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Spatial linear stability analysis is applied to the mean flow of a turbulent swirling jet
at swirl intensities below the onset of vortex breakdown. The aim of this work is to
predict the dominant coherent flow structure, their driving instabilities and how they
are affected by swirl. At the nozzle exit, the swirling jet promotes shear instabilities
and, less unstable, centrifugal instabilities. The latter stabilize shortly downstream of
the nozzle, contributing very little to the formation of coherent structures. The shear
mode remains unstable throughout generating coherent structures that scale with the
axial shear-layer thickness. The most amplified mode in the nearfield is a co-winding
double-helical mode rotating slowly in counter-direction to the swirl. This gives rise
to the formation of slowly rotating and stationary large-scale coherent structures,
which explains the asymmetries in the mean flows often encountered in swirling jet
experiments. The co-winding single-helical mode at high rotation rate dominates the
farfield of the swirling jet in replacement of the co- and counter-winding bending
modes dominating the non-swirling jet. Moreover, swirl is found to significantly affect
the streamwise phase velocity of the helical modes rendering this flow as highly
dispersive and insensitive to intermodal interactions, which explains the absence of
vortex pairing observed in previous investigations. The stability analysis is validated
through hot-wire measurements of the flow excited at a single helical mode and
of the flow perturbed by a time- and space-discrete pulse. The experimental results
confirm the predicted mode selection and corresponding streamwise growth rates and
phase velocities.

Key words: absolute/convective instability, turbulent flows, wakes/jets

1. Introduction
Turbulent swirling jets represent a flow configuration that is both easy to generate

in an experiment and astonishingly rich in physical problems. The complexity of this
flow configuration poses a great challenge to fundamental research and often serves as
a benchmark for recent theoretical concepts. Moreover, swirling flows are commonly
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On the impact of swirl on the growth of coherent structures 157

used in industrial applications where efficient turbulent mixing is required, due to
the ability of swirl to enhance turbulent production and shear-layer spreading. The
great importance of swirling flows for the combustion industry is reflected by the
large number of related publications (see the review articles of McManus, Poinsot &
Candel 1993; Gutmark, Schadow & Yu 1995; Knowles & Saddington 2006; Huang &
Yang 2009, and references therein). Its relevance and frequent application demands a
profound understanding of its governing flow physics.

During the last two decades, various ideas have arisen to explain the enhanced
turbulent mixing in swirling flows. There is a common consensus that the vortical
structures in the swirled shear layers, which differ from those found in non-swirling
jets, must be the driving force for the enhanced turbulent production and entrainment
rate. However, the characteristics and the sources of the flow structures that reside
in swirled shear layers are still unclear. It is known that with the addition of
swirl, the flow promotes shear instabilities and centrifugal instabilities, but their
ability to enhance jet spreading is still a controversial issue. Linear stability analysis
based on swirling jet models reveal that centrifugal instabilities become successively
destabilized with increasing swirl (Martin & Meiburg 1996, 1998; Lu & Lele 1999;
Loiseleux, Delbende & Huerre 2000; Gallaire & Chomaz 2003b; Müller & Kleiser
2008). Several investigators suggest these instabilities, which promote flow structures
at smaller scales than shear instabilities, to be the cause for the enhanced jet spreading
(Mehta, Wood & Clausen 1991; Panda & McLaughlin 1994; Cutler, Kraus & Levey
1995; Wu, Ma & Zhou 2006). This stands in contrast to the experimental observation
of Naughton, Cattafesta & Settles (1997), who found swirl-enhanced mixing for
a centrifugally stable profile, which is confirmed by the numerical studies of Hu,
Sun & Yin (2001a), Hu et al. (2001b). These authors concluded that centrifugal
instability is not a necessary condition for enhanced jet spreading. In fact, their direct
numerical simulations indicate that the growth of swirled shear layers is augmented
by a nonlinear interaction of a primary vortex ring and the columnar vortex that leads
to a rapid breakdown of large flow structures into smaller scales.

Concerning the flow dynamics, it is widely accepted that the coexisting axial and
azimuthal shear prevalent in swirling jets render the dominant vortical structures
as highly three-dimensional. Panda & McLaughlin (1994) successfully excited
axisymmetric and non-axisymmetric modes in the shear layer of a turbulent swirling
jet, revealing a lower receptivity for axisymmetric modes in comparison with the
non-swirling jet. Billant, Chomaz & Huerre (1998) and Loiseleux & Chomaz (2003)
investigated the dynamics in the nearfield of a natural laminar jet for various swirl
intensities. They found large-scale co-winding double- and triple-helical structures in
the pre-breakdown state that were perfectly steady for the experiments conducted by
Billant et al. (1998), whereas Loiseleux & Chomaz (2003) observed them to rotate
at very low frequencies in the direction of the base flow rotation. In a previous
study focusing mainly on post-breakdown conditions, it was shown that the swirling
jet at pre-breakdown conditions is dominated by counter-rotating co-winding modes
oscillating at much lower amplitudes than for the non-swirling case (Oberleithner
et al. 2012). Gallaire & Chomaz (2003b) conducted a temporal stability analysis of
the mean profiles measured by Billant et al. (1998) showing that swirl destabilizes
co-winding modes with high azimuthal wavenumbers due to the centrifugal instability
in good agreement with the analysis of Leibovich & Stewartson (1983). However, the
most amplified azimuthal mode numbers disagree with the experimental observations
of Billant et al. (1998), Loiseleux et al. (2000) and Oberleithner et al. (2012). Gallaire
& Chomaz (2003b) attribute the discrepancy to the onset of a double-helical globally
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unstable mode with its wavemaker located at the nozzle lip. However, the authors
admit that their arguments remain vague as they are based solely on the analysis
at one streamwise location. The mode selection in the swirling jet experiments
conducted by Liang & Maxworthy (2005) differs significantly from the previously
reported one. For various swirl intensities, all detected helical modes are co-rotating
counter-winding and are aligned with the local helical vortex lines of the mean
flow. The investigators argue that the relative location and thickness of the axial and
azimuthal shear layers have a great influence on the streamwise evolution of the
dominant modes. Hence, a comparison of their results with stability analysis based
on simplified velocity models, as attempted by Liang & Maxworthy (2005) remains
only qualitative.

In this work we analyse the coherent structures that evolve in turbulent swirling
jets at industry-relevant Reynolds numbers. The main questions addressed are: what
are the dominant flow structures, what are their driving instabilities and how are they
affected by swirl? As demonstrated by this brief and, by no means, comprehensive
literature review, swirling jets are dominated by a large variety of flow instabilities
that strongly depend on the particular underlying base flow. This hinders a consistent
comparison of theoretical results typically based on simplified flow models and
experimental observations. Therefore, we depart from model-based studies and apply
linear stability analysis to time-averaged flows derived from experiments. The most
unstable modes of the mean flow are then compared quantitatively to the measured
coherent structures phase-locked by low-amplitude acoustic excitation. This approach
implies two major assumptions: first, natural coherent structures are represented by
linearly unstable modes of the underlying mean flow; second, the excited coherent
structures behave equal to their natural equivalent. Among others, this approach was
applied to the two-dimensional excited mixing layer (e.g. Gaster, Kit & Wygnanski
1985) paving the way for efficient separation control (Greenblatt & Wygnanski 2000),
to the non-swirling jet (Cohen & Wygnanski 1987a,b), and very recently to the
swirling jet at post-breakdown conditions (Oberleithner et al. 2011).

In contrast to the investigation reported by Oberleithner et al. (2011), we here
focus on swirl intensities below the onset of vortex breakdown where the flow is
globally stable and the shear layers act as noise amplifiers. Owing to the absence of
a single-tone instability, the mean flow analysis applies for a wide range of modes
and, hence, covers a wide dynamical spectrum. The analysis is conducted for a range
of swirl intensities revealing the explicit impact of swirl on the jet stability. We want
to emphasize that there exists no universal swirling jet configuration and that the one
investigated presently represents only one of several possibilities. Despite the loss of
generality, which a generic flow model would probably provide, we are convinced
that a detailed characterization of the instabilities of a particular flow configuration
along with a quantitative experimental validation will enhance the general fundamental
understanding, and it allows a proper interpretation of the findings obtained by other
experimentalists.

The outline of the paper is as follows. The swirling jet facility, the measurement
techniques, and the data treatment are outlined in § 2. The four flow configurations
considered in this study, ranging from zero swirl to strong swirl below the onset of
vortex breakdown, are described in § 3. Theoretical and numerical aspects concerning
the spatial stability analysis applied to the time-averaged turbulent flow are described
in § 4. The numerically predicted instabilities at the nozzle exit are presented in § 5,
while their downstream development is described in § 6. The results from the spatial
analysis are compared with measurements conducted in the single-mode and pulsed
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FIGURE 1. Experimental set-up and coordinate systems (all lengths are expressed in
millimetres).

actuated shear layers in §§ 7 and 8, respectively. The major findings are summarized
and discussed in § 9.

2. Experimental set-up and procedure
2.1. The swirling jet facility

An unconfined turbulent swirling jet was generated by the same apparatus used in a
previous investigation (Oberleithner et al. 2011). The schematic arrangement of the
facility is shown in figure 1 together with the alignment of the coordinate system.
Cylindrical coordinates are used throughout this work, with x being originated at
the nozzle exit, with the x-axis being aligned with the axis of rotation, with r = 0
representing the jet centreline, and with θ pointing in positive direction according to
the right-hand rule. The mean velocity components in the direction of the coordinates
(x, r, θ) are (Vx,Vr,Vθ). Swirl was generated by mixing a primary axial air stream that
passes through a deep honeycomb with a secondary air stream that enters the swirler
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through four tangential slots, each 80 mm long. The flow is then guided through a
600 mm long tube, before entering the contraction forming the nozzle. A perforated
plate was mounted in the tube to minimize possible inhomogeneities resulting from
the tangential inlets in the swirl chamber. The swirl levels generated by the facility
depend on the ratio of mass flows coming through the two inlets: a non-swirling jet
is generated when no air enters tangentially through the swirler and the maximum
swirl level is attained when the axial inflow is zero. Two frequency-controlled blowers
provided the necessary airflow. The volume flow of each blower was measured using
calibrated orifices connected to BARATRON gauges. The blowers were feed-back
controlled to provide a constant volume flux. The nozzle diameter is D= 51 mm.

Fluidic excitation was applied using an array of eight loudspeakers equally
spaced along the azimuth. Such an array provides radial fluctuations that trigger the
shear-layer instabilities. An acoustic wave guide from each actuator terminates in a
rectangular duct leading to a narrow slot that does not interfere with the jet flow when
the speakers are inactive. The loudspeakers are driven by a set of digital-to-analogue
converters under program control. The actuators were adjusted to equal amplitudes
under no-flow conditions using a microphone located at the centreline in the exit
plane of the nozzle. The azimuthal disturbances can be controlled by varying the
phase difference between the actuators. With an array of eight actuators the highest
azimuthal mode numbers that can be excited are m=±4. A similar excitation device
was successfully used by Long & Petersen (1992) to study instabilities in non-swirling
jets and by Panda & McLaughlin (1994) for swirling jets. For the measurements of
the impulse response, the flow was locally disturbed by using only one of the eight
loudspeakers. A time and space discrete delta-pulse was generated by running the
speaker with a saw-tooth signal with a sharp rising edge and a linearly decaying
falling edge.

The choice of the actuation amplitude is not trivial as it has to be large enough to
overcome the random turbulent noise in the shear layers. On the other hand, it must be
sufficiently low to provide linear amplification. Moreover, forcing the flow at too high
amplitudes would alter the mean flow substantially and thereby falsify the theoretical
predictions that are based on the non-forced flow. The most appropriate amplitude for
each flow configuration was derived through a preliminary parameter study. Therefore,
the flow was forced at various amplitudes and a trade-off between good signal-to-noise
level and a clear linear response was found.

2.2. Measurement procedure
Stereoscopic particle image velocimetry (Stereo-PIV) was used to measure the
mean flow field and the corresponding turbulent shear stresses. This image-based
method allows measurements of the velocity of particles going through a light sheet
generated by a high-energy double-pulsed Nd:Yag laser at 532 nm and 160 mJ. Two
CCD cameras with a resolution of 2048 × 2048 pixels were used. Both cameras
were positioned at a 45◦ angle in back-scattering mode in order to measure all
three velocity components in the x–r plane. Each measurement ensemble consists
of 900 snapshots captured at approximately 6 Hz. The camera view angle allows
measurements even inside the nozzle, which is necessary to have reliable data at
the nozzle lip. The time delay between the two consecutive laser pulses was set
according to the expected flow velocities to 50 µs. The strong out-of-plane velocity
component associated with swirling flows required a rather short pulse separation in
order to minimize lost particle pairs.
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FIGURE 2. (Colour online) Hot-wire traversing system.

In order to detect the three-dimensional disturbance modes travelling along the shear
layers, time-resolved volumetric measurements were conducted using eight hot-wire
probes simultaneously. A unique traversing mechanism was used that simultaneously
moves all hot-wires in radial and axial direction (figure 2). The hot-wire anemometers,
which were built locally, were used in conjunction with a A.A.LAB SYSTEM LTD
anemometer system. The hot-wires, made of tungsten, are 5 pm in diameter. They
were kept at a constant overheat ratio of 1.6 a maximum frequency response of
50 kHz. An analogue low-pass filter with a cut-off frequency of 6.2 kHz was used to
condition the measured signals prior to the analogue-to-digital converter. All channels
were sampled simultaneously at 20 kHz, giving a maximum frequency response
(Nyquist frequency) of 10 kHz.

The probes were distributed circumferentially around the jet centre, with the wires
aligned parallel to the tangential velocity. This ensures the measurement of the
axial velocity at a high spatial accuracy in the radial direction. The hot-wires were
calibrated in the exit plane of the jet at no-swirl conditions against a standard Pitot
tube at seven different velocities. Particular attention was paid to the radial adjustment
of the hot-wire probes. This was done in no-swirl conditions by placing each of the
eight hot-wires at the centre of the shear layer, where the mean velocity is reduced to
one-half of the centreline value. After completing the fine alignment of the probes, all
wires were traversed simultaneously in the radial and axial direction. Measurements
were conducted at several axial and radial positions within the range 0 < x/D < 1.2
and 0.2< r/D< 0.8.

In order to retain the phase information of the forced flow experiments, the
excitation signal was recorded together with the signal from the hot-wire anemometer.
In the case of sinusoidal excitation, the typical length of a velocity record used for
averaging was equivalent to 1500 periods of the excitation frequency. In the case
of pulsed-excited flow experiments, the record length was equivalent to 600 pulses,
which were generated at 10 Hz.
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S1 S3 S4

emean (%) 0.5 2.2 2.6
erms (%) 3 3.3 2.8

TABLE 1. Mean and r.m.s. error of the hot-wire measurements assuming PIV as the
reference.

2.3. Measurement uncertainty
For the Stereo-PIV system, the measurement uncertainty strongly depends on the
appropriate use of mapping functions along with suitable algorithms for recombination.
A multigrid evaluation strategy was used (final interrogation size of 32 × 32 pixels
at 50 % overlap) including window deformation, Whittaker peak fitting and B-spline
reconstruction. Errors due to misalignment of the laser sheet were minimized by the
corrected mapping functions. Therefore, the datum marks for the initial calibration
were back-projected onto the actual light-sheet plane via linear triangulation using
the pinhole model. For this mapping and recombination algorithm, the measurement
error is approximately 0.1 pixels (Raffel et al. 2007), which corresponds to an
error for all three instantaneous velocity components of approximately 5 % for the
present arrangement. This error is randomly distributed, contributing mostly to the
root-mean-square (r.m.s.) error. The presence of strong velocity gradients introduces
an additional bias and r.m.s. error that depends on the interrogation size, the laser
pulse delay and the seeding density. These errors are expected to be small due to the
short time delays between the laser pulses used in the present experiments.

The main error sources for the single-probe hot-wire measurements are the
interference of the traversing mechanism and probes with the flow and the three-
dimensionality of the flow at strong swirl. Figures 4 and 5 show mean velocity profiles
measured with the hot-wires and with the PIV, revealing good overall agreement. The
discrepancy between the two measurement techniques is quantified at the half-velocity
radius RPIV

.5 , by using

e=
(

VHW
x − VPIV

x

VPIV
x

)
RPIV
.5

, (2.1)

where the superscript indicates quantities derived from hot-wire or PIV data. Table 1
shows this quantity averaged over all streamwise measurement locations emean and the
corresponding r.m.s. deviation erms. The mean error is increasing with increasing swirl,
indicating a slight overestimation of the axial velocity with the addition of swirl. The
r.m.s. error remains constant with increasing swirl at ∼3 % revealing a satisfactorily
small variation within the flow field.

2.4. Basic data treatment
For the single-mode actuated flow experiments, the coherent axial velocity component
vc

x(x, t) was derived from the phase-averaged hot-wire measurements. It is periodic in
t and θ and can be decomposed into a Fourier series with coefficients

v̂x(x, r,m, n)=
1

2πT

∫ 2π

0

∫ T

0
vc

x(x, r, θ, t)ei(mθ−2πnt/T) dθ dt. (2.2)

The coefficients v̂x are complex, and m and n correspond to the azimuthal wavenumber
and the time harmonic, respectively. Throughout this investigation, we focus only on
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the fundamental of the excited waves and set n = 1. The amplitude of the forced
mode at a given axial location x is then derived by integrating the radial amplitude
distribution across the axial shear layer (Delbende, Chomaz & Huerre 1998),

Am(x)=
1
D

(∫ R.95

R.05

|v̂x|
2r dr

)1/2

, (2.3)

with R0.95 and R0.05 corresponding to the radial positions where the mean axial
velocity is 95 and 5 % of the bulk velocity V, respectively. The corresponding phase
distribution is

ϕm(x, r)= arg(v̂x). (2.4)

The pulsed-excited experiments were conducted in order to capture a single
wave packet travelling along the swirling jet shear layer. In order to reduce noise
caused by turbulent fluctuations, the experiments were repeated 600 times and were
ensemble-averaged. A detailed description of this method is given by Gaster & Grant
(1975). The method was further finalized to reduce the ambiguity in the averaged
quantities due to jitter in the arrival time and location. These irregularities, which
are induced by random turbulent motion of the base flow, may blur the actual shape
of the wave packet. Therefore, the signal of each individual recorded wave packet,
which is a function of θ and t, was cross-correlated with the ensemble-averaged
signal. The correlation peak provides an estimate of the t- and θ -displacement of
each pulse with respect to the mean values. The displacement was then compensated
for each pulse and the ensemble average was redone. This procedure was repeated
iteratively until convergence was achieved. For a detailed description of this method,
the reader is referred to Zhou, Heine & Wygnanski (1996) and references therein.

3. Characterization of the base flows
The mean flow in the x–r plane was derived from the Stereo-PIV measurements for

different swirl intensities at a constant Reynolds number of ReD = DV0/ν = 20 000,
with V0 being the bulk velocity at the nozzle and ν the kinematic viscosity of air.

3.1. Analytic representation of the mean flow
The measured mean flow is approximated by profiles given by the following analytic
expressions:

Vx =
V

1+
(
exp

[
(r/R.5)2 log(2)

]
− 1
)Nx
, (3.1a)

Vr = 0, (3.1b)
Vθ =Ωclr exp

[
−(r/Rθ)Nθ /Nθ

]
. (3.1c)

A slightly modified version of the expression for the axial velocity component Vx was
introduced by Monkewitz & Sohn (1988). Later, Gallaire & Chomaz (2003b) used
this profile to approximate the measurements conducted by Billant et al. (1998). Here
V represents the bulk velocity and R.5 the jet radius, defined as the radial distance
where Vx = 0.5V . The dimensionless parameter Nx is related to the radial gradient
of the axial velocity profile and is inversely proportional to the axial shear-layer
thickness. The model for the azimuthal velocity component Vθ was first introduced
by Carton & McWilliams (1989) and more recently used by Gallaire & Chomaz
(2003b). We use Ωcl to represent the rotation rate on the jet axis and Rθ to represent
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FIGURE 3. Mean velocity profiles at the nozzle for different swirl intensities. The solid
lines correspond to the simple model (3.1) and the dashed lines correspond to model (3.2)
that compensates for the axial overshoot. The model parameters are given in table 2.

the radial location of the maximum azimuthal velocity. The dimensionless parameter
Nθ is inversely proportional to the azimuthal shear-layer thickness. The parameters Nx
and Nθ are determined from a least-squares fit of the expressions (3.1a) and (3.1c)
to the axial and azimuthal mean velocity, respectively.

For the swirling jet, the contraction upstream of the nozzle generates an overshoot
of the axial velocity profile in agreement with previous studies (Panda & McLaughlin
1994; Billant et al. 1998; Semaan, Naughton & Ewing 2009). To account for
this hump in the axial velocity profile, Gallaire & Chomaz (2003b) introduced
an additional term to (3.1a), yielding the more complex expression

Vx =
V

1+ (exp[(r/R.5)2 log(2)] − 1)Nx
+ Vos exp[−(r/ros)

2
], (3.2)

where Vos represents the strength of the overshoot and ros its radial extent. According
to Gallaire & Chomaz (2003b), the axial overshoot has minor effect on the instability
of the base flow. Preliminary computations conducted for both models confirm the
insignificance of the overshoot for the present flow and, therefore, the stability
analysis presented throughout this study is based on the mean flow approximated by
the simpler and far more generic model (3.1).

3.2. The velocity distribution at the nozzle
The back-scattering configuration of the PIV measurements enables access to the
flow quantities at the nozzle exit. The fitted profiles of the axial and azimuthal mean
velocities are shown in figure 3. Measurements were conducted at four different swirl
configurations ranging from zero swirl, labelled by S1, to strong swirl, labelled by S4.
The solid lines correspond to the simple model (3.1) and the dashed lines correspond
to model (3.2) that compensates for the axial overshoot. The model parameters are
given in table 2.

Despite the formation of an overshoot, the swirl does not significantly alter the axial
velocity profile, which is in agreement with measurements of laminar swirling jets
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FIGURE 4. (Colour online) Non-swirling jet configuration S1: profiles of the axial velocity
are shown together with contours of the turbulent shear stress v′xv′r/V

2. Diamond-shaped
symbols refer to PIV measurements, hollow circles (shown in red online) to hot-wire
measurements and solid black lines refer to the analytic approximation (3.1a).

S1 S2 S3 S4

V/V0 1 1 1 1
ΩclR.5/V 0 0.54 1.54 2.23
R.5/D 0.47 0.47 0.47 0.47
Rθ/D — 0.36 0.32 0.29
Nx 17.78 16.74 14.61 12.75
Nθ — 10.37 6.14 4.45
ros — 0.42 0.42 0.42
Vos/V — 0.15 0.52 0.78

TABLE 2. Parameters of the mean flow approximation (3.1) determined by a least-squares
fit to the measured velocity profiles at at x/D= 0.

(Billant et al. 1998). The axial shear-layer thickness increases slightly with increasing
swirl, indicated by a decrease of Nx. The azimuthal velocity profile is certainly
affected by an increase in swirl. The rotation rate near the jet axis, expressed as
the dimensionless ratio ΩclR.5/V , reaches 2.23 at highest swirl. Moreover, the radial
position of the maximum azimuthal velocity Rθ moves towards the jet centre and
the azimuthal shear layer thickens considerably, indicated by a decrease of Nθ . The
latter is not observed in the laminar swirling jet experiments conducted by Billant
et al. (1998) and Loiseleux & Chomaz (2003), where Nθ and Rθ remain constant
with increasing swirl.

3.3. Quantification of swirl at the nozzle exit
Several swirl number definitions exist in the literature, each being applicable to
a certain flow regime, but none being universal. Table 3 lists the most common
swirl numbers derived at the nozzle exit for the four flow configurations considered.
Throughout this work, they will be simply referred to as S1, S2, S3 and S4. A
comparison with the listed literature reveals that the highest swirl number S4 is still
below the critical level where vortex breakdown occurs.

3.4. Streamwise distribution of mean velocities and turbulent stresses
Figures 4 and 5 depict the mean flow distribution along the streamwise plane of
measurement derived from PIV measurements for the non-swirling and swirling jet,
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FIGURE 5. (Colour online) Swirling jet configuration S3: profiles of the axial (a) and
the azimuthal (b) velocity component are shown together with contours of the turbulent
shear stress v′xv′r/V

2 and v′rv
′

θ/V2, respectively; diamond-shaped symbols refer to PIV
measurements, hollow circles (shown in red online) to hot-wire measurements and solid
black lines refer to the analytic approximation (3.1).

S1 S2 S3 S4 Critical threshold

2
∫
∞

0 VxVθ r2 dr
D
∫
∞

0 (V
2
x − V2

θ /2)r dr
0 0.19 0.46 0.6 1.06 (Oberleithner et al. 2012)

√∫
∞

0 V2
θ /r dr

Vx(r= 0)
0 0.28 0.55 0.62 0.71 (Billant et al. 1998)

2Vθ,max

Vx,max
0 0.66 1.17 1.25 1.41 (Escudier & Keller 1983)

2Vθ (r=D/4)
Vx(r= 0)

0 0.5 1.04 1.19 1.30 (Billant et al. 1998)

(
ΩclRθ

V

)−1

∞ 2.41 0.96 0.72 0.69 (Liang & Maxworthy 2005)

arctan
(

Vθ
Vx

)
max

0 20.52 40.64 46.01 50.0 (Sarpkaya 1971)

TABLE 3. Different swirl number definitions evaluated at x= 0 and corresponding critical
thresholds for vortex breakdown taken from previous investigations.

respectively, together with the velocity profiles approximated by the simplified model
(3.1). The agreement between the fit and the actually measured values is excellent for
the non-swirling jet. For swirl configuration S3, the analytic approximation of the axial
velocity component is also good, despite a slight underestimated shear-layer thickness
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near the nozzle exit. The swirl profiles are represented reasonably well by the model,
however, upstream of x/D = 1 the inflection point inside the vortex core region is
not reproduced. For comparison reasons, the axial velocity profiles derived from the
hot-wire measurements are also shown for the swirling and non-swirling jet. Despite
the overestimation observable in the outer jet region, the profiles obtained from the
hot-wire measurements are nearly indistinguishable from the PIV data.

The contour surfaces shown in figures 4 and 5 indicate regions of high turbulent
production. They represent the normalized turbulent shear stress component v′xv′r for
the non-swirling jet, and v′xv′r and v′rv

′

θ for the swirling jet. Without swirl, v′rv
′

θ is orders
of magnitude smaller than for the swirling case and is therefore covered in noise
(not shown). The contours reveal that the radial maximum is located approximately
at the highest radial gradient of Vθ , indicating that v′rv

′

θ is primarily generated by
the azimuthal shear. The turbulent shear stress component v′xv′r is also enhanced by
the addition of swirl, which presumably results in an enhanced downstream growth
of the axial shear layer and a shortening of the potential core region. Furthermore,
the turbulent shear stresses confirm that the axial overshoot near the nozzle, which
creates an additional inflection point in the axial velocity profile, does not contribute
significantly to the turbulent production and, hence, instabilities growing in the inner
shear layer seem to be negligible. Similarly, the aforementioned inflection point of
the azimuthal profile near the jet centre upstream of x/D = 1 does not generate
turbulent shear stress and it is not expected to promote dominant instabilities. The
poor approximation of this feature is therefore considered to be insignificant. Note
that PIV measurements are only conducted for the unforced flow where the coherent
velocity cannot be extracted. Hence, the turbulent shear stresses discussed here are
derived from the fluctuating velocity field that comprises stochastic and coherent
motion.

3.5. Parametrization of the mean flow
The evolution of the mean flow with downstream distance is characterized by the
streamwise distribution of the parameters of model (3.1). The bulk velocity V is
displayed in figure 6(a). It is taken as the characteristic length scale throughout
this work. The other parameters that scale the axial velocity profiles are shown in
figure 6(c,e) and those corresponding to the azimuthal velocity profiles are shown in
figure 6(b,d,f ). Figure 6(g) displays the streamwise development of the momentum
thickness δx. It is used as the characteristic length scale throughout this work and
represents a measure for the axial shear layer thickness, defined as

δx =

∫ R.95

R.05

Vx

V

(
1−

Vx

V

)
dr. (3.3)

Figure 6(a) indicates the axial extent of the potential core, the region where V is
equal to the bulk velocity at the nozzle V0. For the non-swirling jet (S1), the potential
core exceeds the measurement domain. By increasing the swirl, the potential core
region is shortened significantly due to the increased growth of axial shear-layer
thickness. For S3, V declines for x/D > 2, whereas Loiseleux & Chomaz (2003)
measures a potential core length of x/D≈ 3.8 at a comparable swirl intensity. Hence,
the presently found streamwise extent of the potential core is much smaller than for
laminar swirling jets.

It is interesting to note that the swirl parameter (inverse Rossby number) shown
in figure 6(b) remains perfectly constant within the potential core, despite the
downstream decay of the maximum swirl velocity Vθ,max. It is the only local swirl
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FIGURE 6. (a–f ) Streamwise development of mean flow parameters of (3.1); Streamwise
development of axial momentum thickness (g) and maximum swirl velocity (h).

number of the definitions listed in table 3 that remains constant within the potential
core. It is further worth noting that downstream of the potential core, the Rossby
number decays at the same rate independent of the swirl intensity and it ultimately
collapses to one curve that asymptotes zero.
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The quantities shown in figure 6(c,e and f ) indicate the enhanced jet spreading
with increasing swirl. The non-monotonic development of Rθ is somewhat unexpected
(figure 6d). Within the potential core, the downstream growth of the azimuthal
shear layer leads to a displacement of the maximum of the swirl component to
the jet centre, while the constant swirl parameter (figure 6b) implies that Ωcl must
increase correspondingly. Downstream of the potential core, the maximum of Vθ
moves outwards and the azimuthal shear-layer thickness decreases, indicated by an
increasing shape parameter Nθ . The maximum azimuthal velocity Vθ,max decelerates
drastically within the potential core and collapses for all swirl configurations at
x/D> 3.5 in a similar manner as the inverse Rossby number. Apparently, the growth
of the azimuthal shear layer is coupled to the growth of the axial shear layer in
the potential core region, which leads to a constriction of the vortex core. Further
downstream, the axial shear layer merges on the jet axis, the vortex core spreads
radially and the inverse Rossby number decays.

4. Implementation of the linear stability analysis
4.1. Theoretical concept

Linear stability analysis is commonly applied to predict the initial growth of small
perturbations travelling on a stationary laminar base flow. Once the perturbation
reaches a sufficient size, nonlinearities set in and the linear analysis is biased. This
type of analysis is mostly applied to computed base flow models providing useful
insights into the transition to turbulence.

In order to model perturbations growing in turbulent flows, the laminar flow
models are less representative and it is more appropriate to apply the analysis on
the time-averaged flow. This procedure renders the analysis inherently nonlinear
due to the turbulent Reynolds stresses that form the mean flow. Substituting the
turbulent mean flow for the stationary laminar flow violates the assumptions made
to derived the instability equations. Therefore, the analysis must not be generally
valid and a cross-check with experiments is required. Although, this approach is
mathematically less rigourous, its outcome reflects experimental findings in a more
consistent manner. The success of this semi-empirical approach was demonstrated
by various investigations, revealing that linear stability analysis is a powerful tool
to model large-scale coherent structures in turbulent flows. Accordingly, this method
can be applied at different degrees of complexity and accuracy, ranging from local
stability analysis (Gaster et al. 1985; Cohen & Wygnanski 1987a; Pier 2002; Juniper,
Tammisola & Lundell 2011; Oberleithner et al. 2011) through parabolized stability
analysis (Herbert 1997; Gudmundsson & Colonius 2011) to global stability analysis
(Barkley 2006; Meliga, Pujals & Éric 2012).

Instability wave models in turbulent flows are typically based on a separation of
scales which is formalized by the classical triple decomposition introduced by Hussain
& Reynolds (1970),

v(x, t)=V(x)+ vc(x, t)+ vs(x, t). (4.1)

Accordingly, the time- and space-dependent flow v(x, t) is decomposed into a
time-averaged part V(x), a coherent part vc(x, t) and a randomly fluctuating
(stochastic) part vs(x, t). The mean part interacts with the coherent part through
a mean flow correction that is induced by coherent Reynolds stresses generated by
the spatially growing/decaying coherent structures (Reau & Tumin 2002; Noack et al.
2003). The fine-scale turbulence acts on the coherent part by adding a fictitious eddy
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viscosity reducing the growth rate of the inherent instability. Taking this into account,
the eigenmodes of the mean flow reflect an equilibrium state between spatially
growing/decaying flow structures and corresponding mean flow corrections. This
allows the modelling of the coherent structures beyond their initial growth, resolving
their saturation and partly their decay.

4.2. The local linear stability equations
The linear stability analysis conducted in this work is in line with a previous
investigation dealing with the coherent structures in strongly swirling jets undergoing
vortex breakdown. Therefore, the mathematical concept is only briefly introduced. For
a comprehensive representation of the governing equations and the validation of the
numerical procedure, the reader is referred to Oberleithner et al. (2011).

Following the procedure of local linear stability analysis, the velocity and pressure
disturbances, represented by the coherent components (vc

x, vc
r, vc

θ , pc), are superposed
onto the measured mean velocity profile. The perturbations that are periodic in time,
in the streamwise and in the azimuthal direction, are decomposed into normal modes,
yielding

vc(x, r, θ, t)= v̂(r)ei(αx+mθ−ωt)
+ v̂∗(r)e−i(α∗x+mθ−ω∗t) (4.2)

pc(x, r, θ, t)= p̂(r)ei(αx+mθ−ωt)
+ p̂∗(r)e−i(α∗x+mθ−ω∗t), (4.3)

where α is the complex streamwise wavenumber, ω the complex frequency and m
the real integer azimuthal wavenumber. Upon substituting (4.2) into the Navier–Stokes
equations, linearized about the mean flow V(x, r, θ), we obtain

∇ · vc
= 0, (4.4a)

for the continuity equation and
∂vc

∂t
+ vc
· ∇V +V · ∇vc

=−∇pc
+

1
Re
∇

2vc (4.4b)

for the momentum equation.
Equipped with appropriate boundary conditions (see Oberleithner et al. 2011), the

system (4.4) can be written as an eigenvalue problem with either α or ω being the
eigenvalue and (v̂, p̂) the eigenfunctions.

4.3. Analysis of divergent flows: a quasi-parallel approach
The above-introduced eigenvalue problem is solved for a complex streamwise
wavenumber α = αr + iαi and a given real frequency ωr. This approach is called
spatial analysis, yielding spatially growing (−αi > 0) or decaying (−αi < 0) modes.
It is applicable to open shear flows that are convectively unstable (noise amplifiers,
see Michalke 1965). In contrast, absolutely unstable flows featuring self-excited
instabilities (flow oscillators, see Huerre & Monkewitz 1990) are typically treated
with a spatiotemporal analysis solving the eigenvalue problem for complex streamwise
wavenumbers and frequencies. In a preliminary study, it was assured that the present
flow is not absolutely unstable for |m|6 3, justifying the approach adopted here. The
spatial analysis describes the streamwise growth and decay of flow perturbations
initiated at a certain axial location, e.g. x = 0. Within the framework of the
multiple-scale analysis, the global disturbance velocity field can be reconstructed
from the local analysis using

vc(x, t; ε)=<
{

A0(x)v̂(x, r; ε) exp
[

i
ε

(∫ x

0
α(ξ) dξ +mθ −ωrt

)]}
, (4.5)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

, o
n 

26
 O

ct
 2

01
7 

at
 0

7:
25

:3
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
66

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.669


On the impact of swirl on the growth of coherent structures 171

where the eigenvalue α and the eigenfunction v̂ is derived at each streamwise slice
separately. The parameter ε quantifies the streamwise non-uniformity of the flow.
It must be small for the local analysis to be rigourously valid, implying a slow
variation of the eigenfunction with x and a fast variation of the wavenumber α with
ξ . Assuming that the rate of divergence is characterized by the momentum thickness
of the axial shear layer δx, we find ε= dδx/dx< 0.07 for all considered configurations,
which justifies the weakly non-parallel approximation.

Crighton & Gaster (1976) have developed a first-order correction for weakly
non-parallel flows that enables to derive a slowly varying amplitude scaling A0(x)
from a ordinary differential equation employing the eigenfunction and its adjoint. By
accounting for the term A0v̂ the growth rate and phase velocity of a travelling
wave becomes dependent on the streamwise and radial coordinate and on the
velocity component. For the sake of simplicity, we omit the weakly non-parallel
correction and assume A0 in (4.5) to be uniform and the eigenfunction v̂(x, r) to
depend parametrically on x. The latter are arbitrarily normalized with respect to the
Euclidean norm ‖v̂‖=

√
(v̂, v̂), which introduces an ambiguity to the present analysis,

however noting that the normalization with other quantities such as the total kinetic
energy or the radially integrated amplitude did not noticeably affect the results. The
quasi-parallel approach adopted here provides a coarse but comprehensive picture
of the instabilities that dominate this flow and how they are affected by swirl. As
a drawback, this simple approach is incapable of revealing higher-order intermodal
interactions that may be present due to the non-parallelism of the flow.

4.4. Turbulence model
The impact of turbulence on the growth of the coherent structures is modelled
assuming that fine-scale turbulence provides additional mixing and behaves like
an added eddy viscosity. The instabilities in free-shear flows are typically inviscid
and, hence, viscosity has primarily a stabilizing effect (see e.g. Liu 1971; Marasli,
Champagne & Wygnanski 1991; Reau & Tumin 2002). The eddy viscosity νt adds
to the kinematic viscosity ν, significantly reducing the Reynolds number used in the
stability equations (4.4).

The eddy viscosity is derived from the experimental data employing the well-known
Boussinesq approximation, utilizing the expression −v′xv′r = νt(∂Vx/∂r + ∂Vr/∂x). As
stated by Townsend (1956), this simple eddy viscosity model is only valid within the
turbulent flow and must therefore be weighted by an intermittency factor γ that is
derived from the PIV snapshots using the following approach: first, the instantaneous
azimuthal vorticity is calculated from each PIV snapshot; second, the noise from the
obtained vorticity field is removed by setting values below 5 % to zero. The resulting
vorticity distributions provide a reasonably good description of the instantaneous
boundary between rotational and irrotational flow. Third, the number of events of
irrotational flow Npot are derived for each measurement location. The intermittency
function is then defined as γ =Npot/N, where N is the total number of PIV snapshots.

The eddy viscosity is weighted by the intermittency factor and averaged in the
radial direction. It is displayed in figure 7(a). For all swirl configurations, νt is nearly
equal at the nozzle exit and grows rapidly with downstream distance. The growth is
enhanced with increasing swirl in consistency with the enhanced shear-layer growth
discussed in § 3.5. Accounting for the added turbulent viscosity, the Reynolds number
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FIGURE 7. (a) Streamwise distribution of eddy viscosity νt derived from PIV
measurements and (b) Reynolds number Re= (Vδx)/(ν+ νt) used for the stability analysis.

in the stability equations (4.4) is now defined as

Re=
Vδx

ν + νt
. (4.6)

It is displayed in figure 7(b). For all swirl configurations, it decays rapidly upstream of
x/D= 1 and then asymptotes at similar constant values within the range 10<Re< 20.
The growth of eddy viscosity appears to be balanced by the growth of momentum
thickness.

4.5. Numerical implementation
The local linear stability eigenvalue problem is efficiently solved by using a
Chebyshev spectral collocation method (Khorrami, Malik & Ash 1989; Trefethen
2000). A detailed description of the numerical scheme is given by Oberleithner
et al. (2011). It is further simplified for the present study by implementing the
MATLABTM routine EIGS, which solves an eigenvalue problem and returns only
one eigenvalue that is closest to a given estimate. The eigenvalue problem is first
solved for one parameter combination by using the standard MATLABTM routine
EIG, which returns numerous eigenvalues including the spurious ones. The physically
meaningful solutions are then sorted out, a posteriori, by using two independent
criteria as mentioned by Oberleithner et al. (2011). Starting from this solution, the
eigenvalue problem is solved for a new parameter combination using the EIGS
routine. The required estimate is thereby derived from cubic extrapolation of the
already obtained solutions while going in small increments through the parameter
space. Particular attention must be paid when several modes exist for one parameter
setting since the EIGS routine may switch from one mode to the other. All results are
cross-checked by using the standard EIG routine. The computations are conducted
using 200 Chebyshev points. A two-parameter transformation proposed by Malik,
Zang & Hussaini (1985) is used to map the Chebyshev collocation points onto the
physical domain of the problem, in line with the previous study (Oberleithner et al.
2011). The boundary conditions for r=∞ are applied at r= 100D/δx to account for
the spatially varying length scale.
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5. Instabilities at the nozzle exit
At the nozzle exit, the top-hat axial velocity profile is nearly independent of the

swirl, while the azimuthal component, characterized by a linear region near the jet
centre (solid-body rotation) and an outward decaying region (azimuthal shear layer),
depends strongly on the swirl intensity. Hence, the analysis applied to the inlet profiles
reveals the explicit impact of swirl on the instability.

The flow at the nozzle lip reveals two instabilities, indicated by two unstable
eigenvalues. The first is classified as a shear instability being qualitatively similar for
the non-swirling and swirling jet. The other is identified as a centrifugal instability
that exists only with swirl. Before entering the presentation of these instabilities, it is
important to familiarize the reader with the terms used to differentiate between the
different mode alignments.

5.1. Identifying the direction of winding and rotation of the helical modes
According to the normal mode decomposition introduced in (4.2), instability modes
are equally represented by

(α,m, ω) or (−α∗,−m,−ω∗). (5.1)

Without loss of generality, we consider only mean flows with Vθ > 0. Cases with
negative Vθ can be deduced by the following symmetry (Olendraru & Sellier 2002;
Gallaire & Chomaz 2003b)

(Vθ ,m)→ (−Vθ ,−m). (5.2)

In experimental studies, it is common to let ωr and αr only take positive values (e.g.
see Panda & McLaughlin 1994; Liang & Maxworthy 2005). The phase function (αrx+
mθ − ωrt) then implies that at a fixed axial location x, modes with m > 0 rotate in
time in the direction of the basic flow and are called co-rotating, while modes with
m< 0 are called counter-rotating. The phase function further implies that at fixed time
t and increasing x, modes with m > 0 have a line with constant phase that winds
in opposite direction to the basic flow rotation and are called counter-winding and
modes with negative m are called co-winding. Although the restriction to positive
frequencies and wavenumbers appears more intuitive, it constrains the investigation of
certain spatiotemporal mode configurations that may occur in reality. It is therefore
more general to let αr take both signs. In that case, co-winding modes correspond
to αrm< 0 and counter-winding modes to αrm> 0. Hence, a co-rotating co-winding
mode corresponds to positive m and ωr and negative αr. These modes exist especially
in swirling jets and they can only be expressed by negative wavenumbers. In fact, for
the presentation of certain diagrams, it is convenient to also let ωr take both signs with
negative values being derived from (5.1). This implies that co-rotating modes refer to
ωrm> 0 and counter-rotating modes to ωrm< 0. In figure 8 the six non-axisymmetric
mode variants are summarized in a schematic drawing. It may serve as a visual aid
that comes in handy during the discussion of the stability analysis.

5.2. Shear instability: dominating the non-swirling and swirling jet
Figure 9 provides an overview of the influence of swirl on the shear instability.
The rather unusual plotting style appears several times throughout this work and
is therefore described in more detail at this point. The filled contours represent
the dimensionless spatial growth rate −αiδx computed for various dimensionless
frequencies ωrδx/V and azimuthal wavenumbers m. The contour levels are always
the same within each figure. Regions of negative growth rate (−αi < 0) are blanked.
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0
Streamwise modes

Steady modes

Counter-rotating
counter-winding

Counter-rotating
co-winding

Co-rotating
counter-winding

Co-rotating
co-winding

FIGURE 8. Schematic drawing of the six non-axisymmetric variants of mode alignments in
swirling jets; m, ωr, and αr may take both signs and are equally expressed by (αr,m, ωr)
or (−αr,−m,−ωr).

The labelled contour lines refer to the dimensionless axial wavenumbers αrδx and
are also only displayed for unstable modes. For better visibility, the contour lines of
αrδx are black, while the lines separating the filled contours of −αiδx are light grey.
For most cases, we allow the frequency and axial wavenumber to have positive and
negative values. The symmetry of the −αiδx contours with respect to the origin of the
ωr–m-plane indicates redundancies for this plotting style (see transformation (5.1)).

Referring to figure 9(a), the non-swirling jet is most unstable to axisymmetric
disturbances in agreement with previous investigations (see e.g. Crighton & Gaster
1976; Cohen & Wygnanski 1987a; Gallaire & Chomaz 2003b). Co-rotating counter-
winding modes (ωrm> 0, αrm> 0) and counter-rotating co-winding modes (ωrm< 0,
mαr< 0) are equally unstable. The streamwise wavenumber of maximum amplification
is approximately αmax

r δx = 0.2 and remains constant for varying m. The overall
maximum amplification and corresponding frequency agrees well with the values
reported by Cohen & Wygnanski (1987a). This brings credibility to the measured
mean flow on which the analysis is based.

By imposing swirl onto the flow, the symmetry breaks (figure 9b–d) and
counter-rotating modes (ωrm < 0) undergo different amplification than co-rotating
modes (ωrm > 0). The maximum growth rate of the axisymmetric modes (m = 0)
is very similar to the non-swirling jet as this mode is purely driven by the axial
shear. Surprisingly, also the maximum growth rates and the associated streamwise
wavenumbers for m 6= 0 are nearly unaffected by the strength of the swirl component.
This indicates that also the most amplified helical modes of this instability are
driven by the axial shear layer similar to the Kelvin–Helmholtz instability of the
non-swirling baseline case. However, there is yet a considerable influence of the
swirl component on the most amplified frequencies. The contours of the growth
rates and the streamwise wavenumbers depicted in figure 9 become successively
tilted with increasing swirl, resulting in higher frequencies for the co-rotating modes
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FIGURE 9. (Colour online) Instability of the shear mode at the nozzle exit (x/D= 0) for
the non-swirling jet (a) and the swirling jets (b–d). Filled contours refer to the spatial
growth rate −αiδx. Dark-grey labelled contour lines refer to the streamwise wavelength
−αrδx. Stable modes −αiδx< 0 are blanked. Quantities are derived numerically for varying
azimuthal wavenumbers m and frequencies ωr.

and lower frequencies for counter-rotating modes. This leads to a destabilization of
steady co-winding modes (ωr = 0, αrm< 0), co-rotating co-winding modes (ωrm> 0,
αrm < 0) and co-rotating streamwise modes (ωrm > 0, αr = 0), which are all stable
without swirl.

The swirl-induced tilt of the contours shown in figure 9 is directly related to the
rotation of the base flow. In a swirling jet, a disturbance initiated at the nozzle lip is
convected in axial and azimuthal direction, which implies that the group velocity of
a travelling wave has a non-zero axial and azimuthal component. The group rotation
rate defined by Ωgr = (∂ωr/∂m)αr=const. represents the slope of the αrδx contour lines
shown in figure 9. Consistently, it increases successively with increasing swirl for all
unstable modes. The non-zero Ωgr for swirling jets is supported by the experimental
investigation of the impulse response that is discussed in § 8.
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FIGURE 10. The streamwise phase velocity cph = ωr/αr versus the frequency ωr of the
shear mode; only unstable modes are shown.

The non-zero group rotation rate induced by the swirl significantly affects the
streamwise phase velocity of the instabilities. Figure 10 shows cph = ωr/αr for the
non-swirling (S1) and the swirling (S3) jet with the first revealing typical features
of the Kelvin–Helmholtz instability. For frequencies near neutral amplification, the
instability waves are only weakly dispersive with cph/V≈0.55. The non-dispersiveness
enables nonlinear modal interactions to occur, such as modes resonating with their
subharmonics (Cohen & Wygnanski 1987a; Paschereit, Wygnanski & Fiedler 1995)
or triad resonance between two spinning modes (Long & Petersen 1992). These
mechanisms do not apply as rigourously to the swirling jet. Figure 10 reveals a
distinct dependence of the phase velocity on ωrδx/V and m, which hampers the
intermodal resonance. With swirl, the resonance condition of equal phase velocity
(between the same or different m) is only fulfilled for a short streamwise extent that
might be insufficient for an effective resonance to build up. However, it should be
recalled here that in a non-parallel flow, the phase velocity is also a function of r
and the resonance condition can still be fulfilled for a certain r only.

Finally, the radial velocity magnitude distribution of the shear modes, given by their
eigenfunctions, are shown in figure 11 for the non-swirling (S1) and swirling jet (S3).
The radial coordinate is centred to the jet half-width R.5 and normalized with respect
to the momentum thickness δx. Only the modes at maximum growth rate for a given
m and positive frequency are shown. The eigenfunctions are not significantly altered
by the swirl. The velocity magnitude peaks approximately at the centre of the axial
shear layer (r = R.5), indicating the importance of the axial shear layer for this type
of instability.

Concluding this section, the most unstable modes at the nozzle exit are driven
by a shear instability, with the overall maximum spatial growth rate determined by
the shape of the axial velocity profile. The selection of the most amplified axial
wavenumbers αmax

r depends only weakly on S and m. However, the corresponding
frequencies ωmax

r depend strongly on S and m due to the non-zero azimuthal group
rotation rate Ωgr caused by the swirling motion of the mean flow. This dependence
is a kinematic effect, as stated by Martin & Meiburg (1994), and can be illustrated
by considering inclined waves on a infinite long cylinder as a model for instability
waves travelling along a swirling jet. Consider first waves fixed to the rotating
cylinder. For a given wavenumber (here αmax

r ), the axial phase velocity depends on
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FIGURE 11. Amplitude distribution of the shear modes for the non-swirling jet S1 and the
swirling jet S3 calculated for positive frequencies ωmax

r at maximum spatial amplification.

the rotation rate of the cylinder (here Ωgr or S) and the inclination of the waves
(m/αmax

r ), yielding cph∝Ωgrm/αmax
r . Now, consider a non-rotating cylinder that moves

in axial direction at constant velocity (here V/2). The phase velocity is then given by
cph = V/2, independent of the inclination. Superimposing these two cases results in
the relation cph ∝ V/2+Ωgrm/αmax

r and with cph =ωr/α
max
r we get the proportionality

ωr ∝ V/2αmax
r + Ωgrm, which describes the influence of swirl on ωr and m of the

most unstable wavenumber αmax
r .

5.3. Centrifugal instability
In addition to the shear instability discussed above, a second disturbance mode is
observed that only exist in the presence of swirl. Figure 12 shows the corresponding
contours of −αiδx in the ωr–m plane for different swirl intensities. Its overall
maximum growth rate increases successively with increasing swirl, however, reaching
no larger values than a third of the maximum growth rate of the shear mode.
Counter-rotating co-winding modes (ωrm< 0, αrm< 0) are promoted by the instability
with m = −7 and ωrδx/V ≈ 0.3 being most unstable for S2 and m = −2 and
ωrδx/V ≈ 0.5 for S3 and S4. The streamwise wavenumber αr, indicated as black
contour lines in figure 12, reveals much smaller wavelengths in regions of maximum
amplification in comparison with the shear instability. This type of instability selects
short axial and azimuthal wavelengths at high frequencies promoting flow structures
at smaller scales than the shear mode. Moreover, this type of instability does not
promote steady or streamwise modes that are found in the shear mode.

The tendency of this second, less unstable perturbation to counter-rotating modes
at small wavelengths indicates a manifestation of a centrifugal instability. Rayleigh’s
well-known inviscid criterion provides a necessary and sufficient condition for a swirl
profile to be centrifugally unstable to axisymmetric perturbations (Drazin & Reid
2004). The Rayleigh criterion was generalized to vortices with axial flow by Howard
& Gupta (1962) and extended to three-dimensional perturbations by Leibovich &
Stewartson (1983). According to their inviscid asymptotic study, the swirling jet
becomes centrifugally unstable if

σ 2(r)=
2Vθ(rV ′θ − Vθ)(V2

θ /r
2
− (V ′θ)

2
− (V ′x)

2)

(rV ′θ − Vθ)2 + (rV ′x)2
> 0, (5.3)
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FIGURE 12. (Colour online) Instability of centrifugal mode at x/D = 0 for the
non-swirling jet (S1) and the swirling jets (S2–S4). The plots are the same style as in
figure 9.

where the prime indicates the first spatial derivative in the radial direction. If the
equality is satisfied, the criterion provides the square of the temporal growth rate σ(r)
of the most unstable mode centred at the radius r. Figure 13 shows this quantity for
the flow at the nozzle lip. The maximum temporal growth rate σmax follows the same
trend as the maximum spatial growth rate shown in figure 12.

The radial position of σmax corresponds to the characteristic radius Rc of the most
(temporally) unstable mode. As shown in figure 14, this radius marks quite well
the peak amplitude of the most (spatially) amplified counter-rotating modes derived
from the stability analysis. The centrifugal modes peak at radial positions that do
not coincide with the centre of the axial shear layer R.5 (black asterisk in figure 14),
where the shear modes peak. Moreover, the centrifugal modes shown in figure 14 are
not all located at the same radius. This is in accordance with Leibovich & Stewartson
(1983), stating that the eigenmodes are centred at the radial position where the helix
angle β =−αr/m is aligned with the direction of the zero rate of strain, which varies
for each wavenumber pair.
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FIGURE 13. Radial distribution of the temporal growth rate σ at the nozzle lip predicted
from the Leibovich–Stewartson instability criterion.

0.1
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–10 –5 5 100
0
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5151–

FIGURE 14. Amplitude distribution of the centrifugal mode at the nozzle exit (x/D =
0) for the swirling jet S3 calculated for positive frequencies ωmax

r at maximum spatial
amplification. Radial coordinate is off-set by the characteristic radius Rc derived from the
Leibovich–Stewartson stability criterion. The black star marks the radial coordinate of the
centre of the axial shear layer R.5.

To conclude, the second, less unstable perturbation that exists only for the swirling
jet follows the trend predicted by the inviscid stability criterion of Leibovich &
Stewartson (1983), suggesting that it is a manifestation of a centrifugal type instability.
Its characteristic (wavelength, frequency, amplitude distribution) differs significantly
from the shear mode and is, therefore, clearly distinguishable. Moreover, it shows
strong qualitative similarities with instabilities classified as centrifugal type in previous
investigations (Lu & Lele 1999; Cooper & Peake 2002; Müller & Kleiser 2008). The
impact of viscosity seems to be negligible at the nozzle where the eddy viscosity is
relatively small.

6. Streamwise evolution of instability
In this section, the downstream development of the shear instability and the

centrifugal type instability are investigated. Owing to the divergence of the jet,
the mean flow and corresponding stability characteristics change significantly in
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streamwise direction, and certain modes stabilize with downstream distance and die
away while others remain unstable. To obtain the overall growth of the instability
modes, it is necessary to perform the stability analysis at various streamwise locations.

6.1. Shear instability
The Kelvin–Helmholtz instability in axisymmetric non-swirling jets has been
investigated by numerous researchers, and it will serve as a benchmark to validate
the present numerical results. At the nozzle exit, where the shear layer is thin, the
non-swirling jet is known to be unstable to various axial and azimuthal wavenumbers
and frequencies (see e.g. Cohen & Wygnanski 1987a). With increasing distance from
the nozzle, the number of unstable azimuthal modes decreases successively, and at
the end of the potential core, only the bending modes with m=±1 remain unstable.
The present investigation confirms these results.

Figure 15 displays the contours of spatial growth rate in the ωr–x plane for
06m6 3. Recall that in the absence of swirl, co-rotating counter-winding modes are
equally unstable than counter-rotating co-winding modes and, hence, we can restrict
their presentation to positive m and ωr. The axisymmetric mode, which is most
unstable at the nozzle exit, stabilizes at x/D ≈ 3 (figure 15a). All non-axisymmetric
modes except for m = ±1 also stabilize in downstream direction with their neutral
point located closer to the nozzle for higher m. The frequency and wavelength of the
most unstable mode remains approximately constant with x, indicating the appropriate
choice of the velocity and length scale.

The maximum growth rates αmax
i are shown explicitly in figure 16. It can be

directly compared with the results from the inviscid analysis conducted by Cohen
& Wygnanski (1987a). Close to the nozzle exit, the agreement is good. However,
the viscous analysis presented here predicts a faster downstream decay of −αmax

i .
In the present analysis, the axisymmetric modes (m = 0) become neutrally stable
at x/D ≈ 3.3, while the inviscid analysis of Cohen & Wygnanski (1987a) predicts
x/D ≈ 4.5. Perhaps more importantly, the maximum growth rate of the bending
modes with m=±1 presented here asymptotes to 0.22, which is less than half of the
value derived by Cohen & Wygnanski (1987a). The discrepancy between the viscous
and the inviscid analysis is due to the eddy viscosity model used in the present
investigation. Near the nozzle exit, the turbulent viscosity νt is very small and it has
only a marginal effect on the growth of instability. With larger distance from the
nozzle, the turbulent fluctuations increase, resulting in a rapid increase of νt and a
drastic decay of the growth rate of the instability. The inviscid analysis overestimates
the growth rate that is observed in experiments, as shown by Cohen & Wygnanski
(1987a), while the present approach yields a theoretical prediction that agrees well
with the experimental results as shown later.

By introducing swirl to the flow, the symmetry breaks and co-rotating modes
undergo different amplification cycles than counter-rotating modes and, hence,
contours of −αiδx must be derived separately for positive and negative frequencies.
The streamwise distribution of αi of the swirling jet configurations S2 and S3 is shown
in figure 17 for 0 6 m 6 3. During the ensuing discussion, it is more meaningful to
classify the instability modes by their sense of winding than by their direction of
rotation. In this spirit, the contour line αr = 0 in figure 17 that refers to streamwise
modes is of particular interest as it separates the regime of co-winding modes from
the regime of counter-winding modes. It is located in a ‘valley’ between regimes of
high amplification and, thus, the streamwise modes are always less unstable than the
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FIGURE 15. (Colour online) Streamwise evolution of spatial growth rate of the shear
mode for the non-swirling jet S1 for the azimuthal wavenumbers m = (0, 1, 2, 3) (from
a–d). Plots are the same style as in figure 9.

most unstable winding modes. Their rotation rate is directly related to the base flow
rotation and, thus, their frequency is always larger zero and increases with increasing
swirl.

The streamwise evolving flow selects different modes than one would expect from
the analysis at the nozzle exit. The counter-winding modes that are most amplified
at the nozzle exit do not undergo the strongest overall amplification. At increasing
swirl, the growth rates of the counter-winding and axisymmetric modes, which
are prominent at the nozzle, reduce rapidly with downstream distance, while the
co-winding modes remain unstable for a longer streamwise extent. The magnitude of
the streamwise wavenumber of the most amplified modes are approximately constant
in the axial direction with |αrδx| ≈ 0.2, independently of the azimuthal wavenumber
(figure 17). This agrees with the non-swirling jet (figure 15). However, the most
amplified frequencies are not constant in axial direction unlike the non-swirling jet.
For the modes with m > 1 (figure 17c–d), the frequency at maximum amplification
increases in downstream direction. This results in a destabilization of co-winding
steady modes (ωr = 0, αr < 0) at streamwise wavenumbers that are similar to the
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FIGURE 16. Streamwise development of the maximum growth rate −αmax
i δx of the shear

instability for the non-swirling jet S1 for different azimuthal mode numbers and positive
frequencies.

most amplified ones in the non-swirling jet. At sufficiently strong swirl (right column
in figure 17), the αr=−0.2 contour line, depicting roughly the most amplified modes,
asymptotes the ωr = 0 line. This implies that, with increasing downstream distance
from the nozzle, the rotation rate of the most amplified co-winding counter-rotating
modes decrease continuously until they stand still (ωr = 0).

The ability to promote steady modes at considerably high amplification rates is
a unique feature of swirling jets. The tendency of the co-winding modes to lower
rotation rates (frequencies) appears plausible when considering the proportionality
ωr∝V/2αmax

r +Ωgrm, derived in § 5.2. It implies that with increasing swirl (increasing
Ωgr), the frequency ωr of the most unstable counter-rotating co-winding mode (m> 0,
ωr < 0, αmax

r < 0) must increase in order to maintain constant axial wavenumber. In the
same train of thought, steady modes become most unstable when V/2αmax

r =−Ωgrm,
which seems to be fulfilled at certain axial locations for m> 1.

Figure 17 reveals that all modes become successively more stable with increasing
downstream distance from the nozzle, except for the co-winding modes with m = 1.
Additional computations based on a domain size of 0 < x/D < 8 conducted by
the authors did not indicate a stabilization of this mode in the farfield. It appears
that the swirl-induced destabilization of the co-winding modes and the stabilization
of counter-winding modes is maintained for a wide streamwise distance, although
the swirl component decays very rapidly in downstream direction (see figure 6).
Interestingly, spatial growth of the bending modes asymptote to the same value for
all swirl strengths considered, which is twice as high as for the non-swirling jet. The
collapse of the growth rates downstream of the potential core is presumably linked
to the formation of a universal swirl velocity profile, as indicated by the collapse of
the Rossby number, Nθ , and Vθ,max (see figure 6).

Summing up, the swirling jet selects a counter-rotating co-winding m = 1 mode
to be the remaining unstable mode at sufficient downstream distance. This mode is
expected to dominate the farfield dynamics. The nearfield is dominated by various
co-winding modes with the azimuthal wavenumber m= 2 to be most amplified. The
frequencies of the most amplified modes decay in downstream direction due to the
rotational motion of the mean flow, which results in a significant destabilization of
steady modes.
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FIGURE 17. (Colour online) Streamwise evolution of spatial growth rate −αiδx of the
shear mode at azimuthal wavenumbers m= (0, 1, 2, 3) for the swirling jets S2 (a–d) and
S3 (e–h). Plots are the same style as in figure 9.

6.2. Centrifugal instability
At the nozzle the centrifugal instability reveals a tendency to counter-rotating modes
at high azimuthal wavenumbers (figure 12). Therefore, the analysis is conducted at
various streamwise locations for positive ωr and for the azimuthal mode numbers
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FIGURE 18. (Colour online) Streamwise evolution of spatial growth rate −αiδx of the
centrifugal mode at azimuthal wavenumbers m= (−10,−5,−2,−1,0,1,2) for the swirling
jet S3. Same plot style as in figure 9.
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FIGURE 19. Streamwise development of the maximum of the temporal growth rate σ
predicted from the Leibovich–Stewartson instability criterion.

m = (−10, −5, −2, 0, 1, 2). The results are shown in figure 18. Strikingly, the
modes driven by the centrifugal instability decay with downstream direction at a
much faster rate than the shear mode, and they all become neutrally stable upstream
of x/D = 1. The stabilization of the centrifugal instability is not in line with the
inviscid stability criterion of Leibovich & Stewartson (1983). Figure 19 shows the
streamwise development of the maximum of the temporal growth rate σ derived
from the inviscid criterion (5.3). Despite its considerable decay shortly downstream
of the nozzle, it remains positive throughout. The discrepancy to the linear stability
analysis is presumably caused by viscous damping that becomes more significant
with downstream distance where the eddy viscosity is higher (see figure 7).

7. Measurements in the single-mode actuated shear layer
In a first experiment, the jet at different swirl intensities was forced at a co-rotating

mode with m = 1. The disturbance field of the excited wave was measured with
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FIGURE 20. Radial amplitude distribution of the axial velocity component of the m= 1
mode for the swirling jet configuration S3; markers correspond to hot-wire measurements
and lines represent numerical prediction.

hot-wires and compared with the theoretical predictions discussed in the previous
sections. Good agreement will bring credibility to the stipulations that are made for
the presented stability analysis. Theses assumptions are summarized here again.

(i) The unstable eigenmodes of the mean flow represent the coherent structures.
(ii) Damping due to small-scale turbulence is well modelled by the eddy viscosity.

(iii) The axial overshoot near the nozzle is negligible.
(iv) The quasi-parallel approximation is sufficiently accurate.

In the second experiment, the swirling jet configuration S3 was forced at different
azimuthal wavenumbers −2 6 m 6 2 at a frequency of 100 Hz. This experiment is
aimed to validate the dependence of the phase velocity on the azimuthal mode number
for the swirling jet.

7.1. Growth rate of the co-rotating bending mode
The bending m = 1 mode was actuated at the frequencies 150, 100 and 80 Hz
for the swirl numbers S1, S3 and S4, respectively. This corresponds to dimensionless
frequencies ranging from ωrδx/V ≈ 0.07 at the nozzle lip to ωrδx/V ≈ 0.4 at x/D= 1.2.
The frequencies were selected as such that the actuated modes go through their
entire amplification cycle within the measurement domain. The frequencies do not
correspond to the maximum overall amplification.

The amplitude distribution of the axial component |v̂x| is derived from the
phase-averaged hot-wire measurements and compared with the stability eigenfunctions.
Figure 20 shows the amplitude of the co-rotating counter-winding m = 1 mode
at selected axial locations. The black lines refer to the theoretical predictions
derived from spatial linear stability analysis, and the symbols refer to phase-locked
measurements. The amplitudes are normalized with respect to the area below the
graph of the radial extent measured. Good agreement is found upstream of the
neutral point of the excited mode, which is at approximately x/D= 0.75.

The radially integrated amplitude measure Am(x) is derived using (2.3). Figure 21
shows the streamwise amplitude distribution of the modes actuated at m = 1. The
amplitudes are shown in a logarithmic scale and are normalized by their initial value
at x/D= 0. Hence, the graphs represent an amplitude ratio of the radially integrated
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FIGURE 21. Hot-wire measurements of the streamwise amplitude distribution of the
actuated co-winding m = 1 mode for various swirl configurations. Actuation frequencies
are 150, 100 and 80 Hz for the swirl numbers S1, S3 and S4, respectively, to obtain neutral
amplification at similar axial locations.

axial velocity component. For all cases, the excited waves saturate at similar axial
locations. For the selected forcing frequencies, the waves in the non-swirling jet
undergo an overall amplification that is an order of magnitude higher than for the
swirling jet.

The spatial growth rate of the axial velocity component is derived from the slope
of the amplitude ratio displayed in figure 21. It is displayed in figure 22 for the
swirling and non-swirling jet along with the theoretical prediction. The latter is
expressed by two different quantities that are both shown in figure 22. The solid
black line corresponds to the growth rate of the axial velocity component derived
from the reconstructed disturbance field utilizing (4.5), while the dotted line refers to
the growth rate of the fictitious parallel flow represented by −αiδx. Both quantities are
equal at the nozzle lip and coincide with the experimental result. Further downstream,
the growth rate of the parallel flow overestimates the growth of axial component.
This is more pronounced for the swirling jet. The non-uniformity of the flow implies
different growth rates for different velocity components, which is not accounted for
when considering −αiδx. The growth rates predicted from the computed disturbance
field are reasonably well in line with the experimental data indicating that the
negligence of the amplitude scaling A0 of the weakly non-parallel correction does not
significantly affect the accuracy of the predicted amplitudes.

In conclusion, the local quasi-parallel analysis approximates the streamwise growth
of a single-mode excited wave at a sufficient measure of accuracy. The growth
rate −αiδx of the parallel flow provides an approximate measure of the growth of
instability, but for an accurate comparison with experiments the streamwise-varying
eigenfunction must be considered. It should be mentioned here that the stability
modes presented in this section correspond to the shear instability. The growth rates
and eigenfunctions corresponding to the centrifugal instability do not match the
experimental results at all (not shown), indicating that they are not excited by the
applied actuation.
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S1 S3

–0.05

0

0.05

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

–0.10

0.10
(a () b)

FIGURE 22. Streamwise development of spatial growth rate of actuated co-winding m= 1
mode for the non-swirling jet S1 (a) and the swirling jet S3 (b); the black stars refer
to hot-wire measurements; the black thick line refers to numerical prediction taking the
streamwise variation of the eigenfunction into account and the black dots represent the
numerical prediction based on the parallel flow.

7.2. Streamwise phase velocity for various modes
The stability analysis predicts a dependence of the axial phase velocity and wavelength
on the azimuthal wavenumber when swirl is introduced to the flow. This is validated
experimentally by actuating the swirling jet S3 at various azimuthal wavenumbers.
The corresponding phase distribution ϕm(x, r) is derived from the phase-locked
hot-wire measurements using (2.4). It is depicted in figure 23 for the co-rotating
counter-winding travelling waves m = 1 at several axial locations together with the
radial phase distribution obtained from the stability analysis, showing reasonably good
agreement.

The phase velocity of the actuated modes is derived from the hot-wire measurements
using

cph(x, r)=
2πfact

∂ϕm(x, r)/∂x
, (7.1)

where fact corresponds to the actuation frequency. Note that the phase ϕm(x, r) is a
function of the axial and radial coordinates, and it cannot be condensed to a function
of x only, as it is done for the amplitude. However, it is here assumed that the
phase velocity in the centre of the shear layer represents the average phase velocity
of the entire coherent structure. This approximation is supported by measurements
in the forced mixing layer (Gaster et al. 1985). The left graph in figure 24 shows
the measured phase delay of modes actuated at −2 6 m 6 2 derived at the centre
of the axial shear layer R.5 for the swirling jet S3. All modes are excited at the
same frequency. The phase velocity is derived from the slope of the phase delay and
displayed in the graph on the right side of figure 24. Accordingly, for lower m, the
phase increases more rapidly with downstream distance and, consequently, modes at
lower m have lower axial phase velocities than modes with higher m. This confirms
the results from the stability analysis.
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0.25

0.50

Phase Phase Phase Phase

FIGURE 23. Phase distribution of mode m= 1 for the swirling jet S3, markers correspond
to hot-wire measurements, lines represent numerical prediction.

0.5

1.0

1.5

2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

(a () b)

FIGURE 24. Hot-wire measurements of the streamwise evolution of the phase delay (a)
and phase velocity (b) for modes excited at various azimuthal wavenumbers m for the
swirling jet S3. Values are taken in the centre of the axial shear layer R.5.

8. Measurements in the pulse actuated shear layer
In the second experiment the response of the shear layer to a single pulse is

investigated. The pulse creates a wave packet that consists initially of an infinite
number of stable and unstable modes. While propagating downstream, the modes
in the wave packet grow or decay according to the stability of the base flow. The
modal decomposition of the wave-packet signal reveals the streamwise development
of the dominant instabilities, which will serve as a validation of the mode selection
predicted from the local stability analysis.

The development of the wave-packet envelope is described first, revealing the shape,
the location and the velocity of the wave packet. Thereafter, the modal content of
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the wave packet is discussed and compared with the spatial stability analysis. Results
are shown for the non-swirling jet S1 and the swirling jet S3. It is noted here that
in the present experiment, the loudspeaker generates a pulse with an azimuthal extent
of ∆θ = π/4 and an axial extent of ∆x/D= 0.02, which differs significantly from a
delta function in space. This introduces forcing artifacts that influence the development
of the wave packet between the nozzle lip and x/D= 0.25. Further downstream, the
influence on the particular forcing characteristic becomes less significant and the wave-
packet evolution is shown to be in line with the theoretical prediction.

8.1. Trajectory of the wave-packet envelope
In general, the Fourier coefficients of a signal v(tj) sampled at j= 1 . . .N time points
are given by

v̂(n)=
1

N/2

N∑
j=0

v(tj) exp
(
−i

πnj
N/2

)
(8.1)

and the envelope of the signal is given by

ve(tj)=

∣∣∣∣∣
N/2∑
n=0

v̂n exp
(

i
πnj
N/2

)∣∣∣∣∣. (8.2)

The measured signal of the wave packet is represented by the coherent axial velocity
component vc

x(x, t). The experimental arrangement allows for a very good temporal
resolution, a reasonably good spatial resolution in radial direction and, due to the
specific ensemble-averaging procedure, a good spatial resolution in azimuthal direction.
The resolution in axial direction is poor, as data are acquired only for the streamwise
locations x/D= (0.02, 0.25, 0.6, 1, 1.5, 2, 2.5, 3). Hence, the signal of the wave packet
is Fourier decomposed in r, θ and t direction for each streamwise position, separately,
and the corresponding envelope ve

x(x, t) is derived from the inverse three-dimensional
Fourier transformation, in accordance with (8.2). Consistent with the single-mode
investigation, the radial dependence of the envelope is omitted by integrating the
envelope across the axial shear layer, yielding the following expression for the
envelope amplitude

Ae(x, θ, t)=
1
D

(∫ R.95

R.05

(ve
x)

2r dr
)1/2

. (8.3)

Figure 25 shows the trajectory of the wave packet envelope in a three-dimensional
plot for the non-swirling jet S1 and the swirling jet S3. Two-dimensional contours are
displayed for each streamwise measurement location, showing the envelope amplitude
distribution along the θ–t plane. The time is made dimensionless using the half
bulk velocity V/2, which is approximately the streamwise convection velocity of the
disturbance. At each axial location, Ae is normalized by its maximum value Ae

max
within the corresponding θ–t plane. This normalization facilitates the comparison of
the wave packet envelope at different crosswise measurement planes. Contour surfaces
with Ae/Ae

max < 0.5 are blanked and the lowest contour line Ae/Ae
max = 0.5 is selected

arbitrarily as the characteristic outer bound of the wave packet. The corresponding
coordinates of the leading and trailing edge of the wave packet are projected on the
axis planes (see dotted lines at x/D = 1.5). They are marked by white-filled black
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FIGURE 25. (Colour online) Trajectory of the wave packet envelope for the non-swirling
jet S1 (a) and swirling jet S3 (b) derived from hot-wire measurements. The pulse is
initiated at θ = 0, t= 0 and x/D= 0. Contours show the envelope amplitude distribution Ae

at each r–θ plane of measurement normalized by the corresponding maximum Ae
max. Big

black dots refer to the maximum of the envelope projected onto the θ–x and t–x planes.
White-filled black circles refer to the leading and trailing edge of the wave packet in the
time direction. Grey-filled black circles refer to the leading and trailing edge of the wave
packet in θ direction.
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On the impact of swirl on the growth of coherent structures 191

circles in the x–t plane and by grey-filled black circles in the x–θ plane. The centre
of the wave packet is associated with Ae/Ae

max = 1. Its coordinate is marked on the
axis planes by big black dots. The streamwise development of Ae

max are shown in the
small images placed near the bottom-right corner of the figure 25(a,b).

To get familiar with this rather complex plotting style the non-swirling jet is
discussed first (figure 25a). The pulse is initiated at the nozzle exit at t = 0 and
−π/8 6 θ 6 π/8. This creates a wave packet that peaks at θ = 0, with an azimuthal
extend of ∆θπ/4 (see the marker in the θ–x plane at x/D = 0.02). The leading
edge arrives at the first measurement position (x/D = 0.02) only shortly after t = 0
followed by the maximum and the trailing edge (see marker in the x–t plane at
x/D= 0.02). While travelling to the next downstream measurement point (x/D= 0.25)
the wave packet spreads significantly in azimuthal direction and in time and Ae

max
decays slightly. The significant deformation of the wave packet near the nozzle
is presumable caused by the imperfect forcing. However, with further downstream
distance, amplification sets in and the wave packet maximum grows continuously
up to a downstream distance of x/D = 2.5 (see small image in figure 25a). Within
this region of amplification, the envelope maintains its shape remarkably well despite
the streamwise variation of the mean flow. This confirms the weak dispersiveness
of the shear layer of the non-swirling jet as predicted from the stability analysis.
The wave-packet maximum is found to propagate in axial direction at a velocity of
approximately 0.7V near the nozzle (0< x/D< 0.6) and at 0.54V for x/D> 0.6. The
lower value, which corresponds to the amplifying region, compares well with the
phase velocity derived from the linear theory of 0.5V (confer with figure 10).

Figure 25(b) shows the trajectory of the wave packet for the swirling jet S3.
The envelope at x/D = 0.02 is very similar to the non-swirling jet, showing equal
shape and maximum amplitude Ae

max. The abrupt spreading of the pulse upstream
of x/D < 0.25 is also observed for the swirling jet, although the widening of the
envelope in time direction is less pronounced compared with the non-swirling jet. The
streamwise evolution of Ae

max does not indicate a region near the nozzle lip where the
wave packet decays. In fact, the wave packet is amplified already at the nozzle exit
and gains amplitude up to a streamwise distance of x/D = 2.5. For the swirling jet,
the irregularities introduced by the imperfect forcing seem less significant than for
the non-swirling jet and amplification sets in at a shorter distance to the nozzle lip.

The wave packet in the swirled shear layer propagates in axial direction and in the
direction of the base flow rotation, as indicated by the coordinates of Ae

max projected
on the θ–x plane (figure 25b). The azimuthal propagation velocity, expressed as an
azimuthal rotation rate Ωe, is 2πΩeD/V ≈ 1.1 within the region 0< x/D= 1.5, which
coincides roughly with the potential core region and the region of constant Rossby
number (see figure 6a–b). With further downstream distance, Ωe decays rapidly,
yielding 2πΩeD/V ≈ 0.1 at x/D = 3. It is interesting to note that the theoretically
derived azimuthal phase velocity ωr/m of the streamwise modes (αr = 0) with m= 2
and m= 3 agrees quite well with the rotation rate of the wave packet envelope. This
is consistent with the kinematic relation ωr ∝ V/2αmax

r +Ωgrm derived in § 5, if one
interprets Ωe as the group rotation rate Ωgr. The streamwise propagation velocity
of the envelope is very similar to the non-swirling jet, ranging from 0.7V near the
nozzle to 0.5V further downstream (x/D> 0.6). This seems plausible, as the stability
analysis predicts modes with low azimuthal wavenumbers, which are dominant further
downstream, to have a similar axial phase velocity as for the non-swirling jet.
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However, a prediction of the wave packet propagation speed based on the phase
velocities of the individual modes remains cumbersome for the swirling jet due to the
dispersiveness of the shear layers. The latter is indicated by a strong deformation of
the wave-packet envelope during its downstream propagation. In the region of strong
amplitude gain (0.66 x/D6 2.5), the envelope looses its symmetry and its maximum
is shifted closer to the leading azimuthal bound, revealing a steep front and a smooth
tail of the disturbance envelope in the θ direction. This pattern results from the
superposition of modes with different azimuthal wavenumbers travelling at different
streamwise phase velocities, as predicted by the linear theory. In contrast, the wave
packet is not deformed significantly in the t direction while travelling downstream.
The most unstable modes have small azimuthal wavenumbers (m < 3) and small
inclination angles αr/m and, thus, different phase velocities result in strong amplitude
variations in the θ direction but only weak variations in the t direction.

8.2. Modal decomposition of the wave packet
The measured coherent axial velocity vc

x(x, r, θ, t) is transformed into Fourier space,
yielding the coefficients v̂c

x(x, r,m, ωr). The modal amplitude distribution Am(x, ωr) is
then derived by integrating v̂x across the shear layer in accordance with (2.3). The
same quantity is derived form the linear stability for various ωr and m utilizing (4.5).

The hot-wire measurements are presented in figure 26 showing contours of Am

in the m–ωr plane at several streamwise measurement locations. It can be directly
compared with figure 27 showing the corresponding numerical predictions. For the
non-swirling jet, the agreement between measurements and theoretical prediction is
good downstream of x/D = 1. The measurements confirm that the wave packet in
the non-swirling shear layer is first dominated by axisymmetric waves at frequencies
around ωrδx/V = 0.1 (see the second frame in the left column). Further downstream,
the bending m = ±1 modes become most dominant. The normalized frequency of
highest amplitude remains constant with downstream distance, confirming that the
most amplified wavelengths in the packet scales with the local length scale δx. The
mismatch between theoretical prediction and experiment at x/D 6 1 is probably
attributed to the imperfect forcing and to spatially decaying modes at low frequencies
that are excited at the nozzle.

For the swirling jet, the mode selection is in line with the theoretical prediction.
Note that the sense of winding of the helical waves cannot be derived from the
measurements and the modes can only be classified as co-rotating or counter-rotating
modes, which corresponds in figures 26–27 to m > 0 and m < 0, respectively. This
implies a special caution in interpreting these figures, since for the swirling jet, modes
with the same sense of winding may have negative or positive m. This is the case for
the co-winding double-helical mode that is most amplified within the nearfield. Its
maximum amplitude is located at a frequency of ωrδx/V ≈ 0.06 at m=−2, yielding
that this mode is counter-rotating. In agreement with the theoretical prediction, the
dimensionless frequency of the most unstable mode is reduced with the addition
of swirl. The experiments further show that the co-winding double-helical mode
can be counter-rotating (ωr > 0, m = −2), steady (ωr = 0, m = ±2) or co-rotating
(ωr > 0,m= 2). Hence, the existence of steady modes at considerably high amplitude
are confirmed by the present experiments. Moreover, the measurements conducted
downstream of x/D= 2 indicate the amplification of the single-helical counter-rotating
mode in good agreement with the theoretical prediction.
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FIGURE 26. (Colour online) Modal amplitude distribution derived from hot-wire
measurements: (a–e) non-swirling jet S1 and (f –j) swirling jet S3; contours refer to the
modal amplitude Am normalized by its overall maximum.

9. Summary and discussion
9.1. The purpose of the present investigation

The nearfield of a turbulent swirling jet is investigated at a Reynolds number of
ReD = 20 000. Four different swirl intensities are considered, ranging from zero
swirl to intensities that are just below the onset of vortex breakdown. The work
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FIGURE 27. (Colour online) Modal amplitude distribution derived from linear stability
analysis: (a–e) non-swirling jet S1 and (f –j) swirling jet S3; contours refer to the modal
amplitude Am normalized by its overall maximum.

focuses on the impact of swirl on the dominant flow instabilities that lead to the
streamwise formation of coherent structures. The problem is approached theoretically
by means of spatial linear stability analysis. Based on the natural mean flow, this
method provides the streamwise growth and saturation of the inherent coherent
structures. The theoretical results are verified through a quantitative comparison with
measurements of the excited flow.
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9.2. The main observations
The swirling jet promotes a centrifugal instability and a shear instability. The
centrifugal instability scales with the swirl component, destabilizing chiefly co-winding
counter-rotating modes at high frequency and wavenumbers. The corresponding overall
amplification is weak and all modes decay shortly downstream of the nozzle exit.
In contrast, the shear instability prevails over the entire jet nearfield amplifying co-
and counter-winding modes. Their growth rates scale inversely with the local axial
shear-layer thickness, which implies that the enhanced jet spreading encountered at
higher swirl decreases their overall amplification. The streamwise wavelengths of
the most amplified shear modes are determined by the axial shear-layer thickness
regardless of the swirl velocity, however, their frequencies are modified by the base
flow rotation. This leads to a destabilization of slowly rotating and even steady modes
that undergo significant amplification. The interplay of these selection principles
renders the swirling jet’s shear layer as highly dispersive for non-axisymmetric
modes, unlike the non-swirling jet. The mode with maximum overall amplification,
the preferred mode, is strongly affected by swirl. At the end of the potential core,
the co-winding m = 2 mode is dominant for the swirling jet in replacement for the
bending m=±1 mode of the non-swirling jet. Downstream of the potential core, the
m= 2 mode stabilizes and the co-winding m= 1 mode takes over the lead, presumably
dominating the swirling jet’s farfield.

9.3. Discussion
The characteristics of the centrifugal and the shear instabilities encountered presently
are similar to those found in swirled shear layers (Lu & Lele 1999; Cooper & Peake
2002; Müller & Kleiser 2008). For the present study, the two types of instabilities
occur always as two individual wavenumber branches and are considered as two
modes driven by two different mechanisms. This allows the instabilities to be
phenomenologically separated into centrifugal modes that exist only for the swirling
jet and shear modes that are primarily driven by the strong shear of the axial velocity
profile. However, it seems to not always be possible to strictly distinguish between
centrifugal and shear instabilities. Gallaire & Chomaz (2003b) applied linear stability
analysis to a jet with a thicker axial shear layer than the present one, revealing only
one perturbation mode that is a clear Kelvin–Helmholtz instability for no swirl, while
it comprises characteristics of a centrifugal instability for strong swirl. It is possibly
attributed to the strong differences between the axial and azimuthal shear layer that
no instabilities of mixed type are encountered in the present study.

The rapid streamwise decay of the centrifugal instability confirms the analysis
of Cooper & Peake (2002), who investigated the stability of a swirled shear layer
that spreads radially due to viscosity. However, they found the shear mode to be
significantly amplified by the addition of swirl, which contradicts the present findings.
In the present flow, only the growth rates of the centrifugal modes increase with
increasing swirl, while the growth rates of the shear modes remain constant. The
contraction used in the present experiment generates an inflow profile with a very
thin axial shear layer and a relatively thick azimuthal shear layer. This explains the
low impact of the azimuthal shear on the growth rate of the shear instability. The
inflow profiles used by Lu & Lele (1999), Cooper & Peake (2002) and Müller &
Kleiser (2008) reveal much stronger azimuthal shear.

Panda & McLaughlin (1994) were the first to excite instabilities in the turbulent
shear layer, encountering low amplification when compared with the non-swirling jets.
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They concluded that the low receptivity of the swirling jet is attributed to the rapid
growth of the axial shear layer, without providing the required experimental evidence.
In this study, we confirm their conclusions showing that the axial shear-layer thickness
scales the growth rates encountered in turbulent swirling jets. Furthermore, the swirl-
enhanced dispersiveness of the swirled shear layer, found in the present investigation,
explains the absence of vortex pairing as it was observed by Panda & McLaughlin
(1994).

The cause for the dispersiveness of the swirling jet has already been identified by
Martin & Meiburg (1994) as a purely kinematic effect of the mean flow rotation. As
outlined in more detail in the present work, the rotational motion implies a non-zero
azimuthal group velocity that results in the dependence of the streamwise wavelength
and the phase velocity on the azimuthal wavenumber. In other words, the inclination
of a helical wave at a given frequency is altered with increasing swirl due to an
azimuthal propagation velocity of disturbances in the swirled shear layer. The wave
crests of modes at different frequencies or azimuthal wavenumbers travel at different
streamwise velocities, which is not the case for the non-swirling jet. The strong
dispersiveness in swirling jets hampers the use of effective flow control methods
that utilize intermodal resonance principles (Long & Petersen 1992; Paschereit et al.
1995).

As reexamined in this work, the non-swirling jet is unstable to a large wavenumber
and frequency band at the nozzle exit that reduces to the bending m = ±1 modes
downstream of the potential core. The mode selection of the swirling jet is
more complex as symmetry breaks down and co-rotating modes undergo different
amplification than counter-rotating modes. The presently found results are in line
with model-based studies that indicate that swirl tends to destabilize co-winding
modes and to stabilize counter-winding modes (see e.g. Loiseleux, Chomaz & Huerre
1998; Gallaire & Chomaz 2003a). It is worth noting here that the dominance of the
axisymmetric mode observed in swirling and non-swirling jet experiments (see e.g. Ho
& Gutmark 1987; Loiseleux & Chomaz 2003; Liang & Maxworthy 2005) is usually
attributed to an accidental axisymmetric forcing caused by the facility upstream of the
contraction and must not be mistaken with the preferred mode (Cohen & Wygnanski
1987a).

Moreover, swirl is found to destabilize two rather exotic types of shear modes,
namely the streamwise modes with αr = 0 and the steady modes with ω = 0. The
first is purely driven by azimuthal shear revealing relatively small growth rates due
to the thick azimuthal shear layer. The steady modes, however, are driven by the
axial shear and azimuthal shear, which allows for significant spatial growth. In fact,
co-winding double- and triple-helical modes reveal significant amplification rates at
frequencies around zero. Hot-wire measurements of a wave packet excited at the
nozzle consistently confirm the existence of steady and weakly rotating double-helical
modes. Consistent with our observations, steady and nearly steady co-winding spiral
modes with m= 2 or m= 3 have been observed in experimental arrangements similar
to the present one (Billant et al. 1998; Loiseleux & Chomaz 2003; Oberleithner,
Paschereit & Wygnanski 2007). Gallaire & Chomaz (2003b) assign the weakly rotating
m = 2 mode observed by Loiseleux & Chomaz (2003) to a self-excited mode that
arises from a convective/absolute transition point near the nozzle exit. In other words,
they associate the preferred mode with a globally unstable mode with its wavemaker
located near the nozzle exit. The absence of absolute instability in the present flow
suggests that the appearance of double- or triple-helical structures, as reported by
Billant et al. (1998) or Loiseleux & Chomaz (2003), correspond to convectively
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unstable steady or nearly steady modes. Their spatial phase may be tagged by
a small irregularity of the experimental arrangement, which leads to a breaking of
rotational symmetry of the mean flow. Moreover, for very high swirl below breakdown,
Loiseleux & Chomaz (2003) observe a counter-rotating single-helical mode at high
rotation rates (frequencies). This mode presumably corresponds to the presently found
preferred mode of the farfield.

The present stability analysis does not indicate any mechanism explaining the
encountered swirl-enhanced jet spreading. However, the present results may support
or cancel one or another recent arguments. Vortex merging, the nonlinear mechanism
that leads to a successive shear layer spreading in the potential core region of
a non-swirling jet (Ho & Gutmark 1987; Gutmark et al. 1995), does not occur (or
hardly occurs) in swirling jets due to the strong dispersiveness of the axial shear layer.
Moreover, the idea of a significant swirl-induced destabilization of centrifugal and/or
shear modes that would intensify the growth of coherent structures and enhance the
entrainment rates (see e.g. Mehta et al. 1991; Wu, Farokhi & Taghavi 1992; Panda
& McLaughlin 1994; Cutler et al. 1995; Lu & Lele 1999; Cooper & Peake 2002) is
not supported by the present work. Even at the nozzle exit, where swirl is strongest,
the centrifugal instability is found to be much weaker than the shear mode driven
by the axial velocity profile. Hence, the encountered swirl-enhanced jet spreading is
unlikely to be attributed to the small change in the base flow stability found at the
nozzle exit.
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