techniques and methodologies used as well as the temporal and spatial resolution applied. Chapter 3 
will depict the methodology and research design of this thesis, introducing the six individual modules 
and their interplay. Chapter 4 will lay out the detailed steps of analysis of each individual module, 
specifying the database, data processing and modelling procedures. Chapter 5 will present the results 
of each individual module, starting with 32 subsector load profiles (chapter 5.1), as well as the 
application and evaluation of these newly developed subsector load profiles in the disaggregator tool 
(chapter 5.2). Next, engineering-based and application-specific subsector load profiles of five CTS 
subsectors will be introduced (chapter 5.3) and projected into the year 2035 (chapter 5.4). The current 
and projected engineering-based load profiles will then be used to derive technical demand side 
flexibility potentials within these subsectors (chapter 5.5). Lastly, the application of newly developed 
subsector load profiles and identified demand side flexibility potentials will be assessed economically 
in two separate contexts (chapter 5.6). The results are discussed in chapter 6. A conclusion of all 
modules will be given in chapter 7, and chapter 8 will give an outlook for potential future research 
opportunities.  
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2. The Modelling of Energy Demand 
The defossilisation of the energy system and the associated increasing integration of intermittent 
renewable energy sources requires a fundamental transformation on the technological, regulatory and 
economic level. In order to ensure a transition as smooth and efficient as possible, stakeholders from 
politics, science and industry apply energy system models that enable the depiction of a complex 
reality and thus ensure rational decision-making. Central investigations relate to the effects of different 
energy and climate policy instruments, for instance (Götz et al., 2013). In view of evolving boundary 
conditions, technological developments, increasing computing power and available data, model 
approaches are constantly being further developed (Dodds et al., 2015). In addition to model 
approaches, the quality and availability of input data is a crucial precondition to generate reliable 
results that form an adequate basis of decision-making. In recent years, there have been various 
research projects investigating the implications of intermittent electricity generation by renewable 
energy sources. However, the electricity demand has been and will be a critical factor in the electricity 
system and is at the heart of energy system modelling (Wietschel et al., 2011a). Energy demand 
modelling provides the foundation for a variety of subsequent analyses regarding grid expansion and 
storage requirements, efficiency potentials, demand side management potentials and sector coupling, 
to name but a few. The present thesis seeks to fill some research gaps in demand side modelling, which 
are elaborated from the literature review in chapter 2.3.  

The next chapters will introduce to the basics of energy demand modelling and will describe underlying 
concepts and literature. It is structured as follows: In order to demonstrate the need for open energy 
data in general and energy demand data in particular, chapter 2.1 will introduce the data landscape of 
the German energy system, summarizing the findings of a previous publication (Seim et al., 2019). 
Chapter 2.2 will further elaborate on the topic of energy demand modelling by defining central terms 
and concepts (chapter 2.2.1), introducing the balancing group system (chapter 2.2.2) as well as the 
concept of demand side flexibility (chapter 2.2.3) and the diverse fields of applications of energy 
demand modelling (chapter 2.2.4). The current research literature on the topic will be described in 
chapter 2.3 and relevant research gaps will be identified. Some of these research gaps will be 
addressed by the present thesis. In the chapter 2.4, relevant units of analysis for the energy demand 
side will be introduced, i.e. the definition and prioritization of economic (sub-)sectors and consumer 
groups (chapter 2.4.1) as well as the conceptual basis and implications of process technologies and 
cross-sectional application technologies (chapter 2.4.2). Chapter 2.5 will introduce the main 
techniques and methods used for the electricity demand modelling of this thesis.  

2.1. The Data Landscape of the German Energy System 
As mentioned beforehand, a reliable and complete database is essential for energy system modelling 
and the related decision-making process in the transformation of the energy system. However, the 
collection and pre-processing of input data ties up a considerable part of scientific resources, as 
required data might be distributed among multiple data owners, tedious to process, publicly 
inaccessible or partly inaccurate (Wiese et al., 2019). A well-organized and up-to-date energy system 
database is built on years of preparatory work and represents a competitive advantage for scientific 
institutions or consulting companies. This fact stands in the way of the universal dissemination of 
energy data and leads to a concentration of data and models for particular scientific issues at 
established institutes, which regularly make use of internal data for central system analyses (Seim et 
al., 2019). Nevertheless, there is a number of good reasons that promote more open structures (Hülk 
et al., 2018; Morrison, 2018; Pfenninger, 2017): 

• „Improved quality of science […] [by transparency and reproducibility of results], 
• Increased productivity through collaborative burden sharing” (Pfenninger et al., 2017), 
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• Building societal confidence in a transparent energy system research. 

As a consequence, the debate on open data and open source projects in the German energy system 
research is gaining momentum (Morrison, 2018; Pfenninger et al., 2017). In the course of this, an 
investigation into the data landscape of the German energy system was conducted by Seim et al. 
(2019), addressing the following research questions: 

1. What information is available about which actors and elements of the energy sector? 
2. What are the data needs of the community? 
3. What are the obstacles to using the information? 

The article reviewed the relevant legal situation and described existing information flows in the 
German energy sector. Subsequently, a data classification system was developed which enabled the 
systematic analysis of data platforms and data sources. In addition, a survey was conducted, directed 
at energy system actors, to complement the research and answer the above questions. The paper 
identified and classified 22 relevant data platforms and 279 data sources across different energy 
carriers and steps of the value chain based within the German energy sector.  

Both within the data research and in the survey, an increased need for energy generation and demand 
data of high temporal and spatial resolution for the electricity and heat sector could be identified. 
While spatially and temporally resolved production data can be approximated by fundamental models, 
the data situation on the energy demand side looks insufficient, given the heterogeneity of the demand 
sectors. In the field of networks, the gas sector seems to be of particular interest, since the data 
situation appears complex and incomplete due to the grid operator structure. Figure 1 lists the main 
reasons of restricted access due to the above-mentioned survey.  

 

Figure 1: Survey result to the question for what reason there is no access to required data. Diagram by author, adapted from 
Seim et al. (2019) 
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According to Figure 1, data might not be collected in the first place, such as building energy certificates. 
Even when data is collected, it is oftentimes not publicly accessible, which is according to some survey 
participants, due to data protection reasons. In many cases, data is difficult to find and hence time-
consuming to collect. Also, the spatial and/or temporal resolution of a significant share of data appears 
to be insufficient. The reasons for a limited usability of the data as a major obstacle are manifold and 
have also been discussed elsewhere (Hirth et al., 2018b; Pfenninger et al., 2017). Although some data 
is publicly available, it is oftentimes distributed in heterogeneous or non-machine-readable form and 
is sometimes incorrect (Wiese et al., 2019). The issue of inadequate licensing is also a well-known 
problem (Morrison, 2018, p. 50; Wiese et al., 2019, p. 404) and leads to the fact that data may either 
not be used or that modelers operate in a legal grey area. The study also revealed, that public as well 
as private data providers do not always grant licenses. 

Overall, some of the gaps identified in the areas of energy generation, network and demand data with 
high temporal and spatial resolution could stem from data protection requirements as well as business 
and trade secrets. While data protection has played only a minor role so far, according to Morrison 
(2018, p. 61) this could change in the future with models of increasingly high resolution and the 
corresponding mapping of the consumption side, for instance.  

Among central implications for policy makers, the question was raised, whether the issues of data 
protection requirements and business secrets, particularly in the case of identified data gaps of the 
demand side, could be encountered with an orchestrated data platform by the federal network agency, 
similar to their transparency efforts in the SMARD database. Demand data could be collected, 
processed and provided in an aggregated, anonymous form. Moreover, the need to enhance funding 
for open source-/ open data research projects was emphasized. 

The above mentioned publication of Seim et al. (2019) was aimed to address some of the above 
limitations, by making transparent and analysing the most important data sources within the German 
energy landscape. Moreover, by providing openly accessible load profile data in high temporal and 
spatial resolution, the present thesis seeks to overcome some of the above identified data gaps. 
Applying this thesis’ load profile modelling procedures, potentially sensitive company load data can be 
averaged and turned into usable load profiles, mapping the characteristic demand patterns of 
particular subsectors.  

2.2. Relevance of Energy Demand Modelling 
The energy demand modelling and forecasting has in the past been of particular importance for utilities 
and large industrial companies. On the one hand, energy demand forecasts are the crucial input to the 
design and scale of energy infrastructure (e.g. generators, grids, storages), on the other hand they help 
to optimize the procurement, trade and utilization of energy (Schellong, 2016b, pp. 375–379). 
Nowadays, in the course of the ongoing energy system transformation and digitalization, the field of 
energy demand modelling and forecasting appears to become more relevant for a wider audience. The 
need for system decarbonization and associated trends (e.g. increasing energy efficiency, system 
flexibilization requirements, behavioural changes as well as technological advancements) will 
profoundly affect energy demand characteristics. The energy demand side, in turn, has a large 
influence on all other energy system actors. The demand and its changing characteristics is thus a 
central element in energy system models, which are applied to enable informed decision making to 
identify robust, efficient and socially acceptable transformation pathways (Wietschel et al., 2011a). 
Despite its relevance, the current model and data landscape for the German energy demand side is 
regarded largely insufficient, as shown in the previous chapter 2.1. Existing or previous projects are of 
closed access (Fraunhofer ISI, 2019; ifeu GmbH et al., n.d.), have a specific sectoral focus (Fraunhofer 
ISE, 2020), are outdated (VDEW, 1999) or lack in extent or detail (Fischer, 2019; Prognos AG et al., 
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2014; Umweltbundesamt, 2014). As part of the BMWi-funded research project DemandRegio, the 
present thesis strives to fill this gap. 

In order to consolidate the relevance of energy demand modelling, chapter 2.2 is structured as follows: 
Chapter 2.2.1 will introduce central terms and concepts in the modelling of energy demand. Chapter 
2.2.2 will introduce the German balancing group system as an important field of application for 
subsector load profiles. Chapter 2.2.3 will introduce the concept of demand side flexibility, which will 
become increasingly relevant in the future energy system. Lastly, chapter 2.2.4 will further elaborate 
on additional fields of application for energy demand modelling.  

2.2.1. Introduction to Central Terms and Concepts 

In the following, central terms and concepts within the energy demand modelling literature will be 
introduced, from the terms energy demand, energy consumption and load profiles (chapter 2.2.1.1); 
factors influencing the energy demand, i.e. so-called demand drivers (chapter 2.2.1.2); the temporal 
horizon and the temporal resolution of energy demand models (chapter 2.2.1.3); the spatial resolution 
(chapter 2.2.1.4) as well as the level of detail of energy demand models (chapter 2.2.1.5). These central 
terms and concepts will help to define the methodological scope of this thesis. In addition for scope 
determination, energy demand sectors as well as techniques and methods will be elaborated further 
in later chapters 2.4 and 2.5. 

2.2.1.1 Energy Demand, Energy Consumption and Load Profiles 
According to VDI 4661, energy demand is defined as the “final energy to be used in order to perform 
a defined energy service […] for defined boundary conditions” (VDI 4661, 2014, p. 15); boundary 
conditions being weather conditions, for example. In contrast, the quantity of energy consumed “in 
order to cover energy demands under real conditions” is defined as energy consumption (VDI 4661, 
2014, p. 15). Depending on boundary conditions, the energy consumption can deviate from the 
calculated energy demand (Schellong, 2016b, p. 322). These boundary conditions are determined by a 
variety of demand influencing factors, which are also referred to as demand drivers (see chapter 
2.2.1.2).  

The load profile depicts the pattern of electrical, gas or heat load consumed in high temporal 
resolution4 over a certain time period (Schellong, 2016b, p. 375). Load profiles commonly depict the 
load patterns of individual processes/consumers or of a group of processes/consumers. Due to the 
partial compensation of load fluctuations (as reflected by the simultaneity factor5), a group of 
consumers tends to show a much more smoothed load profile as compared to an individual consumer 
(Boßmann, 2015, p. 64). Load profiles play an important role in the energy system, as they are used 
for a broad range of different purposes (Schellong, 2016b, p. 375) (see chapter 2.2.4 for details). Using 
electrical load profiles in this thesis, patterns of electricity consumption (with specific boundary 
conditions) serve as model input in order to derive patterns of electricity demand (in dependence of 
boundary conditions). Here, the term load profile is used for the electrical load only, to describe both 
the input data (electricity consumption) as well as the resulting subsector load profiles (electricity 
demand). 

Since the liberalisation of the electricity markets in 1998 and the accompanying obligation of grid 
operators to grant non-discriminatory access to all suppliers, knowledge of a customer's load profile is 
of particular importance (Schellong, 2016b, p. 377). While large consumers are obliged to registering 
power measurement (RLM), the load profile of small consumers with an annual electricity 
consumption of less than 100,000 kWh is to be accounted for using a simplified method with standard 
                                                           
4 In Germany, electrical load profiles are commonly measured in 15-min intervals, gas and heat in hourly intervals. 
5 Sometimes also referred to as “diversity factor” (German: Gleichzeitigkeitsfaktor) 
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load profiles (SLP) (StromNZV, 2020 § 12). In Germany, SLP have been introduced for households, 
commercial branches and agriculture (VDEW, 1999). These SLP differentiate according to type day 
(working day, Saturday and Sunday) as well as season (winter, transitional period and summer). SLP 
approximate the load profile for consumers which are not metered individually. They were created as 
average load profiles using real load data metered between the years 1981 and 1998. SLP are always 
only a rough approximation of the actual load profiles of the groups they represent. As they explicitly 
depict group behaviour, they are in most cases unsuitable to satisfactorily represent the behaviour of 
a concrete individual customer (VDEW, 1999, p. 42). In any case, representing the load characteristics 
of 20 to 40 years ago, standard load profiles appear to have structural deviations and are not accurate 
anymore (Gerblinger et al., 2014, p. 3; Hinterstocker et al., 2014, p. 1; Sohns, 2015, p. 17; Spiegel, 2018, 
pp. 796–797). However, SLP are still widely used. Related literature will be reviewed in chapter 2.3.2. 

2.2.1.2 Demand Drivers  
The energy demand is essentially determined by the nature and dimension of the system. Specifically, 
most electricity load data exhibit large fluctuations while showing distinct and recurring patterns over 
time. Those patterns can be traced back to factors influencing the electricity demand, namely demand 
drivers. These interdependencies are complex and it is almost impossible to depict all demand drivers 
adequately in larger systems. Hence, modelling as a simplified representation of reality is therefore 
indispensable in order to examine quantitative and qualitative interactions within the system 
(Schellong, 2016b, pp. 322–328).  

In a recent literature review by Verwiebe et al. (2021b) , a number of 419 articles in the energy demand 
modelling literature has been analysed with regards to multiple features, such as demand drivers used. 
A selection of relevant insights of this review is introduced in chapter 2.3.1, while most relevant 
demand drivers identified in the literature review are listed in Table 1. 

Table 1: Demand drivers for energy consumption, based on Verwiebe et al. (2021b, pp. 4–5). 

Demand driver Examples 
Historic energy 
demand Historic load, electricity, heating, cooling or natural gas demand 

Weather data Outside temperature, atmospheric pressure, cooling and heating degree 
days, humidity, solar radiation, wind speed 

Calendar data Time of day, day of week, month, holidays, bridge days, seasons, workday, 
working hours, operating time of appliance 

Demographic or 
economic data 

Economic indicators: GDP, GNI, level of production, income, import and 
export level of a region 

Technical system 
data 

demographic indicators: human development indices, population, number 
of dwellers/ buildings/ residences, age, sex, education, infant mortality  

Usage or behavioural 
data 

Appliance data: equipment installed, number of appliances, efficiency, 
material properties, air change ratio, flow rate, outlet/ inlet temperatures, 
rated power of equipment, impedance 

Energy prices 

building data: floor space, number of bedrooms, transmission factor, 
building type, age of building, efficiency rating, geometry of building, status 
of refurbishment, window area, building material, indoor temperature, 
indoor humidity 

 

In varying combinations, these demand drivers serve as explanatory variables and predictors in 
electricity demand models. Depending on the context, methodology and the temporal horizon of 
electricity demand forecasts, different demand drivers are deployed. Table 2 classifies some of these 
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demand drivers according to their strength of influence on electricity demand forecasts, depending on 
their temporal horizon (short to long-term). The temporal horizon gets further specified in the next 
chapter 2.2.1.3.  

Table 2: Demand drivers for electricity consumption and their strength of influence depending on temporal horizon of 
forecasts. +++ strong influence, ++ moderate influence, + weak influence, - no influence, based on Schellong (2016a, p. 327) 

Demand driver Temporal horizon of forecast 
Short-term Mid-term Long-term 

Temperature +++ ++ - 
Solar radiation +++ + - 
Precipitation + - - 
Wind ++ + - 
Sunshine duration + + - 
Effective cloud coverage ++ + - 
Week day +++ ++ + 
Holiday +++ ++ + 
Bridge days +++ ++ + 
Seasons +++ +++ +++ 
GDP + ++ +++ 
Production schedules +++ ++ ++ 
Energy intensity ++ ++ ++ 
Energy efficiency +++ +++ +++ 
Energy prices + ++ +++ 
Energy policy - + ++ 
Climate change - - ++ 

 

The most dominant demand drivers for electricity consumption are weather variables, particularly 
temperature and solar radiation, as well as calendar data, from day types to seasons. Moreover, 
production schedules and energy efficiency values are regarded very influential. For very long-term 
forecasts, economic output figures like GDP or energy prices are considered very important.  

2.2.1.3 Temporal Horizon and Temporal Resolution 
The temporal horizon of an energy demand model reflects the time span that is covered by the 
modelling effort, and typically ranges from short-term over mid-term to long-term forecasts. In the 
scientific literature, the following distinction is widely used (Verwiebe et al., 2021b, p. 5): 

• Long-term (>= 1 year) 
• Mid-term (> 1 day and < 1 year) 
• Short-term (<= 1 day)  

The temporal resolution reflects the scale of time steps that are described by the modelling effort, and 
typically ranges from seconds, minutes, 15-minute or hourly intervals, days, months to one year.  

As found in the literature review, short-term electricity modelling efforts tend to exhibit a higher 
temporal resolution in the scientific literature, whereas long-term electricity models are associated 
with a lower temporal resolution. In the German electricity system, electrical loads are typically 
metered and accounted for at 15-minute intervals. Therefore, a large extent of existing electrical load 
data in Germany is associated with a quarter-hourly resolution.  

2.2.1.4 Spatial Resolution  
The spatial resolution of an energy demand model indicates the scale of regions which are described, 
reaching from a country to a sub-country regional level (e.g. county), to a building level or to the 
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appliance, to name a few examples (Verwiebe et al., 2021b, p. 27). In order to uniquely identify a 
spatial unit, the official municipality key (German: Amtlicher Gemeindeschlüssel (AGS)) can be used for 
Germany. The AGS is not a number, but a sequence of digits. The first two digits indicate the federal 
state, the first five digits correspond to the county key (German: Landkreisschlüssel) (Gotzens et al., 
2020, p. 7), which can also be displayed in an eight-digit notation:  

Example.: 

06 535 009  Homberg (Ohm) 
06 535 000  Vogelsbergkreis 
06 535   Vogelsbergkreis 
11 000   Berlin 
11 000 000  Berlin 

For areas in the Member States of the European Union, the NUTS (French: Nomenclature des unités 
territoriales statistiques) system is used, which makes regional units identifiable and comparable even 
across national borders. A table published by Forschungsstelle für Energiewirtschaft (FfE, 2020) 
enables the mapping of NUTS code to the AGS code of German counties.  

In the electricity load forecasting, the spatial resolution of the modelled unit has influence on the 
stochastic properties of the underlying load profile, which in turn significantly affects the forecast 
quality. For example, the national load has significantly less variance than the load of an industrial 
consumer due to the high aggregation of consumers and the associated mutual compensation of load 
fluctuations. Modelling the national load is thus associated with a much smaller forecast error as 
compared to modelling an industrial consumer (Verwiebe et al., 2021b, p. 29).   

2.2.1.5 Level of Modelling Detail  
According to Flatau (2019, p. 21), energy models can be classified into black, grey and white box 
models, based on their level of modelling detail. In a black box model, the focus is on the input and 
output variables without considering the inner system behaviour. Black box models are also called 
descriptive models and are mainly used when the real relationships cannot be depicted. Instead of 
causal relationships between the input and output variables, these are described with empirical 
relations. In contrast, the focus of white box models is on the exact imitation of reality. White box 
models are also called causal models, as the internal behaviour of a system is described, for example, 
based on physical or chemical laws. The quality of the results of a model increases with increasing 
causality. Grey box modelling is a hybrid form of the above extremes, white box and black box 
modelling. Only the components of a system relevant for an investigation are modelled. The depth of 
consideration is based on the individual needs of the user. Consequently, both causal and empirical 
model relations can be used (Flatau, 2019, pp. 21–22). 

2.2.2. Balancing Group System 

In the following chapter, the balancing group system and its actors are being introduced on the basis 
of Figure 2. For technical reasons of frequency conservation and limited capacity of electricity storage, 
generation and consumption in the electricity grid must be balanced at all times (Schellong, 2016b, p. 
376). For that purpose, each control area is subdivided into balancing groups, which commercially 
ensure the balancing of generation and consumption (BNetzA, 2021a). All suppliers and consumers are 
assigned to a balancing group. As a virtual account of generation and consumption, balancing groups 
are managed by the balance responsible party (BRP), which is responsible to balance quarter-hourly 
amounts of electricity being fed into or taken from the grid and which bears the commercial 
responsibility for deviations within its group (StromNZV, 2020 § 4 (2), (3)). The BRP will procure 
electricity based on its customers’ forecasted load profiles (4.). In order to account for smaller 
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consumers with less than 100,000 kWh annual electricity consumption, every distribution system 
operator (DSO) provides SLP (3.) to all BRPs registered within its network area (2.) (MaBiS, 2020, p. 
65). Hence, the load profiles and forecasts of individual consumers are the central parameters enabling 
the BRP to efficiently procure electricity. All generators within that balancing group must meet the 
electricity demand at all times. If the required and supplied amounts of electricity diverge over all 
balancing groups in a control area, the transmission system operator (TSO) must compensate these 
net deviations by supplying control energy. Incurring costs for control energy are allocated (10.) 
according to who caused the deviations using the imbalance settlement price (reBAP)6 (BNetzA, 2020, 
p. 212; Schellong, 2016b, p. 19). In Germany, the TSO also takes the role of the balancing group 
coordinator, whose responsibility is to balance the control area by technical means and to settle all 
balancing group accounts.  

 

Figure 2: Schematic representation of balancing group system processes for the electricity supply of an SLP consumer. The 
colours indicate whether processes take place before (blue), during (black) or after (red) the electricity supply. Diagram by 
author, adapted from Gerblinger et al. (2014, p. 2) 

Using SLP, there will inherently be deviations in procured and consumed electricity for related 
consumers (see chapter 2.3.2). According to StromNZV § 12 (3), a DSO is obliged7 to record these SLP 
deviations in a differential balancing group. In contrast to the balancing group, DSO differential 
balancing groups are not purely virtual accounts but relate to the DSO’s actual physical balancing area. 
In differential balancing group time series, the DSO is obliged to exclusively record and annually publish 
the quarter-hourly deviations of all those smaller consumers who are accounted for using SLP 
(StromNZV, 2020 § 12 (3)). In addition to SLP deviations, the differential balancing group time series 
will also encompass potential forecast errors from profile-based generation systems (like photovoltaic 
(PV) modules) (MaBiS, 2020, p. 12).  

The responsibility and the commercial risk for managing these SLP-based deviations is assigned to 
either DSO or BRP according to the load profile procedure, which is determined by the DSO (Sohns, 
2015, p. 18). There are two options:  

• Synthetic load profile procedure (DSO responsible) 
• Analytic load profile procedure (BRP responsible) 

                                                           
6 In German: regelzonenübergreifender einheitlicher Bilanzausgleichsenergiepreis (reBAP) 
7 DSOs with less than 100 000 customers connected to their distribution network are exempt from the obligation. 
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Depending on the responsibility, the DSO or the BRP are required to actively manage their portfolio 
(4./5.): Predictable deviations in the consumption behaviour of SLP-based consumers must be 
accounted for and reduced as accurately as possible. This particularly includes the short-term trading 
of quarter-hourly electricity amounts in the (intraday) spot market (BNetzA, 2013, p. 2). Excess 
electricity is to be sold and missing electricity is to be bought. Remaining deviations (7.) will be priced 
with the reBAP (10.).  

After the end of a contract year, the actual energy consumption of a customer is metered (8.) and 
transferred (9.) to the DSO by the meter operator. Furthermore, the DSO receives the monthly reBAP 
from the respective TSO, which is used to price SLP forecast deviations (10.). In the next step, the DSO 
determines the excess or missing electricity quantities of a customer with regard to the SLP (11.) as 
well as the costs or revenues incurred for this (12.). In order to price excess or missing electricity 
quantities, spot market prices of the twelve previous months will be used (and not the reBAP). The 
costs or revenues determined on the basis of a customer's excess or missing electricity quantities are 
then billed by the DSO to the supplier (13.). Based on the actual energy consumption, the BRP can send 
the final invoice for the respective billing year (14.) (Gerblinger et al., 2014, p. 2). 

As the reBAP is associated with high fluctuations and penalty payments may occur in case of large 
deviations, DSOs (or BRPs) are incentivized to accurately forecast and procure. As Koch and Maskos 
(2019) described, there might be opposing incentives to deviate from a balanced portfolio under 
certain circumstances (passive balancing), but this is actually not allowed by German law (StromNZV, 
2020 § 4 (2)), (Tennet, 2019). For the efficient management of balancing groups, the remaining load 
(of SLP consumers) is a central parameter (Sohns, 2015, p. 18). It can be calculated daily after delivery, 
according to:  

Remaining load = + import from neighbouring balancing areas 
  + total load (total infeed) 
 - export to neighbouring balancing areas 
 - loads of metered consumers 
 - grid losses 
 

The remaining load comprises the sum of the real quarter-hourly electricity load of all SLP customers. 
In the synthetic load profile procedure, the DSO will forecast the remaining load and buy or sell 
anticipated deviations (5.) to the SLP electricity quantities procured by BRPs (4.). In the analytic load 
profile procedure, the DSO will split the remaining load according to customer group and BRP. This 
split is being provided to the BRP who will likewise use the split to forecast and compensate deviations 
to SLP electricity quantities already procured. In both cases, the remaining load is a central parameter 
and essentially deviates from inaccurate SLP (Sohns, 2015, p. 18).   

2.2.3. Demand Side Flexibility 

The decarbonisation of the energy sector is associated with various challenges. The central strategy 
for emissions reduction is the expansion of fluctuating renewable energy system (RES), such as wind 
and solar. In addition, other end-use sectors that are difficult to decarbonise will increasingly be 
electrified in the course of the energy transition, referred to as sector coupling8 in literature (von Roon, 
2017). In order to make efficient use of fluctuating renewable electricity and ensure power system 
reliability, system flexibility is necessary in order to mitigate potential mismatches in supply and 
demand (IRENA, 2019, p. 7). The demand for flexibility will largely depend on the RES share and the 
technology mix (Nicolosi and Burstedde, 2021, p. 72). Among major options to offer flexibility are 

                                                           
8 A comprehensive definition of sector coupling can be found in Wietschel et al. (2018) 
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flexible generators, flexible storage facilities, the expansion of electricity grids and demand side 
flexibility. These flexibility options are considered to have priority if they are either more cost-efficient 
and/or socially more acceptable (Fürstenwerth and Waldmann, 2014, p. 39). 

According to Seidl et al. (2016, p. 9), demand side flexibility (DSF) is an increasingly important flexibility 
option in the German energy system. IRENA (2019) defines demand-side flexibility “as a portion of the 
demand […] that could be reduced, increased or shifted in a specific period of time to: 1) facilitate the 
integration of [fluctuating RES] by reshaping load profiles to match [fluctuating RES], 2) reduce peak 
load and seasonality and 3) reduce electricity generation costs by shifting load from periods with high 
price of supply to periods with lower prices” (IRENA, 2019, p. 7). According to Ladwig (2018, pp. 14–
15), demand side flexibility can be subdivided into three categories. In the first two categories, load 
increase and load reduction (also load shedding), the load will be increased or reduced without any 
load compensation at an earlier or later point in time. A load increase can be provided, for example, 
through Power-to-Gas or Power-to-Heat facilities at times of excessive electricity in the system. In 
times of an electricity deficit in the system, load shedding can be provided by energy intensive industry 
processes like the electric arc furnace or the chlor-alkali electrolysis. The third category is load shifting, 
which is associated to the shifting of loads to earlier or later times to better match the fluctuating RES 
generation or grid infrastructure restrictions. Applications and processes which are coupled to heat or 
cold storage systems, such as night storage heaters, are particularly suitable for this purpose (Ladwig, 
2018, pp. 14–15). In this thesis, the technical potential for load shifting of selected commercial 
subsectors will be analysed, considering application-specific maximum and minimum loads as well as 
time-related availability restrictions.  

The shedding, increasing and shifting of load is supposed to contribute to smoothing the residual load 
curve and avoid situations of grid congestion. The residual load can be defined as the difference 
between actual power demand and the feed-in of inflexible and non-dispatchable renewable 
generators (Schill, 2014, p. 65). The residual load has to be balanced by means of (conventional or 
renewable) flexible generation or storage technologies. In the future, the residual load will be subject 
to strong changes. In particular, the further expansion of RES will lead to an increase in short-term 
fluctuations. According to Weinert et al. (2018, p. 151), demand side flexibility will be required to 
smooth the residual load in the following situations: 

• High demand coinciding with low electricity generation from wind and PV: leads to residual 
load peaks and is most likely to be observed in the early evening on winter working days. 

• Surplus of renewable electricity generation coinciding with low electricity demand: leads to 
low, possibly negative residual load peaks and is most likely to occur at midday on summer 
weekends. 

• Load peaks due to new applications, e.g. electric vehicles or air conditioning (AC): in the long-
term, growing load peaks due to uncoordinated demand patterns (e.g. simultaneous charging 
of a large number of electric vehicles in the early evening after the last journey)  
(Weinert et al., 2018, p. 151).  

By smoothing and reducing peak load hours of the residual load profile, demand side flexibility can 
partially reduce the need for peak load generation technologies, such as gas turbines, and efficiently 
ensure system stability (Boßmann, 2015, p. 212). In times of a negative residual load, demand side 
flexibility can also avoid grid congestion and make efficient use of the excess electricity by shifting 
demands or increasing loads, particularly to avoid the curtailment of fluctuating RES (Ladwig, 2018, p. 
15).  

From a regulatory perspective, §13 of the German Energy Act (“EnWG,” 2021) specifies a cascade of 
measures for the operational management and maintenance of system security in case of an 
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impending grid congestion. In addition to grid switching measures to relieve electricity lines, another 
option is using so-called redispatch measures, imposed by the TSO. Redispatch measures reduce power 
plant capacities at one location and increase them at another location. If these measures are not 
sufficient, the TSO may impose adjustments to electricity feed-ins and withdrawals (§13 (2) EnWG). 
This also affects RES and CHP plants, the electricity feed-in of which can then be reduced or curtailed. 
The reduction of the grid feed-in of these plants initiated by the TSO is referred to as feed-in 
management (German: Einspeisemanagement (EinsMan)). In order to reduce overall costs, a further 
development of the regulation will shortly come into force with so-called Redispatch 2.0. In Redispatch 
2.0, conventional and renewable generation plants will be considered in one step and controlled 
simultaneously in a cost-efficient manner, instead of the previous cascade of Redispatch and 
subsequent EinsMan. This will presumably result in increased curtailment of renewable generation 
plants within the framework of grid stabilisation measures, insofar as these can be curtailed more 
efficiently (Interconnector, 2021). 

Due to the existing grid topology and the expansion of fluctuating RES, situations of grid congestion 
will increasingly appear, especially along the transport routes from the wind parks in the north to load 
centres in the south of Germany (Beucker et al., 2020b, pp. 11–12). Already in the past decade, the 
curtailed energy due to EinsMan measures multiplied, from 74 GWh in 2009 to 6.482 GWh in 2019 
(BNetzA, 2021b, p. 149). Until now, the TSOs have mainly relied on large power plants and the 
curtailment of renewable electricity to eliminate bottlenecks. DSF, however, has hardly been used so 
far. Even the amendment to the German Grid Expansion Acceleration Act (German: 
Netzausbaubeschleunigungsgesetz (NABEG, 2021)), which came into force in May 2019, continues to 
exclude flexible consumers for the purpose of redispatch. In general, the principle "use instead of 
curtail" should apply to the renewable electricity generated, if the DSF can be used inexpensively. To 
give an example of application, the WindNODE research project has worked on the development of a 
flexibility platform for the north of Germany, to prepare the market-based utilization of DSF (Beucker 
et al., 2020b, pp. 11–12).  

From an economic point of view, the consideration of further DSF potentials in the process of grid 
congestion management is particularly interesting if more expensive flexibility options can be 
substituted or the use of renewable electricity can be increased. For this, the saved costs must at least 
compensate for the costs of further development and operation of a future flexibility platform. The 
frequency of use of the flexibility and the required capacity can vary greatly depending on the location 
of the plant and the local situation in the electricity grid and must be assessed individually (Beucker et 
al., 2020a, p. 25). In any case, recent studies found that demand side flexibility can significantly reduce 
the grid expansion that would otherwise be necessary in the future (Agora Verkehrswende et al., 2019, 
p. 10; Kaul et al., 2019, p. 193).  

2.2.4. Fields of Application for Electricity Demand Modelling 

Since electricity can only be stored to a limited extent and with losses, electricity trading, transport 
and generation must follow the temporal fluctuations in electricity consumption (Schellong, 2016b, p. 
376). For that reason, the fields of application for electricity demand modelling are manifold and span 
across all stages of the electricity system value chain. In order to investigate the various fields of 
application, Morozov (2019) conducted a structured literature search in her bachelor thesis at TU 
Berlin. Within the field of electricity load forecasting, the analysis identified 13 different fields of 
application for energy demand models employed by six different actors. Table 3 summarizes the 
results and illustrates the widespread use of energy demand models highlighting their relevance across 
all steps of the energy supply chain.  



2 The Modelling of Energy Demand 

- 15 - 
 

Table 3: Fields of application for energy demand modelling across different energy system actors, adjusted from Morozov 
(2019). Morozov adjusted the methodology from Verwiebe et al. (2021b) in order to narrow down the analysis to the 100 most 
cited papers from 2010 onwards to 2019, of which 72 were found suitable based on additional exclusion criteria. 
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Planning and operation ■  ■ ■ ■ ■ 

Cost minimization ■ ■ ■ ■ ■ ■ 

Energy policy      ■ 

Planning of Generation ■      

Security of Supply   ■ ■   

Maintenance and services ■  ■    

Procurement/Trading ■ ■ ■ ■ ■  

Balancing ■  ■ ■   

Expansion planning ■  ■ ■   

Energy efficiency measures   ■  ■ ■ 

Pricing policy  ■     

Building and facility management     ■  

Microgrids   ■    
 

In this thesis, subsector load profiles are developed, validated and applied in long-term electricity 
demand models. In this context, especially the liberalisation of the electricity market and the obligatory 
non-discriminatory grid access of all suppliers requires the knowledge of customer-specific load 
profiles (Schellong, 2016b, p. 377). Complementary to the above literature review, Schellong lists the 
following fields of application for electricity load profiles in high temporal resolution. Electricity load 
profiles, as developed in this thesis, can be used for:  

• Planning and design of energy generation plants for electricity, heat and gas (dimensioning 
depending on peak load, also considering sector coupling technologies) 

• Power plant resource planning for heat and electricity generation (dispatch) 
• Simulation of time-dependent power consumption for smaller consumer groups without 

registering power measurement (RLM) (cf. chapters 5.1, 5.2, 5.3, 5.4) 
• Calculation of grid fees for electricity transmission and distribution 
• Portfolio management (structured electricity procurement in the liberalised energy market) 

(cf. chapter 5.6) 
• Balancing group management for the organisation of customer-supplier relationships to cover 

the electrical energy demand (cf. chapter 5.6)  
• Load management (avoidance or shifting of peak loads in electricity demand) (cf. chapter 5.5) 
• Demand-side management (temporal control of electricity demand to smooth the load curve) 

(cf. chapter 5.5) (Schellong, 2016b, pp. 378–379)  

Particularly for the future planning of the electricity system, there are specific fields of application for 
load profiles. Load profiles and energy demand forecasts are a central input for the electricity network 
development plan, which is updated every second year by the four German TSOs in collaboration with 
the Federal Network Agency (NEP Strom, 2021, pp. 12–13). More specifically, load profiles can be used 
to forecast demand and to estimate future technical DSF potentials as well as storage requirements 
(Seim et al., 2021a), as will be described later in this thesis (cf. chapters 4.5, 4.6). Forecasted load 
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profiles can help to forecast bottlenecks in the electrical grid, which can also help to adjust market 
signals of a future flexibility platform and avoid grid extension.  

On a microeconomic level, load profiles can serve as a subsector specific benchmark to consultancy 
firms estimating energy efficiency potentials in related subsectors. Also, they are an important input 
in the planning and simulation of local district energy concepts or microgrids that strive for a low 
carbon and self-sufficient energy supply. 

Regarding future applicability of load profiles, the smart meter rollout and the associated increase in 
temporally high-resolution load data might change or complement some of the above fields of 
application, like the balancing group system introduced in chapter 2.2.2. Recently, however, the smart 
meter rollout was temporarily stopped for some utilities because certified gateways allegedly did not 
meet the legal requirements (Dierks, 2021). Also, smart meter rollout in Germany is not expected to 
be completed before the year 2032 (MsbG, 2020 § 29), (Dena, 2016). In any case, there will be a need 
for aggregate subsector load profiles to forecast the load behaviour of a variety of customers on a 
broad measurement basis (Gerblinger et al., 2014, p. 3). 

The above considerations show that energy demand modelling in general and subsector load profiles 
in particular have a wide range of possible applications. The subsector load profiles developed in this 
thesis may be able to fill some of the existing data gaps in the German energy system for some of the 
application purposes listed above. 

2.3. Current Research – Literature Review  
In the following, the current state of research for this thesis will be introduced. Particularly, relevant 
literature and common concepts will be discussed. Moreover, the following chapters highlight in which 
way the present thesis fits into current research and addresses identified research gaps. Chapter 2.3.1 
will present the main findings of an international literature review conducted and published in 
Verwiebe et al. (2021b). The subsequent chapters 2.3.2 to 2.3.5 will predominantly focus on national 
literature and current research with regards to the application and performance of standard load 
profiles (chapter 2.3.2), the development of subsector load profiles (chapter 2.3.3), the forecasting of 
load profiles (chapter 2.3.4) and the literature on demand side flexibility potentials (chapter 2.3.5).  

2.3.1. International Literature Review on Energy Demand Modelling 

In a process of capturing the current state as well as trends in the scientific field of energy demand 
modelling, a systematic literature review was conducted in Verwiebe et al. (2021b). As energy demand 
is a crucial input factor for sound energy system and infrastructure planning, the discipline of energy 
demand modelling has a long tradition (Debnath and Mourshed, 2018, p. 310). In view of increasing 
requirements and higher data availability, energy demand modelling has recently become even more 
relevant in the scientific literature. As found in Verwiebe et al. (2021b, p. 4), the number of related 
articles indexed on “Web of Science” increased tenfold in the last decade. For these articles, the wide 
research spectrum can be differentiated according to the modelled energy carriers, the 
methodological approaches, the temporal horizon or the spatial resolution, to name but a few 
(Debnath and Mourshed, 2018; Hong and Fan, 2016). As part of the research project DemandRegio, 
the literature review aimed to provide a “systematic and replicable analysis of a high number of articles 
[on energy demand modelling] regarding the utilized techniques as well as associated input data, 
accuracy, and spatio-temporal resolution across different energy carriers and sectors.” (Verwiebe et 
al., 2021b, p. 3)   
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Some of the literature review’s insights also help to inform and contextualize the present approach of 
developing subsector electricity load 
profiles. In total, a number of 419 
articles from the years 2015 to 2020 
was reviewed with regards to the 
above-mentioned features. As found in 
the review and displayed in Figure 3, 
electricity is the most modelled and 
investigated energy carrier, by far 
exceeding natural gas or thermal 
energy. This not only underlines the 
value and significance of electricity for 
the overall energy system; it also 
underlines both rigorous requirements 
of balancing electricity supply and 
demand at all times as well as the associated high availability of data. This leads to a high interest in 
sophisticated models and data  (Verwiebe et al., 2021a, p. 13). Likewise, for this thesis, significance 
and data availability are among the very reasons for the focus on modelling electricity (as opposed to 
natural gas or heat).  

Regarding the consumer group focus, Figure 3 depicts the number of published articles by sector and 
energy carriers. As can be seen, most reviewed articles are not limited to a single sector. Rather, energy 
demand of an entire region is modelled, comprising all sectors. A sectoral focus on the electricity 
demand of the CTS and the industrial sector is less common within reviewed articles, despite their high 
electricity demand and significance (Verwiebe et al., 2021b, p. 32). The reason why these two sectors 
are underrepresented may be due to the sensitivity of business-related data (Wei et al., 2019, p. 7) as 
well as the heterogeneity of these sectors (Seim et al., 2019, pp. 4, 17). In view of these barriers, the 
present thesis seeks to fill this research gap by modelling the load behaviour of various industrial and 
CTS subsectors.   

The techniques of reviewed articles are manifold, but machine learning and statistical approaches are 
among the most popular techniques employed, which is also in line with a literature review by Debnath 
and Mourshed (2018). The dominant use of machine learning and statistical approaches goes back to 
their flexibility and performance in a variety of contexts (Verwiebe et al., 2021b, p. 9). Particularly, 
linear and logistic regression are popular within statistical approaches, whereas artificial neural 
networks (ANN) are most applied approaches within machine learning techniques (Debnath and 
Mourshed, 2018, pp. 300–301). Since engineering-based techniques require high amounts of data and 
effort, they are used less frequently in the electricity demand modelling (Verwiebe et al., 2021b, p. 8). 
The above findings inform the present thesis’ choice to apply multiple (linear) regression for the 
development of subsector load profiles. As a complement, ANN will be used to benchmark the multiple 
regression approach. Due to data and time requirements, engineering-based load profiles will only be 
developed for a selection of subsectors, in order to derive further insights with regards to the 
projection of load profiles and the identification of DSF potentials.  

The temporal and spatial properties represent their level of detail for the modelling task. It was found 
in the review that the temporal horizon of reviewed articles spans evenly distributed from short-term, 
over medium term to long-term modelling tasks. Likewise, the temporal resolution of reviewed articles 
covers a spectrum from sub-hourly, hourly, daily or above-daily time steps (Verwiebe et al., 2021b, p. 
27). The combination of a long-term forecasting horizon and sub-hourly resolution, however, is found 
less frequently within reviewed articles. Developing and forecasting subsector load profiles, the 

 
Figure 3: Number of published articles by sector and energy carriers. Used 
from Verwiebe et al. (2021c, p. 7859) 
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present thesis aims to also address this research gap: the provision of tools for the long-term electricity 
load forecast in high temporal resolution. Regarding the spatial resolution of reviewed papers, regional 
and country level energy demands are investigated more intensely compared to the appliance level 
(Verwiebe et al., 2021b, p. 27). This finding is in line with Wei et al. (2019, p. 7), who attribute this fact 
to the difficulty of data acquisition for smaller spatial entities.  

Further insights of the literature review will be discussed where helpful in the course of this thesis. 
Particularly, the accuracy of reviewed papers and its dependency on the spatial resolution will be 
presented in chapter 2.5.5.  

2.3.2. Standard Load Profiles 

For more than 20 years now, the VDEW SLP have been used for the electricity procurement and the 
billing practice of non-power metered customer groups (cf. chapter 2.2.1.1). They were created as 
average load profiles, using 607 commercial, 332 residential and 260 agricultural load profiles in hourly 
and quarter-hourly resolution metered in the years between 1981 and 1998 (VDEW, 1999, pp. 15–16). 
The consumer groups were clustered using a fuzzy logic algorithm, yielding one average residential 
load profile (H0), seven commercial (G0 – G6) and three agricultural (L0 - L2) load profiles (VDEW, 1999, 
pp. 24–25). These SLP distinguish between working day, Saturday, Sunday as well as the seasons 
summer, winter and transition period. Figure 4 exemplifies two normalized VDEW SLP (H0, G1) in the 
winter period. 

 

Figure 4: Exemplary illustration of two VDEW SLP (H0 and G1) in winter period. Diagram by author, based on BDEW (2021). 

In addition to these consumer group SLP, standardised load profiles for specific interruptible and highly 
temperature-dependent loads (e.g. night storage heating, heat pumps) were created by VDEW. Based 
on technical parameters of the modelled system, basic load profile structures can be determined and 
adapted to the real conditions by form factors. These profiles were developed using real load data 
from the years 1998 to 2001, consisting of metered data from about six apartment buildings, 36 
individual measurements from the domestic and commercial sector, as well as heating measurements 
from 75 individual customers (Schieferdecker et al., 2002, pp. 3, 23).  

Representing the load characteristics of 20 to 40 years ago, SLP are associated with structural 
deviations. These deviations and the underlying drivers can be found in literature. Comparing the 
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residential SLP (H0) with smart meter load profiles of Austria, Hinterstocker et al. (2014, pp. 1–2) 
identify significant deviations that might be 
traced back to behavioural changes, efficiency 
improvements as well as climatic developments. 
Similarly, both Gerblinger et al. (2014, p. 3) and 
Spiegel (2018, pp. 796–797) find that particularly 
the increasing share of PV self-generation and 
decentralised battery systems leads to forecast 
deviations using SLP, increasing the balance price 
risk for the BRP or DSO. As Sohns (2015, p. 17) 
points out, SLP are naturally associated with 
deviations which can lead to higher demands for 
imbalance settlement, resulting in higher costs 
for connected customers. These deviations 
affect both residential and commercial load 
profiles, as internal research indicated (Seim et 
al., 2021b, pp. 1–2). These deviations of non-
power metered customer groups are typically 
captured in differential balancing group time 
series, which have to be recorded by DSOs, according to StromNZV § 12 (3) (cf. chapter 2.2.2). For 
Stadtwerke Hagenow, Figure 5 depicts the differential balancing group time series in a heatmap. As 
can be seen exemplary, the DSOs tend to largely underestimate electricity demands of small customers 
over the night time and in morning hours, while overestimating the electricity demand during the day. 
Using SLP, the differential balancing group time series of other DSOs exhibit similar deviations (Ecke 
and Kauffmann, 2013). 

Despite their structural deviations, these SLP are still widely used in research projects and as a 
benchmark for mapping the electricity demand of small customers – due to the lack of alternatives. In 
the research project DemandRegio, SLP have been used both in the SLP only and the BLP application 
approach in order to map the German electricity demand in high temporal and spatial resolution. In 
the BLP application approach, SLP were partially replaced by newly developed subsector load profiles 
(Gotzens et al., 2020, p. 154), which will be further introduced in this thesis. In a separate context, SLP 
have been commonly used in order to assess the demand side management potential of Germany 
(Heitkoetter et al., 2020, p. 7; Ladwig, 2018, p. 47; Steurer, 2017, p. 49). According to an analysis by 
Beuker (2018), residential SLP were used by 87 % of all 46 DSOs analysed. As remaining 54 DSOs did 
not publish sufficient information or data for the analysis, the share of DSOs using SLP is likely even 
higher. Further, multiple studies used SLP to simulate residential electricity consumption in the 
quantitative assessment of RES in decentralised power systems (Moshövel et al., 2015, p. 568; Seim et 
al., 2017, p. 9; Waffenschmidt, 2014, p. 89). Due to the lack of demand data in high temporal 
resolution, as discussed in chapter 2.1, the above examples only represent a fraction of research that 
had to resort to SLP. 

2.3.3. Subsector Load Profiles 

Recent alternatives to the use of SLP are either of closed access or very specific with regard to the 
mapping of individual subsectors. Kunze and Fichtner (2010, pp. 64–67) generated representative load 
profiles for the subsectors offices and retail food, based on 1,549 metered quarter-hourly load profiles 
of the years 2004 and 2005, using a fuzzy C-means algorithm. Outside the German context, Dolman et 
al. developed ten subsector load profiles for the commercial building sector in Great Britain (office 
buildings, education, health etc.) by averaging 226 half-hourly electricity demand profiles (Dolman et 

 
Figure 5: Heatmap illustration of a differential balancing 
group time series according to StromNZV § 12 of Stadtwerke 
Hagenow (2016), illustration by author. 
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al., 2012, p. 64). Afterwards, application-specific sub-loads were approximated assuming that each 
follows the profile shape of the total load. Sub-loads were refined by assumptions (where available) to 
subsequently derive the technical demand side potential (Dolman et al., 2012, p. 21). Although these 
load profiles were developed for the commercial sector of Great Britain, they are still used in German 
research due to lack of alternatives. For example, the German Agency for Energy Efficiency (German: 
Bundesstelle für Energieeffizienz) used and cited these load profiles as the only data basis for 
application specific load profiles in the CTS sector (Weinert et al., 2018, pp. 114–117). In a different 
research project, Peter (2013, p. 8) used individual industrial and commercial load profiles in order to 
model decentralised structures based entirely on RES in the year 2050. The measured load profiles of 
20 sites were not published. Gobmaier (2013, p. 47) generated synthetic load profiles for various 
industrial and commercial subsectors as well as application technologies. Although resulting load 
profiles have not been published, the applied multiple regression methodology inspired this thesis. 
Jakob et al. (2014) generated subsector-specific load profiles of the CTS sector for Germany and other 
European countries, using a bottom-up approach based on application and standards-based occupancy 
profiles. These profiles are not publicly available. In the GEKLES model, Schlomann et al. presented 
application specific load profiles for the banking and administration sector. Related application specific 
energy demands were determined based on the results of a broad survey in 2,000 commercial sites 
between the years 2006 and 2012, supplemented by research and internal data (Schlomann et al., 
2015, pp. 64, 67). In a different research project, Weißmann et al. (2016) developed load profiles for 
the subsector of schools for further application in the energy assessment in local districts. The profiles 
were developed by averaging the load data of 12 schools of the year 2014 according to school type, 
season and type of day (i.e. workday, weekend). In the project “Teilenergiewerte”, Hörner et al. (2016, 
p. 22) measured application-specific load profiles in 75 non-residential buildings. Only the cumulative 
average load profiles for a low and high-tech office building were published. More recently, Behm et 
al. developed national electricity load profiles using artificial neural networks. Based on historic data 
for Germany from 2006 to 2015 provided by ENTSO-E, calendrical as well as weather information was 
used to generate synthetic load profiles for “much-needed” long-term electricity load predictions for 
European countries (Behm et al., 2020, pp. 1, 15). In order to create an overview of hardly available 
demand data, the HTW has created a portal where measured and synthetic load profiles can be made 
available collectively (HTW Berlin, n.d.).  

Most developed load profiles from the research projects discussed above are either not published, too 
specific or too general in order to sufficiently map the subsector electricity demand in Germany in high 
temporal resolution. Notwithstanding, there are models capable of such tasks: the combination of the 
FORECAST model and the eLOAD model by Fraunhofer ISI is employed in central projects assessing the 
German energy system, such as the electricity grid development plan, the development of national 
long-term energy scenarios as well as national energy demand statistics (Elsland et al., 2016, pp. 17–
19; Pfluger et al., 2017a, p. 21; Rohde, 2019, p. 2). In eLOAD, application-specific load curves are 
deduced from the system load curve of the base year using a partial decomposition approach. For the 
long-term forecast, these application-specific load curves can be scaled by projected application-
specific annual electricity demands in FORECAST. The models are based on more than 500 hourly load 
profiles from different types of industrial, commercial and residential appliances or processes, historic 
load curves as well as application-specific demand side flexibility parameters (Fraunhofer ISI, 2019). 
However, both cross-sectoral models are of closed-access and thus cannot be used for replication or 
validation purposes.  

The need for demand data has been described in chapter 2.1, while multiple fields of application for 
electricity load profiles have been identified in the former chapter 2.2.4. By providing openly 
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accessible, up-do-date and accurate subsector load profiles, this thesis aims to close the identified 
research and data gap.  

2.3.4. Load Profile Projections  

In the international literature, the long-term projection of electricity consumption usually focuses on 
the annual electricity consumption of individual cross-sectional application technologies or sectors 
(Verwiebe et al., 2021a, p. 19). If at all, the temporal resolution of annual electricity demands is 
oftentimes achieved by applying current-state load profiles, as is the case for the research project 
DemandRegio (Gotzens et al., 2020, pp. 58–60). However, major technology shifts like the 
electrification of the heat or transport sectors will not only have significant effects on the total annual 
electricity demand but also on its load profile (Elsland et al., 2016, p. 18). In the German context, there 
are only few research institutions that engage in projecting the electricity load profiles with regards to 
their potential future shape. Even current commercial and industrial load profiles are hardly publicly 
available (HTW Berlin, n.d.; Seim et al., 2019, p. 17). In the eLOAD model, however, Elsland et al. 
extrapolate load profiles into 2030 or 2035, taking into account efficiency advances and technology 
shifts, such as the partial electrification of the heat and transport sectors (Elsland et al., 2016). For the 
regionalisation of loads, a distinction is made between the four demand sectors (households, CTS, 
industry and transport). While the effects on load profiles of individual technologies or sectors are 
described, the underlying data and load profiles are not publicly available, as mentioned in chapter 
2.3.2. ZIRIUS has also dealt with the projection of load profiles in the project “Lastprofilwandel”, but 
only for an exemplary pilot analysis for the mobility sector (Prehofer et al., n.d.). Here, too, the 
resulting profile was not published.  

This thesis seeks to address this research gap by developing plausible load profiles of selected 
commercial subsectors for the year 2035 based on application-specific load profiles from Böckmann et 
al. (2021) and a scenario-based projection of application-specific annual electricity demands from 
Pfluger et al. (2017b). Using these bottom-up simulation models allows the mapping of structural 
changes and is therefore suitable for long-term energy forecasts (Wietschel et al., 2011a, pp. 43–44). 
The methodology and results of the load profile projection for respective commercial subsectors have 
already been published in Seim et al. (2021a). 

2.3.5. Demand Side Flexibility Potentials 

In a recent literature review, Kochems (2020) compiled and systematically analysed the studies on 
technical DSF potentials. The review concludes that data gaps on DSF potentials are particularly 
prevalent in the CTS sector, although considerable load shifting potentials can be identified there. 
Among Kochems’ conclusions, two can be highlighted for the present thesis: firstly, closing the 
research gap of DSF potentials within the CTS sector is suggested. Secondly, it is recommended to focus 
future research on application-specific load shifting potentials across all sectors. These application-
specific assessments can reduce uncertainties associated with the quantification of potentials found 
in current literature (Kochems, 2020, p. 12).  

This thesis seeks to close these research gaps by identifying technical load flexibility potentials in high 
temporal and spatial resolution, using application-specific load profiles of key commercial subsectors 
(Böckmann et al., 2021). The methodology and results of technical demand side flexibility potentials 
for respective commercial subsectors have already been published in Seim et al. (2021a). Existing 
approaches (Gils, 2015; Heitkoetter et al., 2020; Ladwig, 2018; Steurer, 2017) differ from this thesis’ 
approach in the use of (partly incorrect) standard load profiles (cf. chapter 2.3.2) or highly simplified 
profile assumptions. 
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2.4. Energy Demand Sectors 
In order to define the scope of this thesis, the German energy demand sectors will be characterized 
briefly with regards to their demand structure as well as existing subsector classification systems 
(chapter 2.4.1). Going from subsectors to sub-loads in chapter 2.4.2, process and application 
technologies will be distinguished from each other to form the conceptual basis for the bottom-up 
modelling referred to in future chapters 2.5.4 and 4.4. Chapter 2.4.1 is based on a previous publication 
in Gotzens et al. (2020, pp. 62–65). 

2.4.1. Depiction of Relevant Economic Subsectors 

In national energy statistics, the energy demand side is commonly divided into four consumption 
sectors: the transport sector; the industrial sector; the residential sector as well as the sector of 
commerce, trade and services (CTS). In the year 2018, the final energy consumption (share) in Germany 
amounted to 751 TWh (30.1 %) for the transport sector, 736 TWh (29.5 %) for the industrial sector, 
636 TWh (25.5 %) for the residential sector and 375 TWh (15.0 %) for the sector CTS. Figure 6 depicts 
the final energy consumption of Germany by sector, application and energy carrier. For the latter three 
sectors, (natural) gas and electricity are the predominant final energy carriers, providing mainly 
process heat, space heat and hot water (natural gas) as well as mechanical energy, computational 
power of information and communication technologies (ICT), process cooling and lighting (electricity). 
In contrast, the transport sector is mainly supplied by mineral oil products, providing mechanical 
energy (“AGEB,” 2019).   

 

Figure 6: Final energy consumption of Germany by sector, application technologies and energy carriers in the year 2018. 
Depiction by author, based on AGEB (2019). (Electricity – includes renewable electricity; ICT – Information and communication 
technologies; Renewables – mainly biomass; Other – thermal utilization of waste materials, as well as waste heat; Mechanical 
energy includes ventilation, pumps, electric motors, compressed air systems and others) 

In the course of the energy transition, electrical energy is of particular relevance, due to its accessible 
decarbonization potential. In previous years, the share of renewable energies increased strongly in the 
electricity sector, due to the expansion of proven technologies like wind turbines and PV systems. In 
contrast, the share of renewable energies in the provision of process and space heat as well as in the 
transport sector has increased only little or insignificantly in the same time period. The electrification 
of the heat and transport sector is hence being fostered and referred to in literature as sector coupling 
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(von Roon, 2017). Despite the promising expansion of renewable energies in the electricity sector, 
there are particular challenges associated to the characteristics of the electricity system (Schellong, 
2016b, p. 376), i.e. 

• the system requirement to keep electricity generation and consumption in balance at all times, 
• the intermittent character of renewable electricity generation and inflexible consumption, 
• as well as the fact that electricity can hardly be stored in large quantities. 

In view of the above considerations, this thesis puts a major focus on modelling the electricity demand 
of the industry and CTS sectors, as they exhibit high shares of electricity consumption; and as there is 
a general lack of information with regards to their demand patterns, mainly due to the previously 
described lack of data and their heterogeneity. 

In order to take into account the sectors’ heterogeneity, the industrial and CTS sector should be 
subdivided into smaller energy consumer groups, i.e. subsectors. Existing subsector classifications in 
the relevant literature can be found in the Working Group on Energy Balances (AGEB)9 (Ziesing et al., 
2019), in Fleiter et. al (2013) as well the German Classification of Economic Activities (WZ 2008) by the 
Federal Statistical Office (Destatis, 2008), which will be briefly introduced in the following. All three 
classification schemes can be mapped to each other to a certain extent. 

Energy statistics form an important statistical information base for energy policy and serve as the basis 
for further considerations and measures within the Federal Government’s Energy concept. Collected 
by various authorities and actors, the energy statistics are structured, standardized and merged into a 
consistent picture by AGEB (Ziesing et al., 2019). Among its central outputs are the 
Anwendungsbilanzen, i.e. annual reports specifying the subsectoral energy consumption for different 
application technologies (“AGEB,” 2019). In the industrial, residential and CTS sector10, AGEB specifies 
the electricity demand for 29 consumer groups, depicted in Figure 7 (p. 24). As can be seen, the 
electricity consumption amounted to about 129 TWh annually in the residential sector, which 
corresponds to about 25 % of the total electricity consumption. Further relevant subsectors are the 
basic chemical industry (47.4 TWh/a), offices (29.8 TWh/a), trade (22.6 TWh/a) and many more.  

Building upon the existing AGEB consumer group classification, Fleiter et al. (2013) added another level 
of detail for the industry sector, analysing 63 energy-intensive industry processes. Regarding their 
electricity consumption, Figure 8 (p. 24) illustrates the 21 most relevant industry processes in Germany, 
which are associated with an annual electricity consumption of more than 1 TWh. While energy saving 
potentials of those processes are being discussed, information for load profile characteristics are not 
being provided (Fleiter et al., 2013). 

 

                                                           
9 AGEB (German: Arbeitsgemeinschaft Energiebilanzen) 
10 According to Schlomann et al. (2015, p. 2), the sector CTS is distinguished from the industry sector by the 
number of employees: Commercial enterprises with a maximum of 19 employees, commercial buildings and 
premises of a commercial nature, trading companies as well as private and public service companies and facilities 
are assigned to the CTS sector. Agriculture, military services and stationary energy consumption by German 
Railways and airports are also included. 
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Figure 7: Classifying industrial, commercial and residential subsectors: Electricity consumption per subsector in Germany of 
the year 2017. Up-to-date subsector-specific data is not available for the CTS sector. Depiction by author, based on (Geiger et 
al., 2019, p. 19; Rohde, 2019, p. 18; Schmidt et al., 2019, p. 13). 

 

Figure 8: Classifying energy-intensive processes in Germany: electricity consumption for all energy-intensive processes with an 
annual electricity consumption of more than 1 TWh. Depiction by author, based on (Fleiter et al., 2013). 

In contrast to the two literature examples above, the German Classification of Economic Activities 
(WZ 2008) by the Federal Statistical Office (Destatis, 2008) does not set a particular focus on energy 
statistics but on socio-economic statistics associated to economic activities. This classification forms 
the basis for the statistics on production values, production factors used (labour, inputs, energy, etc.) 
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and financial transactions of each subsector. The German classification (WZ 2008) has also been 
harmonized to some degree to match the European (NACE11) and global (ISIC12) classification schemes. 
In the current edition of WZ 2008, a subdivision of subsectors is made at five levels of detail. In 
ascending level of detail, these are: 

• Sections (of which 21), coded with one letter. 
• Divisions (of which 88), coded numerically with two digits 
• Groups (of which 272), coded numerically with three digits 
• Classes (of which 615), coded numerically with four digits  
• Subclasses (of which 839), coded numerically with five digits 

The literature discussed above (AGEB, Fleiter et al. (2013), WZ 2008) presents existing subsector 
classification schemes in Germany which could serve as a reference to define consumer groups for the 
generation of subsector load profiles. For the purpose of the present thesis, defined consumer groups 
should 

• be as homogeneous as possible with regards to their electricity consumption patterns, 
• match to existing statistics to enable the scaling of results, and  
• exhibit a sufficient level of detail with regards to data availability. 

Despite the distinct focus on energy statistics of AGEB and Fleiter et al., particularly industrial 
consumer groups are declaredly associated with heterogenous structures or technologies (“AGEB,” 
2019, p. 11). The heterogeneity of electricity consumption can be even more pronounced for the 
classification WZ 2008, where groups are assigned based on production factors, inputs, production 
processes, intermediate or final products and services (Destatis, 2008). However, the most important 
benefit of the WZ 2008 classification is its compatibility to other socio-economic statistics, which allows 
for the scaling of any subsector specific results on a county-level (AGS) throughout Germany. In the 
course of this thesis, divisions from the classification WZ 2008 will therefore be used to define 
subsectors. The inherent heterogeneity in this classification cannot be avoided and will be addressed 
in the discussion of results.  

As indicated in chapter 1, the compatibility of WZ 2008 to other socio-economic statistics enables a 
regional mapping of the electricity demand by using the electricity consumption of individual 
subsectors (Destatis, 2019), the number of employees for individual subsectors (FfE and 
Bundesagentur für Arbeit, 2019) and a regionally specific energy consumption of industrial subsectors 
(FfE, 2019). The detailed methodology of the regional mapping of electricity demand is presented in 
Gotzens et al. (2020, pp. 75–79). Naturally, those subsectors with high energy consumption are to be 
investigated as a priority. 

2.4.2. Process Technologies and Application (Cross-sectoral) Technologies 

In addition to subsectors, the energy demand can be further divided into sub-loads of the underlying 
energy consuming technologies. Depending on their scope of application and specificity, energy 
consuming technologies can be divided into two groups, which eventually provide energy services: 
process technologies and cross-sectoral application technologies. 

Process technologies are technologies that are very specific to a certain (industrial) sector, product or 
production process. These include, for example, the paper machine, the cement mill or the chlorine-
alkali-electrolysis, which are only applied in that particular subsector. These very diverse industrial 

                                                           
11 NACE – Statistical Classification of Economic Activities of the European Community 
12 ISIC – International Standard Industrial Classification 
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processes lead to a heterogeneous technology structure with a large number of different energy 
consumers. The mapping of this heterogeneous technology structure is therefore complex and 
involves high data requirements. Chapter 2.4.1 introduced several energy-intensive process 
technologies and their respective energy demand (Fleiter et al., 2013, pp. 46–49). As indicated by their 
name, process technologies are oftentimes closely related to the manufacturing process, i.e. the 
central process in the value creation within the manufacturing industry. These manufacturing 
processes are subject to (stochastic as well as scheduled) fluctuations and depend on production 
schedules, which are mostly unknown to modelers, which complicates the energy demand modelling 
of process technologies.  

In contrast to process technologies, application technologies are widely used mass products across 
subsectors. These technologies mostly consume electrical energy only, and comprise lighting, ICT, 
ventilation, air conditioning, pumps, electric motors as well as compressed air systems. While the 
individual application (e.g. lighting) might only account for a limited share of the total energy 
consumption in a subsector, their cross-sectoral application makes them relevant energy consumers 
from the perspective of the overall system (Fleiter et al., 2013, p. 21). Figure 6 (page 22) displays the 
final energy consumption of these application technologies. Application technologies are particularly 
dominant in the CTS sector. Besides their relevance as energy consumers, the temporal availability and 
regional distribution of application technologies qualify them for load shift interventions. This is 
particularly relevant because the use of application technologies does oftentimes not directly interfere 
with the manufacturing process – in contrast to process technologies (Schellong, 2016b, p. 407). 

Among energy demand modelling methods, the distinction of process and application technologies 
particularly concerns engineering-based bottom-up modelling approaches, which exhibit the 
respective technological detail (Fleiter et al., 2011, p. 3100). Using physical parameters, engineering-
based models are characterized by the detailed depiction of a system’s technological equipment 
enabling the realistic simulation of the system’s behaviour as a function of various framework 
parameters. In view of the above-mentioned technological heterogeneity, data requirements of 
bottom-up models can quickly become very high and inexpedient. This is all the more challenging 
because (application-specific) energy demand data is rarely accessible, let alone metered separately 
(Seim et al., 2019, p. 17). Chapter 2.5.4 will further elaborate on engineering-based models.  

2.5. Techniques and Methods of Energy Demand Modelling 
As presented in a recent literature review (Verwiebe et al., 2021b), there is a variety of techniques and 
methods in the realm of electricity demand forecasting. Similar to existing literature (Debnath and 
Mourshed, 2018, p. 299), the techniques of reviewed articles were classified according to the following 
five categories: statistical, machine learning, metaheuristic, stochastic/fuzzy/grey, and engineering-
based techniques. Due to an increasing development of hybrid approaches, the boundaries are not 
always clear. As indicated in chapter 2.3.1, this thesis applies a combination of statistical, machine 
learning and engineering-based approaches for their flexible applicability, their widespread use and 
performance. The following chapters will introduce these specific techniques used in this thesis, i.e. a 
multiple regression and quantile regression approach for the development of subsector load profiles 
(chapter 2.5.1 - 2.5.2); an ANN approach as a benchmark model (chapter 2.5.3); and an engineering-
based approach to develop sub-load profiles for selected CTS subsectors (chapter 2.5.4). Auxiliary 
methodologies to evaluate and validate model performances are introduced in chapters 2.5.5 and 
2.5.6. Other techniques frequently applied in the energy demand forecasting literature are briefly 
contextualized by Verwiebe et al. (2021b, chapter 3) and partially introduced in Backhaus et al. (2016). 
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2.5.1. Multiple Regression 

The following introduction to multiple regression has partially been published in Gotzens et al. (2020, 
chapter 4.5.3.1) and is based on the introduction from Backhaus et al. (2016).  

Multiple regression analysis is a flexible and universally applied technique used to quantitatively 
describe the influence of several independent variables 𝑥𝑥𝑗𝑗 on a dependent variable y within complex 
systems and to estimate or predict values of the dependent variable y. In the quantitative 
determination of dependencies of individual demand drivers 𝑥𝑥𝑗𝑗 on the energy consumption, regression 
analysis compares favourably with the black box character of artificially intelligent methods. The 
regression function can be described in the following mathematical form (1)  

 𝑦𝑦 = β0 + β1x1 + β2x2 + ⋯+ βjxj ( 1 ) 

The multiple regression analysis can only map 
linear dependencies in their functional 
dependence on the model parameters. 
However, this only refers to the functional 
dependence of the regression parameters 𝛽𝛽𝑗𝑗, 
but not to variables 𝑥𝑥𝑗𝑗, which in turn can be integrated within nonlinear functions with 𝑥𝑥𝑗𝑗 = 𝑓𝑓(𝑥𝑥) 
(Backhaus et al., 2016; Schellong, 2016b). 

In this thesis, the electrical load forms the dependent variable y to be predicted, while demand drivers 
𝑥𝑥𝑗𝑗 are used as independent variables. As optimization criterion of the regression analysis the 
minimization of the residual variables 𝑒𝑒, thus the deviation of actually observed y to determined 
estimated values y� of the dependent variable is considered, as represented in formula (2): 

 ei = yi − yı�   , i = 1, 2, … n ( 2 ) 

 � ei2
n

i=1

→ min! ( 3 ) 

 �|ei|
n

i=1

→ min! ( 4 ) 

Typically, regression analysis uses the 
minimization of squared residuals, the 
so-called Ordinary Least Squares (OLS) 
method, as shown in formula (3). The 
goal of regression is to determine those values of the regression parameters 𝛽𝛽0,𝛽𝛽1 …𝛽𝛽𝑗𝑗 that fulfill the 
optimization criterion. An alternative, but mathematically more complex criterion to handle is the 
minimization of the absolute values of the residual variables (formula (4)). The latter is used in modified 
form in the Quantile Regression, introduced in the next chapter. 

2.5.2. Quantile Regression 

The following introduction of Quantile regression has partially been used in the DemandRegio final 
report (Gotzens et al., 2020, chapter 4.5.3.2). Quantile regression is a promising supplement to 
multiple regression in the present thesis. On the one hand, it can be used to generate prediction 
intervals that provide information about the accuracy, distribution and variance of the prediction. On 
the other hand, it is more flexible compared to some model assumptions, which limit the multiple 

y  estimation of dependent variable   
𝛽𝛽0 intercept 
𝛽𝛽1,2,…𝑗𝑗 regression coefficient 
𝑥𝑥1,2,,.,𝑗𝑗  independent variable 
𝐽𝐽  number of independent variables  

𝑦𝑦𝑖𝑖    ̶    observed value of the dependent variable Y for 𝑥𝑥𝑖𝑖 
𝑦𝑦𝚤𝚤�   ̶    determined extmated value of Y for 𝑥𝑥𝑖𝑖 
𝑛𝑛  ̶    number of observations 
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regression analysis. While multiple regression analysis predicts the conditional expected value by 
applying the least squares method, quantile regression aims at estimating conditional quantiles (e.g. 
the median). The Quantile Regression is therefore less susceptible to outliers (Koenker and Hallock, 
2001). A comprehensive description of quantile regression can be found in Koenker (2005). Formula 
(5) represents the typical optimization criterion of Quantile Regression (Fitzenberger, 2019, p. 407): 
 

                

                                        

∑ [θ ∗ I(yi > xi′βθ)N
i=1 + (1 − θ) ∗ I(yi < xi′βθ)] ∗ |yi − xi′βθ| → min!     

                           

                                 

( 5 ) 

For 𝜃𝜃 = 0.5 (median), positive and negative 
residuals are equally weighted, i.e. the sum of 
the absolute values of the residuals is 
minimized, analogous to formula (4). If the 
residuals are positive (or negative), the absolute deviation is multiplied by the quantile value 𝜃𝜃 (or the 
residual term 1 − 𝜃𝜃). Figure 9 illustrates the resulting weighting of the residuals in case of the 0.75 
quantile (𝜃𝜃 = 0.75, also "upper quartile"). If 𝜃𝜃 = 0.75, positive residuals (1) are weighted higher (0.75) 
than negative residuals (2) (0.25). The shown example shows that point (1) is more strongly weighted 
than point (2) for the 0.75 quantile of y at the position 𝑋𝑋 = 𝑋𝑋𝑖𝑖. In the concrete case, the higher 
weighted small distance (1/3 * 0.75) is compensated by the weaker weighted larger distance (1 * 0.25). 
In the minimization process, those values of the regression parameters are determined which are 
decomposed by quantile-weighted negative and positive residuals into equal parts after the 
transformation. 

 

Figure 9: Variance of the conditional distribution of Y as a function of X and the corresponding weighting of the residuals in 
the case of the 0.75 quantile. Adjusted representation based on Fitzenberger (2019, p. 411). 
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𝐼𝐼   ̶    Indicator function 
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𝛽𝛽𝜃𝜃   ̶    regression coefficient of the 𝜃𝜃th Quantile 
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2.5.3. Artificial Neural Networks 

In reality, dependencies between variables are often very complex. The complexity not only becomes 
apparent in the large number of (partly interdependent) variables, but also the fact that relationships 
between variables are often of non-linear nature. In such cases, artificial neural networks (ANNs) are 
advantageous, as the user does not necessarily have to make an assumption about the relationship 
between variables. Rather, the application of ANN allows to autonomously determine correlations 
between (a large number of) variables through a training process. Given a large number of 
observations, ANN can replace classical multivariate analysis methods, such as forecasts (e.g. multiple 
regression) or cluster analyses (Backhaus et al., 2016, p. 604). Their potential and flexibility in the 
context of load forecasting is demonstrated by the high level of research interest in the international 
literature (Debnath and Mourshed, 2018, p. 303; Verwiebe et al., 2021b, p. 6). 

The working principle of ANN is based on processes in the nervous system of humans and animals. It 
attempts to reproduce biological learning via suitable mathematical operations, whereby very good 

results can be produced (Backhaus et 
al., 2016, p. 604). The basic structure 
of ANN can be illustrated by Figure 
10. Each ANN consists of an input 
layer, one or more hidden layers and 
an output layer. The exemplary 
structure in Figure 10 shows an input 
layer with four neurons (1-4), two 
hidden layers with three and two 
neurons (5-7, 8-9) and an output 
layer of three neurons (10-12). The 
input layer maps all empirically 
collected variables13 (in the present 
case: all demand drivers for the 
electricity demand modelling), which 
then cause activation of the neurons 
on the two hidden layers (Backhaus 
et al., 2016, p. 604). The output layer 
captures actual predictions Y′ of the 
target values Y. The loss function 
compares these predictions with the 
actual target values and determines a 
loss score, which is a measure of how 
accurate the ANN predicts the 

expected target values. The optimizer uses the loss scores to adjust the weights of selected neurons. 
The weights of the layers that have been learned through a so-called stochastic gradient descent (SGD) 
procedure contain the knowledge of the ANN (Chollet, 2018, pp. 86–87).  

According to Backhaus et al. (2016, p. 605), the basic principle of information processing in the hidden 
layer neurons can be illustrated as follows: first, the signals arriving at a neuron are condensed into a 
net input value for the neuron. This condensing step of incoming information is achieved by the so-
called propagation function. In the simplest case, the propagation function is defined as a sum function 
that calculates the net input value from the sum of the weighted input signals. Within the neuron, this 

                                                           
13 In scientific literature dealing with ANN, input variables are also referred to as features (Chollet, 2018, p. 38).  

 

Figure 10: Basic structure of a neural network, including the loss function 
and the optimizer. Diagram by author, based on Backhaus et al. (2016, p. 
605) and Chollet (2018, p. 86). 
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net input value is then processed according to an activation function, which determines the neuron’s 
degree of activation. In the simplest case, the degree of activation is a binary value (0 – deactivated, 
1 – activated). Both the weights of the propagation function and the threshold parameter of the 
activation function can be changed and adjusted by the learning process of the network until the 
output neurons can represent the empirically measured target values as well as possible. This training 
procedure of continuously adjusting weights requires a large number of observations in order to 
effectively train the neural network (Backhaus et al., 2016, p. 605). Further details on different 
principles of information processing (feedforward, backpropagation etc.) are explained in Backhaus et 
al. (2016, pp. 607–608). 

The topology of the network, i.e. the number of layers and nodes, is an important property for the 
given modelling task, as are the choice of learning rate, the loss function, the optimizer and potential 
penalty functions which prevent overfitting. These properties must be set and adapted to the 
modelling problem to achieve the best possible results. They are called hyperparameters to distinguish 
them from the actual weight parameters of the individual layers and nodes. Hyperparameters cannot 
be estimated from real data. Rather, they must be first set manually and optimized with the help of a 
heuristic (Feurer and Hutter, 2019, p. 4). Fine-tuning these hyperparameters is a major focus of 
machine learning research (Chollet, 2018, pp. 133, 157).  

2.5.4. Engineering-based techniques  

In the energy demand modelling, two fundamentally different methodological approaches can be 
distinguished: top-down and bottom-up energy demand modelling, the latter also called engineering-
based modelling.  

Top-down modelling approaches describe a procedure that is directed from “top” to “bottom”. The 
analysis is carried out on the basis of aggregated historical data, which includes energy demand 
patterns, macroeconomic relationships and trend curves. Accordingly, the top-down approach is of 
econometric character (Wietschel et al., 2011a, p. 43). The strength of the top-down approach is its 
fairly easy application for long-term forecasting. However, due to its dependence on historical data, 
potentially incomplete and inefficient structures are carried forward in energy demand forecasts. 
Moreover, structural shifts in energy demand patterns cannot be readily incorporated.  

Bottom-up modelling approaches, in contrast, are based on the idea of modelling from “bottom” to 
“top”. With regard to the energy demand modelling, “bottom” refers to the detailed analysis of 
individual subsectors, technologies or production processes. The detailed and subsector-specific 
energy demand patterns can then be scaled to the “top”, yielding a total and representative energy 
demand for the whole (sub)sector. The bottom-up approach thus starts at a specific level and aims 
towards the general (Wietschel et al., 2011a, p. 44). Its strength lies in the flexibility of mapping 
structural shifts within individual subsectors and technologies due to its level of detail, making it a 
suitable approach for the long-term forecasting of electricity demands (Wietschel et al., 2011a, p. 48). 
Due to the high degree of detail, drivers and causes of change can be well identified and investigated. 
Adjustments resulting from technological shifts can thus also be incorporated in the process without 
having to regenerate the entire model (Kavgic et al., 2010, p. 1684). On the other hand, there is an 
extensive need for data on subsector specific energy demands, technologies and processes, which is 
necessary for a realistic representation of the system. Depending on the scope of the system, e.g. the 
subsector to be depicted, data requirements can quickly become very high and inexpedient (Fleiter et 
al., 2011, p. 3109; Iqbal and Kutt, 2018, p. 2). Despite their high data requirements, bottom-up 
approaches can be of particular use where only little historic load data is available (Verwiebe et al., 
2021b, p. 7). In addition to their capacity to model the above mentioned technological shifts, bottom-
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up models can be used to identify DSF potentials and model the effects of efficiency gains (Jakob et 
al., 2014, p. 1).  

Due to the level of technological detail that bottom-up models often exhibit, these approaches are 
also referred to as engineering-based models (Verwiebe et al., 2021b, p. 7). In contrast to ANN, 
engineering-based methods can mostly be classified as a white box model approach (cf. chapter 
2.2.1.5), as they attempt to model the reality of a given system as accurately and in as much detail as 
possible using physical input factors (Flatau, 2019, pp. 21–22). Common examples comprise models on 
the level of industrial processes or 3D building simulations. Further, residential loads can be simulated 
in an engineering-based model sometimes referred to as load profile generator. Here, behavioural data 
of time of use surveys  (Destatis, 2021) are linked to the utilization of household appliances in order to 
model the load behaviour of individual or multiple households (Swan and Ugursal, 2009; Ziegler et al., 
2020, p. 2). As found by literature review (Verwiebe et al., 2021b, p. 7), engineering-based models are 
widely used in practice, despite their limited visibility in scientific articles on energy demand modelling. 
This might go back to the data and labour requirements in the application of engineering-based 
models. The level of detail and the system boundaries significantly determine the required data effort. 
The scope should therefore be set carefully to balance the costs and benefits.  

2.5.5. Model Performance and Prediction Accuracy   

In order to assess the model performance of the different approaches and to evaluate the reliability of 
subsector load profiles, performance measures are used in the research literature. The following 
elaboration on model performance measures has partly been published in the DemandRegio final 
report (Gotzens et al., 2020, chapter 4.5.3.1). For a global check of the model performance, the 
coefficient of determination (𝑅𝑅2) is particularly often used for statistical models. The coefficient of 
determination relates the variance explained by the regression model to the total variance. As a 
normalized quantity, it has a value range between zero and one. The closer the coefficient of 
determination is to one, the better the regression model described by it is, i.e. the larger the proportion 
of the declared variance compared to the total variance (cf. formula 6).  

 R2 =
∑ (yı� − y�)2n
i=1

∑ (yi − y�)2n
i=1

=
explained variance

total variance
    ( 6 ) 

      Radj
2 = R2 −

J ∙ (1 − R2)
n − J − 1

 ( 7 ) 

As a modification, the adjusted coefficient 
of determination (𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗2 ) is also used, which 
takes into account the size of the sample 
and the number of regressors. With the 
𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗2 , the simple 𝑅𝑅2 is reduced by a correction quantity which is the larger the smaller the number of 
degrees of freedom or the larger the number of independent variables (cf. formula 7). Thus, 𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗2  can 
also decrease in contrast to 𝑅𝑅2 by the inclusion of further independent variables. 

However, the above performance measures only say something about how well the estimated model 
fits the observed values (Backhaus et al., 2016). In addition to 𝑅𝑅2 and 𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗2 , there are other 
performance measures more frequently used in energy demand modelling that describe the average 
deviation of the model estimate from the actual observed values: the mean absolute percentage 
forecast error (MAPE) and the normalized root-mean-square error (nRMSE) (Debnath and Mourshed, 
2018, p. 310). 

𝑦𝑦�  ̶    mean of the dependent variable Y 
𝑦𝑦𝚤𝚤�   ̶    determined  estimated value of Y for 𝑥𝑥𝑖𝑖 
𝐽𝐽   ̶    number of independent variables  
𝑛𝑛 − 𝐽𝐽 − 1  ̶    number of degrees of freedom 
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 MAPE =  ∑ �yi−yı�
yi

�n
i=1      ( 8 ) 

 nRMSE =
RMSE

ymax  −  ymin
=
�∑ (yi − yı�)2n

i=1
n

ymax  −  ymin
 ( 9 ) 

The MAPE corresponds to the average absolute percentage error and is widely used mainly because 
of its simplicity and transparency. However, a major weakness in the application of MAPE is the 
handling of very small load values close to (or equal to) zero. The occurring deviations (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�) in the 
numerator are weighted significantly higher in the denominator (𝑦𝑦𝑖𝑖) for low load values, which leads 
to a distortion. Still, MAPE is the most used performance measure in the power industry (Hong and 
Fan, 2016, p. 933).  

In contrast, the RMSE fits well to the optimization criterion of the OLS method, since the average 
squared residuals are included in the error measure. The root function ensures that the order of 
magnitude of the forecast and the error measure are equal. The normalization step allows a 
comparison of the nRMSE performance measures between load forecasts of different orders of 
magnitude. Similar to the OLS method, the nRMSE assigns higher weights to outliers – but equally so 
to positive and negative outliers. This avoids an error distortion towards load values of small amounts 
as in the case of MAPE (Vandeput, 2018). On the other hand, in normalization, the nRMSE shows a 
sensitivity in the difference between the maximum and minimum load value. 

Benchmarking these performance measures is very difficult, not only because there are multiple 
performance measures used in literature (Debnath and Mourshed, 2018, p. 310). As found in a 
literature review (Verwiebe et al., 2021b, p. 29), the model performance is largely affected by 
particular use-cases and the underlying data (Fallah et al., 2018, p. 26). More specifically, the spatial 
resolution had a much stronger influence on the model accuracy than the applied technique or 
temporal resolution. A greater spatial resolution is associated with a higher level of detail which proved 
to result on average in higher MAPE values. The prediction of an individual appliance or site is 
associated with higher (i.e. worse) MAPE values as compared with a prediction of the national energy 
consumption (Verwiebe et al., 2021b, p. 29). In the context of this thesis, the models to develop 
subsector load profiles exhibit a high spatial resolution (i.e. individual company sites), which in case of 
high fluctuations might negatively affect model performance values. In addition, combining individual 
site-specific models to a subsector load profile further increases heterogeneity, which further 
deteriorates MAPE values. Thus, the model performance of subsector load profiles has to be evaluated 
in context.  

Table 4: Lewis’s benchmark for model performance evaluation 

MAPE ≤ 10 % 10 % - 20 % 20 % - 50 % ≥ 50 % 
Evaluation Highly accurate Good Reasonable Inaccurate 

 
The above-mentioned limitation in the benchmarking of performance measures for energy demand 
models has to be taken into account. Nevertheless, the Lewis's benchmark (Lewis, 1982) has been used 
to evaluate model performances in the energy demand forecasting literature (Wei et al., 2019, p. 8). 
According to Lewis’s benchmark, the classification shown in Table 4 was made. 

2.5.6. Cross Validation 

Since the values realized at the time of the forecast are in the future and therefore not yet known, ex-
post forecasts are used in the validation of the energy demand models. For this purpose, the available 
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data is broken down into so-called training data, validation data and test data. Training data serve as 
a reference section for estimating the model and validation data for testing the quality of the model 
(Backhaus et al., 2016, p. 147). A further separation in test data is only necessary if different model 
configurations are to be weighed against each other and an overfitting of the model to the underlying 
data is to be avoided. The considerations on cross validation have already partially been published in 
the DemandRegio final report (Gotzens et al., 2020, chapter 4.5.3.4). 

A central problem of the above-mentioned data decomposition into training, validation and test data 
is the associated reduction of the data basis for model generation. In the literature on energy demand 
forecasting using machine learning methods, the k-fold cross validation has become established. It is 
a formalized statistical procedure to use the existing database as efficiently as possible, to reduce 
systematic errors in model selection and to calculate robust error measures for the models. In the 
k-fold cross-validation, data are decomposed into k disjunctive subsets of the same size. Each subset 
is used once as validation data set and the remaining k-1 data is used as training data set. The mean 
value of the error measures of all k subsets is used as a cross-validated error measure. Usually values 
like 5 or 10 are used for k (Wollschläger, 2014, p. 493). 

The example in Figure 11 illustrates the procedure of the 5-fold cross validation (k = 5). The whole 
sample (all data) is divided into 
training and validation data in the 
ratio 80/20. This division is done 
within five different model runs 
(splits), where the training and 
validation data are divided into five 
disjunctive subsets (Fold 1 to Fold 5), 
four parts of which are used as 
training data (blue) and one part as 
validation data (light red). In the five 
different model runs (5 splits), model 
estimates of the regression function 
are made on the basis of the 
respective training data (blue) and 
the quality of the forecast is determined in relation to the validation data (light red). In this way, the 
forecast quality of the model can be determined for each separate split against an unknown data set. 
The quality parameters from the five separate regression analyses are then averaged (Pedregosa et 
al., 2011).  

By splitting the data into smaller subsets, repeated model estimation and validation, the influence of 
prominent, non-representative conditions (e.g. unusual weather influences) in the data can be reduced 
by averaging the effects and the generalizability of the models can be assessed in terms of a robust 
measure of quality. 

For artificial neural networks, the potential overfitting of the model is a particular challenge. This is 
due to their adaptability and complexity. In order to avoid potential overfitting of the model, it may be 
necessary to carry out the model parametrisation (particularly of hyperparameters) with the help of 
k-fold cross validation and to subsequently check the model quality on a test data set that has been 
completely separated in advance (scikit-learn developers, 2021). Figure 12 illustrates the extended 
scheme of cross-validation of artificial neural networks, with preserving a test data set.  

 

Figure 11: Data decomposition of the 5-fold cross-validation into training 
data (blue) and validation data (light red), diagram by author, based on 
Pedregosa et al. (2011). 
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Figure 12: Data decomposition of the 5-fold cross-validation into training data (blue), validation data (light red) and test data 
(dark red). Diagram by author, based on Pedregosa et al. (2011) 
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3. Methodology 
The methodology developed and applied in this thesis consists of six modules that build on each other. 
The interaction of these modules is depicted in Figure 13. Each module’s results contribute to 
answering the research questions (RQ 1-4) posed in chapter 1 and fill the various research gaps 
identified in chapter 2.3. 

 

Figure 13: Research design of this thesis, covering six modules and their interaction. Grey boxes indicate external input data, 
white boxes indicate the main process steps and red boxes indicate (interim) results. Blue ellipses allocate research questions. 
Diagram by author. 



3 Methodology 

- 36 - 
 

In module 1, electric subsector load profiles (BLP14) of 32 industrial and CTS subsectors15 are developed 
based on 1,049 metered load profiles. Initially, metered load profiles are mapped to subsectors and 
complemented with demand drivers in high spatial resolution (i.e. for each individual county). A 
multiple regression approach is chosen to create i) regionalised as well as ii) nationally averaged 
subsector load profiles. Besides being one of the most dominant and respected techniques within the 
(long-term) energy demand modelling literature (Debnath and Mourshed, 2018, p. 300; Verwiebe et 
al., 2021b, p. 31), multiple regression has the ability to reveal cause-and-effect relationships (grey box 
model, chapter 2.2.1.5) (Backhaus et al., 2016, p. 64). Moreover, multiple regression can be 
supplemented by quantile regression, which enables the depiction of prediction intervals that provide 
information about the accuracy, distribution and variance of the prediction. The multiple regression 
approach used has been adapted from Gobmaier (2013). As a benchmark, the results of the multiple 
regression approach are compared to an ANN modelling approach, a performant technique which 
enjoys great popularity within the research community (cf. chapter 2.5.3) and which can be considered 
a black box model. All load profiles are developed in 15-min resolution. The spatial scope encompasses 
Germany for national subsector load profiles, and will be resolved to county-level (German: Landkreis) 
for regionalised subsector load profiles. In addition to modelling subsectors, all individual sites are 
modelled in order to determine the forecast quality and heterogeneity within a subsector. The 
validation of subsector load profiles is examined in two steps: 

• the internal validation using a 5-fold cross validation approach 
• the comparison of subsector load profiles with the VDEW SLP, analysing their performance to 

model underlying metered load profiles.  

In module 2, newly generated regionalised subsector load profiles are applied in the DemandRegio 
tool disaggregator in order to model the regional load for each county (Verwiebe et al., 2020). In the 
applied BLP application approach, 32 subsector load profiles replace the corresponding VDEW SLP. The 
new subsector load profiles are compared to the VDEW SLP used in the SLP only approach of the 
disaggregator. The results of both approaches yield regional load profiles which are compared and 
validated separately using the total load profile of selected DSOs and the ENTSO-E load for several 
years. Remaining structural deviations between modelled and actual DSO/ENTSO-E load are explained 
for both the SLP only and the BLP application approach. The methodology and results of the first two 
modules have also been partially published in Gotzens et al. (2020) and Seim et al. (2021b). 

Module 3 presents a separate bottom-up approach to model engineering-based load profiles for five 
main CTS subsectors, i.e. offices, trade, accommodation, hospitals and education. Due to the increased 
sophistication and effort of the engineering-based approach, this approach is applied in modules 3-5 
to only five relevant subsectors out of the original 32 considered in module 1. These five subsectors 
are responsible for about 62 % of the total CTS electricity demand. Böckmann (2021) developed and 
applied the engineering-based approach to model sub-loads for application technologies based on 
information of occupancy and usage, technological specifications, calendar and weather data as well 
as annual energy demands for application technologies from national statistics. These engineering-
based load profiles are compared and adjusted using the corresponding subsector load profiles of the 
first module. The methodology and the results of module 3 have also been published in Böckmann et 
al. (2021). In contrast to the multiple regression and ANN used so far, the engineering-based approach 
can be considered a white box model (cf. chapter 2.2.1.5), which is a precondition for projecting the 

                                                           
14 In the following, sometimes also referred to as TUB BLP (TUB – Technische Universität Berlin), to distinguish 
from other load profiles.  
15 See chapter 5.1, page 74 for a list of subsectors modelled. 
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future load behaviour of selected subsectors and identifying DSF potentials in the two subsequent 
modules.  

In module 4, engineering-based load profiles are projected into the year 2035. Using literature-based 
energy demand scenarios (Pfluger et al., 2017b), future energy demand shares of application 
technologies are identified and mapped to selected CTS subsectors. Technology changes (from night 
storage heating to heat pumps), economic developments and efficiency improvements are considered.  

In module 5, current and future technical DSF potentials are derived based on engineering-based load 
profiles for the above-mentioned five CTS subsectors. Based on literature research, the temporal 
availability and load restrictions for DSF measures are set for each application technology and 
subsector. As a result, technical DSF potentials are identified in high temporal and spatial resolution 
for the years 2018 and 2035. The five subsectors account for approximately 74 % of DSF potentials 
within the CTS sector. The methodology and results of modules 4 and 5 have been introduced in Seim 
et al. (2021a).  

Module 6 lists two possible procedures for estimating the economic value of utilizing subsector load 
profiles. In the first procedure, model deviations from module 2 are further analysed for potential 
significance in the balancing group system. As some DSOs might still use SLP to actively manage their 
portfolio of small consumers, the electricity procurement of a hypothetical balancing group is 
simulated: the modelled electricity load output of both disaggregator approaches using a) SLP and 
b) BLP is procured on the spot market, whereas identified model deviations are priced with imbalance 
settlement prices. Potential cost differences of both approaches are compared and discussed, yielding 
an indication of the value of applying TUB BLP. In the second procedure, DSF potentials of high 
temporal resolution from module 5 are further analysed for their economic value. While there are 
different fields of application (and thus economic valuations) of DSF, the present analysis focuses on 
the assessment of a possible peak load reduction accessing DSF potentials. Specifically, the possible 
reduction in required peak load capacity (i.e. gas turbine power plant capacity) resulting from load 
shifting potentials was determined. This calculated monetary saving was adjusted by associated 
exploitation costs of DSF potentials in order to determine an economic value. While this economic 
evaluation cannot be considered conclusive for either procedure, it provides indicative insights into 
possible values and evaluation approaches. 

The classification of the above sketched research design is of hybrid character in many regards: the 
development and application of subsector load profiles has elements of both a top-down and a 
bottom-up approach. As sketched in chapter 2.5.4, subsector load profiles are modelled based on 
individual companies and sites, which can be scaled up to county or national level. The national 
subsector energy demand is regionalized to county level using demand drivers from energy statistics 
(top-down). The development of engineering-based load profiles for selected CTS subsectors in 
module 3 is a bottom-up approach, which benefits significantly from fine-tuning through already 
existing aggregated subsector load profiles. Results of engineering-based models of module 4 and 5 
are also scaled up using spatially-resolved demand drivers. In this way, the spatial scope of the present 
thesis touches several levels, i.e. from individual sites or application technologies up to the county or 
national level. The temporal horizon of all modules can be classified as long-term load modelling, 
covering annual load profiles which can be projected to the year 2035 or even further into the future. 
However, long-term load forecasts from literature are usually associated with a much lower temporal 
resolution, most times depicting monthly or annual forecasts (Verwiebe et al., 2021a, p. 19). By 
combining top-down and bottom-up approaches, the author seeks to make efficient use of available 
but limited data, address research gaps and generate robust insights which can be transferred to 
different levels of the overall system (Wietschel et al., 2011a, p. 48).  
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4. Implementation 
A model is a simplified representation of reality that reduces the complexity of real dependencies and 
influences. In modelling, there is a conflict of objectives between simplicity (and the associated 
applicability) and complexity (completeness) (Backhaus et al., 2018, p. 63). How closely a model 
represents reality and how complex it is depends on the objective and data availability. In this thesis, 
the author seeks to develop subsector load profiles using multiple approaches and apply these load 
profiles in different contexts. In analogy to the VDEW SLP (cf. chapter 2.2.1.1), the objective is thus not 
to model individual consumers with reference to their load fluctuations and peaks. Rather, the load 
behaviour of a group of similar consumers is to be modelled realistically. It follows that selected 
approaches and demand drivers are not aimed at developing the best prediction of a specific company, 
but rather at selecting a sufficiently good procedure that is appropriate for all subsectors.  

The following chapter describes in detail the implementation of the methodology introduced in the 
previous chapter 3. First, the database for all modules is being introduced in chapter 4.1, sorted by 
individual modules. Afterwards, a detailed description of the modelling and analysis steps for each 
individual module is given, starting with the development and validation of subsector load profiles 
(chapter 4.2), and followed by the application and evaluation of these created subsector load profiles 
(chapter 4.3). In the next step, the development of engineering-based load profiles is being introduced 
(chapter 4.4). Chapter 4.5 elaborates on how these engineering-based load profiles are projected into 
the future. Chapter 4.6 lays out how DSF potentials can be quantified using these engineering-based 
load profiles. The procedure of how newly developed subsector load profiles are assessed 
economically, is being presented in chapter 4.7.  

4.1. Database 
The following chapters introduce the database that is relevant for this thesis. The database description 
of module 1 (chapter 4.1.1) is very similar to the one used in the DemandRegio project, and thus 
partially relates to Gotzens et al. (2020, chapter 4.2.7). The engineering-based approach to model sub-
loads for application technologies (module 3, chapter 4.1.3) has already partially been described in 
Böckmann et al. (2021). Moreover, the description of data requirements for the projection of future 
loads (module 4) as well as the derivation of DSF potential for selected commercial subsectors (module 
5) (both chapter 4.1.4) have been introduced in Seim et al. (2021a). The database description of 
module 6 is described in chapter 4.1.5. After the database of the individual modules has been 
described below, the implementation of the different model approaches is presented in chapters 4.2 
to 4.7. 

4.1.1. Data Requirements for Developing of Subsector Load Profiles (Module 1)  

The development of subsector load profiles (TUB BLP) mainly requires a database of metered load 
profiles, weather data and calendar data. Due to the limited data availability, which has already been 
discussed in chapter 2.1 and chapter 2.3.3, the collection of data consumed a considerable amount of 
time. The collection of real load profile data was mainly driven by the following channels (Gotzens et 
al., 2020, p. 74): 

• Data acquisition by telephone 
• Student theses 
• Frankfurt (Main) Energy Management (“Energiemonitoring der Stadt Frankfurt am Main,” n.d.) 
• Student consultancy project 
• Pilot programme “Einsparzähler” by the German Federal Office for Economic Affairs and 

Export Control (BAFA) (Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA), n.d.) 
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Figure 14 illustrates the database for metered load profiles that were collected in the context of this 
thesis. Customer groups are depicted according to AGEB (cf. chapter 2.4.1, Figure 7). A similar 
depiction using the WZ 2008 classification can be found in appendix A.1.1. Furthermore, appendix 
A.2.3 lists the available data for specific subsector load profiles. It can be seen that a large share of the 
German electricity consumption can be covered by metered load profiles. However, significant data 
gaps persist.  

 

Figure 14: Database of real load profile data according to AGEB consumer groups, indication of electricity consumption 2015. 
One data set corresponds to the electricity load profile of one year. Depiction by author, based on (Geiger et al., 2019, p. 19; 
Rohde, 2019, p. 18; Schmidt et al., 2019, p. 13). 

In addition to metered load profiles, weather data and calendar data were used as demand drivers for 
all forecasting techniques, i.e. multiple regression, ANN and the engineering-based approach. Table 5 
lists all demand drivers for the development of subsector load profiles, valid values and their data type.  

Table 5: Demand drivers for the development of subsector electricity load profiles  

Demand driver Values Data type 
Time (hour) {00:00, …, 23:00} Categorical 
Time (quarter hour) {00:00, …, 23:45} categorical 
Weekday {Mon, …, Sun} Categorical 
Month {Jan, …, Dec} Categorical 
Holiday {1,0} Boolean 
Temperature ℝ Numerical 
Solar radiation ℝ+ Numerical 
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County-specific data for ambient temperature and solar radiation were imported from the 
DemandRegio database (“DemandRegio – opendata.ffe.de,” n.d.). Calendar data was imported using 
Python-based libraries such as the Germanholidays package. 

The plausibility of developed subsector load profiles (TUB BLP) was checked by comparison with 
further literature-based load profiles, namely VDEW SLP (BDEW, 2021) and De Monfort load profiles 
(Dolman et al., 2012). In addition to determining the profiles’ performances, structural deviations of 
all load profiles were depicted and compared with differential balancing group time series of DSOs (cf. 
chapter 2.2.2): Energienetze Berlin, NRM Netzdienste Rhein-Main GmbH and Stromnetze Hamburg. 
These DSOs were selected because the collected metered consumer load profiles most frequently 
originated from their grid areas. The differential balancing group time series were obtained as 
obligatory publication from the websites of the respective DSOs. Only the time series’ structures were 
compared to structural deviations of load profiles, the level is ignored.  

4.1.2. Data Requirements for Applying and Evaluating Subsector Load Profiles (Module 2)  

Regionalised subsector load profiles were applied using DemandRegio tool disaggregator in order to 
model the regional load for each county. The disaggregator is capable of mapping the electricity 
demand following a top-down approach, using the energy consumption of individual subsectors 
(Destatis, 2019), the number of employees of individual subsectors (FfE and Bundesagentur für Arbeit, 
2019) and a regionally specific energy consumption of industrial subsectors (FfE, 2019). A detailed 
description of the methodology and database for the disaggregator tool can be found in Gotzens et al. 
(2020, chapter 4) or in Verwiebe et al. (2020).  

In the SLP only approach within this thesis, annual county-specific electricity demands derived by the 
disaggregator tool were resolved temporally using VDEW SLP (BDEW, 2021) and generic shift load 
profiles (Gotzens et al., 2020, chapter 4.4.2), yielding regional load profiles. In the BLP application 
approach, subsector load profiles (TUB BLP) partially replaced these SLP and generic load profiles, 
where available. Both approaches used the ZVE load profile, developed in the DemandRegio project 
(Gotzens et al., 2020, chapter 3.4.2) and available in the disaggregator tool. For error analysis, the ZVE 
profile was replaced by an average load profile of smart meter data, the raw data of which was 
published in Beyertt et al. (2020). Regional load profiles of both approaches (SLP only / BLP application) 
were compared and validated separately with the total load profile of selected DSOs and the ENTSO-E 
load for several years.  

The data published by ENTSO-E (“ENTSO-E,” 2021) was submitted by TSOs in advance. In order to be 
able to use the TSO data for the model validation, the published data was aggregated to a German-
wide total load profile. The comparison of model output (county level) and DSO total load (network 
area) can only be made for those DSOs whose network area is largely identical to the county area. 
Using ene’t data (2018), 26 DSOs with matching network areas were identified, 10 of which published 
usable data. The data of two further DSOs could be collected by request, whereas the dataset of one 
DSO was inconsistent. Remaining DSOs were contacted several times, but no further data was 
provided. Table 6 presents the collected DSO data as well as their regional county scope. As can be 
seen in the below table, identified DSO-county matches are restricted to independent cities only. 
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Table 6: List of DSO-County matches, based on works by Tobias Schmid (FfE) and Held (2020), with addtions by the author.  

DSO County AGS Years 
WSW Wuppertal Kreisfreie Stadt 

Wuppertal 
05124 2017, 2019 

KNS/TWL 
Ludwigshafen am 
Rhein 

Kreisfreie Stadt 
Ludwigshafen am 
Rhein 

07314 2017, 2019 

SWE Netz Erfurt Kreisfreie Stadt Erfurt 16051 2017, 2019 
EVB Eisenach Kreisfreie Stadt 

Eisenach 
16056 2017, 2019 

DO-Netze Dortmund Kreisfreie Stadt 
Dortmund 

05913 2017, 2019 

Stadtwerke Bochum Kreisfreie Stadt 
Bochum 

05911 2018, 2019 

SWB Bielefeld Kreisfreie Stadt 
Bielefeld 

05711 2017, 2018 

Netz Lübeck GmbH Kreisfreie Stadt Lübeck 01003 2017, 2019 
Stadtwerke Straubing Kreisfreie Stadt 

Straubing 
09263 2017, 2018 

SÜC Energie und H2O 
GmbH 

Kreisfreie Stadt 
Coburg 

09463 2017 

Stadtwerke 
Kaiserslautern 

Kreisfreie Stadt 
Kaiserslautern 

07312 2017, 2018, 2019 

 

The processing of DSO data is intricate, as the distribution grid usually consists of several voltage levels. 
The lower voltage levels draw power from the upper level. If the load profiles of all voltage levels were 
summed up, these shares would be counted twice. In her bachelor thesis, Held (2020) developed a 
procedure to calculate the net load and avoid double counting, which considers further data published 
by the DSO and is presented below. 

Figure 15 (p. 42) shows an example of the distribution grid of a DSO whose network comprises the 
medium-voltage level (MV), the transformer level from medium voltage to low voltage (MV/LV) and 
the low-voltage level (LV). For this DSO, the procedure for determining the net load is explained below 
following Held (2020). 

The net load corresponds to the total consumption (𝐶𝐶𝐶𝐶𝐶𝐶) by final consumers from the distribution 
grid. 

𝑛𝑛𝑒𝑒𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 = �𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀/𝐿𝐿𝑀𝑀 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝑀𝑀
𝑖𝑖

 ( 10 ) 

The system boundaries 1 are being crossed by feed-ins (𝐹𝐹𝐼𝐼), consumption, grid losses (𝐿𝐿𝐶𝐶) and 
withdrawals (𝑊𝑊𝑊𝑊𝑅𝑅) from the upstream transformer grid. The following balance (11) can be obtained 
for the net load in this distribution grid area:  

𝑛𝑛𝑒𝑒𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 = �𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑖𝑖

= �(𝐹𝐹𝐼𝐼𝑖𝑖 − 𝐿𝐿𝐶𝐶𝑖𝑖) +𝑊𝑊𝑊𝑊𝑅𝑅𝑢𝑢𝑢𝑢 =
𝑖𝑖

= 𝐹𝐹𝐼𝐼𝑀𝑀𝑀𝑀 + 𝐹𝐹𝐼𝐼𝑀𝑀𝑀𝑀/𝐿𝐿𝑀𝑀 + 𝐹𝐹𝐼𝐼𝐿𝐿𝑀𝑀 − 𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀 − 𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀/𝑁𝑁𝑀𝑀 − 𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀 + 𝑊𝑊𝑊𝑊𝑅𝑅𝑢𝑢𝑢𝑢 
( 11 ) 
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Figure 15: Electricity flows in the distribution grid broken down by voltage levels. Depiction adapted from Held (2020, p. 18) 

Alternatively, the net load can be calculated by balancing systems 2.1 to 2.3 and subsequently 
summing up. For these systems, the published load profile (𝐿𝐿𝐿𝐿𝑖𝑖) of the respective voltage level 
according to § 17 (2) No. 1 StromNZV (2020) must correspond to the sum of all outflows of this system, 
i.e. 𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝐿𝐿𝐶𝐶𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑅𝑅𝑖𝑖. For the low voltage level (system 2.3), there is no downstream level. 
Consequently, there is no withdrawal from this level (𝑊𝑊𝑊𝑊𝑅𝑅𝐿𝐿𝑀𝑀 = 0). Solving equation (12) for 
consumption (CNS) from each level and summing up returns:  

𝑛𝑛𝑒𝑒𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 = �𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑖𝑖

= �(𝐿𝐿𝐿𝐿𝑖𝑖 − 𝐿𝐿𝐶𝐶𝑖𝑖 −𝑊𝑊𝑊𝑊𝑅𝑅𝑖𝑖) =
𝑖𝑖

= 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀 + 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀/𝐿𝐿𝑀𝑀 + 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀 − 𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀 − 𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀/𝐿𝐿𝑀𝑀 − 𝐿𝐿𝐶𝐶𝐿𝐿𝑀𝑀
−𝑊𝑊𝑊𝑊𝑅𝑅𝑀𝑀𝑀𝑀 −𝑊𝑊𝑊𝑊𝑅𝑅𝑀𝑀𝑀𝑀/𝐿𝐿𝑀𝑀 

( 12 ) 

In some cases, the load profiles of the DSOs published in accordance with §17 (2) No. 1 StromNZV 
(2020) have already been adjusted for grid losses. In this case, the term "−𝐿𝐿𝐶𝐶𝑖𝑖" in the above equations 
is dropped. 

4.1.3. Data Requirements for Developing Engineering-based Load Profiles (Module 3)  

The engineering-based approach to model sub-loads for application technologies for five commercial 
subsectors has been developed in the master thesis of Böckmann (2021). Underlying data 
requirements have been published in Böckmann et al. (2021), where detailed information can be 
found. The engineering-based load profiles were developed based on information on occupancy and 
usage, technology data, calendar information, weather data, and annual energy demands for 
application technologies from national statistics. 
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The occupancy profiles generated in this approach were derived from the provisions of three 
standards, which exhibit different levels of details: the international guideline ISO 18523-1:2016(E) 
(2016) and the Swiss guideline SIA 2024:2015 (2015) provide hourly occupancy profiles per building 
and characteristic zone as a proportion of full occupancy. In addition, ISO 18523-1:2016(E) (2016) 
provides information on profiles of lighting as well as equipment and distinguishes between type days. 
Finally, DIN V 18599-10:2018-09 (2018)  documents usage and operating times. These were defined as 
the start and end times of the duration of use (Böckmann et al., 2021, p. 4). 

The technology data used in this engineering-based approach can be divided into characteristic load 
profiles and further literature-based assumptions on consumption behaviour. Characteristic load 
profiles indicate typical consumption patterns and operating times of application technologies. These 
can depend on the type day (working day, weekend) and the temperature. The second category of 
technology-specific assumptions manipulates the load profile of an application technology, like the 
specification of lighting depending on opening hours (Böckmann et al., 2021, p. 4). A detailed summary 
of literature used for technology-specific assumptions can be found in Böckmann et al. (2021, appendix 
A, Table 3).  

Calendar information and weather data was derived similar to the first module (chapter 4.1.1), using 
the DemandRegio database (“DemandRegio – opendata.ffe.de,” n.d.) as well as the respective Python 
libraries. In contrast to the subsector load profiles of the first module, however, the engineering-based 
model framework only distinguishes type days (weekday, Saturday, Sunday/Holiday). 

Information on annual energy demands for application technologies per subsector was extracted from 
existing energy statistics. The most recent data on the electricity consumption of all application 
technologies per subsector was derived from Schlomann et al. (2015, p. 8) and represents the year 
2013. For the year 2018, Rohde (2019, p. 9) published energy demand statistics which only show the 
total consumption of the application technologies for the whole sector. Accordingly, the annual 
consumption for 2018 had to be approximated using the subsector shares from Schlomann et al. (2015, 
p. 8) (Böckmann et al., 2021, p. 4).  

4.1.4. Data Requirements for Future Load Projections (Module 4) and Derivation of Demand 
Side Flexibility Potential (Module 5)  

Energy consumption scenarios can be used to quantify technology- and sector-specific development 
paths and to transfer them to technology-specific load profiles of selected subsectors. In the sector 
CTS, the most important drivers of the energy consumption scenarios are employees, electricity prices, 
energy reference areas, energy efficiency improvements and implicit discounting rates of the 
companies (Pfluger et al., 2017b, p. 63).  

There are different scenario studies in the literature that model the CTS sector (Böckmann, 2021; 
Kemmler et al., 2020; Repenning et al., 2015; Schlesinger et al., 2014; Zipperle, 2019). Due to the 
required granularity, i.e. the technology share of electricity consumption per sector, this thesis used 
the long-term scenarios of the study commissioned by the BMWi from Fraunhofer ISI, Consentec 
GmbH and the Institute for Energy and Environmental Research Heidelberg (IFEU) (Pfluger et al., 
2017b). Using these energy consumption scenarios allowed to determine future annual electricity 
demands by application technology and scenario for the whole CTS sector (Pfluger et al., 2017b, pp. 
68, 71). Annual energy demands of the baseline scenario (German: Basisszenario) and reference 
scenario (German: Referenzszenario) were used and interpolated for the year 2035. While the 
reference scenario represents an exploratory phase-out of the clean energy transition, the normative 
baseline scenario achieves long-term climate and energy policy goals of the German government's 
energy concept (Bundesregierung, 2010) at the lowest possible cost, with an 80 % greenhouse gas 
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reduction by 2050 (Seim et al., 2021a, p. 5). Details of the scenario conception can be found in Pfluger 
et al. (2017b). Selected framework assumptions of both scenarios regarding employees, energy 
reference area and efficiency improvements are shown in Pfluger et al. (2017b, pp. 63–64). 

The disaggregation of projected application electricity demands to individual subsectors was weighted 
by subsector-specific shares of future energy reference areas, which were extracted from the same 
study (Pfluger et al., 2017b, p. 64). These disaggregated annual electricity demands could then be used 
in combination with the bottom-up approach of Böckmann et al. (2021) applied in module 3: all 
application sub-load profiles could be scaled for each application technology and subsector, using 
weather data of 2018 (“DemandRegio – opendata.ffe.de,” n.d.) and calendar data of 2035. The 
integration of recognised scenarios into the bottom-up engineering approach enables the 
development of plausible future load profiles (Jakob et al., 2014, p. 12).  

In the assessment of the technical DSF potential, this thesis applied the methodology introduced by 
Kleinhans (2014), which is further elaborated in Seim et al. (2021a, chapter 2.2). Only the engineering-
based load profiles in high temporal resolution, taken from module 3 and 4 (years 2018 and 2035), 
allowed a solid assessment about temporal availabilities and maximum capacities of flexible loads. 
Application technologies suitable for load shifting include ventilation, air-conditioning, process cooling 
as well as space heating and hot water (Heitkoetter et al., 2020, p. 9; Klobasa, 2007, pp. 69–78; Ladwig, 
2018, p. 23). The modelled durations for shifting load peaks of each application technology were taken 
from similar data (Heitkoetter et al., 2020, p. 9; Ladwig, 2018, p. 23). 

4.1.5. Data Requirements for Economic Evaluation of Load Profile Application (Module 6)  

The economic evaluation of load profile application is divided into two use cases. In the first use case, 
the influence of newly developed TUB BLP (module 1) on electricity procurement and balancing group 
management is assessed. For this purpose, the disaggregator model outputs for Germany and 11 DSOs 
(module 2) were used to assess a potential procurement strategy on the Day-Ahead spot market, using 
standardised auction products of the European Power Exchange in hourly resolution (EPEX SPOT, 
2021). Model deviations were priced using the reBAP (TransnetBW GmbH, 2021). In the second use 
case, the residual load for Germany was determined using data published on ENTSO-E Transparency 
Platform (2021). The residual load was matched to DSF potentials identified in module 5. Cost data for 
gas turbine power plant (PP) capacity as well as DSF exploitation were found in current literature 
(Heitkoetter et al., 2020, p. 9; Konstantin, 2017, p. 248). 

4.2. Development of Subsector Electricity Load Profiles 
In the first module, subsector load profiles were developed for selected industrial and CTS subsectors. 
As for its widespread use and flexibility within the energy demand modelling literature, multiple 
regression was chosen as the main technique, to create regionalized and nationally averaged subsector 
load profiles. The following chapter 4.2.1 describes this process in detail, i.e. the individual steps to 
select a multiple regression configuration (chapter 4.2.1.1), to conduct site-specific regression and 
correlation analyses (chapter 4.2.1.2), to create a subsector load profile by averaging of site-specific 
models (chapter 4.2.1.3), to evaluate the models’ performances (chapter 4.2.1.4), and to compare 
developed subsector load profiles with existing literature-based load profiles (chapter 4.2.1.5). As a 
supplementing methodology, quantile regression was applied (chapter 4.2.2) in order to generate 
prediction intervals that provide information about the accuracy, distribution and variance 
(heterogeneity) of the prediction. The multiple regression was benchmarked by an ANN-based 
regression model (chapter 4.2.3), in order to evaluate the robustness of both techniques as well as 
their performance. In order to enable comparison, the ANN approach was conducted very similarly to 
the multiple regression approach with regards to input data.  
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4.2.1. Multiple Linear Regression (MLR) Model 

In the following chapter, the creation of subsector load profiles using a multiple regression approach 
is presented. The procedure was developed in the DemandRegio research project. The below 
description largely corresponds to the descriptions in the final report (Gotzens et al., 2020, chapter 
4.5.2). 

For the creation of the model, a uniform procedure was developed for all subsectors to enable a direct 
comparison between the various subsectors. In addition, this uniform procedure facilitates the 
reproducibility and extension of the results, thus acknowledging a central criticism of current scientific 
literature (Hong and Fan, 2016, p. 934). Hence, the uniform procedure does not aim at an optimal but 
rather a sufficiently good result for each individual subsector with regard to the model quality. Figure 
16 (p. 45) gives an overview of the procedure.  

The original data described in chapter 4.1.1 served as model input data. Site-specific load profiles of 
companies from several subsectors and years were linked with site-specific calendar and weather data, 
i.e. ambient temperature and solar radiation. The first step within the modelling procedure was to 
determine a model configuration for the multiple regression, which was applied uniformly across all 
subsectors. Using this model configuration, a company-specific regression analysis was performed in 
the second step to obtain load models and regression coefficients of the individual companies. These 
individual models were then combined to form a subsector load profile in the third step. In analogy to 
the use of VDEW SLP (cf. chapters 2.2.1.1 and 2.3.2), these subsector load profiles can be regionalized 
by means of regional calendar data and scaled by means of regional electricity demands. In addition, 
regional weather data can be included.  

 

Figure 16: Research Design in the creation of industry load profiles. Diagram by author, adapted from Gotzens et al. (2020, p. 
85) 
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Figure 17 illustrates the individual steps of the modelling procedure in more detail, which will be 
explained in the following chapters. 

 

Figure 17: Individual steps for creating subsector load profiles. Diagram by author, adapted from Gotzens et al. (2020, p. 93) 

Firstly, the selection of model configuration for the multiple regression will be introduced (chapter 
4.2.1.1). The subsequent chapter 4.2.1.2 describes the data preparation and the implementation of 
site-specific regression analyses. Chapter 4.2.1.3 presents the creation of subsector load profiles by 
means of averaging of site-specific models. The last step in the process of subsector load profile 
development is the model evaluation introduced in chapter 4.2.1.4. The evaluation of generated 
subsector load profiles is determined using the performance measures of 𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗2  and MAPE. The model 
evaluation of the multiple regression approach is very similar to the evaluation of ANN-based load 
profiles in order to enable direct comparison. As output, load profiles for 32 subsectors, for 401 
counties and 10 weather years have been generated using the multiple regression approach. In 
addition, prediction intervals were generated by quantile regression. Performance measures were 
determined using 5-fold cross validation. Correlation analysis matrices give an indication as to the 
relevance of demand drivers for individual subsectors.  

4.2.1.1 Selection of the Multiple Regression Model Configuration 
The multiple regression model was determined empirically by comparing a selection of possible 
configurations using three sample locations. Cross validation (cf. chapter 2.5.6) was used for selecting 
the model configuration of sample locations, which avoids overfitting of the model and ensures a 
robust identification of the model’s performance. The data set of the sample locations was 
decomposed in advance by a reproducible random seed into training or validation data (80 %) and test 
data (20 %). The latter decomposition into test data is particularly necessary in the application of 
artificial neural networks in order to avoid their tendency to overfit, which in the case of statistical 
regression analysis should only be of minor importance. Nevertheless, the different model 
configurations were checked for comparison by means of both validation data and test data. 

Table 7 (p. 47) shows the tested model configurations for one of the sample locations (here: Bürgeramt 
Zeil 3, (“Energiemonitoring der Stadt Frankfurt am Main,” n.d.)) each in linear (y) and logarithmic form 
log(y), their cross-validated performance measures MAPE, 𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗2  and nRMSE, the number of 
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independent variables k and the required computing time on a machine Intel® Core™ i7-5960X CPU, 
3.00GHz, 128 GB RAM. 

Table 7: Test statistics of different model configurations using the example of the office building Bürgeramt Zeil 3. Highlighted 
in light red is the selected model configuration. Table adapted from Gotzens et al. (2020, p. 94) 

 
Modell configuration MAPE [%] 𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂

𝟐𝟐  nRMSE [%] k Computing 
time [s] 

 y | log(y) ~ y log(y) y log(y) y log(y)  y log(y) 

1  β0+holiday+C(month):C(weekday)+C(hour) 32.4 22.0 0.71 0.79 14.8 12.7 108 0.6 0.6 

2  β0+holiday+C(month)+C(weekday)+C(quart) 32.4 21.9 0.71 0.79 14.8 12.7 114 0.6 0.6 

3  β0+holiday+C(month):C(weekday)+C(quart) 32.4 21.9 0.71 0.79 14.8 12.6 180 0.8 0.8 

4  β0+holiday+C(month)+C(weekday):C(hour) 9.9 8.5 0.93 0.94 7.1 6.4 180 0.8 0.8 

5  β0+holiday+C(month)+C(weekday):C(hour)+tp 9.9 8.5 0.93 0.94 7.1 6.4 181 0.9 0.9 

6  β0+holiday+C(month)+C(weekday):C(hour)+sr 9.9 8.5 0.93 0.94 7.1 6.4 181 0.9 0.9 

7  β0+holiday+C(month)+C(weekday):C(hour)+tp+sr 9.9 8.5 0.93 0.94 7.1 6.4 182 0.9 0.9 

8  β0+holiday+C(month)+C(weekday):C(hour)+C(quart) 9.9 8.4 0.93 0.95 7.0 6.3 275 1.3 1.3 

9  β0+holiday+C(month)+C(weekday):C(hour)+C(quart)+tp+sr 9.9 8.3 0.93 0.95 7.0 6.2 277 1.3 1.4 

10  β0+holiday+C(month):C(hour)+C(weekday) 32.2 21.9 0.70 0.78 14.8 12.7 295 1.3 1.3 

11  β0+holiday+C(month)+C(weekday):C(quart) 9.7 8.3 0.93 0.94 7.0 6.3 684 3.3 3.3 

12  β0+holiday+C(month):C(quart)+C(weekday) 33.0 22.4 0.62 0.72 15.2 13.0 1159 6.3 6.4 

13  β0+holiday+C(month):C(weekday):C(hour) 9.1 8.2 0.91 0.92 6.8 6.4 2017 16.0 16.9 

 

For each model configuration, five regression analyses were initially performed according to the 
principle of 5-fold cross-validation based on reproducible, randomly distributed training and validation 
data (see chapter 4.2.1.4). The corresponding cross-validated performance measures from five runs 
were averaged and used as decision criteria to select a configuration (see MAPE, R2

adj and nRMSE, Table 
7). In addition to the cross-validation, the model was then parameterized using a complete training 
data set to check a prediction against the test data set and thus exclude a potential overfitting of the 
regression model.   

In the final selection of the model configuration for electricity load profiles, a balance between forecast 
quality and model complexity was emphasised. In addition, the two weather variables, ambient 
temperature and solar radiation, should be part of the model to be able to check potential load 
dependencies. In this respect, the following model configuration (cf. Table 7, No. 7) has proven suitable 
for subsector load profiles for considered sample locations: 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦) = 𝛽𝛽0 + ℎ𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑦𝑦 + 𝐶𝐶(𝑚𝑚𝑙𝑙𝑛𝑛𝑛𝑛ℎ) + 𝐶𝐶(𝑤𝑤𝑒𝑒𝑒𝑒𝑤𝑤𝑙𝑙𝑙𝑙𝑦𝑦):𝐶𝐶(ℎ𝑙𝑙𝑜𝑜𝑜𝑜) + 𝑛𝑛𝑡𝑡 + 𝑠𝑠𝑜𝑜 ( 13 ) 

In this model configuration, holidays, months (1 - 12), weekdays (1 - 7) and daily hours (1 - 24) were 
each included as categorical variables in the form of binary variables.16  In contrast, temperature and 
solar radiation data were included as continuous variables. The categorical variables of the weekdays 
and the daily hours were connected with each other, so that in total 167 variables were included 
(Monday-0:00, Monday-1:00, ..., Sunday-22:00, Sunday-23:00). The connection of the two variables is 
expressed by the colon sign. In these narrow categories of binary time and calendar variables, a certain 
degree of multicollinearity is unavoidable, as Wissmann and Toutenburg (2007, pp. 10–15) were able 
to show. However, these interdependencies did not influence the model output. They merely provided 
                                                           
16 The mapping of n categories in regression analysis requires the inclusion of only n-1 binary variables, since the 
remaining category results from a combination of remaining binary variables. This avoids perfect 
multicollinearity, also called "dummy trap" in the context of categorical variables. In regression analysis, twelve 
months are thus represented by 11 categorical variables. 
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a certain degree of uncertainty in the assessment of the impact strength of individual independent 
variables on the load. 

In an extended version, the above configuration was supplemented by a binary variable for production 
schedules or company holidays (𝑡𝑡𝑜𝑜𝑙𝑙𝑙𝑙_ℎ𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑦𝑦) for some subsectors, in order to account for related 
load fluctuations. Production schedules and company holidays were determined either endogenously 
from the available load data (e.g., in the case of WZ 17 manufacture of paper) or exogenously by school 
holiday schedules (in the case of WZ 85 education). Formula 14 shows the resulting configuration:  

𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦) = 𝛽𝛽0 + ℎ𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑦𝑦 + 𝐶𝐶(𝑚𝑚𝑙𝑙𝑛𝑛𝑛𝑛ℎ) + 𝐶𝐶(𝑤𝑤𝑒𝑒𝑒𝑒𝑤𝑤𝑙𝑙𝑙𝑙𝑦𝑦):𝐶𝐶(ℎ𝑙𝑙𝑜𝑜𝑜𝑜) + 𝑛𝑛𝑡𝑡 + 𝑠𝑠𝑜𝑜 + 𝑡𝑡𝑜𝑜𝑙𝑙𝑙𝑙_ℎ𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑦𝑦  ( 14 ) 

Due to the fact that the process in the case of WZ 17 manufacture of paper is largely independent of 
weekdays and times of day, a simple distinction was made between production and downtimes based 
on the metered load profile. By means of process-endogenous binary variables, those times were 
declared as production downtimes in which the load value fell below a previously determined 
threshold value of 17.7 % on average.17 In this way the model could be parameterized efficiently 
despite the apparently stochastic fluctuations in the production schedule. In order to derive the 
subsector load profile for WZ 17, representative downtimes were used. 

In selected companies of other industries, clearly definable periods with very low load levels have been 
identified, which could be traced back to company holidays. Company holidays of this type exhibit a 
recurrent structure in summer or winter time. In this case, these periods were manually declared as 
company holidays by means of the binary variable 𝑡𝑡𝑜𝑜𝑙𝑙𝑙𝑙_ℎ𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑦𝑦. In order to derive the load profile 
for such subsectors, vacation periods were averaged over the entire subsector in order to generate a 
representative load profile. 

4.2.1.2 Site-specific Regression Analyses and Correlation Analyses 
For data preparation purposes, the metered load profiles were first standardized in format and 
assigned to an economic subsector according to the classification WZ 2008. The load profiles were then 
imported into a Python script and checked for missing values. Zero-values were considered as outliers 
and removed from the data set, assuming they are caused by meter connection failures or scheduled 
disconnections (Zufferey et al., 2018, p. 109). The normalization of the load data was based on the 
respective annual total value. Subsequently, the county-specific weather data was imported from the 
DemandRegio database (“DemandRegio – opendata.ffe.de,” n.d.). Corresponding solar radiation and 
outdoor temperature data were assigned to each company site via respective county. Before the actual 
regression, the normalized load data of the individual operating sites were visually checked for 
anomalies, data errors and outliers. In addition, this visual inspection helped to identify heterogeneity 
within a subsector with regard to the load patterns.  

In order to quantify the calendrical, temporal and weather-related interrelationships of the load in a 
specific subsector, a site-specific correlation analysis was carried out. In addition to the independent 
variables "Holiday", "Temperature" and "Solar radiation", time and calendar variables for the 
correlation matrix were clustered according to the following scheme18: 

• Workday  –  corresponds to all working days (Monday - Friday) 
• Early  –  early shift, corresponds to the hours from 06:00 - 14:00  

                                                           
17 The threshold value was determined in a company-specific manner by optimizing the regression analytical 
results for each site. 17.7 % is the average of the determined company-specific threshold values. 
18 The clustering of time and calendar variables according to the above scheme is intended to make the 
dependencies clearer. In the model, time and calendar variables are integrated in more detail (see formulas 13 
and 14). In the definition of summer and winter times, the existing classification according to (Bundesverband 
der Energie- und Wasserwirtschaft, 2000) was chosen for comparability. 
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• Late  –  late shift, corresponds to the hours from 14:00 - 22:00  
• Night  –  night shift, corresponds to the hours from 22:00 - 06:00 
• Office  –  office working hours, corresponds to the studies from 09:00 - 17:00 
• Summer  –  corresponds to the days from 15.05. - 14.09.  
• Winter  –  corresponds to the days from 01.11. - 20.03. 

Subsequently, the site-specific correlation coefficients were averaged to obtain an indication of the 
intersectoral correlations. Figure 18 shows an example of the averaged correlation matrix of the 
subsector offices (WZ 64-71): 

 

Figure 18: Averaged correlation matrix of the subsector offices (WZ 64-71). Diagram by author, figure adapted from Gotzens 
et al. (2020, p. 97) 

As shown in Figure 18, especially the weather variables show some dependencies to each other as well 
as to time and calendar variables. This concerns on the one hand the mutual dependence between 
outdoor temperature and solar radiation (0.47). On the other hand, there are dependencies between 
outdoor temperature and season (0.72 and -0.73) as well as between solar radiation and time of day, 
e.g. the early shift (0.58). These mutual dependencies do not influence the forecast result. They only 
provide a certain degree of uncertainty in the assessment of the influence of individual independent 
variables (clusters) on the load. This means, for example, that the influence of the outside temperature 
can be partially overlaid by seasonal (in the model: monthly) influences. A complete separation of 
these influences cannot be achieved. In this respect, the first column of the correlation matrix, which 
quantifies the dependence of the load on individual influencing factors, is to a certain extent indicative. 
Particularly, these correlations have explanatory value in the comparison of different subsectors. 

Following the correlation analysis, the regression analysis was performed. First, all load values were 
logarithmised. The regression analysis itself was performed using Statsmodels, an econometric and 
statistical Python package (Seabold and Perktold, 2010). After the regression analysis, the logarithmic 
load values were transformed back and the load values were linearly smoothed.  
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In the next step, site-specific regression coefficients could be combined to form an average subsector 
load profile. Using subsector load profiles, a prediction was made for each individual location, whereby 
the model was parametrized by corresponding calendar and weather conditions. These predictions 
were compared to the real data and subjected to a visual check for validity, whereby possible structural 
artefacts and outliers were investigated. By means of cross-validation, the performance measures of 
the subsector load profile were determined using unknown data. The procedure of the cross validation 
in case of the subsector load profile is explained in chapter 4.2.1.4. For the evaluation of the validity 
and robustness of the subsector load profiles the performance measures of the site-specific and the 
subsector load profile models were compared. Any outliers were checked and removed from the data 
set if necessary. In order to obtain a reliable picture of the subsector models’ validity, outliers were 
only removed in exceptional cases, for example if the data did not fit the subsector. 

4.2.1.3 Creating a Subsector Load Profile 
A subsector load profile was created by averaging the regression coefficients of the site-specific 
regression analyses within a subsector. These subsector load profiles can be parameterized and scaled 
regionally in the same way as SLP, also considering weather variables. Figure 19 illustrates the process. 

 

Figure 19: Schematic representation of averaging and regionalization in the creation and application of subsector load profiles. 
Diagram by author, adapted from Gotzens et al. (2020, p. 99) 

The region-specific parameterization and scaling of the subsector load profiles allows a direct 
individual comparison of the subsector load profile with the respective real data, which was used for 
plausibility checks and for validation of the subsector load profile by means of cross-validation. As 
mentioned above, a detailed description of the validation of the subsector load profiles can be found 
in the following chapter 4.2.1.4. Figure 20 illustrates the visual comparison of the subsector load profile 
with respective real metered load profiles for the plausibility and structure check using the example of 
offices. 
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Figure 20: Visual inspection of the subsector load profile by comparison with the underlying real data (all standardized). 
Diagram by author, adapted from Gotzens et al. (2020, p. 99) 

The comparison of the subsector load profile (red) with the underlying real data illustrates the 
tendency of the model to depict the average pattern. The subsector load profile represents 
characteristic patterns over time, whereby the deep load valleys of office site 5 or the load peaks of 
office site 9 are not captured. 

Due to their heterogeneity, selected subsectors were divided into several sub-models. This could only 
be done if sufficient data was available. The economic subsector WZ10 manufacture of food products 
was divided into the following sub-models: 

• meat processing (32 %) 
• milk processing (28 %) 
• bakeries (24 %) 
• production of confectionery (11 %) 
• coffee production (5 %) 

The subsector load profile WZ10 manufacture of food products was created from the weighted sub-
models. The weighting (percentages in brackets) was determined based on the power consumption 
shares from table 43531,001 of JEVI (2015, on request) (see Gotzens et al. (2020, section 2.3.2.3)). 

Similarly, the subsector WZ47 retail trade was divided into the following two sub-models: 

• retail non-food (78 %) 
• retail food (22 %) 

The weighting (percentages in brackets) was determined based on the proportion of employees 
subject to social security contributions in both subsectors, using the publication of the Federal 
Employment Agency (see Gotzens et al. (2020, section 2.3.3.2)). Figure 21 illustrates the averaging of 
both sub-models for the entire subsector load profile on the basis of an average week. 
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Figure 21: Illustration of an average week of the sector load profile WZ47 retail trade including underlying sub-models retail 
non-food and retail food (supermarkets). Diagram taken from Gotzens et al. (2020, p. 100) 

The sector load profile of WZ52 Warehousing and other transport services was also divided into the 
following two sub-models: 

• cold stores (25 %) 
• multi-storey parking lots (75 %) 

The weighting (percentages in brackets) was based on the power consumption values according to 
Geiger et al. (2019). 

4.2.1.4 Evaluation of the Model Performance and Prediction Accuracy 
For the (internal) evaluation of the model performance, the performance measures introduced in 
chapter 2.5.5 were used: R2

adj, MAPE and nRMSE. Using the cross-validation introduced in chapter 
2.5.6, the performance measures were calculated according to established scientific practice using 
unknown data. The following two separate cases must be distinguished: 

1. the determination of the model performance of site-specific regression models 
2. determination of the model performance of the subsector load profiles 

The forecast quality of site-specific regression models (1.) serves to assess the basic performance of 
the multiple regression approach. In contrast, the forecast quality of the subsector load profiles (2.) 
contains information on the heterogeneity of a subsector. Thus, a high forecast quality of location-
specific regression models of a subsector with a simultaneously low forecast quality of the associated 
subsector load profile indicates a pronounced heterogeneity of this subsector. In contrast, a small 
difference between the forecast quality of site-specific and cross-subsector forecasts indicates a 
homogeneous subsector in terms of the underlying load profile data. Both forecast quality assessments 
can also provide indications of structural outliers in the data, which are subsequently removed from 
the data set. Table 40 to Table 42 (appendix A.2.3) characterizes the heterogeneity per subsector using 
the difference of the MAPE between site-specific regression models and subsector load profiles. 

Figure 22 illustrates the procedure of determining the model performance of the site-specific 
regression models (1.). When performing the cross validation for site-specific regression models, each 
individual site (C1, C2, ...) was considered separately. The load profile of each individual site was 
pseudo-randomly split into training and validation data in a ratio of 80:20 using the SciKit-based 
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function ShuffleSplit.19 Five different splits (Split 1-5) were performed for each site and then a 
regression analysis was performed for each split based on the respective training data. In total, five 
regression analyses (OLS model 1-5) were performed for each location, each with a different division 
of training and validation data. For each of the five regression analysis models (OLS-Model 1, OLS-
Model 2, ...) the quality parameters (e.g. MAPE Split 1, MAPE Split 2, ...) were then determined by 
means of prediction (Prediction 1-5) and comparison using the retained validation data. The 
performance measures of five splits were averaged for each location (Avg. MAPE C1, Avg. MAPE C2, 
...). The site-specific performance measures were again averaged within the subsector. 

 

Figure 22: Illustration of the principle of cross-validation for robust determination of the forecast quality of site-specific 
regression models. Diagram by author, taken from Gotzens et al. (2020, p. 102) 

According to the same principle, but more complex in the implementation, the determination of the 
forecast quality of the subsector load profiles (2.) was carried out. Appendix A.1.2 illustrates the 
corresponding procedure. 

4.2.1.5 Comparison of Subsector Load Profiles with Existing Standard Load Profiles 
In order to check plausibility of subsector load profiles, a comparison with literature-based load 
profiles was performed. Among potential candidates introduced in chapter 2.3.3, particularly VDEW 
SLP as well as De Monfort subsector load profiles generated by Dolman et al. (2012) appeared to be a 
suitable basis for comparison for newly generated subsector load profiles. This very comparison has 
been conducted by Rüdt (2020) as part of his bachelor’s thesis. Rüdt not only i) checked the plausibility 
of TUB subsector load profiles but also ii) evaluated the performance of existing literature-based load 
profiles in the forecasting of metered load profile data (see chapter 4.1.1 for database). In addition, 
potential structural deviations of the load profiles were compared with the differential balancing group 
time series in order to find indications of similarities between the deviations. 

To enable the assessment, metered load profile data had to be mapped to a subsector or consumer 
group within each type of load profile: 

• TUB Subsector load profiles (TUB BLP, Module 1)  
• VDEW SLP, and  
• De Monfort load profiles. 

                                                           
19 Normally, time series are split using a rolling forecasting horizon, so as to consider that the future is always 
predicted based on the past (Milanzi, 2020, p. 20; Tashman, 2000, p. 438). In the present case, however, the time 
series character of the load profiles was neglected in order to enable the consideration of data consisting of only 
one year. Using the shuffle split function, all annual load profiles could be considered, enabling a parametrization 
of all seasonal demand drivers.  
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The mapping was fairly trivial for TUB BLP and De Monfort load profiles, as subsectors were defined in 
a similar way. VDEW SLP, however, exhibit much more aggregated consumer groups. Appendix A.1.3 
lists the mapping for the three load profile types. After mapping metered load data to respective 
consumer groups, all load profiles had to be normalized and parametrized according to regional 
calendar and weather data20. De Monfort profiles had to transformed from hourly to quarter-hourly 
values by linear interpolation. Eventually, the performance of all three load profile types to model real 
metered load was assessed using the 5-fold cross-validation approach, yielding the MAPE and R² in 
analogy to the previous chapter.  

In addition to determining the profiles’ performances, structural deviations were depicted and 
compared with differential balancing group time series of respective DSOs. In the case of office 
buildings, Energienetze Berlin was identified as the associated DSO. Structural deviations were 
analysed and depicted for seasonal average weeks and average days over all locations. 

4.2.2. Quantile Regression 

The Quantile Regression was conducted once per subsector using the Quantreg function from the 
Statsmodels package (“Statsmodels Quantreg,” 2013). For each subsector, the model configuration of 
the Quantile Regression was identical to the multiple regression configuration (see previous chapter 
4.2.1.1). The 5 % and the 95 % quantile were determined as prediction interval in order to represent 
the load patterns of 90 % of the underlying data. The reliability and plausibility of the predicted 
quantiles was qualitatively checked by visual inspection and quantitatively by checking the data points 
covered within the corridor. 

 

Figure 23: Illustration of the prediction intervals (95 % / 5 %, red lines) for WZ87 residential care activities, generated by 
quantile regression. The blue line indicates the corresponding subsector load profile, developed using multiple regression. 
Diagram by author, adapted from Verwiebe and Seim (2019) 

Figure 23 illustrates these prediction intervals (red) for the example of WZ87 residential care activities, 
generated by quantile regression. The determined prediction intervals not only show the variance or 
the distribution of the load forecast, they also allow the estimation of upper and lower load levels in 
the sense of an extreme value observation. Especially for the estimation of upper and lower load levels, 
the question arises whether forecast intervals of different sector models or regions can be aggregated.  

As described in Gotzens et al. (2020), no definitive statement can be made as to how the variance of 
two combined regression functions (i.e. prediction intervals of the subsector models) behaves in 
relation to the site-specific prediction intervals. The covariance of both regression functions can only 
be determined quantile- and case-specifically involving significant effort. Nevertheless, a partial 

                                                           
20 As only TUB BLP consider temperature and solar radiation variables, weather data was neglected for both 
VDEW SLP as well as De Monfort profiles.  
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compensation of prediction intervals of sample subsectors could be found: the interquantile range 
decreases when several sectors are taken into account compared to the summation of individual 
prediction intervals, i.e. the 95 % prediction interval is lowered and the 5 % prediction interval is raised. 
The aggregated forecast intervals of the subsector load profiles thus form an extreme value 
observation (Gotzens et al., 2020, chapter 4.5.3.5). 

4.2.3. Artificial Neural Network-based Regression Model 

In order to carry out a comparison between the two techniques multiple regression and ANN, Milanzi 
(2020) developed subsector load profiles in her master thesis, using ANN for a selection of eight 
subsectors, four of which are identical to subsectors modelled using multiple regression. For these 
identical subsectors, the modelling results using ANN were compared with those of multiple 
regression, both for the modelling of individual consumers and the modelling of subsector load 
profiles. The following subsectors were analysed:  

• retail – food (part of WZ 47) 
• retail – non-food (part of WZ 47) 
• offices (WZ 64-71)* 
• public administration (WZ 84)* 
• education – nurseries (part of WZ 85) 
• education – schools (part of WZ 85) 
• human health activities (WZ 86)* 
• residential care activities (WZ 87)* 

*indicates subsectors identical to the multiple regression approach 

In her master thesis, Milanzi used a feed forward ANN with fully connected nodes that consider any 
possible relationship between input and output variables. The model was implemented in Python 
programming language and used Keras, a deep-learning framework for the modular development of 
neural networks. As a backend engine, TensorFlow was used for tensor manipulations and 
differentiation tasks (Chollet, 2018, p. 47; Milanzi, 2020).  

The selection and pre-processing of metered load profile data and demand drivers was conducted in 
analogy to the multiple regression. Two subsets were created which allow to determine the forecast 
impact of the two weather variables temperature and solar radiation. Table 8 lists the two subsets 
used for the modelling. 

Table 8: Demand drivers used in two ANN subsets A (excluding weather variables) and B (including weather variables 
temperature (tp) and solar radiation (sr)), based on Milanzi (2020, p. 49) 

Set Demand driver 
A Holiday, C(month), C(weekday), C(quart) 
B Holiday, C(month), C(weekday), C(quart), tp, sr 

 

These two subsets of demand drivers were used separately in order to i) model the load of individual 
sites as well as ii) model the load profile of the entire subsector. In both cases, 5-fold cross validation 
was used to train, validate and test the models, making efficient use of available data and generating 
robust results. The cross-validation procedure was conducted similarly to the multiple regression 
approach (cf. chapter 4.2.1.4), in order to enable comparison. For individual sites (i), each consumer’s 
load profile was split into training/validation set and test set, using the above described methodology 
and ratio (80:20). For each subsector, all data of consumers within that particular subsector were used 
and split according to the same procedure.  
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After determining the network type (feed forward ANN with fully connected nodes) and the sets of 
demand drivers, hyperparameters have to be set. The hyperparameters were determined within an 
optimization procedure of the Python library hyperopt using the Tree Parzen Estimator (Chollet, 2018, 
p. 338). In iterative steps, different possible combinations of hyperparameters were examined, 
minimizing the mean squared error (MSE)-based loss function21, similar to the OLS criterion and 
commonly used for regression-based problems (Chollet, 2018, p. 121). From the iterative procedure, 
the best possible hyperparameter combination for the aggregate of all subsectors was identified and 
used for further load modelling. In order to manage computation time, only the first split of the training 
and validation set has been used for hyperparameter optimization. Table 9 lists the optimised and 
literature-based hyperparameters for both sets of demand drivers (cf. Table 8: set A, B). These 
universal sets of hyperparameters were used for all subsectors and individual sites, assuming that it 
might not be the individual best, but a sufficiently good hyperparameter set. In her thesis, Milanzi 
(2020, pp. 63–64) was able to verify this assumption for individual selected subsectors. It could be 
demonstrated that a single set of hyperparameters can be used for all subsectors with only minor loss 
of performance.  

Table 9: Optimized and literature-based hyperparameters for both ANN subsets A and B, adapted from Milanzi (2020, p. 64) 

Hyperparameters  |  sets A B 

Optimized by sequential 
model based optimization 

# hidden layers 2 2 
# nodes 1/2 10 20 
# nodes 2/2  40 50 
Learning rate 0.00070 0.00038 
Batch size 32 64 
L2-penalty 0.00092 0.00107 
Loss function MSE 

Determined based on 
literature values 

Activation function ReLU 
Optimizer Adam 
Early stopping patience  20 

 

The number of hidden nodes was set to two, which is a commonly used setup according to a literature 
review by Debnath and Mourshed (2018, p. 303): two hidden layers typically produced best results for 
multiple forecasting modules. For the number of nodes, Zhang et al. (1998, p. 44) insist that the choice 
usually depends on the underlying forecasting task. The chosen ReLU function (Rectified Linear Units) 
is the most commonly used activation function within machine learning and ensures that negative net 
input values are set to zero (Chollet, 2018, pp. 100, 102). The Adam algorithm is a variant of the SGD 
algorithm, applying momentum and individual adaptive learning rates to the weight updates (Kingma 
and Ba, 2017). The batch size of 32 or 64 lies in the typical range of SGD algorithms (Keskar et al., 2017). 
It depicts the number of observations being stochastically chosen form the data set in each training 
epoch in order to determine the gradient of the loss function with regards to the weight parameters 
of the neural network. The parameters are then being adjusted in the optimizer. The learning rate 
specifies how much these parameters are being adjusted. Very small learning rates have the risk of 
getting stuck in a local optimum (and missing the global optimum) (Chollet, 2018, p. 80). The early 
stopping hyperparameter ensures to stop the training as soon as one of the monitored performance 
indicators no longer improves during a certain number of epochs (here: 20 epochs). This avoids 
overfitting and saves time for training with unnecessary additional epochs. Overfitting is also reduced 

                                                           
21 MSE – Mean Squared Error, similar to nRMSE introduced in chapter 2.5.5, without the normalisation and root 
operation.  
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by the L2 penalty function, which ensures that each weight of the layers gets increased by a predefined 
value of the loss function (Chollet, 2018, p. 148; Milanzi, 2020, pp. 54–55).  

4.3. Application and Evaluation of Load Profiles 
As introduced in chapter 4.1.2, regionalised subsector load profiles (TUB BLP) were applied in the 
disaggregator tool in order to model the annual regional load for each county. Using load profiles, this 
regionalized annual load could then be resolved into a temporal pattern. Depending on which load 
profile types were applied in the disaggregator tool, two approaches can be distinguished:  

• SLP only: the temporal resolution of annual loads was carried out solely using VDEW SLP for 
CTS subsectors and generic shift load profiles for industrial subsectors (Gotzens et al. (2020, 
chapter 4.4.2)).  

• BLP application: Where available, newly developed TUB BLP were used to replace VDEW SLP 
and generic shift load profiles  

Figure 24 (p. 58) depicts the experimental setup of both approaches. In order to model the load 
patterns of residential consumers, both approaches used the ZVE profile (time of use survey-based, 
German: Zeitverwendungserhebung) developed in DemandRegio (Gotzens et al., 2020, chapter 3.4.2). 
For error analysis, the ZVE profile was replaced in a subsequent experiment by an average load profile 
of smart meter data (SM profile)22. Due to data restrictions, the application of the SM profile was 
conducted for all 11 DSOs only in the year 2019. All profiles except for the smart meter based average 
load profile (VDEW SLP, generic load profiles, TUB BLP, ZVE profile) can be generated using the 
disaggregator tool on GitHub (Verwiebe et al., 2020).  

In her bachelor thesis, Held (2020) carried out the comparison of both approaches. Based on Held’s 
preliminary work, some adjustments were made to the disaggregator’s configuration in this thesis. 
Table 10 (p. 59) depicts the mapping of economic subsector and load profile used for both the SLP only 
and the BLP application approaches. As for assumed similarities between subsectors, TUB BLP were in 
some cases used to replace SLP in additional subsectors:  

• the TUB BLP for WZ 41 (construction of buildings) was also assigned to WZ 42 and 43  
• the TUB BLP for WZ 64 – 71 (offices) was also assigned to WZ 58, 59, 73, 74, 75, 78, 95, 96, 99 

Both approaches yield regional load profiles, which were compared separately and validated with the 
total load profile of selected DSOs and the ENTSO-E load for several years (cf. chapter 4.1.2). The 
validation’s focus was not on the amount of electricity consumed, but on potential deviations in the 
profile shapes. Hence, total load profiles of DSOs and ENSTO-E as well as the disaggregator output 
were normalised to isolate profile deviations. However, deviations on the amount of electricity 
consumed in the regional disaggregation are presented in Gotzens et al. (2020, chapter 5.2) as well as 
Verwiebe and Seim (2019, pp. 11–22). 

 

                                                           
22 The SM profile was developed by averaging 200 smart meter load profiles of the year 2019, the raw data of 
which was published in Beyertt et al. (2020). The H0-SLP (VDEW) has been found less accurate than the ZVE 
profile in the DemandRegio project (Gotzens et al., 2020, p. 129) and has thus not been applied anymore in this 
thesis.  
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Figure 24: Experimental setup for the evaluation of the disaggregator tool applying subsector load profiles (BLP), using real 
load data of selected DSOs and the total load of Germany as per ENTSO-E. Diagram by author. 

In both approaches, normalized load profiles of several years for 11 counties and the whole of 
Germany were created by the disaggregator tool. Similar to the approach in chapter 4.2.1.5, all load 
profiles had to be parametrized according to regional calendar and weather data23. The modelled load 
profiles were then compared with the DSOs’ and ENTSO-E total load profiles to determine MAPE and 
R² performance measures and identify structural deviations with regards to the profile structures. As 
mentioned in chapter 4.1.2, this comparison of model output to real load data was only possible where 
(DSO/ENTSO-E) grid areas were (largely) identical to county areas. In the end, the model output could 
be validated using the data of 11 DSOs and ENTSO-E, both for multiple years (see Figure 24).  

 

 

 

 

                                                           
23 As only TUB BLP consider temperature and solar radiation variables, weather data was neglected for both 
VDEW SLP as well as generic load profiles.  
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Table 10: Mapping of load profiles to economic subsectors (according to WZ 2008) in the SLP only appraoch (SLP) and the BLP 
application approach (BLP app.), adapted from Held (2020) and adjusted. Mapping of VDEW SLP to subsectors is made 
according to VDEW (2000) and Gotzens et al. (2020, p. 72); mapping of generic load profiles in the industrial sector is made 
according to Gotzens et al. (2020, p. 73). 

Mapping of load profiles to WZ in the sector CTS Mapping of load profiles to WZ in 
the industrial sector 

WZ SLP BLP app. WZ SLP BLP app. WZ SLP BLP app. 
1 L0 L0 68 G1 BLP WZ 64-71 5 S3 WT SA S3 WT SA 
2 L0 L0 69 G1 BLP WZ 64-71 6 S3 WT SA SO S3 WT SA SO 
3 G3 G3 70 G1 BLP WZ 64-71 7 S3 WT SA S3 WT SA 
36 G3 G3 71 G1 BLP WZ 64-71 8 S3 WT SA S3 WT SA 
37 G3 BLP WZ 37 72 G1 BLP WZ 72 9 S3 WT SA S3 WT SA 
38 G3 BLP WZ 38 73 G1 BLP WZ 64-71 10 S3 WT BLP WZ 10 
39 G3 G3 74 G1 BLP WZ 64-71 11 S3 WT BLP WZ 11 
41 G1 BLP WZ 41 75 G1 BLP WZ 64-71 12 S3 WT SA BLP WZ 12 
42 G1 BLP WZ 41 77 G4 BLP WZ 77 13 S2 WT S2 WT 
43 G1 BLP WZ 41 78 G1 BLP WZ 64-71 14 S2 WT S2 WT 
45 G4 G4 79 G4 G4 15 S2 WT SA S2 WT SA 
46 G0 BLP WZ 46 80 G3 G3 16 S2 WT SA S2 WT SA 
47 G0 BLP WZ 47 81 L0 L0 17 S3 WT SA SO BLP WZ 17 
49 G3 G3 82 G0 BLP WZ 82 18 S3 WT SA SO S3 WT SA SO 
50 G3 G3 84 G1 BLP WZ 84 19 S3 WT SA SO S3 WT SA SO 
51 G3 G3 85 G1 BLP WZ 85 20 S3 WT SA SO S3 WT SA SO 
52 G3 BLP WZ 52 86 G3 BLP WZ 86 21 S3 WT SA SO BLP WZ 21 
53 G4 G4 87 G2 BLP WZ 87 22 S2 WT SA BLP WZ 22 
55 G2 BLP WZ 55 88 H0 BLP WZ 88 23 S3 WT SA SO S3 WT SA SO 
56 G2 G2 90 G0 BLP WZ 90 24 S3 WT SA SO S3 WT SA SO 
58 G1 BLP WZ 64-71 91 G0 BLP WZ 91 25 S3 WT S3 WT 
59 G0 BLP WZ 64-71 92 G2 G2 26 S2 WT BLP WZ 26 
60 G3 G3 93 G2 BLP WZ 93 27 S2 WT SA S2 WT SA 
61 G3 G3 94 G6 BLP WZ 94 28 S3 WT BLP WZ 28 
62 G3 BLP WZ 62 95 G4 BLP WZ 64-71 29 S3 WT BLP WZ 29 
63 G3 BLP WZ 63 96 G1 BLP WZ 64-71 30 S3 WT SA SO S3 WT SA SO 
64 G1 BLP WZ 64-71 97 H0 H0 31 S1 WT SA S1 WT SA 
65 G1 BLP WZ 64-71 98 H0 H0 32 S3 WT SA SO BLP WZ 32 
66 G1 BLP WZ 64-71 99 G1 BLP WZ 64-71 33 S2 WT SA S2 WT SA 

 

4.4. Bottom-up Modelling of Application Technologies 
In the following chapter, the creation of engineering-based subsector load profiles using a bottom-up 
modelling approach is being briefly presented. For selected CTS subsectors in Germany, the model 
framework was developed in the master thesis of Böckmann (2021), further extended in collaboration 
and published. The description below corresponds to the publication in Böckmann et al. (2021). A more 
detailed description of the model framework can be found there. The model code has been published 
on GitHub (Böckmann and Seim, 2021). 

The application technology-specific sub-load profiles were generated according to an engineering-
based bottom-up approach for the year 2018 in quarter-hourly resolution. The selected white box 
approach allows to fully understand and manipulate the modelled interdependencies. In this way, 
structural changes with regards to technology shifts (e.g. from night storage heaters to heat pumps), 
changing consumption patterns or efficiency gains can be mapped within the framework of a long-
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term projection of electricity demands. Models solely relying on projecting historical load profiles, in 
contrast, might lead to inaccurate results as there is no way to consider changes in demand patterns 
(Boßmann et al., 2013, p. 1209).  

Five of the six largest subsectors by electricity consumption were modelled using the engineering-
based model framework: offices (WZ64-71), trade (WZ47)24, accommodation (WZ55), hospitals (WZ86) 
and education (WZ85). However, the model framework is suitable for modelling all CTS or industrial 
subsectors. At the core, sub-load profiles of application technologies within the CTS sector were 
modelled. According to Rohde (2019, p. 9), these include in descending order of proportional electricity 
consumption: Lighting, mechanical energy, ICT, air conditioning, process cooling, jointly assessed 
space heat and hot water, as well as other process heat. As for the underlying database of application 
technology energy consumption, the subsector classification was based on the groups developed by 
Schlomann et al.  (2015, p. 3). However, these groups can be mapped to the WZ 2008 classification 
(Destatis, 2008). This allowed a validation and fine-tuning of engineering-based load profiles with 
corresponding subsector load profiles developed in the first module of this thesis (Böckmann et al., 
2021, p. 3).  

As pointed out in chapter 4.1.3, the engineering-based load profiles were developed based on 
information on occupancy and usage, application technology data, calendar information, weather 
data, and annual energy demands for application technologies from national statistics. Figure 25 
depicts the modelling procedure.   

 

Figure 25: Illustration of the modelling procedure for engineering-based load profiles, figure adapted from Böckmann et al. 
(2021, p. 4)  

First, the three standards (ISO 18523-1:2016(E) (2016), SIA 2024:2015 (2015), DIN V 18599-10:2018-
09 (2018)) were combined into representative occupancy profiles per subsector and type day 
according to proportions determined by hyperparameters 𝜆𝜆𝐷𝐷𝑆𝑆𝑆𝑆 and 𝜆𝜆𝐷𝐷𝑆𝑆𝑁𝑁. The influence of global 
radiation on lighting was described by the hyperparameter 𝜆𝜆𝐺𝐺𝐷𝐷, which was normalised to the interval 
[0,1]. Hyperparameters were introduced to make efficient use of scarcely available information. These 
hyperparameters enabled a fine-tuning of weights for demand drivers without violating functional 
plausibility (Böckmann et al., 2021, p. 5). 

                                                           
24 For engineering-based models, the retail trade subsector (WZ47, German: Einzelhandel) is used as a proxy for 
the entire trade subsector including the wholesale trade sector (WZ46, German: Großhandel). 
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Then, using calendar data, technology data, weather data and representative occupancy profiles, 
simultaneity factors were created per time slice for the complete year 2018 per application technology 
and subsector. Simultaneity factors are utilisation rates, which are given per time slice of a day. Here, 
simultaneity factors were normalised on an interval [0, 1] and depict the ratio of electricity demand at 
a distinct time slice. This ratio can be scaled by an annual electricity demand (of application 
technologies) to yield a sub-load profile. The aggregation of sub-load profiles over all application 
technologies depicts the subsector load profile, which could be compared to the output of module 1 
(Böckmann et al., 2021, p. 5).  

These sub-load profiles were developed in three different modelling steps. In each step, modelled sub-
load profiles were compared iteratively with existing subsector load profiles and refined gradually 
according to observed structural deviations. In analogy to the multiple regression and ANN 
approaches, structural deviations were identified using the performance measures MAPE and R². After 
each modelling step, the previous results were refined by structural assumptions and the 
hyperparameter optimization using a grid search process, maintaining the underlying functional 
validity of the model. As a result, engineering-based subsector load profiles have been derived which 
exhibit a transparent white-box modelling design and which can be validated against real data using 
subsector load profiles of module 1 (Böckmann et al., 2021, p. 5). The detailed procedure of the 
individual steps mentioned above is described in Böckmann et al. (2021, pp. 5–11). 

4.5. Projecting Subsector Electricity Load Profiles into the Future 
In the following, the projection of engineering-based load profiles will be described. The methodology 
was developed in collaboration (Böckmann, 2021) and published in Seim et al. (2021a, chapter 2.1).  

Technology- and sector-specific development paths were quantified using literature-based scenarios, 
i.e. the baseline scenario and reference scenario (cf. chapter 4.1.4). These development paths were 
utilized to adjust engineering-based load profiles developed in Böckmann et al. (2021). According to 
Pfluger et al. (2017b, p. 63), the main drivers of the energy demand scenarios in the CTS sector are 
employees, electricity prices, energy reference areas, energy efficiency increases and implicit 
discounting rates for future company investments. In an opposite effect to efficiency gains, drivers like 
climate change or digitalization can also lead to an increased demand for some technologies, like air 
conditioning and ICT. All drivers determine the future electricity demand level of each application 
technology and sector. A changing composition of application technologies with individual sub-load 
profiles will affect the aggregated load profile of a subsector. In addition, changing temporal demand 
characteristics have an impact. The latter are difficult to model, as it is complex to anticipate future 
changes in building occupancy or a change in user behaviour (Seim et al., 2021a, p. 4). 

In projecting engineering-based load profiles to the year 2035, occupancy profiles and technology data 
of Böckmann et al. (2021) were utilised with minor adjustments. Weather data of the year 2018 and 
calendar data of the year 2035 was used. To determine the technology-specific annual electricity 
consumption for 2018, the application energy demands of the CTS sector were disaggregated to 
individual subsectors according to Rohde (2019, p. 9) (see appendix A.1.4: Table 28). The necessary 
electricity consumption shares per application technology and subsector were taken from Repenning 
et al. (2015, p. 84). Using existing energy scenarios, future application technology energy demands had 
to be extrapolated to the year 2035 and transformed to the required granularity of subsectors (Pfluger 
et al., 2017b, pp. 68, 71). The distribution of these future electricity demands to individual sectors was 
based on subsector-specific shares of future energy reference areas. For this purpose, the values from 
Pfluger et al. (2017b, p. 64) could be used and extrapolated for the year 2035 (see appendix A.1.4: 
Table 29 and Table 30). Due to individual sector developments, the shares of application-specific 
electricity demands differ slightly between the years 2018 and 2035. While lighting still accounted for 
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24.1 % of total lighting consumption in the trade subsector in 2018, this share will increase by more 
than 2 percentage points to 26.7 % due to sector growth (Seim et al., 2021a, p. 5). 

In Pfluger et al. (2017b, pp. 68, 71), the application technologies of air conditioning and ventilation are 
combined. For the present thesis, demand was divided in half, so that the growth rates are divided 
equally between the applications mechanical energy and air conditioning. According to Böckmann et 
al. (2021), 70 % of the electrical heat supply consists of hot water and 30 % of space heating. In the 
absence of literature data, these proportions were assumed constant for the target value in 2035. 
Information on the development of space heating was extracted from Pfluger et al. (2017b, p. 120). 
Here, a structural change due to the decline of night storage heaters and the increasing share of heat 
pumps was taken into account with the help of varying technology shares. As described in Böckmann 
et al. (2021), different load profiles were assumed for heat pumps and night storage heaters, so that 
the shift of technology ratio will result in load profile changes. All other technologies were assumed to 
have an identical and partly weather-dependent load profile. Thus, it is above all the increases in 
efficiency that influence the shares of application technologies in the total load profile (Seim et al., 
2021a, p. 5). 

4.6. Derivation of Technical Demand Side Flexibility Potential  
After projecting subsector- and technology-specific load profiles into the year 2035, present and future 
DSF potentials were quantified. Only the engineering-based load profiles in high temporal resolution 
from Böckmann et al. (2021) allow a robust analysis of temporal availabilities and maximum capacities 
of flexible loads. In the following, the procedure for deriving technical DSF potential will be described. 
The procedure was applied in collaboration (Böckmann, 2021) and mainly follows the framework 
developed by Kleinhans (2014). The below description has been published already in German (Seim et 
al., 2021a, chapter 2.2).  

To quantify the DSF potentials, a number of electric power, temporal and cost parameters at process 
and application level are used in the literature. The electric power parameters include the available 
switchable power, average, minimum and maximum load, installed power and the share of power that 
can be flexibilised. Temporal parameters include switching and shift durations as well as temporal 
availabilities. The cost parameters include capital expenditure, fixed costs and variable costs (Kochems, 
2020, p. 3; Steurer, 2017, pp. 32–33). Following Kochem's definition, technical load shifting potentials 
are analysed, considering application-specific, time-dependent minimum and maximum loads as well 
as time-related availability restrictions. A technical control option may already be available or may be 
brought about by investments (Kochems, 2020, p. 1). According to Steurer (2017), many publications 
focus exclusively on the switchable power, which is insufficient for the consideration of the potential. 
When considering the technical potential, the temporal parameters are decisive. Technical restrictions, 
such as minimum and maximum loads of individual application technologies, are pivotal for quantifying 
the technical load flexibility potential. In this thesis, economic factors or other social and organizational 
factors were not taken into account (Seim et al., 2021a, pp. 5–6). 

Kleinhans (2014) presents a framework for quantifying technical DSF potentials, which is used in the 
literature by Kies et al. (2016) and by Heitkoetter et al. (2020), among others. Here, load shifting is 
regarded as a process equivalent to energy storage. The maximum and minimum switchable loads  
𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞 (𝑛𝑛) and 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚

𝑞𝑞 (𝑛𝑛) as well as the maximum and minimum shiftable energy quantities 𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞 (𝑛𝑛) and 

𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚
𝑞𝑞 (𝑛𝑛) of each application technology 𝑞𝑞 at time 𝑛𝑛 are calculated as characteristic quantities. The time 

availability of an application determines the scheduled (base) load profile of an application 𝐿𝐿𝑞𝑞(𝑛𝑛). The 
shift duration of an application in positive as well as negative direction is given as ∆𝑛𝑛𝑞𝑞 and denotes the 
duration by which the start of a load increase (or a load reduction) can be shifted to earlier times or 
the end of the load increase (or reduction) can be shifted to later times. The maximum load of an 
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application at time 𝑛𝑛 is Λ𝑞𝑞(𝑛𝑛). R𝑞𝑞(𝑛𝑛) is the realized load after load shifting (Kleinhans, 2014, pp. 3–4). 
All parameters and variables with units of the International System of Units (SI units) are shown in 
Table 11 (Seim et al., 2021a, p. 6). 

Table 11: Parameters and variables for calculating the technical DSF potential according to Kleinhans (2014, p. 4) 

Variable Description  SI-Units 
𝐐𝐐 Number of application technologies - 
∆𝒕𝒕𝒒𝒒 Shift duration s 
𝑳𝑳𝒒𝒒(𝒕𝒕) Scheduled load for application 𝑞𝑞 W 
𝚲𝚲𝒒𝒒(𝒕𝒕) Maximum load / capacity of application 𝑞𝑞 W 
𝐑𝐑𝒒𝒒(𝒕𝒕) Realized load (after shifting) for application q W 
𝐏𝐏𝒒𝒒(𝒕𝒕) Switchable load of application 𝑞𝑞 W 
𝑬𝑬𝒒𝒒(𝒕𝒕) Shiftable energy quantities of application 𝑞𝑞 Ws 

 

Since in very few cases load profiles are available at the level of application technologies, many studies 
used SLP with assumptions on seasonal and time-of-day availabilities (Heitkoetter et al., 2020, p. 7; 
Klobasa, 2007, p. 26; Ladwig, 2018, p. 23; Steurer, 2017, p. 49). In contrast, this thesis used much more 
detailed technology- and subsector-specific load profiles from Böckmann et al. (2021). When 
considering load shifting as energy storage, P𝑞𝑞(𝑛𝑛) in formula 15 describes the charging rate of the 
energy storage. E𝑞𝑞(𝑛𝑛) in formula 16 characterises the amount of energy that can be shifted, which can 
be interpreted as the state of charge of an energy storage device in terms of a load flexibility measure 
(Kleinhans, 2014, p. 4). The storage is charged if R𝑞𝑞(𝑛𝑛) >  𝐿𝐿𝑞𝑞(𝑛𝑛) and discharged if R𝑞𝑞(𝑛𝑛) <  𝐿𝐿𝑞𝑞(𝑛𝑛). The 
storage level is then the integral of the charging rate (Kleinhans, 2014, p. 4; Seim et al., 2021a, p. 6). 

 𝐿𝐿𝑞𝑞�𝑅𝑅𝑞𝑞(𝑛𝑛)�(𝑛𝑛) =  𝑅𝑅𝑞𝑞(𝑛𝑛) − 𝐿𝐿𝑞𝑞(𝑛𝑛) ( 15 ) 

 𝐸𝐸𝑞𝑞�R𝑞𝑞(𝑛𝑛)�(𝑛𝑛) =  � 𝑙𝑙𝑛𝑛′
𝑡𝑡

0
𝐿𝐿𝑞𝑞�R𝑞𝑞(𝑛𝑛)�(𝑛𝑛′) ( 16 ) 

The square brackets designate that the expressions depend directly on the time series of realized loads 
for respective application technologies. Since any number of profiles are possible for the realised loads 
R𝑞𝑞(𝑛𝑛) depending on the scheduled load profile L𝑞𝑞(𝑛𝑛), the limits of the load shifting potentials can be 
characterised as respective minima and maxima of the charging rate and the storage level. These limits 
are also called envelope curves and are calculated according to formulae 17-20 (Kleinhans, 2014, p. 5). 

 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚
𝑞𝑞 (𝑛𝑛) ∶= 𝐸𝐸𝑞𝑞�R𝑞𝑞�𝑛𝑛 + ∆𝑛𝑛𝑞𝑞��(𝑛𝑛) = � 𝑙𝑙𝑛𝑛′

𝑡𝑡+∆𝑡𝑡𝑞𝑞

0
L𝑞𝑞(𝑛𝑛′) ( 17 ) 

 
𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞 (𝑛𝑛) ∶= 𝐸𝐸𝑞𝑞�R𝑞𝑞�𝑛𝑛 + ∆𝑛𝑛𝑞𝑞��(𝑛𝑛) = −� 𝑙𝑙𝑛𝑛′

𝑡𝑡

𝑡𝑡−∆𝑡𝑡𝑞𝑞
L𝑞𝑞(𝑛𝑛′) 

( 18 ) 

 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
𝑞𝑞 (𝑛𝑛) ∶=  Λ𝑞𝑞(𝑛𝑛) − L𝑞𝑞(𝑛𝑛) ( 19 ) 

 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞 (𝑛𝑛) ∶= −L𝑞𝑞(𝑛𝑛)  ( 20 ) 

Figure 26 illustrates the relationships for an exemplary load profile. The red line represents the 
scheduled load L𝑞𝑞(𝑛𝑛) of an application q, which can be varied – depending on the time – within the 
limits Λ𝑞𝑞(𝑛𝑛) (=maximum load) and 0 (=minimum load). In the present example, a scheduled load of 
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1 kW is shown from 14:00 to 16:00. This scheduled load can be shifted by ∆t = 4h, i.e. either shifted 
to earlier or later times. In the most extreme case, the load can be shifted to 10:00 or shifted to 18:00, 
whereby any number of shifts by smaller time intervals is possible. These considerations result in the 
corresponding representations of the energy storage model as envelope curves with E𝑚𝑚𝑎𝑎𝑚𝑚 (black line) 
and E𝑚𝑚𝑖𝑖𝑚𝑚 (grey line). At an exemplary time t = 14:30, the area drawn below the scheduled load for the 
time interval 𝑛𝑛 + ∆𝑛𝑛𝑞𝑞 results for E𝑚𝑚𝑎𝑎𝑚𝑚. This area can be read from the corresponding envelope curve 
at time t = 14:30 (see (1), Figure 26) with 1.5 kWh. The same results for E𝑚𝑚𝑖𝑖𝑚𝑚 (Seim et al., 2021a, p. 7). 

 

Figure 26: Schematic illustration of the shiftable energy quantities Emax, Emin as a function of the scheduled load L(t). Diagram 
by author, adapted from Seim et al. (2021a). The scheduled load L(t) rises abruptly from 0 to 1 kW at 14:00 and falls again at 
16:00. Consequently, no ramps occur in the case of the load profile (red). 

For each of the subsectors of offices, trade, accommodation, hospitals and education, DSF potentials 
were calculated for present (2018, chapter 4.4) and projected (2035, chapter 4.5) load profiles. Electric 
power parameters, temporal parameters and time availability were included in the quantification. 
Power parameters include the fundamental suitability for flexibilization of a technology as well as the 
switchable loads, while the time parameters describe switching and shift durations in particular 
(Kochems, 2020, p. 3; Seim et al., 2021a, p. 7). 

Technologies suitable for load shifting include ventilation, air conditioning, process cooling, as well as 
space heating and hot water (Heitkoetter et al., 2020, p. 9; Klobasa, 2007, pp. 69–78; Ladwig, 2018, p. 
23). The scheduled load of application 𝑞𝑞 in subsector 𝑏𝑏, L𝑞𝑞 , 𝑏𝑏(𝑛𝑛), corresponds to the modelled load 
profile of the application. Some published approaches used constant maximum loads Λ𝑞𝑞(𝑛𝑛) or installed 
capacities to estimate switchable loads (Gils, 2015, p. 14; Kleinhans, 2014, p. 11; Ladwig, 2018, p. 100). 
Others used simple assumptions regarding the seasonality of switchable loads (Klobasa, 2007, p. 26). 
Using installed capacities potentially overestimates the maximum charging rates and switchable loads 
(Kleinhans, 2014, p. 11). Using the high temporal resolution load profiles, the maximum switchable 
loads Λ𝑞𝑞, 𝐷𝐷(𝑛𝑛) of an application q at time t could be specified with formula 21 in this thesis. Here, D 
denotes the time frame in days in which the maximum load of the application is calculated. In the 
following, a time frame of 𝑊𝑊 = 1 𝑙𝑙𝑙𝑙𝑦𝑦 (≙ 96 quarter hours) was assumed (Seim et al., 2021a, pp. 7–8).   

 Λ𝑞𝑞, 𝐷𝐷(𝑛𝑛) =  max�𝐿𝐿𝑞𝑞(𝑛𝑛)� ∀𝑛𝑛 ∈ [1, 2, . . ,96] + 96 ⋅ 𝑤𝑤,𝑤𝑤 ∈ 𝐶𝐶 ∩ {0} ( 21 ) 

The modelled shift durations for each application technology were taken from corresponding data in 
Ladwig (2018, p. 23) and Heitkoetter et al. (2020, p. 9). For ventilation, air conditioning and process 
cooling, ∆t = 1h applied; for space heating, the shift duration was ∆t = 12h (Seim et al., 2021a, p. 8). 
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4.7. Economic Assessment of Applying Newly Developed Subsector Load Profiles 
In the next chapter, the experimental setup of economically assessing two use cases of subsector load 
profiles is presented. In the first chapter 4.7.1, the assessment of the influence of newly developed 
TUB BLP on electricity procurement and balancing group management is described. This assessment is 
intended to provide information on the extent to which the use of TUB BLP is beneficial from an 
economic point of view. In the second chapter 4.7.2 it is explained, how the economic value of 
identified DSF potentials in high spatial and temporal resolution can be determined. This assessment 
of concrete DSF potentials allows an indication as to which extent these potentials should be exploited 
from an economic standpoint. In the long term, the exploitation of economically viable potentials 
should be stimulated by an appropriate regulatory framework. 

4.7.1. Procurement and Balancing Group Management 

In the first use case, the application of newly developed TUB BLP is to be economically assessed. As 
mentioned in chapter 2.2.4, there are multiple fields of application for electricity load profiles spanning 
across all steps of the value chain. Among others, subsector load profiles are used for demand 
forecasting and energy system modelling, for the planning and design of power generation plants and 
for the procurement of energy (Schellong, 2016a, p. 375). In particular, the last use case, i.e. the 
procurement of electricity, is well suitable for economic evaluation, as electricity prices are available 
in high temporal resolution and topicality. Therefore, this thesis focuses on the assessment of the use 
of TUB BLP in the procurement and balancing group management of electricity. 

Despite the suitability, economically assessing the application of newly developed subsector load 
profiles is not trivial since relevant forecasting models and procurement strategies used by traders, 
suppliers and DSOs are diverse and non-disclosed (Novello et al., 2021, p. 20). Moreover, market prices 
depend on (projected) demands, which further complicates the economic assessment of demand 
models. In spite of these challenges, the present thesis seeks to generate a rough estimation as to 
whether or not the application of newly developed subsector load profiles might have a positive impact 
on the procurement of electricity and the balancing group management. The estimation of potential 
economic impacts applying subsector load profiles was achieved using the disaggregator tool: both 
approaches (i.e. SLP only and BLP application) described in chapter 4.3 were used to simulate an 
i) electricity procurement and ii) balancing group management of the total German market (ENTSO-E 
data) as well as selected counties.  

 

Figure 27: Depiction of simulated procurement and balancing group management case within the spectrum of options, 
considering the synthetic load profile procedure. Diagram by author. 
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Figure 27 illustrates the real spectrum of options for procurement and balancing group management 
as well as the simulated procurement and balancing group management case. The following 
paragraphs elaborate on why narrowing down the simulated case of i) procurement and ii) balancing 
group management strategies can be regarded plausible.  

i) In the synthetic load profile procedure, suppliers usually procure electricity for their 
consumers on the futures and spot market, using load profiles provided by DSOs (usually 
SLP25, cf. Figure 27). In this thesis, however, a procurement strategy was simulated solely 
procuring on the spot market. Yet this simplification seems to be plausible: the 
disaggregator model generates load profile shapes of the same overall level of electricity. 
As Novello et al. (2021, p. 20) found, the differences between load profile shapes do not 
have major price impacts on the long-term electricity procurement, because on the futures 
market there are only products available of low temporal resolution (baseload, peakload). 
While the level of electricity demand has important price implications for long-term 
procurement, the profile shape becomes more important in the short-term procurement, 
when products of higher temporal resolution are available. This thesis’ focus on spot 
market electricity procurement is thus a plausible simplification.  

ii) After suppliers procured the electricity, the DSOs are obliged to manage their balancing 
groups using the spot markets (cf. Figure 27). Remaining deviations will be levelled out 
using balancing energy and performing an imbalance settlement with BRPs. The extent to 
which balancing groups are actively managed remains uncertain, but there have been 
complaints in the past that balancing groups were managed insufficiently (BNetzA, 2013; 
Enkhardt, 2020). In this thesis, the balancing group management is represented in the 
marginal case where all imbalances are priced with the reBAP. While reBAP prices are 
more volatile than spot market prices, this simplification seems plausible: the prices of the 
intraday market, where some deviations are settled, correlate in direction with the 
imbalance settlement prices, because imbalances are already anticipated by market 
participants (Koch and Maskos, 2019, pp. 10, 13). The simplification made in the present 
analysis of limiting balancing group management to an imbalance settlement using the 
reBAP (and not taking intraday trading into account) thus might overestimate the assessed 
monetary values. However, the extent to which significant macroeconomic costs can be 
saved or not by using TUB BLP can very well be assessed. 

                                                           
25 In his thesis, Beuker (2018) analysed the differential balancing group time series of DSOs for structural 
deviations. He randomly picked 100 DSOs, 46 of which published usable data. Of these 46 DSOs, only 6 (13 %) 
used their own residential load profiles. All remaining DSOs used the VDEW SLP for residential customers (H0).   
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Figure 28 illustrates the procedure of economic assessment for the total German load (ENTSO-E data). 
The experimental assumption 
was that the whole electricity 
demand of a balancing group, 
which has been modelled by 
the disaggregator tool (SLP 
only vs. BLP application 
approach), is being procured 
on the Day-Ahead market. The 
deviations between modelled 
and real load were assigned 
imbalance settlement and 
priced with the reBAP.26 The 
assumption here was that 
there is no active 
management of the balancing 
group. Solely the procurement 
and balancing group 
management of two modelled 
demands (SLP only and BLP 
application approach) was 
economically compared. Any potential influence on the price by the changing demand structures of 
both approaches was neglected. 

 In analogy to chapter 4.1.2 and due to data availability, the economic assessment was conducted for 
the whole area of Germany (ENTSO-E data) in the years 2015 to 2019 as well as for 11 DSOs with 
varying years between 2017 and 2019. Since Day-Ahead spot market prices were only available in 
hourly resolution, quarter-hourly values for the economic assessment were transformed into hourly 
values. Imbalance settlement was priced using the reBAP (TransnetBW GmbH, 2021). 

4.7.2. Economic Assessment of Demand Side Flexibility Potentials 

As introduced in chapter 2.2.3, the residual load has to be balanced by means of flexible generation or 
storage technologies. DSF can play an important role in smoothing the residual load and reducing the 
need for peak load capacity, particularly gas turbine power plants (Boßmann, 2015, p. 212). This can 
be of relevance in times of high positive residual load, i.e. when high demand coincides with low 
electricity generation from wind and PV. In accordance with their cost structure and flexibility, gas 
turbine power plants are used to cover peak loads in a comparably low number of annual operating 
hours. Table 12 depicts the electricity generation costs of fossil power plants. As can be seen, gas 
turbine power plants are associated with high running costs (per MWh) and comparably moderate 
capacity costs (per installed output and year). While running costs are strongly dependent on the 
current gas price, capacity costs are more stable over time. 

                                                           
26 Pricing deviations with the reBAP can result in extra costs or in revenues, depending on whether there is an 
electricity deficit or surplus in the system, and depending on whether deviations add onto that system imbalance 
or partially compensate it.  

 
Figure 28: Principle of the economic assessment of newly developed subsector load 
profiles, comparing the SLP only approach (blue) and the BLP application approach 
(red) in the disaggregator tool, procuring electricity on the Day-Ahead market and 
pricing deviations to the real ENTSO-E load (black) with the reBAP. Diagram by author. 
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Table 12: Electricity generation costs of fossil power plants according to Konstantin (2017, p. 248); PP – power plant, CCPP – 
combined cycle power plant, TCE – tons of coal equivalent, UCV – upper calorific value 

    Base load Intermediate load Peak load 

Position Unit Steam PP 
hard coal CCPP Gas Steam PP 

hard coal 
CCPP 
Gas 

Gas Turbine 
PP 

Power output MW 700 400 700 400 150 
Net efficiency - 46% 56% 46% 56% 34% 
Operating hours h/a 7,500 7,500 5,000 5,000 1,250 
Marginal fuel price  - 95 €/TCE 

30 €/ 
MWhUCV 

95 €/TCE 
30 €/ 

MWhUCV 
30 €/ 

MWhUCV 
Capacity costs €/(kW∙a) 202 80 202 80 56 
Running costs  
(without CO2 costs) €/MWh 28.26 62.5 28,26 62.5 118.54 

Total costs  
(without CO2 costs) €/MWh 55.2 73.17 68,66 78.5 163.34 

 

In the following economic assessment, it will first be determined how much peak load capacity can be 
saved by shifting the load to later times applying the DSF potentials identified in module 5. For this 
purpose, the residual load for the year 2018 is determined in quarter-hourly resolution using the actual 
total load for Germany of the year 2018 and subtracting the actual electricity generation from 
intermittent renewables (“ENTSO-E,” 2021), such as wind turbines (onshore and offshore) and PV 
plants. Figure 29 depicts the resulting residual load of 2018. As can be seen, the residual load of 
Germany peaked on several days, especially in January and February.27   

 

Figure 29: Left figure: German residual load and total load reduction potential (total Pmin) for the year 2018, indicating 
residual peak load times. Right figure: Zoomed illustration of residual peak load shifting to later times in the duration of shift 
∆𝑛𝑛, indicating the required fluctuating total load reduction (DSF) potentials. Diagram by author. 
 
The next step is to investigate to what extent DSF can support reducing the residual peak load through 
peak shifting. Since DSF potentials fluctuate largely during day and season, as will be shown in chapter 
5.5, the use of DSF potentials in high temporal resolution is mandatory here. Hence, particularly the 
DSF potentials identified in module 5 of this thesis can be utilized for a robust estimation of the residual 
peak load reduction potential. As mentioned in chapter 2.3.5, alternative approaches (Gils, 2015; 
Heitkoetter et al., 2020; Ladwig, 2018; Steurer, 2017) differ from this thesis’ approach in the use of 

                                                           
27 The exact time of peak load was February, 19th at 18:30h. Similar loads could be observed on January, 11th, 
26th, as well as February 06th to 8th. 
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(partly incorrect) standard load profiles (cf. chapter 2.3.2) or highly simplified profile assumptions in 
the determination of DSF potentials.  

Utilizing the results of module 5, the residual load is matched by date and time with DSF potentials (as 
indicated in the above Figure 29) in order to identify the peak load reduction potential. Of particular 
importance are DSF potentials in respective peak load times. Both time series (residual load and DSF 
potentials) are placed next to each other to see whether the peak load can be shifted (i.e. reduced) 
and whether the shift is possible within the shift duration (energy quantities). More precisely, two 
restrictions must be respected for DSF to determine the feasible load capacity reduction:  

• The peak load reduction cannot fall below the minimum switchable (i.e. maximum reducible) 
load 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚

𝑞𝑞 (𝑛𝑛) of all applications at time t.  
• The energy quantities associated with the peak load reduction cannot fall below the minimum 

shiftable energy quantities 𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞 (𝑛𝑛) of all applications 𝑞𝑞 throughout the duration of shift ∆𝑛𝑛𝑞𝑞. 

Figure 30 outlines an exemplary peak load reduction potential, using the residual load duration curve. 
Subsequently, the feasible reduced 
peak load capacity is economically 
evaluated based on reduced annual 
capacity costs for gas turbine power 
plants, shown in Table 12. The 
monetary value determined 
corresponds to a maximum cost saving 
that can be achieved in the form of 
peak load reductions in the application 
of DSF.  

In the next step, costs of accessing the DSF potentials have to be estimated. Table 13 lists cost 
parameters for the applications cooling, ventilation, AC and heat pumps.  

Table 13: Cost parameters to access DSF potentials, according to Heitkoetter et al. (2020, p. 9) and Gils (2015).  

Technology, c cinv [€/MW] cfix [€/MW/a] cvar [€/MWh] 
Cooling, ventilation, AC 10,000 € 300 € 5 € 
Heat pumps 20,000 € 600 € 10 € 

 

According to Gils (2015), cost parameters can be divided into specific investment costs, annual fixed 
costs and variable costs. The investment comprises costs for ICT components, including the installing 
and programming of devices. The annual fixed costs incur through maintenance works and the power 
consumption of ICT components (Steurer, 2017). The variable costs reflect the compensations for 
production and comfort losses (Gils, 2015, pp. 401–415; Heitkoetter et al., 2020, p. 8). Due to a lack of 
information, a conservative assumption of a lifetime of 10 years was made for the ICT components. In 
another context, Schellong (2016b, p. 275) estimates the lifetime of ICT components at 15 years, while 
smart meter gateways have to be replaced by law (calibration period, “Eichfrist”) after only 8 years 
(Gährs et al., 2021, p. 21). With an interest rate of 1%, annual costs are calculated using an average 
capital commitment (i.e. 6.4 million € for cooling, ventilation, AC and 16.5 million € for heat pumps). 

Due to the different cost parameters of the application technologies in Table 13, the peak load 
reduction potentials identified above have to be split between cooling, ventilation and AC as well as 
heat pumps. As for its greater storage potential, the flexibilization of heat pumps was assumed 
preferable; the remaining technologies were used only to complement necessary energy shifts.   

 

Figure 30: Illustration of peak load reduction potential Pmin in the 
accumulated duration of shifts #h using the residual load duration curve. 
Illustration by author. 
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5. Results 
In the next chapters, the results of all individual modules will be presented, starting with the newly 
developed TUB subsector load profiles and their benchmarking (chapter 5.1) as well as their application 
and evaluation within the disaggregator tool (chapter 5.2). Further, developed bottom-up 
engineering-based load profiles of five CTS subsectors will be presented (chapter 5.3) and will be 
projected to the year 2035 (chapter 5.4). These current and projected engineering-based load profiles 
are then used to determine technical DSF potential, which will be shown in chapter 5.5. Lastly, the 
results of the economic assessment of applying newly developed subsector load profiles in two 
different contexts will be presented in chapter 5.6.  

5.1. Subsector Electricity Load Profiles (TUB BLP) 
The profile of electricity demand in Germany is highly volatile. Electricity demand exhibits 
characteristic cycles on a daily, weekly and annual basis. On the one hand, this is due to seasonal 
differences in electricity demand for lighting and heating systems. On the other hand, economic cycles 
and weather conditions as well as the working and living habits of the population play an important 
role. In addition to seasonal cycles, this causes characteristic weekly and diurnal fluctuations in 
electricity demand. Towards the weekend, a substantial drop of load levels can be seen due to reduced 
economic activity (Schellong, 2016a, pp. 324–325). In order to depict these significant differences in 
the load profiles of individual subsectors, weekly average representations of different seasons are used 
in the following. In addition, correlation coefficients also allow indicative statements about the 
strength of a demand driver for individual subsectors (appendix A.2.2 and A.2.3). In total, the following 
32 subsector load profiles have been created and made public (Seim et al., 2021b). A list with 
corresponding German names of modelled subsectors according to the classification WZ 2008 can be 
found in appendix A.2.1.  

 

The below chapter 5.1.1 has partly been published in German in Gotzens et al. (2020, chapter 5.4). It 
presents three subsector load profiles in detail to illustrate the following different structural 
characteristics:  

• WZ10: Manufacture of food products 
• WZ11: Manufacture of beverages 
• WZ12: Manufacture of tobacco products 
• WZ17: Manufacture of paper 
• WZ21: Manufacture of pharmaceuticals 
• WZ22: Manufacture of rubber and plastics 
• WZ26: Manufacture of computer,  

     electronic and optical products 
• WZ28: Manufacture of machinery 
• WZ29: Manufacture of motor vehicles 
• WZ32: Other manufacturing  
• WZ37: Sewerage 
• WZ38: Waste collection, treatment and    

    disposal 
• WZ41: Construction of buildings 
• WZ46: Wholesale trade 
• WZ47: Retail trade 
• WZ52: Warehousing and support  

    activities for transportation 
• WZ55: Accommodation 

 

• WZ62: Computer programming, consultancy 
• WZ63: Information service activities 
• WZ64-71: Offices 
• WZ72: Research and Development 
• WZ77: Rental and leasing activities 
• WZ82: Office administrative and support  

    activities 
• WZ84: Public administration 
• WZ85: Education 
• WZ86: Human health activities 
• WZ87: Residential care activities  
• WZ88: Social work activities 
• WZ90: Creative, arts and entertainment  

    activities 
• WZ91: Libraries, museums and other  

    cultural activities 
• WZ93: Sports activities, amusement and  

    recreation activities 
• WZ94: Activities of membership  

    organisations 
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• pronounced diurnal and weekly structure (Offices (WZ64-71), chapter 5.1.1.1) 
• pronounced weekly structure (Manufacture of motor vehicles (WZ29), chapter 5.1.1.2) 
• without pronounced structure (Paper manufacturing (WZ17), chapter 5.1.1.3) 

The validation of individual subsector load profiles can only take place where real metered data is 
available for modelling and testing. Using cross validation, each individual subsector load profile was 
validated with unknown data slices. All remaining subsector load profiles, their structural 
characteristics and performance measures are shown in appendix A.2.2 and A.2.3. The subsector load 
profiles are also published in digital form in Seim et al. (2021b). 

Chapter 5.1.2 will benchmark subsector load profiles with a different model technique (ANN) and other 
literature-based load profiles. Chapter 5.1.2.1 will contrast the performance measures derived by 
applying multiple regression versus artificial neural networks for the regression task. Comparing the 
two approaches allows to evaluate the robustness of both techniques and their results. Chapter 5.1.2.2 
will benchmark subsector load profiles with the VDEW SLP and the De Monfort Profiles. Also, structural 
deviations will be discussed.  

5.1.1. Subsector Electricity Load Profiles Using Multiple Regression and Quantile Regression 

5.1.1.1 Subsector Load Profiles with Pronounced Diurnal and Weekly Structure 
The subsector load profile of offices is highly relevant due to its applicability in many subsectors and 
the associated high electricity demand. In the BLP application approach of the model, the subsector 
load profile for offices was used for the economic subsectors WZ 58, 59, 73-75, 78, 95, 96 and 99 in 
addition to the subsectors WZ 64-71 (cf. chapter 4.3). Offices show a distinct diurnal and weekly 
structure, similar to subsectors WZ 10, 26, 28, 32, 38, 46, 47, 63, 72, 82, 84 and 85. Figure 31 depicts 
the representation of an average week for offices. Electrical energy is mainly consumed on weekdays, 
with a slightly reduced level on Mondays and an earlier load drop on Fridays. The load increase in the 
morning and the load drop in the evening appears continuous without abrupt edges, which results 
from a distribution of the beginning and end of working time. A lunch break is hardly noticeable in the 
middle of the day, which is in line with findings by Brunner et al. (2009, p. 21), despite a distinct 
reduction of occupancy between 12:00h and 14:00h.  

 

Figure 31: Average weekly subsector load profile for offices (WZ64-71). Diagram by author, published in Gotzens et al. (2020, 
p. 113) 
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Figure 32 shows seasonal differences (left) and the characteristic load profiles for type days (right). In 
the case of offices, seasonal fluctuations are pronounced modestly. The summer time, for example, 
exhibits a load peak that is about 10 % higher than winter time and transition period ("restofyear"). 
This indicates an increased electricity demand for building ventilation and air conditioning, which 
varies among office buildings. In office buildings that are equipped with air conditioning, these load 
differences can be up to 30 %. Looking at the type days (figure on the right), a load level reduced by 
more than 60 % can be seen for Saturdays, indicating an existing but lower activity level. In contrast, 
hardly any activity can be detected on Sundays, as the load level is barely above the base load level. 
The base load level, on the other hand, is clearly visible and indicates a pronounced stand-by demand. 

   

Figure 32: Average daily subsector load profiles for offices (WZ64-71), on the left different seasonal periods (summer, winter, 
transition), on the right different type days (working day, Saturday, Sunday). Diagram by author, published in Gotzens et al. 
(2020, p. 114) 

Figure 33 shows the predicted subsector load profile (blue) including the 5 % and 95 % prediction 
intervals of the quantile regression. The interquantile range points to pronounced variances within the 
loads of individual locations (due to, for example, the above-mentioned differences in equipment). 
Since the interquantile range is largely constant over time, the load fluctuations hardly change their 
intensity. In particular, however, the interquantile ranges suggest larger load fluctuations for 
Saturdays, which indicates a varying work activity on Saturdays. 

 
Figure 33: Predicted subsector load profile (blue) and corresponding prediction intervals of the quantile regression (red) for 
offices (WZ64-71). Diagram by author, published in Gotzens et al. (2020, p. 114) 

Upper prediction interval (0.95) WZ64-71 
Lower prediction interval (0.05) WZ64-71 
Subsector load profile (TUB BLP) WZ64-71 
Site 1 
  … 
Site n  
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Table 14: Performance measures for the offices subsector load profile (WZ64-71) using cross validation 

WZ Subsector 
Number of 
data sets 

MAPE [%] R²adj nRMSE [%] 
indiv. subsector Indiv. subsector Indiv. subsector 

64-71 Offices 13 16.6 31.5 0.80 0.57 7.8 12.1 
 

Table 14 summarizes the performance measures for the subsector load profile of offices. The individual 
values (“indiv.”) denote the averaged regression performance measures for individual locations; the 
subsector values reflect the averaged regression performance of the whole subsector load profile 
compared to all individual locations. A total of 13 data sets were used to create the subsector load 
profile, which is associated with limited representativeness with regard to the relevance of offices. The 
overall model performance is reasonable, with an average MAPE of 31 % and an average R2

adj of 57 %. 
In contrast, the forecast quality of individual locations is significantly better than that of the subsector, 
indicating a distinct heterogeneity of the subsector and data sets considered. The interquantile ranges 
in Figure 33 also reveal significant heterogeneity. 

5.1.1.2 Subsector Load Profiles with Pronounced Weekly Structure 
The subsector load profile for manufacture of motor vehicles (WZ29) is characterized by a typical 
weekly structure, similar to WZ 11, 22 and 28, for instance. Figure 34 illustrates patterns for an average 
week of manufacture of motor vehicles. Over the working days, the load periodically fluctuates at a 
high level, while a significant drop in load can be observed from Saturday afternoon. On Sunday 
evening, the late shift for the new week begins. A diurnal structure is only pronounced slightly during 
the week, which is an indicator for a three-shift operation. On weekdays, the night shift runs at a 
reduced level. During the day, recurring shift changes and breaks are also visible. 

 

Figure 34: Average weekly subsector load profile for manufacture of motor vehicles (WZ29). Diagram by author, published in 
Gotzens et al. (2020, p. 115) 

Seasonal differences in load structure are very small, as Figure 35 (left side) suggests. Summer time 
shows a higher power demand evenly distributed throughout the day, which could go back to 
ventilation and air conditioning loads. Looking at the working days (Figure 35, right), a reduced load 
level during the night shift (about 80 % of the daytime load level) can be observed. On Saturdays, the 
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load drops continuously after the early shift from approx. 14h. The working week begins on Sunday 
evenings between 21h – 22h. 

   

Figure 35: Average daily subsector load profiles for manufacture of motor vehicles (WZ29), left different seasonal periods 
(summer, winter, transition), right different type days (working day, Saturday, Sunday). Diagram by author, published in 
Gotzens et al. (2020, p. 116) 

As shown in Figure 36, the interquantile range of the prediction intervals describes a relatively large 
variance of the occurring loads, which are more pronounced over the working days (day and night) 
than on weekends. 

 

Figure 36: Predicted subsector load profile (blue) and associated prediction intervals of the quantile regression (red) for 
manufacture of motor vehicles (WZ29). Diagram by author, published in Gotzens et al. (2020, p. 116) 

 

Table 15: Performance measures for the subsector load profile manufacture of motor vehicles (WZ29) using cross validation 

WZ Subsector 
Number of 
data sets 

MAPE [%] R²adj nRMSE [%] 
indiv. subsector indiv. subsector indiv. subsector 

29 Manufacture of 
motor vehicles 21 34.8 52.3 0.76 0.69 11.9 13.9 

 

Table 15 summarizes the performance measures for the subsector load profile of manufacture of 
motor vehicles. A total of 21 data sets were used to create the subsector load profile, which represents 

Upper prediction interval (0.95) WZ29 
Lower prediction interval (0.05) WZ29 
Subsector load profile (TUB BLP) WZ29 
Site 1 
  … 
Site n  
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a comparably big database. The model performance of 69 % for R²adj. is regarded as good, particularly 
as for the distinct load variance that can be identified in interquantile ranges (Figure 36). In contrast, 
the MAPE values for individual sites as well as the whole subsector are only reasonable, which 
essentially goes back to load variance (and the associated difficulty in forecasting) and a certain 
heterogeneity of the subsector. The predictability of the subsector is therefore subject to limitations. 

5.1.1.3 Subsector Load Profiles Without a Pronounced Structure 
As Figure 37 illustrates, the subsector load profile for manufacture of paper (WZ 17) shows a very 
balanced and hardly fluctuating load behaviour over an average week, which essentially represents 
the continuous operation of an industrial paper production. Slight daily fluctuations can be seen in the 
load profile on weekdays, which goes back to the office-based share of electricity demand. The 
significant fluctuations and load dips that can be observed in measured load profile data for the 
subsector are hardly reflected in the representation of the average week, which underlines the 
stochastic nature of fluctuations. The regression analysis shows, however, that these fluctuations can 
very well have a significant influence in the direction of averaging (and thus reducing) the subsector 
load profile. In order to avoid this averaging of the load level due to fluctuations and to be able to map 
a representative load profile, the load fluctuations were considered in the model as endogenous 
variable for production schedules (cf. chapter 4.2.1.1). The subsector load profile created does not 
show any pronounced stochastic fluctuations; the company holidays (and associated production 
schedules) of the developed subsector load profile were set to the period from August, 2nd to August, 
14th and from December´, 22nd to January, 2nd.  

 

Figure 37: Average weekly subsector load profile for manufacture of paper (WZ 17). Diagram by author, published in Gotzens 
et al. (2020, p. 118) 

As Figure 38 (left) suggests, seasonal load fluctuations in paper production are also very weak. The 
transition period is associated with slightly higher loads. The profile of the type days shows a balanced 
load profile over the course of the day. The load level on weekdays is slightly higher (10 %) than on 
weekend days (Figure 5.16 (right)), which might go back to administration and office-like electricity 
demands. 
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Figure 38: Average daily subsector load profiles for manufacture of paper (WZ 17). On the left different seasons (summer, 
winter, transition), on the right different type days (working day, Saturday, Sunday). Diagram by author, published in Gotzens 
et al. (2020, p. 118) 

When looking at the quantiles (Figure 39), significant fluctuations can be seen. These fluctuations do 
not have a recurring structure and are therefore not reflected in the above average load profiles. The 
pronounced interquartile range stresses the wide fluctuation range of the loads in the manufacture of 
paper. 

 

Figure 39: Predicted subsector load profile (blue) and associated prediction intervals of the quantile regression (red) for paper 
manufacturing (WZ 17). Diagram by author, published in Gotzens et al. (2020, p. 119) 

Table 16: Performance measures of the subsector load profile of paper manufacturing (WZ 17) using cross validation 

WZ Subsector Number of 
data sets 

MAPE [%] R²adj nRMSE [%] 
indiv. subsector indiv. subsector indiv. subsector 

17 Paper 
manufacturing 12 16.5 21.1 77.3 62.0 10.4 13.1 

 

Table 16 summarises the performance measures of the subsector load profile for paper manufacturing. 
The good model performance observed despite the high fluctuation range is largely associated to 
utilizing the endogenous variable for production schedules (cf. chapter 4.2.1.1). In general, a largely 
evenly distributed load forecast seems to be a good approximation for the paper manufacturing 
industry.  



5 Results 

- 77 - 
 

5.1.2. Benchmarking of Model Performance Using Artificial Neural Networks-based 
Regression and VDEW Standard Load Profiles 

In the following chapter, performance measures of the ANN model approaches will be introduced and 
compared to the above results using multiple regression. The comparison conducted by Milanzi  (2020) 
allows to evaluate the robustness of both techniques as well as their performance. In addition, the 
performance of multiple regression -based subsector load profiles will be compared to VDEW SLP, as 
conducted by Rüdt (2020) and outlined in chapter 4.2.1.5.  

5.1.2.1 Benchmarking of Model Performance Using Artificial Neural Networks-based Regression 
As mentioned in chapter 4.2.3, the comparison of ANN to multiple regression is carried out for the 
following four subsectors:  

• offices (WZ 64-71) 
• public administration (WZ 84) 
• human health activities (WZ 86) 
• residential care activities (WZ 87) 

For these four subsectors, Table 17 depicts the MAPE of the modelling of individual sites (indiv.) as 
well as the whole subsector for the ANN approach (chapter 4.2.3) and the multiple regression (chapter 
4.2.1). Also, the performance of VDEW SLP are given with regards to underlying metered load profiles.  

Table 17: Comparison of performance measures for selected subsectors using ANN, multiple regression and VDEW SLP. 
Adapted from Milanzi (2020, p. 72) 

WZ Subsector    |   MAPE [%] 
ANN Multiple Reg. VDEW SLP 

indiv. subsector indiv. subsector  
64-71 Offices 16.8 28.0 19.1 31.0 70.7 
84 Public administration 12.4 20.0 14.8 19.7 63.6 
86 Human health activities 5.3 6.3 6.4 7.0 13.6 
87 Residential care activities 11.3 19.1 12.2 18.7 59.8 
 

As can be seen, the ANN indeed exhibits a slightly better performance in the modelling of individual 
sites as compared to the multiple regression. The differences between both techniques range from a 
MAPE improvement from 0.7 % (Human health activities) up to 3.0 % (Public administration). These 
improvements are noticeable but modest and are in line with expectations from the literature 
(Debnath and Mourshed, 2018, p. 310): ANN are a capable and flexible forecasting technique. 
However, the performance differences between ANN and multiple regression in the modelling of 
subsector load profiles (Table 17) are even smaller and in the range of 0-3 %. For public administration 
and residential care activities, multiple regression is even slightly better performing (both around 0.2-
0.4 %). According to the author, two implications can be drawn from this observation: 

i. multiple regression as well as ANN appear to have captured most characteristic patterns within 
the subsectors analysed as they perform very similarly.  

ii. the differences between modelling individual sites and the subsector represent inherent 
heterogeneity within subsectors which can only be captured to a limited extent. As an average 
model, the subsector load profile is naturally subject to deviations driven by a heterogenic 
database. The prediction can only be as good as the structure is predictable and not random. 

The second implication was already partly verified by Milanzi, who looked at the standard deviation of 
underlying metered load profiles per subsector (cf. Table 18). It was found that a higher standard 
deviation of underlying metered load profiles goes along with lower model performances. In a separate 
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analysis, Milanzi could also confirm the model configuration chosen in chapter 4.2.1.1 of this thesis. 
Applying two subsets for the modelling, the influence of weather variables, i.e. temperature and solar 
radiation, was analysed in Table 18. 

Table 18: Performance measures of the ANN model sub-sets for selected subsectors. Set B includes weather variables. The 
variance of all metered load profiles within a subsector is used as an indication its heterogeneity.  Table adapted from Milanzi 
(2020, p. 65) 

WZ Subsector MAPE [%] Number of 
data sets 

Variance (𝛔𝛔𝟐𝟐) 
Set A Set B 

47 Retail – food  14.8  14.2 33 100 
47 Retail – non-food  56.5 55.9 14 664 
64-71 Offices 34.0 33.0 9 704 
84 Public administration  20.7 20.0 10 304 
85 Education – nurseries  64.0 62.1 5 1502 
85 Education – schools 36.3 33.4 14 660 
86 Human health activities 7.5 6.3 2 23 
87 Residential care activities 19.9 19.1 6 559 

 

According to Milanzi (2020, p. 65), set B (including weather variables) outperforms set A (excluding 
weather variables) for 84 out of 93 individual consumers. On average, the MAPE is 5.3 % better for set 
B, but weather dependency varies significantly among subsectors. These findings underline the 
conclusion of chapter 4.2.1.1: weather variables provide explanatory value to the models. It was also 
found that the residuals of the ANN model prediction (yi − yı� , formula 2, page 27) are unbiased and 
exhibit an approximated normal distribution for the majority of subsectors considered. Structural 
errors of the model are thus unlikely. Further, a strong relation between forecast errors and 
exceptional values for temperatures or solar radiation has not been identified. In general, however, 
the load is overestimated on holidays, while it is slightly underestimated on average for working days. 
According to Milanzi (2020, p. 67), this might go back to holidays with special opening hours increasing 
on average the expected demand for all holidays.  

5.1.2.2 Benchmarking of Model Performance Using VDEW Standard Load Profiles 
As depicted by Table 17 (p. 77) in the previous chapter, the SLP for all four subsectors show large 
deviations in the modelling of underlying metered load profiles. This is a strong indication in favour of 
the initial hypothesis that SLP are inaccurate to model selected subsectoral load patterns. Rüdt (2020) 
did a structured comparison with literature-based load profiles, which is outlined in chapter 4.2.1.5. In 
the following, only the subsector of offices (WZ64-71) will be presented in detail due to its comparably 
high electricity demand and relevance (appendix A.1.3: Table 27). Figure 40 (left) shows the average 
residual profile (yi − yı� , formula 2, page 27) of the G1 SLP in the modelling of metered office sites. 
Positive residuals represent the SLP’s underestimation and negative residuals the SLP’s overestimation 
of the real load. As can be seen, the G1 SLP exhibits a strong overestimation of electrical load during 
the day between 8:00 and 12:00, and a significant overestimation in the afternoon hours. In contrast, 
the G1 SLP exhibits a slight underestimation of electricity demand in the night and early morning hours. 
Notably, the structure of these deviations is similar to deviations identified in differential balancing 
group time series (cf. chapter 2.3.2). Furthermore, it can be observed that the variance of the forecast 
deviations (i.e. length of the boxes and antennas) seems to increase with the level of the forecast load, 
which is a hint for heteroscedastic data.  
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Figure 40: Left: boxplot diagram representing hourly residuals (deviations) using the G1 SLP to model metered load profiles. 
Right: Comparison of these hourly average residuals (deviations) compared with the average differential balancing group time 
series (DSO DB) of Energienetze Berlin. Figures generated by Rüdt (2020, p. 23).  

If the average daily residuals of the G1 SLP are plotted against the average daily deviations of a 
differential balancing group time series of the associated DSO (Figure 40, right), the structural 
similarities between the two residual profiles are clearly noticeable. Considering the relevance of the 
G1 profile in the modelling of smaller consumers, the above identified G1 deviation is likely to 
significantly propagate to DSO model deviations, as depicted in Figure 40 (right).  

Figure 41 captures the comparison of multiple profiles: it illustrates an average week of real metered 
load data (light grey), the subsector load profiles (TUB BLP, red), the De Monfort Profile (blue) as well 
as the G1 SLP (green). When compared 
with the De Monfort Profile from the UK, 
the TUB BLP exhibits very similar 
structures. The most significant difference 
between the two profiles seems to be on 
Saturdays, where the TUB BLP indicates a 
higher activity level. In contrast, the G1 SLP 
is associated with large deviations: the 
electricity demand is significantly 
overestimated during the day, while 
significantly underestimated during night 
time – similar to what has been discussed 
for the above Figure 40 (right) as well as in 
the literature (chapter 2.3.2, Figure 5). As 
will be discussed in the next chapter, 
however, the G1 SLP is not the only cause 
for deviations: depicting residential consumers, the H0 SLP (VDEW) has a similar structure to the G1 
SLP but is far more relevant. It is thus likely, that the above deviations in the differential balancing 
group time series (Figure 40) do not solely result from G1 inaccuracies. In both cases, structural 
deviations most likely stem from two developments in particular:  

• an increased base load, driven by a higher number of applications (e.g. ICT, air conditioning) in 
offices and households (BDEW, 2012, p. 1; co2online, 2021, p. 2). This might particularly 
explain the increased load levels at night time.  

• a reduced peak load due to a higher efficiency of used applications (Umweltbundesamt, 2020). 

A quantitative assessment by Rykala (2018) concludes that in a selected DSO grid area the influence of 
the H0 profile on the DSO differential balancing group can be estimated at about 44 %, whereas the 

 

Figure 41: Comparison of 13 real office load profiles (RLD, grey) with the 
VDEW G1-SLP, the corresponding subsector load profiles (BLP) and the 
De Montfort Profile. Illustration of an average week. Figure published in 
Seim et al. (2021). 
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G1 profile is estimated to have the second largest influence, with a share of 19 %. Reducing these SLP 
deviations by applying more accurate load profiles will improve the overall DSO model forecast. 

In his further comparison, Rüdt clustered remaining subsectors according to how accurate they can be 
modelled using VDEW SLP. Cluster 1 presents subsectors which are associated with large deviations 
when modelled using VDEW SLP. Even worse, cluster 2 captures those subsectors, to which VDEW SLP 
seem to be falsely allocated to. Cluster 3 is associated with decent modelling results for both VDEW 
SLP as well as TUB BLP, and on the other hand, cluster 4 is associated with mediocre results for both 
VDEW SLP as well as TUB BLP. Table 19 presents identified clusters. The exact performance measures 
of VDEW SLP to model real metered load data of selected subsectors is summarised in appendix A.2.4: 
Table 43.  

Table 19: Clustering of subsectors according to the performance of VDEW SLP. Adapted from Rüdt (2020, p. 33). 
Cluster Description Subsector 
1 Strong over- and underestimation by VDEW SLP WZ64-71, WZ72, WZ84, WZ85, WZ93 
2 False allocation of VDEW SLP WZ37, WZ87, WZ88, WZ94 

3 VDEW SLP and TUB BLP exhibit similar good 
modelling results WZ52, WZ86 

4 VDEW SLP and TUB BLP exhibit similar poor 
modelling results WZ38 

 

In his bachelor thesis, Rüdt (2020) concluded that indeed, TUB BLP are a suitable tool for the electricity 
demand modelling. Compared to VDEW SLP, they hardly show any significant forecast deviations and 
enable a more detailed (and thus accurate) depiction of small consumers’ load profiles.   

In the next chapter, the application of all load profiles (VDEW SLP, TUB BLP) in the DemandRegio 
disaggregator tool will be validated in the SLP only as well as the BLP application approach (cf. chapter 
4.3). Comparing both approaches allows to assess the overall improvement potential of TUB BLP to 
replace seemingly inaccurate VDEW SLP.   

5.2. Evaluation of Applied Subsector Load Profiles  
The evaluation of the temporal distribution of the model results is not trivial due to the limited data 
availability. In addition to the validation of individual profiles sketched in chapters 5.1.1 (cross 
validation) and 5.1.2 (benchmarking), created subsector load profiles can be evaluated as a whole in 
the mapping of aggregated regional units. Using the disaggregator tool, the smallest regional units are 
counties. However, real metered load profiles on the county level only exist in exceptional cases, as 
described in chapter 4.1.2. The essential database for such a validation are the DSO load profiles, which 
are partially available due to the publication obligations according to § 17 StromNZV. In the few cases, 
where county areas coincide with DSO grid areas and the DSO load profiles are accessible, the 
disaggregator model output can be validated. This validation was performed for the available data sets 
of 11 DSOs over several years. In addition, the validation was carried out for the territory of the whole 
of Germany, using ENTSO-E cumulative loads.  

A comparison between subsector load profiles and VDEW SLP enables to assess the added value of 
newly generated subsector load profiles which are not only up-to-date but also use a finer subsector 
granularity. As described in chapter 4.3, the disaggregator model results will be presented in a SLP only 
(using SLP and generic load profiles) as well as in a BLP application approach (using TUB BLP, where 
available) and compared with selected DSO and ENTSO-E load profiles.  

In the following chapter, only the profile of both model approaches is compared with real load data. 
The electricity demand level is not considered. Therefore, model results and real data are shown in 
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normalized form. The comparison with the ENTSO-E cumulative load is discussed in detail; the 
evaluation with DSO loads is only shown in condensed form.   

5.2.1. Model Evaluation Using DSO Loads 

The model results of the SLP only approach and the BLP application approach were validated using 22 
datasets of 11 DSO. The disaggregator’s performance of both approaches to model respective DSO 
loads are shown in Table 20.  

Table 20:  Performance measures of both model approaches compared to the total load of selected DSOs, adjusted from Seim 
et al. (2021b). 

Validation basis County 
(AGS) 

Year SLP only BLP application 
R² MAPE [%] R² MAPE [%] 

SÜC Energie u. H2O GmbH Coburg 09463 2017 0.64 22.2 0.73 13.8 
Stadtwerke Straubing 09263 2017 0.58 18.9 0.61 15.5 

2018 0.74 15.0 0.81 10.8 
Netz Lübeck GmbH 01003 2017 0.87 14.3 0.88 10.1 

2019 0.83 15.2 0.88 10.2 
SWB Bielefeld 05711 2017 0.77 14.0 0.81 11.4 

2018 0.76 14.5 0.80 11.5 
Stadtwerke Bochum 05911 2018 0.78 13.1 0.79 9.7 

2019 0.79 13.2 0.81 9.3 
DO-Netze Dortmund 05913 2017 0.76 16.2 0.78 10.7 

2019 0.77 16.2 0.79 10.4 
EVB Eisenach 16056 2017 0.83 14.2 0.86 10.8 

2019 0.82 13.8 0.85 10.5 
SWE Netz Erfurt 16051 2017 0.38 27.3 0.35 20.6 

2019 0.32 28.2 0.30 21.9 
KNS/TWL Ludwigshafen am 
Rhein 

07314 2017 0.83 21.6 0.83 22.6 
2019 0.84 19.7 0.86 20.7 

WSW Wuppertal 05124 2017 0.74 14.3 0.75 11.7 
2019 0.76 14.1 0.76 11.4 

SWK Stadtwerke Kaiserslautern 07312 2017 0.76 13.3 0.79 9.3 
2018 0.74 13.6 0.76 9.8 
2019 0.73 14.3 0.75 10.1 

Average value 0.73 16.7 % 0.75 12.8 % 
 

It can be seen that the disaggregator model results already show a good approximation of the load 
profile for different counties or DSO grid areas. Already in the SLP only approach, the average 
coefficient of determination is R² = 72.8 % with an average MAPE of 16.7 %. This already good result is 
further improved by replacing individual profiles (standard load profiles, operating shift profiles) with 
newly developed TUB BLP in the BLP application approach, improving the coefficient of determination 
by more than 2 % (to 75.1 %) and reducing the MAPE by nearly 4 %. Only for SWE Netz Erfurt and 
KNS/TWL Ludwigshafen, the model exhibits a slightly higher performance using SLP, indicating 
structural specifics in these two DSO grid areas. In any case, SWE Netz Erfurt performs rather poorly in 
both approaches. In the majority of cases, however, the use of the TUB BLP yields significant 
improvements. 

In order to further analyse the structural differences between model results and real loads, the 
following chapter will discuss in more detail the comparison with the ENTSO-E cumulative loads. 
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5.2.2. Analysis of Structural Model Deviations and Evaluation Using ENTSO-E Loads 

In analogy to the previous comparison with selected DSO loads, Table 21 presents the performance 
measures of modelling ENTSO-E loads. Afterwards, the structural deviations in Figure 25 to Figure 31 
are analysed in more detail to identify possible reasons for these deviations and future research needs. 
The following chapter has been published in a similar fashion in the DemandRegio final report (Gotzens 
et al., 2020, chapter 5.6.3.2); however, the profiles and validation base used have been updated and 
improved, hence slightly deviating results.  

Table 21:  Performance measures of both model approaches compared to the total load of ENTSO-E  

Validation basis Year SLP only BLP application 
R² [%] MAPE [%] R² [%] MAPE [%] 

ENTSO-E load 

2015 0.80 14.0 0.83 8.9 
2016 0.79 14.1 0.82 8.8 
2017 0.77 14.0 0.81 9.2 
2018 0.79 14.1 0.82 9.2 
2019 0.77 14.4 0.80 9.5 

Average value 0.79 14.1 % 0.82 9.1 % 
 

A comparison with the ENTSO-E cumulative load also demonstrates the high performance of the 
disaggregator tool, both in the SLP only and the BLP application approach. The use of newly developed 
TUB BLP improves the forecast more distinctly as compared to the DSO analysis of the previous 
chapter: replacing SLP and generic profiles by TUB BLP, where possible, the coefficient of performance 
(R²) improves by about 3 % and average errors (MAPE) show an improvement of 5 %. With an overall 
model performance of MAPE 9.1 %, the model can be regarded as ‘highly accurate’ according to Lewis’s 
benchmark (chapter 2.5.5). 

In the following, the question arises as to what the structural deviations between model and real data 
look like and whether the structural 
deviations of the VDEW SLP could be 
reduced. Figure 42 first compares the 
average daily profile of the model output 
(both approaches) with the real data from 
ENTSO-E. As shown in Figure 42, the 
structural deviations identified in chapter 
2.3.2 continue to exist even after a large 
number of VDEW SLP have been replaced 
by newly developed TUB BLP. The 
disaggregator model result shows an 
underestimation of demand during night-
time and an overestimation during the day, 
even in the BLP application approach (red). 
However, these structural deviations have 
been noticeably reduced compared to the SLP only approach (blue, using only SLP), which is also 
reflected in the improved performance of the above described Table 20 and Table 21. 

 

 
Figure 42: Validation of the model output of the SLP only 
approach (blue) and the BLP application approach (red) using 
the ENTSO-E cumulative load (black), display of the normalized 
load of an average day in 2018, illustration by author.  
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Figure 43 shows the comparison of the model results with the real data grouped by type days. It can 
be seen that the above-
mentioned structural deviations 
during the middle of the day are 
mainly due to deviations on 
working days (MAPE 9.2 %) and 
Saturdays (MAPE 10.6 %), 
whereas the structural 
underestimation of night hours 
can be seen across all type days. 
When using the BLP, the BLP 
application approach improves 
the representation of working 
days in particular. Saturdays are 
improved over the night time 
and morning hours, while 
slightly worsened during the 
daytime. Sundays, on the other hand, are represented very similarly to the SLP only approach. 

Figure 44 shows seasonal differences for the forecast quality of both approaches. The BLP application 
approach represents an 
improvement for all seasons. The 
forecast quality within the 
seasons does not differ 
significantly, with MAPE values of 
9.2 % (summer), 9.6 % 
(transition) and 9.7 % (winter). In 
winter time, particularly the 
base-load appears under-
estimated. Seasonal fluctuations 
appear slightly underestimated in 
both model approaches, as the 
ENTSO-E load appears to be 
slightly more variant across all 
seasons. At the same time, 

however, the ENTSO-E load seems more balanced in daily fluctuations which get overestimated by 
both approaches.  

In analogy to the heatmap shown in chapter 2.3.2, Figure 45 shows the residuals of the SLP only 
approach (left) and the BLP application model approach (right) to the ENSTO-E cumulative load for 
2018. Using a so-called heatmap, further structural deviations can be identified in the course of the 
day and year. In both approaches, the heatmaps underline the model’s tendency to overestimate 
daytime demands and underestimate night-time demands. The SLP only approach exhibits a particular 
overestimation from morning to midday on working days, which was reduced significantly in the BLP 
application approach. Moreover, the comparatively low deviations in summer time are shown, 
especially in the BLP application approach. As a remarkable feature, clear vertical lines can be seen 
between 6 and 8 a.m. and 11 p.m. These lines presumably go back to abrupt transitions of generic load 
profiles, which were used to model industrial subsectors if no TUB BLP were available. 

 
Figure 43: Validation of the model output of the SLP only approach (blue) and 
the BLP application approach (red) using the ENTSO-E cumulative load (black), 
representation of the normalized load of an average type day (working day, 
Saturday, Sunday) in 2018, illustration by author. 
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Figure 44: Validation of the model output of the SLP only approach (blue) and 
the BLP application approach (red) using the ENTSO-E cumulative load (black), 
representation of the normalized load of an average day of the seasons 
summer, transition and winter of 2018, illustration by author. 
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Figure 45: Residuals of the DemandRegio disaggregator tool forecasting the ENSTO-E load of 2019, using the SLP only 
approach (left) and the BLP application approach (right). 

Finally, the model results were compared with the ENTSO-E cumulative load for validation in the form 
of their annual load duration curve. Figure 46 illustrates the comparison and underlines the upward 
and downward deviations identified above. The disaggregator model results show a slightly higher 
load in almost half of the annual hours compared to the real data. In the other half of the year, the 
model results show a slightly lower load than the real data. Again, the ENTSO-E load appears more 
balanced over the year as a whole. 

 
Figure 46: Load duration curves of the model results of the SLP only approach (blue) and the BLP application approach (red) 
compared with the load duration curve of the ENTSO-E cumulative load (black) of 2018. Diagram by author. 
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5.2.3. Comparison of Structural Model Deviations with the ZVE Residential Load Profile 

In the following chapter, a potential reason for the structural deviations of the disaggregator model 
(BLP application approach) shall be identified. For this purpose, a look at the ZVE load profile for 
residential consumers is useful; on the one hand, because this profile alone makes up on average 25 % 
of the total electricity demand; on the other hand, because the validation basis of the ZVE load profile 
was very limited due to data availability. Therefore, the structural deviations of the model results 
identified in the previous chapter are compared to the ZVE load profile. The following chapter was 
published in a similar fashion in Gotzens et al. (2020, chapter 5.6.3.3); figures have been updated.  

In this in-depth analysis, the residential load profile for the ENTSO-E region is mapped and compared 
to the hourly Mean Percentage Error (MPE) of the disaggregator model output (BLP application 
approach). The Mean Percentage Error is calculated in the same way as the MAPE (see formula 4-20), 
but without the dashes, according to the following formula 22: 

 𝑀𝑀𝐿𝐿𝐸𝐸 =  �
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�
𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 ( 22 ) 

In analogy to the previous chapter 5.2.2, the ZVE residential load profile is compared with the MPE in 
the following two ways: 

• illustration of average days in the seasons summer, transition and winter (Figure 47) 
• illustration of average type days (weekday, Saturday, Sunday) (Figure 48) 

As can be seen from the seasonal analysis in Figure 47, the structural deviations of the model results 
of the BLP application approach show strong similarities with the shape of the ZVE load profile. The 
zero-line of the error value (MPE) serves almost as a mirror plane, in that particular scaling. Throughout 
all seasons, the positive MPE indicates that the disaggregator model underestimates the real power 
consumption, especially at night - at a time of day when the ZVE load profile inversely shows a very 
low load. Similarly, the error structure during the day has a similar shape as the characteristics of the 
ZVE load profile. The similarity between the ZVE load profile and structural disaggregator model 
deviations seems to be particularly pronounced for the summer and transition periods. This similarity 
of shape is only an indication that observed model deviations in the disaggregator actually stem from 
structural deviations in the ZVE load profile, it is not a proof. An isolated validation of individual profiles 
is only possible on the basis of a larger amount of real data, as happened in the case of individual 
subsector load profiles in the context of cross-validation (see chapter 4.2.1.4). However, Rykala (2018) 
also found indications in his master's thesis, using the example of a selected DSO, that the VDEW 
residential load profile (H0 SLP) is responsible for strong deviations in the grid operator's differential 
balance. 
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Figure 47: Comparison of the ZVE residential load profile (red) to structural deviations (Mean Percentage Error, MPE) of the 
BLP application approach (blue) modelling the ENTSO-E total load. Illustration of seasonal averages for the year 2019. Diagram 
by author.  

Figure 48 also shows clear similarities between structural model deviations and the ZVE load profile 
across all type days. However, especially the night time across all type days exhibits distinct similarities 
as well as the day times of working days and Saturdays. Only on Sundays during the day the similarities 
are pronounced less strongly.  

 

Figure 48: Comparison of the ZVE residential load profile (red) to structural deviations (Mean Percentage Error, MPE) of the 
BLP application approach (blue) modelling the ENTSO-E total load. Display of average type days in 2019. Diagram by author. 
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In a different error analysis for selected DSOs, the ZVE load profile was replaced by the SM load profile 
- an average load profile of 200 smart meter load profiles (cf. chapter 4.3). Despite its simplicity, the 
SM load profile significantly improved the model results by 1.6 % or 1.2 % MAPE (SLP only or BLP 
application approach) and by 0.4 % or 1.7 % R². This is another indication that the ZVE load profile is 
still associated with structural deviations, which should be improved in the future.  

5.3. Bottom-Up Application-specific Electricity Demand Model for Selected Subsectors 
In the following chapter, the engineering-based profiles of five CTS subsectors are being introduced. 
The five depicted subsectors, offices (WZ64-71), trade (WZ47), accommodation (WZ55), hospitals 
(WZ86) and education (WZ85), represent about 62 % of the total electricity consumption of the CTS 
sector (Schlomann et al., 2015, p. 84). In the following, only the final engineering-based profiles of the 
four most relevant subsectors (excluding education) are presented, including structural assumptions 
and hyperparameter optimisation. Intermediate results, school profiles and a more detailed discussion 
can be found in Böckmann et al. (2021). All load profiles are publicly accessible in csv format; the model 
code can be accessed and used on GitHub (Böckmann and Seim, 2021). 

The procedure described in chapter 4.4 yields electricity sub-load profiles for individual subsectors and 
at the level of application technologies. Figure 49 depicts final engineering-based load profiles for four 
of the five subsectors for an average day in the year 2019. The aggregation of all application technology 
sub-loads yields the total subsector load which are compared to subsector load profiles (module 1). 
Deviations are discussed below.  

 

Figure 49: Final result of the load profiles after hyperparameter optimisation per subsector and application technology in 
comparison with the sector load profiles (black line) of the year 2018, adapted from Böckmann et al. (2021, p. 13). 

In addition to characteristic daily structures shown above, application technology sub-loads also 
exhibit seasonal variations: due to a lower level of solar radiation in winter time, lighting exhibits an 
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increased electricity demand in that season. While hot water demand is considered constant over the 
year, space heating does exhibit a significant increase in electricity demand over the winter period due 
to cold temperatures. In contrast, the electricity demand for process cold and air conditioning 
increases with warmer temperatures, showing higher demands in summer time. A more detailed 
analysis of seasonal fluctuations can be found in Böckmann et al. (2021) or looking at the published 
profiles.  

The engineering-based profiles rely largely on occupancy profiles (chapter 4.4). Using the three 
standards of ISO 18523-1:2016(E) (2016), SIA 2024:2015 (2015) and DIN V 18599-10:2018-09 (2018), 
representative occupancy profiles per subsector and type day were derived. The process of fine-tuning 
these occupancy profiles (and resulting engineering-based models by model comparison with 
subsector load profiles (module 1)) can be illustrated in Figure 50. As can be seen in the below figure, 
occupancy profiles only changed slightly in the optimization process for offices and hospitals: for these 
two subsectors, the combination of the three standards already included sufficient information to 
accurately describe these subsectors. For remaining subsectors trade and accommodation, the 
comparison to subsector load profiles (module 1, chapter 5.1) has shown significant potential for 
improvement by finetuning the occupancy profiles. This is illustrated by the difference between the 
first level bottom-up model (grey line, without structural assumptions and hyperparameter 
optimization) and the fine-tuned bottom-up model (red line). For the final engineering-based models 
shown above, the fine-tuned occupancy profile was used (Böckmann et al., 2021, pp. 14–15).  

 

Figure 50: The occupancy A(t) of the modelled subsectors and type days in the course of the model development, adapted 
from Böckmann et al. (2021, p. 15) 
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As indicated above, deviations between the engineering-based models and the subsector load profiles 
remain – despite the optimization process. Table 22 depicts the model performance in the course of 
finetuning. Similar to the occupancy profiles, only trade and accommodation showed significant 
improvements by the finetuning steps. According to Lewis’s benchmark (1982), the final engineering-
based models can be considered ‘highly accurate’ (accommodation and hospitals), ‘good’ (offices and 
trade) or ‘reasonable’ (education). 

Table 22:  The development of performance measures during the three modelling steps, adapted from Böckmann et al. (2021, 
p. 16) 

  WZ Subsector 
Bottom-up + Assumptions + Optimization 

MAPE [%] 𝑅𝑅2 MAPE [%] 𝑅𝑅2 MAPE [%] 𝑅𝑅2 
64-71 Offices 10.9 0.84 10.3 0.87 10.0 0.88 
47 Trade 48.7 0.64 14.5 0.93 14.0 0.94 
55 Accommodation 16.4 0.10 13.6 0.32 8.2 0.76 
86 Hospitals 8.3 0.59 8.3 0.59 8.4 0.61 
85 Education 24.4 0.62 22.7 0.66 21.9 0.68 

 

The structure of these deviations between the engineering-based profile and the subsector load 
profiles (module 1) can be drawn back to several aspects for offices: naturally, the depiction of holidays 
is a difficult undertaking in the load forecasting literature (Ziel, 2018, p. 191), which appears to be the 
case here, too. Besides, working times in offices seem to be a source for deviations: observed working 
times within subsector loads profiles (module 1) and reported working times in the standards do not 
completely match. Moreover, the load profile used for air conditioning in offices might be distorted. 
Due to a lack of data, a Californian profile for air conditioning was used (Ladwig, 2018, p. 61), which 
might not be representative for Germany. Deviations might also stem from modelling seasonal 
differences of lighting, which are pronounced more strongly in engineering-based models (Böckmann, 
2021, p. 70).  

Some of these deviations represent interesting starting points for further research, while others go 
partially back to limitations of a bottom-up model to capture the heterogeneity of a subsector. For all 
other subsectors, deviations between the engineering-based profile and the subsector load profile are 
elaborated in Böckmann et al. (2021).  

5.4. Future Projections of Selected Subsectors 
In the following, the subsector- and technology-specific load profiles for the year 2035 are presented, 
which were projected using the baseline scenario and reference scenario described in chapter 4.1.4. 
Chapter 5.4.1 first describes the development of annual electricity demand per subsector and scenario. 
Chapter 5.4.2 then presents the projected electricity load profiles. 

5.4.1. Comparison of the Technology Shares of Electricity Demand per Scenario 

The annual electricity demand will develop differently per application technology (and thus per 
subsector) and scenario. Figure 51 illustrates this development aggregated at the level of the 
considered subsectors.  
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As shown in Figure 51, the annual electricity demand in the reference scenario increases in all 
subsectors except for education. In the baseline scenario, on the other hand, an increase in electricity 
demand is only shown for hospitals; the 
annual electricity demand of all other 
sectors decreases until 2035. Since the 
reference and baseline scenarios make 
the same framework assumptions 
regarding employees and energy 
reference area (Pfluger et al., 2017b, p. 
63), this difference in total demand 
stems from different energy efficiency 
improvement pathways. These efficiency 
improvements are different for each 
application technology and – according 
to their share of electricity demand – for 
individual subsectors (Seim et al., 2021a, 
p. 8). In both scenarios, an average 
increase in the number of employees of 
12 % (2010 to 2050) and an average increase in the energy reference area of 33 % (2010 to 2050) is 
assumed for the offices and trade subsectors (Pfluger et al., 2017b, p. 64). 

Combining subsector-specific framework assumptions and efficiency improvements per application 
technology will yield a projected annual electricity demand per subsector. The projected profile of this 
electricity demand, however, is exclusively determined by the changing demand shares of application 
technologies due to efficiency improvements as well as a technological shift from night storage heaters 
to heat pumps. Figure 52 shows these changes in demand shares in relation to the year 2018. 

 

Figure 52: Share of application technologies in electricity demand per modelled scenario, adapted from Seim et al.  
(2021a, p. 9) 

Differences can be observed in particular for lighting and ICT. In both future scenarios, the share of 
lighting in electricity demand decreases. On the contrary, the electricity demand share of ICT increases 
in both the reference and baseline scenarios. For ICT, any efficiency gains are overcompensated by 
increased utilization. The shares of air conditioning and mechanical energy, such as electric drives, also 
increase slightly (Seim et al., 2021a, p. 9). 

 

Figure 51: Annual electricity demand per scenario and subsector, 
adapted from Seim et al. (2021a) 
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5.4.2. Comparison of Projected Load Profiles 

By summing up individual sub-load profiles per application technology and subsector, the projected 
cumulated load profiles of the whole subsectors can be derived. As indicated above, differences 
between the scenarios and 
subsectors result from 
different demand shares of 
application technologies as 
well as from the 
technology shift in the area 
of space heating (i.e. from 
night storage heaters to 
heat pumps). Figure 53 
shows the cumulative load 
profile of the five 
subsectors per scenario for 
the year 2018 and 2035. 

The main difference 
between scenarios lies in 
the general demand level 
of the load profiles. Yet, 
differences can also be 
observed in the load profile 
shape. For offices, the 
afternoon peak in the 
reference scenario is on 
average 9 % higher than 
the morning peak, whereas 
in the baseline scenario the 
difference is only about 
8 %. This largely goes back 
to the use of air 
conditioning, which 
reaches its peak load in the 
afternoon (cf. Böckmann et al. (2021, p. 16)). The load profile of the baseline scenario lies slightly below 
the level of 2018 during the day, but less so in the afternoon. This difference can also be observed in 
the trade subsector, relying on the increase of air conditioning compared to 2018. Particularly for the 
trade subsector, more pronounced load peaks are to be expected in the future, which is reflected in 
an increasing ratio of peak load to base load in both scenarios (Seim et al., 2021a, p. 25). In hospitals, 
demand increases are to be expected in both scenarios, but these are only slightly accompanied by an 
increasing ratio of peak load to base load. In all other subsectors, the ratios of peak load to base load 
show only minor variations within the scenarios. The profile changes particularly go back to demand 
reductions in lighting and demand increases in ICT, which span across both scenarios (cf. Figure 52) 
(Seim et al., 2021a, pp. 8–9). 

5.5. Current and Future DSM Potential of Selected Subsectors 
Using the electric power parameters and shift durations presented in chapter 4.6 and the projected 
load profiles from the previous chapter 5.4, it is possible to quantify technical load shifting potentials 
with high temporal resolution for each subsector, application technology and scenario. In the following 

 
 

Figure 53: Electric load profile in 2035 per subsector and scenario compared with the 
modelled total load profile of 2018, representation of an average week, adapted from 
Seim et al. (2021a, p. 9). 
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sections, the aggregated potentials per subsector are compared (chapter 5.5.1) and then presented in 
high spatial as well as temporal resolution (chapters 5.5.2 and 5.5.3). Finally, the identified flexibility 
potentials are put into the context of existing literature and the German energy sector (chapter 5.5.4). 
Details can be found in the related German publication (Seim et al., 2021a).  

5.5.1. Comparison of Demand Side Flexibility Potentials per Scenario 

For each quarter-hourly period 𝑛𝑛 of the years 2018 and 2035, the maximum switchable load 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
𝑞𝑞 (𝑛𝑛), 

the minimum switchable load 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚
𝑞𝑞 (𝑛𝑛) and the maximum and minimum potentials of shiftable energy 

quantities 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚
𝑞𝑞 (𝑛𝑛) and 𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚

𝑞𝑞 (𝑛𝑛) per technology 𝑞𝑞 are identified according to the framework presented 
in chapter 4.6. The frequencies of occurring values per subsector and scenario are shown as a density 
distribution in Figure 54 (p. 93).   

Based on the boxplot parameters in Figure 54, it can be seen that especially in trade and 
accommodation, high load reduction potentials can be accessed more frequently than high load 
increase potentials. For hospitals, it is exactly the opposite, whereas offices appear balanced. The 
reason for this is the increased utilisation rate of all flexible technologies except air conditioning. The 
technologies process cooling, ventilation, space heating and hot water are consistently modelled in all 
subsectors with a distinct base load (cf. Böckmann et al. (2021, chapter 2.3)), which potentially can be 
reduced at any time. In offices, particularly large load increase potentials of air conditioning at warm 
outdoor temperatures ensure that the mean potentials for load increases are higher than for load 
reduction. However, these load increase potentials of air conditioning are only available on a few days 
per year. It is also noticeable that the load reduction potential is never zero. This is due to the fact that 
the aggregated electricity demand of all potentially flexible technologies is greater than zero at all 
times, and there are no restrictions with regard to a technology switch-off. In all subsectors except 
education, the reference scenario offers a higher potential of load increase or reduction. This is directly 
related to the projected level of load profiles from Figure 53, page 91: a higher electricity demand of 
an application leads to a higher maximum load (and thus the switchable load 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚

𝑞𝑞 (𝑛𝑛)) of that same 
application (Seim et al., 2021a, p. 10).   

The shiftable energy quantities 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚
𝑞𝑞 (𝑛𝑛) and 𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚

𝑞𝑞 (𝑛𝑛) from Figure 54 are more evenly distributed in 
their frequency than the switchable loads. While the greatest extremes of load increase and reduction 
potentials can be found in offices, the trade subsector offers the greatest potential of shiftable energy 
quantities. Space heating and hot water contribute significantly to this. In particular, the shift duration 
of space heating of ∆t = 12h compared to ∆t = 1h for ventilation, air conditioning and process cooling 
(cf. chapter 4.6) ensures high energy shift potentials for space heating and hot water (Seim et al., 
2021a, pp. 10–11).  
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Figure 54: Boxplot representation of the load increase and load reduction potentials as well as the potentials of shiftable 
energy quantities (quarter-hourly values) in different scenarios. Density: red - high density; light grey - low density. Mean 
value: blue line. Whiskers at 1.5 times the interquartile range. Adapted from Seim et al. (2021a, p. 11). 

Figure 55 summarises the technology shares of the load increase and reduction potential per subsector 
and scenario. For relevance and illustration purposes, the subsector of education has not been 
displayed. Notably, air conditioning offers high shares in the load increase potential, especially in 
spring, autumn and summer. Counterintuitively, electricity-based space heating and hot water show 
only minor seasonal fluctuations due to the high share of hot water (70 %), which varies only little over 
seasons. Process cooling, which is particularly evident in trade and accommodation, provides more 
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load reduction potential than load increase potential, as it runs on a significant base load level. In 
offices, most of the flexibility comes from air conditioning and space heating. In trade, a large part of 
the flexibility potential also comes from process cooling, whereas in hospitals ventilation as part of 
mechanical energy contributes to DSF potentials. For the average amount of shiftable energy 
potentials, space heating takes by far the greatest share again due to long shift durations (Seim et al., 
2021a, p. 12).  

 

Figure 55: Average load increase and load reduction potentials by application technologies, subsectors, seasons and scenarios. 
Adapted from Seim et al. (2021a).  

The load shifting potentials can be summarised over the entire year and all five modelled sectors with 
regard to the extreme and average values in Table 23. 

Table 23:  Extreme and mean values of the cumulated load shifting potentials over the five subsectors offices, trade, 
accommodation, hospitals and education (Seim et al. (2021a)) 

    Pmax [GW] Pmin [GW] Emax [GWh] Emin [GWh] 

2018 
Max/Min 7.12 -7.79 21.62 -22.04 
Average 1.72 -2.66 14.39 -14.38 

Baseline scenario 
Max/Min 8.04 -8.33 20.86 -22.12 
Average 1.90 -2.50 13.87 -13.85 

Reference scenario 
Max/Min 10.34 -10.38 22.98 -25.56 
Average 2.38 -2.78 15.31 -15.30 
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5.5.2. Spatially Resolved Demand Side Flexibility in the Baseline Scenario 

The spatial resolution of DSF potentials can represent a relevant information basis for matters of local 
congestion management. For example, local DSF potentials could help to avoid grid bottlenecks and to 
reduce the often associated curtailment of renewable 
energies (Hirth et al., 2018a, p. 34), (Heitkoetter et al., 2020, 
p. 11). For this purpose, Figure 56 shows the average load 
shifting potentials per county for the baseline scenario. 
Here, the average DSF potentials from Table 22 (1.90 GW) 
were disaggregated according to the proportion of 
employed persons per subsector and district. Additional 
figures of the average load shifting potentials as well as the 
shiftable energy quantities per county can be found in Seim 
et al. (2021a, appendix E).  

Expectedly, the DSF potentials of considered CTS subsectors 
predominantly exist in regions of high population density. It 
is therefore not surprising that Berlin, Hamburg, Munich, 
Frankfurt a.M., Cologne, Stuttgart and Düsseldorf are urban 
centres which stand out in Figure 56 with high average load 
shifting potentials. The Hannover Region also stands out 
noticeably from its surroundings. Due to the area-specific 
illustration of potential, smaller urban centres can also be 
identified very well. A list of identified county-specific 
potentials of the baseline scenario 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚, 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚, 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 and 
𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚 can be found in the digital appendix of Seim et al. 
(2021a). 

In future, the spatial DSF potentials can be combined with information on grid bottlenecks and grid 
expansion paths, for example from the electricity network development plan (Netzentwicklungsplan 
Strom 2035, 2021, pp. 117–128), as well as on the spatial generation of fluctuating RES and electricity 
price information, in order to determine economic load shifting potentials. From an economic 
perspective, possible utilization for DSF potentials exist in short-term spot markets, the balancing 
power markets and the regulation for interruptible loads. Further possible economic applications 
result from optimizing electricity procurement costs, for example with regard to the power-related 
components of the grid fees, as well as with an increasing spread and anticipation of dynamic tariffs in 
the electricity end customer segment (Bertsch et al., 2019; Steurer, 2017, pp. 23–27). 

5.5.3. Temporally Resolved Demand Side Flexibility Potentials in the Baseline Scenario 

The DSF potentials presented in the previous sections are subject to temporal fluctuations. Information 
on the temporal availability for switchable loads and shiftable energy quantities allow a precise analysis 
of the temperature-, type-day- and time-of-day-dependent potentials. The scenarios used to 
characterize the potentials influence the amount, but not the temporal distribution of the potentials. 
In the following, only the baseline scenario is considered. Figure 57 shows the potential for increasing 
and reducing the load. For reasons of relevance and simplified illustration, the subsector education is 
not displayed. The high potential of switchable loads for air conditioning (particularly load increases) 
can be clearly seen in all subsectors, although these can only be used at times of high outdoor 
temperatures, hence predominantly in the summer season (Seim et al., 2021a, p. 14). 

 
Figure 56: Average area-specific load increase 
potential (Pmax) per county of the baseline scenario, 
adapted from Seim et al. (2021a, p. 13) 
 



5 Results 

- 96 - 
 

 

Figure 57: Average daily load increase and load reduction potential per subsector and technology of the year 2035 in the 
baseline scenario. Figure adapted from Seim et al. (2021a, p. 14). 
 
The switchable loads of process cooling and space heating, especially the potentials of load reduction, 
are also subject to slight seasonal fluctuations. Fluctuations with regard to the type day can also be 
observed. The subsectors of accommodation and hospitals provide the most temporally stable 
potential of switchable loads. The process cooling of the trade subsector is also only subject to slight 
weekly fluctuations and could be switched in a stable manner over time (Seim et al., 2021a, p. 14). 

 

Figure 58: Hourly average switchable loads and shiftable energy quantities of offices in a winter and summer week (Monday-
Sunday) in the baseline scenario. Figure adapted from Seim et al. (2021a, p. 15). 
 

Figure 58 shows the exemplary diurnal fluctuations in the subsector of offices (note that axes are not 
synchronised). It can be seen that the potentials of air conditioning, space heating and hot water are 
not only subject to fluctuations depending on the type of day, but also on the time of day. Within a 
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weekday, peaks of 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 at 07:00 and peaks of 𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚 at 19:00 can be seen. This means that in offices, 
the majority of the day's energy demand can be shifted into the morning or the evening. In comparison, 
the accommodation subsector exhibits DSF potentials which are much less volatile (Seim et al., 2021a, 
pp. 15–16). The related figure for accommodation can be found in appendix A.2.5: Figure 64.  

5.5.4. Contextualization of Demand Side Flexibility Potentials 

In the following chapter, the results of the technical DSF potentials are compared and contextualised 
with the literature to ensure their validity. Since there is only little information at a disaggregated 
subsector- and technology-specific level, particularly the aggregated potential can be compared with 
literature (Seim et al., 2021a, p. 16). However, a comparison by subsector and technology can be 
carried out to a limited extent with Klobasa (2007, p. 79). Table 24 describes the differences between 
the modelled load increase and reduction potentials. It should be noted that both articles use different 
reference years, 2004 and 2018.  

Table 24:  Comparison of subsector- and technology-specific DSF potentials of the present approach with Klobasa (2007) 
(Klobasa, 2007, p. 79). Adapted from Seim et al. (2021a) 

  Extreme values 𝑷𝑷𝒎𝒎𝒂𝒂𝒎𝒎 / 𝑷𝑷𝒎𝒎𝒎𝒎𝒎𝒎 [MW] 
  Klobasa (2007)         Seim et al. (2021a) 

Process 
cooling Trade ±200-685 +255 / -428 

Air 
conditioning 

Offices ±1,750 ±2,541 
Trade ±2,800 ±1,785 
Accommodation ±420 ±437 

 
As can be seen, the modelled potentials of both approaches are in the same order of magnitude. While 
process cooling in trade and air conditioning in accommodation are very similar, the load flexibility 
potentials of air conditioning in offices are estimated higher in the present approach, which could stem 
from an increased air conditioning demand. In trade, on the other hand, these potentials are estimated 
lower in the present approach compared to Klobasa. For the sum of considered technologies, the 
present approach estimates a DSF potential which is 7 % lower than Klobasa, which could go back to a 
more conservative assumption of seasonal maximum loads in parameter D (cf. chapter 4.6). If, as in 
the existing literature, switchable loads are calculated with seasonal assumptions or installed 
capacities with regard to the maximum load, these tend to be overestimated (Kleinhans, 2014, p. 11; 
Seim et al., 2021a, p. 16).  

While the five considered subsectors are responsible for about 62 % of the total CTS electricity 
demand, they even account for 74 % of technical DSF potentials in the entire CTS sector (baseline 
scenario). The latter can be approximated by the share of the flexible technologies within these five 
subsectors as compared to the entire CTS sector (cf. appendix A.1.4: Table 31). According to a recent 
literature review, the average values for 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚 and 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 for the entire CTS sector are well below 
1,000 MW per application technology (Kochems, 2020, p. 9). In comparison, in the present approach, 
the values of the five modelled subsectors per application category in 2018 range on average between 
approx. 80 - 970 MW for 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚. According to the same review, the maximum switchable loads reach up 
to 3,000 MW (Kochems, 2020, p. 8). In contrast, the present analysis of the five modelled subsectors 
across all application technologies shows a total of between 1.7 - 2.4 GW per scenario (cf. Table 23, 
page 94), which - considering the share of the five subsectors in the total flexible load share of the CTS 
sector of approx. 74 % (see above) - fits well with the literature values (Seim et al., 2021a, pp. 16–17).  

The transformation of the energy system will lead to a considerable need for grid expansion, especially 
in the distribution grid (Hirth et al., 2018a, p. 72). DSF is discussed as an option to reduce the need for 
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grid expansion and to eliminate local supply bottlenecks (Hirth et al., 2018a, pp. 34, 72). According to 
Fürstenwerth and Waldmann (2014, pp. 66–67), in order to minimise grid expansion costs at the 
distribution grid level, a short-term storage requirement of 700 MW or 2,100 MWh will arise in 2033, 
which can be provided cost-effectively, for example, through DSF measures due to higher efficiencies 
and lower capital costs (Fürstenwerth and Waldmann, 2014, p. 3; Misconel et al., 2021, p. 3). In 
addition, around 3-16 GW of short-term storage is needed at transmission grid level to integrate 
renewable energies and reduce system costs (Fürstenwerth and Waldmann, 2014, p. 79). The technical 
DSF potentials identified in the present approach are in the order of magnitude of this short-term 
storage demand. In the overall system, the identified shiftability of 13-14 GWh (cf. Table 23, 2018 and 
baseline scenario values) represents about one third of the storage capacity of all German pumped 
storage power plants, which can be regarded a relevant size (Samweber et al., 2016, p. 460). At least 
from a technical perspective, the five CTS subsectors considered could cover the demand at 
distribution grid level completely and the demand at transmission grid level partially. DSF measures 
compete with short-term storage, whereby the latter is currently considered more expensive than 
demand side management (Fürstenwerth and Waldmann, 2014, pp. 3, 91). The high potentials of the 
offices and trade subsectors as well as the temporally stable shiftable energy quantities of hospitals 
and accommodation can thus contribute to reducing the amount of residual load, to the integration of 
renewable energies, to cost minimisation and system stability of the energy system (Seim et al., 2021a, 
p. 17). 

5.6. Economic Value of Applying Newly Developed Load Profiles 
In the following chapter, developed subsector load profiles and derived DSF potentials are assessed 
economically in two use cases. In the first use case (chapter 5.6.1), a rough estimation is made of the 
influence that newly developed TUB BLP can have on electricity procurement and balancing group 
management. In the second use case (chapter 5.6.2), the DSF potentials identified in the engineering-
based modelling approach are economically assessed utilizing data on feed-in management in high 
temporal and spatial resolution. 

5.6.1. Procurement and Balancing Group Management 

In the following chapter, the application of both the SLP only and BLP application approaches in the 
disaggregator tool are economically assessed and compared, building on and utilizing the results of 
module 2. First, the focus will be on the hypothetical electricity procurement for Germany, using 
ENTSO-E load as real data reference (Figure 28). Secondly, identified county loads will assessed in 
analogy.  

For the years 2015 to 2019, Figure 59 (p. 99) illustrates the average costs of the initial procurement of 
electricity quantities on the Day-Ahead market and the costs and revenues incurring for the utilisation 
of imbalance settlement for the Federal Republic of Germany. As can be seen, the BLP application 
approach reduces the total costs on average by about 24 Mio €, ranging from savings of 106 Mio € in 
2015 up to additional costs of 16 Mio € in 2018. As can be seen in the annual analysis (appendix A.2.6, 
Table 44), the costs are reduced significantly by applying the BLP application approach in all years 
except 2018. This mainly goes back to reduced average initial procurement costs of 196 Mio € 
associated with the BLP application approach. For imbalance settlement, however, the SLP only 
approach is associated with significantly higher average revenues of 172 Mio €, which is driven by 
arbitrage, i.e. the sale of surplus electricity quantities during the day (at higher prices) and the purchase 
of deficit electricity quantities during the night and morning hours (at lower prices). The exact annual 
cost figures can be found in appendix A.2.6, Table 44. 
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Figure 59: Approximation and comparison of procurement and imbalance settlement costs and revenues for the German 
electricity demand in Mio €, using ENTSO-E data and the SLP only as well as the BLP application demand modelling approaches. 
Average figures of the years 2015 to 2019. The hatched line indicates the delta between both approaches. Diagram by author. 

In the analogous implementation of the cost analysis using county loads of the years 2017 to 2019, 
more differentiated results can be obtained. The exact results are presented in appendix A.2.6, Table 
45 to Table 47. Observed counties vary over the years due to data availability. While in the year 2017, 
the BLP application approach proves preferable in total costs for 8 out of 11 selected counties, it is 
only preferable in total costs for 1 out of 5 counties in the year 2018, and only in 3 out of 9 counties in 
the year 2019. In monetary terms, using the BLP application approach amounts to average total cost 
savings of 12,564 € in the year 2017, whereas additional costs incur in the years 2018 and 2019 of 
54,348 € and 47,787 €, on average. The above observations indicate two findings:  

i. the economic profitability of a specific procurement strategy significantly depends on the 
interrelation of the price structure and demand structure in a particular year, including model 
deviations. Hence, different results for different years and counties.28 

ii. while the BLP application approach is economically preferable in 4 out of 5 years for the total 
German load, it is mostly not preferable for selected county loads. This indicates the limited 
representativeness of county loads, which exclusively represent city loads (cf. chapter 4.1.2). 

In almost all counties and years, applying the BLP application approach is associated with a significant 
cost reduction in the initial electricity procurement. This is in line with observations using the ENTSO-E 
data. The SLP only approach, however, is associated with higher revenues for the utilization of 
imbalance settlement for selected counties, overcompensating the initial cost savings. This might be 
an indication of why many DSOs still require suppliers to use VDEW SLP in their network area29 (cf. 
chapter 2.2.2). In the synthetic load profile procedure, the DSO provides load profiles for smaller 
consumers, the electricity demand of which has to be initially procured by suppliers. Using SLP in the 
SLP only approach, suppliers bear higher initial procurement costs, while DSOs can realize higher 
revenues utilizing imbalance settlement (or managing their differential balancing group). Despite 
obvious SLP deviations, the DSO would profit from the provision of SLP according to the above analysis. 

                                                           
28 The implications of market price structures in the short-term and long-term electricity procurement have 
recently been analysed and described in Novello et al. (2021, p. 20): the monetary impact of forecast deviations 
depends significantly on the development of market prices and differs depending on the forecast horizon. 
29 In an analysis conducted by Beuker (2018), 87 % of DSOs used residential VDEW SLP (cf. footnote 25, p. 66) 
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As a conclusion, not only is the use of inaccurate SLP potentially associated with extra costs, but also 
the distribution of costs between suppliers and DSOs is affected. From a consumer perspective, this 
might barely be noticeable: all costs borne by suppliers and DSOs will be passed on to consumers as 
either electricity sales prices or grid fees. However, a cost shift from the competitive supplier market 
to the regulated DSO sphere might affect DSO efficiency scores in the benchmarking process of 
incentive-based regulation (BNetzA, 2015, chapter 1.1.1.4), required by § 12 ARegV (2019). If only 
some DSOs can profit from that cost shift, efficiency scores might be distorted.  

It is important to notice that due to a lack of data the above procedure is only a rough estimation of 
real procurement processes: in contrast to the above analysis, some electricity quantities are already 
procured long-term by the supplier on the futures market in order to manage price risks.30 In addition, 
the DSO is obliged to actively manage its differential balancing group and avoid predictable deviations, 
e.g. through intraday trading using the remaining load (cf. chapter 2.2.2). Also, price effects of changing 
procurement strategies in the system (due to improved forecasts) are complex to anticipate. 
Nevertheless, the above analysis reveals a tendency that the use of newly developed and more 
accurate load profiles could be attractive from a macroeconomic perspective, whereas DSOs might 
have incentives, not to switch and keep old SLP. This was also confirmed by Rykala (2018), who 
examined closely the load projection a specific DSO and found that improved projections should be 
beneficial for the system, while they might not be beneficial for the unbundled DSO.31 In line with that, 
the think tank Agora Energiewende (2020) recently demanded that DSOs should be given incentives 
to update SLP annually in order to better take into account changing consumption patterns. According 
to the same press release, DSOs should be obliged to manage the differential balancing groups 
transparently and more actively. 

As a conclusion, the switch to more precise BLP can ensure an improved, long-term predictability and 
profitability of load forecasts from a system perspective. Also, deviations and associated unnecessarily 
procured electricity quantities can be avoided. These considerations are in line with findings from 
Agora Energiewende (2020) as well as from Gobmaier and von Roon (2010), who discuss the effects of 
changing residential load profile structures due to an increased penetration of EVs and rooftop PV.   

5.6.2. Economic Value of Demand Side Flexibility Potentials 

Utilizing DSF potentials of application technologies, which have been identified in module 5, can 
significantly reduce the annual peak load of Germany. For the year 2018, a specific peak load reduction 
potential of about 2.9 GW can be found, representing a 4 % reduction of the former peak load. Figure 
60 (p. 101) indicates this peak load reduction potential and the associated accumulated shift duration 
#h of less than 15 hours (i.e. 57 quarter hours). The accumulated shift duration specifies in how many 
hours (or quarter hours) the load had to be shifted in the present analysis, reflecting the effort of 
interventions.   

 

                                                           
30 In the long-term procurement of electricity, however, deviations in the amount of electricity have a greater 
impact than structural deviations. Hence, the simplification in the present analysis to only consider the Day-
Ahead market for electricity procurement should not significantly distort the result. In the short-term electricity 
procurement, structural deviations do depict an important factor to influence overall costs, driven by both spot 
market and imbalance settlement effects (Novello et al., 2021, p. 20).  
31 The exact analysis and result cannot be published due to a non-disclosure agreement. 
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Figure 60: Illustration of the peak load reduction potential by load shifting, comparing a residual load duration curve of 
scheduled load (grey) with the adjusted residual load after load shedding (red). Figure by author. 

In the load shift modelled, all restrictions mentioned in chapter 4.7.2 have been respected: all technical 
restrictions of the minimum and maximum 
switchable loads as well as the minimum 
shiftable energy quantities of all applications 
throughout the load shifting processes were 
met. The above peak load reduction requires a 
flexible capacity of 1,275 MW of cooling, 
ventilation and AC technologies as well as 
1,648 MW of flexible heat pump capacity (in 
total: 2,923 MW). Due to the assumed priority of 
thermal storage (cf. chapter 4.7.2), the shifted 
energy quantities of cooling, ventilation and AC 
amounted to only 2,700 MWh, while the energy 
shifted using heat pumps amounted to 14,838 
MWh. The DSF capacity of 2,923 MW required 
for peak load reduction is only part of the total 
DSF potential identified in Chapter 5.5, which 
can be up to 7.8 GW depending on the time of 
year and day (see Table 23, p. 94).  

Figure 61 illustrates the load shift at the peaking 
time in 2018 as an example. Similar load shifts can be observed on January, 11th, 26th, as well as 
February 06th to 8th. As can be seen, the scheduled load was shifted at the peaking time (i.e. reduced 
for 2.5 hours), resulting in a realized load that peaked on a considerably lower level. Respecting 
technical restrictions, the load increase lasted for 3.5 hours.  
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Figure 61: Illustration of the peak load reduction by load 
shifting. Figure by author. 
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For the subsequent economic assessment, Table 25 lists the individual entries for annual costs to 
access these DSF potentials.  

Table 25:  Technical and annual cost parameters for the flexibilization of application technologies, utilized for peak load 
reduction. 

  Cooling, ventilation, AC Heat pumps 
Technical parameters 

  

Flexible capacity [MW] 1,275 1,648 
Shifted energy [MWh] 2,700 14,838 

Annual Costs 
  

Investment costs32  1,416,443 €  3,662,551 € 
Fixed costs 382,460 € 988,942 € 
Variable costs 13,501 € 148,375 € 

Total annual costs per technology 1,812,404 € 4,799,868 € 

Total annual costs 6,612,273 € 
 
As can be seen from Table 25, the exploitation of the utilized DSF potentials is associated with annual 
costs of about 6.6 million €. In the next step, these costs can be compared to potential cost savings 
associated with the peak load reduction. Table 26 brings together costs and cost savings to determine 
the economic value of the peak load reduction using identified DSF potentials.  

As can be read from Table 26, the total savings through peak load reduction (and associated reduction 
of gas turbine PP capacity) significantly exceed the costs associated with exploiting the required DSF 
potentials. In total, cost savings of about 157 million € could be realized annually replacing gas turbine 
capacity by DSF potentials. As a very recent study by Gierkink et al. (2021, p. 11) shows, the early coal 
phase-out by 2030 requires, among other things, a significant expansion of new hydrogen-capable gas-
fired power plants of 23 GW. Part of this expansion of peak load capacity could be avoided by DSF as 
described. 

Table 26: Annual costs and cost savings of peak load reduction measures using flexible application technologies. 

Item Value 
Reduced peak load capacity 2,923 MW 

thereof cooling, ventilation, AC 1,275 MW 
thereof heat pumps 1,648 MW 

Annual costs and savings 
 

Capacity costs of gas turbine PP (cf. Table 12) 56,000 € / MW∙a 
Total annual savings through reduced peak load  163,693,765 €  
Total annual costs (cf. Table 25) 6,612,273 €  

Total annual cost savings 157,081,493 €   
 
The economically attractive application of DSF potentials for peak load reduction or saving of 
corresponding peak load technologies is also confirmed by Misconel et al. (2021, pp. 3, 12). In addition 
to these cost savings, DSF ensures that remaining capacities are better utilised. Moreover, the above 

                                                           
32 As mentioned in chapter 4.7.2, investment costs have been allocated dynamically among an assumed lifetime 
of equipment of 10 years. The investment sums of 12.7 million € (flexibilization of cooling, ventilation, AC) and 
33.0 million € (flexibilization of heat pumps) were converted to annual costs at an interest rate of 1% and an 
average capital commitment of 6.4 million € (flexibilization of cooling, ventilation, AC) and 16.5 million € 
(flexibilization of heat pumps).   
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case of peak load reduction would only require utilization of DSF potentials for 15 hours in the whole 
year of 2018 (or 40 hours, including the load increase). In the remaining time, the potentials could also 
be used, for example, to reduce curtailed electricity in the context of EinsMan measures (cf. chapter 
2.2.3). According to BNetzA (2021b, pp. 149–153), the curtailed electricity in the context of EinsMan 
measures steadily increased in the last decade, amounting to 5,403 GWh in 2018. The largest part of 
this amount is associated to the curtailment of onshore and offshore wind turbines (72% and 25% in 
2018), equalling compensation costs of 719 million € in 2018 (1,058 million € in 2019).33  

As already mentioned in chapter 5.5.2, DSF potentials can also be utilized to optimize the electricity 
procurement on short-term spot markets, balancing power markets and the regulation for 
interruptible loads (Bertsch et al., 2019; Steurer, 2017, pp. 23–27). In principle, using DSF potentials 
becomes all the more relevant as the share of fluctuating renewable energies increases (Misconel et 
al., 2021, p. 2). Due to their smaller scales, application technologies like cooling, ventilation, AC and 
heat pumps are associated with higher investment costs as compared with DSF potentials of industrial 
processes or power-to-gas technologies. However, they exhibit the lowest variable costs as for their 
least user and production process interference (Heitkoetter et al., 2020, p. 15). In spite of the various 
fields of application and the above described potential system benefits of DSF potentials, however, 
there are still obstacles for the individual economic application. In the CTS sector, obstacles include 
uncertainties and missing incentives on the part of companies as well as the high transaction costs for 
aggregators, due to a large number of consumers with moderate DSF potentials (WindNODE, 2020, p. 
45). Moreover, according to Beucker et al. (2020a, p. 7), the fixed and inflexible system of levies and 
charges needs to be revised in order to be able to effectively exploit the flexibility potential. An 
important measure, for example, is seen in the dynamization of grid fees, taking into account market 
and grid signals (Fritz et al., 2021, p. 2). 

 

  

                                                           
33 A precise determination of reduction potentials of curtailed energy through the use of DSF is difficult due to 
incomplete data of temporally highly resolved EinsMan instances (Ostermann et al., 2019, pp. 2–3). However, 
reproducing a method developed by Ostermann et al. (2019), Henkel (2021) was able to generate EinsMan 
instances in high temporal and spatial resolution for 154 affected counties in 2018. Matching these EinsMan 
instances with DSF potentials identified in module 5, Henkel estimated an energy saving potential for reduced 
EinsMan instances of about 143 GWh (i.e. about 3 % of total curtailed energy). Assuming an average value for 
compensation of 118 €/MWh (BNetzA, 2021b, pp. 150–154), this would amount to cost savings of about 
16.9 million € per year. These cost savings are opposed to estimated annual exploitation costs of about 
2.1 million €, considering annual investment and fixed costs for 491 MW of flexible capacity as well as variable 
costs for 143 GWh of shifted energy (cf. Table 13, p. 69). 
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6. Discussion 
In order to contextualise the main results of this thesis, uncertainties in the analysis and result 
generation of the six consecutive modules should be addressed in this chapter. 

In the first module, 32 subsector load profiles (TUB BLP) were developed and published, based on 1,104 
datasets. In comparison, 607 commercial load profiles have been used to generate VDEW SLP more 
than twenty years ago. While the database for TUB BLP appears larger, VDEW SLP exhibit a higher 
aggregation level of only seven individual SLP in the CTS sector; for industrial electricity demand, no 
VDEW SLP exist. The representativeness of TUB BLP depends on data availability, the limitations of 
which have been thoroughly investigated and described in chapter 2.1. The underlying database of 
TUB BLP can be regarded as good in some subsectors, but not necessarily as representative in others. 
In future research, the database should be enlarged for some subsectors. Also, there is a number of 
especially industrial subsectors which have not been modelled at all, due to data limitations. While 
these subsectors are currently approximated with generic load profiles, there is the possibility to 
expand the database in future research and to model remaining industrial subsectors. Particularly in 
industrial subsectors, however, stochastic effects and the lack of knowledge of production schedules 
poses a considerable challenge to the modelling of subsector electricity demand, as has been described 
for WZ 17 manufacture of paper in chapter 4.2.1.1. While the performance measures for all subsectors 
appear to be a neutral basis for comparison of the TUB BLP’s reliability, performance measures are 
significantly distorted by subsectoral heterogeneity. A heterogeneous subsector will inevitably be 
associated with poorer performance measures. Also, the modelling of holidays is a known challenge in 
the energy demand modelling research. The improvement of modelling holiday load patterns in TUB 
BLP depicts an opportunity for future research. Besides, in the present approach all individual load 
profiles were normalized before the modelling procedure in order to equally consider all different load 
patterns. Another reasonable option would be to assign a weighting to individual models based on 
their electricity consumption level, considering the higher relevance of larger energy consumers. In the 
benchmarking of TUB BLP, the comparison with VDEW SLP only yields an indication for the SLP’s 
inaccuracy as for different aggregation levels.  

In the application and evaluation of TUB BLP, the representativeness of selected DSOs can be 
questioned since all of them are independent cities, only. This goes back to the fact that these 
independent cities depict a separate county and are simultaneously supplied by their own DSO – both 
preconditions in order to compare disaggregator model results (county level) with published real 
metered regional loads (DSO). Notwithstanding, the limited representativeness of selected DSOs was 
compensated evaluating model results with total loads of the Federal Republic of Germany, using 
ENTSO-E data. In the depiction of county loads, TUB BLP are regionalized using county specific weather 
and calendar data. Beyond that, TUB BLP do not offer any regional specification. In that way the 
disaggregator model is limited to depict very specific economic structures in counties, as it maps 
average load patterns of each subsector. Using TUB BLP significantly reduced model deviations for 
most datasets evaluated (DSOs, ENTSO-E), but some deviations remained. In general, with the existing 
database it is not possible to attribute the deviations to individual profiles. However, a considerable 
part of these deviations might be associated with the residential ZVE profile, which has only been 
analysed roughly in the present thesis. The development of a residential profile based on smart meter 
data already improved the model performance significantly. As for its relevance, there are multiple 
approaches to model or simulate residential load profiles (Fraunhofer ISE, 2020; Pflugrath, 2020; 
Ziegler et al., 2020), which could help to further improve model results in the future. For future 
projections, especially the expansion of electric vehicles, PV systems and heat pumps will have 
significant impacts on the load profiles of residential but also commercial consumers (Agora 
Energiewende, 2020; Gobmaier and von Roon, 2010; Hinterstocker et al., 2014, pp. 1–2; Spiegel, 2018, 
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pp. 796–797). In addition, the trends of increasing stand-by loads and simultaneous efficiency 
increases will likely affect load profiles.   

In the development of engineering-based sub-load profiles, five of the six largest CTS subsectors by 
electricity consumption have been modelled with good consistency and plausibility. Nevertheless, 
deviations to subsector load profiles still remain, which could be considered in future research. 
According to Böckmann et al. (2021, p. 19), opportunities for improvement exist in the adjustment of 
heating and cooling limits, a greater consideration of real sub-load profiles (which could not be found) 
and particularly the consideration of a representative German load profile for air conditioning. Also, 
the database of AGEB's application balance (Rohde, 2019) is incomplete with regards to technology 
shares and could be improved. Besides, the subsector load profiles are themselves only models, the 
reliability of which relies on their database. In addition to improving developed engineering-based load 
profiles, the same methodology could be applied to additional subsectors from industry or CTS.  

The projection of energy demand in general and electricity load profiles in particular are naturally 
associated with uncertainties. The uncertainties of the present approach are particularly associated 
with the energy scenarios utilized. Since energy scenarios are a very important basis for decision-
making, they are repeatedly put to the test and updated. In this respect, the existing database for 
projected load profiles in the present thesis should also be updated if possible. Moreover, single 
assumptions are particularly uncertain and can be varied in future research, such as future shares of 
hot water vs. space heating generation of heat pumps. Also, the mapping of electric vehicle charging 
will likely have significant effects on future load profiles in both residential and CTS subsectors, which 
is not depicted as of now (Seim et al., 2021a, p. 18).  

For the identification of technical DSF potentials in high temporal and spatial resolution, the present 
approach relied on generic literature-based assumptions for the shift duration of individual application 
technologies. In contrast to existing literature, newly developed engineering-based load profiles were 
used to get a more robust picture of the temporal availabilities of individual application technologies. 
The existence of a technical control option may be available or may be brought about by investments 
(Kochems, 2020, p. 1). Naturally, the economic DSF potential is a subset of the technical DSF potential. 
Consequently, economic factors or other social and organizational factors must be considered in future 
research in order to determine the economic usability of the technical potential. In the present thesis, 
social and organizational factors have not been considered (Seim et al., 2021a, pp. 5–6). There are 
barriers to tapping into the DSF potentials, however. With a low energy intensity of about 1 %, 
companies in the CTS sector often lack incentives to tap into the savings potential through efficiency 
measures and load flexibilization (Pfluger et al., 2017b, p. 70). Consequently, there is a need for 
research into the technological, regulatory and economic exploitation of these potentials. 

In the economic assessment of applying newly developed subsector load profiles, two use cases were 
presented. In the first use case, a hypothetical procurement strategy was presented which is supposed 
to shed light on trends and potentials as opposed to the exact monetary value. Hourly load and price 
values were used due to data availability, whereas quarter-hourly values would be exact. Actual 
procurement strategies, demand models and data of suppliers, traders and DSOs are all undisclosed 
and not usable for analysis. Also, the extent to which model deviations are actually addressed by 
balancing group management cannot be concluded from the data. According to Beucker et al. (2020b, 
p. 10), an increased use of the intraday market for balancing has been observed in the last few years. 
In any case, replacing SLP reduces the necessary amount of short-term balancing group management 
and shifts it to the suppliers, who procure electricity for their customers. In this way, the management 
requirement of the deviations can be reduced, which generates an advantage with regard to the 
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planning of the necessary generation capacities, the volatility of the imbalance settlement price and 
the price risk on the electricity market.  

In the second use case of economic validation, the peak load reduction potential by load shifting 
through the utilization of DSF potentials has been assessed. Here, solely load shifts to later times have 
been assessed, while load shifts to earlier times are just as well feasible. With shiftable energy 
quantities (i.e. virtual storage capacity) of DSF potentials being the bottleneck, the additional peak load 
reduction through simultaneous load shifts to earlier and later times is likely to be marginal. The 
underlying cost parameters for exploiting the DSF potentials are estimates from the literature that will 
deviate in the real application case based on the scale of the applications. As for a lack of information, 
the life time of ICT components was assumed to be around 10 years, while they could probably live 
longer. Since power generation capacities have very long lifetimes, the savings potentials of reduced 
peak load capacity are of a long-term nature. However, the generation side of the German energy 
sector is undergoing profound change due to the phase-out of nuclear power as well as the medium-
term phase-out of coal power. With the simultaneous expansion of renewable energies, there is thus 
a need for additional peak load power plant capacity at an earlier stage, which could be reduced by 
DSF potentials.  
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7. Conclusion 
The ongoing decarbonisation of the energy system requires far-reaching interventions as well as their 
sound planning to ensure an efficient, safe and sustainable system transformation. As it is a decisive 
building block, the assessment of different transformation pathways requires the application of energy 
demand models in high temporal and spatial resolution. While there were several research projects 
investigating changes of the generation side, the demand side was less considered. Distinct data gaps 
for demand data in high temporal and spatial resolution were identified. Addressing some of the above 
gaps, only recently an openly accessible demand modelling toolset (disaggregator) has been published 
within the research project DemandRegio, from which this thesis emerged. In the electricity sector, 
the use of SLP is still common practice in various contexts, such as the balancing group system, the 
procurement and the load modelling. However, SLP rely on 20- to 40-year-old load data and are 
associated to structural deviations. To address future flexibility needs of the system, technical demand 
side flexibility potentials were assessed using these generic and oftentimes imprecise load profiles. 
Based on the research project DemandRegio, this thesis addressed many of the above research and 
data gaps. Divided into six individual modules, the four central research questions were answered.  

In the first module, 32 subsector load profiles (TUB BLP) of the sectors CTS and industry were 
developed in quarter-hourly resolution using a multiple regression approach. These TUB BLP were 
made publicly accessible and usable, and include a thorough description of the load characteristics and 
demand drivers of each covered subsector. TUB BLP were made available for 10 weather years (2009 
– 2018). In order to evaluate performance and reliability of each subsector load profile, the forecast 
performance measures (MAPE and R²) were determined using a cross validation approach, and 
prediction intervals were identified using quantile regression. The performance of subsector load 
profiles varies greatly between subsectors, which can be traced back to their predictability and varying 
heterogeneity. The modelling of these subsector load profiles required the development of a 
comprehensive database of 1,104 individual real metered load profiles. Potentially sensitive real 
metered load profiles were transformed into usable average characteristic demand patterns. Assessing 
the applied methodology, the multiple regression approach was benchmarked against a feedforward 
ANN, finding that both exhibit similar results for the subsector load profiles while the ANN performs 
slightly better for individual sites. Further, the performance of newly developed TUB BLP was 
benchmarked against existing load profiles such as the VDEW SLP as well as the De Monfort profiles, 
confirming a significant improvement of TUB BLP against SLP, whilst revealing similar structures 
compared to the De Monfort profiles. As the most relevant SLP, the G1 reveals a significant 
overestimation of electricity demand during the day, and a significant underestimation during night 
time. This was traced back to an increased base load level driven by a higher number of applications in 
office buildings and households, as well as a reduced peak load due to a higher energy efficiency of 
used applications. VDEW SLP are still widely used to model the load behaviour of small consumers. 

In module 2, all 32 TUB BLP were applied and evaluated within the DemandRegio toolset 
disaggregator, creating electricity demand forecasts for each county in Germany in high temporal 
resolution. These electricity demand forecasts were evaluated using 11 DSO loads of several years, 
that were suitable for the comparison and published corresponding regional load data. In addition, 
these electricity demand forecasts were evaluated using ENTSO-E loads of five years, representing the 
entire load of Germany. In nearly all cases, the application of TUB BLP once again revealed a significant 
improvement of model performance measures in comparison to the use of VDEW SLP. Remaining 
structural deviations still exhibit an overestimation of electricity demand during the day, and an 
underestimation during night time. These remaining deviations can stem from subsectors that have 
not yet been covered due to data limitations. However, due to its high relevance, the residential load 
profile (ZVE profile) in particular is suspected of showing deviations that are visible in the overall 
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picture. Applying TUB BLP in the disaggregator, the error profile of remaining deviations looks similar 
to the ZVE profile shape. Replacing the ZVE profile with the H0 SLP further deteriorates the forecast, 
whereas replacing the ZVE profile with a newly generated smart meter-based profile yielded significant 
improvements for selected DSOs.  

In module 3, a novel bottom-up approach of developing engineering-based sub-load profiles for five 
selected CTS subsectors offices, trade, accommodation, hospitals and education was introduced. These 
five subsectors represent about 62 % of the total CTS electricity consumption. The approach was made 
publicly accessible in data and code. The methodology can be further developed with regards to future 
technology shifts or applied to additional CTS or industrial subsectors. The alignment with previously 
developed TUB BLP ensured that the engineering-based load profiles can be regarded as consistent 
and valid. Deviations to TUB BLP can be mainly traced back to times of changing occupancy, 
uncertainties for temperatures of heating and air conditioning thresholds as well as a lack of 
characteristic application sub-loads in literature. Engineering-based load profiles enable the projection 
of load profiles and the identification of DSF potentials in high temporal resolution (Böckmann et al., 
2021, p. 19).  

In module 4, developed engineering-based sub-load profiles were projected into the year 2035, using 
two recognized energy scenarios from literature: a baseline scenario (normative) and a reference 
scenario (explorative). Depending on the scenario, the developments of individual application 
technologies was derived and allocated to respective subsectors. While the baseline scenario indicates 
a reduction of electricity demand for four of the five subsectors (except for hospitals) due to efficiency 
gains, the reference scenario projects an increase of electricity demand in each but the education 
subsector. In both scenarios, electricity-based space heating will be partially shifted from night storage 
heaters to heat pumps. Also, the share of electricity demand for lighting decreases in both scenarios, 
whereas the share of both ICT and mechanical energy increases. Resulting projected load profiles 
exhibit similar shapes as compared to the year 2018, whilst revealing a different level of electricity 
demand. Particularly for the trade subsector, more pronounced load peaks are to be expected in the 
future. In hospitals, demand increases are to be expected in both scenarios. In all other subsectors, the 
ratios of peak load to base load show only minor variations within the scenarios (Seim et al., 2021a, 
pp. 17–18). 

In module 5, developed and projected engineering-based sub-load profiles were utilized to derive 
demand side flexibility potentials in high temporal and spatial resolution for the years 2018 and 2035. 
Based on an approach developed by Kleinhans (2014), both switchable loads and shiftable energy 
quantities of five CTS subsectors were quantified and published, covering 74 % of technical DSF 
potentials in the entire CTS sector. In contrast to previous studies, the present analysis used robust 
technology-specific load profiles of high temporal resolution, which have been validated against 
subsector load profiles. Moreover, the spatial resolution of technical DSF potentials can help to reduce 
local grid bottlenecks in future, and thus potentially offer an economic alternative for grid expansion 
projects or short-term storage. Across all scenarios, air conditioning as well as space heating and hot 
water offer high load shifting potentials. Air conditioning, however, is subject to strong diurnal and 
seasonal fluctuations. Space heating and hot water also have immense potential for shiftable energy 
quantities due to high shift durations. Notwithstanding, space heating and hot water fluctuate in most 
subsectors according to the time of day and slightly according to the season. In contrast, hospitals 
provide very constant flexibility potential over time for all technologies except air conditioning due to 
stable occupancy profiles. The potential of process cooling in retail as well as space heating, hot water, 
process cooling and ventilation in accommodation also show temporal stability. A comparison of the 
identified potentials with literature values underlines the plausibility of the present approach. By 
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analysing the five subsectors, it was possible to identify large technical load flexibility potentials in the 
tertiary sector with high temporal and spatial resolution (Seim et al., 2021a, p. 18). 

In module 6, newly developed subsector load profiles were evaluated economically in two use cases. 
In the first use case, the influence of newly developed TUB BLP on electricity procurement and 
balancing group management was assessed. As part of a hypothetical procurement strategy, the 
disaggregator model outputs (module 2) were priced with the Day-Ahead market prices. Any model 
deviations were priced by the imbalance settlement price (reBAP). The assessment indicated that the 
total costs from procurement and imbalance settlement can be significantly reduced for the whole 
system by applying TUB BLP. In contrast, it was also shown that potential arbitrage gains in short-term 
trading or imbalance settlement calls are smaller using TUB BLP. Smaller arbitrage gains depict a 
potential disincentive to use novel and improved subsector load profiles, especially for DSOs in the 
synthetic load profile procedure. In the second use case, a potential economic value was derived for 
DSF potentials identified in module 5. While there are multiple ways how DSF potentials can generate 
system value, in the present thesis the peak load reduction potential was assessed. In order to 
determine the peak load reduction potential, the residual load curve of the Federal Republic of 
Germany of the year 2018 was matched by time and date with identified DSF potentials of cooling, 
ventilation, AC and space heating. Technical restrictions of the load reduction potentials and shiftable 
energy quantities were taken into account. Utilizing DSF potentials, a total peak load reduction of 
2.9 GW could be realized. Assuming that this reduction would result in a reduction of physical gas 
turbine PP capacity, annual cost savings of around 157 million € can be realized. These cost savings are 
opposed to estimated exploitation costs of only 6 million €, indicating an economically attractive 
application of DSF potentials. Further options to utilize DSF potentials seem also promising from a 
system perspective, however, obstacles for the individual economic application remain: Among others, 
the fixed and inflexible system of levies and charges for electricity needs to be revised to incentivize 
efficient flexibilization of demands.  
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8. Outlook 
The present thesis focused on the development and application of subsector load profiles for the long-
term load forecasting. There are opportunities to expand the present approaches in future research.  

Utilizing the disaggregator model output in future research, the electricity demand in high spatial and 
temporal resolution can be mapped with regional electricity generation by fluctuating RES, in order to 
determine regional residual loads. These residual loads can be used to determine electricity flows in 
the network and gain insights regarding network utilization as well as storage or DSF requirements. 
Moreover, further research could utilize identified regional DSF potentials and match them with grid 
bottlenecks and expansion paths from the electricity network development plan 
(Netzentwicklungsplan Strom 2035, 2021, pp. 117–128), as well as on the spatial RES generation and 
electricity price information, in order to identify specific economic load shifting potentials. 

Despite the data limitations discussed, the database for subsector load profiles as well as engineering-
based sub-load profiles can be expanded, both enhancing the database for already existing subsector 
load profiles and increasing their representativeness; as well as broadening the database for 
(particularly industrial) subsectors which have not been modelled yet. A greater coverage of electricity 
demand models could yield better forecasts and reduce remaining deviations. In this regard, especially 
the residential sector is of great relevance and should thus be modelled more precisely. Existing 
approaches, such as so-called load profile generators, could be further developed and integrated into 
the disaggregator tool (Fraunhofer ISE, 2020; Pflugrath, 2020; Wörner et al., 2020; Ziegler et al., 2020). 
Especially future trends like PV generation, the charging of electric vehicles and the technology shift 
towards heat pumps should be reflected in these simulation tools.  

With regards to newly developed subsector load profiles, the normalisation procedure can be changed 
so that loads are weighted according to their electricity demand level in the final subsector load profile. 
Also, holidays might be mapped more accurately in future model designs, by connecting the holiday 
variable with the hours of the day, in analogy to weekdays. Another option to improve the overall 
disaggregator modelling result is a top-down adjustment of load profiles. Based on the model 
deviations against the ENTSO-E total load, remaining SLP and generic load profiles could be adjusted 
by a correction factor which minimizes deviations. This top-down (retrofit) procedure would distort 
respective load profiles, but would improve overall model results, which could be tested and quantified 
against the DSO loads. This adjustment procedure would also account for electricity demand patterns 
which have not yet been explicitly taken into account, for example (but not limited to) street lighting 
loads. Moreover, In the disaggregator tool, generic load profiles could be developed further and 
smoothed as to avoid sharp load increases or drops, which were visible in the heatmap illustration in 
chapter 5.2.2. On a more general note, the update cycles of subsector load profiles should not be as 
long as 20 years (or longer), as prevailing trends will have an effect on future load patterns: the 
expansion of electric vehicles, heat pumps and PV systems, as well as enhancing energy efficiency and 
a trend towards more digitalization and associated base-loads. Also, the flexibilization of demand, as 
investigated in module 5, will have a significant effect on the shape of subsector load profiles. 
However, developed subsector load profiles can still be used as scheduled load (as done in this thesis), 
a part of which can be shifted according to price signals. Hence, the applicability of subsector load 
profiles remains even considering enhanced demand side flexibilization.  

Data availability will likely improve in the future due to the advancing smart meter roll-out and further 
open source / open data research projects. The additional load data can be used to expand the 
database and enhance subsector load modelling. An enhanced database might also encompass 
application technology-specific sub-load profiles which could be used to improve the engineering-
based load modelling approach. In any case, as for the different fields of application of subsector load 
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profiles, the need for cumulative subsector load profiles will likely prevail even if the smart meter 
penetration reaches high levels (Gerblinger et al., 2014, p. 3). According to Lopion et al. (2018), the 
demand for models and data with high temporal and spatial resolution is increasing, also associated 
with the expansion of energy system models across the sectors of electricity, transport and buildings 
(Bai et al., 2016; Verwiebe et al., 2021b, p. 7859). From a policy perspective, it is recommendable to 
improve accessibility of demand data by establishing an orchestrated data platform, similar to their 
transparency efforts in the SMARD database. Moreover, the need to enhance funding for open source-
/ open data research projects was emphasized (Seim et al., 2019, p. 18) (cf. chapter 2.1). 

In the engineering-based model approach, future research could focus on using the same methodology 
to model further subsectors. As for their relevance, particularly industrial subsectors could be 
modelled this way. Existing sub-load profiles could be further improved by a top-down adjustment to 
exactly match subsector load profiles of module 1 (TUB BLP). This would increase consistency between 
both approaches, but potentially impair the plausibility of sub-loads. Another opportunity to further 
develop engineering-based load profiles is to incorporate a charging module for electric vehicles which 
will likely have a significant impact on load patterns in the mid-term future. In this regard, the 
projection of engineering-based load profiles can also be updated in future research with novel energy 
scenarios. Also, load profiles could be projected to further years in the future in order to analyse shifts 
in load patterns or determine future DSF potentials in the far future. Existing or future engineering-
based load profiles could also be integrated into the disaggregator tool, to enable scaling the load 
characteristics to different regional entities.  

For DSF potentials, future research could particularly focus on further narrowing down the technical 
towards economic DSF potentials in high spatial and temporal resolution. This includes future research 
to overcome organizational, regulatory and economic barriers in order to maximize exploitation of 
technical DSF potentials. Barriers encompass, for example, the low priority of energy costs in CTS 
subsectors, impairment of the comfort level or data protection concerns regarding the technological 
implementation of load management. Regulatory incentives are missing or lacking in attractiveness. 
From an economic point of view, the consideration of DSF potentials in the grid congestion 
management process is particularly interesting if it can substitute more expensive flexibility options or 
increase the use of renewable electricity. Methodologically, additional subsectors could be analysed 
with regards to their technical DSF potentials, especially those that have a high power consumption. 
The inclusion of an electric vehicle module in the engineering-based approach will also lead to the 
identification of further future DSF potential.  

In the economic assessment, two use cases can be differentiated: In the first use case, the economic 
assessment of a specific procurement strategy could be complemented with other procurement 
strategies, including the utilization of the futures and the intraday market. The resulting economic 
assessment will depict sensitivities and thus be more robust than the indicative procurement case 
analysed in this thesis. Also, quarter-hourly prices could be used to get a more exact estimation. For 
the second use case, further research could assess the economic value of other fields of application 
for DSF potentials, e.g. optimising procurement strategies on the spot market and balancing power 
market, the regulation for interruptible loads as well as the reduction of curtailed electricity due to 
network congestion; the rough estimation of the latter mentioned in this thesis should be refined in 
future research. In particular, the interplay of these various fields of application for DSF potentials 
could be analysed in future research. The identified economic potential of DSF appears very promising 
from a system perspective. Hence, further research could focus on the exploitation of these potentials 
by creating incentives and reducing obstacles for electricity consumers.  
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10. Appendix 
A.1.  Appendix to chapter 4 
A.1.1. Energy Consumption for each Subsector (WZ 2008) and Data Availability 
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A.1.2. Cross Validation Procedure for Subsector Load Profiles 
The determination of the forecast quality of the subsector load profiles (2.) was carried out in analogy 
to the site-specific regression models (see chapter 4.2.1.4), but required a more complex 
implementation described below in Figure 63. 

For each subsector, five separate subsector models (Avg. 1 - Avg. 5) were created based on the training 
data of site-specific regression models (OLS model C1, OLS model C2, ...). In a subsector with four 
locations, this yields 20 regression models, whose regression coefficients are averaged to five separate 
subsector models for each split (Avg. Coefficients Split 1, Avg. Coefficients Split 2 ...). For each of the 
five separate subsector models (Avg. 1, Avg. 2, ...) the performance measures are then determined 
based on retained validation data of the individual locations (C1, C2, ...). As a result, the site-specific 
performance measures (e.g. MAPE 1, MAPE 2, ...) of each individual subsector model are averaged 
(Avg. MAPE C1, Avg. MAPE C2, ...). 

 

Figure 63: Illustration of the principle of cross-validation for the robust determination of the forecast quality of the subsector 
load profiles compared to the underlying real data. Diagram by author, adapted from Gotzens et al. (2020, p. 103) 
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A.1.3. Mapping of Load Profile Types for Model Comparison 
Table 27: Mapping of three load profile types, based on works by Rüdt (2020, p. 18). * According to Gotzens et al. (2020) 

TUB BLP (WZ) Electricity 
consumption of 

WZ [GWh]* 

Database 
(metered load 

profiles) 

De Monfort 
profiles 

VDEW 
SLP 

Offices (WZ 64-71) 68332.5 13 Commercial 
Offices 

G1 Research and Development (WZ 72) 17489.4 11 Commercial 
Offices 

Public administration (WZ 84) 10834.0 38 Government 
Education (WZ 85) 4615.9 154 Education 
Residential care activities (WZ 87) 14229.0 24 Health 

G2 Sports activities, amusement and 
recreation activities (WZ 93) 7832.6 8 Sports & 

Leisure 
Sewerage (WZ 37) 4825.0 8 Other 

G3 

Waste collection, treatment and 
disposal (WZ 38) 519.2 11 Other 

Warehousing and support 
activities for transportation (WZ 52) 4887.4 25 Warehouses 

Human health activities (WZ 86) 14229.0 8 Health 
Retail trade (WZ 47) 18957.5 123 Retail G4 
Manufacture of food products – 
Bakeries (WZ 10) 19380.0 219 Retail G5 

Activities of membership 
organisations (WZ 94) 7832.6 3 Other G6 
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A.1.4. Scenario-based annual Electricity Demand per Sector and Application Technology 
Table 28: Application balance of the year 2018 in PJ/a. Calculation by Böckmann (2021), with values from (Schlomann et al., 
2015, p. 84) and (Rohde, 2019, p. 9). 

Subsector  |  Applications [PJ/a] Light. Mech. 
En. 

ICT AC Proc. 
cool. 

Proc. 
heat 

Sp. Heat 
& Hot w. 

Total 

Construction industry 6.66 2.50 1.35 0.47 0.00 0.45 3.63 15.1 

Offices 49.19 4.64 49.08 4.19 3.35 1.82 9.09 121.3 

Manufacturing 5.55 5.71 1.80 0.00 0.00 0.00 1.82 14.9 

Trade 40.69 7.49 8.55 2.33 20.10 2.72 9.54 91.4 

Hospitals 4.44 6.06 2.70 1.40 0.48 7.72 1.82 24.6 

Schools 10.73 0.36 1.80 0.00 0.00 0.45 0.91 14.2 

Pools 0.74 3.92 0.00 0.00 0.00 0.00 0.00 4.7 

Accommodation 19.60 17.12 4.50 0.93 11.96 9.53 12.27 75.9 

Bakeries 0.00 0.00 0.00 0.00 0.00 1.36 0.00 1.4 

Butchers 0.37 0.00 0.00 0.00 0.48 0.45 0.00 1.3 

Rest of food trades 0.37 0.36 0.00 0.00 0.00 0.00 0.00 0.7 

Laundries 0.37 0.00 0.00 0.00 0.00 0.91 0.00 1.3 

Agriculture 4.07 6.42 0.90 1.86 0.48 0.00 3.18 16.9 

Horticulture 0.74 0.00 0.00 0.00 0.00 0.00 0.45 1.2 

Airports 1.85 1.43 0.45 0.47 0.00 0.45 0.91 5.6 

Textile, freight transport 2.22 0.36 0.90 0.00 0.00 0.00 0.91 4.4 

Not covered by questionnaire 4.07 28.18 18.46 0.00 13.88 1.82 1.36 67.8 

Others 21.45 30.67 4.50 0.47 0.48 0.91 0.91 59.4 

Total 173.1 115.2 95.0 12.1 51.2 28.6 46.8 522.0 

 

Table 29: Application balance of the baseline scenario (2035) in PJ/a. Calculation by Böckmann (2021), with values from 
(Schlomann et al., 2015, p. 84), (Rohde, 2019, p. 9) and (Pfluger et al., 2017b, pp. 69, 123) 

Subsector  |  Applications [PJ/a] Light. Mech. 
En. 

ICT AC Proc. 
cool. 

Proc. 
heat 

Sp. Heat & 
Hot w. 

Total 

Construction industry 5.13 2.76 1.62 0.52 0.00 0.40 3.36 13.79 

Offices 38.04 5.15 59.08 4.66 2.61 1.61 8.43 119.59 

Manufacturing 4.27 6.32 2.16 0.00 0.00 0.00 1.68 14.43 

Trade 34.46 9.11 11.28 2.84 17.16 2.64 9.69 87.19 

Hospitals 4.05 7.95 3.84 1.83 0.44 8.07 1.99 28.18 

Schools 6.95 0.33 1.82 0.00 0.00 0.34 0.71 10.14 

Pools 0.57 4.34 0.00 0.00 0.00 0.00 0.00 4.91 

Accommodation 15.10 18.95 5.40 1.03 9.29 8.42 11.34 69.53 

Bakeries 0.00 0.00 0.00 0.00 0.00 1.20 0.00 1.20 

Butchers 0.28 0.00 0.00 0.00 0.37 0.40 0.00 1.06 

Rest of food trades 0.28 0.39 0.00 0.00 0.00 0.00 0.00 0.68 

Laundries 0.28 0.00 0.00 0.00 0.00 0.80 0.00 1.09 

Agriculture 3.13 7.11 1.08 2.07 0.37 0.00 2.94 16.70 

Horticulture 0.57 0.00 0.00 0.00 0.00 0.00 0.42 0.99 

Airports 1.42 1.58 0.54 0.52 0.00 0.40 0.84 5.30 

Textile, freight transport 1.71 0.39 1.08 0.00 0.00 0.00 0.84 4.02 

Not covered by questionnaire               0.00 

Others 21.45 30.67 4.50 0.47 0.48 0.91 0.91 59.39 

Total 129.01 90.54 92.05 13.86 30.53 24.91 42.87 423.79 
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Table 30: Application balance of the reference scenario (2035) in PJ/a. Calculation by Böckmann (2021), with values from 
(Schlomann et al., 2015, p. 84), (Rohde, 2019, p. 9) and (Pfluger et al., 2017b, pp. 64–68) 

Subsector  |  Applications 
[PJ/a] 

Light. Mech. 
En. 

ICT AC Proc. 
cool. 

Proc. 
heat 

Sp. Heat & 
Hot w. 

Total 

Construction industry 5.95 3.27 1.70 0.69 0.00 0.40 3.75 15.76 

Offices 44.13 6.09 61.84 6.22 2.68 1.61 9.41 131.98 

Manufacturing 4.96 7.47 2.26 0.00 0.00 0.00 1.88 16.57 

Trade 39.97 10.78 11.81 3.79 17.59 2.64 10.83 97.41 

Hospitals 4.70 9.41 4.02 2.45 0.45 8.07 2.22 31.32 

Schools 8.06 0.39 1.90 0.00 0.00 0.34 0.79 11.48 

Pools 0.66 5.14 0.00 0.00 0.00 0.00 0.00 5.80 

Accommodation 17.52 22.42 5.65 1.38 9.53 8.42 12.66 77.57 

Bakeries 0.00 0.00 0.00 0.00 0.00 1.20 0.00 1.20 

Butchers 0.33 0.00 0.00 0.00 0.38 0.40 0.00 1.11 

Rest of food trades 0.33 0.47 0.00 0.00 0.00 0.00 0.00 0.80 

Laundries 0.33 0.00 0.00 0.00 0.00 0.80 0.00 1.13 

Agriculture 3.64 8.41 1.13 2.76 0.38 0.00 3.28 19.59 

Horticulture 0.66 0.00 0.00 0.00 0.00 0.00 0.47 1.13 

Airports 1.65 1.87 0.57 0.69 0.00 0.40 0.94 6.11 

Textile, freight transport 1.98 0.47 1.13 0.00 0.00 0.00 0.94 4.52 

Not covered by questionnaire               0.00 

Others 21.45 30.95 4.50 0.47 0.48 0.91 0.91 59.67 

Total 149.63 107.14 96.34 18.50 31.30 24.91 47.89 475.73 

 

Table 31: Shares of flexible electricity demand per subsector in the baseline scenario (2035) in PJ/a. Calculation by Böckmann 
(2021), with values from (Schlomann et al., 2015, p. 84), (Rohde, 2019, p. 9) and (Pfluger et al., 2017b, pp. 69, 123). Sectors 
considered in this article are highlighted in light red. 

Subsector  |  Applications [PJ/a] Ventila-
tion 

AC Proc. 
Cool. 

Sp. Heat 
& Hot w. 

Total Share [%] 

Construction industry 0.66 0.52 0.00 3.36 4.54 4.1 

Offices 1.24 4.66 2.61 8.43 16.94 15.3 

Manufacturing 1.52 0.00 0.00 1.68 3.20 2.9 

Trade 2.19 2.84 17.16 9.69 31.88 28.8 

Hospitals 1.91 1.83 0.44 1.99 6.17 5.6 

Schools 0.08 0.00 0.00 0.71 0.79 0.7 

Pools 1.04 0.00 0.00 0.00 1.04 0.9 

Accommodation 4.55 1.03 9.29 11.34 26.21 23.7 

Bakeries 0.00 0.00 0.00 0.00 0.00 0.0 

Butchers 0.00 0.00 0.37 0.00 0.37 0.3 

Rest of food trades 0.09 0.00 0.00 0.00 0.09 0.1 

Laundries 0.00 0.00 0.00 0.00 0.00 0.0 

Agriculture 1.71 2.07 0.37 2.94 7.08 6.4 

Horticulture 0.00 0.00 0.00 0.42 0.42 0.4 

Airports 0.38 0.52 0.00 0.84 1.73 1.6 

Textile, freight transport 0.09 0.00 0.00 0.84 0.93 0.8 

Others 0.00 
   

0.00 8.3 

Total 7.36 0.47 0.48 0.91 9.21 100.0 
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A.2. Appendix to Chapter 5 
A.2.1. German names of modelled subsectors according to the classification WZ 2008 

 

 

• WZ10: Nahrungsmittelherstellung 
• WZ11: Getränkeherstellung 
• WZ12: Tabakverarbeitung 
• WZ17: Papierherstellung 
• WZ21: Pharmazeutische Erzeugnisse 
• WZ22: Gummi- und Kunststoffwaren 
• WZ26: Datenverarbeitungsgeräte 
• WZ28: Maschinenbau 
• WZ29: Kraftwagen und Kraftwagenteile 
• WZ32: Herstellung sonstiger Waren 
• WZ37: Abwasserentsorgung 
• WZ38: Abfallentsorgung 
• WZ41: Hochbau 
• WZ46: Großhandel 
• WZ47: Einzelhandel 
• WZ52: Lagerei u. sonstige  

             Verkehrsdienstleistungen 
• WZ55: Beherbergung 

• WZ62: IT-Dienstleistungen 
• WZ63: Informationsdienstleistungen 
• WZ64-71: Büroähnliche Betriebe 
• WZ72: Forschung und Entwicklung 
• WZ77: Vermietung beweglicher Sachen 
• WZ82: Dienstleistungen für  

            Unternehmen und Privatpersonen 
• WZ84: Öffentliche Verwaltung 
• WZ85: Erziehung und Unterricht 
• WZ86: Gesundheitswesen 
• WZ87: Heime 
• WZ88: Sozialwesen 
• WZ90: Kreative, künstlerische und  

             unterhaltende Tätigkeiten 
• WZ91: Bibliotheken, Museen und  

             zoologische Gärten 
• WZ93: Sport, Unterhaltung und Erholung 
• WZ94: Interessenvertretungen, Vereine 
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A.2.2. Overview of Developed Subsector Load Profiles 
Table 32: Exemplary illustrations of created subsector load profiles WZ10 – WZ17. 
  

  WZ10: Manufacture of food products WZ11: Manufacture of beverages WZ12: Manufacture of tobacco prod. WZ 17: Manufacture of paper 
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Table 33: Exemplary illustrations of created subsector load profiles WZ21 – WZ28.  
 

  WZ21: Manufacture of 
pharmaceuticals 

WZ22: Manufacture of rubber  
and plastics 

WZ26: Manufacture of computer, 
electronic and optical products 

WZ28: Manufacture of machinery 
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Table 34: Exemplary illustrations of created subsector load profiles WZ29 – WZ38.  
 

  WZ29: Manufacture of motor vehicles WZ32: Other manufacturing WZ37: Sewerage WZ38: Waste collection, treatment 
and disposal 
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Table 35: Exemplary illustrations of created subsector load profiles WZ41 – WZ52.  
 

  WZ41: Construction of buildings WZ46: Wholesale trade WZ47: Retail trade WZ52: Warehousing and support 
activities for transportation 
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Table 36: Exemplary illustrations of created subsector load profiles WZ55 – WZ71.  
 

  WZ55: Accommodation WZ62: Computer programming  
and consultancy 

WZ63: Information service activities WZ64 – 71: Offices 
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Table 37: Exemplary illustrations of created subsector load profiles WZ72 – WZ85.  
 

  WZ72: Research and development WZ82: Office administrative and 
support activities 

W84: Public administration WZ85: Education 
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Table 38: Exemplary illustrations of created subsector load profiles WZ86 – WZ90.  
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Table 39: Exemplary illustrations of created subsector load profiles WZ91 and WZ93.  
 

  WZ91: Libraries, museums and other 
cultural activities 

WZ93: Sports activities, amusement 
and recreation activities 
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A.2.3. Demand drivers and performance measures of subsector load profiles (TUB BLP) 
 
Table 40: Demand drivers and performance measures of subsector load profiles (TUB BLP) for subsectors WZ 10 – WZ32  
 

Demand driver  |  Subsector 

10 11 12 17 21 22 26 28 29 32 
Manufacture 

of food 
products 

Manufacture 
of beverages 

Manufacture 
of tobacco 
products 

Manufacture 
of paper 

Manufacture 
of pharma-

ceuticals 

Manufacture 
of rubber 

and plastics 

Manufacture 
of electronic 
and optical 
products 

Manufacture 
of machinery 

Manufacture 
of motor 
vehicles 

Other manu-
facturing 

Holiday -0.01 -0.17 -0.17 -0.12 -0.11 -0.24 -0.16 -0.18 -0.25 -0.2 
Temperature 0.04 0.21 0.28 0.03 0.01 0.05 0.18 0.056 0.09 -0.2 

Solar radiation 0.1 0.16 0.27 0.01 0.17 0.06 0.26 0.2 0.13 0.17 
Workday 0.03 0.73 0.56 -0.01 0.46 0.68 0.63 0.66 0.72 0.54 

Early 0.12 0.1 0.12 -0.004 0.24 0.06 0.29 0.27 0.12 0.38 
Late 0.003 0.01 0.04 0.01 -0.12 0.024 0.01 -0.07 0.02 -0.1 

Night -0.12 -0.11 -0.16 -0.005 -0.12 -0.08 -0.3 -0.2 -0.14 -0.3 
Office 0.1 0.09 0.17 -0.001 0.16 0.07 0.31 0.19 0.11 0.22 

Summer 0.02 0.18 0.2 0.05 -0.02 0.03 0.1 -0.001 0.05 -0.2 
Winter -0.01 -0.16 -0.22 -0.05 0.08 -0.03 -0.06 -0.003 -0.04 0.2 

Company Holiday / Vacation / Phase   -0.45 0.89   -0.11 -0.12  -0.1 
Model performance 10 11 12 17 21 22 26 28 29 32 

Da
ta

 Number of data sets 241 7 < 4 12 6 < 4 17 15 21 < 4 

Heterogeneity of subsector + o  o o  + o + + 

Pe
rf

or
m

an
ce

 
m

ea
su

re
s 

R²adj individual site models 0.63 0.83  0.77 0.72  0.87 0.78 0.76 0.85 

R²adj subsector model 0.53 0.76 0.79 0.62 0.31 0.91 0.44 0.68 0.69 0.67 

MAPE subsector model 0.46 0.17 0.08 0.21 0.33 0.17 0.30 0.30 0.52 0.52 

nRMSE subsector model 0.13 0.11 0.07 0.13 0.17 0.09 0.14 0.11 0.14 0.16 
 
For Δ MAPE individual vs. subsector model > 0.3, subsectors were marked as very heterogeneous by "++"; for Δ MAPE individual vs. subsector model > 0.15, 
subsectors were marked as heterogeneous by "+". All remaining subsectors were marked with low to medium heterogeneity by "o" where more than 3 records 
were available. For economic sectors with less than 4 data sets, the R²adj of the individual models was not listed for data protection reasons. The values of WZ 10 
are to be understood as mean values of the sub-models (see chapter 4.2.1.3).  
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Table 41: Demand drivers and performance measures of subsector load profiles (TUB BLP) for subsectors WZ 37 – WZ 64-71 
 

Demand driver  |  Subsector 

37 38 41 46 47 52 55 62 63 64-71 

Sewerage 
Waste 

collection, 
treatment & 

disposal 

Construction 
of buildings 

Wholesale 
trade Retail trade 

Warehousing 
and support 
activities for 

transport. 

Accommodat
ion 

Computer 
programm-

ing, 
consultancy 

Information 
service 

activities 
Offices 

Holiday -0.06 -0.04 -0.08 -0.15 -0.06 -0.009 -0.04 -0.06 -0.02 -0.11 

Temperature -0.13 -0.05 0.58 0.1 0.08 -0.55 -0.07 0.12 0.81 0.13 

Solar radiation -0.21 0.07 0.46 0.37 0.15 -0.076 -0.02 0.19 0.3 0.23 

Workday 0.07 0.1 0.33 0.25 0.09 0.07 0.06 0.17 0.021 0.41 

Early -0.31 0.15 0.35 0.38 0.13 0.12 -0.03 0.16 0.004 0.41 

Late 0.22 -0.06 -0.005 0.28 0.11 0.15 0.13 0.09 0.07 0.06 

Night 0.09 -0.09 -0.34 -0.66 -0.24 -0.27 -0.1 -0.25 -0.08 -0.47 

Office -0.09 0.08 0.33 0.47 0.18 0.19 0.02 0.33 0.1 0.49 

Summer -0.04 -0.05 0.38 -0.02 0.03 -0.55 -0.07 0.02 0.62 -0.006 

Winter 0.18 0.07 -0.46 0.06 -0.008 0.67 0.06 -0.05 -0.65 0.028 

Company Holiday / Vacation / Phase        -0.04   
Model performance 37 38 41 46 47 52 55 62 63 64-71 

Da
ta

 Number of data sets 8 11 < 4 10 125 25 7 < 4 < 4 13 
Heterogeneity of subsector o ++  +  o o   + 

Pe
rf

or
m

an
ce

 
m

ea
su

re
s 

R²adj individual site models 0.30 0.34  0.89 0.88 0.51 0.71  0.85 0.80 

R²adj subsector model 0.26 -0.04 0.82 0.83 0.78 0.27 0.33 0.76 0.73 0.57 

MAPE subsector model 0.12 1.78 0.15 0.44 0.30 0.21 0.18 0.03 0.27 0.31 

nRMSE subsector model 0.07 0.17 0.07 0.12 0.11 0.10 0.14 0.05 0.12 0.12 
 
For Δ MAPE individual vs. subsector model > 0.3, subsectors were marked as very heterogeneous by "++"; for Δ MAPE individual vs. subsector model > 0.15, 
subsectors were marked as heterogeneous by "+". All remaining subsectors were marked with low to medium heterogeneity by "o" where more than 3 records 
were available. For economic sectors with less than 4 data sets, the R²adj of the individual models was not listed for data protection reasons. The values of WZ 47 
are to be understood as mean values of the sub-models (see chapter 4.2.1.3).  
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Table 42: Demand drivers and performance measures of subsector load profiles (TUB BLP) for subsectors WZ 72 – WZ 94 

Model performance 72 82 84 85 86 87 88 90 91 93 94 

Da
ta

 Number of data sets 11 5 38 156 8 24 < 4 8 13 8 < 4 

Heterogeneity of subsector o ++ o + o o o o + ++ o 

Pe
rf

or
m

an
ce

 
m

ea
su

re
s 

R²adj individual site models 0.70 0.85 0.85 0.65 0.91 0.80 0.70 0.60 0.70 0.45 0.59 

R²adj subsector model 0.37 0.49 0.76 0.51 0.89 0.64 0.56 0.50 -1.62 0.15 0.14 

MAPE subsector model 0.17 0.66 0.20 0.50 0.07 0.19 0.15 0.33 0.40 1.24 0.30 
nRMSE subsector model 0.10 0.14 0.09 0.10 0.05 0.11 0.09 0.11 0.17 0.17 0.12 

 
For Δ MAPE individual vs. subsector model > 0.3, subsectors were marked as very heterogeneous by "++"; for Δ MAPE individual vs. subsector model > 0.15, 
subsectors were marked as heterogeneous by "+". All remaining subsectors were marked with low to medium heterogeneity by "o" where more than 3 records 
were available. For economic sectors with less than 4 data sets, the R²adj of the individual models was not listed for data protection reasons.  

Demand driver  |  Subsector 

72 82 84 85 86 87 88 90 91 93 94 
Research 

and 
Develop-

ment 

Office 
administra-

tive 
activities 

Public 
administra-

tion 
Education 

Human 
health 

activities 

Residential 
care 

activities 
 

Social work 
activities 

 

Creative, 
arts and 

entertain. 
activities 

Libraries, 
museums 
and other 
cultural 

activities 

Sports 
activities, 
amusem. 

and 
recreation 

Activities of 
member-

ship 
organisat. 

Holiday -0.13 -0.08 -0.1 -0.07 -0.08 -0.02 -0.06 -0.05 -0.06 -0.05 -0.07 

Temperature 0.24 0.34 0.11 -0.19 0.35 0.09 -0.24 0.14 0.26 -0.23 0.21 

Solar radiation 0.32 0.41 0.31 0.16 0.44 0.38 0.22 0.24 0.42 -0.07 0.27 

Workday 0.39 0.22 0.43 0.3 0.29 0.11 0.23 0.09 0.13 -0.001 0.31 

Early 0.3 0.31 0.51 0.37 0.58 0.69 0.5 0.14 0.3 0.01 0.27 

Late 0.08 0.12 -0.05 -0.06 0.13 -0.08 -0.03 0.43 0.18 0.28 0.08 

Night -0.38 -0.43 -0.46 -0.31 -0.71 -0.61 -0.47 -0.57 -0.48 -0.29 -0.35 

Office 0.46 0.56 0.5 0.34 0.63 0.57 0.39 0.36 0.51 0.17 0.4 

Summer 0.11 0.22 -0.00 -0.23 0.16 -0.06 -0.28 -0.02 0.11 -0.29 0.07 

Winter -0.07 -0.1 0.03 0.27 -0.09 0.07 0.33 0.03 -0.08 0.33 0.002 

Company Holiday / Vacation / Phase -0.13   -0.09        
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A.2.4. Performance Measures of VDEW SLP for Selected Subsectors 
 

Table 43: Performance measures of VDEW SLP to model real metered load data of selected subsectors. Adapted from Rüdt 
(2020, pp. 35, 37, 38, 41). 

WZ MAPE [%] 
 VDEW SLP TUB BLP De Monfort Profile 
10 122.1 74.2 148.6 
64-71 70.3 31.5 36.4 
86 13.6 6.9 9.8 
87 60.0 19.8 29.8 

 

A.2.5. Demand Side Flexibility Potentials 
 

 

Figure 64: Hourly average switchable loads and shiftable energy quantities of the accommodation subsector in a winter and 
summer week (Monday-Sunday) of the baseline scenario. Adapted from Seim et al. (2021a, p. 26) 
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A.2.6. Economic Assessment 
Table 44:  Approximation and comparison of procurement and imbalance settlement costs and revenues for the German electricity demand in Mio €, using ENTSO-E data 

ENTSO-E (Mio €) 2015 2016 2017 2018 2019 MEAN 

SL
P 

on
ly

 Initial procurement 16,224.9 14,988.4 18,087.4 23,351.6 19,535.1  

Imbalance settlement -152.7 -154.2 -209.2 -363.0 -170.1  

Total 16,072.3 14,834.2 17,878.3 22,988.6 19,365.1  

BL
P 

ap
p.

 Initial procurement 16,048.9 14,793.8 17,842.1 23,167.6 19,355.4  

Imbalance settlement -83.2 28.7 16.7 -162.6 9.0  

Total 15,965.6 14,822.4 17,858.8 23,005.0 19,364.3  

Δ 
(S

LP
 o

nl
y 

– 
BL

P 
ap

p.
) 

Initial procurement 176.1 194.6 245.3 184.0 179.7 196.0 

Imbalance settlement -69.4 -182.9 -225.9 -200.4 -179.0 -171.5 

Total 106.6 11.8 19.4 -16.4 0.7 24.4 

 

Table 45:  Approximation and comparison of procurement and imbalance settlement costs and revenues for the selected county electricity demands of the year 2017, in Thousand €. 

Counties (2017) | Thousand €  DE223 DE243 DEA1A DEA18 DEA41 DEA52 DEB32 DEB34 DEF03 DEG0N DEG01 

SL
P 

on
ly

 Initial procurement  11,689   22,459   74,973   40   60,935   83,522   23,726   18,707   32,705   7,534   40,973  

Imbalance settlement -392  -57   1,051   1   1,399  -957   33   1,280  -233  -126  -1,969  

Total  11,297   22,403   76,023   41   62,334   82,565   23,759   19,988   32,472   7,408   39,004  

BL
P 

ap
p.

 Initial procurement  11,566   21,994   73,899   39   60,049   81,926   23,347   18,643   32,274   7,475   39,931  

Imbalance settlement -307   354   2,123   2   2,219   682   407   1,348   149  -91  -876  

Total  11,260   22,349   76,022   41   62,268   82,608   23,755   19,991   32,423   7,384   39,055  

Δ 
(S

LP
 o

nl
y 

– 
BL

P 
ap

p.
) Initial procurement  123   465   1,074   0   886   1,595   379   64   432   59   1,042  

Imbalance settlement -86  -411  -1,073  -0  -820  -1,639  -375  -68  -382  -35  -1,093  

Total  37   54   2   0   66  -43   4  -4   49   24  -51  
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Table 46:  Approximation and comparison of procurement and imbalance settlement costs and revenues for the selected county electricity demands of the year 2018, in Thousand €. 

Counties (2018) | Thousand €  DE223 DEA18 DEA41 DEA51 DEB32 

SL
P 

on
ly

 Initial procurement  13,718   51   77,325   59,683   30,074  

Imbalance settlement -62   1   156  -787  -328  

Total  13,656   51   77,480   58,897   29,746  

BL
P 

ap
p.

 Initial procurement  13,616   50   76,643   59,121   29,775  

Imbalance settlement  33   1   902  -74   29  

Total  13,649   51   77,545   59,047   29,805  

Δ 
(S

LP
 o

nl
y 

– 
BL

P 
ap

p.
) Initial procurement  102   0   681   563   299  

Imbalance settlement -95  -0  -746  -713  -357  

Total  7  -0  -65  -150  -58  

 

Table 47:  Approximation and comparison of procurement and imbalance settlement costs and revenues for the selected county electricity demands of the year 2019, in Thousand €. 

Counties (2019) | Thousand €  DEA1A DEA18 DEA51 DEA52 DEB32 DEB34 DEF03 DEG0N DEG01 

SL
P 

on
ly

 Initial procurement  77,337   21   50,358   89,620   24,932   20,373   34,851   7,733   41,930  

Imbalance settlement  861   1  -70  -1,237  -34   989  -134  -91  -1,493  

Total  78,199   22   50,288   88,382   24,898   21,362   34,717   7,642   40,437  

BL
P 

ap
p.

 Initial procurement  76,607   21   49,784   88,540   24,661   20,324   34,546   7,696   41,220  

Imbalance settlement  1,673   1   617   4   279   1,041   143  -68  -710  

Total  78,280   21   50,401   88,544   24,940   21,365   34,688   7,628   40,510  

Δ 
(S

LP
 o

nl
y 

– 
BL

P 
ap

p.
) 

Initial procurement  731   0   574   1,080   271   49   305   37   709  

Imbalance settlement -812  -0  -687  -1,241  -312  -52  -276  -22  -783  

Total -81   0  -113  -161  -41  -3   28   15  -73  
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