
ON THE NEAREST SINGULAR MATRIX PENCIL

NICOLA GUGLIELMI∗, CHRISTIAN LUBICH† , AND VOLKER MEHRMANN‡

Abstract. Given a regular matrix pencil A + µE, we consider the problem of determining the
nearest singular matrix pencil with respect to the Frobenius norm. We present new approaches
based on the solution of matrix differential equations for determining the nearest singular pencil
A+∆A+ µ(E +∆E), one approach for general singular pencils and another one such that A+∆A
and E + ∆E have a common left/right null vector. For the latter case the nearest singular pencil
is shown to differ from the original pencil by rank-one matrices ∆A and ∆E. In both cases we
consider also the situation where only A is perturbed. The nearest singular pencil is approached
by a two-level iteration, where a gradient flow is driven to a stationary point in the inner iteration
and the outer level uses a fast iteration for the distance parameter. This approach extends also to
structured matrices A and E.
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1. Introduction. Let A,E ∈ Cn,n form a regular matrix pencil (A,E), that
is, the linear combination A + µE is nonsingular for at least some value µ ∈ C.
It is a long-standing open problem, see [2], to determine the nearest singular ma-
trix pencil (A + ∆A,E + ∆E) (in the sense of ∥(∆A,∆E)∥ → min), i.e., with
det (A+∆A+ µ(E +∆E)) ≡ 0 for all µ ∈ C. The norm of this smallest pertur-
bation is called the distance to singularity of the pencil (A,E), and it is of great
importance in many applications to have good knowledge about the value of this
distance. This holds, in particular, in the analysis of differential-algebraic equation
(DAE) models,

F (t, x, ẋ) = 0, (1.1)

where ẋ denotes the time derivative of the state x, see e.g. [1, 12, 13, 17, 18, 24]. If
DAEs are linearized along a stationary solution, [3], then one obtains a linear DAE

Eẋ+Ax = f, (1.2)

with constant coefficients A,E ∈ Cn×n. If the pencil (A,E) is singular, then the
initial value problem of solving (1.2) with a consistent initial value x(0) = x0, is not
solvable and/or the solution is not unique. Thus, a singular pencil indicates that (1.1)
is not well-posed, and the distance to singularity of (A,E) is a robustness measure
for the DAE in the neighborhood of a stationary solution.

In many engineering applications, modeling packages such as simscape and mod-
elica [20, 23] are employed to automatically generate DAE models of the form (1.1)
and it is not clear a priori whether the resulting model is well-posed and adequate
for numerical simulation. Since automatically generated DAE models typically con-
tain modeling errors or uncertainties, one usually checks the regularity of the pencil
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A+ µE associated with the linearization either in an a priori analysis phase or even
at every integration step, since a system with a pencil A+ µE that is close to a sin-
gular pencil within the uncertainty of the data or rounding and discretization errors
behaves essentially like a singular system, and so the results of numerical simulations
cannot be trusted.

In summary, we discuss the problem of computing the distance to singularity

d(A,E) = min{∥(∆A,∆E)∥ : (A+∆A,E +∆E) is singular}, (1.3)

where we consider as metric the Frobenius norm ∥(∆A,∆E)∥ = ∥[∆A,∆E]∥F .
In many applications, in particular those arising from network analysis, see e.g.

[24], or multi-body system simulation, see e.g. [4], the physical application restricts
the perturbations of the pencil A + µE, where data uncertainties arise. Thus, it is
also of great interest to study the case that the perturbations are restricted, e.g.,
by perturbing only one of the matrices E,A, by allowing only real perturbations, by
allowing only low rank perturbations or by requiring symmetries in the perturbations
[21].

An important special case is that the matrix E is not perturbed at all, i.e.,
∆E ≡ 0. For example, in certain models from circuit simulation [24], often the
matrix E is a matrix with entries {0, 1,−1}, which describes the network topology
and therefore is typically not influenced by possible parameter uncertainties. Another
important class of applications is that of semi-explicit DAEs [1, 12, 13], where E =
diag(1, . . . , 1, 0, . . . , 0). In these examples and many others, it is appropriate to study
perturbations only in the matrix A, and then we consider the distance

dA(A,E) = min{∥∆A∥ : (A+∆A,E) is singular}. (1.4)

We use the convention that dA(A,E) = ∞ if E is nonsingular.
The computation of the distances d(A,E) and dA(A,E) is a challenging open

problem [2, 16] and only in few special cases computational methods have been de-
veloped, see [2, 21]. The reason that this problem is difficult arises from the fact that
the nearest singular pencil may be one which has a higher dimensional singular block
in its Kronecker canonical form (KCF), see [5], and it is not clear a priori which block
structure is the one which is closest.

Calling vectors in the kernel of a matrix null vectors of the matrix, it is seen from
the KCF that for singular pencils, E and A may have a common left or right null
vector or not. To deal with the first case, we introduce the distance to a pencil with
common null vectors

d0(A,E) = min {∥(∆A,∆E)∥ : A+∆A, E +∆E

have a common left or right null vector} , (1.5)

and again the analogous distance when only A is perturbed,

d0A(A,E) = min {∥∆A∥ : A+∆A, E

have a common left or right null vector} , (1.6)

In Section 2 we describe the general methodology of eigenvalue optimization based
on solving ordinary differential equations (ODEs) whose trajectories follow descent
directions of a suitably chosen minimization functional over perturbations of a given
norm, and to optimize this norm in a fast outer iteration; cf. [7]–[10]. Here we extend
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this approach to the problem of computing the distance to singularity. In Section 3 we
consider the special situation that the perturbed pencil is required to have a common
nullspace but only one of the matrices is perturbed, while the common nullspace
problem with perturbations in both matrices is studied in Section 4.

Notation: For matrices A = [ai,j ], B ∈ Cn,n we denote by Λ(A) the spectrum of
A, and by ⟨A,B⟩ = trace(AHB) the inner product corresponding to the Frobenius
norm ∥A∥F = (

∑n
i,j=1 |ai,j |2)1/2. Here AH denotes the conjugate transpose of A.

2. An ODE-based approach to computing the distance to singularity.
To compute the distances d(A,E), dA(A,E) and d0(A,E), d0A(A,E), we use an ap-
proach that is based on inner-outer iteration. The inner method uses the numerical
integration of the gradient system of a suitable optimization function for perturba-
tions (∆A,∆E) of a prescribed norm ε, and the outer method is a fast Newton-like
iteration for finding the smallest perturbation size ε that makes the pencil singular.
Two-level iterations of a similar type have previously been used in [7]–[10] for other
matrix-nearness problems.

In order to deal with eigenvalue optimization, we first recall a classical variational
result. The derivative of a simple eigenvalue and an associated eigenvector of a matrix
C(t) with respect to variations in a real parameter t of the entries is well-studied, see
e.g. [15]. Using the notation Ċ(t) := d

dtC(t) to denote the derivative with respect
to t, we have the following result.

Lemma 2.1. [15, Section II.1.1] Consider a continuously differentiable function
C(t) : R → Cn,n, let λ(t) be a simple eigenvalue of C(t) and let x(t) and y(t) be the
associated right and left eigenvectors. Then, y(t)Hx(t) ̸= 0 and λ(t) is differentiable
with

λ̇(t) =
y(t)HĊ(t)x(t)

y(t)Hx(t)
. (2.1)

To check singularity for a matrix pencil (A,E) we use the following characteriza-
tion of a singular pencil. Let µ1, . . . , µd ∈ C be d ≥ n + 1 distinct numbers, chosen
arbitrarily. Then, as a direct consequence of the fundamental theorem of algebra, the
pencil (A+∆A,E +∆E) is singular if and only if

det (A+∆A+ µi(E +∆E)) = 0 for all i = 1, . . . , d.

Thus, we can recast the problem of computing the distance to singularity as computing
a minimum norm pencil (∆A∗,∆E∗) satisfying

(∆A∗,∆E∗) = arg min
∆A,∆E∈Cn,n

∥[∆A,∆E]∥ subject to

(A+∆A) + µi(E +∆E) is singular for i = 1, . . . , d. (2.2)

To formulate an optimization problem equivalent to (2.2), we introduce the functional

Gε(∆,Θ) =
d∑

i=1

|λi(∆,Θ)|2 (2.3)

where λi(∆,Θ) is the smallest (in absolute value) eigenvalue of the matrix (A+ε∆)+
µi(E + εΘ), for ε > 0.

In order to minimizeGε(∆,Θ), we construct two families of matrices A+ε∆(t) and
E+ εΘ(t), where ∆(t),Θ(t) ∈ Cn,n satisfies ∥[∆(t),Θ(t)]∥F = 1 and Gε(∆(t),Θ(t)) is
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a monotonically decreasing function of t and limt→∞ ∆(t) = ∆∞, limt→∞ Θ(t) = Θ∞.
These families are constructed such that Gε(∆,Θ) is locally minimized over all such
pairs (∆,Θ) of unit Frobenius norm.

Remark 2.2. Alternatively, we can replace in (2.3) the smallest eigenvalue by the
smallest singular value. The methods that we present below will work analogously for
this modified cost functional. We compared both cost functionals in a few numerical
experiments, where they worked similarly well.

Remark 2.3. The choice of µ1, . . . , µd may have an influence on the numerical
results, but this did not appear to be a critical issue in our numerical experiments.
We had good experience with the choice µk = r e2πki/d with a radius r that is of the
magnitude of ∥E∥/∥A∥.

2.1. The inner iteration, steepest descent. To minimize the cost functional
(2.3) with respect to the Frobenius norm, we use as inner iteration a steepest descent
method and extend the ideas developed in [8, 9, 10].

If Gε(∆,Θ) > 0, then the derivatives ∆̇, Θ̇ are chosen in the direction that gives
the maximum possible decrease of Gε(∆,Θ). Here, to satisfy the norm constraint
∥[∆(t),Θ(t)]∥F ≡ 1, we have to impose

Re
⟨
[∆,Θ], [∆̇, Θ̇]

⟩
= 0.

By Lemma 2.1, for a simple eigenvalue λ(t) = r(t)eiθ(t) of the matrix-valued function
A + ε∆(t) + µ(E + εΘ(t)), with associated left and right eigenvectors y(t) and x(t),
respectively, we have (omitting the dependence on t)

1

2

d

dt
|λ|2 = Re(λλ̇) = Re

(
λ ε

yH(∆̇ + µΘ̇)x

yHx

)
= εRe

( (λy)H(∆̇ + µΘ̇)x

yHx

)
= εrRe

(yH(∆̇ + µΘ̇)x

eiθyHx

)
.

(2.4)

In the following we shall always impose a scaling of the eigenvectors y and x by

∥y∥2 = ∥x∥2 = 1, yHx = |yHx|e−iθ (2.5)

(using θ = 0 if λ = 0) which makes the denominator of (2.4) real and positive (note
that |yHx| ̸= 0 since λ is assumed to be simple). Thus, with this normalization we
have

d

dt
|λ|2 = 2ε αRe⟨yxH , ∆̇ + µΘ̇⟩, with α =

r

|yHx|
, (2.6)

so that α is well defined by the simplicity assumption and α ̸= 0 if λ ̸= 0.

Assuming (which is a generic property) that the smallest eigenvalue λi of A +
ε∆(t) + µi(E + εΘ(t)) is simple for all i, we obtain

d

dt
Gε(∆,Θ) = 2ε

(
Re
⟨ d∑

i=1

αiyix
H
i , ∆̇

⟩
+Re

⟨ d∑
i=1

αiµiyix
H
i , Θ̇

⟩)
, (2.7)
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with αi =
|λi|

|yHi xi|
. Let

K =
d∑

i=1

αiyix
H
i , L =

d∑
i=1

(αiµi)yix
H
i . (2.8)

Then the optimal steepest descent direction [Z,W ] = [∆̇, Θ̇] for Gε(∆,Θ) is deter-
mined by the following optimization problem:

[Z∗,W∗] = arg min
Z,W∈Cn,n

Re (⟨K,Z⟩+ ⟨L,W ⟩)

subject to Re
⟨
[∆,Θ], [Z,W ]

⟩
= 0 and ∥[Z,W ]∥F = 1,

(2.9)

where the normalization ∥[Z,W ]∥F = 1 guarantees uniqueness under the assumption
that λi is simple.

The optimum in (2.9) is characterized by the following lemma.
Lemma 2.4. Let ∆,Θ ∈ Cn,n with ∥[∆,Θ]∥F = 1, and let K,L ∈ Cn,n be such

that [K,L] is not proportional to [∆,Θ]. Then the solution of the optimization problem
(2.9) is given by

κ [Z,W ] = − [K,L] + η [∆,Θ], (2.10)

where η = Re⟨[∆,Θ], [K,L]⟩ and κ is the Frobenius norm of the right hand side.
Proof. The result follows by noting that the expression in (2.10) is the orthogonal

projection of [K,L] onto the vector space {[Z,W ] : Re⟨[∆,Θ], [Z,W ]⟩ = 0}.
Using Lemma 2.4, we obtain a gradient system for Gε(∆,Θ) with initial data

[∆0,Θ0] of unit Frobenius norm, which is given by

∆̇ = −K + η∆,

Θ̇ = −L+ ηΘ, (2.11)

where K and L are defined by (2.8) and η = Re⟨∆,K⟩+Re⟨Θ, L⟩.
The following result is an immediate consequence of (2.11).
Theorem 2.5. Let ∆(t),Θ(t) with ∥[∆(t),Θ(t)]∥F = 1 satisfy the system of

differential equations (2.11). If λi(t) is a simple eigenvalue of A + ε∆(t) + µi(E +
εΘ(t)), then

d

dt
Gε (∆(t),Θ(t)) ≤ 0. (2.12)

Proof. The result follows directly from Lemmas 2.1 and 2.4.
Remark 2.6. At a stationary point of Gε, if Gε > 0, we have that [∆,Θ] is a

real multiple of [K,L], unless [K,L] = 0. However, generically we have [K,L] ̸= 0; in
fact it is immediate that

trace (K) =
d∑

i=1

λi and trace (L) =
d∑

i=1

µiλi,

which are both generically different from zero (note that the set of real vectors
(Re(z1), Im(z1), . . . ,Re(zd), Im(zd)) such that

∑
1≤i≤d Re(zi) =

∑
1≤i≤d Im(zi) = 0
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is a subspace of R2d of dimension 2d− 2). Consequently K and L generically do not
vanish.

Remark 2.7. Integrating the system (2.11) will usually lead us (by monotonicity)
to a local minimum which is not necessarily global. In order to increase the robustness
of the approach it is useful to compute several trajectories starting from different initial
data.

2.2. The outer iteration, updating ε. For every ε > 0, the gradient system
(2.11) yields a stationary point [∆(ε),Θ(ε)] of unit Frobenius norm that is a (local)
minimum of Gε. To update the parameter ε aiming at Gε(∆(ε),Θ(ε)) = 0, we propose
an outer iteration in form of a Newton-like method. The method is constructed to
approach, from the left-hand side, the value ε⋆ > 0 such that Gε⋆(∆(ε⋆),Θ(ε⋆)) = 0
and Gε(∆(ε),Θ(ε)) > 0 for ε < ε⋆.

In general we expect that for a given ε < ε⋆ all eigenvalues λi are different from
zero and simple. If so Gε(∆(ε),Θ(ε)) would be a smooth function of ε and we may
exploit its regularity by determining an exact expression for its derivative, to be used
in the fast outer iteration we are going to present. Otherwise we should make use of
a bisection technique in order to approach ε⋆.

Assumption 2.8. For ε < ε⋆, the smallest eigenvalue λi(ε) of the matrix A +
ε∆(ε)+µi(E+εΘ(ε)) is simple and different from zero, and the functions ∆(ε), Θ(ε),
and λi(ε), i = 1, . . . , d are sufficiently smooth with respect to ε (at least near ε⋆).

Assumption 2.8 guarantees that the eigenvalue λi(ε) of A+ε∆(ε)+µi(E+εΘ(ε))
is a smooth function of ε in a left neighborhood of ε⋆. This property is exploited in the
following result which provides an explicit and easily computable expression for the
derivative of Gε(∆(ε),Θ(ε)) with respect to ε. Here, K(ε) and L(ε) are the matrices
(2.8) that correspond to the eigenvalues λi(ε). Both K(ε) and L(ε) are generically
nonzero by Remark 2.6.

Theorem 2.9. Consider a regular pencil (A,E) with A,E ∈ Cn,n and a perturbed
pencil (A+ ε∆(ε), E + εΘ(ε)) that has the following properties:

i) ε ∈ (0, ε⋆), so that Gε(∆(ε),Θ(ε)) > 0;
ii) Assumption 2.8 holds.
iii) [K(ε), L(ε)] ̸= 0.

Then,

dGε(∆(ε),Θ(ε))

dε
= −

∥∥[K(ε), L(ε)]
∥∥
F
< 0.

Proof. Since by assumption λ(ε) is simple, we can employ the derivative formula
(Lemma 2.1) and, denoting the derivative d

dε by ′, we obtain

d

dε
λ(ε) =

y(ε)H
(
∆(ε) + ε∆′(ε) + µΘ(ε) + µεΘ′(ε)

)
x(ε)

y(ε)Hx(ε)
.

Applying this similarly in (2.6) we obtain

1

2

d

dε
|λ(ε)|2 = Re

(
λ(ε)

d

dε
λ(ε)

)
α(ε)

= α(ε)Re
(⟨

y(ε)x(ε)H ,∆(ε) + ε∆′(ε) + µΘ(ε) + µεΘ′(ε)
⟩)

.

Therefore,

d

dε
Gε(∆(ε),Θ(ε)) = Re

⟨
K(ε),∆(ε) + ε∆′(ε)

⟩
+Re

⟨
L(ε),Θ(ε) + εΘ′(ε)

⟩
. (2.13)
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To prove the assertion, we show that

Re
⟨
K(ε),∆′(ε)

⟩
+Re

⟨
L(ε),Θ′(ε)

⟩
= 0. (2.14)

The minimality property of Gε(∆(ε),Θ(ε)) implies that

Re
⟨
K(ε),∆′(ε)

⟩
+Re

⟨
L(ε),Θ′(ε)

⟩
≥ 0.

Now suppose that for some ε0, this inequality would actually be strict. Consider
[∆̃(ε), Θ̃(ε)] of unit norm such that both (∆̃(ε0), Θ̃(ε0)) = (∆(ε0),Θ(ε0)) as well as

(∆̃′(ε0), Θ̃
′(ε0)) = (−∆′(ε0),−Θ′(ε0)) holds. Then, for all ε sufficiently close to ε0,

we would have the corresponding inequality Gε(∆̃(ε), Θ̃(ε)) < Gε(∆(ε),Θ(ε)). This,
however, contradicts the minimality of (∆(ε),Θ(ε)) and hence (2.14) holds.

By assumption iii), extremizers of Gε(∆,Θ), which are stationary points of (2.11),
have the property that ∆(ε) is proportional to K(ε) and Θ(ε) is proportional to L(ε)
with the factor η = Re⟨∆(ε),K(ε)⟩+Re⟨Θ(ε), L(ε)⟩. Together with (2.13) and (2.14),
this concludes the proof.

The derivative formula in Theorem 2.9 allows us to construct a quadratically
convergent Newton-like method to compute an approximation to the root ε⋆ of g(ε) =
Gε(∆(ε),Θ(ε)), which can be expanded as

g(ε) ≈ χ(ε⋆ − ε)2

and can be estimated by the knowledge of g(ε) and g′(ε) (via Theorem 2.9) for ε < ε⋆.
Solving with respect to ε gives

ε⋆ ≈ ε− 2
g(ε)

g′(ε)
, χ ≈ g′(ε)2

4g(ε)
.

For ε = εk < ε⋆, we obtain the Newton iteration

εk+1 = εk − 2
g(εk)

g′(εk)
,

and get a locally quadratically convergent iteration from the left (if instead εk > ε⋆

we should use bisection, which would give a linear reduction of the error from the
right).

2.3. Numerical examples. To illustrate the inner-outer iteration described in
the last subsections we present some numerical examples. We first consider a problem
with fixed E so that the gradient system is simplified to

∆̇ = −K + η∆, (2.15)

where K is defined in (2.8) and η = Re⟨∆,K⟩.
All examples have dimension 3 and we use µℓ = eiℓπ/2, ℓ = 1, . . . , 4 as evaluation

points to check the singularity.
Example 2.10. Consider the pencil (A,E) with

A =

 0 0.0400 0.8900
0.1500 −0.0200 0
0.9200 0.1100 0.0600

 , E =

 0 0 0
0 0 1
0 1 0

 .
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By repeated numerical integration of (2.15), perturbing only A, we compute an upper
bound dA(A,E) ≈ ε⋆ = 0.1357 and

A+ ε⋆∆ =

 −0.0000000001 −0.0542959187 + 0.0000017493i
0.0568651065 + 0.0000071780i 0.0068225209 + 0.0000025925i
0.9231408234− 0.0000304036i 0.1128955997 + 0.0002292806i

0.8814329362− 0.0001686901i
0.0059287782 + 0.0002106238i
0.0615119378 + 0.0000843775i

 .

We remark that the singular pencil (A+ ε⋆∆, E) has no common null vectors and the
extremal perturbation ∆ has full rank. ⋄

Example 2.11. For

A =

 −1.79 0.10 −0.60
0.84 −0.54 0.49

−0.89 0.30 0.74

 , E =

 0 0 0
0 0 1
0 1 0

 ,

perturbing only A, by repeated numerical integration of (2.15), we compute an upper
bound dA(A,E) ≈ ε⋆ = 1.8907 and a real perturbed matrix

A+ ε⋆∆ =

 0.0000000005 0.0000000006 0.0000000011
0.8213322643 −0.5362641604 0.4731712699

−0.8893596899 0.3006536120 0.7400519795

 .

In this case the singular pencil (A+ε⋆∆, E) has a common left null vector
[
1 0 0

]T
and the extremal perturbation ∆ (of unit Frobenius norm) has a dominant singular
value σ1 ≈ 0.999998 which indicates that the exact extremal perturbation may have
rank one (see Section 3). ⋄

In the first two examples we have only perturbed the matrix A, in the next two
examples we consider the pencils from the first two examples but allow perturbations
in both E and A.

Example 2.12. Consider again the pencil of Example 2.10. Allowing perturba-
tions in both matrices and using repeated numerical integration of (2.11), we compute
an upper bound d(A,E) ≈ ε⋆ = 0.1193 and perturbed matrices (displayed to 10 digits)

A+ ε⋆∆ =

 0.0001475316 −0.0236092412 0.8794938198
0.0820097750 0.0105557540 0.0146194487
0.9192560915 0.1211438423 0.0587793566


and

E + ε⋆Θ =

 0.0000022028 0.0055760367 0.0115091616
−0.0049781822 0.0612871149 1.0094299281
0.0120766466 0.9993449498 −0.0001655503

 .

Note that in this case (up to four digits) ∥∆∥F = 0.84043 and ∥Θ∥F = 0.54191 so
that the matrix A has been perturbed more significantly than E. The singular pencil
(A + ε⋆∆, E + ε⋆Θ) is closer to (A,E) than the one computed in Example 2.10 and
has still no common null vector. Again the extremal perturbations ∆,Θ have full
rank and in this case they are real. ⋄
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Example 2.13. Consider again the pencil of Example 2.11. Allowing perturba-
tions in both matrices and using repeated numerical integration of (2.11), we compute
an upper bound d(A,E) ≈ ε⋆ = 1.065 and perturbed matrices (to 10 digits)

A+ ε⋆∆ =

 −1.5597093229 + 0.0021610076i
1.0048046874− 0.0445127183i
−0.8924856932− 0.0641270083i

0.3260473995 + 0.0966265200i −0.7591513321 + 0.0449684360i
−0.2219278843− 0.0447293570i 0.4034298635− 0.0585117306i
0.3083824662− 0.0641142654i 0.8035571677 + 0.0366925210i

 ,

E + ε⋆Θ =

 0.1399454874− 0.0182763461i
0.2452949522 + 0.1507937938i
0.0876482905 + 0.2170776953i

0.2658606960− 0.1821019435i −0.2014892070− 0.0418178132i
−0.2351476376 + 0.0310916192i 0.5770786070 + 0.0072381773i
0.5426711711− 0.0549700013i −0.2920820819− 0.0020714181i

 .

In this case (rounded to four digits) ∥∆∥F = 0.5124 and ∥Θ∥F = 0.8588 so that the
matrix E has been perturbed more significantly than A. Again the singular pencil
(A + ε⋆∆, E + ε⋆Θ) is closer to (A,E) than that of Example 2.11, but in this case
there is no common null vector. The extremal perturbations ∆,Θ have full rank and
in this case the extremal perturbations ∆,Θ are non-real. ⋄

An extensive numerical investigation suggests that in the case of singular pencils
with a common null vector the extremal perturbations ∆, Θ have rank one. This will
be proved rigorously below.

2.4. Real perturbations. In this subsection we extend the approach to the
case where the matrices A,E are real and the perturbations ∆A,∆E are required to
be real as well. In this case we compute

dR(A,E) = min{∥[∆A,∆E]∥, : (A+∆A,E +∆E) is real and singular}. (2.16)

We can simply extend Lemma 2.4 and replace the matrices K,L by Re(K) and Re(L).
This yields the system of ODEs{

∆̇ = −Re(K) + η∆,

Θ̇ = −Re(L) + ηΘ,
(2.17)

where K and L are defined by (2.8) and η = ⟨∆,Re(K)⟩+Re⟨Θ,Re(L)⟩.
The whole theory remains unaltered. Let us consider an example.
Example 2.14. Consider again the pencil from Example 2.10 perturbing only

A. By restricting to real perturbations, we obtain an upper bound dRA(A,E) ≈ ε⋆ =
0.1366 and the perturbed matrix is

A+ ε⋆∆ =

 0.0000000549 −0.0540181921 0.8756835927
0.0566705179 0.0068457984 0.0108125955
0.9186800977 0.1180892075 0.0599641664

 .

Again the perturbed matrices A+ ε⋆∆, E have no common null vector. ⋄
9



2.5. Comparison with purely algebraic approaches. The new approach is
based on optimization methods for differential equations. The question arises whether
the approximations obtained via this approach are superior to those obtained in a
purely linear algebra fashion. In general these different approaches are hard to com-
pare, since they proceed via completely different optimization methods. Except for
special cases, see [2, 21], no proof is available that the true distance has been obtained.
However, extensive numerical tests indicate that the differential equation approach
achieves smaller bounds for the distance to singularity in all cases.

The easiest of the linear algebra approaches (which is not using an optimization)
is to compute the generalized Schur form (UHEV,UHAV ) = (S, T ) of the pair (A,E)
with upper triangular matrices S, T and then to create a pair of zero diagonal elements
in the upper triangular matrices S and T .

Example 2.15. Consider the pair (A,E) from Example 2.10. Applying the QZ
algorithm, see e.g. [6], to this pair gives the generalized Schur form with

S =

 0 −0.978747365727621 0.205069729802429
0 0.205069729802429 0.978747365727621
0 0 −0.000000000000001

 ,

T =

 0.932148056909416 −0.102583031602284 0.063888312298283
0 0.036969147238194 −0.011326399756439
0 0 0.890898422941695


Considering the third diagonal element of S to be zero, we see that an upper bound for
the smallest (real and even rank-one) perturbation in T that makes the pencil singular
is of size ≈ 0.8909, while the smallest perturbation in both matrices is obtained
by perturbing the second diagonal element in both S and T to zero, which is of
order 0.2084 in Frobenius norm. Both perturbations are larger than the minimal
perturbations obtained by the ODE approach. ⋄

Example 2.16. Consider the following example from [2] with matrices

A = UT

 1 0 0
0 .0001 0
0 0 1

V, E = UT

 0 1 0
0 0 1
0 0 0

V

with real orthogonal matrices U, V . The smallest perturbation that makes the pencil
singular, perturbing both E,A or only A is real, of rank one and of size .0001.

The ODE approach correctly yields a closest singular pair at a distance approxi-
mately .0001 for different choices of U and V . ⋄

Example 2.17. Consider next the following example of an 8 × 8 matrix pencil
arising from the model of a two-dimensional, three-link mobile manipulator from [2,
Example 14].

A =

 O I3 O
−K0 −D0 FT

0

F0 O O

 , E =

 I3 O O
O M0 O
O O O

 ,

10



with

M0 =

 18.7532 −7.94493 7.94494
−7.94493 31.8182 −26.8182
7.94494 −26.8182 26.8182

 , D0 =

 −1.52143 −1.55168 1.55168
3.22064 3.28467 −3.28467

−3.22064 −3.28467 3.28467

 ,

K0 =

 67.4894 69.2393 −69.2393
69.8124 1.68624 −1.68617

−69.8123 −1.68617 −68.2707

 , F0 =

[
1 0 0
0 0 1

]
.

An application of the method presented in this paper gives as result the bound
d(A,E) ≈ 0.011, which is consistent with the best result given in [2]. Here the
closest singular pair does not have any common left or right null vector. The modulus
of Gε(∆(ε),Θ(ε)) is plotted (in logarithmic scale) in Figure 2.1. ⋄

0 0.002 0.004 0.006 0.008 0.01 0.012
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Fig. 2.1. The function ε → Gε(∆(ε),Θ(ε)) for the illustrative example 2.17

We have seen in this section that with the ODE approach we are able to compute
approximations from above for the distance to singularity, perturbing both matrices
A,E or only A and we can even deal with the real case analogously.

It cannot be guaranteed that the optimization approach reaches a global mini-
mum. However, starting from different initial values, the method has the option to
find several local minima. As the examples demonstrate, the minimum may not be
achieved by a perturbation where the perturbed matrices have a common null vec-
tor. However, if we make it a requirement that we are only looking for a smallest
perturbation with this property, then the situation changes drastically. This will be
discussed in the next section.

3. Distance to singular pencils with common null vectors: the case of
fixed E. In this section we consider the ODE-based approach for the minimization
problem of finding a nearby pencil with a common right null vector. A common left
null vector is simply obtained by applying the same procedure to the pair (AH , EH).
We first discuss extensively the case that only the matrix A is perturbed and then
extend the approach to the perturbation of both matrices in the next section. In both
cases we prove that the smallest perturbations which make the pencil singular, have
rank one.
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3.1. Simple upper and lower bounds for d0A(A,E). Let us first discuss
purely algebraic techniques to construct some upper and lower bounds.

The simplest lower bound is given by the distance to singularity of A, which in
the unstructured case is given by the smallest singular value σn(A). This provides
the lower bound

σn(A) ≤ d0A(A,E)

To get an upper bound for the distance to singularity we can employ the gener-
alized singular value decomposition of the pair (A,E), see [6]. We have the following
Lemma.

Lemma 3.1. Let A,E ∈ Cn,n with E singular and (A,E) regular. Let XAV = C,
XEU = D be the generalized singular value decomposition with U, V unitary, X
invertible, and C = diag(C1, C2), D = diag(D1, 0), diagonal, D1 invertible, and the
diagonal elements of C2 are ordered in decreasing absolute value. Then the matrices
A− (eTnC2en)X

−1ene
T
nU

H , E have a common right null vector Uen.
Proof. The proof is straightforward, since by construction

X(A− (eTnC2en)X
−1ene

T
nU

H)Uen = 0, XEUen = 0,

which proves the result.
Lemma 3.1 gives a numerically computable rank-one perturbation to A that cre-

ates a common null vector, which even is real in the real case. This clearly gives a
simple upper bound for the distance to singularity. This perturbation would actually
be minimal in Frobenius norm if the matrix X were unitary, which however is usually
not the case. A sufficient condition for X to be unitary is that EHA = AHE and
EAH = AEH , which is however, a very strong requirement.

Another upper bound can be obtained from the Jordan canonical form

A = TJT−1.

Consider any Jordan block with eigenvalue λm and replace the first diagonal element
in this block by zero (calling the resulting matrix Ĵm) and replace the associated
eigenvector xm in the associated column of T by its orthogonal projection onto the
kernel of E leading to a matrix T̂m. This projection is obtained by setting x̂m =
xm − V2V

H
2 xm, where E = UΣV H is the singular value decomposition of E and the

columns of V2 span the kernel of E. If x̂m is linearly independent to the remaining
columns of T then the new pair (E, Â) = (E, T̂mĴmT̂−1

m ) is singular. Then, minimizing
∥A− Âm∥ by going through all eigenvalues of A, we obtain the upper bound

d0A(A,E) ≤ ∥A− Âm∗∥,

where m∗ is the index of the eigenvalue where the bound is minimized. This upper
bound is of limited practical value, since its computation requires the Jordan canonical
form which is usually not numerically computable. Using instead the ordered Schur
form, see [6],

A = QSQH

with Q unitary and S upper triangular, we have that the first column of Q forms an
eigenvector and we can apply the same approach of setting the eigenvalue to 0 and
replace the eigenvector by its orthogonal projection onto the kernel of E, to obtain

12



singular pencil. Using eigenvalue reordering, see [6], we can reorder the eigenvalues
one by one to the top and apply the projection in the same way and then minimize over
all possible eigenvalues. This gives a numerically computable upper bound realized
by a rank-one perturbation. Usually this approach cannot be applied to obtain a real
perturbation if the eigenvalues are non-real. Further bounds obtained from a purely
algebraic approach are derived in [2].

A third upper bound is obtained from the singular value decomposition

UH

[
E
A

]
V =

[
Σ
0

]
,

with Σ = diag(σ1, . . . , σn) and

U =

[
U11 U12

U21 U22

]
,

with Ui,j ∈ Cn,n. Then the pencil

(A− σnU21ene
T
nV

H , E − σnU11ene
T
nV

H) (3.1)

is singular with common null vector V en, since

UH

[
E − σnU11ene

T
nV

H

A− σnU21ene
T
nV

H

]
V en = 0.

This is, however, a perturbation in both matrices and it is a rank-one perturbation
in each of the two.

Example 3.2. Consider the pencil from Example 2.11. In this case the pertur-
bation obtained via the singular value decomposition in (3.1) is given by

∆A =

 −0.0851 −0.2996 0.0397
−0.0948 −0.3335 0.0442
−0.0132 −0.0465 0.0062

 , ∆E =

 0.0000 0.0000 −0.0000
−0.0343 −0.1208 0.0160
0.2587 0.9105 −0.1208

 ,

with d(A,E) = 1.0722 which is larger than the bound 1.065 obtained by the ODE
approach. ⋄

To obtain a rank-one perturbation in A only, we consider the singular value
decomposition of E,

E = U

[
Σm 0
0 0

]
V H

with U ∈ Cn,n and V ∈ Cn,n unitary and Σm ∈ Rm,m diagonal with positive diagonal
entries. (Note that in the real case the factors are real.) Partition

UHAV =

[
A11 A12

A21 A22

]
with A11 ∈ Cm,m accordingly, and let A22 = UAΣAV

H
A be another singular value

decomposition, with ΣA = diag(ξ1, . . . , ξn−m) diagonal entries. Let

Ũ := U

[
Im

UA

]
, Ṽ := V

[
Im

VA

]
13



and set

∆A = −Ũ

[
0 A12en−meTn−m

0 ξn−men−meTn−m

]
Ṽ H . (3.2)

Then by construction x := Ṽ en is a common null vector of E and A+∆A, but we do
not know whether this is of minimal Frobenius norm.

Example 3.3. Consider again the pencil from Example 2.11. In this case the
perturbation obtained via (3.2) is 2.1684 which is again larger than the bound 1.8907
obtained via the ODE approach. ⋄

In the following subsection we proceed again via the ODE approach.

3.2. An ODE-based approach for computing d0A(A,E). In the following
we assume that E ∈ Cn,n is singular, has rank m < n and is not perturbed. As in
the algebraic approach in the previous subsection, to reformulate the problem, we
construct a perturbation so that A+∆A has an eigenvector x to the eigenvalue 0 in
the kernel of E, so that

(A+∆A+ µE)x = 0 for all µ ∈ C.

This leads to the following constrained minimization problem

∆A∗ = arg min
∆A∈Cn,n

∥∆A∥

subject to (A+∆A)x = 0 for some x ∈ Cn, x ̸= 0

and Ex = 0, (3.3)

so that d0A(A,E) = ∥∆A∗∥. This is a classical matrix nearness problem, see [14].
To employ an ODE based optimization approach, we make use of the restricted

singular value decomposition E = UΣV H with U ∈ Cn,m and V ∈ Cn,m unitary and
Σm ∈ Rm,m diagonal with positive entries. Note that in the real case the factors are
real.

In the inner iteration, for any fixed ε we compute a (local) minimizer of the
functional

Fε(∆) =
1

2
|λ(∆)|2 + 1

2
∥V Hx(∆)∥22, (3.4)

where (x, λ) is an eigenvalue/eigenvector pair of A+ ε∆ and ∥∆∥F = 1.
The local minimizer is determined as the stationary point of the associated gra-

dient system. In general this will not be a global minimizer, although this seems
to be the case in all our experiments of small dimension (where we performed an
investigation on a very large number of samples).

For the outer iteration, we consider a continuous branch of minimizers ∆(ε)
and vary ε iteratively by exploiting the knowledge of the exact derivative of f(ε) =
Fε(∆(ε)) with respect to ε. We obtain superlinear convergence.

To derive the gradient system we make use of the following definition.
Definition 3.4. Let M be a singular matrix with a simple zero eigenvalue. The

group inverse (reduced resolvent) of M is the unique matrix G satisfying

MG = GM, GMG = G, and MGM = M.

We have the following lemma.

14



Lemma 3.5. [22, Theorem 2] Given a smooth matrix function C : R → Cn,n, let
λ(t) be a simple eigenvalue of C(t) and let x(t) and y(t) be the associated right and left
eigenvectors, depending smoothly on t and normalized such that ∥x(t)∥2 = ∥y(t)∥2 = 1.

Moreover, let M(t) = C(t) − λ(t)I and let G(t) be the group inverse of M(t).
Then the eigenvectors satisfy the following system of differential equations:

ẋ(t) = x(t)x(t)HG(t)Ṁ(t)x(t)−G(t)Ṁ(t)x(t),

ẏ(t)H = y(t)HṀ(t)G(t)y(t)y(t)H − y(t)HṀ(t)G(t) . (3.5)

In order to minimize the functional Fε(∆), we construct a family of matrices
A + ε∆(t), with ∆(t) ∈ Cn,n and ∥∆(t)∥F = 1, such that limt→∞ ∆(t) = ∆∞ and
an eigenvector/eigenvalue pair (x, λ) of A + ε∆∞ exists such that Fε(∆) is locally
minimized (over all matrices ∆ of unit norm).

If Fε(∆) > 0, then the derivative ∆̇ is chosen in the direction of steepest descent
of Fε(∆) for the chosen eigenvalue/eigenvector pair of A+ ε∆.

We start by considering the first summand 1
2 |λ|

2 in Fε(∆) (see (3.4)), which we
assume to be different from zero.

Let λ be a simple eigenvalue of A + ε∆ and let x, y be the associated right and
left eigenvectors, normalized according to (2.5). Proceeding as in (2.6) we get

1

2

d

dt
|λ|2 = ε αRe⟨yxH , ∆̇⟩, with α =

r

|yHx|
, (3.6)

so that α is well-defined by the simplicity assumption and α ̸= 0 if λ ̸= 0.
Next we consider the second summand 1

2∥V
Hx∥22 in Fε(∆), which we again assume

to be different from zero. We get

1

2

d

dt
∥V Hx∥22 = Re

(
xHV V Hẋ

)
= ν Re

(
uHẋ

)
(3.7)

with

u = V
V Hx

∥V Hx∥2
and ν = ∥V Hx∥2.

This requires the derivative of the eigenvector x of A+ ε∆(t), which is given by
Lemma 3.5. Inserting (3.5) into (3.7) we obtain

1

2

d

dt
∥V Hx∥22 = ν Re

(
uHẋ

)
= ε ν Re

(
uH
(
(xHG∆̇x)x−G∆̇x

))
+ν Re

(
uH
(
(xHGλ̇Ix)x−Gλ̇Ix

))
. (3.8)

Using that for a simple eigenvalue Gx = 0 and yHG = 0, see [22], we get that the
second summand of (3.8) vanishes. Hence

1

2

d

dt
∥V Hx∥22 = ε ν2 Re⟨x,G∆̇x⟩ − ε ν Re⟨u,G∆̇x⟩

= ε ν Re⟨GH(νx− u)xH , ∆̇⟩ = ε ν Re⟨vxH , ∆̇⟩,
15



where v := GH(νx− u). Therefore, with w = αy + νv, we have

d

dt
Fε(∆) = εRe

⟨
(αy + νv)xH , ∆̇

⟩
= εRe⟨wxH , ∆̇⟩.

Then, the optimal steepest descent direction Z = ∆̇ for Fε(∆) (see (3.6) and (3.8)) is
determined by the following optimization problem, where w is assumed to be different
from zero.

Z∗ = arg min
Z∈Cn,n

Re
⟨
wxH, Z

⟩
subject to Re ⟨∆, Z⟩ = 0 and ∥Z∥F = 1. (3.9)

The solution to the optimization problem (3.9) is given in the following lemma.
Lemma 3.6. Let ∆ ∈ Cn,n be of unit Frobenius norm, and let w, x ∈ Cn \ {0}

be such that ∆ is not proportional to wxH . Then the solution of the optimization
problem (3.9) is given by

κZ∗ = − wxH +Re
⟨
∆, wxH

⟩
∆, (3.10)

where κ is the Frobenius norm of the matrix on the right hand side.
Proof. The result follows by noting that the expression in (3.10) is the orthogonal

projection of the rank-one matrix wxH to the subspace {Z : Re⟨∆, Z⟩ = 0}.
Lemma 3.6 suggests to consider the following gradient system for Fε(∆),

∆̇ = − wxH +Re
⟨
∆, wxH

⟩
∆, (3.11)

where y(t), x(t) are left and right eigenvectors, respectively, of unit norm associated
with a simple eigenvalue λ(t) = reiθ of A + ε∆(t) (for fixed ε), and with yHx =
|yHx|e−iθ, w = αy + νv, α = |λ|/|yHx|, v = GH(νx − u), u = V V Hx/ν and ν =
∥V Hx∥2.

The following result shows the monotonic decrease of Fε(∆(t)) along every solu-
tion of (3.11).

Theorem 3.7. Let ∆(t) of unit Frobenius norm satisfy the differential equation
(3.11). If λ(t) is a simple eigenvalue of A+ ε∆(t), then

d

dt
Fε (∆(t)) ≤ 0. (3.12)

Proof. The result follows directly from Lemmas 2.1, 3.5 and 3.6.
The following lemma characterizes the right hand side of (3.11).
Lemma 3.8. Consider the functional (3.4) and suppose that Fε(∆) > 0. Let λ

be a simple eigenvalue of A + ε∆ (for fixed ε) and let y, x be the associated left and
right unit norm eigenvectors, respectively. If v = GH(νx − u), where G is the group
inverse of A+ ε∆− λI, then

w = αy + νv ̸= 0. (3.13)

Proof. (i) First assume that λ ̸= 0. Exploiting the well-known property of the
group inverse that Gx = 0 [22], we obtain that xHv = 0.
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If we had αy + νv = 0, then this would imply xH (αy + νv) = 0 and thus,
αxHy = 0. Since xHy ̸= 0 by the simplicity of λ and α ̸= 0 by the assumption λ ̸= 0,
it follows that |αxHy| = |λ|, which is a contradiction.

(ii) Next assume that λ = 0. This implies α = 0 and ν ̸= 0. Then w = νv with
v = 1

ν

(
ν2x− V V Hx

)
. Since λ is simple, the group inverse G of A+ ε∆−λI has rank

n− 1. This implies that ker(GH) = span(y), and hence w = 0. Therefore

ν2x− V V Hx = ηy

for some η ∈ C, η ̸= 0. As a consequence

0 = xH
(
ν2x− V V Hx

)
= ηxHy

which gives a contradiction, since xHy ̸= 0.
Lemma 3.8 implies that at a stationary point of (3.11) for which Fε(∆) > 0, the

summands in the right-hand side of (3.11) cannot vanish simultaneously.
Stationary points of (3.11), which are potential minimizers for the computation

of Fε(∆), can be characterized as follows.
Theorem 3.9. Consider the functional (3.4) and suppose that Fε(∆) > 0. Let

λ be a simple eigenvalue of A + ε∆ (for fixed ε) and let y, x be the associated left
and right unit norm eigenvectors, respectively. Then the following are equivalent on
solutions of (3.11).

(1)
d

dt
Fε(∆) = 0;

(2) ∆̇ = 0;

(3) ∆ is a real multiple of wxH (where w = αy + νv).
Proof. The proof follows directly by equating to zero the right hand side of (3.11)

and by Lemma 3.8, which prevents that w = 0.
The following theorem characterizes the local minimizers.
Theorem 3.10. Consider the functional (3.4) and suppose that Fε(∆) > 0.

Let ∆∗ ∈ Cn,n with ∥∆∗∥F = 1. Let λ∗ = reiθ be a simple eigenvalue of A + ε∆∗
with left and right eigenvectors y and x, respectively, both of unit norm and with the
normalization yHx = |yHx|e−iθ and Fε(∆) > 0. Then the following are equivalent:

(i) Every differentiable path (∆(t), λ(t)) (for small t ≥ 0) such that ∥∆(t)∥F ≤ 1
and λ(t) is a simple eigenvalue of A+ ε∆(t), with ∆(0) = ∆∗, satisfies

d

dt
Fε (∆(t)) ≥ 0.

(ii) ∆∗ is a negative multiple of wxH , where w = αy + νv.
Proof. First of all note that Lemma 3.8 ensures that wxH ̸= 0.
Assume that (i) does not hold. Then there exists a path ∆(t) through ∆∗ such that

d
dtF (∆(t))

∣∣
t=0

< 0. The minimization property established by Lemma 3.6 together
with Lemmas 2.1, and 3.5 shows that also the solution path of (3.11) passing through
∆∗ is such a path. Hence ∆∗ is not a stationary point of (3.11), and Theorem 3.9
then yields that ∆∗ is not a real multiple of wxH . This implies that also (ii) does not
hold.

Conversely, if ∆∗ is not a real multiple of wxH , then ∆∗ is not a stationary point
of (3.11), and Theorems 3.9 and 3.7 yield that d

dtF (∆(t))
∣∣
t=0

< 0 along the solution
path of (3.11).
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Moreover, using a similar argument to [9, Theorem 2.2], if

∆∗ = γwxH , with γ > 0,

then along the path ∆(t) = (1−t)∆∗, t ∈ [0, τ ] (τ > 0), which is such that ∥∆(t)∥F ≤ 1
if τ ≤ 2, we have that

d

dt
F (∆(t)) = −γ∥wxH∥2F < 0.

Hence, by exploiting Lemmas 2.1 and 3.5, as well as d
dtF (∆(t))

∣∣
t=0

< 0, this contra-
dicts (i).

As a consequence, if in Theorem 3.9 we have that Fε(∆) > 0 is locally minimal,
then

∆ = − w

∥w∥F
xH

which is a rank-one matrix.

3.3. Rank-one property of the solution of the common null vector prob-
lem with fixed E. In [21] it was conjectured that the minimal norm perturbation
that makes a pencil (A,E) singular, when only A is perturbed, is of rank one. While
this does not appear to be true in general (as is indicated by Example 2.10), it does
hold for the restricted case of the common nullspace problem.

Theorem 3.11. Consider a regular pencil (A,E). Then the perturbation ∆A of
minimal Frobenius norm such that A+∆A and E have a common null vector, is such
that ∆A has rank one.

Proof. The result is a consequence of the rank-one property of extremizers. In
fact, we have shown above that for any ε such that Fε(∆(ε)) > 0 for ε < ε⋆ and
Fε(∆(ε⋆)) = 0, the extremizers ∆(ε) of Fε(∆) have rank one. They converge to a
rank-one matrix as ε → ε⋆ by the lower semi-continuity of the rank.

Since for a rank-one matrix the Frobenius norm and the matrix 2-norm are the
same, Theorem 3.11 further shows that there is a perturbation ∆A of minimal 2-norm
such that A+∆A and E have a common null vector, which has rank one. There may,
however, be further perturbations of the same 2-norm that have arbitrary rank.

3.4. Rank-one dynamics to compute the distance to singularity with
common null space. Since the extremizers of (3.4) are of rank one, we can proceed
in complete analogy to [8] to obtain a suitable ODE on the manifold M1 of rank-one
matrices in Cn,n.

We express ∆ ∈ M1 as ∆ = σpqH , where σ ∈ C, p, q ∈ Cn have unit norm, and
the derivatives σ̇ ∈ C, ṗ, q̇ ∈ Cn will be uniquely determined from σ, p, q and ∆̇ by
imposing the orthogonality conditions pH ṗ = 0, qH q̇ = 0.

In the differential equation (3.11) we replace the right-hand side by its orthogonal
projection to the tangent space T∆M1 of the manifold M1 and obtain

∆̇ = P∆

(
−wxH +Re⟨∆, wxH⟩∆

)
, (3.14)

where x and y are again unit norm right and left eigenvectors, respectively, associated
with a simple eigenvalue λ of A + ε∆, with yHx > 0 and w = αy + νv, where α, ν
and v are defined as before.
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The orthogonal projection onto T∆M1 at ∆ = σpqH ∈ M1 is given by

P∆(Z) = Z − (I− ppH)Z(I− qqH) (3.15)

for some Z ∈ Cn,n. With this formula we immediately obtain the following lemma.
Lemma 3.12. Consider the orthogonal projection P∆(Z) as in (3.15). For ∆ =

σpqH ∈ M1 with nonzero σ ∈ C and with p ∈ Cn and q ∈ Cn of unit norm, the
equation ∆̇ = P∆(Z) is equivalent to ∆̇ = σ̇pqH + σṗqH + σpq̇H , where

σ̇ = pHZq,

ṗ = (I − ppH)Zqσ−1,

q̇ = (I − qqH)ZHpσ−1. (3.16)

Proof. The proof follows by using the rank-one representation of ∆; see [8].
Inserting Z = −wxH+Re⟨∆, wxH⟩∆, we get that the differential equation (3.14)

for ∆ = σpqH can be rewritten as the following system of differential equations for
σ, p and q. Here we set η = − pHw ∈ C, β = qHx ∈ C.

σ̇ = ηβ − Re(ηβσ)σ = i Im(ηβσ)σ,

ṗ = (−w − ηp)βσ−1,

q̇ = (x− βq)η σ−1. (3.17)

The derivation of this system of ODEs is straightforward; see [9] for the details.
A nice consequence of this reformulation of the gradient system is that the mono-

tonicity and the characterization of stationary points is analogous to those obtained
for (3.11), i.e., we have Theorems 3.7 and 3.9 (for the proofs we refer to [8]). This
means that the rank-one ODE has the same stationary points as (3.11), which include
the desired extremizers.

As a consequence we can integrate the ODE (3.17) instead of (3.11) in the in-
ner iteration of the optimization procedure. Based on this, we present in the next
subsection a corresponding numerical method for the outer iteration.

3.5. The outer iteration, updating ε. In this subsection we discuss the outer
iteration to update ε. For every ε > 0, the gradient system (3.11) yields a sta-
tionary point ∆(ε) of unit Frobenius norm that is a (local) minimum of Fε. The
method is constructed to approach, from the left-hand side, the value ε⋆ > 0 such
that Fε⋆(∆(ε⋆)) = 0 and Fε(∆(ε)) > 0 for ε < ε⋆. We make the following generic
assumption.

Assumption 3.13. The smallest eigenvalue λ(ε) of the extremal matrix A+ε∆(ε)
is simple. Moreover, we assume that ∆(ε) and λ(ε), x(ε) are smooth with respect to ε
(at least in a neighborhood of ε⋆).

The following result provides an explicit and easily computable expression for the
derivative of Fε(∆(ε)) with respect to ε.

Theorem 3.14. Consider the optimization problem of determining a rank-one
perturbation minimizing Fε(∆(ε)) by perturbing only A. Suppose that:

1. ε ∈ (0, ε⋆) such that Fε(∆(ε)) > 0,
2. Assumption 3.13 holds.

Then,

dFε(∆(ε))

dε
= −

∥∥∥w(ε)x(ε)H∥∥∥
F
< 0, for all ε,
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where

w(ε) = α(ε)y(ε) + ν(ε)v(ε), α(ε) =
|λ(ε)|

|y(ε)Hx(ε)|
, v(ε) = G(ε)H

(
ν(ε)x(ε)− u(ε)

)
,

and

u(ε) = V
V Hx(ε)

∥V Hx(ε)∥
, ν(ε) = ∥V Hx(ε)∥2.

Proof. The proof is similar to that of Theorem 2.9.

Having obtained a computational method to compute the minimal rank-one per-
turbation of A which makes the pencil (A,E) singular, we prove below that actually
this gives the solution to the general rank perturbation.

3.6. Numerical examples for the common nullspace problem with fixed E.
In this subsection we present several illustrative numerical examples.

Example 3.15. Consider the pencil from Example 2.11. Running the algorithm
presented in the last subsection to the pair (AH , EH) we obtain the same distance
ε⋆ ≈ 1.8907 as computed by means of the general algorithm, with the rank-one
perturbation to be added to A given by ∆ = σqpH with

σ = 0.9987− 0.0506i,

p =
[
−0.8277− 0.4597i 0.0462 + 0.0257i −0.2775− 0.1541i

]T
,

q =
[
−0.8975− 0.4406i −0.0066− 0.0010i 0.0132 + 0.0117i

]
.

⋄
Example 3.16. Consider the matrices

A =


0.49 0.89 0.33 0.32 1.09 −0.01
1.03 −1.15 −0.75 0.31 1.11 1.53
0.73 −1.07 1.37 −0.86 −0.86 −0.77

−0.30 −0.81 −1.71 −0.03 0.08 0.37
0.29 −2.94 −0.10 −0.16 −1.21 −0.23

−0.79 1.44 −0.24 0.63 −1.11 1.12

 , E =


0 0 0 0 1 0
0 1 0 1 0 0
0 1 0 1 0 0
1 0 0 0 1 1
1 1 0 0 0 1
1 0 0 0 0 1

 .

The matrix E has rank 4 and an orthonormal basis for ker(E)⊥ is given by

V =


0.6196 −0.2399 −0.1986 −0.1384
0.3846 0.6684 −0.0501 0.6347
0.0000 0.0000 0.0000 −0.0000
0.1532 0.6229 0.2343 −0.7304
0.2469 −0.2236 0.9294 0.1592
0.6196 −0.2399 −0.1986 −0.1384

 .

The simple bounds

0.1936 ≤ d0A(A,E) ≤ 7.2810

are computed according to the procedure given in Subsection 3.1.
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Applying the ODE-based approach, we obtain ε⋆ ≈ 1.21 and the corresponding
matrix ∆ is given by

∆∗ = pxH , x ≈


−0.574
0.000
0.583
0.000
0.000
0.574

 , p ≈


−0.075 + 0.134i
−0.125− 0.029i
−0.052 + 0.065i
−0.498 + 0.096i
−0.295 + 0.021i
0.779 + 0.041i

 .

The monotonicity of the functional Fε in ε = ε⋆ is shown in Figure 3.1. ⋄
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Fig. 3.1. The function t → Fε⋆ (∆(t)) for Example 3.16.

Example 3.17. Consider, see [6],

Bn =


1 −1 −1 · · · −1

1 −1 · · · −1
. . .

...
...

1 −1
1

 .

This is an ill-conditioned triangular matrix with no small diagonal entry. The rank-
one perturbation ∆B = −22−nene

T
1 makes Bn singular.

Thus for the pencil (A,E) = (Bn, Bn +∆B) if we perturb A by ∆B leads to the
distance to singularity d0A(A,E) ≤ 22−n.

In the general case the null vector of E is

x =
[
2n−2 2n−1 . . . 2 1 1

]T
and we can look for

∆A =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
δn δn−1 . . . δ2 δ1

 ,
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such that (δ + e1)
T x = 0, where

δ = [δn δn−1 . . . δ3 δ2 δ1]
T

and ∥δ∥F is minimal. The minimization problem

min
δ1,...,δn

n∑
i=1

δ2i s.t.
n∑

i=1

δixi = −1

is easily solvable and the solution is

δ = − x/∥x∥2 such that ∥∆A∥F =
1

∥x∥
.

Note that imposing a left common null vector would lead to the same distance and
the optimal perturbation would have the first column equal to the last row of ∆A in
reverse order.

Consider for example the case n = 5, where d0A(A,E) ≤ 1/8 = 0.125. The exact
closest singular pair is obtained with the perturbation

∆A = −


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
4
43

2
43

1
43

1
22

1
86

 ,

having (up to four digits) the Frobenius norm ∥∆A∥F = 1√
86

= 0.107833.

The ODE method correctly finds an accurate approximation of ∆A also for larger
values of n. For example, for n = 10, it correctly approximates the distance and the
optimal perturbation to six digits.

Finally, according to our experiments, dA(A,E) < d0A(A,E). For example, for
n = 10, we obtain d(A,E) ≈ 0.0030, dA(A,E) ≈ 0.030 and d0A(A,E) ≈ 0.034. ⋄

3.7. Numerical integration of the gradient system. For the numerical in-
tegration of the gradient system (3.17) we apply a suitable variable stepsize projected
Euler method, in order to preserve the norm of p and q and the modulus 1 property
of σ. In order to control the stepsize, we simply require the monotonicity property
of the exact flow, i.e., F (∆(tℓ+1)) < F (∆(tℓ)). For this reason we do not estimate
∥∆(tℓ+1)−∆ℓ+1∥ as we do not make use of any classical error estimate on the solution.

Concerning the outer iteration, by definition, the function Fε(∆(ε)) has generi-
cally a double zero at ε = ε⋆ and then vanishes identically for ε > ε⋆. This suggests to
approach the root from the left, while values ε > ε⋆ may only provide upper bounds.

Let f(ε) = Fε(∆(ε)). Since for ε < ε⋆ we can exploit the knowledge of f(ε) as
well as f ′(ε). Similarly to the case discussed in Section 2.2, for εk < ε⋆ we can set

εk+1 = εk − 2
f(εk)

f ′(εk)

and obtain a quadratically convergent iteration from the left.
At every step of the outer iteration we need to compute the smallest eigenvalue and

the associated eigenvectors of the matrix A+ε∆n. For small dense problems we use the
QR algorithm implemented in eig, while for problems of large dimension (and possibly
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sparse structure) we make use of the routine eigs, which is based on ARPACK [19]
and implements the implicitly restarted Arnoldi method. A major computational
problem when computing the right-hand side of the differential equations (3.11) and
(3.17) is the the application of the group inverse G to a vector. In order to compute
it efficiently we make use of the following result from [11].

Theorem 3.18. Suppose that the matrix B has a semisimple eigenvalue 0 with
x ∈ ker(B) and y ∈ ker(BH) of unit norm and such that yHx > 0. Let G be the group
inverse of B. Then

G = ΠB†Π = Π
(
B + ηyxH

)−1
Π , (3.18)

where η ∈ R, B† is the Moore-Penrose pseudoinverse of B, Π is the projection(
I − ηxŷH

)
, with ŷ = y/(yHx) and η ̸= 0 is arbitrary.

In our case we apply Theorem 3.18 with B = A − λI + ε∆, so that G =
Π(A− λI + εΓ)

−1
Π, where

Γ = gxH , g = −w + ŷ

is a rank-one matrix. Hence we can make use of the Sherman-Morrison-Woodbury
formula, see [6], so that with L = (A− λI)

−1
, we obtain

(A− λI + εΓ)
−1

= L− 1

(1 + εxHLγ)
LγxHL.

This allows for an efficient computation of the application of G to a vector. Note also
that G is well-conditioned if λ is not close to another eigenvalue.

We usually observe that the term |λ(∆)|2 is more rapidly converging to zero
than the term ∥V Hx(∆)∥22. This leads to an oscillating behavior close to zero of the
first term, which causes a stepsize restriction and a consequent slowing down of the
convergence close to the stationary point, see Figure 3.2.
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Fig. 3.2. Zoom of the two terms |λ|2 (in red) and ∥V Hx∥22 (in blue) and the functional F (in
black) versus time for the illustrative example of Section 3.6 (with ε = 1)

In this section we have obtained convincing results and a quadratically convergent
method to compute the distance to a singular pencil with common null vector, where
only one of the matrices is perturbed. In the next section we consider again the
common null vector problem but allow perturbations in both matrices.
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4. Distance to singular pencils with common null vectors. We now study
the distance to a pencil with common null vector when both matrices A and E are
perturbed.

4.1. An ODE-based approach for computing d0(A,E). We look for the
closest pair of matrices (A + ∆A,E + ∆E) so that A + ∆A is singular with an
eigenvector x to the eigenvalue zero belonging to ker(E+∆E). In this way we would
get

(A+∆A+ µ(E +∆E))x = 0 for all µ ∈ C.

This problem can be reformulated as

(∆A∗,∆E∗) = arg min
∆A,∆E∈Cn,n

∥(∆A,∆E)∥

subject to (A+∆A)x = 0

and (E +∆E)x = 0 for some x ∈ Cn, x ̸= 0. (4.1)

We then have d0(A,E) = ∥(∆A∗,∆E∗)∥.
In the inner iteration for the perturbation size ε we consider the perturbed matri-

ces A+ ε∆ and E + εΘ with ∥(∆,Θ)∥F = 1. Let us denote by (λ, x, y) an eigentriple
of A+ ε∆ (with λ to be driven to zero) and by (ν, a, b) an eigentriple of E+ εΘ (with
ν to be driven to zero), where the eigenvectors are scaled according to (2.5).

The functional we aim to minimize in order to compute the closest pair with a
common right null vector is given by

Fε(∆,Θ) =
1

2

(
∥λ∥22 + ∥ν∥22 + (1− |xHa|2)

)
. (4.2)

This is phase-invariant with respect to the eigenvectors x and a, which we assume to
be normalized such that ∥x∥ = ∥a∥ = 1.

Similarly, for computing the closest pair with a common left null vector, we simply
replace (A,E) by (AH , EH), x by y and a by b. The computation of the gradient is
obtained similarly to previous cases, and we obtain the expressions

1

2

d

dt
|λ|2 = α εRe⟨yxH , ∆̇⟩, with α =

|λ|
|yHx|

,

1

2

d

dt
|ν|2 = β εRe⟨baH , Θ̇⟩, with β =

|ν|
|bHa|

as before. The other term instead, is given by

1

2

d

dt

(
|xHa|2

)
=

1

2

d

dt

(
xHaaHx

)
= Re

(
xHaaH ẋ

)
+Re

(
aHxxH ȧ)

)
. (4.3)

This yields

1

2

d

dt

(
|xHa|2

)
= εRe

(
|xHa|2xHG∆̇x− (xHa)aHG∆̇x

)
+ εRe

(
|xHa|2aHNΘ̇a− (aHx)xHNΘ̇a

)
= εRe

(⟨
|θ|2 GHxxH − θGHaxH , ∆̇

⟩
+
⟨
|θ|2 NHaaH − θNHxaH , Θ̇

⟩)
,
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where θ = xHa, G is the group inverse of A+ ε∆− λI, and N is the group inverse of
E + εΘ− νI.

In order to minimize the gradient of F we collect the summands involving ∆̇ and
those involving Θ̇. We get

d

dt
Fε(∆,Θ) = εRe⟨(αy − v) xH , ∆̇⟩+ εRe⟨(βb− w) aH , Θ̇⟩,

with v = |θ|2 GHx− θGHa and w = |θ|2 NHa− θNHx.

This leads to the system of ODEs,

∆̇ = − (αy − v) xH + η∆,

Θ̇ = − (βb− w) aH + ηΘ, (4.4)

where

η = Re⟨∆, (αy − v)xH⟩+Re⟨Θ, (βb− w) aH⟩

ensures the norm conservation.

We obtain similar results to those given for the case of fixed E. In particular we
have the following result which characterizes the right hand side of (4.4).

Lemma 4.1. Let Fε(∆,Θ) > 0; let λ be a simple eigenvalue of A+ε∆ (ε is fixed)
and let y, x be the left and right associate eigenvectors scaled according to (2.5). Let ν
be a simple eigenvalue of E+εΘ and let b, a be the left and right associate eigenvectors
scaled according to (2.5). If θ = xHa ̸= 0, then

αy − v ̸= 0 and βb− w ̸= 0. (4.5)

Proof. We prove that u1 = αy − v cannot vanish, the proof for u2 = βb− w uses
the same arguments. (i) First assume that λ ̸= 0. Exploiting the property Gx = 0,
[22], we obtain that xHv = 0. Then, assume by contradiction that u1 = 0. This
would imply xH (αy − v) = 0 and hence αxHy = 0. Since xHy ̸= 0 by the simplicity
of λ, and since α ̸= 0 by the assumption λ ̸= 0, it follows that |αxHy| = |λ|, which
gives a contradiction.

(ii) If λ = 0 then α = 0 and u1 = v with v = |θ|2 GHx− θGHa. By the simplicity
assumption on λ, the group inverse G of A + ε∆ has rank n − 1. This implies that
ker(GH) = Span(y). Hence, u1 = 0 implies that |θ|2 x−θ a = ηy for some η ∈ C, η ̸= 0.
As a consequence 0 = xH(|θ|2 x−θ a) = ηxHy which is a contradiction, since xHy ̸= 0.

4.2. Rank-one property of the common nullspace problem. In the same
way as in Section 3.3, we obtain from (4.4) and Lemma 4.1 the following property.

Theorem 4.2. Consider a regular pencil (A,E). Then the perturbation of mini-
mal Frobenius norm (∆A,∆E) such that A+∆A and E +∆E have a common null
vector, is such that ∆A and ∆E each have rank at most one.

4.3. Numerical examples. We consider here the same matrices of Section 3.6.

Consider first Example 2.11. Applying the ODE method leads to the bound (to
seven digits) d0(A,E) ≤ 0.9438619, which is about the half of d0A(A,E). The closest
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computed singular pencil (with a left common null vector) is

A+ ε∆ ≈

 −1.6212384085 0.3554202002 −0.5130886135
1.0469394294 −0.2266297260 0.5965969015

−0.9441526182 0.2179904923 0.7121049288

 ,

E + εΘ ≈

 −0.0000071285 0.1271034578 −0.4844321165
0.0000052330 0.1505583462 0.4262604190

−0.0000023335 0.9605965130 0.1501681259

 .

Note that the first column of E + εΘ, which should be 0 analytically, vanishes within
the stopping tolerance of the method (10−6). The rank-one matrices ∆ and Θ have
norms: ∥∆∥F ≈ 0.544470 and ∥Θ∥F ≈ 0.838781.

Consider next Example 3.17 in Section 3.6. Applying the ODE method for the
case n = 5 leads to the bound (up to seven digits) d0(A,E) ≤ 0.100177, which is
slightly smaller than d0A(A,E) = 0.107833. The associated computed nearby singular
pencil (having a common right null vector) is

A+ ε∆ ≈
0.9976840743 −1.0009737845 −1.0004216057 −1.0002259729 −0.9997389967

−0.0043828536 0.9981784774 −1.0007637414 −1.0003813706 −0.9996427155
−0.0090482003 −0.0038535312 0.9983442615 −1.0008191138 −0.9995477484
−0.0192177591 −0.0083685364 −0.0036814287 0.9981783278 −0.9994870221
−0.0832976242 −0.0387575470 −0.0183979414 −0.0095660488 0.9986398210

 ,

E + εΘ ≈
0.9978049925 −1.0010539505 −1.0005015794 −1.0002252097 −1.0002971485

−0.0041176936 0.9979859780 −1.0009837884 −1.0004756378 −1.0005660223
−0.0085861355 −0.0041836454 0.9979713164 −1.0009608668 −1.0012320110
−0.0184060466 −0.0089312241 −0.0042987506 0.9980091457 −1.0027097718
−0.1086298824 −0.0003050093 −0.0000845822 0.0000456939 0.9998338096

 .

Note that ∥∆∥F ≈ 0.9709 and ∥Θ∥F ≈ 0.2395.
For n = 10 we find instead d0(A,E) ≤ 0.00320, slightly larger than the computed

bound for d(A,E).

5. Conclusions and further work. We have investigated the distance of a
given regular pencil to a singular one. For the closest singular pencil we have consid-
ered two cases, one where the pencil is singular due to a common left or right null
vector and the general situation where such a situation need not occur. For the first
case we have proved that the distance can always be determined by rank-one pertur-
bations both in A and in E. For the second case we expect instead that in general
the perturbations have full rank.

We have presented and analyzed algorithms based on an inner-outer iteration,
where ordinary differential equations are driven into a stationary state in the inner
iteration and the outer iteration solves for a scalar distance parameter. The algorithms
for computing the closest pencil with a common null vector can exploit the low-rank
structure of the perturbations such that the computational work grows only linearly
with the dimension in the case of a sparse pencil, which makes the algorithms fast
also for large sparse problems.

Possible future work is related to the analysis of problems with structure. A very
brief discussion of some cases of interest is given in the following:
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• Real pencils: As we have noted in Section 2.4, in the case of real pencils
and real perturbations it is sufficient to replace the vector fields by their real
parts, i.e., with their projection on the space of real matrices.

• Hermitian pencils: Similarly, for Hermitian pairs it is sufficient to choose the
values µi ∈ R to guarantee that the solution of (2.11) remains Hermitian (for
Hermitian initial values). The same holds for equations (3.11), (4.4).

• Sparse pencils: In the case where A and E have a prescribed sparsity pattern
which has to be inherited also by the considered perturbations, we have to
replace the vector fields in the ODEs by their orthogonal projections on the
sparsity pattern structure, which is simply obtained by annihilating those
entries which correspond to zero entries in the sparsity patterns of A,E.

Acknowledgments. The authors thank Daniel Kressner for his helpful remarks.

The first author thanks the Italian M.I.U.R. and the INdAM GNCS for financial
support and also the Center of Excellence DEWS.

The research of the third author was carried out in the framework of Math-
eon project D-SE1, Stability analysis of power networks and power network models
supported by Einstein Foundation Berlin.

REFERENCES

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems
in Differential Algebraic Equations. SIAM Publications, Philadelphia, PA, 2nd edition,
1996.

[2] R. Byers, C. He, and V. Mehrmann. Where is the nearest non-regular pencil. Linear Algebra
Appl., 285:81–105, 1998.

[3] S. L. Campbell. Linearization of DAE’s along trajectories. Z. Angew. Math. Phys., 46:70–84,
1995.

[4] E. Eich-Soellner and C. Führer. Numerical Methods in Multibody Systems. B. G. Teubner
Stuttgart, 1998.

[5] F. R. Gantmacher. Theory of Matrices. Chelsea, New York, 1959.
[6] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, 3rd edition, 1996.
[7] N. Guglielmi, D. Kressner, and C. Lubich. Low rank differential equations for hamiltonian

matrix nearness problems. Numer. Math., 129:279–319, 2015.
[8] N. Guglielmi and C. Lubich. Differential equations for roaming pseudospectra: paths to ex-

tremal points and boundary tracking. SIAM J. Numer. Anal., 49:1194–1209, 2011.
[9] N. Guglielmi and C. Lubich. Low-rank dynamics for computing extremal points of real pseu-

dospectra. SIAM J. Matrix Anal. Appl., 34:40–66, 2013.
[10] N. Guglielmi and M. Overton. Fast algorithms for the approximation of the pseudospectral

abscissa and pseudospectral radius of a matrix. SIAM J. Matrix Anal. Appl., 32:1166–1192,
2011.

[11] N. Guglielmi, M. Overton, and G. Stewart. An efficient algorithm for computing the generalized
null space decomposition. SIAM J. Matrix Anal. Appl., 36:38–54, 2015.

[12] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic Systems
by Runge-Kutta Methods. Springer-Verlag, Berlin, Germany, 1989.

[13] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Springer-Verlag, Berlin, Germany, 2nd edition, 1996.

[14] N. J. Higham. Matrix nearness problems and applications. In M. Gover and S. Barnett, editors,
Applications of Matrix Theory, pages 1–27. Oxford University Press, 1989.

[15] T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, New York, N.Y., 1995.
[16] Daniel Kressner and Matthias Voigt. Distance problems for linear dynamical systems. In

Numerical algebra, matrix theory, differential-algebraic equations and control theory, pages
559–583. Springer, Cham, 2015.

[17] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solu-
tion. EMS Publishing House, Zürich, Switzerland, 2006.
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