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ABSTRACT: Hydrophilic strong anion exchange chromatog-
raphy (hSAX) is becoming a popular method for the
prefractionation of proteomic samples. However, the use and
further development of this approach is affected by the limited
understanding of its retention mechanism and the absence of
elution time prediction. Using a set of 59 297 confidentially
identified peptides, we performed an explorative analysis and
built a predictive deep learning model. As expected, charged
residues are the major contributors to the retention time
through electrostatic interactions. Aspartic acid and glutamic
acid have a strong retaining effect and lysine and arginine have
a strong repulsion effect. In addition, we also find the
involvement of aromatic amino acids. This suggests a
substantial contribution of cation−π interactions to the retention mechanism. The deep learning approach was validated
using 5-fold cross-validation (CV) yielding a mean prediction accuracy of 70% during CV and 68% on a hold-out validation set.
The results of this study emphasize that not only electrostatic interactions but rather diverse types of interactions must be
integrated to build a reliable hSAX retention time predictor.

Mass spectrometry (MS)-based proteomics is the driving
technology for the characterization and quantification of

complex protein samples.1−3 With the current advancements in
instrumentation and software solutions, the number of peptides
and proteins that can be identified in a minimal amount of time
have increased dramatically.4 However, deep proteome cover-
age of higher eukaryotes, mammalian cell lines, or tissue is
currently only feasible with extensive fractionation.5,6 The wide
dynamic range of all the expressed proteins in a cell remains a
major challenge, leaving the least abundant proteins (and
peptides) undiscovered. In these cases, online (1D) reverse
phase liquid chromatography (RP-LC) does not yield the
necessary separation of the proteome. Instead, prefractionation
is commonly applied to further reduce the complexity. Ideally,
the combined separation methods are as orthogonal as
possible5,7,8 to ensure the separation of similar analytes.
Interestingly, high-pH RP is often used as prior fractionation
method even though it is not truly orthogonal to standard RP
(low pH). Importantly, there is no universal best prefractiona-
tion method. Rather, the optimal separation method needs to
be chosen based on the analytes.9,10

While fractionation methods offer great possibilities to
reduce the sample complexity, they usually require larger
sample amounts and preparation time. Usually, most fractions
are injected separately without pooling. Therefore, the peptide
identification is fraction aware. This extra piece of information

can be incorporated into the database search.11−13 To fully
utilize this information, a computational model needs to be
developed that can confidently predict the retention time of a
peptide based on its amino acid sequence. The proteomics
community has successfully developed accurate models for the
prediction of the retention time in low pH RP-LC, which
typically is coupled directly to a mass spectrometer and
therefore widely applied in proteomics.14,15 Retention times
have also been predicted for other chromatographic methods
including high-pH RP-LC,16,17 hydrophilic interaction liquid
chromatography (HILIC),18 and strong cation exchange
chromatography (SCX).19 Various algorithms have been
applied for the described prediction task: simple linear
regression models,20 nonlinear models,21 support vector
regression models,11,16 artificial neural networks,22 or a physical
model describing the chromatographic process.23 For a
comprehensive review, the reader is referred to Tarasova et
al.14 and Moruz and Kal̈l.15

For standard shotgun proteomics, hydrophilic strong anion
exchange chromatography (hSAX) is largely orthogonal to RP-
LC.5 Currently, there is no model to predict the retention time
for hSAX. Moreover, the sequence specific features that
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influence the retention behavior of peptides during hSAX are
still unknown. A common approach is to incorporate (limited)
sequence information into the prediction model by creating
position specific retention coefficients18 or neighboring amino
acid effects.24 It would be desirable to (1) better understand the
mechanisms governing the retention behavior of peptides
during hSAX and (2) build a predictive machine learning model
that confidently predicts the retention time of a peptide based
on its sequence information.
In this study, we analyzed the chromatographic behavior of

59 297 peptides based on 29 hSAX fractions. We aim to
contribute new insights into the interaction of peptides during
hSAX and quantify how sequence features affect the retention
behavior. To accomplish this, a machine learning workflow is
applied and validated using 5-fold cross-validation. We
developed a neural network model that predicts the retention
time for peptides from an hSAX fractionation. The predictive
model and the preprocessing are available in the Python
package DePART (https://github.com/Rappsilber-Laboratory/
DePART).

■ METHODS
Experimental Details. The experimental data taken for this

study were published by Ritorto et al.5 In brief, the authors
performed hydrophilic strong anion exchange (hSAX)
chromatography on macrophage cells from Mus musculus to
test the peptide separation capabilities of hSAX followed by
mass spectrometry. The tryptic digest of the cell lysate was
analyzed with a LTQ Orbitrap Velos Pro (Thermo Fisher
Scientific, West Palm Beach, FL). The fractionation was
performed using an Ion Pac AS2425 column (2 × 250 mm,
2000 Å pore size, Thermo Fisher Scientific, Part No.: 064153)
with a 35 min gradient (0 to 1 M NaCl; solvent A, 20 mM Tris-
HCl at pH 8.0; solvent B, 20 mM Tris-HCl at pH 8.0, 1 M
NaCl). The functional group of the AS24 is an alkanol
quaternary ammonium ion on a solid support that aims at
minimal hydrophobicity. Details of the sample preparation
protocols can be found in the original manuscript.5

Data Processing. For our study, Ritorto et al. made the
results of their previous experiments available as MaxQuant
result files. We postprocessed the MaxQuant evidence file. In
total, 466 495 peptides were identified in 34 fractions. We
applied stringent filtering to avoid ambiguity in the training
data. This initial set of peptides was reduced by removing
contaminants, decoys, “only by site” identifications, and
modified peptides (other than carbamidomethylated cysteine).

In addition, for peptides identified in two adjacent fractions, the
identification with the lowest intensity was removed from the
data set. Peptides identified in more than two fractions or in
fractions that were not adjacent were also removed from the
data. Finally, fractions with less than 300 unique peptide
identifications were removedleaving 59 297 unique peptide
sequences distributed over 29 fractions for the data analysis. As
an independent data set, we used PXD006188,26 which was
analyzed using MaxQuant27 (v. 1.6.1.0) and filtered as
described above, resulting in 93 372 peptides being identified
in 32 fractions.
All processing was performed using Python 3.5 using the

packages numpy, scipy, matplotlib, scikit-learn, pandas, and
seaborn.

Machine Learning. For the computational modeling of the
retention time we followed two separate strategies, a regression
and a classification approach. In the regression case, a simple
linear model (LM) with a length correction parameter (LCP)
was used. The Python package pyteomics20 with LCP
optimization was used for the LM implementation. In the
classification case, a logistic regression (LR) and a feedforward
neural network (FNN) were used. In both cases, we evaluated
(and trained) the model using the accuracy metric, defined as
the proportion of correctly predicted fractions from all
predictions. With the LM, such a metric is ill-defined since
no discrete fraction is predicted. Therefore, we defined a forced
accuracy metric by first rounding the predictions to the nearest
integer and then computing the accuracy.
The FNN was implemented using Keras28 with the Theano29

backend. The network architecture consisted of four fully
connected layers with 50, 40, 35, and 29 neurons. As final
activation, the softmax function was used (Table S4). One
strength of the simple additive model is the intuitive
interpretation of the learned coefficients: a peptide’s elution
time increases (or decreases) by a certain factor based on the
amino acid count. For neural networks, with nonlinear
activation functions, the interpretation is not as straightforward.
Therefore, we added peptide features (e.g., pI or aromaticity)
based on the literature11,30 and our initial exploratory data
analysis to increase the predictive power in the classification
task. The complete definition of features is available in Table
S2.
The evaluation of the prediction performance was based on a

5-fold cross-validation (CV) strategy (including 75% of the
data, 44 471 peptides). In addition, a hold-out validation set
was used for the final model assessment (25% of the data,

Figure 1. Effect of the charged residues on peptide retention in hSAX. (a) Mean residue count per peptide for D/E (red) and K/R (blue) over
fraction. Error bars denote the standard deviation. Peptide count per fraction is shown in orange (total 59 297 unique peptides). (b) Effect of D/E
count (range 0−5) on peptide retention. (c) Extracted chromatogram of peptides with three and four D/E (red). Subpopulations were defined
according to the number of K/R residues (one to three, blue tones for peptides with three D/E residues and green tones for peptides with four D/E
residues). Crosses mark the mode of the respective distributions.
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14 825 peptides). In the CV setup, the training splits had
35 578 observations, and the validation splits had 8894
observations. We describe the machine learning workflow in
more detail in the Supporting Information, including a
performance comparison with other classifiers.

■ RESULTS
In the following section, we present our results and propose a
model for the driving interactions in hydrophilic strong anion
exchange chromatography (hSAX) for peptides. The result
section is divided into four parts: (1) A general overview is
given of the data and how the retention time during
prefractionation is influenced by charged amino acids. (2)
The influence of the charged amino acids is compared. (3) The
influence of usually noncharged amino acids is compared, and
finally, (4) a machine learning model is built to model peptide
retention during hSAX.
Peptide Retention in hSAX Is Driven by the Charged

Amino Acids. We first investigated the influence of acidic (E,
D) and basic (K, R) amino acids on the retention behavior of
peptides in an hSAX fractionation experiment. Note that
histidine residues will be uncharged under the pH conditions
used during fractionation. We used elution data of 59 297
tryptic peptides from murine macrophage cells separated into
29 fractions. Positively charged peptides elute early (fractions 1
and 2) and are separated from uncharged peptides (fractions 4
and 5) which in turn are separated from negatively charged
peptides (fractions 7−29), where charge was calculated from
the residues E, D, K, and R (Figure 1a).
While the mean count of D or E (D/E) residues in a peptide

increases with the fraction number, the mean count of K/R
residues stays constant (Figure 1a). In agreement with this,
missed cleavages are not enriched in any of the fractions
(Figure S1). The average retention behavior of tryptic peptides
appears to be mainly influenced by the occurrences of D/E
residues in the peptide sequence. These observations are also
supported numerically by their Pearson correlation coefficients
(PCC) of the summed residue charge per peptide and the
observed fraction number: for D/E residues, the PCC is −0.75;
for K/R, −0.03; and for D/E/K/R residues, the PCC is −0.83.
The peptide length on the other hand has a much smaller
overall influence across all fractions (PCC 0.33). Peptides with
0, 1, 2, 3, 4, and 5 D/E residues correspond on average to the
fractions 3, 6, 10, 14, 18, and 20, respectively (Table S1), thus,
leading to a mean increase per D/E residue of three fractions in
retention time.
Even though the mean increase of fraction numbers highly

correlates with the number of acidic residues, so does the D/E
peak width (Figure 1b). In addition, the higher the number of
D/E residues in the peptide, the more complex the
distributions appear. Peptides with two D/E residues distribute
on two peak fractions, while peptides with four D/E residues
distribute on four to six peak fractions.
Therefore, we investigated the influence of basic residues on

the retention time. Positively charged residues, lysine and
arginine, should weaken peptide retention during hSAX.
Indeed, K and R residues explain the multiple peak fractions
of peptides with one D/E (Figure 1c). With an increasing
number of K/R residues, the retaining effect of D/E diminishes,
and thus peptides elute earlier. Since the effect is quite strong,
in terms of retention shift by a single K/R residue, there is most
likely a repulsion mechanism involved. Interestingly, the elution
strength of K/R residues seems slightly stronger than the

retaining effect of D/E residues: The mean fraction value of
peptides with four D/E residues and two K/R residues
(summed residue charges equal to 2) is 16.5, while for peptides
with three D/E residues and one K/R (summed residue charge
also equal to 2), the mean fraction is 18.1. However, this
additional information on the K/R distribution does not fully
explain the observed substructures; there are clearly peak tails
visible, especially on the right side of the distributions (e.g., D/
E, 4; K/R, 3 in Figure 1c).

Lysine Exhibits Stronger Electrostatic Repulsion than
Arginine. We next evaluated if R and K differed in their effect
on peptide retention (Figure 2a). Peptides with four D/E

residues were found in the factions 22, 17, and 11 (median
fraction values) if they had one, two, or three arginines while
they were found in the fractions 21, 15, and 10 if they had one,
two, or three lysines. This means that lysines are more strongly
repelled than arginines in hSAX (on average, 1.3 fractions).
Statistical analysis using a Mann−Whitney−U (MWU) test
supports this observation. However, since the observed effect
size is rather small, the statistical significance should be
interpreted with caution (Figure S2a).
Similarly, we investigated possible differences between

aspartate and glutamate, peptides with either two D or two E
residues and either one, two, or three lysines (Figure 2b shows
data for up to two lysines). For this subset, the rounded median
fraction number for peptides with two D or two E residues is
12, 11, and 5 and 12, 11, and 5, respectively. This leads to an
average increase of 0.33 per fraction if there is an aspartate
instead of a glutamate in the peptide sequence. For the
negatively charged amino acids, we also conducted an MWU-
test: although the observable effect was even smaller, the test
still resulted in a significant difference between the retention
behavior of D and E (Figure S2b).

Aromatic Amino Acids Play a Key Role in Peptide
Retention during hSAX. As expected, peptide retention
during hSAX is dominated by charged residues. However,
peptides with one set of charged residues elute over many
fractions. Therefore, charged amino acids do not suffice to
explain peptide retention alone.
As a first step to search for additional contributions, a subset

of peptides was selected (two D/E residues, one R/K residue).
Then, the effect size of an amino acid on the retention time was
estimated using the slope from a linear regression model. The
response variable was set to the mean composition contribution

Figure 2. Detailed comparison of relative contributions of positively
(K/R) and negatively (D/E) charged residues on peptide retention in
hSAX. (a) Effect size of K/R residues. Peptides with four D/E residues
were divided according to their K and R count (K, green tones; R, blue
tones). (b) Effect size of E/D residues. Peptides with either two E or
two D residues are shown, split according to their number of K
residues (1 or 2).
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of an amino acid, while the explanatory variable was set to the
fraction number. On the basis of the regression slope and the
derived p-value (under the null hypothesis that the slope is
equal to zero), the remaining amino acids can be divided into
three categories: (1) retainingif the slope is positive and the
p-value is smaller than 0.05, (2) elutingif the slope is negative
and the p-value is smaller than 0.05, and (3) no (significant)
effectif the p-value is larger than 0.05. Accordingly, the
(aromatic) amino acids F, Y, and W show the strongest
retaining effect based on the regression slope (Figure 3, Figure
S4). Interestingly, peptides with 0 aromatic residues are found
in a sharp symmetrical distribution. With increasing aromatic
amino acids in the peptide sequence, the distributions shift to
later retention, become broader, and develop a right tail (Figure
S6). In contrast, the amino acid contributions of A, P, and S
and Q, T, and V show an eluting effect. For these amino acids,
the subpopulation peaks look very sharp, even with increasing
residues of the same group. The remaining amino acids C, I, N,
G, L, V, H, and M do not show a clear trend and thus could be
classified neither as eluting nor as retaining. Subtracting the
weighted counts of the aromatic residues (0.8W + 0.6Y + 0.3F)
to the residue charge increases the initial PCC from −0.83 to
−0.86. Adding the weighted counts of the residues A, P, Q, S,
T, and V (factor 0.1) further increases the retention PCC to
−0.88.
A Neural Network Achieves the Highest Prediction

Accuracy. As the final step in our analysis, we built a machine
learning model to predict the retention time of a peptide based
on its sequence features. After initial hyperparameter
optimization for a set of classifiers and regressors (Supporting
Information S3), we chose a linear regression model (LM), a
logistic regression model (LR), and a feedforward neural
network (FNN) for further analysis. The coefficients of the LM
are shown in Figure 4a. As expected, the sign and magnitude of
the coefficients largely match our manual analysis: First, the
basic residues have a strong eluting effect on the retention time
(large negative coefficient). Second, the acidic residues and the
aromatic residues have a strong retaining effect on the retention
time (large positive coefficient). In addition, the nuances
regarding the effect size of the basic residues also fit our
previous description that R is marginally stronger repelled than
K. This is most likely due to the lower basicity of K. Similar to
the coefficient representation from LM, FNNs can be used to
estimate approximately the influence of the input features by

analyzing the input weights of the first layer. Since we also used
position specific features in the machine learning workflow, the
average of the input weights can be used to roughly measure
these position dependent contributions to the retention in
hSAX. Most importantly, it appears that the influence of D/E
residues decreases with distance from the termini (Figure S7).
Further, S/T/V/A/P/Q residues roughly follow a similar trend.
In contrast, W/Y/F/H do not show decreasing weights for
internal residuesthe influence is rather stable across the
positions. For the remaining amino acids (I/G/L/C/M/N), the
weights are noisy and do not follow a clear pattern. This
observation fits the estimation of their influence from the
regression model. Therefore, the influence of these amino acids
cannot be clearly defined.

Figure 3. The effect of neutral amino acids on peptide retention in hSAX. Amino acids were grouped according to their influence on peptide
retention in hSAX by linear regression (Supporting Information). (a) Elution behavior of peptides with different numbers of F/Y/W and two D/E,
one K/R residues. (b−e) Elution behavior of peptides with different numbers of the indicated amino acids (b, P/A/S; c, Q/T/V; d, I/G/L; e, C/M/
N/H) and two D/E, one K/R, zero F/Y/W. Crosses mark the mode of the subpopulations.

Figure 4. Peptide retention time prediction for hSAX using machine
learning. (a) Residue retention coefficients from a linear model with
length correction parameter. (b) Fraction of correct predictions
(accuracy) of different prediction methods, estimated by 5-fold cross-
validation based on 35 578 (train) and 8894 (test) peptides in each
split. (c) Elution time prediction for the hold-out validation set, FNN
classifier (left) and LM (right); ρ indicates the Pearson correlation.
Linear Model (LM), Logistic Regression (LR), Feedforward Neural
Network (FNN).
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A neural network was most successful in predicting the
correct peptide fraction, as assessed by 5-fold cross-validation
(Figure 4b). With an accuracy of 70 ± 0.81% (mean ± standard
error of the mean), the classification algorithm outperformed
the linear regression model (22 ± 0.13% accuracy) and the
logistic regression model (48 ± 0.07% accuracy). With a lower
prediction resolution, e.g., evaluating the accuracy in a window
of ±1 fraction (1-off-accuracy), 92 ± 0.19% were correctly
classified. Although optimization aimed for accuracy, the best
performing FNN classifier also achieves a higher correlation
coefficient on a hold-out validation set (never used for training)
than the LM. The FNN achieves here a PCC of 0.94 where the
LM achieves a PCC of 0.9 (Figure 4c). The accuracy on this
validation set was comparable to the CV error with 68%
accuracy and 92% one-off accuracy. As the accuracy metric
already indicates, the LM performs much worse as seen in the
marginal distributions (Figure 4c). The distribution of the
predicted fractions does not appear similar to the observed
fraction distribution. The FNN can better capture the nonlinear
relationship and thus predicts the true fraction with a higher
accuracywhich is supported by the similarity of the marginal
distributions of the predicted and true fractions of the peptides
in the validation set.
Finally, we wondered if the results obtained for data by

Ritorto et al. would also be obtained with a different data set by
independent investigators. We downloaded an hSAX data set
from ProteomeXchange (PXD00618826) and repeated our
analysis. For these data, the training set comprised 70 029
unique peptides and the validation set, 23 343 unique peptides.
The accuracy during CV increased on the test data to 69 ±
0.21% and on the validation data to 72%. The one-off accuracy
even increased to 96%, most likely due to higher number of
training instances.

■ DISCUSSION
Fractionation methods such as ion exchange chromatography
(IEX) are popular tools for enrichment of certain analytes and
separation of complex samples. To perfect the separation
process, a basic understanding of the underlying principles must
be developed. For the principles behind the retention time of
peptides in hSAX chromatography, a linear model is a useful
starting point.
Our exploratory analysis as well as the modeling approach

showed that electrostatic forces, as expected, are the most
important interactions in hSAX. A previous study that
compared several fractionation methods for phosphopeptides
also reported a strong correlation of the acidic amino acids with
the elution time of peptides.9 The resolution based on simply
counting the D/E/R/K residues is enough to roughly map the
elution time of a peptide to ±5 fractions (on average). This
simple approach is supported by a good PCC (−0.83) of the
summed residue charge and the elution time. However,
differentiating the repelling (K/R) and retaining (D/E) effect
sizes should further improve the resolution. Additional
improvements can be achieved by including the influence of
the aromatic amino acids (W, Y, F; PCC −0.86).
The retaining effect of the aromatic amino acids could be

explained through cation−π interactions: a well-known
interaction from organic chemistry. Since aromatic amino
acids have a delocalized π electron system, the flat face of the
aromatic ring has a partial negative charge which attracts
cations and thus enables strong electrostatic interactions.31,32

Cation−π interactions are also essential for many biological

processes and protein folding, in which K/R residues can also
function as cations and thus reinforce bonds within a protein
structure. Possibly, cation−π interactions also happen within a
single peptide and therefore lead to a competition between the
stationary phase and the side chains of K/R. Multiple aromatic
amino acids in a peptide sequence lead to nonlinearity in the
retention behavior, i.e., multiple aromatic amino acids support
the interactions with the stationary phase more than expected
from adding individual contributions, possibly by forming
sandwich complexes of two aromatic amino acids and a cation.
For tryptic phosphopeptides, it has been shown that the

peptide C-terminus is likely oriented toward the stationary
phase33 during the separation in anion exchange chromatog-
raphy. Presumably, this also holds true for peptides in hSAX.
However, comparing the neural network weights revealed that
the influence of, e.g., D or E residue is not per se decreasing
from the N-terminus to the C-terminus as has been observed
for the SCX model.33 Thus, it is possible that the peptide
orientation in hSAX is bidirectionalor that D/E residues
show a different elution behavior when near the termini. If the
orientation of the peptide is indeed with the N-terminus toward
the stationary phase, the decrease of the neural network weights
is explainable with the limited accessibility of the acidic side
chains when the residue is buried in the sequence. The same
argumentation holds true for the orientation of the N-terminus
toward the stationary phase. However, since we only analyzed
tryptic peptides with basic side chains on the C-terminus, it
seems unlikely that they would prefer this orientation. Another
hypothesis is that the influence of C-terminal D/E residues is
not directly through the interaction of the residues with the
column but through intrapeptide interactions. For example,
acidic side chains of D/E and basic side chains of K/R could
form salt bridges. Thus, the closer the D/E residues are to the
C-terminus, the larger is the contribution or effect in the
determination of the retention time.
The retention time prediction field is fairly mature, and a

selection of published tools achieved an R2 ≥ 0.90, according to
a recent literature review.14 While most solutions achieve a very
high correlation (and R2), the true accuracy (defined as true
predictions/(true + false predictions)) is seldom evaluated. The
models used to predict the fraction either do not provide an
easily accessible probability or prefer to model the prediction
task as a regression problem19 allowing R2 to be calculated. We
modeled the prediction in a classification setup, using a feed-
forward neural network (FNN). Here, accuracy is an
appropriate evaluation metric. Accuracy is used to evaluate
classification problems, and the algorithm was trained to
optimize the accuracy and not R2. With the current
implementation, the FNN achieved an accuracy of 70 ±
0.81% during CV and 68% on the hold-out validation set. The
accuracy is a stricter metric than the correlation coefficient or
R2; the one-off accuracy increases on the CV data set to 92 ±
0.19% and on the hold-out validation data set to 92%. One
additional advantage of the FNN is that each prediction is
associated with a probability. This is a useful feature since it
allows selection of more confident predictions or incorporation
of the uncertainty in postprocessing.

■ CONCLUSION
We presented a first description of the parameters that
influence the retention of peptides during hSAX chromatog-
raphy. As expected, the charged amino acids largely define the
retention behavior of tryptic peptides. However, the aromatic
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amino acids also have a large impact on the retention behavior
presumably through cation−π interactions, which makes the
retention mechanism of hydrophilic anion exchange chroma-
tography more challenging to describe. Nevertheless, the
proposed neural network model achieves a high accuracy of
68% on the hold-out validation set paired with a high
correlation value of 0.94which enables the usage of our
model for statistical modeling of the confidence of peptide
identifications based on prefractionation. In the future, we want
to further improve our model with more training data, support
for post-translational modifications, and incorporation into a
robust scoring metric for peptide identification.
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