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Abstract 

Fiber-reinforced composite laminates involving piezoelectric layers represent a very attractive 

material system. It combines the advantages of using rather lightweight and stiff material with 

the possibility of sensing structural changes and actively influencing its state by means of 

sensors and actuators. A 3-node shell element is proposed as an efficient tool for modeling 

structures made of such a material system. Thoroughly tested solutions are implemented to 

resolve locking problems intrinsic for shell elements. The embedded piezoelectric layers are 

considered to be polarized in the thickness direction. Furthermore, the extension of the 

formulation to geometrically nonlinear finite element (FE) analysis is based on a co-rotational 

formulation. Numerical examples are given to demonstrate the applicability of developed 

element in linear and geometrically nonlinear FE analysis covering both actuator and sensor 

cases. 
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1 INTRODUCTION 

Over the last two decades, active/smart structures have attracted substantial research attention. 

The essence of the idea relies on transforming a passive system into an active one by 

adding/embedding active elements, i.e. sensors and actuators. Connecting sensors with actuators 
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via a controller allows implementation of a control law with the aim of controlling the structural 

behavior according to a predefined strategy. For high-integration ability of active elements into 

the passive structure, actuators and sensors are often made of multifunctional materials, which 

beside the carrying capacity also feature coupling between the mechanical field and some other 

field. In the case of piezoelectric materials, the coupling is achieved between the mechanical and 

electric fields. Hence, one may directly influence the mechanical field through a purposeful 

control of the electric field – actuator case. Vice versa, information on the induced electric field 

in the piezoelectric-based component provides information on the induced deformation (i.e. 

strain field) – sensor case. 

Fiber-reinforced composite laminates with bonded/embedded piezoelectric layers are among 

material systems of most practical interest in a variety of applications involving automotive, 

aerospace, aeronautical applications, to name but a few. Beside the exquisite properties of 

composites, the presence of active elements in such a material system offers a great potential for 

improved vibration and/or shape control, radiated noise reduction, etc. (Aridogan and Basdogan, 

2015). These advantages render their design and analysis of their behavior even more 

challenging.  

Whereas in the beginning of the ‘90s some analytical considerations of the problem were 

reported (Lee 1990; Dökmeci, 1990; Lee and Moon, 1990; Wang and Rogers 1991), the attention 

was turned later to the finite element method (FEM) as a predominant numerical method in the 

field of structural analysis. The FEM development in this particular field is prohibitively large 

for an exhaustive overview. The survey from Benjeddou (2000) provides a thorough overview of 

the development during the ‘90s. At the same time, Kioua and Mirza (2000) have provided 

solutions for a set of examples involving plain and shallow shell structures that have been 

resolved by means of the Ritz approach and based on the shallow shell assumptions. Those 

examples served as benchmark cases for a number of later FEM developments in the field. And 

the FEM developments proceeded at the same rapid pace in the decades to follow as this appears 
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to be a task that gives an ever-increasing impetus to the researchers to provide highly efficient 

and reliable tools to the engineers. The work, though focused to FE formulations for the 

considered type of structures, was still divergent in specific details. Some of the developments 

were focused on 3D elements. Lee et al. (2004) proposed a 3D piezoelectric solid element that 

can be used for modeling thin sensors and actuators whereby the assumed strain formulation was 

used as a remedy to avoid triggering transverse shear and membrane locking. Similarly, Klinkel 

and Wagner (2008) developed an 8-node piezoelectric solid shell element based on a mixed 

variational formulation that is applicable to linear and geometrically nonlinear formulation. 

Willberg and Gabbert (2012) used the isogeometric approach to develop a 3D piezoelectric finite 

element for smart structure applications.  

A vast majority of developments were focused on finite elements that offer greater numerical 

efficiency in modeling thin-walled structures and aim at global structural behavior. Hence, shell 

type finite elements were addressed. A number of formulations based on the equivalent single-

layer approach have been proposed for modeling laminated structures with piezolayers. Those 

elements mainly rely either on the Kirchhoff-Love or Mindlin-Reissner kinematics. Gabbert et 

al. (2002) extended the Semi-Loof element by Irons (1976) to an electro-mechanical coupled 

element, thus using the classical Kirchhoff-Love theory. However, the necessary C1-continuity 

inherent in models based on this theory has always been one of the major obstacles for the 

development of efficient finite element formulations. In addition, the Mindlin-Reissner 

kinematics is also favored for laminated structures due to the greater impact of transverse shear 

effect in their behavior, which is covered by this theory. Zemčík et al. (2007) proposed a linear 

4-node element with discrete shear gap (DSG) implemented to resolve shear locking effects 

intrinsic for linear element based on the Mindlin-Reissner kinematics. Marinkovic et al. (2006) 

developed a full-biquadratic 9-node degenerated shell element for modeling laminated fiber-

reinforced structures with piezolayers. The element was further used to investigate the 

convergence of FEM results when modeling coupled piezoelectric problems (Marinković D and 



 4 

Marinković Z, 2012) and, for the users’ convenience, it was also implemented in the commercial 

FEA program ABAQUS (Nestorović et al., 2014). Kulikov and Plotnikova (2011) proposed 

piezoelectric 4-node shell element characterized by exact modeling of geometry, which was 

achieved using particular spline functions. Also with the aim of addressing the problem of 

accurate geometry description, Phung-Van et al. (2015) used the isogeometric approach in 

combination with a higher-order shear deformation theory to develop 2D elements for the 

analysis of composite laminates with piezoelectric sensors and actuators. For the sake of 

completeness, it should be mentioned that meshless approaches have also been addressed 

recently to model the considered type of structures (Stanak, 2015).  

Layer-wise theories were also applied in modeling piezoelectric thin-walled structures. Ballhause 

et al. (2005) used both equivalent single-layer and layer-wise theories with linear and up to 

fourth-order expansions for the displacement variables. Cinefra et al. (2015a) performed linear 

static analyses with the developed a 9-node plate element based on mixed interpolation of 

tensorial components (MITC) approach and with variable through-the-thickness layer-wise 

kinematics. The developed element was also used for free-vibration analyses of plate structures 

with piezopatches (Cinefra et al, 2015b). Milazzo (2016) considered families of both equivalent 

single-layer and layer-wise elements for analysis of smart multilayered plates by applying the 

strategy that reduces the multi-field problem to an effective mechanical one by the condensation 

of electromechanical state into the plate kinematics.  

Geometrically nonlinear problems of structures with integrated piezolayers have been treated 

considerably less in the literature. However, high slenderness combined with properties of 

modern composite laminates render these structures prone to moderate rotations, whereby the 

strains remain small. Such a behavior calls for geometrically nonlinear formulations. This has 

been recognized by some authors (Rabinovitch, 2005; Kulkarni and Bajoria, 2007; Lentzen et al., 

2007). 
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In the present work, a highly efficient 3-node shell element for modeling of the considered type 

of structures is proposed. Consideration of the mechanical field relies on the development by 

Bletzinger et al. (2000) and Nguyen et al. (2013) and it has been extended here to cover 

geometrically nonlinear effects by means of the numerically efficient co-rotational approach 

(Chrisfield and Moita, 1996; Felippa and Haugen, 2005; Nguyen et al., 2015). Several sensor and 

actuator cases are presented to verify applicability of developed element and formulation by 

comparing the obtained results with solutions available in the literature.  

 

2 FORMULATION OF THE ELEMENT 

2.1 Coordinate systems and geometry of the element 

The Discrete Shear Gap (DSG3) element was first developed by Bletzinger et al. (2000) and 

further improved by Nguyen et al. (2013) by implementing the strain smoothing technique. The 

improvements provided by Nguyen et al. (2013) are better accuracy and stability accompanied by 

the independence of element formulation from the node numbering sequence. The shell element 

formulation demands application of two coordinate systems to describe the element geometry, 

displacement and strain field as well as coupling between the mechanical and electric fields. 

Besides the global coordinate system (x, y, z), an element coordinate system (x′, y′, z′) is 

introduced (see Fig 1). The transformation matrix [T] between the global and local element 

coordinates reads: 

 [ ] [ ]}{}{}{ ''' zyx eeeT =  (1) 

where the vectors {ex′},{ey′},{ez′} are defined so that the local x′-axis is oriented from node 1 

toward node 2 and the z′-axis is perpendicular to the element surface (thickness direction): 

 { } { }
{ }T

T

x
zzyyxx

zzyyxxe
121212

121212
'

−−−

−−−
=  (2) 
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 { } { }
{ }T

T

zzyyxx

zzyyxx
e

131313

131313
'31

−−−

−−−
=  (3) 

 { } { } { }'31'' eee xz ×=  (4) 

 { } { } { }''' xzy eee ×=  (5) 

with xi, yi and zi denoting coordinates of the three nodes in the global coordinate system. 

  
Fig. 1 Geometry and coordinate systems of the 3-node shell element 

 
The shape functions are defined with respect to the element coordinates x′ and y′: 
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where x′i and y′i, i=1, 2, 3, are the x′- and y′-coordinates of the three nodes in the element 

coordinate system and Ae is the element area. The shell thickness is considered to be in the normal 

direction to the mid-surface. Hence, the shell geometry with respect to the local coordinate system 

is easily generated using the mid-surface geometry and thickness direction:  
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with the shell thickness h, and -1<t<+1. 

2.2 Element displacement and strain field 

The element formulation implements the Mindlin-Reissner kinematical assumption, thus 

accounting for the transverse shear effects. The displacement of any point in the element domain is 

given with respect to the element coordinate system as a superposition of the corresponding mid-

surface point displacements, u′, v′ and w′ along local directions x′, y′ and z′, respectively, and a 

linear function of the rotations about the local x′- and y′-axis through the same mid-surface point, 

θx′ and θy′. The required mid-surface point displacements and rotations are obtained using the 

nodal values (denoted by index i) and shape functions:  
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The strain field developed in the local element coordinate system has the following principle form: 

 { }
{ }

{ }

[ ]

[ ]
{ } [ ]

{ }
{ }
{ }













=
















−−=

















′
−−

′

=′

3

2

1

'
'
'

'
d
d
d

Bd
B

B

u

s

mf

s

mf

ε

ε
ε  (9) 

where {ε′mf} is the membrane-flexural (in-plane) strain field, {ε′s} are transverse shear strains, 

[Bmf] and [Bs] denote the corresponding strain-displacement matrices, respectively, and the vector 

{di'} contains the nodal degrees of freedom – translations and rotations {d'i}={u'i v'i w'i θi,x' θi,y'}T. 

According to the DSG3 formulation (Nguyen et al., 2013) the nodal in-plane strain displacement 

nodal matrices are given as follow: 
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where, Ni,x′ and Ni,y′ (i = 1,2,3) are the constant derivatives of the shape functions in the local 

element coordinate system. As previously mentioned, the DSG3 element eliminates shear locking 

effects by utilizing the ‘shear gap’ concept (Bletzinger et al., 2000) along the element edges. The 

resulting nodal shear strain-displacement matrices become (Nguyen et al., 2013): 
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with a, b, c and d denoting the following geometric dimensions: 
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Within the CS-DSG3 (Cell Smoothed – Discrete Shear Gap) formulation the element domain is 

divided into three DSG3 sub-triangles by connecting the centroid O of the triangle with the three 

element nodes. In each sub-triangle the DSG formulation is used to obtain the strain-

displacement matrices of the sub-triangles. Afterwards, in order to smooth the strains in the sub-

triangles, the strain smoothing technique is applied over the whole triangular element. The 

displacement vector of the central point is assumed as an average value of the nodal 

displacement vectors: 
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The displacement vectors corresponding to the sub-triangles read: 
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The sub-triangle strain-displacement matrices can now be written and upon substituting {d0'} in 

those matrices with the values given in Eq. (13) and performing some rearrangement of the 

terms, the strain-displacement matrices of sub-triangles read:  
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where [ ]j
imfB∆

, , [ ]j
isB∆

,  are the nodal strain displacement matrices of the jth sub-triangle’s ith node. 

The resulting smoothed strain matrices are given by: 
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The composite laminates constitutive matrix, well-known as the ABD matrix is defined with 

respect to the fiber orientation (user input). As the fiber orientation generally does not match the 

local x′-direction, the ABD requires an in-plane rotation thus yielding the A′ B′ D′-matrix. Finally, 

the mechanical stiffness matrix of the CS-DSG3 element [Ke] with respect to the global 

coordinate system is computed using its local element counterpart [Ke'] and the transformation 

matrix [T] as follows: 

 [ ] ]T]['K[]T[K e
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e =  (17) 

where [Ke'] is computed as follows: 
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2.3 Piezoelectric layer 

Corresponding to the choice of mechanical displacements and electric potential as independent 

variables, the constitutive equations of the piezoelectric material read (Tzou, 1993):  

 
{ } [ ]{ } [ ]{ }
{ } [ ]{ } [ ]{ }EdeD

EeC E

ε+ε=

ε=σ -
 (19) 

with the mechanical stress {σ} in vector (Voigt) notation, the electric displacement vector {D}, the 

piezoelectric material Hooke’s matrix [CE] at constant electric field {E}, the dielectric 

permittivity matrix [dε] at constant strain {ε}, and the piezoelectric coupling matrix [e]. In the 

following, piezoelectric elements with electrodes on the top and bottom surfaces are considered. 

The piezoelectric layers are polarized in the thickness direction and their in-plane strain field is 



 11 

coupled with the applied electric field across the thickness through the piezoelectric e31-effect. 

Although the accurate modeling of the electric field in such piezopatches for bending dominated 

problems requires a quadratic function for the electric potential and a linear function for the 

electric field, a previous research has already shown that a linear approximation for the electric 

potential and, consequently, a constant electric field are acceptable for the present class of 

piezoelectric materials and typical (rather thin) geometry of piezopatches (Marinkovic et al, 

2007; Marinkovic et al, 2009). Hence: 

 
k

k
k h

E
z

E ∆Φ
−=⇒

′∂
ϕ∂

−=  (20) 

where ϕ is the electric potential function across the thickness of the piezolayer, ∆Φk is the 

difference of the electric potentials between the electrodes of the layer and hk is the thickness of 

the piezolayer. Obviously, the electric field is treated layer-wisely. Equation (20) leads to a 

diagonal electric field – electric potential matrix [Bφ], with 1/hk as a typical main diagonal 

element.  

3 FINITE ELEMENT EQUATIONS 

The focus in this paper is on static cases. The FEM equations can be obtained by using the 

variational principle (Kim and Lee, 1988). Performing the discretization of the structure and 

applying the variational formalism, one comes up with the following form of the finite element 

equations in linear analysis: 

 [ ]{ } [ ]{ } { }FφKuK φuuu =+  (21) 

 [ ]{ } [ ]{ } { }QφKuK φφuφ =+  (22) 

where [Kuu] is the mechanical stiffness matrix, [Kuφ] and [Kφu] ([Kuφ]=[Kφu]T) are the 

piezoelectric direct and inverse coupling matrices, respectively, [Kφφ] is the dielectric stiffness 

matrix, vectors {φ}and {u} comprise the mechanical and electrical (differences of electric 
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potentials) degrees of freedom, respectively, while the vectors {F} and {Q} are the mechanical 

and electric loads, respectively. Nonlinear FEM analysis is performed incrementally and the 

equations read: 

 [ ] { } [ ] { } { } { }int
t

ext
tΔtt

φu
tt

uu
t FFφΔKuΔK −=+ +  (23) 

 [ ] { } [ ] { } { } { }int
t

ext
tΔtt

φφ
tt

uφ
t QQφΔKuΔK −=+ +  (24) 

where the left superscript denotes at what moment in time a quantity is taken, ∆ denotes the 

increment of a quantity, ‘ext’ and ‘int’ in the right subscript are used with quantities on the right-

hand side of the equations to denote external and internal (mechanical and electric) loads, 

respectively.  

The system matrices in Eqs. (21-24) are assembled from element matrices. The element 

mechanical stiffness matrix is already given in Eq. (19). The element piezoelectric coupling and 

dielectric stiffness matrices are computed as follows: 

 [ ]
[ ]

[ ]
[ ][ ] dVBe

B

B
K

V
φ

T

*s

*mf

φu ∫































−−=  (25) 

and [ ] [ ] [ ][ ]dVBdBK φ
V

εT
φφφ ∫−=  (26) 

In this paper the cases are studied that involve either only actuation or only sensing, i.e. no 

mixture of those. In the actuator case, electric voltages are predefined and the structural 

deformation is computed. Only the first equation from the systems of equations Eqs. (21-22) 

(linear case) or Eqs. (23-24) (nonlinear case) is needed for the computation, whereby the 

mechanical loads induced through piezoelectric coupling are given as:  

 { } [ ]{ }aφupiezo φKF =  (27) 
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and the computation proceeds as purely mechanical FEM computation with the external loads 

equal to the loads defined by Eq. (25).  

In the sensor case, the excitation is mechanical in form of either mechanical forces or predefined 

displacements, while the electric charges are set to zero. If the structure is excited by forces, then 

the system of equations (Eqs. (21-22) or Eqs. (23-24)) remains fully coupled. In case of 

predefined displacements, the sensor voltages can be directly obtained from the second equation 

in Eqs. (21-22) or Eqs. (23-24): 

 { } [ ] [ ]{ }uKKφ uφe
1

φφs
−−=  (28) 

 

4 CO-ROTATIONAL FORMULATION 

As already emphasized, the considered thin-walled structures are susceptible to large local 

rotations with still small strains induced. Such deformational behavior can be efficiently treated 

by means of a co-rotational (CR) FEM formulation. The essence of the CR-formulation consists 

in introduction of a local element reference frame, [E], that is attached to the material and 

performs the same rigid-body motion as the structural material (Fig. 2). In this manner, the 

overall motion can be decomposed into the rigid-body motion and purely deformational motion. 

Generally speaking, over the course of deformation, the rigid-body rotation differs for different 

points of a deformable body. However, in the present formulation, a curved shell structure is 

approximated by a number of linear triangular (facet) elements. Consequently, the rigid-body 

rotation is constant for the entire element and represented by a single rotational matrix. The 

strains are assumed to be small so that the deformational behavior with respect to the element 

reference frame, which follows the element in its rigid-body rotation, can be described as linear.  
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Fig. 2 Co-rotational approach 
 

The element rotational matrix, [Re], is determined by the polar decomposition of the 

deformation gradient matrix, which is also constant over the element area. Once the rotational 

matrix is determined, the element stiffness matrix is updated as follows: 

 [ ] [ ] [ ] [ ]Te
t

e
0

e
t

e
t RKRK =  (29) 

The nodal rotation-free translations }u{ r
i,T

t are then calculated by: 

 [ ]















−

















=
















=

i

i

i

i
t

i
t

i
t

T
e

t

r
i

t

r
i

t

r
i

t

r
i,T

t

z
y
x

z
y
x

R
w
v
u

}u{  (30) 

In order to handle the nodal rotations, each element node is assigned a coordinate system [Si], 

i=1,2,3, which is initially parallel to the global system. Those nodal coordinate systems rotate 

as defined by the computed nodal rotations from their initial orientation 0[Si] to their current 

orientation t[Si] (i=1,2,3; Fig. 2). The coordinate systems t[Si] are updated by means of the 

transformation matrix t[Tsi]: 

 [ ] [ ] [ ]si
tt

si
t

si
t TTT ∆−∆=  (31) 

where t[∆Tsi] is determined by means of the incremental nodal rotations as follows: 
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 [ ] [ ] 2
2

t

t

t

t

si
t ]Spin[

2/ω
)2/ωsin(

2
1]Spin[

ω
ωsinIT 








++=∆  (32) 

with: 

 2
i,z

t2
i,y

t2
i,x

tt θθθω ∆+∆+∆=  (33) 

and: 

 
















∆−∆−
∆−∆
∆∆−

=
0θθ
θ0θ
θθ0

]Spin[

i,x
t

i,y
t

i,x
t

i,z
t

i,y
t

i,z
t

t  (34) 

Afterwards the rotational matrix t[Re] is used to obtain the transformation matrix t[Tsr,i]: 

 [ ] [ ] [ ]si
t

e
t

i,sr
t TRT =  (35) 

Finally, the nodal rotations for the current configuration freed from the rigid-body motion and 

expressed in the global coordinate system, }θ{ r
i

t , are equal to following components of the t[Tsr,i] 

matrix: 

 





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
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




−
−=






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}θ{

i,sr
t
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t

i,sr
t

r
i,z

t

r
i,y

t

r
i,x

t

r
i

t  (36) 

Finally, by means of translations and rotations freed from rigid-body rotation, the internal forces 

and moments can be determined, which together with the updated stiffness matrix allows to 

proceed with the geometrically nonlinear FEM computations. In the actuator case, the 

mechanical loads induced by piezoelectric coupling (Eq. (27)) need to be rotated through t[R], 

whereas in the sensor case the rotation-free displacements are to be used in Eq. (28) 
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5 NUMERICAL EXAMPLES 

The following examples consider composite structures with different types of layers. Table 1 

displays the properties of all materials used in the examples, with Y denoting the Young’s 

modulus and ν the Poisson’s ratio, with indices referring to material directions. Isotropic 

materials and materials that are considered to be isotropic (even if they are not in reality) are 

described by only two parameters, Y and ν, while the omitted constants (empty cells in Table 1) 

are considered to be equal to zero in the examples. The stacking sequence of laminates and 

thickness of layers vary in the studied examples and will be specified separately. 

Table 1 Material properties of the layers in the principal material directions 

 T300/976 Aluminum PTZ-4 PVDF PIC 151 PTZ-G1195 
Elastic properties        

Y11 [GPa] 150.0 70.3 81.3 2 61.3 63.0 
Y22 [GPa] 9.0 - 81.3 - 61.3 63.0 
Y33 [GPa] 9.0 - 64.5 - 48.4 63.0 

υ12 [-] 0.3 0.345 0.33 0.29  0.3 
υ13 [-] 0.3 - 0.43 -  0.3 
υ23 [-] 0.3 - 0.43 -  0.3 

Piezoelectric constants 
e31 = e32 [Cm-2]   -14.8 0.046 9.6E-6 22.86 

Dielectric constant [F m-1] 
d31 (× 10-8)   1.1505 0.01062 1.710 0.0254 

 

5.1 Active Beam Structure (actuator case) 

A clamped beam with a pair of collocated piezopatches bonded onto its outer surfaces is 

considered in this example. The geometry of the beam is given in Fig. 3. The beam is made of 

aluminum as carrying/passive material, while the piezopatches are made of the piezoceramic 

PIC 151 (Table 1). The piezopatches are polarized in opposite directions and each of them is 

subjected to a constant voltage of 100 V. Such a system of collocated piezopatches with opposite 

polarization and their symmetric position across the thickness is quite often used for actuator 

applications in thin-walled structures as it improves the actuation. In such a system, the 

piezoelectric effect tends to stretch one of the patches and contract the other one. Since the 
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patches are bonded to the beam, stresses are induced resulting in bending of the beam. Using the 

presented shell element to discretize the structure, the FE mesh with 180 elements is found to 

yield the converged solution. The resulting transverse displacement along the centerline is given 

in Fig. 4. The absolute value of the calculated tip deflection (point A, see Fig 3) is 6.07 ×10-4 m. 

Nestorovic et al. (2013) reported the value of 6.06 ×10-4 m for the tip deflection, by using a 9-

node full-biquadratic shell element. The two results are obviously in a very good agreement.  

 

Fig. 3 Geometry of the active beam structure 
 
 

 

Fig. 4 Static deflection of the active beam structure at the centerline 
 

 

5.2 Semi-Circular Cylindrical Composite Shell (sensor case) 

This example was originally proposed by Saravanos (1997) and additionally studied by 

Balamurugan and Narayanan (2008). The geometry of the semi-circular cylindrical shell is 

presented in Fig. 5. The stacking sequence of composite is [p/0/90/+45/−45]sym with composite 
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layers made of graphite epoxy (Table 1), while the piezolayers made of PZT-4 (Table 1) are 

bonded to the inner and outer surface of the composite shell. The sequence is given with respect 

to the global x-axis. The thickness of each composite ply is 1.2×10-3 m and the thickness of each 

piezoelectric layer 2.4×10-3 m. The total thickness of the shell is therewith 0.0144 m. The radius 

R of the mid-surface is 0.1 m and the width b is 62.8×10-3 m. A line load Fline = 159.2 N/m 

acting in the x-direction is applied at the structure’s free end. The other end is clamped. Upon the 

convergence analysis, the results obtained with 120 elements are taken as representative. The 

deformation induced by the mechanical load gives rise to electric voltages in the pezoelectic 

layers. Since the deformation is not the same in the two piezolayers, the induced voltages differ. 

For the sake of direct comparability of the obtained results with those by Saravanos (1997) and 

Balamurugan and Narayanan (2008), the sensor potential of the outer piezolayer is normalized in 

the same way proposed by the aforementioned authors, i.e. by (φs×122×10-10/h). 

 

Fig. 5 Semi-circular cylindrical composite cantilevered shell with PZT sensor/actuator at the 
top and bottom surfaces 

 

Whereas Saravanos (1997) gives a theoretical result for an infinite number of sensors, each 

across the structure’s width and with an infinitesimal length along the hoop-distance, 

Balamurugan and Narayanan (2008) give a result for a more realistic case of 15 sensors along 

the hoop. The results by present element are also computed for 15 sensors along the hoop and are 

very similar to those by Balamurugan and Narayanan (2008). The three results depicted in Fig. 6 
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demand a comment. Obviously, the result by Saravanos (1997) shows different principle 

tendency compared to the other two results – it is not symmetric with respect to the mid-value of 

the normalized hoop distance (0.5) and, additionally, the value at the free end is not zero. At this 

point it should be emphasized that the theoretical result for an infinite number of sensors across 

the hoop with both the present element and element by Balamurugan and Narayanan (2008) 

would be zero at the free end. This is due to the fact that both the bending moment and in-plane 

force are zero at the free end, and if the sensor voltages are only a result of the piezoelectric e31-

effect, then the induced voltage is zero at that point. Also, considering the cross-sectional loads 

along the hoop-distance, the induced sensor voltage must be symmetric if, again, only the 

piezoelectric e31-effect is accounted for. Both aspects, i.e. non-symmetry and non-zero value at 

the free end, suggest that the formulation by Saravanos (1997) accounts not only for the e31-

effect but also for the piezoelectric coupling involving transverse shear strains. Hence, the result 

by the present element is actually directly comparable only with the results by Balamurugan and 

Narayanan (2008). But even in that comparison, the difference in results call for a comment. It 

may be seen that the results by Balamurugan and Narayanan yield somewhat smaller values 

compared to the results by present element. This may be attributed to the fact that Balamurugan 

and Narayanan account for quadratic distribution of the electric potential across the thickness of 

piezolayers, which leads to stiffer structural behavior (Marinković et al., 2007) and therewith to 

lower values for sensor voltages. Actually, Balamurugan and Narayanan use the same argument 

to explain the difference between their result and that by Saravanos, but in the authors’ opinion, 

this argument is at least incomplete as it neglects the non-symmetry of the Saravanos’ result.  
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Fig. 6 Semi-circular cylindrical composite shell - voltage distribution of the outer piezolayer 
 

5.3 Piezoelectric composite plate (nonlinear actuator case) 

In the following example a laminated piezoelectric square plate, with an edge length a = 0.4 m, 

exposed to piezoelectric excitation is studied. The structure is made of three layers, the outer two 

are made of PZT-G1195N and have a thickness of 0.2 mm and the mid-layer is a T300/976 layer 

with a thickness of 0.15 mm and fiber orientation of 90° with respect to the x-axis. The 

piezolayers are subjected to an input voltage of 300 V, thus providing a large enough excitation 

that leads to visible nonlinear effects in the response of the plate. Two different boundary 

conditions are considered: a clamped plate and a simply supported plate (see Fig 7, case I, II). In 

order to capture the curved geometry upon deformation adequately, an FE mesh with 128 

elements was used.  

 
 

Fig 7 Initial geometry and boundary conditions of the cases I (left) and II (right) 
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Both cases have already been considered by Marinković et al. (2008) using the updated 

Lagrangian formulation and a degenerated 9-node shell element. Points A and B are chosen as 

representative to follow their displacements with the increasing load. The load-displacement 

diagrams for points A and B are given in Fig. 8 while Table 2 summarizes the displacements for 

the full load for linear and geometrically nonlinear FEM computation. The results obtained by the 

current formulation are in a very good agreement with those by Marinković et al. (2008). The 

differences in case I are less than 0.1% and in case II less than 0.8% in both linear and 

geometrically nonlinear static analyses. Obviously, the geometrically nonlinear effects are much 

less pronounced in case I as they are only the consequence of the geometry change during the 

deformation, which however does not influence the stiffness dramatically because the 

deformation remains bending dominated with no or negligible membrane effects. Oppositely, in 

case II, as soon as the deformation is initiated, significant membrane effects arise and the 

structure behaves stiffer. Hence, in the initial configuration it is the bending stiffness that plays 

the major role, but over the course of deformation the membrane stiffness takes over the primary 

role. This leads to notable differences between the linear and geometrically nonlinear results, as 

seen in Fig. 8 right. 

 

 
Fig. 8 Linear and nonlinear deflections at representative points: A (case I, left) and B (case II, 

right)  
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Table 2 Representative points deflections – linear and nonlinear results 

Linear static Present Marinković et al. (2008) 
Case A – wA [m] (× 10-3) 2.820 2.8 
Case B – wB [m] (× 10-3) 0.699 0.7 
Nonlinear static   
Case A – wA [m] (× 10-3) 2.705 2.7 
Case B – wB  [m] (× 10-3) 0.371 0.37 

 

5.4 Piezoelectric Bimorph Beam - static analysis  

The piezoelectric bimorph pointer consists of two uniaxial piezoelectric layers with opposite 

polarization. The example is well-documented in the literature and has been practically an 

inevitable benchmark example for a number of similar developments, e.g., Hwang and Park 

(1993), Chee et al. (1997), Nguyen-Thoi et al. (2013), etc. The geometry of the bimorph beam is 

depicted in Fig. 9. The length L of the beam is 0.1 m, the total height H is 0.1 mm and the width 

W is 5 mm. The beam layers are made of uniaxial PVDF polarized in the thickness direction. It 

should be noted that PVDF is a rather compliant material and the contribution of the structure’s 

dead weight onto the observed deflection is probably non-negligible. This effect is, however, 

neglected here, which only deepens its academic nature. 

 

Fig. 9 Piezoelectric bimorph beam geometry 
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In the following, the bimorph beam is considered as actuator and sensor. For the actuator case 

only the result of the linear analysis is presented, whereas the sensor case has been treated both 

linearly and geometrically nonlinearly. Because of the geometrically nonlinear analysis, the 

mesh with 40 elements is chosen.  

First the bimorph beam is considered as an actuator. Hence, the voltage of ∆φ = 1V is applied 

over its thickness and along the entire length. It is a straightforward exercise to analytically 

derive the result based on the Euler-Bernoulli beam theory and the constitutive equations of 

linear piezoelectricity, which leads to a quadratic function for the beam deflection: 

 2
2

31 xφΔ
YH
e

2
3)x(w =  (37) 

Eq. (37) yields the tip (x=0.1 m) deflection of 3.45×10-7 m, which is also the result yielded by 

the FE model using the present element. The deflection of the whole beam computed by the FE 

model is shown in Fig. 10.  

 

Fig. 10 Static deflection of bimorph beam subjected with input voltage of 1V 

The bimorph beam is next studied as a sensor case. Deformation caused by external loads results 

in electric charges due to the direct piezoelectric effect and therewith an electric voltage is 
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induced between the electrodes on the outer surfaces. A tip deflection of 0.01 m is imposed as a 

boundary condition (see Fig. 11) which leads to a linear distribution of the bending moment 

along the length. The obtained distribution of the electric voltage along the length of the beam is 

directly affected by the number and distribution of the pairs of sensor electrodes. Each pair of 

sensor electrodes yields a value of the electric voltage averaging the strain over the part of the 

structure covered by the sensor. In such a case, it is expected that the electric voltage increases 

gradually in equal increments along the beam length for equally long sensors, which finally 

results in a staircase function. The step stair voltage distribution is verified by considering the 

structure as consisting of 6 and 20 sensors. The adequate sensor voltage distribution is easily 

recognized in Fig 11.  

 

Fig. 11 Electric voltage distribution of the bimorph beam with an imposed tip deflection of 0.01 m 

The sensor case is also considered as geometrically nonlinear. For this purpose, the beam is 

exposed to the tip load of 0.2 N. Sensor 1 for the case with 20 sensors, which is at the clamped 

end of the beam, is taken as representative to show the development of the induced voltage with 

the increasing load. This result is given in Fig. 12. As the deformation proceeds, the membrane 

effects in the structure gain on importance and the structure behaves stiffer compared to the 
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behavior predicted by the linear analysis. Additionally, as the beam bends, the beam tip moves 

also along the length direction (x-direction) towards the clamped end, so that the reaction 

moment at the clamp becomes smaller. This is reflected in the computed sensor voltage that is 

obviously smaller than predicted by the linear analysis.  

 

Fig. 12 Load voltage diagram of beam tip subjected with a tip load of 0.2 N 

 

Fig. 13 shows the voltage distribution along the length of the beam computed in linear and 

geometrically nonlinear analysis for F=Fmax. One may notice that the increase of electric voltage 

between consecutive sensors is not constant any more, but it becomes larger toward the clamped 

end. This is due to the fact that the cross-sectional in-plane forces (in length direction) are larger 

for the sensors closer to the free end of the beam in the deformed configuration. Since bending 

stiffness is smaller than the membrane stiffness, force acting as a transverse force will typically 

induce larger sensor voltages as a consequence of bending compared to the case in which the 

same force acts in-plane thus inducing sensor voltage through membrane deformation.  
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Fig. 13 Electric voltage distribution of the Bimorph Beam subjected with tip load of 0.2 N 

 

5.5 Shape control of piezoelectric composite plate  

This example was originally proposed by Kioua and Mirza (2000) and is also studied by a 

number of authors (e.g. Marinković, 2007). It addresses the possibility of static shape control of 

shell structures by means of piezoelectric actuation. A simply supported square plate 

(0.254×0.254 m) made of fiber reinforced composite material with bonded piezoelectric layers is 

considered. The stacking sequence of the composite plate is [p/0/90/0]sym. The total thickness of 

the plate is 1.336 mm. The passive layers have the same thickness of 0.138 mm and are made of 

T300/976. The piezoelectric composite layers have a thickness of 0.254 mm and are made of 

PZT G1195N. A FE mesh with 200 elements yields representative results.  

The surface of the plate is initially subjected to uniformly distributed pressure of 200 N/m². 

Furthermore, a constant voltage is applied to the oppositely polarized piezolayers, thus inducing 
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bending moments uniformly distributed over the shell edges. The actuator voltage is increased 

starting from 0 V until the shape is found that mostly corresponds to the initial/undeformed 

shape of the structure. The solution of Kioua and Mirza (2000) is based on the Ritz analysis and 

it yields a flat shape for the voltage of 27 V (Fig. 14). Clearly, a combination of surface pressure 

and bending moments uniformly distributed over the outer edges of a simply supported plate 

cannot result in a shape that is identical to the initial one. However, Kioua and Mirza (2000) 

obtained such a solution as a consequence of deficiency of the shape functions they used in their 

work. They used polynomials, the degree of which goes up to two (quadratic), whereas the actual 

solution requires polynomials of at least fourth degree for this specific case. The diagram in 

Fig. 14 depicts the FE solution by the present element together with the Ritz solution by Kioua 

and Mirza (2000). Compared to the FEM solution reported by Marinković et al. (2007), the 

present FEM results show rather small differences as obvious from Table 3.  

 
Fig. 14 Shape control of a simply supported composite plate 

 
Table 3 Results Shape control of piezoelectric composite plate 

Center node deflection [m] (× 10-3) Present Kioua and Mirza 
(2000) 

Marinković 
(2007). 

Applied voltage  0 V -0.045 0.000 -0.048 
Applied voltage 15 V -0.484 -0.439- -0.487 
Applied voltage 27 V -1.032 -1.051 -1.049 
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6 CONCLUSIONS 

Composite laminates with piezoelectric layers that may take the sensor or actuator role open a 

wide range of possibilities for actively controlled structural behavior. It involves mechanical and 

electric fields as well as their coupling. Highly efficient, reliable and accurate tools are required 

in order to check various design solutions and control strategies.  

The linear 3-node shell element is proposed in this paper as a reply to this demand. It covers 

modeling of composite laminates with directionally dependent material properties including 

piezoelectric layers that couple the in-plane strains to the electric field that acts across the 

thickness. High meshing ability of triangles clearly belongs to advantages of this element. But 

this advantage is inevitably accompanied with the drawback of stiffer modeled behavior, thus 

calling for somewhat finer meshes. The ‘descrete shear gap’ concept together with the strain 

smoothing technique was additionally applied to address the problem of stiff models and locking 

effects.  

A very important aspect of the paper is the extension of formulation to geometrically nonlinear 

analysis based on the co-rotational concept. The concept is very convenient for structures 

experiencing finite rotations with infinitesimal strains. Hence, the considered thin-walled 

piezoelectric laminates are a very good candidate to apply the CR-concept. The rigid-body 

rotation is accounted for on the element level. The aforementioned requirement for somewhat 

finer meshes actually talks in favor of such an approach – with a finer mesh, the local rigid-body 

rotation is more accurately described. All the considered examples - linear and geometrically 

nonlinear, actuator and sensor cases - demonstrate high agreement with the reference solutions 

and therewith applicability of the element and CR-formulation.   

In the future work the formulation should be extended to account for other types of piezoelectric 

couplings. Piezoelectric fibers polarized in the length direction (in-plane polarization) would be 



 29 

of special interest. In addition, since the co-rotational approach separates geometrical from 

material nonlinearities, it represents a solid basis to extend the formulation to materially 

nonlinear behavior. Particularly the nonlinearities in piezoelectric coupling at larger values of 

electric potential are interesting.  
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