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Abstract

This thesis is dedicated to delay differential-algebraic equations (DDAEs), i.e., constraint dynamical

systems where the rate of change depends on the current state and its past. Typical applications

include

(i) feedback control, where the delay is a direct consequence of the time required to measure the

current state, compute the feedback, and implement the control action,

(ii) hybrid numerical-experimental testing environments, used for instance in earthquake engi-

neering,

(iii) transmission and propagation delays, encountered for example in chemical reactions con-

nected in series and wide-area power-networks, and

(iv) as a mathematical tool to analyze hyperbolic equations and time-integration schemes.

The fact that algebraic equations can be included in the implicit system description fosters a rapid

model development since complex models can be assembled from a library of existing models with

well-defined interaction variables.

From a mathematical point of view, DDAEs do not only feature difficulties already known from the

theory of differential-algebraic equations (DAEs) and delay differential equations (DDEs) but pose

additional challenges. For instance, initial trajectory problems for DDAEs may not be causal. Thus,

even in a distributional solution space, they may not have a solution for all initial trajectories. This

fact, combined with the infinite-dimensional character of delay equations and the high sensitivity

to perturbation known from the theory of DAEs, renders DDAEs a challenging mathematical object.

Consequently, the analysis of DDAEs is far from complete. The aim of this thesis is to address some

of the many open problems.

In the first part of the thesis, initial trajectory problems for linear time-invariant (LTI) and nonlinear

DDAEs are discussed. We start our analysis with a distributional solution concept and establish

the existence and uniqueness of solutions, whenever the DDAE is delay-regular. Jumps and Dirac-
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impulses in the solution can be avoided if the coefficient matrices of the LTI DDAE satisfy some

algebraic conditions, which are obtained by tracking so-called primary discontinuities. We extend

some of the results to the nonlinear setting resulting in existence and uniqueness results for a large

class of nonlinear DDAEs.

The second part of the thesis is dedicated to constructing a DDAE solely from a prescribed set of data

points. Having a time-delay in the realization allows us to build an infinite-dimensional system from

finitely many points capable of reproducing the transcendental character of the transfer function of

a distributed parameter subsystem that models convection or transport. We construct a realization

so that it interpolates the data set in the frequency domain and demonstrate its applicability with

several numerical examples.



Zusammenfassung

Diese Arbeit befasst sich mit zeitverzögerten Differential-Algebraischen Gleichungen (DDAEs), das

heißt mit Differentialgleichungen mit Zwangsbedingungen, bei denen die Änderungsrate sowohl

vom aktuellen Zustand als auch von der Vergangenheit abhängt. Typische Anwendungen umfassen

(i) Rückkopplungssteuerung, wobei sich die Verzögerung aus der benötigten Zeit zur Messung

des aktuellen Zustands, Berechnung der Rückkopplung und Implementierung selbiger ergibt,

(ii) hybride numerisch-experimentelle Testverfahren, wie sie beispielsweise in der Erdbebenfor-

schung eingesetzt werden,

(iii) Übertragungs- und Ausbreitungsverzögerungen, die beispielsweise bei in Reihe geschalteten

chemischer Reaktionen sowie bei großflächigen Stromnetzen auftreten und

(iv) als mathematisches Werkzeug zur Analyse hyperbolischer Gleichungen und Zeitintegrations-

verfahren.

Die Tatsache, dass algebraische Gleichungen in das implizite System aufgenommen werden können,

begünstigt eine schnelle Modellentwicklung, da komplexe Modelle nach dem Baukastenprinzip

aus einer Bibliothek von Modellen mit genau definierten Interaktionsvariablen zusammengesetzt

werden können

Aus mathematischer Sicht weisen DDAEs nicht nur Schwierigkeiten auf, die bereits aus der Theo-

rie der Differential-Algebraischen Gleichungen (DAEs) und zeitverzögerten Differentialgleichungen

(DDEs) bekannt sind, sondern stellen zusätzliche Herausforderungen bereit. Beispielsweise kön-

nen Anfangstrajektorienprobleme für DDAEs akausales Verhalten aufweisen. Dies führt dazu, dass

selbst bei linearen DDAEs mit einem distributionellen Lösungskonzept nicht notwendigerwei-

se für alle Anfangstrajektorien eine Lösung existiert. Dieses Phänomen in Kombination mit dem

unendlich-dimensionalen Charakter von zeitverzögerten Differentialgleichungen sowie der aus der

DAE-Theorie bekannten hohen Sensitivität gegenüber Störungen machen DDAEs zu einem heraus-

fordernden mathematischen Objekt. Folglich gibt es zahlreiche nicht gelöste Forschungsfragen im
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Zusammenhang mit DDAEs. Das Ziel dieser Arbeit ist es, einige dieser Fragen zu beantworten.

Im ersten Teil der Arbeit werden Anfangstrajektorienprobleme für lineare zeitinvariante (LTI) und

nichtlineare DDAEs diskutiert. Wir beginnen unsere Analyse mit einem distributionellen Lösungs-

konzept und beweisen Existenz- und Eindeutigkeitsresultat für sogenannte delay-reguläre DDAEs.

Um Sprünge, Dirac-Impulse und Ableitungen von Dirac-Impulsen in der Lösung ausschließen zu

können, müssen die Koeffizientenmatrizen der LTI DDAE bestimmte algebraische Bedingungen

erfüllen. Diese Bedingungen können durch eine Nachverfolgung sogenannter primärer Unstetig-

keitsstellen hergeleitet werden. Teilweise können die erhaltenen Ergebnisse auf nichtlineare DDAEs

verallgemeinert werden, was zu neuen Existenz- und Eindeutigkeitsresultaten führt.

Der zweite Teil der Arbeit befasst sich mit der Konstruktion einer DDAE aus einem vorgegebenen Da-

tensatz, einer sogenannten Realisierung. Dabei liefert das Zeitverzögerungsglied in der Realisierung

den Vorteil, dass aus endlich vielen Datenpunkten ein unendlich-dimensionales System konstruiert

werden kann. Dieses System ist dann in der Lage, den transzendenten Charakter, der beispielsweise

bei Transportgleichungen vorkommt, einer Übertragungsfunktion abzubilden. Unsere Konstruktion

basiert darauf, dass die gegebenen Daten im Frequenzbereich interpoliert werden. Die Effektivität

des Verfahrens wird anhand zahlreicher numerischer Beispiele demonstriert.
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1
Introduction

Complex physical or chemical systems often comprise several subsystems that interact with each

other and the environment. For instance, an electrical grid is a network of power generators,

transmission lines, and consumers — each of which may again be a composition of subsystems.

Let us emphasize that also the interaction with the environment, for instance, via external forces

or dissipation of energy, might be represented as another (sub-)system that is interconnected with

the physical system; see Figure 1.1 for a schematic representation where the interaction of the

subsystems is represented with arrows. In a simulation-driven environment, it is standard to model

the physical system under investigation in terms of (partial) differential equations that describe

the evolution of the system. Instead of deriving the equations of motions for the complete system

at once, a bottom-up approach models each subsystem separately and then connect the models

for the subsystems via suitable interconnections. An easy way to model such an interconnection is

given by an algebraic equation, thus making the complete model a (partial) differential-algebraic

equation (DAE). Although, in principle, it may be possible to resolve the algebraic equations and

hence rewrite the resulting system as a (partial) differential equation, it is a priori not clear, whether

this would be reasonable from a computational perspective or a modeling perspective. An example

Subsystem 1

Subsystem 2

Subsystem 3

PHYSICAL SYSTEM

Figure 1.1 – Composition of a physical system by several subsystems
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2 CHAPTER 1. INTRODUCTION

of the latter aspect is a chain of n ≥ 2 mathematical pendulums; see, for instance, [12, Example 2.2].

As a consequence, we keep all algebraic constraints and work directly with the DAE.

If an extensive library of models with well-defined interaction ports of small components is available,

then the modeling process of a network of some of these components can be automated, facilitating

a quick modeling process. Examples of tools that use such an idea are SIMULINK and MODELICA. In

some applications, for instance, in earthquake engineering, the simulation and model capacities

are limited, such that there is still a need for actual experiments [218]. To remedy the high cost

that comes with such experiments, it is common in the dynamical testing community to employ

a hybrid numerical-experimental setup, see [45] and the references therein. In more detail, only

a small physical subsystem that features the key region of interest is experimentally tested, while

the remainder of the system is simulated numerically. The interconnection of the physical and

numerical domain requires a transfer system, which is typically a set of actuators [44]. The transfer

of information from the numerical system to the actuators is intrinsically non-instantaneous [129],

which introduces a time delay in the overall system. A detailed example is presented in section 1.1.1.

The complete system dynamics may thus be modeled as an implicit system of equations of the form

0 = F (t , x(t ), ẋ(t ), x(t −τ)), (1.1)

where x(t ) denotes the unknown state and τ> 0 the time delay. We emphasize that in general, the

partial derivative of F with respect to ẋ is allowed to be singular, and hence the implicit function

theorem may not be used directly to reformulate (1.1) as a delay differential equation (DDE). One

possible source for the singularity of the partial derivative of F with respect to ẋ is due to the

interconnections, which are usually described via algebraic equations. Hence, we refer to (1.1) as

a delay differential-algebraic equation (DDAE). Clearly, it is important to understand the effect of

the delay that is introduced due to the hybrid numerical-experimental setting and thus a thorough

analysis of the DDAE (1.1), which serves as the object under investigation in this thesis, is of

paramount importance. We stress that further delays may arise in the modeling process of the

system depicted in Figure 1.1:

(i) If the physical system itself is a controlled plant, then one may think of one of the subsystems

as a controller. The controller interacts with the plant by measuring some quantity of interest,

compute (in some sense) a control action, and implement this action for the system. If any of

these steps requires some time, the controller induces an intrinsically necessary time delay.

For instance, in a chemical process, one may take a sample, analyze it, and, based on the result,

decide to modify the process. Another example from mechanical engineering is presented

in section 1.1.2. We note that sometimes it may even be advantageous to implement a small

time-delay to improve the control action [105, 149] or to uncover unstable periodic orbits in

nonlinear dynamical systems [176].

(ii) If the subsystems are physically separated, then the interaction between subsystems in the

form of exchange of energy, information, or data may require a non-neglectable amount of

time, which introduces another source for a time-delay in the system. Such a communication

or propagation delay appears for instance in modern electric power grids [2], satellite com-

munication [195], or in a chemical process [64, 161]. The latter is illustrated in more detail in
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section 1.1.3.

(iii) One of the subsystems itself might be modeled with a delay equation. For instance, it is

well-known that the linear advection equation can be rewritten as a delay equation. The

reformulation of a hyperbolic equation as a delay equation not only offers a different approach

to existence and uniqueness results [38], and the development of different mathematical

models [37], but also is cheaper to solve numerically. This fact also serves as a motivation to

realize a transport process with a DDAE [77, 189, 191]. The process of rewriting a hyperbolic

equation as a delay equation is detailed in section 1.1.4.

Besides the relevance of DDAEs in modern modeling frameworks, we emphasize that DDAEs are also

a powerful mathematical tool that can be used in the analysis and design of numerical algorithms,

cf. section 1.1.5, or in assessing and classification of data, which is, for instance, used to relate finger

tapping with the severity of Parkinson’s disease [131, 132].

Besides the already mentioned examples, futher applications include slow-fast systems, such as

electro-optic oscillators [169, 217] and optical networks [84], electric circuits [183], applications

in biology [37, 65], chemical kinetics [74], human balance control [160, 198], and machine tool

vibrations [119, 163, 164]. For additional phenomena that feature time delay we refer to the mono-

graphs [75, 122] and the references therein.

1.1 Motivating examples

We present some of the examples mentioned above in more detail in this section to stress the

relevance of DDAEs in applications. The notation is simplified whenever it is deemed reasonable by

omitting the explicit dependency on the time variable.

1.1.1 Real-time dynamic substructuring

In some applications, the description of a physical system with a mathematical model is difficult

due to its complex nature or uncertainty [218]. Since testing of a complete prototype may be

prohibitively expensive, it is desirable to incorporate the benefits of actual testing with the benefits

of numerical simulation. This is accomplished by testing only a substructure (or subsystem in the

sense of Figure 1.1) and connect the experiment via a transfer system with the remaining system,

which is simulated numerically. Such a hybrid experimental-numerical approach is called real-

time dynamic substructuring or hardware-in-the-loop testing [45]. The transfer system is typically

realized with a set of hydraulic actuators. Since the dynamic behavior of any actuator includes

a response delay [107, 216], the resulting system is a DDAE. Let us emphasize that further delays

might be present, which arise, for instance, from data acquisition, computation, or digital signal

processing. In many applications, these delays are small compared to the actuator delay and may

thus be neglected in the modeling process; for more details, we refer to [129] and the references

therein.

We illustrate such a hybrid experimental-numerical setup with a coupled pendulum-mass-spring-

damper system, as described in [129, 212]. For our example, we consider the mass-spring-damper
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M
(x1, y1)

K C

x

y

m
(x2, y2)

ℓ

(a) Fully coupled system

Fext

M

K C

NUMERICAL

MODEL

Fpendulum

m

ℓ

EXPERIMENT

+ ACTUATOR

adjust

position

send

Fpendulum

(b) Hybrid numerical-experimental setup

Figure 1.2 – Real-time dynamic substructuring for a coupled pendulum-mass-spring-damper system

system as the numerical simulation and the pendulum as the experiment; see Figure 1.2 for an

illustration. For our numerical model, we assume that the mass M is mounted on a linear spring

and a linear viscous damper. The resulting equation of motion for the mass-spring-damper system

is given by

M ÿ1 +C ẏ1 +K y1 = Fext, (1.2)

where C and K denote the damping and the stiffness coefficient, respectively, and y1 denotes the

vertical displacement of the center of mass with respect to the equilibrium position. We assume

that there is no horizontal displacement, i.e., the mass M can only move upwards and downwards.

We thus set x1 := 0. The external force, which in this scenario will be provided by the pendulum,

is given by Fext. We assume that the pendulum is given by a point mass m that is attached to the

spring-mass-damper system via a massless rod of length ℓ. Assuming no friction, the model for the

pendulum is given by
mẍ2 =−2λx2,

mÿ2 =−2λ(y2 − y1)−mg,

0 = x2
2 + (y2 − y1)2 −ℓ2,

(1.3)

with gravitational constant g and Langrange multiplier λ. By Newton’s second law, the force that the

pendulum generates in y-direction is given by Fpendulum =−2λ(y2 − y1)−mg. Consequently, the

equations of motion for the fully coupled system (as depicted in Figure 1.2a) are given by

M ÿ1 +C ẏ1 +K y1 =−2λ(y2 − y1)−mg,

mẍ2 =−2λx2,

mÿ2 =−2λ(y2 − y1)−mg,

0 = x2
2 + (y2 − y1)2 −ℓ2,

(1.4)

with unknown functions y1, x2, y2, and λ. In the hybrid numerical-experimental setup (cf. Fig-

ure 1.2b), the actuator introduces a time-delay τ> 0 into the system, which is assumed constant.

The delay can be understood as an offset in time between the mass-spring-damper dynamics (1.2)

and the pendulum dynamics (1.3). In particular, we have to replace t by t −τ in the pendulum
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dynamics (1.3) and in the force Fpendulum. Thus, the complete mathematical description for the

hybrid numerical-experimental setup is given by

M ÿ1 +C ẏ1 +K y1 =−2λ(·−τ)(y2(·−τ)− y1(·−τ))−mg, (1.5a)

mẍ2(·−τ) =−2λ(·−τ)x2(·−τ), (1.5b)

mÿ2(·−τ) =−2λ(·−τ)(y2(·−τ)− y1(·−τ))−mg, (1.5c)

0 = x2(·−τ)2 + (y2(·−τ)− y1(·−τ))2 −ℓ2. (1.5d)

If we introduce new variables for ẏ1, ẋ2, and ẏ2, then we can rewrite (1.5) in the form (1.1). Let

us emphasize that in order to solve (1.5), for instance with a numerical method, we have to shift

equations (1.5b) to (1.5d) in time.

1.1.2 Time-delayed feedback control

In several (engineering) applications, it is a central goal to enforce a specific behavior within the

system, for instance, to stabilize an unstable equilibrium, such as the upward position in an inverted

pendulum. The goal is typically achieved by implementing a controller into the system. Given

Figure 1.1, the controller can be interpreted as a subsystem. If the dynamics of the physical system

are complex and thus the resulting model is subject to uncertainties or further external forces may

act on the system, it is common to design the controller based on the current state of the system.

There are two different sources for time-delays in such a feedback loop: (a) the controller requires

some time to measure the quantity of interest, compute the feedback law, and implement the

control action, or (b) a time-delay is implemented on purpose to facilitate some desired behavior. A

popular control strategy that falls into the second category is called Pyragas control [175]. Prominent

examples include stabilization of unstable periodic orbits in chaotic electrical networks [176],

control of a Taylor-Couette Flow [140], microcantilevers [223], or semiconductor lasers [185], and

sway reduction for container cranes [105, 149]. We present the latter application in more detail in

the following.

A simplified model of a two-dimensional container crane (also called gantry crane) is given by

a mathematical pendulum that is attached to a moving cart, the so-called trolley; see Figure 1.3.

Hereby, both the payload and the cart are modeled as point masses. We may control the crane by

applying a horizontal force to the cart and by changing the length of the rope. Assuming a frictionless

movement of the cart, the simplified model in Figure 1.3 can be considered as a controlled multibody

system (MBS). The equation of motions can be derived from a variational principle and Hamilton’s

principle of least action, resulting in the DAE

m1ẍ1 = 2λ(x2 −x1)+ f ,

m2ẍ2 =−2λ(x2 −x1),

m2 ÿ2 =−2λ(y2 − y1)−m2g,

0 = (x2 −x1)2 + (y2 − y1)2 −ℓ2,

0 = y1,

(1.6)

see [12] and the references therein. A typical control task is to move the payload from an initial

position (x2(0), y2(0)) to a given position (x̃2, ỹ2) as fast a possible. However, a rapid movement of the
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x

y

trolley

(x1, y1)

m1
f

g

(x2, y2)

m2

payload

ℓ

m1 mass of the trolley

m2 mass of the payload

ℓ length of the rope

x1 horizontal position of the trolley

y1 vertical position of the trolley

x2 horizontal position of the payload

y2 vertical position of the payload

g gravity constant

f horizontal applied force

Figure 1.3 – A simplified model for a two-dimensional gantry crane

crane may result in a swaying payload, maneuvering the gantry crane in a potentially dangerous state.

Following [105, 148] the sway can be reduced by applying a delayed position feedback controller, i.e.,

the external force f is generated by a controller κ of the form

f (t ) = κ(t , x1(t −τ), y2(t −τ), x2(t −τ)).

For details we refer to [75, Section 1.8].

1.1.3 Transmission and propagation delays

The exchange of energy, information, or data in the interaction between two or more subsystems in

Figure 1.1 is often modeled as an instantaneous process to happen instantaneously. If, however,

some of the subsystems are physically separated, then this approximation cannot reasonably be

made, and the modeling process has to account for the resulting transmission, propagation, or

communication delays. Examples are wide-area power networks [2], synchronization of distant

brain regions [170], chemical processes [64, 161] or controlling a satellite in outer space [195]. In this

subsection we illustrate a propagation delay via an irreversible reaction A → B that is coupled with

the reversible reaction B ⇌C in a continuous stirred-tank reactor (CSTR) with reaction rates r A→B

and rB⇌C , which depend on the reactant concentrations cA ,cB ,cC , and the temperature T in

the tank. The reversible reaction B ⇌C is assumed to happen much faster than the irreversible

reaction A → B , which implies that the fast reaction is essentially at equilibrium with equilibrium

constant KB⇌C . Notice that Le Chatelier’s principle implies that the equilibrium constant depends

on the temperature T in the tank, i.e., KB⇌C = KB⇌C (T ).

To facilitate the transformation from A to C , we process the reaction in two CSTRs. In the first

reactor, we use a high temperature T1 to promote the conversion from A to B . Since the thermo-

dynamic equilibrium limits the production of C (see the discussion above), we prescribe a lower

temperature T2 in the second tank to promote the production of C . The two tanks are linked via a
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Figure 1.4 – A two-stage continuous stirred-tank reactor system

lossless transmission line (cf. Figure 1.4). As a consequence, the inflow of the second tank at time t

equals the outflow of the first tank at time t −τ. Hereby, τ> 0 describes the time that is required to

travel through the transmission line.

Assuming a reaction equilibrium for the fast reaction and constant volumes in both tanks, i.e., the

inflow and outflow rates are identical, the set of DDAEs

ċA,1 = κ1(u − cA,1)− r A→B ,1, ċA,2 = κ2(cA,1(·−τ)− cA,2)− r A→B ,2,

ċB ,1 =−κ1cB ,1 + r A→B ,1 − rB⇌C ,1, ċB ,2 = κ2(cB ,1(·−τ)− cB ,2)+ r A→B ,2 − rB⇌C ,2,

ċC ,1 =−κ1cC ,1 + rB⇌C ,1, ċC ,2 = κ2(cC ,1(·−τ)− cC ,2)+ rB⇌C ,2,

0 = KB⇌C (T1)cB ,1 − cC ,1, 0 = KB⇌C (T2)cB ,2 − cC ,2,

0 = r A→B ,1 −kA→B (T1)cA,1, 0 = r A→B ,2 −kA→B (T2)cA,2,

(1.7)

describes the complete model with unknowns cA,i ,cB ,i ,cC ,i ,r A→B ,i ,rB⇌C ,i for i = 1,2. The con-

stant κi is given by the flow rate divided by the volume. The reactant A is fed to the first CSTR with

concentration u = cA,0. Note that the reaction r A→B ,i is explicitly described by the algebraic equation

and the prescribed function kA→B , which is for example given by the Arrhenius equation [130, p. 153].

In contrast, the reaction rB⇌C ,i is only implicitly given by the equilibrium equation with prescribed

equilibrium ratio KB⇌C (T ).

Remark 1.1. The DDAE (1.7) can formally be obtained by accounting for the different time scales

via a singular perturbation and a formal limit [123]. Such a process is typical for dynamics with fast

and slow time scales, and it is essential to understand the limiting situation for the construction of

numerical methods [127]. As a consequence, DDAEs also arise as the limiting situation of singularly

perturbed DDEs. ♣

1.1.4 Reformulation of hyperbolic problems as delay equations

Not only the interaction between subsystems in Figure 1.1 may induce delays into the overall

system dynamics, but also subsystems themselves might feature a description with delayed vari-

ables. For instance, it is well-known that many first-order hyperbolic partial differential equations



8 CHAPTER 1. INTRODUCTION

0 Lξ0

L length of the duct

ρ0 reference density

c speed of sound

v velocity

p pressure

Figure 1.5 – Acoustic transmission in a fluid-filled duct

(PDEs) can be rewritten as delay difference equations by exploiting in some sense the method

of characteristics [61, 120]. This technique is applied for instance to circuits that involve lossless

transmission lines [39, 139], structured population models [36], mining ventilation [219], and blood

flow systems [38]. We exemplify the transformation from a hyperbolic problem to a delay equation

by considering acoustic transmission in a fluid-filled duct of length L that has an acoustic driver

positioned at one end (cf. Figure 1.5). Following [63], the pressure p(t ,ξ) and the fluid velocity v(t ,ξ)

at a point (t ,ξ) ∈ (0,T )× (0,L) satisfy the coupled PDE

1

c2

p(t ,ξ)

∂t
=−ρ0

∂v(t ,ξ)

∂ξ
, ρ0

∂v(t ,ξ)

∂t
=−∂p(t ,ξ)

∂ξ
, 0 < t < T,0 < ξ< L, (1.8a)

v(t ,0) = u(t ), p(t ,L) = 0, 0 < t < T, (1.8b)

where c > 0 denotes the speed of sound (which is assumed to be constant within the duct) and

ρ0 > 0 the reference density. The boundary condition imposed by the acoustic driver at ξ = 0 is

given by the control input u. Since (1.8a) resembles a wave equation, the general solution of the

PDE (1.8a) is given by

v(t ,ξ) =φ(ξ− ct )+ψ(ξ+ ct ), p(t ,ξ) = ρ0c
(︁
φ(ξ− ct )−ψ(ξ+ ct )

)︁
, (1.9)

where φ is a wave traveling to the right and ψ a wave traveling to the left. Similar to [39, 102], we

rewrite (1.9) to obtain

2φ(ξ− ct ) = v(t ,ξ)+ 1

ρ0c
p(t ,ξ), 2ψ(ξ+ ct ) = v(t ,ξ)− 1

ρ0c
p(t ,ξ).

Using

2φ(−ct ) = 2φ
(︁
L− c

(︁
t + L

c

)︁)︁= v
(︁
t + L

c ,L
)︁+ 1

ρ0c
p

(︁
t + L

c ,L
)︁

,

2ψ(ct ) = 2ψ
(︁
L+ c

(︁
t − L

c

)︁)︁= v
(︁
t − L

c ,L
)︁− 1

ρ0c
p

(︁
t − L

c ,L
)︁

and the boundary conditions (1.8b) at t −L/C we obtain

u
(︁
t − L

c

)︁= v(t − L
c ,0) = 1

2

(︂
v(t ,L)+ v(t − 2L

c ,L)+ 1
ρ0c

(︁
p(t ,L)−p(t − 2L

c ,L)
)︁)︂

= 1

2

(︁
v(t ,L)+ v(t − 2L

c ,L
)︁

.

Setting x(t ) := v(t ,L), ũ(t ) := u(t −L/c), and τ := 2L/c we get the linear difference equation

x(t ) =−x(t −τ)+2ũ(t ),

which is a special case of a linear DDAE.
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1.1.5 Delay differential-algebraic equations as mathematical tool

Besides the various application areas outlined above, DDAEs are also a powerful mathematical tool,

which we highlight with several examples. For instance, DDAEs are used to design numerical time-

integration methods for neutral delay differential equations (NDDEs), i.e., differential equations

where the rate of change at time t depends on the rate of change at time t − τ. If the NDDE

features a particular structure [24], the DDAE formulation reveals that the problem consists of a

differential equation coupled with an algebraic recursion for the delay. This reformulation benefits

the theoretical and numerical investigation of the NDDE, see, for instance, [24, 25]. DDAEs are also

used to establish existence and uniqueness of solutions. For example, in [38] the authors study a

hyperbolic equation that is coupled via its boundary conditions to a switched DAE. By rewriting

the hyperbolic equation as a delay equation (cf. section 1.1.4), the existence of solutions is a mere

consequence of the existence of solutions of the corresponding switched DDAE. Another application

of DDAEs is presented in [4, 5] in the analysis of a semi-explicit scheme for a linear poroelasticity

problem that arises in the modeling of deformation resulting from tumor growth in the brain [182].

We detail this example to explain the line of reasoning. In more detail, the mathematical model of

this problem is an elliptic equation for the displacement that is coupled to a parabolic equation

for the pressure. Semi-discretization in space yields (under reasonable assumptions on the spatial

discretization) to a DAE of the form

Kuu(t )−DT p(t ) = f (t ), (1.10a)

Du̇(t )+Mp ṗ(t )+Kp p(t ) = g (t ). (1.10b)

Hereby, u denotes the displacement, p the pressure, Ku and Kp the stiffness matrices corresponding

to u and p, Mp the mass matrix for the pressure, and D the coupling matrix. For the numerical

integration in time, we consider a step size τ> 0 and the time grid tk := kτ. The equations (1.10a)

and (1.10b) can be decoupled by employing a semi-explicit Euler discretization in time, given by

Kuuk+1 −DT pk = fk+1, (1.11a)

D(uk+1 −uk )+Mp (pk+1 −pk )+τKp pk+1 = gk+1 (1.11b)

with approximations uk ≈ u(kτ), pk ≈ p(kτ), and fk := f (kτ), gk := g (kτ). Note that pk appears in

(1.11a) (instead of pk+1), which renders the scheme semi-explicit. Clearly, the decoupling has the

advantage that two smaller subsystems with a nice structure have to be solved in each time-step. A

key tool for the analysis of the semi-explicit scheme is the observation that (1.11) corresponds to an

implicit Euler discretization of the DDAE

Kuu(t )−DT p(t −τ) = f (t ), (1.12a)

Du̇(t )+Mp ṗ(t )+Kp p(t ) = g (t ). (1.12b)

In particular, the semi-explicit scheme only converges if the DDAE (1.12) is asymptotically stable,

which imposes a weak coupling condition, i.e., D is in some sense small compared to Ku and Mp .

We refer to [4] for further details.



10 CHAPTER 1. INTRODUCTION

1.2 Scope and synopsis

Summarizing the motivating examples from the previous section, the main object under investiga-

tion in this thesis is the nonlinear DDAE

0 = F (t , x(t ), ẋ(t ), x(t −τ),u(t )), (1.13)

where x(t) ∈ F
nx and u(t) ∈ F

nu denote, respectively, the state and control of the system. Hereby, F

denotes either the field of real or complex numbers, i.e., F ∈ {R,C}. The function F is defined on the

time interval I := [t0, tf] and open sets Dx ,Dẋ ,Dστx ⊆ F
nx and Du ⊆ F

nu via

F : I×Dx ×Dẋ ×Dστx ×Du → F
m

and is assumed to be sufficiently smooth. A special case of (1.13) is the so-called linear time-varying

DDAE

E(t )ẋ(t ) = A1(t )x(t )+ A2(t )x(t −τ)+B(t )u(t )+ f (t ), (1.14)

with E , A1, A2 : I → F
m×nx , B : I → F

m×nu , and inhomogeneity f : I → F
m . If the matrix functions

E , A,D, and B are constant on I, then (1.14) is called linear time-invariant (LTI), and by abuse of

notation written as

E ẋ(t ) = A1x(t )+ A2x(t −τ)+Bu(t )+ f (t ), (1.15)

with matrices E , A1, A2 ∈ F
m×nx and B ∈ F

m×nu .

An important feature that distinguishes the DDAE (1.13) from a retarded DDE is that we allow ∂
∂ẋ F to

be pointwise singular. While the potential singularity of ∂
∂ẋ F allows to include algebraic constraints

and thus for a very flexible modeling approach, it comes with additional difficulties in the theoretical

and numerical analysis. This is well-known for DAEs, see for instance [171], and accordingly, these

difficulties are transferred directly to DDAEs [13, 53, 98].

Remark 1.2. The formulation of the DDAE (1.13) is not restricted to one single delay, since multiple

commensurate delays [85] may be rewritten as a single delay by introducing new variables [94].

More precisely, a DDAE with multiple commensurate delays may be written as

0 = F (t , x(t ), ẋ(t ), x(t −τ), x(t −2τ), . . . , x(t −kτ),u(t )). (1.16)

Introducing the new variables zi (t ) = zi−1(t −τ) for i = 1, . . . ,k with z0(t ) = x(t ) allows to write (1.16)

as ⎡
⎢⎢⎢⎢⎣

0

0
...

0

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

F (t , z0(t ), ż0(t ), z1(t ), . . . , zk (t ),u(t ))

z1(t )− z0(t −τ)
...

zk (t )− zk−1(t −τ)

⎤
⎥⎥⎥⎥⎦

,

which is again of the form (1.13). Note that if the DDAE depends also on derivatives of the past

argument, i. e. on x(ℓ)(t −τ) for some ℓ ∈N, one can use a similar procedure to recast this problem

in the form (1.13). ♣
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A standard question to ask is whether for a given control function u, the DDAE (1.13) (resp. (1.14))

possesses a unique solution. As it is already known from the theory of ordinary differential equations

(ODEs), this is in general not the case. For ODEs, this can be fixed by imposing a constraint on the

state in form of an initial or final condition (and some further technical assumptions). In this thesis

we focus on prescribed initial conditions, which for delay equations take the form

x(t ) =φ(t ) for t ∈ [−τ,0]. (1.17)

The equations (1.13) and (1.17) together are referred to as initial value problem (IVP). After estab-

lishing conditions on F and φ for a solution to exist, the next question to ask is whether the solution

is unique and whether its dependency on the data is continuous. More precisely, we are interested

in the question, whether for a given control u the operator equation

K (x) :=
[︄

F (·, x, ẋ,στx,u)

x[−τ,0]

]︄
=

[︄
p

φ

]︄
, (1.18)

with shift operator (στx)(t ) = x(t −τ) is well-posed in the sense of Hadamard [88, 100, 147], i.e., if

(i) for each (p,φ) ∈P ×Φ, there is a solution x ∈X of (1.18),

(ii) this solution is unique in X and

(iii) the dependency of x upon (p,φ) is continuous.

Hereby, the operator K maps the topological space X into the topological space Z :=P ×Φ. To

answer the question whether (1.18) is well-posed, a number of other questions need to be answered

first, ranging from the solution concept used for (1.13) (thus fixing the space X ), to the smoothness

requirements for F . These questions are addressed in detail in the first part of the thesis. More

precisely, we have the following results:

(i) The forthcoming Examples 1.4 and 1.5 reveal that in general we cannot expect a classical

solution to exist. We thus start our analysis by seeking solutions in the space of piecewise-

smooth distributions (see Definition 3.3). Our first main result — Theorem 3.5 — details that

a regular matrix pair (E , A1) in (1.15) is a sufficient condition for existence and uniqueness of

solutions for any initial trajectory, input, and external forcing.

(ii) In order to obtain a necessary condition, we define the notion of delay-regularity (Defini-

tion 3.8) and establish in Theorem 3.20 existence and uniqueness of solutions for all external

forcing signals if and only if det(sE − A1 −ωA2) ̸≡ 0. As a mere consequence, we show that a

linear DAE can be regularized via feedback if and only if it can be regularized by a delayed

feedback. The details are presented in section 3.2.

(iii) In Definition 3.28 we introduce a novel equivalence relation, called delay-equivalence, which

allows us to establish that whenever the DDAE (1.15) is delay-regular, then it can be trans-

formed to a delay-equivalent DDAE with regular matrix pencil, see Theorem 3.37 and Re-

mark 3.39. The delay-equivalent DDAE can be obtained by a simple compress-and-shift

algorithm, which was previously suggested in the literature [53]. Our analysis reveals that with
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a simple modification of the algorithm it can detect along the way if the DDAE is delay-regular,

and terminate otherwise.

(iv) Using the previous results, we introduce a new classification of LTI DDAEs in section 4.1 that

is based on the propagation of so-called primary discontinuities [26]. The main motivation

for such a classification is to establish conditions that ensure existence of solutions that are

continuously differentiable almost everywhere. We present a complete algebraic characteriza-

tion of the different classes in Theorem 4.16, which in turn allows us to formulate a general

existence result for DDAEs (cf. Theorem 4.18).

(v) If we impose some additional regularity assumptions on the history function φ, that is, we

impose that the history function is linked smoothly to the solution of the DDAE, then we can

further improve the result of Theorem 4.18. In more detail, the impact of so-called splicing

conditions is analyzed in section 4.2, where we show the existence of a continuous solutions

for a higher index DDAE in Theorem 4.27.

(vi) In chapter 5 we show that the results from the LTI case can in parts be translated to nonlinear

DDAEs. The main observation is that the results in Chapter 4 can be formulated in terms of

the underlying DDE, which can also be defined for nonlinear DDAEs. With this we establish

existence and uniqueness results for a class of nonlinear DDAEs in Theorem 5.24.

(vii) We conclude our analysis with a detailed investigation of the hybrid numerical-experimental

system presented in section 1.1.1. In particular, we show that the compress-and-shift algo-

rithm (Algorithm 1) from chapter 3 can be applied to the hybrid system even in the nonlinear

case. The algorithm terminates after a single shift with a regular DDAE, whenever the two

subsystems are regular DAEs. The details are presented in Lemma 5.10, Theorem 5.15 and

Theorem 5.17. Using the solution theory developed in chapter 5 we prove that the hybrid

system is solvable whenever the experimental and numerical part are both strangeness-free,

see Corollary 5.25.

In the second part of the thesis we invert the problem by asking whether we can determine an

operator ˜︂K : X →Z that minimizes

∥ ˜︂K (x)−p∥ (1.19)

for some given x ∈ X , p ∈ Z and some suitable norm ∥ · ∥. In this case, ˜︂K is called a realization

for the data pair (x, p). The simplest realization is of course to just map x onto p. However, this

realization is only valid for the specific data pair (x, p) and any variation in the data pair results in

a different realization. Instead, we may want to ask for a realization ˜︂K that minimizes (1.19) for

all data pairs (x, p). Since the class of all possible realizations is hard to parameterize, we restrict

ourselves to the case that ˜︂K is linear, i.e., we consider only linear time-invariant DDAEs of the

form (1.15). Often in practical application, the state x itself may not be available (or of interest) and

instead, only an observation of the state in form of an output equation

y(t ) =C x(t ) (1.20)

where the matrix C ∈ F
ny×nx is available. Consequently, we assume that there exists a dynamical sys-

tem, exemplified by an operator S that maps inputs u to outputs y . Hereby the standing assumption
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is that we can evaluate S for given inputs but do not have access to a state-space realization of S,

i.e., S acts as a black-box. The DDAE realization problem can thus be stated as follows: For given

trajectories ˆ︁u and ˆ︁y , construct a DDAE

˜︁S :

{︄˜︁E ẋ(t ) = ˜︁A1x(t )+ ˜︁A2x(t −τ)+ ˜︁Bu(t ),

y(t ) = ˜︁C x(t )
(1.21)

such that ∥S(u)− ˜︁S(u)∥ is minimized for all admissible inputs u. If we choose the norm to be the L∞
norm then it is well-known (cf. [20]) that the error is bounded by the H2 norm of the error system

multiplied with the norm of the input, i.e.,
⃦⃦

y − ˜︁y
⃦⃦

L∞
≤ ∥S − ˜︁S∥H2

∥u∥L2
,

provided that all quantities are well-defined. If in addition we are seeking for a standard state-

space system, i.e., E = Inx
and A2 = 0, then the H2 error is minimized if the transfer function

associated with ˜︁S interpolates the transfer function associated with S at certain frequencies – see for

instance [20]. Thus, we propose to tackle the DDAE realization problem by constructing a realization

of the form (1.21), such that its transfer function

˜︁H(s) = ˜︁C (︁
s ˜︁E − ˜︁A1 −exp(−τs) ˜︁A2

)︁−1 ˜︁B (1.22)

interpolates the transfer function associated with S at given frequencies. We refer to Problem 6.6

and Problem 6.9 for a precise problem description. We obtain the following results.

(i) We present necessary and sufficient conditions for interpolation in Theorem 7.1 by analyzing

the more general class of realizations of the form ˜︁H(s) = ˜︁C
(︂∑︁K

k=1 hk (s) ˜︁Ak

)︂−1 ˜︁B with linear

independent family {h1, . . . ,hK } of meromorphic functions mapping the complex plane into

itself.

(ii) The interpolation conditions from Theorem 7.1 reveal that the situation is different for K = 2

and K ≥ 3. For K = 2 we provide a direct solution of the problem (see Theorem 7.5) and show

its close connection to the Loewner framework [150] in Corollary 7.7.

(iii) For the case K ≥ 3, which is the case for the DDAE realization problem, we present two

strategies to handle the remaining degrees of freedom: First by interpolation of additional

data (cf. section 7.3.1), and second by interpolation of derivative information of the transfer

function (cf. section 7.3.2). In both cases we do not increase the dimension of the involved

matrices. The main results are presented in Theorem 7.12 and Theorem 7.16.

(iv) To obtain data in the frequency domain we consider in chapter 8 the estimation of frequency

data from time series, i.e., from a sampling of u and y in the time-domain. We use the least-

squares transfer function estimate (lsTFE) framework introduced in [168] and generalize the

required results to our setting, which includes continuous time systems and general system

structures. The resulting method is summarized in Algorithm 5.

(v) Based on additional data points, we present a least-squares approach (see section 8.3) to

estimate possibly unknown parameters in the realization as, for instance, the delay parameter.

We demonstrate the results with a complete case study with a delay example in section 8.4.
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1.3 Challenges and state of the art

Since DAEs and DDEs are special cases of the DDAE (1.13), it is clear that the problems specific

to these sub classes are also inherent to DDAEs. For instance, DAEs require a so-called consistent

initialization [127,167], since the class of possible initial conditions is restricted (see the forthcoming

Chapter 2). For DDEs, one needs to put special emphasis on the tracking of so-called breaking

points [90, 91], which result from the fact that the history function φ may not be linked smoothly to

the solution x at t = 0, i.e. we have

lim
t↗0

φ̇(t ) ̸= lim
t↘0

ẋ(t ) (1.23)

in general. The following examples suggest, that in some cases this so-called primary discontinu-

ity [26] may be smoothed out over time, while in other cases, the discontinuity is propagated over

time or even amplified.

Example 1.3. The IVP ẋ(t ) =−x(t −1) with history function φ≡ 1 can be solved by integration on

successive time intervals (see chapter 2 for more details), which yields for 0 ≤ t ≤ 4 the solution

x(t ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− t , if 0 ≤ t ≤ 1,
1
2 t 2 −2t + 3

2 , if 1 ≤ t ≤ 2,

−1
6 t 3 + 3

2 t 2 −4t + 17
6 , if 2 ≤ t ≤ 3,

1
24 t 4 − 2

3 t 3 + 15
4 t 2 − 17

2 t + 149
24 , if 3 ≤ t ≤ 4,

which is depicted as the blue line in Figure 1.6. Note that limt↗0 φ̇(t ) = 0 ̸= −1 = limt↘0 ẋ(0), i.e. the

solution is not continuously differentiable at t = 0. Straight forward computations show

lim
t↗1

d

dt
(1− t ) =−1 = lim

t↘1

d

dt

(︂
1
2 t 2 −2t + 3

2

)︂
,

lim
t↗2

(︃
d

dt

)︃2 (︃
1

2
t 2 −2t + 3

2

)︃
= 1 = lim

t↘2

(︃
d

dt

)︃2 (︃
−1

6
t 3 + 3

2
t 2 −4t + 17

6

)︃
,

lim
t↗3

(︃
d

dt

)︃3 (︃
−1

6
t 3 + 3

2
t 2 −4t + 17

6

)︃
=−1 = lim

t↘3

(︃
d

dt

)︃3 (︃
1

24
t 4 − 2

3
t 3 + 15

4
t 2 − 17

2
t + 149

24

)︃
,

and thus the solution becomes smoother over time. ♠

Example 1.4. The IVP 0 = x(t )+x(t −1)+1 with history function φ(t ) = t has the solution

x(t ) =
⎧
⎨
⎩

k −1− t , if k −1 ≤ t ≤ k and k ∈N odd,

t +k, if k −1 ≤ t ≤ k and k ∈N even.

In particular, the solution x (plotted as dashed red line in Figure 1.6) is continuous but ẋ is discon-

tinuous at every t = k and thus no smoothing occurs. ♠

Example 1.5. Consider the DDAE
[︄

1 0

0 0

]︄[︄
ẋ1(t )

ẋ2(t )

]︄
=

[︄
0 1

1 0

]︄[︄
x1(t )

x2(t )

]︄
+

[︄
0 0

0 −1

]︄[︄
x1(t −1)

x2(t −1)

]︄
(1.24)
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−1 0 1 2 3 4

−1

0

1

2

t

Figure 1.6 – Discontinuity propagation in DDAEs. The solid blue line represents the solution of the IVP
in Example 1.3, the dashed red line the solution derived in Example 1.4, and the first component of the
solution of Example 1.5 is presented with the dotted yellow line.

with initial condition

x(t ) =φ(t ) =
[︄

1
3 t 3 + t 2 −1,

1
3 (t −1)3 + (t −1)2 −1

]︄
for −1 ≤ t ≤ 0.

Note that x1(t ) = x2(t −1) and thus it is sufficient to compute the solution x1 (the dotted yellow line

in Figure 1.6), which is given by

x1(t ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t 2 −1, t ∈ [0,1],

2t −2, t ∈ [1,2],

2, t ∈ [2,3),

0, t ≥ 3.

In particular, the solution becomes less smooth at multiples of the time delay and even discontinu-

ous at t = 3. ♠

The study of primary discontinuities of the scalar DDE

a0ẋ(t )+a1ẋ(t −τ)+b0x(t )+b1x(t −τ) = f (t ) (1.25)

is based on the the classification proposed in [27]: The DDE (1.25) is said to be of retarded type

if a0 ̸= 0 and a1 = 0, of neutral type if a0 ̸= 0 and a1 ̸= 0, and of advanced type if a0 = 0 and a1 ̸= 0.

Following this classification, we observe that the DDAE in Example 1.3 is of retarded type, the

DDAE Example 1.4 is of neutral type (if we differentiate the equation), while the first component in

Example 1.5 satisfies a DDE of advanced type. In particular, the DDAE (1.13) may contain scalar

delay differential equations of any of the three types. As a consequence, a history function φ for the

IVP (1.13), (1.17) may be required to satisfy so-called splicing conditions [26]. We refer to section 4.2

for further details.

The classification of (1.25) was extended in the series of papers [97–99] to linear time-varying DDAEs

of the form (1.14), using the so-called underlying DDE (see sections 4.1 and 4.3 for more details).
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Loosely speaking, the underlying DDE is obtained by differentiating (and possibly shifting) parts

of the DDAE (1.13) until one is able to solve for ẋ. Hereby, the number of differentiations that is

required during this process is used as a classification for the difficulties associated with solving the

DDAE (1.13) analytically or numerically. Different technical aspects and different ways of counting

have led to several so-called index concepts for DAEs, for instance the differentiation index [54],

the perturbation index [101], the tractability index [144–146], the geometric index [179, 181], the

structural index [167, 174] and the strangeness index [124, 127]. For a comparison we refer to [153].

Besides the fact that neutral or even advanced equations may be hidden in the DDAE (1.13), the

solution of the DDAE (1.13) may also depend on future evaluations of the DDAE. More precisely, the

solution x(t ) at the time point t may depend on

0 = F (t +kτ, x(t +kτ), ẋ(t +kτ), x(t + (k −1)τ),u(t +kτ))

with k ∈ N. A simple example for such a situation is given if we choose E = A1 = 0, and A2 = Inx

in (1.15). Of course, in reality, a dependence on the future is not possible, and therefore, one may

question the utility of a DDAE whose solution depends on future values. However, besides its

mathematical relevance, the future evaluation of F may be interpreted as a prediction of that future

value. In any case, the potential acausality causes some further difficulties in the analytical and

numerical treatment of (1.13):

• The method of steps (see [26] and the forthcoming chapter 2), which is commonly used to

solve the IVP (1.13), (1.17), cannot be used without pre-processing of the DDAE (1.13). The

pre-processing requires to shift some of the equations of (1.13) to future time points [1, 53, 99].

The minimal number of shifts that is required to construct the solution is called the shift index.

We refer to [98] for a precise definition.

• Due to the combination of differentiation and shifting the DDAE (1.13) may include higher-

order differential equations [53, 97, 206].

• The shifting imposes restrictions on the set of history functions for which the IVP has a

solution. In contrast to the DAE theory, where we expect a restriction only at the time points

t = 0 and t =−τ, the restriction applies to all t ∈ [−τ,0].

So far, a general analysis of (1.13) is not available and most of the literature addresses only special

cases. For instance, a classical solution theory for DDAEs that need not be shifted is developed

in [13, 62] for nonlinear DDAEs with a special structure and for linear time-invariant DDAEs in [50].

Shifting and its consequences are studied in [1, 53, 94, 96–99, 173, 206]. Numerical time integration

methods are developed and analyzed in [16, 33, 59, 90, 91, 98, 103, 108, 109, 136, 194, 201]. Most of

the references for the numerical methods require that there is no need to shift equations and that

the DAE that is obtained by substituting a smooth function parameter λ for the delayed variable

has differentiation index one. Notable exceptions are provided for instance in [13, 16, 98, 103]. The

stability and asymptotic stability of certain classes of DDAEs is studied in [41, 56, 69, 79, 95, 135,

138, 141, 151, 156, 222, 224, 225]. Surprisingly, it is not sufficient for asymptotic stability that all

eigenvalues of the LTI system (1.15) have negative real part [68]. The main reason for this is that

the solution fails to exists after some time. This is due to the fact that an advanced equation may
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be hidden in the DDAE (1.15), see the discussion above. Closely related to stability is the question

wether a system can be stabilized via a suitable controller. This and further control theoretical topics

are discussed in [3, 80, 81, 92, 157, 193, 194].

1.4 Previously published results and joint work

Some of the contents of this thesis are already published.

• The connection between the semi-explicit Euler discretization applied to linear poroelasticity

and a suitable DDAE, as presented in section 1.1.5, is joint work with R. Altmann and R. Maier

and published in [4]. An extension to nonlinear poroelasticity is considered in [5].

• The analysis of linear DDAEs within the space of piecewise-smooth distributions is a result

of a collaboration with S. Trenn, which resulted in the conference proceedings [206] and the

preprints [207, 208]. The results are presented in chapter 3.

• Most of the results from chapter 4 are published in [211], which additionally contains parts of

section 2.1. The extension of these results to nonlinear DDAEs is covered in chapter 5 and in

parts published in the preprint [212].

• The realization theory for DDAEs, discussed in chapter 7, is published in the journal articles

[189] (together with P. Schulze) and [191] (with P. Schulze, C. Beattie, and S. Gugercin). The

extension to time-domain data, covered in chapter 8, is based on the results of a collaboration

with E. Fosong and P. Schulze, which are published in the preprint [77].

Results on structural analysis for DDAEs [1] (together with I. Ahrens), Kolmogorov n-widths for

linear dynamical systems [213] (with S. Gugercin), model reduction for transport problems [35]

(joint work with F. Black and P. Schulze), and model reduction for switched systems [190] (with

P. Schulze) are only briefly mentioned in this thesis.

1.5 Notation

The symbols Z, Q, R, and C denote the integers, the rational numbers, the real numbers, and the

complex numbers, respectively. The natural numbers are the positive integers and are denoted

with N := {n ∈Z | n > 0}. For a field F and natural numbers n,m ∈N we denote the set of all n ×m

matrices over F by F
n×m . The ring of polynomials with coefficients from a field F is denoted by

F[s] with s being the indeterminate. The polynomial ring F[s] is naturally embedded in the field of

rational functions, denoted by F(s). Therefore, we can also consider matrices with entries in the ring

F[s]. The set of n-dimensional nonsingular matrices over the field F is denoted with

GLn(F) := {A ∈ F
n×n | A nonsingular },

which together with the standard multiplication for matrices forms a group, the so-called general

linear group. The neutral element of GLn(F) is denoted with In and the inverse of A ∈ GLn(F) is

denoted with A−1. In particular, we have A A−1 = A−1 A = In . The i th column of In , i.e., the i th



18 CHAPTER 1. INTRODUCTION

unit vector, is denoted by ei ∈ F
n . If A(s) ∈ GLn(F[s]) and A(s)−1 ∈ GLn(F[s]), then A(s) is called

unimodular and it is easy to see that A(s) ∈ F[s]n×n is unimodular if and only if det(A(s)) is a nonzero

constant, i.e., det(A(s)) ∈ F\ {0}. The rank of a matrix A ∈ GLn(F) is denoted with rankF(A) or simply

with rank(A) if the field F is clear from the context. For polynomial matrices A(s) ∈ F[s]n×m we

adopt the notation from the literature and write rankF[s](A(s)) := rankF(s)(A(s)). The transpose and

conjugate transpose of a matrix A are denoted with AT and AH .



Part I

Classification and well-posedness
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2
Differential-algebraic equations and preliminary results

A standard approach to solve a differential equation with delayed argument, such as the delay

differential-algebraic equation (DDAE)

0 = F (t , x(t ), ẋ(t ), x(t −τ),u(t )) for t ∈ [t0, tf) (2.1a)

introduced in section 1.2 (cf. (1.13)) with initial condition

x(t ) =φ(t ) for t ∈ [−τ,0] (2.1b)

is via successive integration of (2.1) on the time intervals [(i −1)τ, iτ), which is sometimes referred

to as the method of steps [98], see also [26, 50]. First we assume that M is the smallest integer such

that tf < Mτ and introduce for i ∈I := {1, . . . , M } the functions

x[i ] : [0,τ] → F
nx , t ↦→ x(t + (i −1)τ),

u[i ] : [0,τ] → F
nu , t ↦→ u(t + (i −1)τ),

F[i ] : [0,τ]×Dx ×Dẋ ×Dστx ×Du → F
m , (t , x, y, z,u) ↦→ F (t + (i −1)τ, x, y, z,u),

x[0] : [0,τ] → F
nx , t ↦→φ(t −τ).

(2.2)

Then for each i ∈ {1, . . . , M } we have to solve the differential-algebraic equation (DAE)

0 = F[i ](t , x[i ](t ), ẋ[i ](t ), x[i−1](t ),u[i ](t )), t ∈ [0,τ), (2.3a)

x[i ](0) = x[i−1](τ
−), (2.3b)

with right continuation

x[i−1](τ
−) := lim

t↗τ
x[i−1](t ). (2.4)

The analysis of DDAEs requires an in-depth understanding of the theory of DAE, which we thus

recall in this chapter. For the analysis of (2.3) we employ the following solution concept from [127].

Definition 2.1. A function x[i ] ∈C 1([0,τ];Fnx ) is called a (classical) solution of (2.3a), if it satisfies

(2.3a) pointwise. The function x[i ] ∈C 1([0,τ];Fnx ) is called a (classical) solution of the initial value

problem (2.3) if it is a solution of (2.3a) and satisfies (2.3b). An initial condition x[i−1](τ) is called

consistent, if the initial value problem (2.3) has at least one solution.

21
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Note that the partial derivative of F[i ] with respect to x[i ] in (2.3a) is allowed to be singular, resulting

in significant differences to the theory for ordinary differential equations (ODEs), see also [171]. The

main differences are illustrated in the next example, taken from [205].

Example 2.2. Consider the linear time-invariant (LTI) DAE
⎡
⎢⎣

0 1 0

0 0 0

0 0 0

⎤
⎥⎦

⎡
⎢⎣

ẋ1(t )

ẋ2(t )

ẋ3(t )

⎤
⎥⎦=

⎡
⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎦

⎡
⎢⎣

x1(t )

x2(t )

x3(t )

⎤
⎥⎦+

⎡
⎢⎣

f1(t )

f2(t )

f3(t )

⎤
⎥⎦ .

The third equation implies f3 ≡ 0, which means that even for arbitrarily smooth right-hand sides,

we may not have existence of solutions. The second equation x2(t) =− f2(t) shows that the set of

initial conditions is restricted. Using the second equation we obtain the solution

x1(t ) = ẋ2(t )− f1(t ) =− ḟ2(t )− f1(t )

for the first variable, which is thus less smooth than the inhomogeneity f . Note that x3 is not

specified at all and thus we do not have uniqueness of the solution. ♠

Since a solution of the DAE (2.3a) (and hence also a solution of the initial value problem (IVP) (2.1))

may depend on derivatives of F[i ] and consequently on derivatives of the history function φ, we

make the following assumption throughout the text.

Assumption 2.3. The function F[i ] in (2.3a) and the history function φ (and thus also the function

F in (2.1a)) are sufficiently smooth.

Remark 2.4. The theory of DAEs is already quite mature with a large body of literature, see for

instance the monographs [42, 101, 127, 134, 197]. Fur further details we refer to the collection of

survey articles [49, 111–114, 188] and the references therein. ♣

2.1 Classical solutions for linear time-invariant DAEs

As pointed out in Example 2.2, many aspects of the theory for DAEs are already present for LTI DAEs

and hence we start our brief survey of DAE theory with linear systems of the form

E ẋ = A1x + f̃ , (2.5)

with E , A1 ∈ F
m×nx and f̃ : [0, tf) → F

m , where we omit the time dependency of x and f for the ease

of presentation. As before, we frequently make the assumption that f̃ is smooth enough, i.e. that f̃

satisfies the following assumption.

Assumption 2.5. The inhomogeneity f̃ is infinitely many times continuously differentiable.

Remark 2.6. Applying the method of steps to the DDAE (1.15) results in the DAE (2.5) with x = x[i ]

and f̃ = A2x[i−1] + f . In particular, the inhomogeneity f̃ depends on the solution on the previous

interval and hence Assumption 2.3 does not imply Assumption 2.5. ♣
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The solvability of (2.5) is closely related to the properties of the matrix pair (E , A1), see for in-

stance [127] for further details. If m = nx and det(λE − A1) ∈ F[λ] \ {0}, then the matrix pair (E , A1) is

called regular. If a matrix pair is not regular, it is referred to as singular. The following result [127, The-

orem 2.14] shows that the regularity of the matrix pair is a necessary condition to ensure existence

and uniqueness of solutions for the DAE (2.5), see also [32].

Theorem 2.7. Let E , A ∈C
m×nx and suppose that (E , A1) is a singular matrix pair.

(i) If rank(λE − A1) < nx for all λ ∈C, then the homogeneous initial value problem

E ẋ = A1x, x(0) = 0

has a nontrivial solution.

(ii) If rank(λE − A1) = n for some λ ∈C and hence m > nx , then there exist arbitrarily smooth

inhomogeneities f̃ for which the corresponding DAE is not solvable.

Remark 2.8. If (E , A1) is not regular, it is still possible that the IVP associated with the DDAE (1.15)

has a unique solution (in the sense of [98]). In this case, the DDAE is called noncausal and under

some technical assumptions [98] provides an algorithm to transform (3.1a) such that the trans-

formed pencil (Ẽ , Ã) is regular. However, such a process adds additional restrictions on the history

function. For more details, we refer to [52, 97] and the forthcoming section 3.1. ♣

A standard approach in studying linear differential equations is to introduce an equivalence relation

on the system matrices that allows to characterize all solutions. In terms of matrix pencils, we say

that (E , A1) and ( ˜︁E , ˜︁A1) are (strongly) equivalent, in symbols (E , A1) ∼ ( ˜︁E , ˜︁A1), if and only if there

exists nonsingular matrices S ∈ GLm(F) and T ∈ GLnx
(F) such that

˜︁E = SET and ˜︁A1 = S A1T.

The canonical form for this equivalence relation is the Kronecker canonical form [82, Cha. XII, § 4]

(assuming F = C). From the canonical form it is easy to determine whether the matrix pencil is

regular, yielding a special form of the Kronecker canonical form that is known as the Weierstraß

canonical form [82, Cha. XII, Thm. 3]. More precisely, we have the following characterization of

regularity (which is sometimes referred to as the quasi-Weierstraß form [31]).

Theorem 2.9 (Quasi-Weierstraß form). The matrix pencil (E , A1) ∈ (︁
F

m×nx
)︁2 is regular if and only

if m = nx and there exist matrices S,T ∈ GLnx
(F) such that

SET =
[︄

Inx,d
0

0 N

]︄
and S A1T =

[︄
J 0

0 Inx,a

]︄
, (2.6)

where N ∈ F
nx,a×nx,a is a nilpotent matrix and J ∈ F

nx,d×nx,d .

Remark 2.10. If F=C, then the Weierstraß canonical form can be obtained by choosing S and T in

Theorem 2.9 such that N and J are in Jordan canonical form. If F ̸=C, then the Jordan canonical form
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of J may not exist and we cannot use the Weierstraß canonical form. For the analysis of the DAE

(2.5) this is not important since the relevant feature of the (quasi-)Weierstraß form is the decoupling

of the matrix pencil (see the forthcoming discussion). ♣

Note that the numbers nx,d and nx,a in Theorem 2.9 are independent of the specific choice of the

matrices S and T (see for instance [31, 127]). In more detail, consider matrices Si ,Ti ∈ GLnx
(F) for

i = 1,2 that transform the regular pencil (E , A1) into quasi-Weierstraß form, that is

Si ETi =
[︄

Ini
0

0 Ni

]︄
and Si A1Ti =

[︄
Ji 0

0 Iñi

]︄
for i = 1,2,

where for i = 1,2 the matrix Ni ∈ F
ñi×ñi is nilpotent and Ji ∈ F

ni×ni . Then

det(λE − A1) = det(Si )−1 det

(︄
λ

[︄
Ini

0

0 Ni

]︄
−

[︄
Ji 0

0 Iñi

]︄)︄
det(Ti )−1

= det(Si )−1 det(Ti )−1 det(λIni
− Ji )det(λNi − Iñi

) for i = 1,2.

Since Ni is nilpotent, we have det(λNi − Iñi
) = (−1)ñi for any λ ∈ F and i = 1,2. With the setting

ci := (−1)ñi det(Si )−1 det(Ti )−1 ∈ F\ {0} we obtain

det(λE − A1) = ci det(λIni
− Ji )

and thus n1 = n2 and ñ1 = n −n1 = n −n2 = ñ2.

The matrices S and T in Theorem 2.9 can be obtained from the so-called Wong sequences [220]

V0 := F
nx , Vi+1 := A−1

1 (EVi ) := {x ∈ F
n | A1x ∈ EVi }, for i ∈N, (2.7a)

W0 := {0}, Wi+1 := E−1(A1Wi ) := {x ∈ F
n | E x ∈ A1Wi }, for i ∈N, (2.7b)

where in this context E−1 and A−1
1 denote the preimage of E and A1, respectively. Note that the

sequences are nested, i.e., Vi+1 ⊆ Vi and Wi ⊆Wi+1 and thus there exists a number k ∈N such that

V := Vk = Vk+ j and W :=Wk =Wk+ j for all j ∈N. (2.8)

Following [31], the regularity of (E , A1) implies dim(V ) = nx,d and dim(W ) = nx,a and for any matrices

V ∈ F
nx×nx,d and W ∈ F

nx×nx,a that satisfy im(V ) = V and im(W ) =W , the matrices

S :=
[︂

EV A1W
]︂−1

and T :=
[︂

V W
]︂

(2.9)

transform (E , A) into quasi-Weierstraß form (2.6). As a consequence (cf. [31, Remark 2.7]), we obtain

A1V = EV J and EW = A1W N . (2.10)

The next result shows that the converse direction is also true, i.e., that if S,T ∈ GLnx
(F) transform the

matrix pencil (E , A1) into quasi-Weierstraß form, then S,T are of the form (2.9) with im(V ) = V and

im(W ) =W .
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Proposition 2.11. Consider a regular matrix pencil (E , A1) and matrices Si ,Ti ∈ GLnx
(F) for

i = 1,2 that transform (E , A1) into quasi-Weierstraß form, that is

Si ETi =
[︄

Inx,d
0

0 Ni

]︄
and Si A1Ti =

[︄
Ji 0

0 Inx,a

]︄
for i = 1,2, (2.11)

where N1, N2 ∈ F
nx,a×nx,a are nilpotent and J1, J2 ∈ F

nx,d×nx,d . Then there exist matrices P ∈ GLnx,d
(F)

and Q ∈ GLnx,a
(F) such that

S2 =
[︄

P−1 0

0 Q−1

]︄
S1, T2 = T1

[︄
P 0

0 Q

]︄
, J2 = P−1 J1P, and N2 =Q−1N1Q.

Proof. Partition Si =
[︂

Xi Yi

]︂−1
and Ti =

[︂
Vi Wi

]︂
with Xi ,Vi ∈ F

nx×nx,d and Yi ,Wi ∈ F
nx×nx,a . We

observe for i = 1,2

[︂
EVi EWi

]︂
= ETi = S−1

i

[︄
Inx,d

0

0 Ni

]︄
=

[︂
Xi Yi

]︂[︄
Inx,d

0

0 Ni

]︄
=

[︂
Xi Yi Ni

]︂
and

[︂
A1Vi A1Wi

]︂
= A1Ti = S−1

i

[︄
Ji 0

0 Inx,a

]︄
=

[︂
Xi Yi

]︂[︄
Ji 0

0 Inx,a

]︄
=

[︂
Xi Ji Yi

]︂

and therefore S−1
i =

[︂
EVi A1Wi

]︂
and A1Vi = EVi Ji . We immediately observe A1 im(Vi ) ⊆ E im(Vi ).

Thus [31, Proposition 2.13] together with nx,d = dim(im(Vi )) implies im(V1) = im(V2). Hence there

exists a matrix P ∈ GLnx,d
(F) with V2 =V1P . Since T1 is nonsingular, there exist matrices ˜︁P ∈ F

nx×nx,d

and Q ∈ F
nx×nx,a with

T2 = T1

[︄
P ˜︁P
0 Q

]︄
and S−1

2 = S−1
1

[︄
P ˜︁P
0 Q

]︄
.

In particular, we have Q ∈ GLnx,a
(F). We obtain

S−1
1

[︄
P ˜︁P N2

0 QN2

]︄
= S−1

1

[︄
P ˜︁P
0 Q

]︄[︄
Inx,d

0

0 N2

]︄
= S−1

2

[︄
Inx,d

0

0 N2

]︄
= ET2

= ET1

[︄
P ˜︁P
0 Q

]︄
= S−1

1

[︄
Inx,d

0

0 N1

]︄[︄
P ˜︁P
0 Q

]︄
= S−1

1

[︄
P ˜︁P
() N1Q

]︄
.

Hence ˜︁P = ˜︁P N2 and N2 =Q−1N1Q. As a consequence of the first equation and the fact that N2 is

nilpotent, we deduce ˜︁P = 0. It remains to show that J2 = P−1 J1P holds. This follows from

S−1
1

[︄
P J2 0

0 Q

]︄
= S−2

2

[︄
J2 0

0 Inx,a

]︄
= ET2 = ET1

[︄
P 0

0 Q

]︄

= S−1
1

[︄
J1 0

0 Inx,a

]︄[︄
P 0

0 Q

]︄
= S−1

1

[︄
J1P 0

0 Q

]︄
. ■

As a consequence of Proposition 2.11, the index of nilpotency of N in the quasi-Weierstraß form

(4.5) is independent of the choice of the matrices S and T , which motivates the following definition

(cf. [127]).
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Definition 2.12 (Index of a regular matrix pencil). Let (E , A1) be a regular matrix pencil and let

N ∈ F
nx,a×nx,a denote the nilpotent matrix with index of nilpotency ν of the quasi-Weierstraß form

from Theorem 2.9. Then the number

ind(E , A1) :=
⎧
⎨
⎩

ν, if nx,a > 0,

0, otherwise,

is called the index of the pencil (E , A1).

Theorem 2.9 allows us to decouple the DAE (2.5). In more detail, let S,T ∈ GLnx
(F) be matrices that

transform the pencil (E , A1) in quasi-Weierstraß form (2.6). Since both matrices are nonsingular, we

obtain a one-to-one correspondence between solutions of (2.3a) and solutions of

v̇ = J v + g̃ , (2.12a)

N ẇ = w + h̃, (2.12b)

with [︄
v

w

]︄
:= T −1x and

[︄
g̃

h̃

]︄
:= S f̃ .

While (2.12a) is a standard ordinary differential equation (ODE) in v that can be solved with the

Duhamel integral, the so-called fast subsystem (2.12b) has the solution

w =−
ν−1∑︂
k=0

N k h̃(k) (2.13)

and hence the function h̃ must be ν times continuously differentiable for a classical solution to exist

(cf. [127]). In addition, a consistent initial value w(0) must satisfy equation (2.13). Similar to [200],

we define the matrices

Adiff := T

[︄
J 0

0 0

]︄
T −1, Acon := T

[︄
Inx,d

0

0 0

]︄
T −1,

C0 := T

[︄
Inx,d

0

0 0

]︄
S, Ck :=−T

[︄
0 0

0 N k−1

]︄
S

(2.14)

for k = 1, . . . , ind(E , A1). As a consequence of Proposition 2.11 we notice that the matrices defined in

(2.14) do not depend on the choice of the matrices S and T , see also [205].

Lemma 2.13. Assume that the matrix pencil (E , A1) is regular. Then the matrices Adiff, Acon, and

Ck for k = 0,1, . . . , ind(E , A1) defined in (2.14) do not depend on the matrices S,T that transform

(E , A1) into quasi-Weierstraß form (2.6).

Proof. Consider matrices Si ,Ti ∈ GLnx
(F) for i = 1,2 that transform (E , A1) into quasi-Weierstraß

form, i.e., that satisfy (2.11). According to Proposition 2.11 there exist matrices P ∈ GLnx,d
(F) and

Q ∈ GLnx,a
(F) such that

S2 =
[︄

P−1 0

0 Q−1

]︄
S1, T2 = T1

[︄
P 0

0 Q

]︄
, J2 = P−1 J1P, and N2 =Q−1N1Q.
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Thus

T2

[︄
J2 0

0 0

]︄
T −1

2 = T1

[︄
P 0

0 Q

]︄[︄
J2 0

0 0

]︄[︄
P−1 0

0 Q−1

]︄
T −1

1 = T1

[︄
P J2P−1 0

0 0

]︄
T −1

1 = T1

[︄
J1 0

0 0

]︄
T −1

1 .

The proof for the other matrices follows similarly. ■

Proposition 2.14. Assume that the matrix pair (E , A1) is regular and f̃ satisfies Assumption 2.5.

Then any classical solution x of (2.5) fullfills the so called underlying ODE

ẋ = Adiffx +
ind(E ,A1)∑︂

k=0
Ck f̃ (k). (2.15)

Conversely, let x be a classical solution of (2.15). Then x is a solution of (2.5) if and only if there

exists s ∈ [0, tf) such that x(s) satisfies

x(s) = Aconx(s)+
ind(E ,A1)∑︂

k=1
Ck f̃ (k−1)(s). (2.16)

In this case (2.16) is true for all s ∈ [0, tf).

Proof. Let x be a classical solution of (2.5) and S,T ∈ GLnx
(F) be matrices that satisfy (2.6) of the

quasi-Weierstraß form and set ν := ind(E , A1). Differentiation of (2.13) yields

ẋ = T

[︄
v̇

ẇ

]︄
= T

[︄
J v + g̃

−∑︁ν−1
k=0 N k h̃(k+1)

]︄

= T

[︄
J 0

0 0

]︄[︄
v

w

]︄
+T

[︄
Inx,d

0

0 0

]︄[︄
g̃

h̃

]︄
−

ν∑︂
k=1

T

[︄
0 0

0 N k−1

]︄[︄
g̃ (k)

h̃(k)

]︄

= Adiffx +
ν∑︂

k=0
Ck f̃ (k).

Conversely, let x be a classical solution of (2.15). Then for any s ∈ [0, tf) we have

x(t ) = eAdiff(t−s)x(s)+
∫︂t

s
eAdiff(t−s−t̃ )

ν∑︂
k=0

Ck f̃ (k) (︁t̃
)︁

dt̃ . (2.17)

Scaling (2.17) from the left by T −1 we obtain

w(t ) = w(s)−
ν∑︂

k=1
N k−1

∫︂t

s
h̃(k) (︁t̃

)︁
dt̃ = w(s)−

ν−1∑︂
k=0

N k h̃(k)(t )+
ν−1∑︂
k=0

N k h̃(k)(s).

Suppose now that for a specific s ∈ [0, tf) the solution x satisfies (2.16), or equivalently (by scal-

ing (2.16) from the left with T −1)
[︄

v(s)

w(s)

]︄
=

[︄
v(s)

−∑︁ν−1
k=0 N k h̃(k)(s)

]︄
.

Together with (2.13) this implies that x is a solution of (2.5) and it is easy to see that (2.16) is satisfied

for all t ∈ [0, tf). The remaining direction follows immediately from (2.13). ■
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Setting s = 0 in the previous proposition yields the following requirement for an initial condition to

be consistent.

Corollary 2.15. Assume that the matrix pair (E , A1) is regular and the inhomogeneity f̃ satisfies

Assumption 2.5. Then the initial value x(0) is consistent if and only if it satisfies the consistency

condition

x(0) = Aconx(0)+
ind(E ,A1)∑︂

k=1
Ck f̃ (k−1)(0). (2.18)

In this case, the IVP (2.3) has a unique solution x ∈C ∞([0, tf);Fnx ).

2.2 Distributional solutions for inconsistent initial values

As we have clearly seen in the previous subsection, a classical solution does not exist for all initial

conditions. Instead, a consistent initial condition has to satisfy the consistency condition (2.18) in

Corollary 2.15. If the DAE under investigation is a result of applying the method of steps (2.3) to

the DDAE (1.13), then it is a–priori not clear, if the initial value is consistent. Unfortunately, one

cannot show that the initial value is always consistent. We have already seen a counterexample in

Example 1.5. Thus, a general solution framework for DDAEs has to be able to deal with inconsistent

initial values.

Inconsistent initial values appear also in other application areas, for instance when an electrical

circuit is switched at a certain time [215]. As a consequence, a number of different approaches in

the time and frequency domain have been proposed to deal with inconsistent initial values. For an

overview we refer to [205]. All approaches have in common, that jumps or even Dirac impulses may

occur in the solution, and hence a distributional solution space seems appropriate. Following [192],

the space of test function

C ∞
0 (R;R) := { f ∈C ∞(R;R) | supp f is bounded}

with supp( f ) := {x ∈R | f (x) ̸= 0}, can be equipped with a locally convex topology (see [117, § 12]),

thus making it a topological space. The set of all linear and continuous maps from C ∞
0 (R;R) into

the real numbers

D := { f : C ∞
0 (R;R) →R | f is linear and continuous}, (2.19)

i.e., the topological dual space of C ∞
0 (R;R), is called the space of distributions. Since the test

functions are smooth and have compact support, we can define for any locally integrable function

f ∈L1,loc a distribution via

fD : C ∞
0 (R;R) →R, ϕ ↦→

∫︂∞

−∞
f (t )ϕ(t )dt .

Consequently, the space L1,loc can be embedded into D via the injective homomorphism

L1,loc →D, f ↦→ fD . (2.20)
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To describe the DAE (2.5) in a (yet to define) suitable distributional solution space, we need a

derivative in D. Following [117, § 19], we define the distributional derivative

d

dt
: D →D, f ↦→

(︃
d

dt
f : C ∞

0 (R;R) →R, ϕ ↦→ − f

(︃
d

dt
ϕ

)︃)︃
. (2.21)

Since d
dt ϕ ∈C ∞

0 (R;R), this is indeed well-defined (see [117, Satz 19.1] for more details) and we im-

mediately observe, that distributions are arbitrarily often differentiable. For notational convenience,

we write

ḟ := d

dt
f and f (k) :=

(︃
d

dt

)︃k

f for f ∈D.

Note that we use the symbol d
dt for the distributional derivative and the standard derivative. This is

consistent, since for any differentiable (and thus locally integrable) function f : R→R, we have

(︃
d

dt
f

)︃

D

= d

dt

(︁
fD

)︁
.

Example 2.16. Consider for Ω⊆R the indicator function

1Ω : R→R, t ↦→
⎧
⎨
⎩

1, if t ∈Ω,

0, otherwise.

For any s ∈R and ϕ ∈C ∞
0 (R;R) we obtain

(︃
d

dt

(︁(︁
1[s,∞)

)︁
D

)︁)︃
(ϕ) =−

∫︂∞

−∞
1[s,∞)(t )

d

dt
ϕ(t )dt =ϕ(s).

The distribution δs := d
dt

(︁(︁
1[s,∞)

)︁
D

)︁
is called the Dirac impulse at s. ♠

A generalization of D to vector-valued functions is straightforward, by defining

Dk :=
{︃

f =
[︂

f1 . . . fk

]︂T
⃓⃓
⃓⃓ fi ∈D for i = 1, . . . ,k

}︃

for any k ∈N. The multiplication of f ∈Dk with a matrix M ∈R
p×k is then defined via

M f : C ∞
0 (R;R) →R, ϕ ↦→ M f (ϕ),

such that the DAE (2.5) can be interpreted as an equation in Dm with x ∈Dnx and f̃ ∈Dm . However,

embedding the DAE into a distributional framework does not resolve the issue of inconsistent initial

conditions, since we cannot evaluate distributions at a point t0 ∈R. But even if we restrict the space

of distributions such that the pointwise evalutation at certain points is well-defined, one can show,

see [205], that solutions do not exist for arbitrary initial values. For instance, the trivial DAE x = 0

posses the unique solution x = 0 also in the distributional sense.

Instead, we assume that the DAE (2.5) only holds on [0,∞) (instead of the real axis) and the past,

i.e., the behavior in the interval (∞,0), is prescribed as an initial trajectory. However, this re-

quires us to define a distributional restriction to the interval [0,∞) and this is not possible for
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general distributions [203, Lemma 2.2.3]. This problem can be resolved by considering the space of

impulsive-smooth distributions [83] or by the slightly bigger space of piecewise-smooth distribu-

tions [203]. The latter is also suitable for studying the DDAE (1.15), therefore we will use this space

in the following as the underlying solution space for (2.5) and (1.15).

Definition 2.17 (Piecwise-smooth distributions).

(i) A function α : R → R is called piecewise-smooth if, and only if, there exists a family of real

numbers {ti ∈ R | i ∈ Z} with ti < ti+1 for all i ∈ Z and t±k → ±∞ as k → ∞ and smooth

functions αi ∈C ∞(R;R) such that

α=
∑︂
i∈Z

1[ti ,ti+1)αi .

The space of piecewise-smooth functions is defined as

C ∞
pw(R;R) := {α : R→R |α is piecewise-smooth}.

(ii) The space of piecewise-smooth distributions is defined as

DpwC ∞ :=
{︄

αD +
∑︂
s∈S

Ds

⃓⃓
⃓⃓
⃓
α ∈C ∞

pw(R;R), S is a discrete set, and

Ds ∈ span{δs , δ̇s , δ̈s , . . .} for s ∈ S

}︄
,

i.e., a piecewise-smooth distribution is the sum of a piecewise-smooth function and linear

combinations of Dirac impulses and their derivatives at finitely many time instants in each

compact interval.

For piecewise-smooth distributions the restriction

DpwC ∞ ×P (R) →DpwC ∞ , ( f =αD +
∑︂
s∈S

Ds ,Ω) ↦→ fΩ := (1Ωα)D +
∑︂

s∈S∩Ω
Ds

is well defined. Moreover, one can show (cf. [203, 204]) that each piecewise-smooth distribution

f ∈ DpwC ∞ posses a derivative and an anti-derivative in DpwC ∞ . It is important to note that the

restriction operator and the distributional derivative operator do not commute. Instead, we have

the following result.

Lemma 2.18 ( [204, Proposition 12]). For all −∞≤ t1 ≤ t2 ≤∞ and f = αD +∑︁
s∈S Ds ∈ DpwC ∞

we have

d

dt

(︂
f[t1,t2)

)︂
=

(︃
d

dt
f

)︃

[t1,t2)
+ f (t−1 )δt1

− f (t−2 )δt2
,

d

dt

(︂
f(t1,t2)

)︂
=

(︃
d

dt
f

)︃

(t1,t2)
+ f (t+1 )δt1

− f (t−2 )δt2
,

d

dt

(︂
f(t1,t2]

)︂
=

(︃
d

dt
f

)︃

[t1,t2)
+ f (t+1 )δt1

− f (t+2 )δt2
,

d

dt

(︂
f[t1,t2]

)︂
=

(︃
d

dt
f

)︃

[t1,t2]
+ f (t−1 )δt1

− f (t+2 )δt2
,
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where δ±∞ = 0 and the left and right sided evaluation at a point t ∈R are defined as

f (t−) := lim
h↘0

α(t −h) and f (t+) := lim
h↘0

α(t +h) =α(t ).

For further results on the space of piecewise-smooth distributions and its relation to other distri-

butional solution concepts for DAEs we refer to [203, 204]. It is now possible to state an existence

and uniqueness result for regular DAEs with possible inconsistent initial values. More precisely, we

can interpret the DAE (2.5) in the space of piecewise-smooth distributions as the initial trajectory

problem (ITP)
x(−∞,t0) = x0

(−∞,t0),

(E ẋ)[t0,∞) = (A1x + f̃ )[t0,∞),
(2.22)

with initial trajectory x0 ∈D
nx

pwC ∞ and inhomogeneity f̃ ∈Dm
pwC ∞ and arbitrary t0 ∈R.

Theorem 2.19 ( [203, Theorem 3.5.2]). Consider the ITP (2.22) with initial trajectory x0 ∈D
nx

pwC ∞

and inhomogeneity f̃ ∈ Dm
pwC ∞ . If the matrix pair (E , A1) is regular, then the ITP (2.22) has a

unique solution x ∈D
nx

pwC ∞ .

In the study of DDAEs it turns out that even in the LTI setting, the DDAE (1.15) may contain higher-

order differential equations and thus it is important to study also higher-order DAEs. To this end,

consider a polynomial matrix P (s) ∈R[s]m×nx , i.e.,

P (s) =
p∑︂

j=0
P j s j with matrices Pi ∈ F

m×nx for j = 0,1, . . . , p.

For a given polynomial matrix P (s) ∈R[s]m×nx we consider the generalization of the DAE (2.5) given

by the polynomial DAE

P

(︃
d

dt

)︃
x = f . (2.23)

Notice that the DAE (2.5) can be recast in the form (2.23) by introducing the polynomial matrix

P (s) = E s − A1. Vice versa, by introducing new variables, we can easily recast the polynomial DAE

(2.23) into the matrix form (2.5) and thus immediately obtain the following result (see e.g. the second

part of the proof of Theorem 7 in [209] or the first part of the proof of Corollary 9 in [206]).

Corollary 2.20. For given polynomial matrix P (s) ∈ R[s]nx×nx , initial trajectory x0 ∈ D
nx

pwC ∞ ,

inhomogeneity f̃ ∈Dm
pwC ∞ , and initial time point t0 ∈R consider the ITP

x(−∞,t0) = x0
(−∞,t0),(︃

P

(︃
d

dt

)︃
x

)︃

[t0,∞)
= ( f̃ )[t0,∞).

(2.24)
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If det(P (s)) ∈R[s] \ {0}, then the ITP (2.24) has a unique solution x ∈D
nx

pwC ∞ .

Proof. Let P (s) = ∑︁p
j=0 P j s j . Then a standard companion form linearization of (2.23) yields the

DAE

E ż =A z +F (2.25)

with E ,A ∈R
pnx×pnx , given by

E =

⎡
⎢⎢⎢⎢⎢⎣

Pp 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

⎤
⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎣

−Pp−1 −Pp−2 · · · −P0

In 0 · · · 0
...

. . .
. . .

...

0 · · · In 0

⎤
⎥⎥⎥⎥⎦

, z =

⎡
⎢⎢⎢⎢⎢⎣

(︂
d

dt

)︂p−1
x

...
d

dt x

x

⎤
⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

f

0
...

0

⎤
⎥⎥⎥⎥⎦

.

Note that there exists (cf. [142]) unimodular matrix polynomials R(s),S (s) ∈R[s]pnx×pnx with

R(s)(sE −A )S (s) =
[︄
P (s) 0

0 I(p−1)n

]︄
.

Hereby, R and S are given as

R(s) =

⎡
⎢⎢⎢⎢⎣

Iℓ sPp +Pp−1 · · · ∑︁p
j=1 s j−1P j

−In

. . .

−In

⎤
⎥⎥⎥⎥⎦

, S (s) =

⎡
⎢⎢⎢⎢⎢⎣

sp−1In · · · sIn In
... . . .

. . .

sIn . . .

In

⎤
⎥⎥⎥⎥⎥⎦

.

The proof now follows by the observation that there exists a constant c ̸= 0 with

0 ̸≡ det(P (s)) = c det(sE −A )

and application of Theorem 2.19 to (2.25). ■

Remark 2.21. The initial trajectory x0
(−∞,t0) in (2.24) not only specifies the state x(−∞,t0) but also

its (distributional) derivatives and thus providing the initial trajectories for the higher-order differ-

ential operator P
(︂

d
dt

)︂
in (2.23). It should be noted that in general the standard companion form

linearization in (2.25) may introduce additional smoothness requirements for the forcing term f

(cf. [154, 187]) and instead a so-called trimmed linearization [47] should be used if we consider a

classical solution concept. One of the main issues with higher-order differential equations is that

there is no simple canonical form under strong equivalence if degP ≥ 2 [202]. ♣

Although in principle it is possible to rewrite the higher-order DAE (2.23) as a first-order DAE by

introducing new variables, it is sometimes more efficient to work directly with the higher-order

system. Consequently, we need a generalization of Lemma 2.18 to higher-order differential operators.

For simplicity we consider only the restriction to the time intervals (−∞,0) and [0,∞). Let f ∈Dn
pwC ∞ .
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Repeated application of Lemma 2.18 yield

(︃
d

dt

)︃k (︁
f(−∞,0)

)︁=
(︂

f (k)
)︂

(−∞,0)
−

k−1∑︂
j=0

f ( j )(0−)

(︃
d

dt

)︃k−1− j

δ0,

(︃
d

dt

)︃k (︁
f[0,∞)

)︁=
(︂

f (k)
)︂

[0,∞)
+

k−1∑︂
j=0

f ( j )(0−)

(︃
d

dt

)︃k−1− j

δ0

for k ∈N. For P (s) =∑︁p
k=0 Pk sk ∈R[s]m×nx define P [0](s) :=P (s) and recursively

P [i ](s) := 1

s

(︂
P [i−1](s)−P [i−1](0)

)︂
∈R[s]m×nx ,

i.e., P [i ] = ∑︁p
k=i Pk sk−i for i = 0,1, . . . ,k. Then, we have proven the following generalization of

Lemma 2.18.

Lemma 2.22. Let f ∈Dn
pwC ∞ and P (s) ∈R[s]ℓ×n with deg(P ) = d ≥ 0. Then

P

(︃
d

dt

)︃(︁
F(−∞,0)

)︁=
(︃
P

(︃
d

dt

)︃
F

)︃

(−∞,0)
−

d−1∑︂
j=0

(︃
P [ j ]

(︃
d

dt

)︃
F

)︃
(0−)

(︃
d

dt

)︃d−1− j

δ0,

P

(︃
d

dt

)︃(︁
F[0,∞)

)︁=
(︃
P

(︃
d

dt

)︃
F

)︃

[0,∞)
+

d−1∑︂
j=0

(︃
P [ j ]

(︃
d

dt

)︃
F

)︃
(0−)

(︃
d

dt

)︃d−1− j

δ0.

A crucial difference in the study of the polynomial DAE (2.23) in contrast to the DAE (2.5) is the fact

that the entries of the polynomial matrices are elements of a ring and not a field. Although the ring

of polynomials is embedded in the field of rational functions and thus it is straightforward to use

concepts such as the rank, we have to ensure that whenever we substitute d
dt for the indeterminate s,

we only operate in the ring of polynomials. As a consequence, we cannot use nonsingular matrices

(as for instance in the quasi-Weierstraß form), but have to restrict ourselves to unimodular matrices,

i.e., polynomial matrices that are nonsingular and the inverse matrix is also a polynomial matrix

(see also the proof of Corollary 2.20). The usage of unimodular matrices in the context of DAEs is not

new: see for instance the work [116], where the authors construct a unimodular matrix to perform

index-reduction. An important tool to study polynomial matrices is the Smith canonical form.

Theorem 2.23 (Smith canonical form, [118, Thm. 1.8.1]). Let P (s) ∈ F[s]m×nx . Then there exists

unimodular matrices S (s) ∈ F[s]m×m , T (s) ∈ F[s]nx×nx such that

S (s)P (s)T (s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(s)
. . .

pr (s)

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.26)
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where r := rankF[s](P (s)), pi (s) ∈ F[s] \ {0}, and pi (s) divides pi+1(s) for i = 1, . . . ,r −1.

A direct consequence of the Smith canonical form is that we can perform a rank revealing row-

compression with a unimodular matrix, i.e., for P (s) ∈ F[s]m×nx with r := rankF[s](P (s)), there exists

a unimodular matrix U (s) ∈ F[s]m×m and a polynomial matrix P1(s) ∈ F[s]r×nx with rankF[s](P1(s)) =
r such that

U (s)P (s) =
[︄
P1(s)

0

]︄
.

Similarly as for DAEs, we can study the properties of linear time-invariant DDAEs by analyzing pairs

of matrix polynomials (P (s),Q(s)) ∈ (︁
R[s]m×nx

)︁2. Although there is no equivalent to the Weierstraß

canonical form for pairs of matrix polynomials, one can still use the condensed form approach

from [46] to construct a condensed form for (P (s),Q(s)).

Theorem 2.24 ( [96, Thm. 1]). For any pair of polynomial matrices (P (s),Q(s)) ∈ (R[s]m×nx )2

there exists unimodular matrix polynomials U (s) ∈R[s]m×m and V (s) ∈R[s]nx×nx such that

U (s)P (s)V (s) =

⎡
⎢⎣

ˆ︂P 11(s) 0 ˆ︂P 13(s)

0 0 ˆ︂P 23(s)

0 0 ˆ︂P 33(s)

⎤
⎥⎦ , (2.27a)

U (s)Q(s)V (s) =

⎡
⎢⎣

ˆ︁Q11(s) ˆ︁Q12(s) ˆ︁Q13(s)

0 0 ˆ︁Q23(s)

0 0 ˆ︁Q33(s)

⎤
⎥⎦ , (2.27b)

where ˆ︂P 11 is a nonsingular diagonal matrix, ˆ︂P 23, ˆ︂P 33, ˆ︁Q33 are block upper triangular matrices

with zero diagonal blocks and ˆ︁Q23 is a nonsingular block upper triangular matrix.

2.3 Strangeness-index for nonlinear DAEs

If F in (2.1a) is nonlinear, then the equation that we have to solve within the method of steps takes

the form of a nonlinear DAE

F (t , x(t ), ẋ(t ),u(t )) = 0, (2.28a)

where, as before, x(t ) ∈R
nx and u(t ) ∈R

m denote, respectively, the state and control of the system,

which is posed on the (compact) time interval I := [0,T ]. By abuse of notation, we use F in this

section to denote the DAE (2.28a) and not the DDAE (1.13). The function

F : I×Dx ×Dẋ ×Du →R
m

with open sets Dx ,Dẋ ⊆ R
nx , Du ⊂ R

nu is assumed to be sufficiently smooth. The DAE (2.28a) is

equipped with the initial condition

x(0) = x0. (2.28b)

for some x0 ∈ R
nx . As for linear DAEs it is well-known that in general we cannot expect a unique

solution if m ̸= nx (cf. [127]). We therefore restrict ourselves to the case m = nx , since one of the

main goals within this thesis is to establish existence and uniqueness-results.
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Definition 2.25. A function x ∈C 1(I,Rnx ) is called a (classical) solution of (2.28a) if x satisfies (2.28a)

pointwise. An initial value x0 ∈ R
nx is called consistent if for a given control u, the associated

IVP (2.28) has at least one solution. The DAE (2.28a) is called regular, if for every sufficiently smooth

input u there exists a consistent initial value and for every consistent initial value, the solution of

the ITP (2.28) is unique.

The control problem (2.28a) is often studied in the behavior framework [172], see for instance [55,

125]. Hereby, a new variable ξ= [x,u] is introduced that includes the state and control variable such

that the problem is reduced to the analysis of an underdetermined DAE [125], i. e., the meaning of

the variables is not distinguished any more. One big advantage of this formalism is that the analysis

determines the free variables in the system, which might not be the original control variables, and

hence need to be reinterpreted. Since our main goal is to study the IVP (2.28) with a prescribed

input function u this viewpoint is not possible. For given u we can study the restricted problem

˜︁F (t , x(t ), ẋ(t )) = 0, x(t0) = x0, (2.29)

with ˜︁F (t , x, ẋ) = F (t , x, ẋ,u).

If the partial derivative ∂
∂ẋ

˜︁F is singular, then the solution x of (2.29) may depend on derivatives of ˜︁F .

The difficulties arising with these differentations are classified by so called index concepts (cf. [153]

for a survey). In this paper, we make use of the strangeness index concept [127], which is – roughly

speaking – a generalization of the differentiation index [42] to under- and overdetermined systems.

The advantage of the strangeness index is that it preserves the algebraic constraints in the system,

which in turn prevents numerical methods to drift away from the solution manifold [126]. The

strangeness index is based on the derivative array [51] of level ℓ, defined as

˜︁Dℓ

(︁
t , x,η

)︁
:=

⎡
⎢⎢⎢⎢⎢⎣

˜︁F (t , x, ẋ)
d

dt
˜︁F (t , x, ẋ)

...(︂
d

dt

)︂ℓ ˜︁F (t , x, ẋ)

⎤
⎥⎥⎥⎥⎥⎦
∈R

(ℓ+1)nx with η :=

⎡
⎢⎢⎢⎢⎣

ẋ

ẍ
...

x(ℓ+1)

⎤
⎥⎥⎥⎥⎦

. (2.30)

Since it is a-priori not clear, that a solution exists, we need to assume that the set

˜︂Mℓ :=
{︂(︁

t , x,η
)︁ ∈R

(ℓ+2)nx+1
⃓⃓
⃓ ˜︁Dℓ

(︁
t , x,η

)︁= 0
}︂

is nonempty. Similarly as in the theory for linear DAEs, we are interested in determining all algebraic

constraints. In principal, the number of algebraic constraints may vary due to the nonlinearity of
˜︁F . To exclude this case we have to impose some constant rank assumptions. Following [124], we

introduce the Jacobians

˜︁Eℓ(t , x, ẋ, . . . , x(ℓ+1)) :=
[︂
∂ ˜︁Dℓ

∂ẋ . . . ∂ ˜︁Dℓ

∂x(ℓ+1)

]︂(︂
t , x, ẋ, . . . , x(ℓ+1)

)︂
∈R

(ℓ+1)nx×(ℓ+1)nx ,

˜︂Aℓ(t , x, ẋ, . . . , x(ℓ+1)) :=−
[︂
∂ ˜︁Dℓ

∂x 0 . . . 0
]︂(︂

t , x, ẋ, . . . , x(ℓ+1)
)︂
∈R

(ℓ+1)nx×(ℓ+1)nx .

In order to determine all algebraic equations that are encoded in (2.28a), we assume the following.
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Assumption 2.26. There exist integers µ and a such that the set

˜︂Mµ :=
{︂(︁

t , x,η
)︁ ∈R

(µ+2)nx+1
⃓⃓
⃓ ˜︁Dµ

(︁
t , x,η

)︁= 0
}︂

associated with ˜︁F is nonempty and such that for every (t0, x0,η0) ∈ ˜︂Mµ, there exists a (sufficiently

small) neighborhood ˜︂U . Moreover we have rank( ˜︁Eµ) = (µ+1)nx −a on ˜︂Mµ∩ ˜︂U .

The constant rank assumption allows us to define (via the smooth singular value decomposition [43],

see also [127]) a matrix-valued function ˜︁Z A of size (µ+1)nx ×a and pointwise maximal rank that

satisfies ˜︁Z T
A

˜︁Eµ = 0. The (linearized) algebraic equations are thus encoded in the matrix

(︄
˜︁Z T

A

∂ ˜︁Dµ

∂x

)︄
(t , x,η) ∈R

a×nx . (2.31)

To ensure that the problem is regular, we need to be able to solve the algebraic equations for a

unknowns, requiring that the matrix in (2.31) has rank a. We thus assume the following.

Assumption 2.27. Let Assumption 2.26 hold, let ˜︁Z A be constructed as above, and assume

rank

(︄(︄
˜︁Z T

A

∂ ˜︁Dµ

∂x

)︄
(t , x,η)

)︄
= a (2.32)

for all (t , x,η) ∈ ˜︂Mµ∩ ˜︂U .

In view of the Weierstraß canonical form (cf. Theorem 2.9), we need to ensure that we have d := nx−a

differential equations for the remaining d variables. Using (2.32) we deduce the existence of a

smooth matrix function ˜︁T A of size nx ×d with pointwise maximal rank satisfying

(︄
˜︁Z T

A

∂ ˜︁Dµ

∂x
˜︁T A

)︄
(t , x,η) = 0.

The remaining differential equations must be contained in the original DAE (in contrast to the

algebraic equations, which are contained in the derivative array) and thus we assume the following

to guarantee that we actually have d differential equations.

Assumption 2.28. Let Assumptions 2.26 and 2.27 hold, set d := nx −a, let ˜︁T A be as above, and

assume

rank

(︃(︃
∂˜︁F
∂ẋ

˜︁T A

)︃
(t , x,η)

)︃
= d

for all (t , x,η) ∈ ˜︂Mµ∩ ˜︂U .

To summarize the previous discussion, we make the following assumption, which for historical

reasons (cf. [124]) is referred to as a hypothesis.
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Hypothesis 2.29 ( [124, Hypothesis 3.2]). There exist integers µ and a such that the set

˜︂Mµ :=
{︂(︁

t , x,η
)︁ ∈R

(µ+2)nx+1
⃓⃓
⃓ ˜︁Dµ

(︁
t , x,η

)︁= 0
}︂

associated with ˜︁F is nonempty and such that for every (t0, x0,η0) ∈ ˜︂Mµ, there exists a (sufficiently

small) neighborhood ˜︂U in which the following properties hold:

(i) We have rank( ∂
∂η

˜︁Dµ) = (µ+ 1)nx − a on ˜︂Mµ ∩ ˜︂U such that there exists a smooth matrix

function ˜︁ZA of size (µ+1)nx ×a and pointwise maximal rank that satisfies ˜︁Z T
A

∂
∂η

˜︁Dµ = 0.

(ii) We have rank( ˜︁Z T
A

∂
∂x

˜︁Dµ) = a on ˜︂Mµ∩ ˜︂U such that there exists a smooth matrix function ˜︁TA

of size nx ×d with d := nx −a and pointwise maximal rank, satisfying ˜︁Z T
A

(︂
∂
∂x

˜︁Dµ

)︂
˜︁TA = 0.

(iii) We have rank(∂˜︁F
∂ẋ

˜︁TA) = d on ˜︂Mµ∩ ˜︂U such that there exists a smooth matrix function ˜︁ZD of

size nx ×d and pointwise maximal rank, satisfying rank( ˜︁Z T
D

∂˜︁F
∂ẋ

˜︁TA) = d.

Definition 2.30. The smallest possible µ for which Hypothesis 2.29 is satisfied is called strangeness

index of the DAE (2.28a). If Hypothesis 2.29 is satisfied with µ= 0, then the DAE (2.28a) is called

strangeness-free.

The quantities a and d in Hypothesis 2.29 are, respectively, the numbers of algebraic and differential

equations contained in the DAE (2.29). Using the matrix functions ˜︁ZD and ˜︁ZA, the DAE (2.29) can

(locally) be reformulated as

0 = ˜︁D(t , x, ẋ) :=
(︂
˜︁Z T

D
˜︁F
)︂

(t , x, ẋ), (2.33a)

0 = ˜︁A(t , x) :=
(︂
˜︁Z T

A
˜︁Dµ

)︂
(t , x), (2.33b)

which itself is strangeness-free and every solution of (2.29) also solves (2.33). Hereby we call (2.33a)

the differential part of (2.29) and (2.33b) the algebraic part. Note that although ˜︁ZA and ˜︁Dµ may

depend on derivatives of x it can be shown (cf. [124]) that their product only depends on t and x.

Unfortunately, a solution of (2.33) is not necessarily a solution of (2.29). However, if we assume in

addition, that Hypothesis 2.29 is satisfied with characteristic values µ, a,d and µ+1, a,d , then for

every initial value xµ+1,0 ∈Mµ+1 there exists a unique solution of (2.33) and this solution (locally)

solves (2.29) (see [127, Theorem 4.13]). As a direct consequence, an initial value x0 is consistent if

and only if it is contained in the consistency set

(t0, x0) ∈ ˜︁M :=
{︂

(t , x) ∈R
nx+1

⃓⃓
⃓ ˜︁A(t , x) = 0

}︂
. (2.34)

If state transformations are allowed, then the implicit function theorem allows to (locally) rewrite

the strangeness-free DAE (2.33) as

ξ̇= ˜︂L (t ,ξ), ζ= ˜︁R(t ,ξ) (2.35)

with ξ(t ) ∈R
d and ζ(t ) ∈R

a . For the detailed derivation we refer to [127, Cha. 4.1]. Let x =T (t ,ξ,ζ)

denote the transformation for the state. Then, the ordinary differential equation (ODE)

ẋ =˜︁f(t , x) :=T
(︂
t , ˜︂L (t ,ξ),

(︂
∂
∂ξ

˜︁R
)︂

(t ,ξ) ˜︂L (t ,ξ)+
(︂

∂
∂t

˜︁R
)︂

(t ,ξ)
)︂

, (2.36)
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is called the underlying ODE for the DAE (2.29) and is the basis of the differentiation index [42],

which is defined as µ+1 if ∂
∂ẋ

˜︁F is singular and 0 otherwise [127, Cor. 3.46].

Remark 2.31. In terms of the LTI DAE (2.5), the strangeness-index µ and the index of the matrix

pencil ν (see Definition 2.12) satisfy

ν=
⎧
⎨
⎩

0, if E is nonsingular,

µ+1, otherwise.

With the definition above, the differentiation index is thus a generalization of the index of the matrix

pencil to nonlinear systems. ♣

If we want to solve the DAE (2.28a) numerically, we are not only interested in the existence of

solutions but also that the solution of the initial value problem (2.29) is unique and depends

continuously on the data. For DAEs, the so-called well-posedness can be be formulated as follows

[127, Theorem 4.12].

Theorem 2.32. Let ˜︁F as in (2.29) be sufficiently smooth and satisfy Hypothesis 2.29. Let x⋆ ∈
C 1(I,Rnx ) be a sufficiently smooth solution of (2.28). Let the (nonlinear) operator ˜︂F : D → Y ,

D⊆Z open, be defined by

˜︂F (x)(t ) =
[︄
ξ̇− ˜︂L (t ,ξ(t ))

ζ− ˜︁R(t ,ξ(t ))

]︄
, (2.37)

with the Banach spaces

Z :=
{︂

z ∈C
(︁
I,Rnx

)︁ ⃓⃓
⃓ ξ ∈C 1(I,Rd ), ξ(t0) = 0

}︂
, Y :=C

(︁
I,Rnx

)︁

according to (2.35). Then x⋆ is a regular solution of the strangeness-free problem

˜︂F (x) = 0

in the following sense. There exists a neighborhood Ux ⊆Z of x⋆ and a neighborhood V ⊆Y of

the origin such that for every f ∈ V the equation

˜︂F (x) = f

has a unique solution x ∈ Ux that depends continuously on f . In particular, x⋆ is the unique

solution in Ux belonging to f = 0.

In order to apply the theory to the original equation (2.28a) we have to ensure that the characteristic

values µ, a, and d do not depend on the chosen input u. A simple way to guarantee this, is to ensure

that the rank assumptions in Hypothesis 2.29 hold for all sufficiently smooth input functions. The
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derivative array (2.30) with explicit dependency on u takes the form

Dℓ

(︂
t , x,η,u, u̇, . . . ,u(ℓ)

)︂
:=

⎡
⎢⎢⎢⎢⎢⎣

F (t , x, ẋ,u)
d

dt F (t , x, ẋ,u)
...(︂

d
dt

)︂ℓ
F (t , x, ẋ,u)

⎤
⎥⎥⎥⎥⎥⎦
∈R

(ℓ+1)nx with η :=

⎡
⎢⎢⎣

ẋ
...

x(ℓ+1)

⎤
⎥⎥⎦ .

Hypothesis 2.33. There exist integers µ and a, and matrix functions ZA(·) ∈ R
(µ+1)nx×a , TA(·) ∈

R
nx×d , and ZD(·) ∈R

nx×d with pointwise maximal rank and d := n −a such that for every suffi-

ciently smooth u the set

Mµ :=
{︂(︂

t , x,η,u, . . . ,u(µ)
)︂
∈R

(µ+2)nx+(µ+1)m+1
⃓⃓
⃓ Dµ

(︂
t , x,η,u, . . . ,u(µ)

)︂
= 0

}︂

associated with F is nonempty and such that for every (t0, x0,η0,u0, . . . ,u(µ)
0 ) ∈Mµ, there exists a

(sufficiently small) neighborhood U in which the following properties hold:

(i) We have rank( ∂
∂ηDµ) = (µ+1)nx −a and Z T

A
∂
∂ηDµ = 0 on Mµ∩U .

(ii) We have rank(Z T
A

∂
∂x Dµ) = a and Z T

A

(︂
∂
∂x Dµ

)︂
TA = 0 on Mµ∩U .

(iii) We have rank(∂F
∂ẋ TA) = d and rank(Z T

D
∂F
∂ẋ TA) = d on Mµ∩U .

Remark 2.34. Note that similarly as in Hypothesis 2.29 the existence of the matrix functions ZA, TA,

and ZD in Hypothesis 2.33 follows from the constant rank assumptions and a smooth version of the

singular value decomposition as in [127, Thm. 3.9 and Thm. 4.3]. ♣

Example 2.35. It is easy to see that the mass-spring-damper system (1.2) in section 1.1.1 with M > 0

satisfies Hypothesis 2.33 with µ= 0. The equations for the pendulum (1.3) are in Hessenberg-form

and therefore satisfy Hypothesis 2.33 with strangeness index µ= 2 [127, Thm. 4.23]. ♠

Following the analysis in [124] that leads to the strangeness-free formulation (2.33) we observe that

the functions D and A may depend on u and its derivatives. Due to the local character of Hypothe-

sis 2.33 we can assume that D does not depend on derivatives of u. In any case, Hypothesis 2.33

yields the (local) reformulation

0 = D(t , x, ẋ,u) :=
(︂

Z T
D F

)︂
(t , x, ẋ,u), (2.38a)

0 = A
(︂
t , x,u, u̇, . . . ,u(µ)

)︂
:=

(︂
Z T

A Dµ

)︂(︂
t , x,u, u̇, . . . ,u(µ)

)︂
, (2.38b)

which itself is strangeness-free. The corresponding explicit form (2.35) and the underlying ODE

(2.36) therefore take the form

ξ̇=L (t ,ξ,u), ζ=R(t ,ξ,u, u̇, . . . ,u(µ)) (2.39)

and

ẋ = f
(︂
t , x,u, . . . ,u(µ+1)

)︂
. (2.40)
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Clearly, if a system satisfies Hypothesis 2.33, then it also satisfies Hypothesis 2.29 (with given u) and

thus all previous results hold as well.

Remark 2.36. Let us emphasize that although derivatives of u up to order µ, respectively µ+1

appear in the algebraic equation (2.38b), the explicit algebraic equation (2.39), and the underlying

ODE (2.40), respectively, we may have

∂

∂u(ℓ)
f
(︂
t , x,u, . . . ,u(µ+1)

)︂
≡ 0

for some ℓ ∈ {1, . . . ,µ+1}, i.e., the underlying ODE (2.40) may not necessarily depend on all deriva-

tives of u up to order µ+1. ♣



3
Distributional solutions for linear time-invariant DDAEs

As outlined in the introduction (cf. section 1.2), one major aspect of this thesis is the development

of general existence and uniqueness results for delay differential-algebraic equations (DDAEs), and

a first starting point is to consider the initial value problem (IVP) for linear time-invariant (LTI)

problems of the form (1.15). Recall that the IVP is given as

E ẋ(t ) = A1x(t )+ A2x(t −τ)+ f (t ), for t ∈ I := [0, tf), (3.1a)

x(t ) =φ(t ), for t ∈ [−τ,0], (3.1b)

where E , A1, A2 ∈ F
m×nx are matrices over the field F ∈ {R,C}, f : I→ F

m is the inhomogeneity, and

φ : [−τ,0] → F
nx is the history function or initial trajectory. For the ease of presentation we introduce

the shift operator (στx)(t ) := x(t −τ) for τ> 0 and thus, we can write

E ẋ = A1x + A2στx + f in [0, tf) (3.2)

instead of (3.1a). The Examples 1.4 and 1.5 demonstrate that we cannot expect the existence of

a classical or even continuous solution for the IVP (3.1). Instead, we start our analysis with the

distributional solution concept from section 2.2.

Most of the results in this section are obtained together with Stephan Trenn (University of Groningen)

and published in [206, 207].

3.1 Distributional shift operator and delay-regularity

In order to interpret (3.1) within the space of piecewise-smooth distributions (cf. Definition 2.17),

we need to define a distributional analogue of the time delay: For τ> 0 we define the distributional

shift operator

στ : D →D, f ↦→ (︁
C ∞

0 (R;R) →R, ϕ ↦→ f (ϕ(·+τ))
)︁

, (3.3)

where D denotes the space of distributions as defined in (2.19). Note that for any continuous

function f ∈C (R;R) and any ϕ ∈C ∞
0 (R;R) we have

(︁
στ f

)︁
D(ϕ) =

∫︂∞

−∞
f (t −τ)ϕ(t )dt =

∫︂∞

−∞
f (t )ϕ(t +τ)dt = (︁

στ

(︁
fD

)︁)︁
(ϕ),

41
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and thus
(︁
στ f

)︁
D =στ

(︁
fD

)︁
. Moreover, it is easy to see that στ is a linear operator and στ f ∈DpwC ∞

for any f ∈DpwC ∞ .

Lemma 3.1. The distributional shift operator στ defined in (3.3) and the distributional derivative
d

dt defined in (2.21) commute in D, i.e., d
dt ◦στ =στ ◦ d

dt .

Proof. Let f ∈D and ϕ ∈C ∞
0 (R;R). Then we obtain

(︃
d

dt
◦στ

)︃
( f )(ϕ) =

(︃
d

dt
f

)︃(︁
ϕ(·+τ)

)︁=− f

(︃
d

dt
ϕ(·+τ)

)︃

= (︁
στ

(︁− f
)︁)︁(︃ d

dt
ϕ

)︃
=

(︃
στ ◦

d

dt

)︃
( f )(ϕ),

where we have used that the derivative and the shift commute in C ∞
0 (R;R). ■

Lemma 3.2. Let Ω⊆R, β ∈C ∞(R;R), and f ∈DpwC ∞ . Then

στ

(︁
1Ω

)︁= 1Ω+τ, στ

(︁
1Ωβ

)︁= 1Ω+τστβ, and στ

(︁
fΩ

)︁= (︁
στ f

)︁
Ω+τ ,

where Ω+τ := {ω+τ |ω ∈Ω}.

Proof. Let t ∈R. Then

(︁
στ

(︁
1Ωβ

)︁)︁
(t ) = (︁

1Ωβ
)︁

(t −τ) =
⎧
⎨
⎩

β(t −τ), if t −τ ∈Ω,

0, otherwise,

=
⎧
⎨
⎩

β(t −τ), if t ∈Ω+τ,

0, otherwise,
= (︁

1Ω+τστβ
)︁

(t )

and thus στ

(︁
1Ωβ

)︁ = 1Ω+τστβ. The first assertion follows by choosing β ≡ 1. For the remaining

assertion let f =αD +∑︁
s∈S Ds with α ∈C ∞

pw(R;R), discrete set S and Ds ∈ span{δs , δ̇s , δ̈s , . . .} for s ∈ S.

Lemma 3.1 together with the already proven identities, and the definition of the Dirac impulse

(cf. Example 2.16) imply στDs = Ds+τ for s ∈ S. We therefore conclude

στ

(︁
fΩ

)︁=στ

(︄
(︁
1Ωα

)︁
D +

∑︂
s∈S∩Ω

Ds

)︄
= (︁

1Ω+τστα
)︁
D +

∑︂
s∈S∩(Ω+τ)

Ds+τ =
(︁
στ f

)︁
Ω+τ . ■

As in Section 2.2 for differential-algebraic equations (DAEs), we can now interpret the DDAE (3.1),

respectively (3.2) in the space of piecewise-smooth distributions as the initial trajectory problem

(ITP)
x(−∞,0) = x0

(−∞,0),

(E ẋ)[0,∞) = (A1x + A2στx + f )[0,∞),
(3.4)

respectively the distributional DDAE

E ẋ = A1x + A2στx + f , (3.5)

with initial trajectory x0 ∈D
nx

pwC ∞ and inhomogeneity f ∈Dm
pwC ∞ .
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Definition 3.3. Consider the ITP (3.4) with f ∈ Dm
pwC ∞ . An initial trajectory x0 ∈ D

nx

pwC ∞ is called

feasible for the ITP (3.4), if there exists x ∈ D
nx

pwC ∞ that satisfies (3.4). In this case, x is called a

(distributional) solution of (3.4). The ITP (3.4) is called solvable if there exists a feasible initial

trajectory x0 ∈D
nx

pwC ∞ for the ITP (3.4).

Remark 3.4. Defining fITP := f[0,∞) +
(︂
E ẋ0 − A1x0 − A2στx0

)︂
(−∞,0)

, then it is straightforward to see

that every solution of the ITP (3.4) is also a solution of the distributional DDAE

E ẋ = A1x + A2στx + fITP. (3.6)

Conversely, let x ∈D
nx

pwC ∞ satisfy (3.6) and define x0 := x. Then x0 is feasible and thus the ITP (3.4)

is solvable. For a similar discussion for DAEs we refer to [178, 205]. ♣

If the matrix pair (E , A1) is regular, then we can use Theorem 2.19 to establish existence and unique-

ness of solutions of the ITP (3.4) via integration on successive time intervals [iτ, (i +1)τ), which is

also referred to as method of steps (cf. chapter 2 and the forthcoming section 4.1).

Theorem 3.5. Consider the ITP (3.4) with x0 ∈D
nx

pwC ∞ and f ∈Dm
pwC ∞ . If the matrix pair (E , A1)

is regular, then the ITP (3.4) has a unique distributional solution x ∈D
nx

pwC ∞ .

Proof. Applying the method of steps to (3.4) results in the sequence of DAE ITPs

xi
(−∞,(i−1)τ) = xi−1

(−∞,(i−1)τ),(︂
E ẋi

)︂
[(i−1)τ,∞)

=
(︂

A1xi + f̃ i
)︂

[(i−1)τ,∞)
,

(3.7)

with f̃ i := A2xi−1 + f and i ∈N. Theorem 2.19 implies recursively the existence of a unique solution

xi ∈D
nx

pwC ∞ of (3.7) for each i ∈N. In particular, for each i ∈N0 there exists αi ∈C ∞
pw(R;R), a discrete

set Si ⊆R and distributions D i
s ∈ span{δs , δ̇s , δ̈s , . . .} for each s ∈ Si such that the j th component xi

j

of xi is given by

xi
j =αi

j D
+

∑︂

s∈Si
j

D i
j ;s .

We show that x := x0
(−∞,0) +

∑︁∞
i=1 xi

[(i−1)τ,iτ) is the solution of (3.4). First note that for the j th compo-

nent the set (︂
S0

j ∩ (−∞,0)
)︂
∪

⋃︂
i∈N

(︂
Si

j ∩ [(i −1)τ, iτ)
)︂

is discrete and (α0
j )(−∞,0) +

∑︁∞
i=1(αi

j )[(i−1)τ,iτ) ∈C ∞
pw(R;R), which implies x ∈D

nx

pwC ∞ . Furthermore,

by construction we have x(−∞,0) = x0
(−∞,0). For i ∈N, Lemma 2.18 implies

(E ẋ)[(i−1)τ,iτ) =
(︄

E
d

dt

(︄(︂
x0

)︂
(−∞,0)

+
∞∑︂

k=1

(︂
xk

[(k−1)τ,kτ)

)︂)︄)︄

[(i−1)τ,iτ)

= E
(︂
ẋi

[(i−1)τ,iτ) +
(︂
xi ((i −1)τ−)−xi−1((i −1)τ−)

)︂
δ(i−1)τ

)︂
.
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Using xi
(−∞,(i−1)τ) = xi−1

(−∞,(i−1)τ) and (3.7) we obtain

(E ẋ)[(i−1)τ,iτ) = E ẋi
[(i−1)τ,iτ)

=
(︂

A1xi + f̃ i
)︂

[(i−1)τ,iτ)

= A1xi
[(i−1)τ,iτ) + A2xi−1

[(i−1)τ,iτ) + f[(i−1)τ,iτ)

= A1xi
[(i−1)τ,iτ) + A2στxi

[(i−1)τ,iτ) + f[(i−1)τ,iτ)

= (︁
A1x + A2στx + f

)︁
[(i−1)τ,iτ) .

Thus, x is a solution of the ITP (3.4). Since x[(i−1)τ,iτ) = xi
[(i−1)τ,iτ) for each i ∈N and xi is the unique

solution of (3.7), we conclude that x is the unique solution of (3.4). ■

Remark 3.6. The existence and uniqueness of distributional solutions for DDAEs was already hinted

in [53] and [96]. Results for stronger solution concepts are presented for instance in [13, 69, 98] and

the forthcoming chapter 4, although under much stronger assumptions on the history function and

additional properties of the matrix pair (E , A1). A generalization of Theorem 3.5 to switched DDAE

is presented in [38]. ♣

Similarly to Theorem 2.7 we may expect that a singular matrix pencil (E , A1) may result in an ITP

that is either not uniquely solvable or not solvable at all. However, as the following example show,

this is not the case; in addition see [94].

Example 3.7. Consider the scalar DDAE (3.1a) with (E , A1, A2) = (0,0,1), i.e.

0 =στx + f , (3.8)

which clearly has the unique (acausal) solution x =σ−τ f for any inhomogeneity f , although the

matrix pair (E , A1) = (0,0) is not regular. Note however, that it is not possible to freely prescribe the

initial trajectory for x on [−τ,0) because it is already fully specified by f given on [0,τ). ♠

The example shows that by introducing a time-delay term to a DAE with a singular matrix pair

(E , A1) we may arrive at a DDAE that is regular in a certain sense. Thus, we need to formalize the

notion of regularity for DDAEs. Following [204], we give the following generalization of regularity.

Definition 3.8. The DDAE (3.2) is called delay-regular, if for all inhomogeneities f ∈Dm
pwC ∞ with

support in [0,∞) there exists a solution x ∈ D
nx

pwC ∞ and each solution for the same f is uniquely

determined by the past, i.e., for two solutions x1, x2 ∈D
nx

pwC ∞ of (3.2), the implication

x1(−∞,0) = x2(−∞,0) =⇒ x1 = x2

holds. The matrix triple (E , A1, A2) is called delay-regular if and only if the corresponding DDAE is

delay-regular.

In order to analyze the existence and uniqueness of solutions of the ITP (3.4), Example 3.7 reveals

that in some sense the DDAE given by (E , A1, A2) = (0,0,1) with singular matrix pair (E , A1) is
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equivalent to the DDAE ( ˆ︁E , ˆ︁A, ˆ︁D) = (0,1,0) with a shifted inhomogeneity ˆ︁f := σ−τ f , where now

( ˆ︁E , ˆ︁A) is regular. We therefore want to define a notion of delay-equivalence. Unfortunately, it is not

sufficient to consider matrix triplets only, since higher-order differential equations may be hidden

in the DDAE (cf. [53] and [97]). This fact is illustrated with the following example.

Example 3.9. Consider the DDAE (3.1a) with

E =

⎡
⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎦ , A1 =

⎡
⎢⎣

0 0 0

0 1 0

0 0 1

⎤
⎥⎦ , A2 =

⎡
⎢⎣

0 0 0

0 0 0

1 0 0

⎤
⎥⎦ , f =

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ .

Clearly, (E , A1) is not regular, however differentiating the last equation twice and plugging in the

first two equations yields

0 =στẍ1 + f1 + ḟ2 + f̈3.

The same trick as applied in Example 3.7 can be used to shift the time-delay into the inhomogeneity,

but the resulting equation cannot be written as a first-order DAE without increasing the dimension

of the matrices (due to the presence of a second derivative). ♠

Example 3.9 motivates to study the more general DDAE

P

(︃
d

dt

)︃
x =Q

(︃
d

dt

)︃
στx + f , (3.9)

respectively the ITP

x(−∞,0) = x0
(−∞,0), (3.10a)

(︃
P

(︃
d

dt

)︃
x

)︃

[0,∞)
=

(︃
Q

(︃
d

dt

)︃
στx + f

)︃

[0,∞)
, (3.10b)

with matrix polynomials P (s),Q(s) ∈ R[s]m×nx . Note that (3.10a) not only specifies the initial

trajectory but also its (distributional) derivatives.

Definition 3.10. The DDAE (3.9) is called delay-regular, if for all inhomogeneities f ∈Dm
pwC ∞ with

support in [0,∞) there exists a solution x ∈ D
nx

pwC ∞ and each solution for the same f is uniquely

determined by the past, i.e., for two solutions x1, x2 ∈D
nx

pwC ∞ of (3.9), the implication

x1(−∞,0) = x2(−∞,0) =⇒ x1 = x2

holds. The pair of matrix polynomials (P (s),Q(s)) is called delay-regular if and only if the corre-

sponding DDAE is delay-regular.

Definition 3.11. An initial trajectory x0 ∈D
nx

pwC ∞ is called feasible for the ITP (3.10), if there exists

x ∈ D
nx

pwC ∞ that satisfies (3.10). In this case, x is called a (distributional) solution of (3.10). The

ITP (3.10) is called solvable if there exists a consistent initial trajectory x0 ∈D
nx

pwC ∞ for the ITP (3.10).

We first highlight the connection of delay-regularity with the solvability of the ITP (3.10).
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Proposition 3.12. If the DDAE (3.9) is delay-regular, then for each f ∈Dm
pwC ∞ there exists an initial

trajectory x0 ∈D
nx

pwC ∞ such that the ITP (3.10) is uniquely solvable. Conversely, if the ITP (3.10) is

uniquely solvable for x0 = 0 and for any inhomogeneity f ∈Dm
pwC ∞ then (3.9) is delay-regular.

Proof. Let f ∈Dm
pwC ∞ with support in [0,∞) and assume that (3.9) is delay-regular. Then there exists

a solution x ∈ D
nx

pwC ∞ of (3.9). Setting x0 := x we immediately obtain a solution of the ITP (3.10).

Suppose now that for x0 ∈D
nx

pwC ∞ the ITP (3.10) has two solutions x1, x2 ∈D
nx

pwC ∞ . Then the differ-

ence ˜︁x := x1 −x2 satisfies the ITP (3.10) with initial trajectory ˜︁x0 := 0 and zero inhomogeneity. Then

˜︁x satisfies

P

(︃
d

dt

)︃
˜︁x =Q

(︃
d

dt

)︃
στ˜︁x +

(︃
P

(︃
d

dt

)︃
˜︁x −Q

(︃
d

dt

)︃
στ˜︁x

)︃

(−∞,0)
.

Using

(︃
P

(︃
d

dt

)︃
˜︁x −Q

(︃
d

dt

)︃
στ˜︁x

)︃

(−∞,0)
=

(︃
P

(︃
d

dt

)︃
˜︁x(−∞,0) −Q

(︃
d

dt

)︃
στ

(︁˜︁x(−∞,0)

)︁)︃

(−∞,0)
= 0

and the delay-regularity of (3.9) we conclude ˜︁x = 0 and thus x1 = x2.

Now assume that the ITP (3.10) with x0 = 0 has a unique solution x for all f ∈Dm
pwC ∞ . Then with the

same argument as above it follows that x solves (3.9) with inhomogeneity f[0,∞). To show uniqueness

assume that (3.9) has two solutions, then the difference ˜︁x satisfies ˜︁x(−∞,0) = 0 and therefore solves

the ITP (3.10) with x0 = 0 and f = 0. Hence ˜︁x must coincide with the trivial solution of (3.10). ■

It is important to note the following for delay-regularity:

(i) Causality with respect to the inhomogeneity f is not assumed.

(ii) Existence of a solution for all initial trajectories is not assumed.

(iii) Unique solvability of the ITP with zero initial trajectory is only a sufficient condition for delay-

regularity. In particular, delay-regularity does not imply in general that x0 = 0 is a feasible

initial trajectory for all inhomogeneities.

In fact, the second and third point is a consequence from the first point: because of the possi-

ble acausality the current inhomogeneity may determine the past (initial) state, see for instance

Example 3.7.

Remark 3.13. In reality, a dependence on the future is not possible, and therefore one may question

the utility of the notion of delay-regularity. However, besides its mathematical relevance, this

notion may also be useful in practice if the future value of the inhomogeneity can be interpreted

as a prediction of that future value. Additional applications are hybrid numerical-experimental

systems [212], see also Chapter 5, and boundary value problems for DDAEs. ♣

Remark 3.14. Although the choice of t0 = 0 in Definition 3.10, respectively Definition 3.8, seems

arbitrary, it covers the situation that the support of f is in [t0,∞) for some t0 ∈ R. To see this,
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let (P (s),Q(s)) ∈ (︁
R[s]m×nx

)︁2 be a delay-regular pair of matrix polynomials and define g :=σ−t0
f .

Using Lemma 3.2 we obtain

g(−∞,0) =
(︂
σ−t0

f
)︂

(−∞,0)
=σ−t0

(︂
f(−∞,t0)

)︂
= 0

implying the existence of z ∈D
nx

pwC ∞ that satisfies

P

(︃
d

dt

)︃
z =Q

(︃
d

dt

)︃
στz + g .

Setting x :=σt0
z, Lemma 3.1 implies

P

(︃
d

dt

)︃
x =σt0

(︃
P

(︃
d

dt

)︃
z

)︃
=σt0

(︃
Q

(︃
d

dt

)︃
στz + g

)︃
=Q

(︃
d

dt

)︃
στx + f .

If ˜︁x ∈ D
nx

pwC ∞ is another solution of (3.9) satisfying ˜︁x(−∞,t0) = x(−∞,t0), then similar arguments as

before show x = ˜︁x. Using Proposition 3.12 we immediately conclude that the same arguments apply

to the initial time point in the ITP (3.10). ♣

As a consequence of Theorem 3.5, we obtain the following sufficient condition for delay-regularity

of the general DDAE (3.9) (cf. Corollary 2.20).

Theorem 3.15. Consider the ITP (3.10) with m = nx and det(P (s)) ̸≡ 0. Then for any past tra-

jectory x0 ∈D
nx

pwC ∞ and any inhomogeneity f ∈Dm
pwC ∞ , there exists a unique solution x ∈D

nx

pwC ∞

of (3.10). In particular, the DDAE (3.9) is delay-regular.

Proof. The result follows as a consequence of Corollary 2.20 and Theorem 3.5. For the sake of

completeness, we present the details here as well. Let P (s) =∑︁p
j=0 P j s j and Q(s) =∑︁q

j=0 Q j s j . Since

adding zero terms to P (s) does not alter the determinant of P (s), we may assume without loss of

general p = q +1. Then a standard companion form linearization of (3.9) yields the DDAE

E ż =A z +Dστz +F (3.11)

with E ,A ,D ∈R
m+(p−1)nx×pnx , given by

E =

⎡
⎢⎢⎢⎢⎢⎣

Pp 0 · · · 0

0 Inx

. . .
...

...
. . .

. . . 0

0 · · · 0 Inx

⎤
⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎣

−Pp−1 −Pp−2 · · · −P0

Inx
0 · · · 0

...
. . .

. . .
...

0 · · · Inx
0

⎤
⎥⎥⎥⎥⎦

, z =

⎡
⎢⎢⎢⎢⎢⎣

(︂
d

dt

)︂p−1
x

...
d

dt x

x

⎤
⎥⎥⎥⎥⎥⎦

,

D =

⎡
⎢⎢⎢⎢⎣

Qp−1 · · · Q0

0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

f

0
...

0

⎤
⎥⎥⎥⎥⎦

.
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Note that there exist (cf. [142]) unimodular matrix polynomials R(s) ∈R[s]m+(p−1)nx×m+(p−1)nx and

S (s) ∈R[s]pnx×pnx with

R(s)(sE −A )S (s) =
[︄
P (s) 0

0 I(p−1)nx

]︄
.

The proof now follows by the observation that there exists a constant c ̸= 0 with

0 ̸≡ det(P (s)) = c det(sE −A )

and application of Theorem 3.5 to (3.11). ■

If det(P (s)) ≡ 0 then we cannot apply Theorem 3.15. Instead, we want to use the condensed

form (2.27) from Theorem 2.24: there exist unimodular matrices U (s) ∈R[s]m×m , V (s) ∈R[s]nx×nx

such that

U (s)P (s)V (s) =

⎡
⎢⎣

ˆ︂P 11(s) 0 ˆ︂P 13(s)

0 0 ˆ︂P 23(s)

0 0 ˆ︂P 33(s)

⎤
⎥⎦ and U (s)Q(s)V (s) =

⎡
⎢⎣

ˆ︁Q11(s) ˆ︁Q12(s) ˆ︁Q13(s)

0 0 ˆ︁Q23(s)

0 0 ˆ︁Q33(s)

⎤
⎥⎦ ,

where ˆ︂P 11 is a nonsingular diagonal matrix, ˆ︂P 23, ˆ︂P 33, ˆ︁Q33 are block upper triangular matrices

with zero diagonal blocks and ˆ︁Q23 is a nonsingular block upper triangular matrix. We therefore

have to ensure that the transformation of (P (s),Q(s)) with unimodular matrices does not affect

delay-regularity.

Proposition 3.16. Consider a pair of matrix polynomials (P (s),Q(s)) ∈ (R[s]m×nx )2 and unimod-

ular matrices U (s) ∈R[s]m×m and V (s) ∈R[s]nx×nx . Let

ˆ︂P (s) :=U (s)P (s)V (s) and ˆ︁Q(s) :=U (s)Q(s),V (s).

Then (P (s),Q(s)) is delay-regular if, and only if (ˆ︂P (s), ˆ︁Q(s)) is delay-regular.

Proof. First note that it is sufficient to show one direction. Let ˆ︁f ∈Dm
pwC ∞ with support in [0,∞) and

consider
ˆ︂P

(︃
d

dt

)︃
ˆ︁x = ˆ︁Q

(︃
d

dt

)︃
στˆ︁x + ˆ︁f . (3.12)

Define f :=U
(︂

d
dt

)︂−1 ˆ︁f and observe that

f(−∞,0) =
(︃
U

(︃
d

dt

)︃−1
ˆ︁f
)︃

(−∞,0)
=

(︃
U

(︃
d

dt

)︃−1
ˆ︁f(−∞,0)

)︃

(−∞,0)
= 0.

Delay-regularity of (3.9) thus implies the existence of a solution x ∈ D
nx

pwC ∞ of (3.9). The choice

ˆ︁x = V
(︂

d
dt

)︂−1
x together with

ˆ︂P
(︃

d

dt

)︃
ˆ︁x =U

(︃
d

dt

)︃
P

(︃
d

dt

)︃
V

(︃
d

dt

)︃
x =U

(︃
d

dt

)︃(︃
Q

(︃
d

dt

)︃
στx + f

)︃
= ˜︁Q

(︃
d

dt

)︃
στˆ︁x + ˆ︁f .
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shows existence of a solution for (3.12). Assume now that ˆ︁x1, ˆ︁x2 ∈D
nx

pwC ∞ are solutions of (3.12) for

the same ˆ︁f ∈Dm
pwC ∞ satisfying (ˆ︁x1)(−∞,0) = (ˆ︁x2)(−∞,0). For i = 1,2 define xi := V

(︂
d

dt

)︂
ˆ︁xi and observe

that

P

(︃
d

dt

)︃
xi =U

(︃
d

dt

)︃−1
˜︂P

(︃
d

dt

)︃
ˆ︁xi =U

(︃
d

dt

)︃−1 (︃
˜︁Q

(︃
d

dt

)︃
στˆ︁xi + ˆ︁f

)︃
=Q

(︃
d

dt

)︃
στxi +U

(︃
d

dt

)︃−1
ˆ︁f .

Delay-regularity thus implies x1 = x2 and since V (s) is unimodular we conclude ˆ︁x1 = ˆ︁x2. ■

Theorem 3.17. Consider (P (s),Q(s)) ∈ (︁
R[s]m×nx

)︁2. Let U (s) ∈ R[s]m×m and V (s) ∈ R[s]nx×nx

be the unimodular matrices from Theorem 2.24. Define ˆ︂P (s) := U (s)P (s)V (s) ∈ R[s]m×nx and
ˆ︁Q(s) :=U (s)Q(s)V (s) ∈R[s]m×nx , i.e.,

ˆ︂P (s) =

⎡
⎢⎣

ˆ︂P 11(s) 0 ˆ︂P 13(s)

0 0 ˆ︂P 23(s)

0 0 ˆ︂P 33(s)

⎤
⎥⎦ , ˆ︁Q(s) =

⎡
⎢⎣

ˆ︁Q11(s) ˆ︁Q12(s) ˆ︁Q13(s)

0 0 ˆ︁Q23(s)

0 0 ˆ︁Q33(s)

⎤
⎥⎦ . (3.13)

Then the following statements are true.

(i) The pair (ˆ︂P 23(s), ˆ︁Q23(s)) is delay-regular.

(ii) The pair (ˆ︂P (s), ˆ︁Q(s)) is delay-regular if and only if the second column and the third block

row are not present.

(iii) The pair (P (s),Q(s)) is delay-regular if and only if (ˆ︂P (s), ˆ︁Q(s)) is delay-regular.

Before we present the proof of Theorem 3.17 let us revisit Example 3.9.

Example 3.18. Consider the DDAE from Example 3.9, i.e.,

P (s) =

⎡
⎢⎣

0 s 0

0 −1 s

0 0 −1

⎤
⎥⎦ and Q(s) =

⎡
⎢⎣

0 0 0

0 0 0

1 0 0

⎤
⎥⎦ .

We obtain
⎡
⎢⎣

0 1 s

0 0 1

1 s s2

⎤
⎥⎦P (s)

⎡
⎢⎣

0 0 1

1 0 0

0 1 0

⎤
⎥⎦=

⎡
⎢⎣

−1 0 0

0 −1 0

0 0 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 1 s

0 0 1

1 s s2

⎤
⎥⎦Q(s)

⎡
⎢⎣

0 0 1

1 0 0

0 1 0

⎤
⎥⎦=

⎡
⎢⎣

0 0 s

0 0 1

0 0 s2

⎤
⎥⎦ .

Clearly, the second block column and the third block-row in (3.13) are not present, such that

Theorem 3.17 implies that (P (s),Q(s)) is delay-regular. ♠

For the proof of Theorem 3.17 we first need the following technical result, which generalizes the

findings from Example 3.7.
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Lemma 3.19. Let Q(s) ∈R[s]nx×nx satisfy det(Q(s)) ̸≡ 0. Then the pair (0,Q(s)) is delay-regular.

In particular, for any f ∈D
nx

pwC ∞ with support in [0,∞) there exists x ∈D
nx

pwC ∞ with x(−∞,−τ) = 0

that satisfies the DDAE

0 =Q

(︃
d

dt

)︃
στx + f . (3.14)

Proof. Let f ∈ D
nx

pwC ∞ with support in [0,∞). Theorem 3.15 implies that there exists a unique

solution x ∈D
nx

pwC ∞ of the ITP

x(−∞,−τ) = 0,
(︃
Q

(︃
d

dt

)︃
x

)︃

[−τ,∞)
=−(︁

σ−τ f
)︁

[−τ,∞) ,
(3.15)

see also Remark 3.14. Lemmata 3.1 and 3.2 yield
(︃
Q

(︃
d

dt

)︃
στx

)︃

(−∞,0)
=στ

(︃
Q

(︃
d

dt

)︃
x

)︃

(−∞,−τ)
=στ

(︃
Q

(︃
d

dt

)︃
x(−∞,−τ)

)︃

(−∞,−τ)
= 0,

and
(︃
Q

(︃
d

dt

)︃
στx + f

)︃

[0,∞)
=στ

(︃
Q

(︃
d

dt

)︃
x +σ−τ f

)︃

[−τ,∞)
= 0,

showing that x satisfies the DDAE (3.14). Suppose now that x1, x2 ∈D
nx

pwC ∞ solve (3.14) and satisfy

(x1)(−∞,0) = (x2)(−∞,0). Then the difference ˜︁x := x1 −x2 satisfies

0 =Q

(︃
d

dt

)︃
στ˜︁x

and thus also the ITP (3.15) with f = 0. Theorem 3.15 implies ˜︁x = 0, which completes the proof. ■

Proof of Theorem 3.17.

(i) Since ˆ︂P 23(s) and ˆ︁Q23(s) are block upper triangular, we write (omitting s)

ˆ︂P 23 =

⎡
⎢⎢⎢⎢⎢⎣

0 ˜︂P 1,2 · · · ˜︂P 1,k
. . .

. . .
...

. . . ˜︂P k−1,k

0

⎤
⎥⎥⎥⎥⎥⎦

, ˆ︁Q23 =

⎡
⎢⎢⎣

˜︁Q1,1 · · · ˜︁Q1,k
. . .

...
˜︁Qk,k

⎤
⎥⎥⎦ , z =

⎡
⎢⎢⎣

z1
...

zk

⎤
⎥⎥⎦ , g =

⎡
⎢⎢⎣

g1
...

gk

⎤
⎥⎥⎦ ,

and study the DDAE

ˆ︂P 23

(︃
d

dt

)︃
z = ˆ︁Q23

(︃
d

dt

)︃
στz + g

with g(−∞,0) = 0. Since ˆ︁Q23(s) is nonsingular, we conclude that ˜︁Qi ,i (s) is nonsingular for all

i = 1, . . . ,k. In particular, Lemma 3.19 implies that (0, ˜︁Qk,k (s)) is delay-regular, i.e., there exists

zk with
(︁
zk

)︁
(−∞,−τ) = 0 satisfying

0 = ˜︁Qk,k

(︃
d

dt

)︃
στzk + gk .
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Substituting zk into the (k −1)th block equation yields the DDAE

0 = ˜︁Qk−1,k−1

(︃
d

dt

)︃
στzk−1 + ˜︁gk−1

with ˜︁gk−1 := gk−1 − ˜︂P k−1,k

(︂
d

dt

)︂
zk + ˜︁Qk−1,k

(︂
d

dt

)︂
στzk . Having

(︁˜︁gk−1

)︁
(−∞,−τ) =−

(︃
˜︂P k−1,k

(︃
d

dt

)︃(︁
zk

)︁
(−∞,−τ) + ˜︁Qk−1,k

(︃
d

dt

)︃
στ

(︂(︁
zk

)︁
(−∞,−2τ)

)︂)︃

(−∞,−τ)
= 0,

we conclude with the same line of arguing that
(︄[︄

0 ˜︂P k−1,k (s)

0 0

]︄
,

[︄ ˜︁Qk−1,k−1(s) ˜︁Qk−1,k (s)

0 ˜︁Qk,k (s)

]︄)︄

is delay-regular. Repeating this process shows that (ˆ︂P 2,3(s), ˆ︁Q2,3(s)) is delay-regular.

(ii) For f̂ T =
[︂

f̂ T
1 f̂ T

2 f̂ T
3

]︂
consider the DDAE

ˆ︂P
(︃

d

dt

)︃
x̂ = ˆ︁Q

(︃
d

dt

)︃
στx̂ + f̂ . (3.16)

Since (ˆ︂P 23(s), ˆ︁Q23(s)) is delay-regular, there exists x̂3 satisfying

ˆ︂P 23

(︃
d

dt

)︃
x̂3 = ˆ︁Q23

(︃
d

dt

)︃
στx̂3 + f̂2. (3.17)

Assume first that (ˆ︂P (s), ˆ︁Q(s)) is delay-regular. Setting

f̂3 := ˆ︂P 33

(︃
d

dt

)︃
x̂3 − ˆ︁Q33

(︃
d

dt

)︃
x̂3 + 1[0,∞)

⎡
⎢⎢⎣

1
...

1

⎤
⎥⎥⎦

yields 0 = 1[0,∞), which is true only if the third block row is not present. In addition, for any x̂2,

and any x̂0
1 the ITP

(x̂1)(−∞,0) = (x̂0
1)(−∞,0),(︃

ˆ︂P 11

(︃
d

dt

)︃
x̂1

)︃

[0,∞)
=

(︃
ˆ︁Q11

(︃
d

dt

)︃
στx̂1 + g

)︃

[0,∞)

(3.18)

with g := f̂1 − ˆ︂P 13

(︂
d

dt

)︂
x̂3 + ˆ︁Q12

(︂
d

dt

)︂
στx̂2 + ˆ︁Q13

(︂
d

dt

)︂
στx̂3 has a unique solution (cf. Theo-

rem 3.15). In particular we can choose (x̂2)[0,∞) arbitrarily and thus the delay-regularity of

(ˆ︂P (s), ˆ︁Q(s)) implies that the second block column is not present. Conversely, assume

ˆ︂P (s) =
[︄ˆ︂P 11(s) ˆ︂P 13(s)

0 ˆ︂P 23(s)

]︄
, ˆ︁Q(s) =

[︄ ˆ︁Q11(s) ˆ︁Q13(s)

0 ˆ︁Q23(s)

]︄
.

We have already established that there exists x̂3 solving (3.17). Additionally, the ITP (3.18) has

a unique solution for any initial trajectory x̂0
1 and thus (ˆ︂P (s), ˆ︁Q(s)) is delay-regular.

(iii) This is a consequence of Proposition 3.16. ■
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Theorem 3.20. The pair (P (s),Q(s)) is delay-regular if and only if m = nx and there exists s,ω ∈C

with

det(P (s)−ωQ(s)) ̸= 0. (3.19)

In particular, if m < nx then the ITP (3.10) possesses a nontrivial solution x ∈D
nx

pwC ∞ with f = 0

and x(−∞,0) = 0. If instead m ≥ nx and rank(P (s)−ωQ(s)) < m for all s,ω ∈C then there exists an

f ∈Dm
pwC ∞ for which the ITP (3.10) has no solution.

Proof. Theorem 3.17 implies that (3.9) is delay-regular if and only if the second block column and

the third block row in (2.27) do not appear. We obtain

det(P (s)−ωQ(s)) = c det(ˆ︂P (s)−ω ˆ︁Q(s))

= c det
(︁ˆ︂P 11(s)−ω ˆ︁Q11(s)

)︁
det

(︁ˆ︂P 23(s)−ω ˆ︁Q23(s)
)︁

,

with c := det(U (s))−1 det(V (s))−1 ̸= 0. Using the notation from the proof of Theorem 3.17 we obtain

det
(︁ˆ︂P 23(s)−ω ˆ︁Q23(s)

)︁=
k∏︂

i=1
det

(︁−ω ˜︁Qi ,i (s)
)︁= (−ω)ρ

k∏︂
i=1

det( ˜︁Qi ,i (s)) ̸≡ 0,

since ˜︁Qi ,i (s) is nonsingular for i = 1, . . . ,k. Hereby, ρ denotes the dimension of the square ma-

trix ˆ︁Q23(s). The nonsingularity of ˆ︂P 11(s) thus shows that the delay-regularity of (P (s),Q(s)) implies

(3.19). For the converse direction we observe that (3.19) immediately implies that the second block

column cannot be present. From nx = m we infer that also the third block row cannot be present,

such that Theorem 3.17 implies delay-regularity of (P (s),Q(s)). For the remaining assertions notice

that m < nx implies that the second block column appears in (2.27). On the other hand, if m ≥ nx

and

rankR[s,ω](P (s)−ωQ(s)) < m,

then we conclude that the third block-row in (2.27) is present. The result follows from the proof of

Theorem 3.17 (ii). ■

Applying Theorem 3.20 to the DDAE (3.2) we obtain the following corollary.

Corollary 3.21. The triplet (E , A1, A2) is delay-regular if and only if m = nx and there exists s,ω ∈C

with

det(sE − A1 −ωA2) ̸= 0. (3.20)

In particular, if m < nx then the ITP (3.4) possesses a nontrivial solution x ∈ D
nx

pwC ∞ with f = 0

and x(−∞,0) = 0. If instead m ≥ nx and rank(P (s)−ωQ(s)) < m for all s,ω ∈C then there exists an

f ∈Dm
pwC ∞ for which the ITP (3.4) has no solution.

Remark 3.22. The statements of Theorem 3.20 and Corollary 3.21 are a generalization of Theo-

rem 2.7 to DDAEs. ♣
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Let us emphasize that for delay-regularity we require existence of solutions for all f ∈ Dm
pwC ∞ .

Consequently, the ITP (3.10) may possess a unique solution even if (P (s),Q(s)) is not delay-regular.

Consider for instance the DDAE

0 =Q

(︃
d

dt

)︃
στx +

[︄
f

ḟ

]︄
(3.21)

with Q(s) := [︁
1
s

]︁
and f ∈ DpwC ∞ . Theorem 3.20 immediately implies that (0,Q(s)) is not delay-

regular. Still, the unique solution of (3.21) is given by x =−σ−τ f .

Remark 3.23. Equation (3.21) contradicts [96, Cor. 2 and Cor. 3], which claim that whenever a

solution of the ITP (3.10) exists it is unique only if m = nx and (3.19) holds. Note that in view of the

condensed form (2.27), uniqueness is related to the (non-)existence of the second block column,

while existence is related to the (non-)existence of the third block row. ♣

3.2 Interlude: Feedback regularization of DAEs with delay

A standard control concept uses feedback, i.e., the control law depends on the current state or output

of the system (see for instance Section 1.1.2). For linear time-invariant systems of the form

E ẋ = A1x +Bu + f ,

y =C x
(3.22)

where B ∈R
m×nu , C ∈R

ny×nx , u is the nu-dimensional input, and y is the ny -dimensional output, a

simple feedback law takes the form

u = F y = FC x (3.23)

for some feedback matrix F ∈R
nu×ny . The closed-loop system is thus given by the DAE

E ẋ = (︁
A1 +BFC

)︁
x + f , (3.24)

showing that the feedback can be used to alter system properties. For instance, suppose that

(E , A1) ∈ (︁
R

nx×nx
)︁2 is singular. We say that is is possible to regularize (3.22), if there exists some

F ∈R
nu×ny such that the pencil (E , A1 +BFC ) is regular. In fact the following result from [76] holds.

Lemma 3.24. Consider the DAE (3.22) with m = nx . There exists F ∈R
nu×ny such that the closed-

loop system (E , A1 +BFC ) is regular if and only if

rank
(︂[︂

λE − A1 B
]︂)︂

= rank

(︄[︄
λE − A1

C T

]︄)︄
= nx

for some λ ∈C.

Although instantaneous feedback is a convenient theoretical approach, it is usually not imple-

mentable, in particular, when the signals have to be measured first, and some calculations have to
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be carried out, thus resulting in an intrinsically necessary time delay. We therefore are interested

whether we can regularize (3.22) with a delayed feedback

u = Fστy = FCστx, (3.25)

i.e., if we can find F ∈R
nu×ny such that (sE − A1,BC F ) is delay-regular. As important consequence

of Theorem 3.20, respectively Corollary 3.21, we obtain the following result.

Theorem 3.25. For m = nx consider the descriptor system (3.22). There exists F ∈ R
nu×ny such

that (E , A1 +BFC ) is regular if and only if there exists ˆ︁F ∈ R
nu×ny such that (sE − A1,B ˆ︁FC ) is

delay-regular.

Proof. Assume first that there exists F ∈R
nu×ny such that (E , A1 +BFC ) is regular. Then we have

nx = rankR[s](sE − A1 −BFC ) ≤ rankR[s,ω](sE − A1 −ωBFC ) ≤ nx ,

i. e., (sE − A1,BFC ) is delay-regular. On the other hand, assume the existence of ˆ︁F ∈ R
nu×ny such

that (sE − A1,B ˆ︁FC ) is delay-regular. Then there exists ˆ︁ω ∈R such that

det(sE − A1 − ˆ︁ωB ˆ︁FC ) ̸≡ 0.

The choice F = ˆ︁ωˆ︁F guarantees that (E , A1 +BFC ) is regular. ■

The proof of Theorem 3.25 details that for any feedback matrix F ∈R
nu×ny that renders the pencil

(E , A1+BFC ) regular, also the triplet (E , A1,BFC ) is delay-regular. The converse direction is however

not true, as we can see from the following example:

Example 3.26. Consider the scalar DAE (3.22) with E = 0, A1 = 1, B = 1, and C = 1. For ˆ︁F = −1

the pair of matrix polynomials (sE − A1,B ˆ︁FC ) = (−1,−1) is delay-regular. However, the pencil

(E , A1 +B ˆ︁FC ) = (0,0) is not regular. ♠

The reason for the behavior in Example 3.26 is due to the fact that the limit τ→ 0 (implying ω→ 1)

may be singular, as for example pointed out in [214] in terms of stability of a neutral delay differential

equation (DDE).

Corollary 3.27. For m = nx consider the descriptor system (3.22). Then there exists a feedback

matrix F ∈R
nu×ny such that (sE − A1,BFC ) is delay-regular if and only if

rank
[︂
λE − A1 B

]︂
= rank

[︄
λE − A1

C

]︄
= nx

for some λ ∈C.

Proof. The proof follows from Theorem 3.25 and [76, Thm. 2]. ■
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3.3 Delay-equivalence and the compress-and-shift algorithm

In the proof of the delay-regularity of (ˆ︂P 23(s), ˆ︁Q23) in Theorem 3.17 (i), we used Lemma 3.19 to

construct a solution of the associated ITP. The key idea in the proof of Lemma 3.19 is to shift the

equations to obtain a transformed DDAE (˜︂P (s), ˜︁Q(s)) with det(˜︂P (s)) ̸≡ 0. To formalize this idea, we

introduce the notion of delay-equivalence.

Definition 3.28. Two pairs of matrix polynomials (P (s),Q(s)), (˜︂P (s), ˜︁Q(s)) ∈ (R[s]m×nx )2 are called

delay-equivalent if and only if there exists a bijective map T : Dm
pwC ∞ → Dm

pwC ∞ such that for all

(x, f ) ∈D
nx

pwC ∞ ×Dm
pwC ∞ and ˜︁f :=T f the equivalence

P

(︃
d

dt

)︃
x =Q

(︃
d

dt

)︃
στx + f ⇐⇒ ˜︂P

(︃
d

dt

)︃
x = ˜︁Q

(︃
d

dt

)︃
στx + ˜︁f

holds. In this case we write (P (s),Q(s)) d∼ (˜︂P (s), ˜︁Q(s)). We say that two DDAEs are delay-equivalent

if the associated matrix polynomials are delay-equivalent.

It is easy to verify that delay-equivalence is indeed an equivalence relation. We note that delay-

equivalence is a property of a distributional DDAE and delay-regularity is a property of an ITP.

Hence we first have to establish a relation between delay-equivalence and delay-regularity.

Proposition 3.29. Consider pairs of matrix polynomials (P (s),Q(s)), (˜︂P (s), ˜︁Q(s)) ∈ (R[s]nx×nx )2

and assume (P (s),Q(s)) d∼ (˜︂P (s), ˜︁Q(s)). Then the pair (P (s),Q(s)) is delay-regular if and only if

the pair (˜︂P (s), ˜︁Q(s)) is delay-regular.

Proof. First, let (˜︂P (s), ˜︁Q(s)) be delay-regular. Assume that (P (s),Q(s)) is not delay-regular. Let

(U (s),V (s)) denote the matrices from Theorem 2.24 that transform (P (s),Q(s)) to the condensed

form (2.27), i.e.,

U (s)P (s)V (s) =

⎡
⎢⎣

ˆ︂P 11(s) 0 ˆ︂P 13(s)

0 0 ˆ︂P 23(s)

0 0 ˆ︂P 33(s)

⎤
⎥⎦ and U (s)Q(s)V (s) =

⎡
⎢⎣

ˆ︁Q11(s) ˆ︁Q12(s) ˆ︁Q13(s)

0 0 ˆ︁Q23(s)

0 0 ˆ︁Q33(s)

⎤
⎥⎦ ,

where ˆ︂P 11(s) is a nonsingular diagonal matrix, ˆ︂P 23(s), ˆ︂P 33(s), ˆ︁Q33(s) are block upper triangular

matrices with zero diagonal blocks and ˆ︁Q23(s) is a nonsingular block upper triangular matrix. Note

that m = nx implies that the second block column and the third block row are both present. Let

f̃ ∈D
nx

pwC ∞ with support in [0,∞). Since (˜︂P (s), ˜︁Q(s)) is delay-regular, there exists x̃ ∈D
nx

pwC ∞ solving

the DDAE

˜︂P
(︃

d

dt

)︃
x̃ = ˜︁Q

(︃
d

dt

)︃
στx̃ + f̃ . (3.26)

By assumption x̃ is a solution of

P

(︃
d

dt

)︃
x̃ =Q

(︃
d

dt

)︃
στx̃ +T −1 f̃ .
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Define

x :=

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ := V

(︃
d

dt

)︃−1

x̃ and

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ :=U

(︃
d

dt

)︃
T −1 f̃ .

Define x̂2 := x2 + 1[1,∞) and let x̂1 be the unique solution (cf. Theorem 3.15) of the ITP

(︁
x̂1

)︁
(−∞,0) =

(︁
x1

)︁
(−∞,0) ,

(︃
ˆ︂P 11

(︃
d

dt

)︃
x̂1

)︃

[0,∞)
=

(︃
ˆ︁Q11

(︃
d

dt

)︃
στx̂1 + ˆ︁Q12

(︃
d

dt

)︃
στx̂2 + ˆ︁Q13

(︃
d

dt

)︃
στx3 − ˆ︂P 13

(︃
d

dt

)︃
x3 + f1

)︃

[0,∞)
.

Define

x̌ := V

(︃
d

dt

)︃
⎡
⎢⎣

x̂1

x̂2

x3

⎤
⎥⎦ .

By construction (and Lemma 2.22) we obtain x̌(−∞,0) = x̂(−∞,0), x̌ ̸= x̂, and

P

(︃
d

dt

)︃
x̌ =Q

(︃
d

dt

)︃
στx̌ +T −1 f̃ .

Delay-equivalence implies that x̌ is another solution of the ITP (3.26) contradicting the delay-

regularity of (˜︂P (s), ˜︁Q(s)). Thus (P (s),Q(s)) is delay-regular. Interchanging the roles of (˜︂P (s), ˜︁Q(s))

and (P (s),Q(s)) shows the converse direction. ■

Analyzing the situation in Lemma 3.19, respectively in Theorem 3.17 (ii) showcases that we shift

equations if they depend solely on delayed variables. If the equations are not yet in such a form, one

first has to transform them, for instance with a rank-revealing decomposition of P (s).

Lemma 3.30. For (P (s),Q(s)) ∈ (R[s]m×nx )2 and inhomogeneity f ∈Dm
pwC ∞ choose a unimodular

matrix U (s) =
[︂

U1(s)
U2(s)

]︂
∈R[s]m×m such that

U (s)P (s) =:

[︄
P1(s)

0

]︄
, U (s)Q(s) =:

[︄
Q1(s)

Q2(s)

]︄
,

where P1(s),Q1(s) ∈R[s]k×nx with rankR[s]

(︁
P1(s)

)︁= k. Then the DDAE (3.9) is delay-equivalent

to the partially time-shifted DDAE

P1

(︃
d

dt

)︃
x =Q1

(︃
d

dt

)︃
στx + f1,

Q2

(︃
d

dt

)︃
x =−σ−τ f2

(3.27)

with
[︂

f1
f2

]︂
:=U ( d

dt ) f . In particular, (P (s),Q(s)) is delay-regular if and only if
(︂[︂

P1(s)
Q2(s)

]︂
,
[︁

Q1(s)
0

]︁)︂
is

delay-regular.
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Proof. Assume that (x, f ) ∈D
nx

pwC ∞ ×Dm
pwC ∞ satisfies the DDAE (3.9). Multiplication of (3.9) from

the left with U
(︂

d
dt

)︂
shows that

(︂
x,U

(︂
d

dt

)︂
f
)︂

solves

P1

(︃
d

dt

)︃
x =Q1

(︃
d

dt

)︃
στx + f1,

0 =Q2

(︃
d

dt

)︃
στx + f2.

(3.28)

Since U (s) is unimodular we can reverse the transformation such that (3.28) is delay-equivalent

to (3.9). Applying a negative time-shift σ−τ on the second equation and taking into account that

differentiation and shifting commute (cf. Lemma 3.1) we obtain the DDAE

P1

(︃
d

dt

)︃
x =Q1

(︃
d

dt

)︃
στx + f1

Q2

(︃
d

dt

)︃
x = f̄2

where f̄2 :=−σ−τ f2. Clearly, the transformation of the inhomogeneity is reversible, hence this DDAE

is delay-equivalent to (3.9). ■

The previous results suggest to perform a simple compress-and-shift algorithm (see for instance

[53, 206]) to determine whether a DDAE is delay-regular or not: If P (s) is rank deficient, perform a

row compression of P (s). If Q2(s) is rank deficient, then the DDAE is not delay-regular. Otherwise

shift Q2(s) and restart the algorithm with the transformed matrix polynomials. The details are

outlined in Algorithm 1. Lemma 3.30 ensures that Algorithm 1 constructs a sequence of delay-

equivalent polynomial matrix pairs (Pν(s),Qν(s)) ∈ (R[s]m×nx )2.

Lemma 3.31. Assume that Algorithm 1 terminates after ν iterations for the polynomial matrix

pair (P (s),Q(s)) ∈R[s]nx×nx . Then the pair of polynomial matrices (P (s),Q(s)) is delay-regular if

and only if kν = nx .

Proof. If kν = nx , then det(Pν(s)) ̸≡ 0 and thus Theorem 3.15 implies that (Pν(s),Qν(s)) is delay-

regular. Using Proposition 3.29 we conclude that (P (s),Q(s)) is delay-regular. Conversely, assume

kν < nx . Then

rankR[s,w]

(︁
Pν(s)−ωQν(s)

)︁= rankR[s,w]

(︄[︄
Pν,1(s)

0

]︄
−ω

[︄
Qν,1(s)

0

]︄)︄
= kν < nx .

Thus, Theorem 3.20 implies that (Pν(s),Qν(s)) is not delay-regular, which completes the proof. ■

Example 3.32. Consider the matrix polynomials

P (s) =
[︄

s2 0

0 0

]︄
and Q(s) =

[︄
0 s −1

s 0

]︄
.
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Algorithm 1 Compress-and-shift

Input: P (s),Q(s) ∈R[s]m×nx

1: Set ν= 1 and Pν(s) :=P (s), Qν(s) :=Q(s).

2: Choose unimodular

Uν(s) =

⎡
⎢⎣

Uν,1(s)

Uν,2(s)

Uν,3(s)

⎤
⎥⎦ ∈R[s]m×m with matrix polynomials

⎧
⎪⎨
⎪⎩

Uν,1(s) ∈R[s]kν×m ,

Uν,2(s) ∈R[s]ρν×m ,

Uν,3(s) ∈R[s]m−kν−ρν×m ,

(3.29)

such that

Uν(s)Pν(s) =:

⎡
⎢⎣

Pν,1(s)

0

0

⎤
⎥⎦ and Uν(s)Qν(s) =:

⎡
⎢⎣

Qν,1(s)

Qν,2(s)

0

⎤
⎥⎦ ,

where Pν,1(s) :=Uν,1(s)Pν(s) ∈ R[s]kν×nx and Qν,2(s) :=Uν,2(s)Qν(s) ∈ R[s]ρν×nx have full row

rank.

3: if ρν = 0 then

4: terminate

5: else

6: Set Pν+1(s) =
[︂

Pν,1(s)
Qν,2(s)

]︂
and Qν+1(s) =

[︂
Qν,1(s)

0

]︂
.

7: Set ν← ν+1.

8: Go to Line 2

9: end if
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Applying Algorithm 1 to (P (s),Q(s)) yields U1(s) = I with Q1,2(s) =
[︂

s 0
]︂

in Line 2. We obtain

P2(s) =
[︄

s2 0

s 0

]︄
, Q2(s) =

[︄
0 s −1

0 0

]︄
, U2(s) =

[︄
0 1

1 −s

]︄
,

and ρ2 = 1. The new matrix polynomials

P3(s) =
[︄

s 0

0 s −1

]︄
and Q3(s) =

[︄
0 0

0 0

]︄

satisfy rankR[s]

(︁
P3(s)

)︁= 2 = nx and thus Lemma 3.31 implies that (P (s),Q(s)) is delay-regular. ♠

Example 3.33. Applying Algorithm 1 to the matrix polynomials

P (s) =

⎡
⎢⎣

s 1 0

s 0 s2

s2 s 0

⎤
⎥⎦ and Q(s) =

⎡
⎢⎣

0 0 s

0 0 0

−s 0 0

⎤
⎥⎦

results in the sequence

U1(s) =

⎡
⎢⎣

1 0 0

0 1 0

−s 0 1

⎤
⎥⎦ , U1(s)P1(s) =

⎡
⎢⎣

s 1 0

s 0 s2

0 0 0

⎤
⎥⎦ , U1(s)Q1(s) =

⎡
⎢⎣

0 0 s

0 0 0

−s 0 −s2

⎤
⎥⎦

U2(s) =

⎡
⎢⎣

1 0 0

0 1 0

0 1 1

⎤
⎥⎦ , U2(s)P2(s) =

⎡
⎢⎣

s 1 0

s 0 s2

0 0 0

⎤
⎥⎦ , U2(s)Q2(s) =

⎡
⎢⎣

0 0 s

0 0 0

0 0 0

⎤
⎥⎦ ,

such that Algorithm 1 terminates with ν= 2. From Lemma 3.31 we deduce that (P (s),Q(s)) is not

delay-regular. ♠

The important assumption in Lemma 3.31 is that Algorithm 1 terminates after a finite number of

steps. We immediately observe that by construction

rankR[s](Pν+1(s)) ≥ rankR[s](Pν(s)), (3.30a)

rankR[s](Qν+1(s)) ≤ rankR[s](Qν(s)). (3.30b)

If in each iteration of Algorithm 1 one of these inequalities is strict, then Algorithm 1 terminates after

a finite number of iterations. Or equivalently, Algorithm 1, does not terminate if and only if after

finitely many iterations the ranks in (3.30) remain constant in all further iterations of the algorithm.

The following example shows that this indeed can happen.

Example 3.34. Consider the input data

P (s) =
[︄

s 1

s2 s

]︄
, Q(s) =

[︄
−s −1

0 0

]︄
,
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for Algorithm 1. We obtain

U1(s) =
[︄

1 0

−s 1

]︄
, P2(s) =

[︄
s 1

s2 s

]︄
=P (s), Q2(s) =

[︄
−s −1

0 0

]︄
=Q(s).

Hence each iteration of Algorithm 1 works with the same pair of polynomial matrices and conse-

quently Algorithm 1 does not terminate. ♠

From this example one may conjecture that once the ranks in (3.30) remain constant, they also will

remain constant in future iterations so that at least the algorithm can be terminated with a warning.

Unfortunately, this is not true as the following example shows.

Example 3.35. Applying Algorithm 1 to the matrices

P (s) =

⎡
⎢⎣

s 0 0

0 0 1

0 0 0

⎤
⎥⎦ and Q(s) =

⎡
⎢⎣

0 0 1

0 1 0

0 0 1

⎤
⎥⎦

yields in the first iteration

U1(s) =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ , P2(s) =

⎡
⎢⎣

s 0 0

0 0 1

0 0 1

⎤
⎥⎦ Q2(s) =

⎡
⎢⎣

0 0 1

0 1 0

0 0 0

⎤
⎥⎦ .

Note that neither of the rank inequalities in (3.30) is strict. However, we continue with

U2(s) =

⎡
⎢⎣

1 0 0

0 0 1

0 1 −1

⎤
⎥⎦ , P3(s) =

⎡
⎢⎣

s 0 0

0 0 1

0 1 0

⎤
⎥⎦ , Q3(s) =

⎡
⎢⎣

0 0 1

0 0 0

0 0 0

⎤
⎥⎦

and conclude that (P (s),Q(s)) is delay-regular. ♠

Another issue with Algorithm 1 is that the rank-revealing decomposition (3.29) is not unique and

that the non-uniqueness of Uν(s) may influence the termination of Algorithm 1 as the following

examples illustrates.

Example 3.36. Consider the matrix polynomials

P (s) =
[︄

1 1

1 1

]︄
, Q(s) =

[︄
−1 −1

0 0

]︄
.

Picking Uν(s) = [︁
1 0
−1 1

]︁
we obtain for all ν ∈ N the equality (Pν(s),Qν(s)) = (P (s),Q(s)) and conse-

quently ρν = 1 for all ν ∈ N . If we use U1(s) = [︁
0 1
1 −1

]︁
we obtain

P2(s) =
[︄

1 1

1 1

]︄
, Q2(s) =

[︄
0 0

0 0

]︄

and thus ρ3 = 0 and thus Algorithm 1 terminates with k2 = 1 < 2 = nx . ♠
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To summarize the previous discussion there are two major issues with Algorithm 1:

(i) It may happen that the algorithm does not terminate and

(ii) the choice of Uν(s) may influence the termination of the algorithm.

From (3.30) we immediately observe that the algorithm fails to terminate if and only if there exists

an index ν̃ ∈N such that

rankR[s](Pν(s)) = rankR[s](P ν̃(s)), (3.31a)

rankR[s](Qν(s)) = rankR[s](Qν̃(s)) (3.31b)

for all ν≥ ν̃ and rankR[s](Pν(s)) < m. The following theorem details that this cannot happen if the

DDAE (3.9) is delay-regular.

Theorem 3.37. Algorithm 1 terminates for any delay-regular DDAE (3.9). In particular, the

DDAE (3.9) is delay-equivalent to a DDAE

˜︂P
(︃

d

dt

)︃
x = ˜︁Q

(︃
d

dt

)︃
στx + ˜︁f

with det(˜︂P (s)) ̸≡ 0.

In order to prove Theorem 3.37 we observe that it suffices to apply Algorithm 1 directly to the

condensed polynomial matrices (2.27). Since we assume that the DDAE (3.9) is delay-regular, we

can simplify (2.27) as follows.

Lemma 3.38. Consider a delay-regular pair of matrix polynomials (P (s),Q(s)) ∈ (R[s]nx×nx )2.

There exist unimodular matrices U (s),V (s) ∈R[s]nx×nx such that

U (s)P (s)V (s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1,1(s) P1,2(s) · · · · · · P1,k (s)

0 0 P2,3(s) · · · P2,k (s)
...

...
. . .

. . .
...

...
...

. . . Pk−1,k (s)

0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.32a)

U (s)Q(s)V (s) =

⎡
⎢⎢⎢⎢⎣

Q1,1(s) Q1,2(s) · · · Q1,k (s)

0 Q2,2(s) · · · Q2,k (s)
...

. . .
. . .

...

0 · · · 0 Qk,k (s)

⎤
⎥⎥⎥⎥⎦

(3.32b)

where P1,1(s), Qi ,i (s) for i = 2, . . . ,k are nonsingular and the matrices P i ,i+1(s) have full row rank

for i = 2, . . . ,k −1.

Proof. The form (3.32) follows directly from Theorem 2.24 and Theorem 3.17 (ii) with nonsingular

blocks P1,1(s), Qi ,i (s) for i = 2, . . . ,k. Let j ∈ {2, . . . ,k −1} denote the largest number such that the
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polynomial matrix P j , j+1(s) does not have full row rank. Then there exists a unimodular matrix

U j (s) such that

U j (s)P j , j+1(s) =
[︄ˆ︂P j , j+1(s)

0

]︄

where ˆ︂P j , j+1(s) has full row rank. Since Q j , j (s) is nonsingular, there exists a unimodular matrix

V j (s) such that

U j (s)Q j , j (s)V j (s) =
[︄
Q̆ j , j (s) Q̌ j , j (s)

0 Q̃ j , j (s)

]︄

with nonsingular matrices Q̆ j , j (s) and ˜︁Q j , j (s). For the corresponding sub block matrices in (3.32)

we thus obtain

⎡
⎣U j (s)

Id

⎤
⎦

⎡
⎣ 0 P j , j+1(s)

0

⎤
⎦

⎡
⎣V j (s)

Id

⎤
⎦=

⎡
⎢⎢⎢⎣

0 0 ˆ︂P j , j+1(s)

0 0

0 0

⎤
⎥⎥⎥⎦

and

⎡
⎣U j (s)

Id

⎤
⎦

⎡
⎣ Q j , j (s) Q j , j+1(s)

Q j+1, j+1(s)

⎤
⎦

⎡
⎣V j (s)

Id

⎤
⎦=

⎡
⎢⎢⎢⎣

Q̆ j , j (s) Q̌ j , j (s) Q̌ j , j+1(s)

0 Q̃ j , j (s) Q̃ j , j+1(s)

0 Q j+1, j+1(s)

⎤
⎥⎥⎥⎦ ,

where clearly the blocks have the desired properties. Repeating this procedure for the remaining

rank defective blocks yields the desired result. ■

Proof of Theorem 3.37. It suffices to show that we can ensure that the situation in (3.31) cannot

happen. Lemma 3.38 implies that applying Algorithm 1 to (3.32) yield a shift of the last block row.

After shifting the last block row in (3.32), we observe that the compression step affects only the last

two rows. Since Pk−1,k (s) has full row rank, this implies that there exists a unimodular matrix

ˆ︂U (s) =
[︄
Û1(s) Û2(s)

Û3(s) Û4(s)

]︄
with ˆ︂U (s)

[︄
Pk−1,k (s)

Qk,k (s)

]︄
=

[︄
0

ˆ︁Qk,k (s)

]︄
.

Since Pk−1,k (s) has full row rank and Qk,k (s) is nonsingular, we conclude that Û1(s) has full row

rank implying that Û1(s)Qk−1,k−1(s) is nonsingular. We can thus repeat the above procedure with

the submatrices that are obtained by removing the last block column and last block row. Proceeding

iteratively, we conclude that Algorithm 1 terminates after k −1 shifts. ■

Remark 3.39. Suppose that the DDAE (3.1a) is delay-regular. Then Theorem 3.37 implies that

Algorithm 1 constructs a delay-equivalent DDAE

˜︂P
(︃

d

dt

)︃
x = ˜︁Q

(︃
d

dt

)︃
στx + ˜︁f
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with det(˜︂P (s)) ̸≡ 0. Performing a first-order reformulation as for instance in the proof of Theo-

rem 3.15 yields a DDAE

E ż =A1z +A2στz +F

with regular matrix pencil (E ,A1). ♣

Let us emphasize that shifting enlarges the set of feasible initial trajectories for the ITP, and thus

solutions of the ITP for the partially time-shifted DDAE (3.27) may not be solutions of the original

ITP, see for instance [212, Ex. 4.7].

Lemma 3.40. Let the notation be as in Lemma 3.30 and set

˜︂P (s) :=
[︄
P1(s)

Q2(s)

]︄
, ˜︁Q(s) :=

[︄
Q1(s)

0

]︄
.

For f ∈Dm
pwC ∞ and x0 ∈D

nx

pwC ∞ define

fITP := f[0,∞) +
(︃
P

(︃
d

dt

)︃
x0 −Q

(︃
d

dt

)︃
στx0

)︃

(−∞,0)
, f̃ITP :=

⎡
⎣ U1

(︂
d

dt

)︂
fITP

−σ−τU2

(︂
d

dt

)︂
fITP

⎤
⎦ , f̃ := ( f̃ITP)[0,∞).

Assume that x ∈D
nx

pwC ∞ is a solution of the ITP

x(−∞,0) = x0
(−∞,0),(︃

˜︂P
(︃

d

dt

)︃
x

)︃

[0,∞)
=

(︃
˜︁Q

(︃
d

dt

)︃
στx + f̃

)︃

[0,∞)
.

If x0 satisfies (︃
U2

(︃
d

dt

)︃
Q

(︃
d

dt

)︃
στx0

)︃

[0,τ)
=−

(︃
U2

(︃
d

dt

)︃
fITP

)︃

[0,τ)
, (3.33)

then x is a solution of the ITP (3.10).

Proof. From the definition of f̃ we immediately obtain

(︁
f̃ITP

)︁
[0,∞) = f̃ = f̃[0,∞).

Further, Lemma 2.22 implies

(︃
U1

(︃
d

dt

)︃
fITP

)︃

(−∞,0)
=

(︃
P1

(︃
d

dt

)︃
x0 −Q1

(︃
d

dt

)︃
στx0

)︃

(−∞,0)
,

(︃
U2

(︃
d

dt

)︃
fITP

)︃

(−∞,0)
=−

(︃
Q2

(︃
d

dt

)︃
στx0

)︃

(−∞,0)
,

such that (3.33) yields

(︃
U2

(︃
d

dt

)︃
fITP

)︃

(−∞,τ)
=−

(︃
Q2

(︃
d

dt

)︃
στx0

)︃

(−∞,τ)
.



64 CHAPTER 3. DISTRIBUTIONAL SOLUTIONS FOR LINEAR TIME-INVARIANT DDAES

Thus Lemma 3.2 implies

(︁
f̃ITP

)︁
(−∞,0) =

⎡
⎣ U1

(︂
d

dt

)︂
fITP

−σ−τU2

(︂
d

dt

)︂
fITP

⎤
⎦

(−∞,0)

=
⎡
⎣P1

(︂
d

dt

)︂
x0 −Q1

(︂
d

dt

)︂
στx0

Q2

(︂
d

dt

)︂
x0

⎤
⎦

(−∞,0)

=
(︃
˜︂P

(︃
d

dt

)︃
x − ˜︁Q

(︃
d

dt

)︃
στx0

)︃

(−∞,0)
.

We conclude that x satisfies

˜︂P
(︃

d

dt

)︃
x = ˜︁Q

(︃
d

dt

)︃
στx + f̃ITP.

Delay-equivalence thus implies that x solves

P

(︃
d

dt

)︃
x =Q

(︃
d

dt

)︃
στx + fITP

and thus is a solution of the ITP (3.10). ■

Applying Lemma 3.40 several times yields, together with Theorems 3.15 and 3.37, the following

sufficient condition for an initial trajectory to be consistent.

Theorem 3.41. Consider the ITP (3.10) with delay-regular pair (P (s),Q(s)) ∈ (R[s]nx×nx )2, exter-

nal forcing f ∈D
nx

pwC ∞ , and x0 ∈D
nx

pwC ∞ . Let Algorithm 1 applied to (P (s),Q(s)) terminate after

ν ∈N iterations. Define

fITP,1 := f[0,∞) +
(︃
P

(︃
d

dt

)︃
x0 −Q

(︃
d

dt

)︃
στx0

)︃

(−∞,0)
,

fITP,k :=
⎡
⎣ Uk,1

(︂
d

dt

)︂
fITP,k−1

−στUk,2

(︂
d

dt

)︂
fITP,k−1

⎤
⎦

for k = 2, . . . ,ν−1. If x0 satisfies

(︃
Uk,2

(︃
d

dt

)︃
fITP,k

)︃

[0,τ)
=−

(︃
Uk,2

(︃
d

dt

)︃
Qk (

d

dt
)στx0

)︃

[0,τ)
,

for k = 1, . . . ,ν−1, then x is a solution of the ITP (3.10).

It remains to analyze the situation what happens with Algorithm 1 when the DDAE is not delay-

regular. Checking the proof of Theorem 3.37 reveals that Algorithm 1 terminates also in the case that

the second block column in (2.27) is present. Thus, the only reason for non-termination is hidden

in the third block row in (2.27). A modification of Algorithm 1 to prevent non-termination must

thus be able to recognize this case. We have already seen in Example 3.35 that it is not sufficient to

terminate Algorithm 1 whenever the ranks in (3.30) do not change from one iteration to another.

This can also be seen from the proof of Theorem 3.37. However, we observe that the image of Qν,2(s)

is different for every ν in the delay-regular case whenever the ranks remain constant. It thus suffices
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to check that the matrix ⎡
⎢⎢⎢⎢⎣

Q1,2(s)

Q2,2(s)
...

Qν,2(s)

⎤
⎥⎥⎥⎥⎦

has full row rank. A modified version of Algorithm 1 is presented in Algorithm 2.

Algorithm 2 Compress-and-shift (modified)

Input: P (s),Q(s) ∈R[s]m×nx

1: Set ν= 1 and Pν(s) :=P (s), Qν(s) :=Q(s).

2: Set K (s) := [] ∈R[s]0×nx

3: Choose unimodular matrix

Uν(s) =

⎡
⎢⎣

Uν,1(s)

Uν,2(s)

Uν,3(s)

⎤
⎥⎦ ∈R[s]m×m with matrix polynomials

⎧
⎪⎨
⎪⎩

Uν,1(s) ∈R[s]kν×m ,

Uν,2(s) ∈R[s]ρν×m ,

Uν,3(s) ∈R[s]m−kν−ρν×m ,

such that

Uν(s)Pν(s) =:

⎡
⎢⎣

Pν,1(s)

0

0

⎤
⎥⎦ and Uν(s)Qν(s) =:

⎡
⎢⎣

Qν,1(s)

Qν,2(s)

0

⎤
⎥⎦ ,

where Pν,1(s) :=Uν,1(s)Pν(s) ∈ R[s]kν×nx and Qν,2(s) :=Uν,2(s)Qν(s) ∈ R[s]ρν×nx have full row

rank.

4: if ρν = 0 then

5: terminate

6: else

7: Set Pν+1(s) =
[︂

Pν,1(s)
Qν,2(s)

]︂
and Qν+1(s) =

[︂
Qν,1(s)

0

]︂
.

8: Set K (s) =
[︂

K (s)
Qν,2(s)

]︂
.

9: if K (s) does not have full row rank then

10: terminate (not delay-regular)

11: end if

12: Set ν← ν+1.

13: Go to Line 3

14: end if

The discussion above yields our final result of this chapter.

Theorem 3.42. Algorithm 2 terminates for any DDAE (3.9).

We conclude this chapter by revisiting Example 3.34, where Algorithm 1 failed to terminate. The
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matrix pair in Example 3.34 is given by

P (s) =
[︄

s 1

s2 s

]︄
, Q(s) =

[︄
−s −1

0 0

]︄
.

Applying Algorithm 2 to (P (s),Q(s)) yields in the first iteration

U1(s) =
[︄

1 0

−s 1

]︄
, P2(s) =

[︄
s 1

s2 s

]︄
=P (s), Q2(s) =

[︄
−s −1

0 0

]︄
=Q(s),

and K (s) =
[︂

s2 s
]︂

. The previous computations show that in the next iteration, we obtain

K (s) =
[︄

s2 s

s2 s

]︄
,

such that Algorithm 2 terminates with the information that (P (s),Q(s)) is not delay-regular. This is

the correct result, which can be easily verified with Theorem 3.20.



4
Classical solutions and discontinuity propagation

Having established the existence and uniqueness of solutions for the linear time-invariant (LTI)

delay differential-algebraic equation (DDAE) (1.15) in a distributional solution space (cf. Theo-

rem 3.20), we now turn our attention to a more classical solution concept, namely solutions that are

continuously differentiable almost everywhere. Following our analysis in chapter 3 it is sufficient to

focus on delay-regular DDAEs. Invoking Theorem 3.37 and Algorithm 1, we can thus restrict our

analysis to linear DDAEs

E ẋ(t ) = A1x(t )+ A2x(t −τ)+ f (t ) (4.1a)

with regular matrix pencil (E , A1) ∈ (︁
F

nx×nx
)︁2. As before, the DDAE (4.1a) is equipped with the initial

trajectory

x(t ) =φ(t ) for t ∈ [−τ,0]. (4.1b)

Already in the case of differential-algebraic equations (DAEs), i.e., in the case A2 = 0, a necessary

condition for the existence of a classical solution is that f is sufficiently smooth (cf. Assumption 2.5).

For DDAEs this in additional implies that also the history function φ needs to be sufficiently smooth,

which we assume for the remainder of this chapter. In summary, we invoke the following assumption

for the upcoming analysis.

Assumption 4.1. The matrix pair (E , A1) ∈ (︁
F

nx×nx
)︁2 in (4.1a) is regular, i.e., there exists λ ∈ F such

that det(λE − A1) ̸= 0. Moreover, we assume that the history function φ : [−τ,0] → F
nx and the

inhomogeneity f : I→ F
nx are infinitely many times continuously differentiable.

4.1 Continuous solutions and classification

Similarly as in the proof of Theorem 3.5, we can apply the DAE theory to the sequence of DAEs (2.3)

that arises from applying the method of steps to (1.13). The corresponding sequence of DAEs for

67
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the initial trajectory problem (4.1) is given by

E ẋ[i ](t ) = A1x[i ](t )+ f̃[i ](t ), t ∈ [0,τ), (4.2a)

x[i ](0) = x[i−1](τ
−) (4.2b)

with x[0](t) = φ(t − τ) and f̃[i ](t) = A2x[i−1](t)+ f (t + (i − 1)τ) for t ∈ [0,τ] and i ∈ I = {1, . . . , M }.

We can use the quasi-Weierstraß form (cf. Theorem 2.9) for our analysis: There exist matrices

S,T ∈ GLnx
(F) such that

SET =
[︄

Inx,d
0

0 N

]︄
and S A1T =

[︄
J 0

0 Inx,a

]︄
(4.3)

with matrix J ∈ F
nx,d×nx,d and nilpotent matrix N ∈ F

nx,a×nx,a . For the upcoming analysis we introduce

[︄
Bd

Ba

]︄
:= S A2,

[︄
Bd,1 Bd,2

Ba,1 Ba,2

]︄
:= S A2T,

[︄
v

w

]︄
:= T −1x,

[︄
g

h

]︄
:= S f , and

[︄
ψ

η

]︄
:= T −1φ, (4.4)

where we use the same block dimensions as in (4.3). Applying the matrices S,T to (4.1a) yields

v̇ = J v +Bd,1στv +Bd,2στw + g , (4.5a)

N ẇ = w +Ba,1στv +Ba,2στw +h. (4.5b)

Example 4.2. For the DDAE (1.24) in Example 1.5 we directly observe that the matrices S = [︁
1 0
0 1

]︁
and

T = [︁
0 1
1 0

]︁
transform the associated matrix pair to quasi-Weierstraß form with nx,d = 0 and nx,a = 2.

The according form (4.5) is given with the matrices

N =
[︄

0 1

0 0

]︄
and Ba,2 =

[︄
0 0

−1 0

]︄
.

♠

Even with Assumption 4.1 we cannot expect a continuously differentiable solution, as is illustrated

in the Examples 1.4 and 1.5. This is mainly due to the fact that the identity

lim
t↘0

ẋ(t ) = lim
t↗0

φ̇(t ),

which can be written in the form ẋ(0) = φ̇(0−), is not satisfied in general and this discontinuity in

the first derivative at t = 0 may propagate over time (cf. [26] and Examples 1.4 and 1.5), which is

the reason for analyzing solutions in the space of piecewise smooth distributions (see section 3.1).

If we are interested in solutions that are at least continuous, then we can search for a solution in

the space of absolutely continuous functions, i.e., functions that are continuous and differentiable

almost everywhere. Assuming that the history function φ and the inhomogeneity f are sufficiently

smooth, we expect discontinuities only at integer multiples of the time delay τ and thus consider

the space of piecewise continuously differentiable functions as solution space. More precisely, we

employ the following solution concept for the remainder of this chapter.
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Definition 4.3 (Solution concept). Assume that the matrix pair (E , A1) in the DDAE (2.1a) is regular

and the history function φ and the inhomogeneity f are infinitely many times continuously differ-

entiable. We call x ∈C (I,Fnx ) a solution of (4.1) if for all i ∈I the restriction x[i ] of x as in (2.2) is a

solution of (2.3). We call the history function φ : [−τ,0] → F
nx consistent if the initial value problem

(4.1) has at least one solution.

Since our solution concept is inherently related to the method of steps we immediately obtain the

following relation between the DDAE (4.1a) and the sequence of DAEs (4.2).

Proposition 4.4. Let the DDAE (4.1a) satisfy Assumption 4.1. If x is a solution of the initial

trajectory problem (ITP) (4.1), then the restriction x[i ](t ) = x(t + (i −1)τ) for i ∈I is a solution of

(4.2). Conversely, if the sequence (x[i ])i∈I is a solution of (4.2), then

x(t ) =
⎧
⎨
⎩

x[i ](t − (i −1)τ), if (i −1)τ≤ t < iτ for some i ∈N,

φ(t ), otherwise,

is a solution of (4.1).

The three introductory examples, namely Examples 1.3 to 1.5, show that solutions of linear DDAEs

may have very different smoothness properties. Since the standard classification for delay equa-

tions is only valid for scalar equations, we pursue the following strategy: We first introduce a new

classification, which is based on the worst possible smoothing behavior, and then give an algebraic

characterization of the different types in terms of the matrices of the DDAE. To this end we recall

Proposition 2.14, which establishes a connection of the DAE (4.2a) and the so-called underlying

ordinary differential equation (ODE) (2.15)

ẋ = Adiffx +
ind(E ,A1)∑︂

k=0
Ck f̃ (k) (4.6)

via the consistency condition (2.16). Hereby, the matrices are defined as (see (2.14))

Adiff = T

[︄
J 0

0 0

]︄
T −1, Acon = T

[︄
Inx,d

0

0 0

]︄
T −1, C0 = T

[︄
Inx,d

0

0 0

]︄
S, Ck =−T

[︄
0 0

0 N k−1

]︄
S,

where S,T ∈ GLnx
(F) denote matrices that transform (E , A1) into quasi-Weierstraß form (2.6). Intro-

ducing the matrices

Bk :=Ck A2 for k = 0, . . . , ind(E , A1)

allows us to re-substitute f̃[i ](t) = A2x[i−1](t)+ f (t + (i − 1)τ). This yields the delay differential

equation (DDE)

ẋ = Adiffx +
ind(E ,A1)∑︂

k=0

(︂
Bkστx(k) +Ck f (k)

)︂
, (4.7)

which we call the the underlying DDE for the DDAE (4.1a). From Corollary 2.15 and the discussion

thereafter we immediately observe the following.
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Lemma 4.5. Let (4.1) satisfy Assumption 4.1. A necessary condition for the history function φ to

be consistent is that φ satisfies the equation

φ(0) = Aconφ(0)+
ind(E ,A1)∑︂

k=1

(︂
Bkφ

(k−1)(−τ)+Ck f (k−1)(0)
)︂

. (4.8)

Unfortunately, as Example 1.5 suggests, this condition is not sufficient for consistency, and even

worse, the consistency of a history function depends on the time interval for which we want to

solve the DDAE. Since our main goal is to analyze the propagation of primary discontinuities, it

is sufficient to ensure that a solution exists for some time, which gives rise to the following definition.

Definition 4.6. Let the ITP (4.1) with history function φ : [−τ,0] → F
nx satisfy Assumption 4.1. Then

φ is called admissible for the ITP (4.1) if x[1](0) =φ(0) is consistent for the DAE

E ẋ[1](t ) = A1x[1](t )+ A2φ(t −τ)+ f[1](t ) for t ∈ [0,τ),

i.e. φ satisfies (4.8). Similarly, x[0] : [0,τ] → F
n
x is called admissible for the sequence of DAEs (4.2) if

the DAE E ẋ[1](t ) = A1x[1](t )+ A2x[0](t )+ f (t ) with x[1](0) = x[0](τ) has a solution on [0,τ).

Let φ : [−τ,0] → F
nx be admissible. As a consequence of Assumption 4.1 there exists a number

M ∈N and a unique sequence (x[i ])i∈{0,...,M } that satisfies (4.2) (cf. Corollary 2.15). Hence for any

i ∈ {1, . . . , M } we can define the level ℓi of the primary discontinuity as

ℓi := min
x[0]∈C ∞([0,τ],Fnx )

x[0] admissible

min
f ∈C ∞(I,Fnx )

max

{︄
ℓ ∈N0

⃓⃓
⃓⃓
⃓

x[ j ] solves (4.2) for j = 1, . . . , i and

x(ℓ)
[i ] (0) = x(ℓ)

[i−1](τ
−)

}︄
. (4.9)

If for some j ∈N the initial condition x[ j ](0) = x[ j−1](τ) is not consistent and thus no solution of (4.2)

exists, we formally set ℓi :=−∞ for all i ≥ j . Note that this definition is independent of the specific

choice of the inhomogeneity f and the history φ and hence serves as the worst-case scenario. To

simplify the computation of the numbers ℓi we observe the following, which is a generalization

of [102, Theorem 7.1]

Proposition 4.7. Let the ITP (4.1) satisfy Assumption 4.1. Then the solution x of (4.1) is continu-

ously differentiable on [−τ,τ) if and only if φ satisfies

φ̇(0−) = Adiffφ(0)+
ind(E ,A1)∑︂

k=0

(︂
Bkφ

(k)(−τ)+Ck f (k)(0)
)︂

. (4.10)

The solution x of (4.1) is κ times continuously differentiable on [−τ,τ) if and only if φ satisfies

φ(p+1)(0−) = Adiffφ(p)(0−)+
ind(E ,A1)∑︂

k=0

(︂
Bkφ

(k+p)(−τ)+Ck f (k+p)(0)
)︂

(4.11)

for p = 0,1, . . . ,κ−1.
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Proof. Since φ is admissible, the initial condition x[1](0) =φ(0) is consistent and following Corol-

lary 2.15 the solution x exists on [−τ,τ). Thus, it is sufficient to check the point t = 0. Using

Proposition 2.14 we can consider (2.15) and thus obtain

ẋ[1](0) = Adiffx[1](0)+
ind(E ,A1)∑︂

k=0

(︂
Bk x(k)

[0] (0)+Ck f (k)
[1] (0)

)︂

= Adiffφ(0)+
ind(E ,A1)∑︂

k=0

(︂
Bkφ

(k)(−τ)+Ck f (k)
[1] (0)

)︂

and hence x is continuously differentiable on [−τ,τ) if and only if φ satisfies (4.10). For arbitrary

κ ∈N we invoke Proposition 2.14, which guarantees that the solution x exists on the interval [0,τ)

and allows us to consider the underlying DDE (4.7) instead of the DDAE. Since the assumption

guarantees that x is sufficiently smooth on [0,τ) we can differentiate (4.7) p ∈N times to obtain

x(p+1)
[1] (0) = Adiffx(p)

[1] (0)+
ind(E ,A1)∑︂

k=0

(︂
Bk x(k+p)

[0] (0)+Ck f (k+p)
[1] (0)

)︂

= Adiffφ(p)(0−)+
ind(E ,A1)∑︂

k=0

(︂
Bkφ

(k+p)(−τ)+Ck f (k+p)
[1] (0)

)︂
,

which implies the assertion. ■

Since we require φ ∈C ∞([−τ,0],Fnx ) to be admissible we immediately obtain ℓ1 ≥ 0. On the other

hand assume that we have given the values φ(0) and φ(k)(−τ) for k = 0, . . . ,ν such that φ is admissible.

Then we can always construct (via Hermite interpolation) φ in such a way that (4.10) is not satisfied

and hence ℓ1 ≤ 0, which yields ℓ1 = 0. Thus, the questions about propagation of discontinuities can

be rephrased as whether

• there exists k ∈N with ℓk > 0 (i.e. the solution becomes smoother), or

• there exists k ∈N with ℓk =−∞ (i.e. the solution becomes less smooth),

• or if ℓi = ℓ1 for all i ∈N.

We notice that the smoothing may not start immediately (i.e. we cannot ask for ℓ1 = 1), as the

following example suggests.

Example 4.8. Consider the DDAE given by F=R, nx = 2, f ≡ 0, τ= 1, and

E =
[︄

1 0

0 0

]︄
, A =

[︄
0 0

0 1

]︄
, B =

[︄
0 1

−1 0

]︄
, φ(t ) =

[︄
t ,

−1

]︄
.

Since (E , A) is already in Weierstraß form, it is easy to see that the DDAE corresponds to the DDE

v̇(t ) = v(t −2τ) (4.12)

with coupled equation w(t) = v(t −τ). Straightforward calculations show that ℓ1 ≤ 0 (using the

specified history function φ) and ℓ1 ≥ 0 implying ℓ1 = 0. On the other hand, (4.12) is a scalar delay

equation and it is well-known that the solution is continuously differentiable at t = 2τ, thus we

have ℓ2 ≥ 1. ♠
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Definition 4.9. Consider the DDAE (4.1a) on the interval I= [0, Mτ], set I := {1, . . . , M }, and suppose

that (4.1) satisfies Assumption 4.1. We say that (1.13) is of

• smoothing type if there exists j ∈I , j > 1 such that ℓ j = 1 and ℓi = 0 for i < j ,

• discontinuity invariant type if ℓi = 0 for all i ∈I , and

• de-smoothing type if there exists j ∈I , j > 1 such that ℓ j =−∞ and ℓi = 0 for i < j .

In the following, we analyze the DDAE (4.1a) in detail and derive conditions for the matrices E , A1,

and A2, from which the type can be determined. Before we analyze the general DDAE case we focus

on the case of ind(E , A1) ≤ 1, i.e., the system is a pure DDE or N = 0 in (2.12b).

Remark 4.10. The case ind(E , A1) ≤ 1 includes DDEs of the form

ˆ̇︁x(t ) = ˆ︁A1 ˆ︁x(t )+ ˆ︁A2 ˆ︁x(t −τ)+ ˆ︁D ˆ̇︁x(t −τ)+ f̂ (t ), (4.13)

with arbitrary matrices ˆ︁A1, ˆ︁A2, ˆ︁D ∈ F
nx×nx , since (4.13) can be recast in the form (4.1a) by introducing

the new state variable x(t ) =
[︂

x̂(t )
x̂(t−τ)

]︂
and

E :=
[︄
−Inx

− ˆ︁D
0 0

]︄
A1 :=

[︄ ˆ︁A1 0

0 Inx

]︄
, A2 :=

[︄ ˆ︁A2 0

−Inx
0

]︄
, f :=

[︄ˆ︁f
0

]︄
.

♣

If ind(E , A1) = 0, then the matrix E is nonsingular and the DDAE is of the form

ẋ(t ) = E−1 A1x(t )+E−1 A2x(t −τ)+E−1 f (t ) (4.14)

and the ODE solution formula together with Proposition 4.7 directly implies ℓ1 = 1, i.e., (4.14) is of

smoothing type.

Theorem 4.11. Consider the DDAE (4.1a) on the interval I= [0, Mτ] and suppose that Assump-

tion 4.1 holds. If ind(E , A1) = 1, then (4.1a) is of smoothing type if and only if Ba,2 in (4.4) is

nilpotent with index of nilpotency νB and furthermore we have νB ≤ M −1.

Proof. Let S,T ∈ GLn(F) be matrices that transform (4.1a) into quasi-Weierstraß form (4.5). Applying

the method of steps yields

v̇[i+1] = J v[i+1] +Bd,1v[i ] +Bd,2v[i ] + g[i+1] and w[i+1] =−Ba,1v[i ] −Ba,2w[i ] −h[i+1].

Since ℓ1 = 0, we have

w[1](τ) =−Ba,1v[0](τ)−Ba,2w[0](τ)−h[1](τ)

=−Ba,1v[1](0)−Ba,2w[1](0)−h[2](0) = w[2](0)

and thus ℓ2 ≥ 0. By induction we conclude ℓi ≥ 0 for i ∈I . Moreover, we have

ẇ[i+1] =−Ba,1v̇[i ] −Ba,2ẇ[i ] − ḣ[i+1]

=−Ba,1

(︁
J v[i ] +Bd,1v[i−1] +Bd,2w[i−1] + g[i ]

)︁−Ba,2ẇ[i ] − ḣ[i+1]



4.1. CONTINUOUS SOLUTIONS AND CLASSIFICATION 73

which implies ẇ[i+1](0+)− ẇ[i ](τ
−) = Ba,2

(︁
ẇ[i−1](τ

−)− ẇ[i ](0+)
)︁

holds. By induction we have

ẇ[i+1](0+)− ẇ[i ](τ
−) = (−1)i B i

a,2

(︁
ẇ[1](0+)− η̇(0−)

)︁
for i = 1, . . . , M −1.

Thus ℓi+1 ≥ 1 holds if and only if B i
a,2 = 0. ■

Applying Theorem 4.11 to the DDAE in Example 4.8 shows that this DDAE is of smoothing type, since

it is already in quasi-Weierstraß form with Ba,2 = 0. Conversely, if the DDAE (4.1a) with ind(E , A1) = 1

is of smoothing type, then the index of nilpotency indicates the number of delays present in the

system. More precisely, we have the following result.

Corollary 4.12. Suppose that the DDAE (4.1a) satisfies Assumption 4.1 and is of smoothing type

with ind(E , A1) ≤ 1. Furthermore let νB denote the index of nilpotency of Ba,2 if nx,a > 0 and νB = 0

otherwise. Then there exists matrices Dk ∈ F
nx,d×nx,d (k = 0, . . . ,νB ) and an inhomogeneity ϑ such

that the solution v of (4.5a) is a solution of the ITP

ż(t ) = J z(t )+
νB∑︂

k=0
Dk z(t − (k +1)τ)+ϑ(t ) for t ∈ [νBτ, tf), (4.15a)

z(t ) = v(t ), for t ∈ [−τ,νBτ]. (4.15b)

Proof. The result is trivial for ind(E , A1) = 0, i.e., assume ind(E , A1) = 1, which implies that N = 0 in

(4.5). Let ∆[t0,t1) denote the characteristic function for the interval [t0, t1), i.e.

∆(t0,t1](t ) =
⎧
⎨
⎩

1, if t ∈ [t0, t1),

0, otherwise.

Combination of the fast subsystem (4.5b) and the initial condition yields

(Inx,a
+Ba,2∆[τ,tf)

στ)w =−Ba∆[0,τ)στφ−Ba,1∆[τ,tf)
στv −h. (4.16)

By induction we obtain (∆[τ,tf)
(t )στ)k =∆[kτ,tf)

(t )σkτ and from BνB
a,2 = 0 we deduce

(︄
νB−1∑︂
k=0

(−1)k
(︂
Ba,2∆[τ,tf)

στ

)︂k
)︄(︂

Inx,a
+Ba,2∆[τ,tf)

στ

)︂
= Inx,a

such that w in (4.16) is given by

w =
νB−1∑︂
k=0

(−1)k+1
(︂
Ba,2∆[τ,tf)

στ

)︂k (︂
Ba∆[0,τ)στφ+Ba,1∆[τ,tf)

στv +h
)︂

=
νB−1∑︂
k=0

(−1)k+1B k
a,2

(︂
Ba∆[kτ,(k+1)τ)σ(k+1)τφ+Ba,1∆[kτ,tf)

σ(k+1)τv +∆[kτ,tf)
σkτh

)︂
.

Inserting this identity in (4.5a) and introducing for k = 1, . . . ,νB the matrices

D0 := Bd,1, Dk := (−1)k Bd,2B k−1
a,2 Ba,1
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implies that the solution v of (4.5a) is a solution of the ITP (4.15), where ϑ is given by

ϑ(t ) := g (t )+
νB−1∑︂
k=0

(−1)k+1Bd,2B k
a,2h(t − (k +1)τ). ■

Example 4.13. Consider the DDE (4.13) in the DDAE formulation given in Remark 4.10. The

matrices S :=
[︃

Inx
−ˆ︂A1

ˆ︁D
0 Inx

]︃
and T :=

[︃
Inx

ˆ︁D
0 Inx

]︃
transform the DDAE to quasi-Weierstraß form given by

[︄
Inx

0

0 0

]︄[︄
v̇(t )

ẇ(t )

]︄
=

[︄ˆ︂A1 0

0 Inx

]︄[︄
v(t )

w(t )

]︄
+

[︄ˆ︂A2 + ˆ︂A1
ˆ︁D (ˆ︂A2 + ˆ︂A1

ˆ︁D) ˆ︁D
−Inx

− ˆ︁D

]︄[︄
v(t −τ)

w(t −τ)

]︄
+

[︄
f (t )

0

]︄
.

Hence, the DDE (4.13) is of smoothing type if and only if ˆ︁D is nilpotent. In this case, the correspond-

ing retarded equation (4.15a) is given by

ż(t ) = ˆ︂A1z(t )+ (ˆ︂A2 + ˆ︂A1
ˆ︁D)z(t −τ)+

ν ˆ︁D−1∑︂
k=1

(−1)k (ˆ︂A2 + ˆ︂A1
ˆ︁D) ˆ︁Dk z(t − (k +1)τ)+ g (t ),

where ν ˆ︁D is the index of nilpotency of ˆ︁D . ♠

Remark 4.14. The delay equation (4.15) in Corollary 4.12 may be used to determine whether the

DDAE (4.13) is stable (which can be done for example via DDE-biftool [73, 196]). This provides an

alternative way to the theory outlined in [68, 69]. ♣

For the analysis of the general DDAE case with arbitrary index, we use the following preliminary

result.

Proposition 4.15. Suppose that the ITP (4.1) satisfies Assumption 4.1 and let S,T ∈ GLnx
(F) be

matrices that transform (E , A1) to quasi-Weierstraß form (2.6), such that (4.1a) is transformed to

(4.5) with x = T
[︁ v

w
]︁
. Then for any m ∈N and any ṽ ∈ F

nx,d , w̃ ∈ F
nx,a there exists an admissible

history function φ= T −1 [︁ψ
η

]︁
that is analytic and satisfies

ψ(p)(0−) = v (p)(0) for p = 0,1, . . . ,m −1, (4.17a)

η(p)(0−) = w (p)(0) for p = 0,1, . . . ,m −1, (4.17b)

ṽ =ψ(m)(0−)− v (m)(0), and (4.17c)

w̃ = η(m)(0−)−w (m)(0). (4.17d)

Proof. Let m ∈N. Proposition 4.7 implies that the solution x of the ITP (4.1) is m times continuously

differentiable on [−τ,τ) if and only if φ satisfies (4.11) for p = 0,1, . . . ,m −1. Multiply (4.11) from the

left with T −1 to obtain

ψ(p+1)(0−) = Jψ(p)(0−)+Bd,1ψ
(p)(−τ)+Bd,2η

(p)(−τ)+ g (p)(0), (4.18a)

η(p+1)(0−) =−
ind(E ,A1)−1∑︂

k=0
N k

(︂
Ba,1ψ

(k+p+1)(−τ)+Ba,2η
(k+p+1)(−τ)+h(k+p+1)(0)

)︂
(4.18b)
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for p = 0, . . . ,m −1. We then can proceed as follows to construct ψ and η that satisfy the condi-

tions (4.17). Choose any value for ψ(p)(−τ) and η(p)(−τ) for p = 0, . . . , ind(E , A)+m, and compute

η(p+1)(0−) for p = 0, . . . ,m −2 according to (4.18b). For an arbitrary ψ(0), set ψ(p+1)(0−) according to

(4.18a) for p = 0, . . . ,m −2. Finally, set

ψ(m)(0−) = ṽ +
(︂

Jψ(m−1)(0−)+Bd,1η
(m−1)(−τ)+Bd,2η

(m−1)(−τ)+ g (m)(0)
)︂

and

η(m)(0−) = w̃ −
ind(E ,A1)−1∑︂

k=0
N k

(︂
Ba,1ψ

(k+p+1)(−τ)+Ba,2η
(k+p+1)(−τ)+h(k+p+1)(0)

)︂
.

The desired history functions are then given via Hermite interpolation. ■

Applying the method of steps and the solution formula (2.13) for the fast subsystem yields

w[i+1] =−
ind(E ,A1)−1∑︂

k=0
N k

(︃
d

dt

)︃k (︁
Ba,1v[i ] +Ba,2w[i ] +h[i+1]

)︁
. (4.19)

Since Assumption 4.1 implies that all functions are sufficiently smooth we obtain

w[2](0)−w[1](τ
−) =

ind(E ,A1)−1∑︂
k=0

N k
(︂
Ba,1

(︂
ψ(k)(0−)− v (k)

[1] (0)
)︂
+Ba,2

(︂
η(k)(0−)−w (k)

[1] (0)
)︂)︂

=
ind(E ,A1)−1∑︂

k=0
N k BaT

[︄
ψ(k)(0−)− v (k)

[1] (0)

η(k)(0−)−w (k)
[1] (0)

]︄

=
ind(E ,A1)−1∑︂

k=1
N k BaT

[︄
ψ(k)(0−)− v (k)

[1] (0)

η(k)(0−)−w (k)
[1] (0)

]︄
,

where the last identity follows from the fact the φ is assumed to be admissible. Proposition 4.15

implies that (4.1a) is of de-smoothing type if there exists k ∈ {1, . . . , ind(E , A1)−1} such that N k Ba ̸= 0.

If we conversely assume N Ba = 0 then (4.19) is given by

w[i+1] =−Ba,1v[i ] −Ba,2w[i ] −
ind(E ,A1)−1∑︂

k=0
N k h(k)

[i+1],

which implies ℓi ≥ 0. Together with Theorem 4.11, this proves the following theorem.

Theorem 4.16. Consider the DDAE (4.1a) on the interval I= [0, Mτ] and suppose that the associ-

ated ITP (4.1) satisfies Assumption 4.1. Let N , Ba and Ba,2 be the matrices that are associated with

the quasi-Weierstraß form (4.5). Then (4.1a) is of

• smoothing type if N Ba = 0 and Ba,2 is nilpotent with nilpotency index νB < M,

• de-smoothing type if there exists k ∈N such that N k Ba ̸= 0, and

• discontinuity invariant type, otherwise.

Example 4.17. Introducing the shifted variable z(t ) = x(t −τ) shows that the DDAE associated with

x(t ) = A2x(t −τ)+Dẋ(t −τ)+ f (t ) (4.20)

is of de-smoothing type if and only if D ̸= 0. ♠
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As a direct consequence of Definition 4.9 and Theorem 4.16 we can formulate our main result about

the existence and uniqueness of continuous solutions.

Theorem 4.18. Let the ITP (4.1) satisfy Assumption 4.1. Let N and Ba be the matrices associated

with the quasi-Weierstraß form as defined in (4.3) and (4.4).

(i) If the history function φ is admissible, i.e., φ satisfies (4.8), then N Ba = 0 is a sufficient

condition for the existence of a solution (in the sense of Definition 4.3). In this case, the

solution is unique.

(ii) If N Ba ̸= 0, then there exists an admissible history function φ, such that a solution exists

only on the time interval I= [0,τ).

Remark 4.19. Checking the proof of Corollary 4.12, we immediately infer from Theorem 4.16 that

Corollary 4.12 is also true for an arbitrary index ind(E , A1). As a consequence, if the DDAE (4.1a)

is of smoothing type, then there exists a sequence jk ∈N such that ℓjk
= k and hence the solution

becomes arbitrarily smooth over time justifying the terminology smoothing type. ♣

Note that N k Ba ̸= 0 for some k ∈N implies

Bk+1 =Ck+1 A2 =−T

[︄
0 0

0 N k

]︄
S A2 =−T

[︄
0

N k Ba

]︄
̸= 0,

i.e. the DDAE (4.1a) is of de-smoothing type if Bk ̸= 0 for some k ≥ 2. Using

Bk (Inx
− Acon) =−T

[︄
0 0

N k−1Ba,1 N k−1Ba,2

]︄
T −1T

(︄[︄
Inx,d

0

0 Inx,a

]︄
−

[︄
Inx,d

0

0 0

]︄)︄
T −1

=−T

[︄
0 0

0 N k−1Ba,2

]︄
T −1

(4.21)

we immediately see that Ba,2 is nilpotent if and only if B1(Inx
− Acon) is nilpotent, which shows

that the results of Theorem 4.16 can be formulated in terms of the underlying DDE (4.7). As a

consequence of Lemma 2.13 this shows that the previous results are independent of the particular

choice of the matrices S,T used to transform (E , A1) to quasi-Weierstraß form. In more detail, we

have the following two results.

Corollary 4.20. Consider the ITP (4.1) with associated underlying DDE (4.7) on the interval

I= [0, Mτ) and suppose that Assumption 4.1 applies. Then (4.1a) is of

• smoothing type if B2 = 0 and B1(Inx
− Acon) is nilpotent with nilpotency index νB1

≤ M,

• de-smoothing type if Bk ̸= 0 for some k ≥ 2, and

• discontinuity invariant type otherwise.
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Theorem 4.21. Consider the ITP (4.1) with associated underlying DDE (4.7) on the interval I=
[0, Mτ) and suppose that Assumption 4.1 applies.

(i) If the history function φ is admissible, i.e., φ satisfies (4.8), then B2 = 0 is a sufficient condi-

tion for the existence of a solution (in the sense of Definition 4.3). In this case, the solution is

unique.

(ii) If B2 ̸= 0, then there exists an admissible history function φ, such that a solution exists only

on the time interval I= [0,τ).

A common approach to analyze the (exponential) stability of the DDAE (4.1a) is to compute the

spectral abscissa, which is defined as

α(E , A1, A2) = sup{Re(λ) | det(λE − A1 −exp(−λτ)A2) = 0}.

Surprisingly, the condition α(E , A,D) < 0 is not sufficient for a DDAE to be exponentially stable [69].

However, based on the new classification we have the following result.

Corollary 4.22. Suppose that the DDAE (4.1a) is not of de-smoothing type. Then the DDAE (4.1a)

is exponentially stable if and only if α(E , A1, A2) < 0.

Proof. Since the DDAE (4.1a) is not of de-smoothing type, we have N Ba = 0. The result follows

directly from [69, Proposition 3.4 and Theorem 3.4]. ■

Note that we refrain from using the terminology retarded, neutral, and advanced in Definition 4.9,

although these terms are widely used in the delay literature [26, 27, 98, 102], see section 1.3 for a

definition. The reason is that in the classical definition, a retarded DDE becomes advanced if it is

solved backwards in time, an advanced equation becomes retarded and a neutral equation stays

neutral. This is no longer true for the classification introduced in Definition 4.9. To see this, we

introduce the new variable ξ(t −τ) = x(−t ) such that (4.1a) transforms to

E ξ̇(t −τ) =−A2ξ(t )− A1ξ(t −τ)− f (−t ).

Definition 4.23. Consider the DDAE (4.1a) and define

E :=
[︄

0 E

0 0

]︄
∈ F

2nx ,2nx , A1 :=
[︄
−A2 0

0 Inx

]︄
∈ F

2nx ,2nx , A2 :=
[︄
−A1 0

−Inx
0

]︄
∈ F

2nx ,2nx .

Then we call the DDAE

E ζ̇(t ) =A1ζ(t )+A2ζ(t −τ)+F (t ) (4.22)

with F : I→ F
2nx the backward system for the DDAE (4.1a).

The matrix pair (E ,A1) is regular if and only if det(A2) ̸= 0. In this case, we can transform the

backward system (4.22) to quasi-Weierstraß form via the matrices

S =
[︄
−A−1

2 0

0 Inx

]︄
and T = I2nx

.
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In particular, we have

(SE T )(SA2T ) =
[︄

0 −A−1
2 E

0 0

]︄[︄
A−1

2 A1 0

−Inx
0

]︄
=

[︄
−A−1

2 E 0

0 0

]︄
.

Thus Theorem 4.16 implies that E = 0 is a necessary condition for the backward system (4.22) to be

of smoothing type or discontinuity invariant type, which implies that the DDAE (4.1a) cannot be of

de-smoothing type.

Example 4.24. Consider the DDAE given by F=R, nx = 2, f ≡ 0, τ= 1, and

E =
[︄

0 1

0 0

]︄
, A1 =

[︄
1 0

0 1

]︄
, A2 =

[︄
1 1

0 1

]︄
.

Since (E , A1) is already in Weierstraß form and E A2 ̸= 0, Theorem 4.16 implies that the DDAE is of

de-smoothing type. Since E ̸= 0 also the backward system is of de-smoothing type. ♠

Let us mention that if det(A2) = 0, then the method of steps (2.3) cannot be used to determine the

solution of the backward system. Instead, one may use the shift-index concept defined in [98, 99] to

make the pencil (E ,A1) regular. This can be achieved for instance with Algorithm 2, since

rankR(s,ω)(sE +A1 +ωA2) = rankR(s,ω)

(︄[︄
−A2 −ωA1 sE

−ωInx
Inx

]︄)︄

= rankR(s,ω)

(︄[︄
sωE − A2 −ωA1 sE

0 Inx

]︄)︄

= rankR(s,ω)

(︄[︄
sωE − A2 −ωA1 0

0 Inx

]︄)︄

= rankR(s,ω)

(︁
sE − A1 −ωA2

)︁+nx

= 2nx

implies that (E ,A1,A2) is delay-regular according to Theorem 3.20.

4.2 Impact of splicing conditions

In the previous section algebraic criteria were established to check whether a discontinuity in the

derivative of ẋ at t = 0 is smoothed out, is propagated to t = τ or is amplified in the sense that x

becomes discontinuous at t = τ. While the definition of the discontinuity invariant type is valid for

all integer multiples of the delay time, the definitions of smoothing type and de-smoothing type

are based on single time points and hence the question whether the (de-)smoothing continues is

imminent. For DDAEs of smoothing type, this can be answered positively (see Remark 4.19). For

DDAEs of de-smoothing type, the question can be rephrased as follows: If we restrict the set of

admissible history functions such that the splicing condition (cf. [26])

φ(k)(0−) = x(k)(0) for k = 0, . . . ,κ (4.23)



4.2. IMPACT OF SPLICING CONDITIONS 79

is satisfied for some κ ∈N, is there an integer j ∈N such that the inital condition

x[ j ](0) = x[ j−1](τ
−)

is not consistent for the DAE (4.2)? Similarly, we can ask if for DDAEs of discontinuity invariant

type the smoothness at integer multiples of the delay time stays invariant. Before we answer these

questions, we note that in order to check if the splicing condition (4.23) is satisfied, it seems that

one has to solve the DDAE (4.1a) first. That is however not necessary, since the splicing condition

(4.23) can be checked by solely investigating the history function φ with Proposition 4.7.

Lemma 4.25. Suppose that the DDAE (4.1a) is of discontinuity invariant type and the admissible

history function φ ∈C ∞([−τ,0],Fnx ) satisfies the splicing condition (4.23). Then

x(k)
[i ] (0) = x(k)

[i−1](τ
−) for all i ∈N, k = 0, . . . ,κ.

Proof. Since (4.1a) is of discontinuity invariant type, we have N Ba = 0 in (4.5) according to Theo-

rem 4.16. It suffices to show that

x( j )
[2] (0) = x( j )

[1] (τ−) for all j = 0, . . . ,κ.

Since φ is admissible and the DDAE is of discontinuity invariant type, equation (4.5a) implies that

v̇[2](0)− v̇[1](τ
−) = J

(︁
v[2](0)− v[1](τ)

)︁+Bd

(︁
x[1](0)−φ(0)

)︁= 0.

Iteratively, we obtain

v (k+1)
[2] (0)− v (k+1)

[1] (τ−) = J
(︂
v (k)

[2] (0)− v (k)
[1] (τ−)

)︂
+Bd

(︂
x(k)

[1] (0)−φ(k)(0)
)︂
= 0

for k = 2, . . . ,κ. For the fast system (4.5b) we directly infer

w (k)
[2] (0)−w (k)

[1] (τ−) = Ba

(︂
φ(k)(0−)−x(k)

[1] (0)
)︂
= 0

for k = 0,1, . . . ,κ, which completes the proof. ■

Lemma 4.25 guarantees that the solution of the DDAE is at least as smooth as the initial transition

from the history function to the solution. Conversely, assume that the Jordan canonical form of Ba,2

exists and let w̃ ∈ F
nx,a \ {0} be an eigenvector of Ba,2 for the eigenvalue λ ̸= 0. Then Proposition 4.15

implies (with m = κ+1) the existence of a history function φ such that the solution of the ITP (4.1)

satisfies

w (κ+1)
[2] (0)−w (κ+1)

[1] (τ−) = Ba,2

(︂
η(κ+1)(0−)−w (κ+1)

[1] (0)
)︂
=λw̃ ̸= 0.

Thus, in general, we cannot expect the solution of a DDAE of discontinuity invariant type to get any

smoother, which again justifies the terminology. For DDAEs of de-smoothing type, Example 1.5

might suggest that the solution becomes less and less smooth until it becomes discontinuous. This

is however not necessarily the case as the following example demonstrates.
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Example 4.26. Suppose that the ITP (4.1) satisfies Assumption 4.1 and additionally satisfies N Ba,2 =
0, N Ba ̸= 0, and N 2Ba = 0, i.e., the DDAE is of de-smoothing type according to Theorem 4.16.

Suppose that the history function φ satisfies (4.10). Then

w[2](0)−w[1](0) =
ind(E ,A1)−1∑︂

k=0
N k Ba

(︂
φ(k)(0−)−x(k)

[1] (0)
)︂

=
1∑︂

k=0
N k Ba

(︂
φ(k)(0−)−x(k)

[1] (0)
)︂
= 0.

However, we have v̇[2](0)− v̇[1](τ
−) = 0 by the definition of the slow system (4.5a) and by induction

we infer

w[i+1](0)−w[i ](τ
−) = N Ba,1

(︁
v̇[i−1](τ

−)− v̇[i ](0)
)︁= 0.

Thus the initial condition x[i ](0) = x[i−1](τ
−) is consistent for (4.2) and hence the solution exists for

all tf > 0. ♠

For a general analysis we assume that the ITP (4.1) satisfies Assumption 4.1, is of de-smoothing

type, and the history function φ satisfies the splicing condition (4.23) for some κ ∈N. From (4.5a)

we inductively infer

v (k)
[2] (0) = J v (k−1)

[2] (0)+Bdx(k−1)
[1] (0)+ g (k)

[2] (0) = v (k)
[1] (τ−)

for k = 1, . . . ,κ+1. For the fast subsystem (4.5b), the splicing condition (4.23) implies

w[2](0)−w[1](τ
−) =

ind(E ,A1)−1∑︂
k=κ+1

N k Ba

(︂
φ(k)(0−)−x(k)

[1] (0)
)︂

and hence a sufficient condition for the initial condition w[2](0) = w[1](τ
−) to be consistent is to

assume N k Ba = 0 for k ≥ κ+1. This is immediately satisfied for ind(E , A1) ≤ κ+1. To analyze the

next interval, we compute

w[3](0)−w[2](τ
−) =

κ∑︂
k=1

N k BaT

[︄
v (k)

[1] (τ−)− v (k)
[2] (0)

w (k)
[1] (τ−)−w (k)

[2] (0)

]︄

=
κ∑︂

k=1
N k Ba,2

(︂
w (k)

[1] (τ−)−w (k)
[2] (0)

)︂
.

The assumption N Ba,2 = 0 implies w[3](0)−w[2](τ
−) = 0. Unfortunately, we have

v (2)
[3] (0)− v (2)

[2] (τ−) = Bd,2

(︁
ẇ[2](0)− ẇ[1](τ

−)
)︁

,

and thus cannot show that the initial condition w[4](0) = w[3](τ) is consistent without posing further

assumptions on the matrices E , A1, and A2. Since this becomes quite technical, we summarize our

findings only for the case ind(E , A1) ≤ 3.
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Theorem 4.27. Suppose that the ITP (4.1) satisfies Assumption 4.1 and ind(E , A1) ≤ 3. Moreover,

assume N Ba,2 = 0 and N 2Ba,1Bd,2 = 0. Then for every admissible history function φ that satisfies

(4.11) for κ= 2, the ITP (4.1) has a unique solution.

Proof. The assumptions on φ imply that the splicing condition (4.23) is satisfied for κ = 2 (see

Proposition 4.7). Since ind(E , A1) ≤ 3, we have N 3 = 0. Together with N Ba,2 = 0 the previous

discussion guarantees that a solution exists on the interval [−τ,3τ]. Using N Ba,2 = 0, we observe

(inductively)

w[i+1](0)−w[i ](τ
−) =

2∑︂
k=0

N k Ba,1

(︂
v (k)

[i−1](τ
−)− v (k)

[i ] (0)
)︂

= N 2Ba,1Bd,2

(︁
ẇ[i−2](τ

−)− ẇ[i−1](0)
)︁= 0

and thus the initial condition x[i+1](0) = x[i ](τ
−) is consistent for all i ∈N. The result follows from

Corollary 2.15. ■

The assumptions in Theorem 4.27 can also be formulated in terms of the underlying DDE (4.7) and

the matrices defined in (2.14). More precisely, (4.21) and

B0(Inx
− Acon) = T

[︄
Bd,1 Bd,2

0 0

]︄
T −1T

(︄[︄
Inx,d

0

0 Inx,a

]︄
−

[︄
Inx,d

0

0 0

]︄)︄
T −1 = T

[︄
0 Bd,2

0 0

]︄
T −1

imply that N Ba,2 = 0 and N 2Ba,1Bd,2 = 0 if and only if

B2(Inx
− Acon) = 0 and B3 AconB0(Inx

− Acon) = 0,

respectively.

Remark 4.28. The proof of Theorem 4.27 shows that the result can be further improved by requiring

different splicing conditions for the history function ψ for the slow state v and for the history

function η of the fast state w . ♣

4.3 Comparison to the existing classification

In [98] the authors replace the delayed argument in the DDAE (4.1a) with a function parameter

λ : I→ F
nx and obtain the initial value problem (IVP)

E ẋ(t ) = A1x(t )+ A2λ(t )+ f (t ),

x(t ) =φ(0),
(4.24)

on the time interval I. They call the function parameter λ consistent if there exists a consistent initial

condition φ(0) for the IVP (4.24). Based on the function parameter λ the following classification for

DDAEs [98] is introduced.
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Definition 4.29. The DDAE (4.1a) is called retarded, neutral, or advanced, if the minimum smooth-

ness requirement for a consistent function parameter λ is that λ ∈ C (I,Fnx ), λ ∈ C 1(I,Fnx ), or

λ ∈C k (I,Fnx ) for some k ≥ 2.

To compare the classification based on propagation of primary discontinuities (cf. Definition 4.9)

with the classification given in [98], we need to understand Definition 4.29 in terms of the quasi-

Weierstraß form.

Proposition 4.30. Suppose that the matrix pair (E , A1) in the DDAE (4.1a) is regular and the

inhomogeneity f is sufficiently smooth. Then the DDAE (4.1a) is

• retarded if and only if Ba = 0,

• neutral if and only if Ba ̸= 0 and N Ba = 0, and

• advanced otherwise,

where Ba and N are the matrices from the quasi-Weierstraß form (Theorem 2.9) and (4.5).

Proof. The smoothness requirements for λ can be directly seen from the underlying DDE (4.7). We

have

B0 = T

[︄
Inx,d

0

0 0

]︄
S A2 = T

[︄
Bd

0

]︄
and

Bk =−T

[︄
0 0

0 N k−1

]︄
S A2 =−T

[︄
0

N k−1Ba

]︄

for k = 1, . . . , ind(E , A1). Hence (4.1a) is retarded if and only if N k−1Ba = 0 for all k = 1, . . . , ind(E , A1),

which is equivalent to Ba = 0. The DDAE is neutral, if N k−1Ba = 0 for all k = 2, . . . , ind(E , A1), which

is equivalent to N Ba = 0 and otherwise advanced. ■

With the characterization, we immediately see that the classification introduced [98] provides an

upper bound for the new definition in the following sense.

Corollary 4.31. Suppose that the ITP (4.1) satisfies Assumption 4.1.

• If the DDAE (4.1a) is not advanced, then it is not of de-smoothing type.

• If the DDAE (4.1a) is advanced, then it is of de-smoothing type.

Since the classification introduced in this paper is based on the worst-case scenario, the numerical

method described in [98], which is formulated for DDAEs that are not advanced, is safe to use.

Remark 4.32. The numerical method introduced in [98] is tailored to DDAEs that are not advanced

and cannot be used for advanced DDAEs. However, if it is known that the history function satisfies
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the splicing condition (4.23) for some κ> 0 , then also advanced DDAEs may be solved (cf. Theo-

rem 4.27). Thus, there is a need for numerical integration schemes that can handle such situations.

This is subject to further research. ♣
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5
Nonlinear DDAEs

Having established the existence and uniqueness theory for linear delay differential-algebraic

equations (DDAEs) in a distributional (chapter 3) and classical solution framework (chapter 4), we

are now ready to turn our attention to nonlinear initial value problems (IVPs) of the form

0 = F (t , x(t ), ẋ(t ), x(t −τ)), t ≥ 0, (5.1a)

x(t ) =φ(t ), t ∈ [−τ,0] (5.1b)

with (nonlinear) function F : I×Dx ×Dẋ ×Dστx → F
m defined on open sets Dx ,Dẋ ,Dστx ⊆ R

nx and

time interval I = [t0, tf). The function φ : [−τ,0] → R
nx is called initial trajectory or history func-

tion. Examples are for instance the hybrid pendulum-mass-spring-damper system discussed in

section 1.1.1 and the delayed feedback control for the container crane in section 1.1.2. In both cases,

the complete physical systems can be separated in two components, namely the numerical and

experimental part for the hybrid testing approach, and the plant and the controller for the feedback

control system. The decomposition is illustrated in Figure 5.1, which is a special case of Figure 1.1.

As in the previous chapters, we frequently use the shift operator στ defined via (στx)(t ) = x(t −τ).

In particular, the DDAE (5.1a) takes the form

0 = F (t , x, ẋ,στx).

Let us mention that direct extensions to time-variable or state-dependent delays may be possible

via the transformation described in [165, 166]. This is, however, beyond the scope of this thesis and

requires further investigation. In general the solution of (5.1) depends on derivatives of F and φ and

thus we make the following assumption for the remainder of this chapter.

Assumption 5.1. The functions F and φ in (5.1) are sufficiently smooth.

If F is linear and time-independent, then the analysis in chapter 3 reveals that the DDAE is delay-

regular if and only if it can be transformed to a DDAE, where the differential-algebraic equation

(DAE) that is obtained from the method of steps (cf. (2.3a)) is regular. We therefore restrict ourselves

85
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0= F̌ (t ,x1, ẋ1,u1),

y1 = Ǧ(t ,x1)

0= F̂ (t ,x2, ẋ2,u2),

y2 = Ĝ(t ,x2)

PHYSICAL SYSTEM

K (t ,u1,u2, y1, y2)

Figure 5.1 – Decomposition of a physical system into substructures

to this situation — in particular we assume m = nx — and analyze the well-posedness of (5.1) in

this chapter with a classical solution concept. We illustrate our theoretical findings for the hybrid

numerical-experimental system introduced in section 1.1.1, and hence first discuss this system in

more detail in section 5.1.

The main tool to establish existence and uniqueness results for linear time-invariant DDAEs in

Chapter 4 is the Weierstraß canonical form (cf. Theorem 2.9), which allows to decouple a linear

time-invariant DAE into a differential equation and an algebraic equation. For nonlinear DAEs,

the separation into differential and algebraic equations requires the implicit function theorem

(cf. [127, Theorem 4.12]) and hence the analysis of the propagation of discontinuities in terms of the

original DDAE becomes difficult. Instead, we make use of the fact that the results of Chapter 4 can

also be stated in terms of the underlying delay differential equation (DDE) — see Theorem 4.21.

The two main contributions in this chapter are the following:

(i) We show that the compress-and-shift algorithm (Algorithm 1) from Chapter 3 can be applied

to the nonlinear hybrid numerical-experimental system and terminates with a regular DDAE

whenever the two subsystems are represented by regular DAEs. The details are presented in

Lemma 5.10, Theorem 5.15 and Theorem 5.17.

(ii) We establish existence and uniqueness results for a class of nonlinear DDAEs in Theorem 5.24

and conclude that the hybrid system is solvable whenever the subsystems are strangeness-free

(cf. Corollary 5.25).

5.1 Hybrid numerical-experimental system

For the general description of the model equations, we assume that we have already subdivided

the complete model into two sub-models, which later on represent the numerical part and the

experimental part. For an illustration we refer to Figure 5.1. The first subsystem is described by the

descriptor system

0 = F̌ (t , x1, ẋ1,u1), (5.2a)

y1 = Ǧ(t , x1) (5.2b)
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with state x1(t ) ∈R
nx,1 , input u1(t ) ∈R

m1 , and output y1(t ) ∈R
p1 . The second subsystem is given by

0 = F̂ (t , x2, ẋ2,u2), (5.3a)

y2 = Ĝ(t , x2) (5.3b)

with x2(t) ∈ R
nx,2 , u2(t) ∈ R

m2 , and y2(t) ∈ R
p2 . The complete model is given by imposing the

interconnection

0 =K (t ,u1, y1,u2, y2). (5.4)

In order to solve this relation for u1 and u2 it is common to require that
[︂
∂K
∂u1

∂K
∂u2

]︂
(t ,u1, y1,u2, y2)

is nonsingular for all (t ,u1, y1,u2, y2). For simplicity, we restrict ourselves to the case that the

interconnection is given by

u1(t ) = y2(t ) and u2(t ) = y1(t ). (5.5)

In particular, we assume m1 = p2 and m2 = p1. The complete model as depicted in Figure 5.1 is thus

given by the implicit equation

0 =
[︄

F̌ (t , x1, ẋ1,Ĝ(t , x2))

F̂ (t , x2, ẋ2,Ǧ(t , x1))

]︄
(5.6)

with initial conditions

x1(0) = ζ1 and x2(0) = ζ2. (5.7)

Example 5.2. To recast the coupled pendulum-mass-spring-damper system from section 1.1.1 in

this form, we first have to transform the systems to first order. By introducing new variables for the

velocities and after renaming we obtain

F̌ (t , x1, ẋ1,u1) =
[︄

ẋ1,1 −x1,2

M ẋ1,2 +C x1,2 +K x1,1 −u1

]︄
, Ǧ(t , x1) = x1,1,

F̂ (t , x2, ẋ2,u2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ2,1 −x2,4

ẋ2,2 −x2,5

x2,6 −u2

mẋ2,4 +2x2,3x2,1

mẋ2,5 +2x2,3(x2,2 −u2)+mg

x2
2,1 + (x2,2 −u2)2 −L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ĝ(t , x2) =−2x2,3(x2,2 −x2,6)−mg.

Note that we have introduced the artificial variable x2,6 to account for the feedthrough, i.e., the fact

that the force Fpendulum depends on the vertical position of the mass-spring-damper, which itself is

used as input for the mathematical pendulum. ♠

If both subsystems are linear time-invariant, then we write

F̌ (t , x1, ẋ1,u1) = Ě ẋ1 − Ǎx1 − B̌u1 + f̌ (t ), Ǧ(t , x1) = Č x1,

F̂ (t , x2, ẋ2,u2) = Ê ẋ2 − Âx2 − B̂u2 + f̂ (t ), Ĝ(t , x2) = Ĉ x2,
(5.8)
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with external forcing functions f̌ and f̂ , such that the complete model (5.6) is given by
[︄

Ě 0

0 Ê

]︄[︄
ẋ1

ẋ2

]︄
=

[︄
Ǎ B̌Ĉ

B̂Č Â

]︄[︄
x1

x2

]︄
+

[︄
f̌

f̂

]︄
. (5.9)

Before we continue our discussion, let us emphasize that, in general, there is no relation between

the regularity of the subsystems (5.2) and (5.3) and the regularity of the coupled system (5.6). Also,

the index from the subsystems might differ from the index of the coupled system. As an immediate

consequence, the splitting of the system into smaller subsystems is a delicate task that must be

performed carefully.

Example 5.3. Consider the linear DAE
⎡
⎢⎣

1 0 0

0 0 0

0 0 0

⎤
⎥⎦

⎡
⎢⎣

ẋ1

ẋ2

ẋ3

⎤
⎥⎦=

⎡
⎢⎣

0 c 0

c 0 1

0 1 −1

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦+

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ (5.10)

with external forcing function f = [ f1, f2, f3] and parameter c ∈R. It is easy to see that for any c ∈R

the system has differentiation index ν = 1. Splitting the system into z1 = [x1, x2] and z2 = x3 we

obtain the two subsystems
[︄

1 0

0 0

]︄[︄
ẋ1

ẋ2

]︄
=

[︄
0 c

c 0

]︄[︄
x1

x2

]︄
+

[︄
0

1

]︄
u1 +

[︄
f1

f2

]︄
(5.11a)

0 =−x3 +u2 + f3. (5.11b)

The second subsystem (5.11b) has differentiation index ν= 1. For the first subsystem (5.11a) we

observe that for c = 0 the pencil of the DAE is singular. For c ̸= 0 the pencil is regular with index

ν= 2, which is higher than the index of the coupled system. ♠

Example 5.4. For i = 1,2 we consider the subsystems
[︄

1 0

0 0

]︄
ẋi =

[︄
ai 0

0 1

]︄
xi +

[︄
bi ,1 bi ,2

ci ,1 ci ,2

]︄
ui ,

which are already in Weierstraß canonical form (2.6) with index ν = 1. The coupled system with

coupling relations u1 = x2 and u2 = x1 is given by the linear DAE E ẋ = Ax with

E =

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

a1 0 b1,1 b1,2

0 1 c1,1 c1,2

b2,1 b2,2 a2 0

c2,1 c2,2 0 1

⎤
⎥⎥⎥⎦ , and x =

[︄
ẋ1

ẋ2

]︄
.

Using strong equivalence, see section 2.1, we obtain

(E , A) ∼

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

a1 b1,1 0 b1,2

b2,1 a2 b2,2 0

0 c1,1 1 c1,2

c2,1 0 c2,2 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ,
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and immediately observe that (E , A) has differentiation index ν= 1 if and only if c1,2c2,2 ̸= 1. Other-

wise, we obtain

(E , A) ∼

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

a1 b1,1 b1,2 0

b2,1 a2 − c1,1b2,1 −b21c12 0

c2,1 −c1,1c2,2 0 0

0 0 0 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

showing that also ν= 2, ν= 3, and (E , A) singular are possible. ♠

Remark 5.5. If both subsystems are port-Hamiltonian systems [21], then, under reasonable con-

ditions, the coupled system itself is again a port-Hamiltonian system. In this case, [152, Thm. 4.3]

implies that the differentiation index of the coupled system is at most ν= 2. ♣

Our standing assumption is that the first model is simulated numerically, while the second model is

tested experimentally. Following the discussion in section 1.1.1, the transfer system that realizes

the numerical results in real-time within the experiment is delayed, such that the second model

technically acts at a different time point. The hybrid numerical-experimental model, which we

study in this paper, is thus given by

0 =
[︄

F̌ (t , x1(t ), ẋ1(t ),Ĝ(t −τ, x2(t −τ)))

F̂ (t −τ, x2(t −τ), ẋ2(t −τ),Ǧ(t −τ, x1(t −τ)))

]︄
, (5.12)

which in the linear case simplifies to
[︄

Ě 0

0 0

]︄[︄
ẋ1(t )

ẋ2(t )

]︄
+

[︄
0 0

0 Ê

]︄[︄
ẋ1(t −τ)

ẋ2(t −τ)

]︄
=

[︄
Ǎ 0

0 0

]︄[︄
x1(t )

x2(t )

]︄
+

[︄
0 B̌Ĉ

B̂Č Â

]︄[︄
x1(t −τ)

x2(t −τ)

]︄
+

[︄
f̌ (t )

f̂ (t −τ)

]︄
.

(5.13)

Note that if the hybrid model is initialized at time t0, then the numerical simulation starts at t0, while

the experimental part starts at t0 +τ. In particular, it is sufficient to prescribe an initial trajectory

solely for the experimental part, i.e., only for x2.

5.2 The method of steps

The standard procedure to solve initial trajectory problems for delay equations is via successive

integration on the time intervals [(i −1)τ, iτ) with i = 1, . . . , M , where M ∈N is the smallest integer

such that T ≤ Mτ. This approach is already discussed in chapter 2 and used in chapters 3 and 4

to establish existence and uniqueness results for linear time-invariant DDAEs. For the sake of

presentation, the method is recalled in detail. For the DDAE (5.1a) we introduce for i ∈ I :=
{1, . . . , M }

x[i ] : [0,τ] →R
nx , t ↦→ x(t + (i −1)τ),

F[i ] : [0,τ]×Dx ×Dẋ ×Dστx →R
nx , (t , x, y, z) ↦→ F (t + (i −1)τ, x, y, z),

x[0] : [0,τ] →R
nx , t ↦→φ(t −τ).

(5.14)



90 CHAPTER 5. NONLINEAR DDAES

Then we have to solve for each i ∈ {1, . . . , M } the DAE

0 = F[i ](t , x[i ], ẋ[i ], x[i−1]), t ∈ [0,τ), (5.15a)

x[i ](0) = x[i−1](τ
−), (5.15b)

with right continuation

x[i−1](τ
−) := lim

t↗τ
x[i−1](t ).

If (5.15) is uniquely solvable (provided that the initial value x[i−1](τ
−) is consistent), then we can

construct the solution of (5.1) on the successive time intervals [(i − 1)τ, iτ). As outlined in the

introduction we cannot expect a smooth transition of the solution between these intervals, see for

instance Examples 1.4 and 1.5. We therefore extend the solution concept from Definition 4.3 to the

nonlinear case.

Definition 5.6 (Solution concept). Assume that F in the DDAE (5.1) and the initial trajectory φ are

sufficiently smooth. We call x ∈C (I,Rnx ) a solution of (5.1) if for all i ∈I the restriction x[i ] of x as

in (5.14) is a solution of (5.15). We call the initial trajectory φ : [−τ,0] →R
nx consistent if the initial

value problem (5.1) has at least one solution.

We emphasize that in order to check if an initial trajectory is consistent, we actually have to compute

a solution of the initial value problem (5.1), see also section 4.1. This is in contrast to the DAE

theory, where it suffices to compute the consistency set (2.34). To account for this issue, we adopt

Definition 4.6, which ensures that we can at least ensure a solution in the interval [0,τ).

Definition 5.7 (Admissible initial trajectory). The initial trajectory φ is called admissible for the

DDAE (5.1a) if the initial condition

x[1](0) =φ(0)

is consistent for the DAE (5.15) with i = 1.

Following the discussion in section 2.3, consistent initial values are characterized by the consistency

set (2.34). We therefore have to assume that the DAE

0 = F[1](t , x[1], ẋ[1],φ(t −τ)) (5.16)

satisfies Hypothesis 2.29. In order to simplify the discussion, we make the following definition,

which is motivated from the discussion in [98].

Definition 5.8. The DAE that is obtained from the DDAE (5.1a) by substituting x(t−τ) with a control

function u(t ) is called the associated DAE for the DDAE (5.1a). We say that the DDAE (5.1a) satisfies

Hypothesis 2.33 if its associated DAE satisfies Hypothesis 2.33.

Suppose now that the DDAE (5.1a) satisfies Hypothesis 2.33 with strangeness index µ. Then the

strangeness-free reformulation for the associated DAE as discussed in (2.38) is given by

0 = D(t , x, ẋ,u), (5.17a)

0 = A
(︂
t , x,u, u̇, . . . ,u(µ)

)︂
. (5.17b)
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Although formally, the algebraic equation depends on derivatives of u up to order µ, it may happen

that
∂A

∂u(ℓ)

(︂
t , x,u, u̇, . . . ,u(µ)

)︂
≡ 0

for some ℓ ≤ µ. Following the classification in Definition 4.9, respectively, Theorem 4.16 and

Corollary 4.20, it is essential to know the largest number s such that

∂A

∂u(s)

(︂
t , x,u, u̇, . . . ,u(µ)

)︂
̸≡ 0.

Consequently, from this point forward, we work with

0 = A
(︂
t , x,u, u̇, . . . ,u(s)

)︂
(5.18)

instead of (5.17b), with the understanding that the algebraic equation does not depend on u, i.e.,

0 = A(t , x)

if s =−∞. Replacing the control input u with the delayed argument results in the difference equation

0 = A
(︂
t , x,στx,στẋ, . . . ,στx(s)

)︂
. (5.19)

Since the set of consistent initial values is described by (5.19), we immediately obtain the following

result.

Lemma 5.9. Assume that the history function φ is sufficiently smooth and the DDAE (5.1a) satisfies

Hypothesis 2.33 with strangeness index µ. Let (5.19) denote the difference equation that results

from the strangeness-free reformulation. Then φ is admissible for the DDAE (5.1a) if and only if

0 = A
(︂
t ,φ(0),φ(−τ), φ̇(−τ), . . . ,φ(s)(−τ)

)︂
. (5.20)

Lemma 5.9 requires that the DDAE satisfies Hypothesis 2.33, which in turn implies that the associ-

ated DAE is regular. Unfortunately, this is only a sufficient condition for the existence of a unique

solution for the IVP (5.1), as discussed in detail in section 3.1, see for instance Theorem 3.17. It

is easy to see that the associated DAE for the hybrid numerical-experimental model (5.12) is not

regular and therefore does not satisfy Hypothesis 2.33 and hence Lemma 5.9 does not apply to

(5.12).

One strategy to resolve this issue is to find a reformulation of the DDAE (1.13) by shifting certain

equations. This is achieved either by a combined shift-and-derivative array and the so-called

shift index [94, 98], or by the compress-and-shift algorithm (Algorithm 2) presented in section 3.3.

The latter algorithm’s idea is to identify (after a potential transformation of the equations – the

compression step), which equations do not depend on the current state but solely on the past state.

These equations are then shifted in time, and the procedure is iterated. Let us emphasize that neither

the shift-and-derivative array approach nor the compress-and-shift algorithm is readily available for
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general nonlinear DDAEs. Still, the special structure of the hybrid numerical-experimental model

immediately suggests to shift the second block row of equations, yielding

0 = F (t , x, ẋ,στx) :=
[︄

F̌ (t , x1, ẋ1,στĜ(t , x2))

F̂ (t , x2, ẋ2,Ǧ(t , x1))

]︄
, (5.21)

with x(t ) :=
[︂

x1(t )
x2(t )

]︂
∈R

nx , nx := nx,1 +nx,2. In the linear case (5.21) simplifies to

[︄
Ě 0

0 Ê

]︄[︄
ẋ1

ẋ2

]︄
=

[︄
Ǎ 0

B̂Č Â

]︄[︄
x1

x2

]︄
+

[︄
0 B̌Ĉ

0 0

]︄[︄
στx1

στx2

]︄
+

[︄
f̌

f̂

]︄
. (5.22)

We immediately obtain

det

(︄[︄
sĚ − Ǎ 0

−B̂Č sÊ − Â

]︄)︄
= det(sĚ − Ǎ)det(sÊ − Â)

and thus have proven the next result.

Lemma 5.10. The matrix pencil of the associated DAE for the linear shifted hybrid numerical-

experimental system (5.22) is regular if and only if the associated DAEs of the linear subsystems (5.8)

are regular.

Remark 5.11. In the terminology of [98], the hybrid numerical-experimental system (5.13) has shift

index κ = 1. In the literature, shifting of equations, i.e., systems with shift index κ > 0, are often

referred to as noncausal and hence not physical. The hybrid numerical-experimental setup details

that the shifting of equations can also occur if the dynamics of the subsystems affect the overall

dynamic at different time instants. In particular, the requirement to shift parts of the equations may

be a result of how a system is modeled. ♣

Before we proceed let us emphasize that shifting of equations potentially enlarges the solution space

of the IVP for the differential equation.

Example 5.12. Consider the DDAE

ẋ1(t ) = x2(t −τ)+ f (t ), (5.23a)

0 = x2(t −τ)− g (t ). (5.23b)

Notice that the second equation constitutes a restriction for the initial trajectory. Indeed, if we

prescribe the initial trajectory

x1(t ) =φ1(t ), x2(t ) =φ2(t ), for t ≤ 0, (5.24)

then a solution cannot exist if φ2(t) ̸= g (t +τ) for t ∈ [−τ,0]. If φ2(t) = g (t +τ) for t ∈ [−τ,0], then

the solution of the initial trajectory problem (5.23),(5.24) is given by

x1(t ) =φ1(0)+
∫︂t

0
g (s)+ f (s)ds, x2(t ) = g (t +τ) for t ≥ 0.
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In particular, the solution space for x1 is parameterized by φ1(0) and thus a one-dimensional vector

space. If we, however, replace (5.23b) with the shifted equation

x2(t ) = g (t +τ) (5.25)

and consider the initial trajectory problem (5.23a),(5.25),(5.24), then for any initial trajectory φ that

satisfies φ2(0) = g (τ) the solution of (5.23a),(5.25),(5.24) for t ∈ [0,τ] is given by

x1(t ) =φ1(0)+
∫︂t

0
φ2(s −τ)+ f (s)ds, x2(t ) = g (t +τ),

such that the solution space for x1 is infinite-dimensional. ♠

Remark 5.13. The shifted hybrid system (5.21) showcases, that only an initial trajectory for the

experimental system F̂ is required, which is in agreement with the discussion after (5.13). This is no

contradiction to Example 5.12, since the numerical and experimental part are initialized at different

time points. ♣

If the linear subsystems are regular, then Lemma 5.10 together with Theorem 2.19 immediately im-

plies existence and uniqueness of solutions of the initial trajectory problem (ITP) for the DDAE (5.22)

in the space of piecewise-smooth distributions, see [203] and section 2.2. Let us emphasize that

τ > 0 is a crucial assumption in Lemma 5.10, since Example 5.4 showcases that a similar result

cannot be obtained if τ= 0. Unfortunately, it is not immediately clear, what the index of the matrix

pencil of the associated DAE is.

Example 5.14. Consider the matrix pencil

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

a b 1 0

c d 0 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠∼

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

c 0 0 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

of the associated DAE for the hybrid numerical-experimental system (5.22), where both subsystems

have differentiation index ν= 2. If c = 0, then the pencil also has index ν= 2, otherwise the index is

ν= 3. ♠

The index of the shifted hybrid numerical-experimental model depends on the coupling functions

Ǧ and Ĝ . As a direct consequence, Hypothesis 2.33 has to be checked for each example separately,

since it is not clear a-priori, what the corresponding strangeness index µ is. A notable exception is

provided in the case that both subsystems are strangeness-free.

Theorem 5.15. Suppose that the subsystems (5.2) and (5.3) are strangeness-free, i.e., satisfy Hy-

pothesis 2.33 with characteristic values µ̌ = µ̂ = 0, ǎ, â, ď , and d̂, respectively. If τ > 0, then the

shifted hybrid numerical-experimental model (5.21) satisfies Hypothesis 2.33 with characteristic

values µ= 0, a = ǎ + â, and d = ď + d̂ .
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Proof. Let ŽA, ŤA, ŽD, and ẐA, T̂A, ẐD denote the matrix functions from Hypothesis 2.33 for the

subsystems (5.2) and (5.3), respectively. Define a := ǎ + â and accordingly

d = n −a = n1 − ǎ +n2 − â = ď + d̂ .

Choose T̂ ⋆
A such that

[︂
T̂A T̂ ⋆

A

]︂
is nonsingular. From Hypothesis 2.33 we deduce that

(︃
Ẑ T

A
∂F̂

∂x2
T̂ ⋆

A

)︃
(t , x2, ẋ2,Ĝ(t , x1))

is nonsingular. Define (omitting arguments) the matrix functions

ZA :=
[︄

ŽA 0

0 ẐA

]︄
, TA :=

[︄
ŤA 0

−T̂ ⋆
A

(︂
Ẑ T

A
∂F̂
∂x2

T̂ ⋆
A

)︂−1
Ž T

A
∂F̂
∂u2

∂Ǧ
∂x1

T̂A T̂A

]︄
, ZD :=

[︄
ŽD 0

0 ẐD

]︄
.

We have to check the different items from Hypothesis 2.33 for the shifted hybrid numerical-

experimental model (5.21). We notice that µ̌= 0 = µ̂ implies Ďµ = F̌ and D̂µ = F̂ and observe

rank

(︃
∂F

∂ẋ

)︃
= rank

(︄[︄
∂F̌
∂x1

0

0 ∂F̂
∂x2

]︄)︄
= rank

(︃
∂F̌

∂x1

)︃
+ rank

(︃
∂F̂

∂x2

)︃
= ǎ + â = a.

We immediately conclude

(︃
Z T

A
∂F

∂ẋ

)︃
(t , x, ẋ,στx) =

⎡
⎣

(︂
Ž T

A
∂F̌
∂ẋ1

)︂(︁
t , x1, ẋ1,στĜ(t , x2)

)︁
0

0
(︂

Ẑ T
A

∂F̂
∂ẋ2

)︂(︁
t , x2, ẋ2,Ǧ(t , x1)

)︁
⎤
⎦= 0

such that the first item from Hypothesis 2.33 is satisfied. For the second item we obtain (omitting

arguments)

â = rank

(︃
Ẑ T

A
∂F̂

∂x2

)︃
≤ rank

(︂[︂
Ž T

A
∂F̂
∂u2

∂Ǧ
∂x1

Ẑ T
A

∂F̂
∂x2

]︂)︂
≤ â

and thus

rank

(︃
Z T

A
∂F

∂x

)︃
= rank

(︄[︄
Ž T

A
∂F̌
∂x1

0

Ž T
A

∂F̂
∂u2

∂Ǧ
∂x1

Ẑ T
A

∂F̂
∂x2

]︄)︄

= rank

(︃
Ž T

A
∂F̌

∂x1

)︃
+ rank

(︃
Ẑ T

A
∂F̂

∂x2

)︃
= ǎ + â = a.

We conclude

Z T
A

∂F

∂z
TA =

⎡
⎣ Ž T

A
∂F̌
∂z1

ŤA 0

Ž T
A

∂F̂
∂u2

∂Ǧ
∂x1

T̂A − Ẑ T
A

∂F̂
∂z2

T̂ ⋆
A

(︂
Ẑ T

A
∂F̂
∂x2

T̂ ⋆
A

)︂−1
Ž T

A
∂F̂
∂u2

∂Ǧ
∂x1

T̂A Ẑ T
A

∂F̂
∂z2

T̂A

⎤
⎦= 0.

Similarly as before we have

rank

(︃
∂F

∂ẋ
TA

)︃
= rank

(︃
∂F̌

∂ẋ1
ŤA

)︃
+ rank

(︃
∂F̂

∂ẋ2
T̂A

)︃
= ď + d̂ = d .

The proof follows from

rank

(︃
Z T

D
∂F

∂ẋ
TA

)︃
= rank

(︃
Ž T

D
∂F̌

∂ẋ1
ŤA

)︃
+ rank

(︃
Ẑ T

D
∂F̂

∂ẋ2
T̂A

)︃
= d . ■
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Remark 5.16. The assumption τ> 0 is crucial in Theorem 5.15. In the case τ= 0, we have already

seen in Example 5.4 that even if both subsystems are strangeness-free, the coupled system might

have strangeness-index µ> 0. ♣

In the case that either of the subsystems is not strangeness-free we can proceed as follows. Let

0 = Ď(t , x1, ẋ1,u1), 0 = D̂(t , x2, ẋ2,u2),

0 = Ǎ
(︂
t , x1,u1, u̇1, . . . ,u(µ̌)

1

)︂
, 0 = Â

(︂
t , x2,u2, u̇2, . . . ,u(µ̂)

2

)︂
,

ẋ1 = f̌
(︂
t , x1,u1, u̇1, . . . ,u(µ̌+1)

)︂
, ẋ2 = f̂

(︂
t , x2,u2, u̇2, . . . ,u(µ̂+1)

)︂

denote the strangeness-free reformulations and the underlying ODEs for (5.2) and (5.3), respectively.

Recall the coupling conditions

u1 =στ

(︁
Ĝ(t , x2)

)︁
and u2 = Ǧ(t , x1),

which we have to differentiate µ̂+1, respectively µ̌+1 times. We observe that in the interval [0,τ)

the coupling condition for u1 does not depend on x2 but on the history φ2. In particular, we obtain

(assuming that Ĝ is sufficiently smooth)

u̇1 =στ

(︃
∂Ĝ

∂t
(t ,φ2)+ ∂Ĝ

∂x2
(t ,φ2)φ̇2

)︃
,

ü1 =στ

(︄
∂2Ĝ

∂t 2 (t ,φ)+2
∂2Ĝ

∂t∂x2
(t ,φ2)φ̇2 +

∂2Ĝ

∂x2
2

(t ,φ2)φ̇2 +
∂Ĝ

∂x2
(t ,φ2)φ̈2

)︄
,

and similarly for higher derivatives. In particular, there exist functions ˇ̌D , ˇ̌A, and ˇ̌f

0 = ˇ̌D(t , x1, ẋ1,στφ2),

0 = ˇ̌A
(︂
t , x1,στφ2,στφ̇2, . . . ,στφ

(µ̌)
2

)︂
,

ẋ1 = ˇ̌f
(︂
t , x1,στφ2,στφ̇2, . . . ,στφ

(µ̌+1)
2

)︂

for t ∈ [0,τ). Consequently, we can (locally) solve for x1, provided that the initial trajectory φ2 is

sufficiently smooth and x1(0) satisfies the consistency condition

0 = ˇ̌A
(︂
0, x1(0),φ2(−τ), φ̇2(−τ), . . . ,φ(µ̌)

2 (−τ)
)︂

.

On the other hand, the input relation for u2 implies

u̇2 =
∂Ĝ

∂t
(t , x1)+ ∂Ĝ

∂x1
(t , x1)ẋ1

= ∂Ĝ

∂t
(t , x1)+ ∂Ĝ

∂x1
(t , x1)ˇ̌f

(︂
t , x1,στφ2,στφ̇2, . . . ,στφ

(µ̌+1)
2

)︂
.

Note that although derivatives of φ2 up to order µ̌+1 appear, u̇2 does not necessarily depend on all

of them (see for instance Example 5.14 and the discussion after Definition 5.8). In any case, there
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exists functions ˆ̂D , ˆ̂A, and ˆ̂f such that

0 = ˆ̂D(t , x2, ẋ2, x1),

0 = ˆ̂A
(︂
t , x2, x1,στφ2,στφ̇2, . . . ,στφ

(µ̌+µ̂)
2

)︂
,

ẋ2 = ˆ̂f
(︂
t , x1, x2,στφ2,στφ̇2, . . . ,στφ

(µ̌+µ̂+1)
2

)︂
.

Thus, the underlying delay differential equation for the shifted hybrid numerical-experimental

system (5.21) in [0,τ) is given by

[︄
ẋ1

ẋ2

]︄
=

⎡
⎣

ˇ̌f
(︂
t , x1,στφ2,στφ̇2, . . . ,στφ

(µ̌+1)
2

)︂

ˆ̂f
(︂
t , x1, x2,στφ2,στφ̇2, . . . ,στφ

(µ̌+µ̂+1)
2

)︂
⎤
⎦ (5.26)

and the differentiation index is at most µ̌+ µ̂+1 and we have shown the following result.

Theorem 5.17. Assume that the subsystems (5.2) and (5.3) satisfy Hypothesis 2.33 with strangeness

index µ̌, µ̂, respectively. Then the shifted hybrid numerical-experimental system (5.21) has a well-

defined differentiation index, which is at most µ̌+ µ̂+1.

Example 5.18. Shifting the equations for the pendulum in the hybrid version of the coupled

pendulum-spring-mass-damper system in (1.5) and introducing new variables v1 := ẏ1, v2 := ẋ2,

and v3 := ẏ2 for the velocities, yields the system

ẏ1 = v1, (5.27a)

ẋ2 = v2, (5.27b)

ẏ2 = v3, (5.27c)

M v̇1 +C v1 +K y1 = f (στy1,στy2,στλ), (5.27d)

mv̇2 =−2λx2, (5.27e)

mv̇3 =−2λ(y2 − y1)−mg, (5.27f)

0 = x2
2 + (y2 − y1)2 −L2, (5.27g)

which is a multibody system with forcing term f (y1, y2,λ) =−2λ(y2 − y1)−mg that solely depends

on delayed variables. Since multibody systems are special instances of Hessenberg systems, we

conclude from [127, Sec. 4.2] that the shifted hybrid pendulum-mass-spring-damper system has

strangeness index µ= 2 and satisfies Hypothesis 2.33 with a = 3 and d = 4. The algebraic equations

and the difference equations are given by

0 = x2
2 + (y2 − y1)2 −L2,

0 = 2x2v2 +2(y2 − y1)(v3 − v1),

0 = 2v2
2 +2(v2 − v1)2 − 4

m
λ(x2

2 + (y2 − y1)2)−2(y2 − y1)

(︃
g + f (στy1,στy2,στλ)

M
− C

M
v1 −

K

M
y1

)︃
.

Let us emphasize that despite the higher index, the algebraic equations do not depend on derivatives

of στx. Note that also the Lagrange-multiplier is delayed in (5.27d) such that this example is not

included in the specific retarded Hessenberg forms as studied in [13]. ♠
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Remark 5.19. Models that feature a similar delay structure as in (5.21) and (5.22) arise in the

time-discretization via waveform relaxzation [15, 72, 159] or the analysis of semi-explicit time-

integrators [4], see also section 1.1.5. ♣

5.3 Solvability of the hybrid model

In the previous section, we have established that the shifted hybrid numerical-experimental sys-

tem (5.21) can be solved in the interval [0,τ) and is regular in the sense of Theorem 2.32, provided

that the subsystems satisfy Hypothesis 2.33 and the history function is admissible. The question

that remains to be answered is whether a solution exists on time intervals [0,T ) with T > τ.

Remark 5.20. For the linear time-invariant case, this is discussed in detail in Chapter 3 for a

distributional solution concept and in [50, 52, 53, 97, 173, 211] for the solution concept as defined

in Definition 5.6. Results for linear time-varying systems are developed for instance in [98, 99].

Moreover, a special class of nonlinear DDAEs is discussed in [13]. ♣

In view of the method of steps discussed in the previous section, the question that remains to be

answered is, which conditions on the subsystems and the history function ensure that the initial

condition (5.15b) is consistent for all i = 1, . . . , M . Unfortunately, the regularity of the subsystems

and an admissible history function are not sufficient to establish a solution for t > τ, see for instance,

the discussion in Chapter 4 and the following example.

Example 5.21. Consider the regular DDAE

ẋ(t ) = y(t ), 0 = x(t )− y(t −1).

Applying the method of steps, equation (5.15) yields

x[i ] = y[i−1] and y[i ] = ẏ[i−1]. (5.28)

For the history function φ(t) = [︁
0

t+1

]︁
we obtain x[1](t) = t and y[1](t) = 1, and we deduce that

the history function is admissible. However, the initial value y[1](1) = 1 is not consistent for the

associated DAE on the interval [1,2). In particular, the solution exists only on the interval [0,1). ♠

The issue in the previous example is, as already outlined in chapter 4, that the equation zi = żi−1

results in solutions zi that become less smooth for increasing i , and possible discontinuities of the

form

x(k)
[i−1](τ

−) ̸= x(k)
[i ] (0)

are propagated to

x(k−1)
[i ] (τ−) ̸= x(k−1)

[i+1] (0).

The discontinuity propagation leads to the classification introduced in Definition 4.9, with a com-

plete characterization presented in Theorem 4.16. Unfortunately, the main tool for the proof of

Theorem 4.16 is the Weierstraß canonical form, and thus in general, we cannot expect to have a

similar result for the nonlinear DDAE (5.1a). Instead, we use the classification given in [98] and
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make use of the fact, that in the linear case, this classification provides an upper bound for the

classification in Definition 4.9 in the sense of Corollary 4.31.

Definition 5.22. Assume that the DDAE (5.1a) satisfies Hypothesis 2.33 and let

ẋ = f
(︂
t , x,στx, . . . ,στx(s)

)︂
(5.29)

denote the underlying DDE of the DDAE (5.1a) and assume ∂f

∂στx(s) ̸≡ 0. Then (5.1a) is called retarded,

neutral, or advanced if s = 0, s = 1, or s ≥ 2 in (5.29).

Lemma 5.23. Assume that the DDAE (5.1a) satisfies Hypothesis 2.33 and let

0 = D
(︁
t , x, ẋ,στx

)︁
, (5.30a)

0 = A
(︂
t , x,στx,στẋ, . . . ,στx(s−1)

)︂
(5.30b)

denote the associated strangeness-free reformulation with the convention that either A does not

depend on στx(k) for any k ∈N, or
∂A

∂στx(s−1)
̸≡ 0.

Then (5.1a) is retarded, neutral, or advanced, if ∂A
∂στx(k) ≡ 0 for all k ∈N, s = 1, or s = 2, respectively.

Proof. The proof follows immediately from rewriting (5.30) as in (2.39) and (2.40). ■

Theorem 5.24. Suppose that the DDAE (5.1a) is sufficiently smooth, has strangeness-index µ,

satisfies Hypothesis 2.33 with characteristic values µ, a,d and µ+1, a,d, is not advanced, and

the history function φ0 ∈C 1([0,τ],Rnx ) is admissible. Then the initial trajectory problem (5.1) is

solvable.

Proof. Since the DDAE (5.1a) satisfies Hypothesis 2.33 and is not advanced, Lemma 5.23 implies

that the strangeness-free reformulation is of the form

0 = D(t , x, ẋ,στx), 0 = A(t , x,στx) (5.31)

with the understanding that A may not depend on στx. Applying the method of steps to (5.31) yields

the sequence of initial value problems

0 = D
(︁
t + (i −1)τ, x[i ], ẋ[i ], x[i−1]

)︁
,

0 = A
(︁
t + (i −1)τ, x[i ], x[i−1]

)︁
,

x[i ](0) = x[i−1](τ
−).

(5.32)

Since the history function is admissible, we can (locally) solve (5.32) for i = 1 and by [127, Theo-

rem 4.13] this solution is also a solution of (5.15). Although this solution is of local nature it can
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be globalized by applying the cited theorem again until we reach the boundary of Mµ (cf. [127, Re-

mark 4.14]). If we assume that the solution exists on the time interval [0,τ) this immediately implies

0 = lim
t↗τ

A(t , x[1](t ), x[0](t )) = A(τ, x[1](τ
−), x[0](τ)).

Hence, x[1](τ
−) is consistent for the DAE (5.15) with i = 2. The result follows iteratively by repeating

this procedure. ■

Corollary 5.25. Suppose that the numerical and experimental subsystems (5.2) and (5.3) both

satisfy Hypothesis 2.33 with µ = 0. Then for any τ > 0 and for any admissible history function

φ, the initial trajectory problem for the shifted hybrid numerical-experimental system (5.21) is

solvable.

Proof. Theorem 5.15 ensures that the shifted hybrid system is strangeness-free. Lemma 5.23 thus

implies that (5.21) is not advanced. The result follows from Theorem 5.24. ■

Example 5.26. Although the system for the pendulum (1.3) is not strangeness-free, Example 5.18

shows that the shifted hybrid system resulting from coupling the pendulum with the mass-spring-

damper system is not advanced. In particular, Theorem 5.24 ensures that the associated initial

trajectory problem is solvable. ♠

If the DDAE (5.1a) is advanced, then in general we cannot expect a solution for the ITP (5.1), see

for instance Example 1.5 and the results from Chapter 4. However, if the initial trajectory is linked

smoothly to the solution, i.e., the initial trajectory satisfies the splicing condition (4.23), then we can

expect to establish further results similar to Theorem 4.27. Nevertheless, mimicking the strategy from

the proof of Theorem 4.27 in the nonlinear case, requires the use of the underlying DDE (5.29) and

thus the implicit function theorem. A detailed analysis of this setting is currently under investigation

and subject to further research.
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Part II

Structured realization theory
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6
Problem setting and background

From a modeling perspective, it is often difficult to describe a physical or chemical system exactly via

differential equations and modeling laws usually apply only for ideal settings. Thus, it is desirable to

construct a model in an automated fashion directly from data, that may come from some experiment.

The data may be in the form of

• a time series, for instance obtained from a numerical simulation or experiment, or

• transfer function evaluations, for instance obtained by a vector network analyzer [11].

The standing assumption in this second part of the thesis is that the data is generated by a dynamical

system Σ, exemplified in Figure 6.1. Hereby we do not assume any knowledge about the system, in

particular, there is no realization, i.e., a description of the internal dynamics, of the system available.

Σ
u y

Figure 6.1 – Input-output mapping of a black-box system

Despite the inaccessibility of a description of detailed internal dynamics, there may yet be significant

auxiliary information or at least a basic understanding of how the system should behave, allowing

one to surmise general structural features of the underlying dynamical system. For example, vi-

bration effects are naturally associated with subsystems that have second-order structure; internal

transport or signal propagation will naturally be associated with time delays—see Table 6.1 for

further examples.

Example 6.1 (Acoustic transmission, [191]). Consider the acoustic transmission example from

section 1.1.4 and suppose we are interested in the acoustic pressure y(t ) = p(ξ0, t ) at a fixed point

ξ0 ∈ (0,L) in the duct (see Figure 1.5), which we view as the output of an abstract yet unknown

system that is driven by the input fluid velocity u(t ), determined by the acoustic driver positioned at

ξ= 0. Instead of using the partial differential equation (PDE) model (1.8), we simply assume that

the output pressure depends linearly on the input velocity in a way that is invariant to translation in

103
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Table 6.1 – Examples for system structures with output mapping y(t ) =C x(t )

state space description transfer function

second-order A1ẍ(t )+ A2ẋ(t )+ A3x(t ) = Bu(t ) C
(︂
s2 A1 + s A2 + A3

)︂−1
B

state delay A1ẋ(t )+ A2x(t )+ A3x(t −τ) = Bu(t ) C
(︁
s A1 + A2 +e−τs A3

)︁−1 B

neutral delay A1ẋ(t )+ A2x + A3ẋ(t −τ) = Bu(t ) C
(︁
s A1 + A2 + se−τs A3

)︁−1 B

viscoelastic A1ẍ(t )+∫︁t
0 h(t−τ)A2ẋ(τ)dτ+ A3x(t ) = Bu(t ) C

(︂
s2 A1 + sĥ(s)A2 + A3

)︂−1
B

time, and so the output could be anticipated to involve some superposition of internal states that

are lagged in time according to propagation delays related to the distance traveled by the signal.

Assuming a uniform sound speed c > 0 throughout the duct, we allow for a direct propagation delay

τ1 = ξ0/c between the input and output location and a second propagation delay τ2 = (2L−ξ0)/c,

associated with a reflected signal. A semi-empirical model for the state evolution of a system that

has these basic features could have the form

A1x(t )+ A2x(t −τ1)+ A3x(t −τ2) = bu(t ),

with an output port map given by y(t) = cT x(t). The matrices A1, A2, and A3, the port maps

associated with the vectors b and c, as well as their dimensions are unknown. ♠

Throughout this part of the thesis we make the assumption that the system Σ in Figure 6.1 is linear,

i.e., there exists a linear time-invariant (LTI) operator S with y = Su. We are thus interested in

finding a suitable operator (in the sense of section 1.2), that approximates the data in some suitable

norm.

Problem 6.2. Construct a structured LTI operator ˜︁S solely from input/output data such that

∥y − ˜︁y∥ = ∥Su − ˜︁Su∥ ≤ ε∥u∥ (6.1)

for all admissible input signals u, a small parameter ε≥ 0, and suitable norms.

In order to solve Problem 6.2 we have to address the question what kind of data we assume available

and define precisely, what a structured LTI operator is. Recall that LTI systems can be represented

either in the time domain or in the frequency domain [6]. The mapping from one domain to the

other is given by the Laplace-transform for continuous time systems and the Z-transform for discrete

time systems. Moreover, the L∞ error in the time domain can be bounded by the H2 error in the

frequency domain via

⃦⃦
y − ˜︁y

⃦⃦
L∞

:= sup
t>0

∥y(t )− ˜︁y(t )∥∞ ≤ ∥S − ˜︁S∥H2
∥u∥L2

. (6.2)

In fact, for single-input/single-output (SISO) systems, the H2 norm is the L2-L∞ induced norm of

the underlying convolution operator, i.e. ∥S − ˜︁S∥H2
is the smallest number such that (6.2) holds for

all inputs u ∈L2 [20].
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It is well-known (cf. [20] and the references therein) that if the solution operator S is the convolution

operator of a standard state-space realization, that is (assuming a zero initial condition and no direct

feedthrough)

(Su)(t ) =
∫︂t

0
C exp(A(t − s))Bu(s)ds,

the H2 error ∥S − ˜︁S∥H2
is minimized if the transfer function of ˜︁S interpolates the transfer function

of S at the mirror images of the poles of ˜︁S. Thus our approach to solve Problem 6.2 is to construct ˜︁S
such that it is an interpolant of S in the frequency domain.

Remark 6.3. If a state-space description of the dynamical process under investigation is known,

one could use model order reduction (MOR) methods (see the recent surveys and books [6, 8, 17, 28,

29,106,177]) to obtain a low-dimensional and cheap-to-evaluate surrogate model. Among the many

MOR methods let us mention rational interpolation (formerly known as moment matching) [14, 18]

and H2-optimal interpolation [89] as methods that also interpolate the transfer function. Note that

the H2 optimality conditions for structured problems are much more involved [22, 70] and to our

knowledge, there exists no general computational strategy to obtain optimal interpolation points

even if the state-space description is available. Preservation of system structures of the state-space

description is for instance considered in [18, 57, 58, 78, 133, 155, 199]. We note that almost all of these

approaches require an internal description. Notable exceptions are provided in [71, 184, 189, 191]. ♣

Remark 6.4. For some model problems, for instance a circuit that involves a lossless transmission

line [39], it is possible to transform a hyperbolic PDE into a delay equation [61, 139] that is — from a

computational perspective — much easier to solve. See also section 1.1.4 for a detailed example.

Thus even if a state-space description is available, it may be advantageous to choose a different

structure for the surrogate model than for the original model. Notice that many of these problems

are characterized by slowly decaying Hankel singular values or Kolmogorov n-widths (see [213] for a

connection between the two concepts), which prevents classical MOR methods from succeeding

and thus requires a special treatment [35, 48, 162, 180]. ♣

The second part of the thesis is organized as follows: First, we precisely state the problem for

realizing a delay differential-algebraic equation (DDAE) from frequency measurements of a transfer

function in section 6.1 and introduce the term system structure, that allows us to not only identify

a DDAE from measurements, but a larger system class (cf. Problem 6.6 and Problem 6.9). The

framework to obtain an interpolant of the frequency domain data is derived in chapter 7 and can be

understood as a generalization of the Loewner framework [150] (see section 6.2 for further details).

If we can access only input/output measurements in the time domain, we can estimate frequency

data via the empirical transfer function estimate (ETFE) [137] or the least-squares transfer function

estimate (lsTFE) [168]. This approach together with the estimation of unknown parameters in the

system structure, for instance the delay time τ, is presented in chapter 8.

Remark 6.5. If the data under consideration is prone to noise one may wish to use a least-squares

approach instead of interpolation, such as vector fitting [66, 67, 93], or dynamic mode decomposition

[128, 186, 210]. We consider this, however, a second step and thus postpone this to future work. ♣
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Let us mention that most of the content of this part of the thesis is already published in the journal

articles [189, 191] and the preprint [77]. The presented results are joint work with Christopher

Beattie (Virginia Tech), Elliot Fosong (University of Cambridge), Serkan Gugercin (Virginia Tech),

and Philipp Schulze (TU Berlin).

6.1 Problem setting

Recall that a LTI DDAE is given by

E ẋ(t ) = A1x(t )+ A2x(t −τ)+Bu(t ),

y(t ) =C x(t ),
(6.3)

and — as before — we call x(t ) ∈R
nx , u(t ) ∈R

nu , and y(t ) ∈R
ny , the state, input, and output of the

system (6.3), which we assume to be exponentially bounded. In this case the Laplace transform may

be applied to (6.3) and rearranged to ˆ︁y(s) = H(s) ˆ︁u(s) with

H(s) =C (sE − A1 −exp(−τs)A2)−1B ,

provided that det(sE − A1 −exp(−τs)A2) is not vanishing identically (i.e., the DDAE (6.3) is delay-

regular, cf. Theorem 3.20) and the initial condition

x(t ) = 0 for t ∈ [−τ,0]

is satisfied. The function H : C→C
ny×nu is called the transfer function of (6.3). Since the transfer

function characterizes the input-output behavior of (6.3), measurements of H seem appropriate to

construct the realization. More precisely, we assume that the following data is available: Suppose

we have 2n points in the complex plane, which may be interpreted as complex driving frequencies,

{µ1, . . . ,µn} and {σ1, . . . ,σn}. In addition to these complex frequencies, we have the so-called left

tangential direction vectors {ℓ1, . . . ,ℓn} and the right tangential direction vectors {r1, . . . ,rn} where

ℓi ∈R
p and ri ∈R

m for i = 1, . . . ,n. In the SISO case, i.e., nu = ny = 1, these tangential directions are

assigned the value one, i.e., ℓi = ri = 1. Unlike projection-based model reduction, which requires

access to the state space quantities, data-driven interpolatory model reduction only assumes access

to the action of the transfer function evaluated at the driving frequencies along the tangential

directions, i.e.,

ℓT
i H(µi ) = f T

i and H(σi )ri = gi for i = 1, . . . ,n. (6.4)

If the direction vectors ℓi and ℓ j are linearly independent, one can allow µi to coincide with µ j ,

and similarly for the σi ’s. However, for simplicity the only coincidence of interpolation points that

we admit will be between left and right interpolation points, i.e., µi =σ j . If this is the case for an

index pair (i , j ), then bitangential derivative data is assumed to be available. Since we assume that

each of the two sets {µi }n
i=1 and {σi }n

i=1 consists of n distinct points, if µi =σ j for an index pair (i , j ),

without loss of generality, we assume i = j . Then, the corresponding bitangential derivative data is

defined as

ℓT
i H ′(µi )ri = θi ,
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where H ′ denotes the derivative of H , i.e., H ′ := d
ds H . Following [7, 150], we summarize the interpo-

lation data as

left interpolation data: {(µi ,ℓi , fi ) |µi ∈C,ℓi ∈C
ny , fi ∈C

nu , i = 1, . . . ,n},

right interpolation data: {(σi ,ri , gi ) |σi ∈C,ri ∈C
ny , gi ∈C

nu , i = 1, . . . ,n},

bitangential derivative data: {(i ,θi ) | i ∈ {1, . . . ,n} for which µi =σi ,θi ∈C},

(6.5)

with the understanding that the last category may be empty if {µi }n
i=1 ∩ {σi }n

i=1 =∅. Note that in

the case µi =σi , the compatibility of the conditions (6.4) requires that f T
i ri = ℓT

i gi . For the ease of

presentation in the next sections, we summarize the interpolation data in the matrices

M := diag(µ1, . . . ,µn) ∈C
n×n , S := diag(σ1, . . . ,σn) ∈C

n×n ,

L :=
[︂
ℓ1 . . . ℓn

]︂
∈C

ny×n , R :=
[︂

r1 . . . rn

]︂
∈C

nu×n ,

F :=
[︂

f1 . . . fn

]︂
∈C

nu×n , G :=
[︂

g1 . . . gn

]︂
∈C

ny×n .

(6.6)

The problem that we are interested in solving can thus be formulated as follows.

Problem 6.6 (Realization problem for DDAEs). Given the interpolation data in (6.5), find matrices
˜︁E , ˜︁A1, ˜︁A2 ∈ C

nx×nx , ˜︁B ∈ C
nx×nu , and ˜︁C ∈ C

ny×nx and a parameter τ ≥ 0, such that the transfer

function
˜︁H(s) = ˜︁C (︁

s ˜︁E − ˜︁A1 −exp(−τs) ˜︁A2

)︁−1 ˜︁B (6.7)

satisfies the interpolation conditions

ℓT
i

˜︁H(µi ) = f T
i and ˜︁H(σi )ri = gi for i = 1, . . . ,n.

If µi =σi for any index i , then additionally,

ℓT
i

˜︁H ′(µi )ri = θi

is to be satisfied.

Remark 6.7. One may furthermore ask for the transfer function ˜︁H in (6.7) to be real, i.e., to satisfy

˜︁H(s) = ˜︁H(s) for all s ∈C, (6.8)

where z denotes the complex conjugate of z ∈ C. A sufficient condition to ensure a real transfer

function is to ask for the system matrices ˜︁E , ˜︁A1, ˜︁A2, ˜︁B , ˜︁C to be real, which we henceforth refer to as

real realization problem. ♣

For τ= 0, Problem 6.6 reduces to the task of identifying a linear system in generalized state-space

form, a task which is successfully solved via the Loewner framework [150], see the forthcoming

section 6.2. In that sense, the particular structure of the transfer function in (6.7) can be seen as a

generalization of the Loewner framework.

Depending on the application at hand, it may not be desirable to construct a realization that

depends on the past. Instead, one may prescribe a different system structure. For instance, a general
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resistor-inductor-capacitor (RLC) network may be modeled as differential-algebraic equation (DAE)

with integral term [78], given by

A1ẋ(t )+ A2x(t )+ A3

∫︂t

0
x(θ)dθ = Bu(t ), y(t ) = B T x(t ). (6.9)

The transfer function associated with (6.9) is given by

H(s) = B T
(︃

s A1 + A2 +
1

s
A3

)︃−1

B

and we expect better approximation properties of the realization by preserving this form. Further

examples for system structures are listed in Table 6.1. Instead of formulating and solving a realization

problem for each of these system classes, we are interested in a general scheme that is able to

construct a realization for a given system structure.

Remark 6.8. In terms of MOR, which aims at producing a computationally inexpensive surrogate

model of a given dynamical system, the preservation of structure in the reduced order model (ROM)

often allows one to derive a ROM with a smaller state-space dimension nx , while maintaining

comparable or at times even better accuracy than what unstructured reduced models produce, see

Section 5 in [18]. Additionally, since the internal structure of models often reflects core phenomeno-

logical properties, structured models may behave in ways that remain qualitatively consistent

with the phenomena that are being modeled – possibly more so than unstructured models hav-

ing higher objective fidelity. In contrast to the structured realization problem (cf. Problem 6.6),

most structure-preserving MOR techniques are developed in a projection-based context, thus

assuming access to internal dynamics in the form of differential equations. For details we refer

to [18, 57, 58, 78, 133, 155, 199]. Notable exceptions are provided in [71, 184, 189, 191]. ♣

Although the term system structure can have wide-ranging meanings, for our purposes we will

understand the term to refer to equivalence classes of systems having realizations associated with a

linearly independent function family {h1, h2, . . . , hK } that appear as

H(s) =C

(︄
K∑︂

k=1
hk (s)Ak

)︄−1

B , (6.10)

where C ∈ R
ny×nx , Ak ∈ R

nx×nx for k = 1, . . . ,K , B ∈ R
nx×nu . We assume in all that follows that the

functions hk : C→ C are meromorphic. For any given function family, we will refer to associated

matrix-valued functions having the form
∑︁K

k=1 hk (s)Ak as an affine structure. By standard abuse

of notation, we use H(s) to denote either the system itself or the transfer function of the system

evaluated at the point s ∈ C. The two systems H(s) and ˜︁H(s) are called structurally equivalent if

H(s), ˜︁H(s) ∈C
ny×nu for s ∈C and if they each have the form

H(s) =C

(︄
K∑︂

k=1
hk (s)Ak

)︄−1

B and ˜︁H(s) = ˜︁C
(︄

K∑︂
k=1

h̃k (s) ˜︁Ak

)︄−1

˜︁B ,

with span{h1,h2, . . . ,hK } ≡ span{h̃1, h̃2, . . . , h̃K }. In particular, we allow different state-space dimen-

sions, i.e., for ˜︁C ∈R
ny×n , ˜︁Ak ∈R

n×n , and ˜︁B ∈R
n×nu the integers nx and n need not be the same. Given
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an original (full order) system associated with H(s), we aim to construct a structurally equivalent

system ˜︁H (s) that interpolates the original system at the driving frequencies, yielding to the following

generalization of Problem 6.6.

Problem 6.9 (Structured realization problem). Given the data in (6.5) and a system structure

associated with the linearly independent function family {h1, . . . ,hK }, find matrices ˜︁Ak ∈C
nx×nx ,

k = 1, . . . ,K , ˜︁B ∈C
nx×nu , and ˜︁C ∈C

ny×nx , such that the transfer function

˜︁H(s) = ˜︁C
(︄

K∑︂
k=1

hk (s) ˜︁Ak

)︄−1

˜︁B (6.11)

satisfies the interpolation conditions

ℓT
i

˜︁H(µi ) = f T
i and ˜︁H(σi )ri = gi for i = 1, . . . ,n. (6.12a)

If µi =σi for any index i , then additionally,

ℓT
i

˜︁H ′(µi )ri = θi (6.12b)

is to be satisfied.

Remark 6.10. Comparing Problem 6.6 and Problem 6.9, we observe that the coefficient functions hk

may depend on possibly unknown parameters like the time delay τ, which also need to be identified.

This may be done by fitting a realization obtained as solution of Problem 6.9 via least-squares

optimization to additional data (see the forthcoming section 8.3). ♣

6.2 The Loewner framework

A special case of Problem 6.6 and Problem 6.9 is the generalized state-space realization problem,

which can be obtained by setting τ= 0 in Problem 6.6, i.e., by considering the dynamical system

E ẋ(t ) = A1x(t )+Bu(t ), y(t ) =C x(t ) (6.13)

with associated transfer function H(s) =C (sE − A1)−1B . This problem is successfully solved by the

Loewner realization framework introduced in [150], which uses a Loewner matrix L ∈C
n×n and a

shifted Loewner matrix Lσ ∈C
n×n , whose entries [L]i , j and

[︁
Lσ

]︁
i , j for i , j = 1, . . . ,n are defined as

[L]i , j :=
f T

i r j −ℓT
i g j

µi −σ j
, and

[︁
Lσ

]︁
i , j :=

µi f T
i r j −σ j ℓ

T
i g j

µi −σ j
, if µi ̸=σ j , (6.14a)

[L]i ,i := θi , and
[︁
Lσ

]︁
i ,i := f T

i ri +µiθi , if µi =σi . (6.14b)
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For SISO systems the definition in (6.14) reduces to

[L]i , j =
H(µi )−H(σ j )

µi −σ j
, and

[︁
Lσ

]︁
i , j =

µi H(µi )−σ j H(σ j )

µi −σ j
, if µi ̸=σ j ,

[L]i ,i = H ′(µi ), and
[︁
Lσ

]︁
i ,i = H(µi )+µi H ′(µi ), if µi =σi ,

i.e., L and Lσ are the divided differences matrices corresponding to the transfer functions H(s) and

sH(s), respectively.

Remark 6.11. The Loewner matrices satisfy the Sylvester equations

ML−LS =L T G −F T R and ML−LS =ML T G −F T RS ,

with data matrices as defined in (6.6). For further details we refer to [150]. ♣

Theorem 6.12 (Loewner realization [150]). Let the matrices L and Lσ be defined as in (6.14) and

assume that det(s̃L−Lσ) ̸= 0 for all s̃ ∈ {µi }n
i=1 ∪ {σi }n

i=1. Then the system

−L˜̇︁x(t ) =−Lσ˜︁x(t )+F T u(t ), ˜︁y(t ) =G ˜︁x(t ) (6.15)

with F ,G as defined in (6.6) is a minimal realization of an interpolant of the data, i.e., its transfer

function
˜︁H(s) =G (Lσ− sL)−1F T

satisfies the interpolation conditions (6.12).

Thus in view of Problem 6.9, the Loewner realization corresponds to the specific setting

K = 2, h1(s) ≡ 1, and h2(s) =−s.

The condition det(s̃L−Lσ) ̸= 0 in Theorem 6.12 can be relaxed by means of the truncated singular

value decomposition (SVD) [6, Remark 3.2.1].

Theorem 6.13 ( [150, Theorem 5.1]). Suppose that

rank
(︁
s̃L−Lσ

)︁= rank
[︂
L Lσ

]︂
= rank

[︄
L

Lσ

]︄
=: r for all s̃ ∈ {µi }∪ {σi }. (6.16)

Then a minimal realization of an interpolant of the data is given by the system

−Y ∗
LX ˜̇︁x(t ) =−Y ∗

LσX ˜︁x(t )+Y ∗F T u(t ),

˜︁y(t ) =G X ˜︁x(t ),
(6.17)

where Y ∈ C
n×r and X ∈ C

n×r are computed from the short SVD s̃L− Lσ = Y ΣX ∗ for some

s̃ ∈ {µi }∪ {σi }, where Y ∈C
n×r and X ∈C

n×r have orthonormal columns and Σ ∈R
r×r is diagonal

with positive elements.
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Remark 6.14. It should be noted that the pencil sL−Lσ can be singular (i.e., det(sL−Lσ) ≡ 0) while

at the same time the matrices
[︂
L Lσ

]︂
and

[︂
L
∗

L
∗
σ

]︂
have full row rank. In this case, the condition

(6.16) is not satisfied and thus Theorem 6.13 does not apply. Indeed, the matrices

L=

⎡
⎢⎣

0 1 0

0 0 0

0 0 1

⎤
⎥⎦ and Lσ =

⎡
⎢⎣

1 0 0

0 0 1

0 0 0

⎤
⎥⎦

have no common (left or right) nullspace. But even if the rank condition (6.16) is satisfies and thus

Theorem 6.13 can be applied, the pencil in (6.17) may have a high index (cf. Definition 2.12), may be

close to a pencil with high index or may even be close to a singular pencil. In this case, a further

regularization is required to prevent numerical issues. We refer to [34] for further details. ♣

The Loewner realization framework is an effective and broadly applicable approach for constructing

rational approximants directly from interpolation data; it has been extended to parametric sys-

tems [10, 115], to realization independent methods for optimal H2 approximation [19], to bilinear

systems [9], and to switched systems [87]. However, the Loewner framework is only capable of

producing rational approximants and, so in particular, it cannot capture the transcendental char-

acter of transfer functions for dynamical systems containing time delays or distributed parameter

subsystems that model convection or transport (cf. [63]).
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7
Structured interpolatory realizations

In this chapter we provide a solution for Problem 6.6 and the more general Problem 6.9.

7.1 Interpolation conditions

Suppose we are given interpolation data as in (6.5) and for the moment assume that we already have

a realization of the form ˜︁H(s) = ˜︁C ˜︂K (s)−1 ˜︁B . If we can impose conditions on ˜︁C , ˜︁B and the matrix

function ˜︂K such that ˜︁H(s) = ˜︁C ˜︂K (s)−1 ˜︁B satisfies the interpolation conditions (6.12), then we can

revert the process and use the conditions to construct the realization. The following observation,

which corresponds to an equivalent parametrization of the interpolation conditions (6.12), suggests

how one might proceed.

Theorem 7.1. Let ˜︂K : C→C
n×n be a continuously differentiable matrix-valued function, which

is nonsingular at s = µi and s =σ j for i , j = 1, . . . ,n. The realization ˜︁H(s) = ˜︁C ˜︂K (s)−1 ˜︁B satisfies

the interpolation conditions (6.12a) if and only if

G = ˜︁C PG and F T = P T
F

˜︁B , (7.1)

where PG ,PF ∈C
n×n are two matrices, whose columns p i

G := PG ei and p i
F := PF ei , respectively,

solve the linear systems

˜︂K (σi )p i
G = ˜︁Bri and ˜︂K (µi )T p i

F = ˜︁C T ℓi , (7.2)

where ei is the i th column of the n ×n identity matrix. Moreover, if µi = σi , then ˜︁H satisfies in

addition the bitangential interpolation condition (6.12b), provided that

(︂
p i

F

)︂T ˜︂K ′(µi )p i
G =−θi , (7.3)

where ˜︂K ′ denotes the derivative of ˜︂K .

113
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Proof. The transfer function ˜︁H(s) = ˜︁C ˜︂K (s)−1 ˜︁B is well-defined at s = µi and s = σi . Assume first

that (7.1) and (7.2) are satisfied. Multiplying the first equation in (7.1) by ei yields gi = ˜︁C p i
G . Then,

using the first equation in (7.2) and the fact that ˜︂K (σi ) is nonsingular, one immediately obtains

gi = ˜︁H(σi )ri , i.e., the right tangential interpolation holds. Similarly, using the second expression in

(7.1) and the definition of p i
F in (7.2), we arrive at f T

i = ℓT
i

˜︁H(µi ); thus (6.12a) holds. For the other

direction, we observe that if p i
F and p i

G are the unique solutions of (7.2), then the interpolation

conditions immediately imply (7.1). Moreover, if µi =σi , then (7.3) yields

ℓT
i

˜︁H ′(µi )ri =−ℓT
i

˜︁C ˜︂K (µi )−1 ˜︂K ′(µi ) ˜︂K (σi )−1 ˜︁Bri =−
(︂
p i

F

)︂T ˜︂K ′(µi )p i
G = θi . ■

Evidently, in order to satisfy the collected tangent interpolation conditions (6.12a), we can now

equivalently require the realization ˜︁H(s) to satisfy the conditions of Theorem 7.1. In particular we

need ˜︂K (s) to be nonsingular at the driving frequencies s =µi and s =σ j . For ˜︂K (s) =∑︁K
k=1 hk (s) ˜︁Ak ,

the other conditions (7.1) and (7.2) can be rewritten as

G = ˜︁C PG , F T = P T
F

˜︁B , (7.4)

K∑︂
k=1

˜︁Ak PG hk (S ) = ˜︁BR,
K∑︂

k=1
hk (M )P T

F
˜︁Ak =L T ˜︁C , (7.5)

where we set hk (M ) := diag(hk (µ1), . . . ,hk (µn)) and hk (S ) := diag(hk (σ1), . . . ,hk (σn)). To fulfill

additionally the bitangential interpolation conditions (6.12b) for the case µi =σi , the third condition

of Theorem 7.1 needs to be satisfied.

If the matrices PF and PG are nonsingular, then

˜︁H(s) = ˜︁C ˜︂K (s)−1 ˜︁B =G
(︂
P T

F
˜︂K (s)PG

)︂−1
F T ,

and hence the realization is unique up to the basis transformation described by PF and PG . In

this case, the matrices ˜︁B and ˜︁C are given directly by the data without further computations and

the matrices PF and PG capture the non-uniqueness of the realization. In Section 7.3 we will use

these matrices to tailor the realization to interpolate additional data. In any case, we view equations

(7.4) and (7.5) not as a coupled system but as a staggered process. First, fix matrices PF ,PG and

determine ˜︁B and ˜︁C from (7.4). In a second step, use this information to solve (7.5). With this

viewpoint, i.e., not counting PF and PG as unknowns, we have K n2 unknowns from the coefficient

matrices ˜︁Ak and (nu +ny )n unknowns from the input and output matrices ˜︁B and ˜︁C , giving a total

of K n2 + (nu +ny )n unknowns. For these unknowns, (7.4) and (7.5) constitute 2n2 + (nu +ny )n

equations, leaving (K −2)n2 degrees of freedom. In particular, we can expect a unique solution for

K = 2.

Remark 7.2. There are (K −2)n2 degrees of freedom to solve the structured realization problem, and

therefore the K = 1 case does not have enough degrees of freedom to guarantee a solution in general.

To further examine the case K = 1, assume for simplicity that ˜︁H is a single-input/single-output (SISO)

system, i.e., ˜︁B = ˜︁b ∈R
n and ˜︁C T = ˜︁c ∈R

n . Then the reduced model has the form H(s) = 1
h1(s) ˜︁c

T ˜︁A−1˜︁b.

Therefore, the interpolation conditions yield

˜︁cT ˜︁A−1˜︁b = H(σi )h1(σi ) and ˜︁cT ˜︁A−1˜︁b = H(µi )h1(µi ), for i = 1, . . . ,n. (7.6)



7.1. INTERPOLATION CONDITIONS 115

Since ˜︁cT ˜︁A−1˜︁b is constant, for the interpolation problem in (7.6) to have a solution, we need

H(σi )h1(σi ) = H(µi )h1(µi ) = c,

where c is a constant for i = 1, . . . ,n. This clearly will not be the case in general and we cannot expect

to have a solution. Interestingly, if this condition holds, a solution can be found easily by setting
˜︁A = 1, ˜︁b = 1 and ˜︁c = c. Based on these considerations, we will focus on K ≥ 2 in the remainder of the

thesis. ♣

Remark 7.3. The nonsingularity of the matrices PF and PG is connected to the controllability and

observability of the realization. A SISO system in standard state-space form, i.e., ˜︂K (s) = sIn − ˜︁A,
˜︁B = ˜︁b ∈ R

n , and ˜︁C = ˜︁c ∈ R
1×n is called controllable, if n = rank

(︂[︂
˜︁b ˜︁A˜︁b · · · ˜︁An−1˜︁b

]︂)︂
. It is called

observable, if n = rank
(︂[︂

˜︁cT ˜︁AT ˜︁cT · · · ( ˜︁AT )n−1˜︁cT
]︂)︂

. To establish the connection between the

matrices PF and PG to these concepts, we observe that for SISO systems in standard state-space

form ˜︂K and its pointwise inverse form a set of commutative matrices. Hence we have

rank
(︁
PG

)︁= rank
(︂[︂

˜︂K (σ1)−1˜︁b · · · ˜︂K (σn)−1˜︁b
]︂)︂

= rank
(︂[︂

˜︂K (σ1)−1˜︁b ˜︂K (σ1)−1 ˜︂K (σ2)−1˜︁b · · ·
(︂∏︁n

i=1
˜︂K (σi )−1

)︂
˜︁b
]︂)︂

= rank
(︂[︂

˜︁b ˜︁A˜︁b · · · ˜︁An−1˜︁b
]︂)︂

such that PG is nonsingular if and only if the realization is controllable. Similarly, PF is nonsingular

if and only if the realization is observable. ♣

Note that the Loewner pencil with h1(s) ≡ 1 and h2(s) =−s (cf. section 6.2) satisfies the conditions of

Theorem 7.1 with ˜︂K (s) = Lσ− sL, i.e., the Loewner framework is a special case of Theorem 7.1 with

matrices PF and PG set to the identity. Indeed, for µi ̸= σ j , the (i , j ) component of the Loewner

pencil is

eT
i

˜︂K (s)e j =
[︁
Lσ

]︁
i , j − s [L]i , j =

(︄
µi − s

µi −σ j

)︄
f T

i r j +
(︄

s −σ j

µi −σ j

)︄
ℓT

i g j ,

so it immediately follows eT
i

˜︂K (µi ) = ℓT
i G = ℓT

i
˜︁C and ˜︂K (σ j )e j =F T r j = ˜︁Br j . Similarly, for the case

µi =σi , we obtain

eT
i

˜︂K (µi ) = ℓT
i

˜︁C , ˜︂K (σi )ei = ˜︁Bri , and eT
i

˜︂K ′(µi )ei =−L=−θi .

Following the discussion above Remark 7.2, we can expect a unique solution of (7.5) only for the

special case K = 2, which we discuss in detail in Section 7.2 and show its close relation to the Loewner

framework. If K ≥ 3, we need a strategy to deal with the remaining degrees of freedom. To this end

we propose two approaches, which both provide interpolation of further data while maintaining the

dimension of the matrices in the realization. The first approach uses additional interpolation points

(Section 7.3.1), while the second one interpolates additional derivative evaluations of the transfer

functions (Section 7.3.2).
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7.2 Structured Loewner realizations for the case K = 2

Setting PF = PG = In gives 2n2 + (nu +ny )n equations in (7.4) and (7.5) for the K n2 + (nu +ny )n

unknowns such that we can expect (under some regularity) a unique solution for the case K = 2. In

this case ˜︁B =F T , ˜︁C =G , and the matrix equations in (7.5) reduce to

h1(M ) ˜︁A1 +h2(M ) ˜︁A2 =L T G and ˜︁A1h1(S )+ ˜︁A2h2(S ) =F T R.

To decouple these equations, we multiply the first equation from the right by h2(S ) and the second

equation from the left by h2(M ). Subtracting the resulting systems yields the Sylvester-like equation

h2(M ) ˜︁A1h1(S )−h1(M ) ˜︁A1h2(S ) = h2(M )F T R−L T Gh2(S ). (7.7)

Similarly, we can eliminate ˜︁A1 and obtain

h1(M ) ˜︁A2h2(S )−h2(M ) ˜︁A2h1(S ) = h1(M )F T R−L T Gh1(S ). (7.8)

Remark 7.4. If the desired model is a generalized state space system as in (6.13), i.e., h1(s) = s and

h2(s) ≡−1, then (7.7) and (7.8) are given by the Sylvester equations

˜︁A1S −M ˜︁A1 =F T R−L T G and ˜︁A2S −M ˜︁A2 =MF T R−L T GS , (7.9)

respectively. Up to a sign factor, these are the Sylvester equations that define the Loewner matrix

and the shifted Loewner matrix, see 6.11. In particular, if σi ̸=µ j for i , j = 1, . . . ,n, then ˜︁A1 =−L and
˜︁A2 =−Lσ are the unique solutions of (7.7) and (7.8) and the Loewner framework is a special case of

the general framework presented in this paper. Similarly, the proportional ansatz for the realization

of delay systems introduced in [189] is covered by our framework. ♣

Those elements of ˜︁A1 and ˜︁A2, for which µi ̸= σ j , may be obtained by multiplying (7.7) and (7.8)

from left by eT
i and from right by e j yielding

[︁ ˜︁A1

]︁
i , j =

h2(µi ) f T
i r j −ℓT

i g j h2(σ j )

h2(µi )h1(σ j )−h1(µi )h2(σ j )
,

[︁ ˜︁A2

]︁
i , j =

h1(µi ) f T
i r j −ℓT

i g j h1(σ j )

h1(µi )h2(σ j )−h2(µi )h1(σ j )
(7.10)

under the generic assumption that h1(µi )h2(σ j ) ̸= h2(µi )h1(σ j ). This is satisfied for all possible

choices of interpolation points with µi ̸=σ j if the functions h1 and h2 satisfy the Haar condition [60],

see also the forthcoming Section 7.3.1. The components for which µi = σi can be obtained by

translating the conditions in Theorem 7.1 to the K = 2 case. This yields

h1(µi )[ ˜︁A1]i ,i +h2(µi )[ ˜︁A2]i ,i = ℓT
i gi and h′

1(µi )[ ˜︁A1]i ,i +h′
2(µi )[ ˜︁A2]i ,i =−θi (7.11)

and consequently

[︁ ˜︁A1

]︁
i ,i =

h2(µi )θi +h′
2(µi )ℓT

i gi

h′
2(µi )h1(µi )−h′

1(µi )h2(µi )
,

[︁ ˜︁A2

]︁
i ,i =

h1(µi )θi +h′
1(µi )ℓT

i gi

h′
1(µi )h2(µi )−h′

2(µi )h1(µi )
, (7.12)

for the components with µi =σi under the generic assumption h′
2(µi )h1(µi ) ̸= h′

1(µi )h2(µi ). Conse-

quently, we have shown the subsequent result.
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Theorem 7.5. Let ˜︁A1 and ˜︁A2 be as in (7.10) and (7.12) where the denominators are assumed

nonzero. If

det
(︁
h1(s̃) ˜︁A1 +h2(s̃) ˜︁A2

)︁ ̸= 0 for all s̃ ∈ {µi }n
i=1 ∪ {σi }n

i=1, (7.13)

then the transfer function H (s) =G
(︁
h1(s) ˜︁A1 +h2(s) ˜︁A2

)︁−1
F T satisfies the interpolation conditions

(6.12).

Remark 7.6. For the analysis of assumption (7.13) in Theorem 7.5, we observe that the function

η : C→C, s ↦→ det
(︁
h1(s) ˜︁A1 +h2(s) ˜︁A2

)︁

is meromorphic, since by definition h1 and h2 are meromorphic. The identity theorem for holomor-

phic functions implies that either η≡ 0 and hence that h1(s) ˜︁A1 +h2(s) ˜︁A2 is singular for every s ∈C,

or that set of zeros of η has no accumulation point and consequently, is a set of measure zero, i.e.,

the transfer function H in Theorem 7.5 is defined for almost all s ∈C. ♣

The matrices ˜︁A1 and ˜︁A2 have a structure similar to the Loewner matrix and the shifted Loewner

matrix. This gives rise to the idea that the result of Theorem 7.5 can be obtained from the standard

Loewner framework using transformed data.

Corollary 7.7. Suppose that h2(S ) and h2(M ) are nonsingular and that the denominators in

(7.10) and (7.12) are nonzero. Construct the Loewner matrix L and the shifted Loewner matrix Lσ

for the transformed data

left interpolation data:

{︃(︃
h1

(︁
µi

)︁

h2

(︁
µi

)︁ ,
ℓi

h2

(︁
µi

)︁ , fi

)︃
for i = 1, . . . ,n

}︃
,

right interpolation data:

{︃(︃
h1

(︁
σi

)︁

h2

(︁
σi

)︁ ,
ri

h2

(︁
σi

)︁ , gi

)︃
for i = 1, . . . ,n

}︃
,

bitangential derivative data:

{︄(︄
i ,

h2

(︁
µi

)︁
θi +h′

2

(︁
µi

)︁
ℓT

i gi

h′
1

(︁
µi

)︁
h2

(︁
µi

)︁−h′
2

(︁
µi

)︁
h1

(︁
µi

)︁
)︄

for which µi =σi

}︄
(7.14)

If det(h2(s̃)Lσ−h1(s̃)L) ̸= 0 for all s̃ ∈ {µi }n
i=1 ∪ {σi }n

i=1, then the transfer function

H(s) =G (h2(s)Lσ−h1(s)L)−1F T

interpolates the data.

Proof. Simple calculations yield that, when constructing the Loewner pencil with the transformed

interpolation data (7.14), the Loewner matrix and the shifted Loewner matrix coincide with − ˜︁A1

and ˜︁A2 given in (7.10) and (7.12). Theorem 7.5 completes the proof. ■

Corollary 7.7 allows one to transfer many results of the standard Loewner framework to the general

framework considered in this subsection. In particular, this allows us to keep the system matrices

real if the set of interpolation data is closed under complex conjugation. The details are formulated

in Lemma 7.8.
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Lemma 7.8. Let the set of interpolation data be closed under complex conjugation, i.e., there exist

unitary matrices TF ,TG ∈C
n×n with

T ∗
F MTF ∈R

n×n , T ∗
F L T ∈R

n , T ∗
F F T ∈R

n ,

T ∗
G S TG ∈R

n×n , RTG ∈R
n , GTG ∈R

n .

Moreover, assume that the set of θi ’s (for the case µi = σi ) is closed under complex conjugation.

Then, the realization (T ∗
F

˜︁A1TG , T ∗
F

˜︁A2TG , T ∗
F F T , GTG ) with ( ˜︁A1, ˜︁A2, F T , G ) from Theorem 7.5

consists of real-valued matrices and interpolates the data.

Proof. First we note that if the set of interpolation data is closed under complex conjugation, so is

the set of transformed data in Corollary 7.7. Based on this observation, the proof for the case µi ̸=σ j

for all i , j = 1, . . . ,n simply follows the lines of [11, section 2.4.4.]. This can also be comprehended

after multiplying the Sylvester-like equations (7.7) and (7.8) from left by T ∗
F and from right by TG .

Similar reasoning proves the claim for the µi =σi case. ■

Example 7.9. A special case of Lemma 7.8 applies when the interpolation data is sorted such that

the real values have the highest indices, i.e.,

M = diag(µ1, µ1, . . . , µ2ℓ−1, µ2ℓ−1, µ2ℓ+1, . . . , µn),

L =
[︂
ℓ1 ℓ1 . . . ℓ2ℓ−1 ℓ2ℓ−1 ℓ2ℓ+1 . . . ℓn

]︂
,

F =
[︂

f1 f1 . . . f2ℓ−1 f2ℓ−1 f2ℓ+1 . . . fn

]︂
,

S = diag(σ1, σ1, . . . , σ2r−1, σ2r−1, σ2r+1, . . . , σn),

R =
[︂

r1 r1 . . . r2r−1 r2r−1 r2r+1 . . . rn

]︂
,

G =
[︂

g1 g1 . . . g2r−1 g2r−1 g2r+1 . . . gn

]︂
.

In this case possible choices for TF and TG are given by block diagonal unitary matrices

T• = blkdiag

(︄
1⎷
2

[︄
1 −ı

1 ı

]︄
, . . . ,

1⎷
2

[︄
1 −ı

1 ı

]︄
, 1, . . . , 1

)︄
,

where • ∈ {F ,G }. One can also obtain the real realization directly from Theorem 7.1 by choosing

P T
F = T ∗

F and PG = TG (see discussion after Theorem 7.1). ♠

Remark 7.10. The result from Corollary 7.7 can (formally) be obtained by rewriting the transfer

function

H(s) = ˜︁C (h1(s) ˜︁A1 +h2(s) ˜︁A2)−1 ˜︁B = ˜︁C
(︃

h1(s)

h2(s)
˜︁A1 + ˜︁A2

)︃−1
˜︁B 1

h2(s)
.

This corresponds to a similar strategy as in [71]. ♣
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Remark 7.11. Similar as in the Loewner framework, we can parameterize the realization with a

feedthrough term D . Assuming
{︁
µi

}︁n
i=1 ∩

{︁
σi

}︁n
i=1 =∅, simple calculations lead to the realization

H(s) = ˜︁C (︁
h1(s) ˜︁A1 +h2(s) ˜︁A2

)︁−1 ˜︁B +D

with ˜︁C =G −DR, ˜︁B =F T −L T D ,

˜︁C =G −DR,
[︁ ˜︁A1

]︁
i , j =

h2(µi )
(︂

f T
i −ℓT

i D
)︂

r j −ℓT
i

(︂
g j −Dr j

)︂
h2(σ j )

h2(µi )h1(σ j )−h1(µi )h2(σ j )
,

˜︁B =F T −L T D,
[︁ ˜︁A2

]︁
i , j =

h1(µi )
(︂

f T
i −ℓT

i D
)︂

r j −ℓT
i

(︂
g j −Dr j

)︂
h1(σ j )

h1(µi )h2(σ j )−h2(µi )h1(σ j )
,

which interpolates the data (6.5) for all matrices D ∈ R
ny×nu . For the special case h1(s) = s and

h2(s) ≡−1, we recover the results from [150] given by ˜︁C =G −DR, ˜︁B =F T −L T D, ˜︁A1 =−L, and
˜︁A2 =−Lσ−L T DR. ♣

7.3 Structured realization for the case K ≥ 3

When K ≥ 3, the conditions in Theorem 7.1 do not provide enough conditions for the available

degrees of freedom (even if PF and PG are fixed). Hence, we have some freedom in choosing

the matrices ˜︁Ak with k = 1, . . . ,n. We can exploit these degrees of freedom, for instance, by fitting

the transfer function to additional data. For simplicity we assume
{︁
µi

}︁n
i=1 ∩

{︁
σi

}︁n
i=1 = ∅ for the

remainder of this section.

7.3.1 Interpolation at additional points

In this subsection we focus on fitting the transfer function to additional data or, equivalently,

matching the given data with a smaller state space dimension. To this end, we assume that we have

(QF −1)n additional left interpolation points and (QG −1)n additional right interpolation points at

hand, which we group in sets of n. More precisely, the left interpolation data is grouped into the

matrices

Mq := diag(µq ;1,µq ;2, . . . ,µq ;n) ∈C
n×n , Lq :=

[︂
ℓq ;1 ℓq ;2 · · · ℓq ;n

]︂
∈C

ny×n ,

Fq :=
[︂

fq ;1 fq ;2 · · · fq ;n

]︂
∈C

nu×n ,
(7.15a)

where q = 1, . . . ,QF . Here, we set µ1;i := µi , f1;i := fi , and ℓ1;i := ℓi , such that we have M1 = M ,

L1 =L , and F1 =F . Similarly, we introduce for q = 1, . . . ,QG the matrices

Sq := diag(σq ;1,σq ;2, . . . ,σq ;n) ∈C
n×n , Rq :=

[︂
rq ;1 rq ;2 · · · rq ;n

]︂
∈C

nu×n ,

Gq :=
[︂

gq ;1 gq ;2 · · · gq ;n

]︂
∈C

ny×n .
(7.15b)

To use the full capacity of the available degrees of freedom, we assume K =QF+QG , with QF ,QG ≥ 1.

The next result, which is a generalization of the K = 2 case, gives us the necessary and sufficient

conditions that the matrices in the realization H(s) must satisfy to interpolate all prescribed infor-

mation.
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Theorem 7.12. Let H(s) = ˜︁C ˜︂K (s)−1 ˜︁B with ˜︂K (s) =∑︁K
k=1 hk (s) ˜︁Ak and suppose that ˜︂K (s) is non-

singular for all s̃ ∈ {µq ;i }
QF

q=1 ∪ {σq ;i }
QG

q=1 for all i = 1, . . . ,n.

(i) The left interpolation conditions ℓT
q ;i

˜︁H(µq ;i ) = f T
q ;i are satisfied for all i = 1, . . . ,n and all

q = 1, . . . ,QF if and only if there exist matrices PF ,q with q = 1, . . . ,QF that satisfy

F T
q = P T

F ,q
˜︁B and

K∑︂
k=1

hk (Mq )P T
F ,q

˜︁Ak =L T
q

˜︁C . (7.16)

(ii) The right interpolation conditions ˜︁H(σq ;i )rq ;i = gq ;i are satisfied for all i = 1, . . . ,n and all

q = 1, . . . ,QG if and only if there exist matrices PG ,q with q = 1, . . . ,QG that satisfy

Gq = ˜︁C PG ,q and
K∑︂

k=1

˜︁Ak PG ,q hk (Sq ) = ˜︁BRq . (7.17)

Proof. The result follows directly from Theorem 7.1. For the sake of completeness we give the proof

of the first statement again. The second identity in (7.16) implies ℓT
q ;i

˜︁C = eT
i P T

F ,q
∑︁K

k=1 hk (µq ;i ) ˜︁Ak .

Thus, by the first identity and the definition of ˜︁H we conclude

ℓT
q ;i

˜︁H(µq ;i ) = eT
i P T

F ,q
˜︁B = f T

q ;i

for i = 1, . . . ,n and q = 1, . . . ,QF . ■

Evidently, in order to satisfy the interpolation conditions (6.12a) it will be sufficient to require

that (7.16) and (7.17) hold simultaneously. This gives us the following strategy to determine the

realization matrices ˜︁Ak , ˜︁B , and ˜︁C . Suppose we can find matrices PF ,q and PG ,q that satisfy the first

identity in (7.16) and (7.17), respectively, i.e., that allow us to fix ˜︁B and ˜︁C . Then we can compute the

matrices ˜︁Ak as follows. Vectorization [104] of the second identity in (7.16) yields

K∑︂
k=1

(︂
In ⊗hk (Mq )P T

F ,q

)︂
vec( ˜︁Ak ) =

(︂
˜︁C T ⊗ In

)︂
vec(L T

q ),

where ⊗ denotes the Kronecker product and vec(X ) denotes the vector of stacked columns of the

matrix X . Similarly, equation (7.17) implies

K∑︂
k=1

(︂
hk (Sq )P T

G ,q ⊗ In

)︂
vec( ˜︁Ak ) = (︁

In ⊗ ˜︁B)︁
vec(Rq ).

All equations together yield the linear algebraic system Aα=β with A ∈C
K n2×K n2

, α,β ∈C
K n2

given
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by

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In ⊗h1

(︁
M1

)︁
P T

F ,1 · · · In ⊗hK

(︁
M1

)︁
P T

F ,1
...

...

In ⊗h1

(︂
MQF

)︂
P T

F ,QF
· · · In ⊗hK

(︂
MQF

)︂
P T

F ,QF

h1

(︁
S1

)︁
P T

G ,1 ⊗ In · · · hK

(︁
S1

)︁
P T

G ,1 ⊗ In
...

...

h1

(︂
SQG

)︂
P T

G ,QG
⊗ In · · · hK

(︂
SQG

)︂
P T

G ,QG
⊗ In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

α :=

⎡
⎢⎢⎣

vec( ˜︁A1)
...

vec( ˜︁AK )

⎤
⎥⎥⎦ , and β :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︂
˜︁C T ⊗ In

)︂
vec

(︂
L T

1

)︂

...(︂
˜︁C T ⊗ In

)︂
vec

(︂
L T

QF

)︂

(︁
In ⊗ ˜︁B)︁

vec
(︁
R1

)︁
...(︁

In ⊗ ˜︁B)︁
vec

(︂
RQG

)︂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.18)

Note that the solution of the linear equation system Aα=β depends on PF ,q and PG ,q and there is

some freedom in choosing these matrices. A simple possibility is given by

P T
F ,q :=

[︂
F T

q ⋆
]︂

, PG ,q :=
[︄
Gq

⋆

]︄
, ˜︁B :=

[︄
Inu

0

]︄
, and ˜︁C :=

[︂
Iny

0
]︂

, (7.19)

which satisfies the first identity in (7.16) and (7.17) for any choice of ⋆. However, the trivial choice

of setting these blocks to zero makes the system matrix A singular, see also Remark 7.3. Instead, we

propose to fill the ⋆ part of the matrices PF ,q and PG ,q such that PF ,q and PG ,q are nonsingular

assuming that Fq and Gq have full row rank. A more specific choice of⋆may even lead to real-valued

realizations as stated in the following lemma.

Lemma 7.13. Let each of the interpolation data sets be closed under complex conjugation, i.e.,

there exist unitary matrices TF ,q ,TG ,q ∈C
n×n with

T ∗
F ,qMq TF ,q ∈R

n×n , T ∗
F ,qL T

q ∈R
n , T ∗

F ,qF T
q ∈R

n , for q = 1, . . . ,QF ,

T ∗
G ,qSq TG ,q ∈R

n×n , Rq TG ,q ∈R
n , Gq TG ,q ∈R

n , for q = 1, . . . ,QG .

Moreover, let the matrices PF ,q and PG ,q be as in (7.19) with free entries ⋆ chosen such that

T ∗
F ,q P T

F ,q ∈ R
n and PG ,q TG ,q ∈ R

n hold. Then, the matrices ˜︁A1, . . . , ˜︁AK , ˜︁B, and ˜︁C from Theo-

rem 7.12 are real matrices (if they exist).

Proof. The matrices ˜︁B and ˜︁C from (7.20) are real-valued. In addition, the second equalities in (7.16)
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and (7.17) are equivalent to

K∑︂
k=1

T ∗
F ,q hk (Mq )TF ,q T ∗

F ,q P T
F ,q

˜︁Ak = T ∗
F ,qL T

q
˜︁C and

K∑︂
k=1

˜︁Ak PG ,q TG ,q T ∗
G ,q hk (Sq )TG ,q = ˜︁BRq TG ,q .

Since the matrices ˜︁Ak are the solutions of these linear matrix equations and since their coefficient

matrices as well as the right hand sides are real-valued, we conclude that the matrices ˜︁Ak are also

real-valued. ■

To complete the discussion, we analyze the regularity of A in the SISO case, that is p = m = 1. Here,

we set

PF ,q := diag(Fq ), PG ,q := diag(Gq ), ˜︁B :=

⎡
⎢⎢⎣

1
...

1

⎤
⎥⎥⎦ , and ˜︁C :=

[︂
1 . . . 1

]︂
. (7.20)

With these settings, the (i , j ) components of the second matrix equations in (7.16) and (7.17) read as

fq ;i
∑︁K

k=1 hk (µq ;i )[ ˜︁Ak ]i , j = 1 and gq ; j
∑︁K

k=1 hk (σq ; j )[ ˜︁Ak ]i , j = 1, respectively. Putting this into matrix

notation yields the linear system
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1;i
. . .

fQF ;i

g1; j
. . .

gQG ; j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(µ1;i ) . . . hK (µ1;i )
...

...

h1(µQF ;i ) . . . hK (µQF ;i )

h1(σ1; j ) . . . hK (σ1; j )
...

...

h1(σQG ; j ) . . . hK (σQG ; j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

[ ˜︁A1]i , j

[ ˜︁A2]i , j
...

[ ˜︁AK ]i , j

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎦

, (7.21)

where the system matrix is the product of a diagonal matrix and a generalized Vandermonde matrix.

We notice that reordering the entries of α in (7.18) yields an orthogonal similarity transformation

that decouples (7.18) in smaller systems of the form (7.21). This generalized Vandermonde matrix is

also called a Haar matrix [60] and is nonsingular if the driving frequencies µq ;i and σq ; j are distinct

and the functions hk satisfy the Haar condition [60]. In particular, the Haar condition is satisfied

for monomials, and thus relevant for second-order systems (cf. Table 6.1). The diagonal matrix is

nonsingular if the driving frequencies µq ;i and σq ; j are distinct from the roots of the original transfer

function. In this case, the system in (7.21) has a unique solution for each (i , j ) combination and

hence, via transformations, we can infer that A is nonsingular.

We illustrate the construction of the realization with additional data with the following example.

Example 7.14. Given scalars a1, a2, a3,b,c ∈R with bc ̸= 0, we consider the system

a1ẋ(t ) = a2x(t )+a3x(t −1)+bu(t ),

y(t ) = cx(t )
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with transfer function H (s) = cb
sa1−a2−e−s a3

. Setting QF = 1 and QG = 2, we pick distinct interpolation

points µ1;1 = µ, σ1;1 = σ, and σ2;1 = λ. We choose ˜︁B = 1 and ˜︁C = 1 with PF ,1 = H(µ),PG ,1 = H(σ),

and PG ,2 = H(λ). Then the system in (7.21) reads as
⎡
⎢⎣

H(µ)

H(σ)

H(λ)

⎤
⎥⎦

⎡
⎢⎣
µ −1 −e−µ

σ −1 −e−σ

λ −1 −e−λ

⎤
⎥⎦

⎡
⎢⎣

˜︁A1
˜︁A2
˜︁A3

⎤
⎥⎦=

⎡
⎢⎣

1

1

1

⎤
⎥⎦ . (7.22)

The inverse of the Haar matrix is given by

1
µeµ(eσ−eλ)+σeσ(eλ−eµ)+λeλ(eµ−eσ)

⎡
⎢⎣

eµ(eσ−eλ) −eσ(eµ−eλ) eλ(eµ−eσ)

eµ(σeσ−λeλ) −eσ(µeµ−λeλ) eλ(µeµ−σeσ)

−eµeσeλ(σ−λ) eµeσeλ(µ−λ) −eµeσeλ(µ−σ)

⎤
⎥⎦

such that the solution of (7.22) is
[︂

˜︁A1
˜︁A2

˜︁A3

]︂
= 1

cb

[︂
a1 a2 a3

]︂
. In fact, we recover the original

transfer function. ♠

Clearly, the realization is real-valued if all quantities in (7.21) are real. If we pick the driving frequen-

cies on the imaginary axis, then in general the Haar matrix will be complex-valued. The following

lemma shows how to obtain real-valued realizations based on complex interpolation data if the

matrices PF ,q and PG ,q are chosen as in (7.20).

Lemma 7.15. Let the interpolation data be closed under complex conjugation and sorted as in

Example 7.9 such that the unitary matrices TF ,TG ∈C
n×n from Example 7.9 satisfy

T ∗
F Mq TF ∈R

n×n , T ∗
F L T

q ∈R
n , T ∗

F F T
q ∈R

n , for q = 1, . . . ,QF ,

T ∗
G Sq TG ∈R

n×n , Rq TG ∈R
n , Gq TG ∈R

n , for q = 1, . . . ,QG .

Moreover, let the matrices PF ,q and PG ,q be as in (7.20). Then, the realization

(T ∗
F

˜︁A1TG , . . . ,T ∗
F

˜︁AK TG ,T ∗
F

˜︁B , ˜︁C TG ),

with ( ˜︁A1, . . . , ˜︁AK , ˜︁B , ˜︁C ) from Theorem 7.12, consists of real-valued matrices and interpolates the

data.

Proof. First note that the state space transformation by the unitary matrices T ∗
F and TG does not

change the transfer function and thus the interpolation given by Theorem 7.12 is also valid here. It

remains to show that the realization consists of real-valued matrices. Since ˜︁B and ˜︁C are given in

(7.20), it is straightforward to see that T ∗
F

˜︁B and ˜︁C TG are real-valued. As in the proof of Lemma 7.13,

we deduce the realness of T ∗
F

˜︁Ak TG by observing that the second equalities in (7.16) and (7.17) are

equivalent to

K∑︂
k=1

T ∗
F hk (Mq )TF T ∗

F P T
F ,q TF T ∗

F
˜︁Ak TG = T ∗

F L T
q

˜︁C TG and

K∑︂
k=1

T ∗
F

˜︁Ak TG T ∗
G PG ,q TG T ∗

G hk (Sq )TG = T ∗
F

˜︁BRq TG .
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Straightforward computations yield that T ∗
F P T

F ,q TF and T ∗
G PG ,q TG are real-valued. From these

linear matrix equations we can determine the matrices ˜︁Ak or equivalently the transformed analogues

T ∗
F

˜︁Ak TG . In the latter case, we observe that the coefficient matrices as well as the right hand sides are

real-valued and thus we deduce that the matrices T ∗
F

˜︁Ak TG are also real-valued for k = 1, . . . ,K . ■

7.3.2 Matching derivative data

Hermite interpolation provides a well known and robust approach for polynomial approximation

that involves the matching of derivative data. When we seek reduced models that are structurally

equivalent to standard first order realizations (that is, when in (6.10) we have K = 2, h1(s) = s, and

h2(s) ≡−1) then first order necessary conditions for optimality of the reduced order approximant

with respect to the H2 norm are known and they require that the reduced transfer function ˜︁H(s)

must be a Hermite interpolant of the original H(s) [89]. Even though these necessary conditions do

not extend immediately to more general structured systems as in (6.10), it is known for some special

cases such as second order systems with modal damping and port-Hamiltonian systems [22], and

for systems with simple delay structures [70, 71], that Hermite interpolation (in a different form

than for the rational case) still plays a fundamental role in the necessary optimality conditions.

Therefore, if derivative information for the transfer function H is accessible then this motivates

finding a structurally equivalent realization H(s) that matches both the evaluation data and the

derivative data. We therefore assume that

( f ′
i )T := ℓT

i H ′(µi ) and g ′
i := H ′(σi )ri for i = 1, . . . ,n (7.23)

are available, collected in the matrices

F ′ =
[︂

f ′
1 . . . f ′

n

]︂
and G ′ =

[︂
g ′

1 . . . g ′
n

]︂
.

In this section, we derive conditions such that the transfer function ˜︁H interpolates the data (6.5)

with
{︁
µi

}︁n
i=1 ∩

{︁
σi

}︁n
i=1 =∅ and in addition satisfies the Hermite interpolation condition (7.23).

Theorem 7.16. Let H(s) = ˜︁C (
∑︁K

k=1 hk (s) ˜︁Ak )−1 ˜︁B and suppose that
∑︁K

k=1 hk (s̃) ˜︁Ak is nonsingular

for all s̃ ∈ {︁
µi

}︁n
i=1 ∪

{︁
σi

}︁n
i=1.

(i) The left interpolation conditions ℓT
i

˜︁H (µi ) = f T
i and the left Hermite interpolation conditions

ℓT
i

˜︁H ′(µi ) = (︁
f ′

i

)︁T
are satisfied for i = 1, . . . ,n if and only if there exist matrices PF and PF ′

that satisfy

F T = P T
F

˜︁B ,
K∑︂

k=1
hk (M )P T

F
˜︁Ak =L T ˜︁C , (7.24)

(︁
F ′)︁T = (︁

PF ′
)︁T ˜︁B ,

K∑︂
k=1

hk (M )
(︁
PF ′

)︁T ˜︁Ak =−
K∑︂

k=1
h′

k (M )P T
F

˜︁Ak . (7.25)

(ii) The right interpolation conditions ˜︁H(σi )ri = gi and the right Hermite interpolation condi-

tions ˜︁H ′(σi )ri = g ′
i for i = 1, . . . ,n are satisfied if and only if there exist matrices PG and PG ′
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that satisfy

G = ˜︁C PG ,
K∑︂

k=1

˜︁Ak PG hk (S ) = ˜︁BR, (7.26)

G ′ = ˜︁C PG ′ ,
K∑︂

k=1

˜︁Ak PG ′hk (S ) =−
K∑︂

k=1

˜︁Ak PG h′
k (S ). (7.27)

Proof. We only prove the first statement; the second statement is proved analogously. We observe

that (7.24) resembles the left interpolation conditions from Theorem 7.1. It remains to show that the

left Hermite interpolation conditions are equivalent to (7.25). To simplify notation, we introduce, as

before, ˜︂K (s) :=∑︁K
k=1 hk (s) ˜︁Ak . The second identity in (7.24) holds if and only if

ℓT
i

˜︁C = eT
i L T ˜︁C = eT

i P T
F

˜︂K (µi ) for i = 1, . . . ,n.

Similarly, from the second identity in (7.25) we obtain

−eT
i P T

F
˜︂K ′(µi ) =−eT

i

K∑︂
k=1

h′
k (M )P T

F
˜︁Ak = eT

i

K∑︂
k=1

hk (M )
(︁
PF ′

)︁T ˜︁Ak = eT
i

(︁
PF ′

)︁T ˜︂K (µi ).

Thus, for i = 1, . . . ,n we have

ℓT
i

˜︁H ′(µi ) =−ℓT
i

˜︁C ˜︂K (µi )−1 ˜︂K ′(µi ) ˜︂K (µi )−1 ˜︁B =−eT
i P T

F
˜︂K ′(µi ) ˜︂K (µi )−1 ˜︁B

= eT
i

(︁
PF ′

)︁T ˜︁B = (︁
f ′

i

)︁T
,

where the last identity is nothing else than the first equality in (7.25). ■

Remark 7.17. Evidently, as the number of functions K determining the structure increases, the

number of available degrees of freedom to force interpolation increases as well, and in particular,

when K > 4 there will be sufficient degrees of freedom available to allow matching of higher order

derivatives as well. The calculations involved are very technical and unenlightening, so that we

choose not to pursue this thread here. It is worth to note that a combination of interpolation at

additional interpolation points (section 7.3.1) and Hermite interpolation is possible as well. ♣

As before, it is sufficient and necessary to satisfy (7.24)-(7.27) simultaneously to satisfy the interpola-

tion conditions (6.12a) and the Hermite interpolation conditions (7.23). After choosing the matrices

PF , PF ′ , PG , and PG ′ , Theorem 7.16 gives 4n2 equations for K n2 unknown variables. In particular

for K = 4, we can expect under some regularity conditions that there is a unique solution for the

matrices ˜︁Ak . For K = 3, we can either satisfy the left or the right Hermite interpolation conditions.

Similarly as in the previous subsection, we can set

P T
F :=

[︂
F T ⋆

]︂
, P T

F ′ :=
[︂(︁

F ′)︁T
⋆

]︂
, PG :=

[︄
G

⋆

]︄
, PG ′ :=

[︄
G ′

⋆

]︄
, (7.28)

yielding ˜︁B =
[︂

Im 0
]︂T

and ˜︁C =
[︂

Ip 0
]︂

. For the sake of completeness, we derive the equivalent

of the system (7.18) for Hermite interpolation for K = 4. Vectorization of the second equations in
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(7.24)-(7.27), respectively, yields the system Aα=β with A ∈C
4n2×4n2

and α,β ∈C
4n2

given by

A :=

⎡
⎢⎢⎢⎢⎢⎣

In ⊗h1(M )P T
F . . . In ⊗h4(M )P T

F

In ⊗
(︂
h1(M )

(︁
PF ′

)︁T +h′
1(M )P T

F

)︂
. . . In ⊗

(︂
h4(M )

(︁
PF ′

)︁T +h′
4(M )P T

F

)︂

h1(S )P T
G ⊗ In . . . h4(S )P T

G ⊗ In(︂
h1(S )

(︁
PG ′

)︁T +h′
1(S )P T

G

)︂
⊗ In . . .

(︂
h4(S )

(︁
PG ′

)︁T +h′
4(S )P T

G

)︂
⊗ In

⎤
⎥⎥⎥⎥⎥⎦

,

α :=

⎡
⎢⎢⎢⎣

vec( ˜︁A1)

vec( ˜︁A2)

vec( ˜︁A3)

vec( ˜︁A4)

⎤
⎥⎥⎥⎦ , and β :=

⎡
⎢⎢⎢⎢⎣

(︂
˜︁C T ⊗ In

)︂
vec

(︂
L T

)︂

0(︁
In ⊗ ˜︁B)︁

vec(R)

0

⎤
⎥⎥⎥⎥⎦

.

(7.29)

Remark 7.18. Real-valued realizations that accomplish Hermite interpolation may be obtained in

the same manner as in the case of additional interpolation points (cf. Lemmas 7.13 and 7.15). The

only additional requirement is that F and F ′ as well as G and G ′ need to have the same number of

complex conjugate pairs such that

T ∗
F F T ∈R

n , T ∗
F

(︁
F ′)︁T ∈R

n , GTG ∈R
n , and G ′TG ∈R

n .

♣

7.4 Truncation of redundant data

Suppose that we have solved the linear system (7.18) (or (7.29) for Hermite interpolation) to obtain

the realization ˜︁H(s) = ˜︁C ˜︂K (s)−1 ˜︁B with ˜︂K (s) =∑︁K
k=1 hk (s) ˜︁Ak . By construction, the matrices satisfy

the equations in Theorem 7.12 (or Theorem 7.16). However, ˜︂K (s) might be (numerically) singular

at the driving frequencies µq ;i and σq ;i . This is likely to happen if we add more and more data, since

at some point the information becomes redundant, and ˜︂K (s) might become ill-conditioned or

even singular. Let us emphasize, that in view of the theory for delay differential-algebraic equations

(DDAEs) developed in the previous chapters, general existence and uniqueness results require that
˜︂K (s) is nonsingular for some s ∈C, see for instance Theorem 3.20.

To remove redundant data, we proceed similarly as in Theorem 6.13 and assume that for all

s ∈ {µq ;i }n
i=1 ∪ {σq ;i }n

i=1 we have

rank

(︄
K∑︂

k=1
hk (s) ˜︁Ak

)︄
= rank

(︂[︂
˜︁A1 · · · ˜︁AK

]︂)︂
= rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣

˜︁A1
...

˜︁AK

⎤
⎥⎥⎦

⎞
⎟⎟⎠=: r. (7.30)

In this case, there exist unitary matrices V =
[︂

V1 V2

]︂
and W =

[︂
W1 W2

]︂
∈C

n×n with V1,W1 ∈C
n×r

and V2,W2 ∈C
n×(n−r ) such that

˜︁AkV2 = 0 and ˜︁A∗
kW2 = 0, for all k = 1, . . . ,K . (7.31)
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Theorem 7.19. Let the realization ˜︁H(s) = ˜︁C (
∑︁K

k=1 hk (s) ˜︁Ak )−1 ˜︁B satisfy the equations in Theo-

rem 7.12 with matrices PF ,q and PG ,q . Suppose that the matrices ˜︁Ak satisfy the rank assumption

(7.30) and let V1,W1 ∈C
n×r complete V2 and W2 in (7.31) to unitary matrices. For k = 1, . . . ,K set

˜︁Ak;r :=W ∗
1

˜︁AkV1, ˜︁B r :=W ∗
1

˜︁B , and ˜︁C r := ˜︁CV1.

If span{ℓq ;1, . . . ,ℓq ;n} =C
ny for all q = 1, . . . ,QF and span{rq ;1, . . . ,rq ;n} =C

nu for all q = 1, . . . ,QG ,

then the realization ˜︁H r (s) = ˜︁C r (
∑︁K

k=1 hk (s) ˜︁Ak;r )−1 ˜︁B r interpolates the data.

Proof. First, bear in mind that by assumption, the affine structure
∑︁K

k=1 hk (s) ˜︁Ak;r is nonsingular at

the driving frequencies µq ;i and σq ;i , and we observe that ˜︁AkV1V ∗
1 = ˜︁Ak and W1W ∗

1
˜︁Ak = ˜︁Ak hold

for k = 1, . . . ,K by construction of V1 and W1. Thus, for q = 1, . . . ,QF

K∑︂
k=1

hk (Mq )P T
F ,qW1

˜︁Ak;r =
(︄

K∑︂
k=1

hk (Mq )P T
F ,qW1W ∗

1
˜︁Ak

)︄
V1

=
(︄

K∑︂
k=1

hk (Mq )P T
F ,q

˜︁Ak

)︄
V1 =L T

q
˜︁C r ,

where the last identity follows from (7.16). Similarly, we obtain for q = 1, . . . ,QG

K∑︂
k=1

˜︁Ak;r V ∗
1 PG ,q hk (Sq ) =W ∗

1

K∑︂
k=1

˜︁AkV1V ∗
1 PG ,q hk (Sq ) =W ∗

1

K∑︂
k=1

˜︁Ak PG ,q hk (Sq ) = ˜︁B r Rq .

Furthermore, we notice

L T
q

˜︁C =
K∑︂

k=1
hk (Mq )P T

F ,q
˜︁Ak =

K∑︂
k=1

hk (Mq )P T
F ,q

˜︁AkV1V ∗
1 =L T

q
˜︁CV1V ∗

1 .

Since the columns of Lq span the whole space C
p , the above identity implies ˜︁C = ˜︁CV1V ∗

1 . With the

same reasoning we obtain ˜︁B =W1W ∗
1

˜︁B . Finally, we have

ℓT
q ;i

˜︁H r (µq ;i ) = eT
i L T

q
˜︁C r

(︄
K∑︂

k=1
hk (µq ;i ) ˜︁Ak;r

)︄−1

˜︁B r

= eT
i

(︄
K∑︂

k=1
hk (Mq )P T

F ,qW1
˜︁Ak;r

)︄(︄
K∑︂

k=1
hk (µq ;i ) ˜︁Ak;r

)︄−1

˜︁B r

= eT
i P T

F ,qW1

(︄
K∑︂

k=1
hk (µq ;i ) ˜︁Ak;r

)︄(︄
K∑︂

k=1
hk (µq ;i ) ˜︁Ak;r

)︄−1

˜︁B r

= eT
i P T

F ,qW1W ∗
1

˜︁B = f T
q ;i

for q = 1, . . . ,QF and i = 1, . . . ,n. The right interpolation conditions follow analogously. ■

Remark 7.20. Instead of performing two rank-revealing decompositions on
[︂

˜︁A1 · · · ˜︁AK

]︂
and

[︂
˜︁A∗

1 · · · ˜︁A∗
K

]︂∗
,
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it is computationally more reasonable (as it is also done in the classical Loewner framework [150])

to pick a driving frequency s̃ ∈ {µq ;i }n
i=1 ∪ {σq ;i }n

i=1 and take the singular value decomposition (SVD)

K∑︂
k=1

hk (s̃)Ãk =
[︂

W1 W2

]︂[︄
Σ 0

0 0

]︄[︄
V ∗

1

V ∗
2

]︄
(7.32)

with V1,W1 ∈C
n×(n−r ) and V2,W2 ∈C

n×r . These matrices satisfy the assumptions of Theorem 7.19,

since

ker
(︂[︂

˜︁A∗
1 · · · ˜︁A∗

K

]︂∗)︂
⊆ ker

(︄
K∑︂

k=1
hk (s) ˜︁Ak

)︄

and the rank assumption (7.30) implies ˜︁AkV2 = 0 for all k = 1, . . . ,K . By the same reasoning, W ∗
2

˜︁Ak =
0 for all k = 1, . . . ,K and hence V1 and W1 from (7.32) can be used to truncate the data. ♣

Example 7.21. If we pick further distinct interpolation points in Example 7.14, then the realization

is given by the matrices

˜︁A1 =
1

cb

⎡
⎢⎢⎣

a1 . . . a1
...

...

a1 . . . a1

⎤
⎥⎥⎦ , ˜︁A2 =

1

cb

⎡
⎢⎢⎣

a2 . . . a2
...

...

a2 . . . a2

⎤
⎥⎥⎦ , and ˜︁A3 =

1

cb

⎡
⎢⎢⎣

a3 . . . a3
...

...

a3 . . . a3

⎤
⎥⎥⎦ .

Clearly, the rank assumption (7.30) is satisfied with r = 1. Setting W1 =
[︂

1 0 . . . 0]
]︂

and V1 =W T
1

yields the true transfer function. ♠

In view of Theorem 7.16, we still need to establish that the Hermite interpolation conditions are

satisfied after truncation (the left and right interpolation conditions are satisfied by Theorem 7.19).

By the same reasoning as in the proof of Theorem 7.19 we can establish the identity

K∑︂
k=1

hk (M )
(︁
PF ′

)︁T W1
˜︁Ak;r =−

K∑︂
k=1

h′
k (M )P T

F W1
˜︁Ak;r

and compute

ℓT
i

˜︁H ′
r (µi ) =−eT

i L T ˜︁C r

(︄
K∑︂

k=1
hk (µi ) ˜︁Ak;r

)︄−1 (︄
K∑︂

k=1
h′

k (µi ) ˜︁Ak;r

)︄(︄
K∑︂

k=1
hk (µi ) ˜︁Ak;r

)︄−1

˜︁B r

=−eT
i P T

F W1

(︄
K∑︂

k=1
h′

k (µi ) ˜︁Ak;r

)︄(︄
K∑︂

k=1
hk (µi ) ˜︁Ak;r

)︄−1

˜︁B r

= eT
i

(︄
K∑︂

k=1
hk (M )

(︁
PF ′

)︁T W1
˜︁Ak;r

)︄(︄
K∑︂

k=1
hk (µi ) ˜︁Ak;r

)︄−1

˜︁B r

= eT
i

(︁
PF ′

)︁T W1W ∗
1

˜︁B = eT
i

(︁
PF ′

)︁T ˜︁B = (︁
f ′

i

)︁T

and hence the left Hermite interpolation condition is still satisfied. The proof for the right Her-

mite interpolation condition proceeds analogously. We summarize the previous discussion in the

following theorem.
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Theorem 7.22. Let the realization ˜︁H(s) = ˜︁C (
∑︁K

k=1 hk (s) ˜︁Ak )−1 ˜︁B satisfy the equations in Theo-

rem 7.16 with matrices PF , PF ′ , PG , and PG ′ . Suppose that the matrices ˜︁Ak satisfy the rank

assumption (7.30) and let W1,V1 ∈ C
n×r be as in Theorem 7.19. If span{ℓ1, . . . ,ℓn} = C

ny and

span{r1, . . . ,rn} = C
nu , then the realization ˜︁H r (s) = ˜︁C r (

∑︁K
k=1 hk

˜︁Ak;r )−1 ˜︁B r interpolates the data

and derivative data with ˜︁Ak;r :=W ∗
1

˜︁AkV1, ˜︁B r :=W ∗
1

˜︁B, and ˜︁C r := ˜︁CV1.

Let us emphasize that the function

η : C→C, s ↦→ det

(︄
K∑︂

k=1
hk (s) ˜︁Ak

)︄

may be identically zero even if the matrices
[︂

˜︁A1 . . . ˜︁AK

]︂
and

[︂
˜︁AT

1 . . . ˜︁AT
K

]︂T
in (7.30) have full

rank (cf. Remark 6.14). In this case Theorems 7.19 and 7.22 cannot be used as a post-processing step.

Instead, an additional regularization similar to [34] is required. This is subject to further research.

7.5 An algorithm for structured realization

In this section, we synthesize the results of the previous subsections into an algorithmic format,

starting with interpolation data (6.5) and an affine structure given via continuously differentiable

functions hk for k = 1, . . . ,K . The goal is to construct matrices ˜︁A1, . . . , ˜︁AK , ˜︁B and ˜︁C such that the

realization ˜︁H(s) = ˜︁C (
∑︁K

k=1 hk (s) ˜︁Ak )−1 ˜︁B associated with the affine structure interpolates the data.

We construct realizations as described in the previous subsections, taking advantage of the sim-

plifications available when K = 2. Before doing so, a pre-processing step is included if the data set

is closed under complex conjugation, which facilitates construction of a real-valued realization

where appropriate. Although in principle the transformation to a real-valued realization could be

performed after assembling the matrices, it is advisable to enforce this in advance, since numerical

rounding errors tend to break the underlying conjugate symmetry and will thus cause complex ma-

trix entries in the realization. A post-processing step may also be necessary to truncate redundancies

discovered in the interpolation data. The details are summarized in Algorithm 3.

In practical applications, the interpolation data is often not partitioned in the form (6.5). We

therefore present a simplification of Algorithm 3 for the SISO case that can be used without pre-

processing of the data. Accordingly, we assume to have the interpolation data

{
(︁
λi , H(λi )

)︁ ∈C
2 | i = 1, . . . ,K n} (7.33)

available. For the sake of notational convenience we assume that we do not interpolate on the real

axis, that is λi ∈C\R for i = 1, . . . ,K n. To ensure a real realization, we add the complex conjugate

data and assume n to be an even number and

(λ2i−1, H(λ2i−1)) = (λ2i , H(λ2i )) for i = 1, . . . ,
K n

2
. (7.34)
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Algorithm 3 Structured Realization

Input: Interpolation data (6.5), affine structure h1(s), . . . ,hK (s) with K ∈N.

Output: Matrices ˜︁A1, . . . , ˜︁AK , ˜︁B , and ˜︁C such that ˜︁H (s) = ˜︁C (
∑︁K

k=1 h(s) ˜︁Ak )−1 ˜︁B interpolates the data

1: if Data is closed under complex conjugation then ▷ Keep realization real

2: Transform data as in Lemma 7.8, Lemma 7.13, Lemma 7.15, or Remark 7.18

3: end if

4: if K = 2 then

5: Transform data as in (7.14)

6: Construct Loewner matrices according to (6.14a) and (6.14b) from the transformed data

7: Set ˜︁A1 =−L, ˜︁A2 = Lσ, ˜︁B =F T and ˜︁C =G

8: else

9: if derivative data (7.23) is available then

10: Construct the matrices ˜︁B , ˜︁C ,PF ,PF ′ ,PG , and PG ′ , for example as in (7.28)

11: Assemble system (7.29) and solve for ˜︁A1, . . . , ˜︁AK

12: else

13: Partition the data as in (7.15) and pick n accordingly

14: Construct the matrices ˜︁B , ˜︁C ,PF ,q and PG ,q matrices, for example as in (7.19)

15: Assemble system (7.18) and solve for ˜︁A1, . . . , ˜︁AK

16: end if

17: end if

18: Compute r as in (7.30)

19: if r < n then ▷ Truncation of redundant data

20: Compute V1 and W1 as in Theorem 7.19

21: Set ˜︁Ak :=W ∗
1

˜︁AkV1, ˜︁B :=W ∗
1

˜︁B , and ˜︁C := ˜︁CV1

22: end if

For the partitioning of the data (7.33) in the form (6.5) we set QF := ⌈︁K
2

⌉︁
, QG = ⌊︁K

2

⌋︁
such that

QF +QG = K . Moreover, we rename the interpolation data as

µ j ;i :=λ2( j−1)n+i , f j ;i := H(λ2( j−1)n+i ), for j = 1, . . . ,QF , i = 1, . . . ,n, (7.35a)

σ j ;i :=λ(2 j−1)n+i , g j ;i := H(λ(2 j−1)n+i ), for j = 1, . . . ,QG , i = 1, . . . ,n, (7.35b)

and define the matrix

T = blkdiag

(︄
1⎷
2

[︄
1 −ı

1 ı

]︄
, . . . ,

1⎷
2

[︄
1 −ı

1 ı

]︄)︄
∈C

n×n . (7.36)

With these preliminaries we can present a simplified version of Algorithm 3 in Algorithm 4.
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Algorithm 4 Simplified Structured Realization for SISO systems

Input: Interpolation data (7.33), function family {h1, . . . ,hK } with K ∈N.

Output: Matrices ˜︁A1, . . . , ˜︁AK , ˜︁B , and ˜︁C such that ˜︁H(s) = ˜︁C (
∑︁K

k=1 hk (s) ˜︁Ak )−1 ˜︁B interpolates the

data

1: Add the complex conjugate data as in (7.34).

2: Partition the data as in (7.35) with QF := ⌈︁K
2

⌉︁
and QG = ⌊︁K

2

⌋︁
.

3: Solve the linear systems (7.21) for ˜︁A1, . . . , ˜︁AK .

4: Set ˜︁Ak := T ∗ ˜︁Ak T for k = 1, . . . ,K , ˜︁B := T ∗
[︂

1 . . . 1
]︂T

, and ˜︁C := ˜︁B T with T as in (7.36).

5: Pick any i ∈ {1, . . . ,K n} and compute V1,W1 via the SVD as in (7.32).

6: Set ˜︁Ak :=W ∗
1

˜︁AkV1, ˜︁B :=W ∗
1

˜︁B , and ˜︁C := ˜︁CV1

7.6 Connection to structure-preserving interpolatory projections

Although our focus here is on data-driven interpolation, we briefly revisit the structure-preserving

interpolatory projection framework introduced in [18] and establish a connection with realizations

arising from Theorem 7.5.

Theorem 7.23 (Structure-preserving interpolatory projection [18]). Consider the generalized

realization H(s) =C (s)K (s)−1B(s) where both C (s) ∈C
ny×nx and B(s) ∈C

nx×nu are analytic in

the right half plane and K (s) ∈ C
nx×nx is analytic and has full rank throughout the right half

plane. Suppose that the left interpolation points {µ1, . . . ,µn} together with the left tangential direc-

tions {ℓ1, . . . ,ℓn} and the right interpolation points {σ1, . . . ,σn} together with the right tangential

directions {r1, . . . ,rn} are given. Define V ∈C
nx×n and W ∈C

nx×n as

W =
[︂
K (µ1)−T C (µ1)T ℓ1 . . . K (µn)−T C (µn)T ℓn

]︂
and (7.37a)

V =
[︂
K (σ1)−1B(σ1)r1 . . . K (σn)−1B(σn)rn

]︂
. (7.37b)

Define
˜︂K (s) =W T K (s)V , ˜︁B(s) =W T B(s), ˜︁C (s) =C (s)V. (7.38)

Then the reduced transfer function ˜︁H(s) = ˜︁C (s) ˜︂K (s)−1 ˜︁B(s) satisfies the interpolation conditions

(6.12).

Using K (s) =∑︁K
k=1 hk (s) Ak , B (s) = B , and C (s) =C for the affine structure then (7.38) leads to a

reduced model with

˜︁B =W T B , ˜︁C =CV , and ˜︁Ak =W T AkV for k = 1, . . . ,K .

The question we want to answer next is how (and if) this projection-based reduced model is

connected to the data-driven realization constructed in the previous sections. The next result

provides the link.
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Proposition 7.24. The projection matrices W and V introduced in (7.37), based on the matrix

functions K (s) =∑︁K
k=1 hk (s) Ak , B (s) = B, and C (s) =C , satisfy the matrix equations

K∑︂
k=1

hk (M )W T Ak =L T C and
K∑︂

k=1
AkV hk (S ) = BR, (7.39)

as well as
K∑︂

k=1
h′

k (µi )
[︂

W T AkV
]︂

i ,i
=−θi (7.40)

for those i ∈ {1, . . . ,n} with µi =σi .

Proof. Let wi = W ei and vi = V ei denote the columns of the projection matrices W and V . For

i = 1, . . . ,n we have

eT
i

K∑︂
k=1

hk (M )W T Ak = wT
i

K∑︂
k=1

hk (µi )Ak = ℓT
i C ,

which proves the first identity. The second identity is proven similarly whereas the third identity

follows from the definitions of W and V and from

K∑︂
k=1

h′
k (µi )[W T AkV ]i ,i = wT

i

(︄
K∑︂

k=1
h′

k (µi )Ak

)︄
vi =−ℓT

i H ′(µi )ri =−θi . ■

Proposition 7.24 gives a better understanding of the realization of Theorem 7.5 connecting it to the

projection-based MOR framework. To make this connection more precise, we will investigate the

cases K = 2 and K ≥ 3 separately below.

7.6.1 The case K = 2

Using the identities W T B =F T and CV =G , we can rewrite (7.7), using K = 2, as

h2(M ) ˜︁A1h1(S )−h1(M ) ˜︁A1h2(S ) = h2(M )W T BR−L T CV h2(S ).

Substituting the expressions for BR and L T C from (7.39) into the right-hand side implies

h2(M ) ˜︁A1h1(S )−h1(M ) ˜︁A1h2(S ) = h2(M )W T A1V h1(S )−h1(M )W T A1V h2(S ),

which establishes the relation ˜︁A1 =W T A1V as long as the interpolation sets
{︁
µi

}︁n
i=1 and

{︁
σi

}︁n
i=1 are

disjoint. The identity ˜︁A2 =W T A2V is obtained by using (7.8) instead of (7.7). Thus for K = 2, our

structured realization approach gives exactly the reduced model one would obtain via projection if

the original system matrices were to be available. This equivalence of the projected matrices and

the matrices obtained by the realizations is also true if there is an overlapping between the left and

right interpolation point sets. This may be comprehended by the observation that the projected

matrices also satisfy (7.11) which is clear due to Proposition 7.24.
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7.6.2 The case K ≥ 3

Consider the second-order model H(s) =C (s2 A1 + s A2 + A3)−1B . For simplicity, assume that H(s)

is a SISO system. Given the 2n interpolation points {µ1, . . . ,µn} and {σ1, . . . ,σn}, one can obtain a

projection-based reduced model ˜︁H(s) = ˜︁C (s2 ˜︁A1 + s ˜︁A2 + ˜︁A3)−1 ˜︁B using Theorem 7.23. This reduced

model will interpolate H at 2n interpolation points. However, ˜︁H(s) has 3n degrees of freedom1 and

should be able to satisfy 3n interpolation conditions. The projection framework cannot achieve

this goal. However, our structured realization framework with either additional data as in Section

7.3.1 or Hermite interpolation as in Section 7.3.2 will construct a reduced model that can match this

maximum number of interpolation conditions. In other words, for K ≥ 3, the structured realization

cannot be obtained via projection and indeed satisfies more interpolation conditions than the

projection framework. Next we give a numerical example illustrating this discussion on a delay

example.

Example 7.25. We consider a delay system with the affine structure h1(s) = s,h2(s) ≡ −1, and

h3(s) =−exp(−s) and matrices

A1 =
[︄

1 0

0 2

]︄
, A2 = A3 =

[︄
1 0

0 1

]︄
, b =

[︄
1

1

]︄
, and c =

[︄
1

1

]︄
,

with transfer function H(s) = cT (s A1 − A2 − e−s A3)−1b. We set QF = 1 and QG = 2 and pick the

driving frequencies µ1;1 = 0,σ1;1 = 1, and σ2;1 =−1. We want to make use of the system (7.21), so we

set ˜︁B = 1, ˜︁C = 1,PF ,1 = f1;1,PG ,1 = g1;1, and PG ,2 = g2;1. Altogether, the solution of the system (7.21)

is given by
⎡
⎢⎣

˜︁A1
˜︁A2
˜︁A3

⎤
⎥⎦= 1

2−e− 1
e

⎡
⎢⎢⎢⎣

e− 1
e +

(1− 1
e )2

2−e + (e−1)(e+2)(e+3)
−5−2e

−e− 1
e −

1− 1
e

e−2 − (e+2)(e+3)
−5−2e

2+ 1− 1
e

e−2 + (e+2)(e+3)
−5−2e

⎤
⎥⎥⎥⎦ .

Clearly, ˜︁A2 ̸= ˜︁A3; and hence the realization cannot be obtained via projection. ♠

7.7 Numerical examples

To illustrate the consequences of the preceding theoretical discussion, we compare various struc-

tured realizations against the standard Loewner realization framework, using in each case response

data as in (6.5). In all the following examples, H (s), ˜︁H L(s), ˜︁H A(s), and ˜︁H H(s) will denote, respectively:

the transfer function of the original model, the rational approximation via the standard Loewner

realization, the structured realization interpolating at additional points (section 7.3.1), and the

structured realization satisfying Hermite interpolation conditions (section 7.3.2). In the following

plots, we represent interpolation frequencies with solid vertical lines. Additional driving frequencies

used for the structured realization interpolating additional points are highlighted as dashed vertical

lines.

1A second-order model with ˜︁H (s) = (s ˜︁C 1 + ˜︁C 2)(s2 ˜︁A1 + s ˜︁A2 + ˜︁A3)−1 ˜︁B , where not the state x but a linear combination of

the state x and the state velocity ẋ is measured, has 4n degrees of freedom. But here we do not consider this case.
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Table 7.1 – Example 7.26 – H∞ errors of the different realizations

n Loewner Additional points Hermite

4 2.342312×10−1 4.496194×10−2 4.011660×10−2

6 2.449003×10−1 5.100268×10−2 4.116856×10−2

8 3.397454×10−1 4.673353×10−2 4.307346×10−2

10 5.561860×10−1 4.454640×10−2 3.694951×10−2

We approximately compute the H∞ model reduction errors by performing an extensive sampling

of the transfer functions on the imaginary axis. To this end, we extend the interval in which the

interpolation points are chosen by five orders of magnitude on both sides and sample the extended

interval with 50,000 points. For a more efficient way of computing the H∞ norm for the general

class of systems considered in this paper, see the recent work [3].

If not otherwise stated, the presented examples are SISO systems. Accordingly, the matrices needed

for the realizations corresponding to ˜︁H A and ˜︁H H have been chosen as in (7.20) and as the analogue

for the Hermite case which is

PF := diag(F ), PG := diag(G ), PF ′ := diag(F ′), and PG ′ := diag(G ′).

Example 7.26. We test our approaches with the delay model from [18] given by the nx ×nx matrices

A1 = νIN +T, A2 =
1

τ

(︃
1

ζ
+1

)︃
(T −νIN ), A3 =

1

τ

(︃
1

ζ
−1

)︃
(T −νIN ),

where T is an nx ×nx matrix with ones on the sub- and superdiagonal, at the (1,1), and at the

(nx ,nx ) position and zeros everywhere else. The functions hk are given by h1(s) = s,h2(s) ≡ −1,

and h3(s) = −e−τs . We choose nx = 500, τ = 1, ζ = 0.01, and ν = 5. The input matrix B ∈ R
nx has

ones in the first two components and zeros everywhere else and we choose C = B T . We pick n = 4

logarithmically equidistant points on the imaginary axis between 1ı and 100ı (indicated as solid

vertical lines in Figure 7.1a) together with their complex conjugates. For the additional points

framework (section 7.3.1) we set QF = 1 and QG = 2, such that we have two additional interpolation

points (dashed vertical lines in Figure 7.1a) plus their complex conjugates. The Bode plots of the

transfer functions and of the errors are illustrated for the different approaches in Figure 7.1a and

Figure 7.1b, respectively. Both of our approaches capture the dynamics of the full model (the graphs

are almost on top of that of the original model) and clearly outperform the Loewner realization.

This is supported by the H∞ errors for the different realizations presented in Table 7.1, given also

for other choices of n. Clearly, the choice of the complex driving frequencies µi and σ j is important

and should be investigated further, but this is not within the scope of this thesis. ♠

Remark 7.27. As the previous discussion concerning (7.21) indicated, for SISO systems it is possible

to permute the (potentially) large-scale system (7.18) into many small uncoupled subsystems. The

decoupling of the matrix immediately reduces the computational complexity and gives additional

opportunities for parallelism as well. The accuracy for solving these small subsystems depends on
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(a) Bode plot of H , ˜︁HL , ˜︁H A , and ˜︁H H .
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(b) Bode plot of the absolute errors of ˜︁HL , ˜︁H A , and ˜︁H H .

Figure 7.1 – Example 7.26 – Transfer functions of the different realizations with n = 4
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Table 7.2 – Example 7.30 – Condition numbers of the linear system (7.18) (κAdd) and the decoupled
systems (7.21) (min/max(κAddDec))

n κAdd max(κAddDec) min(κAddDec)

4 1.665549×103 1.665549×103 1.279347×101

6 3.290936×103 2.118390×103 7.735186×100

8 8.487140×103 2.397554×103 8.171444×100

10 1.526123×104 2.957270×103 1.026646×101

the conditioning of subsystems, which in turn will depend on the choice of interpolation points

and the transfer function values (cf. (7.21)). We report in Table 7.2 the minimum and maximum

norm-wise matrix condition numbers associated with subsystems produced for different reduction

orders in Example 7.26. For comparison, we also include the matrix condition numbers for the

aggregate systems (7.18) and note that all are of modest magnitude. Similar observations may be

made for the case of Hermite interpolation. ♣

Example 7.28 (Example 6.1 continued). We generate data for this model using a model for acoustic

transmission in a duct presented in [63]. Based on a PDE model, the authors of [63] derive an

analytic transfer function for this problem: H(s) = ρ0 sinh((L−ξ0)s/c)/cosh(Ls/c), where ρ0 is the

air density. For our case, we assign parameter values L = 1, ξ0 = 1/2, c = 1, and ρ0 = 1 and generate

data by picking n = 16 sampling points on the imaginary axis between 0.1ı and 10ı (see Figure 7.2a).

To keep the realization real we add the complex conjugate driving frequencies. We seek structurally

equivalent realizations to the hypothesized structure from Example 6.1 that will interpolate this

data. The frequency response of the original transfer function H(s) together with the different

structurally equivalent realizations is presented in Figure 7.2a. The relative error plot Figure 7.2b

shows that structured realizations in this case outperform the Loewner realization by several orders

of magnitude. It is noteworthy that the exact transfer function can be written in accordance with

the hypothesized structure using matrices cT =
[︂

0 0 0 ρ0

]︂
, bT =

[︂
1 0 0 0

]︂
and

A1 =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

⎤
⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 −1 0

0 0 0 0

−1 0 0 0

⎤
⎥⎥⎥⎦ , A3 =

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 −1

−1 0 0 0

⎤
⎥⎥⎥⎦ .

♠

Example 7.29. We consider the transfer function H(s) = (1− exp(−s))/(1+ exp(−2s)), which we

evaluate on logarithmically spaced points between ı and 10ı and their complex conjugates. We set

n = 20 and distribute the points such that they are closed under complex conjugation. Applying

Algorithm 3 to the affine structure h1(s) = 1, h2(s) = −exp(−s) , and h3(s) = −exp(−2s) yields

numerical rank deficiencies, i.e., the realization suffers from redundant data (see section 7.4). To

numerically decide where which data needs to be truncated, we consider the normalized singular

values of the matrices, which are presented in Figure 7.3. We set the threshold to 1×10−13 (in
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(a) Bode plot of the acoustic transmission model and the structured realizations
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(b) Relative error plot for the different realizations

Figure 7.2 – Example 7.28 – Bode and relative error plot for n = 16
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(a) Additional interpolation points
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(b) Derivative data

Figure 7.3 – Example 7.29 – Decay of the (normalized) singular values
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Figure 7.4 – Example 7.29 – Relative error for the different realizations

Figure 7.3 indicated with the dashed line) such that we obtain r = 2 for both realizations. We

notice that also the Loewner realization results in numerically redundant data and is truncated to

dimension r = 14. The relative error is displayed in Figure 7.4. ♠

Example 7.30. A heated rod with distributed control and homogeneous Dirichlet boundary condi-

tions, which is cooled by delayed feedback, can be modeled (cf. [40, 158]) as

∂v(ξ, t )

∂t
= ∂2v(ξ, t )

∂ξ2 +a1(ξ)v(ξ, t )+a2(ξ)v(ξ, t −1)+u(t ) in (0,π)× (0,T ],

v(0, t ) = v(π, t ) = 0 in [0,T ].

(7.41)

For the coefficient functions we choose a1(ξ) =−2sin(ξ) and a2(ξ) = 2sin(ξ). Discretization of (7.41)
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(a) Bode plot of H , ˜︁HL , ˜︁H A , and ˜︁H H .
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(b) Bode plot of the absolute errors of ˜︁HL , ˜︁H A , and ˜︁H H .

Figure 7.5 – Example 7.30 – Transfer functions of the different realizations with n = 4

via centered finite differences with step size h := π
N+1 yields the system

ẋ(t ) = (LN + A1,N )x(t )+ A2,N x(t −1)+Bu(t ),

y(t ) =C x(t ),

where LN ∈ R
nx×nx is the discrete Laplacian and A1,nx

, A2,nx
∈ R

nx×nx are discrete approximations

of the functions a1 and a2, respectively. The input matrix B ∈R
nx is a vector of ones. As output we

use the average temperature of the rod, i. e, C = 1
∥B∥B T . For our tests we use nx = 100 and n = 4

interpolation points on the imaginary axis between 10−1ı and 103ı together with their complex

conjugates. For the realization obtained by interpolating additional data we use the same settings

as in Example 7.26. Similarly as in Example 7.26, our approaches are the only ones that capture

the qualitative behavior of the original system (cf. Figure 7.5). This is true for all tested numbers of

interpolation data n and is further illustrated by the H∞ errors listed in Table 7.3. The difference
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Table 7.3 – Example 7.30 – H∞ errors for the different realizations

n Loewner Additional points Hermite

4 5.863023×10−1 1.596379×10−1 1.751535×10−1

6 7.118732×10−1 4.716281×10−1 7.580182×10−2

8 2.735014×10−1 3.020142×10−2 3.725486×10−2

10 2.110771×10−1 1.796065×10−1 4.085510×10−2
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Figure 7.6 – Example 7.31 – Entry-wise Bode plot of H , ˜︁H L and ˜︁H A with n = 32

for this example is not as striking as in the two preceding examples, which are much harder to

approximate with a rational transfer function of low degree. ♠

Example 7.31. The full model for this example comes from a finite element discretization of a

cantilevered Euler-Bernoulli beam [110, § 1.16], resulting in a second order system having the form

A1ẍ(t )+ A2ẋ(t )+ A3x(t ) = Bu(t ), y(t ) =C x(t ).

This is a multiple-input/multiple-output (MIMO) system (nu = 2 and ny = 2) with nx = 800 internal

degrees of freedom. The two input channels represent a point force applied to the state xN and

a distributed force applied to the states xi with i ∈ {1,2,3,4}, i.e., B =
[︂

eN
∑︁4

i=1 ei

]︂
. The output

channels are the displacement history at xN and x1, i.e., C T =
[︂

eN e1

]︂
. The matrices A1 and

A3 are the mass and the stiffness matrix from the finite element discretization of the beam. As

in [23], the damping matrix A2 is modeled via light proportional damping: A2 =α1 A1 +α2 A3 with

α1 =α2 = 0.05. The realizations are obtained for 16 complex driving frequencies on the imaginary

axis between 10−5ı and 102ı , which we use twice with unit tangential directions (ℓi ,ri ∈ {e1,e2})

together with their complex conjugates, giving a total of n = 32 interpolation points (see vertical

lines in Figure 7.6). The remaining matrices to compute the realization are chosen as in (7.19).

Hereby, the ⋆ entries are picked such that the matrices are nonsingular. Since the transfer function

of the original model is a rational transfer function, unlike in the previous examples, we expect the



7.7. NUMERICAL EXAMPLES 141

10−4 10−3 10−2 10−1 100 101
10−20

10−15

10−10

10−5

100

ω

|H
(ı
ω
)|

Loewner
Additional points

(a) Entry-wise Bode plot of the absolute error of ˜︁HL(s) and ˜︁H A(s)
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(b) Bode plot of the stable and unstable part of ˜︁HL(s) and ˜︁H A(s)

Figure 7.7 – Example 7.31 – Transfer functions of the realizations with n = 32.

Loewner realization to perform close to our proposed approach here. This expectation is confirmed

by Figure 7.6 where the 2×2 transfer functions of the original model and of the different realizations

are plotted entry-wise. The figure shows that both the Loewner realization and the structured

realization with additional interpolation points capture the transfer function of the original model

for a large frequency range. The accuracy at frequencies higher than one rad/sec could be improved

by adding more interpolation points in this frequency region if desired. The error plot in Figure 7.7a

shows that for some frequency intervals the Loewner realization is more accurate, while for higher

frequencies our approach outperforms the Loewner framework: the maximum error due to ˜︁H A(s) is

one order of magnitude smaller than the error due to ˜︁H L(s).

We conclude this example with a remark on the stability of the reduced models. As one expects,

stability of the reduced model in the Loewner framework depends on the quality of the interpolation
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(sampling) points. The Loewner framework does not guarantee a stable reduced model in general.

For a better selection of points (in some cases, optimal) one can, for example, combine the Loewner

framework with interpolatory H2 optimal methods as done in [19]. For cases where the Loewner

model is unstable, [86] offers various effective post-processing techniques allowing to extract a

stable model while not losing much accuracy. One solution is simply to discard the unstable part of

the resulting model. Indeed, this choice can be shown to be the best solution in minimizing an H2-

related distance; see, for example, [86,121,143] for details. For this beam example, both the Loewner

and our approach yield unstable reduced models. Following [86], we check how much the stable and

unstable parts of the reduced models contribute to the approximation. For both models, the unstable

part has a minor, negligible contribution as illustrated in Figure 7.7b, where the frequency response

plots for the stable and unstable parts of the Loewner realization and the structured realization

obtained with additional data are displayed. For this example, simply truncating the anti-stable part

of the reduced models and taking only the stable part as the approximation causes only a slight loss

in accuracy. Indeed, for ˜︁H A(s), while the L∞ norm of the anti-stable part is 2.649912×10−3, the

H∞ norm of the stable part is 1.924082. Computing the poles and the transmission zeros of ˜︁H A(s)

shows that the unstable poles are nearly matched by the corresponding transmission zeros as listed

in Table 7.4. In particular, it appears that the anti-stable part is due to the fact that the realization is

close to a system that is not minimal, i.e., either not controllable or not observable.

Table 7.4 – Example 7.31 – Near pole-zero cancellation for the largest unstable poles

Poles Zeros

0.3851+ ı1.3934 0.3865+ ı1.3947

0.4512+ ı2.3432 0.4344+ ı2.3501

0.5251− ı0.5469 0.5249− ı0.5481

0.8547− ı2.8547 0.8477− ı2.8662

1.8070− ı2.7514 1.8281− ı2.7535

2.3108+ ı2.7899 2.3440+ ı2.7623

Unlike the case for the Loewner framework, we cannot simply take the stable-part of ˜︁H A(s) as the

approximant, since this truncation is performed after conversion to first-order form and destroys

the structure we are seeking to retain. For many examples, including the previous ones considered

here, no equivalent, generic, finite-dimensional, first-order structure exists. Therefore, one might

consider modifying Algorithm 3 so that these near pole-zero cancellations can be detected during the

construction and removed without destroying the structure. This is not the focus of this dissertation

and is deferred to future work. ♠



8
From time-domain data to structured realizations

If we want to apply the framework from Chapter 7 in form of Algorithm 3 to a more realistic

application, we need to provide

(i) the frequency response data in the form (6.5) and

(ii) the affine structure
∑︁K

k=1 hk (s) ˜︁Ak .

Even if a reasonable affine structure may be known by experts (cf. Example 7.28), this structure

might still depend on parameters, that are either unknown or prone to measurements errors, and

thus need to be adapted to the model. Moreover, for many applications only measurements in the

time domain are possible, such that a direct application of Algorithm 3 or Algorithm 4 is not possible.

In this chapter, we present a possibility to resolve these two problems and illustrate the approach in

the form of a case study.

8.1 Time-domain data

Instead of assuming access to frequency domain data as required by Algorithm 4, we assume that we

only have access to the input and output data in the time domain. Such samples may be obtained

by direct measurements or via computer simulation codes. In both cases, the surrogate model

must be built from input-output measurements only. Several methods, such as the signal generator

approach [14], are designed to use time-domain data to obtain frequency measurements. In this

work, we use a modification of the empirical transfer function estimate (ETFE) method [137] that

is presented in [168] and does not assume periodicity of the input and output sequence. Since

the main tool of the method from [168] is the solution of a least-squares problem we refer to this

approach as least-squares transfer function estimate (lsTFE).

We consider the time grid 0 = t0 < t1 < . . . < tN = tf with t j = jδt and N ∈ N for a given time step

size δt > 0. Moreover, we assume that measurements of the input and the output at the time grid is

available, that is we have access to the data

u j := u(t j ) ∈R
nu , and y j := y(t j ) ∈R

ny for j = 0,1, . . . , N . (8.1)

143
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For simplicity, we assume in the following that the data under consideration is generated from a

single-input/single-output (SISO) dynamical system, that is nu = ny = 1. Moreover, we assume that

the system is bounded-input/bounded-output (BIBO) stable, i.e., the sequence (y j ) j∈N is bounded

for any bounded sequence (u j ) j∈N and we make the following crucial assumption for the remainder

of this chapter.

Assumption 8.1. The data in (8.1) is generated from a causal, BIBO stable linear time-invariant

(LTI) system.

For the case N =∞, Assumption 8.1 guarantees that the output data y j is obtained via the convolu-

tion of the impulse response of the system and the inputs u j . More precisely, there exist numbers

hi ∈R such that

y j =
j∑︂

i=0
hi u j−i for j ∈N. (8.2)

Example 8.2. If the data (8.1) is generated from the discrete-time system

E x j+1 = Ax j +Bu j ,

y j =C x j ,

x0 = 0,

with nonsingular matrix E ∈R
nx×nx , then hi =C

(︂
E−1 A

)︂i−1 (︂
E−1B

)︂
for i > 0 and hi = 0 otherwise. ♠

Taking the Z-transforms of
(︂
u j

)︂
j∈N

and
(︂

y j

)︂
j∈N

ˆ︁u(z) =
∞∑︂

i=0
ui z−i and ˆ︁y(z) =

∞∑︂
i=0

yi z−i (8.3)

implies ˆ︁y(z) = H(z) ˆ︁u(z), where H is given by the formal power series

H(z) =
∞∑︂

i=0
hi z−i .

In practical applications we have N <∞ and thus cannot apply the Z-transform. Instead, we use

the fast Fourier transform (FFT), which can be interpreted as a special case of the Z-transform. More

precisely, we define qk := exp( 2πı
N k),

ˆ︁uk;N :=
N−1∑︂
j=0

u j q− j
k , and ˆ︁yk;N :=

N−1∑︂
j=0

y j q− j
k

for k = 0, . . . , N −1. Using the index set

I :=
{︂

k ∈ {0,1, . . . , N }
⃓⃓
⃓ |ˆ︁uk;N | > 0

}︂
=: {k1, . . . ,kr },
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we can define

Hk;N :=
ˆ︁yk;N

ˆ︁uk;N
for k ∈I

as an approximation of the transfer function. This particular way of estimating the transfer function

is known as the ETFE [137]. If the sequence (u j ) j∈N and (y j ) j∈N are periodic with period N , then

Hk;N = H(qk ). In practical applications, periodicity cannot always be assumed and thus we pursue

a different way here. Following [168] we define the partial sum

H j (z) :=
j∑︂

i=0
hi z−i .

Using the inverse FFT, we observe

y j =
j∑︂

i=0
hi u j−i =

j∑︂
i=0

hi

(︄
1

N

N−1∑︂
k=0

ˆ︁uk q j−i
k

)︄
= 1

N

N−1∑︂
k=0

ˆ︁uk H j (qk )q j
k

= 1

N

∑︂
k∈I

ˆ︁uk H j (qk )q j
k .

(8.4)

We note that (8.4) provides a direct link between the time domain data y j and the frequency

data H j (qk ). In addition, we have the following convergence result, which is a generalization

of [168, Proposition 3.2].

Theorem 8.3. Suppose the data (8.1) is generated from a dynamical system that satisfies Assump-

tion 8.1. Then

lim
j→∞

H j (z) = H(z) for all z ∈S := {z ∈C | |z| = 1}.

Proof. Let z ∈S. Then
j∑︂

i=0
|hi z−i | =

j∑︂
i=0

|hi ||z|−i =
j∑︂

i=0
|hi |.

Assumption 8.1 implies that the system is BIBO stable, which is equivalent to the absolute conver-

gence of the power series
∑︁∞

i=0hi [226, Chapter 2.8]. Thus the formal power series H(z) converges

for every z ∈S, which completes the proof. ■

Remark 8.4. If the data is generated from the linear system in Example 8.2, then the rate of conver-

gence depends on the spectral radius of E−1 A, cf. [168, Proposition 3.2] and [6, Theorem 5.18]. More

precisely, let ρ ≥ 0 denote the spectral radius of E−1 A, i.e., the modulus of the largest eigenvalue of

E−1 A. Then there exists a constant c ∈R independent of j and ρ such that

|H j (z)−H(z)| ≤ cρ j

for all z ∈S. ♣

The relation (8.4) together with the convergence result given by Theorem 8.3 motivates to solve the

least-squares problem

argmin
Ĥki ;N

N∑︂
j= jmin

(︄
y j −

1

N

r∑︂
i=1

ˆ︁uki
Ĥki ;N q j

ki

)︄
, (8.5)
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with some number jmin ∈N that is chosen in accordance with the expected rate of convergence

in Theorem 8.3 and Remark 8.4, cf. [168]. For more details on the choice of jmin, we refer to [168,

Section 3.6]. The (minimum norm) solution of (8.5) is obtained by computing the Moore–Penrose

pseudo-inverse of the matrix

F := 1

N

⎡
⎢⎢⎣

ˆ︁uk1
q jmin

k1
. . . ˆ︁ukr

q jmin

kr
...

. . .
...

ˆ︁uk1
q N

k1
. . . ˆ︁ukr

q N
kr

⎤
⎥⎥⎦ ∈C

(N− jmin+1)×r ,

which is given by F † = V Σ−1U ∗, where UΣV ∗ = F denotes the short singular value decomposition

(SVD) of F . Note that inverting very small but nonzero singular values in Σ poses a numerical

problem. Truncating small singular values during the computation of the pseudo-inverse amounts

to solving the regularized least-squares problem (cf. [30])

argmin
Ĥ∈Cr

∥F Ĥ −Y ∥2
2 +β∥Ĥ∥2

2, (8.6)

with

Ĥ =
[︂

Ĥk1;N . . . Ĥkr ;N

]︂T
and Y =

[︂
y jmin

. . . yN

]︂T
.

Note that the matrix F is dense and, depending on the number r of nonzero Fourier coefficients

of the input signal, the numerical solution of (8.6) may become unmanageably expensive. If the

user is free to choose the input signal (u j )N
j=0 then the numerical issues can be reduced as follows,

see also [168]. It is likely that the numerical rank deficiency of F is avoided, if r is small, i.e., if only

a small number of the Fourier coefficients of the input sequence (u j )N
j=0 is nonzero and N − jmin

is large enough. In particular, this ensures that the least-squares problem (8.5) is overdetermined.

One way to design a specific input sequence that is sparse in the Fourier domain is to prescribe a set

of interpolation points qki
for i = 1, . . . ,r and define

u j := 1

N

r∑︂
i=1

q j
ki

. (8.7)

Then, the FFT implies

ˆ︁uk;N =
N−1∑︂
j=0

u j q− j
k = 1

N

r∑︂
i=1

N−1∑︂
j=0

exp

(︃
2πı

N
(ki −k) j

)︃
= 1

N

r∑︂
i=1

Nδki ,k ,

and hence only the Fourier coefficients corresponding to the ki are nonzero. We note that in this

case we do not need to compute the FFT of u j and F is a generalized Vandermonde matrix.

8.2 Implementation details

In Chapter 7 we have constructed our realizations for continuous-time systems, while the lsTFE

approach inSection 8.1 is formulated in the discrete-time setting. To combine both results, we make
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the following observation: consider the system

ẋ(t ) = A1x(t )+Bu(t ),

y(t ) =C x(t ),

x(0) = x0

and the control function

u(t ) = δt

tf

r∑︂
i=1

exp

(︃
2πıki

t

tf

)︃
. (8.8)

Evaluating u at the time grid t j = jδt with j ∈ {0,1, . . . , N } reveals

u(t j ) = δt

Nδt

r∑︂
i=1

exp

(︃
2πıki

jδt

Nδt

)︃
= 1

N

r∑︂
i=1

exp

(︃
2πı

N
ki j

)︃
= u j ,

i.e., the input signal in (8.8) can be understood as a continuous representation of the discrete input

signal in (8.7). For t > 0 we have

y(t ) =C
∫︂t

0
exp(A1(t − s))Bu(s)ds

= C

N

r∑︂
i=1

(︃
2πı

tf
ki Inx

− A1

)︃−1

exp(A1t )

(︃
exp

(︃(︃
2πı

tf
ki Inx

− A1

)︃
t

)︃
− Inx

)︃
B.

If we assume that A1 is asymptotically stable, then for sufficiently large t , we have exp(A1t ) ≈ 0 and

hence

y(t ) ≈ 1

N

r∑︂
i=1

H

(︃
2πı

tf
ki

)︃
exp

(︃
2πıki

t

tf

)︃
.

A comparison with (8.4) suggests that using the input signal (8.8) in combination with the procedure

in Section 8.1 results in an approximation of the transfer function of the continuous-time system

at the frequency 2πı
tf

ki . As a consequence, we can describe frequency bounds fmin, fmax > 0 and

choose ˜︁r interpolation points ˜︁λi in the interval [ı fmin, ı fmax]. For a given final time tf = Nδt and

given i ∈ {1, . . . , ˜︁r }, we can thus compute the number ki ∈N that minimizes
⃓⃓
⃓⃓2πı

tf
ki − ˜︁λi

⃓⃓
⃓⃓= min

k∈N

⃓⃓
⃓⃓2πı

tf
k − ˜︁λi

⃓⃓
⃓⃓ . (8.9)

The transfer function is therefore estimated at the frequencies

λi := 2πı

tf
ki for i ∈ {1, . . . , ˜︁r }. (8.10)

Note that for some choices of ˜︁λi , we may have λi =λ j for i ̸= j . In this case we remove redundant

frequencies to obtain r unique frequencies. These frequencies are related to the qki
via

qki
= exp(λiδt ). (8.11)

We summarize the previous discussion and the results of Section 8.1 in Algorithm 5.

In our examples, we use a logarithmic sampling of the frequency interval [ı fmin, ı fmax] and pick jmin

such that 75 % of the time series is used for the least-squares problem (8.5). For details about the

choice of jmin we refer to [168].
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Algorithm 5 Least-Squares Transfer Function Estimate

Input: jmin and desired interpolation frequencies ˜︁λi (i = 1, . . . , ˜︁r )

Output: actual frequencies λi (i = 1, . . . ,r ) together with estimates of the transfer function at

these frequencies

1: Solve the minimization problem (8.9) for i = 1, . . . , ˜︁r
2: Remove redundant frequencies to obtain unique frequencies λi according to (8.10) and corre-

sponding points qki
, cf. (8.11), for i = 1, . . . ,r

3: Construct the input signal u j according to (8.7) and obtain measurements y j

4: Compute the Fourier coefficients of u j and assemble the matrix F

5: Solve the regularized minimization problem (8.6)

8.3 Estimation of parameters

Comparing Problem 6.9 with the structured realizations in Table 6.1, we observe that the coefficient

functions hk may depend on possibly unknown parameters like the time delay τ, which also need

to be identified. Let us thus consider a linearly independent function family

hk : C×P→C for k = 1, . . . ,K

with a compact parameter set P⊆R
p . We observe that for any fixed p ∈P we can use Algorithm 3 to

obtain a realization

˜︁H(s, p) = ˜︁C (p)

(︄
K∑︂

k=1
hk (s, p) ˜︁Ak (p)

)︄−1

˜︁B(p), (8.12)

which interpolates the data for this specific parameter. If further data

{︂(︂
ζ j , H

(︂
ζ j

)︂)︂
∈C

2
⃓⃓
⃓ j = 1, . . . , q

}︂
(8.13)

are available, in the following referred to as test data, we can compute the least-squares mismatch

E : P→R, p ↦→
q∑︂

j=1

⃦⃦
⃦H(ζ j )− ˜︁H(ζ j , p)

⃦⃦
⃦

2
(8.14)

between evaluations of the transfer function (8.12) and this data. A simple strategy, as for instance

proposed in [189], is to minimize (8.14) over the parameter set P. We note that if an optimal

parameter p⋆ ∈P is determined, one can add the test data (8.13) to the interpolation data (6.5) and

compute a realization that also interpolates the test data via Algorithm 4.
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Table 8.1 – Simulation parameters to obtain the transfer function estimates via lsTFE

description variable interpolation data test data

final time tf 10000 40

time step δt 5×10−3 1×10−5

frequency sampling interval [ fmin, fmax] [1×10−4,1×100] [1×100.3,1×101]

requested number of frequency estimates ˜︁r 10 6

actual number of frequency estimates r 8 6

8.4 A case study

To demonstrate the results of this chapter, we revisit the delay example Example 7.26 from the

previous chapter. More precisely, we consider the delay differential-algebraic equation (DDAE)

E ẋ(t ) = A1x(t )+ A2x(t −τ)+Bu(t ), for t > 0,

y(t ) =C x(t ), for t > 0,

x(t ) = 0, for t ∈ [−τ,0],

with nx ×nx matrices

E := νInx
+T, A1 := 1

τ

(︃
1

ζ
+1

)︃
(T −νInx

), A2 := 1

τ

(︃
1

ζ
−1

)︃
(T −νInx

),

where T is an nx ×nx matrix with ones on the sub- and superdiagonal, at the (1,1), and at the (nx ,nx )

position and zeros everywhere else. Note that E is nonsingular. We choose nx = 12, τ= 1, ζ= 0.01,

and ν= 5. The input matrix B ∈R
nx has ones in the first two components and zeros everywhere else,

and we choose C = B T .

We simulate the model twice to obtain estimates of the transfer function: once for setting up the

initial model (i.e., for collecting the interpolation data) and once for obtaining additional test data,

such that we can estimate the delay via minimizing the least-squares mismatch in (8.14). The

simulation parameters are listed in Table 8.1. We use higher frequencies to construct the input

function for the test data than for the input function for the interpolation data. These higher

frequencies enforce a smaller time step δt . In order to have a similar computational cost for both

input functions, we therefore adapted the final time tf. Consequently, Theorem 8.3 suggests that we

can expect a better accuracy for the transfer function estimates obtained from the simulation used

for the interpolation data.

The resulting transfer function estimates are compared to the true values in Tables 8.2 and 8.3 and

visualized in Figure 8.1. In this section, all numerical values are rounded to two decimal places.

The approximation of the transfer function at the lower frequencies (cf. Figure 8.1a) is almost

matching the true values. Indeed, the maximum error between the estimates and the true values of

the transfer function in the interpolation data set is 9.86×10−5. The approximation for the higher

frequencies (cf. Figure 8.1b and Table 8.3) is – as expected – significantly worse. However, even in

this frequency range, the approximation is reasonable with a maximum error of 1.47×10−2.
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Figure 8.1 – Estimation of the transfer function with lsTFE. The estimates are plotted with blue dots and
the true values of the transfer function with red squares.

Table 8.2 – Interpolation data: estimates of the transfer function via lsTFE

frequency ω true value H(ıω) lsTFE estimate Ĥk1;N error norm error

6.28×10−4 2.97×10−2 + ı9.05×10−6 2.97×10−2 + ı9.00×10−6 2.90×10−11 - ı4.71×10−8 4.71×10−8

1.88×10−3 2.97×10−2 + ı2.71×10−5 2.97×10−2 + ı2.70×10−5 2.61×10−10 - ı1.41×10−7 1.41×10−7

6.28×10−3 2.97×10−2 + ı9.05×10−5 2.97×10−2 + ı9.00×10−5 2.90×10−9 - ı4.71×10−7 4.71×10−7

1.70×10−2 2.97×10−2 + ı2.44×10−4 2.97×10−2 + ı2.43×10−4 2.11×10−8 - ı1.27×10−6 1.27×10−6

4.65×10−2 2.97×10−2 + ı6.70×10−4 2.97×10−2 + ı6.66×10−4 1.59×10−7 - ı3.49×10−6 3.49×10−6

1.29×10−1 2.97×10−2 + ı1.87×10−3 2.97×10−2 + ı1.86×10−3 1.23×10−6 - ı9.67×10−6 9.75×10−6

3.59×10−1 2.98×10−2 + ı5.24×10−3 2.98×10−2 + ı5.21×10−3 9.62×10−6 - ı2.62×10−5 2.79×10−5

1.00×100 3.01×10−2 + ı1.58×10−2 3.02×10−2 + ı1.58×10−2 8.19×10−5 - ı5.50×10−5 9.86×10−5

Table 8.3 – Test data: estimates of the transfer function via lsTFE

frequency ω true value H(ıω) lsTFE estimate Ĥk1;N error norm error

2.04×100 3.26×10−2 + ı4.89×10−2 3.11×10−2 + ı4.72×10−2 −1.57×10−3 - ı1.71×10−3 2.32×10−3

2.83×100 6.16×10−2 + ı2.23×10−1 5.93×10−2 + ı2.37×10−1 −2.35×10−3 + ı1.45×10−2 1.47×10−2

3.77×100 2.60×10−2 - ı8.19×10−2 2.06×10−2 - ı7.84×10−2 −5.43×10−3 + ı3.54×10−3 6.48×10−3

5.18×100 2.79×10−2 - ı1.89×10−2 2.89×10−2 - ı1.80×10−2 1.01×10−3 + ı8.97×10−4 1.35×10−3

7.23×100 3.19×10−2 + ı1.31×10−2 3.23×10−2 + ı1.21×10−2 3.81×10−4 - ı1.00×10−3 1.07×10−3

1.01×101 1.88×10−2 - ı7.06×10−2 1.84×10−2 - ı7.02×10−2 −4.41×10−4 + ı3.77×10−4 5.80×10−4
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Figure 8.2 – The transfer function of the true model (solid blue line), the realization (dashed red line),
and the realization with estimated parameter τ⋆ (dotted yellow line) obtained from the estimated
interpolation data (orange squares) and test data (green diamonds).

Before we can apply Algorithm 4, we need to specify the structure via defining the function family

{h1, . . . ,hK }. To this end, we first use the actual structure of the original model, i.e., the functions

hk
K
k=1 are given by

h1(s) = s, h2(s) ≡−1, and h3(s) =−e−s .

Note that the choice for h3 includes the true value for the delay time τ= 1. To obtain a real realization,

we add the complex conjugate data to the estimated transfer function values given in Table 8.2

and choose QF = 2 and QG = 1. The transfer function of the obtained realization is depicted as the

red dashed line in Figure 8.2. Although we only use approximations of the transfer function, the

realization approximates the original model (blue solid line in Figure 8.2) well, even for frequencies

larger than the frequencies used to construct the realization.

In a real application, we usually cannot compare the transfer function of the constructed realization

with the true transfer function, since we do not know the true model and hence also do not know

the transfer function. Instead, it is more reasonable to compare the realization with the true model

via simulations in the time domain (see also Problem 6.2). As validation input functions we use

u1(t ) = sin(t ), u2(t ) = 2
(︁
t − 1

2⌊2t + 1
2⌋

)︁ · (−1)⌊2t+ 1
2 ⌋+1, u3(t ) = t exp(−t 2).

The results are presented in Figure 8.3 and Table 8.4. The relative errors given in Table 8.4 indicate

slight differences between the accuracies obtained for the three different input signals. Nevertheless,

the output trajectories of the realization agree very well with the ones of the original model for all

three inputs, as illustrated in Figure 8.3.

As already noted, all previous results have been obtained by exploiting the knowledge of the actual

time delay which is equal to one in this case. However, in practical applications we cannot expect to

have precise a priori knowledge of the time delay, but rather a rough estimate of it. Thus, in order to
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Table 8.4 – Error measurements for the validation inputs with known delay

input signal ∥u∥L2

∥y−˜︁y∥L∞
∥u∥L2

∥y−˜︁y∥L2
∥u∥L2

u1 2.18×100 6.96×10−4 1.26×10−3

u2 3.29×100 3.73×10−3 3.51×10−3

u3 3.96×10−1 7.69×10−3 1.01×10−2
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Figure 8.3 – Comparison of the output of the original model (blue solid line) with the output of the
approximation (red dashed line). Top: input function u1; middle: input function u2; bottom: input
function u3.
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Figure 8.4 – Sampling of the least-squares error (8.14) over the delay time τ.

Table 8.5 – Error measurements for the validation inputs based on the estimated delay

input signal ∥u∥L2

∥y−˜︁y∥L∞
∥u∥L2

∥y−˜︁y∥L2
∥u∥L2

u1 2.18×100 1.31×10−3 1.77×10−3

u2 3.29×100 2.43×10−3 3.79×10−3

u3 3.96×10−1 1.43×10−2 1.04×10−2

build the realization from data only, we modify the function h3 as

h3(s,τ) =−e−τs

with free parameter τ. As discussed in Section 8.3, we can then use the test data to find an optimal

delay time τ⋆. A sampling of the least-squares error (8.14) is provided in Figure 8.4 and reveals a

distinct minimum close to the actual time delay τ= 1.

The minimization of the cost function (8.14) is performed using the MATLAB function fmincon.

As start value we use τ= 0.98, which is obtained from a rough sampling of the cost function. The

minimizer determined via fmincon is τ⋆ = 0.996883 and for this time delay the cost function attains

a value of E (τ⋆) = 5.99×10−3. To simplify the numerical simulations, we use the rounded value

τ⋆ = 0.997 for the following results. The transfer function of the realization constructed with the

estimated parameter τ⋆ and all transfer function estimates (i.e., the interpolation data and the test

data), are depicted in Figure 8.2. It is slightly different from the realization with the true parameter,

but still approximates the original model well. This statement can be verified by the simulation

results with the test inputs u1, u2, and u3, which are presented in Figure 8.3 and Table 8.5.

It is worth to note that there is no guarantee that the realization obtained from Algorithm 3 is stable.

In order to investigate the stability of the obtained realizations, we consider the eigenvalues depicted

in Figure 8.5, which are computed using the algorithm from [221]. Indeed, the realization obtained

from all transfer function estimates and the estimated delay τ⋆ is unstable with one eigenvalue in
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the right half plane (cf. Figure 8.5c). This is not surprising, since the eigenvalues of the original model

(cf. Figure 8.5a) are close to the imaginary axis, such that one can expect that a small perturbation

results in an unstable model. Still, the realization constructed only from the interpolation data and

with the true value for the delay τ is stable (see Figure 8.5b for the eigenvalues with the largest real

part). In contrast to stabilizing post-processing algorithms for rational realizations as offered in [86],

a stable–unstable decomposition of a DDAE is not possible in general and thus stability must be

enforced during the construction of the realization. This is currently under investigation and subject

to further research.

We conclude this case study with a remark about the choice of the interpolation frequencies.

Remark 8.5. In our numerical simulations, we observe that including estimates of the transfer

function at smaller frequencies tends to produce less unstable realizations in the sense that fewer

eigenvalues are unstable and the real part of the unstable eigenvalues is smaller compared to a

realization obtained from estimates of the transfer function at higher frequencies. As an example

we refer to the realization obtained only from the interpolation data (with the true delay τ= 1) and

the realization obtained from all transfer function estimates (with the estimated delay τ= τ∗), see

Figure 8.5 for the corresponding eigenvalue plots. ♣
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Figure 8.5 – Eigenvalues of the realization with largest real part
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9
Summary and outlook

In the introduction of this thesis we have emphasized the importance of delay differential-algebraic

equations (DDAEs) in various applications with several examples. They appear, for instance, in

chemical reactions, earthquake engineering, feedback control, human blood flow, the realization

of transport problems, and the analysis and construction of numerical time-integration methods.

Therefore, a rigorous mathematical understanding of DDAEs is essential.

Within the first part of this thesis, we have analyzed the existence and uniqueness of solutions

for initial trajectory problems (ITPs). Even for linear time-invariant (LTI) DDAEs, a distributional

solution concept is required. We present a complete analysis in chapter 3. One of the main results is

a modified compress-and-shift algorithm. This algorithm constructs a delay-equivalent DDAE that

is amenable for the method of steps whenever the DDAE is delay-regular.To establish continuous

solutions, we consider the propagation of so-called primary discontinuities in chapter 4. The

analysis illustrates two possibilities: Either, the class of DDAEs has to be restricted with a complete

characterization given in section 4.1, or the initial trajectories have to satisfy so-called splicing

conditions, see section 4.2. Some of these results can be extended to nonlinear DDAEs (cf. chapter 5),

which allowed us to establish new existence and uniqueness results for a large class of DDAEs not

available yet in the literature.

In the second part of the thesis, we have studied the realization theory for DDAEs. A realization

is a dynamical system constructed solely from data and able to mimic the system behavior, not

only for the trained control input but also for unknown control functions. In contrast to machine

learning, typically, only a small amount of data is available. The data may be available as a trajectory

of a measured quantity of the system (the so-called output of the system) in the time domain or

measurements of a transfer function in the frequency domain. The construction of our realization

in chapter 7 is based on an algebraic characterization of interpolation conditions in the frequency

domain. The degrees of freedom that arise if these conditions are applied to DDAEs can be exploited

to interpolate additional data while preserving the system matrices’ dimension or by satisfying some

Hermite interpolation conditions. Our framework extends to further system structures, including

second-order systems, fractional systems, and viscoelastic systems. We detail the relation of our

157
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realization to the projection-based interpolation of dynamical systems and propose an additional

post-processing step to remove data-redundancies. The framework can also be used with time-

domain data by extracting frequency information from the given time sequence. The details are

presented in Chapter 8.

Although DDAEs appear in various applications, their mathematical understanding is still far from

complete with many open problems. Directly linked to this thesis is an extension of the existence and

uniqueness results to time-varying and multiple delays that are not commensurate. The solution

theory may benefit from a behavior-like approach, which can be particularly useful if the initial

trajectory problem is replaced with a boundary trajectory problem. From a modeling perspective,

it is essential to know how uncertainties in the system matrices, typically modeled as an additive

or multiplicative perturbation, affect the system’s properties. A standard question to ask is to find

the smallest perturbation in some norm such that a given DDAE is not delay-regular. The norm

of the smallest perturbation is referred to as the distance to singularity, or if only a certain class of

perturbations is allowed, the structured distance to singularity. One particularly useful structure is

the so-called port-Hamiltonian formulation and an extension to DDAEs is a promising research

direction. Given the realization of a DDAE from data, a similar research direction is a detailed error

analysis if the data is subject to measurement errors. In this case, it may be preferable to use a

least-squares approach instead of interpolation. On top, further post-processing steps that ensure

stability or passivity of the realization need to be developed.
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