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We propose a concept to generate and stabilize diverse partial synchronization patterns (phase
clusters) in adaptive networks which are widespread in neuro- and social sciences, as well as biology,
engineering, and other disciplines. We show by theoretical analysis and computer simulations that
multiplexing in a multilayer network with symmetry can induce various stable phase cluster states
in a situation where they are not stable or do not even exist in the single layer. Further, we develop
a method for the analysis of Laplacian matrices of multiplex networks which allows for insight into
the spectral structure of these networks enabling a reduction to the stability problem of single layers.
We employ the multiplex decomposition to provide analytic results for the stability of the multilayer
patterns. As local dynamics we use the paradigmatic Kuramoto phase oscillator, which is a simple
generic model and has been successfully applied in the modeling of synchronization phenomena in
a wide range of natural and technological systems.

Complex networks are an ubiquitous paradigm in na-
ture and technology, with a wide field of applications
ranging from physics, chemistry, biology, neuroscience,
to engineering and socio-economic systems. Of particu-
lar interest are adaptive networks, where the connectivity
changes in time, for instance, the synaptic connections
between neurons are adapted depending on the relative
timing of neuronal spiking [1–5]. Similarly, chemical sys-
tems have been reported [6], where the reaction rates
adapt dynamically depending on the variables of the sys-
tem. Activity-dependent plasticity is also common in
epidemics [7] and in biological or social systems [8]. Syn-
chronization is an important feature of the dynamics in
networks of coupled nonlinear oscillators [9–13]. Vari-
ous synchronization patterns are known, like cluster syn-
chronization where the network splits into groups of syn-
chronous elements [14], or partial synchronization pat-
terns like chimera states where the system splits into co-
existing domains of coherent (synchronized) and incoher-
ent (desynchronized) states [15–17]. These patterns were
also explored in adaptive networks [18–33]. Furthermore,
adapting the network topology has also successfully been
used to control cluster synchronization in delay-coupled
networks [34].

Another focus of recent research in network science are
multilayer networks, which are systems interconnected
through different types of links [35–38]. A prominent
example are social networks which can be described as
groups of people with different patterns of contacts or
interactions between them [39–41]. Other applications
are communication, supply, and transportation networks,
for instance power grids, subway networks, or airtraffic
networks [42]. In neuroscience, multilayer networks rep-
resent for instance neurons in different areas of the brain,
neurons connected either by a chemical link or by an elec-
trical synapsis, or the modular connectivity structure of
brain regions [43–51]. A special case of multilayer net-
works are multiplex topologies, where each layer contains

the same set of nodes, and only pairwise connections be-
tween corresponding nodes from neighbouring layers ex-
ist [52–71].

In spite of the lively interest in the topic of adaptive
networks, little is known about the interplay of adap-
tively coupled groups of networks [25, 72, 73]. Such
adaptive multilayer or multiplex networks appear nat-
urally in neuronal networks, e.g., in interacting neuron
populations with plastic synapses but different plasticity
rules within each population [74, 75], or affected by dif-
ferent mechanisms of plasticity [76], or the transport of
metabolic resources [77]. Beyond brain networks, coex-
isting forms of (meta)plasticity are investigated in neuro-
inspired devices to develop artificially intelligent learning
circuitry [78].

In this Letter we show that a plethora of novel pat-
terns can be generated by multiplexing adaptive net-
works. In particular, partial synchronization patterns
like phase clusters and more complex cluster states which
are unstable in the corresponding monoplex network can
be stabilized, or even states which do not exist in the
single-layer case for the parameters chosen, can be born
by multiplexing. Thus our aim is to provide fundamental
insight into the combined action of adaptivity and multi-
plex topologies. Hereby we elucidate the delicate balance
of adaptation and multiplexing which is a feature of many
real-world networks even beyond neuroscience [79–82].
As local dynamics we use the paradigmatic Kuramoto
phase oscillator model, which is a simple generic model
and has been successfully applied in the modeling of syn-
chronization phenomena in a wide range of natural and
technological systems [13].

A general multiplex network with L layers each con-
sisting of N identical adaptively coupled phase oscillators
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is described by

φ̇µi = ω − 1

N

N∑
j=1

κµij sin(φµi − φ
µ
j + αµµ)

−
L∑

ν=1,ν 6=µ

σµν sin(φµi − φ
ν
i + αµν), (1)

κ̇µij = −ε
(
κµij + sin(φµi − φ

µ
j + βµ)

)
,

where φµi ∈ [0, 2π) represents the phase of the ith oscil-
lator (i = 1, . . . , N) in the µth layer (µ = 1, . . . , L), and
ω is the natural frequency. The interaction between the
oscillators within each layer is determined adaptively by
the intra-layer coupling weights κµij ∈ [−1, 1], whereas be-
tween the layers the inter-layer coupling weights σµν ≥ 0
are fixed. The parameters αµν are the phase lags of the
interaction [83]. The adaptation rate 0 < ε � 1 sep-
arates the time scales of the slow dynamics of the cou-
pling weights and the fast dynamics of the oscillatory
system. The phase lag parameter βµ of the adaptation
function sin(φµi − φµj + βµ), also called plasticity rule
in the neuroscience terminology [18], describes different
rules that may occur in neuronal networks. For instance,
for βµ = −

(+)π/2, an (anti-) Hebbian-like rule [84–86] is
obtained where the coupling κij increases (decreases)
between any two systems with close-by phases [87]. If
β = 0, the link κij will be strengthened if the ith oscil-
lator is advancing the jth. Such a relationship is typi-
cal for spike-timing dependent plasticity in neuroscience
[3, 5, 88, 89].

Let us note important properties of our model (1),
which has been widely used as a paradigmatic model for
adaptive networks [18–30] and generalizes the Kuramoto-
Sakaguchi model with fixed coupling topology [90–94].
First, ω can be set to zero without loss of gener-
ality due to the shift-symmetry of Eq. (1), i.e., con-
sidering the co-rotating frame φ → φ + ωt. More-
over, due to the existence of the attracting region
G ≡

{(
φµi , κ

µ
ij

)
: φµi ∈ (0, 2π], |κµij | ≤ 1, i, j = 1, . . . , N,

µ = 1, . . . , L}, one can restrict the range of the coupling
weights to the interval −1 ≤ κij ≤ 1 [23]. Finally, based
on the parameter symmetries of the model

(α,β,φ,κ) 7→ (−α, π − β,−φ,κ),

(αµµ, βµ, φµi , κ
µ
ij) 7→ (αµµ + π, βµ + π, φµi ,−κ

µ
ij),

where α,β,φ,κ abbreviate the whole set of variables and
parameters, it is sufficient to analyze the system within
the parameter region α11 ∈ [0, π/2), αµµ ∈ [0, π) (µ 6= 1),
αµν ∈ [0, 2π) (µ 6= ν) and βµ ∈ [−π, π).

Before we consider multiple layers, we suggest that
each solution of Eq. (1) for L = 1, 2 is called a mono-
plex or duplex state, respectively. Already for a sin-
gle layer, Eq. (1) possesses a huge variety of dynam-
ical (monoplex) states such as multiclusters with re-
spect to frequency synchronization, chaotic attractors,

and chimera-like states, which have been studied numer-
ically and analytically [18–23]. In particular, it has been
shown that starting from uniformly distributed random
initial condition φi ∈ [0, 2π), κij ∈ [−1, 1] the system
can reach different frequency multicluster states with hi-
erarchical structure depending on the parameters α and
β. The frequency multiclusters in turn consist of several
one-clusters which determine the existence and stability
of the former [24]. Therefore, these one-cluster states
(with identical frequency, but different phase distribu-
tions) constitute the building blocks of adaptively cou-
pled phase oscillators, and their generalization to the
multiplex case will be in the focus of this Letter. The
reason for this focus is that one-cluster states, which are
analytically very well understood, are building blocks for
more complex dynamical states. Chimera-like states as
they were studied in [23, 25] exist close to the borders of
these states, so the existence and stability of one-clusters
may pave the way for observing those hybrid patterns.

In general, one-cluster states are given by equilibria
relative to a co-rotating frame [22]

φµi = Ωt+ aµi ,

κµij = − sin(aµi − a
µ
j + βµ),

(2)

with collective frequency Ω and relative phases aµi .
Hence the second moment order parameter R2(aµ) =
1
N

∣∣∣∑N
j=1 e

i2aµj

∣∣∣ with aµ ≡ (aµ1 , . . . , a
µ
N )T can be used as

a characteristic measure. In the case of monoplex sys-
tems (L = 1), three types of solutions exist (see Fig. 1)
which are characterized by corresponding frequencies Ω
as a function of (α11, β1) [22]: (a) Ω = cos(α11 − β1)/2
if R2(a1) = 0 (Splay state), (b) Ω = sinα11 sinβ1 if
R2(a1) = 1 with a1i ∈ {0, π} (Antipodal state), (c)
Ω = cos(α11−β1)/2−R2(a) cos(ψQ)/2 if 0 < R2(a1) < 1
with a1i ∈ {0, π, ψQ, ψQ + π} (Double antipodal state)
with ψQ being the unique solution (modulo 2π) of

(1− q) sin(ψQ − α11 − β1) = q sin(ψQ + α11 + β1), (3)

where q = Q/N and Q ∈ {1, . . . , N − 1} denotes the
number of relative phases a1i ∈ {0, π}. Here, splay states
are defined in a more general sense by R2(a1) = 0, which
includes the states a1i = 2πi/N usually referred to as
splay state [95].

Let us now consider these one-cluster states in multi-
plex structures. Therefore, we introduce the notion of
lifted one-cluster states, where in each layer the state
(φµi (t), κµij(t)) is a monoplex one-cluster, i.e., the phases
aµi of the oscillators are of splay, antipodal, or double an-
tipodal type which solves Eq. (3). It can be shown [102]
that in duplex systems (L = 2) the phase difference of os-
cillators between the layers ∆a ≡ a1i − a2i takes only two
values and solves ∆Ω = σ12 sin(∆a+α12)+σ21 sin(∆a−
α21), where ∆Ω ≡ Ω(α11, β1)−Ω(α22, β2) is given above
for the three different one-cluster states (splay, antipo-
dal, double antipodal). Figure 2 displays lifted states of
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FIG. 1. Illustration of the three types of monoplex one-cluster
states of Eq. (2) (L = 1) for an ensemble of 10 oscillators
(green circles) with frequencies Ω (upper panels) and coupling
structure with weights κij (lower panels): One-cluster (a) of
splay type (R2(a) = 0), (b) of antipodal type (R2(a) = 1),
and (c) of double antipodal type with Q = 7. Parameters:
α = 0.1π, β = 0.1π

splay (a), antipodal (b), and splay type (d). The phase
distributions in both layers are the same but shifted by
the constant value ∆a in agreement with the above equa-
tion. In contrast to the lifted states, Fig. 2(c) shows an-
other possible one-cluster for the duplex network. Due
to the interaction of the two layers we can find a phase
distribution which is of double antipodal type in each
layer but not a lifted state since neither ψ1 nor ψ2 solve
Eq. (3) for Q = 30. This means that these states are
born by the duplex set-up. Moreover, in contrast to the
other examples the phase distribution between the layers
does not agree, ψ1 6= ψ2. For the monoplex case, it has
been shown that double antipodal states are unstable for
any set of parameters [24]. Hence, finding stable dou-
ble antipodal states which interact through the duplex
structure is unexpected.

For more insight into the birth of phase-locked states
by multiplexing, Fig. 3 displays the emergence of double
antipodal states in a parameter regime where they do not
exist in single-layer networks. They are characterized by
the second moment order parameter R2. It is remark-
able that the new double antipodal state can be found for
a wide range of the inter-layer coupling strength larger
than a certain critical value σc, and is clearly different
from those of the monoplex. Moreover, these states are
even robust for inhomogeneous natural frequencies [102].
Below the critical value σc, the double antipodal states
are no longer stable, and more complex temporal dynam-
ics occurs which causes temporal changes in R2. This
leads to non-vanishing temporal variance indicated by
the error bars in Fig. 3.

In the following we show how the dynamics in a neigh-
borhood of theses states can be lifted as well, i.e., we in-
vestigate their local stability. The linearization of Eq. (1)
around the one-cluster states described by Eq. (2) is ex-
emplified for antipodal states but can be generalized to
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FIG. 2. Different duplex states of Eq. (2) (L = 2) for an
ensemble of 50 oscillators in each layer with color-coded cou-
pling weights κµij (upper panels, color code as in Fig.1), phases
φµj (lower panels): Duplex one-cluster states (a) of lifted

splay type (R2(aµ) = 0) for α12/21 = 0.3π, σ12/21 = 0.07;
(b) of lifted antipodal type (R2(aµ) = 1) for α12 = 0.3π,

α21 = 0.75π, σ12/21 = 0.62; (c) of double antidodal type (not

a lifted state) for α12/21 = 0.05π, σ12/21 = 0.28; (d) of lifted

splay type for α12 = 0.3π, α21 = 0.4π, σ12/21 = 0.8, and
ε = 0.01. In the lower panels phase differences between the
two layers are indicated by ∆a ≡ a1i − a2i , and between the
two new antipodal states (c) by ψ1, ψ2.

the other states as well:

˙δφ
µ

i =
1

N

N∑
j=1

[
sin(∆a+ βµ) cos(∆a+ αµµ)∆µµ

ij δφ−

sin(∆a+ αµµ)δκµij
]
−

M∑
ν=1

σµν cos(∆a+ αµν)∆µν
ij δφ,

˙δκ
µ

ij = −ε
(
δκµij + cos(∆a+ βµ)∆µµ

ij δφ
)

(4)

where ∆µν
ij δφ ≡ δφ

µ
i − δφνj .

In duplex networks, the coupling structure is given by
a 2×2 block matrix M with the N ×N unity matrix IN :

M =

(
A m · IN

n · IN B

)
. (5)

If A and B are diagonalizable N × N matrices which
commute (m,n ∈ R, n 6= 0), the following relation for
the characteristic polynomial can be proven [102] using
Schur’s decomposition [96, 97]:

µ2 − ((dA)i + (dB)i)µ+ (dA)i(dB)i −mn = 0 (6)

where (dA)i and (dB)i are the diagonal elements of the
corresponding diagonal matrices ofA andB, respectively.
Note that Eq. (6) not only simplifies the calculation for
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FIG. 3. Birth of double antipodal state in a duplex network
(N = 12) for a wide range of inter-layer coupling strength
σ = σ12 = σ21. The solid lines are the temporal averages
for the second moment order parameter R2 of the individual
layers (layer 1: black, layer 2: red). The error bars for σ < σc
denote the standard deviation of the temporal evolution of
R2. The dashed horizontal lines represent the unique values
of R2 for the double antipodal state in a monoplex network.
The plot was obtained by adiabatic continuation of a duplex
double antipodal state (see inset) in both directions starting

from σ = 0.5. Parameters: α11/22 = 0.3π, α12/21 = 0.05,
β1 = 0.1π, β2 = −0.95π, and ε = 0.01.

the eigenvalues in the case of a duplex structure, more-
over, it is a general result on linear dynamical systems on
duplex networks. Therefore, this result is important for
the investigation of stability and symmetry in multiplex
networks.

In the case of a duplex antipodal one-cluster state
Eq. (1) with a1i ∈ {0, π} and a2i = a1i − ∆a,
Eq. (4) can be brought to the form (5) and pos-
sesses the following set of Lyapunov exponents S =
{−ε, (λi,1, λi,2, λi,3, λi,4)i=1,...,N} where λi,1,...,4 are the
solutions of polynomials containing the eigenvalues of the
monoplex system [102].

Thus, the stability analysis of the duplex system is
reduced to that of the monoplex case. We are able to
analyze the stabilizing and destabilizing features of a du-
plex network numerically and analytically. To illustrate
the effect of multiplexing, the interaction between two
clusters of antipodal type is presented in Fig. 4. The sta-
bility of these states is determined by integrating Eq. (1)
numerically starting with a slightly perturbed lifted an-
tipodal state. The states are stable if the numerical tra-
jectory is approaching the lifted antipodal state. Oth-
erwise, the state is considered as unstable. The black
contour lines in Fig. 4 show the borders of the stability
regions in dependence of the coupling strength σ21, as
calculated from the Lyapunov exponents. The borders
are in remarkable agreement with the numerical results.

In Figure 4, the parameters for the first layer α11, β1

are chosen such that the antipodal state is stable without
inter-layer coupling. The stability of the duplex antipo-
dal states is displayed in the (α22, β2) parameter plane for
several values of the inter-layer coupling σ21 (the stabil-

σ21σ12 = 0.3σ12 = 0

β2/π β2/π

α
2
2
/
π

(a) (b)

FIG. 4. Regions of stability (blue) and instability (white)
of the lifted antipodal state in the (α22, β2) parameter plane
for different values of interlayer coupling (indicated by differ-
ent blue shading) σ21, where regions of stronger coupling σ21

(lighter blue) include such of weaker σ21 (darker blue). Stabil-
ity regions for single-layer antipodal clusters are indicated by
red hatched areas. The inter-layer coupling is considered as
(a) unidirectional (σ12 = 0) and (b) bidirectional (σ12 = σ21).
Parameters: α11 = 0.2π, β1 = −0.8π, α12 = 0, α21 = 0.3π,
and ε = 0.01.

ity regions for smaller values of σ21 are always contained
in regions of larger ones). To compare the effects of the
duplex network with the mono-layer case, the stability
regions for monoplex antipodals states are displayed as
red hatched areas. They are markedly different. In Fig-
ure 4(a), the two layers are connected unidirectionally
(σ12 = 0). It can be seen that with increasing inter-layer
coupling weight σ21 the region of stability for the lifted
antipodal state also grows. Already for small values of
the inter-layer couplings σ21, a stabilizing effect of the
duplex network can be noticed. For σ = 0.1 there exist
already regions for which the duplex antipodal state is
stable but the corresponding monoplex state would not
be stable. The opposite effect is found as well where the
duplex network destabilizes a lifted state. Figure 4(b)
shows the results for two layers with bidirectional cou-
pling. Here, the duplex structure can have stabilizing and
destabilizing effects. Further, for the bidirectional cou-
pling we also notice a growth of the stability region with
increasing σ21 similar to the unidirectional case. How-
ever, the regions of stability grow at different rates in de-
pendence on σ21 and non-monotonically with respect to
the parameters α22, β2. Comparing the size of the stabil-
ity region for both cases, one can see that for small values
of σ21 the region for bidirectional coupling is larger. In
turn, for higher inter-layer coupling, the regions for the
unidirectional case are larger.

In conclusion, we have proposed a concept to induce
diverse partial synchronization patterns (phase clusters)
in adaptively coupled phase oscillator networks. While
adaptive networks have recently attracted a lot of atten-
tion in the fields of neuro- and social sciences, biology,
engineering, and other disciplines, and multilayer net-
works are a paradigm for real-world complex networks,
little has been known about the interplay of multilayer
structures and adaptivity. We have aimed to fill this gap
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within a rigorous framework of theoretical analysis and
computer simulations. We have shown that multiplex-
ing in a multilayer with symmetry can induce various
stable phase cluster states like splay states, antipodal
states, and double antipodal states, in a situation where
they are not stable or do not even exist in the single
layer. Further, we have developed a novel method for
analysis of Laplacian matrices of duplex networks which
allows for insight into the spectral structure of these net-
works, and can easily be generalized to more than two
layers [102]. This new approach of multiplex decompo-
sition has a broad range of applications to physical, bio-
logical, socio-economic, and technological systems, rang-
ing from plasticity in neurodynamics or the dynamics
of linear diffusive systems [98, 99] to generalizations of
the master stability approach [100, 101] for adaptive net-
works [102]. We have used the multiplex decomposition
to provide analytic results for the stability of lifted states
in the multilayer system. As local dynamics we have
used the paradigmatic Kuramoto phase oscillator model,
supplemented by adaptivity of the link strengths with a
phase lag parameter which can model a whole range of
adaptivity rules from Hebbian via spike-timing depen-
dent plasticity to anti-Hebbian.
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[1] H. Markram, J. Lübke, and B. Sakmann, Science 275,
213 (1997).

[2] L. F. Abbott and S. Nelson, Nat. Neurosci. 3, 1178
(2000).

[3] N. Caporale and Y. Dan, Annu. Rev. Neurosci. 31, 25
(2008).

[4] C. Meisel and T. Gross, Phys. Rev. E 80, 061917 (2009).
[5] L. Lücken, O. Popovych, P. Tass, and S. Yanchuk, Phys.

Rev. E 93, 032210 (2016).
[6] S. Jain and S. Krishna, Proc. Natl. Acad. Sci. 98, 543

(2001).
[7] T. Gross, C. J. D. D’Lima, and B. Blasius, Phys. Rev.

Lett. 96, 208701 (2006).
[8] T. Gross and B. Blasius, J. R. Soc. Interface 5, 259

(2008).
[9] A. Pikovsky, M. G. Rosenblum, and J. Kurths, Syn-

chronization: a universal concept in nonlinear sciences
(Cambridge University Press, Cambridge, 2001).

[10] S. H. Strogatz, Nature 410, 268 (2001).
[11] R. Albert and A. L. Barabási, Rev. Mod. Phys. 74, 47

(2002).
[12] M. E. J. Newman, SIAM Review 45, 167 (2003).
[13] S. Boccaletti, A. N. Pisarchik, C. I. del Genio, and

A. Amann, Synchronization: From Coupled Systems to
Complex Networks (Cambridge University Press, Cam-

bridge, 2018).
[14] T. Dahms, J. Lehnert, and E. Schöll, Phys. Rev. E 86,
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J. Gómez-Gardeñes, M. Romance, I. Sendiña Nadal,
Z. Wang, and M. Zanin, Phys. Rep. 544, 1 (2014).
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Claussen, and E. Schöll, EPL 126, 50007 (2019).

[48] A. Ashourvan, Q. K. Telesford, T. Verstynen, J. M. Vet-
tel, and D. S. Bassett, PLoS One 14, e0215520 (2019).
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