Supporting Information for

Machine Learning Algorithms Applied to Identify Microbial Species by their Motility

Max Riekeles¹, Janosch Schirmack¹, and Dirk Schulze-Makuch¹⁻⁴

¹Astrobiology Group, Center of Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany.

²GFZ German Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.

³Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Experimental Limnology, Stechlin, Germany.

⁴School of the Environment, Washington State University, Pullman, Washington, USA.

Contents of this file

Text S1 to S1 Figures S3 to S3 Tables S3 to S5

Additional Supporting Information (Files uploaded separately)

Captions for Datasets S5 to S6

Introduction

Here, we provide an extension of the information, given in the article. First, we show a visualization of an exemplary pathway of an *E. coli* bacterium. Moreover, we provide a brief overview for the calculation of angles. Additionally, we show you here an overview about the classification algorithms we used. In this context, we also refer to the Python-codes, we used. We also refer to the Matlab files for the calculation of the aggregated features, as well as the simulation of the movement due to Brownian motion.

Text S1.

The angles here are the angles that form the two sides $\overline{12}$ and $\overline{23}$. 1 is the coordinate of the microbe in the first video frame, 2 in the following one, and three in the next (See Figure S2, calculation is performed in Data Set 12).

Text S2.

The simulation for the movement due to Brownian motion assumed 50 particles with a diameter of 0.5 μ m, 50 particles with a diameter of 2 μ m and 100 particles with a diameter of 1 μ m. These 200 particles were compared to 200 real microbial pathways (50 of *E. coli*, 50 of *P. haloplanktis*, 50 of *P. halocryophilus* and 50 of *B.* subtilis, See data set 4 and data set 11.)

Figure S1. Example pathway of an E. coli bacterium over a period of ten seconds during a trial run at 25°C.

Figure S2. Sketch of angles of a microbe from three consecutive coordinates during motility behavior.

Algorithm	Description
Logistic Regression	This algorithm assumes a linear relationship between the
Classifiers (LRC)	input variables and the output variables. The coefficients
	of logistic regression are determined by a maximum-
	likelihood estimation. Since the response variable is
	categorical, it is used to solve classification problems.
Linear	This algorithm reduces the dimensions and maximizes
Discriminant	the separability among known categories. It is a method
Analysis (LDA)	used to find a linear combination of features that
	characterizes or separates classes of objects. When the
	model is trained, the parameters of the Gaussian
	distribution of each class are found. The distribution
	parameters are used to calculate boundaries, which
	determine the class of new data. When the classes are well
	separated, the parameter estimates for the logistic
	regression model are surprisingly unstable. LDA does not
	suffer from this problem.
K-Nearest	These classifiers approximate the function only locally
Neighbor	and all computation is deterred until function evaluation.
Classifiers (KNN)	The classifier first identifies the K points in the training
	set closest to the observed variable. The K neighbors are
	taken from a set of objects for which the class is known.
	Inis is the training step of the algorithm. The choice of K
	has a drastic effect on the KINN classifier, where small
	numbers of K lead to overly flexible results, and too high
Classification and	A tree classifier consists of branching conditions where
Regression Trees	the value of a predictor is compared to a trained weight
(CART)	The number of branches and the number of the weights
(CARI)	are determined in the training process. Fither the Cini
	index or the entropy are normally used to evaluate the
	performance of a particular branch split when building a
	tree This kind of algorithm is easy to interpret and fast to
	fit and needs low memory usage.
Naïve Baves	This classifier assumes that the presence of a particular
Classifier	feature in a class is unrelated to the presence of any other
-	feature. It classifies new data based on the highest
	probability of its belonging to a particular class. It is best
	used for a small dataset containing many parameters.

Support Vector	Classifies data by finding the linear decision boundary
Machines (SVM)	that separates all data points of one class from those of the
	other class. The SVM chooses the hyperplane by
	maximizing the margin between classes, when the data is
	linearly separable. If the data is not linearly separable, a
	loss function is used to penalize points on the wrong side
	of the hyperplane. Often a kernel transform is used to
	transform nonlinearly separable data into higher
	dimensions, where a decision boundary can be found.
	When the classes are well separated, SVMs tend to
	perform better than logistic regression, when the classes
	are more overlapping, logistic regression is often better.

Table S1. Used Classifier (for more information on the used classifiers see James et al. (2013).

Data Set S1. *ds01*: Motility Data of the four species. Note: "Distance" in μm, "Velocity" in μm/s, "Angle" in Degree.

Data Set S2. *ds*02: Aggregated motility data over a period of ten seconds for the four species. Note: "Distance" in Pixel (1 Pixel equals 0.11 µm).

Data Set S3. *ds*03: Motility data for the microbes for Figure 1.

Data Set S4. *ds04*: Aggregated Motility data of microbes and aggregated motility data of simulated biotic movements. Used for the automated classification biotic vs abiotic movements.

Data Set S5. *ds*05: Python code of the KNN Cassifier. Compiled with Python 3.7.

Data Set S6. ds06: Python code of the CART Classifier. Compiled with Python 3.7.

Data Set S7. ds07: Python code of the LDA Classifier. Compiled with Python 3.7.

Data Set S8. ds08: Python code of the LRC Classifier. Compiled with Python 3.7.

Data Set S9. *ds09*: Python code of the NB Classifier. Compiled with Python 3.7.

Data Set S11. *ds11*: Matlab file for the creation of movement due to Brownian motion and of its aggregated motility information. Compiled with Matlab R2019b.

Data Set S12. *ds12*: Matlab file for the calculation of the motility information of the X/Y-information of the particle observations. Deployment of the aggregated motility information. Compiled with Matlab R2019b.

Data Set S13. *ds13:* Detailed Information of classification results "biotic vs abiotic". All classifiers, all feature combinations. Note feature names: Mean Speed= Mean Speed; Sd= Standard Deviation Speed; Ra= Relative amount of clockwise direction change; La= Relative amount of counterclockwise direction change; Za= Relative amount of low direction change; Aa = Average direction angle; Sda= Standard deviation of direction changing angles; Abstand= Mean Distance of Particles after ten seconds; SmallSpeed = Relative amount of low speed;

Data Set S14. *ds14:* Detailed Information of species classification results". All classifiers, all feature combinations. Note feature names: Mean Speed= Mean Speed; Sd= Standard Deviation Speed; Ra= Relative amount of clockwise direction change; La= Relative amount of counterclockwise direction change; Za= Relative amount of low direction

change; Aa = Average direction angle; Sda= Standard deviation of direction changing angles; Abstand= Mean Distance of Particles after ten seconds; SmallSpeed = Relative amount of low speed;