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Abstract

Consensus is a useful concept in situationswhere a groupof autonomous
agents seek an agreement over a variable of common interest for the
whole system. Agents communicate and, based on the information
they collect from others, they take individual decisions according to
the specific consensus protocol they implement. A consensus proto-
col that needs less resources for achieving a given result is more ef-
ficient. Efficiency in consensus has become a hot topic in research
during the last years, mainly due to the rising number of applications
that require battery-powered agents. This thesis proposes to increase
the efficiency of consensus by exploiting the interference property of
the wireless channel. This phenomenon has always been combatted.
In fact, signals simultaneously transmitted by multiple agents in the
same frequency are attenuated by unknown coefficients and summed
up at the receiver. The standard approach is to discard such corrupted
received signal, although it carries some useful information. In this
thesis, we show that this corrupted signal can be actually used for
achieving consensus. Under the assumption of a real-valued fading
channel, we propose average consensus andmax-consensus protocols
that exploit interference. They both exhibit better performance than
standard methods in terms of required wireless resources. We show
that such protocols can be used for two practical problems, i.e., forma-
tion control of nonholonomic robots and distributively solving linear
algebraic equations. This confirms the practical benefits of exploiting
interference and motivates future experimental implementation.





Kurzfassung

Konsens spielt eine bedeutende Rolle in Szenarien inwelchenmehrere
autonome Agenten versuchen eine Einigung über eine für das ganze
System wichtige Variable zu erzielen. Die zwei wesentlichen Phasen
des Konsens sind Kommunikation und Berechnung, und zwar, aktu-
alisiert jeder Agent seinen Standpunkt (durch ein sogenanntes ”Kon-
sensprotokoll”), auf Basis der von anderen Agenten erhaltenen Infor-
mationen. Ein Konsensprotokoll ist effizienter je weniger Ressourcen
es braucht um ein bestimmtes Ziel zu erreichen. Effizienz des Kon-
sensprotokolls hat in den letzten Jahren viel Aufmerksamkeit erlangt,
hauptsächlichwegen desWachstums der Akku-basierten Anwendun-
gen. Im Rahmen dieser Doktorarbeit wird eine Methode präsentiert
um die Effizienz des Konsensprotokolls durch die Ausnutzung der
Funkinterferenz zu steigern. Interferenz in Funk-Netzwerken ist ein
traditionell bekämpftes Phänomen. Die in der gleichen Zeit und Fre-
quenz verbreiteten Signalewerden erstens durchunbekannte Faktoren
gedämpft und dann am Empfänger summiert. Traditionell bewertet
man dieses geräuschvolle Signal als unbrauchbar, obwohl es einige
Information trägt. Es wird demonstriert wie ein solches Signal be-
nutzt werden kann um Konsens zu erreichen. Unter der Annahme
eines reellwertigem fading Funknetz, wird ein Average-Konsens und
ein Max-Konsens Protokol präsentiert, welches die Funkinterferenz
ausnutzen. Die beiden Methoden zeigen bessere Leistung, im Hin-
blick auf nötige Ressourcen des Funknetz, im Vergleich zu Standard-
methoden. In dieser Arbeit werden auch zwei mögliche praktische
Implementationen von diesen Methoden gezeigt, und zwar Forma-
tionsregelung für die nicht-nonholonome Roboter und die verteilte
Lösung von linearen algebraischen Gleichungen. Diese Ergebnisse
bestätigen die Vorteile dieser Methode und motivieren künftige ex-
perimentelle Implementierung.





Acknowledgements

I am sincerely grateful to my advisor, Prof. Jörg Raisch, who believed
in me and gave me, in a challenging moment of my career, the chance
of joining his research group. His guidance and support have been
significant and need to be acknowledged. My thanks for agreeing to
chair the doctoral committee go to Prof. Sławomir Stańczak, who has
helped me going through the communication-theoretical side of my
research, and to Prof. Riccardo Scattolini, whose courses in Politecnico
di Milanowere the ones that shapedmy desire and ambition to pursue
a PhD. This thesis was possible thanks to the funding provided by the
Deutsche Forschungsgemeinschaft, to which I am grateful.
My gratefulness is also towards all my colleagues, among whom I
need to mention Dr. Thomas Seel, for his friendly and always gen-
uine advice, Ms. Ulrike Locherer, for her assistance in bureaucratic
and administrative topics, Navneet Agrawal, for having helped me
understanding many topics in communication-theory, Dr. Christian
Hans, for the kindness, help and availability, and Davide Zorzenon,
for the collaboration in many projects. Some results presented in this
thesis have also been achieved by cooperating with Dr. Alexander
Katriniok, Prof. Alexandros Charalampidis, Zenit Music, Alexander
Dethof, and Aaron Grapentin, to all of whom goes my gratitude.

There is a number of people who have contributed to my develop-
ment, without whom this thesis would have been either different or,
more probably, not possible.
My mother and father have raised me and given me qualities and de-
fects. Through their austere but caring guidance, I developed that
need of aiming always higher, of which I am grateful. A deep sense of
gratitude is towards my brother Marco that has been a companion in
the calm and in the rough seas, always rowing in my same direction,
no matter if I were sitting next to him. I am grateful to my nonni that
have taught me what they could, depending on their possibilities. My
deep gratitude is for Klara for having handed me rope and gears dur-
ing the climbing.
During my time in Linz, I met some people that have helped, sup-
ported, endorsed me, and to whom I am deeply grateful. Josef wel-
comed me in the city and proved to be a valuable friend. I need to
mention the gratitude towards Danilo and Massimiliano for their im-
portant impact on my life. Many people in Berlin have contributed,
each one under a different point of view, to open the doors of the city



vi

to a foreigner like me. I am thankful to Alice and Kilian, for the possi-
bility of seeing every morning the statue of Klio in Nikolaivirtel, and to
Albrecht for having been the neighbor that everybody wants to have.
My gratitude also to Amogh, a partner in many past, current and fu-
ture business journeys. Among all Berliners that have spent with me
the many days between my arrival and the completion of this the-
sis, I need to thank Michael, Alexander, Bianca, Nick, Philipp, Arn-
bjørn, Leonardo, Marco, Paul, Nicola, Thiago and Roberto. Every one
with a different reason has contributed to make me feel at home. Al-
though wandering across Europe, I have not forgotten my roots and
the friends that, back in Milano, have given me more than I could ask.
My long-time friends have stood behind me in good and also in bad
decisions. I cannot be thankful enough to all of them, among whom
I need to cite Matteo, Geppo, William, Andrea, Alessandro, and Um-
berto. I am also thankful, for the long-lasting friendship, toMirko and
Benedetta, schoolmates in those times when my days were filled with
Latin and Philosophy, rather than differential equations. Finally, I am
indebted to Simone and Alessio, deskmates during my time as an un-
dergraduate, for having always stimulated me to do more, and with
whom I have shared the decision of pursuing a PhD.

Finally, I need to underline my profound gratitude towards Germany
and towards the European Dream for having allowed a son of Milan to
become also a son of Berlin.



Contents

1 Introduction and Motivation 1
1.1 Motivation and Overview 1
1.2 Structure 3
1.3 Related Publication of the Author 4

2 Fundamentals 7
2.1 Preliminaries 7
2.2 Properties of Nonnegative and Positive Matrices 11
2.3 Standard Approaches to Consensus 14
2.3.1 Average consensus 14
2.3.2 Max-consensus 25

3 Using Consensus for Practical Problems 29
3.1 Consensus for Automating Road Intersections 31
3.1.1 Problem description 31
3.1.2 Consensus for crossing priorities 34
3.1.3 Distributed Motion Planning 36
3.1.4 Simulation results 40
3.1.5 Real-time capability 44

3.2 Automating Highways via Distributed Agreement 45
3.2.1 Problem Description 46
3.2.2 Distributed Control Scheme 47
3.2.3 Average Consensus for Lane Speed 48
3.2.4 Lane Changing Rule 49
3.2.5 Priority List 49
3.2.6 Distributed Model Predictive Controller 51
3.2.7 Distributed Tracking Controller 55
3.2.8 Simulations 56



viii

4 Exploiting Wireless Interference 59
4.1 Orthogonal Channel Access Methods in a nutshell 59
4.2 Wireless Multiple Access Channel Model 60
4.2.1 Ideal Channel 61
4.2.2 Noiseless Real-valued Fading Channel 61

5 Average Consensus Over the Wireless Channel 63
5.1 Average Consensus Protocol 64
5.1.1 Communication Protocol 64
5.1.2 Consensus Protocol 64
5.1.3 Analysis 66
5.1.4 Comparison with traditional approaches 81

5.2 Exploiting Wireless Interference For Distributively Solving Linear Equations 87
5.2.1 Problem Description 87
5.2.2 Communication Protocol 89
5.2.3 Algorithm 90
5.2.4 Proof of Theorem 8 91
5.2.5 Simulations 98

6 Max Consensus Over the Wireless Channel 101
6.1 Asymptotic Converging Algorithm 101
6.1.1 Asymptotic Convergence 103
6.1.2 Simulations 109

6.2 Finite-time Max-Consensus Protocol 111
6.2.1 Key idea 111
6.2.2 Protocol Design 112
6.2.3 Simulations 114
6.2.4 Comparison with the standard approach 115

7 Formation Control 117
7.1 Single-Integrator Dynamics 119
7.1.1 Communication Protocol 119
7.1.2 Consensus-based Formation Control Protocol 121
7.1.3 Simulation 127



ix

7.2 Nonholonomic Dynamics 128
7.2.1 Feedback Linearization Technique 130
7.2.2 Nonlinear Control Technique 133

8 Conclusion 145
8.1 Contribution 145
8.2 Future work 146

A Appendix 149
A.1 Jordan normal form and generalized eigenvectors 149
A.2 Nullifying Matrix 151
A.3 Norms 153
A.3.1 Norm properties 153
A.3.2 Mixed norms 154

A.4 Exponential Stabilization of Nonholonomic Agents 155

Bibliography 157





1
Introduction and Motivation

1.1 Motivation and Overview
Consensus is a useful notion in situations where several autonomous
intercommunicating agents need to reach an agreement over a vari-
able of common interest. An introduction to this topic can be found,
e.g., in [92] and [21]. By decomposing the concept of consensus into
its minimal terms, one obtains three core elements: a multi-agent sys-
tem, a communication network, and an update protocol.
A multi-agent system is a collection of autonomous agents that need
to collaborate (or compete) in order to achieve a common (or compet-
itive) goal. For example, a swarm of quadcopters might be interested
in achieving a formation around a target (see, e.g., [55]), a collection
of autonomous ground vehicles could agree on who has to yield the
way (see, e.g., [59]), or a group of traders could need to check the au-
thenticity of a payment without the inclusion of any trusted interme-
diaries (see, e.g., [16]). All such depicted scenarios have in common
the inherently distributed structure of the control action; the absence
of a centralized all-knowing controller makes it fundamental that in-
dividual agents exchange information. In fact, each agent has access
to a different point of view on the system. The goal/task cannot be
achieved by an uncoordinated action on the environment. Coordina-
tion requires communication. For communication to take place, we
need to establish a communication network, i.e., a structure that al-
lows agents to communicate. Once agents are aware of others and of
their points of view, they update their control action according to an
update protocol. This is a qualitative description of how amulti-agent
system can achieve consensus.

More formally, each agent has an estimate of a variable of com-
mon interest for the system (e.g., the list of vehicles ordered by their
crossing priority), referred to as information state. By communicating,
they get aware of information states of other agents and can finally up-
date theirs. This procedure is iterated, until a consensus is eventually
(possibly) achieved. The core of a consensus strategy is inside of the
update protocol. Different protocols lead to different kinds of agree-
ment. In fact, some might be interested in achieving a so-called aver-
age agreement, whilst someone else might be interested in the agree-
ment on the maximum value (max-consensus). The fields of applica-
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tion of such different protocols can be investigated trough examples:
average consensus is a useful concept, e.g., for a platoon of vehicles
on a lane that need to agree on a common lane speed (see [26]). On
the other hand, max-consensus is a valid approach in a leader-election
problem, e.g., if robots on a production line should decidewhich robot
has to start the operation (see [17]).

In all such scenarios, energy consumption is one aspect that ac-
quires high importance, especially in cases when agents are powered
by batteries. In recent years, in fact, an increasing effort has been put
towards the development of efficient consensus protocols, i.e., strate-
gies that need less resources to let a system reach the agreement. For
example, in [22] a data-quantization approach for communication is
presented, in [4] the number of communication arcs is reduced, thus
the communication effort, and in [57] the communication complexity
is taken as ameasure for the efficiency of a protocol. Similarly, the con-
cept of optimal network topology is introduced in [85], thus arcs can
be cut to increase protocol’s efficiency; quantization is also used as a
tool to reduce communication complexity, thus increasing efficiency,
as in [8]. Approaches like these increase the efficiency of consensus
protocols by changing some parameters at a communication level, but
they all lie within the boundaries of standard communication sys-
tems, i.e., all methods that are standard practice in communication
technology. In the context of wireless transmission, multiple users ac-
cess the samewirelessmedium for transmitting over it, thus they need
to share its capacity, see, e.g., [109, Ch. 7]. Communication systems
that allowdifferent users to share a commonmediumare referred to as
Multiple Access techniques. Sharing a common medium is possible by
assigning dedicated channels to multiple users by dividing the band-
width. Two well-known approaches are based on frequency-division
(FDMA) and time-division (TDMA). By [109, Ch. 7.4.1], in FDMA
the system bandwidth is divided into orthogonal channels, nonover-
lapping in frequency and allocated to the different users. In TDMA
time is the ”split resource” that is allocated to different users. Such
multiplexing techniques allow independent transmissions of data, i.e.,
the signal (physically, the electromagnetic wave) carrying informa-
tion coming from one source does not collide or interfere with other
signals. Preventing interference (also called superposition) has some
costs, but yields established results.
However, by looking at the interplay between communication and con-
trol at a lower level, [117] initiated a novel practice in the consensus
community. In fact, it proposed a consensus protocol able to exploit
the interference property of the wireless channel, rather than com-
batting it. This strategy does not rely on small changes of the com-
munication system parameters (as the above mentioned papers), but
proposes a completely new communication system. In fact, while tra-
ditional communication methods (e.g., TDMA, FDMA, etc) guaran-
tee that every node-to-node transmission is free of interference, [103]
shows that getting rid of interference is not a strict requirement for
computing a function over the network. Instead of investing commu-
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nication resources for combatting interference, a communication sys-
tem can be designed so that interference is exploited, resources saved,
and consensus reached.
The main topic of this thesis is the development of a family of con-
sensus protocols able to handle interference. Unlike early attempts in
the field (e.g., [35, 50, 107, 117]), we do not hold strict simplifying as-
sumptions on the interferencemodel (i.e., absence of fading and of ad-
ditive noise). Moreover, we investigate both linear (i.e., average-) and
nonlinear (i.e., max-) consensus protocols. Besides these theoretical
findings, we propose the usage of such approaches for two practical
problems: the solution of linear algebraic equations over the wireless
channel and a consensus-based formation control approach for non-
holonomic robots that aim at saving wireless resource by exploiting
the superposition property of the channel.

This thesis is the sum of multiple works and scientific publications
in the field (see Section 1.3), that span a time of three years, from
the beginning of 2018 to the end of 2020. Such contributions have
been published thanks to the support of the German Science Foun-
dation (Deutsche Forschungsgemeinschaft), under their priority pro-
gramme SPP-1914, ”Cyber-physical networking”.

1.2 Structure
Following this introduction, the thesis presents threemain parts. Chap-
ters 2-4 give some basic knowledge about consensus, its applications,
and the communication methods. Average- and max-consensus over
the wireless channels are the topic of Chapters 5-6. Finally, the usage
of interference for reaching a formation in space is the topic of Chap-
ter 7. A brief summary about each chapter is as follows:
• Chapter 2: The employed mathematical notation is explained. Pre-

requisites in linear algebra and matrix theory, together with prop-
erties of nonnegative matrices are reviewed. Standard approaches
to average- and max-consensus are the topic of the last part of this
chapter;

• Chapter 3: A context in which both average and max-consensus
find practical application is the field of autonomous vehicles. First,
we review how a consensus-based algorithm contributes to the au-
tomation of a road intersection. After that, both average and max-
consensus are used for the automation of a highway;

• Chapter 4: We review standard wireless protocols and we briefly
present the so-calledWirelessMultipleAccessChannel, whichmod-
els the way multiple signals interfere at a receiver. This model will
be the base for the development of our consensus protocols;

• Chapter 5: We present an average consensus protocol over fading
wireless channels. Starting from such protocol, we present a strat-
egy to solve linear algebraic equations by exploiting interference;
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• Chapter 6: The topic of this chapter is a switching consensus proto-
col that exploits interference and allows the system to achieve max-
consensus in finite-time;

• Chapter 7: We extend the average consensus protocol so that a
group of robots moving in space can achieve a formation by ex-
ploiting the interference property of the channel. We propose a so-
lution for agents having both single-integrator dynamics and non-
holonomic dynamics;

• Chapter 8: This chapter contains final remarks and a final summary
which also collects future work;

• Appendix: In the appendix we include some mathematical con-
cepts that are of use throughout the thesis.

1.3 Related Publication of the Author
Some parts of this thesis have been extracted from the following pub-
lications, to all of which the author is the main contributor.

. Molinari, Fabio, Slawomir Stanczak, and Jörg Raisch. ”Exploit-
ing the superposition property of wireless communication for aver-
age consensus problems inmulti-agent systems.” In 2018 European
Control Conference (ECC), pp. 1766-1772. IEEE, 2018.

. Molinari, Fabio, Sławomir Stańczak, and Jörg Raisch. ”Exploit-
ing the superposition property ofwireless communication formax-
consensus problems in multi-agent systems.” IFAC-PapersOnLine
51, no. 23 (2018): 176-181.

. Molinari, Fabio, Navneet Agrawal, Slawomir Stanczak, and Jörg
Raisch. ”Max-Consensus Over Fading Wireless Channels.” IEEE
Transactions on Control of Network Systems (2021).

. Molinari, Fabio, and Jörg Raisch. ”Exploitingwireless interference
for distributively solving linear equations.” IFAC-PapersOnLine 53,
no. 2 (2020): 2999-3006.

. Molinari, Fabio, Alexander Katriniok, and Jörg Raisch. ”Real-Time
DistributedAutomationOfRoad Intersections.” IFAC-PapersOnLine
53, no. 2 (2020): 2606-2613.

. Molinari, Fabio, and Jörg Raisch, ”Efficient Consensus-based For-
mation Control With Discrete-Time Broadcast Updates,” 2019 IEEE
58thConference onDecision andControl (CDC),Nice, France, 2019,
pp. 4172-4177.

. Molinari, Fabio, AaronGrapentin, AlexandrosCharalampidis, and
Jörg Raisch. ”Automating lane changes and collision avoidance on
highways via distributed agreement.” at-Automatisierungstechnik
67, no. 12 (2019): 1047-1057.
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. Molinari, Fabio, and Jörg Raisch. ”Automation of road intersec-
tions using consensus-based auction algorithms.” In 2018 Annual
American Control Conference (ACC), pp. 5994-6001. IEEE, 2018.

. Molinari, Fabio, Alexander Martin Dethof, and Jörg Raisch. ”Traf-
fic automation in urban road networks using consensus-based auc-
tion algorithms for road intersections.” In 2019 18th European Con-
trol Conference (ECC), pp. 3008-3015. IEEE, 2019.

In the incipit of each chapter, we indicate the previous publication
from which that chapter is extracted, if any. All such previous publi-
cations have the author as the main contributor.





2
Fundamentals

2.1 Preliminaries

Sets

Throughout this work, let N0, respectively N, denote the set of non-
negative numbers, respectively positive integers. The set of real num-
bers, nonnegative real numbers, and positive real numbers are, re-
spectively,R,R≥0, andR>0. The set of complex numbers isC. Given a
set ofm ∈ N points in the n-dimensional space, i.e., A = {ai}i=1...m ⊆
Rn, n ∈ N, its convex hull is C (A). Formally,

C (A) = {
m∑

i=1

λiai | λi ≥ 0,
m∑

i=1

λi = 1}.

The indicator function of a set S ⊆ R is denoted by IS : R $→ {0, 1}
and we have IS(x) = 1 if x ∈ S and 0 otherwise.

Graphs

Let G := (N ,A) denote a graph, where N := {1 . . . n} is the set of
nodes, labeled 1 to n ∈ N, and A is the set of arcs; the definition of
this latter depends on whether G is directed or undirected. Let Au be

1

2

3

(N ,Au) :

1

2

3

(N ,A) :

Figure 2.1: Undirected and directed
graphs.

the set of arcs of an undirected graph. We have Au ⊆ [N ]2, where
[N ]2 represents the set of all two-elements subsets of N . Accordingly,
{i, j} ∈ Au if an (undirected) arc exists between nodes i, j ∈ N .
For a directed graph, the arc set is A ⊆ N × N , namely (i, j) ∈ A if



8 CONSENSUS-BASED CONTROL OVER WIRELESS CHANNELS

a (directed) arc goes from node i ∈ N to j ∈ N . In a directed graph,
for i ∈ N , (i, i) is called self-arc of node i. In a directed graph, if there
exists an arc (i, j), i is a parent node of node j, and j is a child node of
node i. The set of neighbor nodes of node i ∈ N , denoted Ni ⊆ N ,
is the set of all nodes connecting to i. In a directed graph, Ni is the
set of all parents of node i. Formally, the neighbor set is defined for
undirected and directed graphs, as, respectively,

Ni := {j ∈ N | {i, j} ∈ Au} (2.1)

and
Ni := {j ∈ N | (j, i) ∈ A}. (2.2)

1

2

1

3

(N ,Au) :

3

2(N ,A) :

Figure 2.2: Neighbors of node i = 3 are
highlighted in yellow.

In many contexts, time-varying graphs are considered. Let

G := {G(k)}k∈N0
= {(N ,A(k))}k∈N0

be a sequence of graphs where k ∈ N0 is the iteration index and G(k)
is the graph at iteration k ∈ N0. In the sequence G, the set of arcs
varies at every iteration, i.e., (i, j) ∈ A(k) if a directed arc goes from
node i ∈ N to node j ∈ N at iteration k ∈ N0 (the undirected case can
be easily obtained). The respective set of neighbors of agent i ∈ N
at iteration k ∈ N0 is Ni(k). A sequence of time-varying weighted
directed graphs is

Gw := {Gw(k)}k∈N0
= {(N ,A(k),W(k))}k∈N0

,

where the set of arcs’ weights W(k) is defined as

W(k) := {wi,j(k) ∈ R>0 | (i, j) ∈ A(k)}.

The undirected case can be easily obtained.
Let a path be defined as a sequence of nodes, such that each adja-
cent pair is connected by an arc. An undirected (directed) graph is
connected (strongly connected) if a path exists between each pair of
nodes. A directed, respectively undirected, graph G(k) is fully con-
nected if,

∀i ∈ N , ∀j ∈ N \ {i}, (i, j) ∈ A(k),

respectively {i, j} ∈ Au(k). A rooted directed tree is a directed graph
in which every node has exactly one parent apart from one node, i.e.,
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1

2

3

t = 2p+ 1 :

1

2

3

t = 2p :

0.3

0.2

1

0.6

0.3

0.1

Figure 2.3: Sequence of weighted di-
graphs for p = 0, 1, . . . .

1

2

3

G1 :

1

2

3

G2 :
Figure 2.4: Strongly connected (G2) and
not strongly connected (G1) graphs.

the root node, that has no parents but has a directed path to every other
node. A directed graph G contains a directed rooted spanning tree if and
only if G has at least one node with a directed path to all other nodes.
A directed graph is balanced if the sum of incoming arcs’ weights and
outgoing arcs’ weights corresponding to each node are equal, i.e., if,
∀i ∈ N ,

n∑

j=1

wi,j =
n∑

j=1

wj,i.

1

2 3

4

G1 :

1

2 3

4

G2 :
Figure 2.5: A fully connected directed
graph (G1) and a directed graph con-
taining a directed rooted spanning tree
highlighted in blue (G2).

Two directed graphs with the same vertex setN , i.e., G(1) and G(2),
are given. Their composition, namely G(2) ◦ G(1), is a graph with the
same vertex set N and an arc set defined such that (i, j) is an arc if
and only if (i, ") ∈ G(1) and (", j) ∈ G(2). Let G be a finite sequence
of q ∈ N directed graphs. The sequence is jointly strongly connected
if G(q) ◦ G(q − 1) ◦ · · · ◦ G(1) strongly connected. Let now G be an
infinite sequence of graphs with the same vertex set. The sequence is
repeatedly jointly strongly connected if there exists p ∈ N such that
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each finite sequence G(p(k+1)) ◦ · · · ◦G(pk+1) is strongly connected.

1

2 3

4

G(1) :

1

2 3

4

G(2) :
Figure 2.6: Jointly strongly connected
sequence of graphs. G(1) and G(2) are
individually not strongly connected, but
their sequence is jointly strongly con-
nected.

Matrices

Let A ∈ Rn×m be a matrix of real numbers, where n,m ∈ N. The
entry in position (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m, is [A]ij . The transpose of
A is denoted A′. The spectral radius of a square matrix A is denoted
ρ(A). The n-dimensional column vector of ones is 1n and the column
vector of zeros is 0n. The n-dimensional identity matrix is In. Given a
vector vn, its entry in position i is [vn]i, 1 ≤ i ≤ n. The n × n matrix
whose diagonal entries are the entries of vn (and off-diagonal entries
are zero) is diag (vn).

Definition 1. Matrix A ∈ Rn×m is nonnegative (positve) if each entry is
nonnegative (positive).

Definition 2. The nonnegative matrix A ∈ Rn×n is row-stochastic if each
row sums up to 1.

Definition 3. The nonnegative matrix A ∈ Rn×n is column-stochastic if
each column sums up to 1.

Amatrix both row- and column-stochastic is calleddoubly-stochastic.
Given twononnegativematrices of the samedimension, namelyA and
B, we say that A is of the same type of B, and we write A ∼ B, if
nonzero entries of A and B are in the same positions. Given matrix
A ∈ Rn×m, its kernel (or null space) is

ker(A) := {v ∈ Rm | Av = 0n},

its nullity is denoted by nullity(A) and is defined as the dimension of
ker(A), and its rank is denoted by rank(A) and is the dimension of the
vector space spanned by its columns.
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2.2 Properties of Nonnegative and Positive Matrices
Definition 4 (AdjacencyMatrix). The adjacency matrixA ∈ Rn×n of a
directed weighted graph Gw with node setN = {1, . . . , n} is defined through
its elements such that, ∀i, j ∈ N , [A]ij = wj,is if (j, i) ∈ A, otherwise
[A]ij = 0.

Definition 5 (Laplacian). Let A ∈ Rn×n be the adjacency matrix of a
directed weighted graph. Then, the Laplacian of the graph, L ∈ Rn×n, is
defined by

L := D −A,

where D is the degree matrix, which is a diagonal matrix whose diagonal
elements are, ∀i ∈ N ,

[D]ii :=
∑

j∈N
[A]ij .

Definition 6 ([37, Definition 6.2.11]). A nonnegative matrix A ∈ Rn×n

is given. Then Γ(A) is defined to be the weighted directed graph with adja-
cency matrix A.

Definition 7 ([37, Definition 6.2.21]). A matrix A ∈ Rn×n is reducible
if there exists a permutation matrix Π such that Π · A · Π′ is in block upper
triangular form.
A matrix is irreducible if it is not reducible.

Proposition 1 ([37, Theorem 6.2.14]). The graph Γ(A) with A nonnega-
tive is strongly connected if and only if A is irreducible.

Definition 8 ([37, Theorem 8.5.2]). The nonnegative matrix A ∈ Rn×n

is primitive if and only if Am is positive for some m ≥ 1.

The exponent to which a nonnegative matrix can be elevated so as
to obtain a positive matrix has been determined by Wielandt.

Theorem 1 ([37, Corollary 8.5.8]). LetA ∈ Rn×n be nonnegative. Then,
A is primitive if and only if An2−2n+2 is positive.

Corollary 1 ([37, Lemma 8.5.4]). An irreducible matrix with positive di-
agonal is primitive.

The followingwell-known result, the so-calledPerron-Frobenius The-
orem, helps determining the convergence conditions of primitive ma-
trices.

Theorem 2 ([37, Theorem 8.2.8, Theorem 8.5.1, pg. 516]). Let A ∈
Rn×n

>0 be a primitive matrix. Then

1. ρ(A) > 0

2. ρ(A) is an algebraic simple eigenvalue of A

3. There is a unique real positive vector vn such that Avn =

ρ(A)vn

4. There is a unique real positive vector wn such that w′
nA =

ρ(A)w′
n and w′

nvn = 1
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5. |λ| < ρ(A) for every eigenvalue λ of A such that λ ,= ρ(A)

6. (ρ(A)−1A)m → vnw′
n as m → ∞.

Another useful tool for analyzing the spectrumof products of prim-
itive matrices is the so-called Gersgorin Theorem.

Theorem 3 ([31, Theorem 6.8]). Every eigenvalue λ of a real n × n ma-
trix A satisfies at least one of the inequalities

|λ− [A]ii| ≤
n∑

j=1
j &=i

|[A]ij |,

i = 1, . . . , n.
The circles on the complex plane centered in [A]ii with radius

n∑

j=1
j &=i

|[A]ij |,

∀i = 1 . . . n, are the Gershgorin discs of matrix A. One can see that all
eigenvalues of matrix A lie inside of the union of its Gershgorin discs.

Proposition 2. Given two row-stochasticmatrices, their product is also row-
stochastic.

Proof. LetA andB be row-stochastic. Their product is defined through
its elements as, ∀i, j ∈ [1, n],

[AB]ij =
n∑

k=1

[A]ik[B]kj .

The row-sum of AB is, ∀i ∈ [1, n],
n∑

j=1

[AB]ij =
n∑

j=1

n∑

k=1

[A]ik[B]kj =
n∑

k=1

[A]ik(
n∑

j=1

[B]kj) =
n∑

k=1

[A]ik = 1.

This concludes the proof.

The convergence properties of products of primitive matrices can
also be characterized thanks to the contributions of Wolfowitz, see
[113]. Given a row-stochastic matrix P , let δ(P ) be a measure of how
different the rows ofP are (see [113]). LetA1, . . . , Ak be row-stochastic
matrices of the samedimension. AnyproductAi1 ·· · ··Ai! , {i1, . . . , i!} ⊆
{1, . . . , k}, " ≥ 1, is called word in the A’s.

Theorem 4 ([113, Theorem 1]). Let A1, . . . , Ak be row-stochastic ma-
trices of the same dimension, such that any product combination of them is
primitive1 and row-stochastic. For any ε > 0, there exists ν(ε) ∈ N such that 1 Wolfowitz’s results apply for inde-

composable, aperiodic, stochastic matrices
(SIA). [97, pg. 147] claims that Markov
proved that SIA matrices and primitive
matrices have the same properties.

Ai1 · · · · ·Aiν(ε)
, {i1, . . . , iν(ε)} ⊆ {1, . . . , k}, satisfies

δ(Ai1 · · · · ·Aiν(ε)) < ε.

This theorem shows that any sufficiently long product in the A’s
has all its rows approximately the same. To this end, it is sufficient to
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require any product in theA’s to be primitive. Theorem 4 implies that
an infinite product of primitive row-stochastic matrices converges to a
matrix whose rows are all identical, i.e.

lim
k→∞

AkAk−1 · · · · ·A1A0 = 1nr
′
n, (2.3)

where rn ∈ Rn. It is also possible to characterize more precisely this
vector rn. In fact, by Proposition 2, 1nr′n is also row-stochastic, since
product of row-stochastic matrices. Thus, rn is such that r′n1n = 1,
namely, ∑n

i=1[rn]i = 1.
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2.3 Standard Approaches to Consensus

Amulti-agent system is a collection of distinct agents that need to col-
laborate to achieve some global tasks. Each agent has the individual
capability of dealing with the surrounding environment, be it mov-
ing in space or performing some specific actions. Inter-agent coop-
eration is enabled by letting individual agents exchange information
with each other. Thus, the underlying network topology, i.e., the an-
alytical structure of the communication system, can be modeled by a
graph (be it invariant or variant through time). In particular, for an
agent setN = {1, . . . , n}, where agents are labeled 1 to n, the directed
graph G = (N ,A) models the underlying network topology, i.e., each
directed arc (i, j) in A is defined (exists) if agent i ∈ N transmits in-
formation to agent j ∈ N . Information is exchanged at discrete-time
steps, although in literature also continuous-time exchange of infor-
mation is presented.

To perform a cooperative task, agents are required to share a com-
mon view of both the environment and the goal. Thus, achieving
an agreement on entities of common interest (normally variables) is
paramount for any multi-agent system. Consensus is a useful tool to-
wards this end. In fact, consensus guarantees that individual agents
sharing information with each other get to an agreement that is criti-
cal for achieving the common goal. Thorough summaries of the topic
are in [92], [89], and [90]. Each agent has a local estimation of the
variable of common interest that needs to be agreed upon. This local
guess is called information state and it is commonly denoted by xi (for
agent i ∈ N ). The information state dynamics is the way the local in-
formation state is updated according to the information received from
other agents. This is precisely the consensus protocol.

In what follows, we review two main families of consensus proto-
cols: average- and max-consensus. As it will be carefully explained in
Section 4, traditional communication protocols are employed, so that,
if (i, j) ∈ A, then j can retrieve the information of agent i. Orthogo-
nal channel access methods allow a receiver to individually reconstruct
the information sent by each transmitter. The topic of communication
technology will be the focus of Section 4.

2.3.1 Average consensus

Continuous time

If the communication network allows continuous communication
or if the bandwidth is sufficiently large, then the formalismof a continuous-
time consensus dynamics can be employed. The underlying network
topology is represented (in the general case) by a time-varyingweighted
directed graph, i.e., ∀t ∈ R≥0, (N ,A(t),W(t)). The most common
continuous time average-consensus protocol in literature (see [29, 78,
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92]) is, ∀i ∈ N ,

∀t ∈ R≥0, ẋi(t) = −
n∑

j=1

aij(t)(xi(t)− xj(t)), (2.4)

where aij(t) is the (i, j) entry of the adjacencymatrix of graph (N ,A(t),W(t)).
By definition of neighbors set and adjacency matrix, aij(t) ,= 0 if and
only if j ∈ Ni(t). By this, (2.4) can be rewritten as

∀t ∈ R≥0, ẋi(t) = −
∑

j∈Ni(t)

aij(t)(xi(t)− xj(t)). (2.5)

By this consensus protocol, it turns out that the information state xi(t)

is driven towards the information states of i’s neighbors. This leads to
the conclusion that xi(t) remains constant (i.e., we have equilibrium)
at time t ∈ R≥0 if

∀j ∈ Ni(t), xi(t) = xj(t), (2.6)
i.e., when i and all its neighbors share the same local estimation of the
variable of common interest2. If this is the case for all agents, consen- 2 That is to say that they have the same

information state.sus is achieved. Formally, this is true if

∃t ∈ R≥0 : ∀i, j ∈ N , xi(t) = xj(t) = x∗. (2.7)

The conditions for which (2.7) eventually applies have been investi-
gated in literature (see [92] for a complete summary) andwill be here
reviewed. To this end, a common tool employed for convergence anal-
ysis comes directly from matrix theory. Let, ∀t ∈ R≥0, xxx(t) ∈ Rn stack
all information states, i.e.,

∀i ∈ N , [xxx(t)]i = xi(t). (2.8)

Dynamics (2.5) can be rewritten in the corresponding matrix form as

ẋxx(t) = −L(t)xxx(t), (2.9)

where, ∀t ∈ R≥0, L(t) is the Laplacian of graph (N ,A(t),W(t)).
In case the arcs set is constant, L(t) is time-invariant, i.e., ∀t ∈ R≥0,

L(t) = L; system (2.9) becomes, ∀t ∈ R≥0,

ẋxx(t) = −Lxxx(t), (2.10)

so that
lim
t→∞

xxx(t) = lim
t→∞

e−Ltxxx(0).

When talking about eigenvalues, for (2.7) to hold for t → ∞, L(t)
needs to have one eigenvalue in the origin, with all other eigenval-
ues in the left half-plane. The following proposition then provides a
sufficient condition for this.
Proposition 3 ([79, Theorem 1.i]). If the underlying network topology is
a strongly connected weighted digraph, then the system achieves consensus,
i.e., (2.7) holds for t → ∞.
Definition 9. The linear average of a set of values is the arithmetic mean
of all the values. The weighted average is the convex combination of all the
values, where all coefficients are non-negative and sum to 1.



16 CONSENSUS-BASED CONTROL OVER WIRELESS CHANNELS

1

2 3

4

G :

0.2

0.3
0.1

0.9
0.6 A =





0 0.3 0 0

0 0 0.2 0

0.9 0 0 0.6

0 0.1 0 0





Figure 2.7: Underlying network topol-
ogy and corresponding adjacency ma-
trix for Example 1.

Example 1. A multi-agent system composed of n agents is given where
n = 4. The underlying network topology is time-invariant and is depicted in
Figure 2.7. The initial information states vector is

xxx(0) = [0.5, 2,−1, 0.1]′.

All agents run (2.5). Consensus is asymptotically achieved at x∗ = 0.92

and the result is illustrated in Figure 2.8. Note that the agreement value is
not the linear average of the initial values.
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Figure 2.8: Asymptotic convergence to
the consensus for Example 1.

However, having a strongly connected topology is not the strictest con-
dition. In fact, it has been proven in [91] that the necessary and suffi-
cient graph condition for (2.9) to achieve consensus is that the under-
lying network topology should contain a rooted directed spanning tree3. 3 Whose meaning has been clarified in

the previous section.This is formalized by the following proposition.
Proposition 4 ([91, Theorem 2]). System (2.9) achieves consensus if and
only if the underlying network topology contains a directed rooted spanning
tree.
Example 2. The topology in Figure 2.9 contains a directed rooted spanning
tree, with node 2 as root. Initial conditions are as in Example 1. Node 2 has
no parents, thus it does not receive any information from other nodes. This
implies that all agents will eventually reach the same state equal to x2(0).
The contributions of all other initial information states will be lost. This is
illustrated in Figure 2.10.
Remark 1. Although the graph being a directed rooted spanning tree consti-
tutes the formal necessary and sufficient condition for consensus, we consider
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Figure 2.9: Underlying network topol-
ogy and corresponding adjacency ma-
trix for Example 2.
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Figure 2.10: Asymptotic convergence to
the consensus for Example 2.

this condition irrelevant for the problem at hand. In fact, in the case the graph
itself is a directed rooted spanning tree, the root-agent will eventually spread
its initial information state across the network. This is a degeneration of the
concept of distributed agreement, since it does not involve any negotiation
with other agents, but only propagation of information. A

Because of the latter remark, throughout this paper, we will not con-
sider the case of a directed rooted spanning tree, but we will rather
focus on strong connectedness as a sufficient condition for consensus.

Proposition 5 ([79, Theorem 1.ii]). The consensus value of system (2.10)
is

x∗ = wnxxx(0),

wherewn is the left eigenvector of L associated with the eigenvalue λ = 0.4 4 By [79, Theorem 1], if the underly-
ing network topology is strongly con-
nected, its corresponding Laplacian has
a unique real eigenvalue in λ = 0.

Definition 10. A weighted directed graph is balanced if, for each node, the
sum of the weights of the arcs outgoing from that node is equal to the sum of
the weights of the arcs incoming to that node.

Proposition 6 ([79, Theorem 1.iii]). If the underlying network topology is
a balanced digraph, the consensus value of system (2.10) is the linear average
of initial information states, i.e.,

x∗ =
1

n
1′
nxxx(0).

In case the arcs set changes with time, the underlying topologyL(t)
is time-variant; in most literature this topic is addressed as consensus
in switching networks, see [79, Sec.III]. [78, 79] contain convergence re-
sults for this case. It is, in fact, typical to consider the communication
topology to be piecewise constant over finite lengths of time (referred to
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as dwell times). These are lower bounded by a positive constant. This
yields that L(t) is piecewise constant with dwell times τk = tk+1 − tk,
k ∈ N0. By (2.9),

lim
t→∞

xxx(t) = lim
k→∞

e−L(tk)τke−L(tk−1)τk−1 · · · · · e−L(t0)τ0xxx(t0). (2.11)

The following assumption is typically formulated in literature.

Assumption 1 ([89, Sec. 2.3.1]). Dwell times are nonzero and uniformly
lower bounded.

Remark 2 ([92]). If the topology at dwell time tk is strongly connected,
e−L(tk)τk is a row-stochastic, nonnegative, and irreducible matrix with pos-
itive diagonal.

The latter remark shows that, by (2.11) and Corollary 1, the conver-
gence analysis of consensus in switching networks reduces to the study
of products of primitive row-stochastic matrices.

Theorem 5. If the underlying network topology at every dwell time tk, k ∈
N0, is strongly connected, then system (2.9) achieves consensus, i.e., (2.7)
holds for t → ∞.

Proof. By Remark 2 and by the hypotheses of the theorem, ∀k ∈ N0,
L(tk) is row-stochastic, nonnegative, and primitive. By Theorem 4 and
(2.3),

lim
k→∞

e−L(tk)τke−L(tk−1)τk−1 · · · · · e−L(t0)τ0

converges to a square matrix of rank 1 (all rows are identical), i.e.,
(2.7) holds. This formalizes the case inwhichwe have an infinite num-
ber of switchings. On the other hand, in case we have a finite number
of switchings, the last interval is infinite, and this trivially reduces to
the time-invariant case. This concludes the proof.

Example 3. A sequence of randomly generated strongly connected weighted
digraphs, say G, is employed. Switchings are shown in Figure 2.11. The
network is composed of 4 agents with the same initial information states as
Example 1. Results are illustrated in Figure 2.11.
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Figure 2.11: Asymptotic convergence to
the consensus for Example 3. Switch
times are highlighted by dashed lines.

However, a sequence of strongly connected topologies is not the strictest
condition for consensus.
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Theorem 6. System (2.9) achieves consensus if the sequence of underlying
network topologies is repeatedly jointly strongly connected, i.e., (2.7) holds.

Proof. The proof follows directly from [89, Theorem 2.3.1].

Example 4. The employed sequence of weighted digraphs, sayG, is randomly
generated to be p-repeatedly strongly jointly connected, with p = 4. The
network is composed of 4 agents with the same initial information states as
Example 1. Results are illustrated in Figure 2.12. Agent 3 (yellow) does not
have any parent node in the communication graph until the third dwell time
(dashed line); in correspondence to this, in fact, agent 3’s information state
is driven towards another agent’s. The underlying topologies during the first
4 dwell times are illustrated in Figure 2.13.
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Figure 2.12: Asymptotic convergence to
the consensus for Example 4. Dwell
times are highlighted by dashed lines.
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Figure 2.13: First four underlying
topologies belonging to the 4-repeatedly
jointly strongly connected sequence of
Example 4.
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Discrete-time

The formalism of difference equations is used in most literature
since, in general, communication between agents occurs at discrete
instants of time. A common discrete-time consensus protocol (see
[40, 70]) is, ∀i ∈ N , ∀k ∈ N0,

xi(k + 1)− xi(k) = −
n∑

j=1
j &=i

wij(k)(xi(k)− xj(k)) (2.12)

where ∀i ∈ N , ∀j ∈ N , ∀k ∈ N0, wij(k) ∈ R≥0 and wij(k) > 0 if and
only if j ∈ Ni(k). Thus, (2.12) can be rewritten as

∀k ∈ N0, xi(k + 1) = wii(k)xi(k) +
∑

j∈Ni(k)

wij(k)xj(k), (2.13)

where wii(k) = 1−
∑

j∈Ni(k)
wij(k). Clearly, ∀i ∈ N , ∀k ∈ N0,

n∑

j=1

wij(k) = 1. (2.14)

In the following, we will assume thatwii(k) are positive. Let, ∀k ∈ N0,
xxx(k) ∈ Rn stack all information states, i.e.,

∀i ∈ N , [xxx(k)]i = xi(k). (2.15)

Dynamics (2.12) can be rewritten in the corresponding matrix form
as

∀k ∈ N0, xxx(k + 1) = D(k)xxx(k), (2.16)
where, ∀k ∈ N0, D(k) is a nonnegative and row-stochastic square ma-
trix of order n with positive diagonal. For every k ∈ N0, by Defini-
tion 6, the weighted directed graph Γ(D(k)) = (N ,A(k),W(k)) has
adjacency matrix D(k), where ∀i, j ∈ N , ∀k ∈ N0,

[W(k)]ij =





wij(k) ∈ R>0 if j ∈ Ni(k) ∪ {i}
0 otherwise

.

As a consequence,

Gw := {Gw(k)}k∈N0
= {(N ,A(k),W(k))}k∈N0

is the sequence of time-varying weighted directed graphs with adja-
cency matrices D(k), k ∈ N0. Let’s first analyze the case of a time-
invariant topology, i.e., ∀k ∈ N0, D(k) = D, which leads to having
system

∀k ∈ N0, xxx(k + 1) = Dxxx(k). (2.17)
By the latter,

lim
k→∞

xxx(k) = lim
k→∞

Dkxxx(0). (2.18)

Whether system (2.17) converges to consensus or not depends on the
spectral properties of matrix D. Let G = (N ,A,W) with adjacency
matrixD be the underlying network topology, i.e., aweighted directed
graph of matrix D.
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Proposition 7. If the underlying network topology is strongly connected,
system (2.17) achieves consensus, i.e.,

lim
k→∞

xxx(k) = 1nx
∗.

Proof. By Proposition 1, D is irreducible. By the latter and by Corol-
lary 1, since D has a positive diagonal, D is primitive. Because of
(2.14), D is row-stochastic, hence

D1n = 1n

and 1 is an eigenvalue of D with corresponding right eigenvector 1n.
Because of Theorem 3, all eigenvalues ofD lie within discs centered in
wii and with radius 1− wii.5 Finally, because of Theorem 2, ρ(D) = 1 5 Therefore, no eigenvalues are strictly

larger than 1.is the spectral radius of D and, by Theorem 2.6,

lim
k→∞

xxx(k) = lim
k→∞

Dkxxx(0) = lim
k→∞

(ρ(D)−1D)kxxx(0) = 1nw
′
nxxx(0),

where w′
n is the left eigenvector6 of D with eigenvalue 1. For x∗ := 6 By Theorem 2.4, w′

n1n = 1.
w′

nxxx(0), the proof is completed.

Example 5. The network is composed of 4 agents with the same initial in-
formation states and underlying network topology as Example 1. Incoming
weights to each node are normalized, such that (2.14) holds. This is illus-
trated in Figure 2.14. A numerical simulation is run until k = 50, so that
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Figure 2.14: Γ(D(k)) for Example 5.

agents asymptotically achieve an agreement at x∗ = 0.92. The outcome is
presented in Figure 2.15.
As for the continuous case, a stricter condition for consensus is that
the underlying network topology contains a directed rooted spanning
tree.
Proposition 8 ([89, Theorem 2.20]). System (2.17) achieves consensus if
and only if the underlying network topology contains a rooted directed span-
ning tree.

Proof. See [89, Theorem 2.20].
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Figure 2.15: Discrete-time numerical
simulation for Example 5.

However, as in Remark 1, we do not consider this condition to be
meaningful for the problem at hand, since it does not allow agents
to cooperate.

Example 6. The topology of Example 5 is slightly changed, so that Agent 4
does not have any parent. Thus, the topology is not strongly connected, but
contains a directed rooted spanning tree (with root in 4). As shown in Exam-
ple 2, there is no cooperation, but all agents will eventually reach asymptoti-
cally the initial information state of the root agent. Topology is in Figure 2.16
and numerical simulations are presented in Figure 2.17.

1

2 3

4

Γ(D(k)):

0.15

0.85

0.1
0.9

0.45

0.25

0.3

1

D =





0.85 0.15 0 0

0 0.9 0.1 0

0.45 0 0.25 0.3

0 0 0 1





Figure 2.16: Γ(D(k)) for Example 6.
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Figure 2.17: Discrete-time numerical
simulation for Example 6. The simula-
tion is stopped after 50 iterations; how-
ever, it shows that agents asymptotically
converge towards the initial information
state of Agent 4.
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For the time-variant case, for whichwij(k) are not constant through
time, the results for the discrete-time case are analogous to the ones
for the continuous-time case.

Proposition 9 ([89, Theorem 2.39]). System (2.16) achieves consensus if
the sequence of underlying network topologies is repeatedly jointly strongly
connected.

Proof. The proof follows directly from [89, Theorem 2.39].

Example 7. As for Example 3, a sequence of randomly generated strongly
connected weighted digraphs, say G, is employed. The network is composed
of 4 agents with the same initial information states as Example 1. Results are
illustrated in Figure 2.18.
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Figure 2.18: Asymptotic convergence to
the consensus for Example 7.

The scenario of Example 7 can be extended by considering a more
general condition on the sequence of topologies, as in Proposition 9.

Example 8. Under the restriction of 4-repeatedly joint strongly connected
topology and ∑

∈Ni
wij(k) < 1, a sequence of weighted directed graph G

is randomly generated. The first 8 elements of such a sequence are in Fig-
ure 2.20, is repeatedly jointly strongly connected. Simulation results are in
Figure 2.19.
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Figure 2.19: Discrete-time numerical
simulation for Example 8.
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Figure 2.20: Underlying network topol-
ogy for Example 8.
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2.3.2 Max-consensus
Many distributed applications require that agents reach an agreement
on themaximum information state, e.g., when agents have to distribu-
tively elect a leader. As for the previous section, each agent updates
its information state according to the pieces of information received
from neighbors. Contrarily to what done for the average-consensus,
max-consensus protocols have been presented only in discrete-time
frameworks. In fact, the most employed max-consensus protocol is as
follows:

∀i ∈ N , ∀t ∈ R≥0, xi(k + 1) = max
j∈Ni(k)∪{i}

xj(k). (2.19)

For the case of a time-invariant underlying network topology, we refer
to the contribution given by [75]. In case the topology is time-variant,
[76] provides a valid analysis. The main results of both contributions
are analyzed in what follows. We initially review a graphical theoret-
ical concept.

Definition 11. The length of a path in a graph is the number of arcs in that
path.

Definition 12 (Longestminimumpath). In a directed graphG = (N ,A),
the minimum path from node i ∈ N to a node j ∈ N is the shortest existing
path from i to j. The longest minimum path of the graph is the maximum
among all minimum paths’ lengths. Formally, this is

"(G) = max
i,j∈N

{|i, j|min},

where, ∀i, j ∈ N , |i, j|min is the length of the minimum path from i to j

(minimum paths and longest minimum paths are nonunique).

Example 9. A network composed of n = 6 nodes is given in Figure 2.21.
The longest minimum path is coloured in blue.

1

2 3

4

5 6

G :
Figure 2.21: Highlighting the minimum
path for the network of Example 9,
which starts in Node 4 and finishes in
Node 2.

The following definition differentiates this case from (2.7).

Definition 13. Agents in set N achieve max-consensus if

∃k̄ ∈ N0 : ∀k ≥ k̄, ∀i ∈ N , xi(k) = x̄ := max
j∈N

xj(0). (2.20)

The following result applies to time-invariant underlying network topolo-
gies.
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Proposition 10 ([75, Corollary 4.2]). Agents in set N iterating (2.19)
over a strongly connected and time-invariant topology G = (N ,A) achieve
max-consensus in at most "(G) iterations.

Proof. See [75].

Example 10. An underlying network topology as the one in Figure 2.21 is
given. Its adjacency matrix is

A =





0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 1 1 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0





.

The vector of initial information states is

xxx(k) = [1, 2,−1, 4, 3, 0]′.

Numerical results are in Figure 2.22.
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0
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3

4

Agent 1 Agent 2 Agent 3 Agent 4
Agent 5

Figure 2.22: Discrete-time numerical
simulation for Example 10.

The following result generalizes the findings to a time-variant under-
lying network topology.

Proposition 11 ([76, Theorem 4.3]). Agents in set N iterating (2.19)
over a sequence of time-varying strongly connected topologies achieve max-
consensus within at most n− 1 iterations.

Proof. See [76].

Example 11. A sequence of strongly connected topologies is randomly gen-
erated and given in Figure 2.24. Agents, whose initial information states are
as in Example 10, iterate the max-consensus protocol (2.19) and achieve an
agreement to the maximum value in n− 1 = 5 iterations.
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Figure 2.23: Discrete-time numerical
simulation for Example 11.
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Figure 2.24: Underlying network topol-
ogy for Example 11.





3
Using Consensus for Practical Problems

Consensus is employed in scenarios in which agents need to distribu-
tively achieve an agreement on a quantity of common interest. Among
possible practical applications, control of vehicular traffichas attracted
much interest due to the social and economical impact, aswell as to the
ease of implementation and verification. Vehicular traffic is a hetero-
geneous multi-agent system in which agents have different objectives
and need to get to an agreement in order to homogenize the flow, thus
decreasing hazards and increasing throughput, see, e.g., [116]. The
following two scenarios describe this belief:

(i) Vehicles in a highway have different desired cruising speed. Pur-
suing their individual desired speeds would lead to traffic jam and
hazards, see [69]. Also, when theywish to change lane, they should
agree with all other traffic participants about the entry point.

Figure 3.1: Highway.
Copyright by Dreamstime.com

(ii) Vehicles crossing an intersection need to agree on who passes first.
Nowadays, traffic lights let the traffic reach an agreement on this.
In an autonomous vehicles scenario, agreement among all traffic

participants is the milestone for any distributed control strategy. In
fact, rather than employing a centralized omniscient controller, re-
cent effort in automotive research have beenmade towards distributed
control schemes, see, e.g., [56] and [43]. Indeed, adopting adistributed
solution allows for real-time implementability, does not require high
computational power, is compatible with plug-and-play scenarios in
which vehicles enter and exit the environment, and its computational
complexity does not increaseswith the number of vehicles. In contexts



30 CONSENSUS-BASED CONTROL OVER WIRELESS CHANNELS

Figure 3.2: Road intersection.
Copyright by Dreamstime.com

where autonomous systems must achieve agreement on quantities of
interest, consensus can be successfully employed. Vehicle to vehicle
communication (V2V) is assumed, so that information can be shared
between traffic participants. In what follows, Scenarios (i)-(ii) are an-
alyzed in the following sections and the content of some scientific pub-
lication of the candidate is extensively analyzed and illustrated.
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3.1 Consensus for Automating Road Intersections
Partial results of the presented section have been published in Molinari
and Raisch [59] andMolinari et al. [65]. Partial results of the presented
section have also been published in [67]. The candidate is the first au-
thor of all these contributions. The second author, Dr.-Ing. Alexander
Katriniok, has contributed to the parts regardingModel Predictive Con-
trol and Simulation Results.

One big challenge for automating vehicular traffic in urban scenarios is
the automation of road intersections, which tries to address the ques-
tion of how to let vehicles coming from different direction cross while
(i) avoiding collisions with others and (ii) maximizing the through-
put. These two goal have been already analyzed in research. In fact,
[18] proposes a distributed Model Predictive Control (MPC) scheme
that determines vehicles’ crossing order by solving two convex quadratic
programs. Heuristics for determining the crossing order can be found
in [19] and they pledge lower complexity an savalbility (in exchange
for suboptimality). However, [19], as well as [39], require a central
decision making for the crossing order, thus resulting in a non-fully
distributed approach. The candidate has presented in [59] a fully
distributed control scheme in which vehicles distributively negotiate
their crossing order. This has been possible thanks to a Consensus-
Based Auction Algorithm (CBAA-M) that let vehicles distributively
agree on the crossing order. However, these contributions do not ad-
dress real-time implementability. This topic is analyzed in [41], where
a real-time capable distributed nonlinear MPC is designed. Each ve-
hicle avoids collisions with vehicles having higher priority, and the
crossing order is decided by the distributed MPCs. However, priori-
ties are fixed and assigned in a centralized fashion.

Fully distributed and real-time capable are two paramount properties
for AV’s control schemes. The topic of this section is producing such
a control scheme and showing that consensus is a milestone on which
such an approach is built. In fact, the underlying idea is to bring to-
gether the CBAA-M algorithm by [59]1 for negotiating priorities and 1 This algorithm has been originally de-

signed by the candidate in 2018, see
Molinari and Raisch [59].the real-time capable distributed nonlinear MPC scheme by [41].

3.1.1 Problem description
The distributed control scheme relies on V2V communication. Each
vehicle (or agent), after solving an optimal control problem for its own
trajectory, shares the result with other agents. The following assump-
tions, reasonable for an in-vehicle implementation, are hold:

Assumption 2. A1. Only single intersection scenarios are considered; A2. A
single lane is available per direction; A3. The desired route of every agent to-
gether with its desired speed are determined by a high-level route planning
algorithm; A4. Agents are equipped with V2V communication; A5. No com-
munication failures or package dropouts occur; A6. The MPC solutions at
time k are available to all agents at time k+1; A7. Vehicle states are measur-
able and not subject to uncertainty.
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

c
[i]
k

V2V

V2V

Figure 3.3: Hierarchical control struc-
ture.
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Figure 3.4: Intersection in global coordi-
nates with origin at (0, 0). Regions of
the intersection are shown for Agent 1:
Intersection Control Region (ICR, blue),
Brake Safe Region (BSR, green), Criti-
cal Region (CR, red), and outside ICR
(white).

When two agents enforce collision avoidance (CA) constraints to-
wards each other, there is the need of solving a dual optimization
problem, which carries extra complexity. A common approach to pre-
vent the need of a dual optimization problem is to let only one agent of
the pair enforce a CA constraint towards the other. In [41], agents are
given fixed a-priori priorities, so that each agent holds CA constraints
only towards those with higher priority. However, this scheme as-
signs priorities based on initial conditions and in a centralized fashion
and does not account for the current traffic state. To tackle the online
assignment of priorities, the hierarchical control scheme in Fig. 3.3 is
designed. By interactingwith other traffic participant, each agent runs
CBAA-M thus obtaining a set of higher priority vehicles. The nonlin-
ear model predictive controller holds CA constraints towards higher
priority vehicles, thus deciding the crossing order, and therefore the
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input to each vehicle’s kinematics. This scheme shows how consensus
is employed in practical problems. It is also clear that an increased ef-
ficiency of consensus (under the point of view of converging time and
employed resources) is of extreme interest in many practical applica-
tions.

3.1.1.1 Kinematic Agent Model
The set of agents involved in the motion planning problem is N :=

{1, . . . , NA} where NA ∈ N. Each agent i ∈ A is assumed to move
along an a priori known path (Assumption A3), parameterized by its
path coordinate s[i], see 3.4. For such kind of coordination problems, a
simplified kinematic modeling approach is common in literature, see,
e.g, [38, 59]. In this work, the time evolution of the agent’s velocity v[i]

and path coordinate s[i] are described by a double integrator model
whereas drivetrain dynamics is modeled by a first-order lag element
and acceleration is denoted by a[i]x . This leads to the following linear
time-invariant state space model

d

dt




a[i]x
v[i]

s[i]



 =




−1/T [i]

ax
0 0

1 0 0

0 1 0





︸ ︷︷ ︸
A[i]




a[i]x
v[i]

s[i]





︸ ︷︷ ︸
x[i]

+




1/T [i]

ax

0

0





︸ ︷︷ ︸
B[i]

a[i]x,ref

︸ ︷︷ ︸
u[i]

, (3.1)

where T [i]
ax stands for the dynamic drivetrain time constant and u[i] =

a[i]x,ref is the reference acceleration (sent to the actuator). System (3.1)
is discretized using a zero-order hold, thus yielding

x[i]k+1 = A[i]
d x[i]k +B[i]

d u[i]
k , (3.2)

where A[i]
d = eA

[i]Ts , B[i]
d =

∫ Ts

0 eA
[i](Ts−τ)B[i]dτ , and

x[i]k := [a[i]x,k, v
[i]
k , s[i]k ]′,

with the subscript k denoting that the variable is sampled at time
kTs. While the kinematic agent model (3.2) describes Agent i’s mo-
tion along its local path coordinate s[i], the respective global coordi-
nates (x[i]

g (s[i]), y[i]g (s[i])) are used to formulate CA constraints. The
map F [i]

p : s[i] $→ (x[i]
g , y[i]g ) relates the local path coordinate s[i] to

the corresponding global Cartesian coordinates. The heading angle
ψ[i](s[i]) and the path curvature κ[i](s[i]) are yielded byF [i]

ψ : s[i] $→ ψ[i]

and F [i]
κ : s[i] $→ κ[i], respectively2. A thorough description of such 2 They can be obtained either as separate

spline curves or obtained from the first
and second derivative of F [i]

p .
function can be found in [41, Sec. IIb].

3.1.1.2 Intersection Model
The intersection is divided in regions as in [41, Sec. IIc], see Fig. 3.4.
In the intersection control region (ICR), that is, for s[i]icr,in ≤ s[i] < s[i]icr,out,
the controller needs to enforce collisions avoidance towards crossing
agents and agents driving ahead in the same lane. When entering the
brake safe region (BSR), defined by s[i]bsr,in ≤ s[i] < s[i]bsr,out, agents are
still able to stop safely before the critical region (CR). Only in the CR,
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i.e., s[i]cr,in ≤ s[i] < s[i]cr,out , collisions with crossing agents may happen.
Once abandoned the CR, only rear-end collision avoidance needs to
be enforced.

3.1.2 Consensus for crossing priorities
CBAA-M is a powerful algorithmbased on consensus that allows vehi-
cles (agents) to negotiate priorities in a fully distributed fashion. The
candidate has first presented and named this algorithm in Molinari
and Raisch [59], taking inspiration from the auction algorithm of [23].

At every sampling time k, agents in set {i ∈ N | s[i]k ≤ s[i]cr,out} partic-
ipate in a distributed auction and bid for having the highest possible
priority. The biddable quantity is determined by agent’s velocity and
position. The underlying communication network topology at sam-
pling time k ∈ N0 is modeled by the directed graph (N ,A), where A
is the set of arcs, i.e. (i, j) ∈ A iff at sampling time k vehicle i transmits
information to vehicle j. The result of this algorithm is that, at every
k ∈ N0, each vehicle i ∈ N obtains a set of higher priority vehicles,
i.e., A[i]

cross,k ⊂ N , towards which it will enforce CA constraints.

3.1.2.1 Bid computation
Reasonably, faster approaching vehicles (or vehicles closer to the BSR)
should obtain higher priorities than vehicles driving more slowly (or
being further away from the BSR). Moreover, a vehicle already inside
the BSR must have higher priority than vehicles still outside. Accord-
ingly, each vehicle i ∈ N at every sampling instant k ∈ N0 determines
its own bid as follows:

c[i]k :=






α1v
[i]
k +

α2

(s[i]bsr,in − s[i]k )
if s[i]bsr,in − s[i]k > α4

α3(s
[i]
k − s[i]bsr,in) + α5 else

,

where α1,α2,α3,α4,α5 ∈ R>0 are design parameters.

Remark 3. α1,α2,α3,α4,α5 ∈ R>0 are chosen such that vehicles inside
the BSR have always larger bids than vehicles outside, as in Fig. 3.5.

Assumption 3. For all distinct pairs of vehicles i, j ∈ N , ∀k ∈ N0, c[j]k ,=
c[i]k .

3.1.2.2 Consensus-based Auction Algorithm
CBAA-M is composed of two subsequent phases, a local auction phase
in which vehicles place their bids, and a cooperative phase in which
vehicles agree on the auction result. Let κ ∈ N denote the algorithm
iteration. Each vehicle i ∈ N has two vectors, i.e., vκi ∈ {0 . . . NA}NA

(containing the sorted list of agents) and wκ
i ∈ RNA

>0 (containing the
sorted list of bids), both initialized as null-vectors of dimension NA.
In order to avoid confusion of time indices, for the analysis, we drop
the time index k from c[i]k , thus focusing only on algorithm iteration
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Figure 3.5: Bid as function of vehicle’s
distance to the BSR. For s[i]bsr,in − s

[i]
k >

α4, the yellow area denotes all possible
bids (since the bid is also a function of
the speed). In this setting, α1 =

1

10
,

α2 = 5, α3 =
1

10
, α4 = 1, α5 = 7.

Algorithm 1: (Phase 1). Local Auction:
agents store locally their respective bid
in the earliest possible position.1: v0i = 0NA

, w0
i = 0NA

2: procedure BID(c[i], vκ−1
i , wκ−1

i )
3: vκi ← vκ−1

i

4: wκ
i ← wκ−1

i
5: loop:
6: if i #= (vκi )j , j = 1 . . . NA then
7: for j = 1 . . . NA do
8: if c[i] > (wκ−1

i )j then
9: (vκi )j ← i

10: (wκ
i )j ← c[i]

11: close;
12: close;

index κ.
Phase 1. Local Auction: at every iteration κ, each i ∈ N places, if its
index is not already stored in vκi , its own bid c[i] in the earliest possible
position of vectorwκ

i . In the same position, it stores its index in vector
vκi .
Phase 2. Consensus over the lists: after the local auction, each agent
has its own version of vκi and wκ

i . The network needs to agree on
them. To this end, each agent i ∈ N transmits its vectors to agents in
set N out

i := {j ∈ N | (i, j) ∈ A} (namely, set of out-neighbors) and
receives the vectors from agents in set N in

i := {j ∈ N | (j, i) ∈ A}
(namely, set of in-neighbors). Then, via a max-consensus protocol, it
selects the best bid for each row of wκ

i and puts in the same position
of vκi the respective agent’s index. After terminating Phase 2, (wκ

i )j is
the j-th highest bid that Agent i is aware of at iteration κ, and (vκi )j is
the index of the agent having placed that bid.

Algorithm 2: (Phase 2). Consensus:
agents agree on the auction result.1: SEND (vκi ,wκ

i ) to j ∈ N out
i

2: RECEIVE (vκh,wκ
h) from h ∈ N in

i
3: procedure UPDATE({vκh}h∈N IN

i ∪{i}, {wκ
h}h∈N IN

i ∪{i})
4: for j = 1 . . . NA do
5: if max

h
((wκ

h)j) > 0 then
6: (aκi )j ← argmax

h
((wκ

h)j)

7: (vκi )j ← (vκ(aκi )j
)j

8: (wκ
i )j ← max

h
((wκ

h)j)

9: else
10: close;
11: close;
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Proposition 12. A multiagent system with a strongly connected network
topology runs CBAA-M. Then, ∃κ̄ ∈ N:

∀i, j ∈ N , ∀κ > κ̄, vκi = vκj = v' = argsort(c),
wκ

i = wκ
j = w' = sort(c),

where ci = c[i] and κ̄ ≤ NA", where " := max
i,j

(pij), and pij is the number
of arcs in the shortest path3 from j to i. 3 A path in (N ,A) is a sequence of

nodes, such that each pair of adjacent
nodes is connected by a directed arc.Proof. It is immediate to verify that, if ∃κ1 such that, for one i ∈ N ,

vκ1
i = v' and wκ1

i = w', then ∀κ > κ1, vκi = v' and wκ
i = w'.

Denote by ι1 ∈ N the first agent obtaining the solution, i.e. vκ1
ι1 = v'

and wκ1
ι1 = w' for some κ1 ∈ N0 (at the corresponding Phase 1).

Agent ι1 is clearly the first agent that stores, in the Phase 1 of iteration
κ1, the valuemin(c) in the last entry of vectorwκ1

ι1 . Doing that, ι1 stores
also its own index in the last entry of vκ1

ι1 , thus proving ι1 = argmin(c),
namely ι1 is the agent with the lowest bid. This is possible only if, at
the end of Phase 2 of κ − 1, ∀j = 1 . . . NA − 1, (wκ1−1

ι1 )j = (w')j
(respectively, (vκ1−1

ι1 )j = (v')j).
Let now ι2 ∈ N be the first agent such that

∀j = 1 . . . NA − 1, (wκ2
ι2 )j = (w')j

(respectively, (vκ2
ι2 )j = (v')j), for some κ2 ∈ N0. As of above, it is also

clear that ι2 = argmin(~c), where c̃ := {c ∈ c | c > min c}, namely ι2 is
the agent with the second smallest bid.
By [75], since Phase 2 is based on max-consensus, propagating the
first (NA − 1) entries of ι2’s vector starting at iteration κ2 through the
whole network (thus also to ι1) requires at most " ∈ N iterations. This
yields that κ1 ≤ κ2 + ". Applying this recursively for every entry of
the solution vectors, yields

κ1 ≤ "+ · · ·+ "︸ ︷︷ ︸
NA−1

,

equivalently, κ1 ≤ (NA − 1)". Propagating v' and w' to the network
takes again at most " iterations. This shows that κ̄ ≤ κ1 + " ≤ NA",
thus concluding the proof.

3.1.3 Distributed Motion Planning
This section is extracted from Section 4 of the contribution ”Real-Time
Distributed Automation Of Road Intersections”, submitted to the 2020
IFAC World Congress, and derives from the collaboration with Dr.-Ing.
Alexander Katriniok.

All vehicles’ objectives (tracking and comfort) and some of their con-
straints (actuator constraints) are independent of other agents. Con-
versely, CA constraints couple different agent’s optimal control prob-
lems (OCPs). As in [41], a primal decomposition technique is used to
distribute the motion planning problem.
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3.1.3.1 Separable Objectives
The local objectives of each agent, say i ∈ N , are (i) to minimize the
deviation of the agent’s speed v[i] from the desired speed v[i]ref, and (ii)
to ensure comfort onboard and driving efficiency by minimizing the
acceleration u[i] = a[i]x,ref. Summing these objectives along the predic-
tion horizon (of length N) given time k yields

N∑

j=1

"[i]j (x[i]k+j|k, u
[i]
k+j|k) (3.3)

where

"[i]j (x[i]k+j|k, u
[i]
k+j|k) := q[i]

(
v[i]k+j|k − v[i]ref,k+j|k

)2
+ r[i] (u[i]

k+j|k)
2 (3.4)

and the terminal cost is

"[i]N (x[i]k+N |k) := q[i]N

(
v[i]k+N |k − v[i]ref,k+N |k

)2
, (3.5)

where q[i] > 0, q[i]N > 0 and r[i] > 0 are positive weights.

3.1.3.2 Separable Constraints
Due to actuator limitations, the demanded longitudinal acceleration
is bounded, i.e.,

∀j = 0, . . . , N − 1, u[i]
k+j|k ∈ U [i] :=

{
u ∈ R | a[i]x ≤ u ≤ a[i]x

}
, (3.6)

where a[i]x and a[i]x are upper and lower bounds. Vehicles do not drive
backwards nor exceed the maximum speed, namely v[i], thus

∀j = 1, . . . , N, x[i]k+j|k ∈ X [i]
k+j|k :=

{
x ∈ R3 | 0 ≤ (x)2 ≤ v[i]

}
. (3.7)

Comfort and vehicle stability while turning can be guaranteed by con-
straining the lateral acceleration a[i]y := κ[i](s[i])v[i]

2, i.e.,

∀j = 1, . . . , N, − a[i]y ≤ κ[i](s[i]k+j|k) · (v
[i]
k+j|k)

2 ≤ a[i]y , (3.8)

where a[i]y is an appropriate upperbound. Staying within the friction
circle (see, e.g., [86]) is important to the end of vehicle’s stability. This
can be enforced by constraining the total acceleration a[i]tot by

∀j = 1, . . . , N,

(a[i]x,k+j|k)
2 +

(
κ[i](s[i]k+j|k) · (v

[i]
k+j|k )

2
)2

≤ (a[i]tot)
2. (3.9)

3.1.3.3 Coupling Constraints
To decouple CA constraints, only one vehicle per pair of possibly col-
liding vehicles needs to enforce the CA. To this end, we need to distin-
guish between collisions with crossing agents and rear-end collisions.

For each pair of crossing agents, say i and l, we leverage the out-
put of CBAA-M. SetA[i]

cross,k, resulting from CBAA-M, contains higher
priority agents still inside of the CR. In contrast to [41],A[i]

cross,k is now
time-varying instead of being a priori fixed.
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To avoid rear-end collisions, only the following agent imposes CA
constraints towards the preceding agent. For each agent i ∈ N , at each
sampling time k, the set A[i]

ahead ⊂ A defines agents that are, currently,
in the same lane and ahead of Agent i.

Agent i at time k imposes CA constraints on vehicles, depending
on the particular scenario:

1. Agent i inside of the ICR: CA constraints are imposed on agents

l ∈ A[i]
c,k := A[i]

cross,k ∪A[i]
ahead. (3.10)

2. Agent i outside of the ICR: only rear-end CA constraints are im-
posed on agents

l ∈ A[i]
c,k := A[i]

ahead. (3.11)

All vehicles impose CA constraints towards current frontal vehicles.
Additionally, vehicles inside of the ICR need to enforce CA constraints
also towards higher priority vehicles.

Remark 4. It can happen that, at sampling time k0, one agent, say i, crosses
earlier than a higher priority agent, say l. In any case, because of the way bids
are computed, i will end up with a higher priority than l at the next step. In
fact, at time k > k0, (s[i]k − s

[i]
bs,in) > (s[l]k − s

[l]
bs,in), which implies, by the

computation of bids for CBAA-M, that i ends up obtaining higher priority
than l.
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basic safety region

Figure 3.6: Agent i’s safety region along
with Agent l’s bounding box in Agent i’s
Cartesian body frame.

For every agent l in the conflict set A[i]
c,k at time k, we examine the

area overlap of Agent i’s safety region and Agent l’s bounding box,
namelyAi,l, see Fig. 3.6. Agent i’s safety region is composed of a fixed
basic safety region and amotion dependent safety regionwhich depends
on the relative motion with respect to Agent l. Collision avoidance is
ensured if the overlap is zero. To this end, we introduce the equality
constraint

Ai,l
k+j|k = ∅, ∀l ∈ A[i]

c,k. (3.12)

for every time step k + j, j = 1, . . . , N over the prediction horizon. A
thorough analysis of this latter constraint is in [41, Sec.IIIb].
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3.1.3.4 Minimum Spatial Preview
To ensure collision avoidance, the spatial preview of every agent i, that
is the lookahead inmeters along the path coordinate s[i], has to be long
enough. Results contained in [41] show that each agent, say i, has to
leave the CR, at the latest, at the final time step k+N of the prediction
horizon, that is, s[i]k+N |k ≥ s[i]cr,out. If this is not possible, then Agent i
must stop before the stopping line, namely s[i]stop, before proceeding to
the CR. This constraint can be expressed as

[
−s[i]k+N |k + s[i]cr,out

]
+
·
[
s[i]k+N |k − s[i]stop

]
+
= 0, (3.13)

where [x]+ := max{0, x}.

3.1.3.5 Optimal Control Problem
By (Assumption A6), conflicting agents l ∈ A[i]

c,k have transmitted at
time k − 1 their optimized position, velocity and heading trajectories,
namely,

(x[l],'
g,·|k−1, y

[l],'
g,·|k−1,ψ

[l],'
·|k−1, v

[l],'
·|k−1).

With this pieces of information at hand, every agent i ∈ A solves the
following Optimal Control Problem (OCP) at time k

min
{uk+j|k}N−1

j=0

"[i]N (x[i]k+N |k) +
N−1∑

j=0

"[i]j (x[i]k+j|k, u
[i]
k+j|k) (3.14a)

s.t. x[i]k+j+1|k = A[i]
d x[i]k+j|k +B[i]

d u[i]
k+j|k (3.14b)

u[i]
k+j|k ∈ U [i], j = 0, . . . , N − 1 (3.14c)

x[i]k+j|k ∈ X [i]
k+j|k, j = 1, . . . , N (3.14d)

− a[i]y ≤ a[i]y,k+j|k ≤ a[i]y , j = 1, . . . , N (3.14e)
(a[i]tot,k+j|k)

2 ≤ (a[i]tot)
2, j = 1, . . . , N (3.14f)

Ai,l
k+j|k = ∅, ∀l ∈ A[i]

c,k, j = 1, . . . , N (3.14g)
[
−s[i]k+N |k + s[i]cr,out

]
+
·
[
s[i]k+N |k − s[i]stop

]
+
= 0, (3.14h)

x[i]k|k = x[i]k , (3.14i)

where,

∀j = 1, . . . , N, a[i]tot,k+j|k = [(a[i]x,k+j|k)
2 + (a[i]y,k+j|k)

2]
1
2

is the total acceleration in (3.9) and

∀j = 1, . . . , N, a[i]y,k+j|k = κ[i](s[i]k+j|k) · (v
[i]
k+j|k)

2

the lateral acceleration in (3.8). At every time instant k, Agent i solves
the OCP (3.14), thus yielding the sequence of optimal control inputs
(u[i],'

k|k , . . . , u[i],'
k+N−1|k), whose first element, u[i],'

k|k , is executed. After op-
timization, the resulting optimized trajectories, namely,

(x[i]'
g,·|k, y

[i]'
g,·|k,ψ

[i]'
·|k , v[i]'·|k )
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Figure 3.7: Snapshots Use Case 1: (Left)
Agent 1 (red) and Agent 4 (cyan) cross
first; (Middle)Agent 3 (green) proceeds
after Agent 4 (cyan); (Right) Agent 2
(blue) turns left after Agent 3 (green)
has left the CR. The middle and right
figures show the safety region of each
agent i in the color of the conflicting
Agent l.

are transmitted to the other agents via V2V communication.
By the presence of (3.14g), and (3.14h), Problem (3.14) is noncon-

vex. By replacing equality and inequality constraints with penalty
functions, see [77], it has been shown in [41, Sec. IV] that (3.14 ) can
be recast in the form

min
u
[i]

·|k∈U
[i]
k

φ[i]
k (u[i]

·|k; z
[i]
k ), (3.15)

so that it can be solved in real time using the proximal averaged New-
ton method for optimal control (PANOC) (see an extensive analysis
in [96, 104]). To enforce constraint satisfaction, the quadratic penalty
method, see [77, Chap. 17], is applied. In (3.15),

u
[i]
·|k = [u[i]

k|k, . . . , u
[i]
k+N−1|k]

′

is the vector of predicted control actions of Agent i, and

z
[i]
k = [x[i],"

k , (x[l],"
g,·|k−1, y

[l],"
g,·|k−1,ψ

[l],"
·|k−1, v

[l],"
·|k−1)l∈A[i]

c,k

]′

is a parameter vector which provides to Agent i all necessary mea-
sured information. A detailed analysis of the method is contained in
[41, Sec.IV].

3.1.4 Simulation results
This section is extracted from Section 4 of the contribution ”Real-Time
Distributed Automation Of Road Intersections”, submitted to the 2020
IFAC World Congress, and derives from the collaboration with Dr.-Ing.
Alexander Katriniok.

A realistic intersection scenario with four agents as shown in Fig. 3.7a
is considered. Agent 1 (red) crosses the intersection straight from
North to South, Agent 2 (blue) approaches the intersection from the
West and turns left while Agent 3 (green) and Agent 4 (cyan) crosses
the intersection straight from East to West and South to North, re-
spectively. Each agent has the same dimensions of L[i] = 5m and
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W [i] = 2m and the same drivetrain time constant of T [i]
ax = 0.3 s. The

initial positions in the global frame are: (−2, 82) for Agent 1, (−84,−2)

for Agent 2, (81, 2) for Agent 3 and (2,−84) for Agent 4. Moreover, all
agents have the same initial and reference velocity of 14m/s while the
maximum speed is 15m/s. Sampling time is Ts = 0.1 s. MPC’s pre-
diction horizon consists of N = 50 steps. MPC’s weights are chosen
equally for every agent, that is, q[i] = q[i]N = 1 and r[i] = 20. Agents’
safety region is parameterized as in [41]. Finally, we constrain the de-
manded longitudinal acceleration between−7 and 4m/s2 while the ab-
solute lateral acceleration has to be less or equal to 3.5m/s2 and the total
acceleration is bounded from above by 7m/s2. All simulations are run
on Intel i7machine at 2.9GHzwithMatlabR2018bwhile the nonlinear
MPC controllers run in C89 using the open source code generation tool
nmpc-codegen, available at github.com/kul-forbes/nmpc-codegen.

To evaluate the interplay of the auction based algorithm and the
distributed MPC control scheme, we investigate two use cases for the
scenario outlined above:

1. Regular priority negotiation: the agents are negotiating priorities
as in Section 3.1.2.

2. Emergency vehicle: Agent 2 is an emergency vehicle, requesting the
highest priority at t = 0.5 s.

Use Case 1: Regular Priority Negotiation

Figure 3.9 illustrates in each row i the optimizedmotion trajectories
of Agent i; Figure 3.7 shows three snapshots of the maneuver in the
global coordinate frame alongwith agents’ safety regions. In addition,
Figure 3.8 highlights agents’ negotiated priorities until 8 s (when, after
agents enter their respective BSR, priorities turn out to be constant).
Initially, Agent 1 (red) exhibits the highest priority, followed by Agent
3 (green), Agent 4 (cyan) and Agent 4 (blue). By getting closer to the
intersection, at t = 2 s, Agent 1 (red) and Agent 4 (cyan), driving in
the North/South direction, obtain the highest and second highest pri-
ority, respectively; Agent 2 (blue) and Agent 3 (green) are assigned
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ior

ity

Agent 1
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Agent 2 enters BSR
(priority is fixed)

Figure 3.8: Use Case 1: Agent priori-
ties are negotiated until the agents enter
their BSR (indicated by dashed vertical
line), then they remain constant.
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Figure 3.9: Use Case 1: From left to right
in row i: (1) Distances between safety
region and bounding box of agents i and
l, (2) velocity and (3) acceleration of
Agent i. The intersection regions are in-
dicated by colored patches: inside ICR
(beige), BSR (green), CR (red) and out-
side ICR (white).

the next higher priorities. At t = 3.8 s, Agent 3 (green) gets a higher
priority thanAgent 2 (blue), mainly because of Agent 2 (blue)’s decel-
eration before turning left. After t = 4.1 s, all agent priorities turn out
to be fixed, since, inside of the CR, they are proportional only to the
distance. Priorities also reflect in the average speeds. In fact, Agent
2 (blue) has both the lowest priority and the lowest average speed
(same for other vehicles).
The optimized motion trajectories in Figure 3.9 prove that the time-
varying (until t = 4 s) negotiated priorities do not cause discontinu-
ities in acceleration or velocity. By comparing Fig. 3.7 and Fig. 3.8,
one can observe that the crossing order is determined by the nego-
tiated priority. In Use Case 2, we will show that this is not true in
general. Initially, the acceleration of Agent 4 (cyan) is slightly nega-
tive; this is the case until it is assigned the 2nd highest priority after
t = 1 s. Agent 2 (blue) yields the way to Agent 3 (green), see Fig-
ure 3.7c, thus decelerating until before t = 10 s. On its way through
the intersection, Agent 2 (blue) satisfies its lateral acceleration con-
straint (depicted in the third column). Concerning CA, the first col-
umn provides evidence that agent trajectories are safe as the distance
between the agent’s safety region and the other agent’s bounding box
is always greater or equal to zero. Moreover, velocities and accelera-
tions are smooth and inside their designated bounds.
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Figure 3.10: Use Case 2: Emergency ve-
hicle switches from priority 3 to highest
priority at t = 0.5 s.

Use Case 2: Emergency Vehicle

Initial conditions and scenario of theUse Case 2 are the same asUse
Case 1, apart from Agent 2 (blue) — assumed to be an ambulance —
receiving an emergency call at t = 0.5 s. The topic of this section is
to investigate how a sudden change in priority affects the entire traf-
fic. Because of the limited space, relevant trajectories and priorities
are condensed in Figure 3.10. Until t = 0.5 s, Agent 2 (blue) retains
the 3rd negotiated priority. At t = 0.5 s, Agent 2 (blue) receives an
emergency call, gets an arbitrarily high bid and negotiates the 1st pri-
ority. Figure 3.10 confirms that acceleration and velocity do not show
any discontinuities as priorities are changed suddenly. Agent 2 (blue)
crosses the intersection without taking care of any agent. However, in
contrast to Use Case 1, priorities do not determine the crossing order.
In fact, Agent 3 (green) crosses first (the vertical lines in the priority
plot indicate when the agents enter their BSR) without the need to
decelerate. Clearly, by (3.10), Agent 3 (green) needs to enforce CA
constraints inside of the intersection towards Agent 2 (blue). This is
an advantage (and an additional degree of freedom) of our approach,
with regards to, e.g., [65]. From the above discussion, it is evident
that requirements in terms of comfort, performance, and safety are
satisfied.
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3.1.5 Real-time capability
Real-time capability depends on two distinct components: the conver-
gence of CBAA-M to a solution and the solving time of the nonlinear
MPC.
ConcerningCBAA-M, Proposition 12 states that, at each sampling time,
the network gets to the agreement in at most NA" iterations. We deal
with state-of-the-art communication technology, i.e., 5G network used
for automated driving. The technical specification [1]4 contains the 4 3GPP is a standards organization

which develops protocols for mobile
telephony.newest global specifications for automated driving. Accordingly, for

the scenario Emergency trajectory alignment between UEs supporting V2X
application, the following performance aspects are defined:

• reliability of communication links is 99.999%;

• max end-to-end latency is 3 ms.

Because of the high link reliability, it is straightforward to assume the
underlying topology to be fully-connected, thus " = 1. Agreement is
achieved in NA iterations, thus

TCBAAM ≤ NA · 3 ms.

For the case at hand, we assume indeed TCBAAM = 12 ms.
Concerning the solving time of the nonlinearMPC,we refer to Fig. 3.11,
which depicts agents’ computation times forUse Case 1, simulated on a
machine with the specifications in Section 3.1.4. TMPC is at most 72ms.
Note that a dedicated setup would lead to an even faster convergence.
However, also in a non-dedicated simulation environment, the overall
execution time for the hierarchical controller is

TCBAAM + TMPC ≤ 12 ms+ 72 ms ≤ 84 ms,

which is strictly less than the sampling time of 100 ms.
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Figure 3.11: Use Case 1: Agent compu-
tation times.
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3.2 Automating Highways via Distributed Agreement
The presented section is extracted from Molinari et al. [66]. The candi-
date is the first author of this contribution.

Research concerning autonomous vehicles is not only focusing on ur-
ban scenarios, but also on the study of extra-urban scenarios, see, e.g.,
[105]. A challenge in the control of automated5 traffic in extra-urban 5 And semi-automated.
scenarios is the control of a segment of a highway. This has been
a research subject for a long time, see, e.g., [118], and various con-
trol structures have been proposed. One possible approach is to em-
ploy an all-knowing centralized controller that yields optimal trajecto-
ries tracking desired speeds, see e.g. [87]. However, [10] underlines
that a centralized control strategy is practically not feasible. Besides
lacking scalability and robustness, it requires an expensive vehicle-to-
infrastructure (V2I) communication network.

lh

w
h

Figure 3.12: Highway.

As for the automation of road intersections in the urban scenario,
also in this case a distributed approach would constitute a valid so-
lution. Distributed control strategies do not require V2I communica-
tion (see, e.g., [52]). [58] proposes a cooperative control scheme for
autonomous vehicles, which is generated by the decomposition of a
single optimal problem into local problems, each associated with one
vehicle. Many distributed control approaches (see, e.g., [11, 30, 81])
homogenize traffic, by forcing all vehicles to move at the same speed.
However, the nature of traffic is heterogeneous: vehicles can have dif-
ferent desired speeds or depend on environmental conditions. As for
the urban scenario, having a collection of autonomous agents with
diverse goals motivates the need of employing consensus. In fact,
consensus can be a valid solution in contexts where groups of au-
tonomous agents have to agree or negotiate. Moreover, faster conver-
gence and efficient usage of resources for consensus would contribute
to reinforce this approach. Besides for the case of urban scenario (as
extensively shown in the previous section), consensus has been al-
ready employed for the automation of extra-urban scenarios, see, e.g.,
[111], in which a consensus-based protocol is used for negotiating the
merging point of vehicles accessing a highway ramp.

The control schemeproposed in this section preserves the heteroge-
neous nature of trafficwhile guaranteeing collision avoidance andpre-
venting traffic congestion. After agreeing on a lane speed, each vehicle
decides whether it wants to keep the lane or move into another one,
faster or slower, based on its specific desired speed. Vehicles mov-
ing into a new lane distributively negotiate the entry point by using
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the consensus-based auction algoithm introduced in the previous sec-
tions, i.e., CBAA-M. Finally, an onboard Model Predictive Controller
(MPC) guarantees that collisions are avoided, while steering the ve-
hicle into the desired lane.

3.2.1 Problem Description
We consider a stretch of a highway of length lh ∈ R>0 with n parallel
non-overlapping unidirectional lanes of identical width wh ∈ R>0, as
in Fig. 3.12. A set of vehicles (agents), denoted by N := {1, . . . ,m},
m ∈ N, cruise on the highway.

The dynamics of each vehicle i ∈ N is described by a simple model
(bicycle model, e.g. [83]), i.e., ∀t ∈ R≥0,






ẋi(t) = vi(t) cos(ϑi(t))

ẏi(t) = vi(t) sin(ϑi(t))

ϑ̇i(t) = vi(t)
L tan(βi(t))

, (3.16)

where xi(t) ∈ R≥0 and yi(t) ∈ R≥0 are longitudinal and lateral po-
sitions of the vehicle’s center of mass, vi(t) is its velocity, ϑi(t) the
yaw angle, and βi(t) the steering angle. Velocity vi(t) and steering
angle βi(t) are considered to be the control inputs6. L is the vehicles’ 6 A standard input variable for such

models is often the acceleration. In cases
where the drive-train dynamics is fast,
we can guarantee a certain desired ve-
locity in a short time.

length (for ease of notation, all vehicles are assumed to have the same
length). Figure 3.13 illustrates the model parameters.

y(t)

x(t)

β(t)

ϑ(t)

L

Figure 3.13: Bicycle model for the vehi-
cle.

Throughout this section, pi(t) := [xi(t), yi(t)]′ denotes the position
of vehicle i ∈ N on the highway, with pi(t0) := [xi0 , yi0 ]

′ being its
initial position. Each vehicle i ∈ N is given a a desired velocity vdi ∈
[vmin, vmax].

Dealing with the presence of a digital controller (MPC), system
(3.16) is sampled with sampling time Ts ∈ R>0. We denote

∀k ∈ N0, xi(k) := xi(kTs). (3.17)

(similarly yi, ϑi, vi, and βi). Let, ∀i ∈ N , ∀k ∈ N0, qi(k) be the lane
in which vehicle i is at time instant k. We say that a collision between
vehicles i, j ∈ N occurs at the k-th sampling instant if the longitudinal
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distance between i and j is below a given threshold (say D̃ > L) and
i and j are on the same lane, i.e.,

|xi(k)− xj(k)| < D̃ ∧ qi(k) = qj(k). (3.18)

As in the contribution from which this section is extracted, i.e., Moli-
nari et al. [66], sampling time is chosen to be small enough so to ensure
that collisions are avoided both at sampling instants and in between
them. Clearly, the smaller is Ts, the more this assumption is rein-
forced. However, as carefully noted in [32], a small sampling time
brings about poorer controller performance. In fact, given a fixed pre-
diction horizon of theMPC, a smaller Ts impliesmore prediction steps
to account for.

3.2.2 Distributed Control Scheme

1. Average
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4. Distributed
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i
s(k)

Figure 3.14: Hierarchical Control Struc-
ture.

Fig. 3.14 represents the proposed distributed control scheme. By
employing such a scheme, agents reach two consecutive agreements:
first, on the cruising speed of each lane, then, on when agents can
change lanes. That is to say that, initially, all vehicles in one lane agree
on a cruising speed for that lane. Knowing this agreed speed, each
vehicle can decide whether to change lanes according to its own goals.
If a vehicle, indeed, decides to change to another lane, it has to agree
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with other traffic participants where and when this change will occur.
These two phases occur subsequently every N ∈ N0 time steps.

In between iterations hN and (h + 1)N , h ∈ N0, an on-board con-
troller computes an optimal reference trajectory leading to the agreed
lane for vehicle iwhile avoiding collisions. An onboard controller, de-
signed for a discrete time bicycle model, tracks this desired trajectory.

3.2.3 Average Consensus for Lane Speed
The first milestone of the proposed controller is to let vehicles in the
same lane negotiate a common lane speed. Traffic jam results from
string instability; this derives from the fact that any perturbation of
leading vehicles’ velocity results in amplified fluctuations in velocity
(and position) of the following vehicles, see, e.g., [93]. Per contra, if
vehicles in a lane agree on a common speed, and this is kept along
that lane, traffic jam is avoided and throughput is increased, see, e.g.,
[49]7. It is immediate to understand that consensus is a valid tool to 7 The main conclusion of this work is

that jam dissolution is possible by in-
forming, in real-time, following vehicles
about the speed of leading vehicles.

the end of an agreement among vehicles.
Consider a lane, say q (1 ≤ q ≤ n). All vehicles in lane q at sampling

time k are in set Lq(k) := {i ∈ N | qi(k) = q}. Each vehicle i ∈
Lq(k) aims at agreeing on a commonvelocity in lane q bydistributively
negotiating with neighbouring vehicles (e.g., the vehicles directly in
front and behind vehicle i). The set of neighboring vehicles is denoted
by Ni(k).

Vehicle i iterates the following consensus protocol:

wκ+1
i = wκ

i +
σ

|Ni(k)|
∑

j∈Ni(k)

(wκ
j − wκ

i ), κ = 0, 1, . . . (3.19)

where κ is the iteration index, σ ∈ (0, 1) is a design parameter, and,
∀i ∈ Lq(k), wi is initialized such that w0

i = vdi .

Proposition 13. Vehicles cruising along lane q (in set Lq(k)) iterate pro-
tocol (3.19). If the underlying network topology is strongly connected,

∀i, j ∈ Lq(k), lim
κ→∞

wκ
i = lim

κ→∞
wκ

j = v̄q(k), (3.20)

i.e. consensus is asymptotically achieved and the desired speed for that lane
is v̄q(k).

Proof. By the general results about consensus already presented in
Chapter 2, by iterating (3.19) in a strongly connected network, linear
average consensus is achieved asymptotically, i.e.,

v̄q(k) =
1

|Lq(k)|
∑

i∈Lq(k)

vdi .

Remark 5. Protocol (3.19) guarantees that average-consensus is asymptot-
ically achieved. However, in practice, the algorithm needs to be stopped after
a finite number of iterations. Conditions for stopping a consensus protocol
on the basis of local information are described in [114].
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Remark 6. Additionally, we want to ensure that the agreed speed on lane q
satisfies, ∀k ∈ N0,

v̄q(k) ≤ v̄q+1(k) 1 ≤ q ≤ n− 1 (3.21)

and
v̄q(k) ≤ vlegal 1 ≤ q ≤ n. (3.22)

This implies that the speeds do not exceed the legal limit vlegal and enforces
an ordering over the lanes. To achieve this, the consensus values are updated
as

v̄n(k) ← min(v̄n(k), vlegal) (3.23)
v̄q(k) ← min(v̄q(k), v̄q+1(k)) 1 ≤ q ≤ n− 1. (3.24)

3.2.4 Lane Changing Rule
At this point, each vehicle i ∈ Lq(k) knows the negotiated lane speed
v̄q(k). The decision whether to keep the current lane or move into
another (faster or slower) can be modeled by a heuristics. In fact, if
the difference between the desired speed and the agreed lane speed
crosses certain thresholds, vehicles will decide to move into the faster
(left) lane or slower (right) lane. This lane changing value is captured
in Figure 3.15, where qdi (k) is the desired lane of vehicle i.

vdi − v̄q(k)

qdi (k)

qi(k) + 1

qi(k)− 1

−δ′hi

δ′′hi

Figure 3.15: Lane Changing Rule.

Given vehicle i ∈ Lq(k), if the difference between the desired speed
vdi and the agreed lane speed v̄q(k) exceeds δ′′hi

∈ R>0, then vehicle i

will move into the faster lane, i.e., qdi (k) = qi(k)+1, if this exists. If the
difference between the desired speed vdi and the agreed lane speed
v̄q(k) falls below −δ′hi

, δ′hi
∈ R>0, then vehicle i will move into the

slower lane, i.e., qdi (k) = qi(k)−1, if this exists. If−δ′hi
≤ (vdi −v̄q(k)) ≤

δ′′hi
, vehicle i keeps the current lane.

3.2.5 Priority List
At time step k ∈ N0, each vehicle i ∈ N has to distributively negotiate
its position in the desired lane (both in case qi(k) = qdi (k) and qi(k) ,=
qdi (k)) with all vehicles aiming at the same lane, i.e., all j ∈ N \ {i},
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qdj (k) = qdi (k). Note that vehicles in the set
{j ∈ N \ {i} | qj(k) = qdi (k) ,= qdj (k)} (3.25)

are not considered at this point by vehicle i ∈ N 8. Let’s consider a 8 These vehicles will be considered by
the MPC for collision avoidance pur-
poses as side vehicles.lane q (1 ≤ q ≤ n) and let’s define the set of vehicles aiming at that

lane as
Ld
q(k) := {i ∈ N | qdi (k) = q}.

The objective is to sort vehicles inside of Ld
q(k) in a distributed fash-

ion based on some criterion. The consensus-based auction algorithm
presented in Section 3.1.2 for the automation of road intersections, i.e.,
CBAA-M9, is employed also in this context here. 9 Designed and named by the candidate

earlier in Molinari and Raisch [59].Let each vehicle’s bid, i.e., ∀i ∈ N , ∀k ∈ N0, ci(k), be a linear com-
bination of i’s longitudinal position and cruising speed, i.e.,

ci(k) = xi(k) + γvi(k), (3.26)
where γ ∈ R>0. By Proposition 12 and under the assumption that
the underlying network topology is connected, in a finite amount of
iterations, each vehicle i acquires v∗(k), which is a list of agents sorted
according to their bids. Note that v∗(k) sorts agents inLd

q(k) according
to their bids.

i j

Figure 3.16: A possible unreasonable
trajectory that might result from the dis-
tributed auction.

At first glance, a coherency problem might be expected. Consider
two vehicles, say i and j, with

qi(k) = qj(k), q
d
i (k) = qdj (k), and xj(k) > xi(k),

(thus j being in front of i). In case ci(k) > cj(k), vehicle i would end
up in front of j on the new lane. The trajectory to achieve this goal is
unreasonable, as indicated in Figure 3.16. However, by the following
proposition, this problem cannot occur if γ is sufficiently large.
Proposition 14. If two vehicles i and j exist, so that

qi(k) = qj(k), q
d
i (k) = qdj (k), and xj(k) > xi(k),

then cj(k) > ci(k) if
γ >

(vi(k)− vj(k))

D̃
. (3.27)

This is an interpretation of Proposition 14. Say qi(k) = q. Since j is
frontal, and trivially assuming that no collision is happening, xj(k) >

xi(k) + D̃. cj(k) > ci(k) holds if and only if

γ >
(vi(k)− vj(k))

D̃
.

This is a straight consequence of (3.26). As vehicles i and j are on the
same lane, vi(k) 4 v̄q(k) 4 vj(k), i.e., the difference vi(k) − vj(k) is
small in magnitude. Hence, the condition in (3.27) is not restrictive.
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3.2.6 Distributed Model Predictive Controller

Each vehicle i ∈ N at every time step k ∈ N0 retrieves the following
pieces on information about the surrounding traffic. Its frontal vehi-
cle in the current lane is ξif (k) ∈ N . Moreover, vehicle i has target
lane qdi (k) (updated every N discrete-time steps) and future frontal
and rear vehicles (as in list v∗(k)) are, respectively, ξipf (k) ∈ N and
ξipr(k) ∈ N . Another vehicle needs to be taken into account to the ex-
tent of avoiding collisions: let, in fact, ξis(k) be a vehicle cruising next
to ego-vehicle i along lane qdi (k). If this vehicle aims for another lane,
it will not be considered in the priority list (see (3.25)), but still needs
to be taken into account for avoiding collisions. Figure 3.17 helps to
visualize all considered vehicles. Since vehicle i is only interested in
lanes qi(k) and qdi (k), avoiding collisions with these four vehicles is
sufficient. Information from these vehicles is obtained by V2V com-
munication.

i ξif (k)

ξipr(k) ξis(k) ξipf (k)qdi (k)

qi(k)

Figure 3.17: Vehicles considered in the
optimal control problem formulation for
vehicle i at time k ∈ N0. Arrows display
their desired direction.

xj,i
k+h|k denotes the prediction (done by vehicle i) of variable xj (i.e.,

the longitudinal position of vehicle j) for time step k + h given infor-
mation up to time k. An analogous notation is used for all other pre-
dicted state and input variables. Variable qi,ik+h|k, h ∈ {0 . . . H}, is the
predicted lane of vehicle i at step k + h given information up to time
k. The optimal control problem is formulated for the following sim-
ple prediction model, in which longitudinal and lateral dynamics are
decoupled and speed is the control variable:

! For vehicle i, ∀p ∈ {0 . . . H},

xi,i
k+p+1|k = xi,i

k+p|k + Tsv
i,i
k+p|k , (3.28)

qi,ik+p+1|k ∈ {qi(k), qdi (k)} , (3.29)

where, ∀p ∈ {0 . . . H}, vi,ik+p|k is i’s predicted longitudinal speed (first
decision variable) computed at time k. qi,ik+p|k, p ∈ {1 . . . H + 1} (sec-
ond decision variable) is a positive integer representing the predicted
lane. One possible way10 to tackle nonconvexity is, in fact, to employ 10 Alternative to the approach of Sec-

tion 3.1.integer variables, see, e.g., [62]. However, involving integer variables
in the optimal control problem leads to mixed integer programming,
which is notorious for high computation complexity. Techniques for
reducing the number of integer variables thus facilitating real-time im-
plementability, see, e.g., [62], can be employed. Predictions are initial-
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xj,i
k+h|k prediction of xj done by i for time k + h given k

vj,ik+h|k prediction of vj done by i for time k + h given k

qj,ik+h|k j’s predicted lane for time k + h given k according to i

qi(k) i’s current lane at time k
qdi (k) i’s desired lane at time k
D̃ Safety distance
v, v Minimum and maximum speed
a, a Minimum and maximum acceleration

v̄qi(k)(k) Agreed speed in the current lane

Table 3.1: Symbols used in the MPC for-
mulation.

ized as follows:

xi,i
k+0|k = xi(k) , (3.30)
qi,ik+0|k = qi(k) , (3.31)
vi,ik+0|k = vi(k) . (3.32)

Each vehicle i ∈ N broadcasts the sequence of its predicted longi-
tudinal positions and lanes, i.e. xi,i

k+p|k and qi,ik+p|k, p ∈ {1 . . . H + 1},
to other vehicles. Table 3.1 summarizes all variables and parameters
employed in this section.

! Therefore, vehicle i knows the predicted longitudinal positions and
lane numbers for each vehicle j ∈ {ξif (k), ξis(k), ξipr(k), ξipf (k)}, i.e.,
∀p ∈ {0 . . . H},

xj,i
k+p|k = xj,j

k+p|k−1 , (3.33)
qj,ik+p|k = qj,jk+p|k−1 . (3.34)

Proposition 15. The following set of constraints aim at avoiding collisions
over the prediction horizon:

∀p ∈ {0 . . . H}, ∀j ∈ N \ {i},

|xi,i
k+p|k − xj,i

k+p|k| ≥ D̃ ∨ qi,ik+p|k ,= qj,ik+p|k (3.35)

Proof. The proof follows immediately from (3.18).

Constraints (3.35) are non-convex and non-linear andwill be reformu-
lated to be incorporated into the optimal control problem. As stated
above, one possible approach is to employ integer variables. In fact,
the ”logic OR” statement is traditionally reformulated by using one or
more binary variables and the so-called Big-M reformulation, see [112].
Accordingly, in what follows, let M ∈ R>0 be a large positive num-
ber. Further details are in Proposition 16. Furthermore, we decom-
pose the safety requirement (3.35) by distinguishing between three
possible scenarios that vehicle i can encounter, namely left-turning,
right-turning, and going straight. The following variable is employed
to formally distinguish between the scenarios:

ε := qdi (k)− qi(k) =






1 for left-turning
−1 for right-turning
0 for going straight

(3.36)
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Left-turning

As long as the frontal vehicle ξif (k) is predicted to be in lane qi(k)

and vehicle i has not implemented the desired lane change, a mini-
mum distance of D̃ between both vehicles is required. This require-
ment can be relaxed when vehicle i has changed lanes. Formally:

∀p ∈
{
p ∈ {0 . . . H} | qξ

i
f (k),i

k+p|k = qi(k)

}
,

x
ξif (k),i

k+p|k − xi,i
k+p|k ≥ D̃ − εM

(
qi,ik+p|k − qi(k)

)
. (3.37)

When changing lane, vehicle i should have sufficient maneuver space.
This translates into requiring a minimal distance towards its future
frontal and rear vehicles, i.e., ξipf (k) and ξipr(k). This requirementmust
hold for all time instants where these vehicles are on vehicles i’s de-
sired lane. Furthermore, the requirement can be relaxed if vehicle i

has not yet implemented the desired lane switch. Formally,

∀p ∈
{
p ∈ {0 . . . H} | qξ

i
pf (k),i

k+p|k = qdi (k)

}
,

x
ξipf (k),i

k+p|k − xi,i
k+p|k ≥ D̃ − εM

(
qdi (k)− qi,ik+p|k

)
(3.38)

and

∀p ∈
{
p ∈ {0 . . . H} | qξ

i
pr(k),i

k+p|k = qdi (k)

}
,

xi,i
k+p|k − x

ξipr(k),i

k+p|k ≥ D̃ − εM
(
qdi (k)− qi,ik+p|k

)
. (3.39)

To also rule out collisions with cars on the lane to the left driving side-
by-side with vehicle i, we enforce the following constraints:

∀p ∈
{
p ∈ {0 . . . H} | qξ

i
s(k),i

k+p|k = qi(k)
}
,

x
ξis(k),i
k+p|k − xi,i

k+p|k ≥ D̃ − εM
(
qi,ik+p|k − qi(k)

)
(3.40)

and

∀p ∈
{
p ∈ {0 . . . H} | qξ

i
s(k),i

k+p|k = qdi (k)
}
,

x
ξis(k),i
k+p|k − xi,i

k+p|k ≥ D̃ − εM
(
qdi (k)− qi,ik+p|k

)
. (3.41)

(3.40) implies that if ξis(k) cuts into lane qi(k), it does so in front of
vehicle i and a minimum distance D̃ is enforced between this vehicle
and vehicle i. This requirement is relaxed if vehicle i implements the
desired lane change. (3.41) implies that if vehicle i implements its
lane change, with ξis(k) still on vehicles i’s target lane, vehicle i cuts in
behind ξis(k) and, again, a minimum distance D̃ is enforced.

Right-turning

Collision avoidance constraints for this scenario are analogous to
constraints (3.37)-(3.41), butwith ε = −1 and the relevant side vehicle
traveling on the lane to the right of vehicle i.
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Go straight (qdi (k) = qi(k))

In this scenario, only ξif (k) and ξipf (k)need to be considered. Hence,
collision avoidance requirements correspond to (3.37)-(3.38) with ε =

0.
Proposition 16. Constraints (3.37)-(3.41) imply (3.35).
Proof. The proof is straightforward.

In addition to the safety constraints (3.37)-(3.41), speed and accel-
eration of vehicle i can be constrained as follows (with v̄, v, ā ∈ R>0

and a ∈ R<0):
∀p ∈ {0 . . . H}, vi,ik+p|k ∈ [v, v] , (3.42)
∀p ∈ {1 . . . H}, Tsa ≤ vi,ik+p|k − vi,ik+p−1|k ≤ Tsā . (3.43)

Keeping a larger safety distance is beneficial for safety reasons. Ve-
hicle i can be encouraged to keep a larger distance by rewriting D̃

as a variable of the optimal control problem, so that it incorporates
a slack variable; this is a standard approach for collision avoidance
constraints, see, e.g., [42]. Formally,

D̃ ≥ D̃0 + δ, (3.44)
δ ≥ 0, (3.45)

where D̃0 ∈ R>0 is aminimumsafety distance that vehiclesmust hold.
In the cost function, δ will be negatively weighted, such that keeping
a larger δ will be encouraged.

Accordingly, the cost function is formulated as

J =
H∑

p=1

a1
(
vi,ik+p|k − vi,ik+p−1|k

)2

+ a2
(
vi,ik+p|k − v̄qi(k)(k)

)2

+ a3
(
qi,ik+p|k − qdi (k)

)2
− a4δ, (3.46)

where a1, a2, a3, a4 ∈ R>0 are design parameters. The first term
of the sum discourages high values of acceleration and deceleration,
thus contributing to onboard comfort. The second term punishes de-
viations from the agreed lane speed. The third term encourages vehi-
cle i to move into the desired lane as soon as the constraints allow for
it. Finally, the last term rewards large δ, hence contributing to increase
safety. The optimal control problem becomes:

min
vi,ik+1|k . . . v

i,i
k+H|k

qi,ik+1|k . . . q
i,i
k+H+1|k

J

s.t. prediction model (3.28)− (3.29)

initial conditions (3.30)− (3.32)

collision avoidance (3.37)− (3.41)

safety distance formulation (3.44)− (3.45)

input and state constraints (3.42)− (3.43)
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1 2 3
456

7 8 9 Figure 3.18: Initial position of vehicles
considered in the simulation.

Figure 3.19: Positions (sampled each
20 [ms]) of vehicles in the highway.

According to the MPC philosophy, only the initial portions vi,ik+1|k and
qi,ik+1|k of the optimal solution will be used as a reference for the dis-
tributed tracking controllers.

An MPC controller is recursively feasible if, for all feasible initial
states and for all optimal sequences of control inputs, the MPC op-
timization problem remains feasible during the whole horizon (see
[54]).

3.2.7 Distributed Tracking Controller
In the following, let vref

i,x(k) := vi,ik+1|k be the reference longitudinal
speed and

yref
i (k) := qi,ik+1|kwh

the reference lateral coordinate obtained from the MPC. Longitudinal
and lateral control can be decoupled. In fact, under the assumption of
a small yaw angle ϑi(k) (realistic for a highway scenario), the longi-
tudinal dynamics becomes

xi(k + 1) = xi(k) + Tsvi(k) cos(ϑi(k))

4 xi(k) + Tsvi(k). (3.47)

By this, the optimal longitudinal speed vref
i,x(k) (see (3.28)) can serve

as the cruising speed vi(k), i.e. vi(k) = vref
i,x(k).

Regarding the lateral dynamics, a controller computes the steering
angle βi(k), such that yref

i (k) is tracked. By (3.16), the discrete-time
version of the lateral dynamics, where vi(k) = vref

i,x(k), is




yi(k + 1) = yi(k) + Tsvref

i,x(k) sin(θi(k))
θi(k + 1) = θi(k) +

vref
i,x(k)Ts

L tan(βi(k))
(3.48)

For small angles, sin θ 4 θ, then




yi(k + 1) = yi(k) + Tsvref

i,x(k)θi(k)

θi(k + 1) = θi(k) +
vref
i,x(k)Ts

L βi(k)
, (3.49)

where the variables now denote variations from the stationary point.
A proportional controllerK for reference tracking is calculated by pole
placement from (3.49), see [5, pg. 196].
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Figure 3.20: Desired speeds (dashed
lines) and current speeds (solid lines) of
vehicles throughout the simulation.

Figure 3.21: Rear-end vehicle’s distance
to the closest vehicle.

3.2.8 Simulations
The scenario represented in Figure 3.18, with m = 9 vehicles cruis-
ing along a highway composed of n = 3 lanes, is simulated. Desired
speeds are in Table 3.2. Each vehicle has an initial speed equal to the
desired, i.e. ∀i ∈ N , vdi = vi(0). Parameters considered in simulation
are in Table 3.3. The simulation is run for 5 [s] (which corresponds to
100 intervals). Figure 3.19 shows vehicles’ positions throughout the
simulation. Vehicle 6 has the highest desired speed, much higher than
vehicles 4 and 5 (starting on the same lane). It moves into the third
(left) lane immediately. As it moves, vehicle 8 decides to move into a
slower lane (the middle lane). In fact, as one can see in Figure 3.20,
up to t = 1 [s], vehicle 8 increases its speed to remain on the third
lane (where the agreed speed equals 108+102+110

3 = 106.7 [ kmh ]). How-
ever, as vehicle 6 moves into that lane (at t 4 1 [s]), it affects the av-
erage speed negotiation (new agreed speed equal 108+102+110+112

4 =

108 [ kmh ]), so that vehicle 8’s decision rule makes it move into the sec-
ond lane (from Table 3.3, δ′hi

= δ′′hi
= 5 [ kmh ]). At the next negotiation

time (sinceN = 20, it is at t = 2 [s]), the agreed speed for the third lane
is then 108+112+110

3 = 110 [ kmh ]. This can be identified in Figure 3.20,
since vehicles in the third lane accelerate to 110 [ kmh ] after t = 2 [s].

vd1 = 80.0 [ kmh ], vd2 = 81.0 [ kmh ], vd3 = 95.0 [ kmh ]

vd4 = 100.0 [ kmh ], vd5 = 97.0 [ kmh ], vd6 = 112.0 [ kmh ]

vd7 = 108.0 [ kmh ], vd8 = 102.0 [ kmh ], vd9 = 110.0 [ kmh ]

Table 3.2: Vehicles’ desired speeds.
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δ′hi
= δ′′hi

= 5 [ kmh ], wh = 375 [m], L = 3 [m], D̃0 = 8 [m]

a1 = 100, a2 = 1, a3 = 0.1, a4 = 0.1,
H = 10, Ts = 0.05 [s], N = 20,

γ = 0.2

Table 3.3: Parameters.

x1(0) = 14.0 [m], x2(0) = 30.0 [m], x3(0) = 130.0 [m],
x4(0) = 100.0 [m], x5(0) = 30.0 [m], x6(0) = 4.0 [m],
x7(0) = 40.0 [m], x8(0) = 60.0 [m], x9(0) = 120.0 [m]

Table 3.4: Initial longitudinal positions.
Initial lateral position can be obtained
from Figure 3.18.

As vehicle 8 decides to move into the second lane, it negotiates an
entry point in between vehicles 5 and 4 (according to the bidding pa-
rameter γ in Table 3.3). From Figure 3.21, where minimum frontal
distances of each vehicle are plotted, one can see the impact of vehicle
8 lane change after t = 1 [s]. In fact, at t 4 1.25 [s], minimum distance
of vehicle 5 towards other vehicles drops down to 31 [m] (since vehi-
cle 8 cuts in in front of it). Also the new minimum distance of vehicle
8 drops down to 39 [m], since it cuts in behind vehicle 4. After this
moment, since all vehicles on the same lane are driving with the same
agreed speed, rear-end minimum distances hold constant. Collisions
are clearly avoided, since inter-vehicular distances are always larger
than 15 [m].





4
Exploiting Wireless Interference

ThisChapter contains background information about the employed com-
munication technology at its state of the art. It is based on extensive
discussions with Navneet Agrawal, MSc.

As introduced in Section 2, this thesis focuses on designing consensus
protocols bringing a multi-agent system to an agreement, while ex-
ploiting the superposition property of the wireless channel for com-
munication. The goal of this chapter is giving a brief overview of
all involved communication-related concepts, which are, as explained
above, not the main focus of this thesis. A detailed contribution about
the communication technology can be found in [12, 45]. The com-
plete channel model obtained in Molinari et al. [68] integrates what
presented in this section.

4.1 Orthogonal Channel Access Methods in a nutshell
In recent years, an increasing number of publications, see, e.g., [34],
have tried to quantify the wireless communication effort required by
the general consensus protocol (2.13). A consensus protocol is more
efficient if it can achieve the same result by using less resources. For a

Transmitter

Receiver

Wireless Multiple Access Channel
Transmitter

Transmitter Transmitter
interference

Figure 4.1: Interference is the physi-
cal phenomenon obtained when multi-
ple users access synchronously the same
channel frequency. Credits to Navneet
Agrawal for the image.

standard implementation of (2.13), each agent i ∈ N needs to obtain,
at every iteration k ∈ N0, all elements in set {xj(k)}j∈Ni(k). As in Fig-
ure 4.1, ifmultiple transmitters simultaneously access the same shared
medium in the same frequency, their signals will interfere. In fact, by
[107, pg. 100], the wireless channel is a shared broadcast medium;
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letting multiple users access the same channel frequency spectrum si-
multaneously results in interference. Physically, the electromagnetic
waves broadcast by a set of transmitters in the same frequency band
superimpose (sum) at the receiver.

This phenomenon has been traditionally combatted, indeed allow-
ing receivers to obtain uncorrupted signals. Each signal arriving at
the destination without interfering with other signals is said to be or-
thogonally transmitted. Therefore, under a communication technology
point of view, at every iteration k ∈ N0, the standard implementation
of (2.13) requires

n∑

i=1

|Ni(k)| (4.1)

orthogonal transmissions, that is to say, every link-to-link transmis-
sion between any pair of agents i − j needs to be free of interference
with all other individual transmissions of data. This is the case, for
example, if agents access the channel at different times (TDMA, Time
Division Multiple Access), or at different frequencies (FDMA, Fre-
quency Division Multiple Access). In what follows, such multiplex-
ing techniques will be referred to as orthogonal channel access methods.
Figure 4.2 illustrates the idea behind orthogonal channel access meth-
ods. However, enforcing orthogonal transmissions comes with a cost
in terms of employed wireless resources (with the number of orthog-
onal transmissions being given by (4.1)), which are traditionally not
taken into account in most consensus literature.

4.2 Wireless Multiple Access Channel Model

Figure 4.2: Orthogonal channel access
methods.

According to the intuition in [35], it is possible to exploit interfer-
ence to get to consensus. This is achieved by designing awireless com-
munication system that exploits interference. Exploiting interference
for achieving consensus leads to saving wireless resources: the or-
thogonal transmissions quantified in (4.1) are no longer needed. The
way the received information, corrupted by interference can still be
used for achieving consensus is the topic of this work.
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For describing the input-output relationship in the shared wireless
channel where two or more users simultaneously transmit over the
same frequency, we introduce the so-called Wireless Multiple Access
Channel (WMAC) model.

Definition 14 (WMAC). Let Ni ⊂ N be a subset of agents transmitting
to a designated agent i ∈ N at iteration k ∈ N0. Each agent j ∈ Ni at
iteration k ∈ N0 transmits ωj(k) ∈ R. The signal obtained by the receiver is
zi(k) ∈ R, computed as

zi(k) :=
∑

j∈T
ξij(k)ωj(k) + ηi(k), (4.2)

where, ∀k ∈ N0, ∀j ∈ Ni, ξij(k) ∈ R is the fading coefficient that captures
the fading effect between the transmitter j and the receiver i and ηi(k) the
receiver noise.

One can see that, in the presented model, there are three phenom-
ena that impact on the correct reception of the desired quantity: fading
(multiplicative noise), superposition, and additive noise. Notwith-
standing these three nonidealities, in the remainder of this work, we
will present methods to achieve consensus by exploiting interference.
Throughout recent years, various simplifying assumptions on theWMAC
model have been hold.

4.2.1 Ideal Channel
The early works in the field considered the fading channel to be ideal,
i.e., fading coefficients to be 1 and additive noise to be null. This way,
the WMAC yields the real-valued signal

zi(k) =
∑

j∈T
ωj(k). (4.3)

Only the superposition effect (and not fading nor noise corruption)
was considered. This was the case for a collection of papers concern-
ing average consensus, e.g., [35, 107]. Also Molinari et al. [64] used
this model.

4.2.2 Noiseless Real-valued Fading Channel
A more realistic model considers the effect of a real-valued fading
channel. Starting from the WMAC in Definition 14, it is possible to
simplify it so that the obtained real-valued signal zi(k) is

zi(k) =
∑

j∈T
ξij(k)ωj(k), (4.4)

with ∀i, j ∈ N , ξij(k) ∈ R>0 by designing a communication system
(and holding some assumptions on the communication technology)
as in [12]. In this model, the two considered effects linked to wireless
transmission are fading and superposition.

The first papers in literature using this model for consensus are
Molinari et al. [63] for the average consensus and Molinari et al. [68]
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for themax-consensus. After these, other researchers have contributed
to the field, see, e.g., [53, 115].

Assumption 4. In this work, we assume the real-fading coefficients to be
independent realizations (across time and agents) of the same uniform dis-
tribution, i.e., ∀k ∈ N0, ∀j ∈ Nk, ξij(k) ∼ U(0, a], where a ∈ R>0.



5
Average Consensus Over the Wireless Channel

Let N = {1 . . . n} be the set of intercommunicating agents, labeled 1

through n ∈ N. They are seeking for an agreement over a variable
of common interest (see Section 2.3.1 for an introductory analysis of
consensus problems). To this end, they synchronously exchange in-
formation at discrete-time steps k ∈ N0 over the wireless channel (see
Section 4 for an introduction to the topic). Let agents update the in-
formation state xi(k) according to the following equation:

∀i ∈ N , xi(k + 1) = xi(k) + ui(k), (5.1)

where xi : N0 $→ R is the agent’s state and ui : N0 $→ R its input.
The goal is designing a combined communication and control system
that exploits the superposition property of the wireless channel and
let agents reach an agreement in the sense of (2.7).
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5.1 Average Consensus Protocol
Partial results of the presented section have been published in Molinari
et al. [63].

This section presents a consensus protocol based on theWMACmodel (4.4).

5.1.1 Communication Protocol
Each agent j ∈ N broadcasts to the channel two orthogonal signals at
every iteration k ∈ N0, i.e.,

∀k ∈ N0, τj(k) := xj(k) (5.2)

and
∀k ∈ N0, τ

′
j(k) := 1. (5.3)

This is done by employing aMAC of order 2, see, e.g., [36]. According
to this WMACmodel (see Section 4 for a thorough explanation), each
agent i ∈ N receives two orthogonal real-valued signals, coming from
the superposition of what neighboring agents have transmitted, i.e.,

∀k ∈ N0, υi(k) :=
∑

j∈Ni(k)

ξij(k)τj(k) =
∑

j∈Ni(k)

ξij(k)xj(k) (5.4)

and

∀k ∈ N0, υ
′
i(k) :=

∑

j∈Ni(k)

ξij(k)τ
′
j(k) =

∑

j∈Ni(k)

ξij(k). (5.5)

Remark 7. Note that, in case Ni(k) = ∅ for some i ∈ N and k ∈ N0, then
we assume both υi(k) = 0 and υ′

i(k) = 0.

j

+

i

jj

[τj(k), τ ′j(k)]

ξij(k) · [τj(k), τ ′j(k)]

...

[υi(k), υ′
i(k)]

Figure 5.1: Sketch of the designed
communication protocol. Agents in
set Ni(k) broadcast to the wireless
medium. Agent i receives two orthog-
onal interfered signals.

5.1.2 Consensus Protocol
The control input to (5.1) at every iteration k ∈ N0 is obtained by
combining the two received signals, υi(k) and υ′

i(k), as follows:
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! Ni(k) ,= ∅:

ui(k) = σi(k)

(
υi(k)

υ′
i(k)

− xi(k)

)

= σi(k)





∑
j∈Ni(k)

ξij(k)xj(k)

∑
j∈Ni(k)

ξij(k)
− xi(k)





= σi(k)




n∑

j=1

hij(k)xj(k)− xi(k)



 , (5.6)

! Ni(k) = ∅:

ui(k) = 0, (5.7)

where, ∀k ∈ N0, ∀i ∈ N , σi(k) ∈ [0, 1) is the so-called agent’s stub-
bornness parameter and, ∀i, j ∈ N , ∀k ∈ N0, hij(k) is the normalized
channel coefficient (nonnegative by construction), which is defined as
follows:

hij(k) :=






ξij(k)∑
j∈Ni(k)

ξij(k)
if j ∈ Ni(k)

0 otherwise
. (5.8)

Observation 1. By construction and if each agent always has at least one
neighbor,1, i.e., |Ni(k)| ≥ 1, 1 In the sense of (2.2).

∀k ∈ N0, ∀i ∈ N ,
n∑

j=1

hij(k) = 1. (5.9)

By putting (5.6)-(5.7) into (5.1), the information state of agent i ∈
N , in case Ni(k) ,= ∅, evolves according to

xi(k + 1) = (1− σi(k))xi(k) + σi(k)
n∑

j=1

hij(k)xj(k), (5.10)

where, if Ni(k) = ∅, σi(k) needs to be forced to 0, namely,

∀i ∈ N , ∀k ∈ N0, |Ni(k)| = 0 ⇐⇒ σi(k) = 0. (5.11)

This dynamics discloses the concept of stubbornness. In fact, the closer
σi(k) is to 1, the more agent i relies on the received signal for comput-
ing xi(k + 1). Stubbornness σi(k) close to 0 keeps xi(k + 1) close to
the current information state xi(k).

The term∑n
j=1 hij(k)xj(k) contains the information states of neigh-

bors. However, being the normalized fading channel coefficients un-
known, agents cannot reconstruct the individual information states of
their neighbors one by one.
Proposition 17. If agent i ∈ N has, at iteration k ∈ N0, at least one neigh-
bor, i.e., |Ni(k)| > 0, then,

n∑

j=1

hij(k)xj(k) ∈ C ({xj(k)}j∈N ) . (5.12)
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Proof. The proof is obtained as a consequence of Observation 1. By
this, normalized channel coefficients, i.e., ∀k ∈ N0, {hij(k)}i,j∈N , can
be seen as coefficients of a convex combination. Thisway,∑n

j=1 hij(k)xj(k)

is a convex combination of {xj(k)}j∈N , which is nonempty by hypoth-
esis. This yields (5.12), thus concluding the proof.

By this latter result, we obtain that the information state of each
agent i ∈ N at iteration k ∈ N0 is updated to be a convex combination2 2 With convex combination coefficients

(1− σi(k)) and σi(k).of its current value and a value in the convex hull of neighbors’ infor-
mation states. In the upcoming analysis, we will also design σi(k), so
that it can drive the system towards desired performance.

5.1.3 Analysis
The system can be written in compact form as,

∀k ∈ N0, xxx(k + 1) = Dσ
n(k)xxx(k), (5.13)

where, ∀k ∈ N0, xxx(k) = [x1(k) . . . xn(k)]′ and

Dσ
n(k) :=





1− σ1(k) σ1(k)h12(k) . . . σ1(k)h1n(k)

σ2(k)h21(k) 1− σ2(k) . . . σ2(k)h2n(k)
... ... . . . ...

σn(k)hn1(k) σn(k)hn2(k) . . . 1− σn(k)




. (5.14)

Proposition 18. ∀k ∈ N0, Dσ
n(k) is nonnegative and row-stochastic.

Proof. Nonnegativity follows directly from σi(k) ∈ [0, 1) and defini-
tion of normalized channel coefficients.

Row-stochasticity means that, ∀i ∈ N ,

(1− σi(k)) + σi(k)
n∑

j=1

hij(k) = 1. (5.15)

For agent i ∈ N such that |Ni(k)| = 0, by (5.11), equation (5.15) is
trivially verified. Otherwise, having agent i ∈ N at least one neighbor,
by Observation 1, ∑n

j=1 hij(k) = 1, which yields

(1− σi(k)) + σi(k)
n∑

j=1

hij(k) = (1− σi(k)) + σi(k) = 1.

Therefore, (5.15) is verified and the proof is concluded.

Observation 2. In general,Dσ
n(k) is neither symmetric nor column-stochastic.

Proposition 19. If the underlying network topologyG is a sequence of strongly
connected graphs, {Dσ

n(k)}k∈N0 is a sequence of row-stochastic primitivema-
trices.

Proof. LetG be a sequence of strongly connected graphs G(k), k ∈ N0.
By Proposition 18, Dσ

n(k) is row-stochastic by construction. By defini-
tion of normalized channel coefficients, ∀k ∈ N0, each hij(k) is pos-
itive if (and only if) there is an arc in G(k) from j to i. Moreover,
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strongly connectedness implies |Ni(k)| > 0, ∀i ∈ N , ∀k ∈ N0. There-
fore, ∀i ∈ N , ∀k ∈ N0, σi(k) > 0. As a consequence, strongly connect-
edness of G(k) is equivalent to matrix

Aσ
n(k) =





0 σ1(k)h12(k) . . . σ1(k)h1n(k)

σ2(k)h21(k) 0 . . . σ2(k)h2n(k)
... ... . . . ...

σn(k)hn1(k) σn(k)hn2(k) . . . 0




.

being irreducible (see [37, Theorem 6.2.24]). Note that

∀k ∈ N0, D
σ
n(k) = Aσ

n(k) + Σ(k),

where Σ(k) := diag(1 − σ1(k), . . . , 1 − σn(k)) is also irreducible (see
Definition 7). By [37, Lemma 8.5.4], an irreducible matrix with pos-
itive diagonal entries is primitive, thus Dσ

n(k) is primitive, ∀k ∈ N0.
This concludes the proof.

5.1.3.1 Time-invariant case
The case in which both network topology and channel coefficients
do not vary over k ∈ N0, is of particular interest, since the agree-
ment value can be explicitly calculated. Constant channel coefficients
means that, ∀k ∈ N0, ∀i, j ∈ N , hij(k) = hij . As a consequence,
∀k ∈ N0, G(k) = G. We also assume constant stubbornness parame-
ters. By these considerations, Dσ

n becomes

Dσ
n :=





1− σ1 σ1h12 . . . σ1h1n

σ2h21 1− σ2 . . . σ2h2n

... ... . . . ...
σnhn1 σnhn2 . . . 1− σn




, (5.16)

so that
xxx(k + 1) = Dσ

nxxx(k). (5.17)

The following lemma states that the power of Dσ
n converges.

Lemma 1. If G is strongly connected, lim
k→∞

(Dσ
n)

k = 1nwn
′, wn

′ ∈ Rn
>0.

Moreover,wn
′Dσ

n = wn
′.

Proof. By Proposition 19, G being strongly connected, Dσ
n is primitive

and row-stochastic. By Wielandt’s theorem (see Theorem 1),

D̄σ
n := (Dσ

n)
n2−2n+2 > 0.

Trivially,

lim
k→∞

(Dσ
n)

k = lim
k→∞

(D̄σ
n)

k
n2−2n+2 = lim

k→∞
(D̄σ

n)
k,

which is an infinite product of positive matrices, a topic with a long
tradition in matrix theory, see [31] and [37]. Matrix D̄σ

n is also row-
stochastic, since product of row-stochasticmatrices (see Proposition 2).
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λ = 1 is an eigenvalue of matrix D̄σ
n; this follows directly from D̄σ

n be-
ing row-stochastic, i.e.,

D̄σ
n1n = 1 · 1n.

By the Gershgorin disc theorem (see Theorem 3), there is no eigen-
value which is larger than λ = 1 in magnitude, since the largest Ger-
shgorin disc is the one centered in the origin with radius 1. Whether
this eigenvalue is simple (unique) needs to be determined by using
the Perron-Frobenius Theorem. In fact, by the Perron-Frobenius The-
orem, (see Theorem 2), for D̄σ

n positive matrix, the largest eigenvalue
(i.e., λ = 1) is also its spectral radius and all other eigenvalues are
smaller in modulus. This yields that λ = 1 is the largest eigenvalue
and it is unique. By the same theorem, w′

nD̄
σ
n = ρ(D̄σ

n)w
′
n = w′

n,
where w′

n1n = 1, and

lim
k→∞

(ρ(D̄σ
n)

−1D̄σ
n)

k = lim
k→∞

(D̄σ
n)

k = 1nw
′
n.

This leads to obtaining

lim
k→∞

(Dσ
n)

k = lim
k→∞

(D̄σ
n)

k = 1nw
′
n,

which concludes the proof.

Although entries of lim
k→∞

(Dσ
n)

k do depend on the unknown chan-
nel coefficients and cannot be determined a priori, some interesting
properties of the consensus value can be investigated.

Proposition 20. If G is strongly connected, system (5.17) achieves consen-
sus asymptotically, i.e., ∃x∗ ∈ R, such that

lim
k→∞

xxx(k) = xxx∗ := x∗1n (5.18)

Proof. By Lemma 1, lim
k→∞

xxx(k) = lim
k→∞

(Dσ
n)

kxxx(0) = 1nw′
nxxx(0). By the

latter, it is immediate noting that x∗ = w′
nxxx(0), thus confirming that

the agreement value does depend on the unknown channel coeffi-
cients. This concludes the proof.

1

2 3

4

G :

0.77

0.14

0.11

0.93

0.06
0.09 0.19 A =





0 0 0.77 0.14

0.11 0 0.93 0

0.06 0.11 0 0.09

0 0 0.19 0





Figure 5.2: Network topology and cor-
responding adjacency matrix for Exam-
ple 12.
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Example 12. A system composed of n = 4 agents is simulated, with σi =

σ = 0.4. The underlying network topology and its corresponding adjacency
matrix are in Figure 1, where arc weights are determined by the correspond-
ing channel coefficient. Channel coefficients are randomly generated out of a
uniform distribution. Also the initial information states vector is as in that
example, i.e.,

xxx(0) = [0.5, 2,−1, 0.1]′.

Figure 5.3 illustrates the results, thus showing that consensus is achieved.
However, the agreement value is not the linear average of initial states, rather
a weighted average of them.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

2

Agent 1 Agent 2 Agent 3 Agent 4

Figure 5.3: Simulation for Example 12.
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Figure 5.4: Simulation for Example 12.

If σ3 is now set to be much larger than other agents’, e.g., σ3 = 0.9, (which
results in a lower stubborness for agent 3) for the same channel realization
as before, we obtain a different x∗, not as close as x3(0) as previously, see
Figure 5.4.

Corollary 2. x∗ ∈ C ({xi(0)}i∈N ).

Proof. By Proposition 20, x∗ = w′
nxxx(0). By the proof of Lemma 1,

w′
n1n = 1. Thus, x∗ =

∑n
i=1[wn]ixi(0),

∑n
i=1[wn]i = 1, proving that

x∗ is a convex combination of all initial information states. This con-
cludes the proof.

Corollary 3. If, ∀i ∈ N , σi = σ , then x∗ does not depend on σ .

Proof. w′
n is the left eigenvector of (Dσ

n − In) to λ = 0, i.e.

w′
n(D

σ
n − In) = w′

n · 0.
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Note that, as shown earlier, w′
n is also the left eigenvector of Dσ

n to
λ = 1.3 This latter implies 3 w′

nD
σ
n = w′

n implies w′
nD

σ
n − w′

n =
w′

n(D
σ
n − In) = 0n.

w′
n · σ





−1 h12 . . . h1n

h21 −1 . . . h2n

. . . . . . . . . . . .

hn1 hn2 . . . −1




= 0n, (5.19)

thus showing that the entries of w′
n do not depend on the chosen σ .4 4 For getting to this result, it just suffices

to multiply by 1
σ both sides of (5.19).Since x∗ depends only on wn and xxx(0), both not depending on σ , it

does not depend on σ . This yields the proof.

Corollary 4. If, ∀i, j ∈ N , hij(k) = hji(k), then x∗ =
1

n

∑n
i=1 xi(0).

Proof. ∀i, j ∈ N , hij(k) = hji(k) implies Dσ
n = (Dσ

n)
′. This yields

( 1n1
′
n)D

σ
n = ( 1n1

′
n), thus lim

k→∞
(Dσ

n)
k = 1

n1n1
′
n. The latter implies

x∗ = 1
n1

′
nxxx(0) =

1
n

∑n
i=1 xi(0), thus concluding the proof.

Example 13. With regards to Figure 5.3 in Example 12, we simulate the
same system (with identical channel coefficients and initial states vector).
Figure 5.5 illustrates what happens to the system when σ = 0.1. The conver-
gence speed slows down significantly, but x∗ is the same. The same occurs
also for σ = 0.7, for which, conversely, converging speed increases, see Fig-
ure 5.6. On the other hand, Figure 5.7 shows that increasing σ too much (in
this case, σ = 0.9) results in big oscillations and slower convergence.

0 5 10 15 20 25 30 35 40
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Agent 1 Agent 2 Agent 3 Agent 4

Figure 5.5: Simulation for Example 13
withσ = 0.1. Note that the x-axis shows
up to k = 40, which is 4 times larger
than its equivalent in Figure 5.3. This
proves the slower convergence.
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Figure 5.6: Simulation for Example 13
with σ = 0.7.
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Figure 5.7: Simulation for Example 13
with σ = 0.95.

Example 13 leads us to talking about the convergence rate of sys-
tem (5.17). The topic has been also addressed in literature as perfor-
mance of consensus. However, all relative contributions (see, e.g., [20,
80, 94]) consider either undirected network topologies or balanced di-
rected topologies.5 Such a graphical property is far from reality in our 5 See Definition 10
system’s setting. In fact, besides the network structure being directed,
Observation 2 points out that Dσ

n is in general not column-stochastic,
which translates in having an unbalanced underlying topology. In
what follows,wepresent an analysis of convergence rate of system(5.17)
in the case the underlying topology is directed and unbalanced. To
the best of our knowledge, this constitutes a novelty. Only [106] con-
siders a similar problem, but presents the results only for Dσ

n being
diagonalizable. This latter condition is relaxed in what follows.
Theorem 7. If G is strongly connected, system (5.17) achieves consensus
asymptotically with a rate of convergence determined by the eigenvalue ofDσ

n

with the second largest magnitude.

Proof. Let λ1, . . . ,λn with
|λ1| ≤ · · · ≤ |λn−1| < λn = 1

be the eigenvalues of Dσ
n. The largest eigenvalue λn has already been

shown to be real-valued unique and equal to 1 in the proof of Lemma 1
(given that G is strongly connected). All other eigenvalues are smaller
in modulus and some of them can be mutually equal. In this case,
Dσ

n could be non-diagonalizable. This constitutes a more general case
than what considered in [106]. Let

Dσ
n = QJQ−1,

whereQ is a square n×nmatrix with columns composed of n linearly
independent generalized eigenvectors vi, i = 1, . . . , n, and J is the
Jordan normal form of Dσ

n. See Appendix A.1 for a discussion about
generalized eigenvectors and the Jordan normal form. Let’s now focus
on the vector of initial information states, i.e., xxx(0) ∈ Rn. Every vector
in Rn can be seen as a linear combination of n linearly independent
vectors ofCn. In case these linearly independent vectors are chosen to
be the n generalized eigenvectors vi, we obtain

xxx(0) =
n∑

i=1

γivi, (5.20)
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for some γi ∈ C, i = 1, . . . , n. By this, it follows that, ∀k ∈ N0,

xxx(k) = (Dσ
n)

kxxx(0)

= (Dσ
n)

k
n∑

i=1

γivi =
n∑

i=1

γi(D
σ
n)

kvi. (5.21)

Since, ∀i = 1 . . . n, vi is a generalized eigenvector of (Dσ
n)

k = QJkQ−1,
we can employ the result of Theorem A.1.4 in Appendix A.1. This
leads to having, ∀k ∈ N0,

xxx(k) =
n∑

i=1

γi




o(i)−1∑

!=0

(
k

"

)
λk−!
i vi



 , (5.22)

where o(i) is the rank of the i-th generalized eigenvector. Equation 5.22
shows that, for k → ∞, one component (the one relative to λn = 1) is
converging to consensus ( in this case, x∗ = γn1n ). All other contri-
butions converge to 0, as

∀i = 1, . . . , n− 1, |λi| < 1 =⇒ lim
k→∞

|λi|k−! = 0,

for each " = 0, . . . , o(i). The rate of xxx(k) converging to the consen-
sus is determined by the second largest eigenvalue (simple or not)
λn−1, since its corresponding element in (5.22) convergesmore slowly
than all other other terms. In case λn−1 and λn−2 are complex conju-
gate eigenvalues, then the rate of convergence will be determined by
|λn−1| = |λn−2|. This concludes the proof.

Following the outcome of Example 13, we aim at characterizing the
value of σ for which the convergence rate is maximized.

Lemma 2. Let the underlying network topology be strongly connected. If,
∀i ∈ N , σi = σ , then the convergence rate depends on the choice of σ and
on the eigenvalues ofA, whereA is matrix of normalized channel coefficients,
i.e.,

A =





0 h12 . . . h1n

h21 0 . . . h2n

... ... . . . ...
hn1 hn2 . . . 0




.

Proof. Matrix Dσ
n can be rewritten as

Dσ
n = Σ+ σA,

where Σ = (1− σ)In. Note that Σ and σA commute. By this,

eig (Dσ
n) = eig (Σ) + σeig (A) = 1− σ + σeig (A) . (5.23)

By the Geršgorin disc theorem, all eigenvalues of A are within or on
the unit circle. Matrix A is irreducible, since the underlying network
topology is strongly connected. By the Perron-Frobenius theorem for
irreducible matrices, see, e.g., [31, pg. 182], eig (A) = 1 is simple
and dominates in modulus all other eigenvalues. The eigenvalue of
Dσ

n corresponding to eig (A) = 1 is also 1. By Theorem 7, and by
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λσ
n−1 ∈ C being the second largest eigenvalue in modulus of Dσ

n, the
convergence rate of the considered problems depends on |λσ

n−1|. By
(5.23), and for a given σ ∈ (0, 1),

|λσ
n−1| = max

λ∈eig(A), λ &=1
|1− σ + σλ|. (5.24)

This concludes the proof.

The analysis of the system for the case of different stubbornness
parameters is not straightforward and relies on a lower bound condi-
tion for the second largest eigenvalue, which comes directly from the
Geršgorin Disc Theorem.

Proposition 21. If G is strongly connected,

∀i = 1, . . . , n, σi ≤ σ̃ =⇒ |λn−1| ≥ 1− 2σ̃ .

Proof. This proof is based on the Geršgorin disc theorem, see Theo-
rem 3. If ∀i = 1, . . . , n, σi ≤ σ̃ , then all Geršgorin discs are contained
in the disc of radius σ̃ centered in 1 − σ̃ , see Figure 5.8. All eigenval-

Re(·)

Im(·)

|

(1− σ1)

|

(1− σ2)

|

(1− σ3)

|| ||||

(1
−

σ̃
)

(1
−

2
σ̃
)

Figure 5.8: Geršgorin discs for a square
matrix of dimension 3. All eigenvalues
are contained in the union of discs.

ues are contained in the same disc of radius σ̃ centered in 1− σ̃ , with
σ̃ ∈ (0, 1) by definition. The point with minimummodulus belonging
to this circle is on the x-axis and has abscissa 1 − 2σ̃ . This concludes
the proof.

Proposition 21 implies that, if all σi are small, convergence will be
slow.
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5.1.3.2 Time-variant case
By (5.13),

lim
k→∞

xxx(k) = lim
k→∞

Dσ
n(k − 1)Dσ

n(k − 2) . . . Dσ
n(1)D

σ
n(0)xxx(0). (5.25)

Indeed, convergence to a consensus follows from the infinite product
of nonnegative row-stochastic matrices lim

k→∞
Dσ

n(k−1) . . . Dσ
n(0). Con-

cerning convergence of infinite products of row-stochastic matrices,
themain literature result can be found in [113] and has been reviewed
in Section 2.2.

Sequence of strongly connected topologies

Let G be the sequence of network topologies. We prove the follow-
ing result.

Proposition 22. Given a sequence of strongly connected network topologies
G and time-varying (unknown) channel coefficients, system (5.13) achieves
consensus asymptotically for any choice of the stubbornness parameters.

Proof. Independently of the choice of the σi(k), ∀k ∈ N0, Proposi-
tion 19 states that Dσ

n(k) is row-stochastic and primitive. To analyze

lim
k→∞

Dσ
n(k − 1)Dσ

n(k − 2) . . . Dσ
n(1)D

σ
n(0),

we need to review Theorem 4 and (2.3). By these, ∃rn ∈ Rn, with∑n
i=1[rn]i = 1, such that lim

k→∞
Dσ

n(k − 1)Dσ
n(k − 2) . . . Dσ

n(1)D
σ
n(0) =

1nr′n. By (5.25), lim
k→∞

xxx(k) = 1nr′nxxx(0), thus yielding that the agree-
ment value is x∗ = r′nxxx(0). The proof is concluded.

Since rn is such that ∑n
i=1[rn]i = 1, Corollary 2 applies also to the

time-variant case and x∗ ∈ C ({xi(0)}i∈N ). Clearly, this value does
depend on the unknown channel coefficients (and on the sequence of
network topologies) and its exact value cannot be determined a priori.

Example 14. A system, whose underlying network topology consists of the
four graphs in Figure 5.9 sequentially repeated, exhibits dynamics (5.13).
We run a first simulation in Figure 5.10. By changing the fading channel
coefficients, as in Figure 5.11, also the agreement value varies. On the other
hand, by keeping the fading channel coefficients of the first simulation, we
can compare the impact of σ . In Figure 5.12 we illustrate the implications of
a smaller σ (σ = 0.2). Convergence rate is much slower. Converging rate
increases in Figure 5.13, whereas σ = 0.6. Figure 5.14 shows the impact of
an even higher σ , which leads to an extremely oscillating behavior.

As for the time-invariant case, concerning the convergence rate,
literature mostly focuses on the case of undirected (or balanced di-
rected) underlying network topologies, see, e.g., [78]. However, the
proposed setting (balanceddirected network topology) is not compat-
ible with the presence of an unknown (non-symmetric) fading chan-
nel. Amore general analysis that considers directedunbalanced graphs
is, instead, proposed in [80]. Following this strategy, we employ the
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Figure 5.9: Underlying network topol-
ogy for Example 14.
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Figure 5.10: System (5.13) with random
channel and σ = 0.3

so-called nullifying matrix U ∈ R(n−1)×n that is thoroughly analyzed
in Appendix A.2. Matrix U is a full-rank projection matrix from Rn

onto Rn−1, i.e., U ∈ R(n−1)×n, such that
• U1n = 0n−1; 6 6 See (A.12).

• UU ′ = In−1; 7 7 See (A.13).

• U ′U = In −
1

n
1n1

′
n; 8 8 See Theorem A.2.1.

• ‖U‖ = ‖U ′‖ = 1; 9 9 See Proposition A.2.1.

• by Proposition A.2.2, ∀k ∈ N0,10 10 ∃! means that exists and is unique.

∃! Qσ(k) ∈ R(n−1)×(n−1) : UDσ
n(k) = Qσ(k)U

and
spectrum (Dσ

n(k)) = {1} ∪ spectrum (Qσ(k)) .

It comes as a consequence that

∀k ∈ N0, ρ(Q
σ(k)) = |λn−1(D

σ
n(k))|, (5.26)
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Figure 5.11: System (5.13) as in Fig-
ure 5.10, but another channel realiza-
tion.
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Figure 5.12: System (5.13) as in Fig-
ure 5.10, but σ = 0.2.

namely, the spectral radius of Qσ(k) is equal to the modulus of the
second largest eigenvalue of Dσ

n(k). These considerations are of use
for Proposition 23, that links the convergence rate of system (5.13) to
the joint spectral radius of the matrix sequence {Qσ(k)}k∈N0 .

Definition 15 (Joint Spectral Radius, Protasov [84]). Let M be a finite
set of n × n real valued matrices, i.e., M = {M(1), . . . ,M(R)}, with R

being the cardinality of M. Then, the joint spectral radius of M is

ρ(M) := lim
k→∞

max
,

‖M(6(1)) · · · · ·M(6(k))‖ ,

6 : {1, . . . , k} → {1, . . . , R}. (5.27)

Assumption 5. To meaningfully estimate the convergence rate, we assume
that fading channel coefficients are quantized, i.e.,

ξij(k) : R≥0 $→ S ⊂ R,

∀i ∈ N , ∀j ∈ Ni(k),withS being a finite set. This implies that {Dσ
n(k)}k∈N0

is arbitrarily large, but finite. Under this assumption, also {Qσ(k)}k∈N0 is
a finite set.

Lemma 3. If xn ∈ Rn is such that x′
n1n = 0, then

‖Uxn‖ = ‖xn‖ .

Proof. By definition of 2-norm and by Theorem A.2.1,

‖Uxn‖2 = x′
nU

′Uxn = x′
n(In −

1

n
1n1

′
n)xn.
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Figure 5.13: System (5.13) as in Fig-
ure 5.10, but σ = 0.6.
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Figure 5.14: System (5.13) as in Fig-
ure 5.10, but σ = 0.9.

By hypothesis of the theorem,

x′
n(

1

n
1n1

′
n)xn = 0,

thus,
‖Uxn‖2 = x′

n(In)xn = ‖xn‖2 .

Proposition 23. The convergence rate of system (5.13) depends on the joint
spectral radius of {Qσ(k)}k∈N0 .

Proof. Let ∀k ∈ N0, γ(k) be defined as

γ(k) :=
1

n
1′
nxxx(k).

Note that U(γ(k)1n) = 0n−1. We also have

U(xxx(k)− γ(k)1n) = Uxxx(k)− Uγ(k)1n = Uxxx(k). (5.28)

Indeed, by Proposition A.2.2, ∀k ∈ N0,

Uxxx(k + 1) = UDσ
n(k) · · · · ·Dσ

n(0)xxx(0)

= Qσ(k) · · · · ·Qσ(0)Uxxx(0). (5.29)

By merging (5.28) and (5.29), one obtains

U(xxx(k)− γ(k)1n) = Qσ(k − 1) · · · · ·Qσ(0)Uxxx(0). (5.30)
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Note that (xxx(k)− γ(k)1n)′1n = 0, thus, by Lemma 3,
‖U(xxx(k)− γ(k)1n)‖ = ‖xxx(k)− γ(k)1n‖ .

By merging the latter together with (5.30), we obtain
‖xxx(k)− γ(k)1n‖ = ‖Qσ(k − 1) · · · · ·Qσ(0)Uxxx(0)‖

≤ ‖Qσ(k − 1) · · · · ·Qσ(0)‖ ‖U‖ ‖xxx(0)‖ . (5.31)
By Proposition A.2.1, ‖U‖ = 1. Using the concept of joint spectral ra-
dius (seeDefinition 15), andby [13, Sec. IV], for any q > ρ({Qσ(k)}k∈N0),
there exists a C ∈ R, such that

‖xxx(k)− γ(k)1n‖2 ≤ Cqk ‖xxx(0)‖2 . (5.32)
Note that x∗ ∈ C ({xxx(k)}k∈N0), ∀k ∈ N0, thus

‖xxx(k)− x∗1n‖∞ ≤ 2 ‖xxx(k)− γ(k)1n‖∞ ≤ 2 ‖xxx(k)− γ(k)1n‖2 ,
(5.33)

which finally leads to
‖xxx(k)− x∗1n‖∞ ≤ 2Cqk ‖xxx(0)‖2 . (5.34)

Inequality (5.34) proves that the norm of the agreement error, defined
as (xxx(k)−x∗1n), converges to 0with the exponential of the joint spec-
tral radius of {Qσ(k)}k∈N0 . This concludes the proof.

Since the unknown fading channel changes at every iteration, ob-
taining also an exact value of σ that maximizes the convergence rate
of the time-variant problem is, at the current state of the art, not pos-
sible. We can, instead, qualitatively explain the impact of σ for values
either close to 0 or to 1:
• σ → 1: all agents weigh the received information way more than

their current value. This results in high oscillations (see Exam-
ple 14, Figure 5.14);

• σ → 0: all matrices Dσ
n(k), k ∈ N0, are diagonally dominant; this

results in a slower convergence, since the received value is heavily
filtered out (see Example 14, Figure 5.12).

Jointly strongly connected sequence of network topologies

However, in literature, requiring a sequence of strongly connected
network topologies is a condition that can still be relaxed. In fact, [88]
showed that, in the traditional framework, consensus can be achieved
asymptotically if the union of the underlying network topologies across
some time interval is strongly connected11 frequently enough. Such a 11 [88] does not mention connectivity,

rather that the union of graphs should
contain a spanning tree. However, as in
Chapter 2, we do not consider this as-
sumption to be a proper condition for
consensus.

graph sequence is called repeatedly jointly strongly connected.
Lemma 4. Integers p, k ∈ N0 and agents i, j ∈ N are given.
If ∃{"1, . . . , "p−1} ⊆ N \ {i, j}, such that

hi!p−1(k + p)h!p−1!p−2(k + p− 1) · · · · · h!1j(k + 1) > 0,

then
[Dσ

n(k + p) · · · · ·Dσ
n(k + 1)]ij > 0.
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Proof.

[Dσ
n(k + p) · · · · ·Dσ

n(k + 1)]ij =

=
n∑

f=1

[Dσ
n(k + p) · · · · ·Dσ

n(k + 2)]if [D
σ
n(k + 1)]fj

≥ [Dσ
n(k + p) · · · · ·Dσ

n(k + 2)]i!1 [D
σ
n(k + 1)]!1j

= [Dσ
n(k + p) · · · · ·Dσ

n(k + 2)]i!1σ!1(k + 1)h!1j(k + 1)

for "1 ∈ N \ {i, j}. By recursively expanding the product into the
square brackets, one gets, ∀{"1, . . . , "p−1} ⊆ N \ {i, j},

[Dσ
n(k + p) · · · · ·Dσ

n(k + 1)]ij ≥
≥ σi(k + p)σ!p−1

(k + p− 1) · · · · · σ!1(k + 1) · . . .

· · · · hi!p−1(k + p)h!p−1!p−2(k + p− 1) · · · · · h!1j(k + 1).

Being the stubbornness parameters always positive if the receiving
agent has at least one neighbor (see (5.11)), it immediately follows
that, ∀p < n− 1,

∃{"1, . . . , "p−1} ⊆ N \ {i, j} : hi!p−1(k + p) · · · · · h!1j(k + 1) > 0

=⇒ [Dσ
n(k + p) · · · · ·Dσ

n(k + 1)]ij > 0.

This concludes the proof.

Proposition 24. With a repeatedly jointly strongly connected sequence of
underlying network topologies G and time-varying channel coefficients, sys-
tem (5.13) achieves consensus asymptotically for any choice of the stubborn-
ness parameters.

Proof. SinceG := {G(1),G(2), . . . } is a repeatedly jointly strongly con-
nected sequence of graphs, there exists p ∈ N such that each finite se-
quence G(p(k+1))◦ · · ·◦G(pk+1) is strongly connected. By definition
of graph composition (see Section 2.1) and of normalized channel co-
efficients (see (5.8)), (i, j) is an arc of G(p(k + 1)) ◦ · · · ◦ G(pk + 1)

iff
hi!1(pk + 1)h!1!2(pk + 2) · · · · · h!p−1j(p(k + 1)) > 0,

for some distinct "1, . . . , "p−1 ∈ N .
By Lemma4, any off-diagonal entry (i, j) ofDσ

n(p(k+1))·· · ··Dσ
n(pk+1)

is positive if there is an arc from j to i in G(p(k + 1)) ◦ · · · ◦ G(pk + 1).
This yields that, by [37, Theorem 6.2.24], if G(p(k+1))◦· · ·◦G(pk+1) is
strongly connected, then Dσ

n(p(k+ 1)) · · · · ·Dσ
n(pk+ 1) is irreducible.

Moreover, all diagonal entries of Dσ
n(p(k + 1)) · · · · · Dσ

n(pk + 1) are
always positive (trivial to prove). This yields, by [37, Lemma 8.5.4],
that, if G(p(k+1))◦ · · ·◦G(pk+1) is strongly connected, thenDσ

n(p(k+

1)) · · · · ·Dσ
n(pk + 1) is primitive.

G being repeatedly jointly strongly connected, then, every product of
p consecutive primitive and row-stochastic matrices is primitive (and
row-stochastic)12, notwithstanding the unknown fading channel and 12 Anymatrix resulting from the product

of row-stochastic matrices is also row-
stochastic, see Proposition 2.
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for every choice of the stubbornness parameters. By this,

lim
k→∞

Dσ
n(kp)D

σ
n(kp− 1) . . . Dσ

n(1)D
σ
n(0)

is an infinite sequence of k primitive row-stochastic matrices, thus
Proposition 22 can be employed and the proof concluded.

Example 15. In the spirit of Example 14, we simulate a system whose un-
derlying topology is repeatedly jointly strongly connected, i.e., a sequence of
the four graphs in Figure 5.15. In the simulations, we evaluate the impact of
different policies for σ . In Figure 5.16, σ is chosen to be 0.4. The convergence
speed can be diminished by picking σ = 0.2, as illustrated by Figure 5.17. As
already shown for the cases of time-invariant and sequence of strongly con-
nected topologies, picking a large σ , as in Figure 5.18 where it is chosen to be
0.9, leads to large oscillations, without improving the convergence speed.
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Figure 5.15: Underlying network topol-
ogy for Example 15. The sequence
of these four graphs constitutes the 4-
repeatedly jointly strongly connected
network topology.
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Figure 5.16: System 5.13 with the under-
lying network topology of Figure 5.15
and a random channel realization with
σ = 0.4.
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Figure 5.17: System as in Figure 5.16, but
with σ = 0.2.
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Figure 5.18: System as in Figure 5.16, but
with σ = 0.9.

5.1.4 Comparison with traditional approaches
In this subsection, we compare our protocol to traditional approaches.
By traditional approaches, as previously mentioned in this work, we
denote those strategies that employ a standard consensus protocol as,
e.g., [13, Sec. II] together with standard communication systems. In
fact, each agent needs to reconstruct neighbors’ states, thus orthogonal
channel access methods13 are employed. As explained elsewhere in 13 E.g., TDMA or FDMA.
thiswork and in literature, e.g., [34, 36, 107], the exploitation of the su-
perposition property of the wireless channel leads to saving wireless
resources, that, otherwise, would be employed for orthogonal trans-
missions.

Comparison in expectation.

As clarified in Chapter 4, channel fading coefficients are drawn out
of an uniform distribution. We assume the following points:

• ∀i, j, l ∈ N , i ,= j ,= l, ∀k ∈ N0, ξij(k) and ξil(k) are independent;

• ∀i, j ∈ N , ∀k ∈ N0, ξij(k) and ξij(k + 1) are independent.

Concerning the general time-varying system (5.10), the fading chan-
nel distorts the signal carrying information about neighbors’ states,
i.e.,

∀k ∈ N0, ζi(k) :=
υi(k)

υ′
i(k)

=

∑
j∈Ni(k)

ξij(k)xj(k)

∑
j∈Ni(k)

ξij(k)
. (5.35)
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Proposition 25. The expected value of ζi(k) (see 7.16) is the linear average
of neighbors’ states, i.e.,

E [ζi(k)] =

∑
j∈Ni(k)

xj(k)

|Ni(k)|
. (5.36)

Proof. Let ∑
j∈Ni(k)

ξij(k) be denoted by ϑ. Since channel coefficients are
assumed to be i.i.d,

E[ϑ] =
∑

j∈Ni(k)

E[ξij(k)] = |Ni(tk)|E[ξij ].

By [27, Theorem 5.3.20],

E [ζi(k)] = E





∑
j∈Ni(k)

ξij(k)xj(k)

ϑ





=

∞∫

−∞

E





∑
j∈Ni(k)

ξij(k)xj(k)

ϑ

∣∣∣∣∣∣∣
ϑ = m



 fϑ(m)dm, (5.37)

where fϑ is the probability density function of ϑ. By taking ϑ = m out
of the expectation, one gets

E [ζi(k)] =

∞∫

−∞

1

m
E




∑

j∈Ni(k)

ξij(k)xj(k)

∣∣∣∣∣∣
ϑ = m



 fϑ(m)dm. (5.38)

Since the expectation is a linear operator and channel coefficients are
independent,

E [ζi(k)] =

∞∫

−∞

1

m

∑

j∈Ni(k)

E[ξij(k) | ϑ = m]xj(k)fϑ(m)dm. (5.39)

Let’s focus now on E[ξij(k) | ϑ = m]. Note that

E




∑

j∈Ni(k)

ξij(k)

∣∣∣∣∣∣
ϑ = m



 = m.

Since all ξij(k) are identically distributed,

E[ξij(k) | ϑ = m] =
m

|Ni(tk)|
.

This implies

E [ζi(k)] =

∞∫

−∞

1

m

∑

j∈Ni(k)

m

|Ni(tk)|
xj(k)fϑ(m)dm (5.40)

=

∑
j∈Ni(k)

xj(k)

|Ni(tk)|

∞∫

−∞

fϑ(m)dm (5.41)

=

∑
j∈Ni(k)

xj(k)

|Ni(tk)|
. (5.42)

By this, the proof is concluded.
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By Proposition 25, protocol (5.6) behaves, in expectation, as the
ideal protocol in which each agent obtains the linear average of neigh-
bors’ states, see, e.g., [13, 44], in case all incoming arcs weights are the
same. Then, in expectation, system (5.10) exhibit the same iteration
dynamics as a traditional protocol. This results in having, in expecta-
tion, the same number of iterations to consensus14 as a traditional pro- 14 Until, e.g., ‖xxx(k)− x∗‖ < ε, for a

given ε.tocol. However, by Section 4, every iteration of the traditional protocol
requires ∑n

i=1 |Ni(k)| orthogonal transmissions, whilst our approach
requires only 2. Quantifying the expected amount of saved wireless
resources is straightforward.

Worst case scenario.

Let ε ∈ R such that, if

‖xxx(κ)− x∗‖ < ε, (5.43)

we say that the system achieves the desired result at iteration κ ∈ N0.
A system composed of n agents, with initial information states stacked
in vectorxxx(0), is given. It employs a traditional consensus algorithm15 15 [13, Sec. II].
together with a standard communication system. It is assumed to
achieve the desired result in κt iterations. By Section 4, to reach this
end, it needs

It =
κt∑

t=1

n∑

i=1

|Ni(t)|

orthogonal transmissions of signals, i.e., wireless resources. On the
other hand, our consensus protocol achieves the result in κb ∈ N iter-
ations, thus requiring, also by Section 4,

Ib = 2κb

orthogonal transmissions of signals. Note that, in general, κb ,= κt,
because of the impact of the fading channel that distorts the received
signal by each agent. In fact, although the expected received signal
equals the linear average of neighboring agents’ states16, the actual 16 See the previous paragraph.
received signal is their convex combination, with normalized fading
coefficients as parameters17. Our approach performs better (in terms 17 See Proposition 17.
of employed wireless resources) if Ib < It, equivalently, if

κb <
1

2

κt∑

t=1

n∑

i=1

|Ni(t)|. (5.44)

In case of a time-invariant underlying network topology, the latter in-
equality becomes

κb <

∑n
i=1 |Ni|
2

κt. (5.45)
This shows that, as long as our protocol guarantees convergence to
the desired result, i.e., (5.43), in at most

∑n
i=1 |Ni|

2 times the iterations
required by the traditional approach, wireless resources are saved. To
properly address the distorting impact of the channel (affecting κb),
in what follows, randomized simulations are performed.
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Randomized analysis.

We analyze networks of n ∈ N agents, for n that varies from 3 to 50.
Concerning the desired result, see (5.43), let

ε = 0.1.

We initially compare our approach to traditional approaches for
time-invariant underlying network topologies. For every cardinality
of the nodes set, say i ∈ [3, 50], we randomly generate 100 differ-
ent strongly connected topologies. The initial information states are
stacked in vector xxx(0), so that, ∀i ∈ N , [xxx(0)]i = i. For each topology,
two experiments are run18 by employing the following approaches: 18 In what follows, we assume σ = 0.5.

(i) Traditional approach: every agent has dynamics19 19 Similarly to the traditional approach
already revised in (2.12).

∀k ∈ N0, xi(k + 1) = (1− σ)xi(k) + σ

∑
j∈Ni(k)

xj(k)

|Ni(k)|
, (5.46)

and every iteration requires ∑n
i=1 |Ni(k)| orthogonal channel ac-

cesses (wireless resources). Iterations to consensus (see (5.43)) are
denoted by κt. By It we denote the wireless resources (orthogonal
transmissions) employed to reach κt iterations.

(ii) Interference-based approach: every agent has dynamics (5.10) and
each iteration update requires 2 orthogonal accesses of the channel.
Iterations to consensus (see (5.43)) are denoted by κb. By Ib we de-
note the wireless resources (orthogonal transmissions) employed
to reach κb iterations.

Channel coefficients are independent (see the paragraph about com-
parison in expectation) and drawn out of an uniform distribution.
Wireless resources required by the two different approaches are com-
pared, such that, for

It
Ib

> 1,

equivalently ,

log10

(
It
Ib

)
> 0,

the broadcast approach requires less wireless resources than the tra-
ditional approach to reach the desired result.

Figure 5.19 illustrates (orange) the comparison, between the tradi-
tional approach and our approach, of iterations required to converge,
i.e., κt

κb
. The traditional approach requires almost always less itera-

tions to converge to consensus than ours. However, the comparison
of employed wireless resources (blue), i.e., It

Ib
, proves that our ap-

proach performs much better, especially for networks with more than
10 nodes.

The same comparison is done for consensus problems involving se-
quences of time-varying network topologies. We limit our analysis to
the case of sequences of strongly connected graphs, see Proposition 22.
For every nodes set’s cardinality, we randomly generate a sequence20 20 Ideally infinite.
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of strongly connected graphs. For every sequence, we repeat the ex-
periment done for the time-invariant case.

In Figure 5.20, the same general analysis done for Figure 5.19 can
be employed. The traditional approach guarantees much less itera-
tions until agreement (orange), whereas the wireless resources that
our approach requires (blue) are much less than the ones tradition-
ally required.

The randomized analysis of the employed wireless resources re-
inforces what already shown for the comparison in expectation and
worst case. Although our approach requires in generalmore iterations
until consensus, mostly due to the presence of the unknown channel,
it requires fewer wireless resources overall. The savings are higher for
network with more nodes.
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Figure 5.19: Comparison of broadcast
and traditional approaches for time-
invariant systems.
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5.2 Exploiting Wireless Interference For Distributively Solv-
ing Linear Equations

Partial results of the presented section are in Molinari et al. [61]. The
candidate is the first author of the contribution.

Beginning from [71], literature has exhibited an increasing interest
towards networks of cooperative autonomous agents solving linear al-
gebraic equations, i.e.,

Ax = b,

in a distributed way, see, e.g., [72], [101], and [73]. Each agent can ac-
cess only a distinct partition of the equation (i.e., a subset of rows ofA
and b) and aims at retrieving the global solution by cooperating with
other agents. [71] considers a simple setting inwhichA is a nonsingu-
lar square matrix and the underlying network topology is fixed; their
approach guarantees exponentially fast convergence to the global so-
lution. Later on, many contributions extended this first result, e.g.,
[51] considers non-square A, nonunique solutions, jointly-connected
time-varying network topologies, and asynchronous communication.
As shown in [73], this result involves many possible applications, e.g.,
solving least square or network localization problems. Also, by [3], the
cooperative solution of linear equations finds an important applica-
tion in clustered computation involving sensitive data, such as busi-
ness financial records, personally identifiable health information, etc.

For distributively solving linear algebraic equations, most literature
has been focusing on improving the convergence rate and on relaxing
conditions on neighbor graphs, see [51, Table I]. To the best of our
knowledge, the impact of the communication medium has not been
taken into account. Indeed, in the context of this thesis, the current
section intends to study how interference can be exploited for distribu-
tively solving a linear algebraic equation. This approach is argued to
have additional benefits:
! Privacy. Sets of neighbors and arc weights are unknown to agents,

are extensively motivated in the previous sections. Therefore, it is
impossible to use the received signals to have access to neighbor-
ing agents’ local equations. This is a useful feature when different
agents are not in the same domain of trust and each local equation
may contain sensitive information, see, e.g., [3] and [110].

! Saving resources. Exploiting interference instead of getting rid of
it allows for saving wireless resources, see Section 5.1.4.

5.2.1 Problem Description
Agroupof ν ∈ N autonomous agents, grouped in the setN := {1 . . . ν},
need to cooperate to solve the linear algebraic equation

Ax = b, (5.47)

where A ∈ Rn×m, b ∈ Rn, x ∈ Rm, and ν ≤ n ≤ m. Each agent i ∈ N
has access only to a distinct21 subset of ni ∈ N rows of (5.47), i.e., it 21 By distinct, wemean ”free of overlap”.
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can locally solve
Aixi = bi, (5.48)

where Ai ∈ Rni×m, bi ∈ Rni , and xi ∈ Rm. Clearly, ∑i∈N ni = n.
Agents communicate over the wireless channel and exploit its inter-
ference property as proposed in Section 5.1.1. In Molinari et al. [61],
we consider G to be a sequence of fully-connected graphs. Through-
out this section, the aim is to relax this condition and introduce the
concept of repeatedly jointly D-connectedness, reviewing some results
contained in [51].
Definition 16. Any nonempty subset E ⊆ N is said to be fully populated
if ⋂

i∈E
ker(Ai) =

⋂

i∈N
ker(Ai).

Note that, in case of a unique solution, if E is fully populated, then
∩i∈Eker(Ai) = {0}.
Remark 8. Since each agent has access only to a distinct subset or rows, if
E ⊂ N is fully populated, it implies thatA has some linearly dependent rows.
Definition 17. Any subset which is not fully populated is partially popu-
lated.

Let 2N denote the power set of N , namely, the set of all subsets of
N , including the empty set and N itself.
Definition 18. A collection of nonempty proper subsets W ⊂ 2N is con-
nected by the graph G = (N ,A) if each subset contains at least one i ∈ N
with a neighbor in N \ E .
Definition 19. Let D ⊂ 2N be the collection of all partially populated sub-
sets of N . A graph G = (N ,A) is D-connected if D is connected by G.

This latter definition states that a time-invariant graph isD-connected
if each partially populated subset ofN has at least one neighbor in the
rest of the graph. It is clear that the concept ofD-connectivity depends
on thematrixA. The same graph can beD-connected (or not) depend-
ing on the specific A. The following example clarifies the concepts.
Example 16. Let

A :=




1 2 3

0 1 0

2 4 6



 ,

ν = 3, and, ∀i ∈ N , ni = 1. It is clear that rank(A) = 2 = m −
1, since the first and the third rows are linearly dependent. Thus, D =

{{1}, {2}, {3}, {1, 3}}.
Figure 5.21 shows a D-connected graph for matrix A. Note that the same
graph is not strongly connected.

Focusing on sequences of time-varying graphs, we can define the
following items.
Definition 20. Afinite sequence of " directed graphsG is jointlyD-connected
if the composition G(") ◦ G("− 1) ◦ · · · ◦ G(1) is D-connected.
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1

2

3

Figure 5.21: D-connected graph for ma-
trix A of Example 16.
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t = 1

1

2

3

t = 2
Figure 5.22: Jointly D-connected graph
sequence for matrix A of Example 16.

Example 17. Consider matrix A of Example 16. The sequence of " = 2

graphs in Figure 5.22 is jointly D-connected.

Definition 21. An infinite sequence of directed graphs G is repeatedly
jointly D-connected by sub-sequences of length " if it exists a positive
integer ", such that, ∀k ∈ N0, the sequence G(kl), . . . ,G((k + 1)l − 1) is
jointly D-connected.

5.2.2 Communication Protocol
As in Section 5.1.1, each agent j ∈ N at every iteration k ∈ N0 broad-
casts two pieces of information, i.e., the m-dimensional vector

τ a
j (k) := xj(k)

and
τ bj (k) := 1.

Note that these two signals are broadcast orthogonally, i.e., indepen-
dently from each other (e.g., on different frequencies). For the syn-
chronous broadcast of these two signals, at every algorithm iteration,
agents need m + 1 orthogonal transmissions (namely, m + 1 wire-
less resources are used per every iteration), since τ a

j (k) ∈ Rm and
τ bj (k) ∈ R. According to the WMAC model, at every iteration k ∈ N0

each agent i ∈ N receives

νa
i (tk) :=

∑

j∈Ni(k)

ξij(k)τ
a
j (k) =

∑

j∈Ni(k)

ξij(k)xj(k) (5.49)

and
νbi (tk) :=

∑

j∈Ni(k)

ξij(k)τ
b
j (k) =

∑

j∈Ni(k)

ξij(k). (5.50)
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Fading coefficients have already been discussed in Section 4. Among
the benefits of exploiting the interference, we acknowledged privacy.
In fact, being fading coefficients unknown to agents, it is utterly impos-
sible for any agent i ∈ N to reconstruct neighbors’ local information
by knowing νa

i (tk) and νbi (tk).

5.2.3 Algorithm
Each agent i ∈ N , at every iteration k ∈ N0, obtains νa

i (tk) and νbi (tk),
whichmay be used for updatingxi(k). νa

i (tk) represents a linear com-
bination of the local estimates xj(k) of all agents that can transmit in-
formation to agent i. νbi (tk) is the sum of the corresponding channel
coefficients. The proposed algorithm is executed ∀i ∈ N and ∀k ∈ N0

and is as follows:

xi(k + 1) = xi(k)−
1

νbi (tk)
Pi

(
νbi (tk)xi(k)− νa

i (tk)
)
, (5.51)

where Pi ∈ Rm×m is the orthogonal projection matrix onto the kernel
of Ai. ∀i ∈ N , the orthogonal projection matrix Pi is computed as
follows, see [102, Ch. 7.3]:

Pi := κi(κ
′
iκi)

−1κ′
i,

where κi ∈ Rm×ρ, ρ = nullity(Ai), and its columns form a basis for
the kernel of Ai.

Remark 9. ∀v ∈ Rm, Piv ∈ ker(A)i.

Remark 10. ∀v ∈ Rm, AiPiv = 0ni .

Proposition 26. Ifxi(k) solves (5.48) andxi(k) is updated according to (5.51),
then xi(k + 1) solves (5.48).

Proof. xi(k + 1) solves (5.48) iff Aixi(k + 1) = bi, i.e., by (5.51),

Ai

(
xi(k)−

1

νbi (tk)
Pi

(
νbi (tk)xi(k)− νa

i (tk)
)
)

= bi.

By Remark 10, the latter becomes

Aixi(k)−
1

νbi (tk)
AiPi

(
νbi (tk)xi(k)− νa

i (tk)
)
= Aixi(k),

which is, by hypothesis of the proposition, equal to bi. This concludes
the proof.

Convergence to a global solution can be formalized as follows.

Theorem 8 (Unique solution). A setN of communicating agents update
their estimates according to (5.51). If G is a sequence of graphs repeatedly
jointly D-connected by sub-sequences of length ν, then all xi(k) converge to
the global solution of (5.47) notwithstanding the unknown fading channel.
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5.2.4 Proof of Theorem 8
The proof of Theorem 8 is inspired by [51] and extends the proofs of
[71] to the case of communication interference. We first deal with the
case of (5.47) having a unique solution (i.e. m = n); after that, we
extend the proof to the more general case (i.e. m ≥ n).

5.2.4.1 Unique solution
Let x∗ ∈ Rm be the unique solution of (5.47). Let’s define error vari-
ables, i.e.,

∀i ∈ N , ∀k ∈ N0, ei(k) := xi(k)− x∗. (5.52)
Clearly, all agents have the global solution if and only if, ∀i ∈ N , ei(k) =

0m. Inserting (5.8) into (5.51) yields, ∀k ∈ N0, ∀i ∈ N ,

xi(k + 1) = xi(k)− Pi



xi(k)−
ν∑

j=1

hij(k)xj(k)



 . (5.53)

Note that also the individual normalized coefficients hij(k) in (5.53)
are unknown. The only available information is that they sum up to
1. In order to bring (5.53) to a compact form, let x(k) ∈ Rνm be the
column vector stacking local solutions, i.e.,

∀k ∈ N0, x(k) := [x1(k)
′, . . . ,xν(k)

′]′.

Similarly, let x∗ ∈ Rνm be the column stacking ν vectors x∗, i.e. x∗ =

[x∗′
, . . . , x∗′

]′. Moreover, let P ∈ Rνm×νm be the blockdiagonal matrix
composed of the ν orthogonal projection matrices Pi, i.e.,

P := blockdiag (P1, . . . , Pν) .

Define the matrix H(k) ∈ Rν×ν ,

∀k ∈ N0, ∀i ∈ N , ∀j ∈ N , [H(k)]ij = hij(k).

Clearly, H(k) is row-stochastic, ∀k ∈ N0. Iterate (5.53) can now be
rewritten as, ∀k ∈ N0,

x(k + 1) = x(k)− P (x(k)− (H(k)⊗ Im)x(k)) , (5.54)

whereH(k)⊗ Im denotes the Kronecker product ofH(k) and Im. Let,
∀k ∈ N0, e(k) ∈ Rνm stack all ei(k), i.e.,

e(k) := [e1(k)
′, . . . , eν(k)

′]′. (5.55)

Lemma 5. ∀k ∈ N0, (H(k)⊗ Im)x∗ = x∗.

Proof.

(H(k)⊗ Im)x∗ =





∑ν
j=1 h1j(k)x∗

...∑ν
j=1 hνj(k)x∗



 = x∗,

where the second equality is a consequence ofObservation 1 on pg. 65.
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Lemma 6. ∀k ∈ N0, Pe(k) = e(k).

Proof. Since xi(k) is a local solution of (5.47), Aiei(k) = Ai(xi(k) −
x∗) = bi − bi = 0. Therefore, ei(k) ∈ ker(Ai). ∀i ∈ N , Pi is the
orthogonal projection onto the kernel of Ai, therefore, since ei(k) is
already in ker(Ai),

Piei(k) = ei(k).

This is valid ∀i ∈ N , thus the proof is concluded.

By Lemma 5 and by subtracting x∗ from both sides of (5.54), one
gets

e(k + 1) = e(k)− P (x(k)− (H(k)⊗ Im)x(k))

= e(k)− P (x(k)− (H(k)⊗ Im)x(k) + (H(k)⊗ Im)x∗ − x∗)

= e(k)− P (e(k)− (H(k)⊗ Im)e(k))

By Lemma 6, the latter becomes, ∀k ∈ N0,

e(k + 1) = Q(k)e(k), (5.56)

whereQ(k) := P (H(k)⊗ Im). If thematrix sequence {Q(k)}k∈N0 con-
verges exponentially, Theorem 8 is proven. Similarly to [51], we are
going to employ a mixed norm for proving this.

Next, we discuss the mixed l2/l∞ vector norm and its induced ma-
trix norm. In literature, the concept of mixed matrix norm is closely
related to the subject of norm compression of block-partitioned matrices,
see, e.g., [7], and it has been employed in the context of compressed
sensing, see [28].

Assume v ∈ Rdm, d,m ∈ N. Partition v as v = [ṽ′
1, . . . , ṽ

′
m]′, where

[ṽi]j := [v](i−1)d+j , i = 1, . . . ,m, j = 1, . . . , d. Define w ∈ Rm
≥0 by

[w]i = ‖ṽi‖2, i = 1, . . . ,m. Then the mixed l2/l∞ norm of v corre-
sponding to the integer d is defined as

‖v‖2,∞ := ‖w‖∞ . (5.57)

Assume A ∈ Rdm×dm, d,m ∈ N. Partition A as

A =




Ã11 . . . Ã1m

. . . . . . . . .

Ãm1 . . . Ãmm



 ,

where Ãij ∈ Rd×d is given by [Ãij ]kl := [A](i−1)d+k,(j−1)d+l, i, j =

1, . . . ,m and k, l = 1, . . . , d. Define B ∈ Rm×m
≥0 by [B]ij =

∥∥∥Ãij

∥∥∥
2where the latter is the matrix norm induced by the l2 vector norm.

Then the mixed l2/l∞ norm of matrix A corresponding to the integer
d is defined as

|||A|||2,∞ := ‖B‖∞ ,

where ‖B‖∞ is the norm of matrix B induced by the l∞ vector norm.
It is straightforward to show that ‖·‖2,∞ and |||·|||2,∞ indeed satisfy all
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norm axioms. In Appendix A.3.2, we show that |||·|||2,∞ is the matrix
norm induced by the vector norm ‖·‖2,∞, i.e.

|||A|||2,∞ = sup
v &=0

‖Av‖2,∞
‖v‖2,∞

.

Furthermore, [51, Lemma 3] have shown that |||·|||2,∞ is submultiplica-
tive, i.e., |||A1A2|||2,∞ ≤ |||A1|||2,∞ |||A2|||2,∞.
Lemma 7 ([72, Lemma 2]). For any non-empty set ofm×m real orthog-
onal projection matrices {T1, . . . , T!},

‖T!T!−1 · · · · · T1‖2 ≤ 1. (5.58)

In particular,
‖T!T!−1 · · · · · T1‖2 < 1 (5.59)

if and only if

dim
(

!⋂

i=1

image(Ti)

)
= 0. (5.60)

Proof. See [72].

Corollary 5. Given the projection matrices employed in (5.51),

‖P!1 · · · · · P!ν‖2 < 1, (5.61)

for {"1 . . . "ν} = {1 . . . ν}.

Proof. In case (5.47) has a unique solution, dim (ker(A)) = 0. The
latter implies that dim (

⋂ν
i=1 ker(Ai)) = 0. Since, ∀i ∈ N , Pi is the or-

thogonal projectionmatrix onto the kernel ofAi, ker(Ai) = image(Pi),
then

dim
(

ν⋂

i=1

image(Pi)

)
= 0,

which, by Lemma 7, implies (5.61). This concludes the proof.

At this point, the concept of repeatedly jointlyD-connectedness of length
ν comes into play.
Corollary 6. If G is a sequence of graphs repeatedly jointly D-connected by
sub-sequences of length ν, for each iteration index k ∈ N0, there exists a set
{"1 . . . "ν} = {1 . . . ν} such that

‖P!1 · · · · · P!ν‖2 < 1 (5.62)

and
h!1!2(k + 1) · · · · · h!ν−1!ν (k + ν − 1) > 0. (5.63)

Proof. Inequality (5.62) follows directly from Corollary 5.
Since (5.47) has a unique solution, by Definition 16, the only fully

populated subset ofN isN itself. This implies that setD = 2N \{∅,N}
determinesD-connectedness. By the latter andDefinition 21, ∀k ∈ N0,
there exists a sequence of arcs

{("h, "h+1) ∈ A(k + h)}h=1,...,ν−1,
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with, ∀h = {1, . . . , ν}, "h ∈ N and "ha ,= "hb , for ha ,= hb. By this latter
consideration and by definition of normalized channel coefficients,

∀h = {1, . . . , ν − 1}, h!h!h+1(k + h) > 0,

thus yielding (5.63). The proof is concluded.

Lemma 8. ∃γ ∈ (0, 1):

∀k ∈ N0, ‖e(k + ν)‖2,∞ ≤ γ ‖e(k)‖2,∞ . (5.64)

Proof. By (5.56),

e(k + ν) = Q(k + ν − 1) · · · · ·Q(k)e(k),

= P (H(k + ν − 1)⊗ Im) · · · · · P (H(k)⊗ Im)︸ ︷︷ ︸
:=Qν

k

e(k).

MatrixQν
k ∈ Rνm×νm can be seen as a block-matrix composed of ν×ν

blocks of dimensionm×m. Each block i, j (i, j ∈ {1 . . . ν}) is denoted
by Qν

k[i, j] and is explicitly written as

Qν
k[i, j] =

m∑

!1=1

· · ·
m∑

!ν−1=1

Pihi!1(k)P!1h!1!2(k + 1) · . . .

. . . · P!ν−2h!ν−2!ν−1(k + ν − 2)P!ν−1h!ν−1j(k + ν − 1).

By the triangle inequality for norms,

‖Qν
k[i, j]‖2 ≤

m∑

!1=1

· · ·
m∑

!ν−1=1

∥∥Pi · · · · · P!ν−1

∥∥
2
·

· hi!1(k) · · · · · h!ν−1j(k + ν − 1). (5.65)

In general, by Lemma 7,

∀{i, "1, . . . , "ν−1},
∥∥PiP!1 · · · · · P!ν−1

∥∥
2
≤ 1. (5.66)

Among all considered ν-dimensional sets {i, "1, . . . , "ν−1} in (5.66),
there is also set {1 . . . ν}. For this set, by Corollary 5,

∥∥PiP!1 · · · · · P!ν−1

∥∥
2
< 1. (5.67)

and
hi!1(k)h!1!2(k + 1) · · · · · h!ν−1j(k + ν − 1) > 0. (5.68)

Inserting (5.67) and (5.68) into (5.65) yields

‖Qν
k[i, j]‖2 <

m∑

!1=1

· · ·
m∑

!ν−1=1

hi!1(k) · · · · · h!ν−1j(k + ν − 1). (5.69)

In fact, one of the summands in (5.65), i.e., the summand correspond-
ing to (5.67)-(5.68), is strictly smaller than hi!1(k)h!1!2(k + 1) · · · · ·
h!ν−1j(k + ν − 1).

To prove the Lemma, we need to show that

∀k ∈ N0, |||Qν
k|||2,∞ ≤ γ < 1.
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By definition of l2/l∞ mixed matrix norm,

|||Qν
k|||2,∞ = max

i=1...m




m∑

j=1

‖Qν
k[i, j]‖2



 . (5.70)

By Observation 1 on page 65, the rows of H(k) sum up to 1, ∀k ∈ N0,
therefore, ∀k ∈ N0, ∀i ∈ N ,

m∑

j=1

m∑

!1=1

· · ·
m∑

!ν−1=1

hi!1(k) · · · · · h!ν−1j(k + ν − 1) =

=




m∑

!1=1

hi!1(k) · · · · ·




m∑

j=1

h!ν−1j(k + ν − 1)



 · · ·



 = 1.

Hence, using (5.69),

∀k ∈ N0, ∀i ∈ N ,
m∑

j=1

‖Qν
k[i, j]‖2 < 1,

thus, by (5.70),
∀k ∈ N0, |||Qν

k|||2,∞ < 1.

Consequently,22 22 The following condition holds in case
the set of all possible Qν

k is a finite-set.
This is the case if data-quantization is
taken into account. See Assumption 5
for a longer explanation.

γ := sup
k∈N0

|||Qν
k|||2,∞ < 1. (5.71)

By definition of the induced vector norm,

∀k ∈ N0, ‖e(k + ν)‖2,∞ ≤ |||Qν
k|||2,∞ ‖e(k)‖2,∞ ,

which, by (5.71), yields (5.64) thus concluding the proof of Lemma 8.

The proof for Theorem 8 follows right from Lemma 8. In fact, by
(5.64),

lim
k→∞

‖e(kν)‖2,∞ ≤ γk ‖e(0)‖2,∞ . (5.72)
Since ‖·‖2,∞ is a norm (5.72) yields that the error approaches 0 ex-
ponentially, therefore the local estimates xi(k) approach x∗ exponen-
tially (independently of the unknown and time-varying normalized
channel coefficients hij(k)).

5.2.4.2 Multiple solutions
Theorem 9 (Multiple solutions). A set N of communicating agents up-
date their estimates according to (5.51). If G is a sequence of graphs repeat-
edly jointly strongly23 and D-connected by sub-sequences of length ν, then 23 In [51], the necessary and sufficient

condition for convergence is the graph
sequence to be repeatedly jointly rooted
and D-connected. However, as ex-
plained in Chapter 2, throughout this
work, we do not consider rooted graphs
since, although they constitute a com-
mon necessary condition for consen-
sus, they degenerate the concept of dis-
tributed control problem.

all xi(k) converge to the same global solution of (5.47) notwithstanding the
unknown fading channel.

For proving convergence in case of multiple solutions, we make
use of the same tools employed by [51, Sec. 4.2]. This is possible
because, in the previous section, we have reduced (5.51) to a form
similar to what presented in [51]. For this scenario, in fact, Corol-
lary 6 cannot be used since having more than one solution implies
that dim (

⋂ν
i=1 ker(Ai)) ,= 0.
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Define the subspace P as

P :=
ν⋂

i=1

image(Pi) =
ν⋂

i=1

ker(Ai),

and m̃ = m− dim(P).

Definition 22. Let the columns of them× m̃ matrix L′ be an orthonormal
basis for the orthogonal complement of P .

We define the following m̃× m̃ matrix, ∀i ∈ N ,

P̄i := LPiL
′.

Lemma 9 ([72, Lemma 1]). The following statements are true

1. ∀i ∈ N , P̄i is an orthogonal projection matrix;

2. ∀i ∈ N , LPi = P̄iL

3. ∀i ∈ N , PiL′ = L′P̄i;

4. ⋂ν
i=1 image(P̄i) = 0.

Proof. See [72, Lemma 1].

Corollary 7. ∀i, j ∈ N , LPiPj = P̄iP̄jL.

Proof. The proof follows directly from point (2) of Lemma 9.

Inwhat follows, we consider two different sets of transformed error
variables, i.e.,

∀i ∈ N , ēi(k) : = Lei(k) ∈ Rm̃ (5.73)

and

∀i ∈ N , ẽi(k) : = ei(k)− L′ēi(k) ∈ Rm. (5.74)

Lemma 10. ∀i ∈ N , P̄iēi(k) = ēi(k).

Proof. By (5.73), P̄iēi(k) = P̄iLei(k). By property (2) of Lemma 9,
P̄iLei(k) = LPiei(k), which, by Lemma 6, yields

P̄iēi(k) = LPiei(k) = Lei(k) = ēi(k),

thus concluding the proof.

Lemma 11. ∀i, j ∈ N , Pj ẽi(k) = ẽi(k).

Proof. Note that

Lẽi(k) = Lei(k)− LL′ēi(k) = Lei(k)− ēi(k) = 0,

since the columns of L are orthonormal. This implies ẽi(k) ∈ ker(L),
which yields ẽi(k) ∈

⋂ν
j=1 image(Pj), then, ∀i, j ∈ N , Pj ẽi(k) =

ẽi(k). This concludes the proof.
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Lemma 12. If, ∀i ∈ N ,

lim
k→∞

ēi(k) = 0m̃

and
lim
k→∞

ẽi(k) = ε∗,

with ε∗ ∈ Rm, then, ∀i ∈ N ,

lim
k→∞

xi(k) = ε∗ + x∗.

Proof. By merging (5.52) and (5.74), one obtains

xi(k) = ẽi(k) + L′ēi(k) + x∗.

The hypotheses of the Lemma yield

lim
k→∞

xi(k) = lim
k→∞

ẽi(k) + L′ēi(k) + x∗ = ε∗ + x∗,

which concludes the proof.

By (5.53), (5.73), and Corollary 7, ∀k ∈ N0,

ēi(k + 1) = P̄i

ν∑

j=1

hij(k)ēj(k), (5.75)

which in compact form becomes, ∀k ∈ N0,

ē(k + 1) = Q̄(k)ē(k), (5.76)

where Q̄(k) := blockdiag (P̄1, . . . , P̄ν

)
(H(k)⊗ Im). Equations (5.76)

and (5.56) are the same, apart fromhaving P̄i instead ofPi. By Lemma9,
P̄i is also an orthogonal projectionmatrix, i = 1 . . . ν, and⋂ν

i=1 image(P̄i) =

0. We can therefore repeat the argument from Section 5.2.4.1 to show
that themixed l2/l∞ normof the product Q̄(k + ν − 1) . . . Q̄(k) is strictly
smaller than 1, provided that G is a repeatedly jointly D-connected
sequence of graphs and that the set of all Q̄(k) is finite (see Assump-
tion 5 on pg. 76). Therefore, ē(k) converges exponentially to 0νm̃, i.e.,
∀i ∈ N ,

lim
k→∞

ēi(k) = 0m̃. (5.77)

Concerning ẽi(k), by its definition,

ẽi(k + 1) = ei(k + 1)− L′ēi(k + 1)

= Pi

ν∑

j=1

hij(k)ej(k)− L′P̄i

ν∑

j=1

hij(k)ēj(k),

which, by property (3) in Lemma 9, becomes

= Pi

ν∑

j=1

hij(k)ej(k)− PiL
′

ν∑

j=1

hij(k)ēj(k),

= Pi

ν∑

j=1

hij(k)ẽj(k).
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The latter, by Lemma 11, yields, ∀i ∈ N , ∀k ∈ N0,

ẽi(k + 1) =
ν∑

j=1

hij(k)ẽj(k). (5.78)

ByProposition 24 onpg. 79, and beingG also repeatedly jointly strongly
connected, agents with dynamics (5.78) achieve consensus, namely,
∀i ∈ N ,

lim
k→∞

ẽi(k) = ε∗. (5.79)

By Lemma 12, and both (5.77) and (5.79) having been verified un-
der the hypotheses of the Theorem, all xi(k) converge to the same
solution. This shows that Theorem 8 is proven also in case of (5.47)
having multiple solutions.

5.2.5 Simulations
In what follows, we simulate a set of agents trying to solve (5.47) by
running algorithm (5.51) together with the designed communication
protocol, under different conditions. For simplicity, we are consider-
ing fully connected underlying network topologies. Channel coeffi-
cients ξij(k) of each fully connected graph G(k) are drawn out of an
uniform distribution24, i.e., ∀i, j ∈ N , ∀k ∈ N0, ξij(k) ∼ U(0, µ], 24 They are independent and identically

distributed.where µ ∈ R>0. In all simulations, ν = m, thus, ∀i ∈ N , ni = 1.

5.2.5.1 Unique Solution
The matrices of equation (5.47) are the following:

A =





22
25

61
100

31
50

1
10

8
25

27
50

3
100

19
100

49
100

23
50

1
100

8
25

81
100

8
25

19
25

87
100

8
25

22
25

18
25

53
100

13
100

41
100

59
100

57
100

3
25




, B =





93
100
17
50
18
25
19
50
47
100




.

This is the case of (5.47) having a unique solution, namely n = m

and A full-row rank. Fig. 5.23 represents the evolution of xi(k), i =

1 . . . ν, through iterations. The evolution of ‖e(k)‖2,∞ through itera-
tions can be seen in Fig. 5.24. In the same figure, we have plotted also
log(‖e(k)‖2,∞), thus showing the exponential convergence to a solu-
tion.

5.2.5.2 Ideal Channel
The impact of the unknown fading channel can be addressed by look-
ing at Fig. 5.25, where uncertainty and fading are removed, namely,
∀i, j ∈ N , ∀k ∈ N0, ξij(k) = 1. Note that this can only be done us-
ing standard orthogonal channel access methods, i.e., at every itera-
tion step, all agents would have to transmit the current estimations
independently. Hence, if this is done, e.g., by TDMA (Time-division
multiple access), we would need νm orthogonal transmissions per it-
eration. The comparison of Fig. 5.23 and Fig. 5.25 illustrates that the
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Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Figure 5.23: Convergence to the solution
for (5.47) having an unique solution.
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0

2 Figure 5.24: ‖e(k)‖2,∞ and
log(‖e(k)‖2,∞) through iterations.

presence of an unknown and fading channel does not have a notice-
able impact.

Comparing Fig. 5.23 with Fig. 5.25 helps quantifying the savings of
wireless resources in case interference is exploited. In fact, although
Fig. 5.23 and Fig. 5.25 exhibit the same convergence rate, the tradi-
tional communication approach (in which agents access the channel
separately) requires at leastmν independent channel accesses per ev-
ery iteration. In fact, each agent (1 . . . ν) separately communicates to
neighbors each entry (1 . . .m) of its information state. Our designed
communication system requires only m+ 1, but guarantees the same
convergence rate in terms of iterations as the traditional approach. Ex-
ploiting interference, therefore, significantly reduces the consumption
of wireless resources.

5.2.5.3 Multiple Solution
The matrices of equation (5.47) are the following:

A =





22
25

61
100

31
50

1
10

8
25

27
50

3
100

19
100

49
100

23
50

1
100

8
25

81
100

8
25

19
25

87
100

8
25

22
25

18
25

53
100




, B =





93
100
17
50
18
25
19
50





The numerical simulation is depicted by Fig. 5.26.
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Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Figure 5.25: xi(k) through iterations,
with an ideal channel.

Agent 1

Agent 2

Agent 3

Agent 4

Figure 5.26: xi(k) through iterations for
the case of multiple solutions.



6
Max Consensus Over the Wireless Channel

Partial results of the presented section have been published in Molinari
et al. [64] and Molinari et al. [68]. The candidate is the first author of
all these contributions.

As introduced in Section 2.3.2,max-consensusprotocols allowagents
to reach an agreement on the largest information state. Standardmax-
consensus protocols guarantee that the agreement on the maximum
value is achieved in finite time, see, e.g., [33, 75]. Since this technol-
ogy finds application in contexts where converging time is a critical
resource (see, e.g., Section 3), any method that can diminish such a
quantity is of extreme interest for research. As for the average con-
sensus (Section 5), and motivated by Section 1, the goal of this sec-
tion is designing a consensus algorithm that exploits the superposi-
tion property of the wireless channel and guarantees convergence to
the max-consensus.

Note that, throughout this section, the underlying network topol-
ogy is time-invariant strongly connected, i.e., G = (N ,A). This section
designs a max-consensus protocol based on the interference model of
Section 4.2.2.

6.1 Asymptotic Converging Algorithm
Let N denote the set of agents, labeled 1 through n ∈ N, exchanging
information over a networkmodeled by a time-invariant strongly con-
nected directed graph, i.e., G = (N ,A). Let, ∀i ∈ N , ∀k ∈ N0, xi(k)

denote the information state of agent i at iteration k. Vector xxx(k) ∈ Rn

stacks all information states at iteration k ∈ N0. The wireless chan-
nel is modeled by a fading noiseless WMAC, see Chapter 4. Let us
initially assume that the communication system of Section 5.1.1 is em-
ployed also here; thus, the signal obtained by each agent i ∈ N at
every iteration k ∈ N0 is

ui(k) :=
∑

j∈Ni(k)

hij(k)xi(k), (6.1)

where hij(k) defined as in (5.8).
Definition 23. Any agent, say i ∈ N , whose information state at iteration
k ∈ N0 is xi(k) = x̄ = maxi∈N xi(0) is referred to as maximal agent at
iteration k ∈ N0.
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The proposed max-consensus protocol is primarily based on two
underlying ideas, summarized in Observation 3 and Proposition 27.

Observation 3. If the goal is to achieve max-consensus, any non-maximal
agent at iteration k ∈ N0 does not need to communicate its own information
state at iteration k ∈ N0.

However, agents in general do not knowwhether they are maximal
at a given iteration k. Agents only have a local estimation of this. Let
us assume that the result of this local evaluation for agent i ∈ N at
iteration k ∈ N0 is stored in a binary variable ỹi(k) ∈ {0, 1}. In the
case ỹi(k) = 1, agent i ∈ N is said to be a maximal-candidate at it-
eration k. If (and only if) agent i is a maximal-candidate, it will be
allowed to broadcast at the next iteration. This will be expressed by
an authorization variable yi : N0 → {0, 1}, where yi(k) = ỹi(k − 1)

and yi(0) = 1 .
Now, let,

∀i ∈ N , ∀k ∈ N0,

Nm
i (k) := {j ∈ Ni | yj(k) = 1} ⊆ Ni (6.2)

be the set of neighbors authorized to broadcast at iteration k. If only
authorized agents broadcast and the communication system of Sec-
tion 5.1.1 is employed, each agent i ∈ N will receive, at k ∈ N0,

ui(k) =
∑

j∈Nm
i (k)

hij(k)xj(k). (6.3)

The local evaluation that establishes which agents are authorized to
broadcast is based on the following proposition.

Proposition 27. Given a set of agents N , a non-empty subset M ⊆ N ,
and a set of real-valued parameters H = {hj ∈ (0, 1] | j ∈ M} with∑

j∈M hj = 1, the following holds ∀k ∈ N0, ∀i ∈ N ,

xi(k) <
∑

j∈M
hjxj(k) =⇒ xi(k) < max

j∈N
(xj(k)). (6.4)

Proof. By definition of a convex hull, ∑j∈M hjxj(k) ∈ C({xj(k) | j ∈
M}). Moreover, ∀p ∈ C({xj(k) | j ∈ M}) : p ≤ maxj∈M(xj(k)).
Hence, ∑

j∈M
hjxj(k) ≤ max

j∈M
(xj(k)).

Since M ⊆ N ,

xi(k) < max
j∈M

(xj(k)) ≤ max
j∈N

(xj(k)).

This implies (6.4).

By (6.4), for M = Nm
i (k) and H = {hij(k) | j ∈ Nm

i (k)}, the
implication

xi(k) < ui(k) =⇒ xi(k) < max
j∈N

(xj(k)) (6.5)
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immediately follows. Therefore, yi can be updated as

∀i ∈ N , ∀k ∈ N0,

yi(k + 1) = ỹ(k) = IR≥0(xi(k)− ui(k)). (6.6)

In the light of these observations, and given that the signal ui(k) is
computed by harnessing the interference of the channel, each agent
i ∈ N can apply the following max-consensus protocol:

∀k ∈ N0,





xi(k + 1) = max(xi(k), ui(k))

yi(k + 1) = IR≥0
(xi(k)− ui(k))

, (6.7)

where yi(0) = 1 and xi(0) = xi0 ∈ S, and ui(k) is obtained from (6.3).
Note that ui(k) is determined by xj(k) and yj(k), j ∈ Ni. (6.3)-(6.7)
can then be rewritten in vector-form as

w(k + 1) = g(w(k)), (6.8)

where
w(k) =

[
x(k)
y(k)

]
, (6.9)

and, ∀i ∈ N , [x(k)]i = xi(k), [y(k)]i = yi(k), and g : Rn × {0, 1}n →
Rn × {0, 1}n is the nonlinear function reflecting (6.7) and (6.3).

6.1.1 Asymptotic Convergence
A multi-agent system with a strongly connected network topology
(N ,A) is given. The system uses the consensus protocol (6.8), i.e.,
each agent iterates (6.3),(6.7) synchronously. In the following, we
prove asymptotic convergence by using Lyapunov theory (cf. [6, p.
87] and [46, p. 22]). Initially, we show that all information states are
non-decreasing bounded sequences.
Proposition 28. Given a multi-agent system with network topology (N ,A)

and consensus protocol (6.8), ∀x(0) ∈ Sn, ∀i ∈ N , ∀k ∈ N0,

xi(k) ≤ xi(k + 1) ≤ max
j∈N

(xj(0)). (6.10)

Proof. Thefirst inequality immediately follows from(6.7). The second
inequality follows from the fact that, according to (6.3),

ui(k) ∈ C ({xj(k) | Nm
i (k)})

if Nm
i (k) ,= ∅, zero else. Hence

ui(k) ≤ max
j∈Nm

i (k)
(xj(k)) ≤ max

j∈N
(xj(k)) .

Therefore, ∀i ∈ N ,

xi(k + 1) ≤ max
j∈Nm

i (k)
(xj(k)) ≤ max

j∈N
(xj(k)) .

Moreover,
max
j∈N

(xj(k + 1)) ≤ max
j∈N

(xj(k)) ,

thus yielding the second inequality.
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The following propositions establish a unique equilibrium point.

Proposition 29.
w∗ =

[x∗′, 1′n
]′
, (6.11)

with x∗ = x∗1n and x∗ = maxj∈N (xj(0)) is an equilibrium point for the
multi-agent system with network topology (N ,A) and consensus protocol
(6.8).

Proof. Assume w(k) = w∗. This implies, ∀i ∈ N , xi(k) = x∗ and
yi(k) = 1. Therefore Nm

i (k) = Ni, hence

ui(k) =
∑

j∈Ni

hij(k)xj(k)

=




∑

j∈Ni

hij(k)



x∗ = x∗, (6.12)

as Ni ,= ∅. Then, according to (6.7),

xi(k + 1) = max(x∗, ui(k)) = x∗ (6.13)

and

yi(k + 1) = IR≥0
(x∗ − ui(k)) = 1, (6.14)

and, therefore, w(k + 1) = w∗.

Proposition 30. Consider a multi-agent system with a strongly connected
network topology (N ,A) using the consensus protocol (6.7).

w∗ = [x∗1′n, 1′n]′

is the unique equilibrium point.

Proof. The proof is by contradiction, i.e., we assume that there exists
an equilibrium point

ŵ = [x̂′, ŷ′]′ ,= w∗.

Case 1

ŷ ,= 1′n, i.e.,
∃i ∈ N , s.t. ŷi = 0.

Hence, because of (6.7),

xi(k) < ui(k)

and therefore xi(k + 1) > xi(k). Hence we have established that for
any equilibrium point ŵ the Boolean part needs to be

ŷ = 1′n.
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Case 2

ŷ = 1′n. but x̂ ,= x∗1′n. Because of the first premise, ∀i ∈ N ,

Nm
i (k) = Ni.

As (N ,A) is strongly connected, Ni ,= ∅, ∀i ∈ N . Furthermore, also
because of (N ,A) being strongly connected, there exists a minimal
element l ∈ N that has at least one non-minimal neighbor, i.e.,

x̂l = min
j∈N

x̂j

and
x̂l < max

j∈Nl

x̂j := x̂p.

As the channel coefficients are positive, (6.3) implies

ul(k) > xl(k).

This and (6.7) imply
xl(k + 1) > xl(k).

Hence, we have established that for any equilibrium point ŵ, the real
part has to be x∗1n.

Lemma 13. Consider a multi-agent system with a strongly connected net-
work topology (N ,A). If protocol (6.8) is employed, then, ∀x(0) ∈ Sn,
∀k ∈ N0,

∑

i∈N
(xi(k + 2)− xi(k)) = 0 =⇒ x(k) = x∗. (6.15)

Proof. From Proposition 28, {xi(k)}k∈N0 is a non-decreasing bounded
sequence, composed of nonnegative entries. As a consequence,

∑

i∈N
(xi(k + 2)− xi(k)) = 0

if and only if
x(k) = x(k + 1) = x(k + 2). (6.16)

The latter, by (6.7), implies that, ∀i ∈ N , xi(k) ≥ ui(k) and xi(k+1) ≥
ui(k + 1). By (6.6), this implies that

y(k + 1) = y(k + 2) = 1. (6.17)

From (6.16) and (6.17), it clearly follows that

w(k + 1) =

[
x(k + 1)

y(k + 1)

]
=

[
x(k + 2)

y(k + 2)

]
= w(k + 2) (6.18)

is an equilibrium for the system. According to Proposition 30, it is
unique, i.e.,

w(k + 1) = w(k + 2) = w∗, (6.19)
x(k + 1) = x(k + 2) = x∗. (6.20)

By (6.16), x(k) = x∗; this concludes the proof.
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Corollary 8. Consider a multi-agent system with a strongly connected net-
work topology (N ,A). If the protocol (6.8) is employed, then, ∀x(0) ∈ Sn,
∀k ∈ N0,

x(k) ,= x∗ =⇒
∑

i∈N
(xi(k + 2)− xi(k)) > 0. (6.21)

Proof. (6.15) is equivalent to

x(k) ,= x∗ =⇒
∑

i∈N
(xi(k + 2)− xi(k)) ,= 0.

Non-decreasingness of the sequence {xi(k)}k∈N0 (Proposition 28) then
establishes (6.21).

By [108, p. 264] and [74, p. 43], a Lyapunov-based analysis can be
applied to the discrete-time system like (6.8), as existence and unique-
ness of an equilibrium point have been established in Proposition 29
and Proposition 30.

Theorem 10. Consider a multi-agent system with a strongly connected net-
work topology (N ,A). Agents employ the consensus protocol (6.8). For
every possible initial state x(0) ∈ Sn, the system achieves max-consensus
asymptotically.

Proof. The component yi of (6.7) can be explicitly rewritten, ∀k ∈ N0,
as

yi(k + 1) =





1 if xi(k) ≥ ui(k)

0 if xi(k) < ui(k)
. (6.22)

By (6.7) and since {xi(k)}k∈N0 is a non-decreasing sequence, (6.22)
can be reformulated, ∀k ∈ N0, as

yi(k + 1) =





1 if xi(k) = xi(k + 1)

0 if xi(k) < xi(k + 1)
. (6.23)

This, again because of non-decreasingness of {xi(k)}k∈N0 , is equiva-
lent to

∀k ∈ N0, yi(k + 1) = IR≥0
(xi(k)− xi(k + 1)). (6.24)

By introducing the new state vector

v(k) :=
[
v1(k)
v2(k)

]
:=

[
x(k)

x(k − 1)

]
. (6.25)

we can rewrite (6.8) as

v(k + 1) = g̃(v(k)), (6.26)

where the function g̃ : S2n $→ S2n can be explicitly expressed by

v1(k + 1) = max(v1(k), H(k)v1(k)) (6.27)
v2(k + 1) = v1(k), (6.28)
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where max(·) is understood element-wise and

[H(k)]ij :=





hij(k) if j ∈ Ni and [v1(k)]j = [v2(k)]j
0 else

.

Consequently, the unique equilibrium w∗ of (6.8) corresponds to the
following unique equilibrium v∗ of (6.26):

v∗ = x∗12n. (6.29)

A candidate Lyapunov function V : S2n → R≥0 is chosen as follows:

∀k ∈ N0, V (v(k)) = 12n(v∗ − v(k)) (6.30)
= 2nx∗ −

∑

i∈N
(xi(k) + xi(k − 1)). (6.31)

The following properties hold:

a) V (v) is continuous in R2n
≥0;

b) V (v∗) = 0;

c) V (v) is positive on any trajectory v of the system, unless v = v∗.
This follow directly from Proposition 28.

d) By Corollary 8, ∀v(k) ,= v∗ (i.e., ∀x(k − 1) ,= x∗),

∆V (v(k)) = V (v(k + 1))− V (v(k))
= −

∑

i∈N
(xi(k + 1)− xi(k − 1)) < 0.

Hence, the function V (v) has all the properties required for a Lya-
punov function. By [46, p. 22] and [6, p. 88], the system therefore
asymptotically converges to max-consensus.

In the following corollary, an immediate result coming as a con-
sequence from Theorem 10 is reviewed. It will be used in the next
section.

Corollary 9. Consider a multi-agent system with a strongly connected net-
work topology (N ,A) iterating consensus protocol (6.8).

∀i ∈ N , xi(k0) < x∗ =⇒ ∃ki > k0 : yi(ki) = 0. (6.32)

Proof. Let x∗ − xi(k0) = ε0. Choose ε < ε0. Asymptotic stability
implies that ∃kε > k0 such that x∗ − xi(k) < ε, ∀k > kε. Hence,
xi(k) > xi(k0), ∀k > kε. This implies that ∃ki, k0 < ki ≤ kε s.t.

xi(ki)− xi(ki − 1) > 0,

therefore yi(ki) = 0.

The interpretation of this corollary is that an agent which is non-
maximal at iteration k0, will eventually lose its status as a maximal
candidate and therefore its authorization to broadcast.
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3
a

4 b

3 c

3
d

Figure 6.1: Network topology for Exam-
ples 1, 2, 4. The node set is {a, b, c, d}
and the vector of initial information
states is x(0) = [3, 4, 3, 3]′ for Example 1
and 4, and x(0) = [3.1, 4, 3, 3]′ for Ex-
ample 2.

3
a

4 b

3 c

3
d

Figure 6.2: Network topology for Exam-
ple 3. The node set is {a, b, c, d} and
the vector of initial information states is
x(0) = [3, 4, 3, 3]′.
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4.0 Figure 6.3: Evolution of agents’ informa-
tion states for Example 1. The dashed
lines represent xa(k) and xd(k) (which
coincide). The red solid line represents
the information state of agent c. Asymp-
totic convergence to the max value, i.e.,
x∗ = xb(0), can be observed.

In conclusion, we have shown that a multi-agent system with a
strongly connected network topology achievesmax-consensus asymp-
totically by employing protocol (6.8). This protocol harnesses the in-
terference property of the channel for computing the signal ui. In
the following, we show simulation studies that provide further infor-
mation on convergence and computational benefits of the suggested
approach.

6.1.2 Simulations
In the following, some simulation results are presented. The aim is
to compare our approach to standard approaches and quantify ben-
efits (saved wireless resources). However, as it will be clear in the
simulations, there are cases in which finite-time convergence cannot
be achieved with protocol (6.8), but only asymptotic convergence. In
such cases, we cannot quantify benefits. This will motivate the search
for an extended protocol in the next section.
Example 1: first, we review a numerical experiment in [64], where
channel coefficients are equal and constant. Consider the underlying
network in Figure 6.1-6.2. By (6.3), ui(k) is the linear average of in-
formation states of agents in Nm

i (k). Example 1 illustrates asymptotic
convergence of a system composed of 4 nodes, with a strongly con-
nected network topology, endowedwith protocol (6.8), see Figure 6.3.
Examples 2-3: on the other hand, Examples 2, respectively Example 3,
show that, by slightly varying x(0), respectively the network topology,
the system achieves finite-time max-consensus (see Figures 6.4 and
6.5). This behavior has been confirmed by running extensive numer-
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Figure 6.4: Evolution of agents’ informa-
tion states for Example 2. The dashed
lines represent the information states
of agents a and d, the solid line that
of agent c. Max-consensus xb(0) is
achieved after 4 iterations.
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4.0 Figure 6.5: Evolution of agents’ informa-
tion states for Example 3. The dashed
lines represent the information states
of agents a and d, the solid line that
of agent c. Max-consensus xb(0) is
achieved after 7 iterations.

ical simulations: in most cases, finite time convergence, rather than
asymptotic convergence, is achieved.
Examples 4: (see Figure 6.6), channel coefficients are randomly drawn
out of a Rayleigh distribution with variance 1 independently for ev-
ery iteration. Numerical experiments indicate that the system is very
likely to achieve finite-time max-consensus. However, it will be pos-
sible to choose a collection of constant channel coefficients, i.e. ∀k ∈
N0, hji(k) = h, so that consensus is achieved asymptotically, rather
than finite-time.
These examples illustrate that the use of protocol (6.7) for a strongly
connected network does not guarantee finite-time consensus. Asymp-
totic convergence is guaranteed by Theorem 10; the achievement of
finite-time consensus, on the other hand, depends on the network topol-
ogy, the initial information states, and the channel coefficients if pro-
tocol (6.7) is used. This is the motivation for establishing an extended
max-consensus protocol in the next section.
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Figure 6.6: Evolution of agents’ informa-
tion states in the case of a fading wire-
less channel. This has an important im-
pact on the convergence: with regards to
Figure 6.3 (nonfading channel), conver-
gence is here achieved in a finite number
of steps, rather than asymptotically.
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6.2 Finite-time Max-Consensus Protocol
In this section, an extended max-consensus protocol that exploits the
channel superposition property is presented. However, in contrast to
the protocol (6.8), it guarantees finite-time convergence for strongly
connected network topologies.

6.2.1 Key idea
Let, ∀k ∈ N0,Mk be the set ofmaximal-agents at iteration k, i.e. Mk =

{i ∈ N | xi(k) = x∗}. The following proposition states that, at any
iteration, there exists a non-maximal agent if and only if there is a non-
maximal agent in whose neighborhood there is a maximal agent.

Proposition 31. Given a multi-agent system with a strongly connected net-
work topology (N ,A), then

∃j ∈ N \Mk ⇐⇒ ∃i ∈ N \Mk such that Ni ∩Mk ,= ∅

Proof.

⇐= Trivial.

=⇒ Partition N as Mk and N \Mk. Choose j ∈ N \Mk and j̄ ∈ Mk.
Because of strong connectedness, there is a path from j̄ to j. Clearly,
there is at least one arc in this path, say (̄i, i), such that ī ∈ Mk and
i ∈ N \Mk. As ī is a neighbour of i, then ī ∈ Ni ∩Mk.

The following result is derived directly from Corollary 9.

Proposition 32. Given a multi-agent system with a strongly connected net-
work topology (N ,A) endowed with the consensus protocol (6.8), given an
arbitrary k0 ∈ N0 and ∀x(k0) ∈ Sn, the following holds:

∃k̃ > k0 : ∀i ∈ N \Mk0 ,
k̃∏

t=k0

yi(t) = 0. (6.33)

Proof. Corollary 9 states that for each i ∈ N \Mk0 , there exists ki > k0
such that yi(ki) = 0. Take

k̃ := max
i∈N\Mk0

ki.

Then, ∀i ∈ N \Mk0 ,
k̃∏

t=k0

yi(t) = 0.

The proof is concluded.

By Proposition 32, each agent of the system, say agent i, that at k0
is not maximal (i.e. xi(k0) < x∗), within (k̃− k0) steps will receive an
input ui(k), k ∈ [k0, k̃ − 1], such that ui(k) > xi(k).
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Now suppose that we change the consensus protocol (6.7) by setting
the authorization variable of each agent i ∈ N at iteration k̃ + 1 to

yi(k̃ + 1) =
k̃∏

t=k0

yi(t). (6.34)

From Proposition 32, this quantity is zero for all agents that were non-
maximal at k0, implying that

∀i ∈ N , Ni ∩Mk0 ,= ∅ =⇒ xi(k̃ + 2) = x∗. (6.35)

In other words, all agents in the neighborhood of amaximal agent will
become maximal at iteration k̃ + 2.

However, since agents do not have the global knowledge of the sys-
tem, the value of k̃ is not known a priori. Hence, there will be the need
for each agent i ∈ N to retain a state variable, say Ti : N0 → N, that
attempts to (over-)estimate k̃. By letting Ti(k) grow according to a
nondecreasing diverging sequence, it will be eventually large enough
to over-approximate k̃.

6.2.2 Protocol Design
The idea just presented inspires the following switching consensus
protocol ∀i ∈ N , ∀k ∈ N0,

if k = 2Ti(k):





xi(k + 1) = max(xi(k), ui(k))

yi(k + 1) =
∏k

t=Ti(k)
yi(t)

Ti(k + 1) = k

, (6.36a)

else:





xi(k + 1) = max(xi(k), ui(k))

yi(k + 1) = IR≥0
(xi(k)− ui(k))

Ti(k + 1) = Ti(k)

, (6.36b)

where ∀i ∈ N , yi(0) = 1, xi(0) = xi0 , Ti(0) = T (0) = 2, and ∀i ∈ N ,
∀k ∈ N0, ui(k) is computed as in (6.3), by exploiting the superposition
property of the channel. Protocol (6.36b) is identical to protocol (6.7),
except for the trivial presence of Ti(k), which is, however, kept con-
stant and does not affect the system behavior. Only for iteration steps
k = 2n, n ∈ N, the proposed consensus protocol switches to (6.36a).

Proposition 33. ∀i ∈ N , ∀k ∈ N0,

Ti(k) = 2p(k) , (6.37)

where

p(k) :=





;log2(k)− 1< if k ≥ 2

1 else
. (6.38)
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4.0 Figure 6.7: Evolution of information
states through iterations in the absence
of a fading channel. The solid line in-
dicates the information state of agent
c, whilst the dashed lines (overlapped)
are the ones of agents a and d. Max-
consensus is achieved in 8 iterations.

Proof. Follows directly from (6.36).

Proposition 33 implies that Ti(k), k ∈ N0, is a non-decreasing di-
verging sequence.
Remark 11. The state variable Ti(k) is the same for all i ∈ N , therefore, the
index i can be omitted.
Corollary 10. A multi-agent system with a strongly connected network
topology (N ,A) employs switching consensus protocol (6.36). Then, ∀x(0) ∈
Sn,

∃ks ∈ N0 : ∀k ≥ ks, T (k) ≥ k̃. (6.39)

Proof. By construction, T (k) is a non-decreasingunbounded sequence.

Remark 12. It is straightforward to come up with a suitable ks. In fact,

T (k) ≥ k̃ ⇐⇒ ;log2(k)− 1< ≥ log2(k̃).

The latter is true for each iteration k ∈ N , such that

k ≥ 21+log2(k̃) = 2k̃ = ks. (6.40)

Lemma 14. A multi-agent system with a strongly connected network topol-
ogy (N ,A) employs protocol (6.36). Then, ∀x(0) ∈ Sn,

∀k ≥ ks, ∃j ∈ N \MT (k) =⇒ MT (k) ⊂ M2T (k)+2. (6.41)

In words: if max-consensus has not yet been achieved at iteration T (k), the
number of non-maximal agents will be strictly smaller at iteration 2T (k)+2.

Proof. ByProposition 31, given the left-hand side of (6.41), there exists
a maximal agent in the neighborhood of a non-maximal agent i, i.e.
∃i ∈ N \MT (k) : Ni ∩MT (k) ,= ∅. By (6.36a), for k = 2Ti(k),

∀i ∈ N , yi(2Ti(k) + 1) =

2Ti(k)∏

t=Ti(k)

yi(t).

By Corollary 10, ∀k ≥ ks (i.e., Ti(k) ≥ k̃), the following holds:

∀i ∈ {i ∈ N | Ni ∩MT (k) ,= ∅}, xi(2Ti(k) + 2) = x∗, (6.42)

meaning that agent i will become maximal at instant 2T (k) + 2.
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However, the evolution through itera-
tions of the information states of agents
a and c (dashed lines) are different. This
is since, in general, due to the presence
of channel coefficients, ua(k) #= uc(k).

Given the above results, it is straightforward to show that finite-
time max-consensus is deterministically achieved by employing pro-
tocol (6.36).
Theorem11. Given amulti-agent systemwith a strongly connected network
topology (N ,A) and initial information state x(0) ∈ Sn. If agents employ
the switching consensus protocol (6.36), the system achieves finite-time max-
consensus.

Proof. By Lemma 14, ∀k ≥ ks, the number of maximal agents strictly
increases between k = T (k) and k = 2T (k) + 2, unless N = MT (k).
Therefore, ∀k ≥ ks,

MT (k) ⊂ M2T (k)+2 ⊂ · · · ⊆ N , (6.43)
which is equivalent to

|MT (k)| < |M2T (k)+2| < · · · ≤ |N |. (6.44)
As N is a finite set, it is obvious that this process is finished after a
finite numbers of steps.

6.2.3 Simulations
The following numerical experiments illustrates that multi-agent sys-
temswith strongly connectednetwork topologies indeed achieve finite-
time max-consensus by employing the switching extended consensus
protocol (6.36).
Example 5. The multi-agent system, with network topology (N ,A) as in
Figure 6.1 and with identical and constant channel coefficients, is endowed
with the switching consensus protocol (6.36) and the simulation result is
shown in Figure 6.7. Unlike Example 1, finite-timemax-consensus is achieved.
At instant k = 2T (0) + 1 = 5, all non-maximal agents have lost authoriza-
tion to broadcast; by this, at instant k = 2T (0) + 2 = 6, all those agents
including a maximal agent in their neighbourhood become maximal as well.
In the case of a fading channel, finite-time max-consensus is also achieved, as
shown in Figure 6.8.

Example 6. In this example, a larger system is analyzed. The number of
agents, the network topology, the channel coefficients, and the initial infor-
mation state are randomly chosen (under the only constraint that the net-
work topology has to be strongly connected), as shown in Figure 6.9. Such



MAX CONSENSUS OVER THE WIRELESS CHANNEL 115

Figure 6.9: Multi-agent system in Ex-
ample 6 with strongly connected net-
work topology. All arcs are directed, al-
though (for clarity) directions (arrows)
are omitted. In fact, we assume that for
each arc from node i to node j, there is
also one arc from node j to node i. The
maximal node is m, and xm(0) = 6.18.

a system, employed with the switching consensus protocol (6.36), achieves
finite-time max-consensus, as indicated in Figure 6.10.
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6 Figure 6.10: Evolution of information
states for Example 6. Finite-time max-
consensus is achieved in 27 steps.

6.2.4 Comparison with the standard approach
In Section 2.3.2, we presented the so-called standard approach. It con-
sists of the combination of an orthogonal channel access communica-
tion method and the consensus protocol (2.19). We now compare the
standard approach with the extended protocol (6.36), to investigate
the benefits of the latter.

In the following, the channel access method used for comparison
is TDMA (Time-Division Multiple Access); this method guarantees
orthogonal transmissions by dividing each discrete transmission into
different time slots. Clearly, each iteration considered in (2.19) then
corresponds in reality to n such time slots, since each of the n users
has to transmit in a one-after-the-other fashion.

On the other hand, computing inputs for the agents via superpo-
sition (cf. (6.3)) takes 2 communication time-slots (see Section 4.1),
independently of the network size, in order to obtain the normalized
channel fading coefficients. Yet, consensus protocol (6.36) requires,
in general, a higher number of iterations than the standard approach,
and it depends on channel realization. Therefore, a meaningful com-
parison can be only done via randomized simulations.
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For networks of size between 3 and 100, one hundred different sim-
ulations are executed. Each one represents a random initial vector
and a random (connected) topology. ∀k ∈ N0, ∀i ∈ N , ∀j ∈ Ni(k),
the random channel coefficients ξij(k) are drawn out of independent
Rayleigh distributions with variance 1. k̄t denotes the number of time
slots required by the traditional approach for achievingmax-consensus,
and k̄b the number of time-slots required by the switching protocol
(6.36) to ensure max-consensus. For each experiment, in Figure 6.11,
we plot the ratio of the two quantities, defined as r = k̄t

k̄b
. The numeri-

cal experiment shows that for multi-agent systems composed of more
than approximately 15 agents, employing (6.36) and channel super-
position saves significant convergence time.
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Converging steps ratio
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Figure 6.11: Each point comes from
a randomized experiment, whose ab-
scissa represents the network size and
its whose ordinate is the ratio k̄t/k̄b.
All points above the red line correspond
to those cases when the here proposed
max-consensus protocol performs better
than the traditional approach.



7
Formation Control

Partial results of the presented section have been published in Molinari
and Raisch [60]. A special thanks to Dr. Mirko Mauri for the mathe-
matical discussion concerning Lemma 17.

Formation control strategies allow agents moving in space1 to spread 1 In what follows, for simplicity of nota-
tion and representation, we consider a
two-dimensional space.out around a point, referred to as centroid, which has to be distribu-

tively agreedupon. The position of agent i ∈ N at a given time t ∈ R≥0

is in vector xi(t) ∈ Rp, p ∈ N. The kinematics of each agent i ∈ N is
given as

t ∈ R≥0, ẋi(t) = f(xi(t),ui(t)) (7.1)
where ui(t) ∈ Rm, m ≤ p, is the input vector. Depending on the
considered dynamics, xi(t) can also include orientation and speed.
Agents communicate and exchange information with each other. In
a realistic framework, communication across the network cannot be
modeled as a continuous flow of information; instead, agents trans-
mit and receive data only at discrete update times tk ∈ R≥0, k ∈ N0.
Let Tk be the sequence of update times, namely

Tk := {tk}k∈N0
. (7.2)

In the following, we assume that the interval∆k := tk+1− tk between
two subsequent update times is bounded from below and above, i.e.

∃∆, ∆̄ ∈ R≥0 : ∆ ≤ ∆(k) ≤ ∆̄, ∀k ∈ N0. (7.3)

The communication network topology at every update time tk is mod-
eled by a directed graph G(k) = (N ,A(k)). Let

G := {G(k)}k∈N0
(7.4)

be the sequence of graphs. The scope of a formation control problem is
to find a distributed control strategy such that the multi-agent system
converges to a formation in space, i.e.,

∀i ∈ N , lim
t→∞

[
xi(t)

yi(t)

]
= x∗ + di, (7.5)

where x∗ ∈ R2 is the so-called centroid of the formation and di ∈ R2

is the desired displacement of agent i ∈ N from the centroid. Desired
displacements are given; in fact, we assume that each agent knows a
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priori the desired relative positionwithin the formation. This is a real-
istic assumption, since, most times, each agent has its own role in the
swarm, which coincides with a relative position in the final formation.
On the other hand, there is no a-priori knowledge about the formation
centroid x∗, which has to be distributively negotiated.
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7.1 Single-Integrator Dynamics
Partial results of the presented section have been published in Molinari
and Raisch [60].

We initially consider agents whose dynamics (along each indepen-
dent dimension) can be modeled with a single-integrator. Besides a
purely didactic purpose, the investigation of singe-integrator dynam-
ics will turn to be useful also for more complex (and realistic) condi-
tions, see Section 7.2.1. In what follows, for ease of representation, we
consider p = 2, namely a two-dimensional formation control problem.

Formally, the dynamics of each agent i ∈ N is

ẋi(t) = ui(t), (7.6)

where state and input vector are, respectively,

xi(t) =
[
xi(t)

yi(t)

]
(7.7)

and

ui(t) =

[
ux
i (t)

uy
i (t)

]
. (7.8)

Movements along the two dimensions are clearly independent. Posi-
tions are initialized as,

∀i ∈ N , xi(0) = xi0 .

The goal is to find a distributed control strategy such that the multi-
agent system converges to a formation in the plane, see (7.5), where
both centroid anddisplacement are two-dimensional quantities, namely,
x∗ ∈ R2, di ∈ R2. Note that x∗ is not known a priori, but has to be dis-
tributively negotiated by agents. On the other hand, each agent i ∈ N
knows its desired relative position in the future formation.

7.1.1 Communication Protocol
At every update time tk ∈ Tk, k ∈ N0, each agent j ∈ N broadcasts
three (i.e., p + 1) mutually orthogonal signals (in the same way as
presented in Section 4), namely,

τxi (tk) := xi(tk)− dxi , (7.9)
τyi (tk) := yi(tk)− dyi , (7.10)

and
τ ′i(tk) := 1. (7.11)

Signals τxi (tk), respectively τyi (tk), can be interpreted as the local es-
timate at agent i ∈ N of the centroid abscissa, respectively ordinate.
Signal τ ′i(tk) is needed to handle the unknown channel coefficients in
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the WMAC model, as already done in Section 5. By the noiseless fad-
ing WMAC model (see Section 4.2.2), each agent i ∈ N receives three
orthogonal signals, i.e.

ν̃xi (tk) :=
∑

j∈Ni(k)

ξij(k)τ
x
j (tk), (7.12)

ν̃yi (tk) :=
∑

j∈Ni(k)

ξij(k)τ
y
j (tk), (7.13)

and
ν̃′i(tk) :=

∑

j∈Ni(k)

ξij(k). (7.14)

Since channel coefficients are positive, and assuming that each agent
has at least one neighbor2 2 This condition comes directly as a con-

sequence of the underlying topology be-
ing strongly connected.∀tk ∈ Tk, ∀i ∈ N , ν̃′i(tk) ∈ R>0. (7.15)

By (7.15) it is possible to normalize the received signals as follows

νxi (tk) :=
ν̃xi (tk)

ν̃′i(tk)
=

∑
j∈Ni(k)

ξij(k)τxj (tk)

∑
j∈Ni(k)

ξij(k)
, (7.16)

νyi (tk) :=
ν̃yi (tk)

ν̃′i(tk)
=

∑
j∈Ni(k)

ξij(k)τ
y
j (tk)

∑
j∈Ni(k)

ξij(k)
. (7.17)

In what follows, let, ∀i, j ∈ N , ∀k ∈ N0, hij(k) be the normalized
fading coefficient for broadcast transmission from j to i at update step
k, defined as

hij(k) :=






ξij(k)∑
j∈Ni(k)

ξij(k)
if (j, i) ∈ A(k)

0 otherwise
. (7.18)

Observation 4. By construction,

∀i, j ∈ N , ∀k ∈ N0, hij(k) ∈ [0, 1]. (7.19)

Moreover, ∀i ∈ N , ∀k ∈ N0,

n∑

j=1

hij(k) =
∑

j∈Ni(k)

hij(k) = 1. (7.20)

By (7.18), νxi (tk) and νyi (tk) can be rewritten as

νxi (tk) =
n∑

j=1

hij(k)τ
x
j (tk), (7.21)

νyi (tk) =
n∑

j=1

hij(k)τ
y
j (tk). (7.22)

ByObservation 4, νxi (tk) is a convex combination of signals in set{τxj (tk)
}
j∈Ni(k)

,
thus a convex combination of neighbors’ local guesses of centroid po-
sition on the x axis. The same holds also for the second dimension.
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Proposition 34. If the formation is achieved at tk ∈ Tk (cf. (7.5)), then

∀i ∈ N ,

[
νxi (tk)

νyi (tk)

]
= x∗. (7.23)

Proof. By (7.5), agents are in the desired formation at tk ∈ Tk, if and
only if

∀i ∈ N , xi(tk)− di = x∗.
The latter implies that [

τxi (tk)

τyi (tk)

]
= x∗. (7.24)

By showing that [νxi (tk), νyi (tk)]′ is a convex combination of the same
value x∗, the proof is concluded.

7.1.2 Consensus-based Formation Control Protocol
In the following, since the dynamics in the x and y coordinates in (7.6)
are decoupled, we analyze only the dynamics in x. An equivalent con-
trol strategy will be also applied to the y dynamics. The following
control strategy is inspired by [2], where consensus is achieved in a
network of continuous-time agents with asynchronous discrete-time
updates. An extended consensus protocol is proposed here for achiev-
ing formation in those contextswhere agents exploit the superposition
property of the channel. Because we use broadcast transmission, syn-
chronism in transmission and update is required.

We introduce an additional state variable, i.e.

∀i ∈ N , ∀t ∈ R≥0, θ
x
i (t) (7.25)

that will serve as a reference variable for the position of agent i along
the x axis, namely xi(t) (analogously, θyi (t) will have the same func-
tionality for the y axis). While xi(t) must be always continuous (it
represent the position), θxi (t) can have discontinuities at update times.
The control strategy will be the combination of continuous-time dy-
namics (flow dynamics) and discrete-time updates (jump dynamics).
The proposed control strategy is as follows:

! Jump dynamics. ∀tk ∈ Tk,





xi(t

+
k ) = xi(tk)

θxi (t
+
k ) = (1− σ(tk))θ

x
i (tk) + σ(tk)d

x
i + σ(tk)ν

x
i (tk)

, (7.26)

! Flow dynamics. ∀t ∈ (tk, tk+1], k ∈ N0,





ẋi(t) = −axi (tk)(xi(t)− θxi (t))

θ̇ix(t) = bxi (tk)(xi(t)− θxi (t))
, (7.27)

where •(t+k ) refers to the value of a signal • immediately after the jump
at time tk, νxi (tk) as in (7.21), and σ(tk) ∈ (0, 1), axi (tk), bxi (tk) ∈ R>0
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are design parameters. Note that, in general, σ(tk), axi (tk), bxi (tk) are
going to be time-invariant.

Between update times, the flow dynamics (7.27) is executed, which
reduces the absolute difference between the two state variables. In
fact,

xi(t) > θxi (t) =⇒ ẋi(t) < 0 ∧ θ̇ix(t) > 0

and
xi(t) < θxi (t) =⇒ ẋi(t) > 0 ∧ θ̇ix(t) < 0.

Clearly, the equilibrium for the flow dynamics (7.26) is xi(t) = θxi (t).
On the other hand, the jump dynamics (7.26) keeps the positional

variable xi constant, while it updates the reference value θix. As in
Section 5, we can address σ(tk) as the anti-stubbornness parameter;
in fact, the closer σ(tk) is to 1, the more agent i relies on the received
value νxi (tk).

The following theorem shows that agents with dynamics (7.26)-
(7.27) achieve the desired formation asymptotically (cf. (7.5)) under
a sufficient condition: G (defined in (7.4) as the sequence of com-
munication network topologies) is a sequence of strongly connected
graphs. Note that the final centroid position x∗ is not known a priori,
but is negotiated during the execution.

Theorem12. Consider a set of communicating agentswith dynamics (7.26)-
(7.27). If G is a sequence of strongly connected topologies, then the system
achieves the desired formation in the sense of (7.5).

The proof of this theorem requires a number of auxiliary results.
Define shift of state coordinates by, ∀t ∈ R>0,

x̃i(t) := xi(t)− dxi , (7.28)
θ̃xi (t) := θxi (t)− dxi . (7.29)

Observation 5. Consensus in x̃i implies (7.5).

Equations (7.26)-(7.27) can be rewritten in terms of the new state
variables, i.e.

! Jump dynamics. ∀tk ∈ Tk,




x̃i(t

+
k ) = x̃i(tk)

θ̃xi (t
+
k ) = (1− σ(tk))θ̃

x
i (tk) + σ(tk)ν

x
i (tk)

, (7.30)

! Flow dynamics. ∀t ∈ (tk, tk+1], k ∈ N0,





˙̃xi(t) = −axi (tk)(x̃i(t)− θ̃xi (t))
˙̃θix(t) = bxi (tk)(x̃i(t)− θ̃xi (t))

. (7.31)

Also the received value νxi (tk) is written in terms of the new state vari-
able x̃i(t) as

νxi (tk) =
n∑

j=1

hij(k)x̃j(tk). (7.32)
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A state-transition matrix Φi(tk) ∈ R2×2 is used to obtain the general
solution of (7.31), i.e.,

∀k ∈ N0,

[
x̃i(tk+1)

θ̃ix(tk+1)

]
= Φi(tk)

[
x̃i(t

+
k )

θ̃ix(t
+
k )

]
. (7.33)

The following proposition characterizes the transition matrix Φi(tk).

Proposition 35. The entries of the state transition matrix

Φi(tk) =

[
Φa

i (tk) Φb
i (tk)

Φc
i (tk) Φd

i (tk)

]
(7.34)

are

Φa
i (tk) =

axi (tk)e
−(ax

i (tk)+bxi (tk))(tk+1−t+k ) + bxi (tk)

axi (tk) + bxi (tk)
, (7.35)

Φb
i (tk) =

axi (tk)(1− e−(ax
i (tk)+bxi (tk))(tk+1−t+k ))

axi (tk) + bxi (tk)
, (7.36)

Φc
i (tk) =

bxi (tk)(1− e−(ax
i (tk)+bxi (tk))(tk+1−t+k ))

axi (tk) + bxi (tk)
, (7.37)

Φd
i (tk) =

bxi (tk)e
−(ax

i (tk)+bxi (tk))(tk+1−t+k ) + axi (tk)

axi (tk) + bxi (tk)
. (7.38)

Proof. Observe that (7.31) is a continuous-time linear system with no
inputs. Therefore, it can be rewritten as

[
˙̃xi(t)
˙̃θix(t)

]
= Ai(tk)

[
x̃i(t)

θ̃ix(t)

]
,

where the dynamics matrix Ai(tk) is

Ai(tk) =

[
−axi (tk) axi (tk)

bxi (tk) −bxi (tk)

]
. (7.39)

It is straightforward to compute two eigenpairs of Ai(tk), i.e.

(λ1 = 0, v1 = [1, 1]′)

and
(λ2 = −(axi (tk) + bxi (tk)), v2 = [axi (tk),−bxi (tk)]

′).

By this,

Φi(tk) = [v1, v2]
[
eλ1(tk+1−t+k ) 0

0 eλ2(tk+1−t+k )

]
[v1, v2]−1,

from which (7.35)-(7.38) follows.

Observation 6. ∀i ∈ N , ∀k ∈ N0, matrix Φi(tk) is positive and row-
stochastic by construction.

This is easy to see, as axi (tk), bxi (tk), and (tk+1−t+k ) are positive quanti-
ties. Thus, Φa

i (tk), Φ
b
i (tk), Φ

c
i (tk), Φ

d
i (tk) > 0. Furthermore, Φa

i (tk) +

Φb
i (tk) = Φc

i (tk) + Φd
i (tk) = 1.
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Let us now define the overall system state vector in the shifted co-
ordinate system (regarding movements in x direction) as

x̃(t) = [x̃1(t), . . . , x̃n(t), θ̃
x
1 (t), . . . , θ̃

x
n(t)]

′. (7.40)

The state evolution during each interval between t+k and tk+1 can be
described as

x̃(tk+1) = Φ(tk)x̃(t+k ) (7.41)
where, ∀k ∈ N0,

Φ(tk) =

[
Φa(tk) Φb(tk)

Φc(tk) Φd(tk)

]
(7.42)

with

Φa(tk) = diag (Φa
1(tk) . . .Φ

n
n(tk)) (7.43)

Φb(tk) = diag (Φb
1(tk) . . .Φ

b
n(tk)

) (7.44)
Φc(tk) = diag (Φc

1(tk) . . .Φ
c
n(tk)) (7.45)

Φd(tk) = diag (Φd
1(tk) . . .Φ

d
n(tk)

) (7.46)

Observation 7. ∀k ∈ N0, matrix Φ(tk) is nonnegative row-stochastic by
construction.

Let’s put the flow dynamics aside for now and let’s analyze the
jump dynamics (7.30), (7.32)). It can be rewritten in compact form
as, ∀k ∈ N0,

x̃(t+k ) = Ψ(tk)x̃(tk), (7.47)
where

Ψ(tk) =

[
In 0n

σ(tk)A(k) (1− σ(tk))In

]
. (7.48)

MatrixA(k) is the adjacencymatrix associatedwith the network topol-
ogy at iteration tk ∈ Tk, namely G(k), with normalized fading coeffi-
cients as weights, i.e.,

∀i ∈ N , ∀j ∈ N , [A(k)]ij = hij(k). (7.49)

The following results determines some important properties of the ad-
jacency matrix of a strongly connected graph.

Proposition 36. Given a strongly connected G(k), matrix A(k) is nonneg-
ative, irreducible, and row-stochastic.

Proof. According to (7.18), ∀i, j ∈ N , ∀k ∈ N0, hij(k) ∈ [0, 1]. Follow-
ing from the definition of adjacency matrix and by having nonnega-
tive weights, A(k) is nonnegative. By Observation 4, ∑n

j=1 hij(k) = 1,
hence A(k) is row-stochastic. Finally, by [37, Theorem 6.2.24], the ad-
jacency matrix of a strongly connected graph is irreducible. This con-
cludes the proof.

As a consequence, the following corollary characterizes some prop-
erties of Ψ(tk).

Corollary 11. ∀k ∈ N0, Ψ(tk) is a nonnegative row-stochastic matrix.
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Proof. Nonnegativity of Ψ(tk) is a consequence of the nonnegativity
of A(k) and the fact that σ(tk) ∈ (0, 1). It is also promptly evident
that each of the first n rows sums up to 1. Let now be l any value in
n+ 1 . . . 2n. The l-th row sum of Ψ(tk) is

2n∑

j=1

[Ψ(tk)]lj =
n∑

j=1

[σ(tk)A(k)]lj +
n∑

j=1

[(1− σ(tk))In]lj

= σ(tk))
n∑

j=1

[A(k)]lj + (1− σ(tk)) = 1,

as A(k) is row-stochastic. This concludes the proof.

Proposition 37 ([100, Prop. 1.2]). A n× n nonnegative matrix

A =

[
A1 B

C 0(n−l)×(n−l)

]

is given, where A1 is a l × l (1 ≤ l ≤ n) irreducible square matrix. If A
contains no zero row or zero column, then A is irreducible.

Proof. See [100, Proof of Prop. 1.2].

With this result at hand, it is possible to study the matrix

Ω(tk) := Φ(tk)Ψ(tk),

which is the dynamicsmatrix of system (7.30)-(7.31) in compact form,
i.e.

∀k ∈ N0, x̃(tk+1) = Ω(tk)x̃(tk). (7.50)

Proposition 38. If G(k), k ∈ N0, is strongly connected,Ω(tk) is irreducible
and row-stochastic.

Proof. Ω(tk) comes from the product of twononnegative row-stochastic
matrices. By [113], Ω(tk)will also be nonnegative and row-stochastic.
To prove its irreducibility, note that (7.42) and (7.48) imply

Ω(tk) =

[
Φa(tk) + σ(tk)Φ

b(tk)A(k) (1− σ(tk))Φ
b(tk)

Φc(tk) + σ(tk)Φ
d(tk)A(k) (1− σ(tk))Φ

d(tk)

]
. (7.51)

The product C = AB of a diagonal matrix A with positive diagonal
entries and a nonnegative irreducible matrix B is an irreducible ma-
trix C, since, by [37, pg. 30], C ∼ B and the irreducibility of a matrix
depends only on its type (see [113, pg. 735])3. By [98, Theorem 1], 3 See pg. 10 for a definition ofmatrix type.
the sum of a nonnegative and an irreducible matrix is an irreducible
matrix. From these two considerations, it immediately follows that
Φa(tk) + σ(tk)Φ

b(tk)A(k) is irreducible. Let’s now consider the fol-
lowing matrix

Ω̃(tk) =

[
Φa(tk) + σ(tk)Φ

b(tk)A(k) (1− σ(tk))Φ
b(tk)

Φc(tk) + σ(tk)Φ
d(tk)A(k) 0n×n

]
.
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By Proposition 37, Ω̃(tk) is irreducible. Let now Ω̄(tk) be a nonnegative
matrix defined as

Ω̃(tk) =

[
0n×n 0n×n

0n×n (1− σ(tk))Φ
d(tk)

]
.

Hence,
Ω(tk) = Ω̄(tk) + Ω̃(tk).

Therefore,Ω(tk) is the sumof an irreducible and a nonnegativematrix;
by [98, Theorem 1], Ω(tk) is irreducible.

Corollary 12. If Ω(tk) is irreducible, it is also primitive.

Proof. The irreducible matrix Ω(tk) has a positive diagonal by con-
struction. By [99, Theorem 1.4], any irreducible matrix with positive
diagonal is also primitive. This concludes the proof.

By (7.50), by analyzing the sequence of matrices

{Ω(tk)}k∈N0
,

we can determine the convergence properties of the multiagent sys-
tem.
Proposition 39. IfG is a sequence of strongly connected graphs, then system
(7.50) achieves consensus, i.e.

lim
t→∞

x̃(t) = x̃∗,

where x̃∗ = x∗12n, x∗ ∈ R.

Proof. By (7.50),

lim
k→∞

x̃(tk) = lim
k→∞

Ω(tk−1)Ω(tk−2) . . .Ω(t1)Ω(t0)x̃(0). (7.52)

By this, the convergence of (7.50) is analyzed by studying the matrix
product

lim
k→∞

Ω(tk−1)Ω(tk−2) . . .Ω(t1)Ω(t0). (7.53)
An important result about the convergence of a sequence of primi-
tive row-stochasticmatrices has been presented byWolfowitz in [113].
Most consensus literature, see, e.g., [92], have been making use of
Wolfowitz’s theorem for addressing convergence to an agreement in
case of a time-varying consensus protocol. In fact, an infinite sequence
of primitive row-stochastic squarematrices of dimension 2n converges
to

lim
t→∞

Ω(tk−1)Ω(tk−2) . . .Ω(t1)Ω(t0) = 12nṽ
′
n, (7.54)

where ṽn ∈ R2n
>0 and 1′

2nṽn = 1. Since x̃(t) converges and 7.3 gives an
upper-bound to ∆(k),

lim
t→∞

x̃(t) = lim
k→∞

x̃(tk). (7.55)

By combining (7.55), (7.52) and (7.54),

lim
t→∞

x̃(t) = lim
t→∞

x̃(tk) = 12nṽ
′
nx̃(0) = x∗12n, (7.56)

where x∗ = ṽ′
nx̃(0).
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Trajectories of agents in the space Figure 7.1: Trajectories in the space of
agent in N seeking for a formation. The
final achieved shape is a hexagon.

In light of Proposition 39, it is finally possible to formalize the proof
for Theorem 12.

Proof of Theorem 12. By Proposition 39, if G is a sequence of strongly
connected graphs,

∀x̃(0) ∈ R2n, lim
t→∞

x̃(t) = x̃∗ = x∗12n. (7.57)

This latter, by (7.28), implies that, ∀i ∈ N ,

lim
t→∞

xi(t) = x∗ + dxi . (7.58)

As the dynamics in x- and y-directions are decoupled, as discussed on
page 121, the analogous result holds for the y-coordinate, i.e., ∀i ∈ N ,

lim
t→∞

yi(t) = y∗ + dyi . (7.59)

This concludes the proof of Theorem 12.

7.1.3 Simulation
A set N composed of n = 6 agents is given, where, ∀i ∈ N , xi(0) and
yi(0) are randomly chosen. The following parameters are used in the
simulation, ∀i ∈ N , ∀k ∈ N0, axi (tk) = ayi (tk) = 0.5, bxi (tk) = byi (tk) =

0.5, σi(tk) = 0.8. Desired displacements from the formation centroid
(dxi and dyi ) are given, so that the final desired formation is a hexagon.
A sequence of different strongly connected network topologies is ran-
domly chosen. At every update step tk, k ∈ N0, also channel fading
coefficients are randomly generated, so that, ∀i ∈ N , ∀j ∈ Ni(k),
the coefficients are independent and identically distributed, ξij(k) ∼
U(0, 1). Also, the sequence {∆(k)}k∈N0 is randomly chosen, i.e., ∀k ∈
N0, ∆(k) ∼ U(10, 30).
Finally, simulation is run. For solving the differential equations in
(7.27), the odeint function from Python is used. In Figure 7.1, the two-
dimensional trajectories of agents are plotted. Clearly, they converge
to the desired hexagonal formation.
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7.2 Nonholonomic Dynamics

yi(t)

xi(t)

θi(t)

Figure 7.2: Nonholonomic dynamics.

Wheeled Mobile Robots are commonly employed in research and
industrywhen autonomousmotion capabilities on the two-dimensional
plane are needed. Their dynamics cannot be accurately described by
(7.6). In fact, movements along each axis are interdependent. Let the
state vector describing the position (and orientation) of each agent
i ∈ N be,

∀t ∈ R≥0, ξi(t) =

[
xi(t)
θi(t)

]
=




xi(t)

yi(t)

θi(t)



 , (7.60)

where xi(t) (x coordinate of the center of mass), yi(t) (y coordinate
of the center of mass), and θi(t) (angle with regards to the x axis) are
as in Figure 7.2. The dynamics of each agent can be modeled by the
so-called unicycle dynamics, i.e.,

∀t ∈ R≥0,






ẋi(t) = vi(t) cos θi(t)
ẏi(t) = vi(t) sin θi(t)

θ̇i(t) = ωi(t)

, (7.61)

where vi(t) and ωi(t) are, respectively, the longitudinal speed and the
angular speed of agent i ∈ N at time t ∈ R≥0 (and the inputs to the
model). System (7.61) is nonholonomic, namely, it has some motion
constraints that cannot be expressed in the form

f(ξi(t), t) = 0.

In fact, one constraint is

ẏi(t) = ẋi(t) tan θi(t).

A thorough analysis of nonholonomic systems and how their motion
can be controlled is given in [24]. Although (7.61) is open loop con-
trollable, it has been proven to be nonstabilizable via pure smooth
feedback, see [15, 95]. After defining a closed-loop control approach
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for the nonholonomic system, a consensus-based formation control
strategy can be designed.

The condition for asymptotically achieving a formation, i.e. (7.5),
considers only a positional formation, ignoring the orientation (as also
done in [14]). In case of nonholonomic robots, in fact, an agreement
on the orientation θi can be chased once the positional formation is
achieved, since, for vi(t) = 0, it is possible to control ωi(t) without
affecting agents’ positions.
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7.2.1 Feedback Linearization Technique
The first approach aims at linearizing the dynamics, with the same
strategy already presented in [9, 82]. By changing variables, it is pos-
sible to make the system display a linear dynamics. Accordingly, let
Pi be a point placed at a distance ε ∈ R>0 from the center of mass of
robot i ∈ N in the direction of the longitudinal velocity, see Figure 7.3.

Pi
ε

yi(t)

xi(t)

θi(t)

Figure 7.3: Positioning of point Pi.

Its coordinates are




xPi(t) = xi(t) + ε cos θi(t)
yPi(t) = yi(t) + ε sin θi(t)

. (7.62)

This can be differentiated with respect to time, and, by incorporating
(7.61), we can control the linear system





ẋPi(t) = vix(t)

ẏPi(t) = viy(t)
, (7.63)

provided that we satisfy the following equality
[
vi(t)

ωi(t)

]
=




cos θi(t) sin θi(t)

−
1

ε
sin θi(t)

1

ε
cos θi(t)




[
vix(t)

viy(t)

]
. (7.64)

(7.63) is equivalent to (7.6), for which we have already proposed an
interference-base solution. It is clear that the system composed of
points [xPi(t), yPi(t)]

′ can achieve a formation by exploiting the inter-
ference property of thewireless channel by employing control strategy
(7.26)-(7.27). The way the nonholonomic dynamics evolves with this
control strategy can be investigated by inserting into (7.61) the input
vector [vi(t),ωi(t)]′ computed in (7.64).
Such an approach makes sense for ε > 0. In correspondence of small
values of ε, we might have high values of ωi(t), thus yielding clear im-
plementation issues. By (7.63), each agent i ∈ N will control the po-
sition of its respective point Pi (rather than its center of mass). There-
fore, in a formation control problem of agents with dynamics (7.63),
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points Pi will be organized in a formation, rather than agents’ cen-
tres of mass. Therefore, there will be a noticeable trade-off between
accuracy and implementability, as follows:

• small ε: Pi is a good approximation for the center of mass of each
agent; however, high angular speeds are demanded.

• large ε: there is no issue for the saturation of the angular speeds; on
the other hand, centers ofmasswill not be in an accurate formation.
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Figure 7.4: Trajectories in the space of
agents inN seeking for a formationwith
ε = 0.2. The final achieved shape of Pi,
i ∈ N , is a hexagon. The same does not
apply to the respective centre of mass.
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Figure 7.5: Trajectories in the space of
agents inN seeking for a formation. The
final achieved shape of Pi, i ∈ N , is a
hexagon. With ε = 0.1, centre of mass
are also getting closer to a hexagonal for-
mation.

Summarizing, the control approach (here presented for the abscissa,
but equivalently also for the ordinate) is as follows:
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! Jump dynamics. ∀tk ∈ Tk,





xPi(t

+
k ) = xPi(tk)

θxPi
(t+k ) = (1− σ(tk))θ

x
Pi
(tk) + σ(tk)d

x
i + σ(tk)ν

x
Pi
(tk)

, (7.65)

! Flow dynamics. ∀t ∈ (tk, tk+1], k ∈ N0,





ẋPi(t) = −axi (tk)(xPi(t)− θxPi

(t))

θ̇xPi
(t) = bxi (tk)(xPi(t)− θxPi

(t))
, (7.66)

where all quantities are analogous to the ones already introduced in
the previous chapter, but referred to point Pi, rather than to the centre
of mass of agent i. Also the quantity νxPi

(tk) is obtained by exploiting
the interference property of the wireless channel, as done in the pre-
vious section. The nonholonomic dynamics evolves as (7.61), where
inputs are computed as in (7.64), i.e.,

[
vi(t)

ωi(t)

]
=




cos θi(t) sin θi(t)

−
1

ε
sin θi(t)

1

ε
cos θi(t)




[
ẋPi(t)

ẏPi(t)

]
. (7.67)

The implementation of (7.26)-(7.27) in this context is experimen-
tally studied in the next section.

7.2.1.1 Simulations
We run numerical simulations in which a network of n = 6 agents
are trying to achieve a formation by employing the designed strategy.
They aim at distributing around a point assuming a hexagonal shape.
We first consider the case of ε = 0.2. Simulation results are shown in
Figure 7.4. As theoretically anticipated, formation of points Pi, i ∈ N ,
is achieved. However, robots’ centre of masses are not aligned. In
Figure 7.4, centre of mass do not converge to a hexagon. By reducing
ε to a value ε = 0.1, as in Figure 7.5, the result obtained in terms of
alignment of centre of mass is noticeably better. However, as in theo-
retical analysis, being ε at the denominator in (7.67), such a trajectory
requires large values of ωi(t). Under a practical point of view, ωi(t)

cannot be arbitrarily large. The need for a control technique acting on
centre of mass motivates the next section.
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7.2.2 Nonlinear Control Technique
As done in [14] in order to let dynamics (7.61) track a reference trajec-
tory, we implement the piece-wise continuous nonlinear control ap-
proach in [25]. One interesting property of this controller is that it
does not require infinitely fast switching, as instead sliding controllers
do. Our consensus-based formation control strategy is different than
what shown in [14]. In fact, in order to exploit the superposition prop-
erty of thewireless channel, it needs a substantial rephrase of the jump
dynamics. Moreover, unlike [14], we are dealing with an inherently
directed underlying network topology.

Inwhat follows, we initially present the piece-wise continuous non-
linear control approach presented by [25]. Following, the consensus-
based formation control is presented. It has flow and jump dynamics,
to cope with the continuous-time nature of (7.61) and the presence
of discrete-time broadcast updates. A proof for the convergence to a
formation is finally given, together with simulation results.

7.2.2.1 Piece-wise continuous nonlinear controller
This Section examines the controller in [25], which considers the ex-
ponential stabilization of (7.61) around the origin. Let the compact
form of (7.61) be

∀t ∈ R≥0, ξ̇i(t) = ψ(ξi(t))ui(t), (7.68)

where

ψ(ξi(t)) :=




cos θi(t) 0

sin θi(t) 0

0 1





and the vector of inputs is

ui(t) :=

[
vi(t)

ωi(t)

]
.

A closed-loop controller

ui(t) = κ(ξi(t))

is designed as in [25] and is summarized in Appendix A.4, with vi(t)

andωi(t) computed as in (A.46)-(A.47). The followingTheoremholds.
Theorem 13 (Theorem 2, [25]). For any initial condition ξi(0) ∈ R3, the
solutions ξi(t), t ∈ R≥0, of the closed loop equations

ξ̇i(t) = ψ(ξi(t))κ(ξi(t)), (7.69)

converge exponentially to any of the elements in

{(0, 0, 2πn), n = 0,±1,±2, . . . } .

Note that vector ξi(t) includes orientation, whilst vector

xi(t) =
[
xi(t)

yi(t)

]



134 CONSENSUS-BASED CONTROL OVER WIRELESS CHANNELS

includes only positions. The following result proves exponential con-
vergence also for the vector of positions itself for system (7.68).

Proposition 40. For any initial condition xi(t0) ∈ R2, ∃εi ∈ R>0, ∃ρi ∈
R>0 :

∀t > t0, ‖xi(t)‖ ≤ εi ‖xi(t0)‖ e−ρi(t−t0). (7.70)

Proof. The proof is obtained by bringing together [25, Lemma 1] and
[25, Theorem 1].

Consider now the shift of coordinates as in (7.28), i.e., ∀t ∈ R>0,

x̃i(t) := xi(t)− dxi , (7.71)
ỹi(t) := yi(t)− dyi . (7.72)

Let ξ̃i(t) be, ∀t ∈ R≥0,

ξ̃i(t) := ξi(t)−




dxi
dyi
0



 .

As in (7.68),
∀t ∈ R≥0,

˙̃ξi(t) = ψ(ξ̃i(t))ui(t), (7.73)

and, trivially, ˙̃ξi(t) = ξ̇i(t). By Theorem 13, for any initial condition,
the solution of the closed-loop equations

˙̃ξi(t) = ψ(ξ̃i(t))κ(ξ̃i(t)) (7.74)

converges exponentially to any of the elements in

{(0, 0, 2πn)′, n = 0,±1,±2, . . . } .

By this latter, with the closed-loop dynamics (7.74),

ξi(t) → {(dxi , d
y
i , 2πn)

′, n = 0,±1,±2, . . . } ,

and, by Proposition 40,

∀t > t0,

∥∥∥∥∥xi(t)−
[
dxi
dyi

]∥∥∥∥∥ ≤ εi

∥∥∥∥∥xi(t0)−
[
dxi
dyi

]∥∥∥∥∥ e
−ρi(t−t0). (7.75)

7.2.2.2 Consensus-based Formation Control Protocol
Similarly to what done for the single-integrator case, we define a state
variable to be considered as the reference (for the position along x and
y axis), namely,

∀i ∈ N , ∀t ∈ R≥0, ri(t) ∈ R2.

The reference for the orientation is arbitrarily 0. In fact, as motivated
at the beginning of Section 7.2, we are interested only in achieving a
formation for the positions (and not for the orientations). We employ
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the same communication structure, designed for exploiting interfer-
ence, as in Section 7.1.1. Accordingly, at every update time tk ∈ Tk,
each agent receives as input

νννi(tk) :=

[
νxi (tk)

νyi (tk)

]
=

∑

j∈Ni(k)

hij(k) (xj(tk)− dj) . (7.76)

The proposed formation control strategy is as follows:

! Jump dynamics. ∀tk ∈ Tk,





xi(t+k ) = xi(tk)
θi(t

+
k ) = θi(tk)

ri(t+k ) = (1− σ(tk))xi(tk) + σ(tk)di + σ(tk)νννi(tk)

, (7.77)

! Flow dynamics. ∀t ∈ (tk, tk+1], k ∈ N0,







ẋi(t)
θ̇i(t)



 = ψ







xi(t)
θi(t)



−



ri(t)
0







κ







xi(t)
θi(t)



−



ri(t)]
0









ṙi(t) = 02

.

(7.78)

Theorem14. Consider a set of communicating agentswith dynamics (7.77)-
(7.78) and communication system (7.76). If G is a sequence of strongly
connected topologies,

∃∆ ∈ R≥0 : ∀k ∈ N0, ∆ ≤ ∆k,

such that the system achieves the desired formation in the sense of (7.5).

7.2.2.3 Results leading to Theorem 14
Consider the following state variables in R2,

∀i ∈ N , ∀t ∈ R≥0, qi(t) := xi(t)− ri(t) , (7.79)
si(t) := ri(t)− di . (7.80)

With these new state variables at hand, we can rewrite (7.77)-(7.78),
thus obtaining the following dynamics, ∀i ∈ N :

! Jump dynamics. ∀tk ∈ Tk,






qi(t
+
k ) = σ(tk)(qi(tk) + si(tk))−

σ(tk)
∑

j∈Ni(k)

hij(k)(qj(tk) + sj(tk))

θi(t
+
k ) = θi(tk)

si(t+k ) = (1− σ(tk))(qi(tk) + si(tk))+
σ(tk)

∑
j∈Ni(k)

hij(k)(qj(tk) + sj(tk))

, (7.81)

! Flow dynamics. ∀t ∈ (tk, tk+1], k ∈ N0,
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






q̇i(t)

θ̇i(t)



 = ψ







qi(t)

θi(t)







κ







qi(t)

θi(t)









ṡi(t) = 02

, (7.82)

The following state variables stack all qi(t) and si(t), respectively, i.e.,

∀t ∈ R≥0, q(t) := [q1(t)
′, . . . ,qn(t)

′]′ , (7.83)
s(t) := [s1(t)′, . . . , sn(t)′]′ . (7.84)

Jump dynamics (7.81) in compact form, omitting agents’ orientation
variables, becomes
[
s(t+k )
q(t+k )

]
=

[
Dσ

n(k)⊗ I2 Dσ
n(k)⊗ I2

(In −Dσ
n(k))⊗ I2 (In −Dσ

n(k))⊗ I2

][
s(tk)
q(tk)

]
, (7.85)

where Dσ
n(k) is defined as in (5.14), i.e.,

[Dσ
n(k)]ij =





(1− σ(tk)) if i = j

σ(tk)hij(k) if i ,= j
,

and normalized channel coefficients defined in (5.8). Asymptotic con-
vergence to the desired formation means that

lim
t→∞

[
s(t)
q(t)

]
=

[
1n ⊗ x∗
02n

]
. (7.86)

Let U ∈ R2(n−1)×2n be a transformation matrix, already employed in
Section 5.1.3.2, such that, in case of asymptotic convergence to the de-
sired formation,

lim
t→∞

Us(t) = 02(n−1). (7.87)
This strategy has been first introduced by [40] and employed by [14].
The characterization ofmatrix U can be found in Appendix A.2, which
also extends the analysis presented in both [14, 40]. The main prop-
erties of U are here summarized:
• U is full row-rank;

• U (1n ⊗ a) = 02(n−1), 4 for any a ∈ R2. 4 This follows directly from the proper-
ties of the Kronecker product and from
the definition of U , namely,
U(1n ⊗ a) = (U ⊗ I2)(1n ⊗ a)

= (U1n)⊗ a = 02(n−1).

• UU ′ = I2(n−1)×2(n−1), i.e., rows of U are orthogonal.
Let, ∀t ∈ R≥0,

sp(t) := Us(t). (7.88)
Clearly, sp(t) ∈ R2(n−1). By (7.86) and (7.87), sp(t) tends to 02(n−1) as
the system converges to a formation. Thus, (7.86) is equivalent to

lim
t→∞

[
sp(t)
q(t)

]
= 02(n−1)+2n (7.89)

We can, then, employ as state variable the vector [sp(t)′,q(t)′]′. By
multiplying by U both sides of the first equation in (7.85), one gets

Us(tk+1) = U (Dσ
n(k)⊗ I2) s(tk) + U (Dσ

n(k)⊗ I2)q(tk). (7.90)
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By exploiting the Kronecker product for U = U ⊗ I2 (see A.14),

Us(tk+1) = ((UDσ
n(k))⊗ (I2)) s(tk) + ((UDσ

n(k))⊗ (I2))q(tk).
(7.91)

ByPropositionA.2.2,UDσ
n(k) = Qσ(k)U , withQσ(k) ∈ R2(n−1)×2(n−1)

uniquely defined. Thus,

Us(tk+1) = ((Qσ(k)U)⊗ (I2)) s(tk) + ((Qσ(k)U)⊗ (I2))q(tk).
(7.92)

By the Kronecker product,

Us(tk+1) = (Qσ(k)⊗ I2)Us(tk) + ((Qσ(k)U)⊗ (I2))q(tk). (7.93)

By (7.88),

sp(tk+1) = (Qσ(k)⊗ I2) sp(tk) + ((Qσ(k)U)⊗ (I2))q(tk). (7.94)

Variable sp(tk) needs to appear also in the second equation of (7.85).
To this end, we give the following Lemma.
Lemma 15. Given U as defined in Appendix A.2, the following holds

s(t) = U ′sp(t) + (I2n − U ′U)s(t). (7.95)

Proof. Equation s(t) = U ′sp(t) + (I2n − U ′U)s(t) is equivalent to

U ′Us(t) = U ′sp(t),

which, by (7.88), always holds.

In the second matricial equation of (7.85), we rewrite s(t) as in
(7.95). This implies

q(tk+1) =
(
(In −Dσ

n(k))⊗ I2
)(

U ′sp(tk) + (I2n − U ′U)s(tk)
)
+

(
(In −Dσ

n(k))⊗ I2
)
q(tk). (7.96)

By focusing on the first addendum on the right-hand-side of the equa-
tion, by Corollary A.2.1 in Appendix A.2,5 5 Consider also that

((
(In −Dσ

n(k))
)
⊗ I2

)
(1n⊗I2)(1n⊗I2)′ = 02n×2n,

since Dσ
n(k)1n = 1n.

(
(In −Dσ

n(k))⊗ I2
)(

U ′sp(tk) + (I2n − U ′U)s(tk)
)
=

=
(
(In −Dσ

n(k))⊗ I2
)(

U ′sp(tk) + (
1

n
(1n ⊗ I2)(1n ⊗ I2)′)s(tk)

)
=

=
((

(In −Dσ
n(k))U

′
)
⊗ I2

)
sp(tk). (7.97)

Finally, by the latter,

q(tk+1) =
((

(In −Dσ
n(k))U

′
)
⊗ I2

)
sp(tk)+

(
(In −Dσ

n(k))⊗ I2
)
q(tk). (7.98)

By bringing (7.94) and (7.98) together into compact form, one obtains
[
sp(t+k )
q(t+k )

]
=

[
Qσ(k)⊗ I2 (Qσ(k)U)⊗ I2(

(In −Dσ
n(k))U

′
)
⊗ I2 (In −Dσ

n(k))⊗ I2

][
sp(tk)
q(tk)

]
.

(7.99)
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This latter describes, in terms of [sp(t)′,q(t)′]′, the jump dynamics
(7.77). We bring also the flow dynamics (7.82) to a compact form in
terms of [sp(t)′,q(t)′]′. The condition

∀t ∈ (tk, tk+1], k ∈ N0, ∀i ∈ N , ṡi(t) = 02

implies

∀t ∈ (tk, tk+1], k ∈ N0, ṡp(t) = 02(n−1), (7.100)

which simply implies

∀k ∈ N0, sp(tk+1) = sp(t+k ). (7.101)

In order to bring into compact form the first equation of (7.82), con-
sider what shown on pg. 134. By considering (7.75) in terms of qi(t)

for the jump dynamics (7.82), one obtains

∀t ∈ (tk, tk+1], ∀i ∈ N , ∃εi ∈ R>0, ∃ρi ∈ R>0 :

‖qi(t)‖ ≤ εi ‖qi(tk)‖ e−ρi(t−tk). (7.102)

In matrix form, the latter becomes, ∀k ∈ N0,




∥∥q1(tk+1)
∥∥

. . .∥∥qn(tk+1)
∥∥



 ≤





ε1e−ρ1(∆k) 0
. . .

0 εne−ρn(∆k)









∥∥q1(t
+
k )

∥∥
. . .∥∥qn(t

+
k )

∥∥



 . (7.103)

By Proposition A.3.1 in Appendix A.3.1, the latter can be rewritten in
compact form as,

∀k ∈ N0,
∥∥q(tk+1)

∥∥ =

∥∥∥∥∥∥∥





∥∥q1(tk+1)
∥∥

. . .∥∥qn(tk+1)
∥∥





∥∥∥∥∥∥∥
≤

≤ εe−ρ(∆k)

∥∥∥∥∥∥∥





∥∥q1(t
+
k )

∥∥
. . .∥∥qn(t

+
k )

∥∥





∥∥∥∥∥∥∥
= εe−ρ(∆k)

∥∥q(t+k )]
∥∥ , (7.104)

where εe−ρ(∆k) is themaximumdiagonal entry of thematrix in (7.103),
namely the spectral norm of a diagonal matrix (corresponding to its
norm). Bymerging together (7.101) and (7.104), we obtain the equiv-
alent of the flowdynamics (7.78) expressed in terms of [‖sp(t)‖ , ‖q(t)‖]′.

Lemma 16. The system achieves formation in the sense of (7.5) if (and only
if)

lim
k→∞

[
‖sp(tk)‖
‖q(tk)‖

]
= 02. (7.105)

Proof. The proof is trivial.
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As shown in the previous chapters, ∀k ∈ N0,Dσ
n(k) is, by construction,

in general non symmetric. By this, also Qσ(k) will be non symmetric
in general. Therefore for non-symmetric (non Hermitian) matrices, it
can happen that

‖Qσ(k)‖ > ρ(Qσ(k)). (7.106)
This means that ‖Qσ(k)‖ can also be larger than 1. To prove the con-
vergence to a formation, we need to make use of the concept of joint
spectral radius, already analyzed in Definition 15 (pg. 76). As in pg.
76, we assume channel coefficients to be quantized. This way, the set
{Qσ(k)}k∈N0 was shown to be finite.
Proposition 41. For an underlying network topology being a sequence of
strongly connected digraphs and notwithstanding the presence of an unknown
channel, if {Qσ(k)}k∈N0 is a finite set,

ρ({Qσ(k)}k∈N0) < 1. (7.107)

Proof. By definition of joint spectral radius, see Definition 15,

ρ({Qσ(k)}k∈N0) := lim
k→∞

max
,

‖Qσ(6(1)) · · · · ·Qσ(6(k))‖ ,

6 : {1, . . . , k} → {1, . . . , R}, (7.108)

with R being the cardinality of the finite set {Qσ(k)}k∈N0 . Note that,
∀k, h ∈ N0,

‖Qσ(k + h) · · · · ·Qσ(k)‖ =

‖UDσ
n(k + h)U ′UDσ

n(k + h− 1)U ′ · · · · · UDσ
n(k)U

′‖ . (7.109)

By Theorem A.2.1, ∀k ∈ N0,

UDσ
n(k + 1)U ′UDσ

n(k)U
′ =

= UDσ
n(k + 1)(In −

1

n
1n1

′
n)D

σ
n(k)U

′ =

= UDσ
n(k + 1)Dσ

n(k)U
′. (7.110)

By inserting the latter into (7.109), one obtains, ∀k ∈ N0,
∥∥∥∥∥

h∏

t=0

Qσ(k + h− t)

∥∥∥∥∥ =

∥∥∥∥∥U
h∏

t=0

Dσ
n(k + h− t)U ′

∥∥∥∥∥ . (7.111)

By Theorem 4 on page 12, for Dσ
n(k) being associated to a strongly

connected topology, ∀k ∈ N0,

lim
h→∞

∏

{i=1...h|Di∈{Dσ
n(k)}k∈N0}

Di = 1n(w
∗
n)

′,

for some w∗
n ∈ Rn. By this latter, by (7.111), and by (7.108), since

U1n = 0n−1, one obtains that

lim
k→∞

ρ({Qσ(k)}k∈N0)
k = 0.

The latter yields ρ({Qσ(k)}k∈N0) < ρ < 1,6 thus concluding the proof. 6 In what follows, consider ρ to be a real-
number strictly less than 1.



140 CONSENSUS-BASED CONTROL OVER WIRELESS CHANNELS

Corollary 13. For an underlying network topology being a sequence of strongly
connected digraphs and notwithstanding the presence of an unknown chan-
nel, ∀k, h ∈ N, for any 1 > ρ > ρ({Qσ(k)}k∈N0) there exists C ∈ R>0, for
which

‖Qσ(k + h) · · · · ·Qσ(k)‖ ≤ Cρh. (7.112)

Proof. In (5.32), on page 78 we have shown that, ∀x,

‖Qσ(k + h) · · · · ·Qσ(k)x‖ ≤ Cqh ‖x‖ .

This latter together with the definition of matrix norm yield the proof.

By merging together (7.99) and (7.101), one obtains, ∀k ∈ N0,

sp(tk+1) = (Qσ(k)⊗ I2)sp(tk) + (Qσ(k)U ⊗ I2)q(tk). (7.113)

This equation describes the dynamics of sp(t) from tk to tk+1, ∀k ∈ N0.
On the other hand, the dynamics of q(t) from tk to tk+1 cannot be
expressed in a linear matrix form, but needs to be described with a
norm inequality (due to the presence of the nonlinear controller). In
fact, by inserting the second line of (7.99) into (7.104), one obtains,
∀k ∈ N0,

∥∥q(tk+1)
∥∥ ≤ εe−ρ(∆k) ‖In −Dσ

n(k)‖ ‖sp(tk)‖+
εe−ρ(∆k) ‖In −Dσ

n(k)‖ ‖q(tk)‖ . (7.114)

Equations (7.113)-(7.114) describe the dynamics of the system. By
Lemma 16, if both

∥∥q(tk+1)
∥∥ and

∥∥sp(tk+1)
∥∥ tend to 0, then the system

achieves the desired formation.
Lemma 17. Consider a set of agents with dynamics (7.77)-(7.78) and com-
munication system (7.76). If G is a sequence of strongly connected topolo-
gies, it always exists a lower-bound to ∆k, i.e., ∆ ≤ ∆k, k ∈ N0,7 such 7 See (7.3).
that

lim
k→∞

[
‖q(tk)‖
‖sp(tk)‖

]
= 02. (7.115)

Proof. By (7.3) and (7.114), one gets
∥∥q(tk+1)

∥∥ ≤ γ ‖sp(tk)‖+ γ ‖q(tk)‖ , (7.116)

with
γ := εe−ρ(∆) max

k∈N0

(‖In −Dσ
n(k)‖) . (7.117)

By recursively expanding (7.116) one obtains, ∀k ∈ N0,

‖q(tk)‖ ≤ γk ‖q(t0)‖+
k∑

h=1

γh
∥∥sp(tk−h)

∥∥ . (7.118)

By operating the same expansion on (7.113), one obtains

sp(tk) = (Qσ(k − 1) · · · · ·Qσ(0)⊗ I2) sp(t0)+
k∑

h=1

[(
h∏

p=1

Qσ(k − p)

)
⊗ I2

]
Uq(tk−h). (7.119)
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Taking the norm of the latter,

‖sp(tk)‖ ≤ ‖Qσ(k − 1) · · · · ·Qσ(0)sp(t0)‖+
k∑

h=1

∥∥∥∥∥

[(
h∏

p=1

Qσ(k − p)

)
⊗ I2

]
Uq(tk−h)

∥∥∥∥∥ ,

which, by Corollary 13, yields,8 ∀k ∈ N0, 8 Recall that ‖A⊗B‖ = ‖A‖ ‖B‖, see
[47].

‖sp(tk)‖ ≤ Cρk ‖sp(t0)‖+ C
k∑

h=1

ρh
∥∥q(tk−h)

∥∥ , (7.120)

for any ρ > ρ({Qσ(k)}k∈N0). Equations (7.118)-(7.120) can be an-
alyzed to assess the convergence of the system to a formation. Let,
∀k ∈ N0, Sk ∈ R≥0 and Qk ∈ R≥0 be two variables defined as

Sk := Cρk ‖sp(t0)‖+ C
k∑

h=1

ρh
∥∥q(tk−h)

∥∥ , (7.121)

Qk := γk ‖q(t0)‖+
k∑

h=1

γh
∥∥sp(tk−h)

∥∥ , (7.122)

with initial conditions S0 = sp(t0) and Q0 = q(t0). It is clear that,
∀k ∈ N0,

‖sp(tk)‖ ≤ Sk, (7.123)
and

‖q(tk)‖ ≤ Qk. (7.124)
Variables Sk and Qk at iteration k + 1 verify that, respectively,

Sk+1 = Cρk+1 ‖sp(t0)‖+ C
k+1∑

h=1

ρh
∥∥q(tk+1−h)

∥∥

= ρ

(
Cρk ‖sp(t0)‖+ C

k∑

h=1

ρh
∥∥q(tk−h)

∥∥
)

+ Cρ ‖q(tk)‖

= ρSk + Cρ ‖q(tk)‖
≤ ρSk + CρQk, (7.125)

and

Qk+1 = γk+1 ‖q(t0)‖+
k+1∑

h=1

γh
∥∥sp(tk+1−h)

∥∥

= γ

(
γk ‖q(t0)‖+

k∑

h=1

γh
∥∥sp(tk−h)

∥∥
)

+ γ ‖sp(tk)‖

= γQk + γ ‖sp(tk)‖
≤ γQk + γSk. (7.126)

Consider system, ∀k ∈ N0,
[
Sk+1

Qk+1

]
≤ X

[
Sk

Qk

]
(7.127)
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(element-wise inequality) where

X :=

[
ρ Cρ

γ γ

]
. (7.128)

X’s eigenvalues, say λ1 and λ2 (assume |λ1| ≤ |λ2|), determine sys-
tem (7.127)’s convergence. They can be obtained by solving the fol-
lowing equation of variable λ,

λ2 − λ · tr(X) + det(X) = 0,

which yields

λ1,2 =
tr(X)±

√
tr2(X)− 4det(X)

2
.

Note that both eigenvalues are real since

tr2(X)− 4det(X) = ρ2 + γ2 + 2ργ(2C − 1),

and being C > 0,

tr2(X)− 4det(X) = ρ2 + γ2 + 2ργ(2C − 1) > (ρ− γ)2 ≥ 0.

Asymptotic stability is then guaranteed for −1 < λ1 ≤ λ2 < 1. It is
also clear from above (since tr(X) > 0) that λ2 > 0 and λ2 > |λ1|.
Thus, asymptotic stability is guaranteed for λ2 < 1, namely,

√
tr2(X)− 4det(X) < 2− tr(X).

If tr(X) = ρ+ γ < 2,9 the latter inequality yields 9 This is trivial to verify, as ρ < 1 and γ
can be controlled by choosing ∆.

0 < γ <
1− ρ

1 + ρ(C − 1)
.

Being ρ < 1 and C > 0, the interval
(
0,

1− ρ

1 + ρ(C − 1)

)

is always nonempty. This shows that there always exists ∆ ∈ R>0
10 10 ∀k ∈ N0, ∆ ≤ ∆k which implies,

∀k ∈ N0, εe−ρ(∆k) ≤ εe−ρ(∆).satisfying

εe−ρ(∆) max
k∈N0

(‖In −Dσ
n(k)‖) ∈

(
0,

1− ρ

1 + ρ(C − 1)

)
.

By choosing such a ∆, we obtain

lim
k→∞

[
Sk

Qk

]
= 02.

In case the latter holds, by (7.123)-(7.124), also (7.115) is verified. This
concludes the proof.

Theorem 14 is finally proven by employing Lemma 16 and Lemma 17.
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Figure 7.6: Trajectories in the space of
agents in N seeking for a formation.

7.2.2.4 Simulations
A system with n = 6 agents, with the same initial conditions, under-
lying network topology, and channel realization as the experiment in
Section 7.1.3 is simulated. This time, the control strategy is (7.77)-
(7.78). We show the impact of such a nonlinear control approach if
combined with the exploitation of interference. Figure 7.6 illustrates
the result. We consider a sequence of 20 update steps. One can see
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Figure 7.7: Trajectories in the space of
agents in N seeking for a formation.
This simulation considers a larger ∆.

that, compared to the linearized approach of Section 7.1.3, trajectories
here are smoother. Also when approaching the final converging posi-
tion, robots keep manoeuvring (this is clear from the magnifying box
in the plot).
Starting with the same initial conditions and channel realization, Fig-
ure 7.7 shows what happens if∆ is increased (of 5 times). Simulation
is also run for 20 consecutive update steps. Trajectories are more pre-
cise (look, e.g., at the yellow agent and compare it to Figure 7.6). This,
in fact, is the case if agents have more time to track the agreed posi-
tions after the jump dynamics.
Finally, by picking ∆ considerably smaller, Figure 7.8 illustrates what
happens. Simulations are run for 20 consecutive update steps. Being
the lower bound on ∆k too small, a formation cannot be achieved.
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Figure 7.8: Trajectories in the space of
agents in N seeking for a formation.
This simulation considers a very small
∆, thus not allowing a formation to be
achieved.



8
Conclusion

8.1 Contribution
The main contribution of this thesis is the development of a family of
consensus protocols that allow amulti-agent system to reach an agree-
ment by exploiting the interference property of the wireless channel.
In standard approaches, interference needs to be avoided, in order to
provide each agent with the exact knowledge of information states of
other agents. However, this requires some communication resources
that, traditionally, have not been taken into account for quantifying the
energy cost of this or that consensus protocol. Our strategy makes it
possible to exploit interference. All agents can simultaneously broad-
cast to the channel and retrieve a faded and superposed signal that
can be used for reaching consensus. Such a signal, in standard prac-
tice, was labelled as ”corrupted”. In fact, the fading effect is unknown
a priori and the superposition sums up all such signals, making it im-
possible to reconstruct each individual one. Our aim is to reconsider
and appreciate this corrupted signal, because it carries some informa-
tion that can be used for reaching an agreement. This technology is, at
the current state of the art, explored only theoretically. However, the
possible ways to apply it to common practical problems are numer-
ous; two of them, i.e., solving algebraic equations over the channel
and achieving a formation in space, have been investigated.

After having provided in Chapter 2 the theoretical tools needed for
designing and testing consensus protocols, two novel ways of using
consensus for the automation of road traffic have been presented in
Chapter 3. In fact, traffic is a very concrete example of a multi-agent
system in which agents can communicate and take individual deci-
sions which affect other agents. In the first use case, we propose to use
consensus for letting vehicles agree on crossing priorities for a road in-
tersection. This, together with an MPC that avoids collisions, consti-
tutes a novel approach to the automation of road intersections. In the
second use case, the scenario is the highway. Vehicles can use average
consensus for agreeing on the lane speed. After that, to decide where
a vehicle aiming at changing lane can cut in, we propose the usage of
a consensus-based auction algorithm. As for the previous case, this
algorithm, together with an MPC for collision avoidance, provides a
novel approach for automating highways.
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These solutions are based on standard communication systems. For
presenting our novel interference-base strategies, in Chapter 4 we give
a communication-theoretical brief overview of a wireless channel in
which transmitters simultaneously access the same frequency at the
same time. Such model is called WMAC and is used for developing
the solution proposed in Section 5, where an average consensus pro-
tocol allows to exploit interference for reaching an agreement. This
drastically reduces the wireless resources needed to reach the agree-
ment, especially for large networks. Although the agreement value
depends on the realization of the channel (and is not known a priori),
it is contained in the convex hull of the set that groups initial informa-
tion states. Finally, such approaches to average consensus are used for
solving linear algebraic equations over the channel. This represents a
useful application of the strategy we have proposed, since it allows
for solving an equation, while maintaining privacy, i.e., agents can no
longer access the individual information states of other agents (and
their historical values).

Chapter 6 considers a nonlinear consensus protocol, i.e, max-consensus.
For exploiting the interference property of the channel and guarantee-
ing finite-time agreement, agents have to employ a switching consen-
sus protocol that is presented and proven to converge. Comparisons
with standard approaches show that a numerous amount of wireless
resources can be saved by exploiting interference, especially in large
networks.

The most relevant application of consensus is controlling agents to
a formation. In Chapter 7, we have proposed a way to exploit interfer-
ence for achieving a formation in space. In the first scenario, we con-
sider robots with single-integrator dynamics, in which movements on
the two axes are independent. After that, a realistic nonholonomic (bi-
cycle) model for robot dynamics is considered. Controlling a group
of robots with that dynamics can be done via two diverse approaches.
The first presented approach is by feedback linearization, the second
one by employing a nonlinear controller. In both case, we have proven
that agents can achieve the formation by exploiting the interference
property of the channel.

8.2 Future work
Concerning theoretical advancements, futureworkmight consider dif-
ferent kind of consensus protocols, less notorious in the consensus
community, e.g., median consensus or consensus for Kuramoto oscil-
lators. The impact of asynchronism can be also of interest. However,
to understand the extent of asynchronism in this application, we need
to have a better practical characterization of the technology.

In fact, the technology and the protocols presented in this thesis
have been investigated only under a theoretical point of view. The
major consequence of this thesis is to provide a solid theoretical frame-
work for the exploitation of interference for consensus, so that practi-
cal experiments can be finally conducted. This is the most ambitious
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aspect of future work. Once the algorithms designed in this thesis are
practically implemented, the number of possible fields where these
can be applied is enormous.





A
Appendix

A.1 Jordan normal form and generalized eigenvectors
Let A ∈ Rn×n be a real-valued square matrix. A generalized eigenvector
for A associated to eigenvalue λ is a vector v ∈ Cn for which

(A− λIn)kv = 0, (A.1)

for some positive integer k. The smallest k for which (A.1) holds is
the generalized eigenvector rank.

Observation A.1.1. An eigenvector is a generalized eigenvector of rank 1.

DefinitionA.1.1. Given an eigenvalue λ, vectors v1,v2, . . . ,vr ∈ Rn form
a Jordan chain of length r if v1 ,= 0n and

vr−1 = (A− λIn)vr,

vr−2 = (A− λIn)vr−1,

. . .

v1 = (A− λIn)v2,

0n = (A− λIn)v1.

(A.2)

Vector v1 is clearly the eigenvector of A associated with λ.

Theorem A.1.1 ([48, pg. 230]). The Jordan chain of A is composed of
linearly independent vectors.

Note that, by TheoremA.1.1, if vr ∈ Rn is a generalized eigenvector
of A of rank r, then there are vectors v1,v2, . . . ,vr−1 ∈ Rn for which

Av1 = λv1,

Av2 = λv2 + v1,

. . .

Avr = λvr + vr−1.

(A.3)

In case A fails to be diagonalizable1, generalized eigenvectors comes 1 When at least one eigenvalue of A has
algebraic multiplicity strictly larger than
its geometric multiplicity.into play to ”enlarge” the set of linearly independent eigenvectors ofA.
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Theorem A.1.2. With regards to Theorem A.1.1, the subspace

span(v1, . . . ,vr) ⊆ Rn

has dimension r ∈ N and is called Jordan subspace for A.
Definition A.1.2. Given any (complex) square matrix A, its Jordan ma-
trix is J , defined through diagonal blocks, i.e.,

J = diag (J1, . . . , J!) ,

such that, ∀i = 1, . . . , ", Ji ∈ Rm(i)×m(i), with m(i) algebraic multiplicity
of λi, and

Ji =





λi 1 0 . . . 0

0 λi 1 . . .
...

... . . . . . . . . . 0

... . . . . . . . . . 1

0 . . . . . . 0 λi





.

TheoremA.1.3 ([48, pg. 237]). Any (complex) square matrixA is similar
to its Jordan matrix, i.e.,

A = PJP−1, (A.4)
whereP ’s columns are a basis of generalized eigenvectors ofA ordered accord-
ing to the corresponding eigenvalue on J ’s diagonal and arranged in chains.

For a diagonalizable matrix A ∈ Rn×n, we have, ∀p ∈ N,

Apvn = λpvn, (A.5)

with (λ,vn) eigenpair of B. What happens when (λ,vn) is a general-
ized eigenpair of A is the topic of the following theorem.
Theorem A.1.4. A real-valued square matrix A of dimension n is given,
together with one generalized eigenpair, i.e., (λ,vp) (p is the rank of the gen-
eralized eigenvector). We have, ∀α ∈ N,

Aαvp =

min(α,p−1)∑

!=0

(
α

"

)
λα−!vp−!. (A.6)

Proof. Let B = (A− λIn). By Definition A.1.1,

Bvp = vp−1 (A.7)

and
Bpvp = 0n. (A.8)

By the Newton’s generalized binomial theorem,

Aαvp = (λIn +B)αvp =
α∑

!=0

(
α

"

)
(λIn)α−!Bjvp, (A.9)

since λIn and B commute,
α∑

!=0

(
α

"

)
(λIn)α−!B!vp =

min(α,p−1)∑

!=0

(
α

"

)
λα−!B!vp, (A.10)
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and, by (A.7)-(A.8),
min(α,p−1)∑

!=0

(
α

"

)
λα−!B!vp =

min(α,p−1)∑

!=0

(
α

"

)
λα−!vp[p− "]. (A.11)

This concludes the proof.

A.2 Nullifying Matrix
Let U ∈ R(n−1)×n be a full-rank projection matrix from Rn onto Rn−1,
such that the n-dimensional vector of ones spans the kernel of U and
the columns of U form an orthonormal set, i.e., formally,

U1n = 0n−1 (A.12)

and
UU ′ = In−1. (A.13)

Additionally, given p ∈ N, let’s define U as

U := U ⊗ Ip, (A.14)

where⊗ is the Kronecker product. In the following, we analyze some
properties of matrix U .
TheoremA.2.1. Given the full-rankmatrixU ∈ R(n−1)×n such that (A.12)-
(A.13) hold,

(In − U ′U) =
1

n
1n1

′
n. (A.15)

Proof. Choose α = 1√
n
. One has

[
U

α1′
n

]
[U ′,α1n] =

[
UU ′ αU1n

α1′
nU

′ α21′
n1n

]
= In, (A.16)

because of (A.12),(A.13) and 1′
n1n = n. Hence

[
U

α1′
n

]
is the inverse

of [U ′,α1n] and

[U ′,α1n]

[
U

α1′
n

]
= U ′U + α21n1

′
n = In. (A.17)

Therefore:

In − U ′U = α21n1
′
n (A.18)

=
1

n
1n1

′
n. (A.19)

Observation A.2.1. Matrix (In − U ′U) is row-stochastic.
Lemma A.2.1. Given U defined in (A.14),

U1pn = 0p(n−1) (A.20)

and
U(1n ⊗ Ip) = 0(n−1)p×p . (A.21)
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Proof.
1pn = 1n ⊗ 1p.

Hence

U1pn = (U ⊗ Ip)(1n ⊗ 1p)

= (U1n)⊗ (Ip1p)

= 0(n−1)p .

Similarly,

U(1n ⊗ Ip) = (U ⊗ Ip)(1n ⊗ Ip)
= U1n ⊗ Ip
= 0n−1 ⊗ Ip
= 0(n−1)p×p .

Corollary A.2.1. Given U defined in (A.14),

UU ′ = I(n−1)p,

and
(Ipn − U ′U) = 1

n
(1n ⊗ Ip)(1n ⊗ Ip)′ .

Proof. Using the properties of the Kronecker product and (A.13),

UU ′ = (U ⊗ Ip)(U ′ ⊗ Ip)
= (UU ′)⊗ Ip
= In−1 ⊗ Ip
= I(n−1)p . (A.22)

Furthermore, with α = 1√
n
, because of A.22 and Lemma A.2.1,

[
U

α(1n ⊗ Ip)′

]
[U ′, α(nn ⊗ Ip)] =

[
UU ′ αU(1n ⊗ Ip)

α(U(1n ⊗ Ip))′ (1n ⊗ Ip)′(1n ⊗ Ip)

]

=




I(n−1)p 0(n−1)p×p

0(n−1)p×p

α2(1′
n1n ⊗ Ip)
Ip





= Inp .

Therefore,

[U ′, α(nn ⊗ Ip)]
[

U
α(1n ⊗ Ip)′

]
= U ′U +

1

n
(1n ⊗ Ip)(1n ⊗ Ip)′

= Inp .

This proves the second part of this corollary.

Proposition A.2.1. Given U ∈ R(n−1)×n such that (A.13) holds,

‖U ′‖ = 1, (A.23)

where the matrix norm is induced by the Euclidean norm.
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Proof.
‖U ′‖2 = λmax(UU ′) = 1 . (A.24)

Corollary A.2.2. Given matrix U defined in (A.14),
‖U‖ = 1, (A.25)

where the matrix norm is induced by the Euclidean norm.

Proof.

‖U‖2 = λmax(U ′U) = λmax(Inp −
1

n
(1n ⊗ Ip)(1n ⊗ Ip)′) = 1 .

Proposition A.2.2. LetDσ
n be a primitive row-stochastice matrix. Let U ∈

R(n−1)×n such that (A.12)-(A.13) holds. Then,
∃! Qσ ∈ R(n−1)×(n−1) : UDσ

n = QσU, (A.26)
and moreover

spectrum (Dσ
n) = {1} ∪ spectrum (Qσ) . (A.27)

Proof. The proof is given in [40, Eq. (16)-(17)].

A.3 Norms

A.3.1 Norm properties
The following results concern vector and matrix norms.
PropositionA.3.1. Aset of p-dimensional vectors, i.e. {xi ∈ Rp | i = 1 . . . n} ,
is given. Group them into a vectorx := [x′

1 . . .x
′
n]

′. The following is always
true:

‖x‖ =

∥∥∥∥∥∥∥




‖x1‖
. . .

‖xn‖





∥∥∥∥∥∥∥
, (A.28)

where ‖·‖ is the Euclidean norm.

Proof. By definition of Euclidean norm,

‖xi‖ =

√√√√
p∑

j=1

[xi]2j . (A.29)

Also, ∥∥∥∥∥∥∥




‖x1‖
. . .

‖xn‖





∥∥∥∥∥∥∥
=

√√√√
n∑

i=1

‖xi‖2. (A.30)

By substituting (A.29) into (A.30) one obtains
∥∥∥∥∥∥∥




‖x1‖
. . .

‖xn‖





∥∥∥∥∥∥∥
=

√√√√
n∑

i=1

p∑

j=1

[xi]2j , (A.31)

which is the definition of ‖x‖. This concludes the proof.
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A.3.2 Mixed norms
A mixed-matrix and a mixed-vector norms are compatible if

‖Av‖2,∞ ≤ |||A|||2,∞ ‖v‖2,∞ , (A.32)
for any matrix A ∈ Rdm×dm and any vector v ∈ Rdm. In fact, by the
definition of ‖·‖2,∞ and by the triangular inequality for ‖·‖2,

‖Av‖2,∞ = max
i=1...m

(∥∥∥∥∥

m∑

!=1

Ãi!ṽ!

∥∥∥∥∥
2

)

≤ max
i=1...m

(
m∑

!=1

∥∥∥Ãi!

∥∥∥
2
‖ṽ!‖2

)

≤ max
i=1...m

(
m∑

!=1

∥∥∥Ãi!

∥∥∥
2

)
max

!=1...m
(‖ṽ!‖2)

= |||A|||2,∞ ‖v‖2,∞ .

This proves that the presented mixed-matrix and mixed-vector norms
are compatible. Moreover, we aim at showing that |||·|||2,∞ is induced
by ‖·‖2,∞. By [37, Def. 5.6.1], this is the case if

|||A|||2,∞ = sup
‖v‖2,∞ &=0

‖Av‖2,∞
‖v‖2,∞

. (A.33)

Since (A.32) is true, condition (A.33) is proven if ∃v for which we get

|||A|||2,∞ =
‖Av‖2,∞
‖v‖2,∞

. (A.34)

To verify this, let’s expand the mixed-matrix norm, so that

|||A|||2,∞ = max
i=1...m

(
m∑

!=1

∥∥∥Ãi!

∥∥∥
2

)
. (A.35)

Since the spectral norm for matrix is induced by the l2 vector norm,

max
i=1...m

(
m∑

!=1

∥∥∥Ãi!

∥∥∥
2

)
= max

i=1...m

(
m∑

!=1

∥∥∥Ãi!w̃!

∥∥∥
2

)
, (A.36)

for some w!, " = 1 . . .m, such that ‖w̃!‖2 = 1, ∀" = 1 . . .m. By the
triangular inequality applied to (A.36),

max
i=1...m

(
m∑

!=1

∥∥∥Ãi!w̃!

∥∥∥
2

)
≥ max

i=1...m

(∥∥∥∥∥

m∑

!=1

Ãi!w̃!

∥∥∥∥∥
2

)
, (A.37)

where the right-hand side equals ‖Aw‖2,∞. Also, by definition of
l2/l∞ vector norm,

‖w‖2,∞ = max
!=1...m

(‖w̃!‖2) = 1,

since ‖w̃!‖2 = 1, ∀" = 1 . . .m.
By merging all these considerations, one obtains

|||A|||2,∞ ≥
‖Aw‖2,∞
‖w‖2,∞

. (A.38)

By the latter and (A.32), equation (A.34) is verified.
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A.4 Exponential Stabilization of Nonholonomic Agents
Consider an agent with dynamics (7.61), equivalently (7.68) inmatrix
form. The controller designed in [25] is presented in this Appendix.
It guarantees exponential stabilization without the need of infinitely
fast switching (as, instead, done by sliding controllers).

Define the following variables, ∀t ∈ R≥0:

θd(t) : =





2 arctan yi(t)

xi(t)
if (xi(t), yi(t)) ,= (0, 0)

0 otherwise
, (A.39)

ri(t) = r(xi(t), yi(t)) :=
x2
i (t) + y2i (t)

2yi(t)
, (A.40)

ai(t) = ai(xi(t), yi(t)) := ri(t)θd(t), (A.41)
αi(t) : = θi(t)− θd(t), (A.42)

βi(t) : =
yi(t)

xi(t)
. (A.43)

These variables2 will be used for designing the closed-loop controller. 2 In [25], αi(t) is a periodic and piece-
wise continuous function in (−π,π].Define the following quantities, ∀t ∈ R≥0,3 3 In the two following definitions, the
time dependence is omitted.

b1(t) : = cos θi
(
θd
βi

− 1

)
+ sin θi

(
θd
2
(1− 1

β2
i

) +
1

βi

)
(A.44)

b2(t) : = cos θi
2βi

(1 + β2
i )xi

− sin θi
2

(1 + β2
i )xi

. (A.45)

The closed-loop control law designed in [25] is, ∀t ∈ R≥0,

vi(t) = −γb1(t)ai(t) (A.46)
ωi(t) = −b2(t)vi(t)− kαi(t), (A.47)

with γ > 0 and k > 0.
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