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Abstract
In this paper we improve the bounds for the Carathéodory number, especially on
algebraic varieties and with small gaps (not all monomials are present). We provide
explicit lower and upper bounds on algebraic varieties, Rn , and [0, 1]n . We also treat
moment problems with small gaps. We find that for every ε > 0 and d ∈ N there is
a n ∈ N such that we can construct a moment functional L : R[x1, · · · , xn]≤d → R

which needs at least (1 − ε) · (
n+d
n

)
atoms lxi . Consequences and results for the

Hankel matrix and flat extension are gained.We find that there are moment functionals
L : R[x1, · · · , xn]≤2d → R which need to be extended to the worst case degree 4d,
L̃ : R[x1, · · · , xn]≤4d → R, in order to have a flat extension.
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1 Introduction

The theory of (truncated) moment sequences is a field of diverse applications and
connections to numerous other mathematical fields, see e.g. [1,22,29–31,33,34,36,38,
48,50,52], and references therein. For more on recent advances in the reconstruction
of measures frommoments see e.g. [6,10,11,14,20,21,23,26,35,40,41], and references
therein.

A crucial fact in the theory of truncated moment sequences is the Richter (Richter–
Rogosinski–Rosenbloom) Theorem [43–45]which states that every truncatedmoment
sequence is a convex combination of finitely many Dirac measures, see also Theo-
rem 2.2. The Carathéodory number is the minimal number N such that every truncated
moment sequence (with fixed truncation) is a sum of N atoms, i.e., Dirac measures.
It has been studied in several contexts but in most cases the precise value of the
Carathéodory number is not known [15,16,32,39,42,43,46,53].

In this work we proceed the study of Carathéodory numbers. We treat moment
sequences with small gaps (see Sect. 3), moment sequences of measures supported
on algebraic varieties (Sect. 4), and the multidimensional polynomial case onRn and
[0, 1]n (Sect. 5). For moment functionals with small gaps we find explicit lower and
upper bounds for dimension n = 1 based on Descartes’ rule of signs, see Theorem 3.7.
For moment functionals L : R[X ]≤2d → R on polynomial functions on an algebraic
set X ⊂ Rn and for sufficiently large d, Theorem 4.5 yields an upper bound of
P(2d) − 1 and a lower bound of

P(2d) − k · P(d) +
(
k

2

)
,

where P is the Hilbert polynomial and k the dimension ofX . In the caseX = Rn and
L : R[x1, . . . , xn]≤2d → R, this gives the lower bound

(
n + 2d

n

)
− n ·

(
n + d
n

)
+

(
n
2

)

(Theorem 5.2). We obtain similar bounds for odd degrees and the case X = [0, 1]n in
Sect. 5. In Sect. 6 we discuss implications of these bounds, when n → ∞ and d → ∞.
We show that there are moment functionals L : R[x1, . . . , xn]≤2d → R that behave
as bad as possible under flat extensions, see Theorem 6.2 for the precise statement. For
literature on flat extensions in this context see [8,9,36,48] and the references therein.
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Carathéodory numbers from Hilbert functions 269

2 Preliminaries

2.1 Truncatedmoment problem

Let A be a (finite dimensional) real vector space of measurable functions on a mea-
surable space (X ,A). Denote by L : A → R a continuous linear functional. If there
is a (positive) measure μ on (X ,A) such that

L(a) =
∫

X
a(x) dμ(x), for all a ∈ A, (1)

then L is called a moment functional. If A is finite dimensional, it is a truncated
moment functional. By A = {a1, . . . , am}we denote a basis of them-dimensional real
vector space A and by

si := L(ai )

the ai -th (or simply i-th) moment of L (or μ for a μ as in (1)). Given a sequence
s = (s1, . . . , sm) ∈ Rm we define the Riesz functional Ls by setting Ls(ai ) = si
for all i = 1, . . . ,m and extending it linearly to A, i.e., the Riesz functional induces
a bijection between moment sequences s = (s1, . . . , sm) and moment functionals
L = Ls . By MA we denote the set of all measures on (X ,A) such that all a ∈ A are
integrable and byMA(s) orMA(L)wedenote all representingmeasures of themoment
sequence s resp. moment functional L . Even though moment sequences and moment
functionals are the same, when we apply techniques from algebraic geometry it is
easier to work with moment functionals L : A → R on e.g. A = R[x1, . . . , xn]≤2d
or R[X ]≤2d while when we work with Hankel matrices it is easier to work with
moment sequences s in a fixed basis A ofA. Since the polynomialsR[x1, . . . , xn]≤2d
are of special importance, we denote by

An,d := {xα | α ∈ Nn
0 ∧ |α| = α1 + · · · + αm ≤ d}

the monomial basis, where we have xα = xα1
1 · · · xαn

n with α = (α1, . . . , αn) ∈ Nn
0.

On Nn
0 we work with the partial order α = (α1, . . . , αn) ≤ β = (β1, . . . , βn) if

αi ≤ βi for all i = 1, . . . , n.

Definition 2.1 Let A = {a1, . . . , am} be a basis of the finite dimensional vector space
A of measurable functions on the measurable space (X ,A). We define sA by

sA : X → Rm, x �→ sA(x) :=
⎛

⎜
⎝

a1(x)
...

am(x)

⎞

⎟
⎠ .

Of course, sA(x) is the moment sequence of the Dirac δx measure and the cor-
responding moment functional is the point evaluation lx with lx (a) := a(x). By a
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270 P. J. di Dio, M. Kummer

measure we always mean a positive measure unless it is explicitly denoted as a signed
measure.

The fundamental theorem in the theory of truncated moments is the following.

Theorem 2.2 (Richter Theorem [43, Satz 11]) Let A = {a1, . . . , am}, m ∈ N, be
finitely manymeasurable functions on ameasurable space (X ,A). Then everymoment
sequence s ∈ SA has a k-atomic representing measure

s =
k∑

i=1

ci · sA(xi )

with k ≤ m, c1, . . . , ck > 0, and x1, . . . , xk ∈ X .

The theorem can also be called Richter–Rogosinski–Rosenbloom Theorem [43–
45], see the discussion after Example 20 in [15] for more details. That every truncated
moment sequence has a k-atomic representing measure ensures that the Carathéodory
number CA is well-defined.

Definition 2.3 Let A = {a1, . . . , am} be linearly independent measurable functions on
a measurable space (X ,A). For s ∈ SA we define the Carathéodory number CA(s) of
s by

CA(s) := min{k ∈ N0 | ∃μ ∈ MA(s) k-atomic}.

We define the Carathéodory number CA of SA by

CA := max
s∈SA

CA(s).

The same definition holds for moment functionals L : A → R.

The following theorem turns out to be a convenient tool for proving lower bounds
on the Carathéodory number CA.
Theorem 2.4 ([16, Thm. 18]) Let A = {a1, . . . , am} be measurable functions on a
measurable space (X ,A), s ∈ SA, and a ∈ A with a ≥ 0 on X , Z(a) = {x1, . . . , xk}
and Ls(a) = 0. Then

CA ≥ CA(s) = dim lin {sA(xi ) | i = 1, . . . , k}.

Remark 2.5 Note that in Theorem 2.4 it is crucial that the zero set of a is finite: Take
a = 0 and X = Rn for a simple example where the statement fails when the zero set
is not finite.

It is well-known that in general not every sequence s ∈ Rm or linear functional
L : A → R has a positive representing measure. But of course it always has a signed
k-atomic representing measure with k ≤ m.
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Carathéodory numbers from Hilbert functions 271

Lemma 2.6 ([15, Prop. 12]) Let A = {a1, . . . , am} be a basis of the finite dimensional
space A of measurable functions on a measurable space (X ,A). There exist points
x1, . . . , xm ∈ X such that every vector s ∈ Rm has a signed k-atomic representing
measure μ with k ≤ m and all atoms are from {x1, . . . , xm}, i.e., every functional
L : A → R is the linear combination L = c1lx1 + · · · + cmlxm , ci ∈ R.

It is well-known that in dimension n = 1 the atom positions xi of a moment
sequence can be calculated from the generalized eigenvalue problem, see e.g. [24]. To
formulate this and other results we introduce the following shift.

Definition 2.7 Let n, d ∈ N and s = (sα)α∈Nn
0 :|α|≤d . For β ∈ Nn

0 with |β| ≤ d we

define Mβs := (Mβsα)α∈Nn
0 :|α+β|≤d by Mβsα := sα+β , i.e., (MβL)(p) = L(xβ · p).

For a spaceAofmeasurable functionswith basisA = {a1, a2 . . . } theHankelmatrix
Hd(L) of a linear functional L : A2 → R is given by Hd(L) = (L(aia j ))

d
i, j=1. The

atom positions of a truncated moment sequence s (resp. moment functional L) are
then determined by the following result from a generalized eigenvalue problem.

Lemma 2.8 Let n, d ∈ N, X = C, and s = (s0, s1, . . . , s2d+1) ∈ R2d+2 with

s =
k∑

i=1

ci · sA1,2d+1(zi )

for some zi ∈ C, ci ∈ C, and k ≤ d. Then the zi are unique and are the eigenvalues
of the generalized eigenvalue problem

Hd(M1s)vi = ziHd(s)vi . (2)

Proof That the zi are the eigenvalues of (2) and therefore uniqueness follows from

Hd(s) = (sA1,d (z1), . . . , sA1,d (zk)) · diag (c1, . . . , ck) · (sA1,d (z1), . . . , sA1,d (zk))
T

and

Hd(M1s)

= (sA1,d (z1), . . . , sA1,d (zk)) · diag (c1z1, . . . , ckzk) · (sA1,d (z1), . . . , sA1,d (zk))
T .

��
We gave here only the 1-dimensional formulation, but a similar result holds also for

n > 1. But as seen from the Carathéodory number and the flat extension in Sects. 5 and
6, the size of the Hankel matrix of the flat extension can be very large. For numerical
reasons it is therefore advisable to reduce n-dimensional problems to 1-dimensional
problems.
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272 P. J. di Dio, M. Kummer

2.2 Algebraic geometry

Consider the polynomial ring R[x0, . . . , xn] with the natural grading and let I ⊂
R[x0, . . . , xn] be a homogeneous ideal. Let

R = R[x0, . . . , xn]/I

be the quotient ring which is a graded ring itself. Recall that the Hilbert function of R
is given by HFR(d) = dim Rd where Rd is the degree d part of R. For d large enough
one has HFR(d) = HPR(d) for some polynomial HPR of degree k which is called
the Hilbert polynomial of R.

In this article, we will always denote by Pn = Pn
C the complex projective space.

A real projective variety is the zero set V ⊂ Pn of some homogeneous ideal I ⊂
R[x0, . . . , xn]. In particular, a real projective variety can contain nonreal points but
it is defined by real polynomial equations. We will denote by V (R) the set of real
points of V . The Zariski closure of any subset W ⊂ Pn , that consists only of real
points, is an example for a real projective variety V with the additional property that
V (R) is Zariski in V . If V ⊂ Pn is a real projective variety and I is its homogeneous
vanishing ideal, then the Hilbert function/polynomial HFV resp. HPV of V is the
Hilbert function/polynomial of R[x0, . . . , xn]/I . In this case, the leading coefficient
of HPV is e

k! where e is the degree of V .
Now we consider the dehomogenization map

R[x0, . . . , xn] → R[x1, . . . , xn], f �→ f |x0=1.

Let I ⊂ R[x1, . . . , xn] be an ideal and I h ⊂ R[x0, . . . , xn] the homogenization
of I , i.e., the ideal generated by the homogenizations f h of all f ∈ I . Then the
dehomogenization map induces an isomorphism of vector spaces

(R[x0, . . . , xn]/I h)d → (R[x1, . . . , xn]/I )≤d

for all d ≥ 0.Here (R[x1, . . . , xn]/I )≤d is the subspace ofR[x1, . . . , xn]/I consisting
of the residue classes of polynomials of degree at most d. The main application of this
observation will be the case when I is the vanishing ideal of finitely many points � in
Rn . In this case the dimension

dim lin {sAn,d (x) | x ∈ �}

of the span of the point evaluations sAn,d (x) in R[x1, . . . , xn]∗≤d at the points from �

needed Theorem 2.4 is

dim(R[x1, . . . , xn]/I )≤d = dim(R[x0, . . . , xn]/I h)d = HFI (d).

The Hilbert function HFI of an ideal I can be easily calculated if it is generated by a
regular sequence.
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Carathéodory numbers from Hilbert functions 273

Definition 2.9 Let A be a commutative ring. A sequence f1, . . . , fr ∈ A is a regu-
lar sequence if for all i = 1, . . . , r the residue class of fi is not a zero divisor in
A/( f1, . . . , fi−1).

The following is a consequence of Krull’s Principal Ideal Theorem. We include a
proof since we are not aware of a good reference.

Lemma 2.10 Let I ⊂ R[x0, . . . , xn] be a homogeneous radical ideal and V ⊂ Pn its
zero set. If each irreducible component of V has the same dimension d ≥ 1, then for
any homogeneous f ∈ R[x0, . . . , xn] the following are equivalent:

(i) f is not a zero divisor in R[x0, . . . , xn]/I .
(ii) f is not in a minimal prime ideal of R[x0, . . . , xn]/I .
(iii) f is not identically zero on an irreducible component of V .
(iv) Each irreducible component of V ∩ V( f ) has dimension at most d − 1.
(v) Each irreducible component of V ∩ V( f ) has dimension d − 1.

Furthermore, if f is not constant and V nonempty, then V ∩ V( f ) is nonempty.

Proof The minimal prime ideals of the homogeneous coordinate ring

A = R[x0, . . . , xn]/I

of V are exactly the vanishing ideals of irreducible components of V . Thus we have
(i i) ⇔ (i i i). If f is a zero divisor in A, then there is a nonzero g ∈ A such that f g = 0.
Let Vi be an irreducible component of V on which g does not vanish identically. Then
Vi ⊂ V( f ) ∪ V(g) implies Vi ⊂ V( f ) because Vi is irreducible. Thus (i i i) implies
(i). By [3, p. 44, Ex. 9] every minimal prime ideal contains only zero divisors. This
shows (i) ⇒ (i i). If f vanishes entirely on an irreducible component Vi of V , then
Vi is an irreducible component of V ∩ V( f ). By assumption we have dim(Vi ) = d,
so we cannot have (iv). Thus (iv) ⇒ (i i i).

Since (v) clearly implies (iv), it remains to show (v) under the assumption of
(i) − (i i i). If f is a unit in A, then V ∩ V( f ) = ∅ and (v) is trivially true as there are
no irreducible components. Thus we can assume that f is neither a zero divisor nor a
unit in A. Thus byKrull’s Principal Ideal Theorem [3, Cor. 11.17] everyminimal prime
ideal over ( f ) ⊂ A has height one. This implies that every irreducible component W
of V ∩ V( f ) has codimension one. Since V is of pure dimension d, this means that
the dimension of W is d − 1. The additional statement follows for example by [49,
Cor. 1.7] because we have dim(V ) > 0. ��
Corollary 2.11 Let I0 ⊂ R[x0, . . . , xn] be a homogeneous prime ideal such that
dim V(I0) ≥ k. Let f1, . . . , fk ∈ R[x0, . . . , xn] homogeneous elements of positive
degree such that for all i = 1, . . . , k we have:

(i) Ii := I + ( f1, . . . , fi ) is radical.
(ii) dim V(Ii ) = dim V(Ii−1) − 1.

Then f1, . . . , fk is a regular sequence modulo I0.
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274 P. J. di Dio, M. Kummer

Proof For i = 0, . . . , k let Vi = V(Ii ) ⊂ Pn and let d = dim(V0). First we show
that each irreducible component of Vi has dimension d − i by induction on i . The
claim is clear for i = 0 because I is a prime ideal. Assume the claim is true for
0 ≤ i < k. Then we can apply Lemma 2.10 to the ideal Ii . By assumption we have
dim V(Ii+1) = dim V(Ii ) − 1 = d − i − 1 so we have (iv). Thus we also have (v)

which says that each irreducible component of Vi+1 has dimension d − i −1. Then by
the same lemma we also have that fi+1 is not a zero divisor modulo Ii which shows
that f1, . . . , fk is a regular sequence modulo I0.

Lemma 2.12 Let I ⊂ R[x0, . . . , xn]beahomogeneous ideal and R = R[x0, . . . , xn]/I
withHilbert function HFR. Let f1, . . . , fr ∈ R be a regular sequence of homogeneous
elements of degree d. The Hilbert function HFR/( f1,..., fr ) of R/( f1, . . . , fr ) is

H FR/( f1,..., fr )( j) =
r∑

i=0

(−1)i ·
(
r

i

)
· HFR( j − id).

Proof We prove the statement by induction on r . The case r = 0 is trivial. In order to
prove the induction step, let Ri = R/( f1, . . . , fi ) for i = 0, . . . , r . For all j ∈ Z we
have the exact sequence

0 → Rr−1
j−d → Rr−1

j → Rr
j → 0

where the first map is given by multiplication with fr . Therefore

HFRr ( j) = HFRr−1( j) − HFRr−1( j − d).

By induction hypothesis this implies that

HFRr ( j) =
r−1∑

i=0

(−1)i
(
r − 1

i

)
HFR( j − i · d)

−
r−1∑

i=0

(−1)i
(
r − 1

i

)
HFR( j − (i + 1)d)

=
r∑

i=0

(−1)i (

(
r − 1

i

)
+

(
r − 1

i − 1

)
)HFR( j − i · d)

=
r∑

i=0

(−1)i
(
r

i

)
HFR( j − i · d).

��
At various places we will make use of the following version of Bertini’s Theorem.

Theorem 2.13 Let X ⊂ Pn be a real projective variety of dimension k. Then the fol-
lowing statements hold for generic homogeneous forms f1, . . . , fr ∈ R[x0, . . . , xn],
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Carathéodory numbers from Hilbert functions 275

r ≤ k, of degree d > 0 in the sense that the set of exceptions is contained in a lower
dimensional algebraic subset of R[x0, . . . , xn]rd .
i) The homogeneous vanishing ideal ofX ∩V( f1, . . . , fr ) is generated by the homo-

geneous vanishing ideal of X and f1, . . . , fr .
ii) If X is irreducible and r < k, then X ∩ V( f1, . . . , fr ) is irreducible as well.
iii) We have dim(X ∩ V( f1, . . . , fr )) = k − r .
iv) If the singular locus of X has dimension at most r − 1, then X ∩V( f1, . . . , fr ) is

smooth.

Proof Bertini’s Theorem in its usual formulation says that the above listed statements
hold for generic homogeneous forms f1, . . . , fr ∈ C[x0, . . . , xn], r ≤ k, of degree
d > 0. As a reference for this see for example [28, Thm. 6.10, Cor. 6.11]. This
means that the set U of exceptions is contained in a lower dimensional algebraic
subset W ⊂ C[x0, . . . , xn]rd . The set U ′ of tuples ( f1, . . . , fr ) ∈ R[x0, . . . , xn]rd of
real polynomials for which one of our statements does not hold is thus contained in
the algebraic subset W ′ = W ∩ R[x0, . . . , xn]rd of R[x0, . . . , xn]rd . Since the set of
real points R[x0, . . . , xn]rd is Zariski dense in the vector space C[x0, . . . , xn]rd , we
see that W does not contain R[x0, . . . , xn]rd . Thus W ′ is a strict algebraic subset of
R[x0, . . . , xn]rd . This shows the claim. ��

For more on Hilbert functions and polynomials see e.g. [51], or standard text books
on commutative algebra like [18,19], or [5].

3 Carathéodory numbers for moment sequences with small gaps

We want to start our investigation of the Carathéodory number in the 1-dimensional
case with gaps, i.e., not all monomials are present.

Let d1, . . . , dr ∈ N be some natural numbers whose greatest common divisor is
one. We consider the subring R = R[td1, . . . , tdr ] of R[t]. By R≤d we denote the
vector space of polynomials in R of degree atmost d. By the assumption on the greatest
common divisor there is a constant c such that td ∈ R for all d ≥ c. We choose c
minimal with this property and denote it by c. We observe that one has

dim R≤d = d + 1 − g for d ≥ c

where c+ 1− g is the number of monomials in R of degree at most c. In other words,
g is the number of monomials that are not in R (i.e., the number of gaps).

Definition 3.1 The k-thDescartes number Dk of R is themaximal number of different
real zeros that a polynomial f ∈ R≤k can have.

Recall that Descartes’ rule of signs says that the number of positive real zeros
(counted with multiplicities) of a polynomial f = ∑n

k=0 ckt
k is bounded from above

by the number Var(c0, . . . , cn) of sign changes in the sequence c0, . . . , cn after erasing
all zeros. The number of negative zeros (again counted with multiplicities) of f is then
bounded by Var(c0,−c1, . . . , (−1)ncn). Conversely, Grabiner [25] constructed for all
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276 P. J. di Dio, M. Kummer

sequences of signs (σ0, . . . , σn), σi ∈ {0,±1}, a polynomial f = ∑n
k=0 ckt

k with
only simple positive and negative zeros and sgn(ci ) = σi , that realizes both bounds.
Thus Descartes’ rule of signs gives a purely combinatorial way to determine an upper
bound on the k-th Descartes number from the numbers d1, . . . , dr . This also shows
that Dk is the maximal number of different real zeros that a polynomial f ∈ R≤k with
f (0) �= 0 can have since adding a small constant of appropriate sign does not decrease
the number of real zeros of a polynomial whose only possibly multiple real root is 0.

Example 3.2 (a) Let R = R[t4, t6, t7]. Then the Descartes number D7 is the maximal
number of real roots that a polynomial of the form a + bt4 + ct6 + dt7 can have.
By trying out all possible signs on the coefficients, we find by Descartes’ rule of
signs that such a polynomial can have at most five real zeros and by [25] there
actually is such a polynomial. Thus D7 = 5.

(b) TheDescartes number does not only depend on the number of involvedmonomials
but also on their parities. For example if R = R[t5, t6, t9], then D9 = 3.

Proposition 3.3 For all k ≥ 0 we have Dc+k = Dc + k.

Proof We prove the claim by induction on k. The case k = 0 is trivial. Let k ≥
1 and assume that the claim is true for k − 1. Then there is a sequence of signs
(σ0, . . . , σc+k−1), σi ∈ {0,±1}, σ0 �= 0, of coefficients of a polynomial in R with
Dc + k − 1 different real zeros. In particular,

Var(σ0, . . . , σc+k−1) + Var(σ0, . . . , (−1)c+k−1σc+k−1) = Dc + k − 1.

Letting σc+k = −σc+k−1 we get that

Var(σ0, . . . , σc+k−1, σc+k) + Var(σ0, . . . , (−1)c+k−1σc+k−1, (−1)c+kσc+k) = Dc + k

and another choice of σc+k would not result in a larger sum, so Dc+k = Dc + k. ��
Proposition 3.4 Let k ≥ c. The maximal number of real zeros that a nonnegative

polynomial f ∈ R≤2k can have is between k − (c− Dc) and k −
⌈
c−Dc−1

2

⌉
. Here the

lower bound is realized by a polynomial that is the square of an element of R.

Proof For the lower bound just take the square of a polynomial of degree k with
Dk = Dc + k − c real zeros. On the other hand, if f ∈ R is a nonnegative polynomial
with N real zeros, then t f ′ ∈ R has at least 2N − 1 zeros. Therefore, 2N − 1 ≤ D2k
implies

N ≤
⌊
D2k + 1

2

⌋
=

⌊
Dc + 2k − c + 1

2

⌋
= k −

⌈
c − Dc − 1

2

⌉
.

��
Lemma 3.5 The point evaluations lp1, . . . , l pn : R≤e → R are linearly independent
for any pairwise distinct points p1, . . . , pn ∈ R and e ≥ c + n − 1.
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Proof We consider the map ψ : R≤e → Rn, g �→ (g(pi ))1≤i≤n . The polynomial
tc

∏n
i=1,i �= j (t − pi ) is mapped to a nonzero multiple of the j-th unit vector except

for the case when p j = 0. Thus we have at least all unit vectors but one in the image
and the constant polynomial 1 is mapped to the vector (1, . . . , 1). Thusψ is surjective
which implies the claim. ��

The following lemma generalizes [12, Thm. 3.68] and [16, Thm. 45].

Lemma 3.6 Let A ⊂ R[x] be the vector space of polynomials on R generated by the
monomials A = {xd1 , xd2 , . . . , xdm }, m, di ∈ N, such that d1 = 0 < d2 < · · · < dm
and dm is even. If all non-negative polynomials in A have at most C zeros, then

CA ≤ C + 1.

Proof Let s ∈ SA be a moment sequence.
Step i): If s is in the boundary of the moment cone, there exists a p ∈ A with

p ≥ 0 and Ls(p) = 0, i.e., all point evaluations are located at the zeros of p. Hence,
s requires at most C point evaluations.

Step ii): Assume now s is in the interior of the moment cone.
Homogenize A, i.e., B := {ydm , xd2 ydm−d2 , . . . , xdm }. Since s is a moment

sequence, we have s = ∑l
i=1 ci · sA(xi ) = ∑l

i=1 ci · sB((xi , 1)). Since xdm , ydm ∈ B,
we have xdm + ydm > 0 on P1 and the moment cone SB is closed. Hence, by
[16, Prop. 8] there exists an ε > 0 such that

cq(x, y) := sup{r ≥ 0 | q − r · sB(x, y) ∈ SB} (∗)

is attained and continuous for all q ∈ Bε(s), (x, y) ∈ P1, we have Bε(s) ⊂ int S,
and

� := sup
q∈Bε(s)

cq((0, 1)) < ∞. (∗∗)

Let

T :=
⋃

c∈[0,�+1]
Bε(s − c · sB(0, 1))

be the ε-tube around the line s − [0, � + 1] · sB((0, 1)). Write T = T1 ∪ T2 ∪ T3 with
T1 := T ∩ int SB, T2 := T ∩ ∂SB, and T3 := T \ (T1 ∪ T2). I.e., T1 is the part of the
ε-tube inside the moment cone, T2 is the intersection of the ε-tube with the boundary
of the moment cone, and T3 is the part of the ε-tube outside the moment cone.

Since the moment cone is closed (and convex), also T2 is closed and every path
starting in T1 and ending in T3 contains at least one point in T2. We define

t ′ := t − cq((0, 1)) · sB((0, 1))
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for all t ∈ Bε(s). By (∗) and (∗∗) we have for all t ∈ Bε(s) that t ′ is amoment sequence
without an atom at (0, 1) (by maximality of cq((0, 1))), i.e., t ′ is a moment sequence
on R and in the boundary of SA. By step (i) t ′ requires at most k point evaluations.
Since sB((x, y)) is continuous in (x, y), there exists a δ = δ(ε) > 0 such that

s′ := s − cs((δ, 1)) · sB((δ, 1)) ∈ T2,

i.e., also s′ is a moment sequence on R with at most k point evaluations. Hence,
s = s′ + cs((δ, 1)) · sB((δ, 1)) is a moment sequence on R with CA(s) ≤ C + 1.

Finally, since s ∈ SA was arbitrary we have CA ≤ C + 1. ��
Theorem 3.7 Let R = R[td1, . . . , tdr ] and k ≥ c. Every moment functional L :
R≤2k → R is a conic combination of at most k + 1 −

⌈
c−Dc−1

2

⌉
point evaluations.

There are moment functionals L : R≤2k → R that are not a conic combination of less
than k − (c − Dc) point evaluations.

Proof For the upper bound we combine Proposition 3.4 and Lemma 3.6. We have
1 ∈ R≤2k and since k ≥ cwe have by the minimality of c (see second paragraph at the
beginning of this section) that x2k ∈ R≤2k . So the monomial basis A of R≤2k fulfills
the conditions in Lemma 3.6 and by Proposition 3.4 every non-negative polynomial

in R≤2k has at most C = k−
⌈
c−Dc−1

2

⌉
zeros. Lemma 3.6 implies that every moment

sequence/functional is represented by at most C + 1 = k + 1 −
⌈
c−Dc−1

2

⌉
point

evaluations.
The lower bound follows from Proposition 3.4, Lemma 3.5, and Theorem 2.4. ��

Example 3.8 a) Let R = R[t2, t2r+1] with r ≥ 0. In this case we have c = Dc =
2r + 1. Thus for k ≥ 2r + 1 every moment functional L : R≤2k → R is a conic
combination of at most k + 1 point evaluations and there are moment functionals
which are not a conic combination of less than k point evaluations.

b) Let R = R[tr , tr+1, tr+2, . . .]. Then c = r and Dc = 1 if r is odd and Dc = 2
if r is even, so the difference between upper and lower bound in Theorem 3.7
grows linearly in r . This situation is in sharp contrast to the results from Sect. 4
on smooth curves.

4 Carathéodory numbers for measures supported on algebraic
varieties

Now for any subset X ⊂ Rn we are interested in the ring R[X ] of polynomial
functions X → R. The finite dimensional vector space of all functions X → R

that can be represented by a polynomial of degree at most d is denoted by R[X ]≤d .
If I ⊂ R[x1, . . . , xn] is the ideal of all polynomials vanishing on X , then R[X ] =
R[V0] = R[x1, . . . , xn]/I where V0 ⊂ Rn is the Zariski closure of X . Let V ⊂ Pn

be the Zariski closure of V0 in the complex projective space. Then one has

HFV (d) = dimR[X ]≤d . (3)
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From Richter’s Theorem we thus immediately get the following.

Proposition 4.1 Every moment functional L : R[X ]≤2d → R is a conic combina-
tion of at most H FV (2d) point evaluations lxi with xi ∈ X . If X consists of less
than HFV (2d) path-connected components, then HFV (2d)−1 point evaluations are
sufficient. In particular, for large d this upper bound grows like a polynomial whose
degree is the dimension of the Zariski closure of X .

Proof In (3) we already established that dimR[X ]≤2d = HFV (2d). SinceX is amea-
surable space andmonomials aremeasurable functions, Richter’s Theorem 2.2 implies
that L can be represented by at most dimR[X ]≤2d = HFV (2d) point evaluations.

Since X is a topological space which consists of at most HFV (2d) − 1 path-
connected components, 1 ∈ R[X ], and R[X ] consists of continuous functions we
have that sA(X ) consists of at most HFV (2d) − 1 path-connected components. All
conditions of [13, Thm. 12] are fulfilled which implies the upper bound. ��

In order to provide lower bounds as well, we will need the following lemma.

Lemma 4.2 Assume that V is irreducible with homogeneous vanishing ideal I and
that its singular locus has codimension at least 2. If k = dim(V ), then, for all d large
enough, there are k real homogeneous polynomials f1, . . . , fk of degree d whose
common zero set Z on V consists of dk · deg(V ) different points that are all real and
contained in V0. Furthermore, one can choose the f1, . . . , fk to be a regular sequence
with the property that they generate the homogeneous vanishing ideal of Z modulo I .

Proof By Bertini’s theorem, for a generic choice of k−1 real linear forms l1, . . . , lk−1
the set V ∩V(l1, · · · , lk−1) ⊂ Pn is a real smooth irreducible curve X . Since the real
points of V are Zariski dense in V we can furthermore assume that X(R) is nonempty.
Now by [47, Cor. 2.10, Rem. 2.14], for large enough d, there is a homogeneous
polynomial f of degree d all of whose zeros on X are real, simple and do not lie at
the hyperplane at infinity. Since deg X = deg V =: e, these are de many points. The
same is true for the zeros of f on X ′ where X ′ is the intersection of V with linear
forms l ′1, . . . , l ′k−1 that are sufficiently small perturbations of l1, . . . , lk−1. Therefore,
for sufficiently small ε > 0, the common zero set on V of f with the polynomials
fi = ∏d

j=1(li + jε · x0), i = 1, . . . , k − 1, consists of exactly dke real, simple points

that do not lie in the hyperplane at infinity. Thus these dke points lie in V0.
In order to obtain the additional properties, we can perturb f1, . . . , fk a little bit so

that each Ii = I + ( f1, . . . , fi ) is a radical ideal by Bertini’s Theorem. Finally, since
the dimension of V(Ii ) is exactly k− i , the f1, . . . , fk have to form a regular sequence
modulo I by Corollary 2.11. ��
Remark 4.3 In the proof of the preceding lemma lies the reason why, in this section,
we get lower bounds only for sufficiently large d. Namely, Scheiderer’s result in [47],
which states that for every smooth algebraic curve X there are polynomials of degree
d that have only real zeros on X , is only true for sufficiently large d. To find an explicit
lower bound on d, that ensures the existence of such polynomials, is an open problem,
except for the case of M-curves where a good lower bound has been provided by
Huisman [27].
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Example 4.4 Theassumptionon the singular locus inLemma4.2 is necessary.Consider
for example the singular plane curve V0 = V(x4 − y3) ⊂ R2. It is the image of the
map R → R2, t �→ (t3, t4). Now the zeros of a polynomial f ∈ R[x, y] of degree d
on V0 correspond to the roots of the univariate polynomial f (t3, t4). But by Descartes’
rule of signs this can not have 4d different real zeros. We dealt with curves of this kind
in Sect. 3.

From this we get our main theorem on the Carathéodory numbers for measures
supported on an algebraic set.

Theorem 4.5 Let X = V0 ⊂ Rn be Zariski closed of dimension k > 0 such that its
projective closure V ⊂ P

n is irreducible and its singular locus has codimension at
least 2. Let P ∈ Q[t] be the Hilbert polynomial of V . For large enough d > 0, every
moment functional L : R[X ]≤2d → R is a conic combination of at most P(2d) − 1
point evaluations lxi with xi ∈ X . On the other hand, there are moment functionals
L : R[X ]≤2d → R that are not a conic combination of fewer than

P(2d) − k · P(d) +
(
k

2

)

point evaluations lxi .

Proof For large enough d we have P(2d) = HFV (2d). Therefore, by Proposition 4.1,
in order to prove the upper bound, it suffices to show that P(2d) exceeds the number
m of path-connected components of X for large enough d. Since m is finite by [4,
Thm. 2.4.5, Prop. 2.5.13], this is clear because P has positive degree k. For the lower
bound we consider the polynomials f1, . . . , fk of degree d from Lemma 4.2 whose
common zero set Z on X consists of dk · deg V simple points. The polynomial

f1(1, x1, . . . , xn)
2 + . . . + fk(1, x1, . . . , xn)

2

is non-negative and has the same zero set Z on X . By Theorem 2.4 a lower bound
is then given by the dimension of the span of the point evaluations of polynomials
of degree at most 2d in Z . This is the same as the dimension of the vector space
(R[x0, . . . , xn]/J )2d where J is the homogeneous vanishing ideal of Z considered as
a subset of Pn . This is by definition HFZ (2d). Since J is given by I + ( f1, . . . , fk)
where I is the homogeneous vanishing ideal of V , and since the fi form a regular
sequence, we have

HFZ (2d) = HFI+( f1,..., fk )(2d) =
k∑

i=0

(−1)i
(
k

i

)
HFI (d · (2 − i))

by Lemma 2.12. It follows immediately from the definition of the Hilbert function that
HFI (m) = 0 for m < 0 and HFI (0) = 1. Therefore, only the first three terms of the
above sum are nonzero and we obtain:

HFZ (2d) = HFI (2d) − kHFI (d) +
(
k

2

)
.
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For large d the Hilbert function coincides with the Hilbert polynomial which shows
the claim. ��
Example 4.6 This example is to demonstrate that both upper and lower bound from
Theorem 4.5 are false when d is not large enough. Consider the plane curve X ⊂ R2

defined as the zero set of the polynomial x8 + y8 − 1. It is path-connected and its
Zariski closure C ⊂ P2 is smooth with Hilbert polynomial P(d) = 8d − 20. Thus
for d = 1 we have

P(2d) − 1 = P(2) − 1 = −5 < 0

which cannot be an upper bound. However, by Proposition 4.1 an upper bound in the
case d = 1 is given by

HFC (2d) − 1 = HFC (2) − 1 = 5.

Finally, again for d = 1, we have

P(2d) − k · P(d) +
(
k

2

)
= P(2) − P(1) = 8

which exceeds the upper bound and thus cannot be a lower bound.

Example 4.7 Let X ⊂ Rn , n ≥ 2, be the boundary of the unit ball, i.e., the zero set of
1 − (x21 + . . . + x2n ). Its Zariski closure

V = V(x20 − (x21 + . . . + x2n )) ⊂ Pn

is irreducible and smooth. A direct computation gives its Hilbert polynomial:

P(d) =
(
n + d − 1

d

)
+

(
n + d − 2

d − 1

)

It agrees with its Hilbert function for d ≥ 0. By Theorem 4.5 there is a d0 such that
for all d ≥ d0, every moment functional L : R[X ]≤2d → R is a conic combination
of at most

(
n + 2d − 1

2d

)
+

(
n + 2d − 2

2d − 1

)
− 1

point evaluations with points in X . Moreover, there are moment functionals L :
R[X ]≤2d → R that are not a conic combination of fewer than

(
n + 2d − 1

2d

)
+

(
n + 2d − 2

2d − 1

)
− (n − 1)

((
n + d − 1

d

)
+

(
n + d − 2

d − 1

))

+
(
n − 1

2

)
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point evaluations. We claim that in this case we can even choose d0 = 1. Indeed, since
X is path-connected, P(2d) exceeds the number of connected components whenever
d > 0. Moreover, letting li = xi the curve X in the proof of Lemma 4.2 is the Zariski
closure of the unit circle in the plane. Then clearly for any d ≥ 1 there is a polynomial
of degree d all of whose zeros on X are real, simple and do not lie at the hyperplane
at infinity: Consider for example the union of d distinct lines through the origin. Thus
the proof of Theorem 4.5 shows that we can choose d0 = 1. In the case n = 3 the
Carathéodory number C is thus bounded by

2d2 ≤ C ≤ 4d(d + 1).

Let us examine the ratio of the lower and upper bound from Theorem 4.5 as d goes
to infinity:

P(2d) − k · P(d) + (k
2

)

P(2d)
= 1 − k

P(d)

P(2d)
+

(k
2

)

P(2d)

d→∞−−−→ 1 − k

2k
. (4)

Thus if the dimension k of X is not too small, our bounds are rather tight – at least
for large d. On the other hand, if k = 1, i.e., X is a smooth algebraic curve, using a
refined argument, we obtain bounds that are even better, namely they differ only by
one.

Theorem 4.8 Let X = V0 ⊂ Rn be a compact algebraic set of dimension 1 such that
its projective closure V ⊂ P

n is a smooth irreducible curve of degree e. For large
enough d > 0, every moment functional L : R[X ]≤2d → R is a conic combination
of at most d · e + 1 point evaluations lxi with xi ∈ X . On the other hand, there are
moment functionals L : R[X ]≤2d → R that are not a conic combination of fewer
than d · e point evaluations lxi .
Proof The Hilbert polynomial of V is of the form HPV (t) = e · t + a. Thus the lower
bound from Theorem 4.5 is just d · e.

In order to prove the upper bound we use a similar technique as in Lemma 3.6.
At first we show that a non-negative polynomial f on X of degree 2d can have at
most d · e different zeros on X (or vanishes on all of X ). Indeed, the zero set of f on
X is contained in V( f h) ∩ V where f h is the homogenization of f . Since V( f h) is
a hypersurface of degree 2d and V a curve of degree e, the intersection V( f h) ∩ V
consists of 2de points counted with multiplicity. But because f is non-negative on X ,
each zero of f on X must have even multiplicity as otherwise there would be a sign
change. This shows that f has at most d · e different zeros on X .

Now we show the upper bound d · e + 1. Let A be a basis of R[X ]≤2d and s ∈ SA
be the moment sequence of L . Since 1 ∈ R[X ]≤2d and X is compact, SA is closed
and pointed, i.e.,

cs(x) := sup{c ≥ 0 | s − c · sA(x) ∈ SA} < ∞

is attained for every x ∈ X . Hence, s′ = s − cs(x) · sA(x) ∈ ∂SA and there exists
an f ∈ R[X ]≤2d such that f ≥ 0 on X and Ls′( f ) = 0 holds. Since f has at most
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d · e zeros, s′ is represented by at most d · e point evaluations. s = s′ + cs(x) · sA(x)
requires therefore at most d · e + 1 point evaluations in X . ��
Remark 4.9 As we have seen in Sect. 3, the smoothness assumption in Theorem 4.8
is crucial.

In the next section we use the techniques and results from this and the preceding
sections to obtain new lower bounds for the cases X = Rn and X = [0, 1]n .

5 Lower bounds on the Carathéodory number

Several lower bounds on the Carathéodory number are known, see e.g. [17]. For
bivariate polynomials of odd degree A = R[x1, x2]≤2d−1 Möller [39] proved

(
d + 1
2

)
+

⌊
d

2

⌋
≤ CA2,2d−1 .

In [16] the first author and K. Schmüdgen gave a very general lower bound improving
Möllers lower bound to

⌈
1

3

(
2d + 1

2

)⌉
≤ CA2,2d−1 and

⌈
1

3

(
2d + 2

2

)⌉
≤ CA2,2d .

In [46] C. Riener and M. Schweighofer further improved the lower bound to

(d − 1)2 ≤ CA2,2d−1 . (5)

They used [46, Prop. 8.5], a polynomial version of Theorem 2.4, applied to f 21 + f 22
where

f1(x) = (x − 1)(x − 2) · · · (x − d) and f2(y) = (y − 1)(y − 2) · · · (y − d)

and found dimR[x, y]/( f1, f2) = d2, i.e., dim lin {sA(xi , y j ) | xi , y j = 1, . . . , d} =
d2 and therefore the moment functional L : R[x, y]≤2d → R with L = ∑d

i, j=1 l(i, j)
has Carathéodory number d2. In [15] this was extended to higher dimensions by
investigating the linear (in)dependence of sA(xi ) on the grid G = {1, . . . , d}n (for
X = Rn) and G = {0, 1, . . . , d}n (for X = [0, d]n). As in the previous section the
main idea is that the dimension of point evaluations

dim lin {sAn,d (x) | x ∈ Z( f )} (6)

can be translated into
dim(R[x0, . . . , xn]/I )d , (7)

i.e., the dimension of the homogeneous part ofR[x0, . . . , xn]/I of degree d for some
homogeneous ideal I .
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Lemma 5.1 Let n, d ∈ N and set

pi = (xi − x0) · · · (xi − dx0) and qi = xi (xi − x0) · · · (xi − dx0)

for i = 1, . . . , n. The following holds:

(i) The sequences p1, . . . , pn and q1, . . . , qn are regular.
(ii) The ideals generated by p1, . . . , pn resp. q1, . . . , qn are radical.
(iii) Let f1, . . . , fn be a regular sequence of homogeneous functions fi of degree d.

The Hilbert function HFRn of Rn := R[x0, . . . , xn]/( f1, . . . , fn) is

H FRn (k) =
n∑

i=0

(−1)i ·
(
n

i

)
· HFPn (k − i · d).

In particular, we have

HFRn (2d − 2) =
(
n + 2d − 2

n

)
− n ·

(
n + d − 2

n

)
,

HFRn (2d − 1) =
(
n + 2d − 1

n

)
− n ·

(
n + d − 1

n

)
,

HFRn (2d) =
(
n + 2d

n

)
− n ·

(
n + d
n

)
+

(
n
2

)
,

and

HFRn (2d + 1) =
(
n + 2d + 1

n

)
− n ·

(
n + d + 1

n

)
+ 3 ·

(
n + 1
3

)
.

Proof Part (i) follows directly from the fact that each pi resp. qi is amonic polynomials
over R[x0] in the single variable xi . Part (ii) is a direct consequence of [2, Thm. 1.1].
Finally, since HFPn (k) = (n+k

k

)
for k ≥ 0 and HFPn (k) = 0 otherwise, Lemma 2.12

directly implies (iii). ��
From this lemma we derive the following lower bounds for the Carathéodory num-

ber CAn,2d and CAn,2d+1 on X = Rn .

Theorem 5.2 Let n, d ∈ N and X ⊆ Rn with non-empty interior. For even degree
A = R[x1, . . . , xn]≤2d we have

CAn,2d ≥
(
n + 2d

n

)
− n ·

(
n + d
n

)
+

(
n
2

)

and for odd degree A = R[x1, . . . , xn]≤2d+1 we have

CAn,2d+1 ≥
(
n + 2d + 1

n

)
− n ·

(
n + d + 1

n

)
+ 3 ·

(
n + 1
3

)
.
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Proof Since X ⊆ Rn has non-empty interior there is a ε > 0 and y ∈ Rn such that
y+ε ·{1, . . . , d}n ⊂ X . The affinemap T : X ′ → X , x �→ y+ε ·x shifts themoment
problem onX toX ′ = ε−1 ·(X − y)withR[x1, . . . , xn]≤dD = R[x1, . . . , xn]≤D ◦T ,
D = 2d, 2d+1, and {1, . . . , d}n ⊂ X ′. So w.l.o.g. we can assume that {1, . . . , d}n ⊂
X . Then we can proceed as in the proof of Theorem 4.5 by choosing the fi to be the
pi from Lemma 5.1. We have already calculated the concrete resulting values of the
Hilbert function in Lemma 5.1. ��

These lower bounds coincide with the numerical results in [15, Tab. 2]. Note that for
n = 1weget for the even andodddegree cases theboundd. This is themaximal number
of zeros of a non-zero and non-negative univariate polynomial, i.e., the Carathéodory
number of moment sequences on the boundary of the moment cone SAn,2d or SAn,2d+1 ,
respectively. In fact, we proved the following.

Proposition 5.3 Let n, d ∈ N, k ∈ {0, 1}, X = Rn, and G = {1, . . . , d}n. Then

s =
∑

x∈G
sAn,2d+k (x) resp. L =

∑

x∈G
lx : R[x1, . . . , xn]≤2d+k → R

supported on the grid G with L(p) = 0, p = p21 + · · · + p2n ≥ 0 from Lemma 5.1,
and the representing measure μ = ∑

x∈G δx has the Carathéodory number

CAn,2d+k (s) =
{(

n+2d
n

) − n · ( n+d
n

) + ( n
2
)

for k = 0,
(
n+2d+1

n

) − n · (
n+d+1

n

) + 3 · (
n+1
3

)
for k = 1.

We get the following lower bounds for the case X = [0, 1]n (or equivalently
X = [0, d]n) which serves as an example of a compact set X .

Theorem 5.4 Let n, d ∈ N and X = [0, 1]n. For even degree A = R[x1, . . . , xn]≤2d
we have

CAn,2d ≥
(
n + 2d

n

)
− n ·

(
n + d − 1

n

)

and for odd degree A = R[x1, . . . , xn]≤2d+1 we have

CAn,2d+1 ≥
(
n + 2d + 1

n

)
− n ·

(
n + d
n

)
.

Proof The proof follows the same arguments as in Theorem 5.2. Since we work on
[0, 1]n we can choose the fi ’s to be the qi ’s as in Theorem 4.5. Then Lemma 5.1
provides the explicit values of the Carathéodory numbers. ��

Additionally, note the difference between the lower bounds from Theorem 5.2 and
Theorem 5.4. In the one-dimensional case a non-negative polynomial p of degree 2d
has at most d zeros by the fundamental theorem of algebra:

p(x) = (x − x1)
2 · · · (x − xd)

2.
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However, on the interval [0, 1] a non-negative polynomial q of degree 2d can have up
to d + 1 zeros

q(x) = (x − x1) · (x − x2)
2 · · · (x − xd−1)

2 · (xd − x)

when x1 = 0 and xd = 1 holds. So interior zeros count twice, zeros on the bound-
ary only once. This concept appeared already in the classical works of Kreı̆n and
Nudel’man about T -systems, see [31, Ch. 2]. So in higher dimensions forRn all zeros
are interior points but for [0, 1]n we can place zeros on the boundary.

Note that for n = 1 we get for the even and the odd case the lower bound d + 1.
This is the maximal number of zeros of a non-zero and non-negative polynomial on
[0, 1]. For n = 2 we get the following.

Corollary 5.5 For d ∈ N and X = [0, 1]2 (n = 2) we have

CA2,2d ≥ (d + 1)2 and CA2,2d+1 ≥ (d + 1)2.

Theorems 5.2 and 5.4 give lower bounds on the Carathéodory number of SAn,k

by constructing one specific boundary moment sequence s and calculating its Cara-
théodory number CAn,k (s). But from the following considerations it will be clear
that Theorems 5.2 and 5.4 already show that in higher dimensions and degrees the
Carathéodory numbers behave very badly, see Theorem 5.6. Previous results in [16]
and [46] show that for n = 2 we have

1

2
≤ lim inf

d→∞
CA2,d
|A2,d | ≤ lim sup

d→∞
CA2,d
|A2,d | ≤ 3

4
. (8)

From Theorems 5.2 and 5.4 we get the following limits.

Theorem 5.6 For X ⊆ Rn with non-empty interior we have

lim inf
d→∞

CAn,d

|An,d | ≥ 1 − n

2n
for all n ∈ N

and

lim
n→∞

CAn,d

|An,d | = 1 for all d ∈ N.

Proof Follows by a direct calculation as in Equation (4). ��
In (8), i.e., [16] and [46], we have seen that for n = 2 the upper bound on the

Carathéodory number is considerably smaller than |A2,d |, namely 3
4 · |A2,d | is an

upper bound. But Theorems 5.2, 5.4, and 5.6 confirm the apprehensions in [15] on the
Carathéodory numbers and their limits. Note that for X = [0, 1]n the following was
proved already in [15].
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Theorem 5.7 ([15, Thm. 59]) For R[x1, . . . , xn]≤2 on X = [0, 1]n we have
(
n + 2
2

)
− n ≤ CAn,2 ≤

(
n + 2
2

)
− 1.

Thus for higher dimensions n, even with fixed degree d, it is not possible to give
upper bounds CAn,d ≤ c · |An,d | with c < 1 for all n.

Corollary 5.8 Let X ⊆ Rn with non-empty interior and d ∈ N. For ε > 0 there is
an N ∈ N such that for every n ≥ N there is a moment sequence s ∈ SAn,d resp. a
moment functional L : R[x1, . . . , xn]≤d → R with

CAn,d (s) ≥ (1 − ε) ·
(
n + d
n

)
,

i.e., Ls is the conic combination of at least (1 − ε) · (
n+d
n

)
point evaluations lxi .

Proof Choose s resp. L as in Proposition 5.3. This has the desired property. ��
So even when we work with the probably most well behaved moment problem,

i.e., polynomials, the Carathéodory number is cursed by high dimensionalities. In the
next section we study the consequences of these new lower bounds and their limits
for Hankel matrices and flat extension.

6 Hankel matrices and flat extension

Recall that for a finite dimensional space A of measurable functions with basis A =
{a1, . . . , am} the Hankel matrix H(L) of a linear functional L : A2 → R is given by
H(L) = (L(aia j ))

m
i, j=1, i.e.,

H(L) =
∫

X

⎛

⎜
⎝

a1(x)a1(x) . . . a1(x)am(x)
...

. . .
...

a1(x)am(x) . . . am(x)am(x)

⎞

⎟
⎠ dμ(x) =

∫

X
sA(x)·sA(x)T dμ(x) (9)

if μ is a (signed) representing measure of L . Hence we have the following.

Lemma 6.1 Let A be a finite dimensional vector space of measurable functions with
basis A = {a1, . . . , am}. For L : A2 → R with L = ∑k

i=1 ci · lxi (ci ∈ R) we have

H(L) =
k∑

i=1

ci · sA(xi ) · sA(xi )T and rankH(L) ≤ k.

The following are equivalent:

(i) rankH(L) = k.
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(ii) sA(x1), . . . , sA(xk) are linearly independent.

Proof By replacing xα , xβ , and xα+β by ai , a j , and ai, j = ai · a j , respectively, with
(9) the proof is verbatim the same as in [48, Prop. 17.21]. ��

Note that the previous result holds for signed representing measures.
It is very hard to check whether a linear functional L is a moment functional. If

X is compact and A2 contains an e > 0 on X then one has to check the following
condition:

Ls(p) ≥ 0 ∀p ∈ Pos(A2,X ) := {a ∈ A2 | a ≥ 0}.

But the set of non-negative functions Pos(A2,X ) on X is in general hard to describe.
For example deciding, whether a polynomial p ∈ R[x1, . . . , xn]≤2d is non-negative,
is an NP-hard problem (for fixed d ≥ 2 as a function of n), see e.g. [7, p.56]. One
approach to overcome this problem is to approximate non-negative polynomials with
sums of squares (SOS): Checking whether a given polynomial is a sum of squares is
equivalent to deciding whether a certain semidefinite program (SDP) is feasible, see
[7, §4.1.4], and (under some mild assumptions) one can solve an SDP up to a fixed
precision in time that is polynomial in the program description size [7, §2.3.1]. The
connection between the truncated moment problem and non-negative polynomials
run deep and can be found in a large number of publications on the truncated moment
problem, see e.g. [1,31,34,36,38,48].

Flat extension is another method to determine whether a linear functional L :
R[x1, . . . , xn]≤2d → R is a moment functional, see e.g. [8,9,36,37,48]. Let D ≥ d
and L0 : R[x1, . . . , xn]≤2D → R be a linear functional that extends L . An extension
L1 : R[x1, . . . , xn]≤2D+2 of L0 is called flat with respect to L0 if rankH(L1) =
rankH(L0). Then by the flat extension theorem, see [8,9] or e.g. [48, Thm. 17.35],
there are linear functionals Li : R[x1, . . . , xn]≤2D+2i with rank (L0) = rank (Li )

such that Li extends Li−1 for all i ∈ N. These determine a linear functional L∞ :
R[x1, . . . , xn] → R which is called a flat extension of L0 (to all R[x1, . . . , xn]), i.e.,
every restriction L∞|R[x1,...,xn ]≤2D′+2

is a flat extension of L∞|R[x1,...,xn ]≤2D′ for all
D′ ≥ D. Exists such a flat extension L∞, then by the flat extension theorem L0 is a
moment functional if L0(a2) ≥ 0 for all a ∈ R[x1, . . . , xn]≤D . In this case L is of
course a moment functional as well. It was open to which degree 2D the functional L
must be extended in order to have a flat extension. The upper bound of D ≤ 2d follows
immediately from the Carathéodory bound [8,9]. Part one of the following theorem is
due to Curto and Fialkow. Our new lower bounds on the Carathéodory number show
that D = 2d is attained and is stated in part two of the following theorem.

Theorem 6.2 (i) For every moment functional L : R[x1, . . . , xn]≤2d → R there is a
D ≤ 2d and an extension to a moment functional L0 : R[x1, . . . , xn]≤2D → R

that admits a flat extension L∞ : R[x1, · · · , xn] → R.
(ii) For every d ∈ N there is an N ∈ N such that for every n ≥ N there is a moment

functional L on R[x1, · · · , xn]≤2d such that D = 2d in (i) is required.
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Proof (i): By [16, Cor. 14] we have C := CAn,2d (L) ≤ (
n+2d
n

) − 1, i.e.,

L =
C∑

i=1

ci · lxi with ci > 0

and the lxi are linearly independent on R[x1, . . . , xn]≤2d . Then L∞ : R[x1, . . . , xn]
→ Rdefinedby L∞( f ) := ∑C

i=1 ci · f (xi ) is a flat extension of L0 := L|R[x1,...,xn ]≤4d .
(ii): Let s ∈ SAn,2d resp. Ls : R[x1, . . . , xn]≤2d → R as in Proposition 5.3 and

assume D = 2d − c, c ∈ N. From the condition CAn,2d (s) ≤ (
n+D
n

)
that the Hankel

matrix of the flat extension must be at least the size of the Carathéodory number of s
we find that

1 ≤ lim
n→∞

(
n + 2d − c

n

)

CAn,2d (s)
= lim

n→∞

(
n + 2d − c

n

)

(
n + 2d

n

) ·

(
n + 2d

n

)

CAn,2d (s)︸ ︷︷ ︸
→1 by Thm. 5.6

= lim
n→∞

(2d − c + 1) · · · (2d)

(n + 2d − c + 1) · · · (n + 2d)
= 0.

This is a contradiction, i.e., c = 0 must hold. ��
Example 6.3 Consider the moment sequences s = (sα)α∈Nn

0 :|α|≤2d resp. functionals
L : R[x1, . . . , xn]≤2d → R from Proposition 5.3 supported on the grid {1, . . . , d}n .
The condition CAn,2d (s) ≤ (

n+D
n

)
, meaning that the size of the Hankel matrix must be

at least the size of Carathéodory number of s, shows that (n, d) = (9, 2), (7, 3), (6, 4),
(6, 5), and (n′, 6), for all n′ ≥ 6, are small examples where the worst case extension
to degree D = 2d is attained. Even for d = 1015 the worst case extension is already
necessary for n = 51.
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