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The functioning of microbial ecosystems has important consequences from global climate to human health, but quantitative
mechanistic understanding remains elusive. The components of microbial ecosystems can now be observed at high resolution, but
interactions still have to be inferred e.g., a time-series may show a bloom of bacteria X followed by virus Y suggesting they interact.
Existing inference approaches are mostly empirical, like correlation networks, which are not mechanistically constrained and do not
provide quantitative mass fluxes, and thus have limited utility. We developed an inference method, where a mechanistic model
with hundreds of species and thousands of parameters is calibrated to time series data. The large scale, nonlinearity and feedbacks
pose a challenging optimization problem, which is overcome using a novel procedure that mimics natural speciation or
diversification e.g., stepwise increase of bacteria species. The method allows for curation using species-level information from e.g.,
physiological experiments or genome sequences. The product is a mass-balancing, mechanistically-constrained, quantitative
representation of the ecosystem. We apply the method to characterize phytoplankton—heterotrophic bacteria interactions via
dissolved organic matter in a marine system. The resulting model predicts quantitative fluxes for each interaction and time point
(e.g., 0.16 µmolC/L/d of chrysolaminarin to Polaribacter on April 16, 2009). At the system level, the flux network shows a strong
correlation between the abundance of bacteria species and their carbon flux during blooms, with copiotrophs being relatively more
important than oligotrophs. However, oligotrophs, like SAR11, are unexpectedly high carbon processors for weeks into blooms, due
to their higher biomass. The fraction of exudates (vs. grazing/death products) in the DOM pool decreases during blooms, and they
are preferentially consumed by oligotrophs. In addition, functional similarity of phytoplankton i.e., what they produce, decouples
their association with heterotrophs. The methodology is applicable to other microbial ecosystems, like human microbiome or
wastewater treatment plants.
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INTRODUCTION
Microbes are members and affect the functioning of many
ecosystems, from the human gut to the global ocean, with
important implications for health and climate. Components of
these complex, diverse and dynamic systems, e.g., microbes and
substrates, can be observed at high resolution using modern
technologies [1–4]. However, a critical step towards a quantitative
understanding is to also characterize interactions, i.e., how mass
moves through these ecological networks. What species or
functional groups (e.g., oligotrophs, copiotrophs) process carbon
and how does this change over time? Is the association between
producers and consumers conserved/static or decoupled/
dynamic? For mass fluxes, observations are still limited to few
samples, and bulk ecological compartments or select types [5–7].
Consequently, interactions have to be inferred from observations
of components, like time series data.
Past approaches to infer interactions from microbial time series

data have been mostly empirical, including principal component
analysis (PCA), non-metric multidimensional scaling (NMDS),
empirical dynamic modeling (EDM) and various regression and
correlation analyses [1–3, 8–11]. Those methods may consider

time lags and local interactions (i.e. considering only a subset of
the time series) [2, 10], and interactions inferred from those
methods can be depicted using association or interaction
networks. Past examples include phage—cyanobacteria geno-
types [2], DOM species—bacteria genotypes [1], ciliate morpho-
types—phytoplankton genera [12], and lake bacteria -
phytoplankton—environmental factor [10] interactions. These
empirical methods can point to possible interactions, but results
can be difficult to interpret mechanistically (e.g., virus-virus
interaction) and are not quantitative (e.g., do not provide carbon
flux between species). These shortcomings limit the utility of
empirical methods to develop a quantitative mechanistic under-
standing of microbial ecosystems.
Mechanistic models describe the time evolution of components

using differential mass balance equations that include specific
interaction terms, like exudation of dissolved organic matter
(DOM) by phytoplankton and assimilation by heterotrophic
bacteria (hereafter bacteria). Parameters, like half-saturation
constants, can be calibrated to observations using numerical
optimization routines, but past applications have been limited to
few components [13, 14]. One concern with larger models is
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parameter uncertainty, which may lead to getting the “right
answer for the wrong reason”, although there are counter-
arguments [15, 16].
Here we propose that, in the context of flux inference (vs.

prediction), even a model that gets “the right answer for the
wrong reason” may be useful. On the one hand, if the model
overestimates the gain and loss of some species it may still match
the concentration data, but it would overestimate the flux, which
would be a problem. On the other hand, if the model over-
estimates temperature limitation and underestimates light limita-
tion, it may still get the right growth rate and flux. This would be a
problem for prediction (i.e., climate change), but not for flux
inference. Furthermore, we propose that a mechanistic model,
because it is mass-balancing and mechanistically constrained, is
less likely to produce the “right answer for the wrong reason” than
an empirical correlation analysis.
We developed a method to generate a dynamic carbon flux

network based on mechanisms, and informed by general and
species-level literature data (FluxNet), and applied it to a marine
time series of phytoplankton, organic matter and bacteria. The
result is a mass-balancing, mechanistically-constrained, quantita-
tive representation of the ecosystem. Analysis of this network
provides insights into carbon processing of individual members
and groups (i.e., oligotrophs) and associations between phyto-
plankton producers and bacteria consumers.

RESULTS AND DISCUSSION
Overview of the FluxNet method
The FluxNet approach is based on a mechanistic model, which
includes multiple species/types of phytoplankton, bacteria,
dissolved and particulate organic matter (DOM, POM), inorganic
nutrients, micronutrients and inhibitors (see Table 1). For
phytoplankton—bacteria carbon flux, which is the focus here,
phytoplankton produce organic carbon by exudation and death.
For exudation, living phytoplankton produce total DOM at
constant and photosynthesis-proportional rates (ke, ef), with a
composition defined by an exudation fraction (Fe) for each DOM
species. These parameters vary by phytoplankton type. For
example, for green algae (gre), the constant exudation rate is
kegre and the fraction of glucose-containing HMW DOM (gl2) is
Fegre,gl2. For one phytoplankton type the total DOM production
varies in time with the photosynthesis rate, but the composition is
constant. Phytoplankton die by a general death function and
inhibition. The death function is time-variable (a bell-shaped
function with a maximum at a specific time of year) and does not
differentiate between various death mechanisms like zooplankton
grazing or viral lysis, but presumably it represents mostly grazing
in this case. Upon death, the phytoplankton biomass is converted
to POM and DOM, where e.g., the content of chrysolaminarin (chr)
for the diatom Rhizosolenia styliformis (rst) is defined by a
composition fraction (Fxrst,chr). POM dissolves to DOM at a first-
order rate. Bacteria consume DOM using Monod-level kinetics,
where e.g. the affinity for Polaribacter (pol) for chrysolaminarin is
defined by a half-saturation constant (Kshpol,chr).
The novel aspect is the upscaling to hundreds of state variables

and thousands of parameters, which is accompanied by several
conceptual and practical modeling challenges. To balance mass
and account for the action of unobserved components, cryptic or
hypothetical species are included [17], like DOM types d01-d15,
which may represent e.g., threonine [18]. To simulate a diverse
community with a smaller number of drivers (“paradox of the
plankton”) and control chaos, interaction via micronutrients and
inhibitors, as well as dormancy is included [19–22]. Parameters are
optimized/calibrated to minimize the discrepancy between the
model and observations. Which parameters are optimized and the
corresponding ranges is based on available information (complete
model equations and parameters are in Table S1–S25). For

example, the constant DOM production rate (ke) is optimized for
all phytoplankton, with a range adopted from a previous
modeling study [23]. For rst (Rhizosolenia styliformis), the exudation
fractions for most DOM components, like the cryptic species d01
(Ferst,d01), are optimized. Others, like glucose-containing HMW
DOM (Ferst,gl2), are fixed based on literature (Table S14). The
optimization is challenging because of the many components,
nonlinear interactions, and resulting local optima in the objective
function. We developed an optimization routine customized for
microbial ecosystems with a number of key features.
First, the method mimics natural speciation, where a coarse-

grained model is gradually de-lumped to a finer resolution, a
strategy also used in manual model development [13, 24, 25]. This
is illustrated in Fig. 1, which shows how the model starts with just
one component in each ecological compartment (Fig. 1E). This
model is optimized until a threshold is reached, and then all
species are de-lumped/split into two, followed by another round
of optimization and so on. During the course of the optimization,
with time or model runs, the number of components and
parameters increase, and the total error generally decreases,
although there can be a transient increase when new species are
introduced (Fig. 1A, B). This way the optimization routine works
with a smaller model on average and computational effort can be
directed to a smaller set of parameters corresponding to newly
introduced species, and the performance increases (Fig. 1C).
At each de-lumping level, the new species generally inherits the

parameter values (i.e., the genome [26]) from the old species.
Subsequent optimization then diversifies the population. This is
illustrated in Fig. 1C, which shows the uptake affinity of all bacteria
species for chr. However, different parameter values can also be
specified for the new species, and then they are adopted and
overwrite those inherited from the old species. This is used, for
example, to assign species-specific cell sizes or prevent species
from taking up a substrate. In Fig. 1C, those species that are not
capable of assimilating chr, like rei (Reinekea), have an affinity
equal to 0. The method thus allows for natural and automated
expansion of the model to very large scale, yet provides a way to
constrain/curate it based on available information.
Second, the routine includes multi-parameter optimization

(Nelder-Mead simplex method) on selected subsets of dependent
parameters, like those involved in the production and consump-
tion of chrysolaminarin (chr) or directly affecting the photosynth-
esis of the diatom R. styliformis (rst). Dependence between
parameters, like max. photosynthesis rate and nutrient half-
saturation constant, are explicitly considered. Also, Monte Carlo
scans are performed on selected parameter sets at various points
in the process.

Application to Helgoland time series
The FluxNet method is applied to a four-year time series at
Helgoland [27], including near-daily observations of 15 phyto-
plankton and 38 heterotrophic bacteria types (e.g., species, strains)
and various bulk and auxiliary parameters (e.g., Chlorophyll a,
DAPI, temperature, nitrate+nitrite, ammonium, phosphate, light
extinction) (Tables S19 and S20). Data from more focused studies
characterizing DOM and POM are also included [28, 29]
(Table S21).
In addition to the time-series data, the model is informed by

literature information. Model parameters, incl. general properties
like phytoplankton exudation fraction or bacteria growth effi-
ciency, are constrained based on past models and data. Also,
constraints are implemented for parameters controlling composi-
tion, exudation and utilization for the specific components
included in the model. Those were based on a literature meta-
analysis, where we searched primarily for studies with strains from
Helgoland, but included strains from other locations if necessary.
These constraints include, for example, for the phytoplankton
storage polysaccharide chrysolaminarin, the typical content (~30%
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Table 1. Model components.

Phytoplankton Bacteria

Chlorophyll a (BBE) (chl) [S] Total bacteria by DAPI (dap) [S]

Diatoms (dia) [S] EUB338-I-III, Eubacteria (eub) [S]

Diatoms—Pennales (dip) ALF968, Alphaproteobacteria (alf ) [S]

Diatoms—Centrales (dic) [S] SAR11–486, SAR11, Alphaproteobacteria (s48)

Greenalgae (gre) SAR11–441, SAR11, Alphaproteobacteria (s44)

Dinoflagellates (dif ) [S] ROS537, Roseobacter, Alphaproteobacteria (ros) [S]

Silicoflagellates (sif ) NAC11-7-1030, Nac11, Roseobacter (nac)

Coccolithophorids (coc) RCA1000, RCA/DC5, Roseobacter (rca)

Mediopyxis helysia (mhe) GAM42a, Gammaproteobacteria (gam) [S]

Chaetoceros debilis (cde) REI731, Reinekea, Gammaproteobacteria (rei)

Chaetoceros minimus (cmi) Bal731, Balneatrix, Gammaproteobacteria (bal)

Rhizosolenia styliformis (rst) OM182–707, OM182, Gammaproteobacteria (om1)

Thalassiosira nordenskioeldii (tno) NOR5–730, NOR5, Gammaproteobacteria (nor)

Dinophyceae (din) PSA184, Pseudoalteromonas,
Gammaproteobacteria (psa)

Phaeocystis (pha) ALT1413, Alteromonas, Gammaproteobacteria (alt)

Chattonella (cha) GV841, Vibrio, Gammaproteobacteria (gv8)

Cryptic: (dix), (dxf), (ph1) SAR92–627, SAR92, Gammaproteobacteria (s92)

SAR86–1245, SAR86, Gammaproteobacteria (s86)

POM and DOM Glac227, Glaciecola, Gammaproteobacteria (gla)

POC (poc) [S] CF319a, Bacteroidetes (cf3) [S]

DOC (doc) [S] POL740, Polaribacter, Bacteroidetes (pol)

Arabinose (ara) [S] FORM181A, Formosa, Bacteroidetes (foa) [S]

Fucose (fuc) [S] FORM181B, Formosa Hel1_33_131, Bacteroidetes (fob)

Galactose (gal) [S] ULV995, Ulvibacter, Bacteroidetes (ulv)

Glucose (glc) [S] VIS6–814, VIS6, Bacteroidetes (vis)

Mannose/xylose (max) [S] NS3a-840, NS3a marine group, Bacteroidetes (ns3)

Rhamnose (rha) [S] NS5/DE2–471, NS5/DE2, Bacteroidetes (nde)

Galacturonic acid (gau) [S] NS5/VIS1–575, VIS1, NS5 (nvi)

Gluconic acid (glu) [S] NS9–664, NS9 marine group, Bacteroidetes (ns9)

Glucuronic acid (gca) [S] CYT-734, Marinoscillum, Bacteroidetes (cyt)

Muramic acid (mur) [S] PLA46, Planctomycetes (pa4) [S]

Galactosamine (gan) [S] PirD1039, Pirellula, Planctomycetes (pir)

Glucosamine (gln) [S] uPlaB440, Planctomycetes group B (upl)

Chitin (chi) PlaA1228, Planctomycetes group A (pa1)

Chrysolaminarin (chr) ARCH915, Archaea (arc) [S]

Glycogen (gly) EURY806, Euryarcheota (eur)

Xylan (xyl) CREN554, Crenarcheota (cre)

Cellulose (cel) BET42a, Betaproteobacteria (bet)

Mannan (man) SAR324–1412, SAR 324, Deltaproteobacteria (s32)

Starch (sta) HGC69a, Actinobacteria (hgc)

Pectin (pec) Cryptic: (eux), (alx), (rox), (gax), (cfx), (fox), (px4), (arx)

Glucoromannan (glo)

FCSP (fcs) Nutrients and misc.

Rhamnan (rhm) Nitrate+nitrite (nox)

POM Chrysolaminarin (lam) [S] Ammonium (nh4)

Biogenic silica (bsi) Phosphate (po4)

Cryptic: (d01+), (ar2), (fu2), (ga2), (gl2), (ma2), (rh2), (ga3), (gl3), (gc2), (mu2), (ga4), (gl4),
(m01+), (i01+), (p01+), (pra), (puc), (pal), (plc), (pax), (xph), (pau), (plu), (pca), (pur), (pan),
(pln), (phi), (phr), (ply), (pyl), (pel), (xpa), (pta), (xpe), (plo), (pcs), (phm)

Silicate (sil)
Light extinction coefficient (kex) [S]
Inorganic suspended solids (nkx)

[S] = summary parameter.
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for diatoms, none for dinoflagellates) and ability of bacteria to
assimilate it (yes for Polaribacter, no for Roseobacters and Reinekea)
(Tables S4 and S11). Imposing constraints from the literature
generally results in a worse agreement with the observations, but
also increased realism of the model. Removing the constraints of
phytoplankton composition (Table S4) significantly improves the
agreement with observations, but also predicts substantial
glycogen content of diatoms (e.g., Fxmhe,gly+ply= 0.19). Removing
uptake constraints by bacteria (Table S11) reduces the error, but
not significantly, suggesting that there is enough flexibility of the
model to reproduce the observations even with this constraint.
However, that model also includes features that disagree with
literature, like substantial uptake of chr by s11 (Kshs11,chr= 25 L/
mmolC/d).

Carbon fluxes through and within in the ecosystem
The final model includes 210 components and their behavior and
interaction are described by a total of 8200 calibrated parameters
of 50 different parameter types (e.g., the composition of each of
the 53 microbes is described by 76 fractions Fx, or 4000 total
parameters) (Fig. 1), and it constitutes a mass-balancing, mechan-
istically-constrained, quantitative representation of the ecosystem.
It reproduces many of the observed patterns of summary
parameters like Chlorophyll a (chl), total bacteria (dap), particulate
chrysolaminarin (lam), various high-molecular weight (HMW) DOM
compounds, as well as absolute concentrations of individual
phytoplankton and bacteria species (Fig. 2A–C). Only subset of the
hundreds of model components is shown in Fig. 2B, C, which were
selected based on (a) importance (e.g., rst is the dominant OM
producer in 2009), (b) availability of data (e.g., chrysolaminarin,
[29]) and (c) illustration of co-blooming (panel B) and succession
(panel C). All model-data comparisons are presented in the SI
(Fig. S1). The model under-predicts total DOM (doc), probably
because a large fraction of observed DOM is more refractory
allochthonous material, which is not considered in the model.
It is important to understand that the model was calibrated to

these observations, so this is not a prediction per se. The main

information produced by this analysis (emergent property) are the
mass fluxes. Predicted ecosystem-level fluxes can be compared to
independent estimates, which were not used as input here. For
the period 2009–2012, the gross primary production rate in the
model is 28 (±1.2 standard deviation) mmolC/m2/d. Uncertainty of
fluxes and parameters are based on top 5% of 128 replicate
runs, as in [23]. This flux compares well to a regional estimate of
29 (26–33) mmolC/m2/d for the Transitional East Region of the
North Sea for the same period [30]. At the end of March, the
bacterial production rate in the model is 0.32 (±0.041), 0.14
(±0.017), 0.20 (±0.025) and 0.45 (±0.057) μmolC/L/d for the 4 years,
respectively. This is consistent with measurements of 0.20 μmolC/
L/d in 1992 ~30 km from Helgoland [31].
These comparisons provide confidence in other aggregate

fluxes predicted by the model. The C, N and P fluxes to the
sediment bed, via settling of phytoplankton and POM, are 5.8
(±0.91) mmolC/m2/d, 0.87 (±0.14) mmolN/m2/d and 0.054
(±0.0085) mmolP/m2/d, which constitute 20%, 16% and 18% of
the input via photosynthesis (C) or external input (N, P) (see
Fig. S2). External “new” input of N is 0.66 μmolN/L/d, which is 6.0
time higher than the 0.11 (±0.023) μmolN/L/d released or
“recycled” by bacteria.
The resulting flux network includes quantitative carbon fluxes

between all components at each time point, like 28 days into the
2009 spring bloom (Fig. 2D, Dataset S1 list all fluxes). The
dominant source of organic matter is rst at 0.36 (±0.19) μmolC/L/d,
30% of which is dissolved and particulate chrysolaminarin (chr+
phr). These instantaneous fluxes exhibit a higher uncertainty than
the integrated fluxes discussed in the previous paragraph, which
can be explained by small timing differences (Table S26). The
DOM is consumed by a diverse consortium of bacteria, mostly
Polaribacter (pol) at 0.46 (±0.22) μmolC/L/d, 35% of which is chr.
chr has a through-flux of 0.25 (±0.049) μmolC/L/d and a turnover
time of 8.8 (±2.0) days. In the model, phytoplankton and bacteria
interact via DOM, but the carbon flux can be traced and used to
quantify phytoplankton – bacteria associations. Here, the carbon
flux via all DOM types from rst to pol is 0.27 (±0.20) μmolC/L/d,
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58% of carbon to pol, making this the second-strongest (after ns3)
microbial linkage in the system at this time. This who produces/
consumes how much of what when information is the main output
of the FluxNet method, and it is critical for moving our
understanding of microbial ecosystem functioning beyond bulk
parameters like respiration and photosynthesis rates towards a
higher resolution.
Whereas the 2009 spring bloom illustrates co-blooming of

phytoplankton and bacteria, the 2010 bloom shows succession of
phytoplankton, DOM and bacteria. Several factors control this
pattern in the model. Reinekea (rei) is negative for chrysolaminarin
(chr) based on literature (Table S11), but is predicted to have a
relatively high affinity for other glucose-containing DOM (gl2)
(khrei / Kshrei,gl2= 63 (±22) L/mmolC/d). A substantial fraction of gl2
is produced relatively early by phytoplankton exudation, and it is
the primary substrate for rei at bloom stage 14 days. Alteromonas
(alt) is predicted to have a low affinity for gl2 (khalt / Kshalt,gl2=
0.015 (±0.0097) L/mmolC/d), but it is positive for chr based on
literature and predicted to have a high affinity (khalt / Kshalt,chr=
52 (±4.7) L/mmolC/d). Chr is a death (i.e. grazing) product of
phytoplankton and produced relatively later in the bloom, and it is
the primary substrate for alt at this time. The substrate spectra of
bacteria emerge in the analysis, within literature constraints, and
can be considered a prediction testable with modern experi-
mental techniques [6].

Oligotrophic and copiotrophic carbon processing
The network includes concentrations and fluxes for each bacteria
type, and a natural question is to what extend they are correlated.

There is increasing awareness that high abundance may not
necessarily mean high importance and vice versa, including the
over-proportional role of rare species in biogeochemical cycles
[32]. In the model, there is a strong correlation between
concentration and carbon flux of bacteria, but for the same
concentration there is also about an order of magnitude variation
in flux (Fig. 3). The spread reflects differences in growth rates
during the bloom periods. Some species, like the oligotroph
SAR11 (s11), have consistently lower flux and others, like the
copiotroph Polaribacter (pol), have consistently higher flux. There
are also some, like the cryptic alphaproteobacteria (alx), that go in
different directions in different years.
It is important to realize that, in dynamic systems, microbial

interactions and the corresponding networks are not static [3, 33].
The dynamics of the entire Helgoland flux network over the four-
year period is illustrated in an animation, which shows the
production of DOM and POM during and after phytoplankton
blooms and later blooming of bacteria (Movie S1). These features
are also evident in the phytoplankton – DOM – bacteria
interactions at two selected time points during the 2009 spring
bloom (Fig. 4A, B). At the onset of the bloom, the oligotroph
SAR11 (s11) consumes the most DOM, primarily the cryptic species
d08, which comes mostly from grazing death of green algae (gre)
and exudation by rst. After 28 days the copiotroph pol dominates,
which consumes primarily chr, a death product of mostly rst.
SAR11 continues to be a major carbon processor in the early parts
of the bloom, which was unexpected, because it is an inferior
competitor at this time (growth rate s11= 0.051 vs. pol= 0.15 1/d,
bloom average), but can be explained by the higher biomass
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concentration (s11= 0.68 vs. pol= 0.13 μmolC/L, bloom start). The
flux is proportional to concentration and growth rate, and neither
measure alone is a good proxy for the importance of a species [4].
Across all four years, oligotrophic bacteria, defined based on
below-average growth rates (literature classifications are often
ambiguous), dominate carbon processing for the first 18 days,
generally past the phytoplankton peak (Fig. 4C).
The use of d08 by s11 and chr by pol in 2009 suggests are more

general pattern, i.e., use of exudation products earlier by
oligotrophs and death (i.e., grazing) products later by copiotrophs.
Across all years, the fraction of DOM produced by exudation
decreases during the course of the bloom (Fig. 4C), a common
feature of phytoplankton blooms [33]. This is reflected in the diet
of these bacterial groups, i.e., for oligotrophs (vs. copiotrophs),
exudates make up a higher portion of the diet (27 vs. 18%), and
they have a higher affinity for exudates (39 vs. 35 L/mmolC/d),

which is also consistent with experimental evidence from another
system [7].
After the model was developed, while this paper was in peer

review, metaproteomic data for the Helgoland Island spring
bloom in 2016 were published that suggest that algal storage
compounds (e.g., chrysolaminarin) are used throughout the
bloom, whereas cell wall-related compounds (e.g., fucose-contain-
ing) are used at later bloom stages [34]. Our model also predicts
an increase in the consumption of cell-wall vs. storage compounds
at later bloom stages (Fig. 5), which validates our outcomes,
although a direct comparison is not possible because of the
different time.

Phytoplankton functional similarity decouples them from
bacteria
An important question is to what extent the patterns recur from
year to year [27]. We compare networks of phytoplankton
producers, DOM exchanged and bacteria consumers, as well as
phytoplankton – bacteria interactions quantified in absolute
(μmolC/L/d moving between phytoplankton X to bacteria Y) and
relative (% of carbon for bacteria Y supplied by phytoplankton X)
terms (Fig. 6A). All networks show significant similarity so there is
recurrence from year to year. The recurrence is higher for DOM
than phytoplankton, suggesting that different phytoplankton
produce similar DOM, which is expected considering similar
composition (e.g., chr in diatoms). There are no phytoplankton
producers that recur in the top quartile every year, but chr and
others are in the top quartile of DOM exchanged (produced and
consumed) every year. The recurrence is lower for bacteria
consumers suggesting factors beyond DOM shape the bacteria
community.
An important question is how specific interactions are and how

tightly networks are interconnected [35, 36], which depends on
the mechanisms of interaction and will affect the recurrence.
Consistent with the relatively low recurrence of phytoplankton
producers, phytoplankton—bacteria coupling shows relatively low
recurrence, i.e. low specificity. The primary substrate for the
consumer pol is mostly chr and gl2, although it does change from
year to year with varying DOM, consistent with the known
assimilation capabilities of pol (Polaribacter) [37] (Fig. 6B).
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However, the primary associated phytoplankton for pol is different
each year, although it is always a diatom. The de-coupling of
phytoplankton production and bacteria consumption was also
concluded from the lower recurrence of phytoplankton and
higher recurrence of bacteria abundance in the same dataset [27].
It suggests that carbon processing is resilient to changes in
phytoplankton, which may arise from factors like species invasion
or climate change.

The above discussion focused on one-way/commensal (phyto-
plankton > DOM > bacteria) interactions, but the network also
includes specific two-way/mutualistic phytoplankton-bacteria
interactions. Phaeocystis (pha) has the highest exudation fraction
and Bacteroidetes nvi the highest affinity for DOM d04, whereas
nvi has the highest exudation fraction and pha the highest
requirement for micronutrient m15. Such mutualism is observed in
other systems and the interactions predicted here can be tested
experimentally [20]. Alternatively, experimentally-observed inter-
actions could be used as input to the method, as constraints.

Robustness of the analysis
To understand the effect of some of the choices made in the
model structure we repeated the analysis with added or removed
components or processes. Models without micronutrients or
inhibitors produce significantly worse fit to the data (Fig. 7A),
highlighting the need for a two-way interaction between
phytoplankton and bacteria to maintain diversity. Models with
more micronutrients or inhibitors are similar to the basecase.
Together, these results provide some justification for the
complexity (i.e., number of parameters) in the basecase model.
The analysis including osmotrophy (aka absorbotrophy, i.e.,
phytoplankton can perform heterotrophy) produces a better fit
to the observations, but that model was not adopted as basecase,
because the osmotrophy process is poorly constrained and
includes some probably unrealistic features/fluxes, like significant
exudation and uptake of the same substance by one phytoplank-
ton species. Importantly, excluding the runs with worse fit to the
observations, the main conclusions (as shown in Figs. 4C and 5A)
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are the same, confirming that the results are reproducible and
robust to some of the choices made in model structure.

Empirical method shows limitations
We also analyze the dataset using the empirical LSA method [38],
which identifies many of the same interactions. For the spring
2009 bloom, the rst > ns9 interaction ranks in the top 1% for LSA
and FluxNet (relative interaction). However, the lack of mechan-
istic constraints is evident. One of the strongest links for the
2009 spring bloom (rank 13%) is between the diatom Chaetoceros
debilis (cde) and Roseobacters (ros) (Fig. 6C, D). The shifted peaks
line up nicely, but the bacteria biomass is higher than that of the
phytoplankton and genome analysis suggests ros do not
assimilate chrysolaminarin [37], which is a major death product
of diatoms. Considering this, growth yield and other competing
consumers, it is unlikely that cde is a major source of carbon to ros.

Summary and outlook
Modern observational tools are generating high-resolution
descriptions of the components of microbial ecosystems, and an
ongoing grand challenge is to use these data to understand how
systems function. Our method predicts dynamic mass fluxes
between marine phytoplankton and bacteria, which provides
insights into the functioning of the ecosystem. Specifically, it
showed that there is a strong correlation between concentration
and flux of bacteria during blooms, but oligotrophs are relatively
less important than copiotrophs. However, due to their higher
biomass, they are major carbon processors during early phases of
blooms, well past the peak. Oligotrophs grow preferentially on
exudation products, which are more abundant earlier in the
bloom. Also, our results suggest that phytoplankton are function-
ally similar in terms of what organic carbon species they produce,
and that this decouples them from bacteria.
FluxNet is an inference method for microbial time series data

that serves the same general purpose as existing empirical

inference methods, like LSA [38]. In general, both approaches have
strengths and weaknesses (see Introduction) and may comple-
ment each other. A main advantage of FluxNet is that it produces
quantitative concentrations and fluxes, and associated conclusions
(e.g., preferential use of exudates by oligotrophs). Also, it is
constrained by mass balance and additional information from the
literature (i.e., beyond the time series data), which make the
results more realistic.
The existing FluxNet code can readily be applied at a higher

resolution (microdiversity), explicit representation of other eco-
system components, like viruses and zooplankton, and more
processes, like photoheterotrophy and mixotrophy. It may also be
applied to understand other microbial ecosystems, like the human
gut or wastewater treatment plants. For an inference method it is
important to be applicable to various types of observations,
including modern environmental -omics observations, like tran-
script, protein and metabolite levels, and the present model will
have to evolve in this direction [39]. The present model includes a
relatively simple representation of the various processes, and the
current biological understanding supports increasing the mechan-
istic realism (and complexity). For example, the present version
assumes constant composition of DOM produced by phytoplank-
ton, but observations show that it changes with physiology and
interaction with bacteria [18, 40]. Also, the model assumes simple
first-order dissolution of POM to DOM and direct utilization by
bacteria, whereas break-down of especially polysaccharides is
often mediated by extracellular enzymes [41].

METHODS
A complete description of the methods is presented in the SI. At the
beginning of the Results and discussion we provide a brief overview for all
readers. Below we give some additional details about the mechanistic
microbial ecosystem model and optimization method for modeling
specialists.
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Mechanistic microbial ecosystem model
The modeling concepts and equations are generally based on past models
of phytoplankton and bacteria [13, 14, 23, 42, 43]. Novel aspects include
consideration of dormancy, phytoplankton micronutrient limitation and
inhibitors.
To illustrate the approach, we present mass balance equations for a

reduced system consisting of one phytoplankton (rst), two DOM (chr, gl2)
and one bacteria (pol), and no micronutrients or inhibitors. Processes
affecting phytoplankton concentration include photosynthesis, respiration,
exudation, inhibition, death, settling and outflow. The mass balance
equation for rst, excluding inhibition loss, is:

d
dt

Crst ¼ kprstLprstCrst � krrstLrrstCrst � kerst þ efrstkprstLprstð Þ Crst

� kurstLurstCrst � vsrst
H

Crst � Q
V
Crst

(1)

t (d) = time, C (mmolC/L) = concentration, kp (1/d) = max. photosynthesis
rate constant, Lp = limitation/modification factor for photosynthesis (light,
nutrients, temperature, salinity), kr (1/d)=max. respiration rate constant, Lr
= limitation/modification factor for respiration (temperature), ke (1/d) =
basal exudation rate constant, ef (1/d) = exudation/photosynthesis
fraction, ku (1/d) = maximum death rate, Lu = limitation/modification
factor for death (time-of-year, salinity), vs (m/d) = settling velocity, H (m) =
water column depth, Q (m3/d) = flow rate, V (m3) = volume.
Processes affecting DOM include microbial exudation and death, POM

dissolution, heterotrophy and outflow. The mass balance equation for chr,
considering only rst as source, is:

d
dt

Cchr ¼ Ferst;chr kerst þ efrstkprstLprstð ÞCrst þ Fxrst;chrkurstLurst Crst þ kfphrLfphrCphr

� khpol
Cchr=Kshpol;chr

1þ Cchr=Kshpol;chr þ Cgl2=Kshpol;gl2
LhpolCpol � Q

V
Cchr

(2)

Fe = exudation fraction, Fx = composition fraction, kf (1/d)= dissolution
rate constant, Lf= limitation/modification factor for dissolution (tempera-
ture), kh (1/d)=max. heterotrophy rate, Ksh (mmolC/L)= half-saturation
constant, Lh= limitation/modification factor for heterotrophy (tempera-
ture, salinity, light).
Processes affecting bacteria concentration include heterotrophy, death

and outflow. The mass balance equation for pol, considering only growth
on chr and gl2, is:

d
dt

Cpol ¼ Yhpolkhpol
Cchr=Kshpol;chr þ Cgl2=Kshpol;gl2

1þ Cchr=Kshpol;chr þ Cgl2=Kshpol;gl2
Lhpol Cpol

� kupolLupolCpol � Q
V
Cpol

(3)

Yh = yield coefficient.
Dormancy is modeled by specifying a floor concentration (Cflr) and

reducing any loss rate that would result in concentration below this value,
an approach similar to previous models [26]. Micronutrients are exuded by
bacteria and limit photosynthesis of phytoplankton, which is modeled
analogous to macronutrient limitation, using a Monod limitation term for
each micronutrient that are combined using a minimum formulation.
Inhibitors are produced by phytoplankton and bacteria via exudation, and
they kill phytoplankton or bacteria in a concentration-dependent manner,
also using a Monod saturation term.

Optimization method
The optimization method adjusts parameter values within literature ranges
to minimize the disagreement i.e. error between model and data, which
includes both bulk/summary (e.g., Chlorophyll a, gammaproteobacteria)
and more specific (e.g., Rhizosolenia styliformis, SAR11) observations. The
method generally follows previous numerical optimization approaches for
microbial ecosystem models [13, 14, 23]. Novel aspects include a two-
dimensional (concentration and time) quantification of model-data
disagreement, numerical optimization methods customized for microbial
ecosystems and gradual increase in model complexity (de-lumping).
To account for disagreement between model and data in the

concentration and time dimensions (e.g. a temporal offset) [43], the
discrepancy between an individual data point and the model is quantified

as the minimum error square (ES) in two-dimensional space:

ES ¼ min Cd � Cm;k
� �2þ td � tm;k

� �
ave Cd ;Cm½ �kch

� �2h i
(4)

Cd = data value, Cm = model value, td = data time, tm = model time, kch
(1/d) = first-order rate constant relating the value and time dimensions, k
= index for the model point. Error values for individual data points are
combined as a normalized root mean squared error, and then weighted
and summed across data series into a total error. In previous optimizations
of ecosystem models, the error was quantified in arithmetic or log space
[13, 14, 23]. Here we use arithmetic space and also present our model-data
comparison that way (e.g., Fig. 2), because we are interested in the higher
fluxes, which presumably are associated with the higher concentrations.
The optimization problem is characterized by a large number of

dependent parameters and local minima in the objective function. The
routine performs a number of iterations until a convergence criterion is
reached. Each iteration includes single-parameter optimization on the
entire parameter set. Following that is single-parameter optimization on a
smaller parameter set identified as most sensitive in the prior complete
single-parameter optimization. Then, the method performs multi-
parameter optimization on subsets of parameters identified a priori as
dependent, like the max. photosynthesis and respiration rates within a
component or the Chlorophyll a content across components. Monte Carlo/
Latin Hypercube Sampling is performed, steps are repeated using different
sets of random numbers and several instances are run in parallel (typically
128, based on distribution of final errors, see Fig. S3) on a cluster, to
decrease the chances of getting stuck in a local minima in the objective
function.

DATA AVAILABILITY
The code and input will be made available on the corresponding author’s GitHub
page (https://github.com/fhellweger).
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