Technische Universität Berlin

Institut für Mathematik

STCSSP: A FORTRAN 77 routine to compute a structured staircase form for a (skew-)symmetric/(skew-)symmetric matrix pencil.
T. Brüll and V. Mehrmann

Preprint 31-2007

[^0]
STCSSP: A FORTRAN 77 routine to compute a structured staircase form for a (skew-) symmetric / (skew-) symmetric matrix pencil.

Tobias Brüll ${ }^{\dagger} \quad$ Volker Mehrmann ${ }^{\dagger}$

March 19, 2008

1 Purpose

Let $(N, H) \in \mathbb{R}^{n, n} \times \mathbb{R}^{n, n}$ be a matrix pencil that satisfies one of the conditions

$$
\begin{gather*}
N=N^{T} \text { and } H=H^{T}, \tag{1a}\\
N=N^{T} \text { and } H=-H^{T}, \tag{1b}\\
N=-N^{T} \text { and } H=H^{T}, \tag{2a}\\
N=-N^{T} \text { and } H=-H^{T} . \tag{2b}
\end{gather*}
$$

Then we call (N, H) (skew-) symmetric / (skew-) symmetric. Likewise, one could say, that a pencil (N, H) is (skew-) symmetric / (skew-) symmetric if and only if

$$
\begin{equation*}
N=o p_{N}(N) \text { and } H=o p_{H}(H), \tag{3}
\end{equation*}
$$

where $o p_{N}(N)=N^{T}$ or $o p_{N}(N)=-N^{T}$ and $o p_{H}(H)=H^{T}$ or $o p_{H}(H)=-H^{T}$. Pencils that satisfy (2a) are called even, see [1]. STCSSP computes a structured staircase form for a real (skew-) symmetric / (skew-) symmetric matrix pencil. The staircase form is achieved by an orthogonal transformation of the form

$$
\begin{equation*}
\left(U^{T} N U, U^{T} H U\right)=\left(N_{\text {new }}, H_{\text {new }}\right), \tag{4}
\end{equation*}
$$

with $U \in \mathbb{R}^{n, n}$ orthogonal. Obviously, we have $\left(N_{\text {new }}, H_{\text {new }}\right)=\left(o p_{N}\left(N_{\text {new }}\right), o p_{H}\left(H_{\text {new }}\right)\right)$ and thus the pencil in staircase form $\left(N_{\text {new }}, H_{\text {new }}\right)$ is (skew-) symmetric / (skew-) symmetric again.
For a real symmetric matrix A we know that all eigenvalues are real. Thus, one can count the positive, negative, and zero eigenvalues. We call the triple (π, ν, ξ) the inertia index of A, if A has π positive eigenvalues, ν negative eigenvalues, and ξ zero eigenvalues.

[^1]
2 The theory

The algorithm implemented is based on the following theorem, which is a slight generalization of [1, Theorem 3.1] from even matrix pencils to (skew-) symmetric / (skew-) symmetric matrix pencils.
Theorem 2.1. (Skew-) symmetric / (skew-) symmetric staircase form. With the operators defined in (3) consider the (skew-) symmetric / (skew-) symmetric matrix pencil $(N, H)=\left(\operatorname{op}_{N}(N)\right.$, op $\left._{H}(H)\right)$, where $N, H \in \mathbb{R}^{n, n}$. There exists a real orthogonal matrix $U \in \mathbb{R}^{n, n}$, such that

$U^{T} H U=$

where for $i=1, \ldots, m$ we have $N_{i i}=o p_{N}\left(N_{i i}\right), H_{i i}=o p_{H}\left(H_{i i}\right)$. Further, we know that $q_{1} \geq n_{1} \geq q_{2} \geq n_{2} \geq \ldots \geq q_{m} \geq n_{m}$,

$$
\begin{aligned}
N_{j, 2 m+1-j} & \in \mathbb{R}^{n_{j}, q_{j+1}}, \quad 1 \leq j \leq m-1 \\
N_{m+1, m+1} & =\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right], \quad \Delta=o p_{N}(\Delta) \in \mathbb{R}^{p, p} \\
H_{j, 2 m+2-j} & =\left[\begin{array}{ll}
\Gamma_{j} & 0
\end{array}\right] \in \mathbb{R}^{n_{j}, q_{j}}, \quad \Gamma_{j} \in \mathbb{R}^{n_{j}, n_{j}}, \quad 1 \leq j \leq m \\
H_{m+1, m+1} & =\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right], \quad \Sigma_{11} \in \mathbb{R}^{p, p}, \quad \Sigma_{22} \in \mathbb{R}^{l-p, l-p}, \\
H_{m+1, m+1} & =o p_{H}\left(H_{m+1, m+1}\right)
\end{aligned}
$$

and the blocks Σ_{22} and Δ and $\Gamma_{j}, j=1, \ldots, m$ are nonsingular.
Note, that what is called p in Theorem 2.1 is corresponding to $2 p$ in [1, Theorem 3.1]. The form (5) is by far not unique. Even the quantities $q_{1}, n_{1}, q_{2}, n_{2}, \ldots$ are not unique, but they become unique when using the following algorithm to compute the form (5) which is a slight
generalization of [1, Algorithm 1] from even matrix pencils to (skew-) symmetric / (skew-) symmetric matrix pencils and represents a constructive proof of Theorem 2.1.

Algorithm 2.2. Staircase algorithm for (skew-) symmetric / (skew-) symmetric matrix pencils.
With the operators defined in (3) consider the (skew-) symmetric / (skew-) symmetric matrix pencil $(N, H)=\left(o p_{N}(N), o p_{H}(H)\right)$, where $N, H \in \mathbb{R}^{n, n}$. Then this algorithm computes an orthogonal matrix $U \in \mathbb{R}^{n, n}$ such that $U^{T} N U, U^{T} H U$ are in the form (5). In addition, for each of the matrices N and H, which is real symmetric, the algorithm produces a unique sequence of inertia indices, i.e., if only N or H is real symmetric one sequence of inertia indices is generated and if both N and H are real symmetric two sequences of inertia indices are generated.
Set flag $=0, m=n_{0}=q_{0}=r_{0}=0, l=n$,

$$
\mathcal{N}=\mathcal{N}_{22}=N, \quad \mathcal{H}=H, \quad U=I .
$$

DO WHILE flag $=0$

$$
\begin{aligned}
& \text { Perform a rank revealing factorization of } \mathcal{N}_{22} \in \mathbb{R}^{l-r_{m}, l-r_{m}}, \\
& \qquad \mathcal{N}_{22}=U_{1}\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right] U_{1}^{T}, \\
& \text { with } \Delta=o p_{N}(\Delta) \in \mathbb{R}^{p, p} \text { nonsingular. If the matrix } N \text { is real symmetric, also } \\
& \text { store the inertia indices of } \Delta \text { as }\left(\pi_{m+1}^{N}, \nu_{m+1}^{N}, 0\right) \text {. Set } \\
& \mathcal{N}_{1}=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & I_{r_{m}}
\end{array}\right]^{T} \mathcal{N}\left[\begin{array}{cc}
U_{1} & 0 \\
0 & I_{r_{m}}
\end{array}\right]=\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right], \\
& \mathcal{H}_{1}=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & I_{r_{m}}
\end{array}\right]^{T} \mathcal{H}\left[\begin{array}{cc}
U_{1} & 0 \\
0 & I_{r_{m}}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\mathcal{H}}_{11} & \hat{\mathcal{H}}_{12} \\
o p_{H}\left(\hat{\mathcal{H}}_{12}\right) & \hat{\mathcal{H}}_{22}
\end{array}\right],
\end{aligned}
$$

partitioned analogously, with $\hat{\mathcal{H}}_{11}=o p_{H}\left(\hat{\mathcal{H}}_{11}\right)$, and $\hat{\mathcal{H}}_{22}=o p_{H}\left(\hat{\mathcal{H}}_{22}\right)$. (Here $\hat{\mathcal{H}}_{22} \in \mathbb{R}^{l-p, l-p}$).

IF $p=l$ THEN
Set flag $=1$ and

$$
\mathcal{U}=\left[\begin{array}{ccc}
I_{n_{1}}+\ldots+n_{m} & 0 & 0 \tag{6}\\
0 & U_{1} & 0 \\
0 & 0 & I_{q_{1}+\ldots+q_{m}}
\end{array}\right] .
$$

ELSE
Set $m=m+1$.
Perform a rank revealing decomposition of $\hat{\mathcal{H}}_{22}$,

$$
\hat{\mathcal{H}}_{22}=U_{2}\left[\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right] U_{2}^{T},
$$

where $\Sigma=o p_{H}(\Sigma) \in \mathbb{R}^{\mu, \mu}$ is nonsingular. If the matrix H is real symmetric, also store the inertia indices of Σ as $\left(\pi_{m}, \nu_{m}, 0\right)$. Set $r_{m}=\mu=\pi_{m}+\nu_{m}$.

Set

$$
\begin{aligned}
& \mathcal{N}_{2}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & U_{2}
\end{array}\right]^{T} \mathcal{N}_{1}\left[\begin{array}{cc}
I_{p} & 0 \\
0 & U_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\Delta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
& \mathcal{H}_{2}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & U_{2}
\end{array}\right]^{T} \mathcal{H}_{1}\left[\begin{array}{cc}
I_{p} & 0 \\
0 & U_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\tilde{\mathcal{H}}_{11} & \tilde{\mathcal{H}}_{12} & \tilde{\mathcal{H}}_{13} \\
o p_{H}\left(\tilde{\mathcal{H}}_{12}\right) & \Sigma & 0 \\
o p_{H}\left(\tilde{\mathcal{H}}_{13}\right) & 0 & 0
\end{array}\right],
\end{aligned}
$$

partitioned analogously.
IF $\mu=l-p$ THEN
Set $\mathrm{flag}=1$ and

$$
\begin{aligned}
\hat{\mathcal{U}} & =\left[\begin{array}{cc}
U_{1} & 0 \\
0 & I_{r_{m-1}}
\end{array}\right]\left[\begin{array}{cc}
I_{p} & 0 \\
0 & U_{2}
\end{array}\right] \\
\mathcal{U} & =\left[\begin{array}{ccc}
I_{n_{1}+\ldots+n_{m-1}} & 0 & 0 \\
0 & \hat{\mathcal{U}} & 0 \\
0 & 0 & I_{q_{1}+\ldots+q_{m-1}}
\end{array}\right]
\end{aligned}
$$

ELSE
Perform a rank revealing factorization or SVD

$$
\tilde{\mathcal{H}}_{13}=U_{3}\left[\begin{array}{cc}
\Gamma_{m} & 0 \\
0 & 0
\end{array}\right] V_{3}^{T},
$$

where $\Gamma_{m} \in \mathbb{R}^{\tau, \tau}$ is nonsingular.
Set $n_{m}=\tau, q_{m}=l-p-\mu$ and

$$
\begin{aligned}
& \mathcal{N}_{3}=\left[\begin{array}{ccc}
U_{3} & 0 & 0 \\
0 & I_{\mu} & 0 \\
0 & 0 & V_{3}
\end{array}\right]^{T} \mathcal{N}_{2}\left[\begin{array}{ccc}
U_{3} & 0 & 0 \\
0 & I_{\mu} & 0 \\
0 & 0 & V_{3}
\end{array}\right] \\
& =\left[\begin{array}{c|cc|cc}
\mathcal{N}_{11} & \mathcal{N}_{12} & 0 & 0 & 0 \\
\hline o p_{N}\left(\mathcal{N}_{12}\right) & \mathcal{N}_{22} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& \mathcal{H}_{3}=\left[\begin{array}{ccc}
U_{3} & 0 & 0 \\
0 & I_{\mu} & 0 \\
0 & 0 & V_{3}
\end{array}\right]^{T} \mathcal{H}_{2}\left[\begin{array}{ccc}
U_{3} & 0 & 0 \\
0 & I_{\mu} & 0 \\
0 & 0 & V_{3}
\end{array}\right] \\
& =\left[\begin{array}{c|cc|cc}
\mathcal{H}_{11} & \mathcal{H}_{12} & \mathcal{H}_{13} & \Gamma_{m} & 0 \\
\hline o p_{H}\left(\mathcal{H}_{12}\right) & \mathcal{H}_{22} & \mathcal{H}_{23} & 0 & 0 \\
o p_{H}\left(\mathcal{H}_{13}\right) & o p_{H}\left(\mathcal{H}_{23}\right) & \Sigma & 0 & 0 \\
\hline o p_{H}\left(\Gamma_{m}\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& \hat{\mathcal{U}}=\left[\begin{array}{cc}
U_{1} & 0 \\
0 & I_{r_{m-1}}
\end{array}\right]\left[\begin{array}{cc}
I_{p} & 0 \\
0 & U_{2}
\end{array}\right]\left[\begin{array}{ccc}
U_{3} & 0 & 0 \\
0 & I_{\mu} & 0 \\
0 & 0 & V_{3}
\end{array}\right], \\
& \mathcal{U}=\left[\begin{array}{ccc}
I_{n_{1}+\ldots+n_{m-1}} & 0 & 0 \\
0 & \hat{\mathcal{U}} & 0 \\
0 & 0 & I_{q_{1}+\ldots+q_{m-1}}
\end{array}\right] \text {. }
\end{aligned}
$$

Set

$$
\begin{gathered}
\\
\left.\mathcal{N}=\begin{array}{c}
p-\tau \\
\mu
\end{array}\left[\begin{array}{cc}
p-\tau & \mu \\
\mathcal{N}_{22} & 0 \\
0 & 0
\end{array}\right], \quad \begin{array}{c}
\\
\mathcal{H}=p-\tau
\end{array} \begin{array}{cc}
p-\tau & \mu \\
\mu
\end{array} \begin{array}{cc}
\mathcal{H}_{22} & \mathcal{H}_{23} \\
o p_{H}\left(\mathcal{H}_{23}\right) & \Sigma
\end{array}\right] \in \mathbb{R}^{l, l},
\end{gathered}
$$

and $l=p-\tau+\mu$.
END IF
END IF
Form $H=\mathcal{U}^{T} H \mathcal{U}, N=\mathcal{U}^{T} N \mathcal{U}$, and $U=U \mathcal{U}$.
END WHILE
Algorithm 2.2 is implemented in the function STCSSP.
Remark 1. When we compute the form (5) for an even pencil with the help of Algorithm 2.2 we can determine the structured Kronecker canonical form of Thompson [3], for the original even pencil (N, H) with the help of the values computed by the algorithm, see [1, Theorem 3.3].

Let us end this section with two graphs that give an overview of the subroutines that come with STCSSP.

Fig.1: STCSSP and its subroutines. An arrow pointing from A to B means that routine A may call subroutine B at some point.

DBDSQX	slight adaption of the LAPACK routine DBDSQR, which computes a singular value decomposition
DLANSK	skew-symmetric modification of the LAPACK routine DLANSY DLASKE DOSKRD
skew-symmetric modification of the LAPACK routine DLATRD compute the eigenvectors and eigenvalues of a real skew-symmetric tridiagonal matrix with the help of	
DOSTQR	DBDSQX

Tab.1: The functionality implemented in the subroutines.

3 Specification

```
    SUBROUTINE STCSSP( SYMN, SYMH, UPLON, UPLOH, COMPZ, NDIM, N, LDN,
$ H, LDH, U, LDU, M, PINVEC, NUNVEC, PIVEC,
$ NUVEC, NVEC, QVEC, P, L, TOL, DWORK, LDWORK,
$ INFO )
C .. Scalar Arguments ..
    CHARACTER*1 SYMN, SYMH, UPLON, UPLOH, COMPZ
    INTEGER NDIM, LDN, LDH, LDU, INFO, LDWORK, M, P, L
    DOUBLE PRECISION TOL
C .. Array Arguments ..
    DOUBLE PRECISION N( LDN, * ), H( LDH, * ), U( LDU, * ),
$
    DWORK( * )
    INTEGER PINVEC( * ), NUNVEC( * ), PIVEC( * ),
$ NUVEC( * ), NVEC( * ), QVEC( * )
```


4 Argument List

4.1 Mode Parameters

SYMN, SYMH - CHARACTER*1
These parameters define which of the cases (1a), (1b), (2a), or (2b) is considered. Each of the two parameters may thereby be set to either 'S', which means that the corresponding matrix is assumed to be symmetric, or to ' N ', which means that the corresponding matrix is not assumed to be symmetric but it is assumed to be skew-symmetric. SYMN refers to the matrix N and SYMH refers to the matrix H, as in Algorithm 2.2. Other values are not allowed and will result in an erroneous termination of the algorithm. For example, to compute the structured staircase form of an even pencil, set SYMN $=$ ' N ' and SYMH $=$ 'S'.
With the operators defined in (3) one could also say that SYMN $={ }^{\prime} N$ ' (or SYMH $=$ ${ }^{\prime} \mathrm{N}$ ', resp.) means $o p_{N}(N)=-N^{T}$ (or $o p_{H}(H)=-H^{T}$, resp.) and SYMN $=$ 'S' (or SYMH $=$ 'S', resp.) means $o p_{N}(N)=N^{T}$ (or $o p_{H}(H)=H^{T}$, resp.).
Since the diagonal of a real skew-symmetric matrices is always zero, it does not have to be stored. This is why the diagonal elements in the array N (or H , resp.) are not considered in the computation, once SYMN = 'N' (or SYMH = ' N ', resp.).

UPLON, UPLOH - CHARACTER*1
These parameters tell the algorithm how the matrices N and H (as in Algorithm 2.2) are given on input and also how the staircase form is to be stored, once the algorithm has finished successfully. Each of the two parameters may thereby be set to either ' U ', which means that the upper triangular part of the array N (or H, resp.) is assumed to hold the upper triangular part of the matrix N (or H, resp.), or to 'L', which means that the lower triangular part of the array N (or H , resp.) is assumed to hold the lower triangular part of the matrix N (or H, resp.). UPLON refers to the matrix N and UPLOH refers to the matrix H, as in Algorithm 2.2. Other values are not allowed and will result in an erroneous termination of
the algorithm. The unused part of the arrays may be used as workspace, but the values in this unused part are not considered. Note, that if one of the parameters SYMN or SYMH is set to ' N ' then only the strict upper or lower, respectively, part of the corresponding array is used for computation (although the rest may be used as workspace). These parameters also control how the staircase form is returned in the case of an successful exit. The same regions in the arrays N and H that matter on entry contain the matrices that are transformed to staircase form, on exit.

COMPZ - CHARACTER*1

This parameter controls, whether the orthogonal transformation U as in Algorithm 2.2 shall also be computed or not. It is faster not to compute the transformation. Setting this parameter to ' N ' does not compute the orthogonal transformation. In this case the array U is not referenced, and can be supplied as a dummy array (i.e. set $\operatorname{LDU}=1$ and declare this array to be $U(1,1)$ in the calling program). Setting this parameter to 'V' causes the algorithm to compute the orthogonal transformation into the array U.

4.2 Input/Output Parameters

NDIM - (input) INTEGER
The order of the matrices N and H , and thus the dimension of the problem. NDIM has to be greater or equal to 0 , otherwise the algorithm will return in failure.

N - (input/output) DOUBLE PRECISION, array (LDN, NDIM)
On entry, the leading NDIM-by-NDIM part of the array has to contain the matrix N (as in Algorithm 2.2), according to the parameters SYMN and UPLON.
On successful exit, the leading NDIM-by-NDIM part of this array contains a part of the staircase form of the matrix N, according to Algorithm 2.2. The parameters SYMN and UPLON also determine which part of this array contains the actual data. If UPLON = 'U', then only the upper triangular part contains the upper triangular part of the staircase form and if UPLON = 'L' only the lower triangular part contains the lower triangular part of the staircase form. Also, if SYMN $=$ ' N ', then the diagonal in the array N has no meaning, on exit.

LDN - (input) INTEGER
The leading dimension of the array N. The parameter LDN has to be greater or equal to MAX (1, NDIM) , otherwise the algorithm will return in failure.

H - (input/output) DOUBLE PRECISION, array (LDH, NDIM)
On entry, the leading NDIM-by-NDIM part of the array has to contain the matrix H (as in Algorithm 2.2), according to the parameters SYMH and UPLOH.
On successful exit, the leading NDIM-by-NDIM part of this array contains a part of the staircase form of the matrix H, according to Algorithm 2.2. The parameters SYMH and UPLOH also determine which part of this array contains the actual data. If
$\mathrm{UPLOH}=$ ' U ', then only the upper triangular part contains the upper triangular part of the staircase form and if $\mathrm{UPLOH}={ }^{\prime} \mathrm{L}$ ' only the lower triangular part contains the lower triangular part of the staircase form. Also, if $\mathrm{SYMH}={ }^{\prime} \mathrm{N}$ ', then the diagonal in the array H has no meaning, on exit.

LDH - (input) INTEGER
The leading dimension of the array H. The parameter LDH has to be greater or equal to MAX (1 , NDIM) , otherwise the algorithm will return in failure.

U - (output) DOUBLE PRECISION, array (LDU, NDIM)
If COMPZ = 'V' and the algorithm terminated successfully, then the leading NDIM-by-NDIM part of this array contains the orthogonal transformation matrix U as computed by Algorithm 2.2, which has been used to reduce the original matrices N and H to structured staircase form (5). If COMPZ $={ }^{\prime} N$ ', then U is not referenced and can be supplied as a dummy array (i.e. set LDU $=1$ and declare this array to be $U(1,1)$ in the calling program).

LDU - (input) INTEGER
The leading dimension of the array U . LDU has to be greater or equal to 1 in any case and also to be greater or equal to NDIM, if COMPZ $=$ ' V '.

M - (output) INTEGER
The number of reduction steps that where necessary to reveal the Kronecker structure. M is always greater or equal to 0 and is corresponds to m in Algorithm 2.2.

PINVEC, NUNVEC - (output) INTEGER, array (NDIM+1)
On exit, with INFO = 0 and SYMN $=$ ' S^{\prime}, the first $\mathrm{M}+1$ entries of the arrays contain the inertia indices corresponding to the N matrix, analogously to the π_{i}^{N} 's and ν_{i}^{N} 's in Algorithm 2.2. PINVEC($\mathrm{M}+1$) and NUNVEC ($\mathrm{M}+1$) may not be used. In this case they are both zero. This happens when the algorithm does not exit because a submatrix of N with full rank was discovered (i.e. the algorithm did not exit from (6)). On exit, with INFO $=0$ and $S Y M N={ }^{\prime} N$ ', the first $M+1$ entries of the array contain only zeros.

PIVEC, NUVEC - (output) INTEGER, array (NDIM)
On exit, with INFO $=0$ and $\operatorname{SYMH}=$ ' S^{\prime}, the first M entries of the arrays contain the inertia indices corresponding to the H matrix, analogously to the π_{i} 's and ν_{i} 's in Algorithm 2.2. On exit, with INFO $=0$ and $S Y M H={ }^{\prime} N$ ', the first M entries of the array contain only zeros.

NVEC, QVEC - (output) INTEGER, array (NDIM)
On exit, with INFO $=0$, the first M entries of the arrays contain the n_{i} 's and q_{i} 's as in Theorem 2.1 and Algorithm 2.2. Thus, these arrays describe the block structure of the structured staircase form.

P - (output) INTEGER

On exit, with INFO $=0$, this integer contains the number of the finite eigenvalues of the pencil and thus the number of finite eigenvalues of the regular, index 1 part of the pencil. We have $0 \leq \mathrm{P} \leq \mathrm{L}$, on successful exit. This parameter corresponds to the value p in Algorithm 2.2 and Theorem 2.1.

L - (output) INTEGER

On exit, with INFO $=0$, this integer contains the size of the regular, index 1 part of the pencil. We have $\mathrm{P} \leq \mathrm{L} \leq$ NDIM on successful exit. This parameter corresponds to the value l in Algorithm 2.2 and Theorem 2.1.

4.3 Tolerance

TOL - (input) DOUBLE PRECISION
Absolute value, below which an eigenvalue or singular value shall be considered zero. If TOL <= 0.0 is given on entry, the tolerance is automatically chosen to be NDIM•eps, where eps is the machine precision, as returned by the LAPACK routine DLAMCH.
In a later version of STCSSP we will implement the rank decision algorithm described in [2, Section 5] which involves an additional input parameter GAP. This rank decision algorithm also uses different tolerances for rank decisions in N and H depending on the Frobenius norms of N and H.

4.4 Workspace

DWORK - DOUBLE PRECISION, array (LDWORK)
On exit, if INFO $=0$, DWORK (1) returns the optimal value of LDWORK.
LDWORK - INTEGER
The length of the array DWORK that may be used by the algorithm as workspace. LDWORK has to be greater or equal to NDIM*NDIM $+3 *$ NDIM +3 , otherwise the algorithm will issue an error message (i.e., the algorithm will return with INFO $=$ -22).

4.5 Error Indicator

INFO - INTEGER
INFO = 0: Successful exit.
INFO < 0: If INFO = -i, the i-th argument had an illegal value.
INFO = 1: Calculating the (skew-)symmetric (which one was computed depends on the parameter SYMN) Schur-form of a part of the matrix N failed.
INFO = 2: Calculating the (skew-)symmetric (which one was computed depends on the parameter SYMH) Schur-form of a part of the matrix H failed.
INFO = 3: The LAPACK routine DGESVD returned with an info value greater than zero, i.e., DGESVD was not able to compute a SVD.

References

[1] R. Byers, V. Mehrmann, and H. Xu. A structured staircase algorithm for skewsymmetric/symmetric pencils. Electr. Trans. Num. Anal., 26:1-33, 2007.
[2] J. W. Demmel and B. Kågström. The generalized Schur decomposition of an arbitrary pencil A - λ B: Robust software with error bounds and applications. Part II: Software and applications. ACM Trans. Math. Software, 19(2):175-201, 1993.
[3] R. C. Thompson. Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl., 147:323-371, 1991.

5 Example

We consider the following even matrix pencil which is taken from [1].

$$
\alpha N-\beta H=\alpha\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \tag{7}\\
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0
\end{array}\right]-\beta\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

5.1 Program Text

PROGRAM STCSSP_example
implicit none
C
C DEMO: Demonstration program for STCSSP
C

* .. Parameters ..
INTEGER NIN, NOUT

PARAMETER (NIN $=5$, NOUT $=6$)
INTEGER NMAX
PARAMETER (NMAX = 20)
INTEGER LDN, LDH, LDU
PARAMETER (LDN $=$ NMAX, LDH $=$ NMAX, LDU $=$ NMAX)
INTEGER LDWORK
PARAMETER (LDWORK $=$ NMAX*NMAX $+3 *$ NMAX +3)

* .. Local Scalars ..

CHARACTER * 1 SYMN , SYMH, UPLON, UPLOH, COMPZ
INTEGER NDIM, M, P, L
INTEGER PINVEC (NMAX + 1) , NUNVEC (NMAX + 1) ,
1 PIVEC (NMAX), NUVEC (NMAX)
INTEGER NVEC(NMAX), QVEC (NMAX)
DOUBLE PRECISION N(NMAX, NMAX), H (NMAX,NMAX), U(NMAX, NMAX)
DOUBLE PRECISION TOL1
DOUBLE PRECISION DWORK (LDWORK)
INTEGER INFO
INTEGER I, J

* .. External Functions ..

LOGICAL LSAME
EXTERNAL LSAME

* .. External Subroutines ..

EXTERNAL STCSSP
*
WRITE (NOUT, FMT = 99999)

* Skip the heading in the data file and read the data.

READ (NIN, FMT $=$ '()')
READ (NIN, FMT $=*$) SYMN, SYMH, UPLON, UPLOH, COMPZ
READ (NIN, FMT $=*$) NDIM
READ (NIN, FMT $=*$) TOL1
IF (NDIM.LT.O .OR. NDIM.GT.NMAX) THEN
WRITE (NOUT, FMT = 99991) N
ELSE
$\operatorname{READ}(\mathrm{NIN}, \mathrm{FMT}=*)(\mathrm{N}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{NDIM}), \mathrm{I}=1$, NDIM) $\operatorname{READ}(\operatorname{NIN}, \mathrm{FMT}=*)(\mathrm{H}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1$, NDIM $), \mathrm{I}=1$, NDIM $)$
C

```
C
END IF
STOP
C
99999 FORMAT ('\sqcupSTCSSP }\mp@subsup{\}{\sqcupXAMPLE }{\sqcup
    1 'Computing\sqcupstaircase
99998 FORMAT (', 'STCSPP 
```



```
99996 FORMAT (/'ьThe
99995 FORMAT (/', The
99994 FORMAT (/',The
99993 FORMAT (20(1X,F8.4))
99992 FORMAT (/',', )
```

```
99991 FORMAT (/',\sqcupDimension
```



```
    1 'PI(i)',6X,'NU(i)')
```



```
    1 'PI(i)',6X,'NU(i)')
```



```
    1 'N(i)',6X,'Q(i)')
99980 FORMAT (I4,3X,I7,3X,I7)
    END PROGRAM STCSSP_example
C
C Subroutine to complete the returned matrix in all positions
C
    SUBROUTINE SUPMAT( SYM, UPLO, A, LDA, N )
    implicit none
    .. Parameters ..
    DOUBLE PRECISION ZERO, ONE
    PARAMETER ( ZERO = O.ODO, ONE = 1.ODO )
    .. Arguments ..
    CHARACTER*1 SYM, UPLO
    DOUBLE PRECISION A(LDA,*), FACT
    INTEGER LDA, N, I, J
C .. External Functions ..
    LOGICAL LSAME
    EXTERNAL LSAME
C
C Handle the strict upper/lower triangular part
C
    IF( LSAME( SYM, 'S' ) ) THEN
            FACT = ONE
    ELSE
        FACT = -ONE
    END IF
    IF( LSAME( UPLO, 'U' ) ) THEN
        DO 200 I=1,N-1
                DO 100 J=I+1,N
                                    A(J,I) = FACT * A(I,J)
                CONTINUE
        CONTINUE
    ELSE
        DO 400 I=1,N-1
                        DO 300 J=I+1,N
                                    A(I,J) = FACT * A(J,I)
            CONTINUE
        continue
    END IF
C
C Handle the diagonal
C
    IF( LSAME( SYM, 'N' ) ) THEN
        DO 500 I=1, N
                A(I,I) = ZERO
            CONTINUE
        END IF
C
    End SUBROUTINE SUPMAT
```


5.2 Program Data

STCSSPN	Example	Program		Data	
	S	U	L	V	
5					
$1 \mathrm{e}-12$					
-7	1	0		0	0
-7	-7	0		0	0
-7	-7	-7		0	0
-7	-7	-7		-7	1
-7	-7	-7		-7	-7
0	-7	-7		-7	-7
0	1	-7		-7	-7
1	0	0		-7	-7
0	0	0		1	-7
0	0	0		0	4

5.3 Program Results

```
STCSSP EXAMPLE PROGRAM
Computing staircase form of the pencil alpha N - beta H
P = 2 ; L = 3 ; M = 2
The staircase form of matrix N is
    0.0000 0.0000 0.0000 1.0000 0.0000
    0.0000 0.0000 -1.0000 0.0000 0.0000
    0.0000 1.0000 0.0000 0.0000}0.000
    -1.0000 0.0000 0.0000 0.0000 0.0000
\begin{tabular}{lllll}
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000
\end{tabular}
The staircase form of matrix H is
\begin{tabular}{lllll}
0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 \\
0.0000 & 1.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 4.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000 & 0.0000 \\
1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000
\end{tabular}
The orthogonal transformation U is
\begin{tabular}{rrrrr}
-1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & -1.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & -1.0000 \\
0.0000 & -1.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.0000
\end{tabular}
The characteristic values for N are
    i PI(i) NU(i)
    1 0
    3 0
The characteristic values for H are
\begin{tabular}{ccc}
\(i\) & PI (i) & \(\mathrm{NU}(\mathrm{i})\) \\
1 & 0 & 0 \\
2 & 1 & 0
\end{tabular}
\begin{tabular}{rrcc} 
The & dimension & of & the blocks are \\
\(i\) & \(N(i)\) & \(Q(i)\) \\
1 & 1 & 1
\end{tabular}
```


[^0]: Preprint-Reihe des Instituts für Mathematik Technische Universität Berlin

[^1]: *The work has been supported by DFG research grant no. Me790/16-1.
 ${ }^{\dagger}$ Institut für Mathematik, MA 4-5, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Fed. Rep. Germany. E-mail: \{bruell,mehrmann\}@math.tu-berlin.de.

