
Learning on Relational Data:

Prototype-Based Classification of

Attributed Graphs

vorgelegt von

M.Sc. (Engg.)
Shankar Deepak Srinivasan

aus Chennai, Indien

von der Fakultät IV - Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

- Dr. rer. nat. -

Genehmigte Dissertation

Tag der wissenschaftlichen Aussprache: 19. August 2011

Promotionsausschuss:

Vorsitzender: Prof. Dr. O. Hellwich

Berichter: Prof. Dr. K. Obermayer

Berichterin: Prof. Dr. B. Hammer

Berlin, 2011

D 83

2

Acknowledgements

I thank my Doktorvater Prof. Klaus Obermayer for his advice and

support. I wish to thank Brijnesh J. Jain for the many discussions,

critical arguments and support over the last three years, Johannes

Mohr, Prof. Manfred Opper for their comments and insights, Mr.

Francois-Xavier Dupé and Prof. Luc Brun for providing the SHAPES

dataset. I am grateful to members of the NI group both past and

present for providing an atmosphere of support and enthusiasm. Spe-

cial thanks to Max Göttner for running the experiments on SHAPES

and COIL datasets. I would like to thank the efforts of the NI

Sekretariat- Ms. Camilla Bruns and Ms. Gabriele Rösler and BCCN

administration - especially Ms. Margret Franke, Dr. Vanessa Casagrande

and Dr. Daniela Pelz (formerly at BCCN Berlin) in helping me han-

dle all manner of bureaucratic and official issues. The financial sup-

port provided by BCCN, Berlin in the form of Doctoral scholarship is

gratefully acknowledged.

Finally, nothing would have possible without the love and support of

my family. The inadequacy of these words notwithstanding- thank

you.

ii

Contents

Contents iii

List of Figures vii

1 Introduction 1

1.1 Preface . 1

1.1.1 Graph based representations 1

1.1.2 Approaches & Challenges 2

1.2 Overview of this thesis . 4

1.2.1 Scope . 4

1.2.2 Organization . 5

2 Structure Spaces 7

2.1 Introduction . 7

2.2 Structure Spaces . 8

2.2.1 Setting . 8

2.2.2 Analysis on T- spaces . 9

2.2.3 Functions on T- spaces . 11

2.3 Central clustering . 12

2.4 Experiments . 15

2.4.1 Datasets . 15

2.4.2 Algorithms . 15

2.4.3 Setting and results . 16

2.5 Conclusion . 17

iii

CONTENTS

3 Learning a set of prototypes for classifying attributed graphs 19

3.1 Introduction . 19

3.2 Learning Vector Quantization and its variants 20

3.3 Distance measure between attributed graphs and prototype update

rule . 22

3.3.1 Graph metric . 23

3.3.2 Generalized differentiability 23

3.4 Learning Graph Quantization . 24

3.4.1 Learning Graph Quantization 25

3.4.2 Learning Graph Quantization 2.1 25

3.4.3 Generalization bounds and margins 26

3.5 Experiments . 27

3.5.1 Description of the datasets 28

3.5.2 Experimental setup . 28

3.5.3 Comparison with state-of-the-art techniques 29

3.5.4 Results & Discussion . 29

3.6 Conclusion . 31

4 Dissimilarity representations of attributed graphs 33

4.1 Introduction . 33

4.2 Prototype based embedding . 35

4.2.1 Analysis on Dissimilarity Space 36

4.2.2 Prototype update rule . 38

4.2.3 Embedding based on Generalized Learning Graph Quanti-

zation algorithms . 40

4.3 Experiments . 42

4.3.1 Data and settings . 42

4.3.2 Results . 44

4.4 Analysis based on statistical learning theory 46

4.5 Conclusion . 48

5 Probabilistic models of attributed graphs 51

5.1 Introduction . 51

iv

CONTENTS

5.2 Model based clustering for attributed graphs 53

5.2.1 Random attributed graphs- A review 53

5.2.2 Model based clustering of attributed graphs 55

5.2.3 Estimating the density function of node and edge attributes 56

5.3 Random graphs as prototypes . 58

5.4 Experiments . 60

5.4.1 Algorithmic details . 60

5.4.2 Synthetic datasets . 61

5.4.3 Experimental results on IAM Graph datasets 62

5.5 Conclusions & future directions 64

6 Summary & Outlook 65

Appendix A 69

Appendix B 77

References 81

v

CONTENTS

vi

List of Figures

2.1 Representative cluster centres for Skolnick dataset 18

5.1 Classifier ROC plots for different distortion levels 62

1 IAM graph dataset repository . 71

2 COIL-100 dataset along with distance matrix of objects 1, 3, 18, 41 73

3 Shape dataset . 74

4 Distance matrix for contact maps for Skolnick dataset 76

vii

LIST OF FIGURES

viii

Chapter 1

Introduction

1.1 Preface

1.1.1 Graph based representations

Structural pattern recognition concerns itself with the task of analyzing and learn-

ing patterns that are not normally representable by features of a fixed length in an

Euclidean space. Instances of such patterns include combinatorial entities such as

strings, point patterns, trees and more generally attributed graphs. Such repre-

sentations occur naturally in many contexts out of which we specifically mention

the following

-Bioinformatics, where Protein structures are represented as graphs in terms of

their secondary structure elements or as contact maps representing their tertiary

structure [6, 67].

-Chemoinformatics, where chemical molecules are represented as attributed

graphs with nodes representing atoms along with atomic information as attributes

and edges denoting bonds between atoms attributed by edge type and details [48].

-Computer vision, where part based models are used to represent objects as a

set of parts with relevant attributes interconnected by edges denoting intra-part

relationships. This field of research also provides an important class of problems

relating to classifying shapes. Shapes are commonly represented as graphs or

trees. Hence, learning tasks on shapes involve pattern analysis of graphs and

trees representing them [52, 63].

1

1. INTRODUCTION

While graph based representations have enormous potential in terms of the

wide variety of patterns they can describe with a significant level of complexity,

there are however difficulties associated with handling them, primarily due to the

following reasons

-The ”space of graphs” has no mathematical structure unlike the space of

vectors. This means that even the simplest of operations such as addition of

graphs, sample mean of a set of graphs are not easy to define.

-Computational complexity. In order to assess the similarity of two graphs,

we need to find a correspondence between their nodes and edges or in some cases,

determine if they are isomorphic. It is yet unclear if determining whether two

graphs are isomorphic is solvable in Polynomial time or is NP complete. Deter-

mining the optimal matching between nodes of two graphs consists of Maximum

common subgraph isomorphism problem as a special case. The latter is known

to be NP-hard [22]. Hence, we need approximate algorithms which run efficiently

while also providing effective solutions. Even then, matching two graphs is com-

putationally intensive [14].

1.1.2 Approaches & Challenges

Broadly, there are three schools of thought for developing machine learning and

pattern recognition algorithms on combinatorial structures (of which we will take

graphs as an instance). The first is graph kernels, which has been quite popular

recently [43, 68]. The framework for this idea emerges from the more general

convolution kernels proposed by Haussler [32]. A structured object is decomposed

into its constituent parts and a kernel between two such objects is defined as

the convolution of (positive semi-definite) measures on the constituent parts.

Some examples of such kernels include random walk kernel, product graph kernel

and marginalized graph kernels. They have been applied successfully to learning

problems in bio- and chemo-informatics [5, 51].

Another class of machine learning algorithms could be developed on combina-

torial structures using only the notion of distance- a quantity that measures how

similar two objects are. It is possible to endow the set of combinatorial structures

with a proximity measure. The term proximity is used in a generic manner- it

2

could refer to similarity, distance or any other measure that quantitatively de-

scribes relationship between different objects in the set. For feature vectors, any

Ln metric could be used depending on applications. For strings and sequences,

there exists a measure of dissimilarity measured by the edit operations required

to transform one element of the space to another. A suitable modification called

graph edit distance is proposed for trees and graphs [8, 9].

With a distance measure defined, it is possible to carry out learning tasks

directly in the original space of graphs. For instance, to classify the data it is

possible to use the k-Nearest Neighbor classifier with the underlying dissimilarity

measure. Graepel et. al. [25], propose classification algorithms directly on the

proximity values by embedding the data into a pseudo-Euclidean space, where

linear classifiers are designed. Related efforts include embedding the original set

along with distance measure into Hilbert spaces, Banach spaces and as a special

case into Euclidean space itself [69].

The third class of algorithms uses spectral methods to embed graphs into a

vector space. Spectral graph theory [12] deals with understanding the connection

between structural properties of graphs and the eigensystem of its adjacency

matrix A or the closely related Laplacian matrix L defined as L = D−A, where

D is the diagonal matrix whose entries are given by Dii =
∑

j Aij . The Laplacian

is positive semi-definite. Hence, it is possible to decompose it as L =
∑

i λieie
T
i ,

where λ ≥ 0 are the eigenvalues and ei are the eigenvectors. The eigenvectors are

then utilized to embed the graphs into a feature vector space, where clustering

and classification algorithms are applied [50, 70].

However, the techniques mentioned above are not without problems. It is

not clear how to define graph kernels for graphs with arbitrary feature vector

attributes. A similar argument holds for spectral methods as well, which require

node and edge attributes to be scalars. The process of defining eigenvalues and

eigenvectors is not defined for graphs with arbitrary node and edge attributes. In

many applications, the dissimilarity measure considered may not lend itself for

embedding into Euclidean spaces. For instance, if the property of symmetry and

sub-additivity do not hold for a proximity measure, it is not possible to embed the

set into an Euclidean space in a natural fashion. If the space that is embedded into

lacks sufficient mathematical structure, then it is not possible to develop a full

3

1. INTRODUCTION

repertoire of analytical concepts to develop more extensive algorithms. Moreover,

even after a suitable embedding is proposed into another space, there is still the

problem of losing the original representations.

Moreover, in applications, there is a need to come up with concepts such as

sample mean of a set of combinatorial structures for algorithms such as central

clustering, component analysis or external expert interpretation. It is not possible

to define these terms using graph kernels, as they can only operate on a pair of

graphs without any explicit individual feature representation. An embedding of

the data into a simplified ”flat” vector space (either by spectral embedding or

otherwise) causes loss of information, which means reconstruction of structural

entitites from the embedded space is not possible and also leads to degradation

of performance.

In order to overcome these shortcomings in a principled fashion, Jain et al.

[39, 37], propose to embed the space of combinatorial structures with a met-

ric (X, d) into a quotient space (X′, d′) of an Euclidean space. The embed-

ding is isometric- distance relations are preserved in the quotient spaces, and

isostructural- different representations of same structure are projected onto the

same element in the quotient space. The elements of an equivalence class are

different vector representations of the same structure, thus retaining structural

information. In this locally Euclidean (quotient) space, analytical concepts such

as distance and angle between combinatorial structures are defined and also gra-

dients of functions defined on them. With these definitions, pattern recognition

algorithms for tasks such as clustering and classification are developed. This is

the mathematical framework for the Chapters 3, 4 in this thesis

1.2 Overview of this thesis

1.2.1 Scope

The aim of this thesis is to develop prototype based learning methods for clas-

sifying attributed graphs. The motivation for prototype learning algorithms in

graph domain are the following

-There already exist successful classes of prototype learning algorithms for

4

feature vectors- Learning Vector Quantization [44]. They are conceptually simple

in that the algorithms require fundamentally only the concept of a differentiable

distance measure. The formalism of structure spaces provides us with the means

to define a metric between graphs and to derive an analogue of its gradient. Thus,

we can extend LVQ algorithms directly to structered domain.

-Crammer et.al. [16], in their seminal contribution show that LVQ algorithms

belong to a family of maximum margin classifiers. Hence, there is a strong theo-

retical motivation to extend these algorithms to graphs.

-Prototype based methods solve naturally the multi-class problem without

resorting to simplifications or reduction to many two-class classification problems

-The availability of prototypes for further applications. For instance, it may be

necessary in some applications to define a set of ”typical elements” or prototypes

of a class. Moreover, it has been demonstrated that prototypes could be used

to embed the original patterns into a feature (vector) space [54]. In this view,

prototypes generate ”kernels” in a feature space, where classification performance

could be improved, as we show in this thesis

-It is possible to define prototypes for a wide variety of node and edge at-

tributes. This is not possible for classification methods using graph kernels, or

spectral methods.

1.2.2 Organization

The organization of this thesis is as follows-

In Chapter 2, we review the theory of Structure Spaces. This provides the

analytical concepts needed for Chapters 3 and 4.

In Chapter 3, we develop a class of prototype based classification algorithms

called Learning Graph Quantization (LGQ) algorithms. The classifiers are parametrized

by a set of prototypes with class labels. The class label of a new graph is pre-

dicted to be the class label of the nearest prototype (NPC) according to the

nearest neighbor rule. The goal of learning is to find a set of prototypes that

best predicts the class labels of graphs from the underlying distribution. With

the notion of metric and subgradient defined, a novel class of algorithms are pro-

posed to learn the prototypes using a subgradient descent procedure analogous

5

1. INTRODUCTION

to Learning Vector Quantization in the domain of feature vectors.

In Chapter 4, we use the prototype based methods to embed the graphs into

a vector space. Consider the dissimilarity of the graphs to each prototype as a

feature in a (feature) vector space. In such a view, the prototypes generate a

kernel, which in turn generate features for classification. We demonstrate that

the prototypes learnt by the class of LGQ algorithms generate features that are

well suited for classification. In experiments, they improve the state-of-the art

performance on multiple datasets. We also evaluate the quality of prototypes for

embedding, using bounds from statistical learning theory.

In Chapter 5, a class of probabilistic methods is proposed for classifying at-

tributed graphs. Within the framework of random attributed graphs, we propose

an online algorithm to estimate the parameters, using concepts from Information

Geometry. The resulting random graph is chosen as a prototype and a formula

for defining likelihood is proposed with suitable independence assumptions. The

graph set is embedded into a feature space defined by log-likelihood, where clas-

sifiers are learnt. It is demonstrated that likelihood is a feature for classification.

Chapters 3, 4, 5 comprise the original scientific contributions of this thesis.

Chapter 6 is the concluding chapter.

A detailed description of the datasets used in this thesis is presented in Ap-

pendix A. Appendix B discusses in detail the Graduated Asssignment algorithm

for matching attributed graphs, which is used with minor variations throughout

this thesis.

6

Chapter 2

Structure Spaces

In this chapter, we describe the theoretical foundations and methodology under-

pinning this thesis. We begin by reviewing the fundamentals of the theory of

Structure Spaces- a framework for defining analytical and geometrical concepts

such as angle between combinatorial structures, gradients of scalar functions de-

fined on them. This enables us to develop learning algorithms directly in struc-

tural domain. As a first application, central clustering algorithms are considered

in view of their importance to prototype learning algorithms later.

2.1 Introduction

The nature of this chapter is one of review. Hence, we follow the original contri-

butions by Jain et. al. [39, 37], closely throughout this chapter with the following

organization: In Section 2, the theory of Structure Spaces is reviewed in detail,

followed by the discussion of central clustering algorithm in Section 3. In Section

4 we present the experimental details along with setting and results, followed by

the concluding Section 5.

7

2. STRUCTURE SPACES

2.2 Structure Spaces

2.2.1 Setting

We will use attributed relational graphs (referred in this thesis as attributed

graphs or simply as graphs) as the model for combinatorial structures because

of its widespread applications and also because other representations such as

point patterns, trees are subsumed by it. Recall that attributed graph is a tuple

G : (V,E, α) with a set of vertices V, set of edges E ∈ V×V and α : {V,E} → R.

The attribute values are assumed to be scalars only for simplicity. The graph is

then represented by its weighted adjacency matrix X, in a representation space

X, whose elements are given by the attribute function α.

The representation X is determined by a particular ordering of vertices. A

different ordering of vertices results in another adjacency matrix X′. The relation

between X and X′ is given by the permutation matrix P , which maps the node

ordering corresponding to the former representation to the latter. That is,

X′ = P T XP : P ∈ T

where T is the set of all permutation matrices. Since the set of all permutations

of an order forms an algebraic group, their corresponding representations (i.e.

the set of all permutation matrices of order n) form a group as well. Any two

representations X, X′ ∈ X are said to be equivalent, X ∼ X′, if ∃P ∈ T, such

that above equivalence relation holds. Hence, the set of permutations T partitions

the representation space X into orbits consisting of all elements belonging to the

equivalence class of elements. The elements of an equivalence class have different

representations of the same graph structure.

A graph X with n nodes has n! possible node orderings, of which not all of

them may be distinct depending upon the symmetry of graphical structure. The

equivalence class of X consists of all its possible representations X and is denoted

by [X]. Since the representation space is the set of matrices which is a linear

space, we could treat it as a vector space of dimension R
n×n, partitioned by the

set of permutations into equivalence classes, the elements of which denote the

8

same structure with different representations. The quotient set

XT = X/ ∼=
⋃

[X]

is called T- space over the representation space X.

Notation: Normal capital letters X denote the abstract structure i.e. elements

from the quotient space XT. The notation X denotes a particular representation.

Depending on the context, we use expressions like x ∈ X which means x ∈ [x]

i.e. x is a particular chosen representation of the graph structure X.

2.2.2 Analysis on T- spaces

We now define analytical concepts such as inner product and distance measures

between structures, which will be computed in the T- space. A T- space over X is

the orbit space XT = X/T of all orbits x ∈ X under the action of T. We introduce

a mapping µ,

µ : X→ XT

called membership function that sends any vector representation (from the rep-

resentation space) to the abstract structure they describe.

As mentioned earlier, the representation space is a vector space. Consider

a mapping f : X × X → R therein. This mapping induces a mapping in XT

corresponding to a pointwise extrema in the following manner:

F ∗ : XT × XT → R, (X, Y)→ max{f(x, y) : x ∈ X, y ∈ Y }

F∗ : XT × XT → R, (X, Y)→ min{f(x, y) : x ∈ X, y ∈ Y }

As indicated, the above definitions of F ∗ and F∗ called maximizer and mini-

mizer respectively, are motivated by concept of standard inner product and met-

ric. Consider the standard inner product in Euclidean space < ., . >. It induces

a ”structural” inner product in the T- space as below,

< ., . >∗: (X, Y)→ max{< x, y >: x ∈ X, y ∈ Y }

9

2. STRUCTURE SPACES

The map < ., . >∗ is positive definite and symmetric. It follows directly from

the definition. However, it is not strictly linear because of the following reasons:

addition is not a well-defined operation in the quotient space, even if an equivalent

structure were to be found which could be interpreted as sum of structures (in

terms of their mean structure, which is defined as the structure equidistant to

both) the operation < X + Y, Z >∗ depends on the pointwise maximum, which

may occur for different representations for X and Y . The operator is sub-linear,

i.e.

< X + Y, Z >∗≤< X, Z >∗ + < Y, Z >∗

This definition of inner product gives rise to a norm of structure which is,

‖ X ‖∗=< X, X >∗

The above definition of ”structural” norm is invariant under choice of represen-

tation, because

‖ P T XP ‖∗=‖ X ‖∗=< X, X >∗

as P is a permutation matrix, which is orthonormal and hence preserves norms.

The minimizer F∗ is used to define distance measure in T- space in the fol-

lowing manner:

D∗(., .) : (X, Y)→ min{d(x, y) : x ∈ X, y ∈ Y }

where d(., .) is (Euclidean) distance measure in the representation space. Also,

the distance is related to the structural dot product via

D2
∗(X, Y) =< X, X >∗ + < Y, Y >∗ −2 < X, Y >∗

We also note that this definition of distance follows from set theoretical view-

point as well. Every structure is identified with an equivalence class in the repre-

sentation space. Hence, if a representation for one structure X were to be fixed

(say x), then its distance to another set Y is by definition of set distance

10

d(x, Y) = infy∈Y d(x, y)

This distance function is indeed a metric as turns out to be symmetric, non-

negative and satisfies triangle inequality. We note that the distance and inner

product for graphs defined here is applicable for graphs with arbitrary node and

edge feature attributes, by stacking the attribute feature vectors to form an ex-

tended adjacency matrix.

2.2.3 Functions on T- spaces

In order to develop learning algorithms on structures, we need to set up a cost

function which has to be minimized. The minimization algorithms proceed by

update along the direction of greatest descent i.e. update in a direction opposite

to gradient. Hence, this motivates us to define gradients of functions defined on

T- spaces.

Let XT be the T- space over X. A T mapping is then a mapping fT : XT → Y.

A T mapping is a T function if Y ⊆ R. Consider a map on the representation

space f : X→ Y, which induces a map fT on elements [X] ∈ XT. If fT is constant

on [x], then f is defined to be T- invariant. Conversely, a T mapping induces

a ”pullback” map f on representation space X, which is T- invariant related by

f = fT ◦ µ. The ”pullback” map is referred to as representation function.

A T function is T differentiable at X ∈ XT, if its representation function is

differentiable at any of its arbitrary representation. This implies that T- dif-

ferentiability is independent of a representation and hence is well defined. Let

f : X → R be the representation function of a T function F . Let f be dif-

ferentiable at x ∈ X with gradient ∇f(x). The gradient map induces a ”push

forward” (T- gradient) map on XT as below,

∇F (X) = µ(∇f(x))

From the definitions, the following observations are immediate: T- gradient is

independent of the choice of representation, it points to the direction of steepest

ascent, the necessary and sufficient condition for local extrema remains analogous

11

2. STRUCTURE SPACES

as in the representation space, i.e. ∇F (X) = 0T for X being an extremum.

Let f be a locally Lipschitz continuous function between representation spaces

X→ Y, i.e.

dY(f(x, x′)) ≤ dX(x, x′)

If Y ⊆ R, by Rademacher’s theorem, f is Frechet-differentiable everywhere

except a set of Lebesgue measure zero. Also, one can define for it subgradient

[13] as below,

∂f(x) = {c : f(x)− f(x0) ≥ c(x− x0)∀x ∈ X}

At points where f is differentiable, subgradient reduces to a gradient, i.e.

∂f(x) = ∇f(x).

Optimal alignment- Given two structures X, Y ∈ XT, A(X, Y) denotes the set

of all possible alignments of X, Y . A particular vector representation (which is a

result of a chosen aligning or ordering of nodes) is said to be an optimal alignment

if it minimizes the graph distance (which we define as pointwise minimizer over

all possible node orderings) i.e. x′, y ∈ A(X, Y) is optimal if x′ = argmin x∈X ‖

x− y ‖2.

2.3 Central clustering

There are some approaches towards extending concept of unsupervised learning

such as central clustering and self organizing maps to the domain of structured

data. In the case of self-organizing maps for strings, Kohonen et al., [46] propose

that the generalized median of the sample set be used to update the winning unit

and its topological neighbors. On a similar note, Günter et al., [26] propose a

model of SOM for graphs where they use their concept of weighted graph means

based on the graph-edit distance in the prototype updation step. Hammer et

al., [28] formulate a scheme for processing structured representations by means

of recursive representations for the given context. Hagenbuchner et al., [27] pro-

pose a self-organizing map that operates for structured data using an unfolding

procedure used in recurrent networks.

12

A notable effort to define the central measure of a set of graphs is that of

median and generalized median graphs by Jiang et al., [42]. Given a set of graphs

S : {g1, .., gn}, the median graph is defined as gmed = argming∈S

∑n

i=1 d(g, gi).

The generalized median is defined as argming∈U

∑n
i=1 d(g, gi), where U is the

set of all graphs that could be contructed with the set of nodes and edges. The

computation of generalized median uses the heuristic genetic algorithm on the

search space. However, the graph edit distance used in this computation is not

differentiable. Hence, it is not possible to use these measures in a theoretically

rigorous manner to define central measures.

Sample mean for a set of attributed graphs- The concept of sample mean is

crucial to the development of central clustering algorithms. Apart from its natural

utility for pattern recognition tasks, it has applications in multiple alignment of

structures and visualization [36]. In applications, we would like the mean graph

to give a concise summary of properties of samples in the set. For example, if

the graphs have no attributes i.e. the adjacency matrix has only ones if an edge

is present, then the sample mean should give the fraction of edge occurences.

Consider the definition of sample mean for feature vectors- it is the vector that is

central in the set, in the sense that it minimizes the sum of squares of distances

to all elements in the set. Extending the analogy to graphs, we define the sample

mean of a set of graphs S = {X1, .., Xn} ⊆ XT as a minimizer of the following

cost function,

F (X) =
∑

i

D(Xi, X)2, X ∈ XT

where D is the distance function on XT. As the choice of graph metric we

choose is Lipschitz, the cost function for sample mean is locally Lipschitz in

terms of the mean. It is thus possible to come up with a gradient descent rule to

minimize the cost as follows,

mk = (1− η)mk−1 + ηxk

where, η is the decreasing step size (typically 1
n

for step n), (mk−1, xk) ∈

A(Mk−1, Xk) is the optimal alignment. Thus, we have reformulated the sam-

ple mean problem as one of continuous optimization instead of a combinatorial

13

2. STRUCTURE SPACES

optimization problem.

We now turn to the first application of theory of structure spaces to struc-

tural pattern recognition- central clustering algorithm for attributed graphs .

[39]. Clustering is a fundamental problem in pattern recognition. Moreover, the

concept of cluster centres is heuristically close to the concept of prototypes as

an ”ideal representative of the set”. Learning algorithms such as LVQ family of

algorithms typically begin with prototypes initialized to cluster centres.

Given a set S = {X1, .., Xn} ⊆ XT, the goal of central clustering is to find

a set Y = {Y1, .., Yk} ⊆ XT (referred to as cluster centres) such that the cost

function

F (M) =
1

n

∑

i

∑

j

mijD(Xi, Yj)

is minimized. The assignments are given by the membership matrix M , such

that

mij ∈ [0, 1],

k
∑

j=1

mij = 1, for i = 1, .., n

Each term in the cost function is locally Lipschitz. Hence, the total cost is

locally Lipschitz in terms of the cluster centres. Hence, we adapt the K-means

algorithm [4] to the domain of structures in the following manner.

Algorithm 1 Structural K-means algorithm

Input:
training set S = {X1, . . . , Xn} ⊆ XT

Procedure:
Choose k, initial prototypes Y = {Y1, . . . , Yk} ⊆ XT

Repeat until termination
Assign data to nearest cluster centre
Recompute cluster centres Yk = Sample mean {XYk

}
Return: set Y of prototypes

The expectation E step consists of assigning patterns to their nearest cluster

centres. The M- step involves updating the prototypes, to the sample mean

14

of their respective graphs. This process continues until there is no change in

assignments or when alignments do not change the cost function significantly

[40].

2.4 Experiments

2.4.1 Datasets

We carry out central clustering algorithm for three datasets- Fingerprint, GREC

and Skolnick dataset. A detailed description of the datasets is found in Appendix

A. A brief summary is given below.

Dataset #(graphs tr, va, te) #(classes) avg.(nodes) max(nodes)
Fingerprint 500, 300, 2000 4 5.4 26
GREC 286, 286, 528 22 22.5 25
Skolnick 40 5 158.4 255

Table 2.1: Summary of main characteristics of the data sets.

2.4.2 Algorithms

For computing optimal alignments and graph distances, we use the graduated

assignment algorithm [23]. This algorithm is discussed in Appendix B. This

algorithm places the problem of attributed graph matching within the context

of nonlinear optimization. In order to avoid getting trapped in a local minima,

a continuation method is adopted- i.e. a series of cost functions (in terms of

match matrix) parametrized by a control variable is minimized. This control

parameter is analogous to the temperature in an annealing process. At every

step, the match matrix is estimated and the soft-assign condition is enfoced by

Sinkhorn’s procedure. The node and edge compatibilities are set to the inner

product of their respective attribute vectors. The algorithm returns a doubly

stochastic match matrix and a discrete match matrix is recovered by applying

Munkres’ algorithm. The permutation matrix is then used to align the smaller

graph with the larger one.

15

2. STRUCTURE SPACES

2.4.3 Setting and results

The purpose of central clustering is to reflect the ground truth, which in this case

are the class memberships/labels. The choice of k is made by examination of

the variabilities of graph size within a dataset that is best suited to reflect the

unknown cluster distribution. To that end, we adopt the following methodology:

Initially, the dataset is analyzed for graph sizes. For every graph size, if the

number of graphs having that size exceeds a fraction of the dataset, a cluster

centre is initialized with the sample mean of all graphs having the corresponding

number of nodes. Then, in order to prune the number of clusters, we combine

classes incrementally, as long as there is no significant number of mismatch of class

labels. This process is done classwise, using a subset of training set to validate

the parameter at every step. This yields the optimal value of cluster centres to

be 31, 37 and 5 for Fingerprint, GREC and Skolnick datasets respectively.

Fingerprint GREC Skolnick
0.73 0.86 1

Table 2.2: Rand index

The Rand index is presented in Table 2.2. It is clear that for Protein contact

maps, central clustering correctly categorizes the maps into 5 clusters.

Cluster centres as prototypes- Following Riesen et al. [59], who use median

graphs as central elements in a class to embed the graphs into a feature space, we

use the cluster centres to define a feature space embedding of graphs by computing

the distance of a graph to the cluster centres. We embed each graph X ∈ S in

R
k given a cluster centre set W = {W1, .., Wk} in the following fashion

X → (d(X, W1), ..., d(X, Wk))

In the resulting feature space, we use Support Vector Machines [19] to classify

the test data.

The results of this approach is presented in Table 2.3, where the are compared

with k-Nearest Neighbour (kNN) directly in the graph domain with graph edit

distance [59]. We note here that the number of prototypes (cluster centres) are

16

Method Fingerprint GREC
Cluster centres + SVM 76.8 94.7
kNN 76.7 95.5

Table 2.3: Classification accuracy obtained by linear SVM in the feature space
generated by cluster centres

less compared to kNN which effectively uses a large prototype set (the entire

training set) to get similar performance. This implies that the number of graph

matching operations needed to be performed when using a compact cluster centre

set to embed the graphs is much less than the graph matching operations needed

to classify in the kNN algorithm.

The advantages of using central clustering algorithms over other techniques

such as pairwise clustering are

- number of graph matching operations. Pairwise algorithms require N(N−1)
2

matchings for N patterns, while k-means needs approximately M×N×K match-

ing operations where M is the number of iterations. For datasets with few cluster

centres, we have observed that k-means algorithm converges quickly. This means

that K ×M ≪ N and lesser graph matchings have to be solved.

- the availability of cluster centres. The cluster centres are available for further

applications such as multiple alignment, which is equivalent to solving the sample

mean problem or prototypes to be used for classification tasks.

2.5 Conclusion

In this chapter, we have reviewed the theory of structure spaces, which enables

us to define distance measure between attributed graphs and subgradients of

functions that are defined on them. These concepts are extremely crucial in

order to develop pattern recognition algorithms on combinatorial structures. As

a first application, we consider the problem of central clustering of attributed

graphs. The cluster centres are conceptually related to representative elements

or prototypes of a set. The clustering algorithm alternates until convergence,

assignment of a graph pattern to a cluster and subsequent estimation of cluster

17

2. STRUCTURE SPACES

(a) Che-Y like family (b) Cuperdoxin like family

Figure 2.1: Representative cluster centres for Skolnick dataset
The off-diagonal elements show the contacts between residues with their relative

frequencies denoted by the colour bar

centres. The analytical concepts needed for the computations are provided by the

framework of structure spaces, as the notion of graph edit distance in the current

literature is not differentiable. The central clustering algorithm has been shown

to be an effective indicator of ground truth. In the subsequent chapters, we use

the formalism developed here to devise effective prototype learning algorithms,

with central clustering used in the initialization phase.

18

Chapter 3

Learning a set of prototypes for

classifying attributed graphs

In this chapter, we propose a novel class of algorithms for learning a set of pro-

totypes for classifying attributed graphs. We use the framework of ”Structure

Spaces” to define a suitable metric between attributed graphs. Subsequently, we

derive a prototype update rule based on the sub-derivative of the metric analo-

gous to Learning Vector Quantization algorithms for feature vectors. Two flavors

of such an algorithm are presented, which are then evaluated on datasets from

the IAM graph dataset repository.

3.1 Introduction

Given a set of attributed graphs belonging to different classes, we would like

to learn a classifier that maps the elements of the dataset to class labels. In

prototype based classification schemes, the classifier is parametrized by a set

of labeled prototypes, and the classification is done in the Nearest neighbour

framework. There are many advantages of such a scheme- conceptual simplicity,

easy extension to multi-class problems, and an interpretable model (the set of

prototypes), rather than a black-box classifier model. As we show later, the

prototypes could also be used embed the dataset into a dissimilarity space, by

considering the distance between the dataset and every element of the prototype

19

3. LEARNING A SET OF PROTOTYPES FOR CLASSIFYING
ATTRIBUTED GRAPHS

set as a feature. This finds particular utility in graph-based representations- the

availability of powerful techniques for classification and clustering in vector spaces

means that it is quite gainful to embed the attributed graphs into a feature space.

In this chapter, we consider the problem of learning a set of prototypes for

classification purposes. We begin by reviewing the Learning Vector Quantization

algorithm and its variants, especially for non-vectorial data. We discuss then the

extension of these algorithms for attributed graphs, by deriving a subgradient

type update rule for the prototypes. These algorithms, referred to as Learn-

ing Graph Quantization algorithms are tested on multiple datasets from IAM

Graph Database Repository and their performance is compared to reference and

state-of-the-art classification algorithms [41]. We also discuss some generalization

properties of the algorithms. Part of the material presented in this chapter has

been published [41]. The experiments on COIL and SHAPE datasets were carried

out by Göttner [24].

3.2 Learning Vector Quantization and its vari-

ants

Learning Vector Quantization (hereafter referred to as LVQ) algorithms are a

popular class of algorithms to generate prototypes of a set of feature vectors.

The algorithms, first proposed by Kohonen [44], find applications in domains as

diverse as spreech recognition, image analysis, signal processing and robotics. The

fundamental idea is to estimate directly, the decision surfaces using a gradient

type learning rule as below.

Given a dataset (Xi, yi) ∈ R
n × C, and a set of prototypes (Yk, ck) ∈ R

n × C,

the latter induces a tessellation of R
n into Voronoi cells consisting of all points

that are closer to one prototype than the other. The Voronoi cell for a prototype

Yp is given as,

X ∈ R
n : d(X, Yp) < d(X, Yr), ∀r 6= p

Thus every labeled prototype has a polygonal cell around it, the edges of

which represent decision boundaries with different classes. LVQ aims to learn the

20

classifier by directly adjusting the Voronoi cells and hence the class boundaries.

The training phase begins by first initializing the prototypes to the codebooks

generated by obtained by Vector Quantization (VQ) [19] or Self Organizing Map

(SOM) algorithms. Alternatively, the initialization could also be done by a clus-

tering algorithm or by utilizing prior expert knowledge. In the next stage, the

elements of the sample dataset are presented sequentially. For every presentation,

the closest prototype is found which is then updated according to the following

rule

Yct+1
= Yct

±∇Yc
d(X, Yc)

depending upon if the prototype vector corresponds to the same class as the

presented data or not. The other prototypes stay unaffected.The learning rate η

is non-negative and non- increasing satisfying the following constraints, [7]

∑

η =∞,
∑

η2 <∞

Kohonen [45] suggests initializing the learning rate as η = 0.01 and then

monotonically decreasing it at every step. The algorithm terminates when either

the learning rate vanishes or the prototypes converge; whichever is earlier. The

following point needs to be mentioned- LVQ is a ”fine-tuning algorithm” - the

prototypes should be initialized close to the stable equilibrium in order for the

algorithm to converge [44, 47] .

Extensions have been developed for LVQ algorithms with general similarity

measures that need not be symmetric nor satisfy triangle inequality [30]. Hammer

et.al. [31], show that by using a scaled distance measure d(x, y) = λi(xi − yi)
2,

rather than normal Euclidean metric, it is possible to better process data with

non-homogeneous input dimensions and hence achieve better generalization per-

formance. In fact, choosing a similarity measure is akin to kernelizing the stan-

dard LVQ algorithms; hence generalization bounds from statistical learning the-

ory can be established in this case[29].

With respect to non-vectorial data, Sumervuo et. al., [65] have constructed

LVQ algorithms for variable length sequences. It is accomplished by setting up

a distance function between sequences and defining a weighted average of se-

21

3. LEARNING A SET OF PROTOTYPES FOR CLASSIFYING
ATTRIBUTED GRAPHS

quences. Also, the notion of prototypes of a set of attributed graphs has been

examined. Marini et al., [53] describe a constructive approach to build the pro-

totypes of a class of geometrical shapes represented by attributed graphs. Their

scheme comprises two steps: computing the common subgraph occuring in the

class members and computing a suitable set of editing operations. Initially, a

representative is chosen for every class and all common subgraphs are computed

between all elements of the class and the representative. Then, nodes and edges

are modified (inserted or deleted) depending upon the other elements of the class

successively followed by transforming attribute values. Using a similar approach,

Cordella et al., [15] determine the set of maximally general prototypes of a class

of shapes represented as attributed graphs. The above approaches depend highly

on the nature of datasets in terms of graph and attribute types. They are also

extremely dependent on the choice of representative which often is carried out

manually. Moreover, the approaches are heuristic, in the sense that it is not clear

if they minimize a cost function or the error rate.

The primary motivation for this chapter follows this line of reasoning- LVQ

algorithms are widely used in the domain of feature vectors for prototype learning;

there are no corresponding versions in the domain of graphs. Hence, using the

framework of structure spaces, we propose an extension of LVQ algorithms to

attributed graphs and evaluate is performance on multiple datasets.

3.3 Distance measure between attributed graphs

and prototype update rule

Consider the standard LVQ algorithm:

Algorithm 2 Prototype update in LVQ

Repeat until convergence
Present pattern (Xi, yi)
Find the winner; Nearest Prototype (NP)Yc (according to distance measure

d, commonly Euclidean)
Update NP according to, Yct+1

= Yct
±∇Yc

d(X, Yc)

22

The challenges in extending LVQ to the domain of attributed graphs are

the following; defining a distance metric between the objects, and formulating a

prototype update rule. For feature vectors in Euclidean space, the update rule is

quite simply pushing/pulling the prototypes along the direcion of steepest change,

which is the gradient.

3.3.1 Graph metric

The problem of defining a graph metric has already been considered in Chapter

2. Here, we present a brief review of the concepts.

On a quotient space XT over an underlying Euclidean space X, consider graph

distance functions d : XT × XT → R+ of the form

d(X, Y) = min
{

‖x− y‖2 : x ∈ X, y ∈ Y
}

.

It has already been shown to be a metric. A pair x, y ∈ X×Y is an optimal align-

ment if d(X, Y) = ‖x− y‖2. A(X, Y) denotes the set of all optimal alignments

of X and Y .

3.3.2 Generalized differentiability

The next step is to define a concept of gradient of the graph metric. It should

be pointed out that the graph metric that we defined earlier is not differentiable;

hence it is necessary to use concepts from non smooth optimization [13].

Definition 1. A function f : R
n → R is called generalized-differentiable

(GD) if there exists point-set mapping δf : x ∈ R
n → δf(x) ⊂ R

n, where δf(x)

are bounded, convex and closed with the following decomposition

f(y) = f(x)+ < g, y − x > +o(x, y, g),

where o(x,y,g)
y−x

→ 0, uniformly and g ∈ δf(y).

The following propositions accompany the definition of GD functions.

1. GD functions are continuous

2. Continuously differentiable functions are GD

23

3. LEARNING A SET OF PROTOTYPES FOR CLASSIFYING
ATTRIBUTED GRAPHS

3. The class of GD functions is closed under finite class operations like maxi-

mum, minimum and superposition.

4. GD functions satisfy local Lipschitz condition

| f(y)− f(x) |

| y − x |
≤ K

The point-set mapping defined is called the subgradient of f at x. The ele-

ments of the set are referred to as generalized gradients. When the function f

is differentiable at a point x, then the subgradient (set) has only one element,

namely the derivative. Hence, it might be interpreted that subgradients generalize

the notion of derivatives at non-differentiable points of a function.

In our definition of graph distance, we have a pointwise minima of a set of

differentiable functions. If f = max{f0, f1, ..., fm}, then determination of sub-

gradient of f proceeds by finding k, such that f = fk and choosing a subgradient

of fk at that point. More generally, the subgradient is δf(x) = Co{fi(x) : f(x) =

fi(x)}, where Co denotes the convex hull.

With the above definitions, we can define the subgradient of our graph metric

to be,

δd(X, Y) = 2(x− y∗)

where (x, y∗) is the optimal alignment in the set of all alignments A(X, Y).

With the notions of graph metric and gradient defined, we can now proceed

to extend LVQ algorithms to graph domain.

3.4 Learning Graph Quantization

The motivation of Learning Graph Quantization (LGQ) algorithms is to construct

a classifier c : XT → C that maps graphs from XT to class labels from a finite

set C. The classifier is parametrized by a set of k prototypes Y1, ..., Yk ∈ XT with

class labels c1, ..ck ∈ C. We predict the class label c(x) of a previously unseen

graph by assigning to it the class label of the Nearest Prototype (NP). The goal

of learning is to determine the prototypes that is suited to the classification task.

24

3.4.1 Learning Graph Quantization

Given that S = {(Xi, yi)} ⊆ XT × C is a training set, consisting of n input

graphs, together with class labels yi ∈ C. The algorithm initializes k prototypes

Y = {(Yj, cj)}, such that each class is represented by at least one prototype.

During the training phase, a randomly chosen example {(X, y)} ∈ S is presented

which then modifies the closest prototype graph YX . If the class labels of X and

YX agree, then the prototypes are pulled towards the sample along the direction

of steepest change i.e. the subgradient. If YX does not belong to the same class as

that of X, it is pushed away along the direction determined by the subgradient.

To update the closest prototype YX , the algorithm first selects an optimal

alignment (x, yx) ∈ A(X, Y). Then, it modifies yx according to the following

rule

yx ←







yx + η(x− yx) y = cx

yx − η(x− yx) y 6= cx

,

where η is a monotonically decreasing learning rate following the guidelines

of stochastic optimization. The updated vector representation projects to the

updated graph prototype. The learning continues until convergence has been

reached or the learning rate vanishes. Algorithm 2 summarizes the procedure.

3.4.2 Learning Graph Quantization 2.1

In contrast to LGQ1, LGQ2.1 algorithm updates the two closest prototypes Y 1
X

and Y 2
X according to the presented training example (X, y) ∈ S. The algorithm

modifies the prototypes Y 1
X and Y 2

X if the following conditions hold:

1. The pattern is misclassified; and Y 2
X has the same class label as X

2. The sample X falls within a ”window” around the decision border i.e.

d(X, Y 2
X) < (1 + δ)d(X, Y 1

X)

The update rule, is then given by

y2

x
←







y2

x
+ η(x− y2

x
)

y1

x
− η(x− y1

x
)

,

25

3. LEARNING A SET OF PROTOTYPES FOR CLASSIFYING
ATTRIBUTED GRAPHS

Algorithm 3 Learning Graph Quantization 1

Input:
training set S = {(X1, y1), . . . , (Xn, yn)} ⊆ XT × C

Procedure:
1. choose initial prototypes Y = {(Y1, c1), . . . , (Yk, ck)} ⊆ XT × C

2. choose vector representations y1 ∈ Y1, . . . , yk ∈ Yk

3. repeat until termination
3.1. randomly select a training example (X, y) ∈ S

3.2. let YX = arg minY ∈Y d(X, Y)
3.3 choose optimal alignment (x, yx) ∈ A(X, YX)
3.4. determine learning rate η > 0
3.5. update according to the rule

Yx ←

{

yx + η (x− yx) if y = cX

yx − η (x− yx) if y 6= cX

Return: set Y of prototypes

The window width δ is initialized to value of 0.2 and decreased monotonically.

If the conditions above do not hold, the update step does nothing.

3.4.3 Generalization bounds and margins

Crammer et al., [16] show that LVQ algorithms belong to a family of maximal

margin algorithms. The definition of margin here is not that of ”sample margin”

(i.e. the distance between a data instance and classification boundary), but that

of hypothesis margin which is defined as the distance the classifier can be shifted

without changing any class labels. The hypothesis margin is given by,

θ = (d(x, y−)− d(x, y+))/2

where y+ and y− are the nearest prototypes with correct and incorrect labels

respectively.

The only condition we require in deriving θ is that the distance measure be

a metric. Since, the distance measure between attributed graphs satisfies the

condition, the above expression for θ is valid. Analogous to the loss function set

up for LVQ1, a hinge loss function [19] with slope parameter β could be set up

26

for LGQ1 as,

L(θ) = (1− βθ)+

The online algorithm for minimizing the above loss function (with the normal

gradient replaced by the sub-derivative) is identical to the prototype update rule

in LGQ1. The loss function for LGQ2.1 is given by the following,

L(θ) = min(2, (1− βθ)+)

The generalization bounds derived in [16] apply,

Rh ≤ Remp +

√

8

m
(dV C log2 32m

θ2 + log 4
δ
)

where δ is the confidence interval, m is the number of samples and dV C is the

V C dimension given by,

dV C = min (N + 1,
64R2

θ2
)2kC log (ek2)

Here C is the number of classes, k is the number of prototypes per class, and

N is the dimension of embedding space,

N = Glv + G(G− 1)le

where G is the size of largest graph in the sample set, lv, le denote the dimen-

sions of node and attribute features respectively.

3.5 Experiments

To assess the performance of the Learning Graph Quantization algorithms, we

conducted a set of experiments on the datasets from the IAM Graph Database

Repository described in [57] and on the Shape dataset [20]. Three datasets from

the IAM graph dataset were chosen as benchmarking datasets for the following

reasons- these three datasets have on average less number of nodes, hence it is

easier to use them for parameter exploration and the wide class of algorithms

27

3. LEARNING A SET OF PROTOTYPES FOR CLASSIFYING
ATTRIBUTED GRAPHS

available makes it possible to evaluate the proposed LGQ algorithms for a thor-

ough study.

3.5.1 Description of the datasets

We choose the following datasets to test and validate the performance of the

proposed algorithms. Three are chosen from the standard IAM Graph database

repository (Fingerprint, GREC and Letter (HIGH)) and one each from the COIL

and SHAPE datasets. More details are presented in the appendix.

Dataset #(graphs tr, va, te) #(classes) avg(nodes) max(nodes) avg(edges)
Letter (HIGH) 750, 750, 750 15 4.7 8 3.1
GREC 286, 286, 528 22 11.5 25 12.2
Fingerprint 500, 300, 2000 4 5.42 26 4.42
COIL-DEL 96,20, 40 4 13.3 40 49.4
SHAPES 108 5 11.7 22 14.1

Table 3.1: Summary of main characteristics of the data sets.

3.5.2 Experimental setup

Setting of LGQ algorithms- The performance of LGQ algorithms depends upon

the initialization of prototypes. The number of prototypes is preferably not too

high because of the following reasons: there is a degradation of performance as-

sociated with large number of prototypes per class which is explained in terms of

generalization ability [16]; more prototypes imply more graph distance computa-

tions which blows up the computational complexity and hence the runtime of the

algorithm.

We initialized the prototypes in a class-wise manner as described below, in

accordance with the suggestion by Kohonen [44] to initialize the prototypes by

a Vector Quantization type procedure. For every class, we applied the k-means

algorithm for graphs. To determine the optimal number k and initialize the

clusters, we partitioned the dataset according to the graph sizes. Each cell of

the partition forms a cluster, if it contains at least m graphs. We optimize the

28

number m with respect to the validation set. The central clustering algorithm

then gives the cluster centres which are then initial prototypes.

The algorithms were iterated niter = 100 times through the training set. The

annealing schedule was chosen to be ηt = 0.01(1 − t/niter) at every step t. For

LGQ2.1, the window width was chosen to be 0.1 for the Letter and GREC datasets

and 0.2 for the Fingerprint dataset. The low value of niter is to reduce the runtime

of the algorithm and it has been observed that the prototypes converge well within

this limit.

Graph distance computations- For computing optimal alignments and graph

distances, we use the graduated assignment algorithm [23] followed by Munkres’

algorithm as a post-processing step in order to determine the most optimal match-

ing (Refer Appendix B).

Experimental protocol - We run LGQ1 and LGQ2.1 on the training set of each

dataset 10 times. We assess the quality of model obtained by evaluating the

results on the validation set. The parameters and run showing the best validation

set performance is chosen as a model for the test set. We denote the algorithms

by their respective initials LGQ and LGQ2.1.

3.5.3 Comparison with state-of-the-art techniques

The following classification algorithm is chosen for comparison study [57]

k- Nearest Neighbour (kNN)- kNN is the conceptually simplest algorithm for

classifying any set of objects, between which a dissimilarity measure could be

defined. An unknown (test) object is assigned to the class, which is determined

by the majority of its nearest neighbours. The value of k is chosen based on the

training and validation set. We choose the results obtained by the kNN procedure

as the benchmark for the following reasons: it is a prototype based classification

paradigm; unlike the other procedures it works directly on the domain of graphs.

3.5.4 Results & Discussion

The results of LGQ and LGQ2.1 algorithms is presented in Table 3.2 along with

reference classification algorithm (kNN).

29

3. LEARNING A SET OF PROTOTYPES FOR CLASSIFYING
ATTRIBUTED GRAPHS

Method Letter Fingerprint GREC COIL-DEL SHAPES
kNN 82 76.7 95.5 87.5 77.6
LGQ 80.9 79.2 94.7 90 79.7
LGQ2.1 83.7 82.2⋆ 97.3 92.5 80.4⋆

Table 3.2: Comparing classification accuracy

The number of prototypes chosen for the Letter and GREC datasets are 2

per class. For the Fingerprint dataset, 30 prototypes were chosen for all the four

classes. The kNN algorithm has k chosen as 3 for the Fingerprint dataset, 5 for

the Letter and GREC dataset. The symbol ⋆ indicates that the improvement of

result is statistically significant [18] compared to kNN (resampled paired t-test for

SHAPES dataset and Z-test for all other datasets) with the level of significance

set to 0.05.

The first observation that we make is the LGQ algorithms (except LGQ on

the Letter dataset) performs better than the reference kNN classifiers. We also

note that the kNN needs to compute the distance to every element in the train-

ing (then choose the k nearest neighbours). For the LGQ algorithms, once the

prototypes have been learnt offline (in the training phase), the distance to a com-

pact training set is all that needs to be calculated. Hence, in real time (online)

classification tasks, there is a large reduction in the computational complexity, as

much less number of graph distance computations need to be performed. In addi-

tion, empirical observations show that LGQ algorithms are quite robust against

noisy data and the prototype set it yields summarizes the structural and attribute

distributions. kNN classifiers do not share both these advantages.

It is also seen that LGQ2.1 performs uniformly better than standard LGQ

algorithm on all the datasets. This is explained in terms of the update rule of

LGQ2.1 which is able to approximate the Bayesian decision surface than LGQ.

This behavior is analogous to the behaviour of its counterpart in the vector

spaces[44].

30

3.6 Conclusion

In this chapter, we have proposed a novel class of prototype learning algorithms

in the domain of attributed graphs. The theoretical framework for the algorithm

is provided by the structure spaces formalism, which allows for the concept of

a metric between graphs and a gradient of the metric. With these definitions,

we extend the LVQ algorithms to the domain of graphs, using the graph metric

and the prototype learning rule given by the direction of steepest change of the

metric (subgradient). The algorithms referred to as Learning Graph Quantization

(LGQ) have two versions- LGQ1 and LGQ2.1, analogous to LVQ1 and LVQ2.1

respectively. The algorithms are tested on five datasets, where they improve

upon the performance of the standard kNN classifier on four of the datasets,

including statistically significant improvement on two of them. We also note that

the analysis of generalization performance of LVQ algorithms applies in our case

as well due to the definition of metric. In the next Chapter, we will examine the

suitability of these prototypes to generate a dissimilarity space, where powerful

classifiers such as Support Vector Machines could be applied, thus giving better

classification performance.

31

3. LEARNING A SET OF PROTOTYPES FOR CLASSIFYING
ATTRIBUTED GRAPHS

32

Chapter 4

Dissimilarity representations of

attributed graphs

In graph based representations, it is common to embed attributed graphs into a

feature vector space to carry out tasks such as classification and clustering. A

standard approach to embed the patterns is to choose a set of prototype graphs

and assign every pattern to a vector in the dissimilarity space spanned by the

prototype set, whose components are given by distances to the prototypes. We

use the class of prototype learning algorithms to generate the dissimilarity space

representations of the graphs, where we classify the dataset. The efficiency of

this technique is demonstrated by experiments on datasets from the IAM Graph

Database Repository.

4.1 Introduction

In order to classify attributed graphs, a standard approach is to embed them into

a vector space, where some of the established algorithms such as support vector

machines, Bayes’ classifier or neural networks could be used. A common method

to embed the graph dataset is to choose a set of prototype graphs and consider the

distance of the graphs to each prototype as a feature in the dissimilarity (vector)

space [59]. The utility of this method relies on the observation that dissimilarity is

an effective feature for classification [54]. There are two approaches for developing

33

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

good classification strategies in this scheme.

1. Choose a large set of prototypes and embed the graphs into a high-

dimensional feature space spanned by distances to the prototypes. Select the

features that are most useful for classification [10]. We note that in this case,

selection strategy is done on the set of already generated features.

2. Choose a compact set of prototypes such that they effectively represent the

class they belong to, thus giving rise to a good dissimilarity space representation.

This implies that we are learning the features (feature generation) in constrast to

the feature selection procedure mentioned earlier.

We consider the problem of learning the prototypes that is suited to the

classification task in the resulting dissimilarity space. There have been some

attempts (when the original patterns themselves are feature vectors) to explore

good prototype optimization schemes, such as using LVQ, mixture of Gaussians to

learn the prototypes [49]. However, there is no analytical motivation underpinning

this approach. This problem is even more acute in the domain of attributed

graphs, as even the most basic mathematical tools necessary to develop learning

algorithms are lacking. Hence, most of the attempts to develop good prototype

selection algorithms are heuristic.

A few of the schemes commonly used [59] are

-choosing the most central graphs (Median, k Centres Prototype Set Selection)

in the dataset. The underlying concept of such an approach is that different

choice of prototypes optimize different clustering cost functions, thus giving the

most ”central” elements. For instance, median graphs minimize heuristically a

clustering cost function with L1 norm, while mean graphs correspond to optima

of L2 norm.

-graphs uniformly distributed in the dataset (Spanning Prototype Selection).

The principle here is to choose prototypes such that they represent the data

distribution in a uniform manner. The motivation here is to choose prototype

graphs such that they represent also the ”atypical” (outlier) elements as well.

A simple strategy is to choose initially the median graph of the dataset and

subsequently choose graphs that are far away from the already existing set of

graphs.

-completely random choice of prototype graphs.

34

These procedures could be carried out in a classwise or class independent

fashion.

However, there are two shortcomings associated with this technique. It has

been observed that when the dataset is highly diverse or corrupted by noise,

it is hard to choose a compact prototype set. The second is that embedding

is uncoupled from the subsequent problem at hand- classification. Intuitively,

an embedding could be much more effective, if it were to simplify the following

classification problem. As has been demonstrated [17, 56], supervised embedding

taking into account class labels acts as an useful pre-processing step, yielding

improved classification results and also enables construction of a classifier that

has low computational complexity.

In this chapter, we propose to use the prototypes obtained by the class of

Learning Graph Quantization (LGQ) algorithms to generate a dissimilarity rep-

resentation of graphs. Although LGQ algorithms are themselves classification

algorithms, there are a couple of advantages in using the prototypes obtained by

the LGQ algorithms to embed the graphs in a feature space, where classification

is carried out- improvement in classification performance and less computational

complexity. We hypothesize that in the domain of attributed graphs, prototypes

that are learnt in a supervised manner using class labels give rise to better dissim-

ilarity space representations suited to classification tasks. To that end, we use the

prototypes obtained by LGQ algorithms and a concomitant class of generalized

LGQ algorithms for embedding [38]. We show that classification results hence

obtained compare well against state-of-the-art approaches.

4.2 Prototype based embedding

In this section, we present an analytical approach to learn the prototypes to gener-

ate the feature space spanned by dissimilarity values. The approach relies on the

concept of a generalized differentiable distance measure, thus making the analysis

presented here valid for feature vectors (with a differentiable distance measure

such as Euclidean distance) and attributed graphs with the graph metric (along

with its subgradient) as discussed in Chapter 2. The aim is to motivate the case

for using the prototypes obtained by Learning Graph Quantization algorithms

35

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

(or LVQ algorithms for feature vectors) to generate the dissimilarity space.

4.2.1 Analysis on Dissimilarity Space

Given a pattern set S from an arbitrary space X, with class labels belonging to set

C given by label function l(.) : X→ C and a set of prototypes Y = {Y1, .., Yk} ⊆ X,

also with class labels belonging to C, we embed each pattern X ∈ S in R
k in the

following fashion

X → (d(X, Y1), ..., d(X, Yk)) (4.1)

where d(., .) is a dissimilarity measure.

The choice of prototypes determines the embedding of patterns into a dis-

similarity space (also abbreviated as DSS in this chapter), which in turn has a

bearing on classifier performance. The objective is to choose the prototypes such

that the embedded data shows robust class coherence while achieving effective

interclass separation.

We now assume that the classifiers in the DSS are a set of hyperplanes. This

is merely an assumption to simplify the analysis. In practise, one uses non-

linear classifiers (such as typically SVM’s with Gaussian or Polynomial kernels)

to achieve superior classification results. Every class with label i ∈ C has a

corresponding class region Hi in the dissimilarity space, linear in the coefficients

and in the features given by embedding described by Eq. 4.1. The DSS is

partitioned by linear discriminant functions into different class regions, with each

region corresponding to a class label i.

Hi :
k

∑

p=1

γipd(X, Yp) (4.2)

where γip are the coefficients which determine the linear classifier belonging to

some class i. For every pattern X, the set of prototypes Y could be split into two

subsets- one subset of prototypes having the same label as that of data referred

to as Y(X) and another subset consisting of prototypes having labels different

than the data, Y′(X). We use notation such as p ∈ Y(X) to mean that prototype

Yp has the same label as data X, i.e. Yp ∈ Y(X). We rewrite the discriminant

36

function in Eq. 4.2 for the class i as below

Hi :
∑

p∈Y(X)

γipd(X, Yp) +
∑

p∈Y′(X)

γipd(X, Yp) (4.3)

We now require that the discriminant function Hi corresponding to the label

of the pattern X be minimized i.e.

min(
∑

p∈Y(X)

γipd(X, Yp) +
∑

p∈Y′(X)

γipd(X, Yp)) (4.4)

for i = l(X).

The class information is incorporated in the following manner- the coefficients

corresponding to the prototype term having the same class label as the data is

positive and the coefficients corresponding to the prototypes having different class

label as the data is negative. We rewrite Eq. 4.4 in the following manner

min(
∑

p∈Y(X)

αipd(X, Yp)−
∑

p∈Y′(X)

βipd(X, Yp)) (4.5)

where,

αip, βip ≥ 0 (4.6)

for i = l(X)

Moreover, to prevent numerical instabilities from occurring, we impose the

following constraint.

∑

p∈Y(X)

α2
ip = 1,

∑

p∈Y′(X)

β2
ip = 1, ∀i ∈ C (4.7)

The non-negativities of αip and βip have the effect of pushing the prototypes

belonging to the same class as that of a pattern towards it, while repelling away

the prototypes belonging to different classes. If the constraint in Eq. 4.6 were

not present, then the minimization of cost function would result in all prototypes

being pushed towards the pattern irrespective of the class labels, analogous to an

unsupervised clustering algorithm.

37

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

The constraints in Eq. 4.7 ensure the boundedness at every update step. We

now need to derive a prototype update rule for minimizing the cost given by

Eq. 4.5 summed over all patterns X in the set. Such a rule would update every

prototype uniformly irrespective of its distance from the data. In order to avoid

modifying prototypes that are far away from the pattern (especially repelling

prototypes of other classes which are far already), we introduce a tuning function

(analogous to one introduced by Kohonen [44]), that is ”active” (non-zero) for

some of the prototypes (say for the two nearest prototypes to the pattern) and

vanishes otherwise. The tuning function is dependent upon both the prototypes

and data pattern. Ideally, it should be active only for few prototypes close to the

data.

The modified cost function for a single pattern X to be minimized now be-

comes,

∑

p∈Y(X)

αpd(X, Yp)∆α −
∑

p∈Y′(X)

βpd(X, Yp)∆β (4.8)

Henceforth, implicitly, αp, βp denote the coefficients αip, βip for i = l(X).

Similarly ∆α, ∆β are functions of X, Yp.

The cost for embedding the training set is given by,

ES(Y, α, β) =
n

∑

m=1

(
∑

p∈Y(Xm)

αpd(Xm, Yp)∆α −
∑

p∈Y′(Xm)

βpd(Xm, Yp)∆β) (4.9)

under the constraints

∑

p∈Y(X)

α2
p = 1,

∑

p∈Y′(X)

β2
p = 1, αp, βp ≥ 0 (4.10)

4.2.2 Prototype update rule

If the original patterns are attributed graphs, then the distance measure is given

by the graph metric introduced in Chapter 2. If the patterns are feature vectors,

the distance measure is chosen as Euclidean distance. Then, applying stochastic

subgradient descent to minimize the cost function results in the following update

38

rule for the prototypes at step t for the discriminant function belonging to class

i = l(X),

Ypt+1
= Ypt

− ηαp∆α∂d(X, Ypt
); p ∈ Y(X)

Ypt+1
= Ypt

+ ηβp∆β∂d(X, Ypt
); p ∈ Y′(X) (4.11)

where, η is the learning rate corresponding to the step size in the gradient

descent. ∂d(X, Ypt
) refers to subgradient which coincides with the gradient with

respect to Y for feature vectors with Euclidean distance.

In order to calculate the normalized factors βp, αp, we set up the Lagrangian

for the cost function incorporating the constraints as follows,

L(X, Y) =
∑

p∈Y(X)

αpd(X, Yp)∆α −
∑

p∈Y′(X)

βpd(X, Yp)∆β

+λ1(
∑

p∈Y(X)

α2
p − 1) + λ2(

∑

p∈Y′(X)

β2
p − 1) (4.12)

where λ1, λ2 are the Lagrange multipliers.

Setting the derivatives in Eq. 4.12 with respect to βp, αp to vanish yields,

αp = −
d(X, Yp)∆α

2λ1
; p ∈ Y(X)

βp =
d(X, Yp)∆β

2λ2
; p ∈ Y′(X) (4.13)

We now solve for λ1, λ2. Plugging Eq. 4.13 in the constraints given by Eq.

4.10

λ1 = −

√

∑

p∈Y(X)

d2(X, Yp)∆2
α

λ2 =

√

∑

p∈Y′(X)

d2(X, Yp)∆2
β (4.14)

39

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

Hence, the coefficients in the update rule in Eq. 4.11 are given by,

αp =
d(X, Yp)∆α

√

∑

p∈Y(X)

d2(X, Yp)∆2
α

; p ∈ Y(X)

βp =
d(X, Yp)∆β

√

∑

p∈Y′(X)

d2(X, Yp)∆2
β

; p ∈ Y′(X) (4.15)

The Eqs. 4.11, 4.15 are the formulas for prototype update. For different

functional values of ∆α, ∆β, different prototype learning rules emerge.

Consider the following scenario. ∆α = 1 only for the nearest prototype (from

the same class) if it is not the nearest prototype overall and zero otherwise.

Similarly, ∆β = 1 only for the nearest prototype (from the different class) if it

is not the nearest prototype overall and zero otherwise. Then, the prototype

learning rule is identical to LVQ2.1/LGQ2.1. This follows from Eq. 4.15, where

αp = βp = 1 for the nearest correct and incorrect prototypes respectively and

zero for all other prototypes.

If ∆α = 0 throughout, i.e. the prototypes belonging to the same class as the

pattern are never updated and ∆β = 1 for only the nearest incorrect prototype,

which is also the nearest prototype overall, the prototype update rule is similar to

LVQ1/LGQ1. This is because the term βp = 1 only for p = infp∈Y′(X)(d(X, Yp))

and vanishes for every other other p.

4.2.3 Embedding based on Generalized Learning Graph

Quantization algorithms

Recently, extensions have been proposed for Generalized Learning Vector Quan-

tization algorithms- Generalized Learning Vector Quantization(GLVQ) and Gen-

eralized Relevance Learning Vector Quantization (GRLVQ) in the domain of

graphs [60, 31]. These algorithms are referred to as Generalized Learning Graph

Quantization(GLGQ) and Generalized Relevance Learning Graph Quantization

(GRLGQ) respectively [38]. We present a short review here.

40

The GLGQ algorithm aims at minimizing the following cost function

ES(Y) =
n

∑

m=1

f(µ(d(Xm, Y)) (4.16)

On account of its smooth, monotonic nature and its widespread use, sig-

moidal function is chosen for f(.) defined as sgd(x) = (1 + e−x)−1. µ is defined

as dNCP −dNIP

dNCP +dNIP
where, dNCP and dNIP denotes the distance to the nearest correct

prototype and the nearest incorrect prototype. Such a definition is chosen con-

sidering its boundedness and convergence properties. It must be pointed out that

the function sgd(.) is bounded, hence the prototypes converge.

If the original patterns are feature vectors in R
n, a natural choice for a dif-

ferentiable dissimilarity measure d(., .) is the square of the Euclidean norm. For

graphs, we use the definition of graph metric. Again, the cost function is gener-

alized differentiable as it is a composition of generalized differentiable functions.

Hence, a subgradient descent rule to update the nearest correct prototype (yNCP)

and nearest incorrect prototype (yNIP) gives the following equations

∆yNCP = η
sgd′(µ(xi))dNIP

(dNCP + dNIP)2
(xi − yNCP)

∆yNIP = −η
sgd′(µ(xi))dNCP

(dNCP + dNIP)2
(xi − yNIP) (4.17)

where, (x, yNCP) ∈ A(X, YNCP) and (x, yNIP) ∈ A(X, YNIP).

Hammer et. al. [31], propose to kernelize the GLVQ algorithms by modifying

the distance function d to include a weight for every component as d(x, y) =
∑

λi(xi − yi)
2. This implies that every component/feature has a weight which

associates to it how important or relevant it is for classification. In this case,

the prototype and weight update rule corresponds to the learning scheme called

Generalized Relevance Learning Vector Quantization. An analogous formulation

has been proposed to graphs as well referred to as Generalized Relevance Learning

Graph Quantization algorithm (GRLGQ). For the GRLGQ algorithm, the update

equations given by Eq. 4.17 hold. There is an additional rule for updating the

coefficients Λ := {λi}

41

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

∆ΛNCP = −η
sgd′(µ(xi))dNIP

(dNCP + dNIP)2
(xi − yNCP)2

∆ΛNIP = −η
sgd′(µ(xi))dNCP

(dNCP + dNIP)2
(xi − yNIP)2 (4.18)

We use these algorithms to learn the prototypes and then embed the graphs

into a dissimilarity space using the prototypes so learnt.

4.3 Experiments

The goal of the experiments are two-fold- to compare the classification perfor-

mance based on the prototype embedding scheme discussed before with state-of-

the-art results and to assess the improvement of classification results by embed-

ding the graphs into dissimilarity space spanned by the prototypes compared to

using the prototypes directly for classification within the Nearest Prototype (NP)

framework.

4.3.1 Data and settings

To assess the performance of the proposed prototype based embedding, we con-

ducted a set of experiments on the datasets from the IAM Graph Database Repos-

itory [57]. The characteristics of the dataset are summarized in Table 4.1.

Dataset #(graphs tr, va, te) #(classes) avg(nodes) max(nodes) avg(edges)
Letter (HIGH) 750, 750, 750 15 4.7 8 3.1
GREC 286, 286, 528 22 11.5 25 12.2
Fingerprint 500, 300, 2000 4 5.42 26 4.42

Table 4.1: Summary of main characteristics of the data sets.

We generate the prototypes by using the family of prototype learning algo-

rithms viz. LGQ1, LGQ2.1, GLGQ and GRLGQ. The algorithms were applied

to the training set of each dataset 10 times. We then chose the model that per-

forms best on the validation set. In the next step, we embedded the graphs into

42

a dissimilarity space (DSS) based on the distance to the prototype set. In the

DSS, we classified the dataset using Support Vector Machines with Gaussian and

Polynomial kernels whose parameters were optimized by cross validation.

Setting of the LGQ algorithms : We initialized the prototypes classwise

by assigning just one prototype per class, typically class mean. The algorithms

were iterated niter = 100 times through the training set. The annealing schedule

was chosen to be ηt = 0.01(1− t/niter) at every step t. For LGQ2.1, the window

width was chosen to be 0.1 for the Letter and GREC datasets and 0.2 for the

Fingerprint dataset.

We chose the following state-of-the-art classification techniques for compari-

son.

k- Nearest Neighbour (kNN)- Reference system [57]

Similarity Kernels- Similarity kernels [58] are defined which transform graph

distances d(g, g′) to a similarity measure e−γd(g,g′)2 , which is an indefinite kernel for

a subsequent SVM classifier. The parameter γ is the meta parameter that needs to

be determined based on performance on the validation set. The standard training

paradigm is applied to the SVM classifier in the next stage. This procedure is

referred to as SK + SVM.

Lipschitz embedding- Given a dataset of graphs G : {g1, .., gm}, we define a

set S : {P1, .., Pn} consisting of n subsets of G, called reference set for embed-

ding. The Lipschitz embedding with respect to P, φS,f : G → R
n is defined as,

φS,f(g) = (f(g, P1), .., f(g, Pn)), where f could be the minimum, maximum or

mean distance of the graph to elements in the set Pn. The meta paremeters

here are the size of the reference set. The optimal parameters are chosen in con-

junction with optimizing the SVM classifier in the next stage. This procedure is

referred to as LE + SVM [58].

SVM recursive feature selection- This approach uses the most significant fea-

tures depending upon how crucial they are for classification. Consider the decision

surface of a linear SVM f(x) =< w, x > +b, w, x ∈ R
n, b ∈ R. The influence a

feature xi exerts on classification depends on weight wi. Hence, a SVM is trained,

the features ranked based on their corresponding weights and low ranking fea-

tures recursively eliminated until an optimal number of features remain. This

43

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

procedure is referred to as Feat. sel. (svm) [10].

Feature selection through component analysis- Principal Component Analysis

(or its nonlinear extension kernel Principal Component Analysis) is a popular

technique for projecting original data into a space spanned by eigenvectors of

its covariance matrix. The most directions (or components) with high variances

correspond to higher eigenvalues. Now a feature ranking strategy is implemented

by choosing dimensions which are crucial for classification. This procedure is

referred to as Feat. sel. (kpca) [10].

4.3.2 Results

Method Letter Fingerprint GREC
kNN 82 76.7 95.5
SK + SVM 79.1 41 94.9
LE + SVM 92.5 82.8 96.8
Feat. sel. (svm) 92.8 81.7 92.2
Feat. sel. (kpca) 90.3 82.6 91.6
LGQ1 + emb. 83.7 81.6 97.6⋆,†

LGQ2.1 + emb. 88.7 81.7 96.9
GLGQ + emb. 89.5 85.3⋆,†,‡ 97
GRLGQ + emb. 87.1 84.7 97.2

Table 4.2: Comparing classification accuracy

The symbol ⋆ indicates that the improvement of result is statistically signifi-

cant [18] compared to kNN, and † denotes a statistically significant improvement

compared to feature selection algorithms (Feat. sel. (svm/pca)) and ‡ indicates

improvement over family of state-of-the-art embedding algorithms (SK/LE +

SVM) at 0.05 level of significance. The best result overall is typed in boldfront.

We observe overall that prototypes obtained through LGQ algorithms give

rise to a feature space embedding that shows significant improvement over state-

of-the-art techniques on Fingerprint and GREC datasets. The results so obtained

have been the best so far and shows statiscally significant improvement.

On closer examination,the following observations are made- the class of em-

bedding procedures is significantly better than kNN on all the datasets. This is

44

due to the fact that there is a process of supervised learning in the feature (dis-

similarity) space after the features have been learnt in contrast to kNN, where

only the parameter k is chosen based on training observations. As the best re-

sult over the test set for all LE + SVM, SK + SVM classifiers and a family

of feature selection methodology is chosen, the comparison is clearly biased to-

wards the same. Even so, the results obtained using the prototypes obtained

by GLGQ algorithm and LGQ1 algorithm betters the results on Fingerprint and

GREC datasets respectively. Similar improvement of results have been obtained

comparing with feature selection algorithms using svm and kpca.

The most important observation is that family of LGQ algorithms with just

one prototype per class yields prototypes which give better results in the em-

bedded feature space than state-of-the art techniques, which demand a much

larger prototype set. We place this observation in the context of graph gener-

ation process which involves distorting a few base patterns (which are ideally

the prototypes) to produce the entire dataset and the ability of LGQ algorithms

to approximate the base graphs. This also has the additional advantage of less

computational complexity as the number of prototypes is low (just one per class),

which reduces extensively the number of graph matching operations. The train-

ing cycle for SVM’s in the feature space is not computationally expensive as there

exist computationally efficient algorithms for that purpose.

Additionally, embedding the dataset into the dissimilarity space improves the

classification performance compared to using the prototypes as classifiers directly

in the graph domain using the Nearest Prototype framework (ref. Table (4.3)).

This is due to the fact that a combination of all dissimilarities due to the en-

tire prototype set has a more powerful discriminative ability than just a single

dissimilarity feature corresponding to the nearest prototype. This is more so for

the LGQ1 and LGQ2.1 algorithms where there is increase for all the datasets

(where ⋆ denotes a statistically significant improvement at level of 0.05). We

postulate this happens because there is a limit to how much learning could be

done overall- Algorithms such as LGQ1 and LGQ2.1 do not learn as much as

GLGQ and GRLGQ in the graph space, so there is a possibility for learning in

the subsequent embedding space, while the latter class learns more in the graph

space leaving less scope for learning in the dissimilarity space, potentially over

45

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

Table 4.3: Classification accuracy in embedded space (EMB) and Nearest Proto-
type framework (NPC)

Algorithm Scheme Letter Fingerprint GREC

LGQ1
NPC 80.3 80.6 87.8
EMB 83.7 81.6 97.6⋆

LGQ2.1
NPC 85.6 80.5 93.7
EMB 88.7 81.7 96.9⋆

GLGQ
NPC 88.1 84.1 97.7
EMB 89.5 85.3 97

GRLGQ
NPC 85.7 83.3 97.3
EMB 87.1 84.7 97.2

learning as the slight degradation of classification accuracy for the GREC dataset

would seem to indicate. However, more analytical and qualitative studies have to

be conducted to help better understand this observation. One possible approach

might be to compare the generalization performance of LGQ classifiers directly

with the classifiers in the dissimilarity space. On a related note, we motivate the

classification results due to embedding from different LGQ algorithms through

concepts from statistical learning theory in the next section.

4.4 Analysis based on statistical learning theory

Number of features

We begin by analyzing the optimal size of prototype set for embedding. The

number of features (or the dimensionality of embedding feature space), is prefer-

ably as low as possible, as seen from the following relation [66].

R(α) = Remp(α) +

√

V C(H)(2m
V C(H)

+ 1) + ln(4
δ
)

m
(4.19)

46

Remp is the empirical error. For a set of linear classifiers in the DSS,

V C(H) = k + 1 (4.20)

where k is the dimension of the DSS which is equal to the number of proto-

types.

Hence, in order for the VC dimension to be less, the number of prototypes

should be as less as possible. Hence, it is advisable to choose just one prototype

per class in order to reduce generalization error. It is also noted here that such a

choice is advantageous from the point of view of computational complexity.

Prototypes as defining kernels

The prototypes define a kernel which embeds the graphs into a feature space.

Consider the mapping induced by the prototype set of the graphs into a feature

space as given by,

φ(x)→ (d(x, y1), .., d(x, yp)) (4.21)

with the kernel defined as,

K(xi, xj) = φ(xi)
T φ(xj)

=
∑

d(xi, yp)d(xj , yp) (4.22)

As has been pointed out by Chapelle et al. [11], the ratio R2

γ2 , (R2-W2 ratio)

[66] is a suitable measure for evaluating the ”goodness” of a kernel, where R is

the radius of the minimum enclosing ball of data in the feature space, and w is

the inverse of margin i.e. w2 = 1
γ2 . Informally, it could be stated that lower the

ratio, better the kernel (assuming of course that empirical error is equal, which

we observed in experiments as well).

We observe that R2-W2 ratio compares favorably to GLGQ algorithm on

Letter and Fingerprint datasets, for which these prototypes also give the best

results in the dissimilarity space. For GREC dataset, the best ratio is obtained

for LGQ1 algorithm, which also gives the best classification performance.

In order to get a better insight, we look at the radius of the minimum enclosing

47

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

Algorithm Letter Fingerprint GREC
LGQ1 18 10.8 2.3
LGQ2.1 6.7 8.4 15.3
GLGQ 6.3 3.7 11.3
GRLGQ 7.8 5.6 7.6

Table 4.4: R2-W2 ratio

ball (MEB) in the dissimilarity space:

Algorithm Letter Fingerprint GREC
LGQ1 12.5 4.9 6.8
LGQ2.1 15.9 5.3 12.1
GLGQ 12 5.1 6.6
GRLGQ 21.4 5.2 7.7

Table 4.5: Radius of minimum enclosing ball

The radius is comparable for LGQ1 and GLGQ algorithms. For the GLGQ

algorithm, this effect manifests itself in the low R2-W2 value as well. The low

value of radius for LGQ1 algorithm is best understood in terms of the prototype

update, which adjusts only the winning prototype. However, this means that the

margin is low in this case. Among algorithms that simultaneously adjust multiple

prototypes, GLGQ yields both the lowest radius and R2-W2 ratio.

4.5 Conclusion

Dissimilarity based representation is a very useful technique to embed attributed

graphs into a feature space to carry out classification tasks. The state-of-the-art

techniques construct the dissimilarity space by choosing the prototypes in a fash-

ion, overlooking the subsequent classification problem. In this chapter, we have

investigated classification of the graph set in the space generated by prototypes

learnt using a family of learning algorithms. We motivate this by setting up a cost

function for the prototype set taking into account the class labels. The online al-

gorithm for optimizing this cost function subsumes Learning Vector Quantization

48

algorithms as a special case and in the domain of attributed graphs corresponds

to the class of Learning Graph Quantization algorithms for special functional val-

ues. Classifiers in the dissimilarity space spanned by the prototypes so obtained

achieve a high accuracy rate, with a considerably small prototype set and a stan-

dard, principled initialization procedure. We also consider classification in the

space spanned by prototypes obtained by two generalized learning algorithms-

Generalized Learning Graph Quantization and Generalized Relevance Learning

Graph Quantization algorithms.

In order to better understand the classification results, we consider the R2-

W2 ratio of the classifiers in the dissimilarity space. Lower the bound, better the

generalization performance. It is seen that bounds are lowest for GLGQ algorithm

for two of the three datasets, corresponding exactly to its superior classification

results. Further research should focus on the two following directions

-establish a clear analytical link between minimizing the bounds and learning

algorithms

-learning prototypes directly based on minimizing R2

γ2 ratio directly binds the

prototype optimization procedure with maximizing classifier margin. Such a

scheme would result in a classifier with the most optimal generalization per-

formance.

49

4. DISSIMILARITY REPRESENTATIONS OF ATTRIBUTED
GRAPHS

50

Chapter 5

Probabilistic models of

attributed graphs

In this chapter we propose a new approach towards developing a class of proba-

bilistic methods for classifying attributed graphs. The key concept is a random

attributed graph, which is defined as an attributed graph whose nodes and edges

are annotated by random variables. Every node/edge has two probabilistic vari-

ables associated with it- structural probability, which describes a probability that

the node/edge occurs in an instantiation of the random graph and the probability

distribution over the attribute values. We then develop estimates of structural

and attribute probability distributions. The likelihood of a random attributed

graph to generate an outcome graph is used as a feature for classification.

5.1 Introduction

The analysis of a dataset of patterns represented by attributed graphs is a chal-

lenging problem and is closely related to carrying out machine learning tasks such

as clustering and classification. Developing probabilistic models for attributed

graphs allows us to statistically describe a set of attributed graph data and also

enables us to develop machine learning algorithms to deal with them. Wong et al.

[72, 71], propose a concept of random graph, which takes into account structural

and contextual probabilities. An instantiation (outcome) of a random graph is an

51

5. PROBABILISTIC MODELS OF ATTRIBUTED GRAPHS

attributed graph, which enables the characterization of an ensemble of outcome

graphs with a probability distribution. Sole-Ribalta et al. [64], generalize the idea

of random graph to structure described random graphs (SDRG), with node and

edge value distributions. Algorithms have been proposed where random graphs

are used for classification by first synthesizing random graph as a model for every

class and assigning data to a class depending upon which model has highest like-

lihood of having generated it. This framework has also been adopted by Seong

et al. [62], to develop an incremental clustering algorithm for attributed graphs,

Sengupta et al. [61], to efficiently organize large structural modelbases for quick

retrieval. There are two features of such a definition that are quite noteworthy-

the fact that both the structural and contextual probabilities are considered, un-

der suitable independence assumptions the estimation of these parameters could

be simplified and this definition gives us the ability to deal with a wide variety

of attribute values.

The present chapter aims to use the notion of probabilistic modeling of at-

tributed graphs to develop new techniques for classification within this framework.

Hence, we consider the following two-fold theme: first, we develop a probabilitic

model based clustering algorithm, where the cluster centres are random graphs.

We then consider the cluster centre graphs as prototypes. It has been demon-

strated that [54], given any set of objects and a prototype set, it is possible to

consider the distance of an object to every element of the prototype set as a fea-

ture for classification. We then show that for a set of graphs and prototype set

consisting of random graph set, the likelihood of each random (prototype) graph

generating the graphs is a feature for classification. In this feature space spanned

by the likelihood values, we apply Support Vector Machines for classification,

thus demonstrating the utility of random attributed graphs for classification.

This chapter is organized as follows: in Section 2 we give a brief review of

the theory of random attributed graphs subsequently deriving the clustering cost

function. Subsequently, we derive an online density estimate for the node and

edge attributes. The motivation and concepts for using random attributed graphs

as a prototype for feature generation is presented in Section 3; Section 4 discusses

experimental results; concluding remarks and directions for future research com-

prise Section 5.

52

5.2 Model based clustering for attributed graphs

5.2.1 Random attributed graphs- A review

A random graph is a graph whose nodes and edges are finite probability distribu-

tions. Each outcome of a random graph is a labeled graph and a morphism of the

labeled graph into the random graph. The morphism specifies for each vertex (or

edge) of the outcome graph which vertex (or edge) of the random graph generated

it. The probability space of random graphs should be such that, the outcomes

are attributed graphs with specified morphism relations and is complete. The

definitions in this section follow the original contribution in [72] closely.

Technically, the random graph G = (V, E) is defined to be such that:

1. Each vertex v ∈ V and edge e ∈ E is a finite probability distribution

2. ∀e ∈ E, p(e = φσ(e) = φ) = 1

3. The space of joint distribution of all random nodes and random edges is

complete

Notation: Elements of the random attributed graph are represented by fraktur

script.

Condition 2 ensures that an edge can occur in an outcome only if both its

ends (terminal nodes, given by σ(e)) occur. Completeness means that the space

is indeed a (standard) probability space. Consider the probability space of the

joint distribution. This space is the probability space of attributed graphs and

every outcome is an attributed graph.

Let G = (V, E) be an outcome graph. A morphism µ : V → V and ν : E → E

specifies the structural mapping between the random graph and its outcome.

Thus, an outcome of a random graph is specified by the tuple (V, E, γ), where

γ = (µ, ν). It is to be noted that the mappings µ and ν are into and the inverse

mappings µ′ and ν ′ are such that some elements could be mapped to φ, i.e.

µ′(v) = φ if no morphism exists. The probability of an outcome graph is then

the probability of its joint outcome described by the following,

pG(G, γ) = prob{(v = µ′(v), ∀v ∈ V, α(v) = αi), (e = ν ′(e), ∀e ∈ E, β(e) = βi)}

(5.1)

53

5. PROBABILISTIC MODELS OF ATTRIBUTED GRAPHS

where α(v) is the node attribute function that assigns attribute for every node

and αi denotes the particular node attribute value. β(e), βi are the corresponding

edge attribute function and values respectively.

We make the following assumptions- node occurences are independent, and

edge occurences depend only on the nodes that the edge is incident to. The

basis for our assumptions are that they give rise to a computationally tractable

model, with a factorizable probability density function and the node and edge

occurences contribute independently to the density function, which is the case in

many applications.

Then, we can simplify Eq.(5.1) to,

pG(G, γ) =
∏

µ′(v)6=φ

p(v)
∏

µ′(v)=φ

q(v)
∏

ν′(e)6=φ

p(e)
∏

ν′(e)=φ

q(e)

∏

µ′(v)6=φ

prob(α(µ′(v) = αv))
∏

ν′(e)6=φ

prob(β(ν ′(e) = βe)) (5.2)

where p(v) denotes a probability that the node v occurs and q(v) = 1− p(v)

is the probability that v doesn’t occur. Similar notation has been adopted for

the edges as well. We note that formula in 5.2 decomposes the probability of

an attributed graph instance as the product of probability of nodes/edges of

generating random graphs that occur in the outcome, ”not occurence” probability

of nodes/edges that are absent in the outcome, and the probability of the occuring

nodes/edges to assume their respective attribute values.

The total probability density function for a random attributed graph with

continuous attribute values is then given as below,

pG(G, γ) =
∏

v∈V

(1vpvFv(xv) + (1− 1v)qv)
∏

e∈E

(1epeFe(xe) + (1− 1e)qe) (5.3)

where 1 is the indicator variable equal to identity for the node/edge occurences

and null otherwise and F is the attribute value distribution for nodes/edges.

Werecall that by our assumptions, node occurence probabilities are independent

of each other. Therefore, we model them each by Bernoulli distributions. We also

54

model edge occurence probabilities by Bernoulli distributions, with the constraint

that edges can occur only if both of their end nodes occur.

5.2.2 Model based clustering of attributed graphs

The estimation of structural parameters of a random graph given a dataset fol-

lows from maximizing the likelihood: the node and edge occurence probabilities

of random graphs are set to those values which maximize the likelihood of the

dataset being generated due to the random graph. Therefore, we see that the

total cost function is,

E({Gi}, W) =
∑

i

ln p(W(Gi)) (5.4)

where ln p(W(Gi)) is the likelihood that random graph W generates the graph

Gi. The node and edge attributes are in many cases given by feature vectors.

Hence, we assume the attribute vectors to be generated by Gaussian distributions

whose means and covariances are to be determined. This reflects the process by

which graph datasets are obtained in many applications: a few base graphs are

corrupted by variable levels of noise due to change in state or measurement er-

rors. Also, this model provides for online density estimation. These assumptions,

however do not hold for discrete node and edge attribute variables, in which case

a kernel/histogram density estimator could be applied or graph datasets which

consists of graphs that have drastic attribute dissimilarities even within a single

class.

The likelihood function is therefore,

p(W(Gi)) =
∏

µ′(v)6=φ

p(v)
∏

µ′(v)=φ

q(v)
∏

ν′(e)6=φ

p(e)
∏

ν′(e)=φ

q(e)
∏

µ′(v)6=φ

Nv(xv)
∏

ν′(e)6=φ

Ne(xe)

(5.5)

and the log-likelihood is then,

55

5. PROBABILISTIC MODELS OF ATTRIBUTED GRAPHS

ln(p(W(Gi))) =
∑

µ′(v)6=φ

ln p(v) +
∑

µ′(v)=φ

ln q(v) +
∑

ν′(e)6=φ

ln p(e) +
∑

ν′(e)=φ

ln q(e) +

∑

µ′(v)6=φ

(C −
1

2
ln(|Σv|)−

1

2
(x− µv)

T Σ−1
v (x− µv) +

∑

ν′(e)6=φ

(C −
1

2
ln(|Σe|)−

1

2
(x− µe)

T Σ−1
e (x− µe)

(5.6)

where C is a generic symbol for constant terms that arise.

Initially, we maximize the cost function with respect to the node and edge

occurence probabilities p(v) and p(e). As the node occurences are independently

modelled by Bernoulli distributions, the ML estimate is the fraction of its oc-

curences in the dataset [4]

p(v) =
nv

N
(5.7)

where nv is the number of occurences of node v in the sample set. Similar

estimates hold good for the edges except that edge occurence probabilities are

normalized by their respective node probabilities (accounting for the fact that

the edges cannot occur if any of their end nodes do not occur).

5.2.3 Estimating the density function of node and edge

attributes

We now consider the problem of estimating means and covariances of node and

edge attribute distributions. It is possible to derive gradient descent update

rule for the means and covariance matrices. The vanilla gradient descent where

the means and covariances are updated in the direction of the gradient (as it

is assumed to the steepest direction) is not ideal, as it ignores the geometry of

the underlying probability space. Therefore, we use Natural gradient descent to

estimate the mean and covariance online[34, 2].

Natural gradient descent is a modification of the gradient descent procedure

56

which takes into account the geometry of the underlying manifold by incorporat-

ing a corrective term given by the Riemannian metric tensor. The equations for

updating the means and covariances in the direction of the natural gradient are

given by,

µvt+1
= µvt

+ ηG−1
v ∇µv

ln(p) (5.8)

where, Gv is the Riemannian metric tensor and ηG−1
v ∇µv

lnp is the direction

of steepest change (rather than ∇µv
lnp as given by ”normal” gradient).

Similarly, the gradient descent in the direction of covariance matrices is given

by,

Σvt+1
= Σvt

+ ηH−1
v ∇Σv

ln(p) (5.9)

where, H is the Riemannian metric tensor and ηH−1
v Σµv

lnp is the direction

of steepest change (rather than ∇Σv
lnp as given by ”normal” gradient).

The Riemannian metric tensor in the space of mean vectors G is given by the

Fisher information matrix,

Gv = E((∇µv
Fv)(∇µv

Fv)
T) (5.10)

Plugging in the expression for the derivative of Fv, we get the following ex-

pression for G.

Gv = Σ−1
v (5.11)

Hence, the online update equation for the Gaussian means is given as below,

µvt+1
= µvt

+ η(xv − µvt
) (5.12)

Similarly, the metric tensor in the space of covariance matrices is defined as,

Hv = E((∇Σv
Fv)(∇Σv

Fv)
T) (5.13)

57

5. PROBABILISTIC MODELS OF ATTRIBUTED GRAPHS

which after expanding the terms simplifies to,

Hv = −
Σ−2

v

4
+

Σ−4
v

4
E((xv − µv)(xv − µv)

T (xv − µv)
T (xv − µv)) (5.14)

The term within the expectation operator is by definition the fourth order cen-

tral moment (kurtosis), which for Gaussian is calculated to be 3Σ2
v. Substituting

it in Eq. (5.14) gives the following formula for H ,

Hv =
Σ−2

v

2
(5.15)

Plugging the expression for H from Eq. (5.15), in the online update rule

based on Natural gradient descent Eq. (5.9) gives the following online equation

for updating covariance matrices,

Σvt+1
= (1− η)Σvt

+ η(xv − µvt
)(xv − µvt

)T (5.16)

5.3 Random graphs as prototypes

Prototype based classification schemes are widespread in the domain of attributed

graphs. The key idea is to embed the graphs into a vector space in the following

manner. Given a set of graphs {(Xi, yi)}, we synthesize a set of prototype graphs

C : {(Ci, yi)} such that every graph Xi is embedded in R
k as,

Xi → (d(Xi, C1), .., d(Xi, Ck)) (5.17)

where d(Xi, C1) is a dissimilarity measure between the graphs and prototypes.

The choice of prototypes influences the distance measure and hence the dissimi-

larity space. To illustrate, when the prototype graphs are chosen to be set median

or means or cluster centres, it is clear as to how the distance is calculated. How-

ever, what is the distance measure when we choose random graphs as prototypes

?

The key lies in defining the Kullback-Liebler divergence between the proba-

bility density of random prototype graph W and the true (hidden) probability

58

distribution q [33, 19].

KL(q ‖ (p(W)) = −

∫

q ln
p(W)

q
=

−

∫

q ln(p(W)) +

∫

q ln(q) (5.18)

The unknown probability distribution q is represented by δ(g−gi), where δ(.)

is the Dirac delta function at every data sample gi. Hence,

∫

δ(g − gi) ln(p(W)) = ln(p(Wgi
)) (5.19)

which is the log-likelihood that the random graph W generates the outcome

gi. Hence, likelihood (or more precisely its logarithm) could be used as a feature

for classification naturally in the dissimilarity/distance representation framework.

To summarize, when the prototype of a set of attributed graphs is also an

attributed graph (set median, cluster centre etc..) dissimilarity between the proto-

types and graphs is a feature for classification. When the prototypes are themselves

random graphs, likelihood is a feature for classification.

The essential definitions and concepts for a probabilistic model for classifying

attributed graphs have been setup. We thus decribe the scheme in the following

manner- Given a dataset of graphs representing patterns belonging to different

classes, sythesize first random attributed graphs acting as a model/prototype

for each class. The largest graph (i.e. the graph with maximum number of

nodes) is initialized as prototype classwise. We then present every graph in the

training set, align them with the corresponding prototype and update the node

and edge occurence (structural) probabilities. The means and covariances are also

updated according to the formulae in Eq. (5.12)-(5.16). Once the parameters of

the random prototype graphs are determined, we embed the dataset into a feature

space by calculating the log-likelihood between every graph in the dataset and

every element in the prototype set. We point out two notable features of this

scheme-

1. The size of the prototypes are bound by the size of the largest graph in the

dataset.

59

5. PROBABILISTIC MODELS OF ATTRIBUTED GRAPHS

2. The number of graph matching operations during the parameter estimation

stage is N , the size of the training set; once the prototype random graphs are

sythesized, the training set (with N samples) and the test set (with M samples)

have to be embedded in the likelihood space. This needs another (N + M) ×K

graph matching operations.

5.4 Experiments

5.4.1 Algorithmic details

Matching attributed graphs with RAG- The problem of aligning random graphs

with each of the sample graph and the likelihood calculation involve attributed

graph matching. We adopt again the graduated assignment algorithm described

in Appendix B [23] with a suitable compatibility function for this purpose. To

recall, this algorithm minimizes a cost function as a function of match matrix over

all possible matchings by an iterative procedure which estimates match matrix

at every step and normalizes it.

Algorithm 4 Graduated assignment algorithm

Repeat until β > βf

Qai =
∑

b

∑

j MbjCaibj

Mai = exp(βQai)
Perform Sinkhorn normalization

The matching is determined by node and edge compatibilites Caibj , which

measures their respective similarities structurally and attribute value wise. In de-

termining the morphism between random attributed graphs and outcome graphs,

the node compatibility function between node a of the random graph and i of the

sample attributed graph is set according to the following,

Cai = pae
−(xi−µa)T Σ−1(xi−µa) (5.20)

where pi is the probability of node i occuring, xi is its attribute value, µa the

mean of the distribution of node a. Similar choice is made for edge compatibility

60

functions as well. The choice of this compatibility function is motivated as follows:

The definition of probability of an outcome graph depends on morphism Eq. (5.1).

We would like to determine the morphism such that the probability of an outome

of a random attributed graph is maximum, which corresponds to minima of cost

function −
∑

a

∑

i

∑

b

∑

j MaiMbjCaibj, where Mai denotes matching a of random

graph with node i of the outcome graph. Hence, setting compatibility values as

defined in Eq. (5.20) gives the ”optimal” morphism.

Classification procedure- Once the random graphs have been synthesized class-

wise, the dataset was embedded into a feature space by calculating the log-

likelihood of graphs beng generated by the prototype random graphs. In the

feature space, various classifiers were learned on the training set and validated

(by performance on the validation set or by cross-validation on the training set).

The classifier exhibiting best validation performance was used to classify the test

data. All classification experiments were done using PyML software [3].

5.4.2 Synthetic datasets

We first analyzed the performance of this algorithm on synthetic datasets. We

consider a dataset consisting of 200 graphs in training and test set belonging to

two classes. The dataset is generated by considering distortions of two base graphs

classwise at different levels viz. 5%, 10%, 15%, 20%. Node and edge attributes

are generated according to a normal distribution. The noise according to the

specified distortion level is added which modifies node and edge occurences and

also their respective attributes. The nodes are then randomly permuted. The

dataset is then divided uniformly into training and test sets. The classification

scheme described in this chapter is referred to as RAG+LF (Random Attributed

Graph model + Likelihood as a Feature). The standard k− Nearest Neighbour

algorithm (kNN)in the graph domain is chosen as the benchmark classifier [19].

The classifiers are evaluated on the basis of the Area under the ROC curve

(AUC) [21], Blue for RAG + LF and Red for kNN . Higher the value of AUC,

the more ”ideal” the classifier. As is seen, for low values of distortion, RAG+LF

family of classifiers give near ideal performance. The following table compares

the results against kNN classifier for the best-performing value of k = 3.

61

5. PROBABILISTIC MODELS OF ATTRIBUTED GRAPHS

Figure 5.1: Classifier ROC plots for different distortion levels

Table 5.1: Classification results % on the synthetic datasets

Distortion 5 10 15 20

RAG + LF 97 97 81 74
kNN 95 84 72 56

5.4.3 Experimental results on IAM Graph datasets

A set of experiments were conducted on datasets from the IAM graph dataset

repository. We choose two datasets for evaluation- Letter (HIGH) and Finger-

print, on account of the large training and test set consisting of a homogeneous

selection of graphs of different sizes. A third simplified dataset referred to as

Fingerprint(AW) is generated by considering only two of the four classes Arch

(A) and Whorl (W) of the fingerprint dataset. The purpose here is to examine

the performance of the approach on a two-class problem with significant graph

size variations (as graphs belonging to Whorl class is bigger than graphs in Arch

class). There are 770 graphs in this dataset.

The state-of-the-art techniques chosen are kNN (chosen as Reference system)

[57], embedding based on Similarity Kernels (SK + SVM), embedding based on

Lipschitz Embedding (LE+SVM) [58], and Structurally-described random graphs

(SDRG) [64]. The approach proposed here is referred to as Random Attributed

Graph model + Likelihood as Feature (RAG + LF). SK+SVM and LE+SVM

62

refer to a family of related classifiers whose best results are chosen. The family

of prototype learning methods in the domain of graphs are not considered.

Table 5.2: Classification results % on IAM datasets

Method Letter(HIGH) Fingerprint(AW) Fingerprint

kNN 82 91.8 76.6

SK + SVM 79.1 - 41

LE + SVM 92.5 - 82.8

SDRG 64.3 - -

RAG + LF 75.7 95.9 78.2

The following observations are made- the results compare well for the Finger-

print dataset overall, and for the Letter (HIGH) dataset compares well with SK +

SVM and is superior to SDRG; although kNN yields good results overall, it faces

the computationally challenging task of choosing k. For SK + SVM and LE +

SVM, the task of choosing effective prototype set and calculating the graph-edit

distance between the dataset and prototype set is expensive as well and offers

no analytical insight. The approach presented here is fast as it involves estimat-

ing the parameters of random graph model analytically and needs far less graph

matching operations corresponding to generating only one class prototype model.

The prototypes also give a good summary of node and edge occurence probabili-

ties in the dataset and probability distributions of their attributes. Learning the

classifier happens in the feature space where there exist fast packages for SVM’s

and other algorithms. The performance for dataset with structurally distinct

graphs (Fingerprint(AW)) is also seen to be good, as would be expected. More

prototype random graphs could be setup for every class at the cost of speed, but

with good choice, better classification results could be obtained.

63

5. PROBABILISTIC MODELS OF ATTRIBUTED GRAPHS

5.5 Conclusions & future directions

This work builds upon the notion of random graph models with applications in

structural pattern recognition with the following contributions- with indepen-

dence assumptions a random attributed graph is represented as a joint random

variable in its node and edge occurences and of their respective attribute val-

ues, an analytical method to estimate the different probability distributions of

a random graph model as a prototype given an ensemble of attributed graphs

is presented using a maximum likelihood procedure, the utility of the random

graph as a prototype is shown by using the likelihood of an outcome graph as

a feature for classification. The proposed approach is validated on few datasets

and its effectiveness is shown.

The direction of further work aims to build on the following themes- first, a

method to derive a class of probabilistic clustering and classification algorithms

needs to be investigated. This means that the random prototype graph is learned

from the dataset in a procedure akin to a standard quantization type scheme.

Second, is there a way to tie the classifiers in the feature space directly with

the learning of prototypes? To elaborate, it is important to investigate the link

between type/family of classifiers on the feature space (due to likelihood) with

how the random prototypes are estimated/learned. This would help to integrate

probabilistic learning in the domain of graphs with discriminative methods for

classification in the subsequent likelihood space. Lastly, the foundations of the

random graph definitions need to be explored- although node and edge indepen-

dence is useful in that it allows an easy analytical estimation of model parameters,

it is too strong an assumption. Is there a way to model dependencies of nodes

and edges and their attributes (node/edge co-occurences)? Such an understand-

ing would help enormously in probabilistic sub-structure analysis methods and

also give possibly superior classification and clustering algorithms.

64

Chapter 6

Summary & Outlook

To place the work contained here in proper perspective, this thesis aims to answer

the question: How can prototypes of a set of graph patterns be defined in a

principled manner? We have proposed algorithms to learn prototypes of a set

of attributed graphs, broadly falling into supervised and unsupervised learning

techniques.

Learning Graph Quantization (LGQ) is a class of supervised prototype learn-

ing algorithms that is analogous to Learning Vector Quantization. During the

learning phase, the algorithm updates nearest prototypes after observing a new

training sample. The theoretical background is provided by embedding the set

of graphs into the quotient space of an Euclidean space. With this isostructural

and isometric embedding, we define a metric between graphs and derivatives of

functions defined on them. In experiments, we see that LGQ algorithms with

a principled initialization procedure shows good classification performance, im-

proving upon the performance of the standard k- Nearest Neighbour (kNN) algo-

rithm with a graph-edit distance. Another notable advantage is also the compact

prototype set, which means that during the testing phase the number of compu-

tationally intensive graph matching operations is reduced sharply.

We then use the prototypes obtained by LGQ algorithms to embed the graphs

into a feature space. This is accomplished by considering the distance of a graph

to a prototype as a feature in a vector space. In this approach, the prototypes

define a kernel with an explicit feature space representation. In this feature

space, classifiers are trained and used to classify the test patterns. Thus, we may

65

6. SUMMARY & OUTLOOK

adopt the view that there is learning in the original structural domain followed

by learning in the (feature) vector domain. In experiments, we observe that it

compares favorably to state-of-the-art classification schemes, which uses a large

prototype set and then picks out the most informative features for classification.

We also note a relationship between the classification performance and the VC-

dimension in the feature space induced by the prototypes.

The last part deals with unsupervised learning of prototypes by treating it as

a density estimation problem. We adopt the random attributed graph model- a

probabilty density function over node and edge occurences and attributes. Using

independence assumptions, the parameters are then estimated online- by learning

algorithm involving the natural gradient. Once the random graph parameters

are estimated, the set of graphs are embedded into the space spanned by their

likelihood values and classifiers are learnt. The advantages here are observed to

be- robustness against noise for kNN classifiers on synthetic datasets, the compact

prototype set, and the lesser number of graph matching operations.

Further research relating to this thesis are in two directions.

-The first is with respect to the problem of learning prototypes which are most

suitable for classification in the dissimilarity space. This is achieved by directly

minimizing the ratio of radius of minimum enclosing ball to the margin of the

classifier in the feature space. Both of these quantities depend on the kernel

matrix, which in turn is a function of the prototypes. In this scheme, we learn

the prototypes with the most optimal generalization performance.

- The random attributed graph model we use relies on independence assump-

tions to estimate the parameters. This is simplistic as we lose the node, edge

attribute probability relationships involving more nodes and edges. A possible

solution is to model node and edge attributes and occurences with a graphical

model and use inference algorithms to estimate them.

The major constraint faced when dealing with structural data is the computa-

tional complexity of graph matching. In spite of using an efficient approximation

algorithm to solve the problem, we have observed experiments involving such

data take much longer compared to machine learning experiments on feature vec-

tors. In order to overcome this disadvantage, it is desirable to develop embedding

techniques for graphs into vector spaces so that the computational complexity is

66

reduced, while also trying to avoid loss of structural information. Moreover, it

is always useful to try different heuristics and algorithms to simplify the graph

matching procedure while not losing out on performance.

67

6. SUMMARY & OUTLOOK

68

Appendix A

We present here a short description of the datasets used in experiments in this

thesis.

LETTER (HIGH)

The Letter (HIGH) dataset consists of distorted letter drawings from the Roman

alphabet that consist only of straight lines (A, E, F, H, I, K, L, M, N, T, V,

W, X, Y, Z). The graphs are uniformly distributed over 15 classes. A prototype

letter drawing is manually constructed for each class, which is then converted to

prototype graphs by representing lines by undirected edges and endpoints of lines

by nodes. The nodes are annotated by a two-dimensional vector indicating its

position relative to a reference coordinate system. The graph set is then distorted

by applying high strength distortion to the prototype graphs. Ths size of training,

test and validation set are 750 each.

GREC

The GREC dataset consists of drawings of symbols from architectural and elec-

tronic drawings. The images occur at different distortion strengths. Depending

upon the distortion level, erosion, dilation or other morphological operations were

applied. The result is thinned to obtain lines of one pixel width. Finally, graphs

are extracted from the resulting denoised images by tracing the lines from end to

end and detecting intersections and corners. Ending points, corners, intersections

69

. APPENDIX A

and circles are represented by nodes and annotated by two-dimensional attribute

denoting its position. The nodes are connected by edges labeled as line or arc.

An additional attribute specifies the angle with respect to the horizontal direction

or the diameter in case of arcs. The size of training, test and validation are 286,

528 and 286 respectively.

Fingerprint

This dataset represents fingerprint images of the NIST-4 database from four

classes arch, left, right and whorl. Images of the fingerprints are converted into

graphs by filtering the images and extracting regions that are relevant, which are

then binarized and further processed by denoising and thinning. The ending and

the bifurcation points of the resulting skeletonized regions are represented by ver-

tices. Additional vertices are inserted in regular intervals between ending points

and bifurcation points. Undirected edges are inserted to link vertices that are

directly connected through a ridge in the skeleton. Each vertex is labeled with

a two-dimensional attribute vector specifying its position. The size of training,

test and validation set are 500, 2000 and 300 respectively.

COIL-DEL

Columbia Object Image Library (COIL-100) is a database of colour images of

100 objects. The objects are placed at the centre of a turntable. The turntable

was rotated through 360 degrees and an image was taken every 5 degrees of

rotation- 72 images per object, 7200 images in total. The images were then size

and intensity normalized. In order to extract graph representation of objects,

the corners are extracted using Harris corner detection algorithm. The images

are then segmented using Delauney triangulation with the corner points. The

result of the triangulation is then converted into a graph by representing lines by

undirected edges and terminal points of lines as nodes. The nodes are attributed

with a two-dimensional position vector and edges are unattributed. A subset

of the database for every 15 degrees of rotation is used as a training set (2400

70

Figure 1: IAM graph dataset repository

71

. APPENDIX A

graphs). The test and validation set number 1000 and 500 graphs in all. These

graphs are uniformly distributed over all classes. Out of the database, a subset

of 32 objects that are hard to recognize has been identified, bounded by red

boxes [55]. We choose four of the 32 objects (2 spherical fruit like shapes and

2 toy car like shapes, indexed by class number 1, 3, 18, 41 starting from 0 at

the topmost left) for the purpose of this thesis empirically based on interclass

similarities and graph sizes. The size of training, test and validation set are 96,

40 and 20 respectively. More details on experimental settings and dataset are to

be found in [24].

SHAPES

Shapes are skeletonized by using the medial axis, which is defined as the centres

of circles with maximum radius. The points where there is change in shape

structure- end points, junction points and points with large change in slope of

the radius function along the medial axis are considered as the nodes for the

graph. The edges of the graph correspond to skeleton’s branches between two

nodes. Edge attribute are an approximation of the perimeter of the boundary

which contributes to the formation of the edge, normalized by the approximated

perimeter of the whole shape. Node attributes give the distance between the node

position and the gravity center of the shape divided by the square of the shape

area.

We considered the dataset provided by Dupé et al. [20]. We considered five

classes of objects, cars, children, animals and tools. There are 24 graphs in every

class except children which has only 12 graphs. The grouping was based on their

morphological similarity and context of these shapes occuring in applications. As

the dataset is small, we use the resampled paired t-test [18] with 20 trials [24].

Protein contact maps

Contact maps are used to represent the tertiary structure of Protein molecules.

They consist of a set of residues which are vertices of a graph, with two vertices

72

Figure 2: COIL-100 dataset along with distance matrix of objects 1, 3, 18, 41

73

. APPENDIX A

Figure 3: Shape dataset
Typical shapes (Top), Skeleton of some sample shapes (Second row), Distance

matrix between shapes (Bottom)

74

being connected by an edge (called as contact) if they are spatially close (lesser

than some threshold). Skolnick data sets consist of 40 contact maps belonging

to five different superfamilies viz. Che Y-like, Microbial ribonucl., Cuperdoxins,

Triosephosphateisomerase (TTM), Ferritin. The mean number of residues ranges

from 100 for Microbial ribonucl. family to 250 for TTM.

75

. APPENDIX A

Figure 4: Distance matrix for contact maps for Skolnick dataset

76

Appendix B

We discuss the graduated assignment algorithm for graph matching, which is used

throughout this thesis [23]. Determining graph distance and subgradient involve

a graph matching problem in order to find the optimal alignment. However, this

problem is NP-complete, so we have to resort to ”good” approximate suboptimal

solutions. We use the graduated assignment algorithm on account of its speed,

quality of solutions and ability to handle a wide variety of attributes.

The basic idea behind the algorithm is to reframe the problem of graph match-

ing in terms of nonlinear optimization by converting the discrete variable into

continuous ones. This avoids the problem of getting trapped into a local minima.

At every step, the match matrix is estimated and normalized so as to enforce

the constraint that every row and column of match matrix sums to one, while a

control parameter is varied.

Th match matrix M should be chosen such that, the following cost function

is minimized for two graphs X and Y with entries Xab, Yij respectively

E(M) = −
1

2

Nx
∑

a=1

Ny
∑

i=1

Nx
∑

b=1

Ny
∑

j=1

MaiMbjC(Xab, Yij)

with the constraints ∀a,
∑Nx

a=1 Mai ≤ 1; ∀i,
∑Ny

i=1 Mai ≤ 1; Mai ∈ {0, 1}. Xab, Yij

could be {0, 1} or could consist of features represented as vectors, strings. The

choice of compatibility matrix depends on the nature of graphs- its connectivity

and attributes. A common choice is,

77

. APPENDIX B

C(Xab, Yij) =







0, if Xab or Yij = φ

f(Xab, Yij) otherwise

where f(Xab, Yij) is a functional mapping. For example, f is commonly chosen

to be normalized inner product if the attributes themselves are feature vectors. If

the attributes are scalars then either their product or difference normalized to zero

is a suitable compatibility measure. It is seen that the matching cost can deal

with graphs with a wide variety of attributes. Heuristically, the compatibility

matrix is chosen such that its expected value is zero in order to improve the

quality of matching.

The algorithm then proceeds to convert the matching problem into an assign-

ment problem in the following manner. The objective function is expanded as a

Taylor series around the initial M0 as,

−
1

2

Nx
∑

a=1

Ny
∑

i=1

Nx
∑

b=1

Ny
∑

j=1

MaiMbjC(Xab, Yij) = −
1

2

Nx
∑

a=1

Ny
∑

i=1

Nx
∑

b=1

Ny
∑

j=1

M0
aiM

0
bjC(Xab, Yij)

-
∑Nx

a=1

∑Ny

i=1 Qai(Mai −M0
ai)

where,

Qai = −
∂E

∂Mai

=
Nx
∑

b=1

Ny
∑

j=1

M0
bjC(Xab, Yij)

The assignment term
∑Nx

a=1

∑Ny

i=1 QaiMai needs to be maximized. Also, the

inequality constraints in the original cost function are converted to equality con-

straints by introducing slack variables. The continuous values of the match matrix

are then converted into discrete variables by using softmax and by a Sinkhorn

procedure which normalizes rows and columns alternatively until the matrix con-

verges to a doubly stochastic matrix. The algorithm is summarized below:

We adopt the values as proposed in the literature [23]. β0 = 0.5, βf = 10

and M is initialized to approximately the diagonal matrix of the corresponding

78

Algorithm 5 Graduated assignment algorithm

Initialize β, M
While β ≤ βf

Repeat till M converges
Qai = − ∂E

∂Mai

Mai = exp(βQai)
Repeat Sinkhorn loop until M converges to doubly stochastic matrix

Normalize across rows
Normalize across columns

Return: M

order. The Sinkhorn loop is repeated until 30 times if convergence does not occur

earlier.

The graduated assignment algorithm returns a doubly stochastic matrix with

dominant entries row and column wise. However, the values are still not 1/0.

Hence, in order to convert it to an actual permutation matrix, we could

- heuristically use a cleanup procedure by setting the largest value in row and

column to be 1 and set the other entries to 0.

- use algorithms which solve the assignment problem, as the match matrix

entries could be viewed as scores of assigning nodes of one graph with another.

A computationally efficient method to solve it is the Munkres algorithm [1], a

polynomial time algorithm widely used in combinatorial optimization. We use

Munkres algorithm as the post-processing step as we have empirically observed

it to yield good matching solutions than the simple cleanup procedure mentioned

earlier.

- use post-processing cleanup step taking into account the nature of the

datasets and associated constraints. This holds for the Protein contact maps

(Skolnick) dataset, where the matching must preserve the order of nodes i.e. the

node assignments shall not cross [35]. We therefore use dynamic programming to

recover the most optimal matching.

79

. APPENDIX B

80

References

[1] M. Aigner. Discrete Mathematics. American Mathematical Society,

Boston, MA, USA, 2007.

[2] S-I. Amari. Natural gradient works efficiently in learning. Neural Comput.,

10:251–276, February 1998.

[3] A. Ben-Hur. PyML- A Python Machine Learning package. Technical

report, 2008.

[4] C. M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

[5] K. M. Borgwardt, C. S. Ong, S. Schoenauer, S. V. N. Vish-

wanathan, A. J. Smola, and H. P. Kriegel. Protein function pre-

diction via Graph Kernels. In Intelligent Systems in Molecular Biology, 21,

pages 47–56, 2005.

[6] K.M. Borgwardt. Graph Kernels. PhD thesis, Ludwig Maximilians Uni-

versität, Fakultät für Mathematik, Informatik und Statistik, 2007.

[7] L. Bottou. Stochastic gradient learning in neural networks. In Proceedings

of Neuro-Nı̂mes 91, Nimes, France, 1991. EC2.

[8] H. Bunke. On a relation between graph edit distance and maximum com-

mon subgraph. Pattern Recogn. Lett., 18:689–694, August 1997.

81

REFERENCES

[9] H. Bunke and G. Allerman. Inexact graph matching for structural

pattern recognition. Pattern Recognition Letters, 1:245–253, 1983.

[10] H. Bunke and K. Riesen. Improving vector space embedding of graphs

through feature selection algorithms. Pattern Recognition, 44:1928–1940,

2011.

[11] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choos-

ing multiple parameters for Support Vector Machines. Mach. Learn., 46:131–

159, March 2002.

[12] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society,

1997.

[13] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley Publishers,

1983.

[14] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of

graph matching in pattern recognition. International Journal of Pattern

Recognition and Artificial Intelligence, 18:265–298, 2004.

[15] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Learning

structural shape descriptions from examples. Pattern Recognition Letters,

23:1427–1437, 2002.

[16] K. Crammer, R. Gilad-bachrach, A. Navot, and N. Tishby. Margin

analysis of the LVQ algorithm. In Neural Information Processing Systems,

pages 462–469, 2002.

[17] D. de Ridder, O. Kouropteva, O. Okun, M. Pietikinen, and

R. P. W. Duin. Supervised Locally Linear Embedding, 2003.

[18] T. G. Dietterich. Approximate statistical tests for comparing supervised

classification learning algorithms. Neural Comput., 10:1895–1923, October

1998.

[19] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd

Edition). Wiley-Interscience, 2000.

82

REFERENCES

[20] F.-X. Dupé and L. Brun. Tree covering within a graph kernel framework

for shape classification. In Proceedings of the 15th International Confer-

ence on Image Analysis and Processing, ICIAP ’09, pages 278–287, Berlin,

Heidelberg, 2009. Springer-Verlag.

[21] T. Fawcett. ROC graphs: Notes and practical considerations for data

mining researchers, 2003.

[22] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA, 1990.

[23] S. Gold and A. Rangarajan. A Graduated Assignment algorithm for

graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 18:377–388, April

1996.

[24] M. Göttner. Evaluating LGQ algorithms for shape and object classification

problems. Bachelor thesis, Technische Universität, Berlin, 2011.

[25] T. Graepel, R. Herbrich, P. Bollmann-sdorra, and K. Ober-

mayer. Classification on pairwise proximity data. In Neural Information

Processing Systems, pages 438–444, 1999.

[26] S. Günter and H. Bunke. Self-organizing map for clustering in the graph

domain. Pattern Recognition Letters, 23:405–417, 2002.

[27] M. Hagenbuchner, A. Sperduti, and A.C. Tsoi. A self-organizing

map for adaptive processing of structured data. IEEE Transactions on Neu-

ral Networks, 14:491–505, 2003.

[28] B. Hammer, A. Micheli, and A. Sperduti. Adaptive contextual pro-

cessing of structured data by recursive neural networks: A survey of compu-

tational properties. Springer Studies in Computational Intelligence, Volume

77, Springer Verlag, 2007.

[29] B. Hammer, M. Strickert, and T. Villmann. On the generalization

ability of GRLVQ networks. Neural Process. Lett., 21:109–120, April 2005.

83

REFERENCES

[30] B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas

with general similarity measure. Neural Process. Lett., 21:21–44, February

2005.

[31] B. Hammer and T. Villmann. Generalized Relevance Learning Vector

Quantization. Neural Netw., 15:1059–1068, October 2002.

[32] D. Haussler. Convolution Kernels on discrete structures. Technical report,

1999.

[33] J. Hollmen, V. Tresp, and O. Simula. A self-organizing map for

clustering probabilistic models. In Proceedings of the Ninth International

Conference on Artificial Neural Networks (ICANN99, pages 946–951. IEEE,

1999.

[34] A. Honkela, M. Tornio, T. Raiko, and J. Karhunen. Natural con-

jugate gradient in variational inference. In Neural Information Processing,

pages 305–314, Berlin, Heidelberg, 2008. Springer-Verlag.

[35] B. J. Jain and M. Lappe. Joining softassign and dynamic program-

ming for the contact map overlap problem. In Proceedings of the 1st inter-

national conference on Bioinformatics research and development, BIRD’07,

pages 410–423, Berlin, Heidelberg, 2007. Springer-Verlag.

[36] B. J. Jain and K. Obermayer. On the sample mean of graphs. In IJCNN,

pages 993–1000, 2008.

[37] B. J. Jain and K. Obermayer. Structure Spaces. J. Mach. Learn. Res.,

10:2667–2714, December 2009.

[38] B. J. Jain and K. Obermayer. Generalized Learning Graph Quantiza-

tion. In GbRPR, pages 122–131, 2011.

[39] B. J. Jain and F. Wysotzki. Central clustering of attributed graphs.

Mach. Learn., 56:169–207, June 2004.

[40] B.J. Jain and K. Obermayer. Graph Quantization. Computer Vision

and Image Understanding, 115[7]:946–961, 2011.

84

REFERENCES

[41] B.J. Jain, S.D. Srinivasan, A. Tissen, and K. Obermayer. Learning

Graph Quantization. In SSPR/SPR, 6218 of Lecture Notes in Computer

Science. Springer, 2010.

[42] X. Jiang, A. Mnger, and H. Bunke. On median graphs: Properties,

algorithms, and applications. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 23:1144–1151, 2001.

[43] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized Kernels between

labeled graphs. In ICML, pages 321–328, 2003.

[44] T. Kohonen, editor. Self-Organizing Maps. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 3rd edition, 2001.

[45] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and

K. Torkkola. LVQ PAK: The Learning Vector Quantization Program

Package. 1996.

[46] T. Kohonen and P. Somervuo. Self-organizing maps of symbol strings.

Neurocomputing, 21:19–30, 1998.

[47] A. LaVigna. Nonparametric Classification using Learning Vector Quantiza-

tion. PhD thesis, Department of Electrical Engineering, University of Mary-

land, 1989.

[48] A. R. Leach and V. J. Gillet. An Introduction to Chemoinformatics.

Dordrecht Kluwer Academic Publishers, 2003.

[49] M. Lozano, J. M. Sotoca, J. S. Sanchez, F. Pla, E. Pkalska, and

R. P. W. Duin. Experimental study on prototype optimisation algorithms

for prototype-based classification in vector spaces. Pattern Recogn., 39:1827–

1838, October 2006.

[50] B. Luo, R. C. Wilson, and E. R. Hancock. Spectral embedding of

graphs. Pattern Recognition, 36:2213–2230, 2003.

[51] P. Mahe, N. Ueda, T. Akutsu, J.L. Perret, and J.P. Vert. Graph

Kernels for molecular Structure-Activity relationship analysis with support

85

REFERENCES

vector machines. Journal of Chemical Information and Computer Sciences,

45:939–951, 2005.

[52] R. Marfil, F. Escolano, and A. Bandera. Graph-based representa-

tions in pattern recognition and computational intelligence. In IWANN (1),

pages 399–406, 2009.

[53] S. Marini, M. Spagnuolo, and B. Falcidieno. Structural shape pro-

totypes for the automatic classification of 3d objects. IEEE Comput. Graph.

Appl., 27:28–37, July 2007.

[54] E. Pekalska, R. P. W. Duin, and P. Paclk. Prototype selection for

dissimilarity-based classifiers. Pattern Recognition, 39:189–208, 2006.

[55] M. Pontil and A. Verri. Support Vector Machines for 3d object recog-

nition. IEEE Trans. Pattern Anal. Mach. Intell., 20:637–646, June 1998.

[56] R. Raich, J. A. Costa, and A. O. Hero. On dimensionality reduction

for classification and its application. In in IEEE Int. Conf. Acoust., Speech.

Signal Processing, pages 917–920, 2006.

[57] K. Riesen and H. Bunke. IAM graph database repository for graph

based pattern recognition and machine learning. In Proceedings of the 2008

Joint IAPR International Workshop on Structural, Syntactic, and Statistical

Pattern Recognition, SSPR & SPR ’08, pages 287–297, Berlin, Heidelberg,

2008. Springer-Verlag.

[58] K. Riesen and H. Bunke. Graph classification by means of Lipschitz

embedding. IEEE Transactions on Systems, Man, and Cybernetics, 39:1472–

1483, 2009.

[59] K. Riesen, M. Neuhaus, and H. Bunke. Graph embedding in vector

spaces by means of prototype selection. In Proceedings of the 6th IAPR-

TC-15 international conference on Graph-based representations in pattern

recognition, GbRPR’07, Alicante, pages 383–393, Berlin, Heidelberg, 2007.

Springer-Verlag.

86

REFERENCES

[60] A. Sato and K. Yamada. Generalized Learning Vector Quantization. In

Neural Information Processing Systems, pages 423–429, 1995.

[61] K. K. Sengupta and K. L. Boyer. Organizing large structural model-

bases. IEEE Trans. Pattern Anal. Mach. Intell., 17:321–332, April 1995.

[62] D. S. Seong, H. S. Kim, and K. H. Park. Incremental clustering of

attributed graphs. IEEE Transactions on Systems, Man and Cybernetics,

23:1399 –1411, Sep/Oct 1993.

[63] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, and S.W. Zucker.

Shock graphs and shape matching. In Proceedings of the Sixth International

Conference on Computer Vision, ICCV ’98, pages 222–229, Washington,

DC, USA, 1998. IEEE Computer Society.

[64] A. Solé-Ribalta and F. Serratosa. A structural and semantic proba-

bilistic model for matching and representing a set of graphs. In Proceedings of

the 7th IAPR-TC-15 International Workshop on Graph-Based Representa-

tions in Pattern Recognition, GbRPR ’09, pages 164–173, Berlin, Heidelberg,

2009. Springer-Verlag.

[65] P. Somervuo and T. Kohonen. Self-organizing maps and Learning Vec-

tor Quantization for feature sequences. Neural Process. Lett., 10:151–159,

October 1999.

[66] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

[67] M. Vassura, L. Margara, P.D. Lena, F. Medri, P. Fariselli,

and R. Casadio. Reconstruction of 3d structures from Protein contact

maps. IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, 5:357–367, 2008.

[68] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and

K. M. Borgwardt. Graph Kernels. J. Mach. Learn. Res., 11:1201–1242,

August 2010.

[69] U. von Luxburg and O. Bousquet. Distance-based classification with

Lipschitz functions. In Computational Learning Theory, pages 314–328, 2003.

87

REFERENCES

[70] R. C. Wilson, E. R. Hancock, and B. Luo. Pattern vectors from

algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27:1112–1124, 2005.

[71] A. K. C. Wong and D. E. Ghahraman. Random graphs: Structural-

contextual dichotomy. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2:341–348, 1980.

[72] A. K. C. Wong and M. You. Entropy and distance of random graphs

with application to structural pattern recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 7:599–609, 1985.

88

	Contents
	List of Figures
	1 Introduction
	1.1 Preface
	1.1.1 Graph based representations
	1.1.2 Approaches & Challenges

	1.2 Overview of this thesis
	1.2.1 Scope
	1.2.2 Organization

	2 Structure Spaces
	2.1 Introduction
	2.2 Structure Spaces
	2.2.1 Setting
	2.2.2 Analysis on T- spaces
	2.2.3 Functions on T- spaces

	2.3 Central clustering
	2.4 Experiments
	2.4.1 Datasets
	2.4.2 Algorithms
	2.4.3 Setting and results

	2.5 Conclusion

	3 Learning a set of prototypes for classifying attributed graphs
	3.1 Introduction
	3.2 Learning Vector Quantization and its variants
	3.3 Distance measure between attributed graphs and prototype update rule
	3.3.1 Graph metric
	3.3.2 Generalized differentiability

	3.4 Learning Graph Quantization
	3.4.1 Learning Graph Quantization
	3.4.2 Learning Graph Quantization 2.1
	3.4.3 Generalization bounds and margins

	3.5 Experiments
	3.5.1 Description of the datasets
	3.5.2 Experimental setup
	3.5.3 Comparison with state-of-the-art techniques
	3.5.4 Results & Discussion

	3.6 Conclusion

	4 Dissimilarity representations of attributed graphs
	4.1 Introduction
	4.2 Prototype based embedding
	4.2.1 Analysis on Dissimilarity Space
	4.2.2 Prototype update rule
	4.2.3 Embedding based on Generalized Learning Graph Quantization algorithms

	4.3 Experiments
	4.3.1 Data and settings
	4.3.2 Results

	4.4 Analysis based on statistical learning theory
	4.5 Conclusion

	5 Probabilistic models of attributed graphs
	5.1 Introduction
	5.2 Model based clustering for attributed graphs
	5.2.1 Random attributed graphs- A review
	5.2.2 Model based clustering of attributed graphs
	5.2.3 Estimating the density function of node and edge attributes

	5.3 Random graphs as prototypes
	5.4 Experiments
	5.4.1 Algorithmic details
	5.4.2 Synthetic datasets
	5.4.3 Experimental results on IAM Graph datasets

	5.5 Conclusions & future directions

	6 Summary & Outlook
	Appendix A
	Appendix B
	References

