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1 Purpose

Let (N, H) ∈ R
n,n × R

n,n be a matrix pencil that satisfies one of the conditions

N = NT and H = HT , (1a)

N = NT and H = −HT , (1b)

N = −NT and H = HT , (2a)

N = −NT and H = −HT . (2b)

Then we call (N, H) (skew-) symmetric / (skew-) symmetric. Likewise, one could say, that a
pencil (N, H) is (skew-) symmetric / (skew-) symmetric if and only if

N = opN (N) and H = opH(H), (3)

where opN (N) = NT or opN (N) = −NT and opH(H) = HT or opH(H) = −HT . Pencils
that satisfy (2a) are called even, see [1]. STCSSP computes a structured staircase form for a
real (skew-) symmetric / (skew-) symmetric matrix pencil. The staircase form is achieved by
an orthogonal transformation of the form

(UT NU, UT HU) = (Nnew, Hnew), (4)

with U ∈ R
n,n orthogonal. Obviously, we have (Nnew, Hnew) = (opN (Nnew), opH(Hnew))

and thus the pencil in staircase form (Nnew, Hnew) is (skew-) symmetric / (skew-) symmetric
again.
For a real symmetric matrix A we know that all eigenvalues are real. Thus, one can count
the positive, negative, and zero eigenvalues. We call the triple (π, ν, ξ) the inertia index of A,
if A has π positive eigenvalues, ν negative eigenvalues, and ξ zero eigenvalues.
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2 The theory

The algorithm implemented is based on the following theorem, which is a slight generalization
of [1, Theorem 3.1] from even matrix pencils to (skew-) symmetric / (skew-) symmetric matrix
pencils.

Theorem 2.1. (Skew-) symmetric / (skew-) symmetric staircase form. With the
operators defined in (3) consider the (skew-) symmetric / (skew-) symmetric matrix pencil
(N, H) = (opN (N), opH(H)), where N, H ∈ R

n,n. There exists a real orthogonal matrix
U ∈ R

n,n, such that

U
T
NU =

n1
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,

where for i = 1, . . . , m we have Nii = opN (Nii), Hii = opH(Hii). Further, we know that
q1 ≥ n1 ≥ q2 ≥ n2 ≥ . . . ≥ qm ≥ nm,

Nj,2m+1−j ∈ R
nj ,qj+1 , 1 ≤ j ≤ m − 1,

Nm+1,m+1 =

[

∆ 0
0 0

]

, ∆ = opN (∆) ∈ R
p,p,

Hj,2m+2−j =
[

Γj 0
]

∈ R
nj ,qj , Γj ∈ R

nj ,nj , 1 ≤ j ≤ m,

Hm+1,m+1 =

[

Σ11 Σ12

Σ21 Σ22

]

, Σ11 ∈ R
p,p, Σ22 ∈ R

l−p,l−p,

Hm+1,m+1 = opH(Hm+1,m+1),

and the blocks Σ22 and ∆ and Γj, j = 1, . . . , m are nonsingular.

Note, that what is called p in Theorem 2.1 is corresponding to 2p in [1, Theorem 3.1]. The
form (5) is by far not unique. Even the quantities q1, n1, q2, n2, . . . are not unique, but they
become unique when using the following algorithm to compute the form (5) which is a slight
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generalization of [1, Algorithm 1] from even matrix pencils to (skew-) symmetric / (skew-)
symmetric matrix pencils and represents a constructive proof of Theorem 2.1.

Algorithm 2.2. Staircase algorithm for (skew-) symmetric / (skew-) symmetric matrix pen-
cils.
With the operators defined in (3) consider the (skew-) symmetric / (skew-) symmetric matrix
pencil (N, H) = (opN (N), opH(H)), where N, H ∈ R

n,n. Then this algorithm computes an
orthogonal matrix U ∈ R

n,n such that UT NU , UT HU are in the form (5). In addition, for
each of the matrices N and H, which is real symmetric, the algorithm produces a unique
sequence of inertia indices, i.e., if only N or H is real symmetric one sequence of inertia
indices is generated and if both N and H are real symmetric two sequences of inertia indices
are generated.
Set flag = 0, m = n0 = q0 = r0 = 0, l = n,

N = N22 = N, H = H, U = I.

DO WHILE flag = 0

Perform a rank revealing factorization of N22 ∈ R
l−rm,l−rm,

N22 = U1

[

∆ 0
0 0

]

UT
1 ,

with ∆ = opN (∆) ∈ R
p,p nonsingular. If the matrix N is real symmetric, also

store the inertia indices of ∆ as (πN
m+1, ν

N
m+1, 0). Set

N1 =

[

U1 0
0 Irm

]T

N

[

U1 0
0 Irm

]

=

[

∆ 0
0 0

]

,

H1 =

[

U1 0
0 Irm

]T

H

[

U1 0
0 Irm

]

=

[

Ĥ11 Ĥ12

opH(Ĥ12) Ĥ22

]

,

partitioned analogously, with Ĥ11 = opH(Ĥ11), and Ĥ22 = opH(Ĥ22).
(Here Ĥ22 ∈ R

l−p,l−p).

IF p = l THEN

Set flag = 1 and

U =





In1+...+nm
0 0

0 U1 0
0 0 Iq1+...+qm



 . (6)

ELSE

Set m = m + 1.

Perform a rank revealing decomposition of Ĥ22,

Ĥ22 = U2

[

Σ 0
0 0

]

UT
2 ,

where Σ = opH(Σ) ∈ R
µ,µ is nonsingular. If the matrix H is real symmetric,

also store the inertia indices of Σ as (πm, νm, 0). Set rm = µ = πm + νm.
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Set

N2 =

[

Ip 0
0 U2

]T

N1

[

Ip 0
0 U2

]

=





∆ 0 0
0 0 0
0 0 0



 ,

H2 =

[

Ip 0
0 U2

]T

H1

[

Ip 0
0 U2

]

=





H̃11 H̃12 H̃13

opH(H̃12) Σ 0

opH(H̃13) 0 0



 ,

partitioned analogously.

IF µ = l − p THEN

Set flag = 1 and

Û =

[

U1 0
0 Irm−1

] [

Ip 0
0 U2

]

,

U =





In1+...+nm−1
0 0

0 Û 0
0 0 Iq1+...+qm−1





ELSE

Perform a rank revealing factorization or SVD

H̃13 = U3

[

Γm 0
0 0

]

V T
3 ,

where Γm ∈ R
τ,τ is nonsingular.

Set nm = τ, qm = l − p − µ and

N3 =





U3 0 0
0 Iµ 0
0 0 V3





T

N2





U3 0 0
0 Iµ 0
0 0 V3





=













N11 N12 0 0 0
opN (N12) N22 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,

H3 =





U3 0 0
0 Iµ 0
0 0 V3





T

H2





U3 0 0
0 Iµ 0
0 0 V3





=













H11 H12 H13 Γm 0
opH(H12) H22 H23 0 0
opH(H13) opH(H23) Σ 0 0
opH(Γm) 0 0 0 0

0 0 0 0 0













,

Û =

[

U1 0
0 Irm−1

] [

Ip 0
0 U2

]





U3 0 0
0 Iµ 0
0 0 V3



 ,

U =





In1+...+nm−1
0 0

0 Û 0
0 0 Iq1+...+qm−1



 .
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Set

N =

[

p − τ µ

p − τ N22 0
µ 0 0

]

, H =

[

p − τ µ

p − τ H22 H23

µ opH(H23) Σ

]

∈ R
l,l,

and l = p − τ + µ.

END IF

END IF

Form H = UT HU, N = UT NU, and U = UU.

END WHILE

Algorithm 2.2 is implemented in the function STCSSP.

Remark 1. When we compute the form (5) for an even pencil with the help of Algorithm 2.2
we can determine the structured Kronecker canonical form of Thompson [3], for the original
even pencil (N, H) with the help of the values computed by the algorithm, see [1, Theorem
3.3].

Let us end this section with two graphs that give an overview of the subroutines that
come with STCSSP.

Fig.1: STCSSP and its subroutines. An arrow pointing from A to B means that routine A

may call subroutine B at some point.
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DBDSQX slight adaption of the LAPACK routine DBDSQR,
which computes a singular value decomposition

DLANSK skew-symmetric modification of the LAPACK routine DLANSY
DLASKE skew-symmetric modification of the LAPACK routine DLATRD
DOSKRD compute the eigenvectors and eigenvalues of a real

skew-symmetric tridiagonal matrix with the help of
DBDSQX

DOSTQR slight adaption of the LAPACK routine DSTEQR
DSKMV skew-symmetric modification of the BLAS routine DSYMV
DSKR2 skew-symmetric modification of the BLAS routine DSYR2

DSKR2K skew-symmetric modification of the BLAS routine DSYR2K
DSKSZ split off the odd dimension from a

skew-symmetric matrix
DSKTD2 skew-symmetric modification of the LAPACK routine DSYTD2
DSKTRD skew-symmetric modification of the LAPACK routine DSYTRD
MB01SS adaption of MB01SW (see below) for skew-symmetric matrices
MB01ST adaption of MB01SU (see below) for skew-symmetric matrices
MB01SU a slight adaption of the SLICOT routine MB01RU (uses BLAS3)
MB01SW a copy of the SLICOT routine MB01RW (uses BLAS2)
OTRSM apply (a part of) a block-diagonal Orthogonal

equivalence TRansformation to a (skew-)Symmetric
Matrix

OTRSZ apply (a part of) a block-diagonal Orthogonal
equivalence TRansformation to a (skew-)Symmetric

matrix, which contains some Zero blocks
SFSKEW returns the real Schur Form of a

real SKEW-symmetric matrix
SFSTUP once SFSKEW or SFSYM has finished its

computations, this routine SeTs UP a matrix
therefrom

SFSYM2 computes an ordered real Schur Form of a
real SYMmetric matrix

SFSYM returns an ordered real Schur Form of a
real SYMmetric matrix

Tab.1: The functionality implemented in the subroutines.
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3 Specification

SUBROUTINE STCSSP( SYMN, SYMH, UPLON, UPLOH, COMPZ, NDIM, N, LDN,

$ H, LDH, U, LDU, M, PINVEC, NUNVEC, PIVEC,

$ NUVEC, NVEC, QVEC, P, L, TOL, DWORK, LDWORK,

$ INFO )

C .. Scalar Arguments ..

CHARACTER*1 SYMN, SYMH, UPLON, UPLOH, COMPZ

INTEGER NDIM, LDN, LDH, LDU, INFO, LDWORK, M, P, L

DOUBLE PRECISION TOL

C .. Array Arguments ..

DOUBLE PRECISION N( LDN, * ), H( LDH, * ), U( LDU, * ),

$ DWORK( * )

INTEGER PINVEC( * ), NUNVEC( * ), PIVEC( * ),

$ NUVEC( * ), NVEC( * ), QVEC( * )

4 Argument List

4.1 Mode Parameters

SYMN, SYMH - CHARACTER*1

These parameters define which of the cases (1a), (1b), (2a), or (2b) is considered.
Each of the two parameters may thereby be set to either ’S’, which means that
the corresponding matrix is assumed to be symmetric, or to ’N’, which means that
the corresponding matrix is not assumed to be symmetric but it is assumed to be
skew-symmetric. SYMN refers to the matrix N and SYMH refers to the matrix H,
as in Algorithm 2.2. Other values are not allowed and will result in an erroneous
termination of the algorithm. For example, to compute the structured staircase
form of an even pencil, set SYMN = ’N’ and SYMH = ’S’.
With the operators defined in (3) one could also say that SYMN = ’N’ (or SYMH =

’N’, resp.) means opN (N) = −NT (or opH(H) = −HT , resp.) and SYMN = ’S’

(or SYMH = ’S’, resp.) means opN (N) = NT (or opH(H) = HT , resp.).
Since the diagonal of a real skew-symmetric matrices is always zero, it does not
have to be stored. This is why the diagonal elements in the array N (or H, resp.)
are not considered in the computation, once SYMN = ’N’ (or SYMH = ’N’, resp.).

UPLON, UPLOH - CHARACTER*1

These parameters tell the algorithm how the matrices N and H (as in Algorithm
2.2) are given on input and also how the staircase form is to be stored, once the
algorithm has finished successfully. Each of the two parameters may thereby be
set to either ’U’, which means that the upper triangular part of the array N (or
H, resp.) is assumed to hold the upper triangular part of the matrix N (or H,
resp.), or to ’L’, which means that the lower triangular part of the array N (or H,
resp.) is assumed to hold the lower triangular part of the matrix N (or H, resp.).
UPLON refers to the matrix N and UPLOH refers to the matrix H, as in Algorithm
2.2. Other values are not allowed and will result in an erroneous termination of
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the algorithm. The unused part of the arrays may be used as workspace, but the
values in this unused part are not considered. Note, that if one of the parameters
SYMN or SYMH is set to ’N’ then only the strict upper or lower, respectively, part of
the corresponding array is used for computation (although the rest may be used
as workspace). These parameters also control how the staircase form is returned
in the case of an successful exit. The same regions in the arrays N and H that
matter on entry contain the matrices that are transformed to staircase form, on
exit.

COMPZ - CHARACTER*1

This parameter controls, whether the orthogonal transformation U as in Algorithm
2.2 shall also be computed or not. It is faster not to compute the transformation.
Setting this parameter to ’N’ does not compute the orthogonal transformation.
In this case the array U is not referenced, and can be supplied as a dummy array
(i.e. set LDU = 1 and declare this array to be U(1,1) in the calling program).
Setting this parameter to ’V’ causes the algorithm to compute the orthogonal
transformation into the array U.

4.2 Input/Output Parameters

NDIM - (input) INTEGER

The order of the matrices N and H, and thus the dimension of the problem. NDIM
has to be greater or equal to 0, otherwise the algorithm will return in failure.

N - (input/output) DOUBLE PRECISION, array (LDN, NDIM)

On entry, the leading NDIM-by-NDIM part of the array has to contain the matrix
N (as in Algorithm 2.2), according to the parameters SYMN and UPLON.
On successful exit, the leading NDIM-by-NDIM part of this array contains a part of
the staircase form of the matrix N , according to Algorithm 2.2. The parameters
SYMN and UPLON also determine which part of this array contains the actual data. If
UPLON = ’U’, then only the upper triangular part contains the upper triangular
part of the staircase form and if UPLON = ’L’ only the lower triangular part
contains the lower triangular part of the staircase form. Also, if SYMN = ’N’,
then the diagonal in the array N has no meaning, on exit.

LDN - (input) INTEGER

The leading dimension of the array N. The parameter LDN has to be greater or
equal to MAX(1,NDIM), otherwise the algorithm will return in failure.

H - (input/output) DOUBLE PRECISION, array (LDH, NDIM)

On entry, the leading NDIM-by-NDIM part of the array has to contain the matrix
H (as in Algorithm 2.2), according to the parameters SYMH and UPLOH.
On successful exit, the leading NDIM-by-NDIM part of this array contains a part of
the staircase form of the matrix H, according to Algorithm 2.2. The parameters
SYMH and UPLOH also determine which part of this array contains the actual data. If
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UPLOH = ’U’, then only the upper triangular part contains the upper triangular
part of the staircase form and if UPLOH = ’L’ only the lower triangular part
contains the lower triangular part of the staircase form. Also, if SYMH = ’N’,
then the diagonal in the array H has no meaning, on exit.

LDH - (input) INTEGER

The leading dimension of the array H. The parameter LDH has to be greater or
equal to MAX(1,NDIM), otherwise the algorithm will return in failure.

U - (output) DOUBLE PRECISION, array (LDU, NDIM)

If COMPZ = ’V’ and the algorithm terminated successfully, then the leading NDIM-
by-NDIM part of this array contains the orthogonal transformation matrix U as
computed by Algorithm 2.2, which has been used to reduce the original matrices
N and H to structured staircase form (5). If COMPZ = ’N’, then U is not referenced
and can be supplied as a dummy array (i.e. set LDU = 1 and declare this array to
be U(1,1) in the calling program).

LDU - (input) INTEGER

The leading dimension of the array U. LDU has to be greater or equal to 1 in any
case and also to be greater or equal to NDIM, if COMPZ = ’V’.

M - (output) INTEGER

The number of reduction steps that where necessary to reveal the Kronecker struc-
ture. M is always greater or equal to 0 and is corresponds to m in Algorithm 2.2.

PINVEC, NUNVEC - (output) INTEGER, array (NDIM+1)

On exit, with INFO = 0 and SYMN = ’S’, the first M+1 entries of the arrays contain
the inertia indices corresponding to the N matrix, analogously to the πN

i ’s and
νN

i ’s in Algorithm 2.2. PINVEC(M+1) and NUNVEC(M+1) may not be used. In this
case they are both zero. This happens when the algorithm does not exit because
a submatrix of N with full rank was discovered (i.e. the algorithm did not exit
from (6) ). On exit, with INFO = 0 and SYMN = ’N’, the first M+1 entries of the
array contain only zeros.

PIVEC, NUVEC - (output) INTEGER, array (NDIM)

On exit, with INFO = 0 and SYMH = ’S’, the first M entries of the arrays contain
the inertia indices corresponding to the H matrix, analogously to the πi’s and νi’s
in Algorithm 2.2. On exit, with INFO = 0 and SYMH = ’N’, the first M entries of
the array contain only zeros.

NVEC, QVEC - (output) INTEGER, array (NDIM)

On exit, with INFO = 0, the first M entries of the arrays contain the ni’s and qi’s as
in Theorem 2.1 and Algorithm 2.2. Thus, these arrays describe the block structure
of the structured staircase form.

P - (output) INTEGER
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On exit, with INFO = 0, this integer contains the number of the finite eigenvalues
of the pencil and thus the number of finite eigenvalues of the regular, index 1 part
of the pencil. We have 0 ≤ P ≤ L, on successful exit. This parameter corresponds
to the value p in Algorithm 2.2 and Theorem 2.1.

L - (output) INTEGER

On exit, with INFO = 0, this integer contains the size of the regular, index 1 part of
the pencil. We have P ≤ L ≤ NDIM on successful exit. This parameter corresponds
to the value l in Algorithm 2.2 and Theorem 2.1.

4.3 Tolerance

TOL - (input) DOUBLE PRECISION

Absolute value, below which an eigenvalue or singular value shall be considered
zero. If TOL <= 0.0 is given on entry, the tolerance is automatically chosen to be
NDIM·eps, where eps is the machine precision, as returned by the LAPACK routine
DLAMCH.
In a later version of STCSSP we will implement the rank decision algorithm de-
scribed in [2, Section 5] which involves an additional input parameter GAP. This
rank decision algorithm also uses different tolerances for rank decisions in N and
H depending on the Frobenius norms of N and H.

4.4 Workspace

DWORK - DOUBLE PRECISION, array (LDWORK)

On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK.

LDWORK - INTEGER

The length of the array DWORK that may be used by the algorithm as workspace.
LDWORK has to be greater or equal to NDIM*NDIM + 3*NDIM + 3, otherwise the
algorithm will issue an error message (i.e., the algorithm will return with INFO =

-22).

4.5 Error Indicator

INFO - INTEGER

INFO = 0: Successful exit.

INFO < 0: If INFO = -i, the i-th argument had an illegal value.

INFO = 1: Calculating the (skew-)symmetric (which one was computed de-
pends on the parameter SYMN) Schur-form of a part of the matrix
N failed.

INFO = 2: Calculating the (skew-)symmetric (which one was computed de-
pends on the parameter SYMH) Schur-form of a part of the matrix
H failed.

INFO = 3: The LAPACK routine DGESVD returned with an info value greater than
zero, i.e., DGESVD was not able to compute a SVD.
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5 Example

We consider the following even matrix pencil which is taken from [1].

αN − βH = α













0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0













− β













0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 4













(7)

5.1 Program Text

PROGRAM STCSSP_example

implicit none

C

C DEMO: Demonstration program for STCSSP

C

*

* .. Parameters ..

INTEGER NIN , NOUT

PARAMETER ( NIN = 5, NOUT = 6 )

INTEGER NMAX

PARAMETER ( NMAX = 20 )

INTEGER LDN , LDH , LDU

PARAMETER ( LDN = NMAX , LDH = NMAX , LDU = NMAX )

INTEGER LDWORK

PARAMETER ( LDWORK = NMAX*NMAX + 3* NMAX + 3 )

* .. Local Scalars ..

CHARACTER *1 SYMN , SYMH , UPLON , UPLOH , COMPZ

INTEGER NDIM , M, P, L

INTEGER PINVEC (NMAX+1), NUNVEC (NMAX+1),

1 PIVEC(NMAX), NUVEC(NMAX)

INTEGER NVEC(NMAX), QVEC(NMAX)

DOUBLE PRECISION N(NMAX ,NMAX), H(NMAX ,NMAX), U(NMAX ,NMAX)

DOUBLE PRECISION TOL1

DOUBLE PRECISION DWORK(LDWORK )

INTEGER INFO

INTEGER I, J

* .. External Functions ..

LOGICAL LSAME

EXTERNAL LSAME

* .. External Subroutines ..

EXTERNAL STCSSP

*

WRITE ( NOUT , FMT = 99999 )

* Skip the heading in the data file and read the data.

READ ( NIN , FMT = ’()’ )

READ ( NIN , FMT = * ) SYMN , SYMH , UPLON , UPLOH , COMPZ

READ ( NIN , FMT = * ) NDIM

READ ( NIN , FMT = * ) TOL1

IF ( NDIM.LT.0 .OR. NDIM.GT.NMAX ) THEN

WRITE ( NOUT , FMT = 99991 ) N

ELSE

READ ( NIN , FMT = * ) ( ( N(I,J), J = 1,NDIM ), I = 1,NDIM )

READ ( NIN , FMT = * ) ( ( H(I,J), J = 1,NDIM ), I = 1,NDIM )

C
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C Run the structured staircase algorithm

C

CALL STCSSP ( SYMN , SYMH , UPLON , UPLOH , COMPZ , NDIM , N, LDN ,

$ H, LDH , U, LDU , M, PINVEC , NUNVEC , PIVEC ,

$ NUVEC , NVEC , QVEC , P, L, TOL1 , DWORK , LDWORK ,

$ INFO )

C

C Complete the matrices

C

CALL SUPMAT ( SYMN , UPLON , N, LDN , NDIM )

CALL SUPMAT ( SYMH , UPLOH , H, LDH , NDIM )

C

C Show output to console

C

IF ( INFO.NE.0 ) THEN

WRITE ( NOUT , FMT = 99998 ) INFO

ELSE

WRITE ( NOUT , FMT = 99997 ) P, L, M

WRITE ( NOUT , FMT = 99996 )

DO 20 I = 1, NDIM

WRITE ( NOUT , FMT = 99993 ) ( N(I,J), J = 1,NDIM )

20 CONTINUE

WRITE ( NOUT , FMT = 99995 )

DO 30 I = 1, NDIM

WRITE ( NOUT , FMT = 99993 ) ( H(I,J), J = 1,NDIM )

30 CONTINUE

IF( LSAME(COMPZ ,’V’) ) THEN

WRITE ( NOUT , FMT = 99994 )

DO 40 I = 1, NDIM

WRITE ( NOUT , FMT = 99993 ) ( U(I,J), J = 1,NDIM )

40 CONTINUE

END IF

WRITE ( NOUT , FMT = 99990 )

DO 50 I = 1,M+1

WRITE ( NOUT , FMT = 99980 ) I, PINVEC (I), NUNVEC (I)

50 CONTINUE

WRITE ( NOUT , FMT = 99989 )

DO 60 I = 1,M

WRITE ( NOUT , FMT = 99980 ) I, PIVEC(I), NUVEC(I)

60 CONTINUE

WRITE ( NOUT , FMT = 99988 )

DO 70 I = 1,M

WRITE ( NOUT , FMT = 99980 ) I, NVEC(I), QVEC(I)

70 CONTINUE

END IF

END IF

STOP

C

99999 FORMAT (’ STCSSP  EXAMPLE PROGRAM ’ ,/1X,

1 ’Computing  staircase  form of the pencil  alpha N - beta H’)

99998 FORMAT (’ STCSPP  returned  in failure with INFO = ’,I2)

99997 FORMAT (/’ P   =   ’,I3,’ ;  L   =   ’,I3 ,’ ;  M   =   ’,I3)

99996 FORMAT (/’ The staircase  form of matrix  N is ’)

99995 FORMAT (/’ The staircase  form of matrix  H is ’)

99994 FORMAT (/’ The orthogonal  transformation  U is ’)

99993 FORMAT (20(1X,F8 .4))

99992 FORMAT (/’ ’ )
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99991 FORMAT (/’ Dimension  of the problem is out of range.’,/’ N = ’,I5)

99990 FORMAT (/’ The characteristic values  for N are’,/’   i’,6X,

1 ’PI(i)’,6X,’NU(i)’)

99989 FORMAT (/’ The characteristic values  for H are’,/’   i’,6X,

1 ’PI(i)’,6X,’NU(i)’)

99988 FORMAT (/’ The dimension  of the blocks  are’,/’   i’,6X,

1 ’N(i)’,6X,’Q(i)’)

99980 FORMAT (I4 ,3X,I7 ,3X,I7)

END PROGRAM STCSSP_example

C

C Subroutine to complete the returned matrix in all positions

C

SUBROUTINE SUPMAT ( SYM , UPLO , A, LDA , N )

implicit none

C .. Parameters ..

DOUBLE PRECISION ZERO , ONE

PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )

C .. Arguments ..

CHARACTER *1 SYM , UPLO

DOUBLE PRECISION A(LDA ,*), FACT

INTEGER LDA , N, I, J

C .. External Functions ..

LOGICAL LSAME

EXTERNAL LSAME

C

C Handle the strict upper/lower triangular part

C

IF( LSAME( SYM , ’S’ ) ) THEN

FACT = ONE

ELSE

FACT = -ONE

END IF

IF( LSAME( UPLO , ’U’ ) ) THEN

DO 200 I=1,N-1

DO 100 J=I+1,N

A(J,I) = FACT * A(I,J)

100 CONTINUE

200 CONTINUE

ELSE

DO 400 I=1,N-1

DO 300 J=I+1,N

A(I,J) = FACT * A(J,I)

300 CONTINUE

400 CONTINUE

END IF

C

C Handle the diagonal

C

IF( LSAME( SYM , ’N’ ) ) THEN

DO 500 I=1, N

A(I,I) = ZERO

500 CONTINUE

END IF

C

END SUBROUTINE SUPMAT

5.2 Program Data
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STCSSP Example Program Data

N S U L V

5

1e-12

-7 1 0 0 0

-7 -7 0 0 0

-7 -7 -7 0 0

-7 -7 -7 -7 1

-7 -7 -7 -7 -7

0 -7 -7 -7 -7

0 1 -7 -7 -7

1 0 0 -7 -7

0 0 0 1 -7

0 0 0 0 4

5.3 Program Results

STCSSP EXAMPLE PROGRAM

Computing staircase form of the pencil alpha N - beta H

P = 2 ; L = 3 ; M = 2

The staircase form of matrix N is

0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 -1.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000

-1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

The staircase form of matrix H is

0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 4.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000

1.0000 0.0000 0.0000 0.0000 0.0000

The orthogonal transformation U is

-1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 -1.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -1.0000

0.0000 -1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000

The characteristic values for N are

i PI(i) NU(i)

1 0 0

2 0 0

3 0 0

The characteristic values for H are

i PI(i) NU(i)

1 0 0

2 1 0

The dimension of the blocks are

i N(i) Q(i)

1 1 1

2 0 0
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