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Here, we provide an extension of the information, given in the article. First, we show a 

visualization of an exemplary pathway of an E. coli bacterium. Moreover, we provide a 

brief overview for the calculation of angles. Additionally, we show you here an 

overview about the classification algorithms we used. In this context, we also refer to the 

Python-codes, we used. We also refer to the Matlab files for the calculation of the 

aggregated features, as well as the simulation of the movement due to Brownian motion.  

 

Text S1. 

The angles here are the angles that form the two sides 12̅̅̅̅  and 23̅̅̅̅ . 1 is the 

coordinate of the microbe in the first video frame, 2 in the following one, and 

three in the next (See Figure S2, calculation is performed in Data Set 12). 
 

Text S2. 

The simulation for the movement due to Brownian motion assumed 50 particles 

with a diameter of 0.5 µm, 50 particles with a diameter of 2 µm and 100 particles 

with a diameter of 1 µm. These 200 particles were compared to 200 real microbial 

pathways (50 of E. coli, 50 of P. haloplanktis, 50 of P. halocryophilus and 50 of B. 

subtilis, See data set 4 and data set 11.) 
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Figure S1. Example pathway of an E. coli bacterium over a period of ten seconds during 

a trial run at 25°C. 

 

 

Figure S2. Sketch of angles of a microbe from three consecutive coordinates during 

motility behavior. 
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Algorithm Description 

Logistic Regression 

Classifiers (LRC) 

This algorithm assumes a linear relationship between the 

input variables and the output variables. The coefficients 

of logistic regression are determined by a maximum-

likelihood estimation. Since the response variable is 

categorical, it is used to solve classification problems. 

Linear 

Discriminant 

Analysis (LDA) 

This algorithm reduces the dimensions and maximizes 

the separability among known categories. It is a method 

used to find a linear combination of features that 

characterizes or separates classes of objects.  When the 

model is trained, the parameters of the Gaussian 

distribution of each class are found. The distribution 

parameters are used to calculate boundaries, which 

determine the class of new data. When the classes are well 

separated, the parameter estimates for the logistic 

regression model are surprisingly unstable. LDA does not 

suffer from this problem. 

K-Nearest 

Neighbor 

Classifiers (KNN) 

These classifiers approximate the function only locally 

and all computation is deferred until function evaluation. 

The classifier first identifies the K points in the training 

set closest to the observed variable. The K neighbors are 

taken from a set of objects for which the class is known. 

This is the training step of the algorithm. The choice of K 

has a drastic effect on the KNN classifier, where small 

numbers of K lead to overly flexible results, and too high 

numbers of K lead to static results. 

Classification and 

Regression Trees 

(CART) 

A tree classifier consists of branching conditions, where 

the value of a predictor is compared to a trained weight. 

The number of branches and the number of the weights 

are determined in the training process. Either the Gini 

index or the entropy are normally used to evaluate the 

performance of a particular branch split, when building a 

tree. This kind of algorithm is easy to interpret and fast to 

fit and needs low memory usage. 

Naïve Bayes 

Classifier 

This classifier assumes that the presence of a particular 

feature in a class is unrelated to the presence of any other 

feature. It classifies new data based on the highest 

probability of its belonging to a particular class. It is best 

used for a small dataset containing many parameters. 
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Support Vector 

Machines (SVM) 

Classifies data by finding the linear decision boundary 

that separates all data points of one class from those of the 

other class. The SVM chooses the hyperplane by 

maximizing the margin between classes, when the data is 

linearly separable. If the data is not linearly separable, a 

loss function is used to penalize points on the wrong side 

of the hyperplane. Often a kernel transform is used to 

transform nonlinearly separable data into higher 

dimensions, where a decision boundary can be found. 

When the classes are well separated, SVMs tend to 

perform better than logistic regression, when the classes 

are more overlapping, logistic regression is often better. 



 

 

6 

 

Table S1. Used Classifier (for more information on the used classifiers see  James et al. 

(2013). 

 

Data Set S1. ds01: Motility Data of the four species. Note: “Distance” in µm, “Velocity” 

in µm/s, “Angle” in Degree.  

Data Set S2. ds02: Aggregated motility data over a period of ten seconds for the four 

species. Note: “Distance” in Pixel (1 Pixel equals 0.11 µm). 

Data Set S3. ds03: Motility data for the microbes for Figure 1. 

Data Set S4. ds04: Aggregated Motility data of microbes and aggregated motility data of 

simulated biotic movements. Used for the automated classification biotic vs abiotic 

movements.  

Data Set S5. ds05: Python code of the KNN Cassifier. Compiled with Python 3.7. 

Data Set S6. ds06: Python code of the CART Classifier. Compiled with Python 3.7. 

Data Set S7. ds07: Python code of the LDA Classifier. Compiled with Python 3.7. 

Data Set S8. ds08: Python code of the LRC Classifier. Compiled with Python 3.7. 

Data Set S9. ds09: Python code of the NB Classifier. Compiled with Python 3.7. 

Data Set S11. ds11: Matlab file for the creation of movement due to Brownian motion 

and of its aggregated motility information. Compiled with Matlab R2019b. 

Data Set S12. ds12: Matlab file for the calculation of the motility information of the X/Y-

information of the particle observations. Deployment of the aggregated motility 

information. Compiled with Matlab R2019b. 

Data Set S13. ds13: Detailed Information of classification results “biotic vs abiotic”. All 

classifiers, all feature combinations. Note feature names: Mean Speed= Mean Speed; Sd= 

Standard Deviation Speed; Ra= Relative amount of clockwise direction change; La= 

Relative amount of counterclockwise direction change; Za= Relative amount of low 

direction change; Aa = Average direction angle; Sda= Standard deviation of direction 

changing angles; Abstand= Mean Distance of Particles after ten seconds; SmallSpeed = 

Relative amount of low speed; 

Data Set S14. ds14: Detailed Information of species classification results”. All classifiers, 

all feature combinations. Note feature names: Mean Speed= Mean Speed; Sd= Standard 

Deviation Speed; Ra= Relative amount of clockwise direction change; La= Relative 

amount of counterclockwise direction change; Za= Relative amount of low direction 
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change; Aa = Average direction angle; Sda= Standard deviation of direction changing 

angles; Abstand= Mean Distance of Particles after ten seconds; SmallSpeed = Relative 

amount of low speed; 

 

 

 


