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Zusammenfassung

Diese Dissertation beschäftigt sich mit Graphmodifikationsproblemen mit Kno-
tengradbedingungen. Insbesondere wird die Berechnungskomplexität der Pro-
bleme DAG Realization und Degree Anonymity untersucht. Hierbei ist
bei DAG Realization eine Multimenge an Paaren von natürlichen Zahlen
gegeben und die Frage ist ob ein gerichteter kreisfreier Graph (DAG) existiert
der die Multimenge realisiert. Das heißt, jedes Zahlenpaar ist genau einem
Knoten des DAG zuzuordnen und dessen Knotengrad, bestehend aus Eingangs-
und Ausgangsgrad, soll den Zahlen in dem zugeordneten Paar entsprechen. Die
Zielstellung des Degree Anonymity-Problems ist, gegeben ein ungerichteter
Graph G und zwei natürliche Zahlen k und s, in G höchstens s Modifikations-
operationen durchzuführen, sodass ein k-anonymer Graph entsteht. Ein Graph
ist k-anonym, wenn für jeden Knoten k − 1 andere Knoten mit dem gleichen
Knotengrad enthalten sind.

Sowohl DAG Realization als auch Degree Anonymity werden in dieser
Arbeit als NP-vollständig klassifiziert. Das heißt, es gibt vermutlich keine Poly-
nomzeitalgorithmen die jede Eingabeinstanz der Probleme lösen können. Daher
wird eine Studie der parametrisierten Berechnungskomplexität durchgeführt
um effizient lösbare Spezialfälle zu identifizieren die noch praktisch relevant
sind. Das Ziel hierbei ist die Entwicklung von Festparameteralgorithmen bei
denen der vermutlich unvermeidliche exponentielle Anteil in der Laufzeit auf
einen Parameter der Eingabe begrenzt wird. Ist der Parameter klein, so ist der
entsprechende Festparameteralgorithmus schnell. Bei Degree Anonymity wer-
den zwei Parameter in der Eingabe direkt mitgeliefert: die Anonymitätsstufe k
und die Lösungsgröße s. Allerdings wird in dieser Arbeit gezeigt, dass Degree
Anonymity W[1]-schwer bezüglich des Parameters s ist, selbst bei k = 2. Dies
bedeutet, dass es sehr unwahrscheinlich ist, dass Festparameteralgorithmen für s
und k existieren. Deshalb müssen andere Parameter untersucht werden.
Der Parameter maximaler Knotengrad stellt sich für beide Probleme, DAG

Realization und Degree Anonymity, als vielversprechend heraus. Hierbei
wird bei Degree Anonymity der Maximalgrad des Eingabegraphen benutzt.
Bei DAG Realization wird der Maximalgrad in einem realisierendem DAG
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genommen. Die Definition des Problems DAG Realization ermöglicht eine
einfache Bestimmung des Parameters durch das Maximum aller Zahlen in der
gegebenen Multimenge. Vorgestellt werden Festparameteralgorithmen bezüglich
des Parameters Maximalgrad für die Probleme DAG Realization und An-
onym E-Ins. Letzteres ist die Variante von Degree Anonymity bei der nur
Kanteneinfügungen erlaubt sind. Die beiden Problemvarianten von Degree
Anonymity, die nur Knoten- bzw. Kantenlöschungen erlauben, heißen An-
onym V-Del bzw. Anonym E-Del und sind beide NP-vollständig in Graphen
mit Maximalgrad sieben. Weiterhin bleiben Anonym V-Del und Anonym
E-Del NP-vollständig auf stark eingeschränkten Graphklassen wie zum Beispiel
Bäumen. Die Untersuchung der Approximierbarkeit von natürlichen Optimie-
rungsvarianten von Anonym E-Del und Anonym V-Del ergibt ein ähnlich
düsteres Bild, da keine der untersuchten Varianten in Polynomzeit besser appro-
ximiert werden kann als mit einem Faktor n1/2, wobei n die Knotenanzahl ist.
Diese Nichtapproximierbarkeit gilt für die Optimierungsprobleme bei denen die
Lösungsgröße s vorgegeben ist und die Anonymitätsstufe k maximiert werden
soll, selbst wenn eine in s exponentielle Laufzeit erlaubt wird.
Zu beachten ist, dass DAG Realization auch als nur Kanteneinfügungen

erlaubendes Graphmodifikationsproblem mit Knotengradbedingungen angese-
hen werden kann: Ausgehend von einem kantenfreien Graphen ist die Aufgabe
gerichtete Kanten einzufügen sodass ein realisierender DAG entsteht. Obiges
Klassifizierungsresultat bezüglich des Parameters Maximalgrad zeigt, dass in
Graphen mit kleinem Maximalgrad die Modifikationsoperation Kanteneinfügung
einfacher ist als Knoten- oder Kantenlöschung. Dafür gibt es eine plausible Er-
klärung: In Graphen mit kleinem Maximalgrad gibt es einen hohen Freiheitsgrad
wie Kanten eingefügt werden können, da für einen gegebenen Knoten so gut
wie alle anderen Knoten als neuer Nachbar gewählt werden können. Durch die
zusätzliche Einschränkung bei DAG Realization, dass der gerichtete Graph
kreisfrei sein muss, wird dieser Freiheitsgrad wieder eingeschränkt. Bei Anonym
E-Ins existieren keine Einschränkungen für den Freiheitsgrad. Tatsächlich kann
dieser Freiheitsgrad auch in einer in dieser Arbeit angegebenen Implementie-
rung ausgenutzt werden, die die entwickelten theoretischen Ideen in erfolgreiche
Heuristiken und einen Algorithmus zur Berechnung unterer Schranken umsetzt.
Experimente auf mehreren großen Datensätzen belegen, dass die angegebene
Implementierung eine aktuelle Heuristik verbessert und auf 21% (56 von 260)
der Datensätze (beweisbar) optimale Lösungen liefert.
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Abstract

This thesis deals with degree-constrained graph modification problems. In
particular, we investigate the computational complexity of DAG Realization
and Degree Anonymity. The DAG Realization problem is, given a multiset
of positive integer pairs, to decide whether there is a realizing directed acyclic
graph (DAG), that is, pairs are one-to-one assigned to vertices such that the
indegree and the outdegree of every vertex coincides with the two integers of
the assigned pair. The Degree Anonymity problem is, given an undirected
graph G and two positive integers k and s, to decide whether at most s graph
modification operations can be performed in G in order to obtain a k-anonymous
graph, that is, a graph where for each vertex there are k − 1 other vertices with
the same degree.

We classify both problems as NP-complete, that is, there are presumably no
polynomial-time algorithms that can solve every instance of these problems.
Confronted with this worst-case intractability, we perform a parameterized
complexity study in order to detect efficiently solvable special cases that are still
practically relevant. The goal herein is to develop fixed-parameter algorithms
where the seemingly unavoidable exponential dependency in the running time
is confined to a parameter of the input. If the parameter is small, then the
corresponding fixed-parameter algorithm is fast. The parameter thus measures
some structure in the input whose exploitation makes the particular input
tractable. Considering Degree Anonymity, two natural parameters provided
with the input are anonymity level k and solution size s. However, we will show
that Degree Anonymity is W[1]-hard with respect to the parameter s even
if k = 2. This means that the existence of fixed-parameter algorithms for s
and k is very unlikely. Thus, other parameters have to be considered.
We will show that the parameter maximum vertex degree is very promising

for both DAG Realization and Degree Anonymity. Herein, for Degree
Anonymity, we consider the maximum degree of the input graph. Considering
DAG Realization, we take the maximum degree in a realizing DAG. Due to
the problem definition, we can easily determine the maximum degree by taking
the maximum over all integers in the given multiset. We provide fixed-parameter
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algorithms with respect to the maximum degree for DAG Realization and for
Anonym E-Ins. The later is the variant of Degree Anonymity when only
edge insertions are allowed as modification operations. If we allow edge deletions
or vertex deletions as graph modification operations, then we can show that the
corresponding variants of Degree Anonymity—called Anonym V-Del and
Anonym E-Del—are NP-complete even if the maximum vertex degree is seven.
Moreover, we provide strong intractability results for Anonym E-Del and
Anonym V-Del proving that they remain NP-complete in several restricted
graph classes. Studying the approximability of natural optimization problems
associated with Anonym E-Del or Anonym V-Del, we obtain negative
results showing that none of the considered problems can be approximated in
polynomial time better than within a factor of n1/2 where n denotes the number
of vertices in the input. Furthermore, for the optimization variants where the
solution size s is given and the task is to maximize the anonymity level k, this
inapproximability even holds if we allow a running time that is exponential in s.
Observe that DAG Realization also can be seen as degree-constrained

graph modification problem where only arc insertions are allowed: Starting with
an arcless graph, the task is to insert arcs to obtain a realizing DAG for the
given multiset. The above classification with respect to the parameter maximum
degree shows that in graphs with small maximum degree the modification
operation edge respectively arc insertion is easier than vertex or edge deletion.
There is a plausible explanation for this behavior: When the maximum degree is
small, then there is a high freedom in inserting edges or arcs as for a given vertex
almost all other vertices can be chosen as new neighbor. Observe that for DAG
Realization the additional requirement that the directed graph shall be acyclic
restricts this freedom. In Anonym E-Ins, we do not have restrictions on this
freedom. In fact, exploiting this freedom in our implementation for Anonym
E-Ins, we show that our theoretical ideas can be turned into successful heuristics
and lower bounds. Experiments on several large-scale real-world datasets show
that our implementation significantly improves on a recent heuristic and provides
(provably) optimal solutions on about 21% (56 of 260) of the real-world data.
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Preface

This thesis summarizes part of my work as a research assistant at TU Berlin in the
group of Prof. Rolf Niedermeier (from October 2010 until September 2014). The
results presented in this thesis are partially contained in journal and conference
publications that were produced in close cooperation with several coauthors.
Below, I will explain which paper is contained in which chapter and discuss
my contributions to the corresponding parts. Before doing this, I list further
publications to which I contributed but that are not contained in this thesis: I
worked on the parameterized complexity of tiling matrices [NDN11], of tabular
data anonymization [BNN13, Bre+13b, Bre+14c], of graph anonymization by
vertex addition [Bre+14b], of Metric Dimension [HN13], of 2-Club [HKN12,
HKN13], of DAG Partitioning [Bev+13], of Shift Bribery [Bre+14a]
and of Target Set Selection [Cho+14, Nic+13]; I further investigated
the (parameterized) approximability of Target Set Selection [Baz+14a,
Baz+14b] and Capacitated Arc Routing [Bev+14].

Chapter 4 is based on joint work with Sepp Hartung on the DAG Realization
problem. I attended the talk of Annabell Berger (formerly at Universität of
Halle-Wittenberg) at the FCT’11 conference where she introduced the DAG
Realization problem and presented her joint work with Matthias Müller-
Hannemann (Universität of Halle-Wittenberg) [BM11]. Their main open question
was whether the problem is polynomial-time solvable. We started to discuss
at the conference about the problem and about their algorithmic strategies to
attack the problem. When I was back at TU Berlin, I continued working on the
problem and found an NP-completeness proof. At that point, my roommate
Sepp joined the project and asked whether the problem may be fixed-parameter
tractable with respect to the maximum degree. Answering this question took
us about two months and resulted in a rather complicated algorithm classifying
the problem as fixed-parameter tractable. I presented these results at the
8th International Conference on Computability in Europe (CiE 2012) [HN12]
where we won the best student paper award. We prepared a full version which
additionally contains results about very dense and very sparse graphs (see
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Section 4.4). It is currently under third review for SIAM Journal on Discrete
Mathematics. I prepared the revised version which includes a shortening of the
NP-completeness proof, new proofs for two crucial lemmas of the algorithm,
and an overall unification and clarification of the used notation.

Chapter 5 is based on joint work with Cristina Bazgan (University Paris-
Dauphine, LAMSADE, Paris), Robert Bredereck, Sepp Hartung, and Gerhard
J. Woeginger (TU Eindhoven) on the Anonym V-Del and Anonym E-Del
problems. Earlier work on Anonym E-Ins [Har+13] (which is presented in
Chapter 6) motivated me to consider the vertex deletion variant of Anonym
E-Ins. I presented the problem at our annual group-internal workshop in March
2013. Together with Robert, Sepp and, Gerhard, I quickly encountered the hard-
ness of this problem. Robert discovered the reduction proving NP-completeness
on trees and I found the reduction proving NP-completeness on bounded-degree
graphs. We developed in close cooperation NP-completeness results on restricted
graph classes, and discovered a few polynomial-time solvable and fixed-parameter
tractable cases. I presented our results at the 24th International Symposium on
Algorithms and Computation (ISAAC ’13) [Bre+13a].

In November 2013 and in March 2014 I visited Cristina at Université Paris-
Dauphine. Motivated by the hardness of Anonym V-Del, I proposed to work
on the parameterized approximability of Anonym V-Del and Anonym E-Del.
We extended the reductions for Anonym V-Del to gap-reductions proving
the inapproximability of Anonym V-Del and Anonym E-Del. I devised
the fixed-parameter tractability result with respect to the combined parameter
solution size and maximum degree. I also developed the fpt gap-reduction
showing inapproximability for Anonym E-Del and the NP-completeness proof
of Anonym E-Del on caterpillars. I contributed to the development of the fpt
gap-reduction showing the parameterized intractability of Anonym V-Del. I
presented the work at the 9th International Symposium on Parameterized and
Exact Computation (IPEC ’14) [BN14]. I merged both papers mentioned above
in Chapter 5 and unified the notation. A full journal version merging both
papers is submitted to Theoretical Computer Science.

Chapter 6 is based on joint work with Vincent Froese, Sepp Hartung, Clemens
Hoffmann, Rolf Niedermeier, and Ondřej Suchý (Czech Technical University in
Prague). In summer 2012, Rolf gave me the paper of Liu and Terzi [LT08] who
transferred the k-anonymity concept to graphs and introduced Anonym E-Ins.
He proposed to work on this problem since we already did some research on
the k-anonymity concept applied to tabular data [BNN13, Bre+13b, Bre+14c].
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Together with Sepp, I studied the computational complexity of Anonym E-
Ins and obtained in close cooperation the W[1]-hardness with respect to the
parameter solution size when k = 2. This motivated us, again, to study
the parameter maximum degree leading to the polynomial problem kernel.
I encountered the connection with f -factors which simplified and improved
the bound of the solution size in the maximum degree. During a visit in
Berlin, Ondřej helped developing the polynomial problem kernel with respect
to the combined parameter solution size and maximum degree. I presented
our results at the 40th International Colloquium on Automata, Languages, and
Programming (ICALP ’13) [Har+13]. A full version has been accepted by a
special issue of the journal Information and Computation dedicated to selected
papers from ICALP’13.

Motivated by this work, Rolf and I proposed to generalize the approach that
led to the polynomial problem kernel. Together with Vincent, we started to study
the Degree Constraint Editing (DCE) problem introduced by Mathieson
and Szeider [MS12]. Answering one of their open questions, we transfered our
ideas from Anonym E-Ins and developed a polynomial problem kernel for DCE
when only allowing edge insertions. I devised the generalization of the ideas to
a wide class of degree sequence completion problems and contributed to the
other theoretical results. This thesis contains the part about the generalization
to degree sequence completion problems. Vincent presented the paper at the
14th Scandinavian Workshop on Algorithm Theory (SWAT ’14) [FNN14]. A full
journal version is submitted.
In our work on Anonym E-Ins, we proved that the heuristic two-phase

approach of Liu and Terzi [LT08] produces optimal solutions when the solution
size s is larger than some polynomial in ∆ (more precisely when s ≥ (∆2 + 4∆ +
3)2). Since this bound does not look like being tight (a polynomial of degree
four should not be the answer) and since I do not know how to improve the
bound, I proposed to perform experiments to see whether optimal solutions can
be provided even if the bound does not hold. In summer 2013, Clemens started
his bachelor thesis on this topic and implemented the two-phase approach due
to Liu and Terzi under the supervision of Rolf, Sepp, and me. During the
implementation phase, Clemens encountered several problems and together we
solved most of them. Since some of the solutions where far beyond what can
be expected from a bachelor thesis, Sepp and I started to implement as well.
While the basic idea on how to improve a dynamic program in phase one of
the algorithm was proposed by Clemens, the details were tricky and thus Sepp
implemented the first version of the dynamic program. I mainly developed the
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Erdős-Gallai test and the linked wasting of costs and evaluated the experiments.
Clemens concentrated on providing an implementation of the second phase.
Sepp presented our practical and theoretical results at the 13th International
Symposium on Experimental Algorithms (SEA ’14) [HHN14]. In preparation of a
full journal version I improved the implementation of the first phase while Sepp
improved phase two. Compared to the conference version I gave an extended
description of our algorithms and conducted new experiments on a wider range
of real-world networks. This extension of the data sets is the reason that we
could solve in the conference version 26% of the instances and now we can solve
21% although our implementation became faster.
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Chapter 1.

Introduction and Overview

Graph modification problems arise in many theoretical and practical settings, in-
cluding computational biology, numerical algebra, and machine learning [BBC04,
Sha02]. Their importance was underlined by a recent Dagstuhl seminar [BHL14]
solely devoted to graph modification problems. The general question herein
is, given a graph G, whether there is a graph that is “close” to G and has a
desired property. Here, two graphs are considered being “close” to each other
if one graph can be obtained from the other graph by a restricted number of
modification operations. This leads to the following general problem.

Graph Modification
Input: A graph G = (V,E), a graph property Π, and an integer s ∈ N.
Question: Can G be transformed with at most s modification operations

into a graph satisfying Π?

In this thesis, we consider the three probably most basic modification operations:
vertex deletion, edge deletion, and edge insertion. Other modification operations
have been studied as well; for example, vertex insertions [Bre+14b, Che+13a],
edge contractions [GHP13, Gol+13], or edge editing [NSS01].

We concentrate on graph modification problems where the graph property Π
depends on the vertex degrees. Observe that degree-constrained graph modi-
fication problems are still very general as they contain natural problems like
Vertex Cover and Dominating Set: Given an undirected graph and an
integer h ∈ N, can one delete at most h vertices such that the degree of each
remaining vertex is zero (Vertex Cover) or is decreased by at least one
(Dominating Set)? Note that the degree constraints for these two problems
have a local flavor: for checking whether a vertex in the goal graph satisfies the
degree constraint, it is sufficient to know the degree of the particular vertex.
The two problems that we study in this thesis, namely DAG Realization
and Degree Anonymity (see Sections 1.1 and 1.2 for formal definitions),
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have global degree constraints: checking whether the degree constraints are
satisfied requires the knowledge of all vertex degrees in the graph. We show
that both problems are NP-complete implying that, in general, one presumably
cannot solve the problems efficiently. Following the approach of parameterized
algorithmics [DF13, FG06, Nie06], we aim to solve relevant special cases where
the input admits a certain structure. Whereas in classical complexity theory the
running time of an algorithm is solely measured with respect to the overall input
size, parameterized algorithmics additionally considers a parameter. This pa-
rameter is a measurement of some structure of the input and measuring different
structures leads to different parameterizations. Examples for such parameters
are the size of the sought solution or the maximum degree of the input graph.
The general idea is that the corresponding fixed-parameter algorithms are fast
if the parameters are small, that is, one searches for a small solution or the
input graph admits a low maximum degree. However, such fixed-parameter
algorithms do not necessarily exist and if they do, then the problem is called
fixed-parameter tractable with respect to the particular parameter. In fact, we
will show that Degree Anonymity is presumably fixed-parameter intractable
with respect to the parameter solution size. On the positive side, a central result
of this thesis is that Degree Anonymity as well as DAG Realization are
fixed-parameter tractable with respect to the parameter maximum degree. This
is in stark contrast to the known NP-completeness of other degree-constrained
graph modification problems, like Vertex Cover or Dominating Set, on
bounded degree graphs [GJ79].

Parameter maximum degree. Why is the parameter “maximum vertex de-
gree ∆” of specific interest? First, as we consider degree-constrained graph mod-
ification problems, it is natural to ask whether the problems become tractable
if the maximum degree is small. Second, from a parameterized complexity
perspective it seems to be a “tight” parameterization in the sense that for only
little “stronger” (that is, provably smaller [KN12]) parameters either the problem
becomes intractable (in case of Degree Anonymity) or the fixed-parameter
tractability status is open (in case of DAG Realization). Third, social net-
works, which are the input to Degree Anonymity, typically have few vertices
with relatively high degree and many vertices of small degree. Leskovec and
Horvitz [LH08] studied a huge instant-messaging network (180 million vertices)
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with maximum degree 600. For the DBLP co-author graph1 generated in Febru-
ary 2012 and containing more than 715,000 vertices we measured a maximum
degree of 804 and an H-index of 208, that is, there are not more than 208
vertices with degree larger than 208. Thus, while the maximum degree ∆ is
too large for an exact algorithm with running time say O(2∆ · (n+m)), it is
a reasonable parameter when searching for polynomial problem kernels (as we
do in case of Degree Anonymity). Finally, the maximum degree is easy to
compute.

Related work on graph modification problems. Considering vertex deletion,
Lewis and Yannakakis [LY80] proved that for every hereditary graph property Π
the corresponding vertex deletion problem is NP-hard; no such general result
is known when considering edge deletion or insertion. There are numerous
results about the complexity of edge modification problems [EC88, Gol+95,
HS81, NSS01, Sha02, Yan81a, Yan81b]; we refer to Burzyn et al. [BBD06] for
an overview. Under these results there is just a single non-trivial positive one:
Hammer and Simeone [HS81] showed that Split Graph Editing (perform a
minimum number of edge insertions and deletions to obtain an undirected graph
that can be partitioned into a clique and an independent set) is polynomial-time
solvable. Notably, this result relies on a characterization of split graphs by
their degree sequence; thus, viewing the problem as degree-constrained graph
modification problem with global degree constraints was the key to success. This
positive result is complemented with NP-hardness results for over 20 other graph
modification problems [BBD06]. Due to the abundance of NP-hardness results,
graph modification problems have been intensively studied under the viewpoint
of parameterized algorithmics [Cai96, Fel+11, Gra+04, KST99, Man08, MS12,
NSS01, Per11, Sha02].
From a (parameterized) computational complexity perspective, the closest

work we are aware of in terms of degree-constrained graph modification problems
is due to Mathieson and Szeider [MS12]. In their basic model, each vertex is
equipped with a degree list and the task is to edit the graph such that each
vertex achieves a degree contained in its degree list. They studied the same
modification operations as we do in this thesis: vertex deletion, edge deletion, and
edge insertion. Mathieson and Szeider [MS12] achieved a general classification

1In this graph the vertices represent the authors and an edge indicates that the two corre-
sponding authors are co-authors of at least one paper. The dataset and a corresponding
documentation are available online (http://dblp.uni-trier.de/xml/).
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result for these problems showing that they are W[1]-hard with respect to
the parameter solution size but fixed-parameter tractable with respect to the
combined parameter solution size and the maximum allowed degree. We refer to
Chapter 3 for further details on degree-constrained graph modification problems
and degree factor problems—a subclass of degree-constrained graph modification
problems that are an important tool in this thesis.

1.1. DAG Realization

The Hamilton Cycle problem is one of the first problems classified as NP-
complete by Karp [Kar72]. Given an undirected graph G, the question is
whether G contains a Hamiltonian cycle, that is, a cycle covering all vertices
of G exactly once. Reformulated as a graph modification problem, the question
is whether edges can be removed such that the degree of each vertex is two and
the remaining graph is connected. If the input graph is a clique, then Hamilton
Cycle becomes trivial as each clique contains a Hamiltonian cycle. Degree-
constrained graph modification problems where the input graph is a clique are
called graph realization problems: Since any n-vertex graph is a subgraph of an
n-vertex clique, the question is just whether there exist some graph realizing
(that is satisfying) the degree constraints. Graph realization problems are
well-understood and mostly polynomial-time solvable, see Section 3.1 for an
overview.
The first problem that we study in this thesis adds the acyclicity constraint

to the graph realization problem. It is known that the corresponding problem
in the setting of undirected graphs is polynomial-time solvable, see Section 3.1.1
for details. For the directed setting, the complexity status was open. We thus
consider in Chapter 4 the following graph realization problem due to Berger
and Müller-Hannemann [BM11]:

DAG Realization
Input: A multiset S =

{(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
of pairs of nonnegative

integers.
Question: Is there a directed acyclic graph (without parallel arcs and self-

loops) with vertex set {v1, v2, . . . , vn} such that for every vi ∈ V
the indegree is ai and the outdegree is bi?
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Input:

S =
{(

1
0

)
,
(

2
1

)
,
(

1
1

)
,
(

2
0

)
,
(

3
0

)
,
(

1
0

)
,
(

0
6

)
,
(

1
3

)}
Solution:

v7v8

v2

v5 v4 v3 v1

v6

Related Work. Deciding whether a given degree sequence (a multiset of posi-
tive integers) is realizable by an undirected graph is polynomial-time solvable.
There are characterizations for realizable degree sequences due to Erdős and
Gallai [EG60] and algorithms by Havel [Hav55] and Hakimi [Hak62]. The prob-
lem variant where one asks whether there is a directed graph realizing the given
degree sequence (a multiset of positive integer pairs) has also been intensively
studied; see Chen [Che66], Fulkerson [Ful60], Gale [Gal57], and Ryser [Rys57]
for characterizations of realizable degree sequences and Kleitman and Wang
[KW73] for polynomial-time algorithms. We refer to Section 3.1 for a detailed
overview on these results.

Berger and Müller-Hannemann [Ber11, BM11, BM12] investigated restricted
variants of DAG Realization that are polynomial-time solvable and performed
an extensive experimental study on the general problem.

Our contributions. We present two main results for DAG Realization:
First, answering the open question of Berger and Müller-Hannemann [BM11],
we show that DAG Realization is NP-complete. Second, we classify DAG
Realization as fixed-parameter tractable with respect to the maximum de-
gree ∆ := max{a1, b1, a2, b2, . . . , an, bn}.

1.2. Degree Anonymity

For many scientific disciplines, including the understanding of the spread of
diseases in a globalized world or power consumption habits with impact on
fighting global warming, the availability of social network data becomes more
and more important. To respect privacy issues, there is a strong demand to
anonymize the associated data in a preprocessing phase [Fun+10]. If a graph
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Figure 1.1.: The three displayed graphs are (from left to right) 5-anonymous, 4-anony-
mous, and 2-anonymous.

contains only few vertices with some distinguished feature, then this might
allow the identification (and violation of privacy) of the underlying real-world
entities with that particular feature. Hence, in order to ensure pretty good
privacy and anonymity behavior, every vertex should share its feature with
many other vertices. In a landmark paper, Liu and Terzi [LT08] (also see
Clarkson et al. [CLT10] for an extended version) considered the vertex degrees
as feature; see Wu et al. [Wu+10] for other features considered in the literature.
Correspondingly, a graph is called k-anonymous if for each vertex there are
at least k − 1 other vertices of same degree, see Figure 1.1 for illustrations.
Therein, different values of k reflect different privacy demands and the natural
computational task arises to perform few changes to a graph in order to make it
k-anonymous. This leads to the following degree-constrained graph modification
problem.

Degree Anonymity (Anonym)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Can G be transformed with at most s modification operations

into a k-anonymous graph G′ = (V ′, E′), that is, for each vertex
in G′ there are k − 1 other vertices of the same degree?

Input: k = 4
s = 3

Solution:
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Observe that Degree Anonymity is, in contrast to DAG Realization, a
pure degree-constrained graph modification problem, that is, besides the degree
constraint “k-anonymity” no further restrictions are imposed on the resulting
graph. As already mentioned in the beginning, we concentrate on the basic
modification operations vertex deletion, edge deletion, and edge insertion. We
consider only one of this three operations at once since the corresponding
problems are already pretty hard in a computational sense. This yields the
following three problems which we consider in Chapters 5 and 6. To this end,
for a set S of vertices or edges, we denote by G− S (by G+ S) the graph that
results from deleting (inserting) in G the vertices or edges contained in S.

Degree Anonymity by Vertex Deletion (Anonym V-Del)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there a vertex subset S ⊆ V of size at most s such that G−S

is k-anonymous?

Input: k = 4
s = 2

Solution:

Degree Anonymity by Edge Deletion (Anonym E-Del)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there an edge subset S ⊆ E of size at most s such that G−S

is k-anonymous?

Input: k = 4
s = 4

Solution:

In Chapter 5, we present strong intractability results for Anonym V-Del and
for Anonym E-Del.
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Degree Anonymity by Edge Insertion (Anonym E-Ins)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there an edge set S ⊆

(
V
2

)
\E of size at most s such that G+S

is k-anonymous?

Input: k = 4
s = 5

Solution:

Notably, there is a very close connection between Anonym E-Del and Anonym
E-Ins as a graph G is k-anonymous if and only if the complement graph G is
k-anonymous. Hence, a given graph G can be made k-anonymous by inserting
at most s edges if and only if G can be made k-anonymous by deleting at most s
edges. Thus, most hardness results for Anonym E-Del transfer to Anonym
E-Ins. However, since the complement graph operation does not preserve the
maximum degree, the NP-completeness of Anonym E-Del on bounded-degree
graphs (see Theorems 5.19 and 5.20) does not transfer to Anonym E-Ins.
In fact, a central result Chapter 6 is that Anonym E-Ins is fixed-parameter
tractable with respect to the parameter maximum degree.

Anonymization. Data anonymization is an active area of research with a con-
siderable amount of published work. See, for example, the survey by Fung et al.
[Fun+10]. The concept of k-anonymity was introduced for tabular data in
databases [Fun+10, Sam01, SS98, Swe02]. While it is beyond the scope of this
work to fully address all the potential weaknesses of the k-anonymity concept,
we mention for the sake of completeness that it is known to be vulnerable
against the attack models “attribute linkage”, “table linkage”, and “probabilistic
attack” [Fun+10]. In particular, note that with “differential privacy” (cleverly
adding some random noise) a “statistical model” has become very popular as
well [Dwo11, Fun+10]; we do not study this here. Instead, we focus on a better
understanding of the computational complexity and on tractable special cases
of combinatorial data privacy problems in graphs.
Liu and Terzi [LT08] assumed in their model that an adversary (who wants

to de-anonymize the network) knows only the degree of the vertex of a target
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individual; this is a modest adversarial model. Clearly, there are stronger adver-
sarial models which (in many cases very realistically) assume that the adversary
has more knowledge, making it possible to breach the privacy provided by a
“k-anonymized graph” [ALY11, NS09, Sal+11]. Notably, the differential privacy
framework incurs other difficulties when applied to anonymizing graphs [NS09,
Sal+11]. Moreover, it has been argued that graph anonymization has funda-
mental theoretical barriers which prevent a fully effective solution [ALY11]. In
conclusion, given the generality of background knowledge an adversary may or
may not have, graph anonymization remains a chimerical target [LSB12] and,
thus, a universally best model for graph anonymization is not available. Degree
Anonymity, however, provides the perhaps most basic and still practically
relevant model; it is the subject of active research [Bre+14b, Che+12, Che+13a,
CHT13, LSB12].

Related work. Our most important point of reference is Liu and Terzi’s
work [LT08] where the basic model of graph anonymization (by edge insertions)
was introduced and sophisticated (heuristic) algorithms (also using algorithms
to determine the realizability of degree sequences) have been developed and
validated on experimental data. Somewhat more general models have been con-
sidered by Zhou and Pei [ZP11] (studying the neighborhood of vertices instead
of only the degree) and by Chester et al. [Che+12] (anonymizing a subset of
the vertices of the input). Lu et al. [LSB12] and Casas-Roma et al. [CHT13]
proposed enhanced algorithms for Anonym E-Ins. Again, these algorithms
are heuristic in nature. Today, the field of graph anonymization has grown
tremendously with numerous surveys and research directions. We only discuss
some directly related work.
Chester et al. [Che+13b] were among the few authors having performed

formal computational complexity studies of Anonym E-Ins and edge-labeled
variants. On the positive side, they showed a polynomial-time algorithm for
the unlabeled case on bipartite graphs. In particular, they asked for effective
polynomial-time approximation algorithms (for the optimization versions of the
underlying decision problems) for the NP-hard variants and complain the lack
of complexity investigations and theoretical research.
Chester et al. [Che+13a] and Bredereck et al. [Bre+14b] investigated the

vertex insertion variant of Degree Anonymity. Here, the question is whether
at most s vertices can be inserted to the input graph to make it k-anonymous; the
inserted vertices can be made adjacent to all other (original and newly inserted)
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Table 1.1.: Overview on the computational complexity classification of Anonym V-
Del, Anonym E-Del, and Anonym E-Ins.

Parameter Anonym V-Del Anonym E-Del Anonym E-Ins

k NP-complete NP-complete NP-complete
for k = 2 for k = 2 for k = 2

(s, k) W[2]-hard W[1]-hard W[1]-hard
∆ NP-complete NP-complete FPT

for ∆ = 3 for ∆ = 7
(s,∆) FPT FPT FPT
(k,∆) FPT FPT FPT

vertices. In this basic variant, the actual graph structure is not important, only
the degrees of the input graph matter. This gives the problem a significantly
different flavor when compared to the Degree Anonymity variants that we
study in this thesis. Chester et al. [Che+13a] provided NP-completeness for the
vertex labeled variant, and for the unlabeled variant they gave an algorithm
that computes in O(nk) time a solution containing at most k vertices more than
an optimal solution. Bredereck et al. [Bre+14b] showed NP-completeness for
several restricted variants and presented fixed-parameter tractability results for
the basic variant. However, the complexity status of the basic vertex insertion
variant of Degree Anonymity remains open.

Finally, we mention in passing that there is recent work on studying the
parameterized complexity of k-Anonymity on tabular data with numerous
tractability and intractability results [BDVD11, Bon+13, Bre+14c, EWC09].

Our contributions. The field of graph anonymization is young and under
strong development; there is very little research on its theoretical foundations,
particularly concerning computational complexity and algorithms with provable
performance guarantees [Che+12]. The following results are a first step towards
closing the gap between theoretical and practical results.
In Chapter 5, we show that Anonym V-Del and Anonym E-Del are NP-

complete, even on very special graph classes such as trees or bounded-degree
graphs. We then analyze the parameterized complexity of Anonym V-Del
and Anonym E-Del. Once again, both problems show a computationally
difficult and challenging characteristic, see Table 1.1 for an overview: They
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Table 1.2.: Overview on the inapproximability of the optimization variants associated
with Anonym V-Del and Anonym E-Del. The results for Anonym E-Del also
hold for Anonym E-Ins due to their strong connection via the complement graph.

vertex deletion Anonym Min-V-Del Max-Anonym V-Del
running time (fixed k, minimize s) (fixed s, maximize k)

polynomial time no n1−ε-approximation no n1/2−ε-approximation
f(s) · nO(1) open no n1/2−ε-approximation

edge deletion Anonym Min-E-Del Max-Anonym E-Del
running time (fixed k, minimize s) (fixed s, maximize k)

polynomial time no n1−ε-approximation no n1−ε-approximation
f(s) · nO(1) open no n1−ε-approximation

are W[1]-hard with respect to each of the three (single) parameters solution
size s, anonymity level k, and maximum degree ∆, and with respect to the
combined parameter (s, k). The only positive parameterized results come with
the combined parameters (∆, s) and (∆, k). We then study the approximability
of natural optimization problems associated with Anonym E-Del or Anonym
V-Del. Partially answering an open question of Chester et al. [Che+13b], we
give negative results showing that in polynomial time none of the considered
problems can be approximated better than a factor of n1/2. Here, n denotes
the number of vertices in the input graph. Furthermore, for the optimization
variants where the solution size s is given and the task is to maximize the
anonymity level k, this inapproximability even holds if we allow a running time
of f(s)nO(1) for any computable f . Again, this result holds for both the edge
deletion variant and the vertex deletion variant, see Table 1.2 for an overview.

Our findings for Anonym E-Ins, presented in Chapter 6, are more positive,
see Table 1.1 for an overview and comparison to the vertex and edge deletion
variants. Here, the central result is that Anonym E-Ins has a polynomial-size
problem kernel when parameterized by the maximum vertex degree ∆ of the
input graph. In other words, we prove that there is a polynomial-time algorithm
that transforms any input instance of Anonym E-Ins into an equivalent instance
with at most O(∆7) vertices. Indeed, we encounter a “win-win” situation when
proving this result: We show that Liu and Terzi’s heuristic strategy [LT08] finds
an optimal solution when the size s of a minimum solution is larger than 2∆4.
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Hence, either we can solve the problem in polynomial time or the solution
size is “small”. As a consequence, we can bound s in O(∆4) and, hence, a
polynomial kernel we provide for the combined parameter (∆, s) actually is also
a polynomial kernel only for ∆. While our kernelization directly implies fixed-
parameter tractability for Anonym E-Ins parameterized by ∆, we also develop
a further fixed-parameter algorithm with an improved worst-case running time.
We generalize the ideas behind the kernelization to further graph comple-

tion problems where the task is to insert edges so that the degree sequence
of the resulting graph fulfills some prescribed property Π. Furthermore, we
experimentally evaluate the usefulness of our theoretical results on the “win-win”
situation. We present an enhancement of the heuristic due to Liu and Terzi
[LT08], including new algorithms for each phase which significantly improve on
the previously known theoretical and practical running times. Moreover, our
algorithms are optimized for large-scale social networks and provide upper and
lower bounds for the optimal solution. Notably, on about 21% of the real-world
data we provide (provably) optimal solutions, whereas in the other cases our
solutions significantly improve on known heuristic solutions.
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Chapter 2.

Preliminaries and Notation

In this chapter, we provide our notation and explain the employed theoretical
concepts. As this thesis focuses on graph problems, we start in Section 2.1 by
introducing the relevant notation for graphs. In Section 2.2 we recall basic
concepts from classical complexity theory with a focus on NP and NP-hard
problems. In Sections 2.3 and 2.4 we give a brief overview on two common
approaches to deal with NP-hard problems: parameterized and approximation
algorithms.

2.1. Graphs
This section provides our notation for graphs. For a broader overview, we
refer to Diestel [Die10]. All graphs studied in this thesis are simple, that is,
they contain no self-loops and no multi-edges. We study undirected as well as
directed graphs. First, we give some basic definitions. Let N := {0, 1, 2, . . .}.
For a set S we denote by 2S the power set of S, that is the set of all subsets
of S. We further denote by

(
S
2

)
the set of all size-two subsets of S.

Undirected graphs. An undirected graph is a pair G = (V,E). In this context,
we denote by

V the vertex set of G;

E the edge set of G with E ⊆
(
V
2

)
; for an edge e = {u, v} ∈ E the two

vertices u and v are called endpoints of e;

nG the number |V | of vertices;

mG the number |E| of edges;
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NG(v) the (open) neighborhood of v, formally, NG(v) := {u ∈ V | {u, v} ∈ E};

NG[v] the closed neighborhood of v, formally, NG[v] := NG(v) ∪ {v};

NG(V ′) the set
⋃
u∈V ′ NG(u) for V ′ ⊆ V ;

NG[V ′] the set NG(V ′) ∪ V ′ for V ′ ⊆ V ;

N i
G[v] for i ≥ 1 the closed ith neighborhood of v, formally, N1

G[v] := NG[v]
and N i

G[v] := NG(N i−1
G [v]) for i ≥ 2;

N i
G(v) for i ≥ 1 the (open) ith neighborhood of v, formally, N1

G(v) := NG(v)
and N i

G(v) := N i
G[v] \N i−1

G [v] for i ≥ 2;

degG(v) the degree of v, formally, degG(v) := |NG(v)|;

∆G the maximum degree of G, formally, ∆G := max
v∈V
{degG(v)};

δG the minimum degree of G, formally, δG := min
v∈V
{degG(v)};

SG the degree sequence of G, that is, the multiset {degG(v) | v ∈ V };

BG(d) the block of degree d, that is, the set of all vertices with degree d in G,
formally, BG(d) := {v ∈ V | degG(v) = d};

BG the block sequence of G, formally, BG := (|BG(0)|, |BG(1)|, |BG(2)|,
. . . , |BG(∆G)|);

V (E′) the set of of all endpoints of edges in E′ ⊆
(
V
2

)
, formally, V (E′) :=

{v ∈ V | {u, v} ∈ E′};

E(V ′) the set of edges having both endpoints in V ′ ⊆ V , formally, E(V ′) :=

E ∩
(
V ′

2

)
;

G the complement graph of G, formally, G := (V,
(
V
2

)
\ E);

G[V ′] the subgraph of G induced by V ′ ⊆ V , formally, G[V ′] := (V ′, E(V ′));

G[E′] the graph induced by E′ ⊆
(
V
2

)
, formally, G[E′] := (V (E′), E′);

G+ E′ the graph obtained from G by inserting the edges E′ ⊆
(
V
2

)
\ E,

formally, G+ E′ := (V,E ∪ E′);
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G− E′ the graph obtained from G by deleting the edges E′ ⊆ E, formally,
G− E′ := (V,E \ E′);

G− V ′ the graph obtained from G by deleting the vertices V ′ ⊆ V , formally,
G− V ′ := G[V \ V ′].

If the graph G is clear from the context, then we will omit the subscript G.

Directed graphs. A directed graph, also called digraph, is a pair D = (V,A).
We denote by

V the vertex set of D;

A the arc set of D with A ⊆ V × V ; for an arc a = (u, v) ∈ E the
vertex u is called the tail and v is called the head of a;

nD the number |V | of vertices;

mD the number |A| of arcs;

D[V ′] the induced subgraph of D on V ′ ⊆ V , formally, D[V ′] := (V ′, E ∩
(V ′ × V ′));

deg+
D(v) the outdegree of v, formally, deg+

D(v) := |{(v, u) ∈ A}|;

deg−D(v) the indegree of v, formally, deg−D(v) := |{(u, v) ∈ A}|;

SD the degree sequence of D, that is, the multiset
{(deg−D(v)

deg+
D(v)

)
| v ∈ V

}
;

∆D the maximum degree of D, formally, ∆D := max
v∈V
{deg+

D(v),deg−D(v)}.

Remark: This is nonstandard notation. Usually the maximum degree
in directed graphs is defined as the maximum over the sum of indegree
and outdegree of each vertex.

Again, if the digraph D is clear from the context, then we will omit the
subscript D.
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Graph relations. Let G = (V,E) be an undirected graph and D = (V,A) be a
digraph. The graph G′ = (V ′, E′), respectively the digraph D′ = (V ′, A′), is

a supergraph of G, respectively D, if V ′ ⊇ V and E′ ⊇ E, respectively A′ ⊇ A;

a subgraph of G, respectively D, if V ′ ⊆ V and E′ ⊆ E ∩
(
V ′

2

)
, respec-

tively A′ ⊆ A ∩ (V ′ × V ′);

a spanning subgraph of G, respectively D, if V ′ = V and E′ ⊆ E ∩
(
V ′

2

)
, respec-

tively A′ ⊆ A ∩ (V ′ × V ′);

an induced subgraph of G, respectively D, if V ′ ⊆ V and E′ = E ∩
(
V ′

2

)
, respec-

tively A′ = A ∩ (V ′ × V ′);

isomorphic to G, respectively D, if there exists a bijection f : V → V ′ such
that {u, v} ∈ E if and only if {f(u), f(v)} ∈ E′, respectively
(u, v) ∈ A if and only if (f(u), f(v)) ∈ A′.

A path is a graph G = (V,E) with vertex set V = {v1, v2, . . . , vn} and edge
set E = {{vi, vi+1} | 1 ≤ i < n}. The vertices v1 and vn are called endpoints. A
path on n vertices is denoted by Pn and has length n− 1. Two vertices u and v
in the graph G are connected if G contains a path with endpoints u and v. A
graph G is connected if every pair of vertices u, v ∈ V is connected. A connected
component is a maximal set of pairwise connected vertices.

The H-index of a graph G is the maximum integer h such that G has at
least h vertices with degree at least h. As a consequence, if G has H-index h,
then it has at most h vertices of degree larger than h.
The underlying undirected graph of a directed graph D = (V,A) is the

graph G = (V,E) with E := {{u, v} | (u, v) ∈ A ∨ (v, u) ∈ A}. Two vertices in
a directed graph D = (V,A) are called connected if they are connected in the
underlying undirected graph. This is also called weakly connected. A connected
component is a maximal set of pairwise connected vertices. This is also called
weakly connected component. For two vertices u, v ∈ V with (u, v) ∈ A, we
call u an inneighbor of v and v an outneighbor of u. A vertex v ∈ V is called a
source if deg−(v) = 0 and it is called a sink if deg+(v) = 0.

Special graphs. A graph G = (V,E) with vertex set V = {v1, v2, . . . , vn} is a

cycle if G is connected and each vertex has degree two, that is,
the block sequence of G is (0, 0, n). A cycle on n vertices
is denoted by Cn.
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three-regular graph if the block sequence of G is (0, 0, 0, n);

independent set if G contains no edge, that is, the block sequence of G
is (n);

clique if the complement graph of G is an independent set, that
is, the degree sequence of G is {n− 1, n− 1, . . . , n− 1};

bipartite graph if V can be partitioned into two independent sets;

three-colorable graph if V can be partitioned into three independent sets;

planar if G can be embedded into the plane (drawn with points
for vertices and curves for edges) without crossing edges;

forest if G contains no cycle;

tree if G is connected and a forest;

caterpillar if G is a tree that has a dominating path. A dominating
path is a path in G such that each vertex not contained
in the path has a neighbor in the path;

F-free if G does not contain any graph of the set F as induced
subgraph;

cluster graph if every connected component is a clique, or equivalently,
if G is {P3}-free;

cograph if G is {P4}-free;

split graph if V can be partitioned into a clique and an independent
set;

pseudo-split graph if G is {2P2, C4}-free;

trivially perfect graph if G is {P4, C4}-free;

threshold graph if there are positive real vertex weights w(v) for v ∈ V
such that {vi, vj} ∈ E if and only if w(vi) + w(vj) ≥ 1;

interval graph if there are real intervals {Iv | v ∈ V } such that {vi, vj} ∈
E if and only if Ivi ∩ Ivj 6= ∅;
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unit interval graph if G is an interval graph where every interval has unit
length;

permutation graph if there is a permutation σ of the numbers 1, 2, . . . , n,
such that {vi, vj} ∈ E if and only if i < j and σ(i) >
σ(j);

bipartite permutation if G is a bipartite graph and a permutation graph.

Equivalent definition: A bipartite permutation graph is
a bipartite graph not containing an asteroidal triple (in
other words, it is AT-free). Three vertices of a graph form
an asteroidal triple if every two of them are connected
by a path avoiding the neighborhood of the third.

unigraph if G is determined by its degree sequence up to isomor-
phism.

A digraph D = (V,A) with vertex set V = {v1, v2, . . . , vn} is a

directed path if A = {(vi, vi+1) | 1 ≤ i < n};

directed cycle if A = {(vi, vi+1) | 1 ≤ i < n} ∪ {vn, v1};

independent set if D contains no edge;

directed acyclic graph (DAG) if D does not contain a directed cycle.

Each DAG D admits a topological ordering, that is, an ordering
of all its vertices v1, v2, . . . , vn such that for all arcs (vi, vj) ∈ A
it holds that i < j.

tournament if the underlying undirected graph of D is a clique;

transitive tournament if D does not contain a directed cycle and is a tourna-
ment.

Equivalent definition: a tournament is a digraph with degree
sequence

{(
0

n−1

)
,
(

1
n−2

)
, . . . ,

(
n−1

0

)}
.
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Degree factors and degree sequences. A degree factor in a graph G = (V,E)
is a spanning subgraph of G satisfying some predefined degree conditions. Given
a function f : V → N, an f -factor in a graph G is a spanning subgraph G′ of G
such that degG′(v) = f(v) for all v ∈ V .
A degree sequence is a multiset of nonnegative integers or a multiset of

nonnegative integer pairs, depending on whether we search for undirected or
directed graphs. Although in a multiset no ordering is given, we stick to the
term degree sequence as it is commonly used in the literature. The elements of
the degree sequence are called degrees. If there exists for a degree sequence S a
graph G (digraph D) with degree sequence S, then S is called realizable and G
(D) is called realization of S or realizing graph. For a graph property Π a degree
sequence S is called (potentially) Π-realizable if there exists a realization of S
having property Π. A degree sequence S is called forcibly Π-realizable if S is
realizable and all realizations of S have property Π.

A block sequence is a tuple of nonnegative integers (we define block sequences
only for undirected graphs). The block sequence BS of a degree sequence S =
{d1, d2, . . . , dn} with maximum degree ∆ := max{di} is defined as BS := (|{i |
di = 0}|, |{i | di = 1}|, . . . , |{i | di = ∆}|). Observe that if the degree sequence S
is realizable and G is one of its realizations, then BS is the block sequence of G.
Conversely, the degree sequence SB of a block sequence B = (b0, b1, . . . , b∆)
is the multiset that contains bd times the number d for each 1 ≤ d ≤ ∆.
If S respectively B is clear from the context, then we omit the subscript.
Let S = {d1, . . . , dn} and S ′ = {d′1, . . . , d′n} be two degree sequences with
corresponding block sequences B and B′. We define ‖B‖ := |S| :=

∑n
i=1 di. We

write S ′ ≥ S and B′=B if for both degree sequences sorted in ascending order it
holds that d′i ≥ di for all i. Intuitively, this captures the interpretation “S ′ can
be obtained from S by increasing some values”. If S ′ ≥ S, then (for sorted
degree sequences) we define the degree sequence S ′−S = {d′1−d1, . . . , d

′
n−dn}

and set B′ � B to be its block sequence.

k-anonymous graphs. A graph G = (V,E) is k-anonymous if all blocks of G
contain zero or at least k vertices, that is, for each vertex v ∈ V there are k − 1
other vertices having the same degree as v. We call a set of edges S ⊆

(
V
2

)
\E an

edge insertion set for G. If G+ S is k-anonymous, then S is called k-insertion
set for G. Analogously, a vertex subset S ⊆ V (an edge subset S ⊆ E) is called
k-deletion set if G− S is k-anonymous.
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2.2. Computational Complexity
In this section, we provide a brief overview on classical complexity theory with
focus on P, NP, and NP-complete problems. The purpose of this theory is to
get a better understanding of the worst-case-difficulty to solve certain decision
problems. Given a finite alphabet Σ, the decision problem associated with a
language L ⊆ Σ∗ is to decide whether a given word x ∈ Σ∗ belongs to L. If
the answer is yes, then we refer to x as yes-instance, otherwise as no-instance.
Usually, we use the binary alphabet Σ = {0, 1}.
Example 1. Consider the DAG Realization problem.

DAG Realization
Input: A degree sequence S =

{(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
.

Question: Is there a directed acyclic graph realizing S?

Denoting the binary encoding of a multiset S of nonnegative integer pairs by 〈S〉,
the associated language L is defined by

L := {〈S〉 | S is a realizable as dag} ⊆ {0, 1}∗.

To distinguish between tractable and intractable problems one typically
uses the two complexity classes P and NP. Formally, the class P contains
all problems that can be solved in polynomial time on a deterministic Turing
machine. All problems that can be solved on a nondeterministic Turing machine
in polynomial time are contained in the class NP. Although the question
“P = NP?” is probably the most famous open problem in computer science, it
is widely conjectured that the answer is P 6= NP. In this way, P is considered
to contain the tractable problems whereas the “hardest” problems in NP are
considered intractable. To formally define what a “hardest” problem in NP is,
we need the concept of polynomial-time many-one reductions.

Definition 2.1. Let A,B ⊆ Σ∗ be two problems. A polynomial-time many-one
reduction from A to B is a polynomial-time computable function f : Σ∗ → Σ∗

such that for all x ∈ Σ∗ it holds that x ∈ A ⇐⇒ f(x) ∈ B.

A problem B is called NP-hard if for each problem A in NP there is
a polynomial-time many-one reduction from A to B. If it further holds
that B ∈ NP, then B is called NP-complete. Thus, all NP-complete problems
are considered to be intractable. We refer to Garey and Johnson [GJ79] for a
list of NP-complete problems and more details on P, NP, and NP-completeness.
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To cope with NP-hard problems several approaches have been developed. In
the next two sections, we describe two of them: parameterized and approximation
algorithms.

2.3. Parameterized Complexity

The concept of parameterized complexity was pioneered by Downey and Fel-
lows [DF13] (see Flum and Grohe [FG06] and [Nie06] for further monographs
on parameterized complexity). The basic idea herein is to obtain a more “fine-
grained” view on the problems. The motivation is that in practice the input
is often restricted in the sense that it has some structure. For example, when
anonymizing graphs, the input is usually some kind of social network. Social
networks typically have small diameter (“small world” phenomenon) and admit
a power-law degree distribution [New10]. Exploiting such structural properties
is the goal of fixed-parameter algorithms.

To formally capture the additional structure, usually measured as a positive
integer, we extend the input by one dimension.

Definition 2.2. A parameterized problem is a language L ⊆ Σ∗ × Σ∗. For an
instance (I, p) ∈ Σ∗×Σ∗ the part I is called input and p is called the parameter.

This definition is general enough to allow the specification of combined
parameters such that more than one structure of the input can be analyzed
at once; this is a more recent development called multivariate complexity
analysis [FJR13, KN12, Nie10]. For simplicity, one can think in the following of
the parameter as a positive integer. However, all concepts work with combined
parameters as well.
Given the additional structure(s) in the parameter, we classify problems in

terms of the parameter and the input size. The counterpart of polynomial-time
solvability in classical complexity theory is fixed-parameter tractability defined
as follows.

Definition 2.3. A parameterized problem is called fixed-parameter tractable if
there exists an algorithm that decides any instance (I, p) in f(p) · |I|O(1) time,
for some computable function f solely depending on p.

The analog of the complexity P is the class FPT containing all fixed-parameter
tractable problems. Observe that for constant parameter value p fixed-parameter
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tractability implies polynomial-time solvability where the degree of the poly-
nomial is independent of p (e. g. O(2p · n2)). If the degree of the polynomial
depends on the parameter p (e. g. O(np)), then the problem is contained in the
complexity class XP.

Parameterization. When considering a new problem from the parameterized
complexity perspective, a first question is: What is the parameter? The
“standard parameter” is the size of a sought solution and we also consider this
parameter in our study of Degree Anonymity. In the DAG Realization
problem, however, the solution size (the size of the realizing DAG) is the same
as the input size. Since the purpose of parameterized complexity is to consider
more than just the input size, different parameters have to be considered. In
this thesis, the parameter maximum degree plays a central role and the main
fixed-parameter tractability results are obtained with respect to this parameter.

Kernelization. A core tool in the development of fixed-parameter algorithms
is polynomial-time preprocessing by data reduction, called kernelization. It is
well-known that a decidable parameterized problem is fixed-parameter tractable
if and only if it has a kernelization [Bod09, GN07, Kra14]. Here, the goal is to
transform a given problem instance (I, p) in polynomial time into an equivalent
instance (I ′, p′) whose size is upper-bounded by a function of p.

Definition 2.4. Let A ⊆ Σ∗ × Σ∗ be a parameterized problem. A problem
kernelization is an algorithm that takes as input an instance (I, p) ∈ Σ∗ × Σ∗

and outputs in time polynomially bounded in |I|+ p an instance (I ′, p′) such
that

(i) |I ′| ≤ f(p) and p′ ≤ f(p) for some computable function f , and

(ii) (I, p) ∈ A ⇐⇒ (I ′, p′) ∈ A.

The instance (I ′, p′) is called a problem kernel and f denotes the size of the
problem kernel. If f is a polynomial, then the instance (I ′, p′) is called a
polynomial problem kernel. We call the Property (ii) the correctness of the data
reduction and say that (I, p) and (I ′, p′) are equivalent instances.
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Parameterized intractability. Parameterized complexity theory also provides a
hardness program that allows to show presumable fixed-parameter intractability.
The counterpart to NP is the W-hierarchy:

FPT ⊆W[1] ⊆W[2] ⊆ . . .W[t] ⊆ . . . ⊆W[P ] ⊆ XP.

As in the classical setting, it is not known whether FPT = W[1] but it is believed
that the above inclusions are strict.
For t ≥ 1, one can show W[t]-hardness of a parameterized problem A by

providing a parameterized reduction from a W[t]-hard problem to A.

Definition 2.5. Let A,A′ ⊆ Σ∗ × Σ∗ be two parameterized problems. A
parameterized reduction from A to A′ is a function f : Σ∗ ×Σ∗ → Σ∗ ×Σ∗ such
that for all (I, p) ∈ Σ∗ × Σ∗ it holds that

(i) f((I, p)) = (I ′, p′) can be computed in g(p) · |I|O(1) time for some com-
putable function g,

(ii) p′ ≤ h(p) for some computable function h, and

(iii) (I, p) ∈ A ⇐⇒ f((I, p)) ∈ A′.

Clique is W[1]-complete with respect to the parameter solution size h.

Clique [GJ79, GT19]
Input: An undirected graph G = (V,E) and an integer h ∈ N.
Question: Is there a subset V ′ ⊆ V of at least h pairwise adjacent vertices?

Input:
h = 4

Solution:

Dominating Set is W[2]-complete with respect to the parameter solution
size h.

Dominating Set [GJ79, GT2]
Input: An undirected graph G = (V,E) and an integer h ∈ N.
Question: Is there a subset V ′ ⊆ V of size at most h such that N [V ′] = V ?
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Input:
h = 1

Solution:

2.4. Approximation

Another approach of dealing with NP-hard problems are approximation algo-
rithms. Instead of relaxing the time-constraints as in parameterized algorithmics
the idea is to find solutions that are not necessarily optimal but close to being
optimal. This approach requires to consider optimization problems instead of
decision problems. For example, one optimization variant for Anonym E-Del
is the following.

Anonym Min-E-Del
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Task: Compute a minimum-size k-deletion set E′ ⊆ E.

Another optimization variant would be to give a graph G and an integer s ∈ N
and to ask for a set of edge deletions that maximizes the anonymity level in the
resulting graph.

Following Ausiello et al. [Aus+99] and Marx [Mar08] we formalize this concept
as follows.

Definition 2.6. An optimization problem Q is a quadruple (I, sol, cost, goal)
where

1. I ⊆ Σ∗ is a set of instances;

2. for an instance I ∈ I, sol(I) is the set of feasible solutions of I. The length
of each x ∈ sol(I) is polynomially bounded in |I|, and it can be decided
in polynomial time whether x ∈ sol(I) holds for given I and x;

3. given an instance I and a feasible solution x, cost(I, x) is a polynomial-time
computable positive integer;

4. goal ∈ {min,max}.
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For a given instance I the task is to find a feasible solution x that achieves
the best objective value, that is, we want x to satisfy

cost(I, x) = goal{cost(I, x′) | x′ ∈ sol(I)}.

Observe that any optimization problem Q has an associated decision problem PQ.
If goal = min, then the decision problem is given the instance I and an integer h
to decide whether there exists a feasible solution in sol(I) of size at most h. If PQ
is NP-complete, then we cannot find an optimal feasible solution in polynomial
time, unless P = NP. Thus we seek for feasible solutions that are not far away
from the optimum solution. To this end, let opt(I) denote the cost of an optimal
solution for the instance I. For a feasible solution x ∈ sol(I) the performance
ratio (or approximation factor) R is defined as

R(I, x) :=

{
cost(I, x)/ opt(I), if goal = min

opt(I)/ cost(I, x), if goal = max .

Note that R(I, x) ≥ 1 for any instance I and feasible solution x and the
closer R(I, x) is to one, the better is the solution x. For a function ρ : N→ N,
a ρ(|I|)-approximation algorithm returns for every instance I ∈ I a solution x
such that R(I, x) ≤ ρ(|I|).
Note that this notion of approximability imposes no requirements on the

running time so far. Of course the focus is mostly on polynomial time, see the
textbooks of Vazirani [Vaz01] and Williamson and Shmoys [WS11] for a thorough
overview on polynomial-time approximation algorithms. There is, however, also
the relatively new approach of combining approximation and fixed-parameter
algorithms [Cai08, CGG06, DFM06, Mar08]. Here, parameterized optimization
problems are a natural extension of optimization problems that are obtained
by replacing in Definition 2.6 (1) the term I ⊆ Σ∗ by I ⊆ Σ∗ × Σ∗ in order
to incorporate the parameter. A fixed-parameter approximation algorithm for
parameterized optimization problem is an approximation algorithm that runs
for any instance (I, p) in f(p) · |I|O(1) time.

Inapproximability. This thesis contains besides exact algorithms (that have an
approximation factor of one) no approximation algorithm but only inapproxima-
bility results. To show that a problem admits no ρ(n)-approximation algorithm,
we employ the notion of a gap-reduction due to Arora and Lund [AL96].
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Definition 2.7. A decision problem A is called gap-reducible to a maximization
problem Q with gap ρ ≥ 1 if there exists a polynomial-time computable function
that maps any instance I of A to an instance I ′ of Q, while satisfying the
following properties:

(i) if I is a yes-instance, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and

(ii) if I is a no-instance, then opt(I ′) < ξ(|I ′|),

where ξ and ρ are two computable functions.

The definition for minimization problems is completely analogous. The
purpose of gap-reductions is to transfer intractability results from classical
complexity theory to approximation complexity.

Lemma 2.1 (Arora and Lund [AL96]). If a decision problem A is NP-complete
and gap-reducible to an optimization problem Q with gap ρ, then Q is not ρ-
approximable in polynomial time, unless P = NP.

Applying gap-reductions to fixed-parameter approximation algorithms requires
a slight modification of the definition since we have to take care of the parameter.

Definition 2.8. A parameterized problem A is called fpt gap-reducible to a
parameterized maximization problem Q with gap ρ ≥ 1 if any instance (I, p)
of A can be mapped to an instance (I ′, p′) of Q in f(p) · |I|O(1) time while
satisfying the following properties:

(i) p′ ≤ g(p) for some computable function g,

(ii) if I is a yes-instance, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and

(iii) if I is a no-instance, then opt(I ′) < ξ(|I ′|),

where ξ and ρ are two computable functions.

Again, the definition for minimization problems is completely analogous. With
Definition 2.8, we can transfer the intractability results from parameterized
complexity theory to fixed-parameter approximation algorithms.

Lemma 2.2. If a parameterized problem A is C-hard, fpt gap-reducible to a
parameterized optimization problem Q with gap ρ, and Q is ρ-approximable in
fpt-time, then FPT = C, where C is any class of the W-hierarchy.
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Proof. We give a fixed-parameter algorithm for the parameterized problem A as
follows: Since A is fpt gap-reducible to Q = (I, sol, cost,max) with gap ρ, there
exists an algorithm mapping the input (I, p) of A to an instance (I ′, p′) ∈ I
of Q in f(p) · |I|O(1) time such that the properties (i) to (iii) of Definition 2.8 are
satisfied. We then apply the fixed-parameter ρ-approximation algorithm for Q
on the instance (I ′, p′). Due to property (i), this algorithm runs in g(p) · |I|O(1)

time for some computable function g. Let x ∈ sol(I ′) be the solution produced
by the fixed-parameter ρ-approximation algorithm for Q. Assume that (I, p) was
a no-instance. Hence, we have cost(x) ≤ opt(I ′) and by property (iii) it follows
that cost(x) < ξ(I ′). Now assume that (I, p) was a yes-instance. Hence, we
have opt(I ′)/ cost(x) ≤ ρ(I ′) and thus cost(x) ≥ opt(I ′)/ρ(I ′). By property (ii)
it follows that cost(x) ≥ opt(I ′)/ρ(I ′) ≥ (ξ(I ′) · ρ(I ′))/ρ(I ′) = ξ(I ′). Hence, by
distinguishing the two cases cost(x) < ξ(I ′) and cost(x) ≥ ξ(I ′) we can decide
the instance (I, p) of A in (g(p) + f(p)) · |I|O(1) time. Thus A is fixed-parameter
tractable, and since A is C-hard it follows that FPT = C.
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Chapter 3.

Basics on Degree Factors

Most results obtained in this thesis as well as some of the employed core tools
are strongly related to degree factors and degree sequences. Surveying these
connections, in this chapter we briefly overview the rich literature of degree
factors and degree sequences. This chapter is, however, no precondition to
understand the rest of this thesis, and in later chapters we give explicit reference
when we make use of results mentioned in this chapter.

Let us recall some useful definitions. A degree factor in a graph G = (V,E)
is a spanning subgraph of G satisfying some predefined degree conditions.
Here, G′ = (V ′, E′) is a spanning subgraph of G if V = V ′ and E′ ⊆ E. A
very prominent—and for this thesis important—example of degree factors are
f -factors. Given a function f : V → N, an f -factor in a graph G is a spanning
subgraph G′ = (V,E′) of G such that degG′(v) = f(v) for all v ∈ V , see
Figure 3.1 for an illustration. In Section 3.2 we survey results about f -factors;
these play an important role for a kernelization algorithm presented in Chapter 6.
The special case of f -factors in complete graphs is known as realizable degree
sequences. In Chapter 4 we provide results about realizable degree sequences of
directed acyclic graphs, and in Chapter 6 we use results about realizable degree
sequences of undirected graphs. Section 3.1 lists the related results from the
literature.
With the focus of this work being on finding efficient algorithms or ruling

out their existence under standard assumptions from complexity theory, we
concentrate in this chapter on showing the borderline between tractability
and intractability. This means that we mostly consider the decision problem
of whether a given graph contains a certain degree factor; f-Factor is the
corresponding problem for f -factors, see Section 3.2.1 for the formal definition.
While the f-Factor problem is polynomial-time solvable, we present in

Section 3.2 several generalizations, some of which are still polynomial-time
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input graph:
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1

Figure 3.1.: Top: the input graph G with the numbers inside the vertices specifying
the degree constraint f . Bottom: an f -factor in G. The dashed edges are in the input
graph but not part of the f -factor.

solvable while others are NP-complete. We start in Section 3.1 with realizable
degree sequences which are a special case of f -factors.

3.1. Realizable Degree Sequences

The problem of deciding whether there exists a graph with a prescribed degree
sequence is quite old [EG60, Hak62, Hav55]. In this section, we survey some basic
results for this problem on undirected graphs (Section 3.1.1) and on directed
graphs (Section 3.1.2). Before doing so, we recall some necessary notation and
definitions. A degree sequence is a multiset of nonnegative integers or a multiset
of nonnegative integer tuples, depending on whether we search for undirected or
directed graphs. Although in a multiset no ordering is given, we stick to the term
degree sequence as it is commonly used in the literature. Naturally, we call the
elements of the degree sequence degrees. The degree sequence S of a graph G =
(V,E) with V = {v1, v2, . . . , vn} is the multiset {deg(v1),deg(v2), . . . ,deg(vn)}.
If there exists for a degree sequence S a graph G with degree sequence S,
then S is called realizable1 and G is called realization of S or realizing graph, see
Figure 3.2 for an illustrated example. Since in this work nG denotes the number
of vertices of some graph G and the number of degrees in a degree sequence S is
equal to the number of vertices of a realizing graph, we set nS := |S| and omit,

1In the literature also the term graphical is used.
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Figure 3.2.: Left: An undirected graph with degree sequence S = {6, 4, 3, 3, 2, 2, 1, 1}.
The numbers inside the vertices denote their degrees. Right: A digraph with degree
sequence S =

{(
0
6

)
,
(
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,
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,
(
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)
,
(
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)
,
(

2
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,
(

1
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)
,
(

0
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)}
. Here, the vertex v1 corresponds to

the first degree
(

0
6

)
, the vertex v2 corresponds to the second degree

(
3
1

)
, and so on.

as in the graph setting, the subscript S if S is clear from the context. We assume
that the maximum degree (undirected case) as well as the maximum indegree
and the maximum outdegree (directed case) are upper-bounded by n − 1, as
otherwise no realization exists. For convenience we also assume throughout
this work that all numbers in the degree sequences are given explicitly, that is,
the overall input size of a degree sequence instance is O(n log n) (both in the
directed and undirected case).

3.1.1. Realizing Undirected Graphs
The basic problem considered in this section is the following.

Graph Realization [LP86, Chapter 10]
Input: A degree sequence S = {d1, d2, . . . , dn}.
Question: Is there an undirected graph G = (V,E) with V =

{v1, v2, . . . , vn} such that for all i ∈ {1, 2, . . . , n} the degree
of vi is deg(vi) = di?

Input:

S = {6, 4, 3, 3, 2, 2, 1, 1}

Solution:
64

3

3 2 2 1

1
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Algorithm 3.1: Pseudocode of the Havel-Hakimi algorithm.
Input: A degree sequence S = {d1, d2, . . . , dn}.
Output: An undirected graph G realizing S if it exists, ‘NO’ otherwise.

1 V ← {v1, v2, . . . , vn} // the realizing graph will have n vertices
2 E ← ∅ // edges will be added during the algorithm
3 for i← 1 to n do
4 dri ← di // initializing the residual degrees

5 while ∃i ∈ {1, 2, . . . , n} : dri > 0 do
6 vi ← vertex with residual degree dri > 0

7 V i ← the dri vertices with the highest residual degree in V \ {vi}
8 foreach vj ∈ V i do // add edges between vi and all vertices in V i

9 E ← E ∪ {vi, vj}
10 drj ← drj − 1
11 if drj < 0 then return ‘NO’ // S is not realizable

12 dri ← 0

13 return G← (V,E).

Havel [Hav55] and Hakimi [Hak62] independently discovered a simple greedy
algorithm known as Havel-Hakimi algorithm for Graph Realization. This
algorithm starts with an edgeless n-vertex graph G and repeatedly inserts
edges in the following way: It picks an arbitrary vertex vi whose residual
degree di− deg(vi) is at least one, that is, vi needs at least one further neighbor.
Then, it adds edges from vi to the di − deg(vi) vertices in G with the highest
residual degree. When all residual degrees are zero, then a realization of S
is found. The pseudocode is given in Algorithm 3.1. For an illustration of
the algorithm obtaining for the degree sequence S = {6, 4, 3, 3, 2, 2, 1, 1} the
realizing graph displayed in Figure 3.2 (left) we refer to Figure 3.3. Carefully
managing the residual degrees, the running time is O(∆n) as for each vertex up
to ∆ edges are inserted. The correctness of this recursive algorithm relies on
the following theorem.

Theorem 3.1 (Havel [Hav55], Hakimi [Hak62]). Let S = {d1, d2, . . . , dn} be a
degree sequence, where d1 ≥ d2 ≥ . . . ≥ dn−1 and dn > 0. Then, S is realizable
if and only if {d1 − 1, d2 − 1, . . . , ddn − 1, ddn+1, ddn+2, . . . , dn−1} is realizable.
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64

3

3 2 2 1

1

64

3

3 2 2 1

1

64

3

3 2 2 1

1

64

3

3 2 2 1

1

{6, 4, 3, 3, 2, 2, 1, 1}
⇒ {0,3,2,2,1,1,0, 1}

{0, 3, 2, 2, 1, 1, 0, 1}
⇒ {0,0,1,1,0, 1, 0, 1}

{0, 0, 1, 1, 0, 1, 0, 1}
⇒ {0, 0,0,0, 0, 1, 0, 1}

{0, 0, 0, 0, 0, 1, 0, 1}
⇒ {0, 0, 0, 0, 0,0, 0,0}

1.

2.

3.

Figure 3.3.: The Havel-Hakimi algorithm realizing the degree sequence S =
{6, 4, 3, 3, 2, 2, 1, 1}. Each displayed graph corresponds to one iteration of the loop in
Line 5 of Algorithm 3.1. Below each graph the residual degrees before and after the
insertion of the edges are displayed.

Note that there is no prescribed ordering between dn and the rest of the
degree sequence. This allows us in Figure 3.3 to simply pick the first vertex with
non-zero residual degree. While we use this algorithm in our implementation in
Chapter 6 to construct a graph for a degree sequence, we also use a faster test
deciding whether a given degree sequence is realizable. This test is based on
the following characterization of realizable degree sequences.

Theorem 3.2 (Erdős and Gallai [EG60]). Let S = {d1, d2, . . . , dn} be a degree
sequence, where d1 ≥ d2 ≥ . . . ≥ dn. Then, S is realizable if and only if

∑n
i=1 di

is even and for all r ∈ {1, 2, . . . , n− 1} it holds that

r∑
i=1

di ≤ r(r − 1) +
n∑

i=r+1

min{di, r}. (3.1)
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While this characterization only gives a test running in O(n2) time (checking n
inequalities with n variables each), Tripathi and Vijay [TV03] showed that it
is sufficient to check Inequality (3.1) only for values of r where dr > dr+1 and
for r = n. With an additional linear-time preprocessing step counting the
frequencies of each degree, this allows us to test in O(n+ ∆2) time whether a
given degree sequence S is realizable.
In the experiments in Chapter 6, we also face the following task: Given

a degree sequence S that is not realizable, how many 1’s have to be added
to S in order to obtain a realizable degree sequence? We use Theorem 3.2 to
answer this question. To this end, let us briefly discuss the necessity of the
given conditions given in Theorem 3.2. Let G = (V,E) be a realization of S.
Since each edge contributes one to the degree of two vertices, it follows that the
sum of the degrees has to be even. Furthermore, consider the subset Vr ⊆ V
of r vertices realizing the r highest degrees. Clearly there can be at most

(
r
2

)
edges with both endpoints in Vr. This yields the summand r(r − 1) = 2

(
r
2

)
in Inequality (3.1). Each vertex vi ∈ V \ Vr has at most min{deg(vi) = di, r}
neighbors in V r. Hence, the sum of the degrees of the vertices in V r has to
satisfy Inequality (3.1). Thus, in order to accomplish the above mentioned task,
we denote by diff(r) the difference between the left-hand side and the right-hand
side of Inequality (3.1), that is,

diff(r) :=
r∑
i=1

di −

(
r(r − 1) +

n∑
i=r+1

min{di, r}

)
.

If max{diff(r) | 1 ≤ r ≤ n− 1} is even, then the number of 1’s that need to be
added to S is max{diff(r) | 1 ≤ r ≤ n}, otherwise this number is max{diff(r) |
1 ≤ r ≤ n}+ 1.

Generalizations. Besides deciding whether S is realizable, also the question
whether there exists a realizing graph having some specific property P is
studied in the literature. Examples for P that have been studied are `-edge
connected and `-vertex connected for some given integer `, Hamiltonian, self-
complementary, or planar, to mention just a few. We refer to the surveys of
Hakimi and Schmeichel [HS78] and Rao [Rao81] for further details and a list
of results. In this thesis, we deal with such a question in the directed case,
namely asking for an acyclic realization. Indeed, we show in Chapter 4 that
deciding whether a given degree sequence is realizable by a directed acyclic
graph is NP-complete. The corresponding problem in the undirected setting is,
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in contrast to the directed case, polynomial-time solvable due to the following
characterization.

Theorem 3.3 (Lovász and Plummer [LP86, Exercise 10.3.5], Edmonds [Edm64]).
Let S = {d1, d2, . . . , dn} be a degree sequence, where d1 ≥ d2 ≥ . . . ≥ dn. Then,
S is realizable by

(i) a tree if and only if
∑n
i=1 di = 2n− 2 and dn > 0;

(ii) a connected graph if and only if S is realizable,
∑n
i=1 di ≥ 2n−2, and dn >

0.

Finally, we remark that for the more general f-Factor problem, the corre-
sponding variants asking for an acyclic or a connected f -factor are NP-complete:
there are simple reductions from the Hamilton Cycle problem [Gol14a].

3.1.2. Realizing Directed Graphs

The basic problem considered in this section is the following.

Digraph Realization
Input: A degree sequence S =

{(
a1

b1

)
,
(
a2

b2

)
. . . ,

(
an
bn

)}
.

Question: Is there a directed graph D = (V,A) with V = {v1, v2, . . . , vn}
such that for all i ∈ {1, 2, . . . , n} the indegree of vi is deg−(vi) =
ai and the outdegree is deg+(vi) = bi?

Input:

S =
{(

0
6

)
,
(

3
1

)
,
(

2
2

)
,
(

2
1

)
,
(

2
1

)
,
(

2
0

)
,
(

1
0

)
,
(

0
1

)}
Solution:

v1v2

v3

v4 v5 v6 v7

v8

Many results from the undirected setting carry over to the directed setting;
this is also true for a greedy algorithm realizing a given degree sequence as
digraph. This algorithm due to Kleitman and Wang [KW73] was rediscovered by
Erdős et al. [EMT10] and works similarly as the Havel-Hakimi algorithm. For its
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Algorithm 3.2: Pseudocode of the algorithm due to Kleitman and Wang.

Input: A degree sequence S =
{(

a1
b1

)
,
(
a2
b2

)
, . . . ,

(
an
bn

)}
.

Output: A digraph D realizing S if it exists, ‘NO’ otherwise.

1 if
∑n

i=1 ai 6=
∑n

i=1 bi then
2 return ‘NO’ // S is not realizable

3 V ← {v1, v2, . . . , vn} // the realizing graph will have n vertices
4 A← ∅ // arcs will be added during the algorithm
5 for i← 1 to n do
6 ari ← ai
7 bri ← bi // initializing the residual degrees

8 while ∃i ∈ {1, 2, . . . , n} : bri > 0 do
9 vi ← vertex with residual outdegree bri > 0

10 arrange the vertices in V \ {vi} in lexicographic order
11 V i ← first bri vertices in this order
12 foreach vj ∈ V i do // add arcs between vi and all vertices in V i

13 A← A ∪ (vi, vj)
14 arj ← arj − 1
15 if drj < 0 then return ‘NO’ // S is not realizable

16 bri ← 0

17 return G← (V,A).

description, we need a further definition. The integer tuples
(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
are in lexicographic order if ai > ai+1 or ai = ai+1 and bi ≥ bi+1 for all 1 ≤ i < n.

The algorithm starts with an arcless n-vertex graph G and repeatedly inserts
arcs in the following way: It picks an arbitrary vertex vi whose residual outde-
gree bi − deg+(vi) is at least one, that is, vi needs at least one further neighbor.
Then, it adds arcs from vi to the bi − deg+(vi) vertices in G with the highest
residual degree according the lexicographic order. When all residual indegrees
and outdegrees are zero, then a realization of S is found. The pseudocode is
given in Algorithm 3.2. For an illustration of the algorithm obtaining for
the degree sequence S =

{(
0
6

)
,
(

3
1

)
,
(

2
2

)
,
(

2
1

)
,
(

2
1

)
,
(

2
0

)
,
(

1
0

)
,
(

0
1

)}
a realizing graph

displayed in Figure 3.2 (right) we refer to Figure 3.4. Carefully managing the
residual in- and outdegrees, the running time is O(∆n) as for each vertex up
to ∆ arcs are inserted.
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v1v2

v3

v4 v5 v6 v7

v8

v1v2

v3

v4 v5 v6 v7

v8

v1v2

v3

v4 v5 v6 v7

v8

v1v2

v3

v4 v5 v6 v7

v8

v1v2

v3

v4 v5 v6 v7

v8

v1v2

v3

v4 v5 v6 v7

v8

{(
0
6

)
,
(

3
1

)
,
(
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(
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1
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(

0
1
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2
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)
,
(
1
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1
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1
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1
0
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(
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1
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0
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(
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(
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1.

2.

3.

4.

5.

Figure 3.4.: The algorithm due to Kleitman and Wang [KW73] realizing the degree
sequence S =

{(
0
6

)
,
(

3
1

)
,
(

2
2

)
,
(

2
1

)
,
(

2
1

)
,
(

2
0

)
,
(

1
0

)
,
(

0
1

)}
. Each displayed graph corresponds

to one iteration of the loop in Line 8 of Algorithm 3.2. Below each graph the residual
degrees before and after the insertion of the arcs are displayed.
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The correctness of the algorithm relies on the next result corresponding to
Theorem 3.1.

Theorem 3.4 (Erdős et al. [EMT10], Kleitman and Wang [KW73]). Let S ={(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
be a degree sequence where bn > 0 and

(
a1

b1

)
,
(
a2

b2

)
, . . .,(

an−1

bn−1

)
are in lexicographic order. Then, S is realizable if and only if{(
a1 − 1

b1

)
,

(
a2 − 1

b2

)
, . . . ,

(
abn − 1

bbn

)
,

(
abn+1

bbn+1

)
,

(
abn+2

bbn+2

)
, . . . ,

(
an−1

bn−1

)}
is a realizable degree sequence.

In Chapter 4 we use a slightly modified variant of Algorithm 3.2 to realize a
given degree sequence by a directed acyclic graph with prescribed topological
order, see Lemma 4.10.
For the sake of completeness we mention the characterization of realizable

degree sequences in the directed setting that corresponds to Theorem 3.2,
although we not do use it.

Theorem 3.5 (Fulkerson [Ful60], Gale [Gal57], Ryser [Rys57]). Let S ={(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
be a degree sequence where a1 ≥ a2 ≥ . . . ≥ an. Then,

S is realizable if and only if
∑n
i=1 ai =

∑n
i=1 bi and for all r ∈ {1, 2, . . . , n− 1}

it holds that
r∑
i=1

ai ≤
r∑
i=1

min{bi, r − 1}+
n∑

i=r+1

min{bi, r}. (3.2)

Compared to the characterization for the undirected case (see Theorem 3.2)
we have the following differences. In the undirected case each edge contributes
one to the degree of two vertices. In the directed case, however, each added
arc contributes one to one indegree and to one outdegree. Thus, the condition
that the sum of the degrees is even is replaced by the condition that the sum
of the indegrees is equal to the sum of the outdegrees. Similarities can be
seen between Inequalities (3.1) and (3.2): In both inequalities an upper bound
on the sum of the r highest (in)degrees is checked. The only difference is
that the summand r(r − 1) in Inequality (3.1) is in Inequality (3.2) replaced
by
∑r
i=1 min{bi, r − 1}. Note that

∑r
i=1 min{bi, r − 1} ≤ r(r − 1), hence the

inequality is tightened in the directed case. The reason is that if each of the
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outdegrees b1, b2, . . . , br is smaller than r − 1, then the vertices Vr realizing the
degrees

(
a1

b1

)
,
(
a2

b2

)
. . . ,

(
ar
br

)
cannot form a clique in the realization of S. Thus,

this difference covers the case that the indegrees a1, a1, . . . , ar are “large” and
the outdegrees b1, b2 . . . , br are “small”.
Analogously to the undirected case, it is sufficient to check Inequality (3.2)

for all values of r where ar > ar+1 and for r = n [Ber14].

Generalizations. Similarly to the undirected case, it has been studied in the
literature whether a given degree sequence can be realized by a digraph with some
specific property P . We refer to the survey of Rao [Rao81] for an overview. If P is
acylicity, then the corresponding problem is NP-complete as proven in Chapter 4.
Hence, there is no simple characterization similar to Theorem 3.3(i), unless P =
NP. Considering connectivity as required property yields polynomial-time
solvable problems [BH65]. For completeness, we mention the two corresponding
results; one result for each of two different notions of connectedness of digraphs.
First, we consider weakly connected digraphs, that is, digraphs where the
underlying undirected graph is connected. Here, the result is very similar to
Theorem 3.3 (ii).

Theorem 3.6 (Beineke and Harary [BH65]). A realizable degree sequence S ={(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
is realizable by a weakly connected digraph if and only

if
(

0
0

)
/∈ S and

∑n
i=1 ai ≥ n− 1.

Second, we consider strongly connected digraphs. A digraph D = (V,A) is
strongly connected if for every pair of vertices u, v ∈ V there is a directed path
from u to v and a directed path from v to u. Surprisingly, the corresponding
characterization has more in common with Theorem 3.5 than with Theorem 3.6.

Theorem 3.7 (Beineke and Harary [BH65]). Let S =
{(

a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
be

a realizable degree sequence, where a1 ≥ a2 ≥ . . . ≥ an. Then S is realizable by
a strongly connected digraph if and only if ai > 0 and bi > 0 for all 1 ≤ i ≤ n
and for each r ∈ {1, 2, . . . , n− 1}

r∑
i=1

ai <
r∑
i=1

bi +
n∑

i=r+1

min{r, bi}.
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3.2. f-Factors and More General Degree Factors

In this section, we give a brief overview on f -factors—the core tool used
in the kernelization algorithm we are presenting in Chapter 6. As in Sec-
tions 3.1.1 and 3.1.2, we start in Section 3.2.1 with the algorithmic results
and then continue with structural results. Since the corresponding algorithms
are rather complicated and we only need them as black boxes, we just list
the corresponding results and refrain from further explanation like it is done
in Section 3.1. In Section 3.2.2, we discuss generalizations of the f-Factor
problem and show connections to Degree Anonymity.

3.2.1. f-Factors

The f-Factor problem is formally defined as follows.

f-Factor [LP86, Chapter 10]
Input: An undirected graph G = (V,E) and a function f : V → N.
Question: Does G contain an f -factor?

Input:

2

3

2

1

2

Solution:

The first polynomial-time algorithm for the f-Factor problem is due to Tutte
[Tut54] and Edmonds [Edm65]. Tutte [Tut54] gave a polynomial-time reduction
from the f-Factor problem to the 1-Factor problem (where f ≡ 1) and Ed-
monds [Edm65] showed with his blossom algorithm that one can find a maximum
matching in O(n4) time. Here, a matching in a graph G is a nonoverlapping sub-
set of its edge set and a matching is called perfect if it covers all vertices, that is,
a perfect matching is a 1-factor. So far, the fastest algorithm to find a maximum
(weighted) matching is due to Micali and Vazirani [MV80] and runs in O(m

√
n)

time. Using this algorithm, Gabow [Gab83] showed that the f-Factor problem
can be solved in O(m

√
f(V )) time, where f(V ) :=

∑
v∈V f(v) and V is the set

of vertices in the input graph. Recently, Gabow and Sankowski [GS13] presented
an algebraic approach solving the f-Factor problem in time O(f(V )ω) time,
where O(xω) is the time needed to multiply two x× x matrices; currently the
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best bound is ω ≈ 2.3727 [Vas12]. This algorithm is faster if f(V ) is small and
the input graph is dense.
There exists a rich structure theory behind f -factors, see Akiyama and

Kano [AK85] and Plummer [Plu07] for two listings of numerous results in this
direction. Here, we refrain from giving an overview but mention a result of
Katerinis and Tsikopoulos [KT00] which we will use in Chapter 6.

Lemma 3.8 (Katerinis and Tsikopoulos [KT00]). Let G = (V,E) be an undi-
rected graph with minimum vertex degree δ and let a ≤ b be two positive integers.
Suppose further that

δ ≥ b

a+ b
|V | and |V | > a+ b

a
(a+ b− 3).

Then, for any function f : V → {a, a+ 1, ..., b} where
∑
v∈V f(v) is even, G has

an f -factor.

3.2.2. Generalizations of f-Factors

Several generalizations of f -factors have been looked at. They can be categorized
into two types. The problems of the first type change the degree constraints. The
problems of the second type change the condition that the sought graph needs
to be a spanning subgraph. Instead, they ask for solutions being “close” to the
given graph, where close is usually measured by the edit distance with respect
to some graph modification operation, for example, vertex deletions or edge
insertions. This leads to graph modification problems as, for example, Degree
Anonymity. The f-Factor problem can be seen as a graph modification
problem where only edge deletions are allowed. Furthermore, also the degree
sequence realization problems considered in Section 3.1 are graph modification
problems where the input graph is edgeless and only edge insertions are allowed.

Generalized degree constraints. Generalizing the f-Factor problem such
that for each vertex a range of allowed degrees is given instead of just one degree
leads to the (g, f)-Factor problem, where g gives a lower bound and f an
upper bound on the degrees.
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(g, f)-Factor [LP86, Chapter 10]
Input: An undirected graph G = (V,E) and a two functions g, f : V →

N with g(v) ≤ f(v) for all v ∈ V .
Question: Does G contain an (g, f)-factor, that is, a spanning sub-

graph G′ = (V,E′) of G such that g(v) ≤ degG′(v) ≤ f(v)
for all v ∈ V ?

Input:

[1, 2]

[3, 3]

[1, 3]

[1, 2]

[0, 3]

Solution:

Notably, the above mentioned algorithm of Gabow [Gab83] returns a (g, f)-factor
with the maximum number of edges. Furthermore, Gabow generalized this
result to the weighted variant, where as additional input real-valued edge-
weights are provided and the task is to find a maximum-weight (g, f)-factor.
For this weighted (g, f)-Factor problem he provided an algorithm running
in O(f(V ) · (n2 +m log n)) time.

A natural generalization of (g, f)-factors is that, instead of giving upper and
lower bounds for the degrees, a set of allowed degrees is provided for every
vertex. This variant, introduced by Lovász [Lov72], is called General Factor
and defined as follows. To this end, we denote the power set of a set Sby 2S .

General Factor [Lov72]
Input: An undirected graph G = (V,E) and a function τ : V →

2{0,1,...,n−1}.
Question: Does G contain a general factor, that is, a spanning sub-

graph G′ = (V,E′) of G such that degG′(v) ∈ τ(v) for all v ∈ V ?

Input:

{2}

{0, 3}

{0, 2, 3}

{0, 1}

{2}

Solution:
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While the general problem is NP-complete [Lov72], Cornuéjols [Cor88] proved
that the problem variant where τ contains no gap of size at least two is
polynomial-time solvable. Here, τ contains a gap of size two if for a vertex v ∈ V
and an integer ` ∈ N it holds that `, `+ 3 ∈ τ(v), but `+ 1, `+ 2 /∈ τ(v).

Degree-constrained graph modification problems. Another type of general-
ization of the f -factor problem is when instead of searching for a subgraph one
searches for a graph that is “close” to the input graph, turning the problem into a
graph modification problem where vertex deletions as well as edge deletions and
insertions are allowed. In this line, Mathieson and Szeider [MS12] considered
the probably simplest generalization of f-Factor by allowing edge editings,
that is, edge deletions and insertions.

f-Factor Editing [MS12]
Input: An undirected graph G = (V,E), an integer s ∈ N, and a

function f : V → N.
Question: Can G be transformed by at s edge editing operations into a

graph G′ = (V,E′) such that degG′(v) = f(v) for all v ∈ V ?

Input:
s = 4

2

3

2

1

2

Solution:

Mathieson and Szeider showed that f-Factor Editing is polynomial-time
solvable by a reduction to the weighted 1-Factor problem. We remark that
Mathieson and Szeider did not introduce a name for f-Factor Editing but
simply treated it as a polynomial-time solvable special case of their much more
general Degree Constraint Editing problem, which is defined as follows.

Degree Constraint Editing [MS12]
Input: An undirected graph G = (V,E), two integers s, r ∈ N, and a

function τ : V → 2{0,1,...,r}.
Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using

at most s editing operations such that degG′(v) ∈ τ(v) for
all v ∈ V ′?
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Input:

s = 2

{2}

{0, 3}

{0, 3}

{2, 3}

{2}

Solution:

Degree Constraint Editing can be interpreted as the graph modification
variant of the General Factor problem. Mathieson and Szeider [MS12]
considered the modification operations edge insertion, edge deletion, and vertex
deletion and showed that Degree Constraint Editing is for each combination
of the three operations W[1]-hard with respect to the parameter s and fixed-
parameter tractable with respect to the combined parameter (s, r). The fixed-
parameter tractability is achieved by a general meta-theorem due to Frick and
Grohe [FG01], Golovach [Gol14b] presented direct combinatorial algorithms.
Interestingly, Mathieson and Szeider also studied kernelization, where they left
as most challenging open problem to extend their kernelization results to cases
that include vertex deletion and edge insertion, emphasizing that the presence
of edge insertions is making their approach inapplicable. In Chapter 6, we show
a kernelization approach that can be applied to a broad subclass of degree-
constrained completion problems. Furthermore, we recently used the presented
ideas to provide a polynomial problem kernel for Degree Constraint Editing
when only edge insertions are allowed [FNN14].

Degree Constraint Editing naturally generalizes Bounded-Degree
Deletion and Regular-Degree-d Vertex Deletion. The Bounded-
Degree Deletion problem asks, given an undirected graph G and two inte-
gers d, s ∈ N, whether at most s vertices can be deleted such that the maximum
degree in the resulting graph is at most d. Fellows et al. [Fel+11] showed a poly-
nomial size problem kernel for Bounded Degree Deletion with respect to the
combined parameter (s, d). They further proved W[2]-hardness with respect to
the single parameter s. Betzler et al. [Bet+12] proved that Bounded-Degree
Deletion is W[1]-hard with respect to the parameter treewidth, but becomes
fixed-parameter tractable with respect to the combined parameter treewidth
and solution size s. Closely related to Bounded-Degree Deletion is the
Regular-Degree-d Vertex Deletion problem, where given an undirected
graph G and an integer s ∈ N, the task is to decide whether G can be made
d-regular by at most s vertex deletions. Moser and Thilikos [MT09] showed that
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Regular-Degree-d Vertex Deletion can be solved in O(n(s+d)+(d+2)s)
time and presented a problem kernel of size O(sd(d + s)2). Degree Con-
straint Editing also generalizes many well-studied NP-complete problems
like Vertex Cover (s is the size of the sought vertex cover, τ(v) := {0} for
all v ∈ V , and only vertex deletions are allowed) or Dominating Set (s is the
size of the sought dominating set, τ(v) := {0, 1, . . . ,degG(v)− 1} for all v ∈ V ,
and only vertex deletions are allowed).

Note that Degree Constraint Editing is, however, neither a special case
nor a generalization of Degree Anonymity: The degree constraints in the
Degree Constraint Editing problem, in the f-Factor problem and in all
the presented generalizations of f-Factor are local : independent from the rest
of the graph, one only needs to know the degree of a vertex to decide whether
it fulfills the degree constraints. Degree Anonymity differs from the degree
factors presented in this section as the degree property is global. To this end,
recall that the task in Degree Anonymity is, given an undirected graph G
and two integers k, s ∈ N, to decide whether at most s graph modification
operations can transform G into a k-anonymous graph. Here, a graph is called
k-anonymous if for each vertex there are at least k − 1 other vertices of same
degree (see page 7 for further details). Thus, whether one particular vertex v
fulfills the degree constraints depends on the degrees of other vertices that may
be far away from v. These global degree constraints cannot be expressed in
the Degree Constraint Editing problem. Furthermore, the global nature
of the degree constraints is one explanation for the very strong intractability
results for the edge and vertex deletion variants of Degree Anonymity, see
Chapter 5.
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Chapter 4.

DAG Realization

In this chapter, we investigate the computational complexity of the DAG
Realization problem. It asks, given a degree sequence S, whether S can be
realized by a directed acyclic graph. Answering an open question of Berger and
Müller-Hannemann [BM11], we show that DAG Realization is NP-complete.
On the positive side, we classify DAG Realization as fixed-parameter tractable
with respect to the parameter maximum degree.

4.1. Introduction

It has been known for a long time that it is decidable in polynomial time
whether a given degree sequence is realizable by an undirected graph. There
are characterizations for realizable degree sequences due to Erdős and Gallai
[EG60] and algorithms by Havel [Hav55] and Hakimi [Hak62]. The problem
variant where one asks whether there is a directed graph realizing the given
degree sequence has also been intensively studied; see Chen [Che66], Fulkerson
[Ful60], Gale [Gal57], and Ryser [Rys57] for characterizations of realizable degree
sequences and Kleitman and Wang [KW73] for polynomial-time algorithms.
Further research then concentrated on realizing degree sequences as graphs
with certain properties, for example requiring that the realizing graph shall be
connected. While for the connectedness Edmonds [Edm64] and Beineke and
Harary [BH65] gave characterizations for the directed as well as undirected
case, we consider in this chapter another important graph property, namely
acyclicity. Here, in the undirected case there exists a simple characterization,
see Lovász and Plummer [LP86, Exercise 10.3.5.]. We show that the directed
case, however, is much more complicated. The corresponding graph realization
problem, introduced by Berger and Müller-Hannemann [BM11], is defined as
follows:
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DAG Realization
Input: A degree sequence S =

{(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
.

Question: Is there a directed acyclic graph with vertex set {v1, v2, . . . , vn}
such that for every vi ∈ V , 1 ≤ i ≤ n, the indegree is ai and the
outdegree is bi?

Input:

S =
{(

1
0

)
,
(

2
1

)
,
(

1
1

)
,
(

2
0

)
,
(

3
0

)
,
(

1
0

)
,
(

0
6

)
,
(

1
3

)}
Solution:

v7v8

v2

v5 v4 v3 v1

v6

This problem arises in the context of randomly generating DAGs satisfying some
prespecified degree constraints [Ber11]. Berger and Müller-Hannemann [Ber11,
BM11, BM12] investigated restricted variants of DAG Realization that are
polynomial-time solvable and performed an extensive experimental study on the
general problem. We refer to Section 3.1 for a detailed overview on known results
about realizable degree sequences for the undirected as well as the directed case.

Our contributions. Berger and Müller-Hannemann [BM11] left the computa-
tional complexity of the general problem as their main open question. We answer
this question by showing that DAG Realization is NP-complete. Moreover,
on the positive side we classify DAG Realization as fixed-parameter tractable
with respect to the parameter maximum degree ∆ := max{a1, b1, a2, b2, . . .,
an, bn}. Denoting by n the number of vertices and by m the number of arcs in
a realizing DAG and assuming

(
0
0

)
/∈ S, Berger and Müller-Hannemann [BM12]

showed that if m < n, then DAG Realization is polynomial-time solvable.
We extend this result to less sparse and to dense settings by considering the
four parameters m− n+ 1, m/n,

(
n
2

)
−m, and (n2)/m. For the first and the third

parameter m−n+ 1 and
(
n
2

)
−m we prove fixed-parameter tractability, whereas

for the second and fourth parameter m/n and (n2)/m we show NP-completeness
for any constant parameter value greater than one, see Table 4.1 for an overview.
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Table 4.1.: Overview on the computational complexity classification of DAG Real-
ization.

Parameter Result

- NP-complete (Theorem 4.6 on page 56)
∆ FPT (Theorem 4.27 on page 83)

m− n+ 1 FPT (Theorem 4.31 on page 89)(
n
2

)
−m FPT (Theorem 4.28 on page 84)

m/n NP-complete for each constant > 1 (Theorem 4.7 on page 57)
(n2)/m

Preliminaries. We denote with ] the multiset sum (e. g. {1, 1} ] {1, 2} =

{1, 1, 1, 2}). For a degree sequence S =
{(

a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
we set m :=∑n

i=1 ai and we assume throughout this chapter that
(

0
0

)
/∈ S, that the maximum

occurring value is at most n − 1, and that
∑n
i=1 ai =

∑n
i=1 bi. If a degree

sequence S is a yes-instance of DAG Realization, then S is called realizable
and the corresponding directed acyclic graph (DAG for short) D is called a
realizing DAG for S. For a degree sequence S and a tuple s ∈ S with s =

(
a
b

)
,

we set deg−(s) := a and deg+(s) := b. A vertex v ∈ V or a tuple
(
a
b

)
∈ S is

called a source if deg−(v) = 0 = a and it is called a sink if deg+(v) = 0 = b.
Each DAG D admits a topological ordering, that is, an ordering of all its vertices
v1, v2, . . . , vn such that for all arcs (vi, vj) ∈ A it holds that i < j. Next, we
define a central notion for this chapter.

Definition 4.1. An ordered degree sequence σ =
(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
is called

a realizable degree ordering if there is a realizing DAG D for σ admitting a
topological ordering v1, v2, . . . , vn such that deg−(vi) = ai and deg+(vi) = bi
for all 1 ≤ i ≤ n.

In the following, a realizable degree ordering of a degree sequence of S refers to
an ordering S such that it fulfills Definition 4.1. Berger and Müller-Hannemann
[BM12] proved that one can check in polynomial time whether a given ordering
of a degree sequence is a realizable degree ordering.

Organization. This chapter is structured as follows: Section 4.2 contains the
proof of the NP-completeness of DAG Realization. Furthermore, we show
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that DAG Realization remains NP-complete in case of any constant ratios
m/n > 1 and (n2)/m > 1. In Section 4.3, we show that DAG Realization is
fixed-parameter tractable with respect to the parameter maximum degree ∆.
Finally, in Section 4.4, we prove that DAG Realization is fixed-parameter
tractable with respect to each of the parameters m− n+ 1 and

(
n
2

)
−m.

4.2. NP-Completeness

In this section, we first describe the construction of our reduction proving NP-
hardness of DAG Realization and explain the high-level idea of how it works.
Then, we prove its correctness. Finally, we show that DAG Realization
remains NP-hard in sparse as well as dense setting. More precisely we prove
NP-hardness of DAG Realization for any constant ratio of m/n and of (n2)/m.
Observe that containment in NP is easy to see: Guessing an n-vertex DAG
and checking whether or not it is a realization for the degree sequence S is
clearly doable in polynomial time. Hence we focus in the following on showing
NP-hardness.

We prove NP-hardness for DAG Realization by giving a polynomial-time
many-to-one reduction from the strongly NP-hard 3-Partition problem [GJ79,
SP15]:

3-Partition
Input: A multiset A = {a1, a2, . . . , a3p} of 3p positive integers and an

integer B with
∑3p
i=1 ai = pB and ∀i : B/4 < ai < B/2.

Question: Is there a partition of the 3p integers from A into p disjoint
triples such that in every triple the three elements add up to B?

Input: B = 40

A =

{
11, 11, 11, 12, 12, 12, 12, 12,
13, 14, 14, 15, 16, 17, 18

} Solution:
(11, 11, 18), (12, 13, 15),
(12, 12, 16), (11, 12, 17),
(12, 14, 14)

Construction. Throughout this section let (A, B) be an instance of 3-Parti-
tion and let SA,B be the degree sequence constructed as follows:

SA,B := X0 ]X1 ] . . . ]Xp ]
{(

a1

a1

)
,

(
a2

a2

)
, . . . ,

(
a3p

a3p

)}
.
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We formally define the multisets Xi, 0 ≤ i ≤ p, after giving the idea of the
construction. For the description of the idea we need some notation: We
set X :=

⊎p
i=0Xi, call a tuple in X an x-tuple, and call all tuples in SA,B \X

a-tuples. In a realizing DAG the vertices realizing x-tuples are called x-vertices
and the vertices realizing a-tuples are called a-vertices.
The intuition of the construction is that a DAG realizing SA,B (if it exists)

looks as follows: The tuples of a multiset Xi, 0 ≤ i ≤ p, form a “module” in
a realizable degree ordering. These modules are a skeletal structure in any
realizable degree ordering and there are p “gaps” between them. The construction
ensures that each gap is filled with a-vertices adjacent to the vertices in the
modules bordering the gap and, moreover, the indegrees and outdegrees of all
a-vertices in a gap sum up to B. Hence, these p gaps require to partition the
a-vertices into p sets where the in- and outdegrees of the a-vertices in each set
sum up to B. Thus, the p sets correspond to a solution for the 3-Partition
instance that we reduce from. In the reverse direction, for each triple in a
solution of a 3-Partition instance the corresponding a-vertices will be used to
fill up one gap. See Figure 4.1 for an example of the construction.

To achieve the mentioned skeletal structure of X, we require the corresponding
x-vertices to form a transitive tournament. This is a DAG with n vertices and

(
n
2

)
arcs; hence it is the only realization of the degree sequence {

(
0

n−1

)
,
(

1
n−2

)
,

. . . ,
(
n−1

0

)
}. Observe that there is only one DAG realizing such a sequence and,

furthermore, a transitive tournament admits only one topological ordering.
Now, we complete the reduction. For the ease of argumentation we fix

one DAG DA,B serving as a blueprint for any DAG realizing SA,B and we
explain the construction with DA,B. We set X = {x0, x1, . . . , x2(p+1)B−1}.
As indicated in Figure 4.1, each multiset Xi, 0 ≤ i ≤ p, contains 2B tuples,
more specifically, Xi = {x2iB , x2iB+1, . . . , x2iB+2B−1}. The corresponding
set of x-vertices in DA,B is Vi = {v2iB , v2iB+1, . . . , v2iB+2B−1} and it forms
the ith module. Recall that the x-vertices are supposed to form a transitive
tournament in DA,B and the topological ordering shall be v0, v1, . . . , v2(p+1)B−1.
To achieve this, vj has incoming arcs from all j preceding vertices and outgoing
arcs to all succeeding vertices (these are |X| − 1 − j = 2(p + 1)B − 1 − j
vertices). As mentioned before, there should be some gaps in the skeletal
structure provided by the modules formed of the tuples of X. To this end,
the first half of the x-vertices in Vi, 0 < i < p, will have one incoming arc
from an a-vertex and the second half of the x-vertices will have an outgoing to
an a-vertex. Observe that some x-vertices corresponding to tuples in X0 and Xp
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X0 X1 X2 X3 X4

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

Figure 4.1.: A schematic representation of a DAG that realizes a degree sequence SA,B

that is constructed from a 3-Partition instance with B = 12 and p = 4. There
are five modules marked by the gray ellipses and four gaps between them. In each
gap there are three a-vertices, altogether having in- and outdegree B. The sets Xi,
0 ≤ i ≤ p, are partitioned into two parts of size B each. The vertices in the left part
(except for X0) have B incoming arcs from the a-vertices that fill the gap between
Xi−1 and Xi. Correspondingly, the vertices in the right part (except in Xp) have
B outgoing arcs to the a-vertices that fill the gap between Xi and Xi+1. The in-
and outdegrees of the a-vertices in each triple sum up to B. The vertices in the gray
ellipses form a big transitive tournament where the first vertex with no inneighbors is
the top-leftmost vertex and the vertex without outneighbors is the bottom-rightmost
vertex. Here, the bold arcs on top indicate that each vertex in an ellipse has outgoing
arcs to all vertices in the proceeding gray ellipses.

have neither an incoming nor an outgoing arc to an a-vertex. We introduce the
following notation for the ease of argumentation: For each i ∈ {0, 1, . . . , p− 1}
we denote by V ri the “right part of the ith module Vi” in DA,B, formally
V ri := {v2iB+B , v2iB+B+1, . . . , v2iB+2B−1}, and we denote by V `i+1 the “left part
of the (i+1)th module”, formally V `i+1 := {v2(i+1)B , v2(i+1)B+1, . . . , v2(i+1)B+B}.
To simplify the index handling we set V `0 := V rp := ∅ and V ` :=

⋃p
i=0 V

`
i

and V r :=
⋃p
i=0 V

r
i . Furthermore, Xr, X`, Xr

i , and X`
i , 0 ≤ i ≤ p, contain

the corresponding x-tuples. Now we can precisely describe the arcs between
a-vertices and x-vertices: For each 0 ≤ i ≤ p, each v ∈ V ri has an outgoing arc
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to an a-vertex and each vertex v ∈ V `i+1 has an incoming arc from an a-vertex.
Summarizing, the corresponding x-tuple for vj is

xj :=

(
j + in(j)

2(p+ 1)B − 1− j + out(j)

)
,

where in(j) and out(j) are defined as follows:

in(j) :=

{
1, if xj ∈ X`

0, else,
out(j) :=

{
1, if xj ∈ Xr

0, else.

Observe that the strong NP-hardness of 3-Partition is essential to prove the
polynomial running time of the reduction: The size of the constructed DAG
Realization instance is upper-bounded by a polynomial in the values of the
integers in A. Since 3-Partition is strongly NP-hard, it remains NP-hard
even when the values of the integers in A are bounded by a polynomial in the
input size. Hence, the size of the DAG Realization instance is polynomially
bounded in the size of the 3-Partition instance. Thus, the construction can
clearly be performed in polynomial time.

Correctness. Next, we prove the correctness of the construction given above.
The main effort here is to prove that DA,B is indeed a blueprint of at least
one realizing DAG. Before doing this, we show that if (A, B) is a yes-instance,
then DA,B realizes the constructed degree sequence SA,B as intended.

Lemma 4.1. If (A, B) is a yes-instance of 3-Partition, then SA,B is a
yes-instance of DAG Realization.

Proof. We prove that if (A, B) is a yes-instance, then there exists a realizing
DAG for SA,B as described above and depicted in Figure 4.1. Let π be a
permutation of the sequence A such that aπ(3i+1) + aπ(3i+2) + aπ(3i+3) = B for
all 0 ≤ i < p. Since (A, B) is a yes-instance of 3-Partition such a permutation
exists. We now give a complete description of the realizing DAG DA,B. As
mentioned above, we let the x-vertices in DA,B form a transitive tournament
with the topological ordering v0, v1, . . . , v2(p+1)B−1. Furthermore, the a-vertices
are denoted by u1, u2, . . . , u3p where ui realizes the a-tuple

(
ai
ai

)
. Then, the

a-vertex uπ(3i+1) (uπ(3i+2), uπ(3i+3) resp.) has an incoming arc from each of to
the first aπ(3i+1) (next aπ(3i+2), last aπ(3i+3)) vertices in V ri and an outgoing
arc to each of the first aπ(3i+1) (next aπ(3i+2), last aπ(3i+3)) vertices in V `i+1.
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In this way, each a-vertex ui has an in- and outdegree of ai. Furthermore,
as aπ(3i+1) + aπ(3i+2) + aπ(3i+3) = B for all 0 ≤ i < p, each vertex in V r has an
outgoing arc to an a-vertex and each vertex in V ` has an incoming arc from
an a-vertex. Hence each x-vertex vj indeed realizes the x-tuple xj .

To show the reverse direction, we first need some lemmas.

Lemma 4.2. In any DAG D realizing SA,B, the a-vertices form an independent
set and the x-vertices form a transitive tournament.

Proof. The number deg−(X) of ingoing arcs to all x-vertices is

deg−(X) =

2(p+1)B−1∑
j=0

deg−(xj) =

2(p+1)B−1∑
j=0

j + in(j)

= pB +

2(p+1)B−1∑
j=0

j = pB + (p+ 1)B(2(p+ 1)B − 1).

Note that deg−(X) is equal to the number deg+(X) of outgoing arcs from
all x-vertices. The number of a-vertices is 3p and the number of x-vertices
is 2(p+ 1)B. Hence, the number ξ of arcs between the x-vertices is at most:

ξ =

(
2(p+ 1)B

2

)
= (p+ 1)B(2(p+ 1)B − 1).

As a consequence, there are at least deg−(X) − ξ = pB arcs going from an
a-vertex to an x-vertex. Since pB =

∑3p
i=1 ai is the number of outgoing arcs

from the a-vertices, all outgoing arcs from a-vertices go to x-vertices. Thus, in
any realizing DAG D the a-vertices form an independent set and the number of
arcs between the x-vertices is exactly ξ. Hence, the x-vertices form a transitive
tournament in D.

We next show that for a realizable degree sequence SA,B there exists a realiz-
able degree ordering in which the x-vertices are ordered v0, v1, . . . , v2(p+1)B−1.
To this end, we need some further notations: We use the opposed order ≤opp

for the tuples of a degree sequence S as introduced by Berger and Müller-
Hannemann [BM11]: For two tuples

(
a
b

)
,
(
a′

b′

)
∈ S it holds that(

a

b

)
≤opp

(
a′

b′

)
⇐⇒ a ≤ a′ ∧ b ≥ b′.
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Note that there might be tuples in the degree sequence S that are not comparable
with respect to the opposed order (for example

(
1
1

)
and

(
2
2

)
). However, the next

lemma due to Berger and Müller-Hannemann [BM11] implies that we can always
assume that a realizable degree ordering does not collide with the opposed order.
(Clearly, there can exist realizing degree orderings which are not in opposed
order.)

Lemma 4.3 ([BM11, Corollary 3]). Let S be a realizable degree sequence. Then,
there exists a realizable degree ordering

(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
of S such that for all

1 ≤ i, j ≤ n with
(
ai
bi

)
≤opp

(
aj
bj

)
and

(
ai
bi

)
6=
(
aj
bj

)
, it holds that i < j.

As a consequence of Lemma 4.3, if there are two tuples t1, t2 in a realizable
degree sequence SA,B such that t1 ≤opp t2 and t1 6= t2, then we can always
assume that there is a realizable degree ordering where the tuple t1 is ahead
of t2. Furthermore, observe that if t1 = t2 and there is a realizable degree
ordering where t1 is ahead of t2, then there is also a realizable degree ordering
where t2 is ahead of t1 (just exchange these two identical tuples). We use this
fact to prove the next lemma.

Lemma 4.4. If SA,B is realizable, then there exists a realizable degree ordering σ
such that in σ for all 0 ≤ i < j < 2(p+ 1)B the tuple xi is ahead of xj.

Proof. To prove that such a realizable degree ordering exists, by Lemma 4.3
and the above discussion, it is sufficient to show for all 0 ≤ i < j < 2(p+ 1)B
that xi ≤opp xj . This can be verified easily as in(k), out(k) ∈ {0, 1} for
all 0 ≤ k < 2(p+ 1)B:

deg−(xi)− deg−(xj) = i+ in(i)− j − in(j) ≤ i+ 1− j ≤ 0

deg+(xi)− deg+(xj) = 2(p+ 1)B − i− 1 + out(i)
− (2(p+ 1)B − j − 1 + out(j))

= j + out(i)− i− out(j) ≥ j − i− 1 ≥ 0.

With Lemmas 4.2 and 4.4 we can prove the next lemma, which completes the
proof of the correctness of our reduction.

Lemma 4.5. If SA,B is a yes-instance of DAG Realization, then (A, B) is
a yes-instance of 3-Partition.
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Proof. Let D = (V,A) be a realizing DAG of the degree sequence SA,B with
a topological ordering φ. Let vj be the x-vertex realizing xj and let ui be the
a-vertex realizing

(
ai
ai

)
. Denote for each vertex v by posφ(v) the position of v in φ.

From Lemma 4.2 it follows that the x-vertices form a transitive tournament.
Furthermore, we can assume by Lemma 4.4 that posφ(vj) < posφ(vk) for
all 0 ≤ j < k < 2(p + 1)B. Hence, it follows from the in- and outdegrees of
the x-vertices that each x-vertex in V ri , 0 ≤ i < p, has exactly one outgoing arc
to an a-vertex and each x-vertex in V `i , 1 ≤ i ≤ p, has exactly one incoming arc
from an a-vertex. Hence, we can assume that there are a-vertices ui1 , ui2 , . . . , uik
with posφ(v) < posφ(uij ) < posφ(v′) for all v ∈ V r0 and v′ ∈ V `1 . As B vertices
from V r0 have an outgoing arc to these a-vertices, it follows that

∑k
j=1 aij ≤ B.

As each a-vertex has an indegree equal to its outdegree and each of the B vertices
in V `1 requires one incoming arc from an a-vertex, it follows that

∑k
j=1 aij ≥ B.

Hence,
∑k
j=1 aij = B. Since B/4 < aj < B/2 for all 1 ≤ j ≤ 3p, it follows

that k = 3.
The vertices in V r1 also have no incoming arc from an a-vertex but each of

them has an outgoing arc to an a-vertex. Also, each of the vertices in V `2 needs
one incoming arc from an a-vertex. Thus, we can assume that in the topological
ordering φ of D there are three a-vertices between the vertices of V r1 and V `2
such that their indegrees and also their outdegrees sum up to B. Analogously,
it follows for all 1 ≤ i < p that there are three a-vertices uji1 , uji2 , uji3 with

posφ(v) < posφ(uji1) < posφ(uji2) < posφ(uji3) < posφ(v′)

for all v ∈ V ri and v′ ∈ V ri+1, and
∑3
`=1 aji` = B. Thus, (A, B) is a yes-instance

of 3-Partition.

Our construction together with Lemmas 4.1 and 4.5 yields the NP-hardness of
DAG Realization. As mentioned in the beginning of this section containment
in NP is easy to obtain. Hence, we arrive at the following theorem.

Theorem 4.6. DAG Realization is NP-complete.

Theorem 4.6 proves that, unless P = NP, DAG Realization is not solvable
in polynomial time. However, Berger and Müller-Hannemann [BM11] identified
special cases of DAG Realization that can be solved in polynomial time;
for instance, this is the case when the degree sequence can be linearly ordered
with respect to the opposed order. Moreover, Berger and Müller-Hannemann
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[BM12] showed that DAG Realization is polynomial-time solvable when
the number m of arcs is less than the number n of vertices. The positive
results together with the general NP-hardness of DAG Realization motivate
a parameterized complexity analysis of the problem meaning to perform a more
fine-grained complexity analysis with respect to various parameters [FJR13,
KNU11, Nie10]. Thereby, the general target is to identify certain “quantities”
or parameters whose restriction allows the problem to be solved efficiently. To
this end, observe that in our NP-hardness proof construction the resulting
DAG Realization instance contains Θ(n2) arcs and that the problem is
polynomial-time solvable if m < n. Thus, we consider the “sparseness” of the
instance, measured with the “quantities” m/n or m− n+ 1. Unfortunately, the
next theorem proves that, unless P = NP, the parameter m/n is not helpful.
Furthermore, it shows that although the problem is easy if m = n(n− 1)/2 (the
only realizing DAG is a transitive tournament), the problem becomes hard if m
is “almost” n(n− 1)/2.

Theorem 4.7. For every constant ` > 1, DAG Realization remains NP-
complete even if m < `n or if m > n(n− 1)/(2`).

Proof. We prove both results with simple padding arguments. To this end,
let ` > 1 be some constant and let S =

{(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
be an arbitrary

instance of DAG Realization. We will modify S in order to obtain an instance
with the desired ratios between m and n. We denote the modified instance
with S ′ which is initialized as a copy of S.

First, we describe the modifications for the case m > n(n − 1)/(2`): We
repeatedly add universal sources one after the other to S ′, that is, we add a
tuple

(
0
n′

)
to S ′ and increase the first component of the other tuples of S ′ by

one, that is, replace
(
a
b

)
∈ S ′ by

(
a+1
b

)
. Notice that once a universal source is

added to S ′ all former sources become non-sources; in particular, if a second
universal source is added, then the first added universal source is no longer a
source. We keep adding universal sources until m′ > n′(n′ − 1)/(2`).
Observe that adding a universal source to a DAG Realization instance

results in an equivalent instance: The vertex realizing the universal source has
to have outgoing arcs to each other vertex in any realizing DAG. Thus, for every
realizing DAG for the new instance the subgraph induced by all vertices not
realizing the universal source forms a realizing DAG for the original instance.
Conversely, any realizing DAG for the old instance can be easily extended to
a realizing DAG for the new instance. Thus, the constructed instance S ′ is
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a yes-instance if and only if S is a yes-instance. Hence, DAG Realization
remains NP-complete even if m > n(n− 1)/(2`).
Second, for the case m < `n we do the following: We add some number

of
(

0
0

)
-tuples to S ′ and then add one universal source turning the

(
0
0

)
-tuples

into
(

1
0

)
-sinks. By choosing the appropriate amount of

(
0
0

)
-tuples the modified

instance S ′ satisfies m′ < `n′. Furthermore, as adding a
(

0
0

)
-tuple results in an

equivalent instance, it follows that the constructed instance S ′ is a yes-instance if
and only if S is a yes-instance. Hence, DAG Realization remains NP-complete
even if m < `n.

Complementing Theorem 4.7, we show in Section 4.4 that DAG Realization
is fixed-parameter tractable with respect to each of the two parameters m−n+1
and

(
n
2

)
−m. Besides the above mentioned parameters, the maximum degree ∆

is unbounded in our NP-hardness proof. Hence it is a good candidate for further
parameterized investigations. Indeed, we show in the next section that DAG
Realization is linear-time solvable for constant maximum degree.

4.3. Fixed-Parameter Tractability with Respect
to Maximum Degree

Let ∆ := max{a1, b1, a2, b2, . . . , an, bn} denote the maximum degree in a degree
sequence. In this section, we show that DAG Realization is fixed-parameter
tractable with respect to the parameter ∆. To this end, we assume that ∆
is some fixed value and all degree sequences considered in this section have a
maximum degree of ∆.
A high-level description of our approach is as follows: First, we show that

we can reorder any realizable degree ordering for our given input instance S so
that it has a certain structure. Second, our algorithm branches into all possible
orderings of the tuples in S satisfying this structure and returns “yes” if in at
least one branch the considered ordering is indeed a realizable degree ordering,
otherwise it returns “no”. Herein, we will distinguish two cases for the sought
structures. In both cases, however, we use the same reordering operations and
their description makes up the major part of Section 4.3.1. To describe how we
reorder realizable degree orderings, we need the following central definition.

Definition 4.2. Let φ = v1, v2, . . . , vn be a topological ordering of a DAG D.
For all 0 ≤ i ≤ n, the potential at position i is a vector pφi ∈ N∆ where pφi [`] for
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p3 p7 p8

Figure 4.2.: A realizing DAG for the degree sequence S = {
(

0
1

)
,
(

0
1

)
,
(

0
2

)
,
(

2
2

)
,
(

2
2

)
,
(

1
2

)
,(

2
3

)
,
(

3
2

)
,
(

2
1

)
,
(

3
2

)
,
(

2
0

)
,
(

1
0

)
}. Here we have ∆ = 3. The highlighted potentials are as

follows: p3 = (3, 1, 0), p7 = (4, 1, 1), and p8 = (3, 2, 0). Their values (number of arcs
crossing the line indicating the potential) are: ω(p3) = 4, ω(p7) = 6, and ω(p8) = 5.

1 ≤ ` ≤ ∆ is the number of vertices in the subsequence v1, v2, . . . , vi that have
in D at least ` outneighbors in the subsequence vi+1, vi+2, . . . , vn. The value of
a potential pφi is ω(pφi ) :=

∑∆
`=1 p

φ
i [`].

See Figure 4.2 for an example. If the DAG D and the topological ordering φ
are clear from the context, then we write pi instead of pφi . We denote with 0∆

the potential of value zero, for example, it holds that p0 = pn = 0∆. To under-
stand the role of potentials in the reordering operation consider a topological
ordering φ = v1, v2, . . . , vn where at two positions 0 < i < j < n the potentials
are equal, that is pσi = pσj . We will show in Section 4.3.1 that we can cut out the
vertices vi+1, vi+2, . . . , vj , that is, φ′ = v1, v2, . . . , vi, vj+1, vj+2, . . . , vn is also a
topological ordering.
In order to give some intuition about potentials we now make a few general

observations. First, observe that the value of a potential ω(pi) is just the number
of arcs with tail in {v1, v2, . . . , vi} and head in {vi+1, vi+2, . . . , vn}; for example,
in Figure 4.2 four arcs “cross” the third position and hence ω(p3) = 4. Since
the number of arcs is determined by the degrees of the vertices, the value of
the potential at position i+ 1 can be determined by the potential at position i
and the vertex vi+1 at position i + 1: As vi+1 “absorbs” deg−(vi+1) arcs and
“contributes” deg+(vi+1) arcs to the following vertices, the value of the potential
at position i + 1 is ω(pi+1) = ω(pi) − deg−(vi+1) + deg+(vi+1). Generalizing
this yields the following.
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Observation 4.8. Let φ = v1, v2, . . . , vn be a topological ordering of a DAG D
and let 1 ≤ i < j ≤ n be two integers. Then it holds that ω(pj) = ω(pi) +∑j

`=i+1(deg+(v`)− deg−(v`)).

Second, we remark that a potential stores more information than just the
number of arcs “crossing” some position: The potential pi stores all information
about how many vertices from {v1, v2, . . . , vi} have how many outgoing arcs
to {vi+1, vi+2, . . . , vn}: In particular, for each 1 ≤ j < ∆ there are pi[j]−pi[j+1]
vertices in {v1, v2, . . . , vi} that have exactly j neighbors in {vi+1, vi+2, . . . , vn}.
Thus, for any potential pi ∈ N∆ at any position i ∈ N, it holds that pi[j] ≥
pi[j + 1] for all 1 ≤ j < ∆.

Algorithm outline. Our algorithm consists of two parts. First, as described in
Section 4.3.2, the algorithm checks whether the DAG Realization instance
admits a “high-potential realization” where at any position the value of the
potential is at least ∆2. If no high-potential realization is found, then, by
exploiting the fact that the value of all potentials is upper-bounded, the algorithm
checks whether a “low-potential realization” exists; see Section 4.3.3 for the
description.

4.3.1. General Terms and Observations

In this section, we provide some general notations, observations, and lemmas
leading to the reordering operation we use in the algorithms to find high-potential
as well as low-potential realizations.

Notation. For a topological ordering φ = v1, v2, . . . , vn and two indices 1 ≤
i ≤ j ≤ n we set φ[i, j] := vi, vi+1, . . . , vj . The vertex set {vi, vi+1, . . . , vj}
is denoted by φ{i, j}. Analogously, for an ordering σ =

(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
of

a degree sequence S we set σ[i, j] :=
(
ai
bi

)
,
(
ai+1

bi+1

)
, . . . ,

(
aj
bj

)
and we denote the

multiset
{(

ai
bi

)
,
(
ai+1

bi+1

)
, . . . ,

(
aj
bj

)}
by σ{i, j}. For two topological orderings φ =

v1, v2, . . . , vn and φ′ = v′1, v
′
2, . . . , v

′
n′ we set φφ′ := v1, v2, . . . , vn, v

′
1, v
′
2, . . . , v

′
n′ .

Similarly, for two orderings σ =
(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
and σ′ =

(a′1
b′1

)
,
(a′2
b′2

)
, . . . ,

(a′
n′
b′
n′

)
we set σσ′ :=

(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
,
(a′1
b′1

)
,
(a′2
b′2

)
, . . . ,

(a′
n′
b′
n′

)
.
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Definition 4.3. Two tuples
(
a
b

)
and

(
a′

b′

)
are of the same type if

(
a
b

)
=
(
a′

b′

)
.

Furthermore,
(
a
b

)
is a good type tuple if a ≤ b and otherwise it is a bad type

tuple. Two vertices are of the same type, if they have the same in- and
the same outdegrees. Correspondingly, a vertex v is a good type vertex if
deg−(v) ≤ deg+(v) and otherwise it is a bad type vertex.

Note that the input degree sequence contains at most (∆ + 1)2 different types.

Well-connected DAGs. Berger and Müller-Hannemann [BM12] showed that,
given an ordering of a degree sequence, one can check in polynomial time
whether this ordering is a realizable degree ordering. To prove this, the main
observation is that for any realizable degree ordering one can construct at
least one corresponding DAG by well-connecting consecutive vertices in a
corresponding topological ordering.

Definition 4.4. Let D be a DAG with a topological ordering φ[1, n]. The
remaining outdegree of vertex vi at position j, 1 ≤ i ≤ j < n, is the number of
vi’s neighbors in the subsequence φ[j + 1, n]. Furthermore, D is well-connected
with respect to φ if for all vertices vi ∈ φ{1, n} it holds that vi’s inneighbors are
the deg−(vi) vertices in φ[1, i− 1] that have the highest remaining outdegree at
position i− 1.

Observe that the potential pφi at position i stores the remaining outdegrees
of all vertices v1, v2, . . . , vi at position i. In the following, we omit φ and just
write that D is well-connected when the corresponding topological ordering φ is
clear from the context or implicitly given by a realizable degree ordering corre-
sponding to D. Furthermore, during the construction of a DAG corresponding
to a realizable degree ordering we write that we well-connect the vertex vi as an
abbreviation for making the deg−(vi) vertices with the highest remaining outde-
gree at position i− 1 inneighbors of vi. Berger and Müller-Hannemann [BM12]
showed how to construct a well-connected DAG realizing a given realizable
degree ordering; see Berger [Ber11] for the complete proof of correctness.

Lemma 4.9 ([Ber11, Theorem 4.1] and [BM12, Lemma 1]). Let σ be a realizable
degree ordering. Then, there exists a realizing well-connected DAG D that admits
a topological ordering φ corresponding to σ.

We use Lemma 4.9 as follows: It paves the way to a simple algorithm checking
whether a given ordering of a degree sequence S is indeed a realizable degree
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p4p4

Figure 4.3.: Two non-isomorphic well-connected DAGs realizing the realizable degree
ordering

(
0
1

)
,
(

0
1

)
,
(

1
1

)
,
(

1
1

)
,
(

2
0

)
. Observe that for each position the two potentials at

this position are the same, for example, in both graphs the potential at position four
is p4 = (2, 0).

ordering: The algorithm iteratively adds the vertices according to the given
ordering and well-connects each added vertex, thus working similar to the
algorithm of Kleitman and Wang [KW73], see Algorithm 3.2 on page 36.

Lemma 4.10. Given an ordered degree sequence σ, one can decide in O(∆n)
time whether σ is a realizable degree ordering.

Proof. As mentioned above, the algorithm constructs the DAG stepwise by
iterating over σ, adding a vertex v for the currently considered tuple, and
well-connecting v. To this end, the algorithm uses ∆ lists, where the ith list
stores all vertices having remaining outdegree i at the currently considered
position. By virtually concatenating the ∆ lists in O(∆) time and then iterating
over the first ∆ elements one can determine in O(∆) time up to ∆ vertices with
highest outdegrees. Hence, well-connecting a vertex v can be done in O(∆) time
and decreasing the remaining outdegree of the deg−(v) ≤ ∆ inneighbors of v by
one can also be done in O(∆) time. Furthermore, inserting v into these lists
can be done in constant time. Hence, with n elements in the given realizable
degree ordering σ one can decide in O(∆n) time whether σ is a realizable degree
ordering.

In the following it will be important that Lemma 4.9 allows us to assume
that, given a realizable degree ordering σ, the corresponding realizing DAG is
well-connected if not explicitly stated otherwise. This allows us to define the
potential pσi of σ at position i as the potential at position i in a topological
ordering of a well-connected DAG corresponding to σ. Note that there might
be more than one well-connected DAG realizing σ as there might be multiple
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vertices with the highest outdegree at some position, see Figure 4.3 for an
example. However, the potential pσi is indeed well-defined as for each x ∈ N the
number of vertices with remaining outdegree x at position i is the same for all
well-connected DAGs realizing σ.

Reordering realizable degree orderings. Given a realizable degree ordering,
cutting out subsequences and reinserting them appropriately is the main opera-
tion that we perform to reorder the degree sequence such that we can exploit the
resulting regular structure in our algorithm. Basically, if a certain potential p
occurs twice in a realizable degree ordering, then removing the subsequence
between them results also in a realizable degree ordering. Furthermore, this
subsequence can be reinserted at any position where the potential p occurs. In
the following we give a formal description of this operation. To this end, we
link subsequences to the two potentials that appear at the cut-positions in the
realizable degree ordering as these potentials obviously do not depend solely on
the subsequences but on the whole realizable degree ordering. In this way, the
following definition formalizes the potentials that may fit to a subsequence if
the rest of the realizable degree ordering is chosen accordingly.

Definition 4.5. Let σ[1, n] be a realizable degree ordering and let 1 ≤ i < j ≤ n
be two integers. Then σ[i, j] is a partial realizable degree ordering with input
potential pσi−1 and output potential pσj .

Observe that a partial realizable degree ordering with input and output
potential 0∆ is also a realizable degree ordering. A first observation towards
cutting and merging partial realizable degree orderings is that we can “append”
a tuple

(
a
b

)
to a partial realizable degree orderings σ when at the end of σ

at least a vertices require at least one more outneighbor. Furthermore, the
information about the number of vertices with remaining outdegree at least one
is stored in the first entry of the corresponding potential. Combining this with
Observation 4.8 we arrive at the following.

Observation 4.11. Let σ =
(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
be a partial realizable degree

ordering with input potential pσ0 and output potential pσn, and let a, b ∈ N. If
a ≤ pσn[1], then there exists a potential p ∈ N∆ with ω(p) = ω(pσn)− a+ b such
that

(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
,
(
a
b

)
is a partial realizable degree ordering with input

potential pσ0 and output potential p.

Proof. Let σ̃[1, ñ] be a realizable degree ordering corresponding to σ, that is,
there are integers 1 ≤ i < j ≤ ñ such that σ = σ̃1[i, j], pσ0 = pσ̃i−1, and pσn = pσ̃j .
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Note that, by Definition 4.5, σ̃, i, and j exist. Let D be a realizing DAG
for σ̃. Now, remove all vertices in D that correspond to tuples in σ̃[j + 1, ñ].
Next, add to D the vertex v corresponding to

(
a
b

)
and well-connect v. This

is possible since a ≤ pσn[1]. Finally, repeatedly add sinks of type
(

1
0

)
as long

as D contains vertices whose out-degree does not fit with the corresponding
tuples. The resulting DAG proves that

(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)
,
(
a
b

)
is indeed a partial

realizable degree ordering. The claimed value of the output potential follows
from Observation 4.8.

Observation 4.11 indicates when we can add a tuple
(
a
b

)
and that the value of

the output potential changes by b− a. However, in order to append complete
partial realizable degree orderings, we have to impose some restriction on the
potential. To this end, we show that we can “merge” two partial realizable
degree orderings σ1 and σ2 to σ1σ2 when the output potential of σ1 is “better”
than the input potential of σ2. To formalize what it means to be better we
introduce a partial order � for potentials.

Definition 4.6. For p, p′ ∈ N∆, p � p′ if ∀1 ≤ j ≤ ∆:
∑j
i=1 p[i] ≥

∑j
i=1 p

′[i].

Intuitively, a “bad” potential value represents “few” vertices with “high” outde-
gree. These vertices can only be connected to many vertices with low indegree.
On the contrary, a “good” potential represents “many” vertices with “low” outde-
gree. These vertices can be connected to many vertices with low indegree or to
few vertices with high indegree. So a good potential at some position indicates
a high freedom for connecting the succeeding vertices. Indeed, a potential p
that is better than a potential p′ guarantees that all subsequent vertices that
can be appended with potential p′ can also be appended with potential p, as
shown in the next proposition.

Proposition 4.12. Let σ1[1, n1] be a partial realizable degree ordering with
input potential pσ1

0 and output potential pσ1
n1
∈ N∆ and let σ2[1, n2] be a partial

realizable degree ordering with input potential pσ2
0 and output potential pσ2

n2
such

that pσ1
n1
� pσ2

0 . Then, σ = σ1σ2 is a partial realizable degree ordering with input
potential pσ0 = pσ1

0 and output potential pσn1+n2
� pσ2

n2
such that pσi = pσ1

i for all
1 ≤ i ≤ n1 and pσi � p

σ2
i−n1

for all n1 +1 ≤ i ≤ n2 +n1. If additionally ω(pσ1
n1

) =

ω(pσ2
0 ) and pσ1

0 = pσ2
n2

= 0∆, then σ is also a realizable degree ordering.

The proof of Proposition 4.12 is based on the following lemma dealing with
the case n2 = 1.
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Lemma 4.13. Let σ1[1, n1] be a partial realizable degree ordering with input
potential pσ1

0 and output potential pσ1
n1
∈ N∆ and let σ2 =

(
a
b

)
, a, b ∈ N, be a

partial realizable degree ordering with input potential pσ2
0 and output potential pσ2

1

such that pσ1
n1
� pσ2

0 . Then, σ = σ1σ2 is a partial realizable degree ordering with
input potential pσ1

0 and output potential pσn1+1 � pσ2
1 such that pσi = pσ1

i for
all 1 ≤ i ≤ n1.

Proof. Let σ̃1[1, ñ1] be the realizable degree ordering corresponding to σ1, that
is, there are integers 1 ≤ i < j ≤ ñ1 such that σ1 = σ̃1[i, j], pσ1

0 = pσ̃1
i−1,

and pσ1
n1

= pσ̃1
j . Note that, by Definition 4.5, σ̃1, i, and j exist. Furthermore,

let σ̂ be an ordering of ω(pσ1
n1

)− a+ b sinks of type
(

1
0

)
. In order to prove the

lemma we will show that σ̃ = σ̃1[1, j]σ2σ̂ is a realizable degree ordering such
that pσ̃i−1 = pσ1

0 and pσ̃j+1 � p
σ2
1 .

First, we show that σ̃ = σ̃1[1, j]σ2σ̂ is indeed a realizable degree ordering.
To this end, note that, since pσ1

n1
� pσ2

0 , it holds that pσ1
n1

[1] ≥ a. Hence, by
Observation 4.11, σ̃1[1, j]σ2 is a partial realizable degree ordering with input
potential 0∆ and output potential p ∈ N∆ such that ω(p) = ω(pσ1

n1
) − a + b.

As σ̂ contains exactly ω(p) sinks of type
(

0
1

)
, it follows that σ̃ is a realizable

degree ordering. Furthermore, since the first part remains unchanged it follows
that pσ̃i−1+` = pσ1

` for all 1 ≤ ` ≤ n1.
We now complete the proof by showing that pσ̃j+1 � pσ2

1 . To this end, we
assume that b = 0. In the case that b > 0, we denote by c ∈ N∆ the vector
having ones in the first b entries and zeros in the remaining entries. Intuitively, c
is the “emission” the vertex v realizing

(
a
b

)
adds to both potentials pσ̃j+1 and pσ2

1 .
As this emission is the same for both potentials, we subtract c from pσ̃j+1 and
from pσ2

1 to obtain the potentials only containing the “absorption” of v. To
measure the effect of the “absorption” we now prove for every ` ∈ {1, 2, . . . ,∆}
that

∑̀
i=1

pσ̃j [i]− pσ̃j+1[i] = max{0, a− pσ̃j [`+ 1]}, (4.1)

where in slight abuse of the notation of potentials we set pσ̃j [∆ + 1] := 0. Note
that this fits the intuition as no vertex has more than ∆ outneighbors. We now
show the correctness of Equation (4.1): The vertex v has the a vertices with
highest remaining outdegree at position j as inneighbors. Thus, for ` = ∆ the
difference on the left-hand side is exactly a. Furthermore, pσ̃j [`+ 1] denotes the
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number of vertices that have at position j a remaining outdegree of at least `+1.
If a ≤ pσ̃j [`+ 1], then clearly the vertices with remaining outdegree of at most `
at position j are not adjacent to v and, therefore, the difference on the left-hand
side remains unchanged. Conversely, if a > pσ̃j [`+ 1], then a− pσ̃j [`+ 1] of the
vertices with remaining outdegree at most ` at position j are adjacent to v.
Thus, the difference on the left-hand side is in this case exactly a− pσ̃j [`+ 1].

We now use Equation (4.1) to show pσ̃j+1 � pσ2
1 . First, for every ` ∈

{1, 2, . . . ,∆} we have

∑̀
i=1

pσ̃j+1[i]
(4.1)
=
∑̀
i=1

pσ̃j [i]−max{0, a− pσ̃j [`+ 1]} (4.2)

If pσ̃j [`+ 1] ≥ a, then we obtain

∑̀
i=1

pσ̃j+1[i] =
∑̀
i=1

pσ̃j [i] ≥
∑̀
i=1

pσ2
0 [i] ≥

∑̀
i=1

pσ2
1 [i], (4.3)

as by assumption we have pσ̃j � pσ2
0 and clearly pσ2

0 � pσ2
1 . In the remaining

case of pσ̃j [`+ 1] < a, we obtain

∑̀
i=1

pσ̃j+1[i]
(4.2)
=
∑̀
i=1

pσ̃j [i]− (a− pσ̃j [`+ 1]) =
`+1∑
i=1

pσ̃j [i]− a ≥
`+1∑
i=1

pσ2
0 [i]− a

=
∑̀
i=1

pσ2
0 [i]− (a− pσ2

0 [`+ 1]) ≥
∑̀
i=1

pσ2
0 [i]−max{0, a− pσ2

0 [`+ 1]}

(4.1)
=
∑̀
i=1

pσ2
1 [i]. (4.4)

Observe that in Equation (4.4) we require Equation (4.1) to also work with pσ2
0

and pσ2
1 , which is true by an analogous argument as for pσ̃j and pσ̃j+1[i]. Since

Inequality (4.3) and Equation (4.4) hold for every ` ∈ {1, 2, . . . ,∆}, it follows
that pσ̃j+1 � p

σ2
1 .

Now, we prove Proposition 4.12 by repeatedly invoking Lemma 4.13.

Proof. (of Proposition 4.12) We prove the first statement of the proposition
with an induction invoking Lemma 4.13 in the induction step. For the base case
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observe that by Lemma 4.13, σ[1, n1 +1] = σ1[1, n1]σ2[1, 1] is a partial realizable
degree ordering with input potential pσ1

0 and output potential pσn1+1 � p
σ2
1 . For

the induction step, let j ∈ {1, 2, . . . , n2− 1}. If σ[1, n1 + j] is a partial realizable
degree ordering with input potential pσ1

0 and output potential pσn1+j � p
σ2
j such

that pσi = pσ1
i for all 1 ≤ i ≤ n1 and pσi � pσ2

i−n1
for all n1 + 1 ≤ i ≤ n1 + j,

then, by Lemma 4.13, σ[1, n1 + j+ 1] is a partial realizable degree ordering with
input potential pσ1

0 and output potential pσn1+j+1 � p
σ2
j+1 such that pσi = pσ1

i for
all 1 ≤ i ≤ n1 and pσi � p

σ2
i−n1

for all n1 + 1 ≤ i ≤ n1 + j + 1. This proves the
first statement of the proposition.

For the second statement observe that if ω(pσ1
n1

) = ω(pσ2
0 ), then ω(pσn1+n2

) =
ω(pσ2

n2
). Thus, if pσ1

0 = pσ2
n2

= 0∆, then σ is a partial realizable degree ordering
with input and output potential 0∆. Hence, σ is in this case a realizable degree
ordering.

Proposition 4.12 shows that we can “merge” two partial realizable degree
orderings σ1 and σ2 to σ1σ2 if for the output potential pσ1

n1
of σ1 and the input

potential pσ2
0 it holds that pσ1

n1
� pσ2

0 and ω(pσ1
n1

) = ω(pσ2
0 ). This provides the

basis for cutting out a subsequence in a realizable degree ordering and reinserting
it at another position. First, consider the cutting out of subsequences.

Lemma 4.14. Let σ[1, n] be a realizable degree ordering. If there are two indices
1 ≤ i < j ≤ n such that ω(pσi ) = ω(pσj ) and pσi � pσj , then σ′ = σ[1, i]σ[j + 1, n]

is a realizable degree ordering with pσ
′

i+` � pσj+` for all 1 ≤ ` ≤ n− j.

Proof. Let σ[1, n] be a realizable degree ordering and let 1 ≤ i < j ≤ n be
two indices such that ω(pσi ) = ω(pσj ) and pσi � pσj . First, by definition, σ[1, i]

is a partial realizable degree ordering with input potential 0∆ and output
potential pσi . Furthermore, σ[j + 1, n] is a partial realizable degree ordering
with input potential pσj and output potential 0∆. Hence, since ω(pσi ) = ω(pσj )
and pσi � pσj , it follows from Proposition 4.12 that σ′ = σ[1, i]σ[j + 1, n] is a
realizable degree ordering and pσ

′

i+` � pσj+` for all 1 ≤ ` ≤ n− j.

Lemma 4.14 shows that from a realizable degree ordering σ we can cut out a
subsequence σ[i+ 1, j] whenever pσi = pσj . The next observation shows that we
can reinsert this subsequence in the remaining realizable degree ordering σ′ at
any position ` with pσ

′

` = pσi = pσj .

Lemma 4.15. Let σ1[1, n1] be a realizable degree ordering. Furthermore,
let σ2[1, n2] be a partial realizable degree ordering with input and output po-
tential p. Then, for all indices 1 ≤ i ≤ n1 where pσ1

i = p, the ordering
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σ = σ1[1, i]σ2[1, n2]σ[i+ 1, n1] is a realizable degree ordering with pσ1
j � pσj+n2

for all i < j ≤ n1.

Proof. Let σ1[1, n1] be a realizable degree ordering and let σ2[1, n2] be a partial
realizable degree ordering with input and output potential p ∈ N∆. Further-
more, let i be a position in σ1 such that pσ1

i = p. Then, by Proposition 4.12,
σ1[1, i]σ2[1, n2] is a partial realizable degree ordering with input potential 0∆ and
output potential p′ � p. Since the input and output potential of σ2 are equal, it
follows that ω(p′) = ω(pσ1

i ) = ω(p). Hence, again applying Proposition 4.12, it
follows that σ = σ1[1, i]σ2[1, n2]σ1[i+ 1, n1] is a realizable degree ordering with
pσ1
j � pσj+n2

for all i < j ≤ n1.

Given a realizable degree ordering σ where at the three positions i, j, k the
same potential occurs, we can now cut out (Lemma 4.14) the part between
positions i and j and then insert (Lemma 4.15) it at position k. The following
proposition formalizes this “reordering operation”.

Proposition 4.16. Let σ[1, n] be a realizable degree ordering and let 1 ≤ i <
j < k ≤ n be three positions with pi = pj = pk. Then σ[1, i]σ[j + 1, k]σ[i +
1, j]σ[k + 1, n] is a realizable degree ordering.

4.3.2. High-Potential Sequences
In this section, we show that if a realizable degree sequence admits a realizable
degree ordering where at some position the value of the potential is at least ∆2,
a so-called high-potential realizable degree ordering, then there is also a realizable
degree ordering σ that is of the following “pattern” (see Figure 4.4 for an
illustration): The ordering σ can be partitioned into four subsequences I,G,B,E
(here I stands for initialization, G for good types, B for bad types, and E for
end). It starts with sequence I “establishing” a potential of value at least ∆2,
a so-called high potential. Correspondingly, at the end there is a sequence E
that reduces the value of the potential from a value that is at least ∆2 to zero.
Furthermore, I and E are of length at most ∆2∆. The subsequence G, which
is of arbitrary length, only consists of good type tuples in arbitrary order and,
correspondingly, B is of arbitrary length but only consists of bad type tuples in
arbitrary order. Recall that a tuple

(
a
b

)
is a good type tuple if a ≤ b, otherwise

it is a bad type tuple.
This characterization allows us to check whether there is a high-potential

realizable degree ordering as follows: First, branch into all possibilities to
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. . . . . . . . . . . .

I G B E
pi

ω(pi) ≥ ∆2

pj

ω(pi) ≥ ∆2

Figure 4.4.: A schematic illustration of a realizing high-potential DAG that corresponds
to the pattern I GB E. Thereby, I is a subsequence of length at most ∆2∆ such that
the first high potential occurs at position i. Correspondingly, j is the last position
with high potential and E is a sequence of length at most ∆2∆. The sequence G
(respectively B) consists of only good (bad) type vertices but is of arbitrary length.
All high-potential realizations can be reordered to fit into this pattern.

choose I and E. Second, insert in each branch the remaining vertices sorted by
good and bad types between I and E and, third, check whether this ordering
is a realizable degree ordering. There are at most ((∆ + 1)2)2∆2∆

) = ∆∆O(∆)

possibilities for choosing I and E. Furthermore, the insertion and checking can
be done in polynomial time, see Lemma 4.10. Hence, this branching algorithm
yields fixed-parameter tractability with respect to ∆ for the high-potential case.

Our strategy to prove that there is indeed a high-potential realizable degree
ordering with the pattern I GB E is as follows. Let σ[1, n] be an arbitrary
high-potential realizable degree ordering and let 1 ≤ i ≤ n be the first position
with a high potential and, symmetrically, let j be the last position with a high
potential. In the first part of this section (see Proposition 4.20), we show that σ
can be restructured such that i ≤ ∆2∆ and j ≥ n−∆2∆. To prove this the main
argument is that if i > ∆2∆, then, since there are O(∆2∆) different potentials
with value less than ∆2, there have to be two positions 1 ≤ `1 < `2 < i with
p`1 = p`2 . Then, by Lemma 4.14, we can cut out σ[`1 + 1, `2] from σ and we
will show (see Lemma 4.19) that we can reinsert it right behind i, resulting in a
realizable degree ordering σ[1, `1]σ[`2 + 1, i]σ[`1 + 1, `2]σ[i+ 1, n]. By iteratively
applying this operation, we end up with a realizable degree ordering where the
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first position with high potential is at most ∆2∆. A symmetric argument holds
for the last position j with high potential.
In the second part of this section, we show that we can arbitrarily sort the

vertices in σ[i + 1, j] under the constraint that at first vertices of good type
(indegree at most outdegree) occur in any order, and then they are followed by
the bad type (indegree larger than outdegree) vertices (see Proposition 4.21).
The basic idea herein is that if the value of a potential at some position ` is
at least ∆2, then there are at least ∆ vertices with remaining outdegree at
least one at position `. Hence, one can always connect the next vertex to the
preceding vertices. Here, the sorting such that in σ[i+ 1, j] first the good type
vertices occur ensures that at each position ` ∈ {i+ 1, i+ 2, . . . , j− 1} the value
of the potential is at least ∆2.

Bounding the length of I and E. With the next lemmas and observations we
show that the subsequences I and E of the above pattern can be assumed to be
of length at most ∆2∆. As already mentioned above, if i > ∆2∆, then there have
to be two positions 1 ≤ `1 < `2 < i such that pσ`1 = pσ`2 . Hence, by Lemma 4.14,
σ′ = σ[1, `1]σ[`2 + 1, n] is a realizable degree ordering with pσ

′

`1+` � pσ`2+` for all
1 ≤ ` ≤ n− `2. Next, we show that σ[`1 + 1, `2] can be reinserted behind σ[i, i],
meaning that σ[1, `1]σ[`2+1, i]σ[`1+1, `2]σ[i+1, n] is a realizable degree ordering
with a high potential at position i− (`2−`1 +1). However, observe that to prove
this, Lemma 4.15 cannot be used since ω(pσ

′

i−(`2−`1+1)) ≥ ∆2 > ω(pσ`1). Thus, in
the following we prove that we can reinsert the cut out subsequence in the high-
potential part (Lemma 4.19). Before that, we formalize the observation that
among potentials with the same value there is one that is minimum concerning
the ordering introduced in Definition 4.6.

Lemma 4.17. For a fixed positive integer x let p(x) ∈ N∆ be the potential with

p(x)[j] =

{⌈
x
∆

⌉
, if j ≤ x modulo ∆⌊

x
∆

⌋
, otherwise

for all 1 ≤ j ≤ ∆. Then, for all potentials p′ ∈ N∆ with x = ω(p′) = ω(p(x)) it
holds that p′ � p(x).

Proof. Let p(x) ∈ N∆ be the potential as defined in Lemma 4.17 and let
p′ ∈ N∆ be a potential with ω(p′) = ω(p(x)). Clearly, by definition it holds
that ω(p(x)) = x. Towards a contradiction assume that p′ � p(x) does not hold.
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Then, there is a position 1 ≤ j ≤ ∆ with
∑j
`=1 p(x)[`] >

∑j
`=1 p

′[`]. From this
it follows that there is a position 1 ≤ t ≤ j such that p(x)[t] > p′[t] and since
p(x)[t] ≤ dx/∆e it follows that p′[t] ≤ bx/∆c. Recall that for any potential p it
holds that p[`1] ≥ p[`2] for all 1 ≤ `1 ≤ `2 ≤ ∆ (see remark after Definition 4.2).
Thus, from p′[t] ≤ bx/∆c it follows that

∆∑
`=j+1

p′[`] ≤ (∆− j)bx/∆c ≤
∆∑

`=j+1

p(x)[`].

Together with
∑j
`=1 p(x)[`] >

∑j
`=1 p

′[`] this yields a contradiction to ω(p(x)) =
ω(p′).

Lemma 4.18. Let σ1[1, n1] be a partial realizable degree ordering with input
potential 0∆ and output potential pσ1

n1
. Furthermore, let σ2 be a partial realizable

degree ordering with input potential pσ2
0 and output potential 0∆ such that

ω(pσ1
n1

) = ω(pσ2
0 ) ≥ ∆2. Then, σ = σ1σ2 is a realizable degree ordering.

Proof. Let σ1[1, n1] be a partial realizable degree ordering with input poten-
tial 0∆ and output potential pσ1

n1
. Furthermore, let σ2[1, n2] be a partial realizable

degree ordering with input potential pσ2
0 and output potential 0∆ such that

ω(pσ1
n1

) = ω(pσ2
0 ) ≥ ∆2. For x = ω(pσ2

0 ), we prove that σ = σ1σ2 is a realizable
degree ordering in case of pσ1

n1
= p(x), that is,

pσ1
n1

[j] =

{⌈
x
∆

⌉
, if j ≤ x modulo ∆⌊

x
∆

⌋
, otherwise

for all 1 ≤ j ≤ ∆. This proves that σ2 is a partial realizable degree ordering
with input potential pσ1

n1
and output potential 0∆ and thus Lemma 4.17 and

Proposition 4.12 imply the correctness of Lemma 4.18 in the general case.
Consider now the special case with pσ1

n1
defined as above. Denote with D1

and D2 the two realizing DAGs corresponding to two realizable degree orderings
containing σ1 respectively σ2 as subsequences. In the following, we describe how
to construct a DAG with a topological ordering that corresponds to σ: First,
copy all arcs between two vertices that correspond to two tuples in σ1 resp. σ2

from D1 resp. D2 into the DAG for σ. It remains to specify the arcs that start
in a vertex that corresponds to some tuple in σ1 and ends in a vertex that
corresponds to some tuple in σ2. For a more convenient construction of these
arcs, assume that there are no arcs between two vertices that correspond to
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tuples in σ1 or σ2, respectively. Because in the following we only add arcs having
one endpoint in tuples corresponding to σ1 and the other endpoint in vertices
that correspond to tuples in σ2, these arcs can be removed and the integers in
the tuples of σ1 and σ2 can be decreased correspondingly. Afterwards, the arcs
can be reinserted. Hence, we assume in the following that σ1 consists of sources
and σ2 consists of sinks. We remark that the potential pσ1

n1
is not changed by

these simplifications.
We now inductively prove for each r ∈ {0, 1, . . . , n2} that σ[1, n1 + r] =

σ1[1, n1]σ2[1, r] (with σ[1, n1] = σ1[1, n1]) is a partial realizable degree ordering.
Observe that by the choice of pσ1

n1
it holds that pσ1

n1
[1] ≥ ∆, that is, there are

enough vertices that have outgoing arcs “left” to connect the next vertex. The
key point will be to show that when adding the rth vertex and connecting it
to the other vertices, we will decrease the remaining outdegree of any vertex
below ` for any 1 ≤ ` < ∆ only if there is no vertex left with remaining
outdegree `+ 1. Intuitively, this means that the potential pσ1

n1
is used “level-wise”

(from high to small degree) in the process of adding vertices and therefore there
are always enough vertices with remaining outdegree at least one for the next
vertex to connect. Putting this into a formula, we show that for the output
potential pσ[1,n1+r]

n1+r of σ[1, n1 + r] it holds that

∀` ∈ {1, 2, . . . ,∆− 1} : p
σ[1,n1+r]
n1+r [`] < pσ1

n1
[`]⇒ p

σ[1,n1+r]
n1+r [`+ 1] = 0. (4.5)

Note that this perfectly reflects the definition of well-connectedness. For the
base case of the induction observe that σ[1, n1] = σ[1, n] is a partial realizable
degree ordering and with an output potential satisfying the required property
as pσ[1,n1]

n1 = pσ1
n1
. For the induction step assume that σ[1, n1 + r] is a partial

realizable degree ordering with an output potential satisfying Property (4.5).
Let

(
a
b

)
= σ2[r + 1, r + 1] be the tuple we want to add next. Observe that, by

our choice of pσ1
n1
, it holds for any 1 ≤ ` ≤ ∆ that pσ1

n1
[`] ≥ ∆ ≥ a. In particular,

we have pσ1
n1

[1] ≥ ∆ ≥ a. Now, consider the two cases

(i) pσ[1,n1+r]
n1+r [2] = 0 where the remaining outdegree of all vertices at posi-

tion n1 + r is at most one and

(ii) pσ[1,n1+r]
n1+r [2] > 0.

For case (i) observe that ω(pσ1
n1

) = ω(pσ2
0 ) is a precondition. As σ2 is a partial re-

alizable degree ordering with output potential 0∆ it follows that pσ[1,n1+r]
n1+r [1] ≥ a.
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Hence, by Observation 4.11, σ[1, n1 + r+ 1] is indeed a partial realizable degree
ordering where pσ[1,n1+r+1]

n1+r+1 clearly satisfies Property (4.5) as pσ[1,n1+r+1]
n1+r+1 [2] = 0.

Now, consider case (ii). As pσ[1,n1+r]
n1+r [2] > 0 and p

σ[1,n1+r]
n1+r satisfies Prop-

erty (4.5), it follows that pσ[1,n1+r]
n1+r [1] = pσn[1] ≥ a. Hence, by Observation 4.11,

σ[1, n1+r+1] is indeed a partial realizable degree ordering. As we can assume by
Lemma 4.9 that the corresponding realizing DAG is well-connected, the added
vertex corresponding to σ2[r+1, r+1] has the vertices with the highest remaining
outdegree at position n1 + r as inneighbors. Let d be the maximum occurring
outdegree of any vertex at position n1 + r, that is, d = ∆ or pσ[1,n1+r]

n1+r [d+ 1] = 0.
As pσ[1,n1+r]

n1+r satisfies Property (4.5), it follows that for all 1 ≤ ` < d we
have pσ[1,n1+r]

n1+r [`] = pσ1
n1

[`] ≥ ∆ ≥ a. Hence, there are at least a different vertices
with remaining outdegree between d− 1 and d at position n1 + r. Furthermore,
the added vertex is connected to a vertex with remaining outdegree d − 1 at
position n1 + r if and only if there are less than a vertices with remaining
outdegree d at position n1 + r. Thus, pσ[1,n1+r+1]

n1+r+1 [d − 1] < pσ1
n1

[d − 1] implies
that pσ[1,n1+r+1]

n1+r+1 [d] = 0 and, hence, pσ[1,n1+r+1]
n1+r+1 satisfies Property (4.5).

While Lemma 4.14 shows that we can cut out a partial realizable degree
ordering with equal input and output potential, the following lemma shows that
we can reinsert it right behind a high potential in any realizable degree ordering.

Lemma 4.19. Let σ1[1, n1] be a realizable degree ordering and let σ2[1, n2] be
a partial realizable degree ordering with input and output potential p. Then,
for any position 1 ≤ i ≤ n1 with ω(pσ1

i ) ≥ max{∆2, ω(p)} it holds that σ =
σ1[1, i]σ2[1, n2]σ[i+ 1, n1] is a realizable degree ordering.

Proof. Let σ1[1, n1] be a realizable degree ordering and let σ2[1, n2] be a partial
realizable degree ordering with input and output potential p. Furthermore, let
1 ≤ i ≤ n1 be a position with ω(pσ1

i ) ≥ max{∆2, ω(p)}. We prove that σ =
σ1[1, i]σ2[1, n2]σ1[i+ 1, n1] is a realizable degree ordering. To this end, we show
that σ1[1, i]σ2[1, n2] is a partial realizable degree ordering with input potential
0∆ and output potential p′ where ω(p′) = ω(pσ1

i ). Then, from Lemma 4.18 it
follows that σ is a realizable degree ordering.
By Definition 4.5 there exists a realizable degree ordering σ̃2[1, ñ2] such

that σ2 = σ̃2[i, j] for some 1 ≤ i < j ≤ ñ2 and p = pσ̃2
i−1 = pσ̃2

j . Now,
if ω(pσ1

i ) > ω(p), then we add ω(pσ1
i )− ω(p) tuples of type

(
1
0

)
at the beginning

of σ̃2 and the same number of tuples of type
(

0
1

)
at the end of σ̃2. This shows
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that σ2 is a partial realizable degree ordering with input potential p′ and output
potential p′ with ω(p′) = ω(pσ1

i ) ≥ ∆2.
From this together with Lemma 4.18 it follows that σ1[1, i]σ2[1, n2]σ̃2[j +

1, ñ2] is a realizable degree ordering. Since, by our assumption σ2 is a partial
realizable degree ordering with input and output potential p′, it follows that∑
v∈σ2

deg−(v) =
∑
v∈σ2

deg+(v). Hence, from Observation 4.8 and the fact
that the potential at position i in σ1[1, i]σ2[1, n2]σ̃2[j+1, ñ2] is pσ1

i , it follows that
σ1[1, i]σ2[1, n2] is a partial realizable degree ordering with input potential 0∆

and output potential p′′ with ω(p′′) = ω(pσ1
i ) ≥ ∆2. Thus, by Lemma 4.18 it

follows that σ is a realizable degree ordering.

With Lemma 4.19 we are able to bound the length of the parts I and E, that
is, the first position of a high potential is “near” the start and the last position
of a high potential is “near” the end.

Proposition 4.20. If a DAG Realization instance consisting of n tuples
admits a high-potential realization, then there is also a corresponding high-
potential realizable degree ordering such that the first position with high potential
is at most ∆2∆ and the last position with high potential is at least n−∆2∆.

Proof. Let σ[1, n] be a high-potential realizable degree ordering and let 1 ≤ i ≤ n
be the first position where ω(pi) ≥ ∆2. Consider the case where i > ∆2∆. Thus,
for all 1 ≤ ` < i it holds that ω(p`) < ∆2. There are ∆2∆ integer ∆-tuples with
elements between 0 and ∆2 − 1 and not every ∆-tuple is a potential. Hence,
there are less than ∆2∆ potentials with value less than ∆2. Thus, there are
two indices 1 ≤ `1 < `2 < i with p`1 = p`2 . By Lemma 4.14, the ordering
σ[1, `1]σ[`2 + 1, n] is a realizable degree ordering where the potential at position
i−(`2−`1) is pi. Moreover, by definition σ[`1+1, `2] is a partial realizable degree
ordering with input and output potential p`1 where ω(p`1) < ω(pi). Thus, by
Lemma 4.19, it holds that σ[1, `1]σ[`2 + 1, i]σ[`1 + 1, `2]σ[i+ 1, n] is a realizable
degree ordering. Moreover, since

∑
v∈σ{`1+1,`2} deg−(v)−deg+(v) = 0 it follows

from Observation 4.8 that in this realizable degree ordering the first position
with high potential is i − (`2 − `1). Applying the same operation iteratively
as long as there are two positions with equal potential before the first high
potential results in a realizable degree ordering where the first position with
high potential is at most ∆2∆.
Basically, the same argumentation can be applied for the last position j

where a high potential occurs. If j < n − ∆2∆, then there have to be two
indices j < `1 < `2 ≤ n where p`1 = p`2 . Then, by Lemma 4.14 the ordering
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σ[1, `1]σ[`2 + 1, n] is a realizable degree ordering and σ[`1 + 1, `2] is a partial
realizable degree ordering with input and output potential p`1 with ω(`1) < ω(pj).
Thus, by Lemma 4.19 the ordering σ[1, j]σ[`1 + 1, `2]σ[j + 1, `1]σ[`2 + 1, n] is a
realizable degree ordering. Since

∑
v∈σ{`1+1,`2} deg−(v)−deg+(v) = 0 it follows

from Observation 4.8 that the last position with high potential is j + (`2 − `1).
Again, by applying this operation iteratively we get an ordering where the last
position with high potential is at least n−∆2∆.

Sorting the remaining vertices. Having shown that we can assume that for
the first position i and the last position j with high potential it holds that
i ≤ ∆2∆ and j ≥ n−∆2∆, we next prove that one can sort all vertices between i
and j arbitrarily by good (indegree at most outdegree) and bad (indegree larger
than outdegree) types.

Proposition 4.21. Let σ[1, n] be a high-potential realizable degree ordering and
let 1 ≤ i < j ≤ n be two arbitrary positions such that ω(pi) ≥ ∆2 and ω(pj) ≥
∆2. Furthermore, let σ′[i+ 1, j] be a permutation of the tuples in σ[i+ 1, j] such
that there is a position 0 ≤ ` ≤ j − i with the property that the first ` tuples
in σ′[i+ 1, j] are of good type and all subsequent tuples are of bad type. Then,
the ordering σ[1, i]σ′[i+ 1, j]σ[j + 1, n] is a realizable degree ordering.

Proof. Assume that there is a high-potential realizable degree ordering with
two indices 1 ≤ i ≤ j ≤ n such that ω(pi) ≥ ∆2 and ω(pj) ≥ ∆2. We
prove that σ[1, i]σ′[i + 1, j]σ[j + 1, n] is a realizable degree ordering for any
reordering σ′[i+ 1, j] of σ[i+ 1, j] where the first ` tuples are of good types and
the remaining ones of bad types.

To this end, by induction on h with 1 ≤ h ≤ j − i we show that the sequence
σ[1, i]σ′[i+1, i+h] is a partial realizable degree ordering with input potential 0∆

and output potential ph with ω(ph) ≥ ∆2. First, by induction hypothesis the
output potential ph−1 of σ[1, i]σ′[i+ 1, i+ h− 1] is a high potential and hence
ph−1[1] ≥ ∆. Thus, by Observation 4.11 σ[1, i]σ′[i + 1, i + h − 1] is a partial
realizable degree ordering. It remains to show that the value of the output
potential ph of σ[1, i]σ′[i + 1, i + h] is at least ∆2. Towards a contradiction
suppose that it is not. This implies∑

(ab)∈σ′{i+1,i+h}

a− b > ω(pi)−∆2. (4.6)
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Clearly, σ′[i+ h, i+ h] has to be a bad type tuple, otherwise Inequality (4.6)
cannot be true. However, it holds that

ω(pi)−
∑

(ab)∈σ{i+1,j}

a− b = ω(pj) ≥ ∆2

and thus ∑
(ab)∈σ{i+1,j}

a− b ≤ ω(pi)−∆2. (4.7)

Since σ′[i+1, j] is sorted by good and bad types and σ′[i+h, i+h] is of bad type,
all tuples in σ′[i+h, j] are bad type tuples with a−b < 0. Thus, Inequality (4.7)
yields a contradiction to Inequality (4.6). Hence, σ[1, i]σ′[i+ 1, j] is a partial
realizable degree ordering with input potential 0∆ and output potential pj−i
with pj−i ≥ ∆2. Furthermore, by Observation 4.8, it holds that ω(pj−i) = ω(pσj ).
Thus, by Lemma 4.18, σ[1, i]σ′[i+ 1, j]σ[j + 1, n] is indeed a realizable degree
ordering.

Propositions 4.20 and 4.21 lead to the central result of this section:

Theorem 4.22. If a DAG Realization instance admits a high-potential
realizable degree ordering, then it can be solved in ∆∆O(∆) · n+O(n log n) time.

Proof. If an instance of DAG Realization admits a high-potential realizable
degree ordering, then by Proposition 4.20 there is also a high-potential realizable
degree ordering in which the occurrence of the first high potential is at most
at position i with i ≤ ∆2∆ and the last occurrence of a high potential is at
least at position j with j ≥ n−∆2∆. Recall that there are at most (∆ + 1)2

types of tuples in the given degree sequence, and thus the subsequences σ[1, i]
and σ[j, n] of a realizable degree ordering σ[1, n] can be found by exhaustive
search in ∆∆O(∆)

time. Proposition 4.21 shows that the remaining tuples can
be arbitrarily inserted between them, as long as they are sorted by good and
bad types. This can be done in O(n) time. Finally, we check whether the
produced ordering is indeed a realizable degree ordering, which can be done by
Lemma 4.10 in O(∆2n) time. Since we have to read the input of size O(n log n),
we altogether arrive at a running time of ∆∆O(∆) · n+O(n log n).
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Figure 4.5.: Realization for the degree sequence
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. Since this sequence basically consists of only two different

types (not regarding types with indegree or outdegree equal to zero), it is easy to
check that the pictured low-potential realization (the highest occurring value of a
potential is ω(p) = 6) is the only one. The displayed potentials are all identical and
they furthermore indicate the repetitions of the super-type

(
2
1

)
,
(

3
4

)
.

4.3.3. Low-Potential Sequences

In this section, we will provide an algorithm that finds a low-potential realization
(if one exists) for a DAG Realization instance, that is, a realization such that
the value of all potentials is strictly less than ∆2. See Figure 4.5 for an example
of such a realization.

As in the high-potential case, the main idea is to restrict the length of the
parts in a realizable degree ordering that have to be guessed by brute force. In
the low-potential case, we can exploit that there are at most ∆2∆ potentials
with value less than ∆2 and, thus, if the length of a realizable degree ordering is
greater than ∆2∆, then there have to be two positions with equal potential. We
call partial realizable degree orderings with equal potential at their start and end
super-types. Then, by cutting out super-types and reinserting them appropriately,
we can upper-bound the distance between two subsequent positions with the
same potential, implying a restricted number of different super-types. Hence, if
one removes in such a realizable degree ordering (almost) all repetitions of a
super-type, then the length of the resulting shortened realizable degree ordering
can be upper-bounded by a function solely depending on ∆.
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Our algorithm works as follows: In the first step it branches into all possibilities
to choose a shortened realizable degree ordering. In the second step, it checks
via solving an ILP (integer linear program) whether this shortened realizable
degree ordering can be extended by (re-)inserting repetitions of super-types to
a realizable degree ordering of the input degree sequence.

In the following we introduce some notations to formalize the above concepts.

Definition 4.7. A super-type of potential p ∈ N∆ is a partial realizable degree
ordering σ[1, n] with input and output potential p where all potentials from
position 1 to n− 1 are different from p. A k-repetition of a super-type s in a
realizable degree ordering σ is a subsequence ψ of σ with ψ = sk, that is, k
subsequent occurrences of s in σ. If k is maximal under this condition, then ψ
is called a maximal repetition in σ.

In Figure 4.5 an example for a realizable degree sequence is given where
the only existing realizable degree ordering consists basically of one maximal
repetition of the super-type
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)
,
(

3
4

)
of potential (2, 2, 1, 1). Removing this

repetition indeed gives a very short ordering:
(
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We now formalize these shortened orderings.

Definition 4.8. A repetition removal in a realizable degree ordering is the
replacement of one maximal repetition of a super-type s with |s| ≤ ∆2∆ by s.
An ordering σ′ is a shortened realizable degree ordering of the realizable degree
ordering σ if σ′ can be obtained from σ by a series of repetition removals.

Observe that a shortened realizable degree ordering may still contain rep-
etitions of super-types although removing these would yield an even shorter
shortened realizable degree ordering. The reason for this is simplicity: The sole
purpose of removing repetitions is to upper-bound the length of the shortened
realizable degree ordering. Having achieved this upper bound, we do not care
about further repetitions as the algorithm branching in all possibilities for the
bounded-length shortened realizable degree ordering is not affected by possibly
existing repetitions. To check in a branch whether a given sequence of integer
tuples is indeed a shortened realizable degree ordering we use the following
observation following from the definition of repetition removals and Lemma 4.14.

Observation 4.23. Let σ be a realizable degree ordering and let σ′ be a short-
ened realizable degree ordering of σ. Then σ′ is also a realizable degree ordering.

Using Observation 4.23 our algorithm branches into all sequences of integer
tuples within the length-bound that we will provide. Then, we check in each
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branch whether the sequence is realizable; by Lemma 4.10, this can be done
in O(n∆) time. If yes, then we try to extend the sequence by inserting repetitions
of super-types. Here, by Lemma 4.15 each insertion yields again a realizable
degree ordering. Thus, the remaining problem is to “just” find a combination
of super-types such that after inserting them the resulting sequence contains
the very same tuples as our input degree sequence. We solve this problem with
an integer linear program (ILP). Here, the restriction in Definition 4.8 that
only repetitions of “short” super-types can be removed is crucial: Due to this
bounded length also the total number of different super-types which have to
be considered as candidates for (re)insertion is upper-bounded by a function
of ∆. For each possible candidate super-type there is a variable representing
the number k of repetitions of this super-type that have to be inserted to the
shortened realizable degree ordering. The ILP will then return a solution if
and only if we can insert the corresponding super-types and obtain a realizable
degree ordering for our input instance.

We now prove the claim that there exists a shortened realizable degree ordering
of length bounded by a function of ∆. To this end, our two core tools are the
repetition removals and the reordering operation provided in Proposition 4.16.

Lemma 4.24. If a DAG Realization instance S admits a low-potential
realization, then there is also a corresponding low-potential realizable degree
ordering σ for S and a shortened realizable degree ordering σ′ of σ such that
the length of σ′ is bounded by ∆2∆((∆ + 1)2∆2∆

∆2∆ + ∆2∆).

Proof. Let σ[1, n] be a low-potential realizable degree ordering for S and let Pσ =
pσ0 , p

σ
1 , . . . , p

σ
n be the corresponding sequence of potentials with values strictly

less than ∆2 with pσ0 = pσn = 0∆. For a potential p ∈ Pσ we denote by firstσP(p)
the position of the first occurrence of p in Pσ.
Our strategy to construct a shortened realizable degree ordering σ′ starting

from σ is as follows: Iterate over the potentials occurring in P sorted by the
values of firstσP in descending order, that is, the first considered potential p
maximizes firstσP(p). In the ith iteration denote the considered potential by p(i)
and construct a shortened realizable degree ordering σ(i) from σ(i−1) where σ(i)
can be split into two parts σ(i) = σ1(i)σ2(i) such that

1. all potentials considered until the ith iteration do not occur in the first
part, that is, p(1), p(2), . . . , p(i) /∈ Pσ1(i),

2. in iteration i only repetition removals that correspond to super-types of
potential p(i) are performed, and

79



3. the length of the second part is upper-bounded by i((∆ + 1)2∆2∆

∆2∆ +
∆2∆).

For the initialization we set σ(0) := σ1(0) := σ and in the end the shortened
realizable degree ordering σ′ we are looking for will be σ(`), where ` is the
number of iterations. Since the value of any occurring potential is, by assumption,
lower than ∆2, there are less than ∆2∆ possible potentials: There are ∆2∆

integer ∆-tuples with elements between 0 and ∆2 − 1 and not every ∆-tuple
is a potential. Hence, the described algorithm terminates after at most ∆2∆

iterations. By Property 1 it follows that σ(`) = σ2(`) and by Property 3 the
claimed length of ∆2∆((∆ + 1)2∆2∆

∆2∆ + ∆2∆) follows.
We now show how to obtain σ(i) from σ(i−1) in the ith iteration. To this end

we initialize σ(i) := σ(i− 1) and reorder it in the following. Let j1, j2, . . . , jr
be the occurrences of p(i) in Pσ1(i−1), that is, the occurrences in the first
part of σ(i − 1). Assume that there is an x ∈ {2, 3, . . . , r} such that ix −
ix−1 > ∆2∆. Then, there are two positions jx−1 < h1 < h2 < jx such
that pσ1(i−1)

h1
= p

σ1(i−1)
h2

=: q. As we consider the first part of σ(i − 1) it
holds that firstσ(i)

P (p) > firstσ(i)
P (q). Thus, there is a position k with k < j1

with p
σ1(i−1)
k = q. By Observation 4.23 and Proposition 4.16, the sequence

σ(i)[1, k]σ(i)[h1 +1, h2]σ(i)[k+1, h1]σ(i)[h2 +1, |σ(i)|] is also a realizable degree
ordering. Since the second part σ2(i− 1) remains unchanged by this ordering,
the repetition removals performed to obtain σ(i− 1) can be reversed. Hence,
the reordered sequence is also a shortened realizable degree ordering.
Our procedure to construct σ(i) from σ(i − 1) is as follows: First, while

there are two consecutive occurrences of the potential p(i) having distance more
than ∆2∆ in the sequence of potentials we reorder the sequence as described
above. Second, while in the part between the last occurrence of p(i) and
the end of σ1(i − 1) a potential occurs twice, we reorder the sequence in
the same way by moving parts at the beginning of the sequence. Since this
reordering only decreases the distance of consecutive occurrences of p(i) it
terminates at some point. Third, using again the reordering operation of
Proposition 4.16, we sort all super-types of potential p(i) such that there is at
most one subsequent occurrence of each super-type of potential p(i). Finally,
we perform an exhaustive repetition removal for all super-types of potential p(i).
Then σ(i) = σ1(i)σ2(i) is the resulting shortened realizable degree ordering
where σ2(i) starts at firstσ(i)

P (p(i)).
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To verify the correctness observe that each repetition removal applies to a
super-type of length at most ∆2∆ since the distance between two consecutive
occurrences of p(i) is at most ∆2∆. Thus, Properties 1 and 2 are satisfied. It
remains to show that the length of σ2(i) is indeed bounded as required. To
this end, observe that σ2(i) consists of super-types of potential p(i), the part
between the last occurrence of p(i) and the beginning of σ2(i− 1), and σ2(i− 1).
There are at most (∆ + 1)2∆2∆

different length ∆2∆ sequences of integer tuples
with entries between zero and ∆. This is also an upper bound in the different
super-types of potential p(i). Due to the sorting and repetition removals, each of
these super-types occurs at most once. Hence, the first part of σ2(i) stretching
until the start of σ2(i− 1) has length at most (∆ + 1)2∆2∆

∆2∆ + ∆2∆. Due to
Property 3, σ2(i− 1) has length (i− 1)((∆ + 1)2∆2∆

∆2∆ + ∆2∆) which gives a
total length of i(∆ + 1)2∆2∆

∆2∆ + ∆2∆ for σ2(i).

Using Lemma 4.24, the algorithm branches into all possibilities to choose a
shortened realizable degree ordering of length at most ∆2∆((∆ + 1)2∆2∆

∆2∆ +

2∆2∆) < (2∆)3∆2∆

. This gives at most (∆ + 1)2(2∆)3∆2∆

cases. For a shortened
realizable degree ordering, the algorithm checks which of the (∆+1)2∆2∆

possibly
repeating super-types occur in the sequence of the particular case and stores the
occurring ones in a set T S . Then, given a shortened realizable degree ordering σ′
for a DAG Realization instance S and the set T S of super-types that may
repeat, the problem of computing a realizable degree ordering that respects σ′
is fixed-parameter tractable with respect to the number of super-types in T S .
We give an ILP formulation for this problem. To this end, we formalize the
problem and call it Sequence Filling.

Sequence Filling
Input: A multiset S =

{(
a1

b1

)
,
(
a2

b2

)
, . . . ,

(
an
bn

)}
, a shortened realizable de-

gree ordering σ′ and a set of all super-types T S = {s1, s2, . . . , s`}
of σ′ that have length at most ∆2∆.

Question: Is there a realizable degree ordering σ for S such that σ′ results
from replacing for each s ∈ T S all maximal repetitions of s in σ
by one occurrence of s?

Next, we show fixed-parameter tractability of Sequence Filling with respect
to the parameter |T S | = `. Since the number ` of super-types is bounded by a
function only depending on ∆, this completes our algorithm for the case that
an input of DAG Realization admits a low-potential realization.
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Lemma 4.25. Sequence Filling is fixed-parameter tractable with respect to
the parameter |T S | = `.

Proof. We show the fixed-parameter tractability result by giving an ILP-
formulation of the problem with ` variables. It has been shown that an ILP
with p variables can be solved in O(p2.5p+o(p) · L) time and space polynomial
in L where L is the input size [FT87, Kan87, Len83]. To solve the Sequence
Filling instance, we use the following ILP-formulation:

∀1 ≤ i ≤ ` : fi ≥ 0 (4.8)

∀e ∈ S :
∑̀
i=1

fi · o(e, si) = o(e,S)− o(e, σ′) (4.9)

Each of the ` integer variables f1, f2, . . . , f` denotes how often the correspond-
ing super-type will be inserted in σ′ to obtain σ. The function o(e,S) (o(e, si))
denotes the number of occurrences of the tuple e in S (in the super-type si). The
ILP consists of `+ |S| equations that contain together O(` · |S|) integers, each
upper-bounded by |S|. Hence, the ILP can be solved in O(`2.5`+o(`) ·`·|S| log |S|)
time.

Now we describe how we use the solution of the ILP-formulation to create a
realizable degree ordering σ as described in the problem definition of Sequence
Filling. For each super-type si ∈ T S with fi > 0 insert an fi-repetition of si
right after an occurrence of si in σ′. By Lemma 4.15, the ordering that results
from adding the maximal repetitions results in a realizable degree ordering
for σ′ ]

⊎
i,fi>0

⊎fi
j=1 si = S.

Next, we show that if the Sequence Filling-instance is a yes-instance, then
there exists a solution for our ILP-formulation. If there is a realizable degree
ordering σ for S that respects σ′, then there exists a set of super-types TS
such that replacing all maximal repetitions of super-types si in TS in σ by one
occurrence of the corresponding super-type results in σ′. Clearly, TS ⊆ T S .
Set fi = 0 for each si ∈ T S\TS and for all si ∈ TS set fi = k − 1 where σ
contains a maximal k-repetition of si. Thus, Inequality (4.8) is fulfilled for
all 1 ≤ i ≤ `. Since σ is a realizable degree ordering for S, Equality (4.9) is
fulfilled.

Combining Lemma 4.24 and Lemma 4.25 shows fixed-parameter tractability
for the low-potential case. As to the running time observe that there are ∆∆∆O(∆)

possibilities for the shortened realizable degree ordering. To check whether a
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possible shortened realizable degree ordering is realizable requires O(∆n) time
(Lemma 4.10), the construction of the Sequence Filling instance O(∆∆O(∆) ·
n) time, and solving the ILP requires ∆∆∆O(∆)

· n log n time. Altogether we
have the following theorem.

Theorem 4.26. If a degree sequence admits a low-potential realization, then it
can be found in ∆∆∆O(∆)

· n log n time.

Theorems 4.22 and 4.26 together lead to the main result of this section.

Theorem 4.27. DAG Realization is fixed-parameter tractable with respect
to the parameter maximum degree ∆.

Note that Theorem 4.27 is a mere classification result: The corresponding
running time is ∆∆∆O(∆)

· n log n. It is dominated by the low-potential case.

4.4. Fixed-Parameter Tractability with Respect
to
(
n
2

)
−m and m− n + 1

In the end of Section 4.2 we showed that DAG Realization remains NP-
complete even on sparse and on dense instances. More specifically, for every
constant ` > 1, DAG Realization remains NP-complete when restricted to
instances with m < `n (sparse setting) or m > n(n − 1)/(2`) (dense setting,
see Theorem 4.7). In contrast, in this section we prove that if we measure the
sparseness or denseness by the number of arcs that a realizing DAG is away
from a tree or a tournament instead of using a fraction of m and n, then the
problem becomes tractable. In particular, we show that DAG Realization
is fixed-parameter tractable with respect to each of the parameters

(
n
2

)
−m

and m− n+ 1. To this end, we first consider the (very) dense setting and then
the (very) sparse setting.

Dense setting. Our algorithm for the dense setting relies on two simple obser-
vations: First, for each tuple

(
a
b

)
∈ S with degree a+ b = n− 1 the position in a

realizable degree ordering σ of S is precisely defined: The a inneighbors of the
vertex v realizing the tuple are ahead of v in the topological ordering φ corre-
sponding to σ and the b outneighbors of v are behind v in φ. As |φ| = |σ| = n
it follows that v is the (a+ 1)st vertex in φ, that is,

(
a
b

)
occurs in any realizable
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degree ordering at the (a + 1)st position. Second, any realizing DAG can be
obtained from a transitive tournament by exactly k :=

(
n
2

)
−m arc removals.

Thus, all but 2k vertices in the realizing DAG have a degree (indegree plus
outdegree) of n− 1. Putting this together, there are at most 2k positions “left”
in a realizable degree ordering. Hence, a simple search-tree algorithm tries all
possibilities to insert the tuples

(
a
b

)
with a+ b < n− 1 in these “free positions”

and checks whether the resulting ordering is indeed a realizable degree ordering.
As there are (2k)! possibilities to insert the tuples and, by Lemma 4.10, the
checking can be done in O(∆n) time, we arrive at the following.

Theorem 4.28. DAG Realization is fixed-parameter tractable with respect
to the parameter k :=

(
n
2

)
−m. The corresponding running time is O((2k)!∆n).

Sparse setting. The sparse setting requires more effort. Let k := m− n+ 1.
We develop a polynomial-time executable data reduction rule whose exhaustive
application to a degree sequence S results in an instance which is equivalent to S
and whose maximum degree is at most 2k. Then, the claimed fixed-parameter
tractability follows from Theorem 4.27.
We exploit the following observations: For an instance S with m ≤ n − 1,

Berger and Müller-Hannemann [BM12] have shown that DAG Realization is
polynomial-time solvable (recall that we assume

(
0
0

)
/∈ S). Moreover, they proved

that if m ≥ n− 1 and S is realizable, then there is a realizing DAG for S that
consists of only one connected component. (Recall that by “connectedness” in a
directed graph we always refer to the connectivity in the underlying undirected
graph.) Thus, if a degree sequence is realizable, then there is a connected
realizing DAG D such that the parameter k denotes the size of a feedback
edge set of the underlying undirected graph of D. A feedback edge set F of an
undirected graph G is a subset of the edges whose removal makes the graph
acyclic, that is, G can be seen as a tree with the additional edges in F . This
implies that deleting in D a vertex with in- or outdegree at least k+ 2 results in
a disconnected DAG: Deleting a vertex of degree k + 2 in a tree results in k + 2
connected components. At most k+1 of these k+2 components can be pairwise
connected by the edges in the feedback edge set.
If there are two connected components in a realizing DAG D, then we can

restructure D by copying parts from one component into the other component
without creating cycles. This restructuring of a realizing DAG is our core tool
to develop the data reduction rule and is formally stated in the next lemma.
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See Figure 4.6 for a schematic view on the requirements and the statement of
the lemma.

Lemma 4.29. Let D = (V,A) be a realizing DAG for a degree sequence S,
and let vp, vt ∈ V be two vertices with (vp, vt) ∈ A. Furthermore, let K be the
vertices of the connected component in D[V \ {vt}] containing the vertex vp and
let vs, u, w,w′ ∈ V be vertices such that:

(i) (vs, u), (w,w′) ∈ A,

(ii) vs, u ∈ K, but w,w′ /∈ K,

(iii) the underlying undirected graph of D[K] is acyclic,

(iv) u lies on the uniquely defined undirected path between vp and vs or u = vp,
and

(v) vp is the only neighbor of vt in K.

Then, the digraph

D′ = (V, (A \ {(vs, u), (vp, vt), (w,w′)}) ∪ {(vs, vt), (w, u), (vp, w′)})

is a realizing DAG for S. Furthermore, the underlying undirected graph of the
connected component in D′[V \ {vt}] which contains vs is acyclic and contains
no further neighbor of vt.

Proof. Let K ′ be the connected component in D′[V \ {vt}] which contains the
vertex vs and let K ′u be the underlying undirected graph of K ′. We first prove
that K ′u is acyclic. Observe that by assumption (iii) the underlying undirected
graph Ku of K is acyclic. Hence, Ku is a tree. Next, root the tree Ku in the
vertex vs. Since by assumption (iv) the vertex u lies on the (uniquely defined)
path between vs and vp, the graph K ′u accords in Ku to the subtree with root vs.
Hence, K ′u is acyclic and contains no further neighbor of vt.
Next, we prove that D′ is a realizing DAG for S. Clearly, the vertices vs, u,

vt, vp, w, and w′ have the same indegree and outdegree in D′ as in D. To show
that D′ does not contain any cycle, assume towards a contradiction that there is
a directed cycle C ′ in D′. Recall that K ′u is acyclic and, hence, also K ′ is acyclic.
From this and from assumption (v) it follows that C ′ cannot contain any vertex
of K ′. Since D is acyclic, this implies that at least one of the arcs (w, u), (vp, w′)
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K
vp vt

vs

u

w

w′

Figure 4.6.: The situation when Lemma 4.29 is applicable: The underlying undirected
graph of the induced subgraph K is acyclic and there is only one arc connecting a
vertex inside K with a vertex outside K: the arc (vp, vt). The vertex vs is inside of K
with the outneighbor u lying on the uniquely defined undirected path (indicated by
the thin edge) between vs and vp (with the possibility that u = vp). Furthermore,
(w,w′) is some arc with w and w′ lying outside of K. Then deleting the solid arcs in
the picture and adding the dashed arcs results again in a DAG where the degrees of
the vertices remain unchanged.

is contained in C ′. Denote with K̃ the subgraph containing all vertices that are
in K but not in K ′, that is, the graph induced by the vertices that are cut out
of K. By assumption (iii) also K̃ is acyclic and, thus, by assumption (ii) C ′ has
to contain both arcs (w, u), (vp, w′). This implies that in D′ and so in D there
is a directed path from w′ to w, implying that, since (w,w′) ∈ A, there is also
a cycle in D, a contradiction.

Observe that the version of Lemma 4.29, where all arcs appear in the reversed
direction, is also true. To see this, first swap in every tuple

(
a
b

)
in S the values

of a and b and, correspondingly, swap in a realizing DAG the direction of each
arc. Then, apply Lemma 4.29 and finally swap again the values in the tuples
and the arcs in the restructured DAG.

Using the restructuring operation provided by Lemma 4.29 and its reverted-arc
version, we can show the following.

Lemma 4.30. Let S be a realizable degree sequence with k = m − n + 1 > 0
and let t =

(
a
b

)
∈ S be a tuple with a > 2k. Furthermore, let smin ∈ S be a

source with minimum outdegree. Then, there is a realizing DAG for S such
that the vertex that corresponds to t is an outneighbor of the vertex vsmin which
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corresponds to smin. Furthermore, all other outneighbors of vsmin are degree-one
sinks.

Proof. Let S be a realizable degree sequence and let t =
(
a
b

)
∈ S be a tuple

with a > 2k. Furthermore, let D = (V,A) be a connected realizing DAG for S
and denote by vt the vertex that corresponds to t. We prove the statement of
the lemma in three steps. First, we show in Step 1 that we can assume that vt
has some source vs as inneighbor such that the connected component of the
underlying undirected graph of D[V \ {vt}] containing vs is acyclic and vs is
the only vertex in this connected component that is adjacent to vt. In Step 2,
we prove that we can replace this source by vsmin such that the connected
component of the underlying undirected graph of D[V \ {vt}] containing vsmin is
acyclic and vsmin is the only vertex in this connected component that is adjacent
to vt. Finally, in Step 3 we show that we can replace all outneighbors of vsmin

except vt by degree-one sinks. The reason for these restrictive requirements for
the outcome in Steps 1 and 2 is that we apply Lemma 4.29 in Steps 2 and 3.
Step 1: Assume that vt has no source as inneighbor satisfying the outcome

we want after Step 1; otherwise go to Step 2. As k is the size of a feedback
edge set in the underlying undirected graph of D and a > 2k, there are at
least k + 1 connected components in D[V \ {vt}] and at most k of them can
contain a cycle or more than one neighbor of vt. Thus, there is at least one
connected component K in D[V \ {vt}] that contains only one neighbor (an
inneighbor), say vp, of vt and does not contain any cycle in the underlying
undirected graph of D[V \ {vt}]. Clearly, K contains a source, say vs, such
that there is a directed path from vs to vp. Let u be the outneighbor of vs
lying on this path (with u not necessarily being distinct from vp). Furthermore,
let (w,w′) ∈ A be an arc where both endpoints w and w′ are in D[V \ {vt}]
in a connected component different from that of vs. Observe that such an
arc must exist, as otherwise, by the choice of vs, the underlying undirected
graph of D would be acyclic, contradicting the assumption k > 0. Then, by
Lemma 4.29, D′ = (V, (A\{(vs, u), (vp, vt), (w,w′)})∪{(vs, vt), (w, u), (vp, w′)})
is also a realizing DAG for S. Furthermore, denoting the connected component
in D′[V \ {vt}] containing vs by Ks, only s in Ks is a neighbor of vt and the
underlying undirected graph of Ks is acyclic.
Step 2: Assume that deg+(vs) > deg+(vsmin); otherwise go to Step 3. We

show that we can replace vs as inneighbor of vt by vsmin. To this end, we
distinguish two cases.
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Case 1: vsmin /∈ Ks: Let s1, s2, . . . , sx be the outneighbors of vs with s1 = vt

and let os1, os2, . . . , osy be the outneighbors of vsmin. Observe that vsmin and vs have
pairwise disjoint sets of outneighbors and that x > y. Now, we obtain a directed
graph D′′ from D′ by deleting the arcs from vs to all sx+1, sx+2, . . . , sy and by
adding arcs from vsmin to all sx+1, sx+2, . . . , sy. Since in D′′ compared to D′ the
outdegrees of vsmin and vs have been exchanged, vs is a minimum-degree source
in D′′. Since vsmin and vs are sources and all arcs that have been modified to
get D′′ from D′ have either vsmin or vs as an endpoint and a source can never be
contained in a directed cycle, D′′ is a realizing DAG for S. Furthermore, sinceKs

does not contain any cycle in D[V \ {vt}] and all modifications involving vs
did only delete arcs, it follows that also the connected component of vs in
D′′[V \ {vt}] does not contain any undirected cycle. For convenience, we also
exchange the names of vs and vsmin so that in the following vsmin is the source
with minimum outdegree.

Case 2: vsmin ∈ Ks: Since Ks induces a (directed) tree in D′, there is a unique
undirected path from vs to vsmin in Ks. Denote by osmin the outneighbor of vsmin

on this path. Furthermore, let (w,w′) ∈ A be an arc where both endpoints w
and w′ are in D′[V \ {vt}] in a connected component different from that of vs.
Observe that such an arc must exist, see the argumentation in Step 1. By
Lemma 4.29 the digraph

D′′ = (V,A′ \ {(w,w′), (vs, vt), (vsmin, o
s
min)} ∪ {(w, osmin), (vsmin, v

t), (vs, w′)})

is a realizing DAG for S. Furthermore, denoting the connected component
in D′′[V \ {vt}] containing vsmin by K ′′, only vsmin in K ′′ is a neighbor of vt and
the underlying undirected graph of K ′′ is acyclic.
Step 3: By the argumentation above there is a realizing DAG D′′ for S

such that there is an inneighbor of vt that is a minimum degree source vsmin.
By restructuring the arcs in D′′, we show that there is also a realizing DAG
such that except for vt all outneighbors of vsmin are degree-one sinks. Towards
this, assume that vsmin does have an outneighbor u that is not a degree-one
sink and that is different from vt; otherwise we are done. Root the connected
component K ′′ of vsmin in D′′[V \ {vt}] in vsmin. Then there is at least one
leaf v` in the subtree with root u. Since vsmin is the source with the minimal
outdegree and vsmin has at least two outneighbors (vt and u), it follows that v`

is a degree-one sink. Let v`
′
be the inneighbor of this sink. Furthermore,

let (w,w′) ∈ A′′ be an arc that is not contained in K ′′. Since the under-
lying undirected graph of K ′′ is a tree, by the version of Lemma 4.29 with
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all arcs being reverted (see the discussion before Lemma 4.30), the digraph
(V,A′′ \ {(w,w′), (vsmin, u), (v`

′
, v`)} ∪ {(vsmin, v

`), (w, u), (v`
′
, w′)}) is also a real-

izing DAG for S. By repeatedly applying this procedure, we reorder the realizing
DAG such that all outneighbors of vsmin except vt are degree-one sinks.

Lemma 4.30 shows how we can restructure a realizing DAG if there is a
vertex with indegree greater than 2k. By applying the same procedure as for
Lemma 4.29 procedure, one obtains similar results in case of a high outdegree:
First, swap in every tuple

(
a
b

)
in the corresponding degree sequence the values

of a and b and, correspondingly, swap in a realizing DAG the direction of each
arc. Then, apply the Lemmas 4.29 and 4.30 and finally swap again the values in
the tuples and the arcs in the restructured DAG. This proves the correctness of
an analogous version of Lemma 4.30 for a vertex with outdegree greater than 2k,
which leads to the following data reduction rule.

Reduction Rule 4.1. Let S be degree sequence containing a tuple
(
at
bt

)
with

at > 2k (bt > 2k). Furthermore, let s =
(
as
bs

)
∈ S be a tuple with as = 0 (bs = 0)

and bs (as) be minimal among all tuples with as = 0 (bs = 0). Then, replace
(
at
bt

)
by
(
at−1
bt

)
(
(
at
bt−1

)
), delete s, and delete bs − 1 (as − 1) tuples of the form

(
1
0

)
(
(

0
1

)
).

Clearly, Reduction Rule 4.1 can be applied in polynomial time. Furthermore,
each application of Reduction Rule 4.1 decreases the number of tuples in the
input by one. Thus, exhaustively applying Reduction Rule 4.1 can be done
in polynomial time. In addition, the maximum degree in an instance that is
reduced with respect to Reduction Rule 4.1 is upper-bounded by 2k. Together
with Theorem 4.27 this implies the following.

Theorem 4.31. DAG Realization is fixed-parameter tractable with respect
to the parameter m− n+ 1.

The running time is similar to the one in Theorem 4.27: kk
kO(k)

· nO(1).

4.5. Conclusion
Answering an open question of Berger and Müller-Hannemann [BM11] we
proved the NP-completeness of DAG Realization even in sparse and in
dense graphs. Following the spirit of deconstructing intractability [KNU11] we
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proved the necessity of large degrees in the NP-hardness proof by showing fixed-
parameter tractability for DAG Realization with respect to the maximum
degree ∆. Furthermore, we showed fixed-parameter tractability with respect
to the feedback edge set size of the underlying undirected graph of a realizing
DAG. It is open whether DAG Realization is solvable in single-exponential
FPT time and whether it admits polynomial-size problem kernels with respect
to these two parameters. In our NP-hardness reduction other parameters
occur with unbounded values, for instance, the number of different tuples in
the degree sequence. Note that this is a “stronger parameterization” [KN12]
than the parameter maximum degree ∆ as the number of different tuples is at
most (∆ + 1)2. Hence, investigating this parameter is an interesting task for
future work.
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Chapter 5.

Degree Anonymity by Vertex and
Edge Deletion

In this chapter, we examine the computational complexity of making a given
undirected graph k-anonymous by either at most s vertex deletions or at most s
edge deletions; the corresponding problems are Anonym V-Del and Anonym
E-Del. We present numerous hardness results for these problems, showing
strong intractability of both problems from the parameterized as well as from
approximation point of view.

5.1. Introduction

With the enormously growing relevance of social networks, the protection of
privacy when releasing underlying data sets has become an important and
active field of research [Wu+10]. If a graph contains only few vertices with some
distinguished feature, then this might allow the identification (and violation
of privacy) of the underlying real-world entities with that particular feature.
Hence, in order to ensure pretty good privacy and anonymity, every vertex
should share its feature with many other vertices. In a landmark paper, Liu and
Terzi [LT08] considered the vertex degrees as feature; see Wu et al. [Wu+10] for
other features considered in the literature. Correspondingly, a graph is called
k-anonymous if for each vertex there are at least k − 1 other vertices of same
degree. Therein, different values of k reflect different privacy demands and the
natural computational task arises, given some fixed k, to perform few changes
to a graph in order to make it k-anonymous.
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Degree Anonymity (Anonym)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Can G be transformed with at most s modification operations

into a k-anonymous graph G′ = (V ′, E′), that is, for each vertex
in G′ there are k − 1 other vertices of the same degree?

Input: k = 4
s = 3

Solution:

Liu and Terzi [LT08] proposed a heuristic algorithm for the task of making a
graph k-anonymous by adding edges. We refer to Section 1.2 for a thorough
discussion about the model and related work. In this chapter, we study the
vertex and edge deletion variants of Degree Anonymity. We start our
investigations with the vertex deletion variant which is defined as follows.

Degree Anonymity by Vertex Deletion (Anonym V-Del)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there a vertex subset S ⊆ V of size at most s such that G−S

is k-anonymous?

Input: k = 4
s = 2

Solution:

Considering vertex deletions seems to be a promising approach on practical in-
stances, especially on social networks. In these networks, the degree distribution
of the underlying graphs often follows a so-called power law distribution [BA99],
implying that there are only few high-degree vertices and most vertices are of
moderate degree; this suggests that only few vertices have to be removed in order
to obtain a k-anonymous graph. For instance, consider the DBLP co-author
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graph1 (generated in Feb. 2012) with ≈ 715 thousand vertices corresponding to
authors and ≈ 2.5 million edges indicating whenever two authors have a common
scientific paper: This graph has maximum degree 804 but only 208 vertices
are of degree larger than 208, whereas the average degree is 7. Interestingly,
a heuristic that simply removes vertices violating the k-anonymous property
shows that one has to remove at most 338 vertices to make it 5-anonymous and
even to make it 10-anonymous requires at most 635 vertex deletions.

In Section 5.2, we will show that already the simple and highly specialized pri-
vacy model of Anonym V-Del is computationally hard from the parameterized
as well as from the approximation point of view. A variety of hardness results
holds even for very restricted graph classes, as for instance trees, cographs, and
split graphs.
One reason of this hardness is that being k-anonymous is not a hereditary

property: Simply deleting one vertex in a three-regular graph, that is, an
n-anonymous graph, results in an only 3-anonymous graph. Another reason is
shown in the following two examples illustrating that the number s of allowed
removals and the anonymity level k are independent of each other, and that a
small change in one of these parameter values might lead to a large jump of the
other parameter value.

Example 2. Let G be an undirected graph on n ≥ 5 vertices that consists
of two connected components: a clique of order n − 2 and an isolated edge.
This 2-anonymous graph cannot be transformed into a 3-anonymous graph by
deleting only one vertex; however, deleting the two degree-one vertices makes it
(n− 2)-anonymous. Hence, by slightly increasing s from 1 to 2 the reachable
anonymity level jumps from k = 2 to k = n− 2.

Example 3. Let G = (V,E) be an undirected bipartite graph with the disjoint
vertex sets X := {x1, x2, . . . , x`} and Y := {y1, y2, . . . , y`}, V = X ∪ Y , and
there is an edge between xi and yj if i+ j > `, see Figure 5.1 for a visualization.
Clearly, xi and yi are of degree i implying that G is 2-anonymous. Since N(xi) ⊆
N(xi+1) for all i, deleting any subset of Y preserves the invariant deg(x1) ≤
deg(x2) ≤ . . . ≤ deg(x`). As the previous argument is symmetric, one can
observe that to make G 3-anonymous one has to remove 2/3 of the “jumps”
in the initial sequences deg(x1) < deg(x2) < . . . < deg(x`) and deg(y1) <
deg(y2) < . . . < deg(y`). Since removing one vertex in X (Y ) removes only
one jump in the sequence of X (Y ) and only one in Y (X), it follows that at
1The current dataset and a corresponding documentation are available online (http://dblp.
uni-trier.de/xml/).
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Figure 5.1.: Left: A graph where a constant fraction of the vertices has to be removed
in order to obtain a 3-anonymous graph. Right: A minimum size solution to make the
graph on the left side 3-anonymous. See Example 3 for a detailed explanation.

least 2(`−1) · 2/3 · 1/2 ≈ (2`)/3 = |V |/3 vertices have to be deleted in order to get a
3-anonymous graph. Summarizing, by requiring anonymity level k = 3 instead
of anonymity level k = 2, the number of vertices that need to be removed jumps
from zero to a constant fraction of the vertices.

The second part of this chapter deals with the edge deletion variant which is
defined as follows:

Degree Anonymity by Edge Deletion (Anonym E-Del)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there an edge subset S ⊆ E of size at most s such that G−S

is k-anonymous?

Input: k = 4
s = 4

Solution:

Considering social networks, their power law degree distribution suggests that
the solution size in the edge deletion variant is significantly larger than in the
vertex deletion variant. However, in the edge deletion variant the resulting
graph contains, by definition, all vertices of the input graph, which might be
important in some applications. Furthermore, deleting a vertex with high degree
reduces the degree of many other vertices whereas deleting an edge reduces the
degree of only two vertices. Hence, although requiring more edge deletions than
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vertex deletions, deleting edges might result in a graph that is actually “closer”
to the original graph.
In Section 5.3, we transfer most hardness results from Anonym V-Del to

Anonym E-Del, showing strong intractability results concerning parameterized
complexity and approximability. Similarly to the vertex deletion variant, a small
change in one of the two parameters k and s might lead to a large jump of the
other parameter as demonstrated in the following two examples.
Example 4. Let G be an n-vertex cycle with two chords, that is, two additional
edges within the cycle. As G contains four degree-three vertices and n − 4
degree-two vertices, G is 4-anonymous. Deleting one edge does not increase the
anonymity level k; however, deleting the two chords results in an n-anonymous
graph—a cycle. Hence, by slightly increasing s from one to two the reachable
anonymity level jumps from k = 4 to k = n.
Example 5. Let G = (V,E) be a disjoint union of a clique and an independent
set, each containing n/2 vertices. Thus, G is n/2-anonymous. However, in order
to obtain an (n/2 + 1)-anonymous graph, all edges have to be removed. Hence,
by slightly increasing k from n/2 to n/2 + 1 the number of edges that have to be
removed jumps from zero to |E| =

(n/2
2

)
.

Related work. For a discussion about the k-anonymity model, introduced by
Liu and Terzi [LT08], we refer to Section 1.2. Concerning the vertex deletion
variant, the work which is probably closest to ours is by Moser and Thilikos
[MT09]. They studied the parameterized complexity of the Regular-Degree-
d Vertex Deletion problem, where given an undirected graph G and an
integer s ∈ N, the task is to decide whether G can be made d-regular by at
most s vertex deletions. Moser and Thilikos [MT09] showed that Regular-
Degree-d Vertex Deletion can be solved in O(n(s + d) + (d + 2)s) time
and presented a polynomial problem kernel of size O(sd(d+ s)2). Fellows et al.
[Fel+11] provided an “improved” problem kernel of size O(s1+ε) for any constant
degree d and ε > 0. Observe that for k > n/2 the problem of Anonym V-Del
asks whether at most s vertices can be deleted to obtain a regular graph.

Concerning the edge deletion variant, there is a close connection to the edge
insertion variant which we will consider in Chapter 6. Anonym E-Del can
also be seen as degree factor problem, see Section 3.2 for a thorough discussion.

Our contributions. While every graph is trivially 1-anonymous, we will show
that the combinatorial structure of 2-anonymous graphs is already rich and
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Figure 5.2.: The complexity landscape of Anonym V-Del for various graph classes.
The results for classes with thick frames are discussed in this chapter and they imply
the results for classes with thin frames. The complexity of Anonym V-Del on unit
interval graphs remains open.

complicated: Anonym V-Del for k = 2 is NP-complete, even for strongly
restricted graph classes like trees, interval graphs, split graphs, trivially perfect
graphs, and bipartite permutation graphs. All these hardness results are estab-
lished by means of a general framework. Furthermore, we show that Anonym
V-Del is NP-complete even on graphs with maximum degree three.

On the positive side, we present (polynomial-time) dynamic programming
approaches for Anonym V-Del on three graph classes: graphs of maximum
degree two, cluster graphs, and threshold graphs. We frankly admit that these
three graph classes carry an extremely constraining combinatorial structure:
Anonym V-Del is such a vicious problem that without these heavily con-
straining structures there is basically no hope for polynomial-time algorithms.
Figure 5.2 summarizes the considered graph classes and their containment
relations.

For Anonym E-Del, we show NP-completeness on caterpillars and on graphs
with maximum degree seven; this later result is in stark contrast with the
fixed-parameter tractability of Anonym E-Ins with respect to the maximum
degree ∆ (see Theorem 6.16).
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Table 5.1.: Overview on the computational complexity classification of Anonym V-
Del and Anonym E-Del.

Parameter Anonym V-Del Anonym E-Del

k NP-complete for k = 2 NP-complete for k = 2
(Theorem 5.2 on page 102) (Theorem 5.17 on page 117)

(s, k) W[2]-hard W[1]-hard
(Corollary 5.6 on page 107) (Corollary 5.22 on page 124)

∆ NP-complete for ∆ = 3 NP-complete for ∆ = 7
(Theorem 5.1 on page 99) (Theorem 5.19 on page 119)

(s,∆) FPT (Theorem 5.23 on page 125)
(k,∆) FPT (Corollary 5.26 on page 129)

We analyze the parameterized complexity of Anonym V-Del and Anonym
E-Del, see Table 5.1 for an overview. Once again, both problems show a
difficult and challenging behavior: They are intractable with respect to each of
the three (single) parameters s, k, and ∆. Furthermore, they are intractable
with respect to the combined parameter (s, k). The only positive parameterized
results come with the combined parameters (∆, s) and (∆, k). The latter result
is based on bounding the number s of deleted vertices in terms of ∆ and k.

Finally, studying the approximability of the optimization problems naturally
associated with Anonym E-Del or Anonym V-Del, we obtain hardness
results showing that none of the considered problems can be approximated
in polynomial time better than within a factor of n1/2. Furthermore, for the
optimization variants where the solution size s is given and the task is to
maximize the anonymity level k, this inapproximability even holds if we allow a
running time of f(s)nO(1) for any computable f . Again, this result holds for
the edge deletion and the vertex deletion variant, see Table 5.2 for an overview.

Organization. We first provide our results for Anonym V-Del in Section 5.2,
starting with the NP-completeness results. To this end, we present in Sec-
tion 5.2.1 a reduction showing NP-hardness on trees. This reduction serves
in Section 5.2.2 as blueprint for a generic reduction yielding NP-hardness on
several restricted graph classes. In Section 5.2.3, we then adjust this reduction
in order to prove the inapproximability results for Anonym V-Del. We present
the polynomial-time solvable cases of Anonym V-Del in Section 5.2.4. In
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Table 5.2.: Overview on the inapproximability of the optimization variants associated
with Anonym V-Del and Anonym E-Del.

vertex deletion Anonym Min-V-Del Max-Anonym V-Del
running time (fixed k, minimize s) (fixed s, maximize k)

polynomial time no n1−ε-approximation no n1/2−ε-approximation
(Theorem 5.10 on page 109) (Theorem 5.12 on page 112)

f(s) · nO(1) open no n1/2−ε-approximation
(Theorem 5.11 on page 110)

edge deletion Anonym Min-E-Del Max-Anonym E-Del
running time (fixed k, minimize s) (fixed s, maximize k)

polynomial time no n1−ε-approximation no n1−ε-approximation
(Theorem 5.20 on page 121) (Theorem 5.19 on page 119)

f(s) · nO(1) open no n1−ε-approximation
(Theorem 5.21 on page 122)

Section 5.3, we transfer the central intractability results for Anonym V-Del
to Anonym E-Del. In particular, we show in Section 5.3.1 that Anonym
E-Del is NP-complete on caterpillars. In Section 5.3.2, we then give the in-
approximability results. Finally, we show in Section 5.4 the fixed-parameter
tractability of Anonym V-Del and Anonym E-Del with respect to the
combined parameters (s,∆) and (s, k).

5.2. Vertex Deletion

In this section, we provide various hardness results for Anonym V-Del on
several restricted graph classes. In Section 5.2.1, we show that Anonym V-
Del remains NP-hard even on trees. Extracting the basic ideas of this result,
subsequently we provide a generic reduction to show NP-hardness on trivially
perfect graphs, bipartite permutation graphs, and split graphs (see Section 5.2.2)
and strong inapproximability results for the two natural optimization problems
associated with Anonym V-Del (see Section 5.2.3). We also identify several
classes of graphs for which Anonym V-Del is polynomial-time solvable (see
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Section 5.2.4). As a warm up, we first prove that Anonym V-Del is NP-
complete on graphs with maximum degree three.

Theorem 5.1. Anonym V-Del is NP-complete on graphs with maximum
degree three.

Proof. Since containment in NP is obvious, we focus on showing NP-hardness.
To this end, we give a reduction from the Vertex Cover problem which is
known to be NP-complete even in three-regular graphs [GJ79, GT1] and is
formally defined as follows.

Vertex Cover [GJ79, GT1]
Input: An undirected graph G = (V,E) and h ∈ N.
Question: Is there a vertex subset V ′ ⊆ V , |S| ≤ h, such that every edge

has an endpoint in V ′?

Input: h = 3 Solution:

Given a Vertex Cover instance (G = (V,E), h) with G being three-regular,
start by copying G into a new graph G′. Finally, add h+ 1 degree-zero vertices
to G′, set s := h, and k := |V |+ 1.

If G contains a vertex cover V ′ of size h, then deleting V ′ in G′ clearly results
in an edgeless graph with |V | + 1 = k vertices, implying that (G′, s, k) is a
yes-instance of Anonym V-Del. In the reverse direction, for any k-deletion
set S, since 2k > n+h+1 and G′ contains s+1 degree-zero vertices, all vertices
in G′ − S have degree zero. Thus, S ∩ V is a vertex cover in G.

5.2.1. NP-Hardness on Trees

In this section, we show that Anonym V-Del remains NP-hard even on trees.
This result and many further hardness results will be obtained using reductions
from the NP-complete Set Cover problem, which is defined as follows:
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Set Cover [GJ79, SP5]
Input: A universe A = {a1, a2, . . . , aα}, a collection B =

{B1, B2, . . . , Bβ} of subsets of A, and h ∈ N.
Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | ≤ h, such

that
⋃
j∈J Bj = A?

Input: A = {a1, a2, . . . , a7}
B = {B1, B2, B3, B4}, h = 2

B1 = {a1, a2, a4, a5} B2 = {a2, a4, a6}
B3 = {a3, a5, a6, a7} B4 = {a4, a5, a7}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

Solution:

J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

If a Set Cover instance I = (A,B, h) contains such an index set J , then we
refer to the set {Bj | j ∈ J} as a set cover for I.

Reduction 1. The reduction showing NP-hardness of Anonym V-Del on trees
is as follows: Let (A,B, h) be an instance of Set Cover. We assume without
loss of generality that for each element a ∈ A there exists a set B ∈ B with a ∈ B.
Furthermore, we assume without loss of generality that each set B ∈ B occurs
at least three times in B. To decrease the amount of indices in the construction
given below we introduce the function f : N→ N with f(i) = α+ (h+ 1)i.

The reduction for trees is as follows, see Figure 5.3 for an example. Set k := 2
and s := h such that (G, k, s) is an equivalent Anonym V-Del-instance. The
graph G = (V,E) is constructed as follows: For each element ai ∈ A add an
element gadget consisting of a star K1,f(i) with the center vertex v(ai). Denote
with VA := {v(a1), v(a2), . . . , v(aα)} the set of all these center vertices.

For each set Bj ∈ B add a set gadget which is a tree rooted in a vertex v(Bj).
The root has |Bj | child vertices where each element ai ∈ Bj corresponds to
exactly one of the children of v(Bj), denoted by v(ai, Bj). Additionally, we add
to v(ai, Bj) exactly f(i) degree-one neighbors. Hence, the set gadget is a tree
of depth two rooted in v(Bj). We denote with VB := {v(B1), v(B2), . . . , v(Bβ)}
the set of all root vertices. Observe that, as each set Bj ∈ B occurs at least
three times, the set gadgets are 2-anonymous. Finally, to end up with one tree
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B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

h: set cover size
s: number of deleted vertices

k: anonymity level

f : N→ N with
∀1 ≤ i < j ≤ n :
f(j)− f(i) > s

k = 2s = h

v(B1)

v(B3)

v(a1, B1)

· · ·

v(a2, B1)

· · ·

v(a4, B1)

· · ·

v(a5, B1)

· · ·

v(a3, B3)

· · ·

v(a5, B3)

· · ·

v(a6, B3)

· · ·

v(a7, B3)

· · ·

set-gadget v(B2)

v(B4)

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·

v(a4, B4)

· · ·

v(a5, B4)

· · ·

v(a7, B4)

· · ·

v(a1)

· · ·

v(a2)

· · ·

v(a3)

· · ·

v(a4)

· · ·

v(a5)

· · ·

v(a6)

· · ·

v(a7)

· · ·

deg(v(ai, Bj)) = f(i) + 1

deg(v(ai)) = f(i)

Figure 5.3.: Example of the reduction for trees. Above the Set Cover instance with
twelve sets (each set Bi , i = 1, . . . , 4 appears three times) and seven elements is
graphically displayed (for example, the set B1 contains the elements a1, a2, a4, and a5,
and {B1, B3} forms a set cover). In our reduction, we assume without loss of generality
that each set occurs at least times. However, to keep the figure clearly arranged, we
omit these copies in the figure. Below are the four different set gadgets and the element
gadgets are at the bottom of the picture. Observe that by the choice of f , the degrees
of the vertices in the set-gadgets and vertex-gadgets are ensured to not interfere, even
if s vertices are removed. The effect of these copies to the construction is that each of
the four set-gadgets appears three times. Thus, deleting the vertices v(B1) and v(B3)
makes the displayed graph 2-anonymous.

101



instead of a forest, repeatedly add edges between any degree-one-vertices of
different connected components.

Correctness of Reduction 1 Observe that for each element ai ∈ A the only
vertex of degree f(i) is v(ai) and there are no other vertices violating the
2-anonymous property. The key point in the construction is that, in order to
get a 2-anonymous graph, one has to delete vertices of VB: Let ai ∈ A be an
element and v(Bj) a root vertex such that ai ∈ Bj . By construction the child
vertex v(ai, Bj) of v(Bj) corresponds to ai and therefore has f(i) child vertices.
Thus, deleting v(Bj) lowers the degree of v(ai, Bj) to f(i) and, hence, v(ai) no
longer violates the 2-anonymous property. Furthermore, as each set Bj ∈ B
occurs at least three times, the vertices VB are 2-anonymous. Hence, given a
set cover one can construct a corresponding k-deletion set of the same size and,
thus, if (A,B, h) is a yes-instance, then (G, k, s) is a yes-instance. The basic
idea in the converse direction is that due to the choice of f , deleting vertices
from VB is the only possibility to make the graph 2-anonymous. The formal
proof which implies the following theorem will be given later (see Lemma 5.4),
after introducing the generic reduction.

Theorem 5.2. Anonym V-Del is NP-complete on trees even if k = 2.

5.2.2. Generic Reduction
In this section, we generalize Reduction 1 given in the previous subsection.
More specifically, we will define properties such that a graph G fulfilling them
together with s := h and k := 2 forms a yes-instance of Anonym V-Del if
and only if the given Set Cover instance (A,B, h) is a yes-instance. Based on
that, we then describe the construction of several graphs contained in different
graph classes and fulfilling the properties. Formally, we require the constructed
graph G = (V,E) to fulfill the following:

1. Element-gadgets:

(a) For each element ai ∈ A there is a corresponding vertex, denoted
by v(ai), in G and the vertex set VA := {v(a1), v(a2), . . . , v(aα)} is
exactly the set of vertices not being 2-anonymous in G.

(b) For each vertex v ∈ V it holds that |N [v] ∩ VA| ≤ 1.

2. Set-gadgets:
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(a) For each set Bj ∈ B there is a corresponding vertex v(Bj) in G and
for each element ai ∈ Bj the vertex v(Bj) has a neighbor v(ai, Bj)
with deg(v(ai, Bj)) = deg(v(ai)) + 1.
Set VB := {v(B1), v(B2), . . . , v(Bβ)} and ABj := {v(ai, Bj) | ai ∈ Bj}.
Set AB :=

⋃
Bj∈B ABj .

(b) For all Bj ∈ B it holds that N(ABj ) ∩ VB = {v(Bj)}.
(c) For each vertex v ∈ V there is a vertex u ∈ VB such that N(v)∩AB ⊆

N(u).

3. Interaction between these gadgets:

(a) The vertex subsets VA, VB, and AB1 , AB2 , . . . , ABβ are pairwise dis-
joint.

(b) It holds that N(VA) ∩ (VB ∪AB) = ∅.
(c) For each D ⊆ VB, |D| ≤ h, the set of vertices violating the 2-anony-

mous property in G−D is a subset of VA.

(d) Any two vertices u ∈ VA and v /∈ AB satisfy |deg(u)− deg(v)| > s.

It is not hard to verify that the graph constructed in the reduction in the
previous paragraph has the above properties. Before proving the correctness of
the generic reduction we make the following observation.

Observation 5.3. For each D ⊆ VB, |D| ≤ h, the set VA \ {v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} is exactly the set of vertices not being 2-anonymous in G−D.

Proof. By Property 1a only the vertices in VA are not 2-anonymous in G.
Property 3c ensures that the set of vertices X violating the 2-anonymous
property in G−D is a subset of VA.

Because of Property 3b (N(VA)∩VB = ∅) it holds that degG(v) = degG−D(v)
for all v ∈ X. Moreover, because N(ABj ) ∩ VB = {v(Bj)} (Property 2b)
it holds for all Bj ∈ B and all v(ai, Bj) ∈ ABj that degG−D(v(ai, Bj)) =
degG(v(ai, Bj)) − x where x is one if v(Bj) ∈ D and otherwise zero. This
implies with Property 2a that X ⊆ VA \ {v(ai) | ∃v(Bj) ∈ D : ai ∈ Bj}.

By Property 3a it follows that VA ⊆ V \D. To show that VA\{v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} ⊆ X, assume by contradiction that there is a vertex v(ai) ∈
VA \ X but for all v(Bj) ∈ D it holds that ai /∈ Bj . By Property 3b it
holds that degG(v(ai)) = degG−D(v(ai)) and hence by Property 3d it follows
that there is some vertex v ∈ AB with degG−D(v) = degG−D(v(ai)). Thus,
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since D ⊆ VB and N(ABj ) ∩ VB = {v(Bj)} (Property 2b), by Property 2a it
follows that there is some v(Bj) ∈ D with ai ∈ Bj , a contradiction.

Lemma 5.4. Let G be a graph satisfying Properties 1a to 3d for a given
instance (A,B, h) of Set Cover. Then (G, 2, h) is a yes-instance of Anonym
V-Del if and only if (A,B, h) is a yes-instance of Set Cover.

Proof. If there is an index set J , |J | ≤ h, such that
⋃
j∈J Bj = A, then by

Observation 5.3 the set S = {v(Bj) | j ∈ J} ⊆ VB, |S| = |J |, is a k-deletion set
for G. It remains to prove the reverse direction.
Let S be a k-deletion set of size at most s = h for G = (V,E). We form

a k-deletion set S′ for G such that S′ ⊆ VB and |S′| ≤ |S|. Consider each
vertex v ∈ S: If v ∈ VB, then add v to S′ (Case 1). If v ∈ N [VA], then
by Property 1b there is only one ai such that v ∈ N [v(ai)] and we add a
vertex v(Bj) ∈ VB with ai ∈ Bj to S′ (Case 2). Finally, if v ∈ N [AB], then by
Property 2c there is a vertex u ∈ VB with N(v) ∩ AB ⊆ N(u) and we add u
to S′ (Case 3).
We next prove that S′ is a k-deletion set for G and thus by Observation 5.3

the index set corresponding to the vertices in S′ is a solution of size |S′| to the
Set Cover instance.
Assume towards a contradiction that G− S′ is not 2-anonymous. Denoting

by X ⊆ V \ S′ the set of vertices not being 2-anonymous, it follows from Obser-
vation 5.3 that X ⊆ VA. Moreover, by the construction of S′ (see Case 2) and
Observation 5.3 it follows that N [X] ∩ S = ∅ and thus degG−S(u) = degG(u)
for all u ∈ X. Hence, for each u ∈ X there is a vertex w ∈ V such
that degG(u) = degG−S(w) and thus by Property 3d it follows that w ∈ N [AB].
This implies a contradiction to the construction of S′ because from w ∈ N [AB]
it follows that S′ contains w’s neighbor in VB (see Case 3) and thus u /∈ X by
Observation 5.3.

Using this generic reduction we now show NP-hardness on several graph
classes which are defined as follows (see Brandstädt et al. [BLS99]): Trivially
perfect graphs are the {P4, C4}-free graphs, that is, they do not contain an
induced path or cycle on four vertices. A graph G is a bipartite permutation
graph if G is bipartite and does not contain an asteroidal triple (is AT-free).
Three vertices of a graph form an asteroidal triple if every two of them are
connected by a path avoiding the neighborhood of the third. A graph is a split
graph if it can be partitioned into a clique and an independent set.
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Theorem 5.5. Anonym V-Del is NP-complete on trivially perfect graphs,
bipartite permutation graphs, and split graphs, even if k = 2.

Proof. Since containment in NP is easy to see, we focus on showing NP-hardness.
Let B = {B1, B2, . . . , Bβ} be a collection of subsets of some universe A =
{a1, a2, . . . , aα} which form together with some h ∈ N an instance of Set
Cover. As in Reduction 1, we assume without loss of generality that for each
element a ∈ A there exists a set B ∈ B with a ∈ B. Furthermore, we assume
without loss of generality that each set B ∈ B occurs at least three times in B.

We first describe the reductions for each the three graph classes and then, due
to the similarities in the constructed graphs, we show for all three graphs together
that the above properties are satisfied. Let f : N→ N be f(i) = i(h+ 1) + α.

Bipartite permutation graphs: Analogously to the reduction for trees add for
each set ai ∈ A an element-gadget consisting of star K1,f(i) with a center vertex
denoted by v(ai). Clearly, a star is a bipartite permutation graph.

For each set Bj ∈ B we add a set-gadget as follows: First, add a vertex v(Bj)
to G. For each element ai ∈ Bj add a child vertex, denoted by v(ai, Bj), to v(Bj).
Let imax := maxai∈Bj{i}, ` := |Bj |, and ABj := {v(ai, Bj) | ai ∈ Bj}. Next,
add the vertex set U(Bj) := {u1(Bj), u2(Bj), . . . , uf(imax)(Bj)} and for each ai ∈
Bj the edge set {(ur(Bj), v(ai, Bj)) | 1 ≤ r ≤ f(i)}. Note that deg(v(ai, Bj)) =
deg(v(ai)) + 1. Denote with C(Bj) the set-gadget, that is, the connected
component containing v(Bj) which consists of the vertices {v(Bj)} ∪ ABj ∪
U(Bj); see Figure 5.4 for an example. Furthermore, observe that N(u1(Bj)) ⊇
N(u2(Bj)) ⊇ . . . ⊇ N(ui`(Bj)) and thus, in contrast to the previous reduction
for trees, C(Bj) is AT-free.
Overall, the constructed graph is AT-free and clearly bipartite.

Trivially perfect graphs: First, construct the graph as described above for the
case of bipartite permutation graphs. Next for each Bj ∈ B apply the following
changes to C(Bj), see Figure 5.5 for an illustration: Add edges so that the
vertices in ABj form a clique. To ensure that the degree of the vertices in ABj
does not change by the previous “clique operation”, remove the first |Bj | − 1
vertices from U(Bj) which are all adjacent to each vertex in ABj due to the
definition of f and |Bj | ≤ α.
Clearly, the star components containing the vertices from VA are trivially

perfect. Furthermore, note that each C(Bj) is trivially perfect: since {v(Bj)} ∪
ABj is a clique, the remaining vertices in U(Bj) form an independent set, and
since N(u|Bj |(Bj)) ⊇ N(u|Bj |+1(Bj)) ⊇ . . . ⊇ N(ui`(Bj)) it is easy to verify
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v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 5.4.: The set-gadget C(B1) for the constructed bipartite permutation graph.
The given Set Cover instance is the same as in Figure 5.3 where B1 = {a, a2, a4, a5}.

v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 5.5.: The set-gadget C(B1) for the constructed trivially perfect graphs. The
given Set Cover instance is the same as in Figure 5.3 where B1 = {a, a2, a4, a5}.

that C(Bj) is indeed a threshold graph which is a special form of a trivially
perfect graph [BLS99].

Note that since the connected components containing the vertices in VA are
also threshold graphs, by the reduction above we have proven that Anonym
V-Del is indeed NP-hard on graphs whose connected components are threshold
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graphs. However, in Theorem 5.16 we prove that Anonym V-Del is polynomial-
time solvable on threshold graphs.
Split graphs: First, construct the graph G as described above for the case of
bipartite permutation graphs. For each set Bj ∈ B set W (Bj) := {v(Bj)} ∪
U(Bj). Then, set WB :=

⋃
B∈BW (B). Finally, add edges to make the vertex

subset N(VA) ∪WB to a clique. Observe that the remaining vertices form an
independent set and, hence, the graph is a split graph.
Correctness: We now show that the constructed graphs satisfy Properties 1a
to 3d. To this end, observe that, due to assumption that each set occurs three
times in B, each vertex in C(Bj) is 2-anonymous. Hence, the vertices in VA
are exactly the ones that are not 2-anonymous. Thus, Property 1a is satisfied.
Properties 2a and 3a are clearly satisfied. Since for each vertex v(ai) ∈ VA
the vertex set N [v(ai)] induces a star (a clique in the split graph case) and for
each j 6= i we have N [v(ai)] ∩N [v(aj)] = ∅, Property 1b is fulfilled. Observe
that ABj ⊆ N(v(Bj)) for each Bj ∈ B. Furthermore, the vertices in VA and VB
are pairwise in different connected components in the case for trivially perfect
graphs and bipartite permutation graphs. Thus, Properties 2b and 3b are
fulfilled for these cases. For the case of split graphs, observe that we started
with the construction for the bipartite permutation graphs and the vertices of VA
and AB remained unchanged. Hence, Properties 2b and 3b are also fulfilled for
the case of split graphs. In the constructed graphs for each Bj , Bj′ ∈ B, j 6= j′,
we have N(ABj ) ∩ N(ABj′ ) = ∅. From this and ABj ⊆ N(v(Bj)), it follows
that Property 2c is satisfied. Since AB ⊆ N(VB) this implies that Property 3c
is fulfilled. Finally, since each vertex in V \ (VA ∪AB) has degree at most α (at
least |N(VA) ∪WB| in the split graph case), it follows from the definition of f
that Property 3d is satisfied.

Since Set Cover is W[2]-complete with respect to the solution size h [DF13]
and the solution size s in the constructed instance was s := h, we have the
following.

Corollary 5.6. Anonym V-Del is W[2]-hard with respect to parameter s,
even if k = 2 and if the input graph is a tree, a bipartite permutation graph, a
split graph, or a trivially perfect graph.

Set Cover is fixed-parameter tractable with respect to the combined pa-
rameter (α, h) [FKW04] but does not admit a polynomial kernel with respect
to (α, h) [DLS14], unless NP ⊆ coNP/poly. Observe that in all constructions
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for Theorem 5.5 except the one for split graphs we can bound s and ∆ in a
polynomial in α and h.

Corollary 5.7. Anonym V-Del on trees, bipartite permutation graphs or
trivially perfect graphs does not admit a polynomial kernel with respect to the
combined parameter (k, s,∆), unless NP ⊆ coNP/poly.

There are two natural optimization versions associated with Anonym V-Del:
in one version (called Max-Anonym V-Del) the goal is to maximize the
anonymity k subject to the constraint that the number s of deleted vertices does
not exceed a given bound; in the other version (called Anonym Min-V-Del)
the goal is to minimize the number s of deleted vertices subject to the constraint
that the anonymity does not go below a certain given bound. As Set Cover
is NP-hard to approximate within a ratio o(log n) [RS97, Vaz01], the above
reduction yields the following inapproximability result.

Corollary 5.8. Anonym Min-V-Del cannot be approximated within a factor
of o(log n) in polynomial-time, even if k = 2 and if the input graph is a tree, a
bipartite permutation graph, a split graph, or a trivially perfect graph, unless P =
NP.

Since the above reduction gives NP-hardness for k = 2 and the input graph
is 1-anonymous, we immediately get inapproximability within a factor of two
for Max-Anonym V-Del.

Corollary 5.9. For every 0 < ε < 1, Max-Anonym V-Del cannot be approx-
imated within a factor of 2−ε in polynomial time, unless P = NP. Furthermore,
if Max-Anonym V-Del admits for any 0 < ε ≤ 1 a fixed-parameter (2− ε)-
approximation algorithm with respect to parameter s, then FPT = W[2].

In the next section, we show that we can strengthen these inapproximability
results.

5.2.3. Inapproximability Results
Corollaries 5.8 and 5.9 give first lower bounds on the polynomial-time approxima-
bility of the two optimization problems associated to Anonym V-Del, namely
Anonym Min-V-Del and Max-Anonym V-Del. For general graphs, these
results, however, can be strengthened considerably in terms of the achievable
approximation factor and, in case of Max-Anonym V-Del, also in terms of
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the allowed running time. Specifically, we prove that Anonym Min-V-Del
is not n1−ε-approximable in polynomial time, while Max-Anonym V-Del is
not n1/2−ε-approximable in fpt-time with respect to the parameter s, even on
trees.

To this end, for the polynomial-time inapproximability of Anonym Min-V-
Del, we slightly adjust the reduction given in the proof of Theorem 5.1.

Theorem 5.10. For every 0 < ε ≤ 1, Anonym Min-V-Del is not n1−ε-
approximable in polynomial time, even on graphs with maximum degree three,
unless P = NP.

Proof. Let 0 < ε ≤ 1 be a constant. We establish a gap-reduction with gap n1−ε

from the Vertex Cover problem which is known to be NP-complete even in
three-regular graphs [GJ79, GT1]; see page 99 for the formal definition.
Given a Vertex Cover instance (G = (V,E), h) we construct an in-

stance I ′ = (G′ = (V ′, E′), k) of Anonym Min-V-Del. Start by copying G
into a new graph G′. Next, set x :=

⌈
n1/ε

⌉
− n+ h. Finally, add x degree-zero

vertices to G′ and set k := n− h+ x. Denote by n′ the number of vertices of
G′, thus n′ = n+ x.
We now show that if I is a yes-instance, then opt(I ′) ≥ h and if I is a

no-instance, then opt(I ′) = n+ x.
Suppose that G contains a vertex cover S of size h. Then, deleting S in G′

clearly results in an edgeless graph with n− h+ x = k vertices, implying that
opt(I ′) ≤ h.

Suppose that G′ contains a k-deletion set S of size at most |V ′|−1. Since 2k >
n − h + x and G′ contains x > h degree-zero vertices, all vertices in G′ − S
have degree zero. Furthermore, at least k = n− h+ x degree-zero vertices are
contained in G′ − S and hence, |S| ≤ h and S ∩ V is a vertex cover in G. Thus,
if G does not contain a vertex cover of size h, then opt(I ′) = |V ′| = n+ x.
We obtain a gap-reduction with the gap at least

n+ x

h
=
dn 1

ε e+ h

h
=

(dn 1
ε e+ h)(ε+1−ε)

h
≥ n · (dn 1

ε e+ h)(1−ε)

h

≥ (dn 1
ε e+ h)(1−ε) = (n+ x)(1−ε) = (n′)1−ε.

Next we show strong parameterized inapproximability results for Max-
Anonym V-Del. To this end, we adjust Reduction 1 in order to obtain
an fpt gap-reduction.
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Theorem 5.11. If Max-Anonym V-Del admits on trees for any 0 < ε ≤ 1/2
a fixed-parameter n1/2−ε-approximation algorithm with respect to parameter s,
then FPT = W[2].

Proof. Let 0 < ε ≤ 1/2 be a constant. We provide an fpt gap-reduction with
gap n1/2−ε from the W[2]-hard Set Cover problem [DF13] parameterized by
the solution size h; see page 100 for the formal definition. Let I = (A,B, h)
be an instance of Set Cover. We assume without loss of generality that for
each element ai ∈ A there exists a set Bj ∈ B with ai ∈ Bj . Let f : N → N

be f(i) = (h + 4)i. Set t :=
⌈
(αβ)(1−2ε)/(2ε)

⌉
. We will aim for making the

constructed graph t-anonymous.
The instance I ′ of Max-Anonym V-Del is defined by s = h and a graph G =

(V,E) constructed as follows: For each element ai ∈ A add a star K1,f(i) with
the center vertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(aα)} the set of all
these center vertices. Furthermore, for each element ai ∈ A add t stars K1,f(i)+1.

For each set Bj ∈ B add a set-gadget which will consist of a tree rooted in a
vertex v(Bj), see Figure 5.6 for an illustration. The root has |Bj |t child vertices
where each element ai ∈ Bj corresponds to exactly t of these children, denoted
by v1(ai, Bj), v2(ai, Bj), . . ., vt(ai, Bj). Additionally, for each ` ∈ {1, 2, . . . , t}
we add to v`(ai, Bj) exactly f(i) degree-one neighbors. Hence, the set gadget
is a tree of depth two rooted in v(Bj). To ensure that the root v(Bj) does
not violate the t-anonymous property we add t stars K1,deg(v(Bj)). We denote
with VB = {v(B1), v(B2), . . . , v(Bβ)} the set of all root vertices. Finally, to end
up with one tree instead of a forest, repeatedly add edges between any degree-
one-vertices of different connected components. Denoting by n the number of
vertices in G it holds that

n ≤ tβα2︸ ︷︷ ︸
vertices for elements

+ t(βα)2 + tβα︸ ︷︷ ︸
vertices for sets

< (tβα)2.

We now show that if I is a yes-instance, then opt(I ′) ≥ t and if I is a
no-instance, then opt(I ′) = 1.

Suppose that I has a set cover of size h. Observe that for each element ai ∈ A
the only vertex of degree f(i) is v(ai), and there are no other vertices violating
the t-anonymous property. The key point in the construction is that, in order
to get a t-anonymous graph, one has to delete vertices of VB. Indeed, let ai ∈ A
be an element and v(ai) a root vertex such that ai ∈ Bj . By construction,
for each 1 ≤ ` ≤ t the child vertex v`(ai, Bj) of v(Bj) has f(i) child vertices
and hence a degree of f(i) + 1. Thus, deleting v(Bj) lowers the degree of
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v(B1)

v1(a5, B1)

· · ·

v2(a5, B1)

· · ·

vt(a5, B1)

· · ·

· · ·

v1(a4, B1)

· · ·

v2(a4, B1)

· · ·

vt(a4, B1)

· · ·

· · ·

v1(a2, B1)

· · ·

v2(a2, B1)

· · ·

vt(a2, B1)

· · ·

· · ·

v1(a1, B1)

· · ·

v2(a1, B1)

· · ·

vt(a1, B1)

· · ·

· · ·

Figure 5.6.: The set-gadget for the set B1 in the fpt gap-reduction of Theorem 5.11.
The given Set Cover instance is the same as in Figure 5.3 where B1 = {a, a2, a4, a5}.
The fpt gap-reduction is an extension of Reduction 1 (depicted in Figure 5.3). The
main difference is that the fpt gap-reduction introduces a lot of copies of certain vertices
to increase the anonymity level. This can be seen in the set-gadget above: While in
Reduction 1 only one vertex corresponds to the combination (a1, B1) with a1 ∈ B1,
namely v(a1, B1), in the fpt gap-reduction t vertices correspond to the combination,
namely v1(a1, B1), v2(a1, B1), . . . , vt(a1, B1).

each v`(ai, Bj) to f(i) and, hence, v(ai) no longer violates the t-anonymous
property. Hence, given a set cover of size h one can construct a corresponding t-
deletion set for G.

Conversely, we show that if there exists a 2-deletion set of size at most h
in G, then (A,B, h) is a yes-instance of Set Cover. Let S ⊆ V be a 2-deletion
set of size at most h. First, we show how to construct a 2-deletion set S′ ⊆ VB
such that |S′| ≤ |S|. To this end, initialize S′ as S′ = S ∩ VB. If S′ is a
2-deletion set, then the construction of S′ is finished. Otherwise, there is a
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vertex v in G − S′ such that there is no other vertex with the same degree
as v. Observe that since S′ ⊆ VB, it follows that v ∈ VA, that is v = v(ai) for
some 1 ≤ i ≤ α. Furthermore, observe that is exactly one vertex in G having a
degree d between f(i)− h ≤ d ≤ f(i), namely v(ai). As S is a 2-deletion set, it
follows that S either contains v(ai) or a vertex u that is adjacent to a vertex w
with degG(w) > deg(v(ai)). In either case, we add to S′ a vertex v(Bj) ∈ VB
such that ai ∈ Bj . By exhaustively applying this procedure, we end up with S′
being a 2-deletion set. Since the vertices in VB are the only ones in G that are
adjacent to more than one vertex of degree at least three and all vertices in VA
have degree more than three, it follows that |S′| ≤ |S|.

It remains to show that the set B′ of sets corresponding to the vertices in S′
forms a set cover. To this end, assume by contradiction that B′ is not a set
cover, that is, there is an element ai /∈

⋃
Bj∈B′ Bj . However, this implies that

in G−S′ there is exactly one vertex of degree f(i), namely ai, implying that S′
is not a 2-deletion set, a contradiction. As |B′| = |S′| ≤ |S| ≤ h, it follows that
if G contains a 2-deletion set of size h, then (A,B, h) is a yes-instance. Hence,
if (A,B, h) is a no-instance, then there exist no 2-deletion set of size at most h.
We obtain an fpt gap-reduction with the gap

t = (t2)
1/2+ε−ε = t2ε(t2)

1/2−ε = (αβ)1−2ε(t2)
1/2−ε

= (α2β2)
1/2−ε(t2)

1/2−ε = (α2β2t2)
1/2−ε > n

1/2−ε

since n < t2α2β2. Thus, the statement of the theorem follows from Lemma 2.2
(see page 26).

Since the fpt gap-reduction provided in the proof of Theorem 5.11 can be
constructed in polynomial time and since Set Cover is NP-complete, we
also obtain polynomial-time inapproximability under the stronger assumption
P = NP.

Theorem 5.12. For every 0 < ε ≤ 1/2, Max-Anonym V-Del is not n1/2−ε-
approximable in polynomial time, even on trees, unless P = NP.

5.2.4. Polynomially-Time Solvable Cases
We complement our intractability results for Anonym V-Del from the previous
sections by showing that Anonym V-Del is polynomial-time solvable on graphs
with maximum degree two, on graphs that are disjoint unions of cliques, and on
threshold graphs.
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Graphs with Maximum Degree Two

In contrast to graphs of maximum degree three (see Theorem 5.1), we observe
that Anonym V-Del is polynomial-time solvable on graphs of maximum degree
two. Note that a graph of maximum degree two is just a collection of paths
and cycles. Given five integers d0, d1, d2, x, y, it is easy to decide whether it
is possible to remove x vertices from a path of length y (respectively, from a
cycle of length y) such that there survive precisely d0 vertices of degree zero,
d1 vertices of degree one, and d2 vertices of degree two. A straight-forward
dynamic programming approach based on this observation leads to the following.

Theorem 5.13. On graphs of maximum degree two, Anonym V-Del is
polynomial-time solvable.

Disjoint Union of Cliques

Note that Anonym V-Del is trivial on cliques: either the clique size is at
least k, or otherwise one has to delete all the vertices. The following theorem
shows that polynomial-time solvability also carries over to the case where the
graph is the disjoint union of several cliques, that is, a cluster graph. Recall
that a graph is a cluster graph if and only if it does not contain the 3-vertex
path P3 as an induced subgraph.

Theorem 5.14. On a cluster graph G with maximum degree ∆, Anonym
V-Del can be solved in O(n2∆) time.

Proof. Note that removing any number of vertices from a cluster graph yields
another cluster graph. For an integer c ≥ 1, we denote by #comp(G, c) the
number of components of size c in G. For integers x, y ≥ 1, we denote by G(x, y)
the graph that consists of all components of G of size up to x, together with y
new components (cliques) of size exactly x.
We design a dynamic program that solves Anonym V-Del for all such

graphs G(x, y). We denote by f(x, y) the smallest possible number of vertices
whose removal from G(x, y) yields a k-anonymous graph, and we store all
these values in the dynamic programming table. In the initialization phase
of the dynamic program we handle the cases with x = 1. Note that the
graph G(1, y) consists of t := #comp(G, 1)+y isolated vertices. Then f(1, y) = 0
whenever t ≥ k, and f(1, y) = t whenever t < k.
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The cases with x ≥ 2 are handled as follows. Consider a graph G(x, y) that
contains t := #comp(G, x) + y components of size x. A k-anonymous subgraph
of G(x, y) will contain a certain number z of these components, while from each
of the remaining t− z components (at least) one vertex is to be removed; note
that this requires x · z ≥ k whenever z 6= 0. This yields the formula

f(x, y) = min {f(x− 1, t− z) + t− z | z = 0 or k/x ≤ z ≤ t} .

As the largest clique in G contains ∆ + 1 vertices, the dynamic programming
table has O(n∆) entries. We precompute all the values #comp, and then
determine every value f(x, y) in O(n) time per entry. All in all, this yields the
claimed running time of O(n2∆). The final answer for the graph G is given
by f(∆ + 1, 0).

Threshold Graphs

We recall that a graph G = (V,E) is a threshold graph if there are positive real
vertex weights w(v) for v ∈ V such that {v1, v2} ∈ E if and only if w(v1) +
w(v2) ≥ 1; see Brandstädt et al. [BLS99] for more information. Without loss of
generality we will assume that the vertex weights satisfy the following conditions:

• The vertex weights are pairwise distinct, and satisfy 0 < w(v) < 1.

• Any v1, v2 ∈ V satisfy w(v1) + w(v2) 6= 1; in particular w(v1) 6= 1/2.

Note that the closed neighborhoods in a threshold graph are totally ordered
by inclusion: whenever w(v1) < w(v2), then NG[v1] ⊆ NG[v2] and conse-
quently deg(v1) ≤ deg(v2).

Lemma 5.15. Let U ⊆ V be a subset of vertices with |U | ≥ 2, let wmin =
minu∈U w(u) and wmax = maxu∈U w(u), and let u0, u1 ∈ U be the vertices
with w(u0) = wmin and w(u1) = wmax. All vertices in U have identical degree if
and only if there is no vertex v ∈ V \ {u0, u1} with 1−wmax < w(v) < 1−wmin.

Proof. Note that all vertices in U have identical degree if and only if NG[u0] =
NG[u1]. The latter condition in turn holds if and only if there is no vertex v in
the graph (with v 6= u0 and v 6= u1) that is adjacent to u1 but not to u0, and
this is equivalent to the stated condition 1− wmax < w(v) < 1− wmin.

Theorem 5.16. Anonym V-Del on threshold graphs is solvable in O(n2) time.
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Proof. We provide a dynamic program to solve the problem in the claimed
running time. To this end, we first need some further notation: Recall that
a block BG(d) of degree d contains all degree-d vertices of G. Now consider
some block BG(d) of constant degree d in an optimal subgraph for Anonym
V-Del, and let u0, u1 ∈ BG(d) and wmin and wmax be defined as in the
lemma. The territory of this block is defined as the union of the two closed
intervals [wmin, wmax] and [1 − wmax, 1 − wmin]; note that these two intervals
will overlap if wmin < 1/2 < wmax. The canonical superset U∗ ⊆ V consists
of u0 and u1, together with all vertices v ∈ V that satisfy wmin ≤ w(v) ≤ wmax

but not 1 − wmax < w(v) < 1 − wmin. One message of Lemma 5.15 is that
distinct blocks in an optimal subgraph must have disjoint territories. Another
message of the Lemma 5.15 is that we may as well replace every block BG(d) by
its canonical superset U∗: By adding these vertices, the degree in every block
either remains the same or is uniformly increased by |U∗| − |BG(d)|. And if
the territories of distinct blocks were disjoint before the replacement, then they
will also be disjoint after the replacement. In other words, such a replacement
does not violate k-anonymity but simplifies the combinatorial structure of the
considered subgraph.

This suggests the following dynamic programming approach. For every real
number r with 0 ≤ r ≤ 1/2, we consider the threshold graph Gr that is induced by
the vertices v ∈ V with r ≤ w(v) ≤ 1− r; note that the only crucial values for r
are the O(n) values w(v) and 1− w(v) that fall between the bounds 0 and 1/2.
The goal is to compute for every graph Gr a largest k-anonymous subgraph.
We start our computations with r = 1/2 and work downwards towards r = 0.

The initialization step of the dynamic program handles subgraphs that consist
of a single block whose territory contains the number 1/2. Such a block will either
be empty, or it is a canonical superset specified by two values wmin and wmax.
All in all, this only yields a polynomial number of cases to handle. In the main
computation phase of the dynamic program, we consider a general graph Gr and
check all possibilities for the outermost block, which is the block whose territory
is farthest away from the center point 1/2. Since this territory is the union of
two intervals [r, q] and [1− q, 1− r], we may simply check all possibilities for
the interval boundary q, and then combine the corresponding block with the
(previously computed) largest k-anonymous subgraph for graph Gq. Since there
is only a linear number O(n) of candidate values for q, the largest k-anonymous
subgraph of Gr can be found in linear time.
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5.3. Edge Deletion

In this section, we transfer the central intractability results from Section 5.2 to
the setting where instead of vertices edges are removed; see Section 5.1 for a
discussion about vertex deletions versus edge deletions. To this end, we first
show in Section 5.3.1 that Anonym E-Del is NP-complete on caterpillars, a
subclass of trees. Compared to the NP-completeness of Anonym V-Del on
trees (see Section 5.2.1) this gives a slightly stronger intractability result for
Anonym E-Del. The employed reduction is, however, more complicated than
the one given in Section 5.2.1 and we could not come up with a general reduction
scheme as provided in the vertex deletion case in Section 5.2.2. We then provide
in Section 5.3.2 polynomial-time inapproximability results for Anonym Min-E-
Del and Max-Anonym E-Del for bounded-degree graphs and parameterized
inapproximability results for Max-Anonym E-Del on general graphs.

5.3.1. NP-Hardness on Caterpillars

In this section, we establish a polynomial-time reduction from the NP-complete
Exact Cover by 3-Sets problem, which is defined as follows:

Exact Cover by 3-Sets [GJ79, SP2]
Input: A universe A = {a1, a2, . . . , a3h}, a collection B =

{B1, B2, . . . , Bβ} of 3-element sets over A, and h ∈ N.
Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | = h, such

that
⋃
j∈J Bj = A?

Input: A = {a1, a2, . . . , a6}
B = {B1, B2, B3, B4}, h = 2

B1 = {a1, a2, a4} B2 = {a2, a4, a6}
B3 = {a3, a5, a6} B4 = {a2, a4, a5}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6

Solution:

J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6

If an Exact Cover by 3-Sets instance I = (A,B, h) contains such an index
set J , then we refer to the set {Bj | j ∈ J} as an exact cover for I.
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v(B2)

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·
set-gadget used in Reduction 1

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·

set-gadget used in the
reduction for caterpillars

Figure 5.7.: The difference between the set-gadgets used in Reduction 1 and the reduc-
tion showing NP-hardness of Anonym E-Del on caterpillars. Deleting the vertex v(B2)
corresponds to deleting the two edges {v(a2, B2), v(a4, B2)} and {v(a4, B2), v(a6, B2)}.

The reduction in the following proof, showing that Anonym E-Del is NP-
complete on caterpillars, is an adaption of the reduction provided in Section 5.2.1.
A caterpillar is a tree that has a dominating path [BLS99], that is, a caterpillar
is a tree such that deleting all leaves results in a path.

Theorem 5.17. Anonym E-Del is NP-complete on caterpillars, even if k = 2.

Proof. Since containment in NP is easy to see, we focus on showing NP-hardness.
To this end, we provide a polynomial-time reduction from Exact Cover by
3-Sets. Let I = (A,B, h) be an instance of Exact Cover by 3-Sets. We
assume without loss of generality that for each element ai ∈ A there exists a
set Bj ∈ B with ai ∈ Bj . Let f : N→ N be f(i) = (2h+ 3)i.
The instance I ′ of Anonym E-Del is defined on a graph G = (V,E) con-

structed as follows. For each element ai ∈ A add a star K1,f(i) with the center
vertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(a3h)} the set of all these
center vertices. Furthermore, for each element ai ∈ A add two stars K1,f(i)+1

and two stars K1,f(i)+2.
For each set Bj ∈ B with Bj = {aj1 , aj2 , aj3} add a set-gadget containing

the stars K1,f(j1), K1,f(j2), and K1,f(j3). See Figure 5.7 for the difference of
the set-gadget in this reduction and the reduction in Section 5.2.1. Denote
with v(aj1 , Bj), v(aj2 , Bj), and v(aj3 , Bj) the center vertices of these stars and
denote with VB the set of all these center vertices, formally VB = {v(ai, Bj) |
1 ≤ i ≤ 3h ∧ 1 ≤ j ≤ β ∧ ai ∈ Bj}. Next, add the edges {v(aj1 , Bj), v(aj2 , Bj)}
and {v(aj2 , Bj), v(aj3 , Bj)} to E. Observe that deg(v(aj1 , Bj)) = f(j1) + 1,
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deg(v(aj2 , Bj)) = f(j2) + 2, and deg(v(aj3 , Bj)) = f(j3) + 1. To end up with
one caterpillar instead of a forest of caterpillars, do the following:

1. Take two different connected components (caterpillars) C1 and C2, let v1

be an endpoint of a dominating path in C1, and let v2 be an endpoint of
a dominating path in C2, such that degG(v1) = degG(v2) = 1.

2. Then, add the edge {v1, v2} to reduce the number of connected components
by one.

3. If there exists more than one connected component, goto Step 1.

The resulting graph is clearly a caterpillar. We complete the construction of I ′
by setting s = 2h and k = 2.
We now prove that I is a yes-instance of Exact Cover by 3-Sets if and

only if I ′ = (G, k, s) is a yes-instance of Anonym E-Del.
“⇒:” Let B′ ⊆ B be an exact cover of size h. Then we construct a 2-deletion

set S ⊆ E of size 2h as follows: For each set Bj ∈ B′ with Bj = {aj1 , aj2 , aj3}
insert the edges {v(aj1 , Bj), v(aj2 , Bj)} and {v(aj2 , Bj), v(aj3 , Bj)} into S. First,
observe that |S| = 2h. Next, we show that S is indeed a 2-deletion set. Suppose
towards a contradiction that there exists a vertex v ∈ V such that there is no
further vertex of the same degree in G − S. Then, by construction of G, it
follows that v = v(ai) ∈ VA for some i ∈ {1, 2, . . . , 3h} and, by construction
of S, it follows that ai /∈

⋃
Bj∈B′ Bj , a contradiction.

“⇐:” Let S be a 2-deletion set of edges of size at most 2h. Observe that
the only vertices in G that violate the 2-anonymous property are the vertices
in VA. Furthermore, for each ai ∈ A there is exactly one vertex in G with a
degree d between f(i) − 2h ≤ d ≤ f(i), namely v(ai). Since S is a 2-deletion
set, it follows that for each v(ai) ∈ VA there is a vertex v ∈ V (S) having the
same degree as v(ai) in G−S. Since |VA| = 3h and |deg(v(ai))−deg(v(ai′))| >
2h for all i, i′ ∈ {1, 2, . . . , 3h}, it follows that |V (S)| ≥ 3h. For the further
argumentation we need some notation. A vertex v ∈ V is a type-` vertex,
` ∈ N, if there exists a vertex v(ai) ∈ VA such that degG(v) = degG(v(ai)) + `.
Now, observe that in G the type-1 vertices are all pairwise non-adjacent and
have pairwise disjoint neighborhood sets. Thus, V (S) contains at most 2h
type-1 vertices. Furthermore, since |V (S)| ≥ 3h, this implies that V (S) contains
exactly 2h type-1 vertices and exactly h type-2 vertices and that |V (S)| = 3h.
Thus, for each edge in S it follows that one endpoint is a type-1 vertex and
the other endpoint is a type-2 vertex. Note that the only edges fulfilling
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this requirement are the ones making two vertices in VB adjacent and, thus,
V (S) ⊆ VB. Thus, each type-2 vertex of V (S) is contained in some set-gadget.
Denote with B′ the set of h sets corresponding to the set-gadgets that contain
the h type-2 vertices in V (S). We now prove that B′ is an exact cover. Suppose
towards a contradiction that there is an element ai /∈

⋃
Bj∈B′ Bj . This implies,

that no vertex v(ai, Bj) such that j ∈ {1, 2, . . . , n} and ai ∈ Bj is contained
in V (S). However, as V (S) ⊆ VB, this means that v(ai) has a unique degree
in G − S, a contradiction to the fact that S is a 2-deletion set. Finally,
since |B′| = h,

⋃
Bj∈B′ Bj = A, each set contains exactly three elements,

and |A| = 3h, it follows that no element is covered twice. Hence, B′ is an exact
cover and, thus, I is a yes-instance.

Note that Exact Cover by 3-Sets is fixed-parameter tractable with respect
to the solution size h: There is a simple polynomial kernel which can be obtained
by removing for each set all copies from the collection B. After this deletion of
the copies, the number of sets in the collection is bounded by |B| ≤ |A|3 = (3h)3.
Hence, we cannot state an equivalent of Corollary 5.8. However, since we
established NP-completeness for k = 2, we obtain the following equivalent of
the polynomial-time inapproximability result in Corollary 5.9.

Corollary 5.18. For every 0 < ε < 1, Max-Anonym V-Del on caterpillars
cannot be approximated within a factor of 2− ε in polynomial time, unless P =
NP.

5.3.2. Inapproximability Results

As in Section 5.2.3, we can state strong inapproximability results for Anonym
Min-E-Del and Max-Anonym E-Del. We remark that these inapproximabil-
ity results transfer modulo the bounded-degree restriction to Anonym Min-E-
Ins and Max-Anonym E-Ins, since the edge insertion variant is equivalent to
the edge deletion variant in the complement graph.
Two very similar gap-reductions from Exact Cover by 3-Sets yield

that Max-Anonym E-Del as well as Anonym Min-E-Del are not n1−ε-
approximable in polynomial-time on bounded degree graphs.

Theorem 5.19. For every 0 < ε ≤ 1, Max-Anonym E-Del is not n1−ε-
approximable in polynomial time, even on bounded degree graphs, unless P = NP.
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Proof. Let 0 < ε ≤ 1 be a constant. We provide a gap-reduction with gap n1−ε

from Exact Cover by 3-Sets which remains NP-complete even when no
element occurs in more than three subsets [GJ79, SP2]. For these instances we
have h ≤ β ≤ 3h.
Let I = (A,B, h) be an instance of Exact Cover by 3-Sets where no

element occurs in more than three subsets. Construct an instance I ′ = (G, s)
of Max-Anonym E-Del as follows. The graph G = (V,E) contains an
element-vertex v(ai) for each element ai from A and a set-vertex v(Bj) for
each subset Bj from B. There is an edge in G between v(ai) and v(Bj) if Bj
contains ai. For each vertex v(Bj) add four degree-one vertices that are adjacent
to v(Bj), thus the degree of each vertex v(Bj) is seven. For each vertex v(ai)
add up to three degree-one vertices that are adjacent to v(ai) such that the
degree of v(ai) is three (observe that each element occurs in at most three
sets). Set x :=

⌈
(6h171−ε)1/ε

⌉
. Next, add x stars K1,7 and x stars K1,4 to G.

If the number of degree-one vertices is odd, then add one further star K1,7

to G to ensure that the number of degree-one vertices is even. Now, add a
perfect matching on the degree-one vertices to increase their degrees to two.
Finally set s := 3h. Thus the graph G has β + x or β + x + 1 degree-seven
vertices, x degree-four vertices, 3h degree-three vertices, and between 4β + 11x
and 4β + 9h+ 11x+ 7 degree-two vertices. Hence, G is 3h-anonymous. Overall,
G is a graph with maximum degree seven and at most 12x + 12h + 5β + 7
vertices. Observe, that x ≥ 6h ≥ 2β and thus |V | ≤ 17x.

We now show that if I is a yes-instance, then opt(I ′) ≥ x and if I is a
no-instance, then opt(I ′) ≤ 6h.
Suppose that I contains an exact cover B′ ⊆ B of size h. Then removing

from G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain an x-anony-
mous graph G′, since all vertices from the block of degree three from G are
in G′ in the block of degree two.
Suppose that S ⊆ E is a (6h + 1)-deletion set of size |S| ≤ s = 3h, that is,

G − S is (6h + 1)-anonymous. First, observe that V (S) does not contain a
vertex having degree two in G: Since |S| ≤ 3h, at most 6h degree-two vertices
can be contained in V (S). Since G− S is (6h+ 1)-anonymous and G does not
contain any degree-zero or degree-one vertices, this implies that V (S) does not
contain any degree-two vertex. Next, observe that the only edges in G that
have no degree-two vertex as endpoint are edges with one set-vertex and one
element-vertex as endpoints. Since each set-vertex is, by construction, adjacent
to at most three element-vertices, this implies that all set-vertices in G − S
have degree at least four. Furthermore, since the 3h element-vertices are the
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only vertices in G having degree three and S is a (6h + 1)-deletion set, this
implies that V (S) contains all element-vertices. Hence, |S| = 3h and each
element-vertex is incident to exactly one edge in S. Observe that G contains no
vertex of degree five or six. Since S is a (6h+ 1)-deletion set, this implies that
each set-vertex in V (S) has degree four in G−S and is incident to exactly three
edges in S. Hence, V (S) contains exactly h set-vertices and the corresponding
sets form an exact cover of size h for I. Thus, if I does not contain any exact
cover of size h, then there exists no (6h + 1)-deletion set of size h for G and,
hence, opt(I ′) ≤ 6h.
Thus we obtain a gap-reduction with the gap

x

6h
=
xεx1−ε

6h
=

6h · 171−ε · x1−ε

3h
≥ (17x)1−ε ≥ |V |1−ε.

Adjusting the gap-reduction above a little bit yields the following result.

Theorem 5.20. For every 0 < ε ≤ 1, Anonym Min-E-Del is not n1−ε-
approximable in polynomial time, even on bounded degree graphs, unless P = NP.

Proof. Let 0 < ε ≤ 1 be a constant. We provide a gap-reduction with gap n1−ε

from Exact Cover by 3-Sets to Anonym Min-E-Del. This reduction
is very similar to the gap-reduction provided in the proof of Theorem 5.19.
Let I = (A,B, h) be an instance of Exact Cover by 3-Sets where no
element occurs in more than three subsets. We provide an instance I ′ = (G, k)
of Anonym Min-E-Del where the graph is constructed as in the proof of
Theorem 5.19 and k := x.

We now show that if I is a yes-instance then opt(I ′) = 3h and if I is a
no-instance then opt(I ′) ≥ x/2.
Suppose that I contains an exact cover B′ ⊆ B of size h. Then removing

from G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain a k-anony-
mous graph G′, since all vertices from the block of degree three from G are
in G′ in the block of degree two.

Suppose that G has a k-deletion set S of size at most x/2− 1. First, observe
that V (S) does not contain a vertex having degree two in G: Since |S| ≤ x/2− 1,
at most x − 2 degree-two vertices can be contained in V (S). Since G − S is
k-anonymous, k = x, and G does not contain any degree-zero or degree-one
vertex, this implies that V (S) does not contain any degree-two vertex. Next,
observe that the only edges in G that have no degree-two vertex as endpoint
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are edges with one set-vertex and one element-vertex as endpoints. Since each
set-vertex is, by construction, adjacent to at most three element-vertices, this
implies that all set-vertices in G − S have degree at least four. Furthermore,
since the 3h element-vertices are the only vertices in G having degree three
and S is a k-deletion set with k = x > 3h, this implies that V (S) contains
all element-vertices. Furthermore, as G does not contain any degree-zero or
degree-two vertex, it follows that each element-vertex is incident to exactly one
edge in S. Observe that G contains no vertex of degree five or six. Since S is a
k-deletion set of size at most x/2− 1, this implies that each set-vertex in V (S)
has degree four in G − S and is incident to exactly three edges in S. Hence,
V (S) contains exactly h set-vertices and the corresponding sets form an exact
cover of size h for I. Thus, if I does not contain any exact cover of size h, then
there exists no k-deletion set of size x/2− 1 for G and, hence, opt(I ′) ≥ x/2.
Thus we obtain a gap-reduction with the gap at least x/(2·3h) ≥ |V |1−ε (see

the proof of Theorem 5.19 for intermediate steps in the inequality).

Similarly to Max-Anonym V-Del, we now show strong inapproximability of
Max-Anonym E-Del, even when allowing fpt-time instead of polynomial time.
Note that, in contrast to the vertex deletion case in Section 5.2.3, we obtain
the same inapproximability result as in the minimization variant in terms of
the approximation factor. Unlike the previous reductions and the reductions
in Section 5.2.3, we reduce from the W[1]-complete Clique problem, thus
building on a slightly stronger assumption.

Theorem 5.21. If Max-Anonym E-Del admits for any 0 < ε ≤ 1 a
fixed-parameter n1−ε-approximation algorithm with respect to parameter s,
then FPT = W[1].

Proof. Let 0 < ε ≤ 1 be a constant. We provide an fpt gap-reduction with
gap n1−ε from the W[1]-complete Clique problem [DF13] parameterized by
the solution size h.

Clique [GJ79, GT19]
Input: An undirected graph G = (V,E) and an integer h ∈ N.
Question: Is there a subset V ′ ⊆ V of at least h pairwise adjacent vertices?
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Input:
h = 4

Solution:

Let I = (G, h) be an instance of Clique. Assume without loss of generality
that ∆G + 2h+ 1 ≤ n, where n = |V |. If this is not the case, then one can add
isolated vertices to G until the bound holds.

We construct an instance I ′ = (G′ = (V ′, E′), s) of Max-Anonym E-Del as
follows: First, copy G into G′. Then, add a vertex u and connect it to the n
vertices in G′. Next, for each vertex v ∈ V add to G′ degree-one vertices that
are adjacent only to v such that degG′(v) = n − h. This is always possible
since we assumed ∆G + 2h+ 1 ≤ n. Observe that in this way at most n(n− h)
degree-one vertices are added. Now, set x := d(4n)3/εe and add cliques with two,
n−2h+1, and n−h+1 vertices such that after adding these cliques the number
of degree-d vertices in G′, for each d ∈ {1, n − 2h, n − h}, is between x + h
and x+ h+ n, that is, x+ h ≤ |BG′(d)| ≤ x+ h+ n; recall that BG′(d) is the
set of vertices having degree d in G′. After inserting these cliques, the graph
consists of four blocks: of degree one, n−h, n− 2h, and n, where the first three
blocks are roughly of the same size (between x+ h and x+ h+ n vertices) and
the last block of degree n contains exactly one vertex. To finish the construction,
set s :=

(
h
2

)
+ h.

Now we show that if I is a yes-instance, then opt(I ′) ≥ x, and if I is a
no-instance, then opt(I ′) < 2s.

Suppose that I contains a clique C ⊆ V of size h. Then, deleting the
(
h
2

)
edges

within C and the h edges between the vertices in C and u does not exceed
the budget s and results in an x-anonymous graph G′′: Since h edges incident
to u are deleted, it follows that degG′′(u) = n − h. Furthermore, for each
clique-vertex v ∈ C also h incident edges are deleted (h−1 edges to other clique-
vertices and the edge to u), thus it follows that degG′′(v) = n− 2h. Since the
degrees of the remaining vertices remain unchanged, and |BG′(n− h)| ≥ x+ h,
it follows that each of the three blocks in G′′ has size at least x. Hence, G′′ is
x-anonymous.
For the reverse direction, suppose that there is a 2s-deletion set S of size

at most s in G′. Since u is the only vertex in G′ with degree n, and all other
vertices in G′ have degree at most n− h, it follows that S contains at least h
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edges that are incident to u. Since NG′(u) = V , it follows that the degree of
at least h vertices of the block BG′(n− h) is decreased by one. Denote these
vertices by C. Since |S| ≤ s and h edges incident to u are contained in S, it
follows that at most 2s−h+1 vertices are incident to an edge in S. Furthermore,
since S is a 2s-deletion set, it follows that the vertices in C have in G′−S either
degree one or degree n− 2h. Thus, by deleting the at most

(
h
2

)
remaining edges

in S, the degree of each of the h vertices in C is decreased by at least h − 1.
Hence, these

(
h
2

)
edges in S form a clique on the vertices in C and thus I is a

yes-instance. Therefore, it follows that if I is a no-instance, then there is no
2s-deletion set of size s in G′′ and hence opt(I ′) < 2s.

Altogether, we obtain a gap-reduction with the gap at least x/(2s). Set n′ :=
|V ′|. By construction we have 3x ≤ n′ ≤ n2 + 3x+ 3h+ 3n+ 1. By the choice
of x it follows that x > n′/4, since

n′

4
≤ 1

4
(n2 + 3x+ 3h+ 3n+ 1) = x+

1

4
(n2 + 3h+ 3n+ 1− x)︸ ︷︷ ︸

<0

< x.

Hence the gap is

x

2s
>

(n′)1−ε+ε

4(h2 + h)
≥ n′1−ε (n′)ε

8h2
> (n′)1−ε x

ε

8n2
= (n′)1−ε (4n)3ε/ε

8n2
> (n′)1−ε.

Thus, the statement of the theorem follows from Lemma 2.2 (see page 26).

Note that the reduction above also shows that Anonym E-Del is W[1]-hard
with respect to the combined parameter (s, k): It is shown that if the input
graph G contains a clique of size h, then there exists an x-deletion set S of
size s =

(
h
2

)
+ h in G′. Since x > 2s it follows that S is also a 2s-deletion set

of size s. We also proved that if G′ contains a 2s-deletion set of size s, then
there exists a size-h clique in G. Hence, we obtain the following: (G, h) is a
yes-instance of Clique if and only if (G′, 2s, s) is a yes-instance of Anonym
E-Del. Thus, we arrive at the following corollary.

Corollary 5.22. Anonym E-Del is W[1]-hard with respect to the combined
parameter (s, k).
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5.4. Fixed-Parameter Tractable Cases

Theorem 5.1 and Corollaries 5.6 and 5.22 show that Anonym E-Del and
Anonym E-Del are fixed-parameter intractable for the each of single parame-
ters s, k, and ∆ as well as for the combined parameter (s, k). Here we show
fixed-parameter tractability with respect to the combined parameter (s,∆) for
the following general problem variant where one might insert and delete specified
numbers of vertices and edges.

Degree Anonymity Editing (Anonym-Edt)
Input: An undirected graph G = (V,E) and five positive inte-

gers s1, s2, s3, s4, and k.
Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using at

most s1 vertex deletions, s2 vertex insertions, s3 edge deletions,
and s4 edge insertions such that G′ is k-anonymous?

Input: k = 5

s4 = 2
s1 = s2 = s3 = 1

Solution:

Observe that here we require that the inserted vertices have degree zero and we
have to “pay” for making the inserted vertices adjacent to the existing ones. In
particular, if s4 = 0, then all inserted vertices are isolated in the target graph.
Note that there are other models where the added vertices can be made adjacent
to an arbitrary number of vertices [Bre+14b, Che+13a]. Our ideas, however, do
not directly transfer to this variant.
For convenience, we set s := s1 + s2 + s3 + s4 to be the number of allowed

graph modification operations.

Theorem 5.23. Anonym-Edt is fixed-parameter tractable with respect to the
combined parameter (s,∆).

Proof. Let I = (G = (V,E), k, s1, s2, s3, s4) be an instance of Anonym-Edt. In
the following we describe an algorithm finding a solution if it exists. Intuitively,
the algorithm first guesses a “solution structure” and then checks whether
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the graph modification operations associated to this solution structure can be
performed in G. A solution structure is a graph S with at most s(∆+1) vertices
where

1. each vertex is equipped with an color from {0, 1, . . . ,∆} indicating the
degree of the vertex in G and

2. each edge and each vertex is marked either as “to be deleted”, “to be
inserted”, or “not to be changed” such that

a) all edges incident to a vertex marked as “to be inserted” are also
marked as “to be inserted”,

b) at most s1 vertices and at most s3 edges are marked as “to be deleted”,
and

c) at most s2 vertices and at most s4 edges are marked as “to be
inserted”.

The intuition behind this definition is that a solution structure S contains all
graph modification operations in a solution and the vertices that are affected
by the modification operations, that is, the vertices whose degree is changed
when performing these modification operations. Observe that any solution for I
defines such a solution structure with at most s(∆ + 1) vertices as each graph
modification affects at most ∆ + 1 vertices. This bound is tight in the sense that
deleting a vertex v affects v and its up to ∆ neighbors. Furthermore, observe
that once given such a solution structure, we can check in polynomial time
whether performing the marked edge/vertex insertions/deletions results in a
k-anonymous graph G′ since the coloring of the vertex indicates the degrees of
the vertices that are affected by the graph modification operations.
Our algorithm works as follows: First it branches into all possibilities for

the solution structure S. In each branch it checks whether performing the
graph modification operations indicated by the marks in S indeed result in
a k-anonymous graph. If yes, then the algorithm checks whether the graph
modification operations associated to S can be performed in G. To this end,
all edges and vertices marked as “to be inserted” are removed from S and the
marks at the remaining vertices and edges are also removed and the resulting
“cleaned” graph is called S′. Finally the algorithm tries to find S′ as an induced
subgraph of G such that the vertex degrees coincide with the vertex-coloring
in S′. If the algorithm succeeds and finds S′ as an induced subgraph, then the
graph modification operations encoded in S can be performed which proves

126



that I is a yes-instance. If the algorithm fails in every branch, then, due to the
exhaustive search over all possibilities for S, it follows that I is a no-instance.
Thus, the algorithm is correct.

As to the running time: There are s(∆ + 1) possibilities for the number
of vertices in the solution structure. Hence, there are at most s(∆ + 1) ·
2(s(∆+1)

2 ) < 2(s(∆+1))2

graphs with s(∆ + 1) vertices. Furthermore, there are at
most (∆ + 1)s(∆+1) possibilities to equip the vertices with colors {0, 1, . . . ,∆}
and 3s(∆+1)+(s(∆+1)

2 ) possibilities to mark the vertices and edges. Overall, the
algorithm branches into 2O((s∆)2) possibilities for the solution structure S.
As mentioned above, checking whether performing the graph modification
operations indicated by S indeed results in a k-anonymous graph can be done
in polynomial time.

Next, the algorithm checks for each S that may lead to a k-anonymous graph
whether the cleaned graph S′ occurs as an induced subgraph in G such that
degree constraints given by the vertex coloring are fulfilled. Observe that since
our input graph G has maximum degree ∆ it also has a local tree-width of
at most ∆ [FG01]. Thus, for finding S′ as induced subgraph, we can use a
general result of Frick and Grohe [FG01, Theorem 1.2] showing that deciding
whether a graph H of local tree-width at most ` satisfies a property φ definable
in first-order logic is fixed-parameter tractable with respect to the combined
parameter (|φ|, `). The subgraph isomorphism problem can be solved with this
result on graphs with bounded local tree-width [FG01]. Thus it remains to
specify the part of the formula φ that ensures the degree constraints. To this
end, Frick and Grohe [FG01] gave as example the formula

x ∈ V ∧ ¬∃y∃z(¬(y = z) ∧ (x, y) ∈ E ∧ (x, z) ∈ E)

to express that a vertex x ∈ V has degree at most one. This formula can be
extended to express that x ∈ V has degree at most ` for some 1 ≤ ` ≤ ∆ and
the size of the formula is upper-bounded in a function of ∆. Similarly, removing
the first negation symbol yields the statement that x ∈ V has a degree of at
least two (degree at least `+ 1 in the extended version). Hence, we can express
the degree constraints and the formula size is still bounded by a function of s
and ∆ (as there are up to s(∆ + 1) vertices in S′). Hence, applying the results
of Frick and Grohe [FG01] shows that the overall algorithm runs in fpt-time
with respect to (s,∆).

We remark that Theorem 5.23 is a mere classification result. We claim without
proof by slightly adapting the color-coding approach used by Cai et al. [CCC06]
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and Golovach [Gol14b] one can obtain a running time of 2(s∆)O(1)

nO(1): The
idea is to randomly color the vertices in the graph with green and red. Then
the subgraph G′ = (V ′, E′) we are looking for is with probability 2(∆+1)|V ′|

completely contained within the green vertices and NG(V \ V ′) are colored
red. By brute-force, one can determine in O(|V ′|!) whether a green component
fits with a connected component of the sought subgraph such that the degree
constraints are fulfilled. Thus, using a knapsack dynamic program over the
green components, one can compute the whole subgraph G′ in the claimed
running time. As the running time would be still impractical, we refrain from
giving a formal proof.
Next, we show that considering Anonym V-Del we can assume that s <

f(∆, k) for some function f . This implies that the above fixed-parameter
tractability results transfers to the parameter (k,∆).

Lemma 5.24. For every yes-instance (G = (V,E), k, s) of Anonym V-Del
with ∆ denoting the maximum degree of G, there is a subset S ⊆ V with |S| <
2∆+1∆3k such that G− S is k-anonymous.

Proof. Let (G = (V,E), k, s) be a yes-instance of Anonym V-Del and let S ⊆ V
be a k-deletion set. We show that if |S| ≥ 2∆∆32k, then we get a smaller
k-deletion set by removing a subset of k vertices from S.
Let D = {0, 1, . . . ,∆} be the set of possible vertex degrees in G − S. We

say a vertex v ∈ S is of type (D′, d′) with D′ ⊆ D and 0 ≤ d′ ≤ ∆ if D′ =
{degG−S(v′) | v′ ∈ NG−S(v)} and d′ = degG[(V \S)∪{v}](v). If |S| ≥ 2∆∆32k,
then S contains a set S′ of ∆2 · 2k vertices which are of the type (D′, d′)
for some D′ ⊆ D and 0 ≤ d′ ≤ ∆. Note that each vertex has at most ∆
vertices in its first and at most ∆(∆− 1) vertices in its second neighborhood.
Hence, there must be a set S′′ ⊂ S′ of 2k independent vertices with pairwise
disjoint neighborhoods. Let S+, S− ⊆ S′′ be any two sets of size k each such
that S+ ∪ S− = S′′. Consider the graphs G1 = G− S and G2 = G− (S \ S+),
that is, S+ is the subset of vertices from S′′ that remains in G2 and S− is the
subset of vertices from S′′ that is not in G2.
We show that if G1 is k-anonymous then G2 is also k-anonymous. Ev-

ery vertex from S+ has degree d′ in G2 because S+ is an independent set.
Since |S+| = k, there are at least k vertices of degree d′, that is, the vertices
from S+ are k-anonymous. Every vertex v that is in G1 and in G2 satisfies
that either degG2

(v) = degG1
(v) or degG2

(v) = degG1
(v) + 1, because the

vertices from S+ have pairwise disjoint neighborhoods. Now, there are two
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cases for d′′ = degG1
(v): If d′′ /∈ D′, then degG2

(v) = d′′. Furthermore, there
are at least as many vertices of degree d′′ in G1 as in G2, because no vertex
from S+ is adjacent to any vertex of degree d′′ in G1. If d′′ ∈ D′, then a vertex
with degree d′′ in G1 may have degree d′′ + 1 in G2 because it is adjacent to
some vertex in S+. However, since the vertices from S+ have pairwise disjoint
neighborhoods, for each of the k vertices from S+ there is at least one vertex
that has degree d′′ in G1 and degree d′′ + 1 in G2 Furthermore, for each of the
k vertices from S− there is at least one vertex that has degree d′′ in G1 and G2.
In each case, there are at least k vertices with degree degG2

(v) in G2. Thus, G2

is k-anonymous.

By combining Theorem 5.23 and Lemma 5.24 we obtain fixed-parameter
tractability with respect to the parameter (k,∆). For an instance (G, k, s)
of Anonym V-Del simply run the algorithm from Theorem 5.23 on the
instance (G, k,min{s, 2∆∆32k}).

The ideas behind Lemma 5.24 can be easily transferred to the edge deletion
variant.

Lemma 5.25. For every yes-instance (G = (V,E), k, s) of Anonym E-Del
with ∆ denoting the maximum degree of G there is a subset S ⊆ E with |S| <
2∆32k such that G− S is k-anonymous.

Proof. Let (G = (V,E), k, s) be a yes-instance of Anonym E-Del and let S ⊆ E
be a k-deletion set. We show that if |S| ≥ 2∆32k, then we get a smaller k-deletion
set by removing a subset of k edges from S.
We say an edge e = {u, v} ∈ S is of type (d1, d2) with 1 ≤ d1, d2 ≤ ∆

if d1 = degG−S(u) and d2 = degG−S(v). If |S| ≥ 2∆32k, then S contains a
set S′ of 2∆ · 2k edges which are of the type (d1, d2) for some 0 ≤ d1, d2 ≤ ∆.
Since each vertex has, by definition of ∆, at most ∆ neighbors, there must be
a set S′′ ⊂ S′ of 2k pairwise disjoint edges. Let S+ ⊆ S′′ be a set of size k.
Now, similarly to proof of Lemma 5.24, it follows that G − (S \ S+) is also
k-anonymous as it contains at least k vertices of degree d1, d1 + 1, d2, and
d2 + 1, respectively and the other vertices remain untouched.

By combining Theorem 5.23 and Lemma 5.25 we also obtain fixed-parameter
tractability for Anonym E-Del with respect to the parameter (k,∆). Thus,
we arrive at the following classification result.

Corollary 5.26. Anonym V-Del and Anonym E-Del are fixed-parameter
tractable with respect to the combined parameter (k,∆).

129



5.5. Conclusion
In this chapter, we provided a thorough overview on the computational com-
plexity of the Degree Anonymity problem when considering vertex or edge
deletions. We obtained various hardness results from the viewpoints of ap-
proximation and parameterized complexity, even in restricted graph classes.
Besides this large amount of hardness results we obtained a few positive results
(polynomial-time solvable cases) on highly structured graph classes.

Despite this in terms of algorithmic tractability discouraging picture of the
computational complexity, some open questions remain that still raise hope for
broader positive results. In particular, these questions are:

1. Are Anonym Min-E-Del or Anonym Min-V-Del constant-factor ap-
proximable in polynomial time when k is a constant?

2. Are the two optimization variants of Anonym E-Edt constant-factor
approximable in polynomial time?

3. What is the complexity of Anonym V-Del on unit interval graphs?

4. Do all NP-completeness results of Anonym V-Del on special graph
classes (see Section 5.2.2) transfer to Anonym E-Del?

Despite serious efforts, we failed to extend the polynomial-time inapproxima-
bility results for Anonym Min-E-Del and Anonym Min-V-Del to exclude
approximation algorithms running in fpt-time with respect to the parameter k.
The reason is that all our gap-reductions relied on k being in the order of n.
This restriction made it easy to control the possibilities for the solutions in
the constructed graph, but leaves Question 1 as challenge for future research.
Question 2 seems to be closely related to Question 1 as we failed to answer
both questions for the same reason: The variant of editing edges allows to
“repair” a suboptimal decisions by reverting the degree of a vertex with one
further operation (edge deletion or insertion). In the case of edge deletions with
constant values of k it might be possible to “repair” suboptimal decisions by
decreasing the degrees of just a few other vertices. We found no way of dealing
even with one of these two possibilities to repair suboptimal decisions. As to
Question 4, our findings so far support the conjecture that the hardness results
mostly transfer, but the reductions to prove this will become messy.
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Chapter 6.

Degree Anonymity by Edge
Insertion

In this chapter, we study the Anonym E-Ins problem. It asks whether a
given undirected graph can be made k-anonymous by at most s edge insertions.
Contrasting the numerous intractability results that we obtained in Chapter 5 for
the edge deletion and vertex deletion variants of Anonym E-Ins, we present a
polynomial-size problem kernel with respect to the parameter maximum degree.
The kernelization result relies on a heuristic two-phase approach due to Liu and
Terzi [LT08]. Generalizing the ideas of this approach, we show that a class of
graph completion problems, where the goal is to obtain a graph whose degree
sequence satisfies some prescribed property, is fixed-parameter tractable with
respect to the maximum degree. Finally, we also implemented the two-phase
approach and optimized it for large-scale social networks providing upper and
lower bounds for an optimal solution. Experiments on several real-world datasets
show that our implementation significantly improves on known heuristics and
provides (provably) optimal solutions on about 21% of the real-world data.

6.1. Introduction

In a landmark paper, Liu and Terzi [LT08] (also see Clarkson et al. [CLT10]
for an extended version) introduced the following simple graph-theoretic model
for identity anonymization on (social) networks. Herein, they transferred the
k-anonymity concept known for tabular data in databases [Fun+10, Sam01,
SS98, Swe02] to graphs; see Figure 6.1 for examples and Chapter 5 for the vertex
and edge deletion variants.
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Figure 6.1.: Three illustrating examples. The solid edges indicate the original graphs.
Adding the dashed edges changes the graphs (from left to right) from being 2-anony-
mous to 7-anonymous, from 1-anonymous to 4-anonymous, and from 1-anonymous to
2-anonymous.

Degree Anonymity by Edge Insertion (Anonym E-Ins)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there an edge set S ⊆

(
V
2

)
\E of size at most s such that G+S

is k-anonymous?

Input: k = 4
s = 5

Solution:

We refer to Section 1.2 for a thorough discussion about the model and related
work. Notably, there is a close connection between Anonym E-Ins and Anonym
E-Del—the edge deletion version of Anonym E-Ins: To see this, let us recall
that for a given graph G = (V,E) an edge set S ⊆

(
V
2

)
\E is called a k-insertion

set if G + S is k-anonymous. Furthermore, an edge subset S ⊆ E is called
k-deletion set if G − S is k-anonymous. Now, observe that a graph G is
k-anonymous if and only if the complement graph G is k-anonymous. Thus, in
Anonym E-Ins the task is to find a small k-insertion set while in Anonym
E-Del the task is to find a small k-deletion set. The connection between these
two problems is now as follows: any k-insertion set for G is a k-deletion set
for the complement graph G. Thus, most of the intractability results that we
obtained in Chapter 5 for Anonym E-Del transfer to Anonym E-Ins. The
NP-hardness on bounded-degree graphs (see Theorem 5.19), however, does not
transfer to Anonym E-Ins.
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Table 6.1.: Overview on the computational complexity classification of Anonym E-Ins.

Parameter Anonym E-Ins

k NP-complete for k = 2 (Theorem 6.2 on page 136)
s W[1]-hard even for k = 2 (Theorem 6.2 on page 136)
∆ FPT (Corollary 6.18 on page 156) and admits

a polynomial problem kernel (Theorem 6.15 on page 155)

Our contributions. Our central theoretical result is to show that Anonym E-
Ins has a polynomial-size problem kernel when parameterized by the maximum
vertex degree ∆ of the input graph. In other words, we prove that there is a
polynomial-time algorithm that transforms any input instance of Anonym E-Ins
into an equivalent instance with at most O(∆7) vertices. Indeed, we encounter
a “win-win” situation when proving this result: We show that Liu and Terzi’s
heuristic strategy [LT08] finds an optimal solution when the size s of a minimum
solution is larger than 2∆4. As a consequence, we can bound s in O(∆4)
and, hence, a polynomial kernel we provide for the combined parameter (∆, s)
actually is also a polynomial kernel only for ∆. We then generalize the ideas
behind the kernelization to further degree sequence completion problems where
the task is to insert edges so that the degree sequence of the resulting graph
fulfills some prescribed property Π.
While our kernelization directly implies fixed-parameter tractability for

Anonym E-Ins parameterized by ∆, we also develop a further fixed-parameter
algorithm with an improved worst-case running time. In addition, we prove that
Anonym E-Ins becomes NP-complete on graphs with H-index three. The same
proof also yields NP-completeness in three-colorable graphs. Further, adopting
the viewpoint of “standard parameterization”, we show that Anonym E-Ins is
W[1]-hard when parameterized by the solution size s (the number of inserted
edges), even when k = 2. In other words, there is no hope for fixed-parameter
tractability even when the anonymity level k is low and the graph needs only
few edge insertions (meaning little perturbation) to achieve k-anonymity, see
Table 6.1 for an overview.

Finally, we extend Liu and Terzi’s heuristic strategy [LT08]. To this end, let
us briefly describe their two-phase approach:

(i) Ignore the graph structure and solve a corresponding number problem and
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(ii) try to transfer the solution from the number problem back to the graph
instance.

We present an enhancement of this heuristic, including new algorithms for
each phase which significantly improve on the previously known theoretical and
practical running times. Moreover, our algorithms are optimized for large-scale
social networks and provide upper and lower bounds for the optimal solution size.
Notably, on about 21% of the real-world data we provide (provably) optimal
solutions, whereas in the other cases our upper bounds significantly improve on
a recent heuristic due to Lu et al. [LSB12].

Organization. We start by giving computational hardness results in Section 6.2.
Then we present in Section 6.3 our theoretical main result of this chapter: the
polynomial problem kernel with respect to the parameter maximum degree. In
Section 6.4, we complement the kernel with a direct fixed-parameter algorithm.
Then we generalize the ideas from Section 6.5 to a wide class of graph completion
problems. In Section 6.6 we describe how we implemented upper- and lower-
bound heuristics that are based on the ideas behind the kernelization result.
Finally, we experimentally evaluate our implementation in Section 6.6.5.

6.2. Computational Hardness

In this section, we study the computational complexity of Anonym E-Ins.
Due to the close connection between Anonym E-Del and Anonym E-Ins, it
follows from our work in Section 5.3, that Anonym E-Ins

• is NP-complete, even if k = 2 (see Theorem 5.17),

• cannot be approximated within a factor of n1−ε neither in polynomial time
(see Theorems 5.19 and 5.20), unless NP = P, nor in f(s) · nO(1) time for
any computable f (see Theorem 5.21), unless W[1] = FPT, and

• is W[1]-hard with respect to the combined parameter (s, k).

In this section, we provide two polynomial-time many-to-one reductions yielding
three additional (parameterized) hardness results: Anonym E-Ins is

• NP-complete on three-colorable graphs,
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• NP-complete on graphs with H-index three (that is on graphs with at
most three vertices of degree more than three), and

• W[1]-hard with respect to s even if k = 2.

Notably, only the last of these three results transfers back to Anonym E-Del
as the complement graph operation “destroys” three-colorability as well as the
H-index of a graph.

As we will show in Section 6.3, Anonym E-Ins is fixed-parameter tractable
with respect to the maximum degree, showing that a small maximum degree
makes the problem easy. Interestingly, the reduction given in the next proof
contains exactly one vertex with degree more than three, showing that one
high-degree vertex is sufficient to make the problem hard.

Theorem 6.1. Anonym E-Ins is NP-complete on three-colorable graphs and
on graphs with H-index three.

Proof. As the containment in NP is obvious, we focus on showing the NP-
hardness. To this end, we give a reduction from the NP-complete Independent
Set problem.

Independent Set [GJ79, GT20]
Input: An undirected graph G = (V,E) and a positive integer h.
Question: Is there an independent set V ′ ⊆ V of size |V ′| ≥ h, that is, a

vertex subset of pairwise nonadjacent vertices?

Input: h = 3 Solution:

We assume without loss of generality that in the given Independent Set
instance (G, h) it holds that |V | ≥ 2h + 1. We construct an equivalent in-
stance (G′ = (V ′, E′), k, s) for Anonym E-Ins as follows. We start with a
copy G′ of G, denoting with v′ ∈ V ′ the copy of the vertex v ∈ V . Then, for
each vertex v ∈ V we insert in G′ degree-one vertices adjacent to v′ such that v′
has degree ∆G in G′. Finally, we insert a star with ∆G + h − 1 leaves and
denote its central vertex c. We conclude the construction by setting k := h+ 1
and s :=

(
h
2

)
.
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We prove the correctness of the reduction by showing that (G, h) is a yes-
instance of Independent Set if and only if (G′, k, s) is a yes-instance of
Anonym E-Ins.

“⇒:” Let I ⊆ V be an independent set in G with |I| = h. We show that
the edge set

(
I
2

)
is a solution for (G′, k, s): Since I is an independent set, none

of the edges in
(
I
2

)
is contained in G′. Furthermore, observe that G′ +

(
I
2

)
is k-anonymous: There are three different degrees in the degree distribution
of G′: 1, ∆G, and ∆G + h− 1. By construction, there are at least k degree-one
and |V |− |I| ≥ k degree-∆G vertices in G′+

(
I
2

)
. Furthermore, the vertices with

degree ∆G + h − 1 in G′ +
(
I
2

)
are all in I ∪ {c}. Thus, there are |I|+ 1 = k

vertices with degree ∆G + h− 1. Finally, observe that |
(
I
2

)
| =

(
h
2

)
.

“⇐:” Let Es ⊆
(
V ′

2

)
be a solution to (G′, k, s) with |Es| = s. The following

degrees occur in G′: 1, ∆G, and ∆G + h− 1. Furthermore, observe that there is
exactly one vertex with degree ∆G + h− 1 in G′. In G′ + Es there must be at
least k − 1 = h further vertices of degree at least ∆G + h− 1 and, hence, each
of them has to have at least h − 1 incident edges in Es. Since s =

(
h
2

)
, there

are exactly h such vertices, each incident to exactly h− 1 edges in Es. These
h vertices form an independent set of size h in G′ and, by construction, the
h corresponding vertices form an independent set of size h in G. This completes
the proof of the correctness of the reduction.

Independent Set is NP-complete on three-colorable graphs [PW96, Lemma
6] and on graphs with maximum degree three [GJ79, GT20]. Clearly, if G
is three-colorable, then G′ is three-colorable as well. Furthermore, if G has
maximum degree three, then only the central vertex c has degree larger than
three, implying that the H-index of G′ is three.

The NP-completeness for constant H-index directly implies that Anonym
E-Ins remains NP-complete even if the prominent parameters average degree
and degeneracy1 are constant. We next prove W[1]-hardness for the “standard
parameterization”, that is, the number of edges s that may be inserted.

Theorem 6.2. Anonym E-Ins is W[1]-hard parameterized by the number s
of inserted edges, even if k = 2.

Proof. We give a parameterized reduction from the Multicolored Indepen-
dent Set problem.
1 An undirected graph G has degeneracy d if every subgraph of G (including G) contains a
vertex of degree at most d.
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Multicolored Independent Set
Input: An undirected graph G = (V,E), an integer h, and a vertex

coloring col : V → {1, 2, . . . , h}.
Question: Is there a multicolored independent set V ′ ⊆ V of size |V ′| = h,

that is, for every pair of vertices u, v ∈ V ′ it holds that col(u) 6=
col(v) and {u, v} /∈ E?

Input: h = 2

1

1 1

2

2

2

Solution:

1

1 1

2

2

2

The W[1]-hardness of Multicolored Independent Set directly follows
from the W[1]-hardness of the Multicolored Clique problem [Fel+09]. We
assume without loss of generality that each color class contains at least three
vertices.

Given a Multicolored Independent Set instance (G, h, col), we construct
an equivalent instance (G′ = (V ′, E′), k, s) for Anonym E-Ins as follows. We
start with copying the graph G to G′. Then, for each vertex v ∈ V we insert
in G′ degree-one vertices adjacent to v until v has degree h3 · col(v) + ∆G in G′.
Next we insert h disjoint stars to G′—one for each color in {1, 2, . . . , h}. The
star for color i has h3i + ∆G + h − 1 leaves and its central vertex is denoted
by wi. We conclude the construction by setting k := 2 and s :=

(
h
2

)
.

We prove the correctness of the reduction by showing that (G, h, col) is a
yes-instance of Multicolored Independent Set if and only if (G′, 2, s) is a
yes-instance of Anonym E-Ins.

“⇒:” Let I ⊆ V be a multicolored independent set in G with |I| = h. It is
easy to verify that Es =

(
I
2

)
is a k-insertion set for G′ of size |Es| = s =

(
h
2

)
.

“⇐:” Let S be a k-insertion set for G′ with |S| ≤ s. Recall that a block BG(d)
of degree d is the set of all vertices with degree d in G, formally, BG(d) := {v ∈
V | degG(v) = d}. Observe that G′ contains h blocks BG′(h3i + ∆G + h − 1)
for i ∈ {1, 2, . . . , h} of size exactly one. Since k = 2, this implies that |V (S)| ≥ h.
Since for i ∈ {1, 2, . . . , h} there is no vertex in G′ with degree h3i+∆G+h−1+j
for any j ∈ {1, 2, . . . , h2} and s =

(
h
2

)
< h2, it follows that in order to get a

vertex of the same degree as wi, the set S must increase the degree of at least one
vertex by at least h−1. It follows that such a vertex must have degree h3i+ ∆G

in G′, there is one such vertex for each i ∈ {1, 2, . . . , h} in V (S), and each
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⇒ 1,2,2,3
Phase 1.⇒ 3,3,3,3

Phase 2.⇒

input graph G degree “k-anonymized” realization
with k = 4 sequence S degree sequence S ′ of S ′ in G

Figure 6.2.: Example for the basic steps in the heuristic of Liu and Terzi [LT08].
Phase 1. Anonymize the degree sequence (ignoring the graph), that is, increase its
numbers such that each resulting number occurs at least k times. Phase 2. Realize
the anonymized degree sequence as super-graph of G.

of them is incident to exactly h − 1 edges of S. Since S ≤
(
h
2

)
, this implies

that |V (S)| = h and that V (S) is an independent set in G′. By construction, it
follows that V (S) is also a multicolored independent in G.

6.3. Polynomial Kernel for the Parameter
Maximum Degree

In this section, we provide our main theoretical result of this chapter: a polyno-
mial kernel with respect to the parameter maximum degree ∆ (Theorem 6.16).
To this end, we first analyze the heuristic Liu and Terzi [LT08] proposed to
solve Anonym E-Ins. Basically, this heuristic runs in two phases as follows
(see Figure 6.2 for an example and Section 6.3.2 for the technical details):

1. k-anonymize the degree sequence.

2. Realize the k-anonymized degree sequence as a super-graph of G.

The heuristic may fail to find a solution if the anonymized degree sequence
computed in Phase 1 cannot be realized in Phase 2. However, in Section 6.3.2
we show that if there is a “large” difference between the degree sequence and the
anonymized degree sequence, then there is always a realization of the anonymized
degree sequence. This leads, as the heuristic runs in polynomial time, to the
following win-win situation: For a given instance of Anonym E-Ins, one can
either find a k-insertion set in polynomial time using the above approach, or
the solution—if it exists—is “small” (containing less than (∆2 + 4∆ + 3)2 edges).
This win-win situation enables us to show that a polynomial kernel with respect
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to the combined parameter (∆, s) provided in Section 6.3.3 is indeed polynomial
also in ∆.
We begin, however, with presenting the main technical tool used in this

section, the so-called f-Factor problem.

6.3.1. The f-Factor Problem
Anonym E-Ins has a close connection to the polynomial-time solvable f-Fac-
tor problem:

f-Factor [LP86, Chapter 10]
Input: An undirected graph G = (V,E) and a function f : V → N0.
Question: Is there an f -factor, that is, a subgraph G′ = (V,E′) of G such

that degG′(v) = f(v) for all v ∈ V ?

Input:

2

3

2

1

2

Solution:

The f-Factor problem can be solved in O(
√∑

v∈V f(v)|E|) time [Gab83], see
Section 3.2 for an overview on f -factors. Using f-Factor, one can reformulate
Anonym E-Ins as follows: Given an instance (G, k, s), the question is whether
there is a function f : V → N0 such that the complement graph G contains an
f -factor,

∑
v∈V f(v) ≤ 2s (every edge is counted twice in the sum of degrees),

and for all v ∈ V it holds that |{u ∈ V | degG(u) + f(u) = degG(v) + f(v)}| ≥ k
(the k-anonymity requirement). As a warm-up, we use this formulation to make
the following observation.

Observation 6.3. If k > n/2, then Anonym E-Ins can be solved in O(n4)
time.

Proof. Observe that if k > n/2, then all vertices in the k-anonymous graph have
the same degree. Our polynomial-time algorithm is as follows: Branch in the
at most n possibilities for the degree d ≥ ∆ in the k-anonymous graph. Then
compute for each v ∈ V the value f(v) = d− degG(v). If 1/2 ·

∑
v∈V f(v) > s,

then return no. Otherwise determine whether there is an f -factor in G. If there
is an f -factor, then return yes (and return the set of edges in the f -factor as
solution set), otherwise return no.
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As to the running time, observe that we solve at most n f-Factor instances.
Each instance can be solved in O(

√∑
v∈V f(v)|E|) = O(n3) time. Summing

up, the running time is bounded by O(n4).

In the above reformulation of Anonym E-Ins one looks for an f -factor in the
complement graph. Phase 2 in Liu and Terzi’s heuristic [LT08] (see Figure 6.2)
can also be formulated as an f-Factor problem in the complement graph:
Realizing the k-anonymized degree sequence as super-graph of G is equivalent to
finding an f -factor in G, where f(v) captures the difference between the degree
of v in G and the corresponding number in the k-anonymized degree sequence.

As mentioned in the introduction of Section 6.3, we prove that under certain
conditions there exists a realization of the anonymized degree sequence (Phase 2).
These conditions come from the following lemma guaranteeing the existence of
an f -factor (see also Section 3.2.1).

Lemma 3.8 (Katerinis and Tsikopoulos [KT00]). Let G = (V,E) be an undi-
rected graph with minimum vertex degree δ and let a ≤ b be two positive integers.
Suppose further that

δ ≥ b

a+ b
|V | and |V | > a+ b

a
(a+ b− 3).

Then, for any function f : V → {a, a+ 1, ..., b} where
∑
v∈V f(v) is even, G has

an f -factor.

As we are interested in an f -factor in the complement graph of our input
graph G, we use Lemma 3.8 with minimum degree δ ≥ n−∆− 1, a = 1, and
b = ∆ + 2. Using the next corollary, we will later show that for a minimal
k-insertion set S with |V (S)| > ∆2 + 4∆ + 3, the maximum degree in G+ S is
at most ∆ + 2 (Lemma 6.5). This is the reason for setting b to ∆ + 2.

Corollary 6.4. Let G = (V,E) be an undirected graph with n vertices, minimum
degree n−∆− 1, ∆ ≥ 1, and let f : V → {1, 2, . . . ,∆ + 2} be a function such
that

∑
v∈V f(v) is even. If n ≥ ∆2 + 4∆ + 3, then G has an f -factor.

Proof. Set a := 1 and b := ∆ + 2. Since n ≥ ∆2 + 4∆ + 3 it follows that:

b

a+ b
n =

∆ + 2

∆ + 3
n ≤ n−∆− 1.
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Furthermore,
a+ b

a
(b+ a− 3) = (∆ + 3)∆ = ∆2 + 3∆ < ∆2 + 4∆ + 3 = n

and, thus, all conditions of Lemma 3.8 are fulfilled.

6.3.2. A Polynomial-Time Algorithm for “Large”-Solution
Instances

In this section, we give an algorithm based on the approach of Liu and Terzi
[LT08] (see Figure 6.2) that, if a minimum-size k-insertion set S is “large”
compared to ∆, solves the given instance in polynomial time (Lemma 6.9). The
key point is to prove that in Phase 2 there exists a realization of the anonymized
degree sequence, that is, the corresponding f -factor in the complement graph
exists (see previous section). To this end, we use Corollary 6.4 and therefore
have to ensure that its conditions are fulfilled, namely:

1. The maximum function value is ∆ + 2.

2. There are at least ∆2 + 4∆ + 3 “affected” vertices, that is, vertices v ∈ V
such that f(v) > 0.

In the next lemma we show that a “large” minimum-size k-insertion set increases
the maximum degree by at most two implying the first condition. This further
implies that if a minimum-size k-insertion set contains more than (∆2 +4∆+3)2

edges, also the second condition is satisfied.

Lemma 6.5. Let G = (V,E) be an undirected graph and let S be a minimum-
size k-insertion set. If |V (S)| ≥ ∆2

G + 4∆G + 3, then the maximum degree
in G+ S is at most ∆G + 2.

Proof. Let G be an undirected graph with maximum degree ∆G and k be an
integer. Let S be a minimum-size edge set such that G+ S is k-anonymous and
suppose that |V (S)| ≥ ∆2 + 4∆ + 3. Now assume towards a contradiction that
the maximum degree in G+ S is at least ∆G + 3. We show that there exists
an edge set S′ such that G + S′ is k-anonymous, |S′| < |S|, and G + S′ has
maximum degree at most ∆G + 2, contradicting the minimality of S.
First we introduce some notation. Let f be a function f : V → N0 defined

as f(v) := degG+S(v)− degG(v) for all v ∈ V . Furthermore, denote with X the
set of all vertices having degree more than ∆G + 2 in G+ S, that is,

X := {v ∈ V | f(v) + degG(v) ≥ ∆G + 3}.
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Observe that (V, S) is an f -factor of the complement graph G and 2|S| =∑
v∈V f(v). We now define a new function f ′ : V → N0 such that G contains an

f ′-factor denoted by G′ = (V, S′) such that G+ S′ is k-anonymous, |S′| < |S|,
and G+ S′ has maximum degree at most ∆G + 2.
We define f ′ for all v ∈ V as follows:

f ′(v) :=


f(v) if v /∈ X,
∆G − degG(v) + 1 if v ∈ X and f(v) + degG(v)−∆G − 1 is even,
∆G − degG(v) + 2 otherwise.

First observe that degG(v)+f ′(v) ≤ ∆G+2 for all v ∈ V . Furthermore, observe
that f ′(v) = f(v) for all v ∈ V \X and for all v ∈ X it holds that f ′(v) < f(v)
and f(v) − f ′(v) is even. Thus,

∑
v∈V f(v) >

∑
v∈V f

′(v) and
∑
v∈V f

′(v) is
even. It remains to show that

(i) G contains an f ′-factor G′ = (V, S′) and

(ii) G+ S′ is k-anonymous.

To prove (i) let Ṽ := {v ∈ V | f ′(v) > 0}. Next, observe that from
the definition of X and f ′ it follows f(v) > 0 if and only if f ′(v) > 0 and
hence Ṽ = V (S). Furthermore, let G̃ := G[Ṽ ]. Observe that G̃ has minimum
degree |Ṽ | −∆G − 1 and |Ṽ | = |V (S)| ≥ ∆2 + 4∆ + 3. Thus, the conditions
of Corollary 6.4 are satisfied and hence G̃ contains an f ′|Ṽ -factor G̃

′ = (Ṽ , S′).
Here, f ′|Ṽ denotes f restricted to the domain Ṽ . By definition of Ṽ it follows
that G′ = (V, S′) is an f ′-factor of G.

To show (ii), assume towards a contradiction that G+S′ is not k-anonymous,
that is, there exists some vertex v ∈ V such that 1 ≤ |BG+S′(degG+S′(v))| < k.
Recall that a block BG(d) of degree d is the set of all vertices with degree d in G.
Let d := degG+S(v) and d′ := degG+S′(v). Observe that d′ = degG(v) + f ′(v).
Thus, if v /∈ X, then by definition of f ′ it holds that d′ = degG(v) + f(v) =
d ≤ ∆G + 2. Hence, for all vertices u ∈ BG+S(d′) it follows that u /∈ X. Thus,
BG+S(d′) ⊆ BG+S′(d

′) and since G+S is k-anonymous we have |BG+S′(d
′)| ≥ k,

a contradiction. If v ∈ X, that is, d > ∆G+2, then |BG+S(d)| ≥ k since G+S is
k-anonymous. Furthermore, by the definitions of BG+S(d), f , and X we have for
all u ∈ BG+S(d) that degG(u)+f(u) = d, u ∈ X, and, thus, f ′(u)+degG(u) = d′.
Therefore, BG+S(d) ⊆ BG+S′(d

′) and |BG+S′(d
′)| ≥ k, a contradiction.
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Note that the bound provided in Lemma 6.5 is tight: Consider a cycle with
an odd number of vertices plus two additional vertices that are adjacent to each
other. The graph has maximum degree two. By setting k := |V | we ensure that
the k-anonymized graph is regular. Observe that inserting any k-insertion set
ends up with a graph of maximum degree at least four: Since the two additional
vertices need each at least one further neighbor, the maximum degree in the
k-anonymized graph is least three. However, increasing the degree of each vertex
to three is impossible as the sum of the degrees would be odd (odd number of
vertices and odd degree) and in a graph the sum of the degree is always even.
Hence, the k-anonymized graph has maximum degree at least four.

As a corollary of Lemma 6.5 we get the following unconditional bound on the
maximum degree.

Corollary 6.6. Let G = (V,E) be an undirected graph and let S be a minimum-
size k-insertion set. Then the maximum degree in G+S is at most ∆2 + 5∆ + 2.

Proof. Let S be a k-insertion set for G such that the maximum degree in G+S is
more than ∆2 +5∆+2. Thus, at least one vertex in G is incident to ∆2 +4∆+3
edges in S and hence |V (S)| ≥ ∆2 + 4∆ + 3. It follows from Lemma 6.5 that S
is not a minimum-size k-insertion set. Thus any minimum-size k-insertion set
for G yields a graph with maximum degree at most ∆2 + 5∆ + 2.

Remark. We conjecture that the bound in Corollary 6.6 is not tight. The
example with the highest resulting maximum degree after inserting a k-insertion
set is a graph consisting of two disjoint cliques of order ∆ and ∆+1, respectively,
and setting k = n. The only k-insertion set for this instance makes the whole
graph a clique and, thus, doubles the degree. We thus conjecture that the bound
in Corollary 6.6 can be improved to 2∆.
Next, we formalize the anonymization of degree sequences. Recall that a

multiset of positive integers S = {d1, d2, . . . , dn} that corresponds to the degrees
of all vertices in an undirected graph is called degree sequence—see Section 3.1
for more details about degree sequences. A degree sequence S is k-anonymous
if each number in S occurs at least k times in S. The degree sequence of
a k-anonymous graph G is clearly k-anonymous. Moreover, if an undirected
graph G can be transformed by at most s edge insertions into a k-anonymous
graph, then the degree sequence of G can be transformed into a k-anonymous
degree sequence by increasing the integers by no more than 2s in total (clearly,
in the other direction this fails in general because of the graph structure). As
we are in this section only interested in a degree sequence corresponding to a
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graph of a Anonym E-Ins instance where s is large, by Lemma 6.5 we can
require the integers in a k-anonymous degree sequence to be upper-bounded
by ∆ + 2.

Degree Sequence Anonymity (k-DSA)
Input: Two positive integers k and s, and a degree sequence S =

{d1, d2, . . . , dn} with d1 ≤ d2 ≤ . . . ≤ dn and ∆ = dn.
Question: Is there a k-anonymous degree sequence S ′ = {d′1, d′2, . . . , d′n}

with di ≤ d′i and max1≤i≤n d
′
i ≤ ∆ + 2 such that

∑n
i=1 d

′
i−di =

2s?

Input:
S = {1, 2, 3, 4}, k = 2, s = 2

Solution:
S = {3, 3, 4, 4}

Observe that we require that the “cost” of anonymizing the degree sequence S is
exactly 2s and not at most 2s. This is due to the fact that we only can transfer
“large” solutions of Degree Sequence Anonymity to Anonym E-Ins, as
we will show later. In particular, if we allowed the cost of the solution to be
at most 2s, then we could always get “small” solutions to Degree Sequence
Anonymity, which actually might not be realizable in the graph. Note that,
due to the degree upper bound of ∆ + 2 and the required cost of exactly 2s,
Degree Sequence Anonymity is a modified variant compared to the original
degree anonymization problem used in Liu and Terzi [LT08]. Hence, we need
to slightly modify their dynamic programming-based approach to prove that
Degree Sequence Anonymity is polynomial-time solvable.

Lemma 6.7. Degree Sequence Anonymity can be solved in O(nsk∆) time.

Proof. We slightly adapt a dynamic programming algorithm provided by Liu
and Terzi [LT08, Section 4] and also used by Chester et al. [Che+13b, Section
6.2.2].

The dynamic programming uses a single table T with a boolean entry T [i, j]
for every i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , 2s}. The entry T [i, j] is true
if and only if there is a k-anonymous sequence {d′1, d′2, . . . , d′i} with d′t ≥ dt
for all t ∈ {1, 2, . . . , i} and the cost

∑i
t=1 d

′
t − dt of the anonymization is ex-

actly j. Thus, T [n, 2s] stores the answer to the Degree Sequence Anonymity
problem.

Obviously, for i < k we have T [i, j] := false for all j as there is no k-anony-
mous sequence with less than k numbers. To fill the rest of the table with
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increasing i, we use for 1 ≤ a ≤ b ≤ n and a positive integer d the function
cost(a, b, d) :=

∑b
t=a d− dt (the cost of increasing da, da+1, . . . , db up to d).

For k ≤ i < 2k we set T [i, j] to true if and only if there is a d ∈ {di, di +
1, . . . ,∆ + 2} such that j = cost(1, i, d). We next prove the correctness of
this assignment: Clearly, the corresponding sequence d′1 = · · · = d′i = d is
k-anonymous. In the reverse direction, from i < 2k it follows that d′1 = · · · =
d′i for each k-anonymous sequence d′1, d′2, . . . , d′i. Hence, the entry T [i, j] is
computed correctly in this case.

For i ≥ 2k we set T [i, j] to true if and only if there are ` ∈ {k, k+1, . . . , 2k−1}
and d ∈ {di, di+1, . . . ,∆+2} such that T [i−`, j−cost(i−`+1, i, d)] = true. We
next prove that this assignment is correct. In the first direction, corresponding
to T [i− `, j− cost(i− `+ 1, i, d)] let d′1, d′2, . . . , d′i−` be a k-anonymous sequence
for d1, d2, . . . , di−` with anonymization cost j − cost(i− `+ 1, i, d). Then, since
d ≥ di, the sequence

d′1, d
′
2, . . . , d

′
i−`, d, d, . . . , d︸ ︷︷ ︸

`

is a k-anonymous sequence of cost j for d1, d2, . . . , di. In the other direction, let
d′1, d

′
2, . . . , d

′
i be a k-anonymous sequence for d1, d2, . . . , di with anonymization

cost j. Denote by ` the largest integer such that d′i−` = · · · = d′i. Since
the sequence is k-anonymous ` is at least k and if ` ≥ 2k, then set ` :=
k. It follows that the sequence d′1, d′2, . . . , d′i−` is k-anonymous and hence
T [i− `, j − cost(i− `+ 1, i, d′i)] = true. From this and since ∆ + 2 ≥ d′i ≥ di it
follows that the entry T [i, j] is computed correctly.

As each of the recurrences only depends on at most k · (∆ + 2) other entries
of the table and the table has n(2s+ 1) entries, the algorithm runs in O(nsk∆)
time. It is easy to modify the algorithm to output the appropriate k-anonymous
sequence in the same running time.

We now have all ingredients to solve Anonym E-Ins in polynomial time in
case it has a “large” minimum-size k-insertion set. The basic process is as follows
(see Algorithm 6.1 for the pseudocode): Given an instance (G, k, s) of Anonym
E-Ins first compute the degree sequence S of G. Then, search a “large” solution
for (S, k, s), that is a solution of size i, (∆2 + 4∆ + 3)2 ≤ i ≤ s. If there is such
a large solution for the Degree Sequence Anonymity instance, then the
next lemma states that this solution can be transferred to the Anonym E-Ins
instance.
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Algorithm 6.1: Find a k-insertion set of size at most s for G or decide that
the size of a minimum k-insertion set for G is not between (∆2 + 4∆ + 3)2

and s.
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Output: A k-insertion set of size s′, (∆2 + 4∆ + 3)2 ≤ s′ ≤ s, if it exists.

1 S ← degree sequence of G
2 j ← −1
3 i← (∆2 + 4∆ + 3)2

4 while j = −1 and i ≤ s do
// find minimum j s.t. (S, k, j) is a yes-instance of k-DSA

5 if (S, k, i) is a yes-instance of k-DSA then // see Lemma 6.7
6 j ← i
7 S ′ ← solution for (S, k, i)
8 else
9 i← i+ 1

10 if j = −1 then // no k-insertion set of size between (∆2 + 4∆ + 3)2 and s
11 return ‘NO’
12 else // (G, k, s) is a yes-instance; the algorithm now computes a solution
13 foreach vi ∈ V do
14 f(vi)← d′i − degG(vi) // f(vi) =̂ number of new incident edges

15 G′ = (V, S)← f -factor of G
16 return S

Lemma 6.8. Let (G, k, s) be an instance of Anonym E-Ins. If the size of a
minimum-size k-insertion set is at least (∆2 + 4∆ + 3)2, then Algorithm 6.1
decides (G, k, s) in polynomial time. Furthermore, if Algorithm 6.1 returns an
edge set S, then S is a k-insertion set of size |S| ≤ s.

Proof. We first show that if Algorithm 6.1 returns an edge set S, then S is
a k-insertion set. Let S be an edge insertion set returned by the algorithm.
First, observe that |S| ≤ s due to the while loop in Line 4. Since in Line 15 the
algorithm determines an f -factor in G it follows that S ∩E = ∅. Furthermore,
(S, k, |S|) is a yes-instance. Thus, by construction of f , it follows that G+ S
is k-anonymous. Putting all this together implies that S is a k-insertion set of
size |S| ≤ s and, hence, (G, k, s) is a yes-instance.
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Now, let S be the minimum k-insertion set of size |S| ≥ (∆2 + 4∆ + 3)2

and |S| ≤ s. We show that Algorithm 6.1 returns a k-insertion set. Observe
that for any edge set S of size at least (∆2 + 4∆ + 3)2 it holds that |V (S)| >√

(∆2 + 4∆ + 3)2 = ∆2 + 4∆ + 3. Thus, by Lemma 6.5, since S is minimum,
G + S has maximum degree ∆ + 2. Let S be the degree sequence of G. As
already discussed before, the degree sequence D′ of G + S is a solution for
Degree Sequence Anonymity. Thus, (S, k, |S|) is a yes-instance of Degree
Sequence Anonymity. Hence, after leaving the while-loop in Line 4 it holds
that j ≤ |S| and S ′ is the corresponding k-anonymous degree sequence. By
definition, D′ has a maximum degree of at most ∆ + 2. Hence, there are at
least (∆2 + 4∆ + 3)2/(∆ + 2) > ∆2 + 4∆ + 3 integers in S that have been
increased to get D′. Thus, for the function f computed in Line 14 it holds
that |{v ∈ V | f(v) > 1}| > ∆2+4∆+3. SinceG has minimum degree |V |−∆−1,
if follows from Corollary 6.4 that G contains an f -factor. Thus, in Line 15 an
f -factor G′ = (V, S) is found and the algorithm returns a k-insertion set.
Recall that f-Factor can be solved in O(

√∑
v∈V f(v)|E|) time [Gab83].

Together with Lemma 6.7, this implies that Algorithm 6.1 runs in polynomial
time.

Lemma 6.8 essentially shows that Anonym E-Ins can be decided in polyno-
mial time when a minimum-size k-insertion sets is large. If a minimum-size k-in-
sertion set is not large, then, since any k-insertion set for G of size j ≤ s directly
implies that (S, k, j) is a yes-instance for Degree Sequence Anonymity, it
follows that we can bound the parameter s by a function in ∆, as stated in the
next lemma stating the mentioned win-win situation.

Lemma 6.9. There is an algorithm running in O(ns2k∆) time that given an
instance (G, k, s) of Anonym E-Ins returns ‘YES’ or ‘NO’. If it answers ‘YES’,
then (G, k, s) is a yes-instance. If it returns ‘NO’, then (G, k, s) is a yes-instance
if and only if (G, k,min{(∆2 + 4∆ + 3)2, s}) is a yes-instance.

Proof. The algorithm is obtained by replacing the Lines 13 to 16 of Algorithm 6.1
with “return ‘YES’ ”. If the algorithm returns ‘YES’, then, by Lemma 6.8, the
input instance (G, k, s) is a yes-instance. If the algorithm returns ‘NO’, then
consider the following two cases. Let S be a minimum-size k-insertion set.

Case 1 |S| ≥ (∆2 + 4∆ + 3)2: As the algorithm returns ‘NO’, it follows from
Lemma 6.8 that the given instance (G, k, s) is a no-instance (thus s < |S|).
Hence, also (G, k,min{(∆2 + 4∆ + 3)2, s}) is a no-instance.
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Case 2 |S| < (∆2 + 4∆ + 3)2: If s < |S|, then s < (∆2 + 4∆ + 3)2 and, thus,
(G, k, s) as well as (G, k,min{(∆2 + 4∆ + 3)2, s}) are no-instances. Con-
versely, if s > |S|, then min{(∆2 + 4∆ + 3)2, s} > |S| and, hence, (G, k, s)
as well as (G, k,min{(∆2 + 4∆ + 3)2, s}) are yes-instances. Hence, it holds
that (G, k, s) is a yes-instance if and only if (G, k,min{(∆2 + 4∆ + 3)2, s})
is a yes-instance.

As to the running time, observe that the algorithm runs in O(ns2k∆) time:
The algorithm basically solves at most s instances of Degree Sequence
Anonymity which requires O(ns2k∆) time, see Lemma 6.7, and then returns
‘YES’ or ‘NO’.

We remark that Algorithm 6.1, constructing a solution if found, runs in O(n3+
ns2k∆) time: The first part of deciding whether there exists a large solution
runs in O(ns2k∆), see Lemma 6.9. Then, computing an f -factor in G is doable
in O(

√∑
v∈V f(v)|E|) time [Gab83], that is, O(n2

√
n2) = O(n3) time.

6.3.3. Polynomial Kernel

In this section, we first show a kernel with respect to the combined parame-
ter (∆, s) and then use Lemma 6.9 to show that this kernel is polynomial only
in ∆. Our kernelization algorithm is based on the following observation. For a
given graph G, consider for some 1 ≤ i ≤ ∆ the block BG(i), that is, the set of
all vertices of degree i. If BG(i) contains many vertices, then the vertices are
“interchangeable”:

Observation 6.10. Let (G, k, s) with graph G = (V,E) be a Anonym E-Ins
instance, let S be an k-insertion set for G with |S| ≤ s, and let v ∈ V (S)∩BG(i)
be a vertex such that |BG(i)| > (∆ + 2)s. Then there exists a vertex u ∈
BG(i) \ V (S) such that replacing in S every edge {v, w} by {u,w} results in a
k-insertion set for G.

Proof. Since |S| ≤ s, the vertex v can be incident to at most s edges in S.
Denoting the set of these edges by Sv, one obviously can replace v by u ∈ BG(i)
if u is non-adjacent to all vertices in V (Sv) \ {v} (this allows to insert all edges)
and u /∈ V (S) (no block in G + S does change its size). However, as V (S)
contains at most 2s vertices from BG(i) and each of the at most s vertices
in V (Sv) \ {v} has at most ∆ neighbors in G, it follows that such a vertex
u ∈ BG(i) exists if |BG(i)| > (∆ + 2)s.
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size of blocks
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k − 2s
k

k + 2s
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size of blocks

2s

k′ − 2s
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k′ + 2s

Figure 6.3.: Our general approach for the kernelization when k is “large”: Left: Three
blocks of the input. Right: The corresponding three blocks after the kernelization. As
one can see, the value of k as well as the size of the “large” blocks is decreased. Note
that in the input and in the output the first block needs the same number of vertices
added to have size k, respectively k′. The idea is to keep for each block the “distance
to being k-anonymous”, that is, the difference between k and its size. If, however,
one block (like the second block in the picture) has size larger than 2s+ k, then we
need to keep only 2s + k′ since with s edges we can “remove” at most 2s vertices
from the block. (To simplify the proof we actually keep 4s + k′ vertices.) Finally,
observe that in the reduced instance we have k′ − 2s > 2s since we want to be able
to distinguish between blocks that can be “filled” up to size k in the input (blocks of
size ≥ k− 2s) and blocks that can be emptied (blocks of size ≤ 2s). See Algorithm 6.2
for the pseudocode of the kernelization.

By Observation 6.10, in our kernel we only need to keep at most (∆ + 2)s
vertices in each block: If in an optimal k-insertion set S there is a vertex v ∈ V (S)
that we did not keep, then by Observation 6.10 we can replace v by some vertex
we kept. There are two major problems that need to be fixed to obtain a kernel:
First, when removing vertices from the graph, the degrees of the remaining
vertices change. Second, k might be “large” and, thus, removing vertices (during
kernelization) in one block may breach the k-anonymity constraint. To overcome
the first problem we insert some “dummy-vertices” which are guaranteed not to
be contained in any k-insertion set. To solve the second problem, however, we
need to adjust the parameter k as well as the number of vertices that we keep
from each block, see Figure 6.3 for our general approach.
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Algorithm 6.2: The pseudocode or the algorithm computing a polynomial
kernel with respect to (∆, s).
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Output: An undirected graph G′, k′, and s.

1 if |V | ≤ ∆(β + 4s) then // β is defined as β := (∆ + 4)s+ 1
2 return (G, k, s)

3 k′ ← min{k, β}; A← ∅
4 for i← 1 to ∆ do
5 if 2s < |BG(i)| < k − 2s then
6 return trivial no-instance // insufficient budget for BG(i)

7 if k ≤ β then // determine retained vertices
8 x← min{|BG(i)|, β + 4s} // keep at most β + 4s vertices
9 else if |BG(i)| ≤ 2s then // “small” block

10 x← |BG(i)| // keep all vertices (“distance to size zero”)
11 else // “large” block and k′ = β
12 x← k′ + min{4s, (|BG(i)| − k)} // keep “distance to size k”.

13 add x vertices from BG(i) to A

14 G′ := G[A]
15 foreach v ∈ A do // insert vertices to preserve degree of retained vertices
16 insert into G′ degG(v)− degG′(v) many degree-one vertices adjacent to v

17 denote with P the set of vertices inserted in Line 16
18 by inserting matched pairs of vertices, ensure that |P | ≥ max{4∆ + 4s+ 4, k′}
19 if ∆ + s+ 1 is even then
20 GF = (P,EF )←(∆ + s+ 1)-factor in G′[P ]
21 else
22 GF = (P,EF )←(∆ + s+ 2)-factor in G′[P ]

23 G′ ← G′ + EF

24 return (G′, k′, s)

Details of the kernelization algorithm. We now explain the kernelization
algorithm in detail (see Algorithm 6.2 for the pseudocode). Let (G, s, k) be
an instance of Anonym E-Ins. For brevity we set β := (∆ + 4)s + 1. We
compute in polynomial time an equivalent instance (G′, k′, s) with at most
O(∆3s) vertices: First set k′ := min{k, β} (Line 3). We arbitrarily select from
each block BG(i) a certain number x of vertices and collect all these vertices
into the set A (Line 13). To cope with the above mentioned second problem, the
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“certain number” is defined in a case distinction on the value of k (see Lines 4
to 13). Intuitively, if k is large then we distinguish between “small” blocks of
size at most 2s and “large” blocks of size at least k − 2s. Obviously, if there
is a block which is neither small nor large, then the instance is a no-instance
(see Line 6). Thus, in the kernel we keep for small blocks the “distance to size
zero” and for large blocks the “distance to size k”. Furthermore, in order to
distinguish between small and large blocks it is sufficient that k′ > 4s. However,
to guarantee that Observation 6.10 is applicable, the case distinction is a little
bit more complicated, see Lines 4 to 13. The idea is to take enough vertices
from each block into A such that we can guarantee that any solution on G can
be transformed to G′ and vice versa. Intuitively, for this it is enough to select
2s vertices from each block, as no solution can “affect” more vertices.

In Line 14 we start building G′ by first copying G[A] into it. Next, adding
a pendant vertex to v means that we insert a new vertex in G′ and make it
adjacent to v. For each v ∈ A we add pendant vertices to v to ensure that
degG′(v) = degG(v) (Line 16). The vertices of A stay untouched in the following.
Denote the set of all pendant vertices by P . Next, we insert enough pairwise
adjacent vertices to P to ensure that |P | ≥ max{k′, 4∆ + 4s + 4} (Line 18).
Hence, |P | ≤ max{|A| ·∆, k′, 4∆ + 4s+ 4}+ 1. To avoid that vertices in P help
to anonymize the vertices in A we “shift” the degree of the vertices in P (see
Lines 19 to 23): We insert edges between the vertices in P to ensure that the
degree of each vertex in P is ∆ + s+ 2 (when ∆ + s+ 1 is even) or ∆ + s+ 3
(when ∆ + s+ 2 is even). For the ease of notation let χ denote the new degree
of the vertices in P . Observe that before inserting edges all vertices in P have
degree one in G′. Thus, the minimum degree in G′[P ] is |P | − 2. Furthermore,
for each v ∈ P we denote by f(v) the number of incident edges v requires to
have the described degree. It follows that f(v) is even and hence

∑
v∈P f(v) is

even. Hence setting a = b := χ fulfills all conditions of Lemma 3.8. Thus, the
required f -factor exists and can be found in O(|P |2

√
|P |(∆ + s)) time [Gab83].

This completes the description of the kernelization algorithm.

The key point of the correctness of the kernelization is to show that without
loss of generality, no k-insertion set S for G′ of size |S| ≤ s affects any vertex
in P . This is ensured by “shifting” the degree of all vertices in P by s+ 1 (or
s + 2), implying that none of the vertices in A can “reach” the degree of any
vertex in P by inserting at most s edges. Hence each block either is a subset
of A or of P . We now prove that we may assume that an edge insertion set
does not affect any vertex in P . To prove this, all what we need is the fact that
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A contains at least β + 4s vertices from at least one block in G. Observe that
this is ensured by the condition in Line 1.

Lemma 6.11. Let (G, k, s) be an instance of Anonym E-Ins and let (G′, k′, s)
be the instance computed by Algorithm 6.2. If there is a k-insertion set S for G′
with |S| ≤ s, then there is also a k-insertion set S′ for G′ with |S′| = |S| such
that V (S′) ∩ P = ∅.

Before proving Lemma 6.11, we introduce the term “co-matching” and make an
observation concerning its existence. An undirected graph G = (V,E) contains
a co-matching of size ` if its complement graph G contains a matching of size `,
that is, a subset of ` non-overlapping edges of G. A perfect co-matching of G is
a co-matching of size |V |/2. The following observation shows sufficient conditions
for the existence of co-matchings.

Observation 6.12. Let G = (V,E) be an undirected graph and let V ′ ⊆ V be
a vertex subset such that |V ′| ≥ 2∆ + 1 and |V ′| is even. Then, G[V ′] contains
a perfect co-matching.

Proof. Since |V ′| ≥ 2∆ + 1, it follows that in G[V ′] every vertex has degree at
least |V ′| −∆ ≥ |V ′|/2. By Dirac’s Theorem [Die10] stating that every n-vertex
graph with minimum degree larger than n/2 contains a Hamiltonian cycle, it
follows that G[V ′] contains a Hamiltonian cycle C. If |V ′| is even, then taking
every second edge of C results in a perfect matching.

We now can prove Lemma 6.11.

Proof of Lemma 6.11. Let S be a k-insertion set S for G′ such that |S| ≤ s
and V (S) ∩ P 6= ∅. As each block in G′ + S is either a subset of A or of P , it
follows from V (S)∩P 6= ∅ that |V (S)∩P | ≥ k. Additionally, as S can affect at
most 2s vertices and A contains at least β + 4s vertices from at least one block,
say BG(i), it follows that BG′+S(i) contains at least β + 2s unaffected vertices.
We next restructure S in order to get a k-insertion set fulfilling the claimed

properties. For this, one has to exchange all edges in S containing at least one
endpoint from P . We start with the edges in S having only one endpoint in P .

Let AP ⊆ V (S)∩A be all vertices in A that are incident to some edge in S with
the second endpoint in P . For each v ∈ AP we select |(NG′+S(v) \NG′(v))∩P |
vertices among the unaffected vertices from BG′+S(i) and replace each edge
in S from v to some vertex in P (there are exactly |(NG′+S(v) \NG′(v)) ∩ P |
many) by an edge from v to one of the selected vertices (each unaffected vertex
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in BG′+S(i) is only used once). Note that this is always possible since each
vertex v has at most ∆ neighbors among the unaffected vertices in BG′+S(i),
since there are at least s + ∆ + 1 unaffected vertices in BG′+S(i), and since
there can be at most s edges in S that are replaced in this way.
Note that, after having exchanged all edges in S with one endpoint in P ,

BG′+S(i) still contains at least β + 2s > 2∆ + 2s unaffected vertices. Thus, by
Observation 6.12, there exists a co-matching of size exactly |S| ≤ s among the
unaffected vertices in BG′+S(i). Exchanging each edge in S with two endpoints
in P by an edge in this matching yields the following: All vertices in P are
unaffected. Hence, the block containing all vertices from P is of size at least k.
Additionally, we increased for at least k vertices the degree from i to i + 1,
thus |BG′+S(i+ 1)| ≥ k. As the block BG′+S(i) still contains at least k vertices
after restructuring, it follows that G′ + S is k-anonymous.

Based on Lemma 6.11 we now prove the correctness of our kernelization
algorithm.

Lemma 6.13. If the instance (G′, k′, s) constructed by Algorithm 6.2 is a
yes-instance, then (G, k, s) is a yes-instance.

Proof. First, observe that if k ≤ β, then k′ = k and each edge insertion set
that makes G′ k-anonymous also makes G k-anonymous as all blocks with less
than β + 4s vertices remain unchanged. Hence, assume that k > β and, thus,
k′ = β < k.

Let S′ be an edge insertion set with |S′| ≤ s such that G′+S′ is k-anonymous
and S′ ∩ P = ∅ (see Lemma 6.11). To prove that G + S′ is also k-anony-
mous, assume towards a contradiction that there is a block BG+S′(j) with
0 < |BG+S′(j)| < k. We associate two numbers dGi (j), dGo (j) to S′ with respect
to G where dGi (j) is the number of vertices in BG+S′(j) but not in BG(j) and
dGo (j) is the number of vertices in BG(j) but not in BG+S′(j). Defining the
numbers analogously for G′, it holds that dGi (j) = dG

′

i (j) and dGo (j) = dG
′

o (j).
If |BG′+S′(j)| = 0, then dG

′

o (j) = |BG′(j)| ≤ 2s and dG
′

i (j) = 0. By Line 10
this implies BG+S′(j) = ∅. Consider the remaining case, that is, |BG′+S′(j)| ≥
k′. If |BG(j)| ≥ k + 2s, then |BG+S′ |(j) ≥ k. Otherwise |BG′(j)| = k′ +
|BG(j)| − k by Line 12. But then we have

0 ≤ |BG′+S′(j)| − k′ = |BG′(j)|+ dG
′

i (j)− dG
′

o (j)− k′ =

= |BG(j)|+ dGi (j)− dGo (j)− k = |BG+S′(j)| − k.

and, hence, |BG+S′(j)| ≥ k.
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Lemma 6.14. If (G, k, s) is a yes-instance, then the instance (G′, k′, s) con-
structed by Algorithm 6.2 is a yes-instance.

Proof. Recall that k′ = min{k, β} = min{k, (∆+4)s+1}. Let S be a k-insertion
set for G of size at most s. We now show how to construct a k′-insertion set S′
for G′ of size at most s. If V (S) \ A 6= ∅, then we do the following to ensure
V (S) ⊆ A. We initialize S1 := S. Observe that for each vertex v ∈ V (S) \A it
holds that |BG(degG(v))∩A| ≥ β− 2s > (∆ + 2)s. Hence, by Observation 6.10,
there exists a vertex u ∈ BG(degG(v))∩A such that the set S2 resulting from S1

by replacing v with u, formally, S2 := S1 ∪ {{u,w} | {v, w} ∈ S1} \ {{v, w} |
{v, w} ∈ S1}, is also a k-insertion set for G. Note that V (S2) has larger
overlap with A as V (S1), more precisely, |V (S2) ∩ A| = |V (S1) ∩ A| + 1. By
iteratively applying this procedure we end up with a k-insertion set S′ for G
with V (S′) ⊆ A.

We next show that G′ + S′ is k′-anonymous. Observe that if k ≤ β, then k =
k′ and all blocks in G′ with less than β + 4s > k + 2s vertices remained
unchanged during the kernelization (see Line 8). Hence, all these blocks fulfill
the k-anonymity requirement in G′ + S′. Furthermore, all blocks with more
than k+ 2s vertices in G also contain more than k+ 2s vertices in G′ and more
than k vertices in G′ + S′. Thus, G′ + S′ is k′-anonymous.
Now assume that k > β and, thus, k′ = β. Assume towards a contradiction

that there is a block with 0 < |BG′+S′(i)| < k′. Observe that if |BG′(i)| ≤ 2s,
then also |BG(i)| ≤ 2s, thus BG′(i) = BG(i) (see Line 10) and BG′+S′(i) =
BG+S′(i), a contradiction to the assumption that G+S′ is k-anonymous. Hence,
consider the case |BG′(i)| ≥ 2s and, thus, |BG(i)| ≥ k − 2s and |BG′(i)| =
β + min{4s, (|BG(i)| − k)} (see Line 12). Observe that |BG′+S′(i)| − |BG′(i)| =
|BG+S′(i)| − |BG(i)| and, thus,

|BG′+S′(i)| = (|BG+S′(i)| − |BG(i)|) + |BG′(i)|. (6.1)

Furthermore, observe that |BG+S′(i)| − |BG(i)| ≥ −2s and |BG+S′(i)| ≥ k. We
now distinguish the two cases |BG(i)| − k ≥ 4s and |BG(i)| − k < 4s. In the
first case it follows that |BG′(i)| = β + 4s and from Equation (6.1) it follows

|BG′+S′(i)| ≥ −2s+ β + 4s > k′,

a contradiction. In the second case it follows that |BG′(i)| = β + |BG(i)| − k
(see Line 12), and from Equation (6.1) we conclude that

|BG′+S′(i)| ≥ k − |BG(i)|+ β + |BG(i)| − k = β = k′,

a contradiction.
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From Lemmas 6.13 and 6.14 it follows that the kernelization algorithm is
correct. It is not hard to see that the size of the computed instances is bounded
by a polynomial in ∆ and s, leading to the following.

Theorem 6.15. Anonym E-Ins admits a kernel with O(∆3s) vertices. The
kernelization runs in O(∆8s3 + ∆2sn) time.

Proof. The kernel is computed by Algorithm 6.2. The correctness of the kernel-
ization algorithm follows from Lemmas 6.13 and 6.14. Observe that each block
in A has size at most β + 4s (see Lines 8, 10 and 12). Thus, |A| = O(∆β) =
O(∆2s). Furthermore, the set P contains at most max{∆|A|, k′, 4s+ 4∆ + 1}
vertices (see Lines 16 to 18). Thus, |P | = O(∆3s) and, hence, the reduced
instance contains O(∆3s) vertices.
It remains to show the running time. To this end, using bucket sort, one

can sort the n vertices by degree in O(n) time. Furthermore, in the same
time one can create ∆ lists—each list containing the vertices of some de-
gree i, 1 ≤ i ≤ ∆. Then, the selection of the O(∆2s) vertices of A can
be done in O(∆2sn) time. Clearly, inserting the vertices in P can be done
in O(∆3s) time. Finally, as P contains O(∆3s) vertices and an (∆+s+1)-factor
in G[P ] can be found in O(|P |2

√
|P |(∆ + s)) time [Gab83], Algorithm 6.2 runs

in O(∆6s2
√

∆3s(∆ + s) + ∆2sn) = O(∆8s3 + ∆2sn) time.

By Lemma 6.9 it follows that in O(ns2k∆) time we can either decide the
instance or we have s ≤ (∆2 + 4∆ + 3)2. By Theorem 6.15 this implies our
main result—a polynomial kernel with respect to the maximum degree.

Theorem 6.16. Anonym E-Ins admits an O(∆7)-vertex kernel. The kernel-
ization runs in O(∆8s3 + (sk + ∆)∆sn) time.

6.4. Fixed-Parameter Algorithm for the
Parameter Maximum Degree

Theorem 6.16 already implies that Anonym E-Ins is fixed-parameter-tractable
with respect to the parameter maximum degree. In this section, however, we pro-
vide a faster, direct combinatorial algorithm for the combined parameter (∆, s)
and, by Lemma 6.9, also for the parameter ∆.

Roughly speaking, for fixed k-insertion set S the algorithm branches into all
suitable structures of G[S], that is, graphs of at most 2s vertices with vertex
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labels from {1, 2, . . . ,∆}. Then the algorithm checks whether the respective
structure occurs as a subgraph in G such that the labels on the vertices match
the degree of the corresponding vertex in G.

Theorem 6.17. Anonym E-Ins can be solved in s2(6s2∆2)2s · (n+m) time.

Proof. Let (G, k, s) be an instance of Anonym E-Ins. Let S be a k-insertion
set S of size at most s and consider the graph G[S] that is induced by the edges
in S. Clearly, G[S] contains at most 2s vertices and we label each vertex with
its initial degree (some vertices might have the same label). Roughly speaking,
we branch into all possibilities for the structure (label of vertices and which
“labels” are connected by an edge) of the graph G[S] and then try to find the
structure as a subgraph in G.

More specifically, we first branch into all possibilities to first choose the right
number of edges and vertices in G[S]. We then branch into all possibilities to
choose for each vertex its label, that is, its degree in G. Note that there are
at most ∆2s possibilities. Finally, we branch into the at most

(
2s
2

)s ≤ 4ss2s

possibilities to choose pairs of vertices that are connected by an edge from S.
Denote the guessed graph by GS . Clearly, if GS corresponds to G[S], then G
contains GS . We now give an algorithm that finds the subgraph GS in G
if it exists. First, note that there are at most 2s vertices in GS and each
of them has degree at most ∆ in G. Hence, if a block BG(d) has size at
least (2s− 1)∆ + 2s, then it is always possible to choose a vertex from BG(d)
that is non-adjacent to all vertices in a size-at-most-(2s − 1) vertex subset
where at most s edges have been inserted. Thus we first can ignore vertices
in Gs labeled with d where |BG(d)| ≥ 3s∆. For all other vertices we branch
again into the at most

(
3s∆
2s

)
≤ (3s∆)2s possibilities to choose them from the

“small” blocks. Afterwards we greedily insert the required vertices from the
blocks of size at least 3s∆ such that they are non-adjacent to the vertices
chosen before. As this can be done in O(s(n + m)) time (iterating over the
graph for each vertex that needs further neighbors), the algorithm runs overall
in s ·∆2s ·4ss2s ·(3s∆)2s ·s(n+m) = s2(6s2∆2)2s ·(n+m) time. The correctness
of the algorithm follows from the exhaustive search.

Note that due to the upper bound s < (∆2 + 4∆ + 3)2 (see Lemma 6.9) and
the polynomial kernel for the parameter ∆ (see Theorem 6.16), Theorem 6.17
also provides the following.

Corollary 6.18. Anonym E-Ins can be solved in O(∆O(∆4) + ∆8s3 + (sk +
∆)∆sn) time.
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6.5. A General Approach for Degree Sequence
Completion Problems

In this section, we generalize the ideas behind the polynomial-size problem
kernel for Anonym E-Ins, which we presented in Section 6.3. To this end, for
some tuple property Π, we consider the following problem.

Π-Degree Sequence Completion (Π-DSC)
Input: An undirected graph G = (V,E), an integer s ∈ N.
Question: Is there a set of edges E′ ⊆

(
V
2

)
\E with |E′| ≤ s such that the

degree sequence of G′ := G+ E′ fulfills Π?

Input: s = 2

Π = all degrees equal

Solution:

In Section 3.2, we reviewed some work done for the f-Factor problem and
more general degree factors. As already discussed in Section 3.2.2, all problems
mentioned in Section 3.2 have in common that one only has to locally satisfy
the degree of each vertex. Contrasting this local view, the degree constraints
in Anonym E-Ins can only be globally satisfied. Π-DSC generalizes all these
globally defined problems. There are many NP-complete problems of this kind,
as will be discussed in Section 6.5.2.

6.5.1. Fixed-Parameter Tractability of Π-DSC
In this section, we first generalize the ideas behind Observation 6.10 to show
fixed-parameter tractability of Π-DSC with respect to the combined parame-
ter (s,∆G). Then, we present an adjusted version of Lemma 6.9 and apply it
to show fixed-parameter tractability for Π-DSC with respect to the parameter
maximum degree ∆G′ of the resulting graph.
Before we show our results, we make some basic remarks. Note that in

the general setting of Π-DSC, there is no equivalent of Lemma 6.5 bounding
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the maximum degree in the target graph by a function only depending of the
maximum degree of the input graph since the property Π could for example
require to turn the input graph into a clique. Furthermore, the generalization
of Observation 6.10 does not lead to a polynomial problem kernel as deleting
vertices and edges without knowing the property Π seems impossible.

A prerequisite for the mentioned fixed-parameter tractability results for
Π-DSC is that the following problem is fixed-parameter tractable with respect
to the parameter ∆S := max{d1, d2, . . . , dn}.

Π-Decision
Input: A degree sequence S = {d1, d2, . . . , dn}.
Question: Does S fulfill Π?

Clearly, if deciding whether a degree sequence satisfies the property Π is not
fixed-parameter tractable, then the more general problem Π-DSC cannot be
fixed-parameter tractable either.

Fixed-parameter tractability with respect to (s,∆G). The basic idea behind
the polynomial-size problem kernel provided in Section 6.3.3 is presented in
Observation 6.10, stating that the vertices in one block are interchangeable
given that there are enough, that is at least (∆G+ 2)s, of them. Thus, it suffices
to consider (∆G + 2)s vertices of each block and if there is a solution, then
there is also a solution that only affects these at most (∆G + 2)s ·∆G vertices.
In the remaining six pages of Section 6.3.3, we are “just” dealing with the two
problems that deleting the remaining vertices changes the degrees of the vertices
we keep and the anonymity level k needs to bounded in some function of s
and ∆G. Due to the more general setting, we cannot deal with these problems
when considering Π-DSC. We can, however, generalize Observation 6.10. To
this end, we need one further definition. A subset V ′ ⊆ V is an α-block set
if V ′ contains for every d ∈ {0, 1, . . . ,∆G} exactly min{α, |BG(d)|} vertices,
where α := (∆G + 2)s.

Lemma 6.19. Let I := (G = (V,E), s) be a yes-instance of Π-DSC and
let C ⊆ V be an (∆G+2)s-block set. Then, there exists a set of edges E′ ⊆

(
C
2

)
\E

with |E′| ≤ s such that the degree sequence of G+ E′ fulfills Π.

Proof. Let I := (G = (V,E), s) be a yes-instance of Π-DSC and let C ⊆ V be
an (∆G + 2)s-block set. Thus, there exists a set of edges E′ ⊆

(
V
2

)
\ E with

|E′| ≤ s such that the degree sequence S = {d′1, d′2, . . . , d′n} of G′ := G + E′

158



fulfills Π. If V (E′) ⊆ C, then there is nothing to prove. Hence, assume that
there exists a vertex v ∈ V (E′) \ C. We show how to construct from E′ an
edge set E′′ for I such that (V (E′) \C) \ V (E′′) = {v} and the degree sequence
of G′′ := G + E′′ equals S. Since v is not in the (∆G + 2)s-block set C, it
follows that |C ∩ BG(degG(v))| = s(∆G + 2). Next, we prove that there is a
vertex u ∈ BG(degG(v)) such that u /∈ V (E′) and u /∈ NG(NG[E′](v)), that is,
u is not incident to any edge in E′ and also not adjacent to any vertex that is
connected to v by an edge in E′. Note that “replacing” v by such a vertex u in
the edge set E′ yields E′′: Formally, for

E′′ := {{u,w} | {v, w} ∈ E′} ∪ {{w1, w2} | {w1, w2} ∈ E′ ∧ w1 6= v ∧ w2 6= v},

it holds that E′′ ∩ E = ∅ and since u ∈ BG(degG(v)), the degree sequence
of G+ E′′ is S. Hence, it remains to show that such a vertex u exists, that is,
(C ∩BG(degG(v))) \ (V (E′)∪NG(NG[E′](v))) is indeed non-empty. This is true
since |C ∩BG(degG(v))| = s(∆G + 2), whereas |V (E′) ∪NG(NG[E′](v))| < 2s+

s∆G. By repeatedly applying this procedure, we obtain a solution E′′′ ⊆
(
C
2

)
\E

with |E′′′| ≤ s such that the degree sequence of G+ E′′′ fulfills Π.

Observe that Lemma 6.19 does not lead to a problem kernel but only to a
reduced search space for a solution, namely any (∆G + 2)s-block set. Clearly,
an (∆G + 2)s-block set C can be computed in polynomial time. Then, one can
simply try out all possibilities to insert edges with endpoints in C and check
whether in one of the cases the degree sequence of the resulting graph satisfies Π.
As |C| ≤ (∆G + 2)s(∆G + 1), there are at most O(2((∆G+2)s(∆G+1))2

) possible
subsets of edges to insert. Altogether, this leads to the following theorem.

Theorem 6.20. Let Π be some degree sequence property. If Π-Decision is
fixed-parameter tractable with respect to the maximum degree ∆S , then Π-DSC
is fixed-parameter tractable with respect to (s,∆G).

Bounding the solution size s in ∆G′ . We now show how to extend the ideas
of Section 6.3.2 to the context of Π-DSC in order to bound the solution size s by
a polynomial in the maximum degree ∆G′ of the resulting graph. The general
procedure still is the one inspired by Liu and Terzi [LT08]: Solve the number
problem corresponding to Π-DSC on the degree sequence of the input graph
and then try to “realize” the solution. To this end, we define the corresponding
number problem as follows:
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Π-Number Sequence Completion (Π-NSC)
Input: Positive integers d1, d2, . . . , dn, s,∆.
Question: Are there n nonnegative integers x1, x2, . . . , xn with

∑n
i=1 xi = s

such that {d1+x1, d2+x2, . . . , dn+xn} fulfills Π and di+xi ≤ ∆?

With this problem definition, we can now generalize Lemma 6.8.

Lemma 6.21. Let I := (G, s) be an instance of Π-DSC with V = {v1, v2, . . .,
vn} and s ≥ ∆G′(∆G′ + 1)2. If there exists an s′ ∈ {∆G′(∆G′ + 1)2,∆G′(∆G′ +
1)2 + 1, . . . , s} such that the corresponding Π-NSC instance I ′ := (deg(v1),
deg(v2), . . . ,deg(vn), 2s′,∆G′) is a yes-instance, then I is a yes-instance.

Proof. Let I ′ := (deg(v1),deg(v2), . . . ,deg(vn), 2s′,∆G′) with s′ ∈ {∆G′(∆G′ +
1)2,∆G′(∆G′ + 1)2 + 1, . . . , s} be a yes-instance of Π-NSC and let x1, x2, . . . , xn
denote a solution for I ′. Defining the function f : V → N as f(vi) := xi, we now
prove that G contains an f -factor which forms a solution E′ for I. Denote by A
the set of affected vertices, formally, A := {vi ∈ V | xi > 0}. Observe that |A| ≥
2s′/∆G′ ≥ 2(∆G′ + 1)2 as s′ ≥ ∆G′(∆G′ + 1)2. Furthermore, as the maximum
degree ∆G in G is upper-bounded by∆G′ , it follows that G[A] has minimum
degree at least |A| − ∆G′ − 1. Finally, observe that f(vi) ∈ {1, 2, . . . ,∆G′}
for each vi ∈ A and that

∑
vi∈A f(vi) = 2s′ is even. Hence, by Corollary 6.4,

G[A] contains an f -factor. Thus, G also contains an f -factor G′ = (V,E′) and
since (deg(v1) + x1,deg(v2) + x2, . . . ,deg(vn) + xn) fulfills Π, it follows that E′
is a solution for I, implying that I is a yes-instance.

Let function g(|I|) denote the running time for solving the Π-NSC instance I.
Clearly, if there is a solution for an instance of Π-DSC, then there also exists a
solution for the corresponding Π-NSC instance. It follows from Lemma 6.21
that we can decide whether there is a large solution for Π-DSC (inserting at
least ∆G′(∆G′ + 1)2 edges) in s · g(n log(∆)) time. Hence, we arrive at the
following win-win situation corresponding to Lemma 6.9:

Corollary 6.22. Let g denote the running time for solving Π-NSC. There is an
algorithm running in g(n log(∆)) · nO(1) time that given an instance I := (G, s)
of Π-DSC returns “yes” or “no” such that if it answers “yes”, then I is a yes-
instance, and otherwise I is a yes-instance if and only if (G,min{s,∆G′(∆G′ +
1)2}) is a yes-instance.

Using Corollary 6.22, we can transfer the fixed-parameter tractability for
Π-NSC with respect to ∆ to a fixed-parameter tractability result for Π-DSC
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with respect to ∆G′ . Note that maximum degree ∆G′ in the output graph is at
most s+ ∆G, that is, ∆G′ is a smaller and thus “stronger” parameter [KN12].
Also, showing Π-NSC to be fixed-parameter tractable with respect to ∆ might be
a significantly easier task than proving fixed-parameter tractability for Π-DSC
with respect to ∆G′ directly since the graph structure can be completely ignored.

Theorem 6.23. If Π-NSC is fixed-parameter tractable with respect to ∆, then
Π-DSC is fixed-parameter tractable with respect to ∆G′ .

Proof. Let I := (G, s) be a Π-DSC instance. First, note that ∆G ≤ ∆G′

always holds since we are only inserting edges to G. Thus, if s ≤ ∆G′(∆G′ +
1)2, then the fixed-parameter tractability with respect to (s,∆G) from Theo-
rem 6.20 yields fixed-parameter tractability with respect to ∆G′ . Otherwise,
we use Corollary 6.22 to check whether there exists a large solution of size at
least ∆G′(∆G′ + 1)2. Hence, by assumption, in f(∆G′) · nO(1) time for some
computable function f , we either find that I is a yes-instance or we can assume
that s ≤ ∆G′(∆G′ + 1)2, which altogether yields fixed-parameter tractability
with respect to ∆G′ .

If Π-NSC can be solved in polynomial time, then Corollary 6.22 shows
that we can assume that s ≤ ∆G′(∆G′ + 1)2. Furthermore, it clearly holds
that ∆G ≤ ∆G′ . These two inequalities imply, similar to the Anonym E-Ins
setting (Theorem 6.16), that polynomial kernels with respect to (s,∆G) transfer
to the parameter ∆G′ . We thus arrive at the following.

Theorem 6.24. If Π-NSC is polynomial-time solvable and Π-DSC admits a
polynomial kernel with respect to (s,∆G), then Π-DSC also admits a polynomial
kernel with respect to ∆G′ .

6.5.2. Applications of Degree Sequence Completion
Problems

Besides the graph anonymization setting, one could think of further, more
generalized constraints on the degree sequence. For example, if pi(d) denotes
how often degree i appears in a degree sequence S, then being k-anonymous
translates into pi(SG′) ≥ k for all degrees i occurring in the degree sequence SG′
of the modified graph G′. Now, it is natural to consider not only a lower
bound k ≤ pi(S) but also an upper bound pi(S) ≤ u or maybe even a set of
allowed frequencies pi(S) ∈ Fi ⊆ N. Constraints like this allow to express some
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properties, not of individual degrees itself but on the whole distribution of the
degrees in the resulting sequence. For example, to have some “balancedness” one
can require that each occurring degree occurs exactly ` times for some ` ∈ N
[Cha+89]. To obtain some sort of “robustness” it might be useful to ask for
an H-index of `, that is, in the solution graph there are at least ` vertices with
degree at least ` [ES12].
Another range of problems which fit naturally into our framework involves

completion problems to a graph class that is completely characterized by degree
sequences. Many results concerning the relation between a degree sequence
and the corresponding realizing graph are known and can be found in the
literature, see also Section 3.1. Based on this characterization researchers
characterized for example pseudo-split, split, and threshold graphs completely
by their degree sequences [HIS75, HS81, MP94]. The NP-complete Split Graph
Completion [NSS01] problem, for example, is known to be fixed-parameter
tractable with respect to the allowed number of edge insertions [Cai96]. Note,
however, that for the mentioned graph classes polynomial kernels with respect to
the parameter ∆G′ trivially exist because here we always have

√
n ≤ ∆G ≤ ∆G′ .

We finish with another interesting example of a class of graphs characterized
by their degree sequence: A graph is a unigraph if it is determined by its
degree sequence up to isomorphism [BLS99]. Given a degree sequence S =
{d1, d2, . . . , dn}, deciding whether S defines a unigraph can be done in linear
time [BCP11, KL75]. Again, by Theorem 6.23, we conclude fixed-parameter
tractability for the unigraph completion problem with respect to the parameter
maximum degree ∆G′ in the solution graph G′.

6.6. Upper and Lower Bounds for Degree
Anonymity by Edge Insertion

In Section 6.3, we used the heuristic approach of Liu and Terzi [LT08] to develop
an algorithm for Anonym E-Ins that provides solutions of size at least 2∆4

in polynomial time. Based on this theoretical result, we present in this section
an enhancement of their heuristic, including new algorithms for each phase
which significantly improve on the previously known theoretical and practical
running times. Moreover, our algorithms are optimized for large-scale social
networks and provide upper and lower bounds for the optimal solutions. The
experimental evaluation of our algorithms, presented in the next section, reveals
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that about 21% of the real-world data can be solved optimally; whereas in the
other cases our upper bounds significantly improve on known heuristic solutions.

In Section 6.6.1, we provide a general description how the problem is split into
several subproblems (basically corresponding to the two-phase approach of Liu
and Terzi [LT08]) and in Sections 6.6.2 and 6.6.3, we describe the corresponding
algorithms in detail. In Section 6.6.4, we describe two upper-bound heuristics.

Notation. Before we describe our algorithms, we recall some necessary notation.
The block sequence BS of a degree sequence S = {d1, d2, . . . , dn} with maximum
degree ∆ := max{di} is defined as BS := (|{i | di = 0}|, |{i | di = 1}|, . . . , |{i |
di = ∆}|). Let S = {d1, d2, . . . , dn} and S ′ = {d′1, d′2, . . . , d′n} be two degree
sequences with corresponding block sequences B and B′. We define ‖B‖ :=
|S| :=

∑n
i=1 di. We write S ′ ≥ S and B′ =B if for both degree sequences sorted

in ascending order it holds that d′i ≥ di for all i. Intuitively, this captures
the interpretation “S ′ can be obtained from S by increasing some values”. If
S ′ ≥ S, then (for sorted degree sequences) we define the degree sequence
S ′−S := {d′1−d1, d

′
2−d2, . . . , d

′
n−dn} and set B′�B to be the block sequence

of S ′ − S.
We say that the block i in the block sequence B = (b0, b1, . . . , b∆) contains

bi degrees. Furthermore, by raising x degrees from block i to block j for some
1 ≤ x ≤ bi, 0 ≤ i < j ≤ ∆, we mean to change the currently considered block
sequence to B′ := (b0, b1, . . . , bi−1, bi − x, bi+1, . . . , bj−1, bj + x, bj+1, . . . , b∆).
Given a block sequence B, a minimal k-anonymous block sequence B′ = B

is a k-anonymous block sequence such that there is no k-anonymous block
sequence B′′ 6= B′ with B′ = B′′ = B.

6.6.1. General Framework Description

We first recall the two-phase approach due to Liu and Terzi [LT08] (see Figure 6.4)
and then describe how we refine it. To this end, let (G = (V,E), k) be an input
instance of Anonym E-Ins.

Phase 1: For the degree sequence S of G, compute a k-anonymous degree
sequence S ′ such that S ′ ≥ S and |S − S ′| is minimized.

Phase 2: Try to realize S ′ in G, that is, try to find an edge insertion set S such
that the degree sequence of G+ S is S ′.
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⇒ 1,2,2,3
Phase 1.⇒ 3,3,3,3

Phase 2.⇒

input graph G degree “k-anonymized” realization
with k = 4 sequence S degree sequence S ′ of S ′ in G

Figure 6.4.: A simple example for the two phases in the heuristic of Liu and Terzi
[LT08]. Phase 1: Anonymize the degree sequence S of the input graph G by increasing
the numbers in it such that each resulting number occurs at least k times. Phase 2:
Realize the k-anonymized degree sequence S ′ as a super-graph of G.

B = (0, 3, 1, 4, 0, 1, 1) B′ = (0, 3, 0, 5, 0, 0, 2)

Figure 6.5.: A graph (left side) with block sequence B that can be 2-anonymized by
inserting one edge (right side) resulting in B′. Another 2-anonymous block sequence
(also increasing two degrees by one) that will be found by our dynamic programming
is B′′ = (0, 2, 2, 4, 0, 0, 2). The realization of B′′ in G would require to insert an edge
between a degree-five vertex (there is only one) and a degree-one vertex, which is
impossible.

The minimum k-anonymization cost of S, formally |S ′−S|/2 (each inserted edge
affects two vertices), is a lower bound on the number of edges in a k-insertion set
for G as inserting any k-insertion set to G produces by definition a graph with
a k-anonymous degree sequence. Hence, if succeeding in Phase 2 to realize S ′,
then a minimum-size k-insertion set S for G has been found.
Liu and Terzi [LT08] gave a dynamic programming algorithm which opti-

mally solves Phase 1 and they provided the so-called local exchange heuristic
for Phase 2. If Phase 2 fails, then the heuristic of Liu and Terzi relaxes the
model and tries to find a supergraph of G whose degree sequence is “close” to S ′.

First attempts and difficulties. We started with a straightforward implemen-
tation of the dynamic programming algorithm and the local exchange heuristic
and encountered two major difficulties:
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B = (0, 7, 0, 0, 2, 1) B′ = (0, 5, 2, 0, 0, 3)

Figure 6.6.: A graph (left side) with block sequence B = (0, 7, 0, 0, 2, 1) that can
be 2-anonymized by inserting two edges yielding a graph with block sequence B′ =
(0, 5, 2, 0, 0, 3) (right side). A minimum-cost solution for the number problem is,
however, B′′ = (0, 7, 0, 0, 0, 3). This solution would also pass our realizablity test,
which simply checks whether B′′ � B is a realizable block sequence: B′′ � B = (8, 2) is
realizable as graph with ten vertices and one edge.

1. Even when iterating through all minimum k-anonymous degree sequences,
one often fails to realize them in Phase 2 (see Figure 6.5 for an example
where two minimum k-anonymous degree sequences differ in their real-
izability and Figure 6.6 for an example where no minimum solution is
realizable).

2. Iterating through all minimum sequences is often too time-consuming
because the same sequence is recomputed multiple times.

To overcome difficulty 1, we improved the lower bound provided by S ′ −
S on the k-anonymization cost of G. To this end, the basic observation is
that while trying to realize one of the minimum k-anonymous sequences S ′
in Phase 2 (failing in almost all cases), we encountered that S ′ − S is not a
realizable degree sequence. However, since S ′ −S shall correspond to the graph
induced by a k-insertion set, it is necessary for the realization of S ′ in Phase 2
that S ′−S is a realizable degree sequence. This observation allows us to apply a
simple characterization due to Erdős and Gallai [EG60] about realizable degree
sequences to S ′−S to rule out nonrealizable solutions produced by the dynamic
programming. Thus, for increasing cost c, by iterating through all k-anonymous
sequences S ′ with |S ′ − S| = c and excluding the possibility that S ′ is not
realizable in G by the criterion on S ′ − S, one can step by step improve the
lower bound on the k-anonymization cost of G. We apply this strategy and
thus our dynamic programming table allows to iterate through all k-anonymous
sequences S ′ with |S ′ − S| = c. Unfortunately, even this criterion might not be
sufficient because the already present edges in G might prevent the insertion of a
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k-insertion set which corresponds to S ′−S (see Figure 6.6 for an example). We
thus designed a test which not only checks whether S ′ −S is realizable but also
takes already present edges in G into account while preserving that |S ′−S| is a
lower bound on the k-anonymization cost of G. With this further requirement
on the resulting sequences S ′ of Phase 1, we observed in our experiments that
Phase 2 of realizing S ′ in G succeeds in 56 out of 58 cases. See Section 6.6.2 for
a detailed description of our algorithm for Phase 1.

Phase 1. Although we could (almost) overcome difficulty 1, its solution requires
to iterate over all solutions of a particular cost. Unsurprisingly, this had a
severe impact on the running time. We thus redesigned the dynamic program
for Phase 1 based on the following two observations.
First, we observed that the standard dynamic programming approach using

the degree sequence produced many similar solutions (see also difficulty 2): If
the degree of one degree-five vertex needs to be increased and there are 100
vertices with degree five, then all the 100 possibilities were considered. When
using the block sequence instead of the degree sequence the above decision which
degree-five-vertex gets a new neighbor is deferred to Phase 2. In this way the
usage of the block sequence allows to store solutions in a compressed way which
significantly speeds up Phase 1 but makes Phase 2 more difficult.

Our second observation was that many realizable solutions “contain” the same
minimal solution for the number problem in Phase 1 that is not realizable: If, for
example, the degree of a vertex v needs to be increased by 20, then this vertex
clearly needs 20 further neighbors. If, however, the minimal solution only affects
10 vertices, then the dynamic program with the described characterization of
Erdős and Gallai [EG60] will consider all possible combinations to choose 10
further vertices into the solution. To avoid considering this huge amount of
similar solutions, we simply pick 10 vertices of degree one into the solution.
Since social networks contain a large amount of degree one vertices, there are
usually enough degree-one-vertices that are not adjacent to any vertex in the
solution, hence picking the degree-one vertices is usually optimal. Combining the
two mentioned ideas in the redesigned dynamic program dramatically reduces
the number of considered solutions for the number problem and thus improves
the running time of Phase 1.

Phase 2. For Phase 2 the task is to decide whether a given k-anonymous
degree sequence S ′ can be realized in G. As we will show in Section 6.6.3 that
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this problem is NP-complete, we split the problem into two parts and try to
solve each part separately by a heuristic. First, we find a degree-vertex mapping,
that is, we assign each degree d′i ∈ S ′ to a vertex v in G such that d′i ≥ degG(v).
Then, the demand of the vertex v is set to d′i − degG(v). Note that the usage of
block sequences makes this degree-vertex mapping necessary. Second, given a
degree-vertex mapping with the corresponding demands we try the find an edge
insertion set such that the number of incident new edges for each vertex is equal
to its demand. While the second part could in principle be done optimally in
polynomial time by solving an f -factor problem (see Section 6.3.1), we show
that already a heuristic refinement of the local exchange heuristic due to Liu
and Terzi [LT08] succeeds in most cases. Thus, theoretically and also in our
experiments, the “hard part” is to find a good degree-vertex mapping. Roughly
speaking, the difficulty is that, according to S ′, there is more than one possibility
of how many vertices from degree i are increased to degree j > i. Even having
settled this it is not clear which vertices to choose from block i. See Section 6.6.3
for a detailed description of our algorithm for Phase 2.

6.6.2. Phase 1: Exact k-Anonymization of Degree Sequences
We start with providing a formal problem description of k-anonymizing a degree
sequence S and describe our dynamic programming algorithm to find such
sequences S ′. We then describe the criteria that we implemented to improve
the lower bound |S ′ − S|.

Basic Number Problem

We now show how to solve the problem of making the degree sequence, re-
spectively the block sequence k-anonymous. Recall that in order to avoid
reconsidering similar solutions, we only want to compute minimal solutions for
the number problem which we later try to realize in the graph. Thus, the degree
sequence anonymization problem reads as follows.

Degree Sequence Anonymity (k-DSA)
Input: A block sequence B and integers k, s ∈ N.
Question: Is there a minimal k-anonymous block sequence B′ = B with

‖B′ � B‖ = s?

Input:
B = (0, 4, 1, 0, 1), k = 2, s = 2

Solution:
B = (0, 4, 0, 0, 2)
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Clarkson et al. [CLT10] gave a dynamic programming algorithm that solves a
modified version of k-DSA which finds just one minimum-cost solution in O(n)
time and space. Contrasting this modified version, the requirements on B′ in
the above problem definition ensure that the solution has cost exactly s, that is,
B′ can be obtained by performing s increases to the degrees in B. Our dynamic
program has two major differences to the one of Clarkson et al. [CLT10]:

1. We use block instead of degree sequences.

2. Our table has size 2k∆ while their table has size n.

Before describing our dynamic programming algorithm, we provide a few
useful observations about minimal solutions. First, observe that if a block i is
empty, then it never makes sense to raise degrees to block i since raising them
to block i− 1 instead would yield a smaller solution.

Observation 6.25. Let B = (b0, b1, . . . , b∆) be a block sequence, k ∈ N, and
let B′ = (b′0, b

′
1, . . . , b

′
∆′) be a minimal k-anonymous block sequence with B′ = B.

If bi = 0 for some 1 ≤ i ≤ ∆, then b′i = 0 and hence ∆ = ∆′.

Similarly, if a block i is not empty in a minimal solution, then not all degrees
of block i are raised as otherwise the block i would be empty in the minimal
solution.

Observation 6.26. Let B = (b0, b1, . . . , b∆) be a block sequence, k ∈ N, and
let B′ = (b′0, b

′
1, . . . , b

′
∆′) be a minimal k-anonymous block sequence with B′ = B.

If b′i > 0 for some 1 ≤ i ≤ ∆, then
∑∆
`=i+1 b

′
` − b` < bi.

Here,
∑∆
`=i+1 b

′
` − b` is the number of degrees that are raised from the

blocks 0, 1, . . . , i to the blocks i+ 1, i+ 2, . . . ,∆ in the minimal solution B′.
Next, observe that if a block i is not empty in a minimal solution, then at

most 2k − 1 degrees were raised to the block i as otherwise raising k degrees to
block i− 1 and not to block i would yield a smaller solution. To this end, note
that the term bi − (

∑∆
`=i+1 b

′
` − b`) is the number of degrees that are raised

from the block i in the minimal solution B′.

Observation 6.27. Let B = (b0, b1, . . . , b∆) be a block sequence, k ∈ N, and
let B′ = (b′0, b

′
1, . . . , b

′
∆′) be a minimal k-anonymous block sequence with B′ = B.

If b′i > 0 for some 1 ≤ i ≤ ∆, then b′i−(bi−(
∑∆
`=i+1 b

′
`−b`)) =

∑∆
`=i b

′
`−b` < 2k.
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Extending Observation 6.27 gives the following: if we increase x ≥ k degrees
to a block i, then block i has size less than 2k in a minimum solution as otherwise
increasing k degrees to the block i− 1 and x− k degrees to the block i would
yield a smaller solution. Formalizing this extension, we arrive at the following.

Observation 6.28. Let B = (b0, b1, . . . , b∆) be a block sequence, k ∈ N, and
let B′ = (b′0, b

′
1, . . . , b

′
∆′) be a minimal k-anonymous block sequence with B′ = B.

If b′i ≥ k for some 1 ≤ i ≤ ∆, then b′i − (bi − (
∑∆
`=i+1 b

′
` − b`)) ≤ max{k, 2k −

(bi − (
∑∆
`=i+1 b

′
` − b`))}.

The proof of the following lemma contains the detailed description of our
dynamic programming algorithm for k-DSA.

Lemma 6.29. Degree Sequence Anonymity can be solved in O(∆ · k2 · s)
time and O(∆ · k · s) space.

Proof. Let (B, k, s) be an instance of Degree Sequence Anonymity. We
describe a dynamic programming algorithm. It maintains a table T where the
entry T [i, t, c] with 0 ≤ i ≤ ∆, 0 ≤ c ≤ s, and 0 ≤ t < 2k is true if and only if for
the block sequence B(i) = (b0, b1, . . . , bi) minus the last t ≤ ‖B(i)‖ degrees there
exists a minimal k-anonymous block sequence B′(i)=B(i) with s = ‖B′(i)�B(i)‖.
Formally, B(i) minus the last t degrees is the block sequence B(i, t) corresponding
to the degree sequence S that is obtained from SB(i) by removing the t highest
degrees.
Starting with c = 0 we stepwise increase the costs until T [∆, 0, c] is true.

Considering the base case, T [0, t, c] is true if and only if c = 0 and either b0−t = 0
or b0 − t ≥ k. The recursion for the computation of T is as follows: First, note
that we decrease the cost c for each considered degree i by the amount t of
vertices that are raised from B(i). Thus, when dealing with degree i, we only
need to deal with the question of how many degrees are raised from B(i− 1). If
block i is an empty block, that is, bi = 0, then, by Observation 6.25, it remains
empty and we have T [i, t, c] = T [i − 1, t, c − t]. Furthermore, if bi ≤ t, then,
by Observation 6.26, the block i will be empty in the corresponding solution
and thus T [i, t, c] = T [i− 1, t− bi, c− (t− bi)]. Hence, it remains to consider
the case that bi > t, that is, the block i is not empty in a solution and thus
contains at least k degrees. Hence, if k > bi − t, then at least k − (bi − t)
degrees needs to be raised to block i. By Observation 6.28, it follows that at
most max{k, 2k − (bi − t)} degrees are raised to block i. Hence, T [i, t, c] is
true if there exists some max{0, k − (bi − t)} ≤ t′ ≤ max{k, 2k − (bi − t)} such
that T [i− 1, t′, c− t′] = true.
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Summing up, we arrive at the following recursion:

T [i, t, c] =



c = 0 ∧ (b0 − t = 0 ∨ b0 − t ≥ k), if i = 0

∃t′ ∈ N :

max{0, k − (bi − t)} ≤ t′ ≤ max{k, 2k − (bi − t))}
∧ T [i− 1, t′, c− t′] = true,

if bi > t

T [i− 1, t− bi, c− (t− bi)], if bi ≤ t.

By the discussion above, it follows that the entry T [∆, 0, s] is true if and only
if (B, k, s) is a yes-instance. The computation of one table entry requires at
most 2k table lookups and hence can be done in O(k) time. As there are ∆ ·k · s
table entries, the overall running time is O(∆ · k2 · s).

Recall that there might be multiple minimal solutions for a given k-DSA
instance while only one of them is realizable, see Figure 6.5 for an example.
Thus, having computed the table T , we iterate via standard traceback through
the table to create all minimal solutions.

Criteria on the Realizability of k-DSA Solutions

A problem in the solutions provided by Phase 1 is the following: If a solution
raises one degree by some amount, say 100, and the overall number of raised
degrees is at most 100, then this solution cannot be realized as one of the
vertices would require 100 further neighbors but only 99 further vertices get new
neighbors. Lu et al. [LSB12] demonstrated that this effect appears also in real-
world networks and we also frequently observed this effect in our experiments.
We overcome this problem as follows: For a k-DSA-instance (B, k, s) and a
corresponding solution B′, let S be a k-insertion set for G such that the block
sequence of G+ S is B′. By definition, the block sequence of the graph induced
by the edges S is B′ � B. Hence, it is a necessary condition (for success in
Phase 2) that B′ � B is a realizable block sequence, that is, there is a graph
with block sequence B′ � B. To test whether B′ � B is realizable, we recall the
characterization of realizable degree sequence due to Erdős and Gallai [EG60].
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Theorem 3.2 (Erdős and Gallai [EG60]). Let S = {d1, d2, . . . , dn} be a degree
sequence, where d1 ≥ d2 ≥ . . . ≥ dn. Then, S is realizable if and only if

∑n
i=1 di

is even and for all r ∈ {1, 2, . . . , n− 1} it holds that

r∑
i=1

di ≤ r(r − 1) +

n∑
i=r+1

min{di, r}. (3.1)

As our first implementation of the Erdős-Gallai characterization was a bottle-
neck for the running time, we used the following result of Tripathi and Vijay
[TV03] who showed that it is sufficient to check Inequality (3.1) only for values
of r where dr > dr+1 (see also page 33).

Lemma 6.30 (Tripathi and Vijay [TV03]). Let S = {d1, . . . , dn} be a degree
sequence sorted in descending order. Let q be the largest integer such that dq ≥
q − 1. Then S is realizable if and only if the sum of the di’s is even and for
each integer r ∈ {i ∈ N | di > di+1 ∧ i ≤ q} the following holds

r∑
i=1

di ≤ r(r − 1) +

n∑
i=r+1

min(r, di). (6.2)

Note that the indices r for which Inequality (6.2) in Lemma 6.30 have to be
checked corresponds to the “end” of blocks and thus can be quickly accessed
in block sequences. Thus, given a block sequence, we can decide whether it is
realizable in O(∆2) time. We call the characterization provided in Theorem 3.2
the simple Erdős-Gallai test. Applying the simple Erdős-Gallai test on the
solutions provided by the dynamic program yields a significant improvement of
the obtained lower bounds—in some of the real-world graphs the first solution of
our dynamic program passing the simple Erdős-Gallai test was twice as large as
the minimum solution for k-DSA (increase from ≈ 500 edges to ≈ 1, 000 edges).

Unfortunately, there are k-anonymous degree sequences S ′ passing the simple
Erdős-Gallai test that are still not realizable in the input graph G (see Figure 6.6
for an example). We thus designed an advanced version of the Erdős-Gallai test
that also takes the structure of the input graph into account. To explain the
basic idea behind, we first discuss how Inequality (3.1) in Theorem 3.2 can be
interpreted: Let V r be the set of vertices corresponding to the first r degrees.
The left-hand side sums over the degrees of all vertices in V r. This amount can
be at most the number of edges (counting each edge once for each endpoint,
that is, twice overall) that can be “obtained” by making V r a clique (yielding
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B = (0, 7, 0, 0, 2, 1) B′ = (0, 5, 2, 0, 0, 3)

Figure 6.7.: A graph (left side) with block sequence B = (0, 7, 0, 0, 2, 1) that can
be 2-anonymized by inserting two edges yielding a graph with block sequence B′ =
(0, 5, 2, 0, 0, 3) (right side). A minimum-cost solution for the number problem is,
however, B′′ = (0, 7, 0, 0, 0, 3). This solution would also pass the Erdős-Gallai test
as B′′ � B = (8, 2) is realizable as graph with nine vertices and one edge.

the term r(r− 1)) plus the maximum number of edges to the vertices in V \ V r
(a degree-di vertex has at most min{di, r} neighbors in V r). The reason why
the simple Erdős-Gallai test might not be sufficient to determine whether a
sequence can be realized in G is that it ignores the fact that some vertices in V r
might be already adjacent in G and it also ignores the edges between vertices
in V r and V \ V r. Hence, the basic idea of our advanced Erdős-Gallai test
is, whenever some of the vertices corresponding to the raised degrees can be
uniquely determined, to subtract the corresponding number of edges as they
cannot contribute to the right-hand side of Inequality (3.1).

Consider the example given in Figure 6.7: Running the dynamic program on
the block sequence B = (0, 7, 0, 0, 2, 1) would first give the block sequence B′ =
(0, 7, 0, 0, 0, 3), that is, the two vertices of degrees four require each one more
neighbor. Since the input graph contains just two degree-four vertices which are
already adjacent, the advanced Erdős-Gallai test would return that B′ is not
realizable. As B′ is the only solution of cost two, this would allow the program to
increase the cost and to find the solution depicted on the right side in Figure 6.6.
Note that a solution passing the advanced Erdős-Gallai test might still not be
realizable as the vertices can often not be uniquely determined. For example, if
a solution requires that three degree-five vertices need further neighbors but the
input graph contains seven degree-five neighbors, it is not clear which degree-five
vertices to choose. Indeed, we later show that the realization problem in Phase 2
is NP-complete (see Theorem 6.31). Thus, unless P = NP, there is no simple
characterization like in Theorem 3.2 for the realizability of a solution in the
input graph.
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The difference between using just the simple Erdős-Gallai test and using the
advanced Erdős-Gallai test resulted in rather small differences for the lower
bound (at most 10 edges). This small difference was, however, important for
some of our instances to succeed in Phase 2 and to optimally solve the instance.

Data Reduction Rule

In our preliminary experiments we observed that for some instances we could not
finish Phase 1 even for k = 2 within a time limit of one hour. Our investigations
revealed that this was mainly due to the frequent occurrence of the following
“pattern” within three consecutive blocks: The first block i and the third
block i+ 2 are each of size at least 2k − 1 and the middle block has size k − 1.
For example, for k = 2 consider the consecutive blocks 4, 1, 4. The details of
the dynamic program (see Observation 6.28) show that in any solution for the
entire block sequence the blocks i and i+ 2 stay full and either the block i+ 1
is filled by the degrees from block i or the degrees from block i are increased
to block i+ 2. In our example this means that the solution is either 4, 0, 5 or
3, 2, 4. Then, if this pattern repeats, say x times, then there are 2x different
solutions in Phase 1. However, in our example, both solutions 4, 0, 4 and 3, 2, 4
are equivalent with respect to the simple Erdős-Gallai test because they both
increase just one degree by one. We thus designed a data reduction rule to
deal with these patterns, where the first and last block are “large” enough to
guarantee that the degrees of preceding blocks are not increased to the middle
of the pattern and it is not necessary to increase something from the middle
of the pattern to succeeding blocks. Hence, the middle of the pattern can be
solved “independently” from preceding and succeeding blocks and if there is
a minimum solution which is “Erdős-Gallai-optimal” (increasing degrees by at
most one), then it is safe to take this solution for the middle of the pattern.
Formally, our data reduction rule, generalizing the above ideas, is as follows.

Reduction Rule 6.1. Let (B, k, s) be an instance of k-DSA. If there is a
block i in B with bi ≥ 2k − 1, a sequence of blocks j, j + 1, . . . , j + t such that∑j+t

`=j b` ≥ (t+1)k+k−1 and b` ≥ k for all ` ∈ {j, j+1, . . . , j+t}, and if there is a
minimum-cost k-anonymization B′i,j of the block sequence Bi,j := (bi, bi+1, . . . , bj)
such that
i) all blocks ` for ` ≥ 2 in B′i,j � Bi,j are empty and

ii) the first block in B′i,j is of size at least k,
then substitute in B the subsequence Bi,j by B′i,j and reduce s by ‖B′i,j � Bi,j‖.
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Figure 6.8.: Example for the application of Reduction Rule 6.1 for k = 3. For each
degree d marked at the x-axis the left bar denotes the block d in Bi,j and the right
in B′i,j . The horizontal line denotes the anonymity level k = 3. In this example we
have B′i,j �Bi,j = (0, 3, 0, 0, . . . , 0) as one degree gets raised from degree i to i+ 1 and
two degrees from i+ 2 to i+ 3.

See Figure 6.8 for an example of the application of Reduction Rule 6.1.
In our implementation of Reduction Rule 6.1 we use our dynamic program-

ming algorithm (with disabled Erdős-Gallai tests) to check whether there is a
k-anonymization B′i,j for Bi,j fulfilling the required properties.

Although Reduction Rule 6.1 keeps solutions that are optimal with respect to
the simple Erdős-Gallai test, some realizable solutions might get skipped when
applying Reduction Rule 6.1. Thus, if Reduction Rule 6.1 is applied, then we
have to impair the advanced Erdős-Gallai test such that it ignores the degrees
that are affected by Reduction Rule 6.1.

Summarizing, the application of Reduction Rule 6.1 significantly accelerates
our program at the cost of obtaining a slightly weaker lower bound. Notably,
there exists exactly one instance (coAuthorsDBLP with k = 2) which we could
solve optimally without the data reduction but we could not solve optimally
with the data reduction.

Complete Strategy for Phase 1

With the above described restriction for realizable k-anonymous degree sequences,
we finally arrive at the following problem for Phase 1, stated in the optimization
form:
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Algorithm 6.3: Pseudocode of our algorithm solving Phase 1
Input: An undirected graph G, its block sequence B, and k ∈ N.
Output: A set of minimum k-anonymous block sequences B′ such that B′ = B

and B′ � B is realizable.
1 Exhaustively apply Reduction Rule 6.1 on B
2 c← 0; upperBound←∞; Supper ← ∅
3 repeat
4 compute table T with cost c according to Lemma 6.29
5 if T [∆, 0, c] = true then
6 S ← all solutions of cost exactly c // computed via traceback in T
7 foreach solution B′ ∈ S do
8 while B′ � B does not pass the advanced Erdős-Gallai test do
9 waste costs to increase ‖B′‖ // see Section 6.6.2

10 if ‖B′‖ < upperBound then
11 upperBound← ‖B′‖ // current upper bound improved
12 Supper ← ∅
13 if ‖B′‖ = upperBound and |Supper| < 200 then

// add B′ to the set of maintained upper bounds
14 Supper ← Supper ∪ {B′}

15 c← c+ 1

16 until c = upperBound
17 return Supper

Realizable Degree Sequence Anonymity (k-RDSA)
Input: An undirected graph G, its block sequence B, and an integer k ∈ N.
Task: Compute all k-anonymous block sequences B′ such that B′ = B,

‖B′ � B‖ is minimum, and B′ � B is realizable in G.

Input:

B = (0, 4, 1, 0, 1), k = 2

Solution:

B′ = (0, 2, 2, 0, 2)
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Our strategy to solve k-RDSA is as follows (see Algorithm 6.3 for the pseu-
docode): We first reduce the given block sequence with respect to Reduction
Rule 6.1 (see Line 1). We then iterate for increasing cost through the solutions
of k-DSA (see Lines 3 to 6) and run for each of them the advanced Erdős-Gallai
test (see Line 8). If the test fails, then we compute how many degrees have to
be “wasted” in order to get a sequence passing the test (see Line 9). Wasting
means to greedily increase some degrees in B′ (while preserving k-anonymity)
until the resulting block sequence passes the advanced Erdős-Gallai test. Due to
the power law degree distribution in social networks, the degree of most of the
vertices is close to the average degree, thus one typically finds in such instances
two large blocks i and i+ 1 containing many thousands of vertices. Hence,
“wasting” edges is easy to achieve by increasing degrees from block i by one
to block i+ 1. This is, like the application Reduction Rule 6.1, optimal with
respect to the simple Erdős-Gallai characterization, but may destroy realizable
solutions. For the case that two such blocks cannot be found, as a fallback we
also implemented a straightforward dynamic programming to find all possibili-
ties to waste degrees to obtain a realizable sequence. In this way, we always
produce a block sequence B′ such that B′ � B passes the advanced Erdős-Gallai
test. If B′ is smaller than a maintained upper bound, then this maintained
upper bound is replaced by B (see Lines 10 to 14). If B′ is of the same cost
as the maintained upper bound, then it is added to it (see Lines 13 and 14).
However, since for some instances more than 100,000 solutions are stored in
this way and trying to realize them all lasts several hours, we keep at most 200
solutions and discard the remaining ones. When the considered costs match the
maintained upper bound, then the solutions stored in the upper bound are the
result of our heuristic.

Remark. Since we discard many solutions of k-RDSA with Reduction Rule 6.1,
with our approach of wasting costs, and with the limit on the number of stored
solutions, we might miss realizable solutions with our program. Furthermore,
due to Reduction Rule 6.1 and the wasting approach, the advanced Erdős-
Gallai test is weakened and, thus, also the lower bound is weakened. We
emphasize that the stored lower bound in the dynamic program is, however, still
a lower bound for the corresponding Anonym E-Ins instance. Furthermore, our
experimental evaluation shows that the obtained lower bounds mostly deliver
optimal solutions.
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Further acceleration of Algorithm 6.3. The Erdős-Gallai test is designed to
detect solutions of the number problem that are not realizable (see Line 8). We
also use the Erdős-Gallai characterization to detect and prune in the traceback
phase branches that will lead to solutions that are larger than our maintained
upper bound.

For the further argumentation we need some notation. Denote by diff(r,S) the
difference between the left-hand side and the right-hand side of Inequality (3.1)
considering the degree sequence S, that is,

diff(r,S) :=

r∑
i=1

di − r(r − 1)−
n∑

i=r+1

min{di, r}.

Observe that if the considered degree sequence S is not realizable, then for
some 1 ≤ r ≤ n it holds that diff(r,S) > 0. Denote by rmax the value
maximizing diff(r,S), that is, rmax := arg max1≤r≤n{diff(r,S)}. Since for r :=
rmax the difference of the left-hand side of Inequality (3.1) to the right-hand side
is diff(rmax,S), it follows that for any realizable degree sequence S ′ with S ′ ≥ S
it holds that |S ′ − S| ≥ diff(rmax,S). Hence, diff(rmax,S) is a lower bound on
the number of degrees that have to be wasted in order to get a realizable block
sequence. Thus, if for the degree sequence SB′ of the block sequence considered
in Line 8 it holds that diff(rmax,SB′) + |SB′ − SB| is larger than the stored
upper bound, then we can skip SB′ and continue with the next solution. Here,
SB denotes the degree sequence of the input block sequence B.
We extended the above idea to further reduce the amount of considered

solutions for the k-DSA problem. We implemented a test in the traceback in
Line 6 checking whether there is a chance that the current partial solution can
be extended to a solution that is not larger than the maintained upper bound.
If this test fails, then we can abort this branch in the traceback saving a lot of
time by discarding multiple solutions at once. This test works as follows: During
the traceback the table T is traversed starting from degree ∆ in a recursive
fashion. When considering the degree i, 0 ≤ i ≤ ∆, we compute the partial
solution corresponding to the changes we made in the blocks i+ 1, i+ 2, . . . ,∆.
This partial solution is a block sequence B′ = B, where B is the block sequence
provided in the input. We then consider the degree sequence S corresponding
to B′ � B and compute diff(rmax,S). If diff(rmax,S) + ‖B′ � B‖ is larger
than the maintained upper bound, then we can prune the current branch in
the traceback. Observe that social networks, due to their power-law degree
distribution, often contain only few high-degree vertices. Hence, there are often
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only a few different possibilities to anonymize these high-degree vertices and
in each of these possibilities the raises of the degrees are rather large. This
explains the effectiveness of the described test in our experiments on real-world
data.

6.6.3. Phase 2: Realizing a k-Anonymous Degree Sequence
Let (G, k) be an instance of Anonym E-Ins and let B be the block sequence
of G. In Phase 1 a k-anonymization B′ of B is computed such that B′ = B. In
Phase 2, we face the following problem.
Degree Realization
Input: An undirected graph G = (V,E) and a block sequence B′.
Question: Is there a set S ⊆

(
V
2

)
\ E of edges such that G+ S has block

sequence B′?

Input:

B′ = (0, 2, 2, 0, 2)

Solution:

Theorem 6.31. Degree Realization is NP-complete even on cubic planar
graphs.

Proof. As the containment in NP is obvious, we focus on showing the NP-
hardness by a reduction from the Independent Set problem:

Independent Set [GJ79, GT20]
Input: An undirected graph G = (V,E) and a positive integer h.
Question: Is there an independent set V ′ ⊆ V of size |V ′| ≥ h, that is, a

vertex subset of pairwise nonadjacent vertices?

Input: h = 3 Solution:
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Independent Set remains NP-complete in cubic planar graphs [GJ79, GT20].
The reduction, which is similar to those proving that Anonym E-Ins remains

NP-complete on three-colorable graphs (see Theorem 6.1), is as follows: Let G
be a cubic planar and h be an integer that together form an instance of
Independent Set. The block sequence of the n-vertex graph G is B =
(0, 0, 0, n). We set

B′ = (0, 0, 0, n− h, 0, 0, . . . , 0︸ ︷︷ ︸
h−2

, h),

that is, the target graph is required to have n− h vertices of degree three and
h vertices of degree h+ 2.
It remains to prove that the Degree Realization-instance (G,B′) is a

yes-instance if and only if (G, h) is a yes-instance for Independent Set.
If there is an independent set S (pairwise non-adjacent vertices) of size h

in G, then inserting all edges between the vertices in S (making them a clique)
results in a graph whose block sequence is B′. Conversely, in a realization G+S
of B′, there are exactly h vertices whose degree has been increased by h − 1.
Hence, these vertices form a clique in G+S, implying that they are independent
in G.

We remark that from the proof of Theorem 6.1, it follows that Degree
Realization is NP-complete even if B′ is a k-anonymized sequence such that
‖B′ − B‖ is minimum.
We next present our heuristics for solving Degree Realization. We split

the problem into two parts and then solve each part independently. First,
we find a degree-vertex mapping, that is, for S ′ = {d′1, d′2, . . . , d′n} being the
degree sequence corresponding to B′, we assign each value d′i to a vertex v
in G such that d′i ≥ degG(v) and set κ(v) to be the demand of v, that is,
κ(v) := d′i − degG(v). Second, we try to find, mainly by the local exchange
heuristic [LT08], an edge insertion set S such that in G + S each vertex v is
incident to κ(v) edges in S. The details in the proof of Theorem 6.31 indeed
show that already finding a realizable degree-vertex mapping is NP-complete.
This coincides with our experiments, as there the “hard part” is to find a good
degree-vertex mapping and the local exchange heuristic is quite successful in
realizing it (if possible). Indeed, we prove that “large” solutions can be always
realized by it. See Section 6.6.3 for the details of Phase 2.1.

The second part of deciding whether a degree-vertex mapping is realizable can
be done in polynomial time by solving an f-Factor instance; see Section 3.2.1
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B = (0, 15, 0, 3, 2, 1, 0, 2, 0, 1) B′ = (0, 15, 0, 2, 2, 2, 0, 0, 0, 3)

Figure 6.9.: Our smallest example where “jumps” are necessary to obtain a minimum-
cost solution. The only minimum solution to 2-anonymize the left graph is to insert
the bold edges in the right graph. Observe that, although there are two degree-four
vertices in the left graph, the solution lifts a degree-three vertex to degree five, that is,
there is a “jump” of two.

for a formal definition and Section 6.3.1 for the details on how to use the
f-Factor problem. However, our preliminary experiments have shown that
already a simple heuristic is able to find in almost all cases a realization of a
degree-vertex mapping (if possible). We thus concentrated on finding “promising”
degree-vertex mappings and implemented a (slightly enhanced) version of the
local exchange heuristic for the second part of realizing them. See Section 6.6.3
for the details of Phase 2.2.

Phase 2.1: Finding a Degree-Vertex Mapping

Given an undirected graph G with its block sequence B and a k-anonymous
block sequence B′ = B, two difficulties arise when trying to find a best possible
(realizable) degree-vertex mapping for B′. The first difficulty is rather obvious:
Consider to 2-anonymize a graph consisting of two connected components
{a, b, c} and {d, e} where each component is just a path. Hence, the block
sequence is B = (0, 4, 1) and a minimum solution would be to insert an edge
between two degree-one vertices, resulting in the block sequence B′ = (0, 2, 3).
Given B′, a degree-vertex mapping has to choose two degree-one vertices where
all but the choice {d, e} lead to a realization. Hence, the basic problem is that
a degree-vertex mapping has to choose x many vertices from block i which is of
size more than x and thus the assignment is non-unique. In our experiments we
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observed that this difficulty can be solved satisfactorily by randomly selecting
the vertices from the blocks.
The second difficulty is, however, a more severe problem, also on real-world

instances. Assume that B = (3, 2, 1) is the block sequence of our input graph
(three degree-zero vertices and a path of length two) and the result of Phase 1
is the 2-anonymized block sequence B′ = (2, 2, 2). Now, the difficulty arises that
there are actually two “interpretations” of B′: The first (natural) one would
be to increase a degree zero up to one and a degree two up to three. However,
the second would be that one degree zero is increased by two up to three. We
call this a jump since a degree is increased “over” a non-empty block, while
the natural interpretation (making most sense in the majority of the cases)
is that a degree is increased to the next non-empty block B and from there,
first the vertices originally in B are increased further. While in the example
above the second “jump”-interpretation cannot be realized (only one vertex has
non-zero demand), Figure 6.9 illustrates an example where the only realizable
degree-vertex mapping has such a jump.
In our experiments, against our a-priori intuition, we observed that the

k-anonymized sequences B′ (computed in Phase 1) have typically less than
ten “jump blocks” (a jump over these blocks is possible) and for each of these
blocks up to five degrees can jump “over” it. Since the number of jump blocks
is reasonably small and as we try to realize many degree-vertex mappings for
each B′, we iterate for increasing α through all possibilities to choose α. Having
fixed the jumps, it follows how many degrees from i are increased to j and we
randomly select the appropriate number of vertices from block i in G.

Phase 2.2: Realizing a Degree-Vertex Mapping

In the last part of finding a realization of a k-anonymized sequence B′ in a
graph G = (V,E), one is given a degree-vertex mapping which provides a
non-negative integer demand for each vertex and the task is to decide whether
it is realizable, that is, is there an edge insertion set S such that in G+ S the
amount of incident new edges for each vertex is equal to its demand. Formally,
let κ : V → N be the function providing the demand of each vertex. Whether κ
is realizable can be decided in polynomial time by solving an f-Factor instance
and it has been shown that, for the maximum degree ∆ of G, κ is always
realizable if

∑
v∈V κ(v) ≥ (∆2 + 4∆ + 3)2 and maxv∈V {κ(v)} ≤ ∆ + 2 (see

Lemma 6.8). We have implemented the local exchange heuristic by Liu and
Terzi [LT08] which turned out to perform surprisingly well. Indeed, in the next
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theorem we present also some theoretical justification for this, formally proving
that roughly the same lower bound (as for f-Factor) on

∑
v∈V κ(v) is enough

to guarantee that the local exchange heuristic always realizes κ.
In principle, the local exchange heuristic inserts edges between vertices as

long as possible to satisfy their demand and if it gets stuck at some point, then
it tries to continue by exchanging an already inserted edge. Formally, it works
as follows: Let S be the set of new edges which is initialized by ∅. As long
as there are two vertices u and v with non-zero demand, check whether the
edge {u, v} is insertable, meaning that neither {u, v} ∈ E nor {u, v} ∈ S. If
it is insertable, then insert {u, v} to S and decrease the demand of u and v
by one. If this procedure ends with all vertices having demand zero, then S is
an insertion set realizing κ. Otherwise, we are left with a set V κ of vertices
with non-zero demand. If there are two vertices v1, v2 ∈ V κ, then for each
edge {u,w} ∈ S check whether the two edges {v1, u} and {v2, w} or {v1, w}
and {v2, v} are insertable. If so, then delete {u,w} from S, insert the two
edges that are insertable, and decrease the demand of v1 and v2 by one. In the
special case of V κ containing only one vertex v, then it holds that the remaining
demand of v is at least two, because

∑
v∈V κ(v) can be assumed to be even

(otherwise it is not realizable). In this case perform the following for each edge
{u,w} ∈ S: Check whether {v, u} and {v, w} are insertable and if so, then
insert them to S, delete {u,w} from S, and decrease the demand of v by two.
We have implemented the local exchange heuristic so that it first randomly

tries to insert edges and then, if stuck at some point, performs the above
described exchange operations (if possible). We conclude with proving a certain
lower bound on

∑
v∈V κ(v) which guarantees the success of the local exchange

heuristic. To this end, recall that by Corollary 6.6 we may assume that the
maximum degree is not increased by more than ∆2 + 5∆ + 2−∆.

Theorem 6.32. Let G = (V,E) be an undirected graph with maximum degree ∆
and let κ : V → N be a demand function such that maxv∈V κ(v) + degG(v) ≤
∆2 + 5∆ + 2. The local exchange heuristic always realizes κ if

∑
v∈V κ(v) ≥

6(∆2 + 5∆ + 3)2.

Proof. Towards a contradiction, assume that the local exchange heuristic gets
stuck at some point such that no edge is insertable and no further exchange
operation can be performed. Denote by V κ the set of vertices still having a
non-zero demand in V κ. Let S be the set of new edges already inserted at
this point. We show that if one of V κ and S is “large”, then the heuristic will
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continue working. We then prove that at least one of the two following cases
applies.

Case 1 |V κ| ≥ ∆2 + 5∆ + 4
In this case consider any vertex v ∈ V κ and observe that it cannot have
more than ∆2 +5∆+2 neighbors in G+S. Hence, there is a vertex u ∈ V κ
such that {v, u} is insertable.

Case 2 |S| > 2(∆2 + 5∆ + 2)2

Consider first the subcase where V κ consists only of one vertex v. Hence,
the demand of v is at least two. However, since v can have at most ∆2 +
5∆+2 neighbors in G+S and each of this neighbors has at most ∆2+5∆+2
incident edges in S, it follows from |S| > 2(∆2 +5∆+2)2 > (∆2 +5∆+2)2

that there is at least one edge {u,w} ∈ S such that v is neither a neighbor
of u nor of w. Thus, the exchange operation (inserting {u, v} and {v, w}
and deleting {u,w}) can be applied.
In the last subcase assume that there are two vertices v1, v2 ∈ V κ. For
the vertex v1 (v2) it holds that there are less than (∆2 + 5∆ + 2)2

edges in S which contain a neighbor of v1 (v2, resp.). Hence, from
|S| > 2(∆2 + 5∆ + 2)2 it follows that there is an edge {u,w} in S where
both u and w are non-adjacent to each of {v1, v2} and thus the exchange
operation can be applied. This completes Case 2.

Assume that Case 1 does not apply as this would contradict our assumption.
Thus, since the demand of each vertex in V κ is at most ∆2 + 5∆ + 2, it follows
that

|S| ≥
∑
v∈V κ(v)

2
− |V κ| · (∆2 + 5∆ + 2)

>
6(∆2 + 5∆ + 3)2

2
− (∆2 + 5∆ + 3)2

= 2(∆2 + 5∆ + 3)2 > 2(∆2 + 5∆ + 2)2.

Hence, Case 2 applies and this causes a contradiction to the assumption that
the local exchange heuristic got stuck at some point.

6.6.4. Further Upper-Bound Heuristics
While the focus of the algorithm framework presented in Sections 6.6.1 to 6.6.3
is on obtaining good lower bounds for a minimum-size k-insertion set and trying
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to realize the lower bounds in the graph, we present in this section two upper
bound heuristics that are based on our algorithm framework. The heuristics
follow the two-phase approach by first solving the associated number problem on
the degree sequence and then try to realize the computed k-anonymous degree
sequence. Both heuristics use the same realization strategy: keep wasting costs
until the realization algorithm succeeds. Observe that we use a similar strategy
in Line 8 of Algorithm 6.3 to obtain a block sequence passing the advanced
Erdős-Gallai test. In fact, we reuse the source code computing a “promising
way” of wasting costs (see Section 6.6.2 for further details). We further reuse
the realization algorithm for Phase 2 (see Section 6.6.3 for further details) in
both heuristics. Hence, the only difference between the two heuristics is the
computation of the k-anonymous degree sequence.
The first heuristic, called Greedy Heuristic, employs a greedy strategy to

heuristically compute a k-anonymous degree sequence. The second heuristic,
called DP Based Heuristic, uses a slightly improved version of a simple dynamic
program due to Clarkson et al. [CLT10]. Note that Clarkson et al. provided a
faster but more complicated dynamic program. However, since our implementa-
tion of the simple dynamic program could solve all tested instances within seven
seconds, we did not implement the complicated one. We now give a detailed
description how the two heuristics compute a k-anonymous degree sequence.

Greedy heuristic. Our first heuristic computes the block sequence B = (b0, b1,
. . . , b∆) of the input graph and then step by step computes a k-anonymous block
sequence B′ = (b′0, b

′
1, . . . , b

′
∆): Starting with degree ∆ the heuristic iterates for

decreasing degree d over B and after each iteration loop the considered block d is
either empty or full, that is, b′d = 0 or b′d ≥ k. Thus, when considering degree d,
the blocks d+ 1, d+ 2, . . . ,∆ are already fixed. If the block d is already empty
or full, then the heuristic continues with block d− 1. Otherwise, the heuristic
considers two possibilities: either all degrees in block d are raised to the next
full block, or the block d gets filled. To this end, denote by d′ the degree of the
next full block, that is, for each d < i < d′ we have b′i = 0. Furthermore let ` be
the largest number such that

∑d
i=` bi > k, that is, when filling the block d, then

degrees from the blocks `, `+ 1, . . . , d− 1 are raised to block d. If d′− d < d− `
and it is cheaper to raise all degrees from block d than to fill block d, then the
heuristic raises the degrees in the block d to block d′ and the heuristic continues
with block d− 1. Otherwise, it raises degrees from the blocks `, `+ 1, . . . , d− 1
to block d. If

∑d
i=` bi ≥ 2k, then it holds that b` ≥ k and the heuristic will
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raise degrees such that the block d contains exactly k degrees and the block `
contains at least k degrees. Otherwise, the heuristic raises all degrees from
the blocks `, `+ 1, . . . , d− 1 to block d. After raising degrees to block d, the
blocks `+ 1, `+ 2 . . . , d− 1 are empty and ` is either empty or full. Hence, the
heuristic continues with degree `− 1. Finally, let us mention two special cases:
If at some point the blocks 0, 1, . . . d contain together less than k degrees, then
all degrees in these block are raised to the next full block. If there is no next
full block, that is, when d = ∆, then the block ∆ gets filled.

DP based heuristic. We briefly show the dynamic program of Clarkson et al.
[CLT10] and then explain our modification to it. To this end, let S =
{d1, d2, . . . , dn} be the degree sequence of the input graph. We denote for 1 ≤
i < j ≤ n with cost[i, j] the cost of increasing the degrees di, di+1, . . . , dj to dj ,
that is cost[i, j] :=

∑j
`=i dj − d`. The dynamic program uses a one-dimensional

table T , where for 1 ≤ i ≤ n the entry T [i] stores the minimum cost of making
the degree sequence {d1, d2, . . . , di} k-anonymous. Thus, T [n] stores the cost
of making S k-anonymous. Clarkson et al. [CLT10] showed that T can be
computed with the following recurrence:

T [i] =


∞, if i < k

cost[1, i], if k ≤ i < 2k

min
i−2k+1≤t≤i−k

{cost[t+ 1, i] + T [t]}, if i ≥ 2k

With this recursion, the table T can be computed in O(nk) time as each table
entry can be computed with at most k table lookups.

Our heuristic uses this dynamic program on a preprocessed degree sequence S ′.
To this end, let B the block sequence of the input graph. By Observation 6.27,
we raise in a minimum solution at most 2k − 1 degrees from each block. Thus,
if a block i contains more than 3k degrees, then at least k degrees remain
in a minimum solution in block i. Let B′ be the block sequence obtained
from B by setting b′i = min{3k, bi} for each 1 ≤ i ≤ ∆, that is, we keep
at most 3k degrees from each block. The heuristic runs the above dynamic
program on the degree sequence S ′ corresponding to B′. Note that S ′ is not
necessarily realizable as graph. However, we can transfer any minimum solution
for S ′ to S: Let S ′min ≥ S ′ be a minimum k-anonymous degree sequence
and let B′min = (b′min

0 , b′min
1 , . . . , b′min

∆ ) the corresponding block sequence. We
construct Bmin = (bmin

0 , bmin
1 , . . . , bmin

∆ ) by setting bmin
i := b′min

i + (bi − b′i) for
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each 1 ≤ i ≤ ∆. Note that if bi 6= b′i, then bi > 3k and b′i = 3k. Since at
most 2k− 1 degrees are raised from each block in a minimum solution, it follows
that if bi 6= b′i, then b′min

i > k. Thus, the block sequence Bmin is k-anonymous
and it holds that Bmin = B. Furthermore, from the minimality of B′min, it
follows that Bmin is a minimum k-anonymous block sequence.

6.6.5. Experimental Evaluation
We implemented the lower- and upper-bound heuristics described in Sec-
tions 6.6.1 to 6.6.4. Here we present the results of our experimental evaluation.

Implementation Setup. All our experiments are performed on an Intel Xeon
E5-1620 3.6GHz machine with 64GB memory under the Debian GNU/Linux
6.0 operating system. The program is implemented in Java and runs under the
OpenJDK runtime environment in version 1.7.0_55. The source code is freely
available.2

We tested each graph for k = 2, 3, 4, 5, 7, 9, 10, 15, 20, 30, 50, 100, 200. The
time limit for one instance (one graph for one value of k) is set to one hour for
the lower bounds setup. After reaching the time limit, the program is aborted
and the upper and lower bounds computed so far by the dynamic program for
Phase 1 are returned. The time limit for the upper bounds heuristics is five
minutes.

We compared the results of our upper bound heuristics against an implemen-
tation of the so-called clustering heuristic due to Lu et al. [LSB12] and against
the lower bounds given by our dynamic program.

Real-world data sets. We use datasets from the following four categories for
our experimental evaluations. Table 6.2 shows the size of each considered graph
and its respective maximum degree.

LWA The website of the Laboratory for Web Algorithmics of the university of
Milano [Bol+] provides huge graphs with up to 100 billion vertices. We
took three of their “small” graphs that still contain several millions of
edges.

SNAP The Stanford Network Analysis Project (SNAP) [Les] provides in the
Stanford Large Network Dataset Collection ten networks in the category

2http://fpt.akt.tu-berlin.de/kDegAnon/
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Table 6.2.: Graph parameters of our real-world networks. The maximum degree is
denoted by ∆ and the average degree by ∅.

graph n m ∆ ∅

L W
A cnr-2000 325,557 ≈ 2.7M 18,236 16.8

eu-2005 862,664 ≈ 16.1M 68,963 37.4
in-2004 ≈ 1,3M ≈ 13.5M 21,869 19.7

SN
A
P

ego-Facebook 4,039 88,234 1,045 43.7
ego-Twitter 81,306 ≈ 1.3M 3,383 33.0
ego-Gplus 107,614 ≈ 12.2M 20,127 227.4
soc-Epinions1 75,879 405,740 3,044 10.7
soc-Slashdot0811 77,360 469,180 2,539 12.1
soc-Slashdot0902 82,168 504,230 2,552 12.3
soc-Pokec ≈ 1.6M ≈ 22.3M 14,854 27.3
soc-LiveJournal1 ≈ 4.8M ≈ 42.8M 20,333 17.7
wiki-Vote 7,115 100,762 1,065 28.3

D
IM

A
C
S

coPapersDBLP 540,486 ≈ 15.2M 3,299 56.4
coPapersCiteseer 434,102 ≈ 16.0M 1,188 73.9
coAuthorsDBLP 299,067 977,676 336 6.5
citationCiteseer 268,495 ≈ 1.1M 1,318 8.6
coAuthorsCiteseer 227,320 814,134 1,372 7.2

D
B
LP

graph_thres_01 715,633 ≈ 2.5M 804 7.0
graph_thres_02 282,831 640,697 201 4.5
graphConference 5,599 8,492 53 3.0

social networks. We consider nine of these ten networks as the last
graph (calles wiki-RfA) is encoded in a different format containing lots of
additional text data. Eight of the nine considered networks are directed.
Since our model works with undirected graphs, we use for these eight
networks the underlying undirected graph as input.

DIMACS We considered all five social networks from the co-author citation
category in the 10th DIMACS challenge [DIM12].

DBLP We consider coauthor networks derived from the DBLP dataset where
the vertices represent authors and the edges represent co-authorship in
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at least one paper. The DBLP-dataset was generated on February 2012
following the documentation from http://dblp.uni-trier.de/xml/. As it
turned out that this DBLP graph is too large for our exact approach,
we derived the following subnetworks: First, we made the graph sparser
by making two vertices adjacent if the corresponding two authors are co-
authors in at least two papers instead of one paper. We denote this graph
by graph_thres_2 (graph_thres_1 denotes the original graph). Second,
we just considered papers that appeared in some algorithm conference (the
exact conference list here is: AAIM, ALENEX, COCOON, ESA, FAW,
ISAAC, SEA, SODA, SWAT, WADS, WALCOM, WEA) and removed all
isolated vertices. The resulting graph is denoted by graphConference.

In total, we considered 20 graphs resulting in 260 instances (we tested 13 different
values of k).

Upper bounds. Our two upper bound heuristics (see Section 6.6.4) perform
well compared to the clustering heuristic of Lu et al. [LSB12]. The solutions found
by our greedy heuristic were on average 23% smaller than the solutions obtained
by their clustering heuristic. Further improving this result, the solutions of
our DP based heuristic were on average 6% better than the ones of our greedy
heuristic. The solutions of the clustering heuristic were never smaller than
the solutions of the DP based heuristic and only eight solutions (from overall
260 instances) of the greedy heuristic were smaller than the DB based heuristic;
see Figure 6.10 for a more detailed comparison. Notably, comparing the solutions
of our DP heuristic to the optimal solution in the 56 instances that we could
solve optimally, it turns out that on 51 instances the DP heuristic actually
computed an optimal solution. In the remaining five instances, the solution of
the DP heuristic was at most 13 edges (0.75%) above the optimum.
The running time comparison is not so clear as the picture is not as homo-

geneous as it was for the comparison of the solution sizes. On average, our
greedy heuristic is the fasted and the DP based heuristic is the slowest of the
three heuristics. Out of the 260 instances, the greedy heuristic could solve 251
instances, the clustering heuristic 245 instances, and the DP based heuristic
239 instances. All instances solved by the clustering heuristic could also be
solved by our greedy heuristic. There is, however, one instance (soc-Pokec
with k = 100) where only the DP based heuristic produces a solution within a
five-minute time limit. Although the greedy heuristic is in many instances more
than 20 times faster than the clustering heuristic, there are also quite a number
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Figure 6.10.: Comparison of the solution sizes of the heuristics. Top: Comparison
between the clustering heuristic and the greedy heuristic. Values greater than one
indicate that greedy heuristic produced a smaller solution for this instance. Bottom:
Comparison between the DP based heuristic and the greedy heuristic. Values greater
than one indicate that the DB based heuristic produced a smaller solution for this
instance.
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of instances where the clustering heuristic is more than 20 times faster than the
greedy heuristic; see Figure 6.11 for a picture of this comparison. The reason
for this inhomogeneous behavior is the running time dependence on k. While
both our heuristics need in general more time for increasing values of k, the
running time of the clustering heuristic has not such a clear dependence on k.
For some instances, the clustering heuristic even becomes faster for increasing
values of k; see Figure 6.12 for a closer look on two examples.

Results for dynamic programming. Our dynamic program (Phase 1) finishes
in 58 out of 260 instances within the time limit of one hour and 56 out of the 58
lower bounds could be realized in Phase 2, that is, 21% (56 out of 260 instances)
could be solved optimally. See Table 6.3 for some representative results on four
graphs and Table A.1 (on page 216) for the complete results.
The graphs in the different categories behave very differently. For the three

graphs from the Laboratory for Web Algorithmics of the university of Milano
(LWA) our implementation rarely proceeds beyond applying the data reduction
rule (Reduction Rule 6.1) and never finishes with Phase 1. For larger values
of k even the data reduction could not be applied within the time limit. These
graphs are simply too big and their maximum degree is simply too large for our
exact approach.

Considering the instances from the SNAP-category, the results of the experi-
ments were just a little better. From all nine graphs solely the smallest graph
ego-Facebook could be solved optimally for k = 2 and k = 3. In most cases
the dynamic program could improve the lower bound provided by the data
reduction rule. After the one hour time limit, the maintained upper bound was,
however, still roughly twice as large as the lower bound.
Our algorithm performs better on the DIMACS graphs: 43% of the corre-

sponding instances could be solved optimally. Interestingly, our exact approach
worked best with the coPapersCiteseer graph although this graph was the largest
DIMACS-graph (in terms of n + m) and fourth largest of all graphs that we
consider. We could optimally k-anonymize this graph for all considered values
of k. The second largest DIMACS-graph (coPapersDBLP) was, however, very
resistant to our dynamic program: It did not finish for any value of k.

Finally, the results for the DBLP graph and subgraphs are as follows. While
the whole DBLP coauthor graph (graph_thres_01) could not be solved optimally
for any k, its subgraphs graph_thres_02 and graphConference could be solved
for all considered values of k—mostly within a few seconds.
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Figure 6.11.: Comparison of the running times of the heuristics. Top: Comparison
between the clustering heuristic and the greedy heuristic. Bottom: Comparison
between the DP based heuristic and the greedy heuristic. The solid line denotes the
values where both heuristics would have the same running time. Marks above the
solid line indicate an instance where the heuristic on the y-axis is faster, marks below
the solid line indicate an instance where the heuristic on the x-axis is faster. The
dashed lines mark the factor 5 increase/decrease and the dotted lines mark the factor
20 increase/decrease.
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Figure 6.12.: Dependence of the running time on the parameter k for the three
heuristics. The left diagram shows the running times for the graph coPapersDBLP,
the right diagram for the graph graph_thres_1. Interestingly, the clustering heuristic
becomes for increasing value of k slower on the graph coPapersDBLP, but faster on
the graph graph_thres_1.

See Table 6.4 for an overview on how many different k-values each graph
could be optimally k-anonymized.

Analysis of the results. Our upper bound heuristics perform very well com-
pared to the clustering heuristic of Lu et al. [LSB12]. Furthermore, on instances
where we know the optimum solution size, the DP-based heuristic produces opti-
mal or near-optimal solutions. Hence, there is only little room for improvements
in terms of the solution quality.
Our exact approach, however, was not overly successful. In general, the

approach works better with small k, see Figure 6.13. This comes mainly from
the fact that for larger values of k the solution size increases. Since each
(k+ 1)-anonymous graph is also k-anonymous, the solution size cannot decrease.
Observe that the pruning in the traceback phase of the dynamic program as
described in Section 6.6.2 could devitalize this affect a bit. As one can see
in Figure 6.14, there is a direct correlation between the lower bound increase
speed and the percentage of pruned branches. This is, however, no explanation
for the fact that we could solve the graph coPapersCiteseer for k = 10 in less
than one second (solution size: 958), but could not solve the smaller graph
graph_thres_01 for k = 3 within one hour although the maintained upper
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Table 6.3.: Experimental results on real-world instances with enabled data reduction.
For comparison with the optimum and the lower and upper bounds, we display the
results of our DP based heuristic. Opt denotes the optimal solution size for the
Anonym E-Ins instance. DR denotes the sum of changes in the degree sequence due
to the data reduction (Reduction Rule 6.1) divided by two to make the comparison
with the solution size (number of inserted edges) easier. If the time entry for Opt is
empty, then we could not solve the k-RDSA instance within one-hour and the DP
bounds display the lower and upper bounds computed so far. Note that the graph
graph_thres_1 with k = 2 is one of the two instances where Phase 1 is finished, but
in Phase 2 the lower bound computed in Phase 1 could not be realized.

DP based DP bounds time
graph k Heuristic Opt DR lower upper (in sec)

citation
Citeseer

2 457 457 65.5 457.0 457 2.64
5 1,764 560.0 1,225.0 1,756
10 4,775 1,880.5 3,171.0 4,771
100 81,464 43,131.0 49,045.5 81,464

coPapers
Citeseer

2 79 79 22.5 79.0 79 263.15
5 326 326 142.0 326.0 326 0.11
10 958 958 398.5 958.0 958 0.35
100 22,006 22,006 10,673.0 22,006.0 22,006 97.36

graph_
thres_01

2 178 69.5 176.0 176 583.21
5 994 430.5 745.0 991
10 2,538 1,137.0 1,853.5 2,538
100 38,087 21,173.5 26,298.5 38,087

ego-Gplus

2 10,017 2,080.5 5,861.0 9,973
5 32,031 10,211.0 19,996 31,761
10 85,825 30,064.0 51,825.5 84,148
100

bound for the dynamic program is 478. For the graph coPapersCiteseer the
pruning was basically useless as the dynamic program itself produced for each
k-value except k = 2 at most 90 solutions; for other graphs several million
solutions are produced for each k-value. Thus, independent from k, the pruning,
the solution size, and the graph size, some “hidden” structure of the graph
coPapersCiteseer made it accessible for our exact approach.
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Table 6.4.: Graph parameters of the real-world networks; see Table 6.2 for more precise
values of n and m. The maximum degree is denoted by ∆, the average degree by ∅,
the number of nonempty blocks by #>0. We run our exact approach to k-anonymize
each graph with 13 different values of k. #k denotes how many of these attempts
were successful.

graph ≈ n ≈ m ∆ ∅ #>0 #=1 #k

coPapersDBLP 0.5M 15.2M 3,299 56.4 698 46 0
coPapersCiteseer 0.4M 16.0M 1,188 73.9 854 35 13
coAuthorsDBLP 0.2M 0.9M 336 6.5 193 14 4
citationCiteseer 0.2M 1.1M 1,318 8.6 352 39 3
coAuthorsCiteseer 0.2M 0.8M 1,372 7.2 171 13 8

ego-Facebook 4K 88K 1,045 43.7 227 15 2
ego-Twitter 81K 1.3M 3,383 33.0 634 69 0
ego-Gplus 0.1M 12.2M 20,127 227.4 3,424 498 0
soc-Epinions1 75K 0.4M 3,044 10.7 491 54 0
soc-Slashdot0811 77K 0.5M 2,539 12.1 450 41 0
soc-Slashdot0902 82K 0.5M 2,552 12.3 457 50 0
soc-Pokec 1.6M 22.3M 14,854 27.3 803 92 0
soc-LiveJournal1 4.8M 42.8M 20,333 17.7 1,642 170 0
wiki-Vote 7K 0.1M 1,065 28.3 300 40 0

cnr-2000 0.3M 2.7M 18,236 16.8 681 80 0
eu-2005 0.8M 16.1M 68,963 37.4 1,924 248 0
in-2004 1,3M 13.5M 21,869 19.7 1,464 163 0

graph_thres_01 0.7M 2.5M 804 7.0 344 41 0
graph_thres_02 0.2M 0.6M 201 4.5 144 12 13
graphConference 5K 8K 53 3.0 43 3 13

Table 6.4 lists some additional graph parameters for each considered graph: the
maximum degree, the average degree, the number of nonempty blocks, and the
number of blocks with size one. Unfortunately, none of these parameters yields
an explanation for the accessibility of the graph coPapersCiteseer: For almost
each parameter we find graphs with smaller parameter value as well as graphs
with bigger parameter values such that we could not 2-anonymize these graphs
within one hour. There is only one exception: The parameter number of blocks
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Figure 6.13.: The number of solved instances per k-value out of the 20 graphs. The
solved instances are mostly graphs from the two categories DIMACS and DBLP; see
Tables 6.2 and 6.4 for the respective graphs and their parameters.

of size one, that is, the number of blocks violating the 2-anonymous property.
Although in the graph coPapersCiteseer 535 blocks violate the 100-anonymous
property, we could optimally 100-anonymize this graph in less than two minutes.
However, no graph contains 535 size-one blocks. Thus, also the parameter
number of blocks violating the k-anonymity constraint does not explain the
observed results.
Another attempt to explain experimental results is to check whether the

efficiently solvable graphs have a special degree sequence. To this end, we depict
in Figure 6.15 the degree sequences of six graphs and the number of k-values for
which we can solve these graphs optimally. As one can see, the degree sequences
of the two best handled graphs, coPapersCiteseer and graph_thres_02 behave
very differently. While for increasing degree d the number of vertices with
degree d falls rapidly for the graph graph_thres_02, this is not true for the
graph coPapersCiteseer: from all degree sequences in Figure 6.15, the one of
the coPapersCiteseer graph is in a sense the most “balanced” one.
Summarizing, none of the parameters that we considered can explain all

observed results of our experiments. Our theoretical findings in Section 6.3
only provide some evidence why the graph graph_thres_02 is accessible to
our exact approach as the parameter maximum degree is comparatively small.
Thus, a reasonable next step is to analyze whether particular combinations of
parameter values make the instances tractable. Due to the large range of possible
combinations, this needs either an automated preprocessing of combinations
or further theoretical results that lead to promising parameters and parameter
combinations.
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Figure 6.14.: The development of the lower and upper bounds in the dynamic program
over time for the graph coAuthorsCiteseer for k = 15 and k = 30. The exact approach
did not finish for k = 15 but for k = 30 it did. The upper bound, as depicted in the
case k = 30, is usually quite accurate from the beginning (when the dynamic program
finds the first nonrealizable solution). For k = 15, we do not show the upper bound to
have a better view on the lower bound, which increases rather slowly. Note that the
pruning plot is cumulative over time. Thus the absolute values here are somewhat
misleading. However, this cumulative plotting demonstrates the correlation to the
rate of increase for the lower bound very well. From a certain point, most solutions
produced by the dynamic program can be quickly determined as to costly. This can
be observed for the case k = 30: after about 770 seconds, the lower bound increases
very quickly as most branches in the traceback can be pruned.
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denotes for how many of the 13 considered values of k the graph could be k-anonymized.
The smallest visible bars depict blocks of size one, that is, vertices with unique degree.
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6.7. Conclusion
In this chapter, we contributed to a better theoretical and practical understand-
ing of a basic problem in graph anonymization. On the one side we partially
explain the quality of a successful heuristic approach [LT08] and tuned this
heuristic approach to optimally solve large scale real-world networks. On the
other side we proposed a method for deriving efficient and effective preprocessing
algorithms for degree sequence completion problems. Our work just being one of
the first steps in the so far underdeveloped field of studying the computational
complexity of graph anonymization [Che+13b], there are numerous challenges
for future research. First, the upper bounds proven in our results ask for im-
provement (which we consider as promising). Second, we would like to know the
computational complexity of the following variant of the Realizable Degree
Sequence Anonymity problem that asks to make a given degree sequence
k-anonymous such that the simple Erdős-Gallai test is passed (see Section 6.6.2).

EG-Realizable Degree Sequence Anonymity
Input: A degree sequence S = {d1, d2, . . . , dn} and integers k, s ∈ N.
Question: Is there a k-anonymous degree sequence S ′ = {d′1, d′2, . . . , d′n}

such that

1. d′i ≥ di for all i ∈ {1, 2, . . . , n},

2.
∑n
i=1 d

′
i − di ≤ s,

3. S ′ − S is realizable.

A polynomial-time algorithm for EG-Realizable Degree Sequence Ano-
nymity would most likely lead to an improved implementation as we currently
use an algorithm with exponential worst-case running time. Third, it would be
interesting to perform a data-driven analysis of parameter values on real-world
networks in order to gain parameterizations that can be exploited in a broad-
band multivariate complexity analysis [FJR13, KN12, Nie10] of Anonym E-Ins.
The hope is that this would lead to theoretical results that help explaining the
outcome of our experiments. Finally, with Anonym E-Ins we focused on a
very basic problem of graph anonymization; there are numerous other models
(partially mentioned in the introductory section) that ask for similar studies.
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Chapter 7.

Conclusion and Outlook

In this thesis, we studied degree-constrained graph modification problems with a
special focus on parameterized complexity and the parameter maximum degree.
If we allow vertex or edge deletions, then the parameter maximum degree is not
very useful; see Chapter 5 for the intractability results. The parameter maximum
degree is, however, useful in the studied completion problems (completion means
only edge insertions are allowed). Both DAG Realization and Anonym
E-Ins are fixed-parameter tractable with respect to the maximum degree; see
Chapters 4 and 6 for the corresponding results. A key observation in both
chapters is that if some measurement of the solution exceeds a certain bound that
depends only on the maximum degree, then the problems become in some sense
“easy”: In case of Anonym E-Ins, we can find solutions of size at least 2∆4 in
polynomial time; see Lemma 6.9. In case of DAG Realization, we show that if
the topological ordering contains two positions where the so-called potential has
value at least ∆2, then the vertices between these two positions can be arranged
almost arbitrarily; see Section 4.3 for the details. The reason for this behavior
seems to be the high degree of freedom when inserting edges in small-degree
graphs. Hence, for approaching degree-constrained graph completion problems
we propose to check whether computing “large” solutions—large compared to the
maximum degree or similar parameters—is tractable. Herein, polynomial-time
computable degree factors (see Chapter 3) might be a key to handle these
solutions.

Next, we briefly discuss the challenges for further research that is motivated
by results from this thesis.

Theoretical challenges. The graph modification problems that we studied
in this thesis have global degree constraints, see Chapter 1 for an overview.
We believe that our methods that led to the fixed-parameter algorithms with
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respect to the parameter maximum degree can be used in further graph com-
pletion problems. Indeed, we already used the methods which we presented in
Sections 6.3 and 6.5 to provide a polynomial problem kernel for the variant of
Degree Constraint Editing that only allows edge insertions [FNN14]; see
Section 3.2.2 for the formal problem definition. Thus, applying our methods
to further graph completion problems that have local as well as global degree
constraints is a natural task for future research.
We showed in Chapter 5 that the Degree Anonymity variant where we

allow the four modification operations vertex/edge insertion/deletion is fixed-
parameter tractable with respect to the combined parameter solution size and
maximum degree of the input graph (Theorem 5.23). We believe that the applied
method can be extended to general degree sequence modification problems
similar to the ones studied in Section 6.5; this remains to be investigated in
future work.

Practical challenges. One of the grand challenges of theoretical research on
computationally hard problems is to gain a better understanding of when and
why heuristic algorithms work [Kar11]. For the DAG Realization problem,
Berger and Müller-Hannemann [BM11, BM12] performed experimental studies
showing that their heuristics solve the NP-complete problem in (almost) all
considered cases when the resulting DAGs are dense or sparse. Our fixed-
parameter algorithms for the parameters

(
n
2

)
−m and m−n+1 (see Section 4.4)

show that DAG Realization becomes tractable on very dense and very sparse
graphs and thus partially explain these results.

In Chapter 6, we gave theoretical evidence for the success of Liu and Terzi’s
heuristic for Anonym E-Ins [LT08]: we proved that if a minimum solution is
large (≥ 2∆2), then their two-phase approach solves Anonym E-Ins to optimal-
ity. Thus, our theoretical results partially explain the success of their heuristic.
Inspired by our theoretical results, we enhanced Liu and Terzi’s heuristic and
described in Section 6.6 new algorithms for both phases. Furthermore, in Sec-
tion 6.6.5 we experimentally evaluated our implementation. On the one hand,
large networks with more than 16 million edges can be optimally k-anonymized
for all tested k. On the other hand, some instances that are significantly smaller
could not be solved for any k. This motivates the following question: What
makes these instances hard? The measured parameters do not explain this
hardness as for example the maximum degree is also small in the hard instances.
Thus, our theoretical findings are still insufficient to explain this particular
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outcome. So again the following question arises: Is there a hidden structure
in large, “easy” instances that could be exploited? Parameterized algorithmics
provides the theoretical framework to measure the effect of different structures.
However, finding the “right” structure or combination of structures remains a
very challenging but also promising endeavor.
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Appendix A.

Complete List of Experimental
Results

Table A.1 (see next page) contains the full list of experimental results on real-
world instances with data reduction. Therein, we use the following abbreviations:
“Cluster” for the clustering-heuristic of Lu et al. [LSB12], “Greedy” for our greedy
heuristic, “DP” for our dynamic programming-based heuristic, “Opt” for optimum
solution size computed by our exact approach, “Preprocessed” for the degree
changes made by the data reduction, “lower” (“upper”) for the lower (upper)
bound maintained in the dynamic program. The preprocessed changes due
to the data reduction rule as well as the lower and upper bound maintained
in the dynamic program are just sums over degrees (see Section 6.6.2 for the
details). To make comparison with the solution size (counted in the number
of added edges) easier, we divided the values by two (as every edge affects two
vertices). Thus, the lower bound and the preprocessed changes may not be
integer values any more. If an entry corresponding to a heuristic is empty, then
this heuristic could not solve the instance within five minutes. If the time entry
for the optimum is empty, then our exact approach could not solve the instance
within one hour. In this case the maintained lower and upper bounds of the
dynamic program are returned. If the entry for the optimum value is empty
but the corresponding time entry is not empty, then our implementation could
not realize the provided lower bound.
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