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Abstract

Starting from an existing software engineering method, the thesis looks at ways
of eliminating what have been recognized as the method’s deficiencies by mod-
ifying and extending it.

Our aim in this thesis has been to show that it is feasible to integrate parts
of requirements engineering and formal specification into FusionB , and that it
is possible to incorporate the requirements description and the formal descrip-
tion into an existing object-oriented development method. New model and
modelling elements are designed and integrated into the notation of FusionB .

The first extension to Fusion/UML deals with gathering, classifying and formal-
izing requirements for the system that is to be built. Formalizing requirements
in a logical language at this early stage of analysis also has an impact on the
other models of the method.

The two most important models in Fusion/UML for describing the system state
are the Operation Model and Object Interaction Model. These two models are
the ones that focus on the structure of the system. No other model in the
method does this. The Operation Model describes the change state of the
system which is triggered by the environment in a formal way. The Object
Interaction Model describes the change of state of the system by modelling the
method flow between the objects of the system. It provides a consistency for
the developed design: systematic translation of the two main results of the pro-
cess, the Operation Model and the Object Interaction Model, into the formal
description using Object-Z. We have shown that a mechanical and systematic
translation is possible. Here, we have demonstrated a specific aspect of for-
malization. It is a pragmatic approach that requires more theoretical work in
order to be generalized and to enable a more rigorous verification of system
properties.

The extensions made to the method have been evaluated in two case studies.

i



ii Abstract



Table of Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 5

I The Foundation 7

2 Software Engineering and Modelling 11

2.1 A Historical Look at Software Engineering . . . . . . . . . . . . . 12

2.2 Software Development Process . . . . . . . . . . . . . . . . . . . 13

2.3 The Role of Methods in Software Engineering . . . . . . . . . . . 14

3 Requirements Engineering 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 What is Requirements Engineering? . . . . . . . . . . . . . . . . 17

3.2.1 Requirements Artefacts . . . . . . . . . . . . . . . . . . . 19

3.3 The Role of Requirements Engineering . . . . . . . . . . . . . . 20

3.4 What are Requirements? . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Types of Requirements . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Functional Requirements . . . . . . . . . . . . . . . . . . 22

3.4.3 Nonfunctional Requirements . . . . . . . . . . . . . . . . 23

3.5 The Requirements Engineering Process . . . . . . . . . . . . . . . 25

3.5.1 Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Analysis and Negotiation . . . . . . . . . . . . . . . . . . 26

3.6 Traceability of Requirements . . . . . . . . . . . . . . . . . . . . 27

3.6.1 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



iv TABLE OF CONTENTS

4 Formal Methods 29

4.1 A Historical Look at Formal Specification . . . . . . . . . . . . . 30

4.2 Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Object-Z . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

II Fusion/UML So Far 37

5 Analysis 45

5.1 The Process and its Models . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Analysis Models and their Notation . . . . . . . . . . . . 46

5.1.2 Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.3 The Class Model . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.4 Associations and Links . . . . . . . . . . . . . . . . . . . . 49

5.1.5 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.6 Use Case Model . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.7 Timeline Model . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.8 System Class Model . . . . . . . . . . . . . . . . . . . . . 60

5.1.9 Life Cycle Model . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.10 Operation Model . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Design 69

6.1 The Process and its Models . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Object Interaction Model . . . . . . . . . . . . . . . . . . 70

6.1.2 The Reference Model . . . . . . . . . . . . . . . . . . . . . 72

6.1.3 Class Interface Model . . . . . . . . . . . . . . . . . . . . 73

6.1.4 Inheritance Graph . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . 75

III The Extensions of Fusion/UML 77

7 Enhancement – Determining Requirements 81

7.1 The Process of Determining Requirements . . . . . . . . . . . . 82

7.2 Extracting Requirements . . . . . . . . . . . . . . . . . . . . . . . 83



TABLE OF CONTENTS v

7.2.1 Defining Domains . . . . . . . . . . . . . . . . . . . . . . 84

7.2.2 Extracting Requirements . . . . . . . . . . . . . . . . . . 86

7.2.3 Classify Extracted Requirements and the Non-responsible
Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Describing Requirements in a More Formal Way . . . . . . . . . 90

7.4 Linking Requirements to Models of the Method . . . . . . . . . . 91

7.5 Requirements Description . . . . . . . . . . . . . . . . . . . . . . 92

8 Enhancement — Towards Formal Specification 95

8.1 The Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Schematic Translation into Object-Z . . . . . . . . . . . . . . . . 98

8.2.1 Operation Model . . . . . . . . . . . . . . . . . . . . . . . 98

8.2.2 Object Interaction Model . . . . . . . . . . . . . . . . . . 99

8.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2.4 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Enrichment of the Derived Object-Z Classes . . . . . . . . . . . . 108

8.3.1 The Init State Schema . . . . . . . . . . . . . . . . . . . . 109

8.3.2 Class Invariants . . . . . . . . . . . . . . . . . . . . . . . . 110

9 FusionB – The Extended Fusion/UML Method 111

9.1 FusionB Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.1.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 Describing All Models and Their Role Within the Method . . . . 115

9.2.1 Requirements Description . . . . . . . . . . . . . . . . . . 115

9.2.2 Use Case Model . . . . . . . . . . . . . . . . . . . . . . . 116

9.2.3 Domain Class Model . . . . . . . . . . . . . . . . . . . . . 116

9.2.4 Timeline Model . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2.5 Life Cycle Model . . . . . . . . . . . . . . . . . . . . . . . 117

9.2.6 System Class Model . . . . . . . . . . . . . . . . . . . . . 118

9.2.7 Operation Model . . . . . . . . . . . . . . . . . . . . . . . 118

9.2.8 Object Interaction Model . . . . . . . . . . . . . . . . . . 119

9.2.9 Formal Description . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Modification of Some Modelling Elements . . . . . . . . . . . . . 119

9.3.1 Modifying the Actor Symbols of the Use Case Model . . . 119



vi TABLE OF CONTENTS

9.3.2 Modifying the Modelling Elements of the Domain Class
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.4 Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . 121

10 Fusion and its Derivations 123

10.1 Fusion and FusionB . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.1.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.2 Criteria for Method Comparison . . . . . . . . . . . . . . . . . . 126

10.2.1 Fondue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.2.2 Results of the Comparison . . . . . . . . . . . . . . . . . . 127

11 Conclusion 129

11.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A The Case Study: DAISY-Soft 133

A.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Requirements Definition . . . . . . . . . . . . . . . . . . . . . . . 135

A.3 Use Case Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Timeline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.5 Domain Class Model . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.6 Life Cycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.7 System Class Model . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.8 The Operation Model . . . . . . . . . . . . . . . . . . . . . . . . 145

A.8.1 Translating Operationschemata to an Object-Z Class . . . 148

A.9 Object Interaction Model . . . . . . . . . . . . . . . . . . . . . . 152

A.9.1 Translating Objectinteraction Model to Object-Z Classes 154

A.10 Formal Description . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.11 Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B Syntax Description of the FusionB Models 169

B.1 Graphical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 Notes on the Structure of Syntactic Meta Languagey . . . . . . . 173

B.3 Terminal Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.4 Requirements Description . . . . . . . . . . . . . . . . . . . . . . 175

B.5 Life-CycleModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.6 Operation schema . . . . . . . . . . . . . . . . . . . . . . . . . . 178



TABLE OF CONTENTS vii

B.7 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.8 Classinterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C Requirements Artefacts for a FusionB Tool 185

Bibliography 187



viii TABLE OF CONTENTS



List of Figures

4.1 Fusion/UMl Analysis and Design Models . . . . . . . . . . . . . . 43

5.1 Structure of the Data Dictionary . . . . . . . . . . . . . . . . . . 46

5.2 An example of a Class Model: Daisy-Soft . . . . . . . . . . . . . 49

5.3 Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Algebraic specification of the type Stack . . . . . . . . . . . . . . 54

5.5 Algebraic specification of type Queue . . . . . . . . . . . . . . . . 55

5.6 Implementation class: Stack or Queue . . . . . . . . . . . . . . . 56

5.7 Gen/Spec Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Use case – Gen/Spec relation . . . . . . . . . . . . . . . . . . . . 58

5.9 Daisy Soft: Use Case Model . . . . . . . . . . . . . . . . . . . . . 59

5.10 A System Class Model . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Object interaction graph . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Example of a reference graph . . . . . . . . . . . . . . . . . . . . 73

6.3 Example of an Inheritance graph . . . . . . . . . . . . . . . . . . 74

7.1 The Requirements Determination process . . . . . . . . . . . . . 83

7.2 Application domain . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Static and dynamic domains in the application domain . . . . . . 84

7.4 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Compartment extension of a class for linking requirements . . . . 92

7.6 Example: Linking requirements in a Class . . . . . . . . . . . . . 92

7.7 A requirement template . . . . . . . . . . . . . . . . . . . . . . . 92

7.8 Example of a domain requirement . . . . . . . . . . . . . . . . . 93

7.9 Example of a system requirement . . . . . . . . . . . . . . . . . . 93

7.10 A non-responsible template . . . . . . . . . . . . . . . . . . . . . 93

7.11 Example of a non-responsible statement . . . . . . . . . . . . . . 94

ix



x LIST OF FIGURES

8.1 System Class Model for savings account . . . . . . . . . . . . . . 96

8.2 Object interaction for deposit . . . . . . . . . . . . . . . . . . . . 97

8.3 Object interaction for withdraw . . . . . . . . . . . . . . . . . . . 98

8.4 Method calls and parameterization . . . . . . . . . . . . . . . . . 100

8.5 Conditional control flow . . . . . . . . . . . . . . . . . . . . . . . 102

8.6 Sequences of method calls . . . . . . . . . . . . . . . . . . . . . . 103

8.7 Delegation of method calls . . . . . . . . . . . . . . . . . . . . . . 104

8.8 Method calls and collections . . . . . . . . . . . . . . . . . . . . . 104

9.1 The FusionB Process . . . . . . . . . . . . . . . . . . . . . . . . 112

9.2 An Actor with Input only . . . . . . . . . . . . . . . . . . . . . . 120

9.3 An Actor with Input/Output . . . . . . . . . . . . . . . . . . . . 120

9.4 A Human Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.5 Modification of the Class . . . . . . . . . . . . . . . . . . . . . . 121

10.1 Influences on the Fusion Method . . . . . . . . . . . . . . . . . . 124

10.2 Fondue Specification Models . . . . . . . . . . . . . . . . . . . . . 127

A.1 Daisy Soft: Use Case Model . . . . . . . . . . . . . . . . . . . . . 140

A.2 Daisy Soft: Timeline Model . . . . . . . . . . . . . . . . . . . . . 141

A.3 Daisy Soft: Domain Class Model . . . . . . . . . . . . . . . . . . 142

A.4 Daisy Soft: System Class Model . . . . . . . . . . . . . . . . . . 144

A.5 Object interaction for establish train . . . . . . . . . . . . . . . . 152

A.6 Object interaction for arrive at station . . . . . . . . . . . . . . . 152

A.7 Object interaction for leave station . . . . . . . . . . . . . . . . . 152

A.8 Object interaction for train stopped . . . . . . . . . . . . . . . . 153

A.9 Object interaction for continue journey . . . . . . . . . . . . . . 153

A.10 Object interaction for remove train . . . . . . . . . . . . . . . . . 153

A.11 Object interaction for deliver new info . . . . . . . . . . . . . . . 154

B.1 Class Model Notation . . . . . . . . . . . . . . . . . . . . . . . . 170

B.2 Use Case Model Notation . . . . . . . . . . . . . . . . . . . . . . 171

B.3 Object interaction graph Notation . . . . . . . . . . . . . . . . . 172



Chapter 1

Introduction

To obtain a more precise grasp of what software is, we must first view it as
the non-material product of human creative effort. Software is a well-defined
abstract : only by reducing the requirements of the real world and by tailoring
the functionality of the computer system are tangible models produced. The
construction of software is a process of continuous model building. Its aim is
to arrive at an interpretation of the resulting models. This interpretation can
be carried out by tools or persons, by either the transformation or mapping
of models. In any case, it is the definition of relationships between different
models. Software is always the implementation of models into reality (possibly
a virtual reality), and thus into a new reality of computer embedment [GKJ95].

What does implementation mean? Three aspects are always mentioned:

1. Architecture Aspect
Software is implemented using an adequate description of programs, data
elements and data structures. The structure of a program is the prereq-
uisite for understanding the underlying functional models of software and
their possible translation into interpreting code. The structure of data –
the data model – is essential for every possible application (manipulation).
What the appropriate descriptions are, needs to be defined in detail. This
is not a simple question. It leads us to the essence of software [Bro95],
and to the specific problems of software engineering.

2. Document Aspect
The physical representation of software is a set of various documents.
They differ in their intended use or are written (modelled) for different
users of the software.

3. Execution Aspect
Software is implemented in programs (i.e. a set of instructions that cor-
responds to execution), whose interpretation is transformed through the
hardware of the modelled functionality of a computer system.

In software engineering, the emphasis is on the creation of methods for construct-

1



2 CHAPTER 1. INTRODUCTION

ing software systems. A method should give us a recipe guiding the process of
software construction – henceforth this is called the software process and it
addresses the problem of designing a software system. In order to construct
the “right” software system – one with which the customer and the developer
satisfied – a correct understanding is needed of the domain to be modelled.
In the software development process, the first step towards this goal is to de-
fine the requirements for the system. The process of finding the requirements,
classifying them and verifying them against all models created throughout the
software process is one aim in creating a better system. A better system is
one that is less erroneous and more reliable for the users and the environment
in which the system is deployed. Another task, just as important as the one
mentioned above, is the formal specification of the system to be built. In order
to perform these tasks, a method is needed to assist and guide the developers
in building good systems in their process of software development.

The thesis focuses on extending the existing Fusion method [BK00] in require-
ments engineering and formal specification, and in particular integrating the
formal object-oriented specification language Object Z [DR00, Smi00]. This
can be seen as one of the most important developments in the area of system-
atic software development to produce reliable software.

1.1 Background

Fusion [Cea94] is a method for analyzing, designing and implementing object-
oriented software systems. It has contributed to the development of the Unified
Modeling Language (UML) [OMG99]. We use a combination of UML and
Fusion models with the Fusion process in teaching and project work [BK00].

This method, called Fusion/UML1 consists of a relatively fixed process divided
into two subprocesses: analysis and design. It defines consistency rules for all
models of the two subprocesses, enabling it to control consistency in the various
models and between them throughout the development process. The final result
of the Fusion/UML process is an accurate description of the class interfaces,
suitable for any object-oriented programming language.

This analysis process looks at the system from the user’s point of view, suggest-
ing how the user or system intends to interact with the system. The result of
the first part of the method, analysis, is a so-called Operation Model describing
the system operations in schematic form. Although still part of the analysis,
the Operation Model looks at the functionality of the system in some detail.
Thus it might well be considered a model that is somewhere between analysis
and design. It gives the Fusion method its appeal of seamlessness. Seamlessness
is one of the attributes always emphasized by object orientation. There is thus
no need to distinguish between analysis and design. Here, with this method,

1Objektorientierte Analyse und Design, Die Fusion-Methode unter Verwendung von UML
was developed at the Technische Universität Berlin in 1999 [BK01] in this thesis we refer to
it as Fusion/UML.
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you can actually see the distinction.

The most constructive task is producing a set of object interaction graphs (Ob-
ject Interaction Model), known in UML as collaboration graphs. They define
the system operations by means of message flows (method invocation) between
objects in the system. Analysis and design contain various other models, but
the two parts Operation Model and Object Interaction Model contain most of
the information about the operational part of the system design.

There follows a brief description of Fusion/UML as it has been developed and
used successfully in many case studies in teaching and research.

1.2 Current Situation

The existing Fusion/UML method assumes that requirements elicitation has al-
ready been completed and that the requirements document exists in the form of
a problem description. The process of eliciting, analyzing and checking require-
ments has been done and the result of this process is the problem description.
This has implications for further development steps in the software development
process:

• Important information is lost because extracting requirements from the
problem description for further use is not part of the method.

• There is no checking between the problem description and the require-
ments description and their further use in all the method’s models.

If we consider existing software development process models [Som01, Pre01],
like the Waterfall, V-Model or Spiral Model, it is clear that the validation of
the developed system and its requirements is necessary. Indeed, each model
developed during the software process must be validated against its require-
ments. To get to the point of validation, we first have to obtain the source that
can be used to validate the products or documents: The process establishing
the services the system should provide and the constraints under which it must
operate is called requirements engineering.

The requirements process [KS97, SS97] comprises activities such as elicitation,
analysis, negotiation and documentation, the demand being that a requirements
process should be seamlessly integrated into the existing Fusion process. The
Fusion method builds on the natural problem description. This description is
not sufficient to enable us to understand the problem domain and the task of
developing and implementing the software system. An adjusted process model
for gathering, classifying and formally describing requirements is needed.

Methods may be designed only for a certain part of the life cycle and must
therefore be supplemented by other techniques to cover the whole life cycle.
Formal methods have often been limited in their coverage of the software life
cycle.



4 CHAPTER 1. INTRODUCTION

Formal methods for software systems are based on mathematical results such
as logic and algebra, which give these methods a sound semantical model. For-
mal methods can supplement less formal methods used in the overall system
development process. They could be used not instead of but in addition to
informal or semiformal methods. So far, formal methods have proved useful in
specification and verification. It is worth exploring how they can be used in
requirements analysis, refinement and testing.

Specification is one aspect of the overall process of developing software sys-
tems. Formal specification is the process of creating precise models based on
mathematical notation and the semantics of a proposed system. The purpose
of formal specification is to create a description of the system’s functionality
that has a sound mathematical basis.

Since no one method is likely to be suitable for describing and analyzing every
aspect of a complex system, a pragmatic approach is to use different methods
in combination.

The smooth integration of the formal specification into the Fusion process is –
like the requirements process – one of the challenges addressed by this thesis.

1.3 Aim of the Thesis

If we look at the graphical representations of the overall Fusion process, we
notice that the problem description is either depicted as a large cloud or it does
not exist at all. This means that the requirements process as such is not part
of the method itself. Our aim is to clearly structure the cloud. This structure
will enable us to identify requirements activities that can be transferred to and
integrated into the method. We will see that this approach contributes to all
subsequent activities of the method. We will demonstrate how requirements
determination will have an impact on extension of the formal specification.
Formal statements, one of the results of requirements determination, are can-
didates for class and environmental invariants. Environmental invariants are
important for the preconditions of system state and system operations.

Our aim in this thesis is to show that it is possible to integrate the requirements
description and the formal description into an existing object-oriented devel-
opment method. New modelling elements are designed and integrated into the
notation. The process steps of the method are modified, reflecting all models
of the process.

We focus on the two main areas of the software development process that are
not covered by the Fusion/UML method:

1. the integration of requirements engineering

2. the integration of a formal method

Both requirements engineering and formal methods are very important activi-
ties in software development. Formal specification cannot be justified without
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some form of requirements engineering. We believe that extending this method
will improve the analysis phase, and with it the next phases in the software
development process. It is important to integrate the two activities in such
a way that they fit smoothly into the method process and also incorporate
the model’s elements. The information gathered during requirements deter-
mination is used in the subsequent models of analysis. During the process of
requirements determination, requirements are defined in a formal way. These
requirements are suitable for use as environmental invariants or class invariants
of the formal description. Here, we see that information gained in the early part
of analysis is used in the next phase of the method. The formal specification is
developed from the operation model and the object interaction model and is en-
riched through the INIT operation and the class invariants of the requirements
definition.

1.4 Organization of the Thesis

The thesis is divided into three parts. The first part, consisting of Chapters 2,
3 and 4, reflects the three disciplines in which this work is embedded – software
engineering, requirements engineering and formal methods. The current Fusion
method, which is dealt with in Part II (Chapters 5 and 6) of the thesis, forms
the basis for the enhancement. The third and last part comprises the remaining
chapters and includes the main work: the two extensions to the method, the
change to the Fusion method, a comparison with other derivations of Fusion
and the thesis’s conclusion.

Part I
Chapter 2 gives a historical overview of software engineering and its modelling
from the early sixties up to the present. With the von Neumann architecture
that reflected modelling at that time – the data flow diagram – it encompasses
the abstraction of procedures and also the abstract data to abstract data types,
modular decomposition and the software production process. The chapter ends
with a synopsis of the role of methods in software engineering.

Chapter 3 focuses on requirements engineering, one of the disciplines of software
development engineering. It gives a summary of what requirements engineering
is, describing the process and its phases. In particular, it deals with those
phases that are part of the new Fusion process.

The next chapter deals with formal specification. Here, as in Chapter 2, a
historical overview is given, this time of formal specification and formal devel-
opment methods. Special attention is given to Z and Object-Z. This topic is
also part of the enhancement of Fusion.

Chapters 2, 3 and 4 give an overview of the three disciplines on which this thesis
is based: software engineering, requirements engineering and formal specifica-
tion. They are designed to give the reader an idea of how large and broad
the context of the thesis is. Very little of what has been written about these
disciplines is included here, but we believe it is important for understanding
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the present thesis.

Part II
In Chapters 5 and 6, the Fusion Method/UML as taught by the Software Engi-
neering research group is explained. Since Fusion was introduced into teaching,
several modifications have been made to the method, one of which is the adap-
tion of the graphical diagrams to UML notation. We use the modification made
by [BK00] as a starting point for our enhancement.

Part III
The foundations having been laid, we go on, in Chapter 7 to present the exten-
sion to the method, Requirements Determination. This chapter describes the
determination of the domains of the application domain and outlines the ex-
traction and classification of the requirements and non-responsible statements.
Throughout the process, we are sensitive to links to other method artefacts for
tracing requirements and consistency checks.

Chapter 8 deals with the integration of the formal specification into the method
as well as the use of Object Z for checking consistency between the Operation
Model and the Object Interaction Model. This activity yields Object-Z classes
that are complemented by class invariants from the requirements description
and initialization operations.

Chapter 9 includes the two extensions to the new method, resulting in its new
name FusionB . It presents the new process, the models and the consistency.

The penultimate chapter draws a comparison between the new FusionB and
derivations of the original Fusion method in the area of requirements engineering
and formal specification.

The last chapter gives a summary of the results and a self-assessment of the
work done as well as suggesting future developments.

The appendix contains the Case Study as well as the syntactical description
of the method’s models using EBNF, the graphical notation of the modelling
elements, and offers an outlook on how requirements templates for tools might
be designed.
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The key of using abstraction effectively in [analysing, designing and]
programming is to find a notion of relevance for both the builder
of the abstraction and the user of the abstraction. And that is the
true art of building systems.

John V. Guttag[Gut01]
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Chapter 2

Software Engineering and
Modelling

Historically, the term software engineering was introduced in 1968 [NR69], when
the poor prospects for developing high-quality software on time and within
the budget became apparent. Developers were unable to set the right goals,
estimate the resources required to attain those goals or manage the expectations
and the needs of customers.

The problem of building and delivering software systems on time is still an
important research issue. The blame has variously been put on customers who
do not know what they want, on the “soft” elements of software engineering or
on the discipline’s youth. What is the problem then? Complexity and change
are the answer. Both are properties pointed to by Brooks [Bro87, Bro95].
Software engineering is and will continue to be a modelling activity.

In this chapter, the development of software engineering is described from its
early days up to present. Then we give a brief description of the software
development process. The chapter ends with an outline of the role the methods
play in the software engineering process.

11
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2.1 A Historical Look at Software Engineering

Those who cannot remember the past are condemned to repeat it.

George Santayana[San05]

The history of software engineering is characterized by the development of tools
for solving ever more complex problems. Such tools can be used to produce soft-
ware, which is more than simply editing or compiling. One feature of advances
in programming languages and tools has been the continuous increase in the
level of abstraction.

Influenced by the von Neumann hardware architecture, solutions at a low level
of abstraction were only applicable to small problems. Software was written in
machine language. Programmers entered instructions and data individually and
explicitly into the computer memory, one instruction at a time. The realization
that memory layout and the updating of references could be automated and that
symbolic names could be used for operation codes and memory addresses led to
the development of the symbolic assembler. The substitution of simple symbols
for machine operation code, machine addresses and sequences of instructions
(macros) was probably the first form of abstraction in software.

The development of notations, tools and methods for producing software was
needed to deal with the growing number of ever more complex problems, and
conversely the existence of tools enabled increasingly complex problems to be
solved.

It became clear that certain patterns of operations, e.g. arithmetic expressions,
were generally appropriate. It was possible to create these patterns automati-
cally from a mathematics-like notation. These were patterns for the evaluation
of arithmetic expressions, for procedure invocation and for loops and condi-
tional statements. They were found in programming languages like Fortran
and Cobol. This concept is known as structured programming. Higher-level
languages allowed the development of more complex programs. The next step
on the path to higher abstraction was the separation of data and operations.

The introduction of procedural concepts made it possible to have separate com-
pilable units – the abstraction of subroutines.

The next abstraction step came with the introduction of procedures as part
of the concept of a separate data space. The concept of block structure and
scope, as defined in Algol60, made it possible to distinguish between global
and local scope of data. Another important concept on the path to abstraction
was the mathematical notion of recursion, applied to the world of programming
languages.

Next came the extension of the type concept from basic types, as in Fortran
and Cobol, to data structures such as arrays and records and their constructors.
Pascal and its successors introduced the weak and strong abstraction of types
and the type concept.
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Advances in language design continued with the introduction of modules to pro-
vide protection for related procedures and data structures, with the separation
of a module’s specification from implementation (i.e. Modula2) and the intro-
duction of abstract data types. The concept of abstract data types was based
on a theory that involved an understanding of the software structure, specifi-
cation expressed as abstract models or algebraic axioms, language issues like
modules, scopes and user-defined types, the integrity of the result (invariants of
data structures and protection from other manipulation), rules for combining
types and information hiding (protection of properties not explicitly included
in specifications).

Further concepts for abstraction in programming were the class concept (Sim-
ula67) and instantiation in object orientation (Smalltalk, Eiffel) and design
patterns. On a higher level of abstraction, the architecture pattern and soft-
ware components were introduced. The abstraction of programming went from
algorithms to system solution.

The abstraction led from problem domain to system solution and that was the
beginning of analysis and design. During the 1970s, many design methods were
created to address the growing complexity of software. The most influential of
them was top-down structured design, but the data-driven approach also had
a considerable impact. In the data-driven method, the structure of the system
is derived by mapping system inputs to outputs.

All notations were integrated in unified methods, e.g. OMT and Booch [RBP+91,
Boo94] which consisted in describing an abstraction concept of models with
their modelling elements and the process of combining those models. There are
a number of different methods for putting the real world and the virtual world
on hardware. On a higher level of abstraction, the hardware is a machine inter-
preter like Java Enterprise, etc. The virtual world implements an abstraction
of the real world, e.g. a person as an identifier, depending on the problem to
be solved.

Attempts are currently being made to define a unified modelling language
(UML) and a unified modelling process (UMP). Whether this attempt is suc-
cessful will be evident in a few years’ time.

2.2 Software Development Process

The software development process defines activities and organizational proce-
dures to enhance collaboration within the development team so that a quality
product is delivered to the customers.

The term software process describes a process used to develop computer soft-
ware. It may be an ad hoc process, devised by the team for one single project.
However, the term often refers to a standardized, documented methodology
that has been used before on similar projects or one that is used habitually
within an organization (cf. Capability Maturity Model(CMM) [SEI95]).
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Managers who are held accountable for software development may look for
common features in the efforts of their organizations. If these managers are
process-oriented, (rather than people-oriented, task-oriented, profit-oriented,
project-oriented, etc.), they may seek methodologies or other substitutes that
can serve as templates for the software development process.

Of course, it is entirely rational for other – non-process-oriented – managers to
use a documented software development process or methodology. In such cases,
one might say that the methodology is used by them as a substitute for the set
of process-oriented skills required in any software engineering project.

There are many different software processes, but the following fundamental
activities are common to them all:

• Requirements analysis
The system requirements must be discovered from the application domain
by all stakeholders in the system to be built.

• Software specification
The system functionality and the constraints must be specified unequiv-
ocally.

• Software design and implementation
The software must meet the specification.

• Software validation
The software must be validated in terms of its requirements to ensure
that it meets the customer’s needs.

• Software evolution
The software must evolve to meet changing customer needs.

2.3 The Role of Methods in Software Engineering

Methods play a key role in any engineering discipline. One could argue that
engineering can not exist without methods. The problems confronting engineers
are so complex and new that some kind of guidelines are needed to solve them.
The quality of a software engineering process depends strongly on the quality of
the method used. But it also depends on the type of system being built. There
are several types of systems: information systems, embedded or interactive
systems, real-time systems, control systems, to name only the most common
ones.

A software engineering method is a structured approach to software develop-
ment whose aim is to facilitate the production of high-quality software in a
cost-effective way. In the late 1970s and early 1980s, the first methods such as
Structured Analysis [Dem79] and Jackson System Development (JSD) [Jac83]
became available. The idea was to identify the basic functional components of
a system. These function-oriented methods are still in use today. In the late
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1980s and 1990s, these approaches were complemented by the object-oriented
methods introduced by Booch [Boo94] and Raumbaugh [Boo94]. In the late
1990s, the emphasis shifted to methods for software components [Szy98, BK01].
Today, the focus is on aspect orientation [Fea05].

All these methods are based on the idea of developing models of a system,
which may be represented graphically, semiformally or formally, and using these
models as a system specification or design. There is no one ideal method, and
different methods are suitable for different areas. Object-oriented methods are
more appropriate for interactive and certain kinds of embedded systems, but
not for systems with real-time constraints.

Formal methods can supplement less formal methods in the overall system de-
velopment process. They can be used not instead of but in addition to informal
or semiformal methods. So far, formal methods have shown their strength in
specification and verification. It is worthwhile exploring how they can be used
in requirements analysis, refinement and testing.

Requirements analysis deals with the customers’ – often imprecise – idea of
what they want. Formal methods can help customers and developers to define
precise system requirements.

Refinement is the opposite of verification. It is the process of taking one level
of specification (or implementation) and, by a series of correctness-preserving
transformations, synthesizing a lower-level specification or implementation.

Testing is one of the most costly items in all software projects. Formal meth-
ods can play a role in the validation process, e.g. using formal specifications
to generate test suites and using model- or proof-checking tools to determine
relationships between specifications and test suites, and test suites and code.





Chapter 3

Requirements Engineering

Requirements engineering is the branch of software engineering
concerned with the real-world goals for, functions of, and constraints
on software systems. It is also concerned with relationship of these
factors to precise specifications of software behaviour, and to their
evolution over time and across software families.

Pamela Zave[Zav97]

It has long been established that the effectiveness and flexibility of a software
product is strongly dependent on getting the requirements right. In this chapter,
we describe the process of requirements engineering and its result. We give some
definitions of the term “requirement”, then classify requirements and list some
different types of requirements. We then go on to look at the requirements
engineering process, focusing on those activities that are supported by the new
method called FusionB . Finally, we give a brief summary of the chapter.

3.1 Introduction

There have been problems with the development of software systems since the
1960s. Too many systems have been delivered too late and over budget. One of
the reasons for this was the poorly performed requirements process in software
development. This was given little attention by software developers. In recent
years, the information technology industry has recognized the importance of
requirements engineering, particularly requirements management.

3.2 What is Requirements Engineering?

The hardest single part of building a software system is deciding
precisely what to build. No other part of the conceptual work is
as difficult as establishing the detailed technical requirements. No
other part of the work so cripples the resulting system if done wrong.
No other part is as difficult to rectify later.

17
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Fred Brooks wrote this in 1987 [Bro87] and little has changed since then [Dav93,
Fau97]. The inability to produce complete, correct, and unambiguous software
requirements is still considered the major cause of software failure today [TD97].

In [LK95], we find the following definition of the term requirements engineer-
ing: “The systematic process of developing requirements through an iterative
co-operative process of analysing the problem, documenting the resulting ob-
servations in a variety of representation formats, and checking the accuracy of
the understanding gain.”

Requirements engineering emphasizes the utilization of systematic and repeat-
able techniques that ensure the completeness, consistency and relevance of the
system requirements [Som01]. Specifically, requirements engineering encom-
passes requirements elicitation, analysis, specification, verification and man-
agement:

• Requirements elicitation is the process of discovering, reviewing, docu-
menting and understanding the user’s needs and constraints with respect
to the system.

• Requirements analysis is the process of refining the user’s needs and con-
straints.

• Requirements specification is the process of documenting the user’s needs
and constraints clearly and precisely.

• Requirements verification is the process of ensuring that the system re-
quirements are complete, correct, consistent, and clear.

• Requirements management is the process of scheduling, coordinating, and
documenting the requirements engineering activities (i.e. elicitation, anal-
ysis, specification and verification) [TD97].

Requirements engineering is complex because of the three roles involved in pro-
ducing even a single requirement: the user or customer, the developer (who
designs and implements the system), and the analyst (who analyzes and doc-
uments the requirements). Typically, the user or customer understands the
problem to be solved by the system, but not how to develop the system. The
developer understands the tools and techniques required to construct and main-
tain the system, but not the problem to be solved by the system. The analyst
needs to create a statement that communicates less ambiguously to the devel-
oper what the user wants. Requirements address a fundamental communication
problem.

This communication problem is further compounded by the number and di-
versity of users. In practice, any stakeholder has needs and expectations (i.e.
requirements) with respect to the system. A stakeholder is a role played by
any of the various people or systems involved in or affected by system develop-
ment. This includes executives who know the organization’s business goals and
constraints; end users who know how the products will be used; marketers who
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know the market demands; technical managers who know the available person-
nel; and developers who know the available tools and technology. Successful
requirements engineering depends on the identification and solicitation of the
appropriate community of stakeholders.

Requirements are pervasive, continuously affecting all development and main-
tenance phases of a system’s growing process by providing primary information
needed by those phases. The requirements constitute a trigger mechanism for
software development and maintenance. Testing, for instance, depends on a
precise statement of quality and behavioural requirements in order to define
the standard of correctness against which to test. Requirements engineering
is not just an up-front activity, but rather has ramifications over the entire
software development and maintenance process.

The longer the system’s lifetime, the more it is exposed to changes in require-
ments resulting from changes in the needs and concerns of the stakeholders.
For example, the end user’s demands can change as a result of new features of-
fered by competing organization’s products. The organization’s business goals
and constraints can change as a result of market demands, new laws or new
insurance regulations. New technologies and software tools such as operating
systems can change the way the system is constructed. Mechanisms are needed
for managing the changes, i.e. a requirements change management process –
a process based on the traceability links between the requirements and the
system.

3.2.1 Requirements Artefacts

First of all, the requirements artefacts produced by requirements engineering are
important core assets in their own right. Beyond that, requirements engineering
creates requirements that feed the development and acquisition of other core
assets. Requirements artefacts help to:

1. Determine the feasibility and refine the scope of the system. The initial
version of the use case is frequently based on an informal notion of the
application environment. Requirements engineering refines the scope, and
hence the business case, by determining more precisely the requirements
for the system.

2. Lay the groundwork for the software architecture.

3. Ensure that the other core assets support it.

4. Create the test cases and other test artefacts.

A significant difference in requirements engineering involves a rapid initial pars-
ing of the requirements for key stakeholders to initiate early design work, cap-
turing the high-level requirements that affect the initial design (i.e. the archi-
tecturally significant requirements [Jac99]). The purpose of this is to minimize
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the time to initial delivery and to demonstrate the feasibility and establish the
credibility of the product line approach. In short, to provide an early justifica-
tion of the investment [Gra98].

3.3 The Role of Requirements Engineering

Requirements engineering plays a key role in:

• determining the feasibility of producing a particular product, namely the
system or product

• validating, testing and deploying the system

Requirements play a role in these activities. This is the primary mechanism for
the evolution of software over time.

Determining the feasibility of a particular product is an ongoing activity that is
part of building a business case for that product. The initial version of the prod-
uct is frequently based on an informal description of the prospective product.
Requirements engineering, particularly elicitation and analysis, supports the
business case for the product by determining more precisely the requirements
for that product. Requirements analysis determines domain requirements, sys-
tem requirements and statements for which the system is not responsible.

3.4 What are Requirements?

In the previous section on requirements engineering, we outlined the require-
ments process, the techniques to capture requirements as well as testing, tracing
and versioning. But what are requirements?

Merriam Webster’s Collegiate Dictionary gives the following definitions of
requirements[Web93]:

a: Something required, something wanted or needed.

b: Something essential to the existence or occurrence of something else.

For software engineering, requirements could be defined as follows:

• from the perspective of a customer: what a customer needs, wants or
expects

• from the perspective of a software developer: what a software developer
analyzes, designs and implements and which should ultimately work ac-
cording to requirements
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Requirements are statements of what the system must do, how it must behave,
the properties it must exhibit, the qualities it must possess, and the constraints
that the system and its development must satisfy. IEEE defines a requirement
as:

1. a condition or capability needed by a user to solve a problem or achieve
an objective

2. a condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other
formally imposed document

3. a documented representation of a condition or capability as in definition
1. or 2. [oEE90]

Michael Jackson defines requirements in [Jac95] as follows: “Requirements are
about the phenomena of the application domain, not about the machine. To
describe them exactly, we describe the required relationship among the phe-
nomena of the problem context. But not all the phenomena of the problem
context are shared with the machine.”

Jackson and Zave [ZJ97] define requirements on the basis of statements [Jac95].
Statements which have optative properties are statements about the environ-
ment: how the system should be when it is linked to the environment. State-
ments about the environment which have indicative properties are assumptions
or knowledge about the environment.

Davis[Dav93] distinguishes between behavioural requirements and nonbehavioural
requirements. Behavioral requirements are those requirements that specify the
inputs (stimuli) to the system, the output (responses) from the system and the
behavioural relationships between them. They are also known as functional
or operational requirements. On the other hand, nonbehavioural requirements
are requirements that describe the required overall attributes of the system,
including portability, reliability, efficiency, human engineering, testability and
modification.

Loucopoulos and Karakostas [LK95] divide requirements into market-oriented
and customer-oriented requirements. Products that are developed on the basis
of market-oriented requirements usually have no specific customer for whom
the system is to be built. There is instead a specific group of customers who
are the potential buyers of the product, which could be a word processor or a
spread-sheet. Customer-oriented requirements are those where a customer has
a specific problem that has to be solved. This is yet another distinction between
software, system and product requirements.

In [BI96], Boehm and In use the term Quality Attribute Requirements to de-
scribe software quality attributes relating to the software architecture and soft-
ware process.
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3.4.1 Types of Requirements

To be able to manage or trace requirements, we need a way of classifying them.
The larger and more intricate the system, the more types of requirements oc-
cur. A requirement type is simply a class of requirements. Identifying types of
requirements helps firstly to organize large numbers of requirements into mean-
ingful and manageable parts or groups, and secondly to structure and design
the system.

Types can be decomposed into other types. Business rules and statements can
be types of high-level requirements from which user needs, features and product
requirements can be derived. From use cases and other forms of modelling, other
types of requirements like design requirements can be decomposed into software
or system requirements, which represent the analysis and design models.

In the literature, two main requirements are distinguished: functional and non-
functional requirements. These are described in the next two subsections.

3.4.2 Functional Requirements

Functional requirements capture the intended behaviour of the system. This
behaviour may be expressed in the form of services, tasks or functions the
system is required to perform. Functional requirements reflect the question of
what the software should do. According to [oEE90], functional requirements
define the functions that software must perform. They describe operations the
software or one of its components performs on its inputs to produce outputs.

Functional requirements can be described from the point of the data, or from
that of the functionality or behaviour of the system that is to be built.

• From the point of view of the data:
Here, we look at the data structures in the application domain. The con-
cepts are entities, relationships, attributes and data values that describe
the properties of an entity. Data represents a static view (e.g. Entity-
Relationship Modelling) [Che76].

• From the point of view of functionality:
Here, we look at the software from the point of view of input/output
activities, e.g. activities transforming a set of inputs into set of outputs.
Data flow diagrams are examples [Ros77, RS77].

• From the point of view of behaviour:
Here, the system is looked at from the states of the software and transi-
tions between states and events which trigger the state transaction. Ex-
amples of such behavioural models are statecharts [Har87].

Object-oriented modelling integrates all three: data, functionality and dynamic
modelling. In Fusion, the models that reflect these views are: Class Model,
which models the data view, Life Cycle Model, which describes the functional-
ity; and Operation Model, which describes the dynamical view.
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3.4.3 Nonfunctional Requirements

It is the nature of science to pursue a functional model of reality, and the nature
of art always to lie beyond that pursuit. Although the boundary between the
two may change with time and the development of technology, science and art
remain complementary.

Embedded systems or information systems, like all complex engineering prod-
ucts, exhibit essential features from both sides of the boundary. Those on the
formalized scientific side are called functional requirements; those on the other
are called nonfunctional requirements. To suppose that all requirements could
ever become functional would be as naive as to suppose that science could one
day embrace art.

The purpose of this brief outline is to explain where the boundary between
functional and nonfunctional requirements now lies, and to indicate the variety
of concerns that are spread across it. We begin by setting the historical context.

In the beginning, there was code. When programmers worked with machine
code, there were no explicit functional requirements. With the advent of high-
level languages and large programming projects, software engineering was born,
making contracts between customers and suppliers necessary. Input/output be-
haviour provided the first functional requirements [Dav93], all else remaining
nonfunctional. As formal methodologies, focussing on the I/O model of compu-
tation were developed, time and space efficiency constituted the most pressing
nonfunctional requirements (although little-used formalizations have since been
developed to place them in the functional domain (e.g. [Jac95])).

As PCs became popular, their software demanded user-friendly interfaces and
requirements documents began to contain substantial nonfunctional require-
ments, most of which have remained nonfunctional to this day. While ergono-
metric concerns could conceivably be formalized, those of design resemble art
so closely that it is unlikely they ever will be.

Fifteen years ago, security was regarded as a major difficulty, largely because it
was nonfunctional. Since then, several security properties have been formalized
and thus converted into functional requirements. On the other hand, some fea-
tures of security, like those pertaining strongly to human-computer interaction,
seem destined to remain on the nonfunctional side. Must a machine be locked
to the desk, for example, to prevent the physical theft of software? Security
and safety are typical areas which currently straddle the boundary between
functional and nonfunctional requirements.

The same holds for user interfaces in a more general sense. Certain properties
are amenable to formal specification and so can be expected to be formalized as
functional requirements. Colour and location on the screen, for example, can
be described formally (by wavelength and Cartesian coordinates, respectively).
But features pertaining more to design and based on taste and intuition appear
destined to remain nonfunctional.

The requirements considered so far pertain to the product. There is an equally
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important range of requirements pertaining to the process. Organizational or
management requirements, for example, are often a consequence of organiza-
tional policies and procedures, and hence are concerned more with the process
than the product. Other examples include implementation requirements like
target programming language, design method and delivery requirements (e.g.
delivery deadlines and consequent financial penalties); they are usually formal-
ized. Such requirements, which may be generated by either the customer or the
developer, are just as relevant to the success of the project as product-based
requirements.

Interoperability requirements determine how the system is to interact with other
systems; legal requirements force the system to operate within the law; ethical
requirements ensure that the system conforms to accepted ethical standards;
and more generally, social and ethical requirements deal with the acceptability
of the system to its users and the general public. All these features cover re-
quirements arising from factors external to the system itself and its development
process.

The view outlined here has, of course, evolved gradually. Alan Davis talks in-
stead about behavourial requirements and nonbehavourial requirements [Dav93].
Behavourial requirements define what the system does; they specify the inputs
(stimuli) to the system, the output (responses) from it, and the behavourial
relationship between them. Nonbehavourial requirements are those describing
the required overall attributes of a system, including portability, reliability,
efficiency, human engineering, testability, understandability and modifiability.

Michael Jackson [ZJ97, Jac95] has proposed an alternative way to look at con-
text. His focus is more on the problem than on the solution, as is reflected
in common current practice. Requirements are about purposes, and the pur-
pose of a machine (or software) is found outside the machine itself, namely in
the problem context. He distinguishes between properties that are purely envi-
ronmental, called indicative properties, and those that represent the interface
between the environment (domain) and the machine, called optative proper-
ties. He takes a much broader view of the problem context than anyone else. In
[Jac00], he states: “The distinction between functional and nonfunctional re-
quirements is a reasonable distinction to make, and is often useful. But there’s a
serious risk that it becomes an excuse for ignoring important requirements and
concerns.” Most requirements that are nonfunctional are so only in the sense
that they have not yet been analyzed. If you allow requirements like these to
be relegated to the nonfunctional category, you risk missing a large part of your
problem.

Various classifications for nonfunctional requirements or quality requirements
have been proposed. Earlier efforts were made by Barry Boehm and Ho [BI96].
Nowadays the community is concentrating on nonfunctional requirements be-
cause of the possibility of managing software components through them. Also,
the practice of including nonfunctional specifications in the contract and mon-
itoring them strictly can be expected to become more popular in the future
[Szy98].
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Nonfunctional requirements are particulary affected by changes in hardware
technology. The development time for large systems may be several years,
while hardware will continue to improve throughout the lifetime of the system
and even during its gestation. Nonfunctional requirements may thus have to
be modified while the system is still in use.

3.5 The Requirements Engineering Process

Requirements engineering aims to define the requirements of the system under
construction.

3.5.1 Elicitation

Requirements elicitation is the process of discovering the requirements for a sys-
tem by communication with the customers, system users, analysts and others
who have a stake in the system development. It requires application-domain and
organizational knowledge as well as specific problem knowledge [SS97]. Elicita-
tion is about gathering information. The question is what kind of information
should be gathered and how to gather it. Traditional techniques for require-
ments elicitations include interviews, questionnaires, observation and the study
of business documents [GL93].

• Interviews are a key fact-finding and informations-gathering technique.
They are simple and cost effective. Most interviews are conducted with
customers or with domain experts. Whether an interview is successful
depends on many factors, the most important being the interviewer’s
communication and interpersonal skills.

• Questionnaires are an effective way of getting information from the cus-
tomer. They are normally used in combination with interviews. Question-
naires should be designed for ease of question answering. There are several
forms including multiple-choice rating and ranking questions. Combining
interviews and questionnaires can be a successful technique for elicitation.

• Observation can be either passive or active. There are situations in which
a customer is unable to describe a business or technical process. In this
case observation is an effective way of fact finding. Observation should
be done in combination with interviews and questionnaires or with one of
the two.

• A more modern elicitation technique involves the use of the software pro-
totypes Joint Application Development (JAD) and Rapid Application De-
velopment (RAD). They help us to obtain a better understanding of the
requirements by visualizing the Graphical User Interface (GUI) of the
system at a very early stage using mock-ups, for example.
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3.5.2 Analysis and Negotiation

Requirements elicited from customers may overlap or conflict. Some require-
ments may be ambiguous, unrealistic or inconsistent. Others may remain undis-
covered. For these reasons, analysis is necessary. The objective of requirements
analysis and negotiation is to establish an agreed set of requirements which are
complete and consistent. Requirements analysis and negotiation are concerned
with high-level statements of requirements elicited by the stakeholders. It is an
expensive and time-consuming process. These requirements are then developed
in more detail as specifications or models. Developing such models usually re-
veals further contradictions and incompleteness in the requirements. In this
case, it is necessary to repeat the elicitation and negotiation phase to discuss
changes in requirements.

With the initial set of requirements, it is possible to define the boundaries of the
system being built. This involves determining which of the requirements are
system requirements, which are for the operational processes associated with
the system, and which requirements should be outside the scope of the system,
though belonging to its environment.

3.5.2.1 Some Analysis Techniques

Domain Analysis

This technique can be used to expand the scope of the requirements elicitation,
to identify and plan for anticipated changes, to determine fundamental com-
monalities, and to support the creation of robust architectures. Feature mod-
elling facilitates the identification and analysis of the product line’s commonal-
ity and variability and provides a natural vehicle for requirements specification.
Stakeholder-view modelling supports the completeness of the requirements elic-
itation.

Viewpoint Modelling

This technique can be used to support the prioritized modelling of the significant
stakeholder requirements for the system being built. Viewpoint modelling is
based on the recognition that a system must satisfy the needs and expectations
of the various stakeholders, all of whom have their own perspectives (views) of
the system. Each stakeholder view can be modelled separately as a set of system
requirements. These models are core assets that support the identification of
conflicts and can be used to determine trade-offs between the needs of the
stakeholders [KS97, SS97].
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3.6 Traceability of Requirements

Requirements traceability can be used to ensure that the design and implemen-
tation of a system satisfy the requirements for that system. Requirements trace-
ability traces the requirements backwards to their source (e.g. a stakeholder)
and forwards to the resulting system development work products (e.g. a system
class model or a component). In addition to helping with the elicitation and
verification of requirements, requirements traceability is critical in determining
the potential impact of proposed changes in a system [RSE95, Som01].

The main risk associated with requirements engineering is failure to capture the
right requirements over the life time of the product. Documenting the wrong
or inappropriate requirements, failing to keep the requirements up to date or
to document the requirements at all puts the architect and the component
developers at a grave disadvantage. They will be unable to produce systems that
satisfy the customer and fulfil market expectations. Inappropriate requirements
can be the result of:

• Failure to distinguish between system requirements and domain require-
ments: these different kinds of requirements have different audiences. The
developers need to know the requirements they must build to.

• Insufficient generality in the requirements leads to a design that is too
rigid to deal with changes in the product.

• Overly general requirements lead to excessive effort in producing both
the software and specific products (which must turn that generality into
a specific instantiation).

• Failure to account for qualities other than behaviour: software require-
ments in general should capture requirements for quality attributes such
as performance, reliability, security, and the like. These are nonfunctional
requirements.

One way to minimize the risk of failing to capture the right requirements for
the product is to classify, test, verify, version and trace requirements.

3.6.1 Tracing

The development and use of requirements-tracing techniques originated in the
early 1970s to influence the completeness, consistency and traceability of the
system’s requirements.

Requirements traceability is defined as the ability to describe and follow the
life of a requirement, in both a forwards and backwards direction (i.e. from its
origins, through its development and specification, to its subsequent deployment
and through periods of ongoing refinement and iteration in any of these phases)
[GF97]. It can be achieved by using one or more of the following techniques:
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• Cross-referencing: this involves embedding phrases like “see Section x”
throughout the project documentation (e.g. the tagging, numbering or
indexing of requirements, and specialized tables or matrices that track
the cross-references).

• Specialized templates and integration or transformation documents. These
are used to store links between documents created in different phases of
development.

• Restructuring: the documentation is restructured in terms of an un-
derlying network or graph to keep track of requirements changes (e.g.
assumption-based truth-maintenance networks, chaining mechanisms, con-
straint networks and propagation) [GF95, GF97].

3.6.1.1 How to Do Tracing

For any given project, a key milestone (or step) is to determine and agree upon
requirements traceability details.

One approach might be the structured use of general-purpose tools (e.g. hyper-
text editors, word processors and spreadsheets), configured to support cross-
referencing between documents. For large software development projects, an
alternative approach could be to use a dedicated workbench centred around a
database management system providing tools for documenting, parsing, editing,
decomposing, grouping, linking, organizing, partitioning and managing require-
ments, e.g. DOORS.

Requirements tracing requires a combination of models (i.e. representation
forms), methods (i.e. step-by-step processes) and/or languages (i.e. semi formal
and/or formal).

Tracing is not only an activity in the requirements process but also – or even
more – in the software development process because one should be able to trace
requirements through all the created documents or models. In the requirements
process, the first links for tracing are implemented to keep the requirements
consistent throughout the process.

Output of requirements traceability:

• bidirectional requirement linking to system elements

• capture of allocation rationale, accountability and test/validation

• identification of inconsistencies

• ability to view/trace links

• verification of requirements

• history of requirements changes

Some of the above-listed items can be found in the new Fusion method, e.g.
bidirectional linking, identification of inconsistencies.



Chapter 4

Formal Methods

Even today, formal methods are considered too complicated in certain software
engineering circles. This view is taken not only by people from industry but
also by computer science students who are being trained as software engineers.
The first ideas and concepts for formal methods were published fifty-five years
ago.

Initially, researchers focused on ways of verifying that a program or a system
satisfied its specification (or that two programs were equivalent). Over the last
fifty-five years, it has become clear that formal verification is only practical for
very small programs. From this point on, verification methods supported the
development of programs. For larger programs or systems, it is necessary to
utilize a notation of composition [Smi00, Mor90] in order to handle the task.
A program can only be judged to be correct with respect to some independent
specification of what it should achieve, e.g. a requirements specification or for-
mal specification. Testing alone cannot ensure the correctness of even relatively
straightforward programs. If bugs are to be avoided, some technique other than
testing must be used to establish that software satisfies its specifications.

This chapter begins with a historical introduction, showing where the most
influential work in the history of formal methods came from. It was done by
people like von Neumann, Turing, Floyd, McCarthy, Naur and Hoare. Other
important work could be considered, but this would go beyond the scope of this
chapter. The next section deals with formal methods in general. It introduces
two formal state-based specification languages and their techniques that are of
major interest for this thesis: Z and its extension, Object-Z. Object-Z is a formal
state-based method for object-oriented systems. Fusion/UML is an object-
oriented development method. System operations, described in the Operation
Model in the analysis phase of Fusion/UML, are expressed in a quasi formal
way based on Object-Z.
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4.1 A Historical Look at Formal Specification

As early as 1947, Goldstine and von Neumann wrote a paper in which they
explained how assertion boxes can be used to record that a series of operation
boxes (flow charts) have a particular effect. They pointed out that the task of
coding is nontrivial.

Our problem is, then, to find a simple, step by step method, by
which these difficulties can be overcome. Since coding is not a static
process of translating but rather a technique of providing a dynamic
background to control the automatic evolution of a meaning, it has
to be viewed as a logical problem and one that represents a new
branch of formal logics.

To master this, their basic design approach was to plan from flowcharts. They
introduced the concept of assertions in combinations of flow diagrams:

Next we consider the changes, actually limitations, of the do-
mains of variables of one or more bound variables, individually or
in their interrelationships.

In 1949, Turing introduced the idea of a Turing machine as a thought experi-
ence to prove formal systems. He saw the need to address the issues of program
correctness and termination. He prepared the ground for the subsequent trail-
blazing work of McCarthy, Floyd, Naur, Hoare and Dijkstra, to name just a
few of the many who worked on this topic over the next forty years.

At the Western Joint Computer Conference in 1961, John McCarthy defined
the issue as the Mathematical Theory of Computation. The development of
this relationship demands a concern for both applications and mathematical
algorithms. It plays an important role in formally describing the semantics
of programming languages, and indeed for all languages, including UML. Lan-
guage semantics cannot be considered separately from program verification.
McCarthy focused on reasoning about recursive functions rather than on im-
perative programs and languages, which was the focus of research at this time,
e.g. Algol 60. His goal was to prove that given procedures solve given prob-
lems: “instead of debugging the program, one should prove that it meets its
specifications and its proof should be checked by a computer program.”

Floyd and Naur were working independently on the same idea of program veri-
fication at about the same time. Floyd’s work was more recognized than Naur’s
because Floyd presented his idea with a sounder mathematical foundation. But
both greatly influenced research on program verification.

Floyd’s (1967) method is based on annotating a flowchart. The generality of
using first-order predicate calculus for assertions and the explicit role of loop
invariants are his key contributions. Floyd gives precise verification conditions
which ensure that the assertion corresponds to the statement in the flowchart.
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Floyd was the first to offer formal rules for checking verification conditions.
Operational semantics originated in Floyd’s work.

Naur’s Snapshots were written as comments in the text of Algol60 programs
and are clear statements about relationships between variables. His approach
was a less mathematical one, which is probably why it was less recognized by
the community.

Hoare (1969) not only linked the ideas of van Wijngaarden and Floyd but also
gave program verification a big boost by turning a theoretical idea into an
applicable technique in the direction of formal methods. It may be said that
Hoare realized that a program is already a formal model, and that in principle
it is possible to derive all properties of a program using a logical calculus. The
behaviour of a program depends on the environment in which the program is
embedded. A program always communicates with its environment, otherwise
it would be of little use.

Hoare looked at sequential programs. A sequential program communicates with
its environment when it reads input parameters, and after termination when
it outputs its result. The environment is therefore given by the precondition,
given by the requirements of the program through its parameters.

In the following sections, we look at formal methods, more specifically those
which use a state-based approach.

4.2 Formal Methods

Formal methods are an approach to software engineering that is based on the
application of mathematics, e.g. set theory, predicate logic, algebra, etc. Some
formal methods such as Z, VDM and Larch focus on specifying the behaviour of
sequential systems. States are formulated in terms of mathematical structures
like sets, relations and functions. State transitions are described as pre- and
post-conditions. Other formal methods such as CSP, Statecharts and Tempo-
ral Logic focus on specifying the behaviour of concurrent systems. States are
specified from simple domains like integers to sequences, trees or partial orders
of events.

All these methods use a mathematical concept of abstraction and composition.
This underlying approach is to describe the system or specify it in mathematical
terms, the output being the formal specification.

The process of specification involves writing down requirements precisely. The
main benefit of doing so is to acquire a deeper understanding of the system
being specified. Through this process, developers uncover design flaws, incon-
sistencies, ambiguities and incompleteness. The specification can be a useful
platform for communication between customer and designer, designer and im-
plementer.

In the next two sections, two key formal state-based methods are explained:
Z and Object-Z. The first section deals with Z, the second with Object-Z. Fu-



32 CHAPTER 4. FORMAL METHODS

sion/UML has much in common with Z and its extension Object-Z. The oper-
ation schema is one of the artefacts of the analysis task used in specifying the
system change of state triggered by the system operation. The change in the
system state is described in the style of Z and Object-Z, respectively.

4.2.1 Z

The formal specification Z [Spi92] was developed by the Programming Research
Group at Oxford. A Z specification normally defines a number of state and
operation schemata.

The Z notation is based on set theory and mathematical logic. Set theory
includes standard set operations, set comprehension, Cartesian products and
power sets. The mathematical logic is a first-order predicate calculus. This is
the mathematical language of Z.

Z is a strongly typed language. A type is an expression of a structured term,
which is either a given set name or a compound type built from simpler types
using one of a small number of type constructors. Each expression in a Z
specification has a unique type and each variable has a type that can be deduced
from its declaration. Each specification starts with objects that have no internal
structure of interest. These atomic objects are members of the basic types or
given sets of the specification. The basic type of Z is Z, whereas integer is only
a member of the basic type Z, defined in the mathematical toolkit of Z.

More complex objects are defined through basic types, composite types and
type constructors. Composite types are set types, Cartesian product types
and schema types. The type construct can be applied repeatedly to obtain
increasingly complex types with an increasingly complex structure.

The other aspect of Z is that the mathematical can be structured. Objects
and their properties can be expressed in terms of schemata: declaration and
constraints. The schema language is used to describe the changes in state of
the system and how such changes may alter. It can also describe the system
properties, e.g. invariants. There are different kinds of schemata: the state
schema, which describes the global state of the system and the system invari-
ants; the init schema, which defines the initial state of the system and operation
schemata. The schema calculus enables us to specify total operations.

An important part of the Z method is the standard library, called toolkit. In
the library, a set of basic operators of the set algebra, like relations, functions,
natural numbers and finiteness, sequence and bag, are defined.

4.2.2 Object-Z

Object-Z is an object-oriented extension of the formal specification language Z.
It makes use of many of Z’s features, including schema notation for defining
operations. [Smi00] writes: “In fact, Object-Z is a conservative extension of Z
in the sense, that all Z’s syntax and its associated semantics are also part of
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Object-Z. Therefore, any Z specification is also an Object-Z specification.” An
object-oriented enhancement of Z offers support for encapsulation, inheritance
and polymorphism, the paradigm of object orientation. As already mentioned
in the previous section, schemata and the schema calculus are very powerful
techniques for structuring and defining its own operations. One weakness of
the original Z is that there is no mechanism for splitting or modularizing large
specification into parts.

Object orientation offers a powerful mechanism for splitting the specification
into a number of interacting classes and objects. A specification in Object-Z
consists of a set of classes. Each class defines an interface, a class state and an
initialization, together with a number of operations that change the state.

There are different ways of structuring classes in specifications. One way is
inheritance. A class may inherit another class. This allows complex classes and
specifications to be built from simpler components in an iterative fashion. This
mechanism is used in schema inclusion at operation level (schema calculus).

The other way is instantiation. A class is a template for objects of that class.
It enables classes to reference objects of other classes as state variables. Poly-
morphism can be applied by instantiations by allowing objects of a subclass to
be substituted where an object of a superclass was expected.

A complete Object-Z specification includes a number of interacting class defi-
nitions. Apart from classes that define the behaviour of the specified system,
global type definitions, abbreviations and declarations can be introduced in the
same way as in Z.
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A general class definition has the following form[Smi00]:

ClassName[genericparameters]

visibility list
inherited classes
local type definitions
local constant definitions
state schema
initial state schema
operation schema

• visibility list explicitly lists those features that are visible to the objects
of the environment. Features can be classes, constants, state variables,
initial state schema and operations. If no visibility list is given, then all
features of that class are visible to its environment.

• inherited classes denote those classes that are inherited by the defining
class.

• type and constant definitions are type definitions and axiomatic defini-
tions. Because of the use of reference semantics for objects (variables
declared to be of a class type are considered to be actually (variable)
pointers to objects of the class), it is often the case that instances of sup-
plier classes are defined via pointer constants in the constant definition
part of an Object-Z class. In this case, the pointer constant serves as the
name for the modifiable object that is pointed to.

• state schema is an anonymous Z schema that declares the attributes and
state space of the class. These attributes may be of a class type.

• initial state schema defines a set of possible initial values for the attributes
of the class.

• operation schemata use the schema notation of Z to define state transitions
(denoted by dashed and undashed variables). However, a ∆− list is a list
of state variables that may be changed by the operation, and only these
variables. This means that all state variables that do not appear in the
∆− list remain unchanged.
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stack [T ]

max : N

max ≤ 100

items : seqT

#items ≤ max

INIT

items = 〈 〉

push
∆(items)
item? : T

#items < max
items ′ = 〈item?〉! items

pop
∆(items)
item! : T

#items %= 〈 〉
items = 〈item!〉! items ′

The class defines a constant max of type N. Max will never exceed 100. The
state schema has one state variable items, a sequence of type T and a class
invariant which ensures that the number of elements of the sequence will never
be more than max. The initial schema denotes that the initial stack has no
elements. Operation push inserts the input item? as the first element of the
existing sequence of items, but only if the number of elements of the sequence
do not exceed the maximum size of the sequence. The value of the state variable
items, denoted by ’, after the operation has been evaluated, is denoted by the
right side of the equation. The operation pop outputs the value of item!, defined
as the head of sequence items, and reduces the sequence items to their original
value, but only if the stack is not empty.

When a class is applied, the actual parameter N replaces the generic types, e.g.
stack [N].

In addition to replacing the generic parameter by actual types, attributes and
variables can be renamed as well. Renaming encompasses the whole class with
simultaneous substitution indicated by the list pairs: item to nat, item? to
nat? and item! to nat! :

stack [N][nat/item,nat?/item?,nat !/item!]

Renaming is mostly used in inheritance to allow attributes and variables to be
renamed in order to avoid name clashes.
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4.2.2.1 Object-Z Schema Calculus

The Object-Z schema calculus is like the calculus in Z. Using the calculus,
complex operations can be built systematically in an iterative manner. Object-
Z offers seven operation operators: conjunction ∧ , choice [] , sequential
composition o

9 , the parallel operator ‖ , enrichment • and hiding \@!.

When using the binary operators to combine two operations into a new oper-
ation, the usual rules of type compatibility are used to merge two declarations
into one. In addition, the ∆ − lists of the operations are merged so that the
new operation can change any variables that either of its two operations could
have changed.

INC

x , y : N

IncX
∆(x )

x ′ = x + 1

IncY
∆(y)

y ′ = y + 1

IncXY =̂ IncX ∧ IncY

The operation IncXY has the same effect as the operations IncX and IncY
performing at the same time. IncXY increments both x and y simultaneously.

Object-Z has three special operators, the Distributed Operators ∧, [] and o
9 .

They are based on the binary operators ∧ , [] and o
9 . Distributed operators

are very useful when specifying operators that involve an arbitrary number of
objects (cf. Appendix A).



Part II

Fusion/UML So Far
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Fusion [Cea94] is an object-oriented development method for producing soft-
ware. The method’s notation is based on the original Fusion Method, extended
and modified by [BK00] using UML [JBR98]. The method supports analysis,
design and implementation in the software development process. The software
developer is guided throughout the process, from analysis right through to im-
plementation. This involves developing several different models of the software
being built, which are partially transformed from one model to the next and
checked for consistency.

In the next two chapters, we describe the Fusion/UML method, the main sub-
ject of the thesis. The extensions made to this method are explained in part III.
The next two chapters describe the analysis and design processes, their models
and model elements and the consistency between the models.

In line with the common software development life cycle, Fusion/UML distin-
guishes between analysis, design and implementation. In this thesis, we focus
exclusively on analysis and design.
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Introduction to the
Fusion/UML Process

The goal of analysis from the user’s point of view is to understand and describe
the external behaviour consistencies. Contradictions should be detected and
eliminated. Implementation is not considered in this phase.

Analysis

Analysis models are described as follows:

• Classes of objects that cover the whole application context (Class Model)

• Requirement-relevant relationships between these classes

• Operations by which the user can communicate with the system (system
operation) and the reaction of the system to system operation (system
events). These steps could lead to a significant extension of the former
Class Model.

• Acceptable sequential order of these system operations and the reaction
of the system to them

At this point in development, Fusion does not look at system functions on the
level of class routines (methods) as other object-oriented development methods
do.

Design

The aim of design is to develop an abstract implementation concept for the
system operations identified in the analysis phase. These operations are trans-
formed in the runtime behaviour into interacting objects. To obtain the inter-
face definitions of classes, the reference structure of the modelled associations
and the inheritance structure have to be fixed.
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Implementation

The programmer’s task is to translate the design models into executable code
in a programming language. The Fusion method offers guidance on how to go
about this.

• Inheritance, referencing and class attributes are implemented in classes of
the chosen programming language.

• Object interactions become class methods.

• The accepted sequence of operations is realized by the runtime system of
the chosen programming language.

At the end of each modelling phase, Fusion offers a consistency test which
guarantees that none of the models is in conflict with another.

In addition to all the models for the different phases, Fusion has one model –
the Data Dictionary – which collects all model elements throughout the devel-
opment process.
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Chapter 5

Analysis

5.1 The Process and its Models

Analysis must be done stepwise, each step being connected to a characteristic
model. The goal is to find a comprehensive model of the problem domain,
and within this problem domain to find a solution henceforth referred to as
the System. Through systematic elicitation of user interaction, the boundary
between the System and its Environment is fixed. Analysis therefore results
in a static class model (application domain) and a dynamic interface model (a
specification of the system’s external behaviour).

Step 1: Objects and concepts within the problem domain are described in a
Class Model using the object-oriented Entity-Relationship Model for modelling
elements. It is a static-structure module.

Step 2: Communication on a high level of abstraction between the role of the
user and the system is specified using so-called UML use case diagrams. Here,
the function groups of the system are defined.

Steps 1 and 2 should not be executed in strict sequence because their views are
complementary and do not overlap.

Step 3: The use case is refined by means of scenarios taking the form of Timeline
diagrams. Timeline diagrams are notated as sequence diagrams in the UML
style. The modelling elements are system operations and system events. The
Use Case Model and the Timeline Model form the system interface.

Step 4: As a result of fixed user communication, the boundary between the
environment and the system inside the (static) Class Model can be specified.
The outcome is the System Class Model. This step implies the previous steps
(1, 2 and 3).

Step 5: All identified system operations are included in a global system be-
haviour. This is specified in a Life Cycle Model using regular expressions. All
system operations and events must be identified in this model. Steps 2 and 3
are prerequisites for this step.
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Step 6: The semantics of every single system operation are specified in the most
detailed manner possible using elements of predicate logic. This is specified in
a so-called operation schema. All of these form the Operation Model. This step
– the most important in the whole of the analysis phase – requires at least the
Timeline Model, the System Class Model and the Life Cycle Model.

Use Case Model, Timeline Model, Life Cycle Model and Operation Model form
the Interface Model.

The Data Dictionary is the central reference glossary in Fusion. Every identifier
that is a modelling element, e.g. classes, associations, attributes, roles, system
operations, system events, etc., are entered in the Data Dictionary, which in-
cludes the definition of each item. This ensures the semantic consistency of all
models – at least informally.

5.1.1 Analysis Models and their Notation

Existing documents of this kind are often ambiguous and probably inconsistent.
The aim of analysis is to work out a description of the system’s behaviour that
is clear, complete and free of contradiction.

A couple of models are created during analysis reflecting what the system should
do rather than what the system will do. This kind of approach can be explained
by the perspective user. Analysis thus has to deal with the system domain and
model the system according to the domain. The analysis phase produces two
models, which focus on and describe different aspects of the system:

• The Class Model defines the static structure of the domain (environment)
by describing relationships between classes, objects (subjects) and facts
that reflect the real world.

• The Interface Model defines input/output communication between the
environment and the system.

5.1.2 Data Dictionary

The Data Dictionary is used throughout the Fusion process. It consists of term
definitions (expressions and names) and concepts. The system is specified when
the definitions of all elements of all models are complete. The Data Dictionary
plays a key role in consistency and completeness checking of all models.

Name Kind Description Source
name of the en-
tries

class, system op-
eration, attribute,
etc.

informal descrip-
tion

all models in
which the name
appears

Figure 5.1: Structure of the Data Dictionary
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If necessary, new columns for specific kinds can be introduced. There is no
required format for the Data Dictionary, but the following requirements for
entries should hold:

• Definitions should have an unambiguous name so that they can be found
easily.

• Aliases should be avoided.

• Items should not occur more than once.

• No superfluous information should be entered in the Data Dictionary (e.g.
in the column description).

• The Data Dictionary should refer to those documents in which the ex-
plained items have been used.

During the analysis phase, all items of the Class Model and its Interface Models
should be gathered in the Data Dictionary. They include classes, associations,
attributes, system operations, event names, actors and expressions.

Example:

In the following example, some terms from the analysis are defined in the Data
Dictionary.

Name Kind Description Source
Bank class A bank consists of mul-

tiple accounts
Class Model, Sys-
tem Class Model,
etc.

open account system operation A customer opens a new
account at the bank

Timeline Model

account.number attribute account of the bank cus-
tomer

Class Model

transaction regular expression A transaction is either
through withdrawal or
selecting a bank state-
ment.

Life Cycle Model

5.1.3 The Class Model

The representation of the Class Model is based on the extended Entity-Relationship
Model [Che76] and the UML (Unified Modeling Language) [JBR98].

5.1.3.1 Objects and classes

An object is an abstraction of real things, concepts or complex issues (facts)
that exist in the context of solving problems. They have a clearly defined
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meaning. Each object must be clearly distinguishable from another. It has its
own identity, which is unchangeable.

Values can be associated with each object. These are elements of a fixed set
of types (e.g. integers, real numbers but also elements, which can themselves
be objects). According to Fusion, the strict typing with associated values is
insignificant. Later on in the design – and of course in the implementation
phase – they play an important role.

Attributes of an object must be fully declared in every model in which this ob-
ject holds. However, they can be screened out. UML uses the term suppressed,
meaning that one does not have to write them down in a diagram according to
the requested abstraction even though they are present. Several (nonidentical)
objects may have the same attributes and attribute values.

Other dynamic characteristics of the objects are modelled during design. The
graphical representation is extended (cf. Chapter 6).

The associated values of an object are identified by an unequivocal identifier, as
so-called attributes of the object. Attribute values are handled and changed by
their identifiers (which is why incorrect modelling usually causes the association
of the object identification to be taken as an attribute). Attribute identifiers
and the number of attributes cannot be changed.

A class is an abstraction of a number of homogeneous objects. A predicate be-
longs to each class. It defines the criteria for the class relationship of the objects.
This kind of implicit predicate constitutes the homogeneous behaviour, and thus
the class itself. Moreover, the similarity (of the identity) and dissimilarity are
definable for any two given objects of a class (with identical behaviour).

A class always has a name, and attributes can be defined for classes. This means
that all objects (or instances) of the same class must have the same attributes
(but not the same attribute values). The homogeneity (same behaviour or
semantics, respectively) of the objects of a class is based on statements of the
values of the same attributes and on statements of their relationships to other
objects.

According to Fusion, a class is graphically represented in the analysis as a rect-
angle with a horizontal separation. The modelling element for the classes of
UML is always planned for at least two horizontal separations. For method-
ological reasons, only one separation is allowed here because methods of a class
should not be modelled in the Fusion analysis. The upper part of the rectangle
contains the class name, which always begins with an upper-case letter. The
lower part contains a list of attribute names. Classes correspond to entities in
the Entity-Relationship Model.
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Figure 5.2: An example of a Class Model: Daisy-Soft

5.1.4 Associations and Links

In the real world, objects relate to each other, for example, Holds is a relation
between professors and their lectures. Such a relation is called a link and can be
mathematically modelled as an ordered tuple of objects. On the class level, such
relations are seen mathematically as relations, i.e. a set of tuples of objects. In
set theory, a relation is a partial set of the Cartesian product of the participating
classes (set). The same set can also appear in the product. The most frequent
case is the binary relation, which consists only of ordered pairs of objects from
two classes.

All object-oriented analysis and design methods model relations through as-
sociations between classes. The meaning of the modelling element association
transcends the mathematical term relation. Thus, all stages of the involved
classes are specially screened as to whether there are one or more tuples of ob-
jects that exist or do not exist as components (totality). This property means
that the specification of the association always implies that objects cannot be
in a relation to other objects, except where otherwise specified. As described
later on, association has further properties which also extend the narrow math-
ematical term of relation. A binary association is graphically represented as
a continuous line connecting two classes. Note that an association can also
connect a class with itself.

A ternary or higher-order association (a rare case) is represented as a rhombus
connected by lines with all the involved class symbols.
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An association can have a name, which is placed in the middle of the connect-
ing line or, in the case of a ternary association, close to the rhombus (cf. Fig.
2.7.). The name is a string of signs beginning with an upper-case letter, to
which a filled-in triangle is added to show the reading direction. An association
does not have to be named. It may also consist only of the classes and the
association line. The filled-in triangle is part of the name and does not imply a
specific direction of an association. Associations are static relations that cannot
represent an operational link between objects, like message passing or naviga-
tion. For this reason, they have no direction with respect to the mentioned
concepts. Associations between classes correspond to the relationships in the
Entity-Relationship Model.

5.1.5 Roles

Further properties can be specified for associations. Some properties are con-
nected with a role, which corresponds to the arity of the involved objects in the
mathematical relation. Graphically, the roles of an association are connected
with the ends of the unbroken line when they reach the involved classes. The
ends of the associations can have names. These names indicate the roles of the
classes in the association end. The names of the roles are in lower-case letters.

5.1.5.1 Multiplicity

An important specification of a Role fixes the area of the allowed cardinality
of class objects that are involved in an association. Expressions of multiplicity
do not have to be declared. Multiplicity indicates the exact or the maximum
number of objects that can be in a relation with an object at the other end (or
other ends) of the association. The following forms are possible:

• A number, e.g. 10 (exactly 10 objects can be related to all but one object
of the other classes and all objects together relate to any of the objects
of the other classes (totality)).

• An area, e.g. 1..4 (a minimum of one and a maximum of 4 objects relate
to each but one object of the other classes and all objects relate to any
of the objects of the other classes (totality)). An area, e.g. 0..1 (either
no object relates to the objects of the other classes or exactly one object
relates to each but one object of the other classes and all objects together
relate to any of the objects of the other classes (no totality)).

• The asterisk-symbol * stands for a non negative whole number (either
no object relates to objects of the other classes or any number of objects
relates to all but one object of the other classes and all of the objects relate
to any of the objects of the other classes (no totality). A asterisk symbol
can also be used as an upper limit of an area. The assigned value of the *
must not contradict the specification of the lower limit. 1..* means that
* can never have the value 0.
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• A list of areas separated by commas, e.g. 1..3, 5..7, 13..* (any number
of objects except 4, 8, 9, 10, 12 relate to all but one object of the other
classes and all objects relate to any of the objects of the other classes).

• If a multiplicity is not explicitly given, this means*

The figure shows a simple Class Model with multiplicity and association be-
tween the classes students, professors, lecture and instantiation (faculty). This
example expresses the following facts:

• Each institute is headed by one professor at the most.

• There is an institute that is not headed by a professor.

• There are professors that do not head an institute.

• Professors can give any number of courses or no courses at all.

• A course can be given by two professors at the most.

• There are courses that are not given by a professor.

• Every student has to enrol for a minimum of four and a maximum of six
courses.

• There are at least three students enrolled in each course.

Professsor Institute

Lecture Student

0..2 lecturer

lecture

course students

0..1

director

0..1
namename

subject

title name
student_id

3..*4..6 Enrolled 

Headed

*

H
olds

Figure 5.3: Multiplicity
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The multiplicity of an association can be specified in Z. This is illustrated by
two associations Headed and Enrolled.

Headed ": Professor ↔ Institute
∀ i : Institute • #{p : Professor | (p, i) ∈ Headed "} ≤ 1
∀ p : Professor • #{i : Institute | (p, i) ∈ Headed "} ≤ 1

#Enrolled : Courses ↔ Student
∀ s : Student • #{c : Course) | (c, s) ∈#Enrolled} ∈ 4..6
∀ cCourse • #{s : Student | (c, s) ∈#Enrolled} ≥ 3

5.1.5.2 Association classes

Like objects and classes an association can also have attributes. This makes
sense, if properties cannot be associated to any of the classes involved with the
association. If, for example, one considers the association writes between the
classes student and test, one can assign the attribute mark, which indicates the
mark given to a student in a particular test. The attribute mark cannot be an
attribute of the class student (a student usually writes more than one test) or
an attribute of the class test, because a test is written by several students.

The rectangle, which is connected with the association line by a dotted line, has
the same name as the association (optional) and has attributes. It is analogously
chosen as a normal class symbol, but it only becomes significant when combined
with the association line.

The arity indicates the number of classes of a particular association. So far, we
have examined only binary associations, but tenary or unary associations are
possible. By way of an example, let us look at the class room in the association
writes, which indicates the room where the test was written.

5.1.5.3 Aggregation and Composition

A very important and often used property of an association role is Aggrega-
tion. The specification of Aggregation, graphically represented by a small empty
rhombus, can only occur at one role of an association at the most and distin-
guishes this role as an aggregate. This design is used as a means for structuring
the Class Model at points where one wishes to express a close relationship of
single objects (components) to an aggregated object. Thus, associations with
an aggregation specification are also considered as part of a whole or part of
relations, which the aggregation’s role unsymmetrically distinguishes as a whole
and the rest of the involved objects as parts. If an association provided with
the aggregation specification has no further attributes, the association name
is often omitted because the part of a relation describes the semantics quite
sufficiently. In the general form of aggregation, it is possible for a component
to be part of more than one aggregate (shared aggregation).
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The special case of component objects only being connected in a part-whole
relation to exactly one aggregated object (container) is termed composition
(unshared aggregation). Furthermore, composition components can no longer
exist as their aggregates are also called compositions. The multiplicity of the
composition role is 1. There are several possible representations for composi-
tion:

• Normally, the composition role of the aggregate is represented by a filled-
in rhombus at the end of the particular association that connects the
aggregate with its components. If all of these associations are undeclared
or equally declared, the association lines can be wholly or partly com-
bined from the aggregate to the particular component. In all other cases,
separated association lines should be used because of the unequivocal co-
ordination.

• The close relationship between the components and their aggregate be-
comes more obvious by using the nesting of components together with the
relations between them in the rectangle, which indicates the composition.
Generally, the association lines in this case are drawn from the edge of the
aggregate inwards to the components. The lines can also be omitted. The
decoration of the redundant associations (role names, multiplicity, etc.)
can be transferred: in the class symbol, the role name is written as an
attribute name and the class name as a type indicator. The multiplicity
is written in the upper right-hand corner.

• The modelling of the components as regular attributes of the composition
goes a step further. But in this case all possible relations between the
components within the other representations have to be suppressed. In
this representation, the information is lost. If a coarser model is required,
this representation should be chosen.

5.1.5.4 Types

A type is the specification of a behaviour of elements by declaring type names,
typed attributes, functions and their semantics, expressed in a strictly formal
language, e.g. by axioms as equations or in a semiformal notation like UML.
All elements corresponding to a type specification define the carrier set of the
type.

In the object-oriented world, a type is implemented by a class. One can say
that the instantiations of this implementation class are of the implemented
type or have the implemented type. Moreover, this implementation class can
be an abstract class in the sense of the programmed language, e.g. its state
cannot be created as objects. Implementation classes can also be concrete
classes depending on the programming language, or further steps are needed to
concretize their realization. The above-used term implementation should not
be understood merely as a translation into a computer language.
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We now turn to instantiations of implementation classes, regardless of whether
such instantiations are abstract (not applicable to the computer) or concrete
(applicable to the computer as objects).

Fig 5.6 shows that the algebraically specified types Stack and Queue are im-
plemented by the same implementation class Stack or Queue. An instantiation
of Stack or Queue therefore has either the type Stack or the type Queue. One
reason for implementing several types using the very same implementation class
is to transfer both type structures using the same implementation type. In our
case, Stack[G] and Queue[G] can also be represented by the (also algebraically
specifiable) type Sequence[G]. Stack and queue only differ from each other in
that one can add (push) or remove (pop and top) elements to/from the stack
at the same end of the sequence (LIFO, Last In First Out), whereas one can
add (put) elements to the queue at one end of the sequence and remove them
at the other end of the sequence (remove, item)(LIFO, Last In First Out).

types
Stack[G]

functions
push: Stack[G] × G → Stack[G]
pop: Stack[G] .→ Stack[G]
top: Stack[G] .→ G
emptys: Stack[G] → Boolean
news: Stack[G]

axioms
∀ x : G , s : Stack [G ]

top (push(s,x)) = x
pop (push(s,x)) = s
emptys (news) = true
¬ emptys (push (s,x)) = true

preconditon
pre (pop(s)) = ¬ emptys(s)
pre (top(s)) = ¬ emptys(s)

Figure 5.4: Algebraic specification of the type Stack

G is therefore an optional unspecified type, which is used as a formal type
parameter of stack that can be renewed by an optional type. This principle is
called genericity, type specification using unbound formal parameters (not to
be confused with generalization (cf. Section 5.1.5.5 ). Stack[G] → Stack[G] is
a total function in which each element of Stack[G] is possible as the domain.
Stack[G] .→ Stack[G] is a partial function in which not all of the elements of
Stack[G] are possible as the domain of the function. In our case, the empty
Stack/empty Queue are not domains, a fact that is additionally indicated by
the preconditions.

In UML, implementation classes can be denoted by using the stereotype



5.1. THE PROCESS AND ITS MODELS 55

types
Queue[G]

functions
put: Queue[G] x G → Queue[G]
remove: Queue[G] .→ Queue[G]
item: Queue[G] .→ G
emptyq: Queue[G] → Boolean
newq: Queue[G]

axioms
∀ x : G , q : Queue[G ]

item (put(q,x)) = if emptyq(q) then x else item(q) fi
remove (put(q,x)) = if emptyq(q) then q else put(remove(q),x) fi
emptyq (newq) = true
¬ emptyq (put(q,x)) = true

preconditon
pre (remove(q)) = ¬ emptyq(q)
pre (item(q)) = ¬ emptyq(q)

Figure 5.5: Algebraic specification of type Queue

<<Implementation class>> in front of the class name. According to UML,
stereotypes are additionally introduced modelling elements, denoted by <<>>,
each of which shows great similarity to the already defined modelling elements,
which most likely differ in terms of their limitations. Thus, an <<Implementation
class>> behaves like a class of which no real objects need exist in the execution
model. If one can be certain that there are no such limitations, the stereo-
type <<Implementation class>> corresponds to the modelling element class.
Our implementation class Stack or Queue has an attribute element of the type
Sequence [G].

Relations can exist between types. For example, a type (supertype) can spec-
ify a partial behaviour of another type (subtype). This relation can thus be
mapped onto the corresponding implementation class of supertype and sub-
type as a generalization/specialization relation (Gen/Spec relation). Fusion
generally assumes that an implementation class comforms to only one type
specification, which is implemented by this class. To this extent, type and im-
plementation class can be identified by their use. Thus, in the analysis of Fusion
there is no notational distinction between type and class (i.e. types cannot be
presented yet; UML has extended presentations). Classes can therefore always
be interpreted as types. Additionally, type and class names can be used to
specify attributes versus classes as elements of a type. Attributes are either
stated by an elementary type (i.e. by Standard Definition Boolean, Integer,
String, etc.) or by a class type. In Fusion, it is not necessary to explicitly type
an attribute during analysis.
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<< Implementation Class>>
Stack_or_Queue

elements: Sequence[G]

push
pop 
top
news
put
remove
item
newq

Figure 5.6: Implementation class: Stack or Queue

5.1.5.5 Generalization and Specialization

The Gen/Spec relation for classes already introduced in the previous section is
graphically represented by a triangle connecting the supertype (represented by
its implementation class) with the subtype (represented by its implementation
class) or each subtype separately with the supertype. The figure also shows
that each undergraduate studies element and each advanced studies element
has an attribute title besides the specified attributes. One can say that objects
of the subtypes inherit the attribute title. The semantics of the Gen/Spec-
relation states that each undergraduate studies object behaves like a lecture
object. The Gen/Spec relation is often termed (or rather misinterpreted) as
an is-a relation (with respect to the super type). It is often mistaken as a set
inclusion and should rather be called a behaves-like relation. The specialization
of a super type by a subtype can be restricted to additional specifications (in
this case, constraints) of the Gen/Spec relation.

Course

Undergraduate

title

{complete}

Graduate

specialsubject

Figure 5.7: Gen/Spec Relation
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Permitted restrictions are:

• complete
The modelling process is finished; no additional subtypes can be modelled
at a later stage of the software development process.

• incomplete
The modelling process is unfinished because additional subtypes could be
added at a later stage of the software development process.

The constraint specification is annotated beside the Gen/Spec triangle in curled
brackets.

Notes:

1. The Gen/Spec relation is a relation between types or classes. It is not an
association that is instantiated by links between objects.

2. A subtype (subclass) can be in a Gen/Spec relation to several supertypes
(superclasses). Thus, each object of the subtype inherits properties of
several superclasses. This process is called multiple generalization. The
opposite process – a class becoming a subclass of various super classes –
is called multiple specialization.

5.1.6 Use Case Model

The starting point for all further modelling is the Use Case Model. Other
object-oriented methods also use this kind of argument. Use Case Analysis
thus often precedes the real analysis as a specific step in the modelling process.

In the Use Case Model, the system-external roles (actors) and their functional
behaviour (communication) towards the system are identified. Conversely, the
attempt is made to identify, define and, if necessary, structure the mutual re-
lations of the functional groups (use cases) of the system with regard to their
individual roles. Often the Use Case Model is used to structure the behaviour
of the system via processes, a process not necessarily being only one operation
sequence. A use case is defined as a number of action sequences. Sequences are
actions that follow one another in time. They will later be precisely defined
as scenarios in the Timeline Model. Action sequences of the same use case
can – but need not – relate to each other. However, a use case is not process
modelling in the classical sense. The criterion for the definition of use cases is
a conceptual behaviour scope towards functional scenarios.

On the one hand, use cases are defined as being behaviourally independent of
one another. On the other hand, their behaviour is related via three possi-
ble kinds of relations. The Gen/Spec relation between two use cases defines a
common dynamic behaviour of their super use case. Specialized use cases con-
cretize (realize) the common behaviour by making several distinctions without
a conceptual extension of this common behaviour towards the actors.
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Sale

Petrol Goods Service

Figure 5.8: Use case – Gen/Spec relation

Use Cases only describe it exactly, i.e.

The Gen/Spec relation between use cases is closely analogous to the Class
Model. An <<include>> relation between use case A and B (A<<include>>B)
expresses that the behaviour of A cannot be modelled without the behaviour of
B; A presupposes B. B never appears by itself, i.e. there is no direct relation to
an actor. This dependence is denoted by a dashed arrow. It is used wherever a
behaviour A is significantly extended towards a behaviour B. An <<extend>>

relation between use case B and use case A (B<<extend>>A) is a dependence
that specifies the extension of the behaviour of A only in particularly well-
defined cases.

The modelling presupposes the declaration of the cases by extension points in
A. In general, the entire semantics of A partly presupposes the behaviour of B.

The use case modelling focuses on the communication behaviour of the system
(or parts of it) with the environment. This modelling does not explicitly relate
to the Class Model of the system on this level of abstraction. Class modelling
and use case modelling are global views of the system that are independent
of each other. Since actors correspond to the stakeholders in requirements
analysis, the use case reflects different domain areas and requirements.

The Use Case Model as a global diagram takes the following form:

A use case is represented as an ellipse and has a name. Actors can communi-
cate with one or more use cases, indicated by a straight line (no communication
direction). All use cases are located within the system represented by a rect-
angle with an (optional) name. Use cases as a limited behaviour of the system
can communicate with an actor. The retrieval of use cases is an abstraction
step that derives from a real scenario and combines with it to form a united
behaviour. Conversely, every use case can be instantiated in the course of
additional refinements by different scenarios. In exactly the same way, it is
abstracted from concrete human or other instantiations (persons, hardware or
software components, etc.) by introducing the actors symbol. It is important
to note that actor instantiations are located outside the system.

5.1.7 Timeline Model

Scenarios of use cases are specified in detail by Timeline diagrams. They serve
as a reminder that the definition of use cases is the accumulation of a set of
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Daisy-Soft

Update Information

Extension point
Train incident

Train Control

<<extend>>

Driver

MCS

InformationBoard
Initialization of train

Finalization of train

Figure 5.9: Daisy Soft: Use Case Model

action sequences. All possible action sequences of each use case of the Use
Case Model are systematically identified and specified. An action sequence is
expressed by a scenario. In Fusion/UML, each scenario is realized by a Timeline
diagram. Timeline diagrams are so called because they model communication
events within a certain time frame.

Active communication events that derive from actors are called system opera-
tions (or input events). System reactions that are directed towards the actor
are called (output) events. The communicative interplay between actor and
system is within time, or to be more precise: an exact or relative moment is not
modelled but is rather a temporal before/after sequence. Timeline diagrams
can be seen as reduced sequence diagrams of UML, here without a time scale.

A Timeline diagram consists of vertical lifelines, which are associated with any
involved actor or the system in the scenario. The availability of any actual
instantiation in time is indicated by the lifelines (the time running vertically
from top to bottom). Arrowed lines from the actor instantiation to the system
represent system operations, which are declared with their name and additional
details, e.g. arguments or parameters.

Arguments of system operations and events are concrete values in the case
of scenarios and must be suitably declared. Arguments of system operations
are declared values from the application context (whose structuring cannot
be presumed to be OO). Arguments of events, on the other hand, are values
of object attributes because of the object-oriented structure of the system.
Since no concrete object instantiations have been specified so far, in the case
of the arguments one can follow the same rules as for the actor or the system
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instantiation: anonymous class instantiation is used on the argument’s position:

• If object attribute values are used, the Class Model (and the Data Dic-
tionary) must contain these attributes in the matching classes.

• All actors as classes must relate in an association relation to at least one
other class belonging to the system (consistency rule between Timeline
Model and System Class Model).

In the same way, system events are represented by continuous arrowed lines from
the system to the actors instantiation. Here too, as in the system operations,
arguments can be given to the names. Actor instantiations and the system are
objects (starting with actor classes and the system class, respectively) according
to the syntax and the semantics of UML. They are represented as rectangles in
which the instantiation is anonymously denoted by:

:actorname
:systemname

This kind of notation, as in UML, must be briefly explained: actorname and
systemname are class stereotypes (classifiers) in UML. They correspond to ab-
stractions of instantiations with the same behaviour (in the case of classes with
the classtype; in the case of the actor, with the communication semantics). In-
stantiation is denoted in UML by underlining the abstract element from which
the instantiation is formed. :actorname is an anonymous instantiation of this
abstraction.

5.1.8 System Class Model

The System Class Model is a partial model of the Class Model. It is graphically
denoted as the interior of an area of a Class Model, enclosed by dotted lines
(cf. A.4). It models the system with all the system-internal classes as part of
an entire system environment.

Provided that actors, system operations and system events are already mod-
elled, it is relatively easy to implement classes and associations of the Class
Model belonging to the system (corresponding to use cases) or located outside
the system (corresponding to actors). System operations might require addi-
tional extension of the System Class Model. The two main reasons for such
extension are:

• Partners in the communication between actor and system. At this point,
one should already think about each system operation and which object
in the interior of the system can be the communication partner of the
actor and initiate the system operation (input event). If such a matching
partner is not available, a corresponding internal object must be modelled
and the System Class Model possibly extended by a new class (in one of
the next models the communication partners are called controllers).
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Figure 5.10: A System Class Model

• Actor attributes. The actor can correspond not only by sending an event
but also by means of additionally typed communications attributes (later
called parameters of the system operation). Since system operations as
parameters are components of the system, the parameter types can be
basic types. Otherwise, they must also be specified by class definition in
the system if they do not yet exist in the Class Model (to differentiate
parameters from system objects, cf. 5.1.10).

The System Class Model is a well-formed Class Model. Thus, the association
that exists between the classes inside and outside the System Class Model is
automatically outside the System Class Model and no longer relevant to the
system. In general, the limits of the System Class Model should be tightly
drawn:

• All classes needed for modelling the behaviour of an actor that do not
model the communication with the system are outside the System Class
Model.

• All classes that are not directly necessary for realizing the semantics of
the System Class Model are deleted as redundant from the System Class
Model.
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5.1.9 Life Cycle Model

The Timeline diagram describes an action sequence, which represents a commu-
nication scenario of one or more actors with the system. The Life Cycle Model,
on the other hand, represents a globally running scenario of the system. Actors
do not explicitly appear in this model, but all system operations and system
events without explicit parameters do. These are the two basic modelling ele-
ments. The expressive strength of this model also rests on additional modelling
elements for representing repetitive runs, parallelism, alternatives and composi-
tion. In this way, the Life Cycle Model describes the whole application process,
which in general can be rather complex. Therefore, one obviously needs to in-
troduce structuring elements (so-called abbreviation expressions) to master the
complexity of the overall process. We have discussed this analogously in the
section 5.1.3.

An abbreviation expression is also the specification of a partial process, whereas
here, unlike to the Timeline diagram, this partial process is realized as part of
the whole. Ignoring this context is one of the most frequent mistakes made in
designing the Life Cycle Model. For example, if partial processes were intro-
duced by abbreviation expressions on the highest abstraction level:

P = A | B | C
A, B and C define alternative paths. These run from a starting point to the
finishing point of the system and can never be combined.

An example of a Life Cycle Model:

Lifecycle DAISY-Soft = (Initialize train journey; train journey*;
Finalize train journey ||Update information)*

Initialize train journey = establish train; #infos established

Train journey = Train leaves station; (Arrives at station |
Train has stopped)

Train leaves station = leave station; #info updated

Arrives at station = arrive at station; #info updated

Train has stopped = train stopped; #info updated;continue journey;
#info updated; arrive at station; #info updated

Finalize train journey = remove train;#train is removed

Update information = deliver new infos; #infos delivered
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5.1.10 Operation Model

So far, we have defined the static environment of the problem using the Class
Model. The first step towards solving the problem involves modelling the dy-
namic behaviour of the problem with respect to its environment by means of
use cases and Timeline diagrams. From this dynamic view of the problem so-
lution, a modification and limitation of the static Class Model to the System
Class Model is derived. This leads us to the next step in modelling. Naturally,
this step is an extension of the dynamic view, but now mapped to the statisti-
cal object structures of the system, which are provided entirely by the System
Class Model.

The Operation Model consists of the specifications of all changes of the system
state, each of which is caused by one system operation. The system state is
therefore defined as the state of all system objects in the form of attribute
assignments and the relations between the objects in the form of links. A
change in the system’s state is defined as a change in the state of the system
objects and/or a change in the relations (links) between them. In addition, all
reactions of the system are specified by the operation schema in the form of
events that are triggered by the system operation. This kind of specification of
a system operation is called an operation schema.

Operation schemata exclusively define the effect of changes of state in the form
of predicates. There are no means of expression for controlling them or temporal
runs that show how and when the effect emerges. In the operation schemata,
initialization procedures of the overall system are not taken into account because
they are, at this point in the analysis, not relevant to the dynamics of the
system. A system operation can cause the following changes of state:

• Existing objects change their state by changing their attribute values.

• Objects as instantiations of classes are created or deleted.

• Links as instantiations of associations are created or deleted between ob-
jects.

• Attribute values of links can change themselves.

This means:

• The system is regarded as consisting of instantiations of classes (objects)
and instantiations of associations (links).

• Objects and links are either persistent or transient; they either belong to
the topology of the system or are movable data of a dynamic process.

In an operation schema, the change of state is described by the declaration of
pre- and postconditions. In this way, it is generally referred to as the precondi-
tion in the form of extensive case differentations.
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With regard to the Operation Model, the following statements have to be
made in general. A system operation is run by concrete (i.e. created and
therefore identifiable) objects. It can create them as an effect ({new}), delete
them ({delete}) or in the course of the execution create and later delete them
({transient}). Such effects can be annotated in the schema but not specified.
The objects and attributes that can be accessed by a system operation are
called variables. Attributes are values that are needed for the specification of
the system operation and are not associated with an existing object or attribute.
They are always of a certain type, which does not need to be declared because
it always results from the context. Arguments and variables together form the
state of the operation. The postcondition therefore specifies a change of state.

The general form of an operation schema for system operation sysopi is:

Operation = sysopi

Description = . . .
Input = i1 : I1, . . . , in : In
Reads = r1 : R1 with PR1 , . . . , rk : Rk with PRk

Changes = c1 : C1 with PC1 , . . . , cl : Cl with PCl

Sends = : A1 : {s1}, . . . , : Am : {sm}
Pre = Ppre

Post = Ppost

The parts of an operation schema are:

• The name of the system operation starting with the keyword Operation.

• The verbal description starting with the keyword Description.

• The part starting with the keyword Input contains the arguments of the
system operation. Arguments are communication attributes that are de-
clared by the actor as additional information for the system operation
and therefore delivered to the system by the environment. The types of
the argument values (if they are specified at all) are either basic types, of
which the specification is generally predefined (like number, text, etc.),
or class types, which are declared in the System Class Model (i.e. within
the limits of the system).

• The part starting with the keyword Reads contains all objects, links and
attributes (of objects and links) that belong to the definition of the precon-
dition of the operation. The operation can reference their values without
changing them.

• The part starting with the keyword Changes contains all objects, links
and attributes that can possibly change the operation. A special case
is the identification of an object of the implementation class of its type
by declaring a selection condition: Type name with condition. In the
list of the objects and links, the specific manner of the status change
can – but must not – be declared by creating (new), deleting (delete) or
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the declaration of a lifetime during the system operation (transient) by
declaring the keyword behind the object or link identifier.

• The events triggered as a reaction of the system to this operation are
listed under the keyword Sends, the receiver being declared as the name
of the actor. System events are the only modelling elements by means
of which the information flow (output value) can be modelled from the
system to the actor. System events are atomic in their purest form.

• The predicate of the operation is placed after the keyword Pre. Accord-
ing to the following principle of design (design by contract), the user
environment of the system operation must meet the precondition if the
postcondition is valid. Conversely, if the precondition is not valid the
postcondition does not need to be true: If a party to a contract vio-
lates the contract conditions, the other party need not fulfil the contract
conditions, i.e. if the environment violates the contract (meets the pre-
condition), the operation need not fulfil the contract either. The aim of
the Fusion/UML method for specifying system operations is to enhance
robustness by already modelling all possible reactions of the system in
the Timeline diagrams, which must therefore be shown as effects in the
postcondition of the operation schemata. This normally makes the system
operation applicable without any further precondition. In other words,
the precondition is the weakest possible one and is therefore true and de-
fault. In this case, the pre-part can be missing. Generally, the pragmatic
rule is applicable because the formulation of the pre-part should be as
independent as possible from different special application contexts. Only
those conditions should be acknowledged that are always valid and relate
to the modelled system status. Preconditions also contain cases, which
result from the mathematical design, to formulate the postcondition.

• The part starting with the keyword Post specifies the effect of the system
operation by change of state and system events. This can only be made
possible by a predicate, in which values of the precondition are related
to values of the postconditon status. Normally, the predicate consists of
case differentiations in the form of implications, which are combined by
conjunction. The syntax of the predicates is based on the formal specifica-
tion languages Z and Object-Z. Thus, attribute values of the postcondition
states are marked with ’ after the name. All possible postcondition states
of the operation are given by value reservation of object or link attributes.
The post-predicate can be evaluated as true.

This example of an operation schema is taken from the Case Study DAISY-Soft:
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Operation = leave station
Rational = When the train leaves the station all arrival times of all train infos of all

subsequent stations will be updated.
Input = train, line
Reads = act : Station with first(t .position) = act

On line,Succ
l : Line with l .number = line

Changes = t : Train with t .train no = train,
At display ,Traininfo

Sends = : Driver : {info updated}
Pre = true
Post = t .position ′ = (act ,Succ(act))

is sent {info updated} ∧
(∀ s : Station | (s, l) ∈ On line
s.dist act − act .dist start > 0 ∧ (s, act) %∈ Succ •
info.train no′ = train ∧

(∃ i : Traininfo | (i , start) ∈ At display ′ ∧
i .train no = train •

i .arrivaltime ′ = s.dist − act .dist start + sojourn))
(∃ s : Station | (s, l) ∈ On line ∧ (s, act) ∈ Succ •

(∃ i : Traininfo | (i , l .startterminal) ∈ At display ′ ∧
i .train no = train •

i .arrivaltime ′ = s.dist − act .dist start))

An operation schema in Fusion is an arranged sequence of tagged values. Their
tags are denoted keywords and their values can be expressed by semiformal
specification languages. Regarding the kinds of diagrams used in UML, an
operation schema is an additional specification of the already modelled system
operation in the Timeline diagram. Such additional element properties can be
attached to a modelling element by commentary (free text), limitations (formal
or semiformal languages) or marked values (tagged values). In this case, the
whole operation schema is attached to any system operation of the Timeline
diagram as a sequence of tagged values. In the UML notation, this is done by
putting the operation schema in curled brackets.

5.2 Consistency Check

In this section, we do not look in detail at the consistency check between model
elements of a model and between models themselves. We refer to a degree
thesis [Böh02] supervised by the Software Engineering research group at the
TU Berlin.

The two aspects of analysis model checking are consistency and completeness.

• Completeness
A model is complete when it captures a meaningful abstraction in the
domain. Completeness is a concept which is quite hard to fulfil in the
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software development process. At what time an iterative analysis process
should end, is a decision that must be made by someone involved in this
process, e.g. the analyst. There is only one way to check completeness
and that is against requirements.

• Consistency
Models are consistent when they do not contradict each other. This means
that the modelling elements that are used in a model and that occur again
in another model must retain the same meaning and may, at most, be
semantically extended. It also means that the use of specific modelling
elements in a (previous) model enforces the use of submodels or modelling
elements in another (subsequent) model. Ideally, a uniform, consistent
semantic model should be sought for all models. One approach is to
introduce a data dictionary valid for all models, in which all modelled
elements must occur and be checked for consistency.
They should not contradict each other either implicitly or explicitly. Ex-
plicit inconsistency is shown in the Data Dictionary. Implicit inconsis-
tency in a model is hard to find unless a semantical model of this model
exists. In Fusion, the semantics of the analysis models are defined but
informally (cf. Appendix B).

Examples of simple consistency checks are:

• For each use case at least one Timeline diagram must exist. This is
an example of enforcing the use of the modelling element of a Timeline
diagram, which comes from a definition of a use case of the previous Use
Case Model.

• All classes, associations and attributes used in the Operation Model must
appear in the System Class Model. All predicates must be defined in the
Data Dictionary. However, this does not rule out the addition of further
attributes in the Operation Model, which must, of course, be consistent
with the already existing ones.

• The boundary of the System Class Model is consistent with that of the
Use Case Model. All actors defined in the Use Case Model must appear
in the System Class Model and Timeline Model.

• All system operations and their system events in the Timeline Model must
appear in the Life Cycle Model.

• Each system operation in the Life Cycle Model has a corresponding op-
eration schema.

• All identifiers in all models have entries in the Data Dictionary

• The output of events of the Life Cycle Model and Operation Model must
be consistent. The schema for a system operation must generate the
output events (system events) that are modelled in the Timeline scenarios.





Chapter 6

Design

In the design phase we are looking at the models built during the analysis phase
and design a system that has the behaviour described in these models.

6.1 The Process and its Models

As pointed out in the previous chapter, the aim of the object-oriented design
process is to develop an abstract implementation concept for the system that has
been specified by the analysis. During the analysis the system’s functionality
is considered and specified almost exclusively from the global point of view
of the user. In the operation model, too, which represents the most detailed
specification of the analysis, effects are represented exclusively by changes of
state on the already identified objects. There are no statements made in which
dynamic runs are responsible for these change of states. The task design is to
model these dynamics completely.

The advantage of all object-oriented methods (including Fusion/UML) is that
they can be used on the basis of already existing static analysis models, which
are enriched with additional information without invalidating the analysis mod-
els.

The aim of Fusion design is to give an abstract description of class interfaces.
It is also desirable to establish the reference structure between objects as far as
possible.

Throughout the system development process all models developed so far are
valid and necessary for the overall understanding of the problem domain. Each
model deliberately emphasizes certain aspects and suppresses others.

During system evolution, then, all models must be continously developed and
their mutual consistency ensured.

The design is limited by semantics of the specified partial functionality, which
cannot be modelled without the semantics of a concrete programming language.
Only during implementation is an (abstract or concrete) algorithm design possi-
ble, which can lead to a execution model of the system. The first step in design
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is the formulation of one object-interaction graph for each system operation
or operation schema. For this purpose, the information of the corresponding
operation schema is used. An object-interaction graph is a dynamic model
that models the communication between the objects of the operation schema
by named message passing. This method enables interfaces to be partly fixed
between classes of the objects used in the operation schema.

In the second step, all client-server relations between the classes of the system
are derived from the object-interaction graph. The direction of the message
passing is therefore decisive. The reference of a client to its server(s) is also
termed the visibility of the server. In most cases, the reference of a relation
between client and server can be expressed by a client attribute in the class
description. There are other cases in which the client-server relation is short
lived. Therefore it can only be decided during implementation whether or not
the corresponding reference is included in the class interface.

In such cases, the principle of the postponed decision does not require the
creation of a premature implementation binding through modelling as client
class attribute. The referencing model established in this second step is realized
in UML by annotated class diagrams. Constraints or tagged values are used
for this purpose. In the third step, one can now establish a Class Interface
description. It remains incomplete:

• Only the complete implementation provide a complete interface descrip-
tion.

• The class relations can be extended by inheritance properties.

The latter always applies if common features can be factored out of the inter-
faces of two or more classes. Besides, one may have to decide if the already
modelled Gen/Spec relations of the analysis can be transformed into inheritance
relations between class interfaces. In the fourth step, this can be achieved by
extension of the Class Interface description. The central Data Dictionary has
to be updated during design, too, by the inclusion of new modelling elements
or annotations etc..

6.1.1 Object Interaction Model

This first model of the Fusion design is the key specification of the structure and
behaviour of all system operations. The model therefore consists of individual
object interaction graphs. In other words, for each of the defined system op-
erations there is exactly one corresponding object interaction graph (i.e. there
is a one-to-one relationship between system operations and object interaction
graphs).

The structure of a system operation has already been prepared in the opera-
tion schemata of the analysis. The objects of the system operation that have
been determined in the Reads and Changes parts can be written down and
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complemented by the links derived from the System Class model (they follow
from of the associations modelled!) there. This structural specification of an
object interaction graph is called collaboration, following UML. It determines
precisely all the objects a system operation needs to achieve its effects.

The next step is the modelling of the behaviour of the operation, which can only
be executed by annotation on the collaboration. The behaviour is expressed
by specifying as completely as possible (but in an implementation-dependent
manner) the decentral flow of control, which is triggered by an external actor
using the system operation.

In Fusion, as in UML, the basic elements of the control flow are called Messages,
which are sent from one object to another. They are directed and can only flow
along the links modelled in the collaboration. A message is represented as an
arrow between the source and target object, parallel to the existing link. The
arrow is labelled with the exact specification of the message. This specification
contains as its most important element the name of the procedure that calls the
source object and which is later implemented in the target object. The message
flow can be structured using classical structuring elements of the flow of control
such as sequence, iteration and hierarchy. The flow of control that matches
a collaboration is called interaction, following UML. The structure of the col-
laboration guarantees that it contains exactly those objects that are needed to
specify the process that is triggered by the call of the system operation. For
this purpose, the call of the system operation is regarded as a message between
an actor and an exclusive object of the collaboration. This exclusive object is
called a controller, unlike all the other objects of the collaboration are called
collaborators.

:Object1

Controller

Collaborator
systemoperation

:Object2

:Actor

Client Server

:Object3

2:m
essage

Client

Server

Collaborator

[Guard]1:message

3:send_to{Meldung}

Figure 6.1: Object interaction graph

Once the controller and the arguments of a system operation call have been
determined, the process triggered by this call has to be further specified. In
Fusion, it is assumed that each process consists only of sequences of messages
that are triggered one after another. More precisely: the effect, namely the
termination of the call of a procedure of an previous message triggers the fol-
lowing message. Such a sequence is called message flow. It is terminated by the
termination of its last procedure call. The corresponding message specifications
are numbered in ascending order by natural numbers. This number precedes
the message name and is separated from it by ”:”
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Each procedure call can trigger a new message flow, whose termination is the
precondition for its own termination. Such a sub-message flow is labelled in the
same way with sequence numbers, but it is preceded by the sequence number
of the triggering message in decimal notation.

The transmission of a message can depend on a condition i.e. the interpretation
of the condition as true/false is the precondition for the procedure call. If
the condition is interpreted as false, the specified message is considered to be
terminated and the next message in the message flow is evaluated. The repeated
evaluation of a message expression can also be specified.

In this case, the corresponding procedure call, together with all subsequences, is
iterated until a termination condition is fullfilled. The objects that were newly
created or deleted by the system operation or are transient and were annotated
in the operation schema by new etc., can be marked after the object name with
new etc. The corresponding procedure call for creating a new object is create.

6.1.2 The Reference Model

When establishing the object interaction graph, it has so far been assumed that
all objects can, in principle, send each other messages. The property by which
a client object can send a message to a server object is called referencing of the
server by the client. The unlimited referencing is, however, limited by the fact
that it requires links.

All the objects of the object interaction model are checked to determine the
role they play in the collaborations: clients or servers or both. A graph is now
established for each client. Its basic structure consists of the client itself, the
corresponding servers and the existing links between them. For this modelling,
no elements are used that specify the behaviour (e.g. message flows). This
model can therefore be implemented again on the abstract level of classes and
associations. As further annotations of this graph, four additional attributes
play a role (modelled by tagged values or constraints):

1. The reference lifetime, keyword reference; the attribute specifies whether
a reference of the client to its server exists only during the procedure call
or for a shorter time; in this case the attribute is dynamic – or longer, for
example during the whole lifetime of the client – in this case the attribute
is permanent. The annotation is attached to the client role of the existing
association.

2. Mutability, keyword mutability. The attribute specifies whether the
referencing remains unchanged during the whole lifetime of the client or
whether it changes. The latter is the case if server objects are newly
generated. The annotation is attached to the association between client
and server.

3. The visibility of the server, keyword visibility. The attribute specifies
whether only one (exclusive) or more (shared) clients have access to the
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server. The annotation is attached to the server class.

4. If a client object can refer to more than one server object of the same
class, this can be expressed explicitly by a specification at the server role
of the association by the keyword col.

Client Server

{reference= permanent/dynamic}

{visibility = exclusive/shared}
{mutability = variable//constant}

{col}

Figure 6.2: Example of a reference graph

6.1.3 Class Interface Model

The class interface brings together the properties of the system determined
during design by providing a linear textual description for each class of the
system: the referencing interface of the class. It contains information about
names and types of the class attributes and about names and parameterization
of procedures. In addition, during specializations between classes and mod-
elled generalizations analysis will be taken into account or rejected and new
generalizations may be introduced. The following elements and properties are
considered:

• All classes, which appear in the collaborations of the design or in the
System Class Model.

• All attributes of a class

• All methods of a class and its parameter

• The type of the attributes either data type or type of the attribute-
implementation class in the case of a permanent reference

• Composition relations between aggregates and constituting components
These relations are called bindings. They have the value bound, if com-
posed or unbound if not composed. Default is unbound.

• Mutability of a reference, default is var.

• The use of a referenced server class viewed from the client class (visibility),
it conforms with the visibility of the server. Default is shared

The following are not modelled in the Class Interface:

• The reference lifetime dynamic, because this depends on the actual way
a procedure is implemented.
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• All properties of the message flow; they can only be taken into account by
concrete implementation of the algorithms in a programming language.

It is therefore clear that not only the class interface but also all models of the
design and the analysis phases form the basis for the implementation.

class Bank\\
attribute name:Text\\
attribute account: col exclusive account\\
methode open_account(customer:customername)\\
method ...\\
method ...\\
endclass Bank\\

6.1.4 Inheritance Graph

A first version of the class interfaces, initially lacks Gen/Spec relations. They
can be added according to two different criteria:

1. Gen/Spec relations already existing in the Class model are examined to
determine whether it makes sense both attributes and methods of the
super class to be inherited.

2. A comparison of the class interfaces may indicate that not only common
attributes of classes but also common methods can be “factored out”.
There must not necessarily be a meaningful super type/sub type relation
in terms of the problem. Introducing additional Inheritance is generally a
software engineering decision for optimizing the system implementation.

Saving Business 

Account
name
no.

interests transfer

Figure 6.3: Example of an Inheritance graph

Newly acquired inheritance structures are specified as behaves-like relations
between the newly acquired super types (class) and sub types (class).

class Saving behaves_like Account\\
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attribute ...\\
attribute ...\\
method charge_interests()\\
..\\
endclass Saving\\

class Giro behaves_like Account\\
attribute ...\\
attribute ...\\
method credit_transfere()\\
method withdraw_standing order()\\
...\\
endclass Giro\\

6.2 Consistency Check

Consistency of the design models are checks against models of the analysis
phase. We will only present the most important ones. For more and detailled
consistency check we refer to a master thesis [Böh02] done at TU Berlin.

• Object Interaction Model: Each class of the System class model should be
represented in at least one object interaction graph.
Functional effect of each object interaction graph should be checked that
satisfies the specification of the system operation given in the Operation
Model. This an example for the need of a unified semantical model for
operation scheme and object interaction graph (cf. Section 8.2).

• Reference Model : For each association on the System class model there
has to be a path of visibility for the correspondent class of the reference
graph.
Exclusive objects must not be referenced by more than one class.

• Class Interface Model: There must be checks to ensure that all methods
and parameters from the Object Interaction Model, all data attributes
from the System Class Model and all class attributes from the reference
model are recorded.

• Inheritance graph: Check whether superclass and subclass(es) are entered
in the Class Interface Description.





Part III

The Extensions of
Fusion/UML
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In the next two chapters, the changes to the Fusion/UML process and its new
modelling elements and the consistency checks are explained.
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Chapter 7

Enhancement – Determining
Requirements

To develop software is to build a system by describing it. On a general level,
the relationship between a software system and its environment is clear. The
system is introduced to have an effect. Part of the environment will affect
the system and be affected by its application domain. Here, the customer
can judge whether the development has fulfilled its intended purpose. The
distinction between the application domain and the system is the key to the
much-cited distinction between WHAT AND HOW [Dav93]. WHAT the system
does is to be found in the application domain, while the HOW is the system
itself. The problem is in the application domain, and the system is the solution.
Development methods claim to offer an analysis of the problem, when in fact
they merely offer an outline of a solution, leaving the problem unexplored and
unexplained. The requirements are located in the application domain; that is
where the problem is and nowhere else.

Michael Jackson writes in [Jac95]: “A problem is characterized less by the na-
ture of the machine you will build than by the structure and the properties
of the application domain and your customer’s requirements in the application
domain. Any software development needs many descriptions. The complexity
of most software problems does not allow one to think about the whole prob-
lem at once. You need to find a way of separating the problem in parts, called
separation of concerns. Which means concentrating on a partial problem and
leave the rest for later. The outcome of such separation are partial descrip-
tions. The art of separation is to find the right abstraction and partitioning.
Descriptions are the external visible medium of thought. If you understand how
descriptions work, and how one description differs from another, you can use
this understanding to improve your techniques for thinking about problems.”

In the previous chapter, the method with its process, models, the consistency
between model elements and between models and the heuristics were described
in detail, except for those parts that extend this method. In this chapter a
detailed description of the requirements determination is given. The process of

81



82 CHAPTER 7. ENHANCEMENT – DETERMINING REQUIREMENTS

determination is illustrated by an example that has already been introduced to
describe the method in the previous chapter.

The extraction of requirements both from the domain and for the system are
explained in the next section. The classification of requirements and the types of
requirements are explained. This is followed by a discussion of how to formalize
requirements formally where possible. In the last section of this chapter, the
determination process and the impact on those models of FusionB , the Use Case
Model and the Domain Class Model are described. Furthermore, the linking of
requirements and tracing is explained.

7.1 The Process of Determining Requirements

FusionB does not begin with the first activity of the requirements engineer-
ing process, requirements elicitation (cf. Section 3) but expects a problem
description in which several domains of the application field are described in
naturally language. A typical problem description should contain static in-
formation as well as dynamic aspects. It should provide information on the
environment/domains as well as information/requirements regarding the sys-
tem itself. Apart from the problem description, information on the application
domain can come from other sources e.g. the analyst’s knowledge. Such in-
formation should be marked so that it can always be identified if required. It
should be possible to trace the sources of information at all times.

The aim of the requirements determination process is to analyze the problem
description for requirements in order to obtain a better understanding of the
system to be built and the environment in which it will be run. The objective is
to find, extract and classify requirements and to identify possible actors who will
interact with the system. These may be human beings, hardware or software
systems. This activity should lead to a rethinking of the system’s feasibility
as well as of the system itself. Once requirements have been found and ex-
tracted, they should be checked for inconsistency, incompleteness, redundancy
and ambiguity.

As the development process [Som01] continues, new requirements may and will
arise. Already defined requirements may have to be abandoned or modified. All
these changes have to be checked and documented in the requirements docu-
mentation as well as in the Data Dictionary. All subsequent models of the pro-
cess should be checked against the requirements. The output of requirements
determination is the requirements definition. Davis [Dav93] makes a distinc-
tion between requirements definition and requirements specification. Whereas
definition is a high-level abstract description of requirements, specification is a
more detailed description of what the system should do, i.e. the software spec-
ification, which is presented in the next chapter. To demonstrate the process
of requirements determination we use the DAISY-Soft case study. DAISY-Soft
can be found in the Appendix A.
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Domain Knowledge

Problem Description

Requirements 
Description System Models

Figure 7.1: The Requirements Determination process

7.2 Extracting Requirements from the Problem De-
scription

The very first thing to do is to read the problem description carefully. It
should be structured in such a way that it is easy to identify all domains of the
application domain that are involved, directly or indirectly, with the problem
to be solved. Thus, everything that is important for the requirements must
occur in some part of the application domain.

A domain can be thought of as a separate world inhabited by its own concep-
tual entities or objects. We distinguish between two domains: the application
domain – the environment – and the system domain. The application domain
lies where the customer’s requirements are, the system domain is where the
solution of the problem is by interacting in some way with the application do-
main. One can think of the application domain as what is given, and of the
system domain as what has to be constructed.

Figure 7.2: Application domain

There are two different kinds of domain areas:

Dynamic domains are those where things can happen and change. Anything
that affects the state of the system domain from outside is dynamic.

Static domains are those where no changes occur. These are mostly those
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domains that neither interact with the system nor are part of the system itself.

Figure 7.3: Static and dynamic domains in the application domain

7.2.1 Defining Domains

The aim of this activity is to define different domains that are directly or in-
directly involved in the system. One could argue that the indirect areas are
of no interest for the system. However, as has already been stated, in order
to capture the requirements and obtain an understanding of the problem to be
solved, it is necessary to have information about the domains. And it is also
important to have this knowledge for the subsequent analysis steps, e.g. for
tracing or system validation. The problem description is the main source for
extracting information on different domains from the application domain. An
example of how to define the domains is given in the next section.

Example: Problem Description of DAISY-Soft

DAISY-Soft treats the two directions of an Underground line as two separate
lines. It must have knowledge of the topology of the respective underground
line. A line as a software structure consists of a directed sequence of stations
with two unique stations, namely the start-terminal and the terminus. Lines
and Stations are objects with well-defined attributes, like the name of the sta-
tion. Moreover, the relationship between the stations and lines must be designed
in such a way that each can in turn have attributes. Each line should be seen as
a separate line, independent of all the other lines. Each line has its own track,
which is not used by any other lines.
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The driver is responsible for stopping and restarting the train at the stations,
and is also responsible for opening and closing the train doors.

DAISY-Soft must also take into account that each train will be placed on the
track by the Monitor Control System (MCS ). Specific information on the posi-
tion of the train on the track and its state must be recorded. Finally, for each
station train information must be administered. The Train-info contains an
identification of the train as well as its position and expected arrival time.

The administration of Train-info includes

• the generation of new info when the MCS establishes a train

• the deletion of info when the train leaves a station or reaches the terminus

• the updating of all info on the subsequent stations when a train leaves a
station

If a train stops unexpectedly, all preceding trains are treated normally. All the
following trains are given special treatment. Instead of the arrival times being
displayed, a change has to be made in the form of a special announcement like
“irregular train traffic” on the train-infos.

Every clock at the underground station is updated by a central clock ensuring
that all clocks show the same time.

At regular intervals, the station’s Information Board fetches the train info from
the system.

DAISY-Soft is not responsible for coding of the Information Board – it merely
supplies the information – or for correcting or changing timetables, avoiding
collisions, dealing with disasters or the like. Nor is it responsible for providing
train informations in a specific order.

7.2.1.1 Identifying Relevant Domain Areas in the Application Do-
main

The first step is to identify all domains of the application domain, including the
system domain. The system domain is a subset of the application domain.

In the case of Daisy, we have the following domains in the application domain:

• Monitor Control System (MCS)

• Driver

• Information Board

• Underground

• Clock

• Train
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• Line

• TrainInfo

• Station

In our case the system domain consists of subsets of domains of Train, Line,
Station and TrainInfo. The next step is to classify all identified domains into
static and dynamic domains.

MCS, Driver and Information Board are dynamic domains, whereas Clock and
Underground are static domains. Train, Line, Station and TrainInfo are also
dynamic domains. Dynamic domain areas are those that belong to the optative
moods. The static domains are the indicative moods (cf. Chapter 3).

After naming the different domain areas which are part of the application do-
main. The entry identifier of the requirement template is a combination of the
abbreviation of the domain (first two characters) and a unique number. It is
easy to identify domain requirements by their identifier.

7.2.2 Extracting Requirements

The next step is to extract the requirements of the domain area from the prob-
lem description. Having done that, we then look for the system requirements.
Next, we find and note the statements for which the system is not responsible.
This gives us the freedom to design the next models of the process. One does
not start questioning during the developing process whether those informations
should be part of system or not. Whenever possible, requirements should be
expressed in a formally descriptive way. When all the requirements have been
collected, classified and formally described, the requirements definition should
be revisited to see if they are all correct. In the very first instantiation of re-
quirements determination, it is important to extract as much information from
the problem description as possible. Still, in the ongoing analysis process, new
requirements emerge. With the very first models of the method, e.g. the Use
Cases Model, Class Model and Timeline model, greater changes in the require-
ment’s definition are likely.

7.2.2.1 Example: Extracting Requirements from the Domains

Domain: MCS

1. Provides train number and line number when train is established at the
start-terminal of the line.

2. Establish train at start-terminal of that line.

3. MCS stops train on track in case of emergency and informs driver of that
train.
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4. Removes train at terminus when all passengers have left the train.

5. Removes train and informs the driver of the train.

6. After an interruption the driver gets informed that journey of train can
continue on this line.

Domain: Driver

1. Continues journey after regular stop at station.

2. Stops and continues journey of train on track (in communication with the
MCS).

3. MSC given the permission to continue journey between two stations.

4. Makes announcements on the train during journey.

5. Opens and closes train doors while train stops at or between stations.

Domain: Information Board

1. Has limited space for information on the Information Board.

2. Asks for train information from DAISY-Soft at regular intervals.

3. Updates train information on the Information Board at certain intervals.

Domain: Clock

1. Continuously updates the time at Station, Train, MCS and Information
Board.

7.2.2.2 Extracting System Requirements from the System Domain

1. The system must treat the two directions of an underground line as two
separate lines.

2. The system must treat two stations (start-terminal and terminus) as spe-
cial stations on the line.

3. The system must know that all stations following the start-terminal on
the line are the subsequent stations of that line.

4. The system must treat the start-terminal differently to the subsequent
stations, when train leaves the station.

5. The system shall update train information for all subsequent stations on
the line when train leaves the station.
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6. The system shall delete train information when train has been removed
at terminus (and only then).

7. The system shall generate special information for the subsequent stations
when train has been stopped between two stations.

8. The system shall update the train information for all subsequent stations
when train leaves the station.

9. Once the Information Board of the station has collected the information
from the system, the system shall delete this information.

7.2.2.3 Non-Responsible Statements

It is as important to define for what the system is not responsible, as it is to
define for what the system is responsible. We call this the Non-Responsible
Statement. The requirements it contains are not system requirements but
they can be and are important for the system [Som01].

1. All train numbers are unique and are generated by the MCS.

2. All line numbers are unique and are generated by the MCS.

3. The timetable of trains is controlled by the MCS.

4. DAISY-Soft is responsible for neither the information boards nor the
timetable.

5. DAISY-Soft is not responsible for the correct timetable of trains.

6. DAISY-Soft is not responsible for train collisions or any other disasters.

7.2.3 Classify Extracted Requirements and the Non-responsible
Statements

When the requirements have been extracted from their domains, system do-
main and the non responsible statements, each requirement should be classified
according to its domain and type. Such classifications help to identify classes
of requirements.

7.2.3.1 Types

In this section, the set of types of requirements is described and defined. At
this stage of development we do not consider any non-functional requirements.
There are three different types of requirements:

Definition: Fact
are requirements of the environment that describe the precondition of the ap-
plication domain and thus of the system. They express things that are always
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true of the domain, regardless of the implementation of the software system. A
fact can either be a constraint or an assumption. Facts are the general expres-
sion of environmental requirements, which can have a direct or indirect effect
on the system to be built.

Example:

Requirement of domain Information Board :
Has limited space for information on the Information Board is of the type Fact
because it is a piece of information that does not have a direct impact on the
system.

Definition: Constraint
are requirements of the environment that describe the application domain and
have an direct impact on the system. The system must respond directly to the
constraints.

Example:

Requirement of domain MCS : MCS stops train on track in case of emergency
and informs Driver of that train is of the type constraint because the system
has to react by generating new information with a special announcement. The
corresponding system requirement to this requirement is: The system must
generate special information for the subsequent stations when train has been
stopped between two stations.

Definition: System
are those requirements that describe the functionality of the system to be built.

Example:

The system must have knowledge of the topology of the respective underground
line. This requirement expresses this knowledge of an underground line and
describes a line as a software structure.

The system must treat the two directions of an underground line as two separate
lines.

7.2.3.2 Non-responsible Statements

The non-responsible statements are not requirements of the system.

Definition: Non-Responsible Statements
are statements for which the system is not responsible. They are therefore not
part of the system but describe a certain kind of property of the application
domain. Non-Responsible Statements can be identified and thus classified by
their domains.

Example:

A non-responsible statement of Daisy-Soft:

All train numbers are unique and are generated by the MCS.
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7.3 Describing Requirements in a More Formal Way

Whenever it is possible to describe requirements in a more formal way, as a
formal statement, this should be done. One must know that not all requirements
can be described formally. The entry of the requirements definition template
Formal is therefore optional.

Definition: Formal Statement gives a formal description of a term that
may be used by other models of the method, e.g. Operation Model, Formal
Description.

Describing requirements as a formal statement at this early stage of software
development has its advantages for the models later on in the process, e.g.
The Operation Model and Formal Description. We use the Z notation 1 or
predicate logic to express formal statements of a requirement. Both models,
Operation Model and Formal Description, use the same language as the formal
statement. As the formal statements are suitable as environment invariants
and class invariants for the Formal Description, the inclusion of the formal
statements is easier than if the language for formal statement were different
from the language of the Formal Description. In the case of different languages,
matching the expression of formal statement would need checking before the
expression could be integrated into the Formal Description.

Examples of requirements which are described as a formal statement:

Example of a domain requirement

Requirement MCS 1: MCS provides a train number and line number when
train is established at the start-terminal.

∀ trains : Train, l : Line | ∃ t : trains • (t , l) ∈ established

Example of a system requirement

Requirement Sys 1: The system must treat the two directions of an under-
ground line as two separate lines.

∃ undergound line : Line ↔ Line | first(underground line) %= second(underground line)

A requirement for which a formal statement is not adequate:

A requirement should not be expressed in a formal way when it is either a
qualitative statement or a non-responsible statement.

For example, the requirement Has limited space for information on the Infor-
mation Board has no effect on the system. When we look at the non-responsible
statement: DAISY-Soft is not responsible for train collisions or any other dis-
asters, it is important to know who will be in charge if a disaster occurs, but it
is of no relevance for understanding of the system.

1Object-Z is an extension of Z; we could also say we use Object-Z.
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7.4 Linking Requirements to Models of the Method

Linking requirements to the system models increases the traceability of the sys-
tem. The explicit link between the requirements and the models makes it easier
to cross check models and associated requirements. The Data Dictionary is the
repository that keeps records of the requirements and all modelling elements
of the models throughout the software development process. Each requirement
must be recorded in the Data Dictionary, e.g.

Name Kind Description Source
MCS 1 Requirement The Monitor Control

System must deliver a
train and line number

Requirements
Description, Use
Case Model,
Domain Class
Model, etc.

Besides the Data Dictionary, the Use Case Model and the Domain Class Model
are artefacts for gluing requirements to the modelling elements. In the Use
Case Model, these modelling elements are the use cases and actors (cf. Figure
7.4). Requirements are attached to the use case and actors as tagged values
(cf. Figure 7.1).

System

UC1

UC2

Ac2Ac1

Figure 7.4: Use Case

UC1 UC2
Ac1 Req 3, Req 4 Req 5
Ac2 Req 1, Req 2

Table 7.1: Requirement links

The Use Case Model may be the first model in the method where requirements
are checked for consistency. In the Domain Class Model, the modelling elements
for linking requirements are the classes. The Domain Class Model describes the
static view of the application domain, where besides the requirements also the
non-responsible statements also are listed in the corresponding classes. To
link requirements in the Domain Class Model, a third compartment of the
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modelling element class is extended for identification of the requirements (cf.
Figure 7.5).

class name

attributes

requirements-id

Figure 7.5: Compartment extension of a class for linking requirements

Here is an example of how the requirements are glued to the classes of the
Domain Class Model (cf. Figure 7.6).

attributes

 

Ac1

Re_3

Figure 7.6: Example: Linking requirements in a Class

A complete example of linking requirements to other models of the method can
be found in Appendix A.

7.5 Requirements Description

The result of the requirements determination process is the Requirements De-
scription. It is a collection of all requirements and non-responsible statements
of the system and its environment. This document should be consistent with
the entries of the Data Dictionary.

The complete requirements for the system consist of the system requirements
and the domain requirements:

Requirements = system requirements ∪ domain requirements

Requirements Description = non-responsible statements ∪ requirements

Req-Id = Identifier
Type = Type
Rational = Textual description
Formal = Formal statement, this field is optional
Links = List of links to other models for tracing

Figure 7.7: A requirement template
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Req-Id = MCS 1
Type = Fact
Rational = MCS provides a unique train number and a unique line number

when train is established at the start-terminal.
Formal = ∀ trains : Train, lines : Line | ∃ t : trains, l : lines • (t , l) ∈

established
Links = Domain Class Model, Use Case Model

Figure 7.8: Example of a domain requirement

Req-Id = Sys 2
Type = System
Rational = The system must treat two stations (start-terminal and terminus)

as special stations on the line
Formal = ∃ s1 : Station, sn : Station, l : Line • l .start − terminal = s1 ∧

l .terminus = sn
Links = Use Case Model, Domain Class Model

Figure 7.9: Example of a system requirement

Req-Id = Non-resp Identifier
Rational = Textual description
Domain = Domain

Figure 7.10: A non-responsible template
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Req-Id = Non resp01
Rational = The trains timetable of is controlled by the MCS system
Domain = MCS system

Figure 7.11: Example of a non-responsible statement

The templates shown here contain only the most important entries for man-
aging requirements. An expanded template with more entries can be found in
Appendix C. This requirements template is designed for a tool, where certain
entries are made automatically.



Chapter 8

Enhancement — Towards
Formal Specification

In this chapter, we describe an additional step that goes further in providing
consistency for the developed design: systematic translation of the two main
results of the process, the Operation Model and the Object Interaction Model,
into the formal specification language Object-Z [DR00, Smi00, BK03]. This
additional step is intended to form a fruitful transition from the “soft” to the
“hard” side of software engineering. We gain two things from this additional
translation. Firstly, we should note that the operation model represents a much
rougher view of the system, in that it models the entire system using just one
global state, whereas the object interaction model splits up the functionality as
well as the state into the scopes of various system classes. Hence, the object
interaction model can be seen as a refinement of the operation model. However,
since we are using the formal language Object-Z, for which a well-defined refine-
ment exists [DB01], this refinement can be formally verified. Secondly, as we
derive a formal specification from the semi formal UML design constructed by
the Fusion process, we can use Object-Z refinement again to extend consistency
checking beyond the design process: any implementation of the Class Interface
Model must again be a refinement of the derived Object-Z specification.

8.1 The Process

We use a simple example, asavings account, to demonstrate the process. A
more complex example is given in Appendix A.

As an example of a system class model of a very simple savings account, consider
the diagram shown in Figure 8.1.

The System Class Model finalizes the static analysis of the system. As a fi-
nal result for the dynamic part, the information gathered in the Use Case
Model, Timeline Model and Life Cycle Model is combined into the Operation
Model. The Operation Model consists of a set of operation schemata. Opera-

95
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Customer 1
1

Bank

bankcode

1
∗

System

Card

no
1 Has 1 Account

balance

Figure 8.1: System Class Model for savings account

tion schemata are, although in their particular incarnation novel to the UML,
merely a composition of UML tagged values. The values tagged together are:
Name, Description, Inputs, Reads, Changes, Sends, Precondition and Postcondi-
tion. In other words, an operation schema contains the operation’s name, its
informal description and inputs. Furthermore, such a schema defines the ob-
jects and associations from which the operation reads and on which it writes,
further specifying concrete conditions on those objects using a with-clause fol-
lowed by a formal condition in Z. The pre- and postconditions tagged with an
operation schema may define formal conditions about the operation using Z as
a logical language. The formulas defined here may range over all values within
the bound of the current operation schema.

For example, the operation model for the bank system contains a system oper-
ation that enables a customer to pay into his/her account.
Operation = deposit
Description = A customer pays an amount into his/her account.
Input = amnt : N, acc : N
Reads = c : Card with c.no = acc,Has
Changes = a : Account with (c, a) ∈ Has
Sends = : Customer : {trans ok}
Pre = true
Post = a.balance ′ = a.balance + amnt ∧

is sent {trans ok}

The system needs the amount and the account number as inputs. In order to
deposit the amount into the right account, the appropriate card must be read
and the corresponding account is changed. The changes to the balance are
expressed in the postcondition of the operation schema. As a system event, a
message is sent to the customer to inform him/her about the successful trans-
action.

To withdraw an amount from an account, the corresponding system operation
withdraw must first check whether the balance in the account for this card is
sufficient. The transaction may be carried out only if the amount to be with-
drawn does not not exceed the balance in the account, otherwise the balance is
not changed and a corresponding message is sent to the customer.
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Operation = withdraw
Description = A customer wishes to withdraw an amount from his/her account. If the

balance in the account is sufficient, the amount is paid out.
Input = amnt : N, acc : N
Reads = c : Card with c.nr = acc,Has
Changes = a : Account with (c, a) ∈ Has
Sends = : Customer : {trans ok}, {too much}
Pre = true
Post = (a.balance − amnt ≥ 1 ⇒

a.balance ′ = a.balance − amnt ∧ is sent {trans ok}) ∧
(a.balance − amnt < 1 ⇒

a.balance ′ = a.balance ∧ is sent {too much})

The design must be consistent with the analysis. In particular, for all system
operations defined during the analysis, the Object Interaction Model must de-
fine object interaction graphs describing the execution of the system operation
on the objects in the system. To this end, the object interaction graphs in-
troduce new operations: the graphs are UML collaborations, defining message
flows in a sequential order using numbers. The object interaction starts from
an actor executing the system operation as a message to an object called the
controller of that system operation. The controller delegates the initial system
operation to so-called collaborators, objects of the system that are associated
to the controller. Here delegation may be introduced: the initial task initiated
by the controller can likewise be deferred by the collaborators to other objects
they are associated to, thereby creating submessage flows. For the sake of con-
sistency, it must be checked that all objects corresponding with each other are
connected in the System Class Model by associations. Alongside the objects,
UML annotations with { } may be used to describe the selection of this partic-
ular object or to annotate pre- or postconditions for the method calls contained
in the messages.

The object interaction graph of the operation deposit is shown in Figure 8.2. An

:Customer

deposit(amnt, acc)
!

c : Card

{c.nr = acc ∧
(c, a) ∈ Has}

1 : add(amnt)
!

a : Account

{balance ′=balance+amnt}
2: send to{trans ok}

"

Figure 8.2: Object interaction for deposit

additional feature of object interactions is conditional branching. It is enabled
using guards. This is illustrated in Figure 8.3 where the operation withdraw is
described by its object interaction. Other typical cases of object interactions are
sequential composition of message flows, delegation, and messages to collections
of objects. We illustrate these when defining the translation process in Section
8.2.2.
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:Customer

withdraw(amnt, acc)
!

c : Card

{c.no = acc ∧
(c, a) ∈ Has}

1 : b = check(amnt)

[b] 2 : reduce(amnt)

!
a : Account

{b =(balance−amnt≥1) ∧
b⇒ balance ′=balance−amnt}[b] 3: send to{trans ok}

[¬ b] 4: send to{too much}

"

Figure 8.3: Object interaction for withdraw

8.2 Schematic Translation into Object-Z

8.2.1 Operation Model

We begin by outlining how the translation works, and then go on to present a
formal translation schema.

All system operations of the operation Model are placed as Object-Z operation
schemata in one Object-Z class, called System.

Separate classes (data structures) are declared for all objects of the Reads and
Changes parts. All attributes of the declared classes are defined in the state
schema of the respective class. The precise content of these classes is later
derived when translating the object interactions in the second step.

Declarations of objects in the Reads and Changes parts are transformed into
local declarations of the state schema of the class System.

The content of the sends parts becomes the output parameters of the corre-
sponding operation schemata of System.

Pre- and postconditions are translated one-to-one into the predicate parts of
the corresponding Object-Z operation schemata of System.

The Inputs of the system operations become input parameters of the operation
schemata.

Generally speaking, an operation schema for the system operation sysopi has
the following form:

Operation = sysopi

Description = . . .
Input = i1 : I1, . . . , in : In
Reads = r1 : R1 with PR1 , . . . , rk : Rk with PRk

Changes = c1 : C1 with PC1 , . . . , cl : Cl with PCl

Sends = : A1 : {s1}, . . . , : Am : {sm}
Pre = Ppre

Post = Ppost

The variables Px are predicates that may contain all local variables, the inputs
ij , the reads and changes rj and cj , and the messages sj . The general transla-
tion method for the Operation Model produces one class SystemA, whose state
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schema entails sets of objects of all reads and changes declarations for all system
operations. The dots indicate where additional system operations may add to
the state. Class SystemA contains one operation schema for each system op-
eration. In one step of translation, the above operation schema produces the
following portion of the system class.

SystemA

rs1 : P R1, . . . rsk : P Rk

cs1 : P C1, . . . csl : P Cl
...

sysopi

∆(cs1, . . . , csn)
i1? : I1, . . . , in? : In
m! : Report

∃ r1 : rs1, . . . rk : rsk , c1 : cs1, . . . cl : csl •
PR1 ∧ . . . ∧ PRk ∧
PC1 ∧ . . . ∧ PCl ∧
Ppre ∧
Ppost [m! = si/is sent (si)]

Note that the is sent parts are replaced by corresponding Object-Z definitions
of output parameter m! for each message sj .

Each object listed in the reads and send part is translated into a class (ab-
stract data structures). These classes are complemented by methods in the
next translation period.

Cl

co1 : Co1
...
con : Con

8.2.2 Object Interaction Model

In this section, we define the translation of the Object Interaction Model into
Object-Z using a formal description of the possible cases of collaborations such
as occur in object interaction graphs. Compared to the Object-Z representation
of the Operation Model, the translation of the Object Interaction Model has
a refined class structure: the system operations are now distributed to the
controller classes rather than being contained in the system class.
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Method calls of the messages in the object interactions contribute as new oper-
ation schemata to the classes that resulted from the Reads and Changes parts
in the previous step.

An object of a collection must be created through a schema. The creation is
expressed by a local declaration of the object. The nonexistence of the object
in the aggregate is expressed by the existential operator and is added with the
union operator to the aggregate (cf. Section A.9.1).

Deletion of an object of a collection must be done through a schema. The
deletion is expressed by a local declaration of the object. The existence of
object is expressed by the existential operator and the proof that the object
exists in the aggregate and is removed by the hide operator of the aggregate
(cf. Section A.9.1)1

The structure of the invocation given by the messages is incarnated into oper-
ation definitions in the schema calculus of Object-Z residing in the controller
classes.

The distribution of methods to classes is guided by the direction of the arrows
above the messages of the object interaction: the arrow points towards the
server class, so the server must provide the corresponding method.

The following translation rules must be applied in combination in order to
provide a complete translation of a design. Additional features, like attributes,
contained in the System Class Model must be added to the state schema in
a final pass of the translation process. Relations in the system class of the
Operation Model are translated into class references or links in the Object-Z
specification of the respective class.

Internal Methods with Parameters

In cases where the newly defined method calls act with parameter passing (cf.
Figure 8.4), we represent these parameters in the translation by the concept of
input and output variables of Object-Z.

:Actor

sysop(x0)
!

:Controller

{P}

1 : y = Op(x)
!

c : Col

{Q}
2: send to{message}

"

Figure 8.4: Method calls and parameterization

The class Controller representing the controller has a reference to an instance
c of the collaborator class. The system operation sysop resides in the controller
class, but is implemented using the method Op of the server class Col. The input

1Note: It should be emphasized that Object-Z does not address the creation or destruction
of objects per se: it is asserted that objects always exist [DR00].
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x0 to the system operation may already contain the input x to the new method
Op. However, new input parameters may also be specified in conditions P or Q .
Nevertheless, the inputs and outputs may be simply translated using the scope
enrichment of Object-Z, because parameters with identical names are matched
and differing parameters are unified according to the naming conventions in
Object-Z.

The tagged condition P , containing a with clause used as a selection condition,
and possibly pre- and postconditions for the delegated method, is represented
by a predicate in an Object-Z scope enrichment of sysop.

Controller

c : Col

sysop =̂ [∆(c) x0? : Type(x0),m! : Report |
P [self /s] ∧ m! = message] • c.Op

The notation Type indicates that the translation contains the actual type of
the parameters. Although we use single variables here, the general case of
several inputs and outputs is captured as well, as their types may be unified
in one product type. The Object-Z element self denoting this instance of class
Controller must replace the named object representing the actual controller of
the interaction.

The message message sent to the actor is added as an additional output param-
eter m!, defined as an enumeration type

Report ::= message | . . .

the dots indicating that this message type is dynamically extended by mes-
sages representing system events during the translation process. To be able
to incorporate the Fusion message passing into the Object-Z representation, a
further dummy class Actor is added to the specification. Although not part
of the system classes it is relevant for modelling the communication with the
environment.

Actor

s : Controller

sysop =̂ s.sysop

Finally, the class Col contains an op-schema representing the operation Op.
Parameter passing is straightforwardly mapped to the input and output vari-
ables of Object-Z, inputs being indicated by ? and outputs by ! . The tagged
condition Q , specifying conditions on the selection of the collaborator object
and the parameters, is added as the predicate of the op-schema.
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Col

Op
x? : Type(x)
y ! : Type(y)

Q [self /c]

Conditional Control Flow

A very important case of an object interaction is where the message flow is
conditional on the Boolean result of a first message, as depicted in Figure 8.5.
In terms of the state, the translation resembles the sequential composition.

:Actor

sysop(x0)
!

s:Controller

{P}

1 : b = Op1(x)

[b] 2 : Op2(y)

!
c : Col

{Q}
[b] 3: send to{ok msg}

[¬ b] 4: send to{nok msg}

"

Figure 8.5: Conditional control flow

However, to define the system operation in the controller class, we first define
two separate functions for the two cases that are combined using the schema
calculus.

Controller

c : Col

sysop ok =̂ [∆(c), x? : Type(x0), b? : B |
b? ∧ P [self /s] ∧ m! = ok msg ] • c.Op2

sysop nok =̂ [x? : Type(x0), b? : B | ¬b? ∧ P [self /s] ∧ m! = nok msg ]
sysop =̂ c.Op1

o
9 (sysop ok [] sysop nok)

Sequential Composition

The next typical case of an object interaction is a sequence of method calls from
the same controller to a number of collaborators (cf. Figure 8.6).

This sequentially composed system operation can be modelled using the se-
quential composition operator of Object-Z’s schema calculus. We have already
integrated the translation step from the previous section, i.e. the parameter
passing between controller and collaborator, but have left out the Fusion mes-
sage part in order not to obscure the exposition.
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:Actor

sysop(x)
!

:Controller

{P}

1 : x1 = Op1(x0)

2 : x2 = Op2(x1)

...

...

n : xn = Opn(xn−1)

!

!

!

c1 : Col1

c2 : Col2

...

cn : Coln

{Q1}

{Q2}

{Qn}

Figure 8.6: Sequences of method calls

Controller

c1 : Col1
...
cn : Coln

sysop =̂ [∆(c1, . . . , cn) x? : Type(x) | P [self /s]] • c1.Op1
o
9 . . . o

9 cn .Opn

As before, the operations Op1, . . . ,Opn get their respective inputs and outputs.
Since the controller object demands the services Op1, . . . ,Opn from the collab-
orators, we know that they must provide the new functionality and can take
over the conditions tagged to the object interactions.

Col1
Op1

x0? : Type(x0)
x1! : Type(x1)

Q1[self /c1]

. . .

Coln
Opn

xn−1? : Type(xn−1)
xn ! : Type(xn)

Qn [self /cn ]

Delegation

A very important case of object interaction is the delegation of a method call.
A collaborator delegates a message to another class. The collaborator thereby
becomes a subcontroller using other classes as collaborators, as depicted in
Figure 8.7. For the sake of clarity, we omit parameters and system events, but
these may be integrated here following the previous translation schemata. The
translation resembles the sequential composition. However, at the controller
level we have
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:Actor

sysop
!

:Driver

{P}

k : Op1

!
s : Subcontr

{Q}

k.1 : Op2

!
c : Col

Figure 8.7: Delegation of method calls

Controller

s : Subcontr

sysop =̂ [∆(s) | P [self [s0]] • s.Op1

where the delegated operation now resides in the subcontroller.

Subcontr

c : Col

Op =̂ [∆(c) | Q [self /s]] • c.Op2

The operation Op is, as before, contained in the corresponding collaborator
classes.

Collections of Objects in Interactions

A special case that may occur in object interactions are collections of objects.
A message is sent to the collection of all objects of one class rather than to
just one instance of that class. This case is illustrated in Figure 8.8. This

:Actor

sysop
!

:Controller
k : Op

!
c : Col

{P}

Figure 8.8: Method calls and collections

collaboration means that message Op is sent to all objects c of class Col such
that P holds.

Fortunately, Object-Z offers distributed operators in its schema calculus, repre-
senting generalizations for finite sets of objects that may be employed for this
case. As there is no order in the calls to the objects contained in the collection,
we can employ the schema calculus operator ∧ instead of o

9. The translation of
the controller class is
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Controller

cc : F Col

sysop =̂
∧

[c : cc | P [self /s]] • c.Op

Clearly, the translation of class Col contains, as before, an op-schema for Op.
The previous translation methods also apply to this case when they are com-
bined with parameter passing, delegation or sequential composition.

8.2.3 Example

The schematic process of translation into Object-Z described in the previous
section is now illustrated by the running example from the bank case study.

Translation of the Operation Model

First, we show the translation for the analysis. The messages are collected in
an enumeration type Report .

Report ::= trans ok | too much . . .

The translation of the operations deposit and withdraw leads to the definition
of the single class SystemA.

SystemA

cards : P Card
accounts : P Account
Has : Card ↔ Account

deposit
∆(a)
amnt?, acc? : N
m! : Report

∃ c : cards, a : accounts •
c.nr = acc? ∧
(c, a) ∈ Has ∧
a.balance ′ = a.balance + amnt? ∧
m! = trans ok
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withdraw
∆(a)
amnt?, acc? : N
m! : Report

∃ c : cards, a : accounts •
c.no = acc? ∧
(c, a) ∈ Has ∧
(a.balance − amnt? ≥ 1 ⇒

a.balance ′ = a.balance − amnt? ∧ m! = trans ok) ∧
(a.balance − amnt? < 1 ⇒

a.balance ′ = a.balance ∧ m! = too much)

We define all listed types (Card, Account) in the state schema of the system class
SystemA as separate classes (data structures) in Object-Z. These are classes
with only a state space but no operations. In Z, we would define these types as
basic types, e.g. [Card, Amount]. We will see that when the object interaction
graphs are translated, these classes are extended by operations.

Card

a : Account
no : N

Account

balance : N

Translation of the Object Interactions

The object interactions are translated into the controller Card and the col-
laborator Account . The translation for deposit uses the scheme for internal
methods with parameters; withdraw is generated by the same rule plus the one
for conditional control flow (cf. Section 8.2.2).

Card

a : Account
no : N



8.2. SCHEMATIC TRANSLATION INTO OBJECT-Z 107

withdraw nok
amnt? : N
acc? : N
b? : B
m! : Report

self .no = acc?
¬b?
m! = too much

deposit =̂ [∆(a) amnt?, acc? : N | self .no = acc?] • a.add

withdraw ok =̂ [∆(a) amnt?, acc? : N, b? : B | b? ∧ self .no = acc?
∧ m! = trans ok ] • a.reduce

withdraw =̂ a.check balance o
9 (withdraw ok []withdraw nok)

Note how the additional feature no : N from the System Class Model is incorpo-
rated into the state schema. Actor class and message type definition (identical
to the translated Operation Model) are omitted. The combination into a class
suitable for refinement is described in the following section.

Account

balance : N

add
∆(balance)
amnt? : N

balance ′ = balance + amnt?

check balance
amnt? : N
b! : B

b! = (balance − amnt? ≥ 0)

reduce
∆(balance)
amnt? : N

balance − amnt? ≥ 0
balance ′ = balance − amnt?
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8.2.4 Refinement

The state of the art of refinement in Object-Z is such that single-class refinement
is well understood [DB01]. However, structural refinement, i.e. the concept of
several classes put together constituting a refinement of a single class, is a cur-
rent research topic. But structural refinement is exactly what is needed here:
the class SystemA of the Operation Model is refined by a structure that consists
of several controller classes. Fortunately, as we know from a personal commu-
nication with Graeme Smith, the author of [Smi00], the following structure is
a legal work-around for structural refinement.

In addition to the translation of the classes seen in Section 8.2.2, the represen-
tation of the system in Object-Z contains a class SystemD that entails sets of
references to the controller classes and the associations that have been so far
left out of the translation process for object interactions. The state of this class
is identical to the state of SystemA.

SystemD

cards : P Card
accounts : P Account

This final step completes the translation process of the Object Interaction
Model. The refinement condition

SystemA 3 SystemD

enables us to verify that the axiomatic descriptions in the Operation Model con-
form to their representations in the Object Interaction Model. Hence, Object-Z
refinement ensures consistency between analysis and design.

The state schemata of SystemA and SystemD are identical in most cases. In
these cases, the data refinement defined by a retrieve relation connecting ab-
stract and concrete state spaces is the identity. Hence, the verification task for
refinement usually boils down to proving operational refinement.

This is the objective we claim to have achieved using the current concept.
Fusion/UML is a mature method to guide the process of designing systems. It
supports the checking of consistencies within and between the models involved.

8.3 Enrichment of the Derived Object-Z Classes

The presented translation into Object-Z, however, enables the schematic deriva-
tion of a formal specification. The formal specification reflects the results of the
design. It enables the consistency check between analysis and design via refine-
ment and also the verification of system implementations using again Object-Z
refinement.
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8.3.1 The Init State Schema

The initial state schema INIT defines the initial states of a class and appears
after the state schema and before any operation. The declaration accessible to
INIT is the state schema of the class. The state variables and constants of the
class are available in the environment in which it is interpreted. Unlike in Z,
where init is an operation, in Object-Z it consists of a predicate and is therefore
expressed in terms of unprimed variables.

x : X
n : N

INIT

x .INIT ∧ n = 0

SystemD

cards : P Card

INIT

∀ c : cards • c.INIT

The initial schema of Card is

Card

a : Account
nr : N

INIT

a.INIT ∧ nr = 0

...

for the class Account

Account

balance : N
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INIT

balance = 0

...

8.3.2 Class Invariants

One further enrichment of the classes adds the class invariants that have been
described during requirements determination. For this example, one require-
ment for the account is: the balance of the account must never be below zero.
The formal statement of this is: balance ≥ 0.

Account

balance : N

balance ≥ 0

...



Chapter 9

FusionB – The Extended
Fusion/UML Method

In this chapter, we describe the FusionB process and its models. We show how
the new models and their subprocesses are integrated into the process and the
models of the previous Fusion/UML method (cf. Part II).

9.1 FusionB Process

The software developer is guided through the analysis and design process, from
requirements determination to formal definition. Several different models for
designing software are developed. They are partially transformed from one
model to the next and checked for consistency.

With the extension to the Fusion/UML method, the method has been given a
new name FusionB . The figure 9.1 gives an overview of the new process.

Step 1 Requirements Determination deals with the extraction of requirements
from the problem description for the new system and its environment. The
result is the specification of all requirements in the Requirements Description.

Step 2 Communication at a high level of abstraction between the role of the
user and the system is specified by means of a Use Case Model. The result is a
set of disjoint function groups of the system. Linking requirements to use cases
and actors.

Step 3 Objects and concepts within the problem domain are described in a
Domain Class Model using object-oriented Entity-Relationship modelling. The
result is a static structure model of the application domain. The modelling ele-
ment class is extended to a third compartment for linking requirements and the
non-responsible statements. The requirements are linked to the corresponding
classes.

Steps 2 and 3 must not be executed strictly sequentially because their views
are supplementary and do not overlap.
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Figure 9.1: The FusionB Process
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Step 4 Each Use Case is refined by scenarios in the form of Timeline diagrams.
Timeline diagrams are annotated as sequence diagrams in the UML style. The
modelling elements are system operations and system events. The Use Case
Model and the Timeline Model form the system interface.

As a result of the fixed user communication, in Step 5 the boundary between the
environment and the system inside the (static) Domain Class Model is specified.
The result is the System Class Model. This step requires the previous steps (1,
2 and 3).

Step 6 includes all identified system operations for a global system behaviour.
It is specified in a Life Cycle Model using regular expressions. All system
operations and system events must be identified in the model. Steps 3 and 4
are prerequisites for this step.

In Step 7, the semantics of each single system operation is specified in as much
detail as possible using predicate logic. This results in a so-called operation
schema. The combination of these forms the Operation Model. The Life Cycle
Model, Timeline Model and System Class Model constitute the most important
steps in the whole of the analysis phase. From the Operation Model an Object-Z
class called System and various type classes – data structures – are specified.

In Step 8, each single operation schema is transformed into an object interaction
graph. The object interaction graph describes the message flow of the involved
objects of the system operation. The object interaction graphs form the Object
Interaction Model.

In Step 9, the Object-Z class System consisting of operations and its state,
which was built from the Operation Model, is refined to the objects (Object-Z
classes) involved in the system. Then the class invariants – which come from
the Requirements Description and the initialization of the classes, the INIT
operation – are added to the respective Object-Z classes.

In Step 10, the last two models are designed according to Fusion/UML. These
models, the Reference Model and Class Interface Model, are dealt with in Part
II, Chapter 6.

The Data Dictionary is the central reference glossary in FusionB . All identifiers
that are modelling elements (e.g. requirements, use case, actors, classes, asso-
ciations, attributes, roles, system operations, system events, etc.) are entries in
the Data Dictionary. Since the Data Dictionary includes the definition of each
individual item there is – at least informally – a semantic consistency of all
models. The Data Dictionary also serves as a means for tracing requirements
through all models of the method.

9.1.1 Analysis

From the user’s point of view, analysis involves understanding and describing
external behaviour and its consistencies; contradictions should be detected and
diminished. Consideration of the implementation does not form part of this
phase.
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9.1.1.1 Requirements Determination

Requirements determination is the first activity in the analysis phase of the
software process. The purpose of requirements determination is to provide a
narrative definition of functional and other requirements that the stakeholders
expect to hold in the implemented and deployed system. In FusionB , require-
ments are extracted from the problem description and the domain knowledge,
which form the input for the method. The problem description can be seen
as the result of the elicitation process. The output of requirements determina-
tion is the Requirements Definition. It is this model which contains all checked
requirements and links to the subsequent models of the method.

How to Obtain Requirements from a Problem Description:

1. identify domain areas of the application domain

2. identify requirements that describe the environment

3. classify requirements of the domains (facts and constraints)

4. classify system requirements and non-responsible statements

5. identify those requirements that can be translated into formal statements

6. check for conflicts and inconsistency between requirements

7. change Requirements Description and Data Dictionary when conflicts ex-
ist and requirements have to be changed

9.1.2 Design

The aim of the object-oriented design process is to develop an abstract im-
plementation concept for the system that has been specified by the analysis.
During the analysis, the system’s functionality is considered and specified al-
most exclusively from the global point of view of the user. In the operation
model, too, which represents the most detailed specification of the analysis,
effects are represented exclusively by changes of state on the already identified
objects. No statements are made in which dynamic runs are responsible for
these changes of state. The aim of design is to fully model and specify these
dynamics.

The advantage of all object-oriented methods (including FusionB ) is that they
can be used with already existing static analysis models, which are enriched
with additional information without invalidating the analysis models.

In the design phase, we look at the models built during the analysis phase and
design a system that has the behaviour described in these models.

The first step in design is to formulate one object interaction graph for each
system operation or operation schema. The information of the corresponding
operation schema is used for this purpose. An object interaction graph is a
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dynamic model that maps the communication between the objects of the oper-
ation scheme by named message passing. This method enables interfaces to be
partly fixed between classes of the objects used in the operation schema.

The second step is to enrich the output (Formal Description) of the consistency
check between the Operation Model and the Object Interaction Model. The
Formal Description is the specification of all classes of the system. One of the
next steps towards a complete specification is to add the INIT operation to
the classes. The class invariants, which have not yet been formulated, can be
found in the formal statements of the system requirements, the Requirements
Description, and added to the classes.

The third and fourth steps are analogous to steps two and three of Chapter 6.

9.2 Describing All Models and Their Role Within
the Method

In this section, we describe the models and their role within the new method.
Each model and its dependency on other models are motivated in a descriptive
manner. The dependency of the models is shown graphically in Fig. 9.1.

The advantage of a descriptive view of the models over a graphical view is that
one finds much more semantical information on the models and their role within
the method in that descriptive one than one can find in a graphical view. Both
views have their advantages and disadvantages.

9.2.1 Requirements Description

Goal: Identification of domain areas from the problem descrip-
tion, e.g. as potential actors, extraction and classification
of requirements

Principles: Separation of different requirements types (system re-
quirements and domain requirements)

Prerequisites: Problem description (is not part of the Fusion method)

Elements: Types of requirements, attributes of the requirements
template

Impact: Preselection of actors for the Use Case Model and pre-
defining use cases, finding candidates for class invariants
and environment invariants
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9.2.2 Use Case Model

Goal: Identifying functionality groups and their relationships,
identifying the system boundary and actors through com-
munication relationships

Principles: Identifying functionality groups and their relationships,
collection of individual scenarios to form a functionality
group (use case),
decomposing actors, use cases and their behavioural
structure of relationships, functionality group (use case)

Prerequisites: Requirements Description and Problem Description

Elements: Actor: type and name, gen/spec relationship between
actors
system: assoziation between actor and use cases
use case: name, relationship between use cases: gen/spec,
include and extend

Impact: Prestructuring of Timeline diagrams (classifying scenar-
ios according to use cases), Operation Model (sends part),
System Class Model (soft objects, mirroring of actor),
Object Interaction Model (sender and receiver)

9.2.3 Domain Class Model

Goal: Modelling the problem domain

Principles: Abstraction: object to class, link to association
refinement: aggregation and composition, Gen/Spec re-
lationship
modularization: Decomposition and static structure of
relationship of global functionality

Prerequisites: Requirements description and problem description

Elements: Class: name, attribute, requirements link
Association: name, attribute, attribute type, role, multi-
plicity (cardinality) gen/spec relationship, requirements
links

Impact: Fixation of the System Class Model as far as possible.
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9.2.4 Timeline Model

Goal: Identification of communication elements between actors
and system (system operations and system events), iden-
tification of scenarios as sequences of action in time

Principles: Modeling of scenarios (normal and exceptional cases), pa-
rameterization of system operations and system events,
abstraction of system details

Prerequisites: Use Case Model, Domain Class Model (only if parame-
terization (access of object(class) attributes))

Elements: Actor and system instances, timelines for instances, Sys-
tem operation and system events, parameters, system-
internal types

Impact: Operation Model: Fixation of communication primitives
and actor instances

9.2.5 Life Cycle Model

Goal: Describes behaviour from a wider perspective on how the
system communicates with its environmement. A life cy-
cle expression defines the allowed sequence of interactions
that a system may participate in over its lifetime.

Principles: Modeling of sequences of interactions using path expres-
sions and named abbreviations of subpaths, modelling
top-down

Prerequisites: Timeline Model

Elements: Regular expressions, system operations and system
events, operators, substitutions and operator precedence

Impact: Operation Model and Object Interaction Model
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9.2.6 System Class Model

Goal: Modelling the system with all the system-internal classes
and its environment.

Principles: Abstraction: mirroring actors as “soft objects” in the
system boundary, additional new class as controller for
the system operation

Prerequisites: Domain Class Model, Use Case Model

Elements: Class: name, attribute, attribute type,
system boundary: enclosing the system by a dotted line,
association: name, attribute, attribute type, role, re-
quirements links

Impact: Operation Model, Object Interaction Model, Formal
Model.

9.2.7 Operation Model

Goal: Modelling operation schemata describing changes of sys-
tem state, which have been triggered by actors through
system operations and their parameters

Principles: Description of changes of the system state using pre-
and post-conditions in the style of Z or Object-Z (log-
ical calculus)

Prerequisites: Timeline Model, System Class Model

Elements: Operation: name of system operation
Input Part: input parameter
Reads Part: objects, links and attributes that do not
change the state of system.
Changes Part: objects, links and attributes that might
change the state of system.
Sends Part: actors and system events
Precondition: defines the state of the system before the
operation is executed.
Postcondition: defines the state of the system after the
operation has been executed only if the precondition
holds.

Impact: Object Interaction Model, Formal Model.
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9.2.8 Object Interaction Model

Goal: Identifying all the communication flows between objects
along links

Principles: Describing the message flow of a system operation be-
tween objects involved in the operation

Prerequisites: Operation Model and System Class Model

Elements: Actors, objects, links, procedure calls and sequencing of
calls with decimal numbering system, guards.

Impact: Formal Description

9.2.9 Formal Description

Goal: Specifying all objects of the system and its operations in
a formal notation.

Principles: For each class an INIT schema is included by examining
the attributes of the state schema. Class invariants are
included when possible. Candidates of variants are found
in the Requirements Description.

Prerequisites: Operation Model and System Class Model

Elements: Notation of Object-Z (cf. [Smi00, DR00, Spi92])

Impact: All models of the analysis, design and implementation
phase

9.3 Modification of Some Modelling Elements

9.3.1 Modifying the Actor Symbols of the Use Case Model

The Use Case Model and specially the Actors play an important role in mod-
elling the behaviour of the system and its environment in an abstract way. The
Use Case Model describes the interface of the system and its interacting part-
ners. At the time of creating this model, we know what kind of actor is included
and what kind of communication is taking place between actor and system. All
this information should be expressed in the model by choosing the right actors.

An actor is a person or external software system or hardware device that plays
a role in one or more interactions with the system. Actors are drawn as stick
figures.

We distinguish between three types of actors:

An actor as external system (software or hardware) which delivers only input
to the system:

An actor as an external system (software) which delivers input and receives



120CHAPTER 9. FUSIONB – THE EXTENDED FUSION/UML METHOD

Figure 9.2: An Actor with Input only

output in the form of values:

Figure 9.3: An Actor with Input/Output

The third form is a person as an actor, which represents the graphical interface
of the system, displayed on the screen of the input device of the computer on
which the system is running and the person is interacting with the system:

Figure 9.4: A Human Actor

Actors and their association(s) represent the environment interface of the sys-
tem. If we have access to the information of parameters (system operation) and
arguments (system events) of the system interface, we should use this informa-
tion by choosing the right actors. Note, that at this point in the modelling
process we abstract from the type and name of input/output parameters an
actor provides or receives. We prefer to show the direction of parameters (in-
put/output) using the arrow symbol.

9.3.2 Modifying the Modelling Elements of the Domain Class
Model

In order to link requirements to classes of the Domain Class Model, the mod-
elling element class has been modified by dividing the second compartment, the
attribute compartment, into two parts. The dividing line is a broken line. It
will therefore not be in conflict with the UML class symbol, which has three
compartments (name, attributes, methods).

The upper part of the compartment is for local attributes and the lower part for
listing (linking) requirements identifiers and non-responsible statements identi-
fiers as representatives of the requirements and non-responsible statements. As
an example (cf. Fig. 7.6).
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class name

attributes

requirements-id

Figure 9.5: Modification of the Class

9.4 Consistency Checks

The consistency checks described here are based on the consistency check of
Part II. It is extended to the new models that are introduced to the new
method.

The following are examples of simple consistency checks:

• All requirements listed in the Use Case Model and all requirements and
non-responsible statements listed in the Domain Class Model must be in
the Requirements Description.

• For each use case, at least one timeline diagram must exist. This is an
example to enforce the use of the modelling element of a timeline diagram,
which comes from a definition of a use case of the previous Use Case
Model.

• All requirements, classes, associations and attributes used in the Opera-
tion Model must appear in the System Class Model. All predicates must
be defined in the Data Dictionary. However, this does not rule out the ad-
dition of further attributes in the Operation Model which must, of course,
be consistent with the already existing ones.

• The boundary of the System Class Model is consistent with the Use Case
Model. All actors defined in the Use Case Model have to appear in the
System Class Model and Timeline Model.

• All system operations and their system events in the Timeline Model must
appear in the Life Cycle Model.

• Each system operations in the Life Cycle Model has a corresponding op-
eration schema.

• All identifiers in all models have entries in the Data Dictionary.

• Output of events of the Life Cycle Model and Operation Model must be
consistent.

• Each class of the System Class Model must be represented in at least one
object interaction graph.
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• A systematic translation of the two main results of the process, the Op-
eration Model and the Object Interaction Model, lead into the formal
specification in Object-Z.

• Each association within the boundary of the System Class Model must
be visible for the correspondent class of the reference graph.
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Fusion and its Derivations

Fusion was developed in 1994[Cea94] because existing object-oriented methods
did not meet the requirements of industrial software projects. It was not de-
veloped from scratch: previous object-oriented methods were merged into one
method that would meet those requirements.

Since then several adaptions and derivations of the Fusion method have emerged,
like Fusion/UML [BK00], Fondue [SS00, SBS03], Catalysis [DW98] and FusionB .

This chapter begins with an overview of all the methods that have so far influ-
enced Fusion in terms of analysis and design. We then go on, from the above
listed derivations to describe Fondue, the comparable method, in more detail.
We will compare the method with the new extended Fusion – FusionB . Only
the extensions in FusionB , requirements determination and formal specification
is compared with the other method Fondue.

10.1 Fusion and FusionB

First, we list all previous object-oriented methods that have originally influ-
enced Fusion in terms of analysis and design. Most of the information is taken
from [Cea94]. The original Fusion method integrated the best aspects of sev-
eral methods. Later, we show which of the original models have been changed.
When UML emerged we adapted the models to UML 1.0 and UML 1.3 where
possible. We also extended the analysis phase by adding a new model to the
method – the Use Case Model.

OMT, Booch, CRC and formal methods had the most influence on the original
Fusion. In Fusion/UML nearly all models were modified and where possible
adapted to UML 1.3, this was done between 1998 and 2000. Now with the
extension two more models, the Requirements Description and the Formal De-
scription are added.

OMT has a very systematic analysis phase, but the design phase is more a set
of heuristics than a process. Booch [Boo94] provides a detailed notation for
describing object-oriented systems. The process is informal.
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Objectory and later the UML process[JBR98] is based on use case scenarios.
Objectory’s notation and concept is defined informally.

CRC is a design technique that can be combined with other methods.

Fusion is a systematic and rigorous method that can be used to develop sequen-
tial components of the systems.

10.1.1 Analysis

The main purpose of analysis is to look at objects in the real world but is
modelling classes and static objects. Therefore we changed it to class model.
Do not get confused with objects as instantiation of classes[Mey88].

• Requirements Description

• Use Case Model: comes from Jacobson’s Use Cases [Jea92]

• Class Model: comes from OMT [RBP+91] and has been adopted to UML
Class Model. It is based on the Extended Entity Relationship Model
(EER) [Che76].

• Operation Model: this is like the functional model in OMT. The OMT
data flow diagram where in practices unsatisfactory. Fusion integrated
the pre conditions and post conditions from the formal method Z.

• Life Cycle Model: regular expressions to describe life cycles comes from
Jackson System Design [Jac83]. Textual descriptions are more compacted
than state charts.

10.1.2 Design

The Design phase of Fusion is based on CRC and the Booch method [Boo94].

• Object interaction graphs: CRC does not provide an appropriate record of
the design process. Communication information is scattered across index
cards. Object interaction graphs provide such a notation.

• Formal Description: Object-Z is used to describe all these classes that
belong to the system.

• Visibility graphs: Booch documents references to other objects by adding
visibility information to object diagrams. Fusion documents this infor-
mation on the visibility graphs.

• Class Interface Descriptions and Inheritance: Fusion takes a simple tem-
plate notation for documenting the syntax of classes. For the inheritance
model Fusion extends the Gen/Spec model to the inheritance graph by
adding the methods.
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10.2 Criteria for Method Comparison

The criteria for comparing the FusionB with an other method, which is also
derivation of the Fusion Method, can only be the Extension made in FusionB .
One could compare the process or the phases or each single model and work
out their similarities and the differences, but what would come out of such
comparison. The output of such comparison would not be of much relevance:

• how does it deal with requirements engineering? Is it part of the method,
and when, in what way?

• and if there is some kind of formal specification or at least an approach.

First we briefly describe the models of the Fondue method and and its process.

10.2.1 Fondue

Fondue is an object-oriented software development method developed by the
Software Engineering Lab of EPFL. Fondue covers all phases of the software
process [SBS03]: “it leads from requirements based on Use Cases to system
operation specification using pre- and postconditions written in OCL.” Fondue
starts with what is called “Original Problem Statement” where the problem is
described in natural language. Out of the problem statement, the Use Cases
are developed. The essential information is kept in a Use Case description.
In this description each Use Case is described in a template consisting of the
following entries: name of the use case, scope, level, primary actor, precondition,
main success scenario, extensions. Main scenario describes in an enumerated
way each step of the main scenario, which could be interpreted as a kind of
requirements gathering.

The next model is the Environment Model: it identifies all messages the system
sends to and receives from the environment. The environment builds the actors.
More then one actor can send a message to the system that is indicated by a
star symbol.

The Concept Model describes the system architecture in a form of components.
It is expressed in a class diagram.

The Protocol Model1 describes the change of state of the system. It is described
with a UML state chart which has no guards. A transition in the Protocol Model
is trigged by an input event. A transition from one state to the next trigged by
an event (must have the name of system operation), leads to an execution of a
system operation.

In the Operation Model each system operation is described in Object Constaint
Langauge (OCL). OCL is the formal language of UML.

The design phases consists of the same models as Fusion/UML.
1The former model of Fondue [SS00] was the Life Cycle Model like in Fusion/UML.
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Requirements Models

Analysis
Models Environment Model

Design

Concept Model

Behaviour Models

Protocol Model

Operation Model

Figure 10.2: Fondue Specification Models

10.2.2 Results of the Comparison

Fondue also begins its analysis phase with a problem statement similar to that
of FusionB . A specification of each use case is included in the Use Case Model.
It is not always obvious that one use case leads to one system operation. In
several of our case studies we had more then one system operation to one use
case. The use case specification can be seen as a requirements document. But
the method does not have detailed requirements specification nor does it have a
Data Dictionary. The method does not support tracing of requirements. In the
subsequent models of the method there are no references to the requirements
in the use case specification. We can say that in Fondue requirements activities
are exclusively connected to the use case development.

The following can be found in [SBS03]: “Formal specification also normally
require a high-level of mathematical maturity to read and understand, and
therefore are not primarily targeted towards stakeholder comprehensions, as
is the case for Use Cases. Formal methods, like Z and VDM, suffer from the
problem that they are very costly to introduce into software development en-
vironments, because of their high requirements for mathematical maturity on
the user. On the other hand, OCL, part of UML has the advantage of being
relatively small and mathematically less-demanding language that is targeted
at developers.”

One can imply from the previous paragraph that formal specification is not
an issue in the Fondue method. Using the stakeholders for not introducing
formal specification to its method is from our point of view a weak argument.
It seems to be an excuse to bypass the complexity of the stakeholder problem.
Users, developers, managers, analysts and maybe even mathematicians can be
stakeholders. At least two of the named ones are capable of reading formal
specification. Some of them can play an important role as actors in the system
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but also software components and subsystems can be potential actors and in
this case, formal specification can be important for the next models and phases
of the process, e.g. interface definitions, design by contracts, etc. Their are
various models which can help to explain the formal specification to those who
are not familiar with mathematical terms.

Most object-oriented methods like Fondue, Catalysis and the Unified Software
Development Process [JBR98] start their process activities with the analysis
phase. All these methods have one in common, they have a very weak require-
ments phase and hardly offer any formal specification in their methods.
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Conclusion

Starting from an existing software engineering method, the thesis looks at ways
of eliminating what have been recognized as the method’s deficiencies by mod-
ifying and extending it. Some of the main deficiencies are:

1. Nonexistence of concepts for supporting requirements engineering.

2. Missing unification of system models that reflects different views of the
system.

3. Missing satisfying consistency rules to prove correctness between models.

Our remedy for these deficiencies is:

1. Requirements engineering is supported by the subprocess Requirements
Determination. A new model and new modelling elements are included
in the notation and a new consistency rule has been added to the existing
ones. Furthermore, during the process requirements activities are present
with new modelling elements and process elements.

2. A unified formal specification (on the basis of Object-Z) that is elicited
from existing models.

3. Parts of the requirements are integrated into the formal specification.

4. Other models of the method are also modified because of the requirements
process.

Our aim in this thesis has been to show that it is feasible to integrate parts
of requirements engineering and formal specification into FusionB , and that it
is possible to incorporate the requirements description and the formal descrip-
tion into an existing object-oriented development method. New model and
modelling elements are designed and integrated into the notation of FusionB .

The first extension to Fusion/UML deals with gathering, classifying and for-
malizing requirements for the system that is to be built. We have described
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the process of requirements determination. Emphasis has been placed on iden-
tifying the domains in the application field, extracting requirements and non-
responsible statements from those domains, classifying requirements and, where
possible, formalizing them.

One of the positive side effects for the Use Case Model, the decision about who
is the actor, what are the use cases and how they communicate, has been set
out in the requirements determination process. One other activity is linking
the requirements to the other models of the method for the purpose of tracing.
Modelling elements of existing models needed to be modified to enable require-
ments to be traced throughout the designed models, forwards and backwards.

Formalizing requirements in a logical language at this early stage of analysis
also has an impact on the other models of the method. It helps to rethink
requirements in terms of its meaning. The consistency check between models is
widened by including requirements in consistency checks. With this approach,
all the information regarding the problem is now part of the method, allowing
it to be traced and checked throughout the process.

The clear and precise way of defining the requirements from the problem de-
scription and including this information in the method has some positive in-
fluence on the other models. They are more likely to be closer to the original
requirements because they have been checked against them from the earliest
stages of the analysis process.

The two most important models in Fusion for describing the system state are
the Operation Model and Object Interaction Model. These two models are the
ones that focus on the structure of the system. No other model in the method
does this. The Operation Model describes the change state of the system which
is triggered by the environment in a formal way.

The Object Interaction Model describes the change of state of the system by
modelling the method flow between the objects of the system. It provides a
consistency for the developed design: systematic translation of the two main
results of the process, the Operation Model and the Object Interaction Model,
into the formal description using Object-Z. We have shown that a mechanical
and systematic translation is possible. Here, we have demonstrated a specific
aspect of formalization. It is a pragmatic approach that requires more theoret-
ical work in order to be generalized and to enable a more rigorous verification
of system properties.

The result of the translation into Object-Z classes made it possible to enrich the
Object-Z classes, which allowed a more complete specification with the INIT
operation and identification of the class invariant from the formal statements
of requirements description, by examining the state variables of the class. The
advantage of being able to choose the class invariants from the requirements
description is that the formal statements of the requirements have been for-
mulated in the same formal language as the Operation Model and Object-Z
classes.
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The extensions have been evaluated in two case studies. The first case study,
DAISY-Soft, forms part of this thesis. The second case study, the Automatic
Teller Machine (ATM) is soon to be published.

11.1 Future Work

The conceptional approach of the thesis requires some theoretical work to pro-
vide a solid foundation, not only for the two models which have been presented
but also for the other models of the methods, in particular the Life Cycle Model.

A method is only as good as the tool it provides for developing software. We
have begun a student project to build a toolkit for the Fusion method. All
project participants were students who were writing their Master’s thesis. The
project began by eliciting the requirements for a toolkit [Sah00]. Based on
that requirements document, several students designed and implemented some
models of the method, e.g. the Class Model and the System Class Model, the
Use Case Model and the Timeline Model. However, our experience has shown
that it is almost impossible to conduct such a project successfully. We have
learned a lot from this experience. A new attempt would have to take place
under different conditions. The design and implementation of a toolkit of this
complexity should be carried out by a team of professionals and students, based
on the results of the students work. The work of the students is to be seen as
a prototype of the toolkit.

Certain aspects of the design are not yet part of the method, e.g. the architec-
ture of the system, the design of the graphical interface, the design of a data
base, etc. Such extensions could be included in the process of the method, using
the information from the already established models of the method.





Appendix A

The Case Study: DAISY-Soft

A.1 Problem Description

The public transport company of the city Belleville wants to install a DynAmic
Information SYstem called DAISY for all its underground stations.

The time table should have the terminus of all the next accepted trains and the
time interval in minutes of the estimated arrival time.

DAISY consists of different components:

• The Information Board for each station of a line , who can only show a
certain amount of trains who are on the track.

• The Monitor Control System (MCS) that keeps control over the under-
ground lines, trains, timetable and in case of emergency.

• The clock that frequently updates the time on stations and the trains.

• An embedded software system (DAISY-Soft) which must interact with
components of its domain (actors). The task of DAISY-Soft is managing
the different underground lines and of the running trains explicitly for the
purpose of serving the timetables of trains with the correct and brand-new
informations.

Informal description of DAISY-Soft:

DAISY-Soft treats the two directions of an underground line as two separate
lines. DAISY-Soft must have knowledge of the topology of the respective un-
derground line. A line as a software structure consists of a directed sequence
of stations with 2 unique stations, namely the start-terminal and the terminus.
Lines and Stations are objects with well defined attributes like the name of the
station. Moreover, the relationship between the stations and lines have to be
designed in such a way which can themselves have attributes. Each line should
be seen as a separate line independent of all the other lines. Each line has its
own track which will not be used by any other lines.
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Also DAISY-Soft must consider that each train will be established on the track
by the Monitor Control System (MCS). Specific informations has to be made on
the position of the train on the track and its state. Finally for each station a set
of train information has to be administrated. A train-info has the identification
of the train, as well as its position and expected arrival time. DAISY-Soft
treats the two directions of an Underground line as two separate lines. It must
have knowledge of the topology of the respective underground line. A line as a
software structure consists of a directed sequence of stations with two unique
stations, namely the start-terminal and the terminus. Lines and Stations are
objects with well-defined attributes, like the name of the station. Moreover,
the relationship between the stations and lines must be designed in such a way
that each can in turn have attributes. Each line should be seen as a separate
line, independent of all the other lines. Each line has its own track, which is
not used by any other lines.

The driver is responsible for stopping and restarting the train at the stations,
and is also responsible for opening and closing the train doors.

DAISY-Soft must also take into account that each train will be placed on the
track by the Monitor Control System (MCS ). Specific information on the posi-
tion of the train on the track and its state must be recorded. Finally, for each
station train information must be administered. The Train-info contains an
identification of the train as well as its position and expected arrival time.

The administration of Train-info includes

• the generation of new info when the MCS establishes a train

• the deletion of info when the train leaves a station or reaches the terminus

• the updating of all info on the subsequent stations when a train leaves a
station

If a train stops unexpectedly, all preceding trains are treated normally. All the
following trains are given special treatment. Instead of the arrival times being
displayed, a change has to be made in the form of a special announcement like
“irregular train traffic” on the Train-infos.

Every clock at the underground station is updated by a central clock ensuring
that all clocks show the same time.

At regular intervals, the station’s Information Board fetches the train info from
the system.

DAISY-Soft is not responsible for coding of the Information Board – it merely
supplies the information – or for correcting or changing timetables, avoiding
collisions, dealing with disasters or the like. Nor is it responsible for providing
train informations in a specific order.
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A.2 Requirements Definition

Extract the requirements of the domain area from the problem description,
classify and formally describe them.

Domain:MCS

Req-Id = MCS 1
Type = Fact
Rational = MCS provides a unique train number and a unique line number

when train is established at the start-terminal.
Formal = ∀ trains : Train, lines : Line | ∃ t : trains, l : lines • (t , l) ∈

Established
Links = Domain Class Model

Req-Id = MCS 2
Type = Constraint
Rational = MCS must establish train at start-terminal on that line
Formal =
Links = Use Case Model

Req-Id = MCS 3
Type = Constraint
Rational = MCS stops train on track in case of emergency, initiates the gen-

erating of a special announcement for the Information Board and
informs Driver of that train.

Formal =
Links = Use Case Model

Req-Id = MCS 4
Type = Constraint
Rational = Removes train at terminus when all passengers have left the train.
Formal = ∃ t : Train, l : Line, s : Station | s = l .terminus ∧ (t , l) ∈ Runs \

{(t , l)}
Links = Use Case Model

Req-Id = MCS 5
Type = Fact
Rational = Has to remove train and informs Driver of the train.
Formal =
Links = Domain Class Model
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Req-Id = MCS 6
Type = Fact
Rational = After an interrupt the Driver gets informed that journey can con-

tinue.
Formal =
Links = Domain Class Model

Domain: Driver

Req-Id = Driv 1
Type = Fact
Rational = Continues journey after regular stop at station.
Formal =
Links = Use Case Model

Req-Id = Driv 2
Type = Fact
Rational = Stops and continues journey of train on track (in communication

with the MCS).
Formal =
Links = Use Case Model

Req-Id = Driv 3
Type = Fact
Rational = Makes announcement on the train during journey.
Formal = -
Links = Domain Class Model

Req-Id = Driv 4
Type = Fact
Rational = Opens and closes doors of train while train stops at the stations

or between stations.
Formal = -
Links = Domain Class Model

Domain: Information Board

Req-Id = Info 1
Type = Fact
Rational = Has limit space for information on the Information Board.
Formal = -
Links = Domain Class Model
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Req-Id = Info 2
Type = Fact
Rational = Asks for train information at regular intervals from DAISY-Soft.
Formal =
Links = Use Case Model

Req-Id = Info 3
Type = Fact
Rational = Updates train information on the Information Board every so of-

ten.
Formal = -
Links = Domain Class Model

Domain: Clock

Req-Id = Clock 1
Type = Fact
Rational = Updates continuously the time on Station, Train, MCS, and In-

formation Board
Formal = -
Links = Domain Class Model

System Requirements

Req-Id = Sys 1
Type = System
Rational = The System must treat the two directions of an underground line

as two separate lines.
Formal = ∃ undergound − line : Line ↔ Line | first(underground − line) %=

second(underground − line)
Links = Use Case Model, Domain Class Model

Req-Id = Sys 2
Type = System
Rational = The system must treat two stations (start-terminal and terminus)

as special stations on the line
Formal = ∃ s1 : Station, sn : Station, l : Line • l .start − terminal = s1 ∧

l .terminus = sn
Links = Use Case Model, Domain Class Model
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Req-Id = Sys 3
Type = System
Rational = The system must know that all stations who follow the start-

terminal on the line, these are the subsequent stations of that
line.

Formal =
Links = Use Case Model, Domain Class Model

Req-Id = Sys 4
Type = System
Rational = The system must treat the start-terminal when train leaves the

station different to the subsequent stations of the line.
Formal =
Links = Use Case Model, Domain Class Model

Req-Id = Sys 5
Type = System
Rational = The system shall update train information for all subsequent sta-

tions on the line when train leaves the station.
Formal =
Links = Use Case Model, Domain Class Model

Req-Id = Sys 6
Type = System
Rational = The system shall delete train information at the terminus when

train has been disconnected at terminus (and only)
Formal = terminus : Station, l : Line, t : traininfo | l .terminus =

terminus ∧ (terminus, t) ∈ At display • At display −$ {t}
Links = Use Case Model, Domain Class Model

Req-Id = Sys 7
Type = System
Rational = The system shall generate special information for the subsequent

stations when train has been irregular stopped between two sta-
tions.

Formal =
Links = Use Case Model, Domain Class Model

Req-Id = Sys 8
Type = System
Rational = After the Information Board of the station has collected the infor-

mation from the system, the system shall delete this information.
Formal = s : Station, t : Traininfo | (s, t) ∈ At display • At display −$ {t}
Links = Use Case Model, Domain Class Model
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Non-responsible Statements

Req-Id = non-resp-1
Rational = All line-numbers are unique and are generated by the MCS.
Domain = MCS

Req-Id = non-resp-2
Rational = All train-numbers are unique and are generated by the MCS-

System.
Domain = MCS

Req-Id = non-resp-3
Rational = Timetables of trains is under control of the MCS-System.
Domain = MCS

Req-Id = non-resp-4
Rational = DAISY-Soft is not responsible for the Information Boards.
Domain = InformationBoard

Req-Id = non-resp-5
Rational = DAISY-Soft is not responsible for train collision or any other catas-

trophes.
Domain = MCS

A.3 Use Case Model

The Use Case model describes the behavioural view of the system and its en-
vironment through the actors who are interacting with system. A Use Case
abstracts from a the sequence of actions.
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Daisy-Soft

Update Information

Extension point
Train incident

Train Control

<<extend>>

Driver

MCS

InformationBoard
Initiation of train

Finalisation of train

Figure A.1: Daisy Soft: Use Case Model

Initialization
of train

Finalization of
train

Update Infor-
mation

Train Control

MCS MCS 2, Sys 1,
Sys 2, Sys 4

MCS 4, Sys 6 MCS 3, Sys 7,
Sys 3

Driver Driv 1,
Sys 5, Driv 2,
Sys 3,Sys 6

Information
Board

Info 2, Sys 8

Table A.1: Requirement links on use cases
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A.4 Timeline Model

Each Timeline diagram refines a use case of the Use Case Model by its system
operation and system events.

:MCS :System

establish_train(train, line)

update_info

:MCS :System

remove_train(train)

train_is_removed

arrive_at_station(train)

info_updated

leave_station(train)

info_updated

:Driver :System

deliver _new _info(line)

current_infos( infos)

:System:InformationBoard

Use case : 

Use case :  Train Control

Use case : Finalization of train

Use case :Update Information

Initialization of train

:MCS

continue_journey(train)

info_updated

stopped_train(train)

info_updated

{MCS_2}

{Sys_1, Sys_2,Sys_4}

{MCS_4}

{Sys_6}

{Driv_1}

{Sys_3,Sys_5,Sys_6}

{Driv_1}

{Sys_3,Sys_5, Sys_6}

{Driv_2}

{Sys_5}

{Info_2}

{Sys_8}

{MCS_3}

{Sys_7, Sys_3}

Figure A.2: Daisy Soft: Timeline Model
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A.5 Domain Class Model

The Domain Class Model depicts the whole application domain of the system.
It represents a static view of the domain.
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Figure A.3: Daisy Soft: Domain Class Model

A.6 Life Cycle Model

The Life Cycle Model describes the system in its whole from the point of system
operation and system events.

Lifecycle DAISY-Soft = (Initialize train journey; train journey*;
Finalize train journey ||Update information)*

Initialize train journey = establish train; #infos established

Train journey = Train leaves station; (Arrives at station |
Train has stopped)
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Train leaves station = leave station; #info updated

Arrives at station = arrive at station; #info updated

Train has stopped = train stopped; #info updated;continue journey;
#info updated; arrive at station; #info updated

Finalize train journey = remove train;#train is removed

Update information = deliver new infos; #infos delivered
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A.7 System Class Model

The System Class Model show the internal structure of the system and its actors
which presents the communication environment.
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A.8 The Operation Model

All the Operation Schemata in the Operation Model of DAISY-Soft are de-
fined here. In the description part of each operation schema there is a short
textual description of what the operation does. The operations establish train,
arrive at station, leave station, remove train describe a run beginning at the
terminus by establishing the train on a track (line) and ending at the end termi-
nal by removing the train from the track. Between these two special terminals
the train arrives and leaves as many stations as there are on this particular line.
The operations train stopped, continue journey characterize the exceptional sit-
uation which can occur during a run. Operation train stopped is triggered by
the MCS because of an exceptional situation on the line or train. The system
send a special announcement to all subsequent stations on that line. When
the stopped train eventually continues its journey the Traininfos for the sub-
sequent stations have to be adjusted in a very similar manner as before to the
new arrival times.

Operation = establish train
Rational = MCD informs the system about having established the train of the spe-

cific line on the start terminal.
Input = train, line
Reads = act : Station with act .name = l .start terminal ,On line,

l : Line with l .number = line
Changes = t : Train new, info : Traininfo new,Runs on,At display
Sends = : MCS : {infos established}
Pre = −
Post = t .number ′ = train

Runs on ′ = Runs on ∪ {(t , l)}
t .position ′ = (act , 0)
is sent {info updated} ∧
(∀ s : Station | (s, l) ∈ On line •
(info, s) %∈ At display ∧ At display ′ = At display ∪ {(info, s)}
info.train no′ = train ∧

(∃ i : Traininfo | (i , s) ∈ At display ′ ∧
i .train no = train

i .arrival time = 0))
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Operation = arrive at station
Rational = When train gets into the station, the Traininfo of this station will be

deleted. No traininfo of the subsequent stations will be updated.
Input = train
Reads = act : Station with Succ(first(t .position)) = act ∧

(l , act) ∈ On line,Succ, t : Train with t .nr = train, l : Line
Changes = info : Traininfo with (info, act .im) ∈ At display ∧

info.train nr = train,At display ,Traininfo
Sends = : Driver : {info updated}
Pre = −
Post = At display ′ = At display \ (info, act)

t .position ′ = (act , 0)
is sent {info updated}

Operation = train stopped
Rational = The MCS has stopped train between two stations. A special announce-

ment has to be sent to all subsequent stations of this line.
Input = train
Reads = act : Station with {first(t .position)}|) = act

l : Line with (t , l) ∈ Runs on
On line,At display

Changes = t : Train with t .number = train, : Traininfo,

Sends = : MCS : {info updated}
Pre = −
Post = is sent {info updated} ∧

t .pos ′ = (act ,Succ(|{act}|)) ∧
∀ s : Station | (s, l) ∈ On line ∧ s.dist start > act .dist start •

∃ i : Traininfo | (i , s) ∈ At display ∧ i .train nr = train •
i .arrivaltime ′ = special announcement
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Operation = leave station
Rational = When the train leaves the station all arrival times of all train infos of all

subsequent stations will be updated.
Input = train, line
Reads = act : Station with first(t .position) = act

On line,Succ
l : Line with l .number = line

Changes = t : Train with t .train no = train,
At display , : Traininfo

Sends = : Driver : {info updated}
Pre = −
Post = t .position ′ = (act ,Succ(act))

is sent {info updated} ∧
(∀ s : Station | (s, l) ∈ On line
s.dist act − act .dist start > 0 ∧ (s, act) %∈ Succ •
info.train no′ = train ∧

(∃ i : Traininfo | (i , start) ∈ At display ′ ∧
i .train no = train •

i .arrivaltime ′ = s.dist − act .dist start + sojourn))
(∃ s : Station | (s, l) ∈ On line ∧ (s, act) ∈ Succ •

(∃ i : Traininfo | (i , l .start terminal) ∈ At display ′ ∧
i .train no = train •

i .arrivaltime ′ = s.dist − act .dist start))

Operation = continue journey
Rational = Train stopped unscheduled between two stations. MCS cleared the

line and informed the Driver to continue the journey. All information
(timetables) of the line has to be updated with the estimated time of
arrival.

Input = train
Reads = t : Train with t .train no = train,

act : Station with snd(t .pos) = act ∧ (act , l) ∈ On line,
l : Line with (t , l) ∈ Runs on,At display

Changes = : Traininfo,

Sends = : Driver : {info updated}
Pre = −
Post = is sent {info updated} ∧

∀ s : Station | (s, l) ∈ On line ∧ s.dist start > act .dist start •
∃ i : Traininfo | (i , s) ∈ At display ∧ i .train no = train •

i .arrivaltime ′ = s.dist start − act .dist start + retention
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Operation = remove train
Rational = MCS informs the system about removing train from the terminus.
Input = train
Reads = act : Station with act = l .terminus ∧ (l , act) ∈ On line,

l : Line with l .number = line
Changes = t : Traindelete with t .number = train ∧ (t , l) ∈ Runs on,

Sends = : MCS : {train is removed}
Pre = −
Post = Runs on ′ = Runs on \ {(t , l)}

is sent {train is removed}

Operation = deliver new infos
Rational = The Information board requests every 30 secs the train info of the station.
Input = station, line
Reads = act : Station with act = station ∧ (l , s) ∈ On line,

l : Line with l .number = line,
info : Traininfo with (act , info) ∈ At Display

Changes = t : Train delete with t .number = train ∧ (t , l) ∈ Runs on,

Sends = : Informationboard : {updateinfo(info)}
Pre = −
Post = noeffect

is sent {updateinfo(info)}

A.8.1 Translating Operationschemata to an Object-Z Class

We now translate all operation schemata to one Object-Z class. All “basic types” which
are used in state schema of the class “System” are declared as data structures.

Report ::= info updated | Train has been removed | infos established | infos delivered
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System OP

On line : Station ↔ Line
l : Line
t : Train
info : Traininfo
act station : Station
Succ : Station ↔ Station
At display : P Traininfo ↔ Station
Runs on : P Train ↔ Line

establish train
∆(t ,At display , info)
train?, line? : N
m! : Report

train? = t .number ∧ line? = l .number
act station = l .start terminal
t .position ′ = (act station,no station)
(act station, l) ∈ On line ∧ (t , l) ∈ Runs on
m! = infos established
(∀ s : Station | (s, l) ∈ On line •
∧ (s, info) %∈ At display ∧ At display ′ = At display ∪ {(s, info)}
info.train no′ = train?
(∃ i : TrainInfo | (s, i) ∈ At display ∧ i .train no = train? •
i .time of arrival ′ = 0))
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arrive at station
∆(t)
train? : N
m! : Report

train? = t .number
act station = second(t .position)
t .position ′ = (act station, 0)
(act station, l) ∈ On line ∧ (t , l) ∈ Runs on
m! = info updated
(∀ s : Station | (s, l) ∈ On line •
∧ (s, info) %∈ At display ∧ At display ∪ {(s, info)}
info.train no′ = train?
(∃ i : Traininfo | (s, i) ∈ At display ∧ i .train no = train? •
i .time of arrival ′ = 0))

leave station
∆(t ,At display)
train? : N
m! : Report

train? = t .number
act station = first(t .position)
m! = info updated
t .position ′ = (act station,Succ(|{act station}|))
act station = l .start terminus ⇒
(∃ i : Traininfo | (s, i) ∈ At display ∧ i .train no = train? •
At display ′ = At display \ {(s, info)}
(∀ s : Station | (s, l) ∈ On line ∧ (s.dist start − act .start dist > 0
∧ (s, act) %∈ Succ •
(∃ i : Traininfo | (s, i) ∈ At display ∧ i .train no = train? •
i .time of arrival ′ = s.dist start − act .dist start + sojourn))
(∃ s : Station | (s, l) ∈ On line ∧ (s, act) ∈ Succ •
(∃ i : Traininfo | (s, i) ∈ At display ∧ i .train no = train? •
i .time of arrival ′ = s.dist start − act .dist start))

train stopped
train? : N
m! : Report

train? = t .number ∧ (l , t) ∈ Runs on
act station = second(position)
∀ s : Station | (s, l) ∈ On line ∧ s.dist start > act .dist start •
∃ i : Traininfo | (s, i) ∈ At display ∧ i .train no = train? •
i .time of arrival ′ = special announcement
m! = info updated
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continue journey
train? : N
m! : Report

train? = t .number ∧ second(t .position) = act station
(act station, l) ∈ On line ∧ (t , l) ∈ Runs on
m! = info updated
∀ s : Station | (s, l) ∈ On line ∧ s.dist start − act .dist start > 0 •
∃ i : Traininfo | (s, i) ∈ At display ∧ i .train no = train? •
i .time of arrival ′ = s.dist start − act station.dist start + sojourn

remove train
∆(t ,Runs on)
train? : N
m! : Report

act station = l .terminus ∧ (act , l) ∈ On line
train? = t .number ∧ (t , l) ∈ Runs on
Runs on ′ = Runs on \ {(t , l)}
m! = Train has been removed

deliver new infos
line? : N
s : Station?
info! : P Traininfo
m! : Report

line? = l .number ∧ (s, l) ∈ On line
∧ (t , l) ∈ Runs on
Runs on ′ = Runs on \ {(t , l)}
info! = dom(At display)
m! = infos delivered

Station

name : Name
dist start : N

Train

position : Station × Station
number : N

Line

start terminal , terminus : Station
stations : seqStation
number : N

Traininfo

time of arrival : N
special announcement : Report
train no, line no : N
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A.9 Object Interaction Model

For each operation schema of the DAISY-Soft system there is a corresponding object
interaction graph. An object interaction graph describes the dynamic message flow
between objects involved in the system operation.

Figure A.5: Object interaction for establish train

:Driver

arrive at station(train)
!

t : Train

{t.number = train}

1:remove info(train,act)
!

l : Line

(t , l) ∈ Runs on
1.1:remove act info(train)

#

act:Station

(act , l) ∈ On line

1.1.1:delete info(train)
"

i:Traininfo

{(act , i) ∈ At display ∧
i .train no = train}

2:send to{info updated}
"

Figure A.6: Object interaction for arrive at station

:Driver

leave station(train)
!

t:Train

{t.number = train}

1 : update stations(train, act)
!

l : Line

{(t , l) ∈ Runs on ∧
act = Succ(|{first(t .position)}|)}1.1:update

subseq(train,act) #

s:Station

{(s, l) ∈ On line ∧
s.dist start > act .dist start}

1.2:update traininfo(train)
"

i:Traininfo

{(s, i) ∈ At display ∧
i .train no = t .number}

2:send to{info updated}
"

Figure A.7: Object interaction for leave station
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!

:MCS

train stopped(train)
!

t:Train

{t.number = train}

1 : update specials(train, act)
!

l : Line

{(t , l) ∈ Runs on ∧
act = Succ(|{first(t .position)}|)}1.1:update

special(train,act) #

s:Station

{(s, l) ∈ On line ∧
s.dist start > act .dist start}

1.2:special info(train)
"

i:Traininfo

{(s, i) ∈ At display ∧
i .train no = t .number}

2:send to{info updated}
"

Figure A.8: Object interaction for train stopped

:Driver

continue journey(train)
!

t:Train

{t.number = train}

1 : update stations(train, act)
!

l : Line

{(t , l) ∈ Runs on ∧
act = Succ(|{first(t .position)}|)}1.1:update

subseq(train,act) #

s:Station

{(s, l) ∈ On line ∧
s.dist start > act .dist start}

1.2:update time(train)
"

i:Traininfo

{(s, i) ∈ At display ∧
i .train no = train}

2:send to{info updated}
"

Figure A.9: Object interaction for continue journey

!

:MCS

remove train(train)
!

t : Train

{t.number = train}

1:remove info(train,act)
!

l : Line

{(t , l) ∈ Runs on ∧
(act %= start terminal)1.1:remove act info(train)

#

act : Station

{(s, l) ∈ On line ∧
act %= start terminal}

1.1.1:delete info(train)
"

i:Traininfo

{(act , i) ∈ At display ∧
i .train no = train}

2:send to{info updated}
"

Figure A.10: Object interaction for remove train
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!"

:Infomation Board

deliver new info(line)
!

s : Station
1:infos:= deliver infos(line)

!
i:Traininfo

{line = i.line no}

2:send to{current infos(infos)}
"

Figure A.11: Object interaction for deliver new info

A.9.1 Translating Objectinteraction Model to Object-Z Classes

Report ::= info updated | Train has been removed | infos established | infos delivered
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Line

start terminal , terminus : Station
stations : P Station
trains : P Train
number : N

remove train
∆(trains)
train? : N
m! : Report

∃ t : trains | t ∃ trains ∧ t .number = train? •
trains ′ = trains \ {t}
m! = Trains has been removed

establish
∆(trains)
train? : N
line? : N
m! : Report

∃ t : trains | t %∈ trains •
t .number ′ = trains?
t .act ′ = start terminal
trains ′ = trains ∪ {t}
m! = infos established

establish train =̂ [s : stations,m! : Report | m! = infos established ] •
establish;

∧
s.create infos

update stations =̂
∧

[s : stations), train? : N, act? : Station |
s.dist start > act?.dist start ] • s.update subseq

update specials =̂
∧

[s : stations, t?train : N, act? : Station |
s.dist start > act?.dist start ] • s.update special
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Train

l : Line
position : Station × Station
act : Station
number : N

update position
∆(position)
train? : N

train? = self .number
position ′ = position ⊕ {(second(position),Succ(second(position))}

arrive at station =̂ [∆(l) train? : N,m! : Report | train? = self .number
m! = info updated ] • l .remove info

leave station =̂ [∆(l) train? : N,m! : Report | train? = self .number
m! = info updated ] • update position || l .update stations

train stopped =̂ [∆(l) train? : N,m! : Report | train? = self .number
m! = info updated ] • l .update specials

continue journey =̂ [∆(l) train? : N,m! : Report | train? = self .number
∧ m! = info updated ] • update position || l .update stations
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Station

name : Name
dist start : N
infos : P Traininfo

create info
∆(infos)
train? : N
line? : N

∃ info : infos | info %∈ infos •
info.train no′ = train?
info.line no′ = line?
infos ′ = infos ∪ {info}

remove act info
∆(infos)
train? : N

∃ info : infos | info.train no = train? ∧ info ∈ infos •
infos ′ = infos \ {info}

deliver new info =̂ [line? : N, info! : infos; m! : Report | m! = current infos ∧
info!.line no = line?] • info!.deliver infos

update special =̂ [info : infos, train? : N | info ∈ infos ∧ info.train no = train?] •
info.special info

update subseq =̂ [info : infos, train? : N | info ∈ infos ∧ info.train no = train?] •
info.update traininfo

Traininfo

time of arrival : N
special announcement : Report
train no, line no : N

update special info
∆(special announcement , time of arrival)
train? : N

self .train no = train?time of arrival ′ = 0
special announcement ′ = ”reasonsfordelay”

update traininfo
∆(time of arrival)
train? : N

self .train no = train?
time of arrival ′ = time of arrival + rentation
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A.10 Formal Description

Report ::= info updated | Train has been removed | infos established | infos delivered

Line

start terminal , terminus : Station
stations : P Station
trains : P Train
number : N

start terminal %= terminus ∧ start terminal ∈ stations ∧ terminus ∈ stations

remove train
∆(trains)
train? : N
m! : Report

∃ t : trains | t ∃ trains ∧ t .number = train? •
trains ′ = trains \ {t}
m! = Trains has been removed

establish
∆(trains)
train? : N
line? : N
m! : Report

∃ t : trains | t %∈ trains •
t .number ′ = trains?
t .act ′ = start terminal
trains ′ = trains ∪ {t}
m! = infos established

establish train =̂ [s : stations,m! : Report | m! = infos established ] •
establish;

∧
s.create infos

update stations =̂
∧

[s : stations, train? : N, act? : Station |
s.dist start > act?.dist start ] • s.update subseq

update specials =̂
∧

[s : stations, t?train : N, act? : Station |
s.dist start > act?.dist start • s.update special



A.10. FORMAL DESCRIPTION 159

Train

l : Line
position : Station × Station
act : Station
number : N

INIT

act = ∅ ∧ position = (0, 0) ∧ number = 0

update position
∆(position)
train? : N

train? = self .number
position ′ = position ⊕ {(second(position),Succ(second(position))}

arrive at station =̂ [∆(l) train? : N,m! : Report | train? = self .number
m! = info updated ] • l .remove info

leave station =̂ [∆(l) train? : N,m! : Report | train? = self .number
m! = info updated ] • update position || l .update stations

train stopped =̂ [∆(l) train? : N,m! : Report | train? = self .number
m! = info updated ] • l .update specials

continue journey =̂ [∆(l) train? : N,m! : Report | train? = self .number
∧ m! = info updated ] • update position || l .update stations
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Station

name : Name
dist start : N
infos : P Traininfo

INIT

dist start = 0 ∧ ∀ i : infos • i .INIT

create info
∆(infos)
train? : N
line? : N

∃ info : infos | info %∈ infos •
info.train no′ = train?
info.line no′ = line?
infos ′ = infos ∪ {info}

remove act info
∆(infos)
train? : N

∃ info : infos | info.train no = train? ∧ info ∈ infos •
infos ′ = infos \ {info}

deliver new info =̂ [line? : N, info! : infos; m! : Report | m! = current infos ∧
info!.line no = line?] • info!.deliver infos

update special =̂ [info : infos, train? : N | info ∈ infos ∧ info.train no = train?] •
info.special info

update subseq =̂ [info : infos, train? : N | info ∈ infos ∧ info.train no = train?] •
info.update traininfo
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Traininfo

time of arrival : N
special announcement : Report
train no, line no : N

INIT

train no = line no = time of arrival = 0

update special info
∆(special announcement , time of arrival)
train? : N

self .train no = train?time of arrival ′ = 0
special announcement ′ = ”reasonsfordelay”

update traininfo
∆(time of arrival)
train? : N

self .train no = train?
time of arrival ′ = time of arrival + rentation

A.11 Data Dictionary

The Data Dictionary of DAISY-Soft as presented here is not complete. The complete
Data Dictionary would be to

Data Dictionary

.
Name Type Description Source

MCS 1 requirement domain Domain Class
Model

MCS 2 requirement domain Use Case Model,
Domain Class
Model, Timeline
Model, System
Class ModelTime-
line Model, System
Class ModelTime-
line Model, System
Class Model
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Name Type Description Source

MCS 3 requirement domain Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

MCS 4 requirement domain Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

MCS 5 requirement domain Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

MCS 6 requirement domain Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

Driv 1 requirement domain Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

Driv 2 requirement domain Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

Driv 3 requirement domain Domain Class
Model

Driv 4 requirement domain Domain Class
Model

Info 1 requirement domain Domain Class
Model

Info 2 requirement domain Use Case
Model,Domain
Class Model, Time-
line Model, System
Class Model

Info 3 requirement domain Domain Class
Model

Clock 1 requirement domain Domain Class
Model

Sys 1 requirement system Use Case
Model,Domain
Class Model, Time-
line Model, System
Class Model
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Name Type Description Source

Sys 2 requirement system Use Case
Model,Domain
Class Model, Time-
line Model, System
Class Model

Sys 3 requirement system Use Case
Model,Domain
Class Model, Time-
line Model, System
Class Model

Sys 4 requirement system Use Case
Model,Domain
Class Model, Time-
line Model, System
Class Model

Sys 5 requirement system Use Case
Model,Domain
Class Model, Time-
line Model, System
Class Model

Sys 6 requirement system Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

Sys 7 requirement system Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

Sys 8 requirement system Use Case Model,
Domain Class
Model, Timeline
Model, System
Class Model

non-resp 1 requirement statement Domain Class
Model

non-resp 2 requirement statement Domain Class
Model

non-resp 3 requirement statement Domain Class
Model

non-resp 4 requirement statement Domain Class
Model

non-resp 5 requirement statement Domain Class
Model

Station class train arrives and leaves station. At the sta-
tion the train information are announced.

Domain Class
Model, Timeline
Model, System
Class ModelSys-
tem Class Model,
Operation Model,
Object Interaction
Model, Formal
Description
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Name Type Description Source

Line class is one line of an underground-line Domain Class
Model

TrainInfo class has all information of one train that is at
moment running on the line per station.
When train enters a station the informa-
tion of that train is deleted.

Domain Class
Model

Clock class The clock represents the time which has to
be frequently updated. Is not part of the
system.

Domain Class
Model

Train class Train represents the drive from the start-
terminal to the terminus.

Domain Class
Model, Timeline
Model, System
Class Model

InformationBoard class, actor Is the forum on the station to display the
expected arrival time of train and direction

Domain Class
Model, Timeline
Model, System
Class ModelUse
Case Model,
System Class
Model,Operation
Model, Object
Interaction Model,
Formal Description

Driver class,actor Is the person who is driving the train on
the line

Domain Class
Model, Time-
line Model,
System Class
ModelUse Case
Model, Timeline
Model,Operation
Model

MCS class,actor It is the Monitor Control System of the
Underground lines.

Domain Class
Model, Time-
line Model,
System Class
ModelUse Case
Model, Timeline
Model,Operation
Model,

name attribute Name of a station of a underground line Domain Class
Model, System
Class Model

train no attribute Identification number of a train Domain Class
Model

arrivaltime attribute Estimated time of the train arrival in a sta-
tion

System Class Model

special announce-
ment

attribute For special announcement of train traffic System Class Model

number attribute Number of stations on the line Domain Class
Model

dist startbhf attribute Timing from start terminal to current sta-
tion

Domain Class
Model
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Name Type Description Source

position attribute Has the current position of the train Domain Class
Model

start terminal attribute start terminal of the line Domain Class
Model

terminus attribute terminus of the line Domain Class
Model

number attribute Number of stations on the line Domain Class
Model

Belongs to assoziation Every station belongs to a line Domain Class
Model

Runs on! assoziation Zug fhrt auf einer Strecke (Assoziation). Domain Class
Model

Monitors train! assoziation MCS monitors all train in the underground
network

Domain Class
Model

Monitors line! assoziation MCS monitors all underground lines in the
underground network

Domain Class
Model

Controls stations! assoziation MCS controls every station on he line System Class Model
Communicates assoziation Driver and MCS informs each other on ex-

ceptional situations and when entering and
leaving a station.

Domain Class
Model

Update time assoziation Time on Information Board, Train, Train-
info , Station gets frequently updated

Domain Class
Model

Supported with! assoziation The Information Board gets information of
running trains

System Class Model

Initialization of train use case MCS initializes train with number at the
start-terminal

Use Case Model

Finalization of train use case Use Case Model,
Timeline Model

Update Information use case Use Case
Model,Timeline
Model

Train Control use case Use Case
Model,Timeline
Model

leave station system opera-
tion

Train leaves station. The arrival train have
to be calculated and send to all subsequent
stations of the line.

Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

arrive at station sys-
tem operation

Train has arrived at station. Train info of
the train has to be deleted at the current
station

Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

deliver new info system opera-
tion

New train information of a particular sta-
tion is wanted by the Information Board.

Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description
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Name Type Description Source

continue journey system opera-
tion

Train continues journey. Train information
have to be updated at all subsequent sta-
tions.

Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

remove train system opera-
tion

Train has reached its destination, the ter-
minus. Information at the terminus has to
be removed.

Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

establish train system opera-
tion

Train has been set up at the start-terminal.
The train information only at the start ter-
minal has to be initiated.

Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

stopped train system opera-
tion

Train gets stopped between stations. Spe-
cial announcement has to be generated.

Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

info updated system event Train info at station is updated. Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

current infos system event the up to date train infos Timeline Model,
Life Cycle Model,
Operation Model,
Object Interaction
Model, Formal
Description

establish new train method Next train is set on the line at the start-
terminal.

Object Interaction
Model, Formal De-
scription

create infos method Train info for the set up train is generated
for all stations of the line.

Object Interaction
Model, Formal De-
scription

remove info method Infos of several trains are collected by the
Information Board of the station and can
be removed from the TrainInfo.

Object Interaction
Model, Formal De-
scription

remove act info method Actual info of a train at the station can be
deleted because train left station.

Object Interaction
Model, Formal De-
scription

delete info method Object Interaction
Model, Formal De-
scription
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Name Type Description Source
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Class

Name

attributes
requirments id

Assoziation

Aggregation Composition

Generalization/Specialization

Assoziationname <role>

<ardinality>

<role>

<cardinality>

Tenary Assozaition 

Assoziation Adornments

component attributes

component attributes: 
name [ multiplicity]: ClassType

Aggregate Component

Other representation of Composition 

Aggregate Class

attributes

Aggregate Component

Class1 Class 2

Class 3

System Cass Model Boundary

C CSupertype

Subtype Subtype

Subtypes may be complete or incomplete 

{complete}

Figure B.1: Class Model Notation
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use case

<<include>>

use case 1

use case 

System Boundary

System name

<<extends>>

use case 1

use case 2

Extension point
         name

Human Actor

Actor only input

Actor input/output

Actor/ use case Assozation 

use case

<<include>>

use case 1

use case 2

Actor name

<<include>> Relationship

<<extends>> Relationship
System name

Actor name

Figure B.2: Use Case Model Notation
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:Object1

Controller

Collaborator
systemoperation( )

:Object2

:Actor

Client Server

:Object3

2:m
essage

Client

Server

Collaborator

[Guard]1:message

2.1:send_to{Message}

name:Class

Object Collection of Objects

create( parameterlist )

Dynamic Object Creation

Return Value from Message

n:=nmessagename( )

{constraint}

1. 1.1 1.2 1.3 1.4

1.1.1 1.1.2 1.1.3

2.
1.1.1.1 1.1.1.2

Sequencing Messages 

Figure B.3: Object interaction graph Notation
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B.2 Explanatory Notes on the Structure of the Syntactic Meta Lan-
guage

Several Fusion models are defined using a number of syntactic rules. Each rule consists
of a Left-Hand Side (LHS) and a Right-Hand Side (RHS). The syntactic notion of
the LHS is explained by (derived from) the syntactic notions on the RHS. The LHS
and RHS are separated by the syntactic meta symbol ::=. Each RHS consists of a
set of alternatives or exactly one alternative and is concluded with the meta symbol..
Alternatives are separated by the meta symbol |. An alternative is a sequence of syn-
tactic units. Syntactic units are either syntactic notions or terminal symbols (tokens)
or bracket expressions of the language being tokens - also called terminal symbols - of
the language are rendered in a particular typeface (bold or italics) that differs from
the meta language’s normal typeface.

All the notions of an alternative are separated by blanks. To avoid ambiguity, the
underline symbol is therefore used instead of a blank within a syntactic unit.

Bracket expressions are either repetitions, options or underlinings. Repetition is ex-
pressed by the meta symbols ( and ) followed by a meta symbol *. The meaning,
as usual, is the formation of the empty sequence or nonempty sequences, of arbitrary
length, of copies of the bracket contents, separated by blanks.

An option brackets a sequence of syntactic units using the meta symbols [ and ] . This
notation is a combination of two alternatives, one of which contains bracketed units
and the other of which does not.

For all the languages described here, the terminal symbols are described once. Notions
that denote the terminal symbols are identified by the suffix symbol. There are syntac-
tic notions that are not deduced from terminal symbols (e.g. identifiers). Note: further
deduced notions are written in lower-case letters. All other non-terminal symbols begin
with an upper-case letter.

An underlining brackets a sequence of syntactic units with the meta symbols ( and ),
which is preceded by the keyword underline (without blanks). It has the following
meaning: all terminal derivations of the syntactic notions contained in the bracket are
continuously (not separately) underlined.

B.3 Terminal Symbols

alternative symbol ::= ||

becomes symbol ::= :=

close brace symbol ::= }

close bracket symbol ::= ]

close square symbol ::= ]
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close symbol ::= )

colon symbol ::= :

comma symbol ::= ,

comprehension symbol ::= •

cr symbol ::= carriage return

element symbol ::= ∈

equal symbol ::= =

greater symbol ::= >

greaterequal symbol ::= ≥

hashmark symbol ::= #

hide symbol ::= \

integer type symbol ::= Z

intersection symbol ::= ∩

less symbol ::= <

lessequal sybol ::= ≤

minus symbol ::= -

not element symbol ::= %∈

not equal symobol ::= %=

open brace symbol ::= {
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open bracket symbol ::= [

open square symbol ::= [

open symbol ::= (

parallel symbol ::= |

period symbol ::= .

plus symbol ::= +

power symbol ::= P

prime symbol ::= ′

product symbol ::= ×

repetition symbol ::= ∗

semicolon symbol ::= ;

subset symbol ::= ⊂

subsetequal symbol ::= ⊆

union symbol ::= ∪

vertical-line symbol ::= |

B.4 Requirements Description

Requirements definition ::= Requirement list| Non-responsible list.

Requirement list ::= Requirement |
Requirement Requirement list.
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Requirement ::= Requirement Identifier
Requirement type
Description
[Formal statement]
Model links .

Requirement Identifier ::= Id equal symbol Domain abbreviation underscore symbol digits.

Domain abbreviation ::= identifier.

Requirement type ::= Type equal symbol Fact | Constraint | System.

Description ::= Rational equal symbol Verbal description .

Formal statement ::= Formal equal symbol Predicate.

Predicate ::= ∀ Declaration list • Simple Condition |
∃ Declaration list • Simple Condition |
Simple Condition |
{Textual Description}.

Simple Condition ::= Equivalence|
Implication|
Disjunction |
Conjunction |
Negation |
Rel Expr |
Predicate. 1

Model links = Links equal symbol Model list.

Model list = Model name |
Model name comma symbol Model list.

Model name ::= Use Case Model |
Domain Class Model |
Timeline Model |
System Class Model |
Data Dictionary.

Non-responsible list ::= Non-responsible|

1These expressions have been defined in Section B.6
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Non-responsible Non-responsible list.

Non-responsible ::= Non-responsible Identifier
Description
Responsible .

Non-responsible Identifier ::= Id equal symbol non-resp underscore symbol digits.

Responsible ::= Domain equal symbol Domain name.

B.5 Life-CycleModel

lifecycle model ::= lifecycle System name equal symbol
Path expression [ List of Abbrev def].

Path expression ::= Path expression parallel symbol Path expression |
Alternative.

Alternative ::= Alternative alternative symbol Alternative|
Sequence.

Sequence ::= Sequence semicolon symbol Sequence |
Iteration.

Iteration ::= Primitive asterisk symbol |
Primitive plus symbol |
Option.

Option ::= open square symbol Option expression close square symbol.

Option expression ::= Path expression |
Primitive.

Primitive ::= Systemoperation |
hashmark symbol Systemevent|
Abbreviation | open symbol Path expression close symbol.

List of Abbrev def ::= List of Abbrev def Abbrev definition |
Abbrev definition.



178APPENDIX B. SYNTAX DESCRIPTION OF THE FUSIONB MODELS

Abbrev definition ::= identifier equal symbol Path expression.

System name ::= identifier.

Systemevent ::= identifier.

Systemoperation ::= identifier.

B.6 Operation schema

Operation Schema ::= Operation Naming

[Operation Description]

[Input Part]

[State Part]

[System Event Part]

[Precondition]

Postcondition.

Operation Naming ::= Operation = Identifier.

Operation Description ::= Description = Textual Description.

Input Part ::= Reads = RItemlist.

State Part ::= Changes = CItemlist.

System Event Part ::= Sends = Actor: { Systemevent}.

Precondition ::= Pre = Predicate.

Postcondition ::= Post= Predicate.

RItemlist ::= RItemlist , RItem |
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RItem.

RItem ::= [ supplied] Argument.

CItemlist ::= CItemlist , CItem |
CItem.

CItem ::= Variable |
Object new |
Object delete |
Object transient.

Systemevent ::= Identifier.

Predicate ::= ∀ Declaration list • Simple Condition |
∃ Declaration list • Simple Condition |
let let Def (;let Def)∗ • Predicate |
Simple Condition |
{Textual Description}.

Simple Condition ::= Equivalence|
Implication|
Disjunction |
Conjunction |
Negation |
Rel Expr |
Predicate.

Equivalence ::= Equivalence ≡ Implication |
Implication.

Implication ::= Disjunction ⇒ Implication |
Disjunction.

Disjunction ::= Disjunction ∨ Implication |
Disjunction.

Conjunction ::= Conjunction ∧ Rel Expr |
Rel Expr |
Predicate sequence.

Predicate sequence ::= Predicate sequence cr symbol Predicate |
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Predicatecr symbol Predicate.

Negation ::= ¬ Simple Condition.

Rel Expr ::= Expression Rel Op Expression [(Rel Op Expression)∗] |
( Predicate ).

Rel OP ::= ∈ | Infix Rel Op

Infix Rel Op ::= %= | %∈ | ⊆ | ⊂ | > | ≤ | ≥ | >.

let Def ::= Variable Name = = Expression.

Declaration List ::= Basic Decl (; Basic Decl)∗.

Basic Decl ::= Decl Name (, Decl Name)∗ : Type Expr |
Basic Decl vertical line-symbol Simple Condition.

Expression ::= if Predicate then Expression else |
(let let Def (; let Def)∗ • Expression ) |
Type Expr | Simple Expr.

Type Expr ::= P Type Expr |
Type Expr × Type Expr ( × Type Expr)∗ |
( Type Expr ) | Basic Type.

Basic Type ::= Identifier |
Z.

Simple Expr ::= Simpe Expr In Fun Simple Expr |
Simple Expr | unsigned decimal Integer |
Set Expr |
( Simple Expr (, Simple Expr)∗) |
Argument | Qualified attribute |
Qualified attribut Decoration |
( Simple Expr ) |
no effect |
is sent { systemevent }.

Decoration ::= ′.
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In Fun ::= + | − | ∪ | \ | ∗.

Set Expr ::= { [ Expression ( , Expression)∗] } |
{ Declaration list • Expression }.

Argument ::= Identifier | Variable.

Variable ::= Object | Qualified attribute |
Type name with Condition.

Object ::= object name:Type name |
:Type name |
Decorated object.

Decorated object ::= Object { new } |
Object { delete } |
Object { transient}.

Qualified attribute ::= Object.attribute name.

Type name ::= class name |
association name.

cr symbol ::= Carriage return.

vertical line-symbol ::= |

B.7 Messages

Message label ::= [Guard condition]
Sequence expression colon symbol

[return value becomes symbol] message name

[open bracket symbol Argument list

close bracket symbol].

Guard condition ::= open square symbol predicate
square close symbol |

repetiton symbol [open square symbol

Iteration spec close square symbol].
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Iteration spec ::= iteration expression.

Argument list ::= Argument [comma symbol Argument list]∗.

Argument ::= actual parameter expression.

Sequence expression ::= integer [period symbol Sequence expression].

Return value ::= identifier [comma symbol identifier]∗.

B.8 Classinterface

CID ::= class name [Superclass Part]

Feature Part

endclass name .

Feature Part ::= [Attribute Part] [Methode Part].

Attribute Part ::= attribute Attribute Liste |
attribute Attributelist Attribute Part.

Attribute List ::= Attribute ( comma symbol Attribute)∗.

Attribute ::= [Mutability] Identifier colon symbol Type |
[Mutability] [Binding] Identifier colon symbol
[Visibility][col] class name.

Type ::= basic type name |
Enumeration |
Structured Type.

Structured Type ::= [type name] ( Type (comma symbol ,Type)∗ ).

Enumeration ::= ( Identifier ( | Identifier)∗ ).

Mutability ::= const |
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var.

Binding ::= bound |
unbound.

Visibility ::= shared |
exclusive.

Method Part ::= method Method List |
method Method List Method Part.

Method List ::= Method (, Method)∗.

Method ::= Identifier ([Parameter List]) [Return Part].

Parameter List ::= Parameter (,Parameter)∗.

Parameter ::= Parameter name [: Type].

Return Part ::= : basic type name |
: Structured Type|
.

Superclass Part ::= behaves like Superclass name
(comma symbol Superclass name)∗.
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Appendix C

Requirements Artefacts for a
FusionB Tool

A Requirement template consists of the following entries:

Identifier : unique number
Name : name of requirement
Type : {Constraint | Fact | System}
Rational : description
Domain :
Stakeholder :
Creater :
Date :
State : {complete | deferred | inconsistent | conflict}
Priority :
Formal Description :
Link to other models :
Link to Data Dictionary :
Project : either name or project number

There are entries, which have to be filled out by the creator, some will be filled out
automatically by the system and others are optional. Those which have to be filled out
by the user are marked in red. Those which are inscribed by the system are marked in
blue and the optional entries are marked in green.

When masking out all optional entries than the template looks as follows, that is what
the creator would see:

Identifier : unique number
Name : name of requirement
Type : {Constraint | Fact | System}
Rational : description
Creator :
Date :
Link to other models :
Link to Data Dictionary :
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A Non-Responsible template has the following entries:

Identifier : unique number
Name : name of Non-responsible Statement
Rational : description
Domain : name of domain to which the Non-resp. belongs to
Stakeholder :
Creator :
Date :
Link to other models : projects or subsystems
Link to Data Dictionary :
Project : either name or project number
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ode FUSION und Entwurf einer Benutzungsschnittstelle. Master’s thesis,
Technische Universität Berlin, 2000.

[San05] George Santayana. The Life of Reason: Or, The Phases of Human Progress,
Introduction and Reason in Common Sense . Scribner’s, 1905.

[SBS03] A. Strohmeier, T. Baar, and S. Sendall. Applying FONDUE to Specify a
Drink Vending Machine. Electronic Notes in Theoretical Computer Science,
2003.

[Sch02] B. Schoeller. Ein Repository für die Verwaltung von Requirements. Master’s
thesis, Technische Universität Berlin, 2002.

[SEI95] Carnegie Mellon University Software Engineering Institute. Capability Ma-
turity Model: Guidelines for Improving the Software Process. Addison We-
sely, 1995.

[SM98] A. Sutcliffe and N. Maiden. The Domain Theory for Requirements Engi-
neering. IEEE Transaction on Software Engineering, 1998.

[Smi00] G. Smith. The Object-Z Specification Language. Kluwer Academic Pub-
lisher, second edition, 2000.

[Som01] I. Sommerville. Software Engineering, sixth edition. Addison-Wesley, 2001.

[Spi92] J.M. Spivey. The Z Notation, A Reference Manual. Prentice-Hall, second
edition, 1992.



BIBLIOGRAPHY 191

[SS96] J. Siddiqi and M. C. Shekaran. Requirements Engineering:”The Emerging
Wisdom”. IEEE Software, 13(2), March 1996.

[SS97] I Sommerville and P. Sawyer. Requirements Engineering, A good practice
guide. John Wiley & Sons, 1997.

[SS00] S. Sendall and A Strohmeier. UML Based Fusion Analysis Applied to a
Bank Case Study. In UML’99 - The Unified Modeling Language. Beyond
the Standard, pages 278–291. Springer , LNCS, 2000.

[Szy98] C. Szyperski. Component Software: Beyond Object-oriented Programming.
Addison-Wesley, 1998.

[TD97] R. Thayer and M. Dorfman, editors. SOFTWARE REQUIREMENTS EN-
GINEERING. IEEE Computer Society Press, second ed. edition, 1997.

[Web93] Merriam Webster. Merriam Webster’s collegiate dictionary. Merriam-
Webster, Incorporated, 10th edition, 1993.

[Zav97] P. Zave. Classification on Research Efforts in Requirements Engineering.
ACM Computing Surveys, 29(4), 1997.

[ZJ97] P. Zave and M. Jackson. Four dark corners of requirements engineering.
ACM Transactions of Software Engineering and Methodology.., 6(1):1–30,
1997.


