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On adaptive finite element methods for the simulation of two-dimensional
photonic crystals∗

MARINE FROIDEVAUX‡

Abstract. The first part of this paper is devoted to the modeling of wave propagation
inside a perfect two-dimensional photonic crystal and the spectral analysis of the resulting
eigenvalue problem. In the second part of the paper, we focus on a special case, where
the eigenvalue problem is linear and Hermitian. We introduce a residual-based estimator
approximating the algebraic error, i.e., the error in the computed eigenvector induced
by iterative methods. The estimator for the algebraic error approximates the error in
the same norm as the one used in already existing estimators for the discretization error,
therefore enabling error balancing between both types of errors, and thus improving the
efficiency of the adaptive finite element procedure.
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1. Introduction

Photonic crystals are composite materials, made of periodically arranged components,
whose periodic structure affects the propagation of electromagnetic waves. These waves
may propagate through or be reflected by the crystal depending on their frequencies ω and
on their wave-vector k, but also on parameters such as the electrical permittivity ε of the
constituent materials, or the geometry of the spatial arrangement of the crystal.

Photonic crystals creating so-called band gaps are of special interest for applications
in engineering. A band gap denotes a range of frequencies at which no wave can propa-
gate in any direction through the crystal. The design of photonic crystals for industrial
applications requires the optimization of many geometrical and material parameters, in
order to obtain large bad-gaps around certain frequencies specified by the application. For
this reason, we are interested in developing accurate mathematical models and numerical
methods which can enable the time-efficient simulation of these physical systems.

The mathematical modeling of a photonic crystal is based on the Maxwell equations. In
the case of a perfect infinite crystal, the Maxwell equation lead to a sequence of parameter-
dependant PDE eigenvalue problems (EVPs), which can be discretized via a conforming
finite element method. One can show that eigenpairs of the discretized problem converge to
the eigenpairs of the PDE EVP as one increases the number of basis functions in the finite
element space, see e.g. [Hac92]. However, having time-efficient computations in mind, the
number of basis functions in the finite element space, as well as the spatial localization,
should be chosen in a way that minimizes the size of the discretized system, while warranty-
ing a certain accuracy. This kind of trade-off problems is typically addressed via adaptive
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finite element methods, and error estimators are the central tool enabling this adaptiv-
ity. In [GG12], a reliable and efficient error estimator was developed in order to estimate
the error produced by the finite element method. However, for large-scaled problems it
is computationally too expensive to solve the discrete EVPs exactly via direct methods.
Instead, iterative methods are used, such as e.g. Lanczos’ method, in order to solve the
large-scale discrete problems up to a prescribed tolerance. In this setting, the error arising
from the solution of discrete EVPs via iterative methods, also called the algebraic error,
cannot be ignored as a contribution to the total numerical error. Moreover, as part of the
adaptive process, it may be sufficient to solve the coarsely discrete EVPs with an accuracy
of the magnitude of the discretization error. For these reasons, error estimators are not
only needed to approximate the discretization error, but also to approximate the algebraic
error. Moreover, both types of error estimators should be part of a unified framework,
where all errors are measured in the same norm, so that meaningful comparisons can be
made as part of error balancing procedures. For the Laplace eigenvalue problem, error
balancing between the discretization and the algebraic errors was addressed in [CDM+17]
and a fully-adpative algorithm called AFEMLA algorithm was introduced in [MM11], and
extensively discussed in [Mię10].

The mathematical description and simulation of photonic crystals has already been the
subject of many research papers. Discretization via Nédélec finite elements for three-
dimensional photonic crystals has been considered in [BCG06], while the same prob-
lem was solved in [HLM16] via a finite difference scheme followed by a Newton-type
numerical method. For two-dimensional photonic crystals, a spectral analysis was per-
formed in [GG12] for the special case where the electric permittivity is real and frequency-
independent. The extensive spectral analysis of the non-Hermitian non-linear case can be
found in [Eng10] and [ELT17]. Moreover, a linearization technique for the Drude-Lorentz
model of the electrical permittivity was introduced in [EKE12].

In the three first sections of this paper, we review the modeling of a perfect photonic
crystals based on the Maxwell equations which leads to the operator NLEVP. In the fourth
section, we consider the case where the electric permittivity ε is a real-valued and frequency-
independent function. We introduce the weak formulation of the resulting Hermitian linear
EVP and analyse its properties. In particular we show that its spectrum consists in at
most countably many real and positive eigenvalues with finite geometric multiplicities.
In the fifth section, we develop a residual-based error estimator which approximate the
algebraic error on the computed eigenvector in the norm defined by the sesquilinear forms
of the weak formulation. Finally, the last section of this paper is devoted to a numerical
experiment, where we simulate a two-dimensional photonic crystal and test the reliability,
as well as the efficiency, of the algebraic error estimator.

2. Preliminaries on the Maxwell equations

2.1. General Form. The Maxwell equations in their general form and in SI units are
stated as follows:

−∂tD(x, t) +∇×H(x, t) = J(x, t), (Ampère’s circuital law)
∇ ·D(x, t) = ρ(x, t), (Gauss’ law)

∂tB(x, t) +∇× E(x, t) = 0, (Faraday’s law of induction)
∇ ·B(x, t) = 0, (Gauss’ law for magnetism)

where E,H,D,B and J are three-dimensional vector fields and ρ is a real scalar field,
see e.g. [Jac99]. These fundamental equations come along with the following empirical



ON AFEM FOR THE SIMULATION OF 2D PHOTONIC CRYSTALS 3

constitutive equations:[
D(x, t) = ε0E(x, t) + ε0χE(x, t) ∗ E(x, t),
B(x, t) = µ0H(x, t) + µ0χM (x, t) ∗H(x, t),

where ε0, µ0 are strictly positive constants, χE , χM are causal transfer functions, and ∗
denotes a convolution in time, i.e.

χE(x, t) ∗ E(x, t) =

∞∫
−∞

χE(x, t− τ)E(x, τ)dτ causality
=

t∫
−∞

χE(x, t− τ)E(x, τ)dτ.

Remark 2.1. In the remainder, we omit writing the explicit dependence of vector field on
space, time and frequency when the dependence is clear from the context.

In the remainder, we will assume that no free current nor free charges are present in
the system, i.e. J ≡ 0 and ρ ≡ 0, and that the materials are non magnetizable, i.e.
χM ≡ 0. Under these assumptions, the Maxwell equations simplify to the following system
of equations:

(2.1)
[
−∂t(ε0E + ε0χE ∗ E) +∇×H = 0, ∂t(µ0H) +∇× E = 0,
∇ · (ε0E + ε0χE ∗ E) = 0, ∇ · (µ0H) = 0.

2.2. The eigenvalue problem. We recall briefly the definition of the Fourier transform.
Given a function f(t) ∈ L1(R), i.e., f(t) is absolutely integrable on R, its Fourier transform
is defined by

F{f}(ω) :=

∫
R

f(t)e−iωt dt.

Note that when the variable t represents time with units [s], then ω represents the angular
frequency and has units [rad/s]. To shorten the notation, we write formally f̂(ω) :=
F{f}(ω). On a subspace of L1(R), namely the space S ⊂ L1(R) of so-called Schwartz
functions, the Fourier transformation satisfies a number of important properties. A rigorous
definition of S can be found e.g. in [Jan71], but it is sufficient for our purpose to think of
it as the space of infinitely differentiable functions decaying rapidly at infinity. For any
function f ∈ S it holds that f̂ ∈ S and the inverse Fourier transform can be defined by

F−1{f̂}(t) =
1

2π

∫
R

f̂(ω)e+iωtdω = f(t).

Moreover, given two functions f, g ∈ S, the following properties of the Fourier transform
follow from its definition:

(2.2) F{f ∗ g}(ω) = f̂(ω)ĝ(ω) and F{f ′}(ω) = +iωf̂(ω),

where f ′ denotes the first-order derivative of f . The Fourier transform is not restricted
to functions in L1(R) and can be extended to the space of tempered distributions, i.e.,
to the dual space of S. For a rigorous definition of these concepts and for the proof of
properties analogous to (2.2) satisfied by the Fourier transform of tempered distributions,
see e.g. [Jan71].

It is physically meaningful to expect that E and H stay bounded at all times since the
system contains no energy source. Therefore, we can assume E and H to be tempered
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distributions and we can apply a Fourier transformation in time to the Maxwell equations
(2.1). This yields to the following constrained eigenvalue problem (EVP):

(2.3)

(
0 1

ε(x,ω)∇×
− 1
µ0
∇× 0

)(
Ê(x, ω)

Ĥ(x, ω)

)
= +iω

(
Ê(x, ω)

Ĥ(x, ω)

)
∇ · (ε(x, ω)Ê(x, ω)) = 0,

∇ · (µ0Ĥ(x, ω)) = 0,

where ε(x, ω) := ε0(1 + χ̂E(x, ω)). The first-order (order of derivation in space) EVP
of dimension 6 in (2.3) can be turned into a second-order EVP of dimension 3 simply
by substituing Ê = + 1

iω
1
ε∇ × Ĥ in the second line or, similarly, by substituing Ĥ =

− 1
iω

1
µ0
∇× Ê in the first line. This yields two equivalent formulations of the EVP:

(2.4) ∇×
( 1

ε(x, ω)
∇× Ĥ(x, ω)

)
= µ0ω

2Ĥ(x, ω)

and

(2.5) ∇×∇× Ê(x, ω) = µ0ε(x, ω)ω2Ê(x, ω).

Remark that in these two formulations, the constraints ∇ · (εÊ) = 0 and ∇ · (µ0Ĥ) = 0
are automatically satisfied since

∇ · (∇× f) ≡ 0

for any function f twice continuously differentiable.
In order to simplify the equations, we restrict our solution space to separable electro-

magnetic fields, i.e. we take the ansatz

(2.6) H(x, t) = H(x)f(t) and E(x, t) = E(x)g(t),

where f and g are two nonzero tempered distributions.
Incorporating the first ansatz into Equation (2.4) and simplifying the terms f̂(ω) ap-

pearing on both sides of the equation yields

(2.7) ∇×
( 1

ε(x, ω)
∇× H(x)

)
= µ0ω

2H(x).

Similarly, Equation (2.5) can be rewritten as

(2.8) ∇×∇× E(x) = µ0ε(x, ω)ω2E(x).

2.2.1. The two-dimensional case. In this subsection, we assume all properties of the system
to be periodic in a two-dimensional (2D) plane and to be constant along the direction
perpendicular to this plane. Without loss of generality, we assume that the plane with
periodic properties is spanned by x1 and x2, and that the the direction with constant
properties is along x3. Using the short notation ∂j = ∂

∂xj
for j = 1, 2, 3, the assumption of

constant material properties along x3 writes ∂3ε = 0, and implies ∂3E = ∂3H = 0 since no
parameter in Equations (2.7) and (2.8) depends on x3.

Let us introduce some 2D equivalents of the standard three-dimensional (3D) differential
operators, as well as some notation. We consider a 3D vector u = (u1, u2, u3)T , a 2D vector
v = (v1, v2)T , and a scalar function w, and we define

u :=

(
u1

u2

)
, v⊥ :=

(
−v2

v1

)
,

grad2Dw :=

(
∂1w
∂2w

)
, div2D v := ∂1v1 + ∂2v2,
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curl2Dw := −(grad2D w)⊥ =

(
∂2w
−∂1w

)
, curl2D v := − div2D(v⊥) = ∂1v2 − ∂2v1,

laplace2D w := ∂1∂1w + ∂2∂2w = − curl2D curl2Dw = div2D grad2Dw.

It follows that

∇× u =

(
curl2Du3

curl2D u

)
+ ∂3

(
u⊥

0

)
.

With these tools we can easily show that, in the 2D case, (2.7) becomescurl2D
1
ε curl2D

(
H1

H2

)
curl2D 1

ε curl2D(H3)

 = µ0ω
2H

and (2.8) becomes curl2D curl2D
(
E1

E2

)
laplace2D(E3)

 = µ0εω
2E.

Therefore the equations including H3 and E3 are decoupled from the rest of the equations.
This decoupling can be best expressed in terms of the transverse electric (TE) and trans-
verse magnetic (TM) modes, which we introduce now. Let us start from (2.3) again and
add the effects of the continuous translational symmetry along x3. We obtain

1
ε curl2D(Ĥ3)

1
ε curl2D

(
Ĥ1

Ĥ2

)
1
−µ0 curl2D(Ê3)

1
−µ0 curl2D

(
Ê1

Ê2

)


= iω



(
Ê1

Ê2

)
(Ê3)(
Ĥ1

Ĥ2

)
(Ĥ3)


where the first and fourth block lines, which define the TE mode (ÊT1 , Ê

T
2 , 0, 0, 0, Ĥ

T
3 )T , are

decoupled from the second and third block lines, which define the TM mode (0, ĤT
1 , Ĥ

T
2 ,

ÊT3 , 0, 0)T . Combining the equations describing the TE mode yields

(2.9)

(2.10)


− 1

µ0
curl2D

1

iω

1

ε
curl2DĤ3 = iωĤ3,

1

ε
curl2DĤ3 = iω

(
Ê1

Ê2

)
,

and combining the equations describing the TM mode yields

(2.11)

(2.12)


1

ε
curl2D

1

iω

1

−µ0
curl2DÊ3 = iωÊ3,

1

−µ0
curl2DÊ3 = iω

(
Ĥ1

Ĥ2

)
.

It follows that the components Ê1, Ê2, Ĥ1, Ĥ2 can be easily computed from the solutions
Ĥ3, Ê3 of (2.9) and (2.11).
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Moreover, the constraints in (2.3) are automatically satisfied in the formulation of Equa-
tions (2.9)–(2.12) since

∇ · (εÊ) = ∇ ·

(
1
iω curl2DĤ3

1
µ0ω2 curl2D curl2DÊ3

)
= ∇ · ∇ ×

(
1

µ0ω2 curl2DÊ3

1
iω Ĥ3

)
= 0

and

∇ · (µ0Ĥ) = ∇ ·

(
1
−iω curl2DÊ3

curl2D 1
εω2 curl2DĤ3

)
= ∇ · ∇ ×

(
1
εω2 curl2DĤ3
−1
iω Ê3

)
= 0.

Finally, note that with the ansatz (2.6), Equations (2.9) and (2.11) can be reformulated
as follows

− div2D(
1

ε
grad2DH3) = µ0ω

2H3

− laplace2D E3 = µ0εω
2E3,

or equivalently (for ∂3ε = ∂3H3 = ∂3E3 ≡ 0)

(2.13)

(2.14)

−∇ · (1

ε
∇H3) = µ0ω

2H3

−∆E3 = µ0εω
2E3.

The TE mode can be determined by the solution of (2.13) while the TM mode can be
determined by the solution of (2.14).

2.3. Models for the electric permittivity. It has been mentioned in Section 2.1 that we
only consider nonmagnetic materials, i.e. the magnetic permeability in the whole system is
constant and is equal to that of vacuum, namely µ0. The electric permittivity ε however is
assumed to differ from one material to the other but to stay constant in space within a given
material. Mathematically this means that, if the crystal is composed of Nmat materials
and we denote by Ωj the domain filled with the j-th material, the electric permittivity of
the crystal can be defined as follows

ε(x, ω) =

Nmat∑
j=1

εj(ω)χΩj (x)

where εj(ω) are constant functions in space and χΩj is the indicator function of Ωj .
The functions εj(ω) need to be approximated by empirical models. In the remainder

of this subsection, we introduced two of the most commonly used models. Note that we
only consider the dependency of the electric permittivity on the frequency and neglect the
influence of other factors, such as e.g. the temperature.

2.3.1. The frequency-independent model. The simplest model for εi(ω) is to assume it to
be constant in frequency, i.e.

εi(ω) = ε(i)r ε0

where ε(i)r denotes the relative permittivity of the i-th material and ε0 the electric permit-
tivity of vacuum.

With this model, the EVPs (2.7), (2.8), (2.13), and (2.14) become linear in the eigenvalue
λ := ω2.



ON AFEM FOR THE SIMULATION OF 2D PHOTONIC CRYSTALS 7

2.3.2. The Drude-Lorentz model. We follow here the derivation of the Drude-Lorentz model
presented in [Jac99, p.309-312]. We consider an electron bound to a kernel in a crystal
and submitted to an electric field. We model the interaction between the electron and
the kernel with a spring of stiffness k and of damping constant γ. We make the following
approximations:

• The difference between the local and applied electric fields is neglectable, i.e. the
material has low density;
• Magnetic forces are neglectable;
• The amplitudes of electron oscillations are small enough to evaluate the field at a
constant average position x̄;
• The applied field E is assumed to vary harmonically in time.

We denote by q = −e the charge of the electron and by x its position (with reference
point at the equilibrium point of the spring). Newton’s equation of motion writes in this
case

mẍ = −kx− γẋ+ qE

After defining ω0 :=
√
k/m we obtain

(2.15) m(ẍ+
γ

m
ẋ+ ω2

0x) = −eE.

Under the assumption that E is time-harmonic, i.e. with the ansatz E(x̄, t) = E(x̄)eiωt

for a certain ω in C, the Fourier transformation of (2.15) yields to

F{x(t)}(ν) =
2πeE(x̄)

m

1

ω2
0 − ν2 + iνγ

δ(ω − ν) = C(ω)δ(ω − ν)

where C(ω) := 2πeE(x̄)(m(ω2
0 − ω2 + iωγ))−1 is constant in ν. Therefore x(t) is time

harmonic with (angular) frequency ω as well and satifies

x(t) = − e

m

1

(ω2
0 − ω2) + iωγ

E(x̄, t).

It follows that the dipole moment p := qx equals

p =
e2

m

E

ω2
0 − ω2 + iωγ

.

Let us now consider the dipole moment created by multiple electrons having possibly
different binding frequencies. We denote by N the number of molecules per unit volume
and by Z the number of electrons per molecule. We suppose that there are fl electrons per
molecule with binding frequency ωl and damping constant γl, and therefore that

∑
l fl = Z.

We call pl the dipole moment created by the fl electrons corresponding to the binding
frequency ωl. Given the relationships

ε

ε0
= 1 + χ̂E

and

N
∑
l

flp̂l = ε0χ̂EÊ
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we deduce that
ε

ε0
= 1 +

e2N

mε0

∑
l

fl
ω2
l − ω2 + iωγl

(2.16)

= 1 +
e2N

mε0

∑
l

fl

[
(ω2
l − ω2)

(ω2
l − ω2)2 + ω2γ2

l

− i ωγl
(ω2
l − ω2)2 + ω2γ2

l

]
.(2.17)

The damping constant γl are generally small compared to the binding frequencies ωl,
therefore ε is approximately real for almost all frequencies ω. We notice that the j-th term
in the sum in (2.16) becomes purely imaginary when ω = ωl. Moreover, at this point, the
imaginary part becomes significantly larger in magnitude than at points away from the
resonance.

2.3.3. Physical properties of the electric permittivity. In the previous section, we have seen
that taking into account the damping from the crystal leads to a complex permittivity.
Since the damping is a non-conservative force dissipating kinetic energy into other types
of energy, e.g. heat or sound, a non-real permittivity corresponds to a dissipative system.

Actually, it will be discussed in subection 4.2 that the eigenvalue problems 2.8 and
2.7 are self-adjoint and have their spectrum (i.e. the possible values of ω in the ansatz)
contained in R if and only if ε is a real function.

Under the assumption that E varies harmonically in time, i.e.

E(x, t) = <
(
E(x)eiωt

)
= <

(
E(x)ei(<(ω)+i=(ω))t

)
= E(x)e−=(ω)t<

(
ei<(ω)t

)
,

the complex part of the frequency describes the decay of the eigenmode over time. In this
setting, in particular with this sign convention in the ansatz, ω can only be located in the
upper half of the complex plane, since no energy source is present in the crystal.

3. The Floquet transformation & Bloch theorem

3.1. Some fundamentals concepts in crystallography. In this section we introduce
some important concepts in the theory of periodic structures. The reader can refer to the
standard textbook [Kit05] for a more extensive description of these concepts in a physical
context. A detailed presentation of these same concepts in a mathematical context can be
found in [Sim13].

An ideal crystal is formed of two or more components that are arranged in a periodic
manner, i.e. as an infinite repetition of an identical pattern. In this paper we consider
an ideal n-dimensional crystal composed of two different materials, with n=2 or n=3.
Mathematically, one uses the concept of lattice to represent such a periodic structure, and
multiple definitions of this concept can be found in the literature. We choose to use the
following one for its mathematical precision:

Definition 3.1. Let a1, . . . , an ∈ Rn be linearly independent. Then the set

G := {g ∈ Rn | g =

n∑
i=1

νiai for some νi ∈ Z}.

is called a (Bravais) lattice and the vectors a1, . . . , an are called the primitive lattice vectors.

With this definition, it follows that any periodic structure can be expressed as a lattice
of repeating objects [Sim13]. This statement is illustrated informally in Figure 3.1.
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Figure 3.1. Decomposition of a periodic structure into a tiling of repeti-
tive units located on a lattice.

Any lattice G is the result of the tiling of Rn by infinitely many identical tiles called unit
cells, and a unit cell is called primitive if it contains exactly one lattice point. Equivalently,
a primitive unit cell can be thought of as a domain in Rn of smallest volume that can tile
G using only translations. In the remainder, we use a particular type of primitive unit cell,
namely the Wigner-Seitz cell defined as follows:

Definition 3.2. Let G be a lattice in Rn and g ∈ G. The Wigner-Seitz cell of G at the
point g is

Ωg := {r ∈ Rn | ‖r − g‖ < ‖r − g̃‖ for all g̃ ∈ G, g̃ 6= g},
where ‖ · ‖ is the standard Euclidean norm in Rn. One may refer simply to the Wigner-
Seitz Ω of G without mentioning any point g in order to denote tacitly the Wigner-Seitz
cell centered around the origin (0 ∈ G).

To any Bravais lattice G in Rn corresponds a reciprocal lattice G′ defined by

G′ := {g′ ∈ Rn | for all g ∈ G, there exists m ∈ Z satisfying g′ · g = 2πm}.
It can be shown (see e.g. [Kit05]) that the primitive lattice vectors b1, . . . , bn of G′ can
always be chosen in a such way that they satisfy the following constraints: For all j, l =
1, . . . , n,

(3.1) bj · al = 2πδjl,

where δjl denotes the Kronecker delta, and a1, . . . , an denote the primitive lattice vectors
of G.

The Wigner-Seitz cell of G′ is called the Brillouin zone of G. In addition to the discrete
translational symmetries represented by the lattice vectors, a lattice G can be invariant
under other sorts of symmetries, such as e.g. rotational or axial symmetries. In such a
case, the Brillouin zone reduced by all the symmetries of the lattice is called the irreducible
Brillouin zone K of G (see Figure 3.2).

3.2. Learning from the electron in a crystal. In this susbsection we recall physical
results historically arising from the analysis of an electron in a perfect crystal.

3.2.1. Translational operators. For any ∆x ∈ Rn we denote by T∆x : L2(Rn) → L2(Rn)
the translational operator shifting a function to the right by ∆x, i.e.

T∆xv(x) = v(x−∆x)

for all v(x) ∈ L2(Rn). Its dual operator with respect to the inner product

(v, w)L2(Rn) :=

∫
Rn

v(x)w(x) dx for all v, w ∈ L2(Rn)
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Irreducible 
Brillouin 

zone K of G. 

a1 

a2 

Square lattice G with 
lattice vectors a1, a2  and 

Wigner-Seitz cell Ω. 

Ω 

2π/a1 

2π/a2 
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Ω’ 
Ω’ 

Figure 3.2. Illustrations of some fundamental concepts in crystallography.

is
T ∗∆x := T−∆x,

since for all v, w,∈ L2(Rn) it holds

(T ∗∆xv, w) = (v, T∆xw) =

∫
Rn

v(x)w(x−∆x) dx =

∫
Rn

v(x̃+ ∆x)w(x̃) dx̃ = (T−∆xv, w).

Thus
T∆xT

∗
∆xv(x) = T∆xv(x+ ∆x) = v(x)

for all v ∈ L2(Rn) and therefore the translational operators is unitary. It follows in
particular that its spectrum is contained on the unit circle in the complex plane.

3.2.2. Bloch theorem.

Lemma 3.3. Given a n-dimensional lattice G with lattice vectors {aj}nj=1, if a function
ψ ∈ L2(Rd) is an eigenfunction of all translational operators {Taj}nj=1, then ψ is a Bloch
wave, i.e., it is of the form

ψ(x) = eik·xuk(x)

for some periodic function uk(x) with periodicity vectors {aj}nj=1 and for some vector k in
the Brillouin zone Ω′.

Proof. If ψ(x) is an eigenfunction of all translational operators {Taj}nj=1, then for all j =

1, . . . , n there exists a real constant θj ∈ [−1
2 ,

1
2) such that

ψ(x+ aj) = e2πiθjψ(x),

since Taj is unitary. Let us denote by {bj}nj=1 the lattice vectors of the reciprocal lattice
G′ satisfying Equation (3.1), and define

k :=
n∑
j

θjbj .

Note that k ∈ Ω′ per construction. Then the function

uk(x) := e−ik·xψ(x).
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satisfies

uk(x+ aj) = e−ik·xe−ik·ajψ(x+ aj) = e−ik·xe−i2πθjei2πθjψ(x) = e−ik·xψ(x) = uk(x)

for all j = 1, . . . , n, which terminates the proof. �

Theorem 3.4 (Bloch theorem). The wavefunction describing the state of electron in a
crystal can be expressed in a basis formed of Bloch waves. Moreover, these Bloch waves are
energy eigenstates.

Proof. Due to the discrete symmetry of the problem, the Hamiltonian and the translation
operators commute with each others. Therefore they can be diagonalized in a common
basis. This basis is thus formed of functions that are energy eigenstates and have the
form of Bloch waves. The expansion of the wavefunction in this basis yields to a linear
combination of Bloch waves, which terminates the proof. �

3.3. Floquet transformation. The Bloch theorem is very well-known in solid state
physics. In the mathematics community, this result is more commonly known as a part
of the Floquet theory. Eventhough the Bloch and the Floquet theories are analogous,
their derivations differs a bit. In this subsection we recall the definition of the Floquet
transformation, as well as some of the main results related to it.

Definition 3.5. For any function u ∈ L2(Rn), we define the Floquet transform of u with
respect to the lattice G as the function

F{u}(k, x) :=
∑
g∈G

u(x− g)e−ik·(x−g).

For the sake of brevity, we use the notation uk(x) := F{u}(x, k). Some important
properties follow directly from this definition:

• uk is G−periodic in x and quasi-G′-periodic in k, i.e.
uk(x+ g) = uk(x) for all g ∈ G,

uk+g′(x) = e−ig
′·xuk(x) for all g′ ∈ G′,

• given a G-periodic function ε(x) such that εu ∈ L2(Rn), it holds

F{εu}(k, x) = ε(x)uk(x),

• for j = 1, . . . , n,

(3.2) F{∂ju}(k, x) = [∂j + ikj ]uk(x),

where ∂j denotes the partial derivative with respect to the j-th component of x
and kj is the j-th component of k.

The following theorem ensures that the Floquet transformation is invertible when the
codomain is properly defined in terms of the irreducible Brillouin zone K of the lattice G.

Theorem 3.6 ([Kuc01]). Let us denote by Tn the n-dimensional torus corresponding to the
Wigner-Seitz cell Ω of G with periodic boundary conditions. The Floquet transformation
with respect to G, considered as a mapping

F : L2(Rn)→ L2(K, L2(Tn))

u→ (k → uk(·)),
is isometric and its inverse is given by

u(x) = F−1{uk}(x) =
1

|K|

∫
K

uk(x)eik·xdk.
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3.4. Link between Bloch waves and Floquet transformations. Similarly to the
state of an electron in a crystal, the state of a photon in a crystal, represented by the
electromagnetic field, can be expressed as a linear combination of Bloch waves. Indeed, let
u denote either the electric field E or the magnetic field H. Then

u(x) = F−1{F{u}}(x) =

∫
K

1

|K|
eik·xuk(x)dk =

∫
K

1

|K|
ψk(x)dk,

where ψk(x) := eik·xukx is a Bloch wave.

3.5. The Floquet transformation applied to the Maxwell equations. In the re-
mainder, G ⊂ Rn represents the lattice underlying the spatial distribution of ε, i.e. ε(x, ω)
is G-periodic in x. In this subsection, we apply a Floquet transformation with respect to
G to the Maxwell EVPs for 3D and 2D crystals. In view of the property (3.2) we introduce
the notation ∇k := ∇+ ik for any k ∈ R3 and ∇k := [∂1, ∂2]T + ik for any k ∈ R2.

3.5.1. 2D photonic crystals. Applying the Floquet transformation to (2.13) and (2.14) for
some k in the irreducible Brillouin zone K ⊂ R2 gives

(3.3)

(3.4)

−∇k · (
1

ε
∇kH3,k) = µ0ω

2H3,k

−∇k · ∇kE3,k = µ0εω
2E3,k,

respectively, where (3.3) and (3.4) are now two equations on the Wigner-Seitz cell Ω, with
periodic boundary conditions on the functions H3,k(x),E3,k(x) and ε(x).

3.5.2. 3D photonic crystals. Similarly as in the 2D case, applying the Floquet transforma-
tion to (2.7) and (2.5) for some k in the irreducible Brillouin zone K ⊂ R3 gives

∇k ×
( 1

ε(x, ω)
∇k × Hk(x)

)
= µ0ω

2Hk(x)

∇k ×∇k × Ek(x) = µ0ε(x, ω)ω2Ek(x).

respectively, which are now two equations on the Wigner-Seitz cell Ω, with periodic bound-
ary conditions on the functions Hk(x),Ek(x) and ε(x).

4. Finite Element Formulation of the EVP

In the remainder we focus our analysis on 2D photonic crystals. Equations (3.3) and (3.4)
are very similar and so are the methods to solve them as well. Therefore, we concentrate
the detailed analysis on (3.4) and keep in my mind that the analysis of (3.3) is analogous.
Moreover, from now on, we consider the easiest empirical model for the electric permittivity,
i.e. we assume that ε = ε(x) =

∑
j=1,2 εjIΩj is independent of the (angular) frequency ω.

In this case, (3.4) depends only quadratically on ω, so we define the new variable λ := ω2.

4.1. Weak and discrete formulations. We aim at solving the EVP (3.4) by means of
the finite element method. To do so, we first define the weak formulation of the EVP,
namely: For all k ∈ K, find (u, λ) ∈ V × C such that

(4.1) ak(u, v) = λbε(u, v) for all v ∈ V,
where V := H1

per(Ω) = H1(T2) for T2 the 2-dimensional torus corresponding to the Wigner-
Seitz cell Ω, and where a : V × V → C and bε : V × V → C are defined by

ak(u, v) :=

∫
Ω

∇ku · ∇kv dx
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and, respectively,

bε(u, v) :=

∫
Ω

µ0ε(x)uv dx.

Remark 4.1. We have used the following integration by parts formula for functions in V :∫
Ω
−∇ · ∇kuv dx =

∫
Ω
∇ku · ∇v dx−

∫
∂Ω

(∇ku · n̂)v ds =

∫
Ω
∇ku · ∇v dx

where n̂ denotes the the outward unit surface normal to ∂Ω and where
∫
∂Ω(∇ku·n̂)v ds = 0

is to be understood in the sense of traces. This yields∫
Ω
−∇k · ∇kuv dx =

∫
Ω
∇ku · ∇v − ik · ∇kuv dx =

∫
Ω
∇ku · ∇kv dx.

With the aim of solving Problem (4.1) numerically, we define a subspace Vh ⊂ V of
dimension N <∞ and N basis functions {φj}j=1,...,N such that

(4.2) Vh = span{φ1, . . . φN}.
It follows that any vh ∈ Vh can be expressed as a linear combination of the basis functions,

i.e. there exist scalars v1, . . . , vN such that vh =
N∑
j=1

vjφj . Thus we can define a discretized

problem corresponding to (4.1) as follows: For all k ∈ K, find (λh, uh) ∈ C× Vh such that

(4.3) Aku = λhµ0Bεu.

where u := [u1, . . . , uN ]T , and Ak, Bε are defined by (Ak)j,i := ak(φi, φj) and (Bε)j,i :=
bε(φi, φj), for i, j = 1, . . . , N .

Before discussing about methods to solve Problem (4.1) and (4.3), let us analyze the
properties of the linear forms and the corresponding matrices defining the EVPs.

4.2. Properties of the EVPs. Let us start this subsection with some comments and
results concerning the considered vector spaces.

4.2.1. Vector spaces considerations. In the Hilbert spaces H := L2(Ω) and V = H1(Ω) ⊂
H we consider the standard norms

‖v‖H :=

∫
Ω
|v(x)|2 dx

for all v ∈ H and

‖ · ‖V := ‖ · ‖H1(Ω) =
(
‖∇ · ‖2H + ‖ · ‖2H

)1/2
.

Remark 4.2. For any u ∈ V , it holds ∇u ∈
(
L2(Ω)

)2. Therefore the notation ‖∇u‖L2(Ω)

is a bit abusive. In fact, for any w,w′ ∈
(
L2(Ω)

)2 we use the conventional notation

(w,w′)L2(Ω) :=

∫
Ω
w(x) · w′(x) dx

where · denotes the standard dot product, namely w(x) · w′(x) :=
∑

i=1,2wi(x)w′i(x) for
all w(x), w′(x) ∈ C2. Additionally,

‖w‖2L2(Ω) := (w,w)L2(Ω) =

∫
Ω
|w|2 dx

where |w| :=
(∑

i=1,2wiwi

)1/2
denotes the standard norm in C2.
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When ε(x) is a real-valued function, we can define another inner product in H that will
be more handy for the spectral analysis of the problem.

Lemma 4.3. Let ε0, ε∞ be some positive contants and let ε(x) be a real-valued function
satisfying 0 < ε0 ≤ ε(x) ≤ ε∞ for all x ∈ Ω. Then the sesqui-linear form bε defines an
inner product in H. Moreover, the norm ‖ · ‖bε derived from this inner product is equivalent
to ‖ · ‖H in H.

Proof. The form bε possesses the following properties:
• Positivity: bε(u, u) =

∫
Ω ε(x)|u|2 dx ≥ ε0‖u‖2H ≥ 0 and bε(u, u) = 0 if and only if

u ≡ 0,
• Conjugate symmetry: bε(u, v) =

∫
Ω ε(x)uv dx =

∫
Ω ε(x)vu dx = bε(u, v) since

ε(x) ∈ R,
• Linearity in the first argument: bε(αu, v) = αbε(u, v) for all α ∈ C.

Moreover, it holds that ε∞‖u‖2 ≥ bε(u, u) ≥ ε0‖u‖2, which shows the equivalence of the
norms. �

In the remainder, we assume ε(x) to be a real-valued function satisfying 0 < ε0 ≤ ε(x) ≤
ε∞ for all x ∈ Ω. Hence, we can define the inclusion map Iε : V → V ∗ by means of the
Gelfand triple

V ↪→ H ∼= H∗ ↪→ V ∗,

i.e., Iε = ιH∗→V ∗jHιV→H where jH : H → H∗ is the Riesz isomorphism with respect to
the inner product bε, ιV→H is the embedding of V into H, and ιH∗→V ∗ = (ιV→H)∗. An
important property of this particular Gelfand triple is that the imbedding of V into H is
compact, see e.g. [Eng10] and references therein. It follows that the embedding of H∗ into
V ∗ is also compact [Hac92, Ch. 6].

4.2.2. Definition of the operator equation. In this subsection, we show that Problem (4.1)
can be reformulated as an equivalent problem in the dual space V ∗. e start with a lemma
proving Young’s inequality in the specific case of complex vectors.

Lemma 4.4 (Young’s inequality). Consider a,b ∈ C2. Then, for every δ > 0 we have an
estimate of the form

|a · b + a · b| ≤ 1

δ
|a|2 + δ |b|2.

Proof. For any two vectors c,d ∈ C2, the following estimates hold:

0 ≤ |c + d|2 = (c + d) · (c + d) = |c|2 + |d|2 + c · d + c · d,

0 ≤ |c− d|2 = (c− d) · (c− d) = |c|2 + |d|2 − c · d− c · d.

As a result, we have |c ·d+c ·d| ≤ |c|2 + |d|2. The claim then follows by setting c = a/
√
δ,

and d = b
√
δ. �

By means of the Young inequality, we can now show the boundedness of ak:

Lemma 4.5. For all k ∈ K, the sesquilinear form ak(·, ·) in (4.1) is bounded (or, equiva-
lently, continuous) in V , with constant CM = 2 max(1, |k|2). Moreover, ak is Hermitian.

Proof. By means of the Cauchy-Schwarz inequality we obtain for all u, v ∈ V that

|ak(u, v)| ≤
∫

Ω
|∇ku(x)| |∇kv(x)| dx

≤
(∫

Ω
|∇ku(x)|2 dx

)1/2(∫
Ω
|∇kv(x)|2 dx

)1/2
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Lemma 4.4 with δ = 1 yields∫
Ω
|∇ku(x)|2 dx ≤

∫
Ω
|∇u(x)|2 + |ku(x)|2 +

∣∣∣iku∇u(x) + iku∇u(x)
∣∣∣2 dx

≤ ‖∇u‖2H + |k|2‖u‖2H +
(
‖ku‖2H + ‖∇u‖2H

)
.

It follows that
|ak(u, v)| ≤ CM‖u‖V ‖v‖V

where CM = 2 max(1, |k|2). Moreover, it is straightforward to see that ak(u, v) = ak(v, u),
which implies the Hermiticity of ak. �

Hence, we can define an operator Ak mapping from the space V to its dual V ∗ by the
equality

〈Aku, ·〉V ∗,V := ak(u, ·)
for all u ∈ V . The EVP (4.1) can then be reformulated as an equation in V ∗:

(4.4) Akuk = λIεuk.

4.2.3. Properties of the resolvent. Instead of the eigenvalue problem (4.4) it is more con-
venient for the analysis to look at the equivalent shifted problem:

(Ak + σIε)uk = (λ+ σ)Iεuk
where σ > 0 is a fixed parameter. In this section we investigate the properties of the
resolvant (Ak + σIε)−1 of Ak. To this end, we demonstrate that the form ak,σ := ak + σbε
corresponding to the operator Ak,σ := Ak + σIε is an elliptic sesquilinear form.

Lemma 4.6. For any σ > 0, the sesquilinear form ak,σ is elliptic with constant

Cm(σ) =

{
min{1, σε0}, if k = 0,

min
{

σε0
2|k|2+σε0

, σ2 ε0

}
, if k 6= 0.

Proof. If k = 0, then a0,σ(u, u) =
∫

Ω |∇u|
2 +σε(x)|u|2 dx ≥ min{1, σε0}‖u‖2V . If k 6= 0, we

observe that ak,σ(u, u) =
∫

Ω |(∇+ ik)u|2 + σε(x)|u|2 dx ∈ R+. Moreover,

ak,σ(u, u) ≥
(
‖∇u‖2H + (σε0 + |k|2)‖u‖2H −

∫
Ω

∣∣iku · ∇u+ iku · ∇u
∣∣ dx)

and thanks to Lemma 4.4 we obtain :∫
Ω

∣∣iku · ∇u+ iku · ∇u
∣∣ dx ≤ |k|2‖u‖2H

δ
+ δ‖∇u‖2H

for any δ > 0. Therefore,

ak,σ(u, u) ≥ (1− δ)‖∇u‖2H +

(
σε0 + |k|2 − |k|

2

δ

)
‖u‖2H ,

and choosing δ =
|k|2

|k|2 + σ
2 ε0

< 1 yields

ak,σ(u, u) = (1− |k|2

|k|2 + σ
2 ε0

)︸ ︷︷ ︸
>0

‖∇u‖2H +
σ

2
ε0︸︷︷︸
>0

‖u‖2H ≥ Cm(σ)‖u‖2V

with Cm(σ) = min
{

σε0
2|k|2+σε0

, σ2 ε0

}
. �
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Corollary 4.7. For any σ > 0, the operator Ak,σ = (Ak + σIε) is invertible and the
inverse is bounded with constant Cm(σ)−1, i.e. Ak,σ−1 ∈ L(V ∗, V ) satisfies

‖Ak,σ−1‖V ∗→V := sup
w∈V ∗
‖w‖V ∗=1

‖Ak,σ−1w‖V ≤
1

Cm(σ)
.

Proof. This follows directly from the Lax-Milgram lemma, see e.g. [Hac92, Lem. 6.98]. �

Corollary 4.8. For any σ > 0, the sesquilinear form ak,σ defines an inner product in V
and the corresponding norm ‖v‖ak+σbε

:=
√
ak(v, v) + σbε(v, v) is equivalent to the standard

norm ‖v‖V .
Proof. The positivity of ak,σ follows from Lemma 4.6, and the sesquilinearity as well as
the conjugate symmetry are easily verified. Moreover Lemma 4.5 yields

‖v‖ak+σbε
≤
√
CM‖v‖2V + σbε(v, v) ≤

√
CM‖v‖2V + σε∞‖v‖2H ≤

√
CM + σε∞‖v‖V

and by Lemma 4.6
‖v‖ak+σbε

≥
√
Cm(σ)‖v‖V

for all v ∈ V . �

Many important properties of the spectrum of Ak can now be proven by applying the
Riesz-Schauder therory on the resolvant Rσ : V → V , R = A−1

k,σIε. These are gathered in
the following lemma.

Lemma 4.9. The spectrum of Ak consists in at most countably many real eigenvalues
with finite geometrical multiplicities, which can only accumulate at infinity. Moreover, all
eigenvalues are nonnegative.

Proof. From the Hermiticity of ak follows directly that Ak is Hemitian. Therefore all
eigenvalues λ of Ak must be real since

λ =
〈Aku, u〉V ∗,V
〈Iεu, u〉V ∗,V

=
〈Aku, u〉V ∗,V
〈Iεu, u〉V ∗,V

= λ,

where u denotes the eigenvector corresponding to λ. The rest of the proof follows from
[Hac92, Satz 6.108]. In particular,it is shown there that for all λ ∈ C one of the following
alternatives holds:

(1) (A− λIε)−1 ∈ L(V ∗, V ),
(2) λ is an eigenvalue.

In Corollary 4.7 it was shown that (A−λIε)−1 exists and is bounded for all λ = −σ, where
σ > 0. Hence, all eigenvalues must be nonnegative. �

Corollary 4.10. Let Ak and Bε be the matrices in the discretized problem (4.3). Then,
Ak is Hermitian positive semi-definite and Bε, as well as (Ak+Bε), are Hermitian positive
definite.

Proof. It is straightforward to see that (Ak)j,i = ak(φi, φj) = ak(φj , φi) = (Ak)i,j and
similarly for Bε. Moreover, by Lemma 4.6 it holds for all σ > 0 and for all v = [v1, . . . , vN ]

with vh =
∑N

i vi

v∗Akv = a(vh, vh) ≥ Cm(σ)‖vh‖V − σbε(vh, vh)→ 0 as σ → 0,

where the superscript ∗ denotes the conjugate transpose of a vector or a matrix Since this
inequality holds for σ > 0 arbitrarily small, to follows that v∗Akv ≥ 0, and thus Ak is
positive semi-definite. The rest of the proof follows easily. �
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5. Error estimators

We wish to approximate the solution of the discretize problem (4.3) by using an iterative
method. In the remainder, u denotes the exact eigenfunction of (4.1), uh denotes the
exact eigenfunction of the discretized problem (4.3), and ũh =

∑N
i=1 ũiφi denotes the

approximated eigenfunction computed by m steps of an iterative method (e.g. Lanczos
method or LOBPCG [GVL96, Kny01]).

In order to be able to evaluate the quality of the approximate solution ũh we need
to construct an estimator for the error ‖u− ũh‖V . We start by applying the triangular
inequality

‖u− ũh‖V = ‖u− uh + uh − ũh‖V ≤ ‖u− uh‖V + ‖uh − ũh‖V
and observe that the error can be separated into the discretization error ‖u− uh‖V and
the algebraic error ‖uh − ũh‖V .

An estimator for the error introduced by the discretization of the linear EVP (3.4) to
obtain (4.3) has been developed in [GG12]. In that paper it is shown that an error estimator
ηdis, which can be computed a posteriori, gives a reliable and efficient approxmation of the
error ‖u− ũh‖ak+σb where σ = 1. Since the norms ‖ · ‖V and ‖ · ‖ak+σb are equivalent
(see Lemma 4.8), ηdis is also a reliable and efficient estimator of the error measured in the
standard norm in V . However, the equivalence constants Cm(σ) and CM may be much
bigger or much smaller than 1, depending on the values of σ and k.

In order to enable the error balancing between the discretization and the algebraic errors,
we need an error estimator which can be compared to ηdis in a meaningful manner, i.e., an
estimator which measures the algebraic error in the norm defined by the sesquilinear form
ak,σ on V . This is the subject of the next subsection.

5.1. Algebraic error. We aim at finding a bound for the algebraic errors ‖uh − ũh‖V
and ‖uh − ũh‖ak+σb, which depend on the convergence of an iterative numerical method.
The convergence analysis of such methods is typically based on the concepts of angle
between vectors. While the definition of the angle between real vectors with respect to
a scalar product is clear, there exist multiple nonequivalent concepts of angle between
complex vectors. Each one of these angles has different interesting properties. We start
by introducing the Euclidean angle between complex vectors, which satisfies the law of
cosines:

Definition 5.1. Let v and w be two vectors in a complex Hilbert space V and let (·, ·)I

as well as ‖ · ‖I denote an inner product in V and its corresponding norm, respectively.
The (real-valued) Euclidean angle between v and w with respect to the I-inner-product is
defined as the quantity ∠(E)

I (v, w) ∈ [0, π] satisfying

∠(E)
I (v, w) = acos

<
(
(v, w)I

)
‖v‖I‖w‖I

.

The Euclidean angle indeed satisfies the law of cosines since for all v, w ∈ V it holds

‖v − w‖2I = (v − w, v − w)I = ‖v‖2I + ‖w‖2I − (v, w)I − (w, v)I

= ‖v‖2I + ‖w‖2I − 2<
(
(v, w)I

)
= ‖v‖2I + ‖w‖2I − 2 cos∠(E)

I (v, w)‖v‖I‖w‖I.
The Euclidean angle inherits other properties from the real case, e.g. the angle between
vectors pointing in opposite directions is π since ∠(E)

I (v,−v) = acos(−1) = π. However,
the Euclidean angle is not invariant under scaling since, for α ∈ C, ∠(E)

I (αv,w) is generally
not equal to ∠(E)

I (v, w).
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On the other hand, one can define another angle between complex vectors which is
invariant under scaling:

Definition 5.2. Let v, w ∈ V , (·, ·)I and ‖ · ‖I be as in Definition 5.1. The Hermitian
angle between v and w with respect to the I-inner-product is defined as the quantity
∠(H)

I (v, w) ∈ [0, π2 ] satisfying:

∠(H)
I (v, w) = acos

|(v, w)I|
‖v‖I‖w‖I

.

The link between both angles can be expressed as follows:

(5.1)

inf
vθ∈span{v}
wθ∈span{w}

∠(E)
I (vθ, wθ) = inf

θ1∈[0,2π)
θ2∈[0,2π)

∠(E)
I (eiθ1v, eiθ2w) = acos sup

θ∈[0,2π)

<
(
eiθ(v, w)I

)
‖v‖I‖w‖I

= acos
1

‖v‖I‖w‖I
<
( (w, v)I

|(v, w)I|
(v, w)I

)
= acos

|(v, w)I|
‖v‖I‖w‖I

= ∠(H)
I (v, w).

Therefore, the Hermitian angle between v and w can be thought of as the Euclidean angle
between the subspaces spanned by v and w. Moreover, the Hermitian and Euclidean angles
between two vectors v, w are equal if the vectors have the same orientation in V , i.e. if
they satisfy the condition

(v, w)I ∈ R+.

In the remainder, we consider the algebraic error ‖uh − ũh‖I where the inner prod-
uct (·, ·)I represents either the standard inner product (·, ·)V in V or the inner product
(·, ·)ak+σbε linked to the weak form (4.1). Moreover, both vectors uh and ũh are supposed
to be normalized and have the same orientation in V (with respect to the considered inner
product), i.e.

‖uh‖I = ‖ũh‖I = 1 and (uh, ũh)I ∈ R+.

Under these conditions, the law of cosines combined with the following trigonometric iden-
tity

cos2(
φ

2
) =

(
ei
φ
2 + e−i

φ
2

2

)2

=
eiφ + e−iφ + 2

4
=

1

2
(cos(φ) + 1), for all φ ∈ [0, 2π),

yields

‖uh − ũh‖2I = 2− 2 cos∠(E)
I (uh, ũh) = 4

(
1− 1

2

(
cos∠(E)

I (v, w) + 1
))

= 4
(
1− cos2 ∠

(E)
I (v, w)

2

)
= 4 sin2 ∠

(E)
I (v, w)

2
= 4 sin2 ∠

(H)
I (v, w)

2
.

Therefore, we can bound the algebraic error by a term proportionnal to the sinus of the
Hermitian angle:

(5.2) ‖uh − ũh‖I = 2 sin
∠(H)

I (uh, ũh)

2
≤
√

2 sin∠(H)
I (uh, ũh).
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For small angles, the following expression based on Taylor expansions gives a more accurate
estimation of the error:

‖uh−ũh‖I = 2 sin
∠(H)

I (uh, ũh)

2
= 2

∞∑
j=0

(−1)j

(2j + 1)!

(∠(H)
I (uh, ũh)

2

)2j+1

=
∞∑
j=0

(−1)j

(2j + 1)!

(
∠(H)

I (uh, ũh)
)2j+1

+
∞∑
j=1

(−1)j

(2j + 1)!
(1− 1

22j
)
(
∠(H)

I (uh, ũh)
)2j+1

= sin∠(H)
I (uh, ũh) +O(∠(H)

I (uh, ũh)3) ≈ sin∠(H)
I (uh, ũh).

5.1.1. Equivalence of continuous and discrete norms. In this subsection we establish equiv-
alences between the norms of functions uh, vh in the finite dimensional space Vh defined
in (4.2) and the corresponding vectors u,v ∈ Cn expressed in the basis formed by the
functions {φi}Ni=1. In the remainder of this paper, we assume σ > 0.

For any uh, vh ∈ Vh it holds

(uh, vh)V =
N∑
i=1

N∑
j=1

vj

∫
Ω
∇φi · ∇φj + φiφj dx ui = v∗ΦV u

and

‖uh‖2V = uhΦV u =: ‖u‖2ΦV ,

where (ΦV )i,j := (φj , φi)V . Moreover,

(uh, vh)bε =
N∑
i=1

N∑
j=1

vj

∫
Ω
ε(x)φiφj dx ui = v∗Bεu,

‖uh‖2bε = u∗Bεu = ‖u‖2Bε
and

(uh, vh)2
ak+σbε =

N∑
i=1

N∑
j=1

vj

∫
Ω
∇kφi · ∇kφj + σεφiφj dx ui = v∗(Ak + σBε)u,

‖uh‖2ak+σbε
= u∗(Ak + σBε)u = ‖u‖2(Ak+σBε)

.

Similarly, a discrete norm that is equivalent to a norm in V ∗ can be found.

Lemma 5.3. For any r ∈ V ∗ such that r = Iεrh for some rh =
N∑
j=1

rjφj ∈ Vh, it holds

‖r‖V ∗ = ‖Bεr‖(Ak+σBε)−1 = ‖r‖Bε(Ak+σBε)−1Bε
,

where

‖f‖V ∗ := sup
v∈V,

‖v‖ak+σbε=1

|f(v)|

for any f ∈ V ∗, and where r = [r1, . . . , rN ].
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Proof. For any v ∈ V we denote by πh(v) the orthogonal projection of v onto Vh with
orthogonality in the inner product (·, ·)bε . Then it holds

‖r‖V ∗ = sup
v∈V,

‖v‖(ak+σbε)=1

|(rh, v)bε | = sup
v∈V,

‖v‖(ak+σbε)=1

|(rh, v − πh(v))bε + (rh, πh(v))bε |

= sup
v∈V,

‖v‖(ak+σbε)=1

|(rh, πh(v))bε | = sup
vh∈Vh,

‖vh‖(ak+σbε)=1

|(rh, vh)bε |

= sup
v∈CN ,

‖v‖(Ak+σBε)=1

|r∗Bεv| = sup
v∈CN ,

‖v‖(Ak+σBε)=1

|r∗Bε(Ak + σBε)
−1(Ak + σBε)v|.

For the sake of brevity, we introduce the notation Ak,σ := Ak + σBε and b := A−1
k,σBεr.

Using the Cauchy-Schwarz inequality [Bre11, Ch. 5.1] yields
‖r‖V ∗ = sup

v∈CN ,
‖v‖Ak,σ=1

|b∗Ak,σv| ≤ sup
v∈CN ,
‖v‖Ak,σ=1

‖b‖Ak,σ‖v‖Ak,σ = sup
v∈CN ,
‖v‖Ak,σ=1

‖b‖Ak,σ = ‖b‖Ak,σ .

The upper bound is attained by setting v = b
‖b‖Ak,σ

which satisfies the constraint ‖v‖Ak,σ =

1. Therefore

‖r‖V ∗ = ‖b‖Ak,σ = ‖A−1
k,σBεr‖Ak,σ = ‖Bεr‖A−1

k,σ
= ‖r‖Bε(Ak+σBε)−1Bε

. �

We show that the trigonometric functions of angles between vectors in Vh can also be
expressed in terms of the corresponding discrete vectors in CN .

Theorem 5.4. Let vh, wh ∈ Vh ⊂ V with vh =
N∑
i=1

viφi, wh =
N∑
i=1

wiφi and v =

[v1, . . . , vN ]T , w = [w1, . . . , wN ]T . Then

cos∠(H)
V (vh, wh) = cos∠(H)

ΦV
(v,w)

and
cos∠(H)

ak+σbε
(vh, wh) = cos∠(H)

Ak+σBε
(v,w)

where
∠(H)
M (v,w) := acos

|w∗Mv|√
v∗Mv

√
w∗Mw

∈
[
0,
π

2

]
for any matrix M .

Proof.

cos∠(H)
V (vh, wh) =

|(vh, wh)V |
‖vh‖V ‖wh‖V

=

|
∑
i,j
wi(φj , φi)V vj |√∑

i,j
vi(φj , φi)V vj

√∑
i,j
wi(φj , φi)V wj

=
|w∗ΦV v|√

v∗ΦV v
√
w∗ΦVw

and similarly for the inner product ak + σbε on V . �

Corollary 5.5. Let vh, wh,v,w as in Theorem 5.4. Then

sin∠(H)
V (vh, wh) = sin∠(H)

ΦV
(v,w)

and
sin∠(H)

Ak+σBε
(vh, wh) = sin∠(H)

ak+σbε
(v,w).
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5.1.2. Sine theorems. In order to obtain a useful bound on the algebraic error, we need a
computable bound on sin∠(H)

ΦV
(v,w) or sin∠(H)

Ak+σBε
(v,w). First, we recall a result for the

(non-generalized) linear eigenvalue problem.

Theorem 5.6 (The sine theorem). Let M ∈ CN×N be a Hermitian positive definite matrix
defining an inner product (v1,v2)M such that

(v1,v2)M := v1
∗Mv2

for all v1,v1 ∈ CN . Let A ∈ CN×N be a Hermitian matrix with respect to this inner
product. We denote by {λi}Ni=1 the eigenvalues of A and by {u(i)}Ni=1 the corresponding
normalized eigenvectors of A in the norm ‖ · ‖M induced by (·, ·)M . Given any vector
v ∈ CN and any scalar λ̃ ∈ C, we order the eigenpairs (λi,u

(i)) such that |λ1 − λ̃| ≤
|λ2 − λ̃| ≤ . . . ≤ |λN − λ̃| and we define the residual r := Aṽ − λ̃ṽ where ṽ := αv is the
scaled vector which is normalized and lies in the same directions as u(1), i.e.

‖ṽ‖M = 1, (ṽ,u(1))M ∈ R+.

Then it holds

sin∠(H)
M (ṽ,u(1)) ≤

‖r‖M
δ

.

where δ := |λ2 − λ̃|.

Proof. We follow the proof of Theorem 11.7.1 in [Par98] which proves the result for real
symmetric matrices and we extend it to the case of complex Hermitian matrices.

First recall that the eigenvectors of A form an orthogonal basis of Cn since A is Hermitian
(see the spectral theorem in [Par98, Ch. 1.4]). Therefore we can expand

ṽ =

N∑
j=1

(ṽ,u(j))Mu(j),

which implies

r = (A− λ̃)(ṽ,u(1))Mu(1) + (A− λ̃)
N∑
j=2

(ṽ,u(j))Mu(j)

= (λ1 − λ̃)(ṽ,u(1))Mu(1) +

N∑
j=2

(λj − λ̃)(ṽ,u(j))Mu(j).

Since the eigenvectors are orthogonal to each other in the inner product (·, ·)M , we can
apply the Pythagoreus theorem, which yields:

‖r‖2M = |λ1 − λ̃|2|(ṽ,u(1))M |2 +

N∑
j=2

|λj − λ̃|2|(ṽ,u(j))M |2

≥ |λ1 − λ̃|2 cos2∠(H)
M (ṽ,u(1)) + |λ2 − λ̃|2

N∑
j=2

|(ṽ,u(j))M |2

= |λ1 − λ̃|2 cos2∠(H)
M (ṽ,u(1)) + |λ2 − λ̃|2(‖ṽ‖2 − |(ṽ,u(1))M |2)

= |λ1 − λ̃|2 cos2∠(H)
M (ṽ,u(1)) + |λ2 − λ̃|2 sin2∠(H)

M (ṽ,u(1))

≥ δ2 sin2∠(H)
M (ṽ,u(1)). �
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In order to apply Theorem 5.6 to Problem (4.3) we need to reformulate the latter as a
standard (non-generalized) EVP. Since the matrix Bε in (4.3) is Hermitian positive definite,
it is also invertible and the EVP can be equivalently written as

B−1
ε Aku = λu.

Corollary 5.7. Let Ak, Bε be the Hermitian matrices defining the EVP (4.3). We de-
note by {λi}Ni=1 the eigenvalues of the pencil (Ak, Bε) and by {u(i)}Ni=1 the correspond-
ing normalized eigenvectors of (Ak, Bε) in the norm ‖ · ‖Ak+σBε

where σ > 0. Given
any vector v ∈ CN and any scalar λ̃ ∈ C, we order the eigenpairs (λi,u

(i)) such that
|λ1 − λ̃| ≤ |λ2 − λ̃| ≤ . . . ≤ |λN − λ̃| and we define the residual r := Akṽ − λ̃Bεṽ where
ṽ := αv is the scaled vector which is normalized and lies in the same directions as u(1),
i.e.

‖ṽ‖Ak+σBε
= 1, (ṽ,u(1))Ak+σBε ∈ R+.

Then it holds

(5.3) sin∠(H)
Ak+σBε

(ṽ,u(1)) ≤
‖B−1

ε r‖Ak+σBε

δ
=
‖r‖B−1

ε (Ak+σBε)B
−1
ε

δ
.

where δ := |λ2 − λ̃|.

Proof. Observe that the matrix B−1
ε Ak is Hermitian in the inner product defined by Ak +

σBε since for any v1,v2 ∈ CN

(B−1
ε Akv1,v2)Ak+σBε = v∗1AkB

−1
ε (Ak + σBε)v2 = v∗1AkB

−1
ε Akv2 + σv∗1Akv2

= v∗1(Ak + σBε)B
−1
ε Akv2 = (v1, B

−1
ε Akv2)(Ak+σBε).

Therefore Theorem 5.6 can be applied with A := B−1
ε Ak, M := (Ak + σBε). �

Alternatively, one can follow [HL06, Section 2] and solve the EVP (4.3) with a shift-
invert method. Recall that for any real positive shift σ > 0, the matrix (Ak + σBε) is
invertible, see Corollary 4.7. Therefore (4.3) is equivalent to

(5.4) (Ak + σBε)
−1Bεu = νu,

where the eigenvalues of both problems are related via the equation

ν =
1

λ+ σ
.

The matrix (Ak + σBε)
−1Bε is Hermitian in the (Ak + σBε)-inner product since for all

v1,v2 ∈ CN it holds(
(Ak + σBε)

−1Bεv1,v2

)
Ak+σBε

= v∗1Bε(Ak + σBε)
−1(Ak + σBε)v2 = v∗1Bεv2

=
(
v1, (Ak + σBε)

−1Bεv2

)
Ak+σBε

We can now apply Theorem 5.6 to (5.4).

Corollary 5.8. Let Ak, Bε be the Hermitian matrices defining the EVP (4.3) and σ > 0
be a real and positive scalar shift. We denote by {λi}Ni=1 the eigenvalues of the Hermitian
pencil (Ak, Bε) and by {u(i)}Ni=1 the corresponding normalized eigenvectors of (Ak, Bε).
Given any vector v ∈ CN and any scalar λ̃ ∈ C, we order the eigenpairs (λi,u

(i)) such that∣∣∣∣ 1

λ1 + σ
− 1

λ̃+ σ

∣∣∣∣ ≤ ∣∣∣∣ 1

λ2 + σ
− 1

λ̃+ σ

∣∣∣∣ ≤ . . . ≤ ∣∣∣∣ 1

λN + σ
− 1

λ̃+ σ

∣∣∣∣ ,
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and we define the residual r := Akṽ − λ̃Bεṽ, where ṽ := αv is normalized and lies in the
same directions as u(1), i.e.

‖ṽ‖Ak+σBε
= 1, (ṽ,u(1))Ak+σBε ∈ R+.

Then it holds

(5.5) sin∠(H)
Ak+σBε

(u(1), ṽ) ≤ |λ2 + σ|
|λ2 − λ̃|

‖r‖(Ak+σBε)−1 .

Proof. Applying Theorem 5.6 with A := (Ak+σBε)
−1Bε,M = Ak+σBε and ν̃ := (λ̃+σ)−1

yields

sin∠(H)
Ak+σBε

(u(1), ṽ) ≤
‖(Ak + σBε)

−1Bεṽ − ν̃ṽ‖(Ak+σBε)

|ν̃ − ν2|

=
|ν̃|

|ν̃ − ν2|
‖ν̃−1Bεṽ − (Ak + σBε)ṽ‖(Ak+σBε)−1

=
|λ2 + σ|
|λ2 − λ̃|

‖λ̃Bεṽ −Akṽ‖(Ak+σBε)−1 . �

Remark 5.9. Observe that the norm of the residual r in the upper bound (5.5) can be
rewritten as

‖r‖(Ak+σBε)−1 = ‖λ̃Bεũ−Akũ‖(Ak+σBε)−1 = ‖λ̃ũ−B−1
ε Akũ‖Bε(Ak+σBε)−1Bε

.

Therefore, according to Lemma 5.3, ‖r‖(Ak+σBε)−1 can be seen as the norm of

(5.6) res(λ̃, ũ) := Iε

(
N∑
i=1

(
B−1
ε r
)
i
φi

)
in the dual space V ∗, i.e.

‖r‖(Ak+σBε)−1 = ‖ res(λ̃, ũ)‖V ∗

Note that (5.6) indeed defines a residual, since for all vh =
∑N

i=1 viφi ∈ Vh it holds that

〈res(λ̃, ũ), vh〉V ∗,V =

∫
Ω
ε(x)

N∑
i=1

(
B−1
ε r
)
i
φivh dx =

N∑
i,j=1

(
B−1
ε r
)
i
vj

∫
Ω
ε(x)φiφj dx

=
N∑

i,j=1

(
B−1
ε r
)
i
vj(Bε)j,i = v∗BεB

−1
ε r = v∗r = v∗(Akũ− λ̃Bεũ)

= ak(ũh, vh)− λ̃bε(ũh, vh).

where ũh :=
∑N

j=1 ũjφj

Remark 5.10. Since (Ak +σBε) is Hermitian positive definite we can factorize it with help
of the Choleski decomposition (Ak+σBε) = LL∗ where L is invertible. Therefore the term
appearing on the right side of (5.3) can be rewritten as

‖B−1
ε Akṽ − λ̃ṽ‖Ak+σBε

= ‖L∗B−1
ε AkL

−∗w̃ − λ̃w̃‖

with L∗ṽ = w̃. Observe that the matrix L∗B−1
ε AkL

−∗ is Hermitian since

(L∗B−1
ε AkL

−∗)∗ = L−1AkB
−1
ε L = L−1AkB

−1
ε (Ak + σBε)L

−∗L−1L

= L−1(Ak + σBε)B
−1
ε AkL

−∗ = L∗B−1
ε AkL

−∗.
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Therefore, if w̃ is the approximation of the eigenvector corresponding to the smallest
eigenvalue of L∗B−1

ε AkL
−∗ returned after m steps of an inverse Lanczos or LOBPCG

method, then ‖L∗B−1
ε AkL

−∗w̃ − λ̃w̃‖ is directly available as a by-product of each iteration,
see e.g. [GVL96, Thm. 9.1.2] and [Kny01].

Similarly the term on the right hand side of (5.5) can be rewritten as

‖λ̃Bεṽ −Akṽ‖(Ak+σBε)−1 = ‖L−1AkL
−∗w̃ − λ̃L−1BεL

−∗w̃‖

and can be obtained as a by-product of a LOBPCG iteration on the Hermitian pencil
(L−1AkL

−∗, L−1BεL
−∗).

Remark 5.11. In Lanczos’ method and LOBPCG, the eigenvalue converges faster than the
eigenvector, therefore it is reasonable to approximate λ ≈ λ̃ and λ2 ≈ λ̃2 to compute the
error bound.

All results of this section can be summarized in the following theorem:

Theorem 5.12. Let (Ak, Bε) be the matrix pencil defining the discretized problem (4.3)
and let u be the eigenvector corresponding to the smallest eigenvalue of (Ak, Bε). We write
L the triangular matrix satisfying the Choleski decompostion LL∗ = Ak + σBε for some
shift σ > 0. We denote by w̃ =: L∗ũ the approximation of L∗u obtained after m iterations
of the LOBPCG method applied to the pencil (L−1AkL

−∗, L−1BεL
−∗), and assume u and

ũ to be scaled in such a way that

‖u‖Ak+σBε
= ‖ũ‖Ak+σBε

= 1, (ũ,u)Ak+σBε ∈ R+.

Let λ̃ and λ̃2 be the approximations of the eigenvalue λ closest to σ and, respectively, of the
eigenvalue λ2 second closest t σ, of Problem (4.3) obtained from the LOBPCG iterations.
Then the distance between the functions uh =

∑N
j=1 ujφj ∈ Vh and ũh =

∑N
j=1 ũjφj ∈ Vh

can be approximately bounded by

‖uh − ũh‖V ≤
√
Cm(σ)

−1
‖uh − ũh‖ak+σbε

=
√
Cm(σ)

−1
sin∠(H)

ak+σbε
(uh, ũh) +O(∠(H)

ak+σbε
(uh, ũh)3)

≈
√
Cm(σ)

−1
sin∠(H)

ak+σbε
(uh, ũh) ≤

√
Cm(σ)

−1 |λ2 + σ|
|λ2 − λ̃|

‖Akũ− λ̃Bεũ‖(Ak+σBε)−1

≈
√
Cm(σ)

−1 |λ̃2 + σ|
|λ̃2 − λ̃|

‖L−1AkL
−∗w̃ − λ̃L−1BεL

−∗w̃‖

when ∠(H)
ak+σbε

(uh, ũh) is a small angle.

5.2. Numerical experiments. In this section, we compare the error estimator

(5.7) ηalg :=
|λ̃2 + σ|
|λ̃2 − λ̃|

‖L−1AkL
−∗w̃ − λ̃L−1BεL

−∗w̃‖

to the error ‖weig − w̃‖ ≈ ‖uh − ũh‖ak+σbε
where weig is the approximated eigenvector

returned by the MATLAB function eig and is therefore assumed here to be a very good
approximation of the exact eigenvector w = L∗u. We observe that ηalg is composed of a
factor ρ = |λ̃2 + σ|/|λ̃2 − λ̃| depending only on the approximations of the eigenvalues, and
of a factor corresponding to the norm or the residual. In this section, we denote with a
superscript (m) a quantity computed with the approximations λ̃, λ̃2, w̃ obtained after m
iterations.

We have tested the error estimator (5.7) on a problem of the form (4.3) with ε(x, ω) as in
subsection 2.3.1, Ω being a square cell of length lΩ = 500 ·10−9m, Ω1 ⊂ Ω being a centered



ON AFEM FOR THE SIMULATION OF 2D PHOTONIC CRYSTALS 25

disc of radius 0.2lΩ, ε1(ω) ≡ ε0 = 8.854187817 ·10−6 µF/m, ε2 ≡ 8.9ε0. We have set σ = 1,
and Figures 5.1 and 5.2 correspond to k = [0.6888, 6.2832]T · 106 m−1. The problem was
discretized via the C++ library Concepts [FL02] with quadratic Lagrange basis functions.
The dimension of the resulting matrices is 896×896. We solved the Hermitian generalized
EVP with the LOBPCG algorithm.

On Figure 5.1 we see that the error estimator does not give reliable estimation of the
error during the first dozen of iterations, i.e. when the iterative algorithm is far from con-
vergence. However, after approximately 25 iterations, the error estimator starts mimicking
the decrease of the error. We call this behavior asymptotic, as opposed to the transient
behavior happening in the first steps of the iterative process. We observe that there exists
a constant shift M between the graph of the error estimator and the one of the error in
the asymptotic regime, which corresponds to approximately M =13 iterations.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m [nb of iterations]

||weig − w̃||
sin∠(weig, w̃)√

2 sin∠(weig, w̃)

ηalg = ρ||res||

Figure 5.1. Comparison of the error with the error estimator

On Figure 5.2 we see that the error, the error estimator, and the norm of the residual
indeed decrease at the same speed, and that the beginning of the asymptotic regime cor-
relates with the stabilization of the factor ρ at m ≈. This correlation is made clearer in
Figure 5.3, where the rates of change of the factors ρ and ‖res‖ are plotted. Indeed, we see
that the biggest m at which r(m)

ρ := |ρ(m)−ρ(m−1)|
ρ(m) is bigger than r(m)

res := |‖res(m)‖−‖res(m−1)‖|
‖res(m)‖

is also m ≈ 20. In the range m > 20, r(m)
ρ becomes significantly smaller than r(m)

res .
Note that r(m)

ρ and r(m)
res can be cheaply evaluated at each iteration step as a complement

of the error estimator ηalg. Comparing both rates of change gives a way to decide whether
the error estimator is reliable or not. The efficiency of the error estimator, however, depends
on the shift M , and it is for the moment not clear how to estimate this quantity.

We have made a qualitatively similar observations for other values of k on the boundary
of the irreducible Brillouin zone. However, the shiftM observed between the error and the
error estimator in the asymptotic domain does not stay constant with k but varies within
the range 6− 20 iterations.
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Figure 5.2. Evolution of the factors composing the error estimator
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|ρ(m) − ρ(m−1)|/|ρ(m)|
abs(||res(m)|| − ||res(m−1)||)/||res(m)||

Figure 5.3. Rates of change of the factors composing the error estimator

6. Conclusion

We have developed a residual-based estimator which approximates the algebraic error
resulting from the solution of the discrete generalized linear EVP by an iterative method.
The error estimator approximates the error in the norm arising from the sesquilinear forms
defining the EVP, and can therefore by combined in an error balancing procedure with
already existing estimators of the discretization error. We have shown how to heuristically
determine whether enough iterations have been computed for the error estimator to be
reliable.
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