
��������	�
�����
�
���������
�
����������
��
������������������
��

��������	
����
�����
��

����
��������������

�����������
��������
�

���
�������� !∀�������������#∀�∃��%������&�%���∋∀�

(�����	��)����∗��!∀�(���+�����!

!�,%�	�−−�./��������0��&������∀�(������∀

1������ ∀�����∗��∀�������23���%����� 4���.�������4��
#�)��%����%��/��������0��5��	��∀�(������∀�	���3��4��.���	��4��

∋��������∀�6
�−
�����)��%�
	
��∀�(������∀� ��%�����4��%���3�������4�
�

5����%�.7�4�#889.8!

:��7�!;∋<.99!=

Object Flow Definition for Refined Activity Diagrams:

Long Version

Stefan Jurack1, Leen Lambers2, Katharina Mehner3, Gabriele Taentzer1, Gerd Wierse1

1 Philipps-Universität Marburg, Germany,

{sjurack,taentzer,gwierse}@mathematik.uni-marburg.de
2 Technische Universität Berlin, Germany, leen@cs.tu-berlin.de

3 Siemens, Corporate Technology, Germany, katharina.mehner@siemens.com

Abstract. Activity diagrams are a well-known means to model the control flow

of system behavior. Their expressiveness can be enhanced by using their object

flow notation. In addition, we refine activities by pairs of pre- and post-conditions

formulated by interrelated object diagrams. To define a clear semantics for refined

activity diagrams with object flow, we use a graph transformation approach. Con-

trol flow is formalized by sets of transformation rule sequences, while object flow

is described by partial dependencies between transformation rules. The theory of

algebraic graph transformation can be used to validate the consistency of control

and object flows in refined activity diagrams. This approach is illustrated by a

simple service-based on-line university calendar.

1 Introduction

UML2 activity diagrams are a well-known means to model the control flow of system

behavior. Their expressiveness can be enhanced by using their object flow notation. Cur-

rently, it is an open problem how to formalize coherent object flow for activity diagrams.

In this paper we aim at providing a precise semantics for refined activity diagrams with

coherent object flow. We use graph transformation as semantic domain, since it sup-

ports the integration of structural and behavioral aspects and provides different analysis

facilities.

In [1], sufficient criteria for the consistency of refined activity diagrams were pro-

vided, where interrelated object diagrams are used to specify pre- and post-conditions

of single activities. All conditions refer to a domain class model. This refinement im-

proves the integration of behavioral and structural modeling aspects and serves as a

basis for consistency analysis. The refinement of activities by pre- and post-conditions

was first introduced in [2] to analyze inconsistencies between individual activities re-

fining use cases. Pre- and post conditions are formalized as graph transformation rules

and the consistency analysis is rooted in critical pair analysis. However, this approach

does not take into account the control flow of activity diagrams. Mehner et al. extend the

consistency analysis in [3] where also the control flow is taken into account. In Lambers

et al. [4], a similar approach for consistent integration of life sequence charts (LSCs)

with graph transformation, applied to service composition modeling, was developed.

The formalization based on graph transformation is used to analyze rule sequences. In

addition, data flow is modeled textually by name equality for input and output variables.

Other approaches have formalized activity diagrams, e.g. [5–7], but do not consider ob-

ject flow nor our proposed refinement.

In this paper, we extend refined activity diagrams by object flow. We introduce the

notion of partial rule dependencies to formalize the semantics of object flow. Based on

the already existing consistency notion of refined activity diagrams in [1], we define

and validate the desirable consistency-related properties of refined activity diagrams

with object flow.

We illustrate our approach with an example from model-driven development of a

service-based web university calendar. In particular the behavior modeling of individual

services still lacks advanced support for precise modeling and subsequent consistency

analysis. Activity diagrams are an adequate means for modeling individual services,

and the use of object flow and pre-/post-conditions can define service behavior more

precisely.

This paper is organized as follows. Section 2 presents our motivating example and

introduces the syntax and semantics of refined activity diagrams with object flow in-

formally. Section 3 provides the formal background of algebraic graph transformations

and the new notion of partial rule dependency. Section 4 presents the graph transforma-

tion based semantics and consistency notion of refined activity diagrams and extends it

for object flow. Moreover, it analyzes the consistency of the example. Sections 5 and 6

contain related work and concluding remarks.

2 Introduction to Refined Activity Diagrams with Object Flow

This section introduces refined activity diagrams with object flow and illustrates this

modeling approach by a small example for a service-based web university calendar.

In this example, we model services by activity diagrams with object flow where each

activity is refined by pre- and post-conditions, and guards are refined by patterns.

2.1 Domain Model

Our example application manages course parts that are lectures, laboratories, and exer-

cises where a lecture may offer a laboratory and an exercise. Each course part is held

by a lecturer and can be located in a room. An appropriate class diagram is presented in

Fig. 1. From an abstract class Object 4, three classes are derived: Room, Lecturer and

CoursePart. The latter is abstract and is specialized by three further classes: Labora-

tory, Exercise and Lecture. Day and time information for course parts are realized by

enumerations Day and Time.

2.2 Activity Diagrams with Object Flow

We use UML2 activity diagrams with object flow [8] to model services of the univer-

sity calendar. Three services, AddLecture, AddExercise, and AddLaboratory, are shown

exemplarily in Fig. 2.

4 Italic class names in diagrams indicate abstract classes.

Fig. 1. Domain Class Diagram

Web applications usually contain a number of services. A service provides a clearly

defined logical unit of functionality based on data entities. While a basic service might

be modeled by one activity only, more complex services might contain a number of

different activities. Defining services by the means of hierarchical activity diagrams

opens up the possibility to call services from other ones. The usage of other services

is depicted by placing a complex activity as representation of the used service into the

control flow. In accordance with the UML2 notation, the invocation of a complex activ-

ity is indicated by placing a rake-style symbol within the activity node. Hierarchies can

be resolved by flattening which of course requires the non-existence of cycles. Our ex-

ample service AddLecture uses two other services. Accordingly, the complex activities

modeling used services AddLaboratory and AddExercise are refined by corresponding

activity diagrams (cf. Section 4). This can be done quite intuitively by replacing the

complex activities with their activity diagram’s content respecting the mapping of the

diagram’s parameters and the uniqueness of object names.

UML2 provides several object flow notations. The preference for a notation de-

pends on different aspects, e.g. the amount of information, potential ambiguities, and

the equality of control and object flow. For example, if object and control flow overlap,

related objects may be depicted next to transitions as shown above activity SetRoom

in Fig. 2. Otherwise an object node with separate object flow edges has to be used as

shown for lecture l. However, it is desirable to keep the object flow description as sim-

ple as possible without leaving out important information. Each object may be named

and its identity is expressed by equal names within an activity diagram. E.g. in activity

diagram AddLecture both lecturer nodes named l2 depict the same object. Names may

also be used to refer to a certain object in terms of parameter values which is explained

later on. Please note that in our approach, an object may flow along multiple outgoing

edges i.e. object flows, whereas in UML2 one object serves one object flow exclusively.

Objects passed from outside to an activity diagram can be drawn on the diagram

boundary in order to show parameters flowing into certain activities. Objects passed out

of the diagram itself, may be depicted as boundary objects as well. Consider Fig. 2:

Objects of types Lecturer and Room are passed to the activity diagram AddLecture,

while a newly created object of type Lecture is passed out of this diagram.

In Fig. 2, service AddLecture uses two other services AddLaboratory and AddExer-

cise. Once a lecture has been created and its attributes have been set, a related laboratory

or exercise might be created additionally. Activity diagram AddLecture requires three

objects as input, activities CreateLecture, AddLaboratory and AddExercise: one object

of type Lecturer and two of type Room. At first, a new lecture is created in activity

CreateLecture, its attributes are set and it is linked to lecturer l1. If, moreover, room r1

is not null, activity SetRoom is used to link this room r1 to the lecture newly created. If

a lecturer is given for a laboratory, the complex activity AddLaboratory is used to add a

laboratory to the lecture. Therefore, AddLecture has to pass the newly created lecture l,

lecturer l2, and room r2 to the activity. In diagram AddLaboratory a new laboratory is

created by the first activity CreateLaboratory. In the same step, this laboratory is linked

to lecture l and to lecturer l2. Furthermore, the laboratory’s attributes are set. In the next

activity, the laboratory’s location is set to room r2, provided that r2 is given. If a lecturer

for a related exercise is given, AddExercise is used by AddLecture analogously.

Since our activity diagrams model services, we equip each of them with a name and

a comma-separated list of parameters. The semantics follow the programming concept

of parameter passing between operations, i.e. an activity diagram models an operation

consisting of a signature and a body. The signature of an activity diagram consists of its

name and a list of attribute and object parameters. While object parameters have a type

occurring in the domain model, attribute parameters have primitive types in most cases.

This signature is an extension of UML2 made by our approach. Please note that all

attributes and boundary objects used within the activity diagram are arguments which

correspond to the signature of the diagram. Local objects i.e. objects created or selected

by contained activities which are not used as output parameters do not occur in the

signature. In addition, each parameter declaration has to be enriched with keyword in,

out, or inout. This qualification defines the object flow direction. E.g. lecturer l1 has

to be passed to diagram AddLecture and is therefore marked in. Vice versa, the newly

created lecture l is passed out of the diagram and is therefore marked by out. Parameter

objects marked by inout are both input and output objects.

2.3 Refined Activities

Activities are used to model specific changes of the current system snapshot i.e. object

structure. We propose to refine activities by pre- and post-conditions specifying snap-

shots before and after the activity respectively. Since the integration of conditions into

activity diagrams, e.g. in terms of constraints as provided by UML2, would negatively

affect readability and clarity, we refine activities separately by pairs of object diagrams

which are typed over the domain model. Figure 3 shows object diagrams refining ac-

tivities of our example (cf. Fig. 2) where pre-conditions are depicted on the left and

post-conditions on the right. Objects and links with equal names on both sides express

identity and preservation. Names for links have been omitted for better readability. Ob-

jects and links occurring in the left-hand side only will be deleted, while objects and

links occurring in the right-hand side only will be created. Conditions on non-existence

of patterns are depicted in red dashed outline.

Fig. 2. Activity Diagrams of Services AddLecture and AddLaboratory

Each pair of conditions exhibits a signature according to the inscription of its re-

fined activity, i.e. it consists of a name (the activity name) and a list of typed parameters

qualified with keyword in, out or inout. Parameters can be distinguished into object

and attribute parameters, analogously to their usage in activity diagrams. While the for-

mer ones are matched to objects, the latter ones are used as attribute values. Keyword

in requires the occurrence of the related object (if object parameter) on the left-hand

side. The object may be used in a read, edit, or delete operation. Keyword out declares

Fig. 3. Refined Activities by Pre- and Post-Conditions

a returned object and requires its presence on the right-hand side. It may be used for

a create or select operation. Inout declares an object to be given and returned as well,

thus requires the given object on both sides which explicitly guarantees its non-deletion.

Attribute parameters have to be input parameters and may be used within pre- and post-

conditions. If occurring in pre-conditions, attribute parameter values restrict the match-

ing of objects, occurring in post-conditions they are used to assign attribute values. Note

that in terms of compatibility with type inheritance, object parameter types must be re-

spected by condition checking, i.e. by pattern matchings. Parameters may be matched,

if they are matched with equally typed or sub-typed values only. Analogously, this must

hold for attribute types. Note that arrays and collection-like types are not supported by

our approach yet.

The first pair of conditions in Fig. 3 refines activity CreateLecture. The pre-condition

requires the existence of a lecturer in the current system snapshot, otherwise the activity

cannot be applied. Also, it requires the non-existence of a CoursePart instance (which

could be of concrete type Lecture, Exercise, or Laboratory) with a title equal to the

value of given attribute parameter lecTitle. If both conditions hold, the activity is ap-

plicable and creates a Lecture instance associated with the given Lecturer instance and

the lecture is returned. The refinement of activity CreateLaboratory shown as second

pair in Fig. 3 is quite similarly, but it requires two given objects to exist and leads to

the creation of an object of type Laboratory. Since the conditions of CreateExercise

are analogous to those of CreateLaboratory, they are left out. The refinement of ac-

tivity SetRoom is shown as third pair. It requires two object parameters, one instance

of type Room and one of type CoursePart, and it forbids the CoursePart instance to

have a room already. No object but a link between the given course part and the new

room is created here. Please note, that CoursePart is an abstract type. Thus instances

of its concrete sub-classes can be used here only The last condition in Fig. 3 refines

guard notNull. Since guards do not perform model-changing transformations but rather

check for existence in the system snapshot, we just define a guard pattern here. Note

that we disallow non-existence conditions in guard patterns. Else-guards are predefined

by negated guard patterns i.e. it is checked for non-existence of the corresponding guard

pattern.

3 Formalization by Graph Transformation

The UML variant presented in the previous section can be equipped with a graph trans-

formation semantics. We start with the theory of graph transformation as presented in

[9] and extend it by new concepts. While class diagrams are formalized by type graphs,

activities with pre- and post-conditions are mapped to graph rules. The object flow is

formalized by a new concept called partial rule dependencies. This semantics defini-

tion serves as a basis for validating the consistency of refined activities with object flow

precisely. First, we recall the basic concepts in a condensed form.

3.1 Graphs and Graph Transformation

Graphs are often used as abstract representation of visual models, e.g. UML models.

When formalizing object-oriented models, graphs occur at two levels: the type level

(defined by a meta-model) and the instance level. This idea is described by the concept

of typed attributed graphs, where a fixed type graph TG serves as an abstract repre-

sentation of the meta-model (without constraints). Node types can be structured by an

inheritance hierarchy [10] and may be abstract in the sense that they cannot be instan-

tiated. Multiplicities and other annotations have to be expressed by additional graph

constraints. Attribute types are formally described by data type algebras. Instances of

the type graph are object graphs equipped with a structure-preserving mapping to the

type graph. Attribute values are given by a concrete data algebra.

Graph transformation is the rule-based modification of graphs. A rule is defined by

p = (L
l
←− K

r
−→ R, I, O, NACs) where L is the left-hand side (LHS) of the rule

representing the pre-condition and R is the right-hand side (RHS) describing the post-

condition. l and r are two injective graph morphisms, i.e. functions on nodes and edges

which are structure and type-preserving. They specify a partial mapping r ◦ l−1 from L

to R. L\l(K) defines the graph part that is to be deleted, and R\r(K) defines the graph

part to be created. All newly created nodes have to be of concrete types. Elements in

K are mapped in a type preserving way. All graphs of a rule are attributed by the same

algebra being a term algebra with variables. Some of these variables are considered to

be rule parameters. Input parameters can be nodes or variables, thus I = IN ∪ IV ,

whereas output parameters can be nodes only, i.e. O = ON with I ⊆ L and O ⊆ R. A

rule is called node preserving, if it does not delete nodes.

NACs is a set of negative application conditions, each defined by an injective graph

morphism n : L → N where N \ n(L) defines a forbidden graph part. n allows to

refine node types, i.e. a node of a more abstract type is allowed to be mapped to a node

with a finer type according to the inheritance hierarchy.

Example 1 (Example rules). Figure 3 shows example graph rules where each pre-condition

forms an LHS with one negative application condition and each post-condition de-

scribes an RHS. Identifiers given by names indicate the mapping between left- and

right-hand sides. The solid parts of a pre-condition indicate the LHS L, while the dashed

ones prohibit a certain graph part and represent N \n(L) of the NAC. Input and output

parameters are listed on top of each pair of conditions, formally in the head of each rule.

A graph transformation step G
p,m

+3 H between two instance graphs G and H

is defined by first finding a match m : L → G of the left-hand side L of rule p into

the current instance graph G such that m is an injective type-refining graph morphism.

Match m has to fulfill the dangling condition, i.e. nodes may be deleted only, if all

adjacent edges are mentioned in the LHS. Moreover, each NAC has to be fulfilled,

i.e. m satisfies a NAC, if for each n ∈ NACs there does not exist an injective type-

refining morphism o : N → G such that o◦n = m. Input parameters are instantiated by

concrete values being nodes of the instance graph and data type values. Thus, parameter

instantiation provides a partial match.

In the second step, graph H is constructed by a double-pushout construction (see

[9]). Roughly spoken, the construction is performed in two passes: (1) build a graph D

which contains all those elements of G not deleted; (2) construct H as a union of D and

all elements of R to be created. To trace the preserved part of a graph transformation

step, we define a partial graph morphism track : G → H by track = h ◦ g−1.

Graph dom(track) is the subgraph of G where track is defined, i.e. the domain of

track. (See also [11] for a first definition of track morphism.) Morphisms g : D → G

and h : D → H are constructed by a double-pushout as shown below. Morphism

g−1 is always well-defined, since l is injective and the pushout construction preserves

injectivity, thus g is also injective. Furthermore, a so-called co-match m′ : R → H is

defined by the double-pushout construction. Output parameters point to a certain part of

this co-match. Output parameters are useful for pointing to nodes which shall be used

in further transformation steps.

I
⊆

// L

m

��

K
r //loo

��

R

m′

��

O
⊆

oo

G
track

33D
h //

g
oo H

A graph transformation (sequence) t = G0

p1,m1

=⇒ G1 . . . Gn−1

pn,mn
=⇒ Gn consists

of zero or more graph transformation steps. Track morphism track0,n of sequence t is

simply the composition of track morphisms trackn−1,n ◦ . . . ◦ track0,1 of its steps.

For n = 0, track0,0 = idG0
. A set of graph rules P , together with a type graph

TG, is called a graph transformation system (GTS) GTS = (TG, P). A GTS may

show two kinds of non-determinism: Given a graph, (1) several rules can be applicable,

and (2) for each rule several matches can exist. There are techniques to restrict both

kinds of choices. The choice of rules can be restricted by the definition of control flow

(e.g. expressed by activity diagrams), while the choice of matches can be restricted by

passing partial matches (e.g. expressed by partial rule dependencies). The tool AGG

(Attributed Graph Grammar System) [12] can be used to specify and analyze graph

transformation systems.

3.2 Partial Rule Dependencies

To restrict the choice of matches for rules, we introduce the concept of partial rule

dependencies which may relate output parameter nodes of one rule to input parameter

nodes of a (not necessarily direct) subsequent rule in a given rule sequence5. Especially,

two partial rule dependencies may be composed by a common rule in the middle form-

ing a new transitive dependency. This may lead to a situation where different partial

rule dependencies may be defined between the same rules. We say that rule sequences

are dependency-compatible, if the transitive closure of all dependencies between each

two rules is well-defined, i.e. if all dependencies are unambiguous and conforming to

the type hierarchy.

Definition 1 (partial and joint rule dependencies). Given a GTS (T, P) and a rule

sequence s : p1, ..., pn with p1, ..., pn ∈ P . A partial rule dependency between rules pi

and pj with 1 ≤ i < j ≤ n is defined by an injective partial morphism dij : OiN
→ IjN

from output parameter nodes of pi to input parameter nodes of pj . If dij is the empty

morphism, no rule dependency is defined. For each pair of rules pi and pj in s, its

closureij is defined as follows:

(1) dij belongs to closureij

(2) For all dik, dkj , and rules pk with i < k < j add dkj ◦ rk ◦ l
−1

k|Ik

◦ dik to closureij .

OiN

⊆

��

dik

// IkN

⊆

��

OkN

⊆

��

dkj

// IjN

⊆

��

Ri Lk Kk

rk //
lkoo Rk Lj

Rule sequence s is dependency-compatible, if for all closures closureij the follow-

ing holds:

(3) For all d ∈ closureij: type(x) has to be finer or coarser than type(d(x)) for all

x ∈ OiN
wrt. the type inheritance relation defined by type graph T .

(4) Each two dependencies d and d′ in closureij are weakly commutative, i.e. d(x) =
d′(x) for all x ∈ dom(d) ∩ dom(d′).

If rule sequence s is dependency-compatible, we can define a joint dependency of a

closure. Given closureij we define the joint dependency depij : OiN
→ IjN

as follows:

(5) dom(depij) =
⋃

d∈closureij
dom(d)

(6) depij(y) = d(y) if y ∈ dom(d) for d ∈ closureij

Please note that each closure closureij is constructed as a set of injective partial

morphisms. It can be shown that each depij is an injective partial morphism because

weak commutativity holds for the elements in the closure and because each element in

the closure is an injective partial morphism.

In the following, we discuss several examples for partial rule dependencies.

5 Note that rule sequences differ from transformation sequences in not providing graphs to which

rules are applied.

Example 2 (partial rule dependencies). Considering the rules in Fig. 3, we compose

rule sequence s =CreateLecture, SetRoom, CreateLaboratory, SetRoom. As first step,

we define partial rule dependencies taking input and output parameters into account:

d12(newLecture) = coursepart, d23 = d34 = d24 = d14 = ∅, d13(newLecture) =
lecture. All dependencies are type-compatible, since either the types of mapped nodes

are equal or in hierarchy, e.g. type(newLecture) = Lecture is finer than type(d12(
newLecture)) = type(coursepart) = CoursePart (see Fig. 1). None of the con-

sidered closures contains more than one non-empty partial dependency. Thus, par-

tial rule dependencies are not really composed from each other in this example, e.g.

dep13 = d13.

Example 3 (partial rule dependencies - part 2). We consider rule sequence s again,

but slightly modify it. If coursepart were an inout parameter of rule SetRoom, we

could define d23(coursepart) = lecture. Thus, closure13 would look more interest-

ing: closure13 = {d13, d23 ◦ r2 ◦ l−1

2
◦ d12} with d23 ◦ r2 ◦ l−1

2
◦ d12(newLecture) =

d23◦r2◦l
−1

2
(coursepart) = d23(coursepart) = lecture. Since d13 is equally defined

for newLecture and their type is Lecture, this closure is dependency-compatible and

joint dependency dep13 is defined accordingly.

Example 4 (problematic rule dependencies). We consider rule sequence s again and

modify it further. If coursepart were an inout parameter of rule SetRoom and if we

enlarged the rule sequence by rule CreateLaboratory, we would run into problems as

follows. If we defined d34(newLab) = coursepart and d45(coursepart) = lecture,

then d45 ◦ r4 ◦ l−1

4
◦ d34(newLab) = lecture. This morphism is not type-compatible,

since type(newLab) = Laboratory and type(lecture) = Lecture, two incomparable

types. Thus, the rule sequence extended in this way is not dependency-compatible.

Given a dependency-compatible rule sequence s, this sequence is applicable to a

graph G0, if there is a transformation sequence starting at G0 and applying s such that

it relates nodes according to partial dependencies and thus, restricts rule matches. This

way certain transformation sequences are ruled out by restricting the choice of matches.

Definition 2 (application of dependency-compatible rule sequences). A dependency-

compatible rule sequence s : p1, ..., pn is applicable to some graph G0, if there is a

graph transformation sequence G0

p1,m1

=⇒ G1 . . . Gn−1

pn,mn
=⇒ Gn such that mj ◦ depij

and tracki,j−1 ◦ m′
i(OiN

) are weakly commutative, with tracki,j−1 being the track

morphism from Gi to Gj−1 and m′
i being the co-match of rule pi for 1 ≤ i < j ≤ n.

OiN ⊆
//

depij

%%
Ri

m′
i

��

Lj

mj

��

IjN⊇
oo

Gi
tracki,j−1

// Gj−1

Fig. 4. Example graphs according to an application of sequence s of Example 2

Example 5. Figure 4 depicts a sequence of graphs according to a transformation of the

dependency-compatible rule sequence s of Example 2, whereas G0 is an exemplary start

graph. We will concentrate on this sequence only for this example. Attribute parameters

used by rules are omitted here. Please note the letters i and o in the upper right corner of

several objects, which shall remind the reader of input objects to the next rule to apply

and output objects of the rule just applied before.

Applying rule CreateLecture to graph G0 results in graph G1. One lecturer of the

start graph was used as input parameter while the newly created lecture is delivered

to the successor rule SetRoom as output parameter. Since SetRoom requires an input

parameter of type CoursePart, the given lecture is compatible. The result of applying

SetRoom is shown in G1. The following rule CreateLaboratory leading to G3 requires a

Lecture object and a Lecturer object. As depicted in Fig. 2 and explained in Example 2,

a partial rule dependency between CreateLecture and CreateLaboratory exists which

provides a Lecture object to the latter rule. As lecturer the second object in the graph

is used here. The last rule to apply is SetRoom which leads to graph G4. This rule uses

the output object :Laboratory of CreateLaboratory as input parameter. This is valid as

Laboratory is a subtype of CoursePart.

Partial rule dependencies are defined independently of causal dependencies. Causal

dependencies between rules can be analyzed by the critical pair analysis (CPA) [9]. The

only kind of causal dependencies we are interested in here are produce/use-dependencies

where the application of one rule produces an element needed by the match of a second

rule. If two rules are not causally dependent on each other, the corresponding joint de-

pendency which is defined explicitly must not introduce any produce/use-dependency.

If some partial dependency is defined, relating produced objects from some rule with

used ones from some successor rule, it has to correspond with at least one produce/use-

dependency.

4 Object Flow: Semantics Definition and Properties

In this section, we first specify well-structured refined activity diagrams, refine their

activities by graph rules and their guards by graph patterns, and define their semantics

and consistency based on graph transformation. Thereafter, this approach is extended

to refined activity diagrams with object flow.

From now on, we assume that an activity diagram does not contain any complex ac-

tivities and that each complex activity has been flattened before, i.e. it has been replaced

by its refining activity diagram. During this potentially recursive process, each object

which goes in to or comes out from a complex activity is glued with the corresponding

boundary object of the refining activity diagram, i.e. the boundary and boundary objects

disappear.

4.1 Refined Activity Diagrams

As in [7, 1], we restrict our considerations to well-structured activity diagrams. The

building blocks are simple activities, sequences, fork-joins, decision-merge structures,

and loops only.

Definition 3 (well-structured activity diagram). A well-structured activity diagram

A consists of a start activity s, an activity block B, and an end activity e such that there

is a transition between s and B and another one between B and e. An activity block is

defined as follows:

(1) Empty: An empty activity block is not depicted.

(2) Simple: A simple activity is an activity block.

(3) Sequence: A sequence of two activity blocks A and B connected by a transition

from A to B form an activity block.

(4) Decision/Merge: A decision activity which is followed by two guarded transitions

leading to one activity block each and where each block is followed by a transition

both heading to a common merge activity form an activity block. One transition is

explicitly guarded, called the if-guard, while the other transition carries a prede-

fined guard ”else” which equals the negated if-guard.

(5) Loop: A decision activity is followed by a guarded transition. This guard is called

loop-guard. The transition leads to an activity block with an outgoing transition

to the same decision activity as above. Considering this decision activity again, its

incoming transition from outside becomes the incoming transition of the new block.

Its outgoing transition to outside becomes the outgoing transition of the new block.

This transition is guarded by ”else”. The whole construct forms an activity block.

(6) Fork/Join: A fork activity followed by two branches with one activity block each

followed by a join activity form an activity block.

To be able to define object flow to be coherent with control flow we define a control

flow relation as prerequisite. Because of potential loops it is not a partial order.

Definition 4 (control flow relation). The control flow relation CFRA of an activity

diagram A contains pairs (x,y) where x, y are activities such that the following holds:

(1) Pair (x, y) ∈ CFRA, if x is directly connected via a transition with y.

(2) If (a, b) ∈ CFRA and (b, c) ∈ CFRA, then also (a, c) ∈ CFRA.

An if- or loop-guard is equipped with a graph pattern which describes an exis-

tence condition on graphs. A guard pattern can be interpreted as identical rule (i.e. a

rule where the left and the right-hand sides are equal) with arbitrary input and output

parameters. Guard pattern g is fulfilled by a graph G, if its corresponding rule pg is

applicable to G. After rule pg has been performed, the guarded alternative is executed.

Otherwise, rule p̄g which formalizes ”else” for given guard g, is applicable to G and the

second alternative is performed.

Definition 5 (guard pattern, guard rule and negated guard rule). A guard pattern

g is defined by a typed graph being attributed over a term algebra with variables to-

gether with input and output parameters. Its guard rule pg is defined by (g
idg

←− g
idg

−→

g, I, O, ∅). Its negated guard rule p̄g is defined by (∅
∅
←− ∅

∅
−→ ∅, ∅, ∅, {n : ∅ → g}).

Note that the negated guard rule should adopt in its negative application condition

the input parameter set I given for graph g. As part of future work we plan to formal-

ize guards (resp. negated guards) by the satisfaction (resp. non-satisfaction) of graph

constraints instead of by applicability of specific rules.

Lemma 1. Given a guard pattern g and a graph G. Rule pg is applicable to G, iff rule

p̄g is non-applicable to G.

Proof.

⇒: If pg is applicable to G, there is a match m : g → G which is injective by definition.

For p̄g we always find a morphism to G, since its LHS is empty. However, this

morphism cannot be a match, since there is an injective morphism m from g to G

and thus, its NAC is not fulfilled.

⇐: If rule p̄g is non-applicable to G, its NAC cannot be satisfied, since a morphism

from its LHS can be found to any graph. Hence, there must be an injective mor-

phism from g to G. For every identical rule, the dangling condition is always ful-

filled. Therefore, this morphism is also a match for pg which makes this rule appli-

cable to G.

Now we can formally define well-structured refined activity diagrams where the

pre- and post-conditions of each activity and where each guard is formalized by graph

tranformation rules.

Definition 6 (refined activity diagram). A refined activity diagram RA is a well-

structured activity diagram such that each simple activity occurring in RA is equipped

with a graph transformation rule. Each if- or loop-guard occurring in RA is equipped

with a guard pattern. We also say that an activity is refined by a transformation rule

where decision activities are refined by guard rules deduced from guard patterns which

refine guards.

Next, we give the semantics of well-structured refined activity diagrams. As each ac-

tivity is formally refined by a rule, we define the semantics as sequences of rules, where

each of the sequences is determined by the control flow of the activity diagram. Since

loops are guarded by guard patterns, we also provide a restricted semantics assuming

a fixed number of loop executions. Note that in [1] we considered only user-guarded

loops.

Definition 7 (semantics of refined activity diagrams). Given an activity block B of a

refined activity diagram RA, its corresponding set of rule sequences SB is defined as

follows.

(1) If B is empty, SB = ∅.
(2) If B consists of a simple activity a refined by rule pa, SB = {pa}.
(3) If B is a sequence of X and Y , SB := SX seq SY = {sxsy|sx ∈ SX ∧ sy ∈ SY }
(4) If B is a decision block on X and Y with guard pattern g refining its if-guard,

SB = ({pg} seq SX) ∪ ({p̄g} seq SY)
(5) If B is a loop block on X with guard pattern g refining its loop-guard, SB :=

loop(g, SX) =
⋃

i∈I Si
X where S0

X = {p̄g}, S1

X = {pg} seq SX seq {p̄g},

S2

X = {pg} seq SX seq S1

X and Si
X = {pg} seq SX seq Si−1

X for i > 2.

SB(n) = Sn
X denotes the semantics of loop block B with exactly n loop executions.

(6) If B is a fork block on X and Y , SB := SX ||SY =
⋃

sx||sy with sx ∈ SX ∧ sy ∈
SY where sx||λ = {sx}, λ||sy = {sy}, and pxs′x||pys′y = {px} seq (s′x||pys′y) ∪
{py} seq (pxs′x||s

′
y).

The semantics Sem(RA) of a refined activity diagram RA consisting of a start ac-

tivity s, an activity block B, and an end activity e is defined as the set of rule se-

quences SB generated by the main activity block B. If RA contains k guarded loops,

Semn1,...,nk
(RA) ⊆ Sem(RA) denotes a restricted semantics where the semantics of

each guarded loop Bj ∈ A for 1 ≤ j ≤ k is SBj
(nj).

Now, we are ready to check the control flow consistency of activity diagrams. To

do so, we consider snapshots of the system, i.e. object models which are formalized as

graphs by mapping objects to graph nodes and object links to graph edges. In the fol-

lowing definitions for consistency-related properties, we directly use graphs as abstract

syntax representation of object models.

An activity diagram is consistent, if there is a set S of model graphs such that

each rule sequence in the diagram semantics is applicable to some of these graphs. If

the diagram contains guarded loops, we use the restricted semantics for diagrams (as

defined above) which checks for each guarded loop, if a predefined number of loop

executions is feasible. As prerequisite for consistency we define that S is complete if

for all sequences in the diagram semantics there is a model graph in S to which they are

applicable. S is without junk, if each of its model graphs represents a potential snapshot

of the system to which a rule sequence in the diagram semantics can be applied.

Definition 8 (completeness). A set S of graphs is complete wrt. to a refined activity

diagram RA, if for all rule sequences s in Sem(RA) there is a graph G in S such that s

is applicable to G. If RA contains k guarded loops, a set S of graphs is quasi-complete

wrt. to RA, if for all rule sequences s in Semn1,...,nk
(RA) there is a graph G in S

such that s is applicable to G. Set S is without junk, if for each graph in S at least one

applicable rule sequence in Sem(RA) (resp. Semn1,...,nk
(RA)) exists.

Definition 9 (consistent activity diagram (without object flow)). A refined activity

diagram RA is consistent, if there is a set S of graphs which is complete wrt. RA.

If RA contains k guarded loops, RA is quasi-consistent, if there is a set S of graphs

which is quasi-complete wrt. RA.

4.2 Refined Activity Diagrams with Object Flow

In the following, we extend refined activity diagrams by partial rule dependencies which

formalize object flows. We extend the semantics of refined activity diagrams to cover

also object flow.

First, we define well-structured activity diagrams with object flow. Object flow has

to be coherent with the control flow of an activity diagram.

Definition 10 (well-structured activity diagram with coherent object flow). A well-

structured activity diagram AOF = (A,Obj,OFR, I,O) with coherent object flow is

a well-structured activity diagram A (as given in Def. 3) equipped with a set of object

nodes Obj, an object flow relation OFR for A and Obj, input parameter set I , and

output parameter set O, defined as follows:

(1) Input parameters can be object nodes or values, i.e. I = IN ∪ IV with IN ⊆ Obj.

Output parameters may only be object nodes only, i.e. O = ON with O ⊆ Obj.

(2) Object flow relation OFR contains triples (x, o, y) where x and y are simple or

decision activities and o ∈ Obj. In addition, there is a special tag null not used as

activity name which is used to define object flow from and to parameter objects, i.e.

triples (null, o, y) and (x, o, null) can also be in OFR where o ∈ IN or o ∈ ON ,

resp. For each object o in IN (resp. in ON), there is at least one triple (null, o, y)
(resp. (x, o, null)) in OFR . For each other object o ∈ Obj, there has to be at least

one triple (x, o, y) ∈ OFR.

(3) OFR is coherent with control flow relation CFRA of A (see Def. 4), i.e. for all

(x, o, y) ∈ OFR with x, y 6= null there is (x, y) ∈ CFRA.

Please note that OFR contains a triple for each pair of object flows sharing an

object and Obj is not allowed to contain objects not involved in object flow.

Example 6. Considering activity diagram AddLaboratory shown in Fig. 2 which has a

set of four object nodes Obj = {l2 : Lecturer, l : Lecture, lab : Laboratory,

r2 : Room} and an object flow relation OFR = {(null, l2 : Lecturer,

CreateLaboratory), (null, l : Lecture, CreateLaboratory), (null, r2 : Room,

DecisionActivity1), (CreateLaboratory, lab : Laboratory, SetRoom),
(DecisionActivity1, r2 : Room, SetRoom)}. Please note that the unnamed decision

activity is represented by DecisionActivity1 here. The considered activity diagram has

input parameter sets as follows IN = {l2 : Lecturer, l : Lecture, r2 : Room} and

IV = {labT itle : String, labDay : Day, labT ime : Time}. The output parameter

set O is empty as the signature of activity diagram AddLaboratory lists no parame-

ter marked with keyword out. Coherence of the object flow relation OFR is satisfied

as for triples (DecisionActivity1, r2 : Room, SetRoom) and (CreateLaboratory,

lab : Laboratory, SetRoom) there are tuples (DecisionActivity1, SetRoom)
∈ CFRA and (CreateLaboratory, SetRoom) ∈ CFRA i.e. corresponding succes-

sive activities can be found in diagram AddLaboratory.

Next, we define how refined activity diagrams are extended coherently by object

flow. The object flow relation for objects that do not serve as input or output parame-

ters of the activity diagram has to be coherent with the input and output parameters of

the rules refining activities. That means, each such object flow has to correspond with

exactly one input and output parameter of an activity.

Definition 11 (refined activity diagram with object flow). A refined activity diagram

RAOF with object flow is a well-structured activity diagram AOF = (A,Obj,OFR, I,

O) with coherent object flow such that each simple activity x occurring in AOF is

refined by a graph transformation rule px. Each decision activity x ∈ AOF has an

if- or loop-guard which is equipped with a guard pattern g. Its guard rule pg is also

denoted by px. Let Opx
be the output parameter set of px and Ipy

the input parameter

set of py . OFR has to be coherent with refining rules which is defined as follows:

(1) For all (x, o, y) ∈ OFR where x 6= null, an output object parameter exists in Opx

which is called src(x, o, y). If y 6= null, an input object parameter exists in Ipy
,

called tgt(x, o, y).
(2) For all triples (x, o, y), (x, o, y′) (resp. (x, o, y), (x′, o, y)) in OFR we have

src(x, o, y) = src(x, o, y′) (resp. tgt(x, o, y) = tgt(x′, o, y)).

(3) For each two activities x and y and the set of all (x, o, y) ∈ OFR, the set of all

pairs (src(x, o, y), tgt(x, o, y)) defines an injective mapping.

(4) For all triples (x, o, null), (x, o′, null) (resp. (null, o, y), (null, o′, y)) in OFR

with o 6= o′ we have src(x, o, null) 6= src(x, o′, null) (resp. tgt(null, o, y) 6=
tgt(null, o′, y)).

Example 7. We consider activity diagram AddLaboratory (cf. Fig. 2) again with OFR

as discussed in Example 6. According to the definition one example is shown each for

src and tgt.

The evaluation of src with triple (CreateLaboratory, lab : Laboratory, SetRoom)
∈ OFR, with respect to its source activity CreateLaboratory(labT itle, labDay,

labT ime, l2, l, lab) and its refining rule CreateLaboratory(in String labT itle,

in Day labDay, in T ime labT ime, in Lecture lecture, in Lecturer lecturer,

out Laboratory newLab) (cf. Fig. 3) results in newLab : Laboratory since lab was

assigned to this output object parameter within the parameter list. This evaluation con-

forms to the definition above. Evaluating tgt with triple (null, l2 : Lecturer,

CreateLaboratory) ∈ OFR the target activity and refining rule is equal to the case

before, and is evaluated easily to lecturer : Lecturer as the object l2 of type Lecturer

is distinctively assigned to an input object parameter by its position in parameter list.

This evaluation conforms to the definition above. Since there is no other related triple,

the injective mapping condition is satisfied as well. Furthermore, for this case each two

activities have at most one object of equal type flowing, thus condition (3) is satisfied

apparently.

An example case for the second condition occurs in activity diagram AddLecture

where l : Lecture flows from activity CreateLecture to several different activities e.g.

SetRoom and CreateLaboratory6. However, since object l is assigned to a distinct pa-

rameter function src is evaluated here always to newLecture : Lecture.

The semantics of refined activity diagrams can be extended to a semantics for re-

fined activity diagrams with object flow by extending it with partial rule dependencies.

Partial rule dependencies are derived from refined activity diagrams with object flow

that correspond to the above definition Def. 11.

Definition 12 (semantics of refined activity diagrams with object flow). The seman-

tics Sem(RAOF) of an activity diagram RAOF with object flow being a refined activity

diagram of AOF = (A,Obj,OFR, I,O) is equal to Sem(RA), the semantics of the

refined activity diagram RA without object flow, where in addition partial rule depen-

dencies (see Def. 1) are defined as follows:

For each pair of rules (pi, pj) in a rule sequence s : p1, ..., pn of Sem(RA) with

1 ≤ i < j ≤ n, partial rule dependency dij is defined as follows: Let x (resp. y)

be the activity that is refined by rule pi (resp. pj) in sequence s, then the partial rule

dependency dij between pi and pj consists of all pairs (src(x, o, y), tgt(x, o, y)) such

that (x, o, y) ∈ OFR where src and tgt are given by Def. 11.

RAOF is called dependency-compatible, if all rule sequences in Sem(RAOF) are

dependency-compatible, as defined in Def. 2.

Having defined refined activity diagrams with object flow formally, we consider

now their consistency. Again, we define completeness as a prerequisite for consistency.

We define completeness and consistency based on the completeness and consistency for

refined activity diagrams without object flow.

Definition 13 (completeness of refined activity diagrams with object flow). A set S
of graphs is complete wrt. a dependency-compatible refined activity diagram RAOF , if

for all dependency-compatible rule sequences s in RAOF there is a graph G in S such

that s is applicable to G in the sense of Def. 2.

Now we can finally extend the consistency definition from refined activity diagrams

to refined activity diagrams with object flow.

6 Remind that complex activity AddLaboratory containing activity CreateLaboratory was flat-

tened in our considerations

Definition 14 (consistent activity diagram with object flow). A refined activity dia-

gram RAOF with object flow is consistent, if there is a set S of graphs which is complete

wrt. RAOF .

Please note that the properties quasi-completeness and quasi-consistency of refined

activity diagrams without object flow can be extended to those with object flow accord-

ingly.

Example 8. After having formalized the semantics of refined activity diagrams with

object flow by sets of rule sequences where rules are connected by partial rule depen-

dencies, we are ready to check the defined object flow in activity diagrams in Figure 2

according to completeness and consistency. Each simple activity is refined by interre-

lated object diagrams, i.e. object rules, in Figure 3.

To give the semantics of the activity diagram in Figure 2 by a set Sem(A), we con-

sider all rule sequences (with pattern NotNull as identical rule) and use the following

acronyms: NN = NotNull, CLec = CreateLecture, CLab = CreateLaboratory,

CEx = CreateExercise, and SR = SetRoom.

Sem(RAOF) =

{(CLec, NN, NN, NN), (CLec, NN, SR, NN, NN), (CLec, NN, NN, CLab, NN, NN),

(CLec, NN, NN, CLab, NN, SR, NN), (CLec, NN, SR, NN, CLab, NN, NN),

(CLec, NN, SR, NN, CLab, NN, SR, NN), (CLec, NN, NN, NN, CEx, NN),

(CLec, NN, NN, CEx, NN, SR, NN), (CLec, NN, SR, NN, NN, CEx, NN),

(CLec, NN, SR, NN, CEx, NN, SR, NN), (CLec, NN, NN, CLab, NN, NN, CEx, NN),

(CLec, NN, SR, NN, CLab, NN, NN, CEx, NN),

(CLec, NN, NN, CLab, NN, SR, NN, CEx, NN),

(CLec, NN, SR, NN, CLab, NN, SR, NN, CEx, NN),

(CLec, NN, NN, CLab, NN, NN, CEx, NN, SR),

(CLec, NN, SR, NN, CLab, NN, NN, CEx, NN, SR),

(CLec, NN, NN, CLab, NN, SR, NN, CEx, NN, SR),

(CLec, NN, SR, NN, CLab, NN, SR, NN, CEx, NN, SR)}

As partly shown in Example 2, the object flow in our example can be formalized by

partial rule dependencies. Moreover, as defined in Definition 12, if all rule sequences

in Sem(RAOF) are dependency-compatible, RAOF is as well. In the following we

will show that all rule sequences are dependency-compatible by examining one after

the other with an additional brief discussion.

(CLec, NN, NN, NN) :

dCLec,NN = dNN,NN = ∅

No rule dependencies occur here.

(CLec, NN, SR, NN, NN) :

dCLec,NN = dCLec,NN = ∅,

dCLec,SR(newLecture) = coursepart,

dNN,SR(object) = room,

dNN,NN = dSR,NN = dNN,NN = ∅

Since type(newLecture) = Lecture is finer than type(coursepart) = CoursePart

(see Fig. 1), this dependency is type-compatible. Likewise type(object) = Object is

coarser than type(room) = Room thus this dependency is type-compatible as well. It

follows that this sequence is dependency-compatible.

(CLec, NN, NN, CLab, NN, NN) :

dCLec,NN = dCLec,NN = ∅,

dCLec,CLab(newLecture) = lecture,

dNN,CLab(object) = lecturer,

dCLab,NN = dNN,CLab = ∅,

dNN,NN = dNN,NN = ∅

Dependency dNN,CLab(object) is type-compatible as type(object) = Object is coarser

than type(lecturer) = Lecturer. Analogously we can argue that for dCLec,CLab(newLecture),
types of newLecture and lecture are identical, thus this sequence is dependency-

compatible.

(CLec, NN, NN1, CLab, NN2, SR, NN) :7

dCLec,NN = dCLec,NN1
= dCLec,NN2

= dCLec,SR = ∅,

dCLec,CLab(newLecture) = lecture,

dCLab,NN2
= dCLab,NN = dNN,CLab = ∅,

dCLab,SR(newLab) = coursepart,

dNN1,CLab(object) = lecturer,

dNN2,SR(object) = room,

dSR,NN = dNN,SR = dNN1,SR = ∅

Dependencies dCLec,CLab(newLecture) and dNN1,CLab(object) are type-compatible

as just shown above. Dependency dNN2,SR(object) was checked for type-compatibiolity

before as well. Dependency dCLab,SR(newLab) with

type(newLab) = Laboratory and type(coursepart) = CoursePart is type-compatible

as well, as Laboratory is a sub-type of CoursePart.

Remaining sequences can be easily evaluated the same way. Since the authors be-

lieve, that arguing is quite straightforward, in the following the arguing is left out. Fur-

thermore only non-empty dependencies are listed.

(CLec, NN1, SR, NN2, CLab, NN, NN) :

dNN1,SR(object) = room,

dCLec,SR(newLecture) = coursepart,

dCLec,CLab(newLecture) = lecture,

dNN2,CLab(object) = lecturer

(CLec, NN1, SR1, NN2, CLab, NN3, SR2, NN) :

dCLec,SR1
(newLecture) = coursepart,

dNN1,SR1
(object) = room,

dCLec,CLab(newLecture) = lecture,

7 Rules NN were numbered for clarity only. Numbering of NN is left out as no dependencies

occur at all.

dCLab,SR2
(newLab) = coursepart,

dNN2,SR2
(object) = room,

dNN2,CLab(object) = lecturer

(CLec, NN, NN, NN, CEx, NN) :

dCLec,CEx(newLecture) = lecture,

dNN,CEx(object) = lecturer

(CLec, NN, NN1, CEx, NN2, SR, NN) :

dCLec,CEx(newLecture) = lecture,

dNN1,CEx(object) = lecturer,

dNN2,SR(object) = room,

dCEx,SR(newExer) = coursepart

(CLec, NN1, SR, NN, NN2, CEx, NN) :

dCLec,SR(newLecture) = coursepart,

dNN1,SR(object) = room,

dNN2,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

(CLec, NN1, SR1, NN2, CEx, NN3, SR2, NN) :

dCLec,SR1
(newLecture) = coursepart,

dNN1,SR1
(object) = room,

dNN2,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

dNN3,SR2
(object) = room,

dCEx,SR2
(newExer) = coursepart

(CLec, NN, NN1, CLab, NN, NN2, CEx, NN) :

dNN1,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN2,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

(CLec, NN1, SR, NN2, CLab, NN, NN3, CEx, NN) :

dCLec,SR(newLecture) = coursepart,

dNN1,SR1
(object) = room,

dNN2,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN3,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

(CLec, NN, NN1, CLab, NN2, SR, NN3, CEx, NN) :

dNN1,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN2,SR(object) = room,

dCLab,SR(newLab) = coursepart,

dNN3,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

(CLec, NN1, SR1, NN2, CLab, NN3, SR2, NN4, CEx, NN) :

dNN1,SR1
(object) = room,

dCLec,SR1
(newLecture) = coursepart,

dNN2,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN3,SR2
(object) = room,

dCLab,SR2
(newLab) = coursepart,

dNN4,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

(CLec, NN, NN1, CLab, NN, NN2, CEx, NN3, SR) :

dNN1,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN2,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

dNN3,SR3
(object) = room,

dCEx,SR(newExer) = coursepart

(CLec, NN1, SR1, NN2, CLab, NN, NN3, CEx, NN4, SR2) :

dNN1,SR1
(object) = room,

dCLec,SR1
(newLecture) = coursepart,

dNN2,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN3,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

dNN4,SR2
(object) = room,

dCEx,SR2
(newExer) = coursepart

(CLec, NN, NN1, CLab, NN2, SR1, NN3, CEx, NN4, SR2) :

dNN1,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN2,SR1
(object) = room,

dCLab,SR1
(newLab) = coursepart,

dNN3,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

dNN4,SR2
(object) = room,

dCEx,SR2
(newExer) = coursepart

(CLec, NN1, SR1, NN2, CLab, NN3, SR2, NN4, CEx, NN5, SR3) :

dNN1,SR1
(object) = room,

dCLec,SR1
(newLecture) = coursepart,

dNN2,CLab(object) = lecturer,

dCLec,CLab(newLecture) = lecture

dNN3,SR2
(object) = room,

dCLab,SR2
(newLab) = coursepart,

dNN4,CEx(object) = lecturer,

dCLec,CEx(newLecture) = lecture

dNN5,SR3
(object) = room,

dCEx,SR3
(newExer) = coursepart

Please note that the flattened version of activity diagram AddLecture in Fig. 2 is

consistent according to Def. 14 as all listed rule sequences are applicable to a graph G

consisting of one Lecturer object and one Room object. For example, the minimum se-

quence shown at first (CLec, NN, NN, NN) is applicable, if CreateLecture is invoked

with parameter value l1 equal to the Lecturer object in G, and parameter values for

r1,l2 and l3 different from the Room and Lecturer object in graph G. This is because

rule CreateLecture requires only a lecturer (in this case l1) and NN(r1),NN(l2) and

NN(l3) require that r1 (resp. l2 and l3) do not occur in graph G. In contrast, the very

long sequence listed at last is applicable as well, as rules CreateLecture, CreateLab-

oratory and CreateExercise may all use one lecturer which holds the course and one

room the course takes place in. The Lecture object required by CreateLaboratory and

CreateExercise is created always by the first rule CreateLecture. Please note that the

set S consisting of graph G is minimal. However, each set which enlarges this set S

by graphs with several lecturers or rooms could also be used to show that the flattened

version of activity diagram AddLecture is consistent.

5 Related work

This paper is rooted in the research directions of formal semantics and analysis of ac-

tivity diagrams as well as graph transformation approaches. While a lot of research has

been done on semantics and validation of activity diagrams (see e.g. [5–7]), few works

exist on the analysis of object flow in activity diagrams such as [15] and [16]. However,

these approaches do not consider refinements of activities as we do. For example, [16]

adds data flow semantics to activity diagrams by means of colored petri nets. Activi-

ties are not refined as in our approach, but objects which are passed between activities

have attribute value checks and method calls. Colored Petri nets provide validation like

reachability of certain states and quantitative analyses as matching of time bounds. In

contrast, we define a semantics for activity diagrams with object flow where activities

may be refined by interrelated object diagrams which has not been done before (to the

best of our knowledge).

Fujaba [17], VMTS [18], and GReAT [19] are graph transformation tools for spec-

ifying and applying object rules along a control flow specified by activity diagrams.

Fujaba’s story diagrams integrate activity diagrams with object rules, similarly to our

approach of refined activity diagrams. Compared to our approach, object flow is not

depicted separately, but represented by equal names in activities. Furthermore, rules are

not separated from activities. Rules used at different places have to be specified sev-

eral times. We define object rules independently of activities and can apply them more

than once with different arguments. VMTS supports rule application controlled by ac-

tivity diagrams, similar to Fujaba. In contrast to Fujaba, rules are not directly depicted

in activities, but represented by special separate activities. Global variables are used

to pass model elements from one rule execution to a later one. This object flow is not

checked for consistency with internal causalities of rules. GReAT supports controlled

rule application as well. For each rule, input and output parameters are defined which

can be connected along the control flow to pass objects from rule to rule. This restricted

form of object flow is always consistently defined with the rules. All three approaches

are implemented, but do not provide a formal semantics comprising activity refinement

and object flow. Moreover, AGG is the only graph transformation tool which supports

the applicability checks on rule sequences and also critical pair analysis to detect causal

dependencies.

6 Conclusion

In this paper, we have defined refined activity diagrams with object flow where each

activity is refined by a set of interrelated object diagrams in addition, describing the

pre- and post-conditions of an activity. Pre-conditions can also include non-existence

conditions on object patterns. We have formalized the semantics of well-structured re-

fined activity diagrams with coherent object flow using algebraic graph transformation

where activity-refining object diagrams are defined by transformation rules. In addition,

we have introduced the notion of partial dependencies between rules formalizing object

flow between refined activities. To prepare a notion of consistency we define the appli-

cability of rule sequences with partial rule dependencies. The consistency definition is

based on comparing rules (stemming from pre- and post-conditions) with partial rule

dependencies (defined by object flow).

The graph transformation tool environment AGG can be used to analyze potential

causal dependencies between rules. As a next step, facilities for partial rule dependency

specification should be added to provide the basis for a consistency analysis of partial

rule dependencies with causal dependencies. Our theory needs to be consolidated to

enable automatic generation of graph transformation semantics from refined activity

diagrams with object flow.

In future, we want to use the formal semantics given by graph transformation to

prove the consistency of refined activity diagrams with object flow along sufficient cri-

teria easy to check. We expect that the graph transformation environment AGG can do

a good job to support automatic checks.

In this paper we have applied the approach to service modeling. Our example demon-

strates how service behavior can be modeled precisely and how the coherence of its ob-

ject flow can be checked. We expect that modeling of service composition and service

orchestration and domains such as work flow design and aspect-oriented modeling can

benefit from the application of our concepts as well.

References

1. Lambers, L., Jurack, S., Mehner, K., Taentzer, G.: Sufficient Criteria for Consistent Behavior

Modeling with Refined Activity Diagrams. In: Proc. 11th Int. Conf. on Model Driven En-

gineering Languages and System MoDELS08. Volume 5301 of LNCS., Toulouse, France,

Springer (2008) 341–355

2. Hausmann, J., Heckel, R., Taentzer, G.: Detection of Conflicting Functional Requirements

in a Use Case-Driven Approach. In: Proc. of Int. Conference on Software Engineering 2002,

Orlando, USA (2002)

3. Mehner, K., Monga, M., Taentzer, G.: Interaction Analysis in Aspect-Oriented Models. In:

International Conference on Requirements Engineering RE 06. (2006)

4. Lambers, L., Mariani, L., Ehrig, H., Pezzè, M.: A formal framework for developing adaptable

service-based applications. In: Proceedings of the International Conference on Fundamental

Approaches to Software Engineering (FASE). (2008)

5. Eshuis, R., Wieringa, R.: Tool support for verifying uml activity diagrams. IEEE Trans. on

Software Eng. 7(30) (2004)

6. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities. In: Soft-

ware Engineering 2005. Volume LNI P-64., Gesellschaft f. Informatik (2005) 117–128

7. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML Activities Using Dynamic

Meta Modeling. In Bosangue, M.M., Johnsen, E.B., eds.: FMOODS 2007. Volume 4468.,

Springer, Berlin/Heidelberg (2007) 76–90

8. UML: Unified Modeling Language. http://www.uml.org (2008)

9. Ehrig, H.and Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-

formation. Springer-Verlag (2006)

10. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating Meta Modelling with Graph

Transformation for Efficient Visual Language Definition and Model Manipulation. In Wer-

melinger, M., Margaria-Steffens, T., eds.: Proc. Fundamental Aspects of Software Engineer-

ing 2004. Volume 2984 of Lecture Notes in Computer Science., Springer-Verlag (2004)

11. Plump, D.: Evaluation of Funtional Expressions by Hypergraph Rewriting. PhD thesis,

Universität Bremen, Fachbereich Mathematik und Informatik (1993)

12. AGG: AGG Homepage. (http://tfs.cs.tu-berlin.de/agg)

13. Lambers, L., Prange, U.: Efficient Conflict Detection for Graph Transformation with Inheri-

tance using Abstract Critical Pairs. (submitted for FASE 2009)

14. Lambers, L., Ehrig, H., Taentzer, G.: Sufficient Criteria for Applicability and Non-

Applicability of Rule Sequences. In Ermel, C., Heckel, R., de Lara, J., eds.: Proc. Interna-

tional Workshop on Graph Transformation and Visual Modeling Techniques (GTVMT’08).

Volume 10., Electronic Communications of the EASST (2008)

15. Barros, J.P., Gomes, L.: Actions as Activities and Activities as Petri nets. In: Workshop on

Critical Systems Development with UML. (2003) 20–24 workshop at 6. Int. Conf. on the

Unified Modeling Language (UML 2003), San Francisco, U.S.A.

16. Störrle, H.: Semantics and Verification of Data Flow in UML 2.0 Activities. Electronic

Notes in Theoretical Computer Science 117 (2003)

17. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph Rewrite

Language based on the Unified Modeling Language. In Engels, G., Rozenberg, G., eds.:

Proc. of the 6th Int. Workshop on Theory and Application of Graph Transformation. LNCS

1764, Springer (1998) 296–309

18. Visual Modeling and Transformation System: (2008) http://vmts.aut.bme.hu/.

19. GReAT - Graph Rewriting and Transformation: (2008) http://www.isis.

vanderbilt.edu/tools/GReAT.

	Folie 1

