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Abstract

Heat conduction close-to-Fourier means that we look for a minimal ex-
tension of heat conduction theory using the usual Fourier expression of the
heat flux density and modifying that of the internal energy as minimally as
possible by choosing the minimal state space. Applying Liu’s procedure re-
sults in the class of materials and a differential equation both belonging to
the close-to-Fourier case of heat conduction.

1. Introduction

As is well-known, one of other shortcomings of the classical Fourier heat
conduction theory is caused by a parabolic differential equation which allows
indefinite propagation of energy. This unphysical fact can be avoided if the
parabolic heat conduction equation is replaced by an hyperbolic one [1-4].
Here the question is investigated whether a minimal change in Fourier heat
conduction results in an hyperbolic differential equation of first order in time.

By use of Fourier’s expression for the heat flux density and the minimal state
space spanned by the temperature and its gradient, Liu’s procedure is applied
for exploiting the second law systematically. The Liu procedure results in
coupled differential equations for the specific internal energy, the specific en-
tropy, the heat flux density, and the entropy flux density. One result is that
the internal energy and the entropy depend on only one variable, which is a
state function and which transforms to the thermostatic temperature in the

J. Non-Equilib. Thermodyn. - 2005 - Vol. 30 - No. 4

©C ight 2005 Walter de Gruyter - Berlin - New York. DOI 10.1515/INETDY.2005.026. .
Opyrg atter de Ltuyter- Bertin - New Orgere%gestel?tvénl\{Erechn|sc?1e(8n|ver5|tat Berlin

Angemeldet
Heruntergeladen am | 15.10.18 18:55



376 W. Muschik et al.

thermostatic limit. Another result is that a hyperbolic heat conduction equa-
tion is compatible with the Fourier expression for the heat flux density.

2. The balances

In solids of constant mass density o, an observer exists for which the field of
velocity v vanishes:

o=const, v=0. (1)

Consequently, the balance equations of the specific internal energy ¢ and the
specific entropy s result in

00+V-q=0, 00;s+V-®=02>0. (2)
Here ¢ is the heat flux density, @ the entropy flux density, and o is the en-
tropy production density. The inequality in (2), characterizes the second law

of thermodynamics. As minimal possible state space, we choose that which is
spanned by the temperature T and its gradient VT

— (T, VT). (3)

Using the chain rule for calculating the derivatives in the balance equations
(2), we obtain the so-called balances on the state space [5]:

0O O 0q oq
0s s oD oD
g[ﬁ OT + o 6,VT] +op VT4 oo VT =0 (5)

The higher derivatives belonging to the state space (3) are

Using them, the balance equations on the state space (4) und (5) can be
written down in matrix formulation:

oe oe 0 0
O

or °ovr ovr T
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°r °ovT VT ot VT (8)

< 0s 0s oD > oD
-y =
oT

This inequality, named dissipation inequality, has to be exploited by taking
into account the energy balance (7). This will be done in the next section.

3. The Liu procedure

For exploiting the balance equations with respect to the second law, we apply
Liu’s well-known procedure [6—8]. This procedure is based on the following
theorem:

If

A-y=C, B-y>D, A(z),B(z),C(z),D(z) 9)
are the balance equations and the dissipation inequality in matrix formula-
tion, a state space function A(z) exists which satisfies the so-called Liu equa-
tions and the residual inequality

A-A=B, A-C=D. (10)
The higher derivatives y (6) are eliminated by the Liu procedure.

According to (7) and (8), in our case a comparison with (9) results in

O O oq '\ _ oq ~

<Qﬁ eovT 8VT>:A’ e VT=6 (1
0s 0s oD 160

(Qﬁ eovT aVT>=  Tap VIED (12)

Using (11) and (12), we obtain the Liu equations and the residual inequality
(10).

In our case, the Liu equations run as follows:

/I,Q@: s i_&s/@T_<ds> ’ (13)
VT

or — o1 " T dejoT ~ \de
oe os
ONT T ONT (14)
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oq oD
oVT  oVT' (13)

The residual inequality is

oq oD 0 04
_ga_T.VTZ_a_T.VTHa—T(/lq—(D)-VTS a—Tq-VT. (16)

Liu’s equations and the residual inequality represent constraints for the par-
tial derivatives of the constitutive mappings &, s, ¢, and ®@.

From (13) and (14) we obtain

10,8 = dss, (17)
and from (15) and (16),

N - gq<V-®— —q-VASV.- (D - Jq). (18)

From (13) and (14), the second derivatives result in

0%s 0 e 0 e
ONTOT ~ VT (J“a_T) T oT (’1 aw)’ (19)
e 0 (las\_ a (1 os 20)
ONTOT VT \AoT) 0T \AovT)'

Consequently, we obtain from the second equations by straightforward
calculation

0L 0Oe 0L O¢

ONT 0T _ oT VT’ (21)

a(1/2) os _o(1/2) as
oVT 0T 0T oVT' (22)

The differential of the internal energy follows by the choice of the state space
(3) as:

de = 28 ar 4 98y = 9 gy 08 4V

o7 T T o1 ToT aijer (23)
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Here, the second equation comes out by inserting (21). From (23) follows

a0 oe |04 oA oe

and therefore

_ 0dg/oT
= 92joT

de di. (25)

Totally analogous, (22) results in

a1/ = ST 4 (26)

0s/0T
=73 = oijoT

(1/4)/0T

By (25) and (26), we obtain that the internal energy and the entropy depend
on only one variable, which is a state function:

e=¢eMT,VT)), s=s(AT,VT)). (27)

This result cannot be derived for the heat flux density and the entropy flux
density, because the equation analogous to (13) does not exist and is replaced
by the inequality (16). Thus we obtain from (13) and (14) the relation

oe 0s 0
a_ﬁ—w_a(ls—s). (28)

The influence of the constraints on the constitutive mappings by the Liu
equations and the residual inequality is investigated in the next section.

4. Close-to-Fourier constitutive equations

In the frame of the chosen state space (3), we assume for the heat flux density
and for the rate of the specific internal energy

q=—x(x)VT, (29)
0 = C(2)0,T + B(z)VT - 0,VT. (30)
From the last equation we get
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_ Oe(z)  Oe 0
C) =77 =337 (31)
_ 0Oe(z) 0O 04

B(z)VT = NT 2L VT (32)

A relation follows from both the last equations for B and C, namely
04/oVT

BVT*C&A/&T' (33)

Inserting this into (30), we obtain
04/0VT

Using the Liu equations (13) to (15) and the dissipation inequality (16), the
partial derivatives of s and @ satisfy

os  0s 04 0s os 04
T aan Y wromwr BV (35)
8111 0K oD 0K

5. Close-to-Fourier heat conduction equation

Inserting the constitutive equations (29) and (30) into the balance of energy
(2);, we obtain a close-to-Fourier heat conduction equation as follows:

0o(Co, T + BVT - 0,VT) zg—VT VT—I—@aV—TVT VVT +kV-VT (37)

This heat conduction equation is of first order in time, a fact which is essen-
tial for the initial conditions. Dependent on the values of its coefficients, this
differential equation is parabolic or hyperbolic. This demonstrates that the
ansatz (29) allows hyperbolic heat conduction if the expression for the in-
ternal energy, modified by (30), is chosen according to the minimal state
space (3). If B=0, (37) becomes parabolic according to usual Fourier heat
conduction.
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6. Thermostatic limit

The state space function A, which is the only variable that the internal energy
¢ and the entropy s depend on, is defined in (13),. If we introduce the thermo-
static definition of the temperature by

os/oT ds o1
0e/0T (%)VT =7=h (%)

we obtain the thermostatic limit, which is discussed in the sequel.

In this case,

— =0 (39)

—= =0, — =0. (40)

Using (31) and (32), we obtain

C=C(T), B=0, (41)
and (38) becomes parabolic, and because of (17)

0.6 = T0,s (42)

is valid. From (15) follows

O:WLT((D—%>—>(D:%+k(T). (43)

The inequalities (16), and (18), become in the thermostatic limit

0 q 1
vi(o-2)s L, vr (45)
)= 1
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Hence, from (44) and (43) follows

ok 1

Because of the inequality, we have a common change of the sign of both the
factors:

ok 1
VTzOHa—T:ﬁq:()Hk:const. (47)

Here (29) was considered. Therefore, we obtain from (46)
—q-VT >0 — k(z) > 0. (48)

The constant in (47); is zero if the entropy flux density vanishes together
with the heat flux density, an assumption which cannot be derived by Liu’s
procedure.

7. Summary

Close-to-Fourier heat conduction is characterized by two items: choice of a
minimal state space and choice of Fourier’s ansatz for the heat flux density.
By Liu’s procedure, we obtain a close-to-Fourier heat conduction equation
which is hyperbolic and parabolic in the thermostatic limit. This result
demonstrates that close-to-Fourier heat conduction is hyperbolic beyond the
thermostatic limit, thus avoiding one of the shortcomings of Fourier heat
conduction.
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