
Technische Universität Berlin

Institut für Mathematik

A MATLAB Toolbox for the Numerical
Solution of Differential-Algebraic

Equations

Peter Kunkel, Volker Mehrmann, and Stefan
Seidel

Preprint 16/2005

Preprint-Reihe des Instituts für Mathematik
Technische Universität Berlin

Report 16/2005 July 2005

A MATLAB Toolbox for the Numerical Solution

of Differential-Algebraic Equations

Peter Kunkel ∗ Volker Mehrmann † Stefan Seidel ‡

July 21, 2005

http://www.synoptio.de/Math_Contact.html

http://www.math.tu-berlin.de/~mehrmann

∗Mathematisches Institut, Universität Leipzig, Augustusplatz 10–11, D-04109 Leipzig, Fed.

Rep. Germany.
†Institut für Mathematik, MA 4-5, Technische Universität Berlin, Straße des 17. Juni 136,

D-10623 Berlin, Fed. Rep. Germany.
‡SynOptio GmbH, Torstraße 23, D-10119 Berlin, Fed. Rep. Germany.

1

Contents

1 Introduction 2

1.1 Purpose of this Toolbox . 2
1.2 Requirements . 2

2 Solving DAEs 3

2.1 Examples . 10

3 Setup Structure 16

4 GUI 17

4.1 GUI for Linear Problems . 18
4.2 GUI for Nonlinear Problems . 22

5 Symbolic Differentiation 27

6 User Supplied Functions 29

7 Output Structure 32

8 Handling Large Problems 32

9 Mathematical Background 33

10 Descriptor Systems 37

A Functions 41

1

1 Introduction

1.1 Purpose of this Toolbox

The purpose of this MATLAB 1 toolbox is the numerical solution of systems of
linear and nonlinear differential-algebraic equations (DAEs).

This first release of the toolbox treats systems of linear DAEs of the form

E(t)ẋ(t) = A(t)x(t) + f(t), x(t0) = x0 (1)

where t ∈ [t0, tf], x : R → R
n, f : R → R

l and E, A : R → R
l×n, and square

nonlinear DAEs of the form

F (t, x(t), ẋ(t)) = 0, x(t0) = x0 (2)

where t ∈ [t0, tf], x : R → R
n and F : R × R

n × R
n → R

n.
In order to solve these types of DAEs, the Fortran subroutines GELDA

(GEneral Linear Differential-Algebraic equation solver) [7] and GENDA

(GEneral Nonlinear Differential-Algebraic equation solver) [8] have been de-
veloped. The toolbox employs these two solvers by providing MEX-files that
turn these Fortran subroutines into MATLAB callable functions. However, the
toolbox is designed to make the utilization of GELDA and GENDA as easy
and comfortable as possible, so that the user does not have to dig deeply into
the details of the Fortran code. Instead, all the setup and customization can
be done using a graphical user interface (GUI). Furthermore, this toolbox fea-
tures symbolic differentiation. In this way, one only has to supply the functions
defining the given DAE and one does not need to provide the derivatives or
Jacobians. Other special features of this toolbox include

- the computation of characteristic values,

- the computation of consistent initial values in the least square sense,

- many parameters that enable the user to customize the solvers to certain
problems.

For questions concerning licensing of the MATLAB DAE Toolbox contact
SynOptio GmbH (visit http://www.synoptio.de/Math_Contact.html).

1.2 Requirements

The toolbox has been written for MATLAB Release 14 Service Pack 2. To take
advantage of all the features of it you need the following MATLAB toolboxes.

- Optimization Toolbox

- Symbolic Math Toolbox

1MATLAB c© is a registered trademark of The MathWorks, Inc. To simplify the presenta-

tion this brand name will be used without the copyright symbol throughout this document.

2

It is possible to run the DAE toolbox without the toolboxes mentioned above.
If the Optimization Toolbox is not available, one cannot try to correct guesses
of consistent initial values (see section 2). One cannot use the symbolic differ-
entiation feature if the Symbolic Math Toolbox is not installed (see sections 2
and 5).

2 Solving DAEs

This section covers the basic knowledge that is needed to solve a certain DAE
using the toolbox. Typically, the procedures shown in Figure 1 are used.

PSfrag replacements

geldasetup / gendasetup

supply

symdiff

solvedae

Figure 1: Ways to solve a DAE using this toolbox

The first step to compute a solution for a given problem is to call the function
geldasetup, if a linear DAE is considered, or gendasetup if a nonlinear DAE is
considered. These functions provide means to edit the setup of the solver being
used via a GUI. Their output is a structure array which contains all information
that is necessary to run a solver. Unfortunately, the input of vectors and other
sophisticated data types, such as function handles, via the GUI is not possible.
If one wants to provide one of these, the function supply is called which saves
these data types to the structure array. The next step is to provide the necessary
derivatives. There are two possibilities. The first one is to use the symbolic
differentiation feature of this toolbox. This means that one has to call the
function symdiff (see section 5 for more details). The second possibility is to
use user supplied derivatives (see section 6 for further information). No matter
how one obtains the derivatives, the final step is to call the function solvedae.
Depending on the information given during the setup phase this function picks
the right solver for the considered problem. There are two solvers available.
Their names and their area of application is shown in Table 1.

3

lindaesolve solves linear DAEs using GELDA

nldaesolve solves nonlinear DAEs using GENDA

Table 1: Solvers and their areas of application

The function solvedae exists for the sake of operator convenience. Of course,
it is possible to call the solvers listed in Table 1 directly but the advantage of
solvedae is that the user has to memorize only one function name.

With these proceedings in mind, we take a look at the overview of all func-
tions being part of this toolbox. The following list is not complete. There are
many more functions making the toolbox work (see appendix A). However, it
is very unlikely that situations will arise, where the user is forced to use one of
these directly.

• geldasetup
initializes a structure array that contains setup information for the linear
DAE solver
Syntax
s = geldasetup(m, n, tspan)

s = geldasetup(m, n, tspan, setting)

Arguments
The following table describes the input arguments to the function geldasetup.

m number of equations
n number of components of the solution vector x

tspan 1 × 2 array specifying t0 and tf
setting string specifying the setting which is loaded

’standard’: standard setup which is also loaded as default
if setting is omitted
’large’: setup for large systems

The following table lists the output arguments for the function geldasetup.

s structure array containing all information about the setup of the solver

Description
s = geldasetup(m, n, tspan, [setting]) opens a GUI where the user
can edit the setup for the solver lindaesolve. Necessary information about
the setup is stored in the structure array s.

• gendasetup
initializes a structure array containing setup information for the nonlinear
DAE solver

4

Syntax
s = gendasetup(n, tspan, cval)

s = gendasetup(n, tspan, cval, setting)

Arguments
The following table describes the input arguments to the function gendasetup.

n number of equations
tspan 1 × 2 array containing t0 and tf
cval 4 × 1 array containing the characteristic values of the DAE (2)

in the following order
cval(1) = strangeness-index (see section 9)
cval(2) = number of differential components
cval(3) = number of algebraic components
cval(4) = number of undetermined components

setting string specifying the setup which is loaded
’standard’: standard setup which will be also loaded as default
if setting is omitted
’multibody’: default setup for multi-body systems

The following table lists the output arguments for the function gendasetup.

s structure array containing all information about the setup of the solver

Description
s = gendasetup(n, tspan, cval, [setting]) opens a GUI where the pa-
rameters influencing the solver nldaesolve can be edited. The user has to
specify the number of equations, and the starting point and the end point of
integration as well as the characteristic values of the DAE. The result of this
function is a structure array which contains all information about the setup
of the solver that are necessary to run it.

• supply
saves vectors and function handles in an existing structure array
Syntax
s = supply(what, vec, ...)

s = supply(what, handle,...)

Arguments
The following table describes the input arguments to the function supply.

5

what string specifying the kind and purpose of the next argument
possibilities are vectors and function handles
’ifix’: vector prescribing differential variables (see section 4.2)
’scalc’: column scaling vector (see section 4.2)
’scalr’: row scaling vector (see section 4.2)
’rtol’: relative error tolerance as vector
’atol’: absolute error tolerance as vector
’uscal’: handle to a function for scaling purposes

vec vector which will be saved in the field of structure array s

specified by what

handle handle to function for scaling purposes
only applicable if what = ’uscal’

The following table lists the output arguments for the function supply.

s structure array containing all information about the setup of the solver

Description
s = supply(what, vec, what, handle, ...) saves vectors or function han-
dles in an existing structure array. If, for example, the user wants to provide
error tolerances as vectors this function must be used. The input must be
given as pairs consisting of a string input specifying which vector is given and
the vector itself. All inputs are optional and can be given in any order. If the
user enters RTOL, ATOL must be supplied also and vice versa. The user can
also supply a handle to a function which is used for scaling purposes (called
from the subroutine uscal needed for GENDA).

For GELDA supply can only be used to enter RTOL and ATOL.

• symdiff
symbolically differentiates functions
Syntax
[edif, adif, fdif] = symdiff(s, eh, ah, fh, name1, name2, name3)

[fdif, dfdif] = symdiff(s, fh, name1, name2)

[fdif, dfdif, x0] = symdiff(s, fh, name1, name2, giv)

Arguments
The following table describes the input arguments to the function symdiff.

6

s structure array containing all information
which are necessary to setup this solver

linear case
eh handle to a function specifying E

ah handle to a function specifying A

fh handle to a function specifying f

name1 name for the function implementing E and its derivatives
name2 name for the function implementing A and its derivatives
name3 name for the function implementing f and its derivatives
nonlinear case
fh handle to a function specifying F

name1 name for the function implementing F and its derivatives

name2 name for the function implementing the Jacobians of F, Ḟ , ...

giv guess of consistent initial values

The following table lists the output arguments for the function symdiff.

linear case
edif handle to function name1

adif handle to function name2

fdif handle to function name3

nonlinear case
fdif handle to function name1

dfdif handle to function name2

x0 corrected guess of consistent initial values

Description
[...] = symdiff(...) symbolically differentiates functions which are given
through their handles. If the user wants to solve a linear DAE he/she has
to provide handles to the matrix-valued functions E and A and a handle to
the vector-valued function f . Furthermore, he/she has to pass three strings
which specify the names of the functions implementing E, A, and f and
their derivatives up to the maximal desired order. As output, handles to
these functions are returned.

If the user wants to solve a nonlinear problem he/she has to provide a handle
to the function specifying F and strings which specify the names of the func-
tion implementing F and its derivatives and for the function implementing
the Jacobians of F, Ḟ , ..., F (m) where m is the maximal desired order. As
output, handles to these functions are returned. There is a special feature for
nonlinear problems. The user can provide a guess for consistent initial val-
ues. Using the generated highest derivative of F and the built-in MATLAB
function fsolve this code tries to correct the guess to get a better starting
value for the nonlinear system solver. Note that one has to handle this result
with care. It may not be a better starting value than the first guess.

7

The maximal desired order of differentiation is determined by the parameter
MXINDX which the user sets in the GUI and which is stored in the structure
array (see section 4).

Note that symdiff creates new files in the current directory. In case of linear
problems three files are generated. These are named name1.m, name2.m and
name3.m. If one is considering nonlinear problems two files are created which
are named name1.m and name2.m. In addition, another file called hdname1.m

(prefix ’hd’ plus the name chosen by the user) might be created if one used
the option to correct guessed initial values. This third file implements the
highest desired derivative of F in a way that the function fsolve can use it.

In fact all these functions implemented in these files are referenced when a
returned handle is evaluated. So deleting or overwriting such a file destroys
or changes the according handle, too. Naturally, the automatically generated
files to be used with GELDA or GENDA satisfy the implementation rules
imposed by the according Fortran code (see section 6).

• solvedae
solves general DAEs
Syntax
[T, X, xprime, cval, output, civ] = solvedae(s, edif, adif, ...

fdif, x0)

[T, X, xprime, cval, output, civ] = solvedae(s, edif, adif, ...

fdif, x0, tspan)

[T, X, xprime, cval, output, civ] = solvedae(s, fdif, dfdif, x0)

[T, X, xprime, cval, output, civ] = solvedae(s, fdif, dfdif, ...

x0, tspan)

Arguments
The following table describes the input arguments to the solver solvedae.

8

s structure array containing all information
which are necessary to setup this solver

linear case
edif handle to function specifying E

and sufficiently many derivatives of E

adif handle to function specifying A

and sufficiently many derivatives of A

fdif handle to function specifying f

and sufficiently many derivatives of f

nonlinear case
fdif handle to a function specifying the left hand side

of the inflated DAE
dfdif handle to a function specifying the Jacobians

of the inflated DAE
x0 n × 1 array containing consistent initial values

or a guess for these (see section 4.1 and 4.2)
tspan 1 × c, c > 2, array containing t0, tf and further time points

at which the solution will be evaluated
for performance reasons it is recommended
to provide the time points in ascending order

The following table lists the output arguments for the solver solvedae.

T vector containing the time points where the solution is
evaluated if tspan is not given T = [t0, tf] else T = tspan

X matrix containing the computed solution
in which the ith row corresponds to the ith component of x

and the jth column corresponds to the jth time point of T

xprime n × 1 vector which contains the first derivative of x at time tf

cval 4 × 1 array containing the characteristic values
of the DAE (1) or (2) in the following order
cval(1) = strangeness-index
cval(2) = number of differential components
cval(3) = number of algebraic components
cval(4) = number of undetermined components

output structure array (see section 7)
civ consistent initial values

Description
[...] = solvedae(...) solves differential-algebraic equations of the form

E(t)ẋ(t) = A(t)x(t) + f(t), x(t0) = x0

or
F (t, x(t), ẋ(t)) = 0, x(t0) = x0.

9

The user specifies the kind of DAE (linear or nonlinear) and the way this
DAE is solved by calling one of the two setup functions geldasetup (for
linear problems) or gendasetup (for nonlinear problems). Both of these
functions return a structure array which contains the necessary general infor-
mation about the setup. This structure array is the first input to the function
solvedae. The following inputs are handles to functions which describe the
matrix- and vector-valued functions and their derivatives for linear DAEs or
the left hand side, its derivatives and its Jacobians for nonlinear DAEs. Initial
values which do not necessarily have to be consistent are the next input. As
an optional input, time points where the solution should be evaluated can be
given. If this optional input is omitted, then the computed solution will be
evaluated at tf only.

2.1 Examples

Example 1

An example for a linear DAE is the following system.
[

0 0
1 −t

]

ẋ(t) = −

[

1 −t

0 0

]

x(t) +

[

e−t

0

]

, t ∈ [0, 1]

To solve it with solvedae the first step would be to write three m-files imple-
menting the two matrix-valued functions E, A, and the vector-valued function
f .

function [E] = myE(t)

E(2,2) = -t;

E(2,1) = 1;

function [A] = myA(t)

A(1,2) = t;

A(1,1) = -1;

A(2,1) = 0;

A(2,2) = 0;

function [f] = myf(t)

f(1) = exp(-t);

f(2) = 0;

Then one types the following lines in the command window.

s = geldasetup(2, 2, [0 1], ’standard’);

A GUI opens. To use the standard setup of the solver no changes are required.
So we accept the setup by pushing the apply-button. As a result we get a
structure array called s which will be used to call the functions symdiff and
solvedae. Note, that we choose inconsistent initial values. Consistent initial
values will be computed by the solver.

10

[edif, adif, fdif] = symdiff(s, @myE, @myA, @myf, ...

’edif’, ’adif’, ’fdif’);

[T, X] = solvedae(s, edif, adif, fdif, [0;0], [0:0.1:1])

compute consistent initial values and characteristic values...

done

solve DAE...

done

T =

Columns 1 through 6

0 0.1000 0.2000 0.3000 0.4000 0.5000

Columns 7 through 11

0.6000 0.7000 0.8000 0.9000 1.0000

X =

Columns 1 through 6

1.0000 0.9953 0.9825 0.9631 0.9384 0.9098

1.0000 0.9048 0.8187 0.7408 0.6703 0.6065

Columns 7 through 11

0.8781 0.8442 0.8088 0.7725 0.7358

0.5488 0.4966 0.4493 0.4066 0.3679

Using the results t and x the computed solution can be plotted by typing the
following lines.

plot(t,x(1,:),’-.k’);

hold on;

plot(t,x(2,:),’:k’);

hold off;

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Computed solution of Example 1

Example 2

We want to solve the system




1 0 0
0 1 0
0 0 0



 ẋ(t) =





0 1 0
0 0 1
1 0 0



 x(t) +





0
0

e−3t



 , t ∈ [0, 1].

Because we know that its strangeness-index is 2 and because the derivatives are
not difficult to compute we decide to solve it without using symbolic differen-
tiation. Thus, we implement three m-files specifying the functions and their
derivatives.

function [E, ierr] = myedif(m, n, t, idif)

ierr = 0;

E = zeros(n);

if (idif == 0)

E(1,1) = 1;

E(2,2) = 1;

elseif (idif > 0)

E = zeros(n);

else

ierr = -2;

end

function [A, ierr] = myadif(m, n, t, idif)

ierr = 0;

A = zeros(n);

if (idif == 0)

A(1,2) = 1;

12

A(2,3) = 1;

A(3,1) = 1;

elseif (idif > 0)

A = zeros(n);

else

ierr = -2;

end

function [f, ierr] = myfdif(n, t, idif)

ierr = 0;

f = zeros(n,1);

if idif == 0

f(3) = exp(-3*t);

elseif idif == 1

f(3) = -3*exp(-3*t);

elseif idif == 2

f(3) = 9*exp(-3*t);

else

ierr = -2;

end

After calling

s = geldasetup(3, 3, [0,1])

we use the solver to compute a solution.

[T, X, xprime] = solvedae(s, @myedif, @myadif, @myfdif, ...

[0;0;0], [0:0.1:1])

Again, we let GELDA compute consistent initial values. We obtain the output
below. Using the plot command in the shown way yields the Figure 3.

T =

Columns 1 through 6

0 0.1000 0.2000 0.3000 0.4000 0.5000

Columns 7 through 11

0.6000 0.7000 0.8000 0.9000 1.0000

13

X =

Columns 1 through 6

-1.0000 -0.7408 -0.5488 -0.4066 -0.3012 -0.2231

3.0000 2.2225 1.6464 1.2197 0.9036 0.6694

-9.0000 -6.6674 -4.9393 -3.6591 -2.7107 -2.0082

Columns 7 through 11

-0.1653 -0.1225 -0.0907 -0.0672 -0.0498

0.4959 0.3674 0.2722 0.2016 0.1494

-1.4877 -1.1021 -0.8165 -0.6048 -0.4481

xprime =

0.1494

-0.4481

1.3443

>> plot(T,X(1,:),’-.k’);

>> hold on;

>> plot(T,X(2,:),’:k’);

>> plot(T,X(3,:),’--k’);

>> hold off;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4

Figure 3: Computed solution of Example 2

14

Example 3

Consider the nonlinear DAE
[

ẋ2 − x1 − et−1

ẋ1(ẋ2 − x1 − et−1) + x2 − t

]

= 0, t ∈ [0, 1].

A valid implementation for this left hand side F (t, x(t), ẋ(t)) of the DAE would
look like this.

function [F] = myF(x,t)

expo = exp(t-1);

F(1) = x(4) - x(1) - expo;

F(2) = x(3)*F(1) + x(2) - t;

The characteristic values of this problem are µ = 1, dµ = 0, aµ = 2, uµ = 0.

s = gendasetup(2, [0 1], [1;0;2;0]);

We push the apply-button and call the function symdiff for computing symbol-
ically the derivatives and the Jacobians of the left hand side of the DAE. To get
a good starting value for consistent initial values we use the feature of symdiff

that tries to correct given initial values. The approximate starting vector must
be of length (MXINDX + 2) · n = (1 + 2) · 2 = 6.

>> giv = zeros(6,1);

>> [fdif, dfdif, x0] = symdiff(s, @myF, ’fdif’, ’dfdif’, giv);

differentiating F...

done

computing Jacobians...

done

correcting initial values...

done

Through this we obtain two handles to functions defining the derivatives of F

and to its Jacobians. Moreover, we get a vector x0 that contains a corrected
guess for consistent initial values. Note that x0 does not necessarily contain
consistent initial values. They are just another guess. All these will be used
when we call the solver solvedae.

>> [T, X] = solvedae(s, fdif, dfdif, x0, [0:0.1:1])

After using the known techniques to plot the computed solution we get a solution
that looks like figure 4 shown below.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: Computed solution of Example 3

3 Setup Structure

This section describes the structure array that is the output of the setup func-
tions geldasetup and gendasetup and which is an essential input to other
functions.

The structure array is the easy-to-use subsumption of certain input argu-
ments that are needed to run the Fortran subroutines. The most important
arguments are listed below.

INFO info is an integer array which is used to communicate exactly how the
user wants the problem to be solved.

WORKSPACES Two arrays of double precision and integer values are used
to provide workspace for the solver and to communicate values for some
parameters.

As the user works through the GUI, the info and workspaces arrays are auto-
matically created and updated according to the actions of the user. Additionally,
all entered parameters are saved in fields of the structure array bearing the same
name. Here is a list of all fields and their purposes.

16

name description
info info array
m number of equations
n number of components of the solution vector x

rw workspace for double precision numbers
lrw length of the double precision workspace array
iw workspace for integer numbers
liw length of the integer workspace array
t starting point for the integration
tout end point of integration
rtol, atol error tolerances
kind linear or nonlinear
and all the parameters

special fields for GELDA

method integration method (1 = BDF, 2 = Runge-Kutta)
special fields for GENDA

ifix keeps differential components fixed
scalc column scaling vector
scalr row scaling vector
uscal handle to function for scaling purposes
cval characteristic values

Table 2: Fields of the Structure Array

Manually changing fields of the structure array not explicitly mentioned in
Table 2 does not influence the setup.

4 GUI

Both solvers GELDA and GENDA offer a couple of parameters that can be
changed to adjust the solver to the user’s problems. As mentioned in section
2 the setup of a solver is stored in a structure array which is passed to all
important functions so that these can handle the problem in the user specified
way. The structure arrays for GELDA and GENDA are different (see section
3).

The two GUIs have some characteristics in common (see figures 5 and 6).
One point is the status bar at the bottom of the window. Here information
about the user’s actions is displayed. For example, if an input value is incorrect
an error message will be shown in this line.

Another item is the explanation bar on the right-hand side of the window.
To activate any control, the user has to perform a left click on it. After doing
so, a short explanation about the purpose of that particular parameter appears
in the explanation bar. A second left click marks the according check box or
enables user input into a edit text-control. Once a control has been activated
the explanation text can be shown again if the user clicks in a small perimeter

17

around that control. Performing a mouse click directly on that control will not
display the explanation again.

Pushing the apply-pushbutton causes the GUI to close and all the changes
for the setup are saved into the structure array that the user defined as output
argument when he called geldasetup / gendasetup. The current state of
the structure array is printed in the command window when the user hits the
print-pushbutton.

Finally, we turn our focus on the parameters of the GUIs.

4.1 GUI for Linear Problems

Figure 5: GUI for GELDA

In the top left-hand corner there is a pop-up menu where the method which will
be applied to solve the problem can be chosen (BDF- or Runge-Kutta–method).

In the following all parameters which can be set in the GUI are explained.
We assume that the structure array holding all information is named setup.

TSTOP If the user uses the BDF–solver (METHOD = 1), the code may inte-
grate past TOUT (= tf) and interpolate to obtain the result at TOUT, to
handle solutions at many specific values TOUT efficiently. Sometimes it is

18

not possible to integrate beyond some point TSTOP because the equation
changes there or it is not defined past TSTOP. Then the user must tell
the code not to go past.

The input of the user is stored in setup.rw(1). To indicate that a value
for TSTOP is given, setup.info(4) is set to 1.

HMAX The user can specify a maximum (absolute value of) step size, so that
the code will avoid passing over very large regions.

The input of the user is stored in setup.rw(2). To indicate that a value
for HMAX is given setup.info(7) is set to 1.

H0 Differential/algebraic problems may suffer from severe scaling difficulties
on the first step. If the user knows a great deal about the scaling of his
problem, this can be used to alleviate this problem by specifying an initial
step size H0.

The input of the user is stored in setup.rw(3). To indicate that a value
for H0 is given, setup.info(8) is set to 1.

MAXORD If storage is a severe problem and the user uses the BDF–solver
(METHOD = 1), memory can be saved by restricting the maximum order
MAXORD. The default value is 5. For each order decrease below 5, the
code requires fewer locations, however it is likely to be slower. In any case,
the user must have 1 ≤ MAXORD ≤ 5.

The input of the user is stored in setup.iw(3). To indicate that a value
for MAXORD is given, setup.info(9) is set to 1.

MXINDX The code tries to calculate the strangeness-index of the problem,
however it needs more memory for high index problems. The default value
for the maximum index MXINDX is 3. The user can decrease it below 3
to save memory (if the strangeness-index of his problem is smaller than
3) or increase it to solve a higher index problem. Note, that EDIF, ADIF
and FDIF must provide E(t), A(t), F (t) and (maybe) their first MXINDX
derivatives. In any case, the user must have MXINDX ≥ 0.

The input of the user is stored in setup.iw(4). To indicate that a value
for MXINDX is given, setup.info(10) is set to 1.

NMAX A maximum number of steps NMAX must be specified in order to
prevent the code from computing infinitely further in the case of repeated
step rejection. The default value for NMAX is 10 000.

The input of the user is stored in setup.iw(20). To indicate that a value
for MXINDX is given, setup.info(14) is set to 1.

SAFE, FACL, FACR For the Runge–Kutta branch, a safety factor SAFE in
step size prediction is used in the formula for calculating the new step
size in dependency of the old one and the error norm. The smaller SAFE
is chosen, the more the new step size is restricted. SAFE must lie in

19

the interval [0.001, 1]. The default value is SAFE = 0.9. Furthermore,
parameters FACL, FACR for step size selection restrict the relation be-
tween the old and the new step size. The new step size is chosen subject to
1/FACL ≤ HNEW/HOLD ≤ 1/FACR. The default values are FACL = 5.0
and FACR = 0.125.

The input of the user is stored in the following fashion. The factor
SAFE is saved in setup.rw(11), FACL in setup.rw(12) and FACR is
saved in setup.rw(13). To indicate that some factor has been input,
setup.info(16) is set to 1.

QUOT1, QUOT2 For the Runge–Kutta branch, if HNEW is not far from
HOLD (QUOT1 < HNEW/HOLD < QUOT2) and the matrices E and A

are constant, work can be saved by setting HNEW = HOLD and using the
system matrix of the previous step, so that a new LU–decomposition is
not necessary. For small systems one may have QUOT1 = 1.0, QUOT2 =
1.2, for large full systems QUOT1 = 0.99, QUOT2 = 2.0 might be good.
Default values are QUOT1 = 1.0, QUOT2 = 1.2.

The input of the user is stored in the following fashion. The factor QUOT1
is saved in setup.rw(14) and QUOT2 is saved in setup.rw(15). To
indicate that some factor has been given, setup.info(17) is set to 1.

RTOL, ATOL The relative and absolute error tolerances which the user pro-
vides to indicate how accurately he wishes the solution to be computed.
The user may choose RTOL and ATOL to be both scalars or else both
vectors.

Scalar error tolerances (setup.inf(2) = 0) are entered via the edit text
controls of the GUI. Vector error tolerances (setup.info(2) = 1) are
entered via the function supply by typing the following commands at the
MATLAB prompt.

rtol = [...];

atol = [...];

setup = supply(’rtol’, rtol, ’atol’, atol);

The intention to supply error tolerances as vectors is announced by mark-
ing the appropriate check box of the GUI.

The tolerances are used by the code in a local error test at each step which
requires roughly that

|LOCAL ERROR| ≤ RTOL ∗ |X| + ATOL

for each vector component.

The true (global) error is the difference between the true solution of the
initial value problem and the computed approximation. Practically all

20

present day codes, including this one, control the local error at each step
and do not even attempt to control the global error directly.

Usually, but not always, the true accuracy of the computed X is compara-
ble to the error tolerances. This code will usually, but not always, deliver
a more accurate solution if the user reduces the tolerances and integrate
again. By comparing two such solutions, the user can get a fairly reliable
idea of the true error in the solution at the bigger tolerances.

Setting ATOL=0 results in a pure relative error test on that component.
Setting RTOL=0 results in a pure absolute error test on that component.
A mixed test with non-zero RTOL and ATOL corresponds roughly to a
relative error test when the solution component is much bigger than ATOL
and to an absolute error test when the solution component is smaller than
the threshold ATOL.

The code will not attempt to compute a solution at an accuracy unrea-
sonable for the machine being used. It will advise the user if the required
accuracy is too much and inform the user as to the maximum accuracy it
believes to be possible.

Underneath the edit text-controls some check boxes allow further customiza-
tion of the setup.

time independent The code assumes that the user wants to solve a time de-
pendent problem. If E(t) and A(t) are both constant the user can speed
up the code.

To indicate this, setup.info(5) is set to 1.

known initial values In this code it is not necessary to provide consistent
initial conditions. Using the special structure of the strangeness free DAE,
the code can compute consistent initial values to start the integration.
However, often consistent initial values are known and the code should
use these values.

To indicate this, setup.info(11)is set to 1.

special method If INFO(11) = 0, the code computes consistent initial values
in the least squares sense. The default method is to compute consistent
initial values which are close (in the least squares sense) to the given X0.
Sometimes the user knows which are the differential variables and wants to
prescribe these variables. In this case, the user can use a different method,
which keeps the differential variables fixed.

To indicate this, setup.info(12) is set to 1.

21

classical step size control For the Runge–Kutta branch, the user can choose
between two step size strategies. If not specified otherwise, the code will
use the modified predictive controller of Gustafsson, which seems to pro-
duce safer results. As alternative for simple problems, the user can apply
the classical step size control which produces often slightly faster runs.

To indicate this, setup.info(15) is set to 1.

4.2 GUI for Nonlinear Problems

Figure 6: GUI for GENDA

In the top left-hand corner there is a check box which should be marked if the
function F is not dependent directly on t.

Underneath, there are several edit text-controls allowing to change the pa-
rameters of GENDA. The purpose of each parameter is explained below. Again
we assume that the structure array storing the setup is called setup.

TSTOP The code may integrate past TOUT and interpolate to obtain the re-
sult at TOUT (= tf), to handle solutions at many specific values TOUT
efficiently. Sometimes it is not possible to integrate beyond some point

22

TSTOP because the equation changes there or it is not defined past
TSTOP. Then the user must tell the code not to go past.

The input of the user is stored in setup.rw(1). To indicate that a value
for TSTOP is given, setup.info(4) is set to 1.

NMAX A maximum number of steps NMAX must be specified in order to
prevent the code from computing infinitely further in the case of repeated
step rejection. The default value for NMAX is 10 000.

The input of the user is stored in setup.iw(20). To indicate that a value
for NMAX is given, setup.info(6) is set to 1.

HMAX The user can specify a maximum (absolute value of) step size, so that
the code will avoid passing over very large regions.

The input of the user is stored in setup.rw(2). To indicate that a value
for HMAX is given, setup.info(7) is set to 1.

H0 Nonlinear DAEs sometimes suffer from severe scaling difficulties on the first
step. If the user knows a great deal about the scaling of his problem, this
can be used to alleviate this problem by specifying an initial step size H0.

The input of the user is stored in setup.rw(3). To indicate that a value
for H0 is given, setup.info(8) is set to 1.

MAXORD If storage is a severe problem, then one can save some memory
by restricting the maximum order MAXORD of the BDF-method. The
default value is 5. For each order decrease below 5, the code requires fewer
locations, however it is likely to be slower. In any case, one must have 1
≤ MAXORD ≤ 5.

The input of the user is stored in setup.iw(3). To indicate that a value
for MAXORD is given, setup.info(9) is set to 1.

MXINDX If the user wishes, the code tries to check the strangeness-index µ

and the other characteristic values of the problem. The default value for
the maximum index MXINDX is µ=CVAL(1). The user can increase it
if the index of the problem may be higher. Note, that one must provide
F (t, x(t), ẋ(t)), the first MXINDX derivatives of F and the partial deriva-

tives with respect to ẋ, ..., x(MXINDX+1) if one is not using the function
symdiff. In any case, the user must have MXINDX ≥ 0.

The input of the user is stored in setup.iw(4). To indicate that a value
for MXINDX is given, setup.info(10) is set to 1.

SCALING Nonlinear DAEs sometimes suffer from severe scaling problems.
DGENDA uses row- and column scaling of the iteration matrices, where
the scaling vectors SCALR and SCALC are automatically updated. If the
problem does not suffer from scaling problems, then the user can disable
this automatic scaling. If, on the other hand, the user knows a lot about
the correct scaling of the problem, it is possible to supply a user-defined

23

scaling routine USCAL. One has to use the function supply to store the
function handle to USCAL and the scaling vectors in the structure array.
For example, one writes

uh = @myUsal;

scalc = [...];

scalr = [...];

setup = supply(’uscal’, uh, ’scalc’, scalc, ...

’scalr’, scalr);

to supply these data.

To indicate that automatic scaling is not used, setup.info(13) is set to
1. The value of setup.iw(16) is set to 0 if one wants to disable any
scaling or setup.iw(16) is set to 2 if one wants to use ones own scaling
function.

NLSYSSOLVER In every step the BDF-method uses the simplified Gauss-
Newton method to solve the nonlinear system. If µ=0, then one can let
the code decide when a new iteration-matrix is needed. The method used
for this decision is the same as in DASSL [11]. One can also let the code
use the classical Gauss-Newton method, which is much slower than the
default method.

To indicate that the simplified Gauss-Newton method is not used,
setup.info(14) is set to 1. The value of setup.iw(2) is set to 0 if one
prefers the method used in DASSL or setup.iw(2) is set to 2 if one wants
the code to use the classical Gauss-Newton method in every step.

STARTINGVALUES In every step of the BDF-solver the code obtains the
starting values for X(1 : N) and XPRIME for the Gauss-Newton iterations
by interpolation. For the remaining starting values X(N+1 : (µ +2)N) it
takes by default X(N+1 : 2N)=XPRIME and classical homotopy for the
remaining values, i.e. it takes the last solutions as starting values for the
next step.

To indicate this changed method for obtaining starting values,
setup.info(15) is set to 1. The value of setup.iw(17) is set to 0 if one
wants to use classical homotopy also for X(N+1:2N), setup.iw(17) is set
to 2 if one wants the code to compute the starting values for X(N+1:2N)
by linear extrapolation, or setup.info(17) is set to 3 if one wants the
code to obtain all values X(N+1:(µ +2)N) by linear extrapolation.

COND If the user does not know the characteristic values of the problem, the
rank decisions made to compute the characteristic values may suffer from
scaling problems and of the error made in every BDF-step. A singular
value of a matrix is taken to be zero, if it is smaller than the largest singular
value multiplied by COND−1. By default, we set COND = 1012.

24

The input of the user is stored in setup.rw(1). To indicate that the value
of COND is given, setup.info(18) is set to 1.

PROJECTOR The code assumes that the user wants to solve a general non-
linear problem. If it is known that the projector Z2 for the algebraic
equations does only depend on t, then the code can compute a reduced
system. This will result in a faster run of the program. If the problem is
linear the user can also help the code to be faster.

To indicate this setup.info(20) is set to 1. If Z2 only depends on t,
setup.iw(23) is set to 1 or if the problem is linear, setup.iw(23) is set
to 0.

NONLIN The code uses the subroutine NLSCON [9] for the calculation of
consistent initial values if this computation is necessary. By default the
NONLIN parameter of NLSCON is set to 2 if the DAE is nonlinear and
to 1 if the problem is linear. The user can change this value if DGENDA
fails to compute consistent initial values.

To indicate that the NONLIN-parameter is changed, setup.info(21) is
set to 1. The value of the NONLIN-parameter is stored in setup.iw(24).

NLSCONRTOL If consistent initial values must be computed, the user can
prescribe the required relative precision of the consistent initial values
by setting the RTOL parameter of the subroutine NLSCON. By default,
RTOL is set to 10−10.

To indicate that NLSCONRTOL has changed, setup.info(22) is set to
1. The value of NLSCONRTOL is stored in setup.rw(11).

RTOL, ATOL The relative and absolute error tolerances which the user pro-
vides to indicate how accurately the solution should be computed. The
user may choose RTOL and ATOL to be both scalars or else both vectors.

Scalar error tolerances (setup.inf(2) = 0) are entered via the edit text
controls of the GUI. Vector error tolerances (setup.info(2) = 1) are
entered via the function supply by typing the following commands at the
MATLAB prompt.

rtol = [...];

atol = [...];

setup = supply(’rtol’, rtol, ’atol’, atol);

One announces the intention to supply error tolerances as vectors by mark-
ing the appropriate check box of the GUI.

The tolerances are used by the code in a local error test at each step which
requires roughly that

|LOCAL ERROR| ≤ RTOL ∗ |X| + ATOL

25

for each vector component.

The true (global) error is the difference between the true solution of the
initial value problem and the computed approximation. Practically all
present day codes, including this one, control the local error at each step
and do not even attempt to control the global error directly.

Usually, but not always, the true accuracy of the computed X is compara-
ble to the error tolerances. This code will usually, but not always, deliver
a more accurate solution if the user reduces the tolerances and integrate
again. By comparing two such solutions the user can get a fairly reliable
idea of the true error in the solution at the bigger tolerances.

Setting ATOL=0 results in a pure relative error test on that component.
Setting RTOL=0 results in a pure absolute error test on that component.
A mixed test with non-zero RTOL and ATOL corresponds roughly to a
relative error test when the solution component is much bigger than ATOL
and to an absolute error test when the solution component is smaller than
the threshold ATOL.

The code will not attempt to compute a solution at an accuracy unrea-
sonable for the machine being used. It will advise the user if the required
accuracy is too hard and inform the user as to the maximum accuracy it
believes to be possible.

Now we proceed with the check boxes and explain their purposes.

consistent initial values In this code it is not necessary to provide consistent
initial conditions. Using the special structure of the strangeness free DAE,
the code can compute consistent initial values to start the integration.
However, often consistent initial values are known and the code should
use these values.

If consistent initial values are known, mark this check box. The value of
setup.info(11) is set to 1.

IFIX If setup.info(11) = 0, the code computes consistent initial values in
the least squares sense. The default method is to compute consistent
initial values which are close (in the least squares sense) to the given X.
Sometimes the user knows which are the differential variables and wants
to prescribe these variables. In this case, the user can use a different
method, which keeps some of the variables fixed. Note, that this may lead
to a rank-deficient Jacobian.

One should mark this check box if one wants to use IFIX and provide the
corresponding vector via the function supply by typing

ifix = [...];

setup = supply(’ifix’, ifix);

26

at the prompt in the MATLAB command window. The value of
setup.info(12) is set to 1.

correct characteristic values The user must initialize the code with correct
characteristic values of the DAE. However, DGENDA can try to calculate
these values after a successful BDF-step or after consistent initial values
have been computed. If it detects any changes in the characteristic values
the code will return with an error flag. This is not necessary if the user is
sure about the given characteristic values.

To indicate that one is not sure about the characteristic values that one
inputs when calling the function gendasetup mark this check box. Doing
so changes the value of setup.info(16) to 1.

characteristic value check If setup.info(16) = 1, one can let the code
check the characteristic values once after every call of DGENDA or af-
ter every BDF-step.

If this check box is marked the characteristic values will be checked after
every BDF-step (setup.info(17) = 1). They will be checked after every
call of DGENDA if one leaves the check box unmarked (setup.info(17)
= 0).

5 Symbolic Differentiation

This toolbox features the function symdiff that is capable of symbolic differen-
tiation. To achieve this it uses the symbolic math toolbox of MATLAB. Fortu-
nately, the user does not need to know something about this particular toolbox.
It is sufficient to provide a standard m-file that implements the considered func-
tion. Among other inputs, a handle to this function is passed to symdiff. Inside
this function the standard function is transformed into a symbolic function for
which the mentioned toolbox calculates the symbolic derivatives. Then these
are transformed into strings which are written into a new standard m-file such
that they can be used easily. See section 6 for more information about the re-
quirements of these functions. Of course, these requirements are fulfilled by the
automatically generated file.

However, this comfort is computationally expensive. When writing a func-
tion for F (t, x(t), ẋ(t)) that will be passed to symdiff one has to stick to two
conventions.

1. The components of the input vector for such a function must be ordered
in a certain way.

2. The first assignment of a component of F must contain a variable if any
exist, that means if F is not constant.

The function must take two arguments exactly. The first one specifies x and
ẋ and the second one represents t. Let x be the solution vector of (2). Let n be

27

its dimension. Then the first input argument is a vector x̃ of length 2n where the
first n elements correspond to x itself and the elements x̃(n+1), x̃(n+2), ..., x̃(2n)
corresponds to ẋ(1), ẋ(2), ...ẋ(n).

Assume that F is not constant, i.e., some components depend on t or x̃. The
first assignment to that vector that is returned by the user supplied function
must contain at least one of the variables t, x̃(1), x̃(2), ..., x̃(2n). For Example,
let F be two dimensional and defined like this.

F :=

[

0
ẋ2x1 + ẋ1x2 + t

]

Then the user supplied M-file should look like that.

function [F] = myF(x,t)

F(2) = x(4)*x(1) + x(3)*x(2) + t;

F(1) = 0;

If the user started with F(1) = 0 instead, then MATLAB would assume
that the user wants to create a double precision matrix. So MATLAB will
attempt to convert the symbolic variables at the assignment of F(2) to double
precision numbers. That is not possible because there is no value associated
with symbolic variables. Trying to convert a symbolic variable to a number
causes MATLAB to display the following exception.

??? Conversion to double from sym is not possible.

The same problem occurs in the linear case. In the implementations of
the functions E(t), A(t) and f(t) the first assignment to the matrix which is
returned must depend on t. So a valid implementation of the matrix-valued
function

A(t) =

[

−1 t

0 0

]

would look like this, for example.

function [A] = myA(t)

A(1,2) = t;

A(1,1) = -1;

A(1,2) = 0;

A(2,2) = 0;

The second convention implies that a user must not use the built-in MAT-
LAB functions zeros or ones because initializing a matrix with these functions
turns it into a double precision matrix which cannot be transformed into a sym-
bolic matrix. It is very important to keep that in mind when one implements
a function. Convention 2 can be ignored when dealing with a time independent
problem.

Consider the following example. The constant matrix-valued function

28

E(t) =





1 0 0
0 1 0
0 0 0





can be implemented like this.

function [E] = myE(t)

E = zeros(3);

E(1,1) = 1;

E(2,2) = 1;

6 User Supplied Functions

If the derivatives are known or can be computed easily, then it is often too time
consuming to use symdiff. Instead, the user can supply functions implementing
the given mapping and its derivatives or its Jacobians in the nonlinear case. The
number and order of the input arguments is imposed by the Fortran codes.

This section also covers the requirements that a function must meet for
scaling purpose.

Matrix-valued functions for linear problems must be of the following form.

• Header
function [G,ierr] = anyName(l, n, t, idif)

Arguments
The following table describes the input arguments to the auxiliary function.

l number of equations
n number of variables
t time
idif parameter specifying the order of the desired derivative.

The following table lists the output arguments for the auxiliary function.

G idif-th derivative of G
ierr error flag being always zeros

only if idif is larger than the highest derivative
that this function provides ierr is assigned the value −2.

Description
This function takes as input the number of equations m, the number of vari-
ables n, the time t and the parameter idif. As output, it produces the
idif-th derivative of the function at time t. An error is signaled via ierr if
a higher derivative is requested than provided. Note that one has to provide
such functions for E and A from (1).

29

The vector-valued functions of linear problems require implementation accord-
ing to the following standards.

• Header
function [f,ierr] = anyName(l, t, idif)

Arguments
The following table describes the input arguments to the auxiliary function.

l number of equations
t time
idif parameter specifying the order of desired derivative.

The following table lists the output arguments for the auxiliary function.

f idif-th derivative of G
ierr error flag being always zeros

only if idif is larger than the highest derivative
that this function provides ierr is assigned the value −2.

Description
This function takes as input the number of equations m as well as the time
t and the parameter idif. As output, it produces the idif-th derivative of
f at time t. An error is signaled via ierr if a higher derivative is requested
than provided.

The functions for nonlinear problems look a little bit different. It is shown
below. In the following let µ be the strangeness-index of the DAE.

• Header
function [F,ierr] = anyName(t, idif, x)

Arguments
The following table describes the input arguments to the auxiliary function.

t time
idif parameter specifying the order of desired derivative
x vector containing an approximation to the solution

x̃ = (x, ẋ, ..., x(m+1)), where m ≥ µ.

The following table lists the output arguments for the auxiliary function.

F column vector containing the idif-th derivative of F
ierr error flag being always zeros

only if idif is larger than the highest derivative
that this function provides ierr is assigned the value −1.

30

Description
This function takes as input the time t, the parameter idif and the vector x

containing (x, ẋ, ..., x(m+1)), where m ≥ µ. As output, the function produces
the idif-th derivative of the DAE at time t. An error is signaled via ierr if
a higher derivative is requested than provided.

Additionally, a function providing the Jacobians of the inflated DAE is needed.
Its requirements are shown below.

• Header
function [J, ierr] = anyName2(t, idif, x)

Arguments
The following table describes the input arguments to the auxiliary function.

t time
idif parameter specifying the order of desired derivative
x vector containing an approximation to the solution

x̃ = (x, ẋ, ..., x(m+1)), where m ≥ µ.

The following table lists the output arguments for the auxiliary function.

J Jacobian of the idif-th derivative of F

ierr error flag being always zeros
only if idif is larger than the highest derivative
that this function provides ierr is assigned the value −1.

Description
The function takes as input the time t, the parameter idif and the vector x

which contains an approximation to the solution x̃ = (x, ẋ, ..., x(m+1)), where
m ≥ µ. As output, it produces all partial derivatives of the idif-th derivative
of F (t, x(t), ẋ(t)) with respect to all elements of x.

A function that realizes user defined scaling must be of the following form.

• Header
function [B, ierr] = uscal(A, scalc, scalr)

Arguments
The following table describes the input arguments to the scaling function.

A matrix to be scaled
scalc column scaling vector
scalr row scaling vector.

The following table lists the output arguments for the scaling function.

31

B scaled matrix B = diag(scalr)*A*diag(scalc)

ierr error flag being always zero
only if the scaling vectors have incorrect sizes
ierr is assigned the value −1.

Description
This function takes as input the matrix A ∈ R

mq×nq and the vectors scalc ∈
R

nq and scalr ∈ R
mq . As output, the function produces column scale fac-

tors scalc and column scale factors scalr and a matrix B such that B =
diag(scalr)Adiag(scalc). The integer error flag IERR should be set to a neg-
ative value if there was any illegal input.

7 Output Structure

The output structure array contains the following information. Please note that
the field contf exists only in the nonlinear case.

orderns order of the method to be attempted on the next step
orderls oder of the method used on the last step
steps steps taken so far
feval number of calls of function evaluations
fac number of the factorizations of the system matrix so far
errtf total number of error test failures
contf total number of convergence test failures
h step size to be attempted on the next step
tend farthest time point integration has reached
hend step size used on the last successful step

8 Handling Large Problems

The Fortran codes use arrays as workspaces. Here all the parameters are stored
and calculations are carried out. Two workspace arrays are needed in GELDA

and GENDA. One is used for integer numbers and one for double precision
numbers. Of course, the needed length of a workspace array depends on the
considered problem.

During the initialization of the variables and parameters in the MEX-file
the exact dimensions of these different items which are passed from MATLAB
are not known. Although it is possible to circumvent this difficulty by dynam-
ically allocating memory in a Fortran MEX-file, the toolbox does not use this
technique. Rather, the sizes of the problematic items are declared using a fixed
upper bound (50,000) which is set as a parameter. So one does not have to
bother about this topic. But a problem remains. Large problems require large
workspaces. Their lengths might exceed the upper bound. In that case the
toolbox will signal a warning. To try to solve such a problem anyway one can
increase the upper bound by changing the value of the parameter in the Fortran
code of the MEX-file indicated by the warning. After this has been done one

32

has to compile the code again. Run the M-script compile in the directory where
the MEX-files gelda.f and genda.f and the folder FSP are saved.

Attention

Use the command mex (refer to the MATLAB documentation) to properly
compile the toolbox. Especially, use the option mex -setup to pick the right
compiler and consult the online reference

http://www.mathworks.com/access/helpdesk/help/techdoc/...

matlab_external/matlab_external.html

to learn how to adjust the script compile to the system in use. If one is not
connected to the Internet the same information can be found in the MATLAB
Help under the keyword

LAPACK and BLAS functions::building MEX files for

Nevertheless, one should keep in mind that MATLAB is probably not an
appropriate tool to solve problems of such a huge dimension. So, before recom-
piling the toolbox one should think about addressing this problem in another
way.

9 Mathematical Background

The main part of the solvers lindaesolve and nldaesolve are the two Fortran
subroutines dgelda and dgenda. This section gives a very short introduction
on how they work.

DGELDA [7] solves linear differential algebraic equations (DAEs) with vari-
able coefficients of the form

E(t)ẋ(t) = A(t)x(t) + f(t)
x(t0) = x0

for x in a specified range of the independent variable t.
The most important invariant in the analysis of linear DAEs is the so called

strangeness-index, which generalizes the differentiation-index [2] for systems
with undetermined components.

The implementation of DGELDA [7] is based on the construction of the
discretization scheme introduced in [5], which first determines all the local in-
variants and then transforms the system into a strangeness-free DAE with the
same solution set.

The strangeness-free DAE is solved by either BDF methods, which were
adapted from DASSL of Petzold [11], or a Runge–Kutta method, which was
adapted from RADAU5 of Hairer/Wanner [4].

DGENDA [8] solves general differential algebraic equations (DAEs) of the
form

F (t, x(t), ẋ(t)) = 0,

x(t0) = x0,
(3)

33

for x in a specified range [t0, tf] of the independent variable t. No restrictions
on the strangeness-index are needed.

We need information about several derivatives of the given DAE. For this
we denote by

Fl(t, x, ẋ, ..., x(l+1)) =











F (t, x, ẋ)
dF
dt

(t, x, ẋ, ẍ)
...

dlF
dtl (t, x, ẋ, ..., x(l+1))











= 0 (4)

the inflated nonlinear DAE obtained by successive differentiation and we denote
by

Ml(t, x, ẋ, ..., x(l+1)) = Fl;ẋ,...,x(l+1)(t, x, ẋ, ..., x(l+1)),

Nl(t, x, ẋ, ..., x(l+1)) = −(Fl;x(t, x, ẋ, ..., x(l+1)), 0, ..., 0)

its Jacobians. The DAE has to satisfy the following Hypothesis.

Hypothesis 1 There exist integers µ̂, d̂ and â, such that for all values
(t, x, ẋ, ..., x(µ̂+1)) ∈ L with

L = {(t, x, ẋ, ..., x(µ̂+1)) ∈ I × R
n × R

n × ... × R
n|Fµ̂(t, x, ẋ, ..., x(µ̂+1)) = 0}

associated with F the following properties hold

1. We have rankMµ̂(t, x, ẋ, ..., x(µ̂+1)) = (µ̂ + 1)n − â, and there exists a

matrix function Ẑ2 being smooth on L with orthonormal columns and size
((µ̂ + 1)n, â) satisfying ẐT

2 Mµ̂ = 0.

2. We have rank Â2(t, x, ẋ, ..., x(µ̂+1)) = â, where Â2 = ẐT
2 Nµ̂[In0 · · · 0]T ,

and there exists a matrix function T̂2 being smooth on L with orthonormal
columns and size (n, d̂), d̂ = n − â, satisfying Â2T̂2 = 0.

3. We have rankFẋ(t, x, ẋ)T̂2(t, x, ẋ, ..., x(µ̂+1)) = d̂, and there exists a matrix

function Ẑ1 being smooth on L with orthonormal columns and size (n, d̂)

yielding that Ê1 = ẐT
1 Fẋ(t, x, ẋ) has constant rank d̂.

When the DAE (3) satisfies Hypothesis 1, then the (global) strangeness-index µ

of (3) is defined as the least possible µ̂ for which the above properties hold. The
corresponding numbers d and a are the numbers of differential and algebraic
equations of the DAE.

If the differentiation-index (see, e.g., [2]) is well-defined, Hypothesis 1 is
always satisfied, and the strangeness index is zero if the differentiation-index is
zero and equal to the differentiation-index lowered by 1 otherwise.

In [6] it has been shown that every sufficiently smooth solution x∗ of (3),
where F satisfies Hypothesis 1, is a locally unique solution of a problem of the
form

ẐT
1 F (t, x1, x2, ẋ1, ẋ2) = 0, (5)

x2 = Ĝ2(t, x1), (6)

34

which has a vanishing strangeness-index, i.e. differentiation-index at most one.
Consistency of an initial value means that (6) is satisfied while arbitrary

initial values can be chosen for the differential variables x1. In [6] it has been
shown that every y0 ∈ L can be locally extended to a solution of (3). Thus every
part (t0, x0) of y0 ∈ L is a consistent initial value. Therefore, to determine a
consistent initial value one must solve

Fµ(t0, x, ẋ, ..., x(µ+1)) = 0 (7)

for (x, ẋ, ..., x(µ+1)). The solution of this underdetermined system of nonlinear
equations is computed in a least squares sense with the subroutine NLSCON
(see [9]) which is an implementation of the Gauss-Newton method [3]. The user
must supply a guess of the initial values as a starting value for the Gauss-Newton
iteration.

The initial values for the d differential variables can be set to any value,
similar to the case of an ODE. The user can choose these variables to be kept
fixed during the Gauss-Newton iterations by setting up the IFIX-array. In this
case, the corresponding columns of the Jacobian are set to zero. Note that this
will lead to a rank drop of the Jacobian if any of the algebraic variables are
fixed. In this case the code will return an error message.

DGENDA uses a BDF method with order and step size control. The BDF
solver used here is an adaption of the code implemented in DASSL (see [11]) for
solving DAEs of index at most one. Before discretizing the DAE at a time step
proceeding from t0 to t0 + h we have to compute a locally equivalent system
similar to (5),(6). In every step we then solve a system of nonlinear equations
of the form

Fµ(t0 + h, x, ẋ, ..., x(µ+1)) = 0, (8)

Z̃T
1 F (t0 + h, x, αx + β) = 0, (9)

where Z̃1 denotes some approximation to Ẑ1 at the desired solution. Equation
(8) yields a solution for which (6) holds, so that the algebraic constraints are
satisfied and (9) is a discretization of (5).

The solution is computed with a Gauss-Newton method, see e.g. [3]. An

initial guess x̄0 = (x0, ẋ0, ..., x
(µ+1)
0) is iteratively improved by a correction ∆x̄i,

i.e.

x̄i+1 = x̄i + ∆x̄i, i = 0, 1, ... , (10)

where

∆x̄i = −J̄+
i F̄ (t0 + h, x̄i). (11)

Here, F̄ denotes the system given by (8), (9),

J̄i =

[

−Nµ[In0 · · · 0] Mµ

Z̃T
1 (Fx + αFẋ) 0

]

(12)

35

is its Jacobian at state x̄i and J̄+
i the Moore-Penrose pseudo inverse of J̄i (see

e.g. [1]). Note that the Jacobian of (8), (9) is generally nonsquare but has
full row rank at every solution (x, ẋ, ..., x(µ+1)) of (3) if Z̃1 is a sufficiently good
approximation to Ẑ1 and the step size is sufficiently small. This property extends
to a neighborhood of the solution set, thus we get quadratic convergence to a
solution and we can apply a simplified Gauss-Newton method [10] by fixing the
Jacobian at any time step.

By default, DGENDA uses the simplified Gauss-Newton method [10] with
an initial x̄0 where x0 and ẋ0 are obtained by evaluating a predictor polynomial

at time t0 +h and (ẍ0, ..., x
(µ+1)
0) is obtained by classical homotopy [10], i.e. the

results at the previous time step t0 are chosen as initial values at t0 + h. Op-
tionally, the user can force the code to use the classical Gauss-Newton method,
where the Jacobian is reevaluated at every iteration or to use the approach im-
plemented in DASSL, where the Jacobian is reevaluated after several time steps
when a certain criterion is fulfilled. Furthermore, the user can tell the code
to compute some of the components of the initial solution vector x̄0 by linear
extrapolation.

The corrector iterations (10) are terminated if an estimate for the local
relative and absolute error is small enough. This error test requires roughly
that

|LOCAL ERROR| ≤ RTOL ∗ |X| + ATOL (13)

for each component of the solution vector (x, ẋ, ..., x(µ+1)) at every time step.
RTOL and ATOL can be scalars, such that (13) must hold for every component,
or they can be vectors of size (µ + 2)n, such that the user can set different
tolerances for every component of the solution.

If it is known that Ẑ2 of Hypothesis 1 only depends on t, then one can choose
Z̃2 = Ẑ2 and equation (8) can be reduced to

Z̃T
2 Fµ(t0 + h, x, ẋ, ..., x(µ+1)) = 0. (14)

Due to Hypothesis 1 the system (14), (9) does only depend on x and is uniquely
solvable. This approach is also implemented in the code but no check will be
made whether Ẑ2 is independent of (x, ẋ, ..., x(µ+1)).

By default, the user has to set the characteristic values µ, d, a and u to
their correct values (u = n − a − d must be zero in this version of DGENDA).
Note that the rank assumptions in Hypothesis 1 only hold for y0 ∈ L, such
that they can be violated at (t0 + h, x̄0), where x̄0 is the initial solution vector
for the Gauss-Newton iterations. Thus, in general, it is not possible to detect
these values when computing the projectors Z̃1, T̃2 and Z̃2. It can also be
difficult to apply the approach used for the linear solver DGELDA [7] to a
linearization of (3) after a successful iteration of the BDF-solver because the
computed approximation to the solution generally lies in a neighborhood of L

prescribed by the tolerances, but not in L itself. Furthermore, the rank decisions
may suffer from badly conditioned problems, e.g. if the time scale is extremely
small.

36

Nevertheless, the user can require the code to verify the given characteristic
values after consistent initial values have been computed or after the BDF-
solver successfully completed an iteration. In this case DGENDA returns an
error message if any changes in the characteristic values are detected. The code
also returns a suggestion for the correct characteristic values.

This feature may be used to compute these values by setting the parameter
MXINDX sufficiently high (it must be at least equal to µ) and by supplying
sufficient derivatives of the DAE.

Before any rank decisions are made during the computation, the matrix
[−Nµ Mµ] is equilibrated to lower its condition number. The code computes
row and column scaling vectors sr and sc (stored in the arrays SCALC and
SCALR), such that

[−Nµ Mµ] = diag(sr)
−1[−N̄µ M̄µ] diag(sc)

−1 , (15)

where the i-th element of sc is an estimate for the highest absolute value of
the i-th component of the solution approximation computed so far, and sr is
chosen such that the highest absolute value of every row of [−N̄µ M̄µ] is equal

to one. After computing the projectors Z̃1, T̃2 and Z̃2, a back transformation
is made. Note that these transformed projectors are no longer orthogonal but
still project onto the appropriate subspaces.

The same scaling method is applied to the Jacobian (12) before the cor-
rection ∆x̄i is computed, to minimize the numerical errors caused by a badly
conditioned problem.

Optionally the user can supply a scaling subroutine USCAL if an appropriate
scaling method adapted to a certain problem is known. On the other hand it is
also possible to deactivate any scaling.

10 Descriptor Systems

A descriptor systems is of the form

E(t)ẋ(t) = A(t)x(t) + B(t)u(t) + f(t)

y(t) = C(t)x(t) + D(t)u(t) + g(t).
(16)

The mappings are as follows:

x : R → R
n u : R → R

m y : R → R
p

E, A : R → R
l×n B : R → R

l×m f : R → R
l

C : R → R
p×n D : R → R

p×m g : R → R
p

The software package GELDS which is an enhancement of GELDA can be
used to solve such a system. For this the system (16) is transformed into the
equivalent linear DAE

E(t)ż(t) = A(t)z(t) + F(t), (17)

37

where

z =





x

u

y



 , E =

[

E 0 0
0 0 0

]

, A =

[

A B 0
C D −I

]

, F =

[

f

g

]

.

If one wants to solve this problem one has to supply the functions

E, A, B, C, D, f and g.

They have to be either usable for symbolic differentiation or according to the
standards described in section 6. Apart from the fact that one has to provide
seven functions (instead of three) the usage of the descriptor system solver is
the same as the usage of the linear DAE solver.

First one has to call the setup function dssetup which opens a GUI where
the user can adapt the solver to the considered problem. In fact, this GUI
equals the GUI of GELDA. If needed, the next step would be to call symdiff

to symbolically differentiate the given functions. Finally, the function solvedae

is used to compute the solution.

• dssetup
initializes a structure array that contains setup information for the descriptor
system solver
Syntax
setup = dssetup(l, n, m, p, tspan)

s = dssetup(l, n, m, p, tspan, setting)

Arguments
The following table describes the input arguments to the function geldasetup.

l number of rows of E

n number of state variables
m number of input variables
p number of output variables
tspan 1 × 2 array specifying t0 and tf
setting string specifying the setting which is loaded

’standard’: standard setup which is also loaded by default
if setting is omitted
’large’: setup for large systems

The following table lists the output arguments for the function dssetup.

setup structure array containing all information about the setup of the solver

38

Description
s = dssetup(l, n, m, p, tspan, [setting]) opens a GUI where the user
can edit the setup for the solver dssolve. Necessary information about the
setup is stored in the structure array s.

• symdiff
symbolically differentiates functions (see section 2)
Syntax

[darray] = symdiff(s, eh, ah, bh, ch, dh, fh, gh, ...

’name1’, ’name2’, ’name3’, ’name4’, ’name5’, ’name6’, ’name7’)

Arguments
The following table describes the input arguments to the function symdiff.

s structure array for descriptor system solver
eh handle to function E(t)
ah handle to function A(t)
bh handle to function B(t)
ch handle to function C(t)
dh handle to function D(t)
fh handle to function f(t)
gh handle to function g(t)
name1 name of the function implementing E and its derivatives
name2 name of the function implementing A and its derivatives
name3 name of the function implementing B and its derivatives
name4 name of the function implementing C and its derivatives
name5 name of the function implementing D and its derivatives
name6 name of the function implementing f and its derivatives
name7 name of the function implementing g and its derivatives

The following table lists the output arguments for the function symdiff.

darray cell array containing handles to the generated functions

Description
The function symdiff symbolically differentiates the given functions and writes
the results to files called name?.m in the current directory. Additionally, a cell
array is returned containing handles to the functions implemented in these
files. This cell array is necessary to run the descriptor system solver.

39

• solvedae
solves a descriptor system
Syntax

[T, X, xprime, cval, output, civ] = ...

solvedae(s, darray, x0)

[T, X, xprime, cval, output, civ] = ...

solvedae(s, darray, x0, tspan)

Arguments
The following table describes the input arguments to the function solvedae.

s structure array for the descriptor system solver
darray cell array containing handles to the functions

E, A, B, C, D, f and g (in this order)
x0 not necessarily consistent initial values
tspan time points where the solution will be evaluated

The following table lists the output arguments for the function solvedae.

T vector containing the time points where the solution is
evaluated if tspan is not given T = [t0, tf] else T = tspan

X matrix containing the computed solution
in which the ith row corresponds to the ith component of x

and the jth column corresponds to the jth time point of T

xprime vector which contains the first derivative of x at time tf

cval 4 × 1 array containing the characteristic values
of the descriptor system in the following order
cval(1) = strangeness-index
cval(2) = number of differential components
cval(3) = number of algebraic components
cval(4) = number of undetermined components

output structure array (see section 7)
civ consistent initial values

Description
The function solvedae calls the solver dssolve which transforms the de-
scriptor system into a linear DAE and solves this new system. If one does not
want to use symbolic differentiation one has to create a cell array containing
function handles. Consult the MATLAB help to learn how to do so.

40

A Functions

name description
acj2m symbolically generates the Jacobians
adiffun evaluates function A ∈ R

l×n

bdiffun evaluates function B ∈ R
l×m

cdiffun evaluates function C ∈ R
p×n

daefun evaluates function F

daejac evaluates a Jacobian of F

daesca evaluates the user defined function
for scaling purposes

ddiffun evaluates function D ∈ R
p×m

dsprepare supports symbolic differentiation
for descriptor systems

dssetup manages the GUI for GELDS

dssolve solves descriptor system using GELDS

dummyuscal is used if no user supplied scaling routine is given
ediffun evaluates function E ∈ R

l×n

fdiffun evaluates function f

gdiffun evaluates function g

geldagui implements the GUI for GELDA/GELDS

geldasetup manages the GUI for GELDA

gendagui implements the GUI for GENDA

gendasetup manages the GUI for GENDA

ghd4civ creates a separate file for the highest desired
derivative to be used by function fsolve

for correcting guessed consistent initial values
jac2f writes Jacobians of F into a file

Table 3: All Functions of the Toolbox

41

name description
lindaesolve solves linear DAEs using GELDA

linerrmsg displays error messages which occurred
during the usage of GELDA

linprepare supports symbolical differentiation
for linear problems

loadlargesetting loads setup for large linear problems
loadmbsetup loads setup for simulating multi-body systems
loadstandardsetting loads standard setup for linear problems
loadstandardsetup loads standard setup for nonlinear problems
nldaesolve solves nonlinear DAEs using GENDA

nlerrmsg displays error messages which occurred
during the usage of GELDA

nlprepare supports symbolical differentiation
for nonlinear problems

outof checks whether given input equals
certain numbers

propervector checks vectors
propernumber checks numbers
savesetting saves structure array for linear problems
savesetup saves structure array for nonlinear problems
smad2m symbolically differentiates functions

for nonlinear problems
smadlin2m symbolically differentiates functions

for linear problems
solvedae picks right solver for given problem
supply manages storage of input that cannot be given

via the GUI
symdiff starts symbolical differentiation
w2f writes derivatives of F to file

Table 4: All Functions of the Toolbox continued

name description
gelda MEX-file for GELDA

genda MEX-file for GENDA

gelds MEX-file for GELDS

compile this script compiles the toolbox

Table 5: MEX-Files and Scripts

42

References

[1] A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and
Applications. John Wiley, New York, 1973.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of
Initial-Value Problems in Differential Algebraic Equations, volume 14 of
Classics in Applied Mathematics. SIAM, Philadelphia, PA, 1996.

[3] P. Deuflhard. Newton Methods for Nonlinear Problems, volume 35 of
Springer series in computational mathematics. Springer-Verlag, Berlin,
2004.

[4] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II.
Springer-Verlag, Berlin, 1991.

[5] P. Kunkel and V. Mehrmann. Canonical forms for linear differential-
algebraic equations with variable coefficients. J. Comput. Appl. Math.,
56:225–259, 1994.

[6] P. Kunkel and V. Mehrmann. Regular solutions of nonlinear differential-
algebraic equations and their numerical determination. Numer. Math.,
79:581–600, 1998.

[7] P. Kunkel, V. Mehrmann, W. Rath, and J. Weickert. GELDA: A software
package for the solution of general linear differential algebraic equations.
SIAM J. Sci. Comput., 18:115 – 138, 1997.

[8] P. Kunkel, V. Mehrmann, and I. Seufer. GENDA: A software package for
the numerical solution of general nonlinear differential-algebraic equations.
Report, Technische Universität Berlin, Straße des 17. Juni 136, D-10623
Berlin, Germany, 2002.

[9] U. Nowak and L. Weimann. A family of Newton codes for systems of
highly nonlinear equations - algorithm, implementation, application. Re-
port, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7,
D-14195 Berlin, Germany, 1990.

[10] J. Ortega and W. Rheinboldt. Iterative Solutions of Nonlinear Equations
in Several Variables, volume 30 of Classics in Applied Mathematics. SIAM,
Philadelphia, PA, 2000.

[11] L. R. Petzold. A description of DASSL: A differential/algebraic system
solver. In R. S. Stepleman et al., editors, IMACS Trans. Scientific Com-
puting Vol. 1, pages 65–68. North-Holland, Amsterdam, 1983.

43

