

1

Supporting Information for

Machine Learning Algorithms Applied to Identify Microbial Species by their Motility

Max Riekeles1, Janosch Schirmack1, and Dirk Schulze-Makuch1-4

1Astrobiology Group, Center of Astronomy and Astrophysics, Technische

Universität Berlin, Berlin, Germany.

2GFZ German Center for Geosciences, Section Geomicrobiology, Potsdam,

Germany.

3Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department

of Experimental Limnology, Stechlin, Germany.

4School of the Environment, Washington State University, Pullman, Washington,

USA.

Contents of this file

Text S1 to S1

Figures S3 to S3

Tables S3 to S5

Additional Supporting Information (Files uploaded separately)

 Captions for Datasets S5 to S6

Introduction

2

Here, we provide an extension of the information, given in the article. First, we show a

visualization of an exemplary pathway of an E. coli bacterium. Moreover, we provide a

brief overview for the calculation of angles. Additionally, we show you here an

overview about the classification algorithms we used. In this context, we also refer to the

Python-codes, we used. We also refer to the Matlab files for the calculation of the

aggregated features, as well as the simulation of the movement due to Brownian motion.

Text S1.

The angles here are the angles that form the two sides 12̅̅̅̅ and 23̅̅̅̅ . 1 is the

coordinate of the microbe in the first video frame, 2 in the following one, and

three in the next (See Figure S2, calculation is performed in Data Set 12).

Text S2.

The simulation for the movement due to Brownian motion assumed 50 particles

with a diameter of 0.5 µm, 50 particles with a diameter of 2 µm and 100 particles

with a diameter of 1 µm. These 200 particles were compared to 200 real microbial

pathways (50 of E. coli, 50 of P. haloplanktis, 50 of P. halocryophilus and 50 of B.

subtilis, See data set 4 and data set 11.)

3

Figure S1. Example pathway of an E. coli bacterium over a period of ten seconds during

a trial run at 25°C.

Figure S2. Sketch of angles of a microbe from three consecutive coordinates during

motility behavior.

4

Algorithm Description

Logistic Regression

Classifiers (LRC)

This algorithm assumes a linear relationship between the

input variables and the output variables. The coefficients

of logistic regression are determined by a maximum-

likelihood estimation. Since the response variable is

categorical, it is used to solve classification problems.

Linear

Discriminant

Analysis (LDA)

This algorithm reduces the dimensions and maximizes

the separability among known categories. It is a method

used to find a linear combination of features that

characterizes or separates classes of objects. When the

model is trained, the parameters of the Gaussian

distribution of each class are found. The distribution

parameters are used to calculate boundaries, which

determine the class of new data. When the classes are well

separated, the parameter estimates for the logistic

regression model are surprisingly unstable. LDA does not

suffer from this problem.

K-Nearest

Neighbor

Classifiers (KNN)

These classifiers approximate the function only locally

and all computation is deferred until function evaluation.

The classifier first identifies the K points in the training

set closest to the observed variable. The K neighbors are

taken from a set of objects for which the class is known.

This is the training step of the algorithm. The choice of K

has a drastic effect on the KNN classifier, where small

numbers of K lead to overly flexible results, and too high

numbers of K lead to static results.

Classification and

Regression Trees

(CART)

A tree classifier consists of branching conditions, where

the value of a predictor is compared to a trained weight.

The number of branches and the number of the weights

are determined in the training process. Either the Gini

index or the entropy are normally used to evaluate the

performance of a particular branch split, when building a

tree. This kind of algorithm is easy to interpret and fast to

fit and needs low memory usage.

Naïve Bayes

Classifier

This classifier assumes that the presence of a particular

feature in a class is unrelated to the presence of any other

feature. It classifies new data based on the highest

probability of its belonging to a particular class. It is best

used for a small dataset containing many parameters.

5

Support Vector

Machines (SVM)

Classifies data by finding the linear decision boundary

that separates all data points of one class from those of the

other class. The SVM chooses the hyperplane by

maximizing the margin between classes, when the data is

linearly separable. If the data is not linearly separable, a

loss function is used to penalize points on the wrong side

of the hyperplane. Often a kernel transform is used to

transform nonlinearly separable data into higher

dimensions, where a decision boundary can be found.

When the classes are well separated, SVMs tend to

perform better than logistic regression, when the classes

are more overlapping, logistic regression is often better.

6

Table S1. Used Classifier (for more information on the used classifiers see James et al.

(2013).

Data Set S1. ds01: Motility Data of the four species. Note: “Distance” in µm, “Velocity”

in µm/s, “Angle” in Degree.

Data Set S2. ds02: Aggregated motility data over a period of ten seconds for the four

species. Note: “Distance” in Pixel (1 Pixel equals 0.11 µm).

Data Set S3. ds03: Motility data for the microbes for Figure 1.

Data Set S4. ds04: Aggregated Motility data of microbes and aggregated motility data of

simulated biotic movements. Used for the automated classification biotic vs abiotic

movements.

Data Set S5. ds05: Python code of the KNN Cassifier. Compiled with Python 3.7.

Data Set S6. ds06: Python code of the CART Classifier. Compiled with Python 3.7.

Data Set S7. ds07: Python code of the LDA Classifier. Compiled with Python 3.7.

Data Set S8. ds08: Python code of the LRC Classifier. Compiled with Python 3.7.

Data Set S9. ds09: Python code of the NB Classifier. Compiled with Python 3.7.

Data Set S11. ds11: Matlab file for the creation of movement due to Brownian motion

and of its aggregated motility information. Compiled with Matlab R2019b.

Data Set S12. ds12: Matlab file for the calculation of the motility information of the X/Y-

information of the particle observations. Deployment of the aggregated motility

information. Compiled with Matlab R2019b.

Data Set S13. ds13: Detailed Information of classification results “biotic vs abiotic”. All

classifiers, all feature combinations. Note feature names: Mean Speed= Mean Speed; Sd=

Standard Deviation Speed; Ra= Relative amount of clockwise direction change; La=

Relative amount of counterclockwise direction change; Za= Relative amount of low

direction change; Aa = Average direction angle; Sda= Standard deviation of direction

changing angles; Abstand= Mean Distance of Particles after ten seconds; SmallSpeed =

Relative amount of low speed;

Data Set S14. ds14: Detailed Information of species classification results”. All classifiers,

all feature combinations. Note feature names: Mean Speed= Mean Speed; Sd= Standard

Deviation Speed; Ra= Relative amount of clockwise direction change; La= Relative

amount of counterclockwise direction change; Za= Relative amount of low direction

7

change; Aa = Average direction angle; Sda= Standard deviation of direction changing

angles; Abstand= Mean Distance of Particles after ten seconds; SmallSpeed = Relative

amount of low speed;

