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Abstract

Traveling is necessary and desirable; yet, it imposes exter-
nal costs on other people. Quantitative methods help finding
a balance. Multi-agent simulations seem an obvious possi-
bility here. A real world traffic simulation consists of many
modules, all requiring different expertise. The paper dis-
cusses how such modules can be coupled to a complete sim-
ulation system, how such a system can be made fast enough
to deal with real-world sizes (several millions of travelers),
and how agent memory can be introduced. A real-world
case study is presented, which says that multi-agent meth-
ods for traffic are mature enough to be used alongside ex-
isting methods. Finally, some outlook into the near future is
given.

1. Introduction

Traffic, transportation, and mobility are important for
most societies. Yet, there needs to be a balance between mo-
bility and the external costs this imposes. In order to help
with finding this balance, increasingly sophisticated tools
are used.

The state of the art is a procedure called the 4-step-
process (e.g. [1]). Somewhat loosely speaking, it computes
traffic flows in a similar way as flows of electrons are com-
puted in electric networks, with the distinction that there are
many classes of travelers, according to their different des-
tinations. A major shortcoming of the standard implemen-
tation of the 4-step-process is that it completely severs the
connection to the individual travelers. In the 4-step-process,
all travelers going to the same destination are assumed to be
equal.

Clearly, this could be improved by keeping track of indi-
viduals, i.e. by making the approach agent-based. It would
consist of two layers [2] (Fig. 1)
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Figure 1. The two layers of a mobility simula-
tion system

e The physical layer (Sec. 2), which simulates the phys-
ical world where agents move, avoid each other, go
around obstacles, generate congestion, etc.

e The mental layer (Sec. 3), in which the agents gener-
ate strategies, such as routes, mode choice, daily activ-
ity plans, etc.

In addition, one needs a feedback mechanism (Sec. 4),
which mirrors the fact that travelers in the real world learn
from one day to the next; and that feedback mechanism
needs initial conditions (Sec. 5). The paper will continue
with a description of a specific case study, run for the morn-
ing traffic of all of Switzerland (1 million agents; Sec. 6),
and an outlook on the near future (Sec. 7). A summary con-
cludes the paper.

2. Thephysical layer: Mobility simulation

The simulation of the physical system, i.e. the real-world
traffic system, can be started with relatively standard com-



putational methods, such as molecular dynamics or cellular
automata.

An important element is that, at a certain level of ab-
straction, traffic moves on a network rather than on flat
2d (or 3d) space. This implies that a traffic simulation con-
sists of dynamics on the links (roads), and dynamics on the
nodes (intersections). All these are far from simple, as can
be imagined when thinking of the infamous “traffic jam out
of nowhere” (which is hotly debated in the literature), or of
complicated adaptive traffic signal schemes.

For a large metropolitan area, several millions of parti-
cles (travelers) need to be simulated simultaneously. This
results in a significant computational challenge: 10° par-
ticles are feasible in state-of-the-art large scale molecular
dynamics codes, but for traffic one needs to add computer
time for the internal intelligence of the particles. A typical
traffic simulation can compute about 10% vehicle-seconds
during one second of a typical 1-GHz CPU. This means
that a simulation with 10 million travelers progresses 10
times slower than real time, which is unacceptably slow for
real-world applications. Fortunately, with parallel comput-
ing, near-linear speed-up can be obtained, and on a cluster
with 100 CPUs and Myrinet communication such a simula-
tion runs 10 times faster than real time [3].

In addition, the traffic dynamics can be significantly sim-
plified without making the model too unrealistic [4], result-
ing in another factor of 10. With this, it is for example pos-
sible to simulate a whole day of all car traffic of the whole
country of Switzerland (approx 7 mio inhabitants) in less
than 5 minutes [3].

This simplified approach leaves many aspects unre-
solved, for example: inclusion of other modes of trans-
portation, in particular by coupling different simula-
tions instead of having to re-implement everything into
one common computational code; complicated adap-
tive signals or message signs; heterogeneous vehicle fleets;
complicated intersection/weaving design; etc. Neverthe-
less, it allows us to move on to the mental or strategy layer
within a consistent, agent-based framework, and improve-
ments to the mobility simulation can be achieved over
time.

3. Strategy generation

The next layer, quite obviously, concerns the agents’
strategies. The currently typical approach to this looks at
daily plans of travelers, and decomposes the problem into
two parts: activity generation and mode/route choice. In the
activity generation module, for each agent in the simula-
tion a complete 24-hour activity plan is generated, includ-
ing locations and times of activities. Typical examples of
activities are: “home”, work, shop, leisure, drop off child at
kindergarten, etc. In the mode/route choice module, activ-

ities at different locations are connected by trips, including
the choice of the mode of transportation (e.g. bicycle, walk-
ing, car, etc.), and specific routes. An example XML de-
scription of the result from these two modules is in Fig. 2.

A plausible solution for route choice is simple Dijkstra
shortest path algorithm [5], using travel time as general-
ized costs on the links. If one makes those link travel times
dependent on the time-of-day, then a time-dependent algo-
rithm is capable of routing vehicles around congestion if
needed [6]. Such an algorithm, in particular when used to-
gether with a stochastic simulation (from which one obtains
the link travel times) produces sets of routes which contain
approximately 70% of the routes that are used by real-world
people, and pieces of most of the remaining routes [7]. Al-
though there is certainly room for improvement, this is not
the most pressing issue at this stage.

Public transit could in principle be routed with the al-
gorithms that are available on many public transit www
servers these days, which often include even the walking
parts to or from a street address. To our knowledge, this ap-
proach has not yet been attempted in the area of multi-agent
traffic simulation.

Activity generation is a very active field of research, and
many methods are tested. The maybe most mature method
is discrete choice theory [8], which is based on micro-
economic utility maximization, and is also used in market-
ing research. It couples agents’ decisions to attributes of
the person and to attributes of the alternatives. For exam-
ple, the utility of using the bus to work could be Uy,s =
—aTyys —¥ Cpus + 1t G, where Ty, is the time on the bus,
Chpus is the monetary cost of taking the bus, G is the gen-
der (e.g. 1 when male and 0 when female), and o, ~, and p
are weight factors that need to be estimated, e.g. by a maxi-
mum likelihood procedure. Similarly, the utility of using the
car to work could be Uy, = —a' Tegr — ¥ Cear + 1/ G
Finally, the decision would be made according to probabil-
ity

eB Ubus

Pbus = eﬁ Ubus —+ eﬂ Ucar *

For the complete activity generation problem, actual imple-
mentations proceed hierarchically, by first making a deci-
sion about the overall pattern, than about locations, and then
about times [9]. Certain mathematical requirements ensure
that the method is consistent, i.e. that the higher level deci-
sion is based on correct assumptions about the lower levels.
For example, one should have some ideas about shop loca-
tions and travel times before making a decision about a cer-
tain shopping trip.

Alternative approaches use Monte Carlo chains [10],
generic rules [11], genetic algorithms [12], or mental maps
[13]. Those methods are maybe more intuitive, but also
more difficult to calibrate. Nevertheless, there are aspects of
human strategies that the current versions of discrete choice



<person id="241" inconme="50000">
<pl an score="123">
<act type="h" end_tinme="07:00" x="7150"
y="2790" |ink="5834" />
<l eg node="car" dp_tinme="07:00" trav_tinme="00:25">
<route>1932 1933 1934 1947</rout e>
</l eg>
<act type="w' dur="09: 00" x="0650"
y="3980" |ink="5844" />
<l eg node="car" dp_time="16:25" trav_tine="00:14">
<rout e>1934 1933</rout e>
</l eg>
<act type="h" x="7150" y="2790" |ink="5834" />
</ pl an>
</ per son>

Figure 2. Agent plan, expressed in XML

theory do not include, for example the memory aspects of
mental maps. It is unclear which methods for activity gen-
eration will be most useful for what types of investigations.

One does not have to stop at activity generation, but can
go to strategy levels even further removed from the traffic
itself. Examples are residential choice, life-style decisions,
etc. [14].

With regard to computational performance, our experi-
ence is that, even for large networks, route calculations are
relatively fast, and one can generate several hundred routes
per second [6], implying a running time of less than three
hours for a population of a million. With activity genera-
tion, we have less practical experience; treating several hun-
dred agents per second seems to be possible in some cases,
but more realistic models need more computer time. Fortu-
nately, basic strategy generation modules are easy to par-
allelize, since agents do not interact in current implemen-
tations. With 100 CPUs, one can afford about 1 second of
computer time per agent per iteration for a strategy genera-
tion computation.

4. Learning and feedback
4.1. Introduction

Travelers in the real world do similar things over and
over again. For a simulation of these processes this implies
that a period is selected (e.g. a day, or a full week), and that
period is run over and over again, as follows:

e There is some initial condition on which the mobility
simulation is run.

e The mental modules are run and compute strategies
(plans) based on the result of the mobility simulation.

e The mobility simulation is run again, based on the new
plans.

e Etc., until some stopping criterion is fulfilled.

This models period-to-period replanning. In reality, peo-
ple can revise their plans at all points in time, implying

within-period replanning. In terms of modeling, within-
period replanning implies that agents are able to revise their
plans while the mobility simulation is running.

4.2. Thecurrently typical approach

The currently typical approach in the traffic community
is that it is not the agents that learn, but the system. This is
typically achieved by the mobility simulation feeding back
system performance information rather than agent informa-
tion. For example, the mobility simulation outputs time-
averaged link travel times. From this, the router can com-
pute time-dependent shortest paths (see Sec. 3), and the
activity generator can compute point-to-point travel times.
The iterations proceed by giving some or all agents new
plans. Importantly, those agents completely forget their pre-
vious plans.

This approach works because the assumption is that the
system goes to a Nash Equilibrium (NE). As is well known,
at a NE, no agent can improve by unilaterally switching
strategies; translated into our system, this means that a NE
is reached when all agents always obtain the same strategy
as before from the mental modules from one iteration to the
next. No agent memory is needed for this approach.

Systems with within-day replanning use a simi-
lar approach: If, say, the routes to a certain destination
are changed because of congestion, then all travel-
ers to that destination from then on need to follow the new
routes [15, 16, 17]. In implementations, one uses short-
est path trees to each possible destination, which are rela-
tively cheap to compute, and which contain, for each inter-
section, the next link that needs to be taken to a given des-
tination. Different user classes are possible, but if one in-
troduces as many user classes as there are agents, this
approach fails because a full shortest path tree needs con-
siderably more memory than just a route. The same
argument implies that destinations need to be spatially ag-
gregated, because again shortest path trees only pay off if
many agents travel to the same destination.

In addition, there is a tendency to pack routing and
“network loading” (the equivalent of the mobility simula-
tion) into one package, called dynamic traffic assignment
(DTA). The input to this is an OD matrix, while the output
is link performance information [15, 16, 17]. This makes
truly agent-based approaches impossible since the anony-
mous OD matrix severs the connection to the agent.

In consequence, in the literature one finds approaches us-
ing mental maps that give OD matrices rather than agent
plans to the mobility simulation, and in consequence ob-
tain average link travel times from the mobility simulation
rather than individual agent information [14, 18]. This does
not seem to be a good approach in the long run.



The reason for this is probably historical: Step 4 of the
4-step-process (mentioned in the introduction) has, under
some circumstances, a number of provable mathematical
properties, including some uniqueness properties of the so-
lution [19]. This makes different implementations easy to
compare, which is an important advantage. However, once
traffic assignment is made time-dependent (Dynamic Traf-
fic Assignment, DTA), those mathematical properties break
down [20], and this is no longer an argument.

4.3. A fully agent-based approach

Two shortcomings of the approach outlined in Sec. 4.2
are: (i) The feedback is based on aggregated system infor-
mation, not on specific agent information. For example, the
spatial aggregation that is typically used with respect to des-
tinations does not permit to, say, recognize the difference
between a 10 meter and a 500 meter walk to the bus stop.
Nevertheless, this will cause considerable differences in the
real world. (ii) If one is not interested in the Nash Equilib-
rium, be it because one is interested in the transients or be-
cause one does not believe that humans indeed go to a Nash
Equilibrium, then the approach fails because there is no ac-
cess to human behavior. For example, the building of an in-
dividual mental map is difficult, because the mobility simu-
lation only feeds back aggregate link travel times, not indi-
vidual agent performance.

An alternative is to revise the whole approach so that it
becomes entirely agent-based. This is essentially a straight-
forward operation, except that it implies the following
changes in most existing packages:

e Agent information needs to be maintained throughout
the simulation system. Instead of having OD matrices
at some intermediate step, there need to be individual
agents with individual origins and destinations, plus
departure time.

e The DTA needs to be separated into its two con-
stituents “routing” and “network loading”. The routing
needs to read the individual agents that have individ-
ual origins and destinations, and add routes. The net-
work loading (now called mobility simulation) needs
to read all those agent plans, and execute them simul-
taneously.

By doing this, the routing module becomes a strat-
egy module, completely analogous to activity genera-
tion or residential choice.

o Finally, the mobility simulation needs to output agent
performance information instead of system perfor-
mance information. This is, in our view, most eas-
ily achieved by emitting “events”, e.g. “agent arrives

at/leaves an activity”, “agent enters/exits link”, etc.

By this, all data aggregation can be done by each in-
dividual module. For example, a standard router
would aggregate link enter/exit times into the typ-
ical aggregated link travel times, while a mental
map would concentrate on all information by a spe-
cific agent or subset of agents.

One useful module of such an approach is what we call
the agent database. There, each agent remembers several
plans, plus performance information related to those plans.
In some fraction of the iterations, the agent receives and ex-
ecutes a new plan (“exploration”), in all other iterations, it
choses between the known plans according to their perfor-
mance (“exploitation”). This is similar to any kind of classi-
fier system or genetic algorithm, with the only caveat that in
our simulations not too many agent can simultaneously ex-
plore since then the performance information does not re-
flect what they would encounter later when all agents ex-
ploit.

4.4, Computational aspects

In order to execute iterations and feedback, all the differ-
ent modules need to be coupled. As long as one uses period-
to-period replanning only, this is straightforward. Let us
assume a simple case with an activity generator, a router,
and a mobility simulation. Starting from some initial condi-
tion (see below), the mobility simulation runs for the first
time, and records agent performance information. Then,
the activity generator reads that performance information,
and goes through all agents in order to adapt their activity
plans. Next, the router reads the same performance infor-
mation, and then goes through all agents in order to adapt
their routes, possibly reacting to different locations gener-
ated by the activity generator. The resulting plans are again
executed by the mobility simulation, etc.

A big advantage of this approach is that modules can
run stand-alone, and can be coupled via files. Albeit old-
fashioned, this has the advantage that the expertise of dif-
ferent research groups can be combined, which is close to
impossible with all other current approaches (see below).
A little bit of better technology can be introduced by us-
ing XML files, which lend themselves well to agent plans
(Fig. 2). The file-based approach even leaves the paralleliza-
tion of the individual modules intact.

Once within-day replanning is desired, things get con-
siderably more complicated [21]. The only well-established
technology for this seem to be subroutine calls. For such an
implementation, first the mobility simulation is started. If
an agent wants to re-plan, it interrupts the mobility simu-
lation and generates the new plan, after which the mobility
simulation proceeds. A requisite of this approach is that all
modules are written in the same programming language. For
a parallel implementation, the following additional issues



arise: (i) Because of load balancing reasons, agents cannot
re-plan whenever they want, but need to be tied to regu-
lar intervals. Otherwise, in any given time step some CPU
will contain a replanning agent, and all other CPUs wait.
(if) Compared to the parallel implementation of the mobil-
ity simulation alone, considerably more information needs
to be exchanged between the CPUs, leading to bandwidth
problems.

A third technique, promising to resolve these issues, is
to use messages to exchange information between agents.
A possible approach to this is to separate the mobility sim-
ulation from the mental simulation, somewhat analogous to
robosoccer where the robots have some low-level intelli-
gence of their own, but all more complicated computations
are done on external computers which are connected to the
robots via wireless. In our situation, the real-world robots
would be replaced by another simulation, i.e. the simula-
tion of the physical system. Reports of such an approach are
submitted separately for this conference; the overall sum-
mary is that (1) such an approach is rather experimental,
and (2) at this point it is difficult to use it for large scale
simulations, because once more the bandwidth of the com-
puter network is not sufficient. In particular, it is difficult
to use the higher performance Myrinet with that message-
based approach, because Myrinet does not use TCP/IP.

5. Initial conditions

The iterations somehow need to be started. In particu-
lar, the population of agents needs to be generated. This can
be achieved via a synthetic population generation mod-
ule, which essentially takes census information as input,
and generates synthetic individuals as output. Individuals
come with attributes such as age, gender, income, house-
hold membership, car ownership, etc.

Similarly, initial daily activity plans can often be ob-
tained from the micro-census or from specific surveys.
From such data, activity chains for a small fraction of the
population are known, and one can generate plausible activ-
ity chains for the whole population by assuming that people
with similar characteristics will have similar activity chains.

Initial routes can be generated by just giving everybody
the route that would be fastest on an empty network, plus
the fastest public transit option as an alternative.

If one is interested in the steady-state behavior (i.e. what
happens to the Nash Equilibrium if the system is stochas-
tic and individual agents no longer necessarily find the op-
timum, but just some “good” solution), then initial condi-
tions do not matter very much, except that bad initial con-
ditions lead to long transients and therefore to long compu-
tational running times. If one is interested in the transient
learning process itself, the initial conditions matter much
more.
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Figure 3. Switzerland at 8:00 AM. TOP: The
full network. Each car is represented by a dot,
which is not visible at this scale. BOTTOM:
Detail.

Note that even with initial conditions coming from a
census-based synthetic population, it is possible to include
land use modules (e.g. residential choice) into the compu-
tational iterations in order to predict the development of ur-
ban areas many years into the future.

6. A real world case study

In this section, it will be shown that the concepts out-
lined above can indeed be put into practice, and that it is
already now possible to use them alongside the existing
methods. That study was run for the area of all of Switzer-
land, represented by a road network with 28 622 links and
10564 nodes (Fig. 3). The goal was to compute the morn-
ing rush hour traffic from standard hourly OD matrices, as
they are used for conventional models.

Our starting point for demand generation for the full
Switzerland scenario is a 24-hour origin-destination matrix
from the Swiss regional planning authority (Bundesamt fiir
Raumentwicklung). That matrix is converted into 24 one-
hour matrices using a three step heuristic. The first step em-
ploys departure time probabilities by population size of ori-
gin zone, population size of destination zone and network
distance. These are calculated using the 1994 Swiss Na-
tional Travel Survey [22]. The resulting 24 initial matri-



ces are then corrected (calibrated) against available hourly
counts using the OD-matrix estimation module of VISUM
[23], which is a state-of-the-art traditional assignment pack-
age. Hourly counts are available from the counting stations
on the national motorway system [24]. Finally, the hourly
matrices are rescaled so that the totals over 24 hours match
the original 24h matrix. Those resulting hourly matrices are
then used as input to a VISUM assignment, which is a vari-
ant of the traditional assignment models discussed earlier.
These assignment results are the base method against which
our multi-agent simulation will be compared.

The hourly matrices are also used as input to our multi-
agent simulation. For this, they are immediately disaggre-
gated into individual trips, or more correctly into individual
agents with one trip each. That is, we generate individual
trips such that summing up the trips would again result in
the given OD matrix. The starting time for each trip is ran-
domly selected between the starting and the ending time of
the validity of the OD matrix.

The OD matrices assume traffic analysis zones (TAZS)
while in our simulations trips start on links. We convert traf-
fic analysis zones to links by the following heuristic:

e The geographic location of the zone is found via the
geographical coordinate of its centroid given by the
data base.

e A circle with radius 3 km is drawn around the centroid.

e Each link starting within this circle is now a possible
starting link for the trips. One of these links is ran-
domly selected and the trip start or end is assigned.

This leads to a list of approximately 5 million trips, or about
1 million trips between 6am and 9am. The resulting plans
files look like Fig. 2, except that the leg and route informa-
tion is not yet there. Since the origin-destination matrices
are given on an hourly basis, these trips reflect the daily dy-
namics. Intra-zonal trips are not included in those matrices,
as by tradition.

The router then computes routes based on free speed
travel times for all agents; the resulting plans files now look
exactly like Fig. 2. Those complete plans are fed into the
mobility simulation, which executes all the plans simulta-
neously, and generates events information. The particular
simulation used was a queue simulation [4, 3], which es-
sentially moves vehicles forward along a link according to
free speed, and adds them to a queue at the end of the link.
The queue is served according to the so-called capacity of
the link, which comes from the network files. Vehicles can
only move if there is space on the following link, which is
the main difference to standard queuing theory.

Based on the events, the agent database updates the
scores for each individual plan, while the router computes
time-dependent link travel times. Then, 10% of the agents
obtain new plans (= routes), which are added as plans to
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Figure 4. (a) Simulation (y-axis) vs. field (x-
axis) data for the 50th iteration. (b) VISUM as-
signment vs. field data. After [26].

Simulation | VISUM
Mean Abs. Bias: | —64.60 +99.02
Mean Rel. Bias: —5.26% +16.26%
Mean Abs. Error: | 263.21 308.83
Mean Rel. Error: 25.38% 30.42%

Table 1. Bias and Error of Simulation and VI-
SUM Results Compared to Field Data

each agent’s internal memory. The mobility simulation runs
again, where those 10% of agents use the new plans, while
the other 90% use their previous plans.

This is iterated many times. When, in later iterations,
agents have a choice between different plans (routes), and
they were not selected for the exploration of a completely
new route, then they choose between existing routes with a
probability of exp[3 U;], where U; is the utility of the ith
option, computed as the negative of the travel time. For 3,
1/360 sec is used, which is plausible from estimations of
discrete choice models [25].

Fig. 4 shows a comparison between the simulation out-
put corresponding to Fig. 3 and field data taken at counting
stations throughout Switzerland [24]. The dotted lines out-
line a region where the simulation data falls within 50%
and 200% of the field data. We consider this an accept-
able region at this stage since results from traditional as-
signment models that we are aware of are no better than
this (Fig. 4(b); see also [27]).

Fig. 4(b) shows a comparison between the traf-
fic volumes obtained by IVT using VISUM assignment
against the same field data. Visually one would con-
clude that the simulation results are at least as good
as the VISUM assignment results. Tab. 1 confirms this
quantitatively. Mean absolute bias iS (gsim — qield).
mean absolute error iS (|qsim — qrietal). mean rela-



tive bias is ((gsim — qrield)/qriela), Mean relative error
iS (|qsim — Qfietd|/drieia), Where (.) means that the val-
ues are averaged over all links where field results are
available.

For example, the “mean relative bias” means that our
multi-agent simulation underestimates flows by about 5%,
whereas the VISUM assignment overestimates them by
16%. The average relative error between the field measure-
ment and the simulation is 25%, between the VISUM as-
signment and reality 30%. These numbers state that the sim-
ulation result is better than the VISUM assignment result.

What makes our result even stronger is the following as-
pect: As explained earlier, the OD matrices were actually
modified by a VISUM module to make the assignment re-
sult match the counts data as well as possible. These OD
matrices were then fed into the simulation, without further
adaptation. It is surprising that even under these conditions,
which seem rather advantageous for the VISUM assign-
ment, the simulation generates a smaller mean error. More
details in this study can be found in [26].

It is admittedly rather difficult to judge the quality of
our multi-agent simulation for traffic based on these re-
sults. However, it seems that we consistently obtain results
in the same error range: with a simulation study in Port-
land/Oregon we obtained a mean relative bias of —20% and
amean relative error of 36% (which was slightly worse than
the traditional assignment result) [27]; with a study in the
Zurich area but now also generating the time structure of
the agents” activities self-consistently, we obtained +9% for
the bias and 30% for the error (no comparison to assignment
available) [28]. In our view, this allows the tentative conclu-
sion that our multi-agent traffic simulation is already about
as good as existing assignment models. In addition, there
are still many years of fine-tuning ahead of us; in addition,
the multi-agent approach allows the inclusion of sensitivi-
ties to many aspects of interest that assignment has difficul-
ties picking up at all (e.g. sensitivity to exact locations of
public transit stops; changes in the peak period time struc-
ture; reactions to ITS devices; etc.).

7. Thenear future

As pointed out above, we have already included time re-
planning in addition to route replanning. That is, agents can
change how long they want to stay at home and how long
they want to work. We will start with car traffic only, then
add public transit, and eventually add pedestrians and bicy-
cles. The prototypes for all this exist already, but need to be
integrated into the system.

On the strategy side, as a next step, so-called secondary
activities (e.g. shopping, leisure) will be added. This in-
cludes finding locations for them, and (once more) gener-

ating the daily time schedules. Again, prototypes exist, but
need to be integrated.

It would also be interesting to make residences and/or
workplaces mobile. For this, other agent-based projects ex-
ist, most notably ILUTE [14]. It seems straightforward to
couple ILUTE to our own simulation package so that a fully
agent-based package for the integrated modeling of trans-
port and land use will become available.

Finally, there is the usual issue of calibration and valida-
tion. Calibrating models with emergent properties is a dif-
ficult subject, which will need more research. In terms of
validation, i.e. comparison of simulation results with field
measurements, the main problem is consistent data avail-
ability, i.e. data for initial conditions (census, OD matrix),
boundary conditions (high resolution road network), and
field measurements (e.g. link volumes or link travel times,
registered to the same network). This needs a longterm col-
laboration between academic groups and regional adminis-
trations, a feat that is not always easy to achieve.

8. Summary

This paper gives an overview over the state-of-the-art in
multi-agent simulation of traffic. A multi-agent simulation
of traffic consists of the physical layer (mobility simula-
tion), which simulates the physical system, and the mental
layer. The latter consists of several modules, most impor-
tantly activity generation, and mode/route choice. A con-
siderable challenge is the size of the problem, consisting of
several millions of agents. Within the mobility simulation,
they can be solved using relatively standard methods from
particle simulations including parallel computing. For the
mental modules, parallel computing is straightforward as
long as agents do not interact on that level, as is the case for
simple versions as are currently used. A result is that about
one second of computer time per agent can be afforded to
compute complete agent strategies — that implies relatively
simple models when compared to some other multi-agent
simulations. Agents learn by living through the same pe-
riod (e.g. day, week) over and over again.

Implementation and interoperability issues get consider-
ably simplified when agents are restricted to only be able
to revise their strategies between iterations — then simple
files, e.g. XML, are sufficient to couple modules, which can
in consequence be exchanged as stand-alone executables.
When within-day replanning is to be included, the situation
becomes considerably more complicated. Adding replan-
ning (i.e. strategy computation) via subroutine calls from
the mobility simulation is possible, but (a) restricts one to
using the same programming language for all modules, and
(b) causes problems with parallel implementations because
of load balancing and message bandwidth limitations. An
approach completely based on messages promises to re-



move these problems, but is as of now experimental and
also bandwidth-limited.

Finally, a case study is presented, which demonstrates
that despite their young age, multi-agent simulations al-
ready seem to be at par with the established quantitative
methods, called static assignment. In the near future, con-
siderably more modules will be integrated into the system,
giving it power far beyond what is currently existing.
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