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Abstract

The use of functional Near-Infrared Spectroscopy is experiencing a rapid growth in use
in every area of neuroscientific research, but one of the most prolific areas of application
is the field of language development in children.

If over the past decades there have been incredible advancements on the technology
side, the same can not be said about data analysis techniques: for fNIRS, an ad-hoc
standardized data analysis procedure is still lacking; there is no general consensus
around the best set of pre-processing steps to be performed; there is no standard
choice of which hemoglobin component should be used to infer functional brain activity
(oxygenated or deoxygenated hemoglobin); the statistical analysis has been carried out
for a long time with methods borrowed from the fMRI practice. Only recently, effort
has been made in defining fNIRS-specific techniques, both at single-channel and multi-
channel level.

The first contribution of this work was to introduce a single-channel classifier that com-
bines features from both oxy- and deoxyhemoglobin and that employs Linear Discrim-
inant Analysis (LDA) to classify channels as ‘active’ or ‘not-active’. Its performances
were compared to those achieved by the General Linear Model (GLM) and it was found
that the LDA-based classifier not only yields higher classification accuracies but those
accuracies are more stable across different subjects, i.e. the multivariate method was
more robust with respect to intersubjective variability of the hemodynamic response.

The second contribution of this work was to investigate the impact of literacy on
functional brain organization, with both single-channel (univariate) and multi-channel
(multivariate) analysis approaches. Using a large fNIRS dataset including children of
various ages and literacy levels, we were able to show that the univariate approach
has a unique strength in localizing the effects under investigation. On the other hand,
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the multi-channel analysis approach did not produce a statistically significant effect,
most likely because the experimental design was not optimally suited for the trial-by-
trial classification; nevertheless, it highlighted a trend that had eluded the univariate
analysis.

We conclude that both types of analysis should be routinely employed, because their
complementary strengths can answer to different questions, but also that the single-
channel analysis should be rendered more robust by using both hemoglobin compo-
nents and that a data-driven approach such as the one proposed may mitigate the
shortcomings of the model-based single-channel analysis. Finally, in order to perform
a multivariate pattern analysis, the experimental paradigm should be designed as to
include enough trials for classification.
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Zusammenfassung

Der Einsatz der funktionellen Nahinfrarotspektroskopie nimmt in allen Bereichen
der neurowissenschaftlichen Forschung rasant zu, und eines der produktivsten Anwen-
dungsgebiete ist das Feld der Sprachentwicklung bei Kindern.

Wenn es in den letzten Jahrzehnten technologisch gesehen unglaubliche Fortschritte
gegeben hat, kann man das Gleiche nicht über Datenanalyseverfahren sagen: Für
fNIRS fehlt noch ein ad-hoc standardisiertes Datenanalyseverfahren; es gibt keinen all-
gemeinen Konsens über die beste Reihe von durchzuführenden Vorverarbeitungsschrit-
ten; es gibt keine Standardauswahl, welche Hämoglobinkomponente verwendet werden
sollte, um funktionelle Hirnaktivität abzuleiten (sauerstoffreiches oder sauerstoffarmes
Hämoglobin); die statistische Analyse wird seit langem mit Methoden durchgeführt,
die der fMRI-Praxis entnommen wurden. Erst kürzlich wurden Anstrengungen unter-
nommen, um fNIRS-spezifische Techniken zu definieren, sowohl auf Einkanal- als auch
auf Mehrkanalebene.

Der erste Beitrag dieser Arbeit war die Einführung eines Einkanalklassifizierers, der
Merkmale von Oxy- und Desoxyhämoglobin kombiniert und der die Linear Discrimi-
nant Analysis einsetzt, um Kanäle als "aktiv" oder "nicht aktiv" zu klassifizieren. Seine
Leistungen wurden mit denen des General Linear Model verglichen und es wurde
festgestellt, dass der LDA-basierte Klassifikator nicht nur höhere Klassifikationsge-
nauigkeiten liefert, sondern dass diese Genauigkeiten bei verschiedenen Probanden
stabiler sind, d.h. die multivariate Methode war robuster in Bezug auf intersubjek-
tive Variabilität der hämodynamischen Reaktion.

Der zweite Beitrag dieser Arbeit war die Untersuchung der Auswirkungen der Al-
phabetisierung auf die funktionelle Gehirnorganisation, mit einkanaligen (univariaten)
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und mehrkanaligen (multivariaten) Analysemethoden. Anhand eines großen fNIRS-
Datensatzes mit Kindern unterschiedlichen Alters und Alphabetisierungsgrades kon-
nten wir zeigen, dass der univariate Ansatz eine einzigartige Stärke bei der Lokalisierung
der untersuchten Effekte hat. Andererseits zeigte der Multi-Channel-Analyse-Ansatz
keinen statistisch signifikanten Effekt, wahrscheinlich weil das experimentelle Design
nicht optimal für die Klassifizierung im Versuch geeignet war; dennoch zeigte er einen
Trend auf, der sich der univariaten Analyse entzogen hatte.

Wir kommen zu dem Schluss, dass beide Arten der Analyse routinemäßig eingesetzt
werden sollten, weil ihre komplementären Stärken auf unterschiedliche Fragen antworten
können, aber auch, dass die Einkanalanalyse durch den Einsatz beider Hämoglobinkom-
ponenten robuster gemacht werden sollte und dass ein datengetriebener Ansatz wie der
vorgeschlagene die Mängel der modellbasierten Einkanalanalyse mildern kann.

Schließlich, um eine multivariate Musteranalyse durchzuführen, sollte das experimentelle
Paradigma so gestaltet werden, dass es genügend Versuche für die Klassifizierung en-
thält.
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Chapter 1

Introduction

1.1 The use of functional Near-Infrared Spectroscopy
in language research

Functional Near Infrared Spectroscopy (fNIRS) is a relatively recent technique: it
was only in 1977 that Franz Jöbsis reported in his seminal Science article “Noninva-
sive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory
parameters” [1] that biological materials are transparent enough in the near-infrared
region of the spectrum so to allow to observe and record changes in tissue blood volume
and in hemoglobin-oxyhemoglobin equilibrium for research and clinical purposes.

Since then, the technique has experienced a rapid growth in use, thanks to steady
advancements in the development of the technology: while in the early 90s recordings
were conducted mostly with bulky, single-channel devices, nowadays fNIRS devices
are extremely portable, include hundreds of channels, multi-distance measurements to
measure depth-dependent contributions, they are compatible for simultaneous acquisi-
tion of any other measurement and can record at a very high sampling frequency.

As more sophisticated instrumentation has been developed and put to use in cogni-
tive experiments, fNIRS has made important contributions to the understanding of
functional brain activity and higher cognitive functions in virtually every area of neu-
roscientific research. In particular, one of the most prolific areas of application for
fNIRS has been the field of language development in children.
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Several aspects are key to this success: the fact that it is completely portable means
that children do not need to be physically isolated from others to participate to an
experiment, but instead they can be setup in a comfortable environment where they
feel at ease; the fact that there are virtually no operating costs makes it possible to
run several sessions on the same child, and this may prove especially useful when the
goal is closely following up the outcome of a treatment or a remediation program. The
fact that it is completely silent allows to administer any kind of auditory stimuli in
completely ecological conditions. Finally, it is completely safe and harmless.

And it is indeed the study of typical and atypical language development in children
that laid the foundations of this doctoral project.

The work presented in this thesis is embedded in the framework of “PredictAble”, a
large multi-disciplinary Marie Skłodowska Curie Innovative Training Network (ITN)
that includes, besides the Technische Universität Berlin and NIRx Medizintechnik
GmbH, also University of Potsdam, University Paris Descartes, University of Barcelona
Pompeu Fabra and University of Jyväskylä.

The work scope of PredictAble is to pioneer an interdisciplinary approach to enhance
the understanding of the cognitive mechanisms that underlie developmental disorders
of spoken and written language, two areas of study that have been traditionally con-
sidered separately, and to do so by making the best use of the recent technological
developments, such as fNIRS.

In this context, this doctoral project was carried out at the Technische Universität
Berlin and at NIRx Medizintechnik, one of the leading manufacturers of fNIRS devices.

The role of this work in the grant was to expand and optimize the tools available for
the analysis of fNIRS data, in order to render them suitable for use with very young
children, with the ultimate goal of developing diagnostic tools to detect early risks for
language-related impairments.

In fact, despite the dramatic increase in the use and application of fNIRS, an ad-
hoc standardized data analysis procedure is still lacking; there is no general consensus
around the best set of pre-processing steps to be performed, or around the correct chan-
nel exclusion criteria [2]; furthermore, there is no standard choice of which hemoglobin
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component should be used to infer functional brain activity: while in principle func-
tional activation should manifest with a concurrent increase in oxygenated-hemoglobin
and a decrease in deoxygenated-hemoglobin, it is oftentimes the case that significant
changes in response to a certain task are only found in one chromophore and not the
other; this can happen for many different reasons, but it is clear that, without an es-
tablished guideline, a serious issue of reproducibility arises: the same study may draw
different conclusions when considering only results found on oxy-, or deoxy-hemoglobin,
or a combination of the two [3]. As for the statistical analysis, the last step of the anal-
ysis chain, methods reported in literature mostly involve time series averaging and/or
the use of methods borrowed from the fMRI practice, like Statistical Parametric Map-
ping (SPM) [4], which proved suboptimal for the analysis of fNIRS data [5]. Recently,
a more advanced and fNIRS-tailored General Linear Model has been proposed that
overcomes some of the drawbacks of SPM [6]. Nevertheless, all of these methods are
most commonly applied to one channel at a time and to one hemoglobin component
(univariate analysis). Recently, effort has been made in the direction of defining more
sophisticated methods that involve classification of multi-channel patterns of hemody-
namic activity by means of machine learning algorithms [7][8].

This new direction could represent a turning point in the fNIRS data analysis, since it
could help mitigate many of the limitations of the aforementioned methods [9]: concur-
rent variations of both hemoglobin components could be considered in a multi-variate
fashion, with the potential of increasing the sensitivity of the analysis while removing
the ambiguity associated with choosing one or the other chromophore; furthermore,
in this framework, the natural inter- and intra-subject variability of the hemodynamic
responses, that for any model-based analysis constitutes a problem, could be accounted
for in what might be called a self-referencing scheme; finer effects that are distributed
across multiple channels could be detected, even when they don’t achieve statistical
significance at single-channel level. For these reasons, multi-variate analysis approaches
based on the use of machine learning have the potential of offering novel insights while
overcoming many technical problems related to the current analysis practice, and rep-
resent the object of study of this doctoral project.
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1.2 Motivations and outline of this thesis

This thesis reviews the options available for the analysis of fNIRS data and describes
the special consideration that need to be taken into account - especially when working
with children.

While reviewing the opportunities offered by the application of exquisitely univariate
analysis approaches, this work wants to promote the appreciation that the fNIRS sig-
nal’s richness of features may open the way for the discovery of subtle effects, by means
of multivariate analysis approaches.

To pursue this goal, this work was developed in two steps: the first step includes the
quantitative comparison, under controlled conditions, of a univariate and a multivariate
analysis approach. This step was crucial in that it allowed to precisely quantify in
terms of classification accuracy the advantage of using a multivariate approach over a
univariate.

The second part of this work was carried out on experimental data collected at Haskins
Laboratories (New Haven, CT, USA), a secondary partner of the PredictAble network;
Haskins Laboratories is a leading institution in the study of typical and atypical de-
velopment of spoken and written language in children.

Here, a large dataset of fNIRS measurements was collected on beginning and skilled
readers; we applied both univariate and multivariate analyses on this data to explore
the effect of literacy acquisition on the functional organization of the brain and to
investigate the possibility of developing a “literacy predicting tool”. This allowed to
quantitively and qualitatively compare the results yielded by the two approaches.

The thesis is structured in the following way:

• Chapter 2 introduces the fundamentals about the physiological origin of the
fNIRS signal, describes the instrumentation for signal acquisition and how the
methodology compares to other neuroimaging techniques like fMRI and EEG;
lastly, it describes the most common steps that need to be taken for the pre-
processing of the data and outlines the concepts behind univariate and multivari-
ate approaches for the data analysis.
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• Chapter 3 describes the first step of this research project, namely the quan-
titative comparison between the univariate analysis, performed by applying a
General Linear Model (GLM) and a multivariate approach involving the use of
Linear Discriminant Analysis (LDA) to classify single channels as “active” or
“not active”. To this end, both synthetic and experimental data; synthetic data,
namely data with known ground-truth, allowed to obtain a quantitative compar-
ison; experimental data allowed us to further characterize the reliability of the
proposed multivariate approach. This study was published in [9].

• Chapter 4 introduces a literacy study in which participants of various ages and
literacy abilities were presented with purely auditory stimuli and illustrates the
application of a channel-wise General Linear Model to detect group differences
between beginning Readers and skilled Readers but also to detect a differential
activation to non-words depending on the literacy levels. Such univariate analysis
failed to expose the latter effect, and therefore another analytical approach was
required. This work is being prepared for publication [10]

• Chapter 5 extends the work of Chapter 4 and presents the implementation
of a within-subject neural decoder and its application for the classification of
multivariate distributed patterns of hemodynamic activations in response to two
different classes of stimuli: words and non-words; in doing so, it compares the
performances of Linear Discriminant Analysis and Support Vector Machines; in-
dividual classification accuracies were correlated with reading scores, with the
expectation that high accuracies would indicate an increased effort in processing
non-words, and therefore would be associated to poor reading scores. Such a
correlation was found but it was not statistically significant. Finally, the Chap-
ter discusses possible reasons for the underwhelming results. Preliminary results
of this project were published in [11] and final results are being prepared for a
journal publication [10].

• Chapter 6 concludes the thesis, provides an overview of the findings of each
single step of this doctoral work, represented by the three research chapters, and
discusses the remaining limitations and future directions of this work.
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1.3 Publications

1.3.1 First-author publications
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validation, Journal of Neural Engineering, 15(4)

2. Gemignani, J., Blankertz, B., Aslin, R. N. and Pugh, K. R. Observing the
effects of literacy acquisition on the brain with fNIRS. (2019) Neuroimage (in
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Peer-Reviewed Conferences
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Abstracts
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vidual Differences On The Accuracy Reached By Univariate And Multivariate
Analysis of fNIRS Measurements, FENS (2018, July, Berlin)
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Chapter 2

Physical principles and applications
of functional Near-Infrared
Spectroscopy

2.1 Physiological and biological principles of fNIRS

2.1.1 Vasculature and hemodynamics of the brain

The regulation of the blood flow in the human brain is complex and builds upon
several paradigms and components [12]. In particular, there are three main regulatory
mechanisms to consider: cerebral autoregulation, which is the process whereby cerebral
arterioles maintain a constant blood flow in response to changing perfusion pressure;
flow-metabolism coupling, which refers to the capability of the brain to change the
blood flow to match the metabolic demands; neurogenic regulation, which refers to the
role of the extensive network of perivascular nerves in controlling the flow. Out of these
three mechanisms, the most relevant from the neuroimaging point of view is definitely
the flow-metabolism coupling.

The tight correlation between brain metabolism and cerebral blood flow (CBF) was
suggested already more than a century ago [13]. The main processes that contribute to
the high energy need of the brain are the maintenance and restoration of ion gradients
dissipated by signaling processes, like postsynaptic and action potentials, as well as
the use and recycling of neurotransmitters [14].
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Chapter 2. Physical principles and applications of functional Near-Infrared
Spectroscopy

The main energy source in the brain is glucose, and its oxidation is the main ATP
(adenosine-tri-phosphate) producing mechanism 1. While there are small amounts of
glucose stored in the brain, there are no stores of oxygen, that must therefore be carried
to the site of neuronal activation on demand. This demand is met by the surrounding
vasculature: neuronal activation leads to arteriolar dilation, so that CBF increases and
ATP can be produced [15][16].

2.1.2 The hemodynamic response

The relationship between cerebral metabolic rate of oxygen consumption (CMRO2)
and CBF is at the basis of functional neuroimaging. As said, the metabolic demand
induces a local increase in CBF. The quantity of oxygen that is in fact removed from
the blood is the arteriovenous oxygen difference, and it can be termed as Ca – Cv,
where Ca is the oxygen concentration of arterial (oxygenated) blood and Cv is the
oxygen concentration of venous (deoxygenated) blood. The arteriovenous difference
can be defined as [16]:

CMRO2
CBF

= Ca−Cv (2.1)

In an activated region, CBF increases, so the difference Ca-Cv becomes smaller. Since
the blood is almost fully oxygenated at the arterial end, Ca-Cv can become smaller only
if venous oxygenation is increased. In other words, the metabolically driven increase of
local CBF is disproportionally larger than the increase of CMRO2 and this results in a
local hyperoxygenation that can be observed as an increase of oxygenated hemoglobin
(HbO) accompanied by a corresponding decrease in deoxygenated hemoglobin (HbR)
at the venous end of the capillary [17]. This is called hemodynamic response and it can
be usually observed with a latency of approximately [4-6] seconds after the onset of the
stimulus that induced the activation [18]. When the neural activation is terminated,
CBF decreases and both HbO and HbR return to their baseline values.

These concentration changes can be observed with functional techniques like fMRI and
fNIRS. While fMRI relies on the oxygen-dependent magnetic properties of hemoglobin
(Section 2.2.2), fNIRS, in turn, relies on the oxygen-dependent optical properties of

1To oxidate one mole of glucose , 6 moles of oxygen are needed, according to the stechiometry of
complete glucose oxidation: C6H12O6 + 6O2 → 6CO2 + 6H20
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hemoglobin. In fact, HbO and HbR show differential absorption spectra in the near-
infrared spectral range (∼ 650− 950nm), and for this reason, their relative concen-
tration changes can be separately detected by illuminating the brain with specific
wavelengths within this range.

Figure 2.1: Extinction coefficients for HbO (HbO2 ), HbR (Hb) and
cytochrome oxidase (CtOx). Figure adapted from Delpy and Cope, 1997

[19].

2.1.3 Instrumentation

From the technology point of view, fNIRS is most commonly implemented in one of
three spectroscopic methods: Continuous Wave (CW-NIRS), Frequency Domain (FD-
NIRS) and Time Domain (TD-NIRS).

Figure 2.2: Different technological approaches for fNIRS
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• Continuous Wave (CW-NIRS)

The Continuous Wave (CW) method relies on the illumination of tissue with
light of constant amplitude, and the detection of the transmitted light intensity,
allowing therefore to assess the overall light attenuation inside the tissue. This
method cannot differentiate between scattering and absorption effects, and can
therefore only quantify concentration changes relatively to a baseline, rather than
absolute values (see Section 2.1.6 for more details).

• Frequency Domain (FD-NIRS)

In this technique the light source is intensity-modulated in the radio frequency
range (∼ 100MHz). The propagating waves are then measured by the detector.
This allows FD instruments to extract, besides the intensity attenuation, also
two more independent quantities: a phase shift (φ) and the decay of modulation
depth (ratio of AC to DC component). These quantities are affected differently
by absorption and scattering of the tissue, therefore with FD systems it is possible
to distinguish these parameters and compute absolution concentration levels.

• Time Domain (TD-NIRS)

Time Domain measurements utilize picoseconds pulses of photons to irradiate
the tissue and fast responding detectors to register the shape of the light pulse
as it exits the tissue. The properties of the received photon distribution such as
area under the curve, the time of maximum, and width allow assessment of the
tissues absorption and scattering properties.

In terms of costs and complexity of the instrumentation, FD and TD systems are
definitely more expensive and cumbersome than CW systems, which on the contrary
can be miniaturized and made portable. Therefore, since quantification of absolute
values is often not essential for most neuroscientific applications, the great majority of
the fNIRS-based research utilizes CW systems.

2.1.4 Acquisition of the signal

To acquire the fNIRS signal, light sources and detectors are necessary. A source-
detector pair constitutes a “channel”, and the difference between the light emitted
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through the source and that measured at the detector location represents the changes
of the optical properties of the tissue underlying that channel.

Light in the near-infrared spectral range can propagate relatively deeply into the bio-
logical tissue, including the skull, because in this range light is only weakly absorbed
by it (Figure 2.1). The selection of the precise wavelengths depends on several factors
[20] but the pair 780 and 830 nm is most often used.

When light is emitted through the source, it diffuses in all directions through the
tissues of the head (scalp, skull, cerebrospinal fluid); part of the light is scattered,
part is absorbed by the chromophores. Although there are several chromophores that
absorb light, the only ones that exhibit oxygenation-dependent absorption in the NIR
region are HbO, HbR and cytochrome oxidase (CytOx), found in the cell mitochondrial
membrane and involved in the oxidative metabolism of glucose.

On the other hand, the predominant factor of light transport in tissues is scattering,
since the transport scattering coefficient µs of most tissues is much larger than their
absorption coefficient µa, in the NIR region [19]. This introduces an unknown light
loss but also results in a non-linear relationship between absorption changes and the
resulting attenuation changes.

The fact that light is both absorbed and scattered coupled with the fact that the trav-
eled tissues are inhomogeneous and anisotropic make it difficult to exactly determine
the path followed by the light.

However, if we simplify the model and we assume the medium is homogenous, then
we can model this path by only taking into account the phenomena of absorption
and scattering. Several studies by Okada et al. were conducted on the propagation
of light in simplified media (homogeneous or semi-homogeneous) and it was possible
to formulate the Photon Measurement Density Function, or as it is most commonly
called, the “banana-shaped” path [21, 22, 23]. This function is a three-dimensional
model representing the probability that a photon travels through a certain optical path
and allows therefore to determine the brain volume sampled by a given source-detector
pair. The depth reached by the photons depends on the source-detector distance and
it is usually approximately one half of it [24].
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Figure 2.3: Each source-detector pair constitutes a NIRS "channel";
the light emitted from the source and measured by the detector follows
the probability model given by the banana-shaped path. This path
represents the probability of sampling a given optical path. In this case,
the pairs source1-detector2 and source2-detector1 allow penetration of
the light into the cortex, while the pairs source1-detector1 and source2-
detector2 are close enough to only allow penetration through the shallow
layers (short-distance channels). Figure is taken from www.nirx.net

2.1.5 The fNIRS signal: how the raw data looks like

The photon detectors detect light and convert it into a voltage signal, whose amplitude
is proportional to the light intensity. The fNIRS signal can be looked at as a combina-
tion of several components, that can be distinguished according to the physical source
of the signal, that can be cerebral or extracerebral, the relation of it with a task, namely
it can be evoked by the task or independent on it, and its physiological origin, that can
be neuronal or systemic, as exemplified in Figure 2.4. This model has been described
by recent works of Tachsidis and Scholkmann ([20][25][26]), among others.

The components of the signal originated in the cerebral compartment can be either neu-
ronal or systemic and can be either evoked by the task or spontaneous (not evoked).
What the experimenter usually aims at is to unambiguously identify the cerebral neu-
ronal component, i.e. the signal resulting from the neurovascular coupling, but the
changes associated with it are relatively small compared to the overall variability of
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the signal (∼ 0.5µM for HbO, ∼ 0.2µM for HbR, compared to ∼ 1µM for the whole
signal for both HbO and HbR, [27]).

Figure 2.4: Composition of the fNIRS signal. Figure is taken from
Tachsidis and Scholkmann, 2016 [26]

Besides the signal of neuronal origin, the cerebral component also contains a systemic
element, that is sometimes referred to as “physiological noise” and that accounts for
changes in blood pressure, cerebral blood flow, cerebral blood volume, heart rate and
respiration. Although these elements are always physiologically present and spon-
taneous, and therefore non-evoked, it is also true that the execution of a task can
significantly modulate their characteristics, like amplitude and frequency.

All these components are reflected and can be clearly observed in the rich frequency
spectrum of the fNIRS signal, that shows clear contributions by the heartbeat (∼1 Hz),
the respiration (∼0.3 Hz), the low-frequency oscillation also known as “Mayer wave”
(∼0.1 Hz) and very-low-frequency oscillations of different origin (< 0.1 Hz) (Figure
2.5)
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Figure 2.5: (Top and bottom left): Example of the raw signal of
light intensity. In this timetrace the different components (heartbeat,
respiration, Mayer waves) are clearly recognizable, as well as a few spike
artifacts, probably caused by the displacement between one of the op-
todes and the skin. (Bottom right) Typical frequency spectrum of the

fNIRS signal

2.1.6 From light intensities to concentration changes: the mod-
ified Beer-Lambert Law

After the light has been measured by the photon detector and converted into a voltage
signal, it is necessary to proceed and convert this raw signal into relative concentrations
changes of the chromophores of interest. This is made possible by the modified Beer-
Lambert Law.

Here we will focus only on the case where two wavelengths are used and the chro-
mophores of interest are HbO and HbR, but of course, the same math applies when
more wavelengths are used: in that case, it is possible to resolve the concentration
changes of more chromophores, like that of the cytochrome oxidase.
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The way light is transported through a homogeneous, non-scattering tissue, is modelled
by the Beer-Lambert Law:

I(λ) = I0(λ) · e−µa(λ)·L (2.2)

where I0(λ) is the intensity of light emitted by the source, I(λ) is the intensity of
light detected by the detector, µa(λ) is the absorption coefficient of the medium at
the wavelength λ; L is the optical pathlength and it represents the distance travelled
by the photons through the medium. The ratio between I and I0 defines the optical
density of attenuation:

OpticalDensity = −log( I
I0
) = µa(λ) ·L (2.3)

As said, the Beer-Lambert equation would hold true in case the medium was non-
scattering, so when the light is only absorbed. But when light undergoes scattering,
the distance travelled by the photons is no longer L, because the path followed by the
photons becomes random, and photons will take more time to exit the tissue, and they
will have more probability to be absorbed.

Furthermore, scattering introduces a certain amount of losses, which depends on the
geometry and on the scattering coefficients of the involved tissues. The modified Beer-
Lambert Law (mBLL) was formulated to take account scattering:

OpticalDensity = µa(λ) · d ·DPF (λ) +G(λ) (2.4)

The optical pathlength, L, is replaced by d ·DPF (λ) , where d is the distance between
source and detector and DPF is the Differential Pathlength Factor, that accounts for the
increased path followed by the photons as a result of scattering. The term d ·DPF (λ)
corresponds to the mean light propagation distance in the medium; basically, the DPF
is a scaling factor that indicates how many times more than d the detected light has
travelled. G(λ) accounts for the light losses due to scattering and, as the DPF (λ),
depends on the wavelength λ.

This equation can be used to calculate the chromophores concentrations, because the
absorption coefficient of any chromophore, µa, can be written as the product of its
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concentration, c, and its extinction coefficient, ε(λ):

µa = c · ε(λ) (2.5)

Therefore, the modified Beer-Lambert Law can be written as:

OpticalDensity = c · ε(λ) · d ·DPF (λ) +G(λ) (2.6)

where c is our unknown of interest: the chromophore concentration. In the real-world
scenario, this equation is very difficult to be resolved exactly, because both DPF (λ)

and G(λ) are not constant and depend on the amount of scattering. However, under
the hypothesis of constant scattering, they can be considered constant. Concentration
changes of the chromophores can therefore be calculated by measuring a change in
optical density:

∆OD = ODt −ODt0 = ∆c · ε(λ) · d ·DPF (λ) (2.7)

Where ODt is the optical density measured at time t and ODt0 is the optical density
measured at time t0. If we apply this equation to the two chromophores of our interest,
HbO and HbR, the mBLL becomes:

∆OD = (∆[HbO] · εHbO(λ) + ∆[HbR] · εHbR(λ)) · d ·DPF (λ) (2.8)

Where εHbO(λ) and εHbR(λ) are the extinction coefficients of HbO and HbR, respec-
tively, at the wavelength of choice. By using at least two different wavelengths λ1 and
λ2 it is possible to resolve the two unknowns, ∆[HbO] and ∆[HbR]:

∆[HbO] =
εHbO(λ1) · ∆OD(λ2)

DPF (λ2)
− εHbR(λ2) · ∆OD(λ1)

DPF (λ1)

(εHbR(λ1) · εHbO(λ2)− εHbR(λ2) · εHbO(λ1)) · d
(2.9)

∆[HbR] =
εHbO(λ2) · ∆OD(λ1)

DPF (λ1)
− εHbR(λ1) · ∆OD(λ2)

DPF (λ2)

(εHbR(λ1) · εHbO(λ2)− εHbR(λ2) · εHbO(λ1)) · d
(2.10)
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The extinction coefficients are represented in Figure 2.1. As for the DPFs, several
works have been published over the years, attempting at tabulating values for different
ages, tissues and wavelengths.

Figure 2.6: Tabulated DPF values from Essenpreis et al. 1993. The
different timetraces correspond to different subjects (1 female, 6 males,
median age 28 years old). It is clear that, despite the intersubject vari-
ability, the DPF exhibits a descending trend as the wavelength increases.

The DPF does not depend only on the wavelength but also on the absorption and
scattering coefficients of the tissue; in particular, it increases with µs and decreases with
µa. Furthermore, it depends on d, but this only for small d values: for d ≥ 2.5 cm, the
DPF is virtually independent on d [28]. In 1993, Essenpreis et al. [29] determined the
DPFs on the adult head, forearm, calf and infant head, between 740 and 840 nm, using
in vivo and post mortem measurements (Figure 2.6). In a recent paper, Scholkmann
and Wolf [28] introduced a formula to calculate the dependency of the DPF on the age
of the measured subject.

Finally, it is important to point out that CW-NIRS systems are not able to measure
absolute concentration levels of the chromophores, but only concentration changes
relative to a baseline. This is because, although the light emitted from the source
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in principle could be determined, due to complex boundary conditions not all the
light that is emitted actually enters the tissue. Since CW-NIRS systems are unable to
quantify the optical properties of the tissue, in particular the scattering coefficient, it is
not possible to know the incident light I0 and use it in the mBLL. Instead, these systems
use another reference level, a baseline, and express the chromophores’ concentration
changes relative to that.

2.2 Other neuroimaging techniques

fNIRS is only one of the many neuroimaging techniques available. Methods to investi-
gate brain physiology include other techniques that rely on the hemodynamics of the
brain, such as functional Magnetic Resonance Imaging (fMRI) and Positron Emission
Tomography (PET). Also, brain physiology can be explored in terms of electrical ac-
tivity, as it is the case with Electroencephalography (EEG), and magnetic activity, as
it is the case for Magnetoencephalography (MEG). The strengths and limitations of
these methods are listed in Table 2.1.

Property EEG MEG fNIRS fMRI PET

Measurement Electrical
Activity

Electrical
Activity

∆[HbO],
∆[HbR],
∆[HbT ]

BOLD Blood
flow

Temporal Resolution 1 ms 1 ms 100 ms 2-5 s 1 s
Spatial Resolution > cm < cm < cm mm3 mm3

Cost €/€€ €€€ €/€€ €€€ €€€
Required Immobility low high low high high

Table 2.1: Characteristics of different neuroimaging modalities

In this paragraph, we will focus on the comparison between fNIRS and its closest
– in terms of outcome – neuroimaging technique: fMRI, and its closest in terms of
setup: EEG. Furthermore, a brief review of the research fields where fNIRS is currently
employed will be presented, with particular attention to research studies including
young subjects and the study of language development in children, the research topic
of the grant under which this doctoral project was developed.
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2.2.1 EEG and fNIRS

The most known neuroimaging technique is probably the Electroencephalography (EEG).
EEG is a well-established modality that allows to non-invasively record electrical ac-
tivity at scalp level, by using electrodes. The electrical activity is a measure of the
flow of extracellular currents produced by the summation of the activity of thousands
of neurons. The contribution of a single neuron cannot, therefore, be resolved at scalp
level. Additionally, the skull is a semi-conductive medium and has a smearing effect on
the signal: all these factors make it hard to determine the localization of the sources
(inverse problem).

Nevertheless, EEG is very useful in that many cognitive processes and states of con-
sciousness are reflected in electrical activity within specific frequency bands. Moreover,
EEG can be used for the study of event related potentials (ERP), that are stereotypical
electric responses resulting directly from a specific cognitive or motor stimulation. From
the technical standpoint, EEG has a poor spatial resolution in comparison to fNIRS
but an excellent temporal resolution: normally the sampling frequency is around 250
Hz but some modern systems can reach rates of 20 kHz, while for fNIRS that can be
at most in the hundreds of Hz. They are both perfectly portable, allowing therefore to
conduct a whole range of studies that require the subject to move freely, for example
motor rehabilitation studies [30].

21



Chapter 2. Physical principles and applications of functional Near-Infrared
Spectroscopy

Figure 2.7: EEG, fNIRS and fMRI in terms of spatial and temporal
resolution

Apart from these purely technical considerations, a meaningful comparison between the
two modalities cannot really be drawn: they provide insights on different aspects of the
neurophysiological processes under investigation, carrying complementary information
that can become really meaningful when taken into account together [31][32]: in fact,
it is the case that in recent years the integration of the two modalities has been gaining
increasing interest and recognition, in several research fields. An example is the field of
Brain-Computer Interfaces (BCIs): while until a few years ago BCIs were mostly EEG-
based [33], recently Fazli and colleagues [34] demonstrated that a BCI based on the
simultaneous acquisition of EEG and NIRS can achieve augmented classification per-
formances, by taking advantage of each modality’s individual strength, namely the fast
responsiveness of the EEG and the information about the vascular response provided
by the NIRS signal. In their study, they presented for the first time an EEG-fNIRS
based Sensory Motor Rhythm (SMR) BCI and showed that the combination increased
the classification of 5%, on average, with respect to using only EEG. Also in cognitive
neuroscience simultaneous EEG-NIRS measurements are widely used, for example in
the research areas of language processing [35][36] and epilepsy [37], just to name a few.
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2.2.2 fMRI and fNIRS

fMRI is also a non-invasive technique, that builds on the MRI scanning technology.
The MRI signal comes almost entirely from the protons of water of the tissues (water
makes up for almost 65% of the body weight).

Protons have their own electric charge and have their own spin, i.e. they rotate about
their own axes, resulting in a magnetic dipole that lies parallel to the axis of the nucleus.
Normally, these dipoles are randomly oriented, but during an MRI scan a strong and
static magnetic field B0 (typically ≥ 3 Tesla) is applied, causing the dipoles to align
with its direction. The summation of all the magnetic moments of the aligned dipoles
is the magnetization vector M, and has the same direction of B0.

When a brief radio-frequency pulse is applied, with a frequency equal to the resonating
frequency of the rotating protons, then the phenomenon of magnetic resonance occurs:
protons can change energy state and the magnetization vector M can rotate away from
equilibrium. When the pulse terminates, protons go back to equilibrium by releasing
the absorbed energy as a radio-frequency wave, with a process called relaxation, and
producing a measurable signal.

With MRI it is possible to investigate the levels of oxygenation of the brain, thanks to
the different magnetic properties showed by oxygenated and de-oxygenated hemoglobin;
in fact, while oxy-hemoglobin is diamagnetic, and has therefore a little magnetic mo-
ment, deoxy-hemoglobin is paramagnetic, and produces a large magnetic moment.
Large concentrations of deoxy-hemoglobin cause a reduction in the relaxation time of
the tissue and therefore a decrease of the measured signal. Correspondingly, when a
brain area activates in response to a certain stimulus, deoxy-hemoglobin decreases and
the signal increases. This phenomenon is the Blood-Oxygen Level-Dependent (BOLD)
effect, and this is the reason why the fMRI signal is also called BOLD signal[38].

It is fairly easy to recognize that fNIRS and fMRI are two different roads for the
same destination: while fMRI relies on the oxygen-dependent magnetic properties of
hemoglobin, fNIRS uses its oxygen-dependent optical properties. However, the two
methods present some significant technical differences. First of all, the BOLD signal
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reflects only the contribution of deoxy-hemoglobin, while fNIRS can resolve the con-
centration changes of oxy-hemoglobin too (and also of other chromophores, provided
that the instrument can use more than two wavelengths).

The spatial resolution of fMRI is better than that of fNIRS, that is in the order of cm.
However, the temporal resolution of fMRI is quite poor, and that is the cost for having
such a good spatial resolution: due to the sequential acquisition of slices (30-100 ms
each), it takes about 1-3 seconds (0.5 – 1.3 Hz) to achieve a whole-brain coverage at
the spatial resolution of 3-5 mm [39], [40]. On the other hand, the fNIRS technical
sampling frequency can be much higher, in the order of 100 Hz, depending on the
technology used. However, it should be noted that in both cases of fMRI and fNIRS,
the measured signal is the hemodynamic response, and this is naturally slow, showing
a peak at around 4-6 seconds after stimulus and lasting for at least 20 seconds.

Aside from this technological comparison, practical considerations are really crucial
when it comes to comparing fMRI and fNIRS: first of all, the fNIRS setup is rela-
tively quick and easy, just like the EEG’s, and an fNIRS experiment can be performed
anywhere, while fMRI has some significant physical constraints: the scanner is cumber-
some and can’t be used outside its specific facility; both its purchase and maintenance
are expensive; during an experiment the subject must lay very still inside to avoid the
occurrence of motion artifacts; no one is allowed in the room where the scan takes
place, and the scanner is also very noisy.

Especially the two latter features make fMRI inconvenient for babies and children, as
well as for certain groups of adult subjects, depending on their pathologies or disabil-
ities, and make fNIRS stand out: and fNIRS measurement is completely silent and
allows a whole range of studies involving the administration of auditory stimuli, that
could not be performed during an fMRI scan, at least not in ecological conditions.
Also, because it is silent and can be performed anywhere, it is definitely more tolerable
for children and babies, that can undergo an experiment while being around parents,
for example, if the experiment allows so.

Another field where fNIRS is naturally preferred over fMRI is the field of motor and
rehabilitation studies: whether the goal is measuring the functional effect of a reha-
bilitation task or the simple monitoring of a sustained movement, the portability of
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the technique and the tolerance to motion artifacts clearly represent a key advantage
[41][42].

Lastly, fNIRS techniques do not interfere with signals of other nature: this feature
makes it ideal for multimodal integration with other modalities like EEG, as already
mentioned, but also MRI: in this case, it would be possible to acquire structural infor-
mation and localize anatomically the hemodynamic activity measured optically.

2.3 The use of fNIRS in language research on chil-
dren

fNIRS is now used in a wide variety of fields in neuroscience, from neurology [43]
to psychiatry [44], cognitive neuroscience [45], to basic research. Its versatility and
relatively low-cost make it a useful technique for the investigation of many research
questions. For the scope of this dissertation, we will focus on the use of fNIRS on
children for language studies.

As already articulated, fNIRS proves to be particularly convenient for use on children:
from a very practical point of view, children do not necessarily need to be isolated in
order to be tested, as it is the case for fMRI. An fNIRS instrument is easily portable,
therefore an experiment can be conducted in a comfortable environment where the
child can feel at ease. The setup itself is easy and quick, and after the cap has been
prepared the first time, it can be just taken off a subject and put on another subject
with very little preparation needed, especially for children and infants, since they have
little and thin hair.

Additionally, fNIRS is less sensitive than fMRI and EEG to motion artifacts and this
allows to test freely behaving participants. Artifacts can certainly occur, especially
when testing infants, as a result of bad coupling between the optodes and the skin
following an abrupt movement of the head; the result is generally a spike artifact
that is not very destructive of the underlying signal, and in many cases this can be
recovered, provided that appropriate motion artifacts removal algorithms are in place.
For a review and comparison of these algorithms, we refer the reader to [46].
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Thanks to all these features, fNIRS can be used at any age and it is particularly
employed on newborns; this has made possible to make giant progress in understanding
the mechanisms by which the brain processes language and how this processing evolves
throughout the whole span of the brain development, to the point that was even possible
to infer, from fNIRS measurements at birth, the effects of prenatal experience on later
language abilities and to document an innate hemispheric lateralization for speech
processing [47, 48]. It also made possible to broadly localize the functional areas linked
to the perception of other kinds of stimulation, like music, odours, particular visual
patterns.

For a review on the use of fNIRS in developmental language research we recommend
[49, 50, 51].

It is therefore clear that the silenceness of the technique proves extremely useful in
language research, because allows the presentation of auditory stimuli in a non-intrusive
environment.

Auditory stimuli are not used only in the context of developmental neuroscience of
language, but also to the investigation of literacy abilities: in fact, findings suggest
that the very way our brain processes auditory information is affected by the degree
of literacy, since learning to read strengthens the neural pathways associated with
phonological processing skills, that are otherwise weakened in illiterate subjects [52].

2.4 Analysis of fNIRS data

As already pointed out in a previous section, a raw fNIRS timetrace is a voltage signal
representing the light intensity measured by each detector. This timetrace includes the
contribution of several phenomena that are reflected in hemoglobin relative concentra-
tion changes, and the cognitive processes underlying the specific research question is
only one among them. Furthermore, raw data may contain motion artifacts, in the
form of shifts and spikes. All these considerations, related to quality and to physiologi-
cal confounds, needs to be dealt with before starting the statistical analysis of the data.
Therefore, we review in this section the most relevant state of the art pre-processing
steps.
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2.4.1 Reduction of motion artifacts

Motion artifacts are the result of a momentary loss of optical coupling between the
scalp and the optodes, resulting in a brief and sharp wave superimposed to the signal;
even when the coupling is restored, it is invariably different from before, and this results
in a shift of the level of the signal reflective of a change of the baseline caused by the
altered coupling.

The constant advances in hardware provide increasingly efficient ways to prevent this
uncoupling from occurring; this is the case for example of spring-loaded fiber holders
from NIRx (Figure 2.8).

Figure 2.8: Spring-loaded fiber holders. The spring keeps the tip of the
optode at constant pressure, reducing the possibility of loss of contact

between the tip and the scalp.

Nevertheless, motion artifacts still occur; many methods have been proposed to reduce
and correct motion artifacts. Some of them require additional hardware, for example
a short-distance fNIRS channel or an accelerometer, but the majority of the proposed
methods seek to detect artifacts by relying only on changes of amplitude and frequency
of the data corresponding to the occurrence of an artifact. Among these approaches, we
will briefly describe the most popular ones. For a more complete review, we recommend
the reader [46, 53].

Principle Component Analysis (PCA)
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The correction of motion artifacts via PCA was first proposed by Zhang et al [54]. The
idea behind it is that motion artifacts account for a large proportion of variance of the
data, due to their large amplitude; therefore, when decomposing the data into uncor-
related principal components, they should be represented in the first M components,
since these are organized in descending order of explained variance. Therefore, motion
artifacts can be removed by removing the first M components and reconstructing the
“clean” signal.

Wavelet Filtering

The motion artifact correction based on the use of wavelets was introduced by Molavi
and Dumont [55]. The timetrace of each channel is decomposed into L levels by ap-
plying a discrete wavelet transform; for each level, a series of coefficients are obtained
for detail and approximation. The proposed method relies on the assumption that the
measured signal is a linear combination of the signal of interest plus motion artifacts
and that the distribution of the detail coefficients accounting for the signal of interest is
centered around zero and has low variance, while the detail coefficients corresponding
to artifacts will appear as outliers in this distribution; therefore, a threshold of variance
can be set on the probability distribution and coefficients exceeding the threshold are
set to zero. The timetrace can be then reconstructed with the inverse discrete wavelet
transform.

Spline Interpolation

The method based on spline interpolation was first proposed by Scholkmann et al [56].
In this procedure, a moving window is employed for the calculation of the standard
deviation of the signal; a motion artifact is identified if, within the window, the standard
deviation is greater than a certain threshold, predefined by the user. The timetrace is
segmented and each segment containing an artifact is spline interpolated. Finally, the
timetrace is reconstructed.

Transient Artifacts Reduction Algorithm (TARA)

TARA was introduced by Selesnick et al [57]. The method models the timeseries as a
combination of a low-pass signal, an artifact of each type (spikes and shifts), and white
noise. The estimation of the different components is formulated as an optimization
problem. After shifts and spikes are estimated, they are removed from the signal.
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2.4.2 Physiological confounds

As already described, the fNIRS signal of interest is significantly contaminated with
global components arising from superficial layers of the scalp. A certain amount of
these component is task-independent, and could therefore be modelled, in principle;
however, the contribution to the signal arising in the superficial-layers is also modulated
by the task, to some extent. This happens because, depending on the type of stimuli
that are administered, they can produce significant changes in systemic variables, like
heart-rate, blood pressure, respiration rate.

Many algorithms have been proposed to overcome this issue but one of the main lim-
itations of any of them is that they rely uniquely on theoretical assumptions on the
features of the confounding signal. For example, several studies proposed to decom-
pose the signal via PCA and reconstruct the signal of interest by removing the first N
components, under the assumption that they contain mainly the global contribution
of the superficial layers [54, 58]. This kind of assumptions may yield adequate results
when dealing with motion artifacts, since they are discrete events in the data, but they
are at high risk of approximation when it comes to estimating the different sources of
the signal and the extent of contribution given by each of them.

While this issue is definitely still an open research question, it is certainly true that the
best way forward is to combine fine analysis tools with appropriate hardware means,
for example multi-distance measurements.

Multi-distance channels allow to measure the signal at different depths, and therefore
to obtain a signal from the superficial layers (Figure 2.9). The optimal short-distance
separation was recently determined to be 8.4 mm for adults and 2.15 for term age
infants [59].

Short-distance signals can then be regressed out from the whole signal. To this end,
several methods have been introduced: one possibility is to employ them during the
first-level statistical analysis as additional regressors of a General Linear Model (GLM)
[60]; another approach is to use them in combination with Independent Component
Analysis (ICA) [61].

In any case, the ideal amount of short-distance measurement to be removed from
the corresponding long-distance measurement is still an open question. Saager and
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Figure 2.9: Multi-distance measurement; by placing a detector at a
shorter distance, light measured by that detector will only come from

the shallow layer

Berger [62] proposed a least-squares minimization procedure to fit the short-distance
measurement to the long-distance measurement, and to use the result of the fit as a
weighing coefficient.

Figure 2.10: Example of application of the algorithm proposed by
Saager and Berger [62]. On the right side of the figure, it is clearly
visible that the ∼0.1 Hz fluctuations ("Mayer waves") are removed with

the short-distance correction
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2.4.3 Frequency filtering

Frequency filtering is the most straightforward method to eliminate components of
the signal that are not of interest, for example those associated with the heart beat
(∼1 Hz) and the very-low frequency fluctuations (drifts <0.1 Hz). For this reason,
the use of band-pass filters has been widely used in literature, usually with lower cut-
off around 0.01 Hz and upper cut-off around 0.5 Hz; of course, the frequencies being
removed should not include the “frequency of stimulation”, i.e. the frequency at which
hemodynamic activation is expected based on the stimulation timings: for example,
with a task of duration 10 s, and a pause of 30 s, the frequency at which the task-specific
activation is expected is 1/40 s = 0.025 Hz. A band-pass filter should be designed that
does not exclude this frequency.

This is also the reason why band-pass filters can not generally be used to remove
other kinds of unwanted features of the signal, such as Mayer waves or respiratory
oscillations: their frequencies normally overlap with (or are very close to) the frequency
of stimulation. Also, caution should be used when designing band-pass filters: the use
of overly narrow bands could produce artifacts in the signal in the form of ripples, or
could remove the hemodynamic responses that one is looking for.

Finally, also the filter choice requires special attention: Finite Impulse Response (FIR)
filters are more stable than the Infinite Impulse Response (IIR) and the phase delay
they introduce is constant across the whole frequency range, while IIRs introduce a
frequency-dependent phase shift; on the other hand, IIRs are generally more compu-
tationally efficient.

In both cases, the phase-distortion can be corrected by shifting back in time the filtered
signal of the delay amount (in case of FIRs) or by filtering the time series forward and
backward (in case of IIRs). This latter option is named ‘zero-phase filter’ and it is
widely used in fNIRS pre-processing [63]. Zero-phase filters are non-causal, in that
they use samples not only from the past and present inputs but also from the future
ones: as a consequence, they can be employed only as an offline operation, while real-
time filtering has to be performed with causal filters.
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Figure 2.11: Effect of applying a band-pass filter [0.01-0.2 Hz]; the
data has sampling frequency 4.4 Hz and the magenta parts represent
the task periods (10 s, with a jittered pause of 19-26 s). On the PSD
graphs, the red line is used for the PSD of the first wavelength and the

blue one for the second wavelength (in this case 760 and 850 nm)

2.4.4 Computation of concentration changes

After the data has been pre-processed, relative concentration changes can be computed
through the modified Beer-Lambert Law (mBLL). The formulation of the mBLL has
been already described in detail in Section 2.1.6.

From a practical perspective, there is an important difference between the theory and
how the algorithm is implemented in most of the available software tools. As illustrated
in Section 2.1.3, CW-NIRS instruments – which represent the great majority of the
fNIRS instruments employed in research - are unable to quantify the amount of incident
light; therefore, some other reference signal is needed to compute the concentration
changes: usually, the mean of the signal over the whole course of the study is used as
a baseline, in place of the incident light. This is why CW instruments are not able to
compute absolute values of concentration changes but changes relative to an arbitrary
baseline.

As mentioned, the implementation of the mBLL, as well as of the other processing
steps, is now offered by many available software solutions, like Homer2 [64], the NIRS
Brain AnalyzIR Toolbox [65] and nirsLAB [66], just to name a few.
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2.4.5 Statistical inference

Any analysis workflow is unique and depends on the specific research question that is
being investigated. However, there is a general consensus around the necessary pre-
processing steps that lead from the intensity measurements to having chromophores
concentration changes.

The roadmap is not as well marked for the statistical inference. This is partially because
the way data is statistically assessed depends on the question being investigated, but
also because for fNIRS there is not yet a clear gold standard. Therefore, many different
methods can be found in literature [67].

However, due to the similarity to the BOLD signal, the fNIRS signal has been often-
times analysed for a long time with the same methods, namely by modelling the signal
with a General Linear Model; the hypothesis of using a GLM for this purpose is that
the signal can be seen as a superimposition of hemodynamic responses, elicited by the
experimental conditions, and physiological oscillations.

Although the measured timeseries Y is really discrete, it is useful to treat it as a
function of time, Y(t) [4, 68]; a GLM seeks to express the concentration timeseries
Y(t) as:

Y (t) = X(t)β + ε(t) (2.11)

where X(t) is the design matrix, with regressors in each column; β is a vector containing
the coefficients of the regressors, to be estimated; finally, ε(t) is the error term, having
variance σ2:

ε(t) ∼ N
(
0, σ2

)
(2.12)

If each regressor contains the timings of each experimental condition, the resulting β
for that regressor represents therefore the impact of that condition on the measured
data.
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Figure 2.12: Each column of the design matrix X(t) is the result of the
convolution of the stimulus vector of each experimental condition, u(t)
(left), with a “basis function” representing the expected hemodynamic
response elicited by that condition (middle). The result is a theoretical
time course that is completely predicted by the administered stimuli
(right), and this is the timetrace that is then fitted to the measured
data. The more the condition actually had an impact on the data, the
better will be the fit, in terms of amplitude of the corresponding ß.

Figure is taken from [4]

The design matrix

Each column of the design matrix X encodes the timings of each experimental condition;
in particular, a convolutional model is employed to express the corresponding column
in X as the convolution of the stimulus vector u(t), usually a stick function containing
the stimulation timings, with the expected hemodynamic response function (HRF) h(t)
elicited by that stimulation:

X(t) = u(t)⊗ h(τ ) =
∫ T

0
u(t− τ )h(τ )dτ (2.13)

where τ indexes the peristimulus time(PST), over which the HRF is expressed. The
validity of this model relies on the assumption that the hemodynamic response can be
modelled as a linear time-invariant (LTI) process [69]: thus, it has a finite duration, it
is independent of time and responses to successive inputs superimpose in a linear way.

The result of convolving a stimulus vector u(t) with a canonical HRF is shown in Figure
2.12.
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The simplest and most commonly used basis function is the canonical HRF. The canon-
ical HRF is a model characterized by two gamma functions, one modelling the peak
and one modelling the undershoot. It is usually parametrized by a peak delay of 6 s
and an undershot delay of 16 s, with a peak-undershoot amplitude ratio of 6.

However, the precise shape of the real HRF may vary over brain regions and over indi-
viduals; therefore, it is possible to choose a basis function different from the canonical
HRF in order to accommodate this variability (Figure 2.13). Another possibility is
to use the canonical HRF together with its partial derivatives. This set is known as
informed basis set and it is used to capture variations of the peak delay and dispersion:
the temporal derivative accounts for shifts in the latency of the response, while the
dispersion derivative account for differences in the peak durations.

In a recent work, Santosa and colleagues investigated how the choice of the basis
function affects the sensitivity and specificity of the fNIRS analysis, in presence of
variability and/or systemic bias in the underlying evoked response, and especially in
relation to the task duration [70]. They concluded that the sensitivity of the model
depends heavily on the function choice for shorter task durations (∼ 5 seconds), while
for longer durations the difference in terms of outcome was less susbstantial.

Solving the model

Once the design matrix has been designed, the model is ready and it is typically solved
via generalized least squares:

β̂ =
(
XTX

)−1
XTY (2.14)

cov(β) =
(
XTX

)−1
(2.15)

In order for this solution to be the best unbiased estimate of the coefficients, the
Gauss-Markov assumptions have to be fulfilled [71] , namely:

1. Each sample of the error term should be uncorrelated with each other: cov (εi, εj ) =
0 , ∀ i 6= j
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Figure 2.13: Basis functions that are most commonly used to model
the expected HRF in a GLM. Figures are produced with the analysis
software nirsLAB [66]. On the top row, the Canonical HRF is depicted
(top-left); the Canonical HRF can be used in conjunction with its time
derivative (top-middle) to capture temporal shifts in the peak latency,
and also with the dispersion derivative (top-right) to capture differ-
ences in the peak duration. The (bottom-left) panel shows the Fourier
set; the Fourier set consists of a constant + K sine functions + K co-
sine functions (tot: 2K +1) of harmonic period T, T/2, . . . T/K. The
(bottom-middle) panel shows K gamma functions (K=3); while the
Finite Impulse Response (FIR) basis function (bottom-right) consists
of K contiguous boxcar functions, each lasting T/K seconds, where T
is the duration of the HRF. Linear combinations of the FIR or Fourier
basis functions can capture any shape of response. For a more compre-
hensive description of these functions, we refer the reader to the book
“Statistical Parametric Mapping: the analysis of functional brain im-

ages” [4]
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2. Each sample of the error term has the same variance var (εi) = σ2Σ, ∀i (ho-
moscedasticity of the noise)

Once the model is estimated, t-statistics can be estimated for the regressor(s) of inter-
est:

t =
β√

cov(β)
(2.16)

If the goal is to statistically assess whether two or more regressors had a different
impact on the data, a contrast vector c can be employed that encodes this difference;
in practice, if one wants to test, for example, if condition 1 produced a larger activation
than condition 2, then the vector c= [1 -1 0 0 . . . ] will be defined and the corresponding
t-test will be:

t =
c · β√

c · cov(β) · cT
(2.17)

The whole procedure, from the definition of the model to the statistics on the regressors,
is normally conducted channel-by-channel.

This way, it is possible to determine in which channels was the hemodynamic activity
most affected by the experimental conditions, and therefore to have a clear localization
of the effects under investigation.

The same analysis is usually performed on all the subjects. The possible options
for proceeding with group level analysis are manifold and depend on the particular
experiment. For example, it is possible to run a correlation analysis between each
channel’s regressor of a particular condition and a demographic variable, like a task
score, or age of the subjects. Another possibility, when groups of subjects are specified,
is to run a Linear Mixed Model with group as a between-subject factor, to test whether
different experimental conditions had different effects on the groups.

The possibilities are numerous and it is not possible to describe a universal recipe that
applies to all circumstances. In the following chapters several approaches that have
been used in this doctoral work for group analysis will be presented.
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2.4.6 Limitations of the univariate statistical analysis

fNIRS errors are non-spherical

The most important problem with using a GLM at subject-level for fNIRS analysis is
that the requirements needed to have an unbiased estimate of the regressors are not
met. The error term is nonspherical, namely is not uncorrelated and does not have
uniform variance.

Let’s start with the latter: the error term resulting from modelling fNIRS data does
not have uniform variance. This is caused by the fact that fNIRS data may exhibit
components that are much larger in amplitude than the physiological background, for
example motion artifacts. These strong components will then appear as outliers in the
noise distribution, making it not uniform.

Heteroscedasticity itself does not cause the coefficients estimates to be biased, but it
can cause the estimates of their variance to be biased, possibly above or below the
true variance. Therefore, while estimated β will still be unbiased, their variances will
not, and wrong variances may lead to wrong computation of t-values, making the
subsequent statistical inference possibly wrong.
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Figure 2.14: Figure taken and adapted from [5]. [Left] the distribu-
tion of the residuals is not Gaussian, but it’s characterized by heavy-tails
produced by large outliers, such as motion artifacts. [Right] The tem-
poral autocorrelation of the raw data along with the autocorrelation
of the data processed according to different algorithms; the chart shows
that the AR(n) prewhitening yields the best results in terms of reduction

of autocorrelation.

The other problem is that the samples of the error term are correlated. This is due to
the fact that the physiological signal being measured is much slower than the sampling
frequency of the acquisition instrument. For this reason, the acquired signal Y – and
so also the error term ε - have high autocorrelations.

Ignoring these correlations when forming a t- or F-statistics leads to an inappropriate
estimate of the degrees of freedom, that are effectively much less than the number of
samples, and therefore to invalid tests.

This issue has been known for a long time to be true also for the fMRI analysis, but for
the fNIRS analysis it is even more critical because of the much higher sampling rate.

To overcome this problem, a standard solution is to transform the noise structure before
solving the model; in particular, the two main approaches that can be adopted are the
noise pre-whitening and noise pre-coloring.

Pre-whitening refers to making the distribution of the noise uniform, thus white, by
applying a whitening filter W, selected such that the new error term W · ε is spherical:
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W · Y = W ·X · β +W · ε (2.18)

β̂ =
(
XTW TWX

)−1
XTW TWY (2.19)

The whitening matrix W can be obtained by iteratively fitting the GLM and examining
the residuals: at the first iteration, the GLM is run without any whitening (W=I), and
based on the residuals a W matrix is estimated. Usually, this is performed by fitting
an autoregressive (AR) model to the residuals vector. The AR model will remove the
noise structure related to the autocorrelation of the samples. The coefficients of the
AR model are then used to build the W matrix.

A whitening matrix based on fitting an AR model to the residuals can definitely reduce
their autocorrelations, but the extent of this effect depends on the model order, i.e.
it depends on the modelled duration of the autocorrelation. In the software package
SPM [4], that was designed for the analysis of fMRI data, the used model order is n=1.
This means that correlation is assumed only in neighbouring data samples. While this
may prove appropriate for fMRI data, it certainly is not for fNIRS data, since it has a
much higher sampling frequency. Nevertheless, the SPM approach has been employed
for some time also in the fNIRS data analysis [72].

The other option that has been proposed to solve this issue is noise pre-coloring. Pre-
coloring refers to the idea of applying a known and specific color spectrum to the noise
to mask its unknown structure. Basically the resulting noise structure is still coloured,
only this time it has a known profile and can be accounted for by estimating a pre-
coloring matrix C, to be applied to the GLM in a similar way of the pre-whitening
matrix W.

Pre-whitening is generally preferred over pre-coloring [5], but the autocorrelation of
the fNIRS data extends well beyond a model order of n=1. Therefore, research has
progressed recently towards finding an fNIRS-specific version of this approach. In
particular, an algorithm was recently proposed by Barker et al [6] that corrects both
the autocorrelation of the residuals, by implementing a more powerful pre-whitening
algorithm, and their heteroscedasticity.
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In this method, the W matrix is iteratively estimated by fitting an AR(n) model to the
residuals, with n determined by minimization of the Bayesian Information Criterion
(BIC). This procedure is performed on each channel independently, resulting in different
model orders across different channels. Additionally, at each iteration the weights of
the least squares regression are updated to downweigh the timepoints corresponding
to outliers, and enter the model via the diagonal weight matrix S. The solution to the
model becomes:

β̂ =
(
XTW TSWX

)−1
XTW TSWY (2.20)

The authors found that for data acquired at 10 Hz, the optimal model order was
n=33, ascertaining that indeed autocorrelation in fNIRS data do extend much beyond
the n=1 assumed by SPM.

A-priori selection of the basis function

The choice of the right basis function is another item of complication posed by the
use of a GLM. The basis function should represent as accurately as possible the real
hemodynamic response evoked by the particular task that is carried on by the subject.
In particular, complex tasks may engage temporally protracted processes that cannot
be captured by the canonical set [73]. Moreover, even assuming that the canonical
HRF is the appropriate choice, several studies have shown that there is a substantial
variability in the shape of responses collected across subjects, and even across chan-
nels with the same single subject, all of which makes the definition of the parameters
challenging [18, 74].

A strategy that has been proposed for addressing this variability is the incorporation
of temporal and dispersion derivatives into the canonical set; however, the issue is
surrounded by much debate [75, 76, 77, 78]: the main criticism regards the fact that
although it is true that the additional terms do capture additional variance, the final
test for statistical significance is still carried out on the amplitude of the nonderivative
portion of the model, therefore the improvement made in model fitness does not lead
to higher power estimate. Furthermore, the subsequent group-level analysis do not
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typically account for the subject-level variances at all, thus it remains unaltered by the
employment of the additional terms.

Lastly, it is worth noting that the hemodynamic response to the same stimulus can
vary greatly across different channels’ positions. For example, Zimeo Morais et al.
[79] reported a consistent positive correlation between HbO and HbR in the anterior
temporal region, that can be explained by extracerebral changes but more likely by
oxygenation changes in the temporalis muscle. The contribution of muscle oxygenation
changes has been described to play an important role in the signal measured with fNIRS
[80, 81], as well as the contribution of small capillaries [82].

All these considerations explain why the GLM can hardly capture the natural inter-
and intra-subject variability of the hemodynamic response: if the basis function is
inaccurate, the design matrix is not a good model of the measured data, and actual
task-induced neural activity may remain undetected.

Multiple comparisons

As the technological advances of the fNIRS hardware provide an increasingly wide
coverage of the head, with many systems now offering caps with hundreds of channels,
the issue of the multiple testing correction is as crucial as it has ever been, and can no
longer be ignored.

The multiple comparisons problem occurs when several statistical tests are carried
out simultaneously, as if they were independent: in any statistical test, there is a
α% probability of rejecting the null hypothesis when it is true (Type I error, or false
discovery), with α defined by the experimenter (usually α = 5%). If N tests are
carried out simultaneously, the risk of Type I errors becomes (N x α)%. This is
exactly what happens when a univariate statistics is employed on fNIRS data: each
channel is statistically tested independently on each other, than a significance threshold
α is applied and channels whose t-test resulted in p ≤ α are considered active. Since
channels are not really independent, there is an increased risk of Type I errors, namely,
some of the identified active channels are actually false positives.

The simplest way of controlling Type I errors is using the Bonferroni correction: if
there are k tests being performed, then the significance level α is replaced by α/k, for
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each test. Although this method provides a strong control for errors, it is definitely too
conservative for neuroimaging data, and can eliminate both false and true positives. For
this reason, other methods have been proposed; for a thorough review, we recommend
the reader the work of Nichols and Hayasaka [83].

One of the most advantageous for fNIRS seems to be the False Discovery Rate (FDR)
procedure introduced by Benjamini and Hochberg [84, 85]. Briefly, FDR methods aim
at controlling the proportion of errors not among the entire set of hypotheses tested, as
it is the case for the Bonferroni correction, but only among those resulting in rejecting
the null hypothesis, i.e. the declared active channels. This way, the result is less
conservative and the power of this correction increases as the number of rejected null
hypotheses increases.

Independent analysis of HbO and HbR

Lastly, a significant limitation with performing univariate statistics on fNIRS data is
that the analysis is carried out on HbO and HbR independently, when in fact they are
nonlinearly partially correlated variables.

The are several inconveniences to this. The first problem is a very theoretical one:
the correlation between HbO and HbR is per se meaningful and should be taken into
careful examination; in fact, hemodynamic activation should always involve a negative
correlation between HbO and HbR (unless we are considering a particular group of
subjects or infants [50]). However, this information is completely lost when keeping
the two analyses separate. The examination of the two individual components alone
can, therefore, lead to misinterpretation of the findings.

This leads to the other problem: for the same experimental condition, it is a very
common situation that test statistics yielded by the HbO analysis do not mirror the
test statistics yielded by the HbR analysis. In other words, one may find that channels
considered active by looking at the HbO results, would be considered not active with
the HbR results, or vice versa; this can happen because every subject has its own
“hemodynamic signature”, and while some exhibit stronger activation as an increase
in the HbO signal, others may express activation more pronouncedly with a decrease
in the HbR signal.
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So, on one hand the correlation between the two components should always be negative
for an activation to be considered as such, but on the other hand one may empirically
observe that some subjects do not exhibit much activation with one or the other com-
ponent [86].

This issue becomes especially problematic at group level: it is often the case indeed
that group level results based on the statistical analysis of HbO values do not match
results based on the analysis of the HbR values. To overcome this limitation, a univocal
measure would be needed, that incorporates information on both components.

2.5 The potential role of Machine Learning

Machine Learning techniques have started being successfully employed in the analysis
of fNIRS data only recently, with the research field of Brain-Computer Interfaces (BCI)
leading this methodological renovation.

A BCI is a communication system that allows the use of brain activity to control
external devices, by clustering these signals into two or more classes; this makes it
an application where machine learning naturally belongs. It consists typically of five
stages: brain-signal acquisition, pre-processing, feature extraction, classification and
application interface. While the acquisition and the pre-processing steps have been
already covered in previous sections, and the interface application is beyond the scope
of this work, we will focus on the steps concerning feature extraction and classification.

The first study that demonstrated the feasibility of using fNIRS for a BCI was from
Coyle et al [87]: in their work, participants had simply to imagine squeezing a rubber
ball. The average HbO concentration level was computed within 1 second and used as
a feature: if the feature exceeded a reference level (defined as the largest value of the
signal within the first 10 seconds), then the event was classified as “task”.

Since this study, many others followed and BCIs have become increasingly complex
and articulated. Among the features that are mostly employed, the signal average
amplitude and slope are the most common; others include signal variance, skewness,
kurtosis and zero crossing. For a complete review we recommend the reader the work
from Naseer and Hong [88]. As for the classification step, they found that the most
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commonly used method in fNIRS-BCI is the Linear Discriminant Analysis (LDA).
The reason for it can be found in the fact that LDA combines both good classification
performances and low computational requirements. Other algorithms that have proven
efficient for fNIRS-BCIs include Support Vector Machines (SVM), Artificial Neural
Networks (ANN) and Hidden Markov Models (HNN). A detailed description of LDA
and SVM is provided in Sections 2.6 and 2.7.

The use of machine learning in the context of BCIs is then to classify brain signals
into several classes. But it can also be used as an alternative to univariate statistics in
order to investigate neurophysiological processes and cognitive functions.

This is the case of Multivariate Pattern Analysis (MVPA) methods. MVPA methods
started being developed for the analysis of fMRI data, as an alternative to the univariate
voxel-wise analysis.

The rationale behind this approach is that part of information is represented not only
within each voxel but also across groups of voxel, as “spatial patterns” of activity;
MVPA involves the use of pattern-classification algorithms to search for reproducible
spatial patterns that differentiate across experimental conditions, and can therefore be
considered as a supervised classification problem, where the chosen classifier attempts
to capture the relationship between the patterns of activity and the experimental con-
ditions [89].

This approach has several advantages over univariate methods: first of all, it can be
more sensitive, simply because the voxel-wise response to the experimental manipula-
tion might be not strong enough to be statistically significant, but could be discrimi-
native of the condition if accumulated with the responses of neighbouring voxels and
analysed with classification algorithms [90, 91]. This way, MVPA can extract a finer
level of detail from the data.

Secondly, even if two regions do not individually bear information, they may do so
when taken into account together.

For this reasons, this approach has been gaining increasing popularity, and has been
applied to fMRI, EEG and, more recently, fNIRS [7, 8]. Emberson et al [7] described the
first demonstration of neural decoding in infants using multivariate techniques on fNIRS
data. In particular, they classified spatial patterns of hemodynamic activity arising
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in infants in response to two conditions that were both audio-visual but of different
nature (face+music vs fireworks+speech). They demonstrated that despite the absence
of significant univariate results, the multivariate classification did manage to decode
the two different states, with a classification accuracy averaged across subjects greater
than 75%. This and other studies testify to the great potential that machine learning
and model-free feature selection have to fill the gaps left by the univariate analysis.

2.6 Linear Discriminant Analysis (LDA)

The goal of classification is to take an input vector x and assign it to one of K discrete
classes Ck (k=1, . . . .. K). The input space is divided into decision regions, and the
boundaries of these regions are called decision surfaces [92].In this section, we will focus
on the case of two-classes classification (K = 2).

One of the simplest approach to the classification problem is to use a decision surface
that is a linear function of the input vector and it’s defined by hyperplanes of dimension
(D-1), with D being the number of dimensions of the input space. Such linear function
is called linear discriminant function and it is defined as:

y(x) = wTx+w0 (2.21)

where w is the weight vector, x is the input vector and w0 is a bias.

An input vector x is assigned to class C1 if y(x) ≥ 0 and to class C2 otherwise.
Therefore, the decision boundary is defined by the relation y(x) = 0, which corresponds
to a (D-1)-dimensional hyperplane within the D-dimensional input space. The vector
w determines the orientation of the decision surface, while the bias parameter w0

determines the location of the decision surface (Figure 2.15). The bias can be chosen
in different ways; often, it is chosen as the middle point between the projections of the
classes’ means on the normal vector w.
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Figure 2.15: Geometry of the classification problem with Linear Dis-
criminant Analysis: the decision surface (in red) is perpendicular to w,
and its intercept is defined by the bias w0. Figure taken from Bishop

(2006) [92]

The weight vectorw is chosen such as to maximize the distance between the two classes’
means (between-class scatter, SB) and minimizes the interclass variances (within-class
scatter, SW ). This criterion is known as Fisher criterion, and it can be formulated as
follows. For class k, the within-class variance is defined as:

s2
k =

∑
n∈Ck

(yn −mk)
2 (2.22)

with yn = wTxn and mk being the sample mean for the projected points of the class,
defined as

mk =
1
nk

∑
n∈Ck

yn =
1
nk

∑
n∈Ck

wTxn (2.23)

Therefore, the objective function to maximize in LDA is

J(w) =
(m2 −m1)

2

s2
1 + s2

2
(2.24)
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To find the optimum w, J(w) must be expressed as a function of w. It can be shown
that the variance within the class k can be expressed as:

s2
k =

∑
n∈Ck

wT (xn −mk) (xn −mk)
T

w (2.25)

s2
k = wTSkw (2.26)

Thus, the total within-class scatter is defined as:

s2
1 + s2

2 = wTSWw (2.27)

Similarly, the difference between the projected means can be expressed in terms of the
between-class scatter SB:

(m2 −m1)
2 = wTSBw (2.28)

Therefore, we can express J(w) as:

J(w) =
(m2 −m1)

2

s2
1 + s2

2
=

wTSBw

wTSWw
(2.29)

Now it’s possible to find the optimum w by differentiating J(w); we find that J(w) is
maximised when

(
wTSBw

)
SWw =

(
wTSWw

)
SBw (2.30)

By multiplying both sides of the equation by SW−1 we obtain that the expression of
the optimal weight vector is given by:

w ∝ Ŝ
−1
W (m̂2 − m̂1) (2.31)
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It can be shown [93] that LDA is the optimal classifier when a) input features from
all classes are normally distributed, b) the classes have the same covariance matrices
and c) the true class distributions are known: this latter assumption is never met,
therefore means, m̂1 and m̂2, and covariance matrices Ŝ of the distributions have to
be estimated from the data 2.8):

Ŝ =
1

n− 1

n∑
i=1

(xi − m̂) (xi − m̂)T (2.32)

The estimator of the covariance matrix is unbiased, but in the case of neuroimaging
data the estimate may become imprecise: this is due to the fact the neuroimaging
data is usually characterized by a limited number of data points in a high-dimensional
feature space.

This curse of dimensionality leads to a systematically distorted estimation of the covari-
ance matrix, given by an overestimation of the large eigenvalues and an underestima-
tion of the small ones. The distortion eventually results in degrading the classification
performances [94, 95]. The solution that has been proposed to mitigate this effect
involves the introduction of a regularization term in the Equation 2.8, such that the
new estimated covariance matrix is given by:

S̃(γ) = (1− γ)Ŝ + γvI (2.33)

Where γ ∈ [0, 1] and v is defined as the average eigenvalue of Ŝ(v = trace(Ŝ)/d),
with d being the dimensionality of the feature space. It can be shown [94] that Ŝ
and S̃ have the same eigenvectors, and that this approach, named shrinkage or LDA
regularization, has indeed the effect to push extreme eigenvectors towards the average
v. The regularization is largest when γ = 1 and absent when γ = 0. Several studies
demonstrated that regularized LDA yields improved predictive accuracy in the context
of ERP decoding [94], fMRI-based decoding [96] and also in fNIRS-based BCIs [97,
98].
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2.7 Support Vector Machines (SVM)

While in LDA the separating hyperplane is obtained by seeking the projection that
maximises the distance between the two classes’ means and minimizes the interclass
variances, Support Vector Machines are designed to maximise the distance between
the separating hyperplane and the nearest training points, called support vectors.

Such distance M is called margin and maximising it means minimizing wTw. Addi-
tionally, w and w0 should also ensure that datapoints are correctly classified, namely
the input vectors x1, . . . . xN should be classified according to their target values t1,
. . . tN , with tn ∈ [−1, 1] : y(xn) ≥ 0 for tn = +1 and y(xn) ≤ 0 for tn = −1. This
criterion can be expressed by the following formula, named the constraints:

tn
(
wTxn +w0

)
≥ 1 for n = 1, . . . n (2.34)

This is a quadratic problem; it can be shown that an optimal solution to this problem
is found when the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

λ∗n
(
1− tn

(
w∗Txn +w∗0

)
) = 0 (2.35)

(
1− tn

(
w∗Txn +w∗0

)
) ≤ 0 (2.36)

λ∗n ≥ 0 (2.37)

where λn are positive values known as Lagrange multipliers. By solving the quadratic
problem, it can be shown that w* and w0∗ are given by:

w∗ =
N∑
n=1

λntnxn (2.38)

N∑
n=1

λntn = 0 (2.39)

50



2.7. Support Vector Machines (SVM)

w∗0 =
1
Ns

∑
support vectors j

tj − N∑
n=1

λntnx
T
nxj

 (2.40)

And that a prediction on a new datapoint z can be made with the following formula:

w∗T z +w∗0 =

 N∑
n=1

λntnxn

T z +w∗0 (2.41)

If the classes’ distributions overlap in the feature space, we can still maximize the
margin M, but we have to allow for some points to be on the wrong side of the margin,
with a penalty that increases with the distance from that boundary.

This is achieved by introducing the slack variables ξn = (ξ1, ξ2, ..., ξN ), with N being
the number of data points.

Data points that lie on or inside the correct margin boundary have ξn = 0, while for
the other points ξn = |tn − y(xn)|. Points for which o < ξn ≤ 1 lie inside the margin,
but on the correct side of the decision boundary; points for which ξn > 1 like on the
wrong side of the boundary and are misclassified.

Therefore, the constraint (Equation 2.34) must be adjusted to take into account slack
variables. This is sometimes described as relaxing the hard margin:

tn
(
wTxn +w0

)
≥ 1− ξn for n = 1, . . . .N (2.42)

with ξn ≥ 0.

Slack variables allow to find an appropriate linear separation, even if the two classes
are not completely linearly separable.

When it is impossible to find a linear separation between the classes, the solution
adopted by SVMs is to transform the input features x with a non-linear kernel.

This doctoral work only employed Linear SVMs (see Chapter 5), therefore the choice of
the kernel for non-Linear SVMs will not be described here; for a complete illustration
of the subject, we refer the reader to Bishop (2006) [92] and Marsland (2014) [99].
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2.8 Lessons learned

• Systemic oscillations and temporal correlation in the data can reduce the sensi-
tivity of the General Linear Model.

• The independent univariate analysis of HbO and HbR can make difficult and
mislead the interpretation of the results, especially at group level.

• The a-priori choice of the basis function impede accounting for inter- and intra-
subject variability of the hemodynamic response.

• Machine learning methods can offer a viable alternative to uncover finer levels
of detail, by classifying patterns without using any a-priori assumptions on the
hemodynamic response; also, an univocal measure accounting for both HbO and
HbR could be employed as a feature.
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Chapter 3

From univariate to multivariate
analysis of fNIRS data: a
theoretical formulation and
validation

3.1 Introduction

In the previous chapter, the limitations of the analysis based on GLMs were exten-
sively described: the need for a-priori chosen model for the data, that restricts the
possibility of accounting for subject- and channel-level shifts from the expected model;
the problems yielded by the independent analysis of the HbO and HbR components;
the systemic oscillations, that can considerably reduce the sensitivity of the GLM, that
may therefore not produce significant results.

Despite the increasing use of machine learning-based algorithms for neuroimaging data,
particularly driven by the field of BCIs, and the body of literature involving machine
learning-based procedures for fMRI and EEG for the investigation of neurocognitive
processes, to date fNIRS still lacks a comparable literature.

In particular, no systematic comparison has been performed between the GLM-based
approach and an alternative analysis based on using machine learning, for fNIRS data.
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An objective comparison between the two techniques is a critical factor in order to
make a reasoned choice when it comes to data analysis.

For this reason, this effort was the very first step of this doctoral project and it is the
subject addressed in this chapter, based on the following publication:

[9] Gemignani, J., Middell, E., Barbour, R. L., Graber, H. L. and Blankertz, B. (2018).
Improving the analysis of near-infrared spectroscopy data with multivariate classifica-
tion of hemodynamic patterns: a theoretical formulation and validation. Journal of
Neural Engineering, 15(4), 045001. doi: 10.1088/1741-2552/aabb7c

The GLM approach was compared with a model-free approach based on the use of
multivariate features, including both HbO and HbR, and on the use of LDA for the
classification.

As described in Section 2.5, LDA is often used in the context of BCIs, thanks to its
advantageous combination of low computational requirements and good performances.
Here we want to assess if its characteristics make it also a convenient tool for offline
statistical analysis, in quest of interpreting hemodynamic patterns with respect to the
experimental conditions that elicited them. In particular, this work aims at comparing
GLM and the LDA-based classifier in performing channel-wise classifications: active
channel vs non-active channel.

The advantage of using a classifier for this purpose is that no assumptions on the
structure of the noise are necessary, and that no prior knowledge of the shape of the
expected hemodynamic response is needed. Furthermore, for the LDA-based classifier,
the information regarding the simultaneous variations of HbO and HbR can be com-
bined in a multivariate strategy. In this way, the analysis would yield a single metric for
“activation” for each channel, and this would be easier to test than separately testing
β coefficients from HbO and HbR, especially at group-level.

However, the benefits of using machine learning may go beyond “just” producing a
larger classification accuracy: the comparison between the results yielded by the two
analytic approaches may be informative in the sense that the classifier might identify
unpredictable effects that elude the model-based analysis. For example, in a case where
GLM analysis reports a channel as “not active”, the availability of LDA results could
facilitate the process of deciding whether activation truly was absent (i.e., because LDA
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also classified the channel as “not active”) or if the hemodynamic model used for GLM
was not optimal (i.e., because LDA classified it as “active”).

The present work comprises two steps: the first is a comparison of the proposed LDA-
based method with the canonical GLM analysis. In order to do this, an extensive
volume of simulated data is used to characterize the two algorithms in terms of re-
ceiver operator curves (ROC) when no systemic oscillation is present (i.e., simulated
hemodynamic responses were added to simulated resting-state data) or when a consid-
erable amount of systemic oscillation is present (i.e., simulated hemodynamic responses
were added to experimental resting-state data); the real-data results also were used to
characterize the impact of inter-subject variability on the outcomes of the classification
analyses. Second, the two algorithms were used to analyse and classify the task-induced
activations in a set of experimental data.

3.2 Methods

In order to compare the performances of the LDA-based and GLM-based methods
under controlled conditions, sensitivity and specificity were quantified by recovering
a known synthetic hemodynamic response added to either synthetic or real resting-
state data. This approach has been used in several reports [5, 6, 100, 101] and it is
particularly suited for studies that make use of ROC analysis, because it permits an
exact quantification of true and false discovery rates.

In a second step, the two analysis pipelines were applied to real experimental data and
channel-wise statistical assessments of each subject were compared. Figure 3.1 reports
a summary description of the whole procedure followed in this work. Figure 3.2 shows
how known hemodynamic responses were added over resting state time traces.
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Figure 3.1: In each iteration, data are simulated, based on either syn-
thetic or real resting-state data; HbO and HbR (red and blue time traces
in the “Synthetic dataset” panel, respectively) were analyzed with GLM
or LDA, and ROC analysis was performed to compare the classification
accuracies. The simulated HRFs vary in shape and size, and 30% of
them are characterized by a “double bump” as a simplified model of

stimulus-locked Mayer waves.

Figure 3.2: (A) Example of how simulated HRFs are created (black
line) and added to a real resting-state time trace (dark grey line). The
top trace is a simple HRF while the bottom trace contains a double
bump. (B) The grey time trace represents the HbO signal before the
hemodynamic activations are added; the red and blue ones are, respec-
tively, the time traces after a simple HRF or a double-bump HRF have

been added.
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3.3 Theoretical formulation

3.3.1 Generation of the synthetic dataset

5000 datasets of NIRS data were iteratively simulated by combining temporally corre-
lated (“colored”) noise and synthetic hemodynamic response functions (HRFs). Base-
line noise was produced by first generating white noise, then imposing temporal corre-
lation on it by employing an autoregressive model of order 30, via tools in the NIRS
Brain AnalyzIR toolbox [65]. Each dataset contained 20 channels, and synthetic HRFs
were added to the resting state for half of them (i.e., Channels 1− 10). Channels that
included synthetic HRFs in their HbO and HbR data were labelled as “active” and the
others as “not active”. For the active channels, ‘Start’ and ‘Stop’ markers were created
according to an experimental paradigm with 3 trials, each of 10 seconds duration. The
position of the ‘Start’ markers was randomized, with the constraint that successive
ones were separated in time by at least 35 seconds. The total duration of each time
series was 4 minutes, at a sampling frequency of 7.81 Hz.

To model the inter- and intra-subject variability of real hemodynamic responses, syn-
thetic evoked HRFs had variable size and shape across subjects and channels. While
each HRF had the mathematical form of a canonical HRF [4], their peak amplitudes
ranged from 0.01 to 0.1 µM [101], while, based on experience and existing literature on
the variability of the hemodynamic response [18], the onset-to-peak times ranged from
2 to 8 seconds and the onset-to-undershoot times ranged from 14 to 18 seconds.

Positive-going synthetic HRFs (see Fig.3.2A) were added to the resting-state data for
the HbO time series. The synthetic HRFs added to the corresponding HbR resting-
state data had the same form as those for HbO, but were 50% reduced in magnitude
and reversed in algebraic sign (i.e., they were negative-going). In addition, for 30%
of the active channels in each dataset the synthetic HRF included a “double bump”
(see Fig.3.2A), as an elementary model of systemic hemodynamic activity time-locked
with the experimental condition. An example of this sort of additional activity that
frequently is present in experimental data are the so-called “Mayer waves,” which
are systemic oscillations originating in the superficial layers of the tissues [102], and
which occur, more or less prominently, at ∼0.1 Hz frequencies. Such oscillations are
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particularly difficult to treat in a GLM-analysis framework, owing to their extensive
spectral overlap with typical event-related activity (i.e., they cannot be eliminated via
straightforward frequency filtering) [103].

The use of synthetic baseline noise has the clear benefit that a large volume of data
can be created, and it allows to benchmark the proposed methodology against recent
literature on the topic [5, 6].

However, synthetic data might not capture all the properties of real physiological data.
Therefore we complemented the synthetic-data analysis by using experimental resting-
state data as baseline noise. For this purpose, 15 young adults (mean age ± SD: 28.1
± 4.0 years old; age range: 23-38; 11 women, 4 men) participated in the collection of 4
minutes of resting-state data. For a subset of the participants, this measurement was
followed by the motor-task study that was used in a later stage of this analysis (see
Section 2.2.1 for descriptions of the experimental setup and data collection).

Experimental resting-state recordings were used as a source of real physiological and
correlated data, and were employed in the same manner as described above for the
synthetic resting-state data, namely by performing 5000 randomizations of the positions
of the ‘Start’ markers and adding simulated HRFs of variable shapes and amplitudes
to only Channels 1-10 (left hemisphere), and labeling those channels as active.

3.3.2 Data analysis

Pre-processing

Both simulated and real data underwent the same pre-processing steps. Hemoglobin
concentration changes were calculated using the modified Beer-Lambert law (Differ-
ential Pathlength Factor (DPF): 6 , absorption coefficients (µa, cm−1M−1) for HbO:
µa(760 nm) = 1349 and µa(850 nm) = 2436, for HbR: µa(760 nm) = 3565 and µa(850
nm) = 1592).

Data was bandpass filtered in the range [0.01-0.2] Hz, with a zero-phase distortion
digital FIR filter designed and implemented, respectively, with the MATLAB com-
mands firls and filtfilt. For the subsequent statistical analysis, filtered data was used
for the LDA analysis, in accordance with most fNIRS-based BCI literature [88], while
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unfiltered data was used for the GLM computations because it has been reported that
frequency filtering can produce biased estimates of the regressors [5]. In this way, both
methods were used at their optimal settings.

Analysis with GLM

GLM was applied using the autoregressive iteratively reweighted least squares ("AR
IRLS") algorithm available in the NIRS Brain AnalyzIR toolbox. This algorithm is re-
ported to efficiently remove serial correlations from data, thereby achieving an accept-
able false discovery rate [6]. HbO and HbR time traces were analyzed independently.

After the regressors β were estimated, the null hypothesis that there was no hemody-
namic response (H0: β = 0) was tested by defining a contrast vector (c) and calculating
the channel-wise t-statistic via the formula [67]:

t =
cTβ√

cT cov(β)c
(3.1)

In this case, with only one experimental condition to be tested, the contrast vector
would be [1 0], with the second column referring to the constant column added to the
GLM design matrix. The p-values corresponding to the t-statistics from Eq. 3.1 were
computed via two-tailed t-tests.

Analysis with LDA

For each HbO and HbR time series, trials were defined as the signal in the 15-second
time interval following each ‘Start’ marker. Each trial was baseline-corrected by re-
moving the mean value of the signal over the 3-seconds interval prior to stimulus onset.
Channel-wise block averages were obtained by averaging across all trials within each
channel.
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Figure 3.3: (A): Block averages of HbO (left) and HbR (right) signal
used for feature extraction; dashed lines represent the 1s steps used for
the moving-window computation of amplitude and slope. (B): Features
vectors are obtained from the block averages by computing mean and
slope of the signal over a sliding window of 3 s duration with 1 s steps,
resulting in a 30-features vectors that were then normalized and con-
catenated to produce the 60-features multivariate (HbO + HbR) classi-
fier. Grey lines represent individual trials, black lines highlight the mean
value of the feature vectors corresponding to “active” channels, and blue
lines highlight the mean value of the feature vectors corresponding to
the “not active” channels. Values of the y axis are normalized values
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Features were extracted from the channel-wise block averages (Figure 3.3 A). To do this,
a 3-seconds-wide window was moved through the block-average time series in 1-second
steps and the mean value and mean slope (computed as the change in signal amplitude
over the time window divided by its size in number of samples) were computed within
each window, yielding a 30-features vector (2 features × 15 windows) for each of HbO
and HbR. Each feature vector was normalized to zero mean value and unit variance.
Then the HbO and HbR feature vectors were concatenated, resulting in a 60-features
vector that was used for the classification (Figure 3.3 B).

Channels were classified as active or not active with Regularized Linear Discriminant
Analysis, via tools available in the Berlin Brain-Computer interfacing (BBCI) toolbox
[104, 105]. Ten repetitions of 4-fold cross validation were performed: 20 trials (10 active
channels and 10 not active channels) were separated into 4 folds, with three folds used
for training and the remaining fold as the test dataset. The procedure was repeated
10 times.

Each feature vector x ∈ RN was assigned an output by the application of the formula
of the separating hyperplane characterizing the LDA classifier [104]:

wTx +w0 = 0 (3.2)

where w is the projection vector characterizing the classifier and w0 is a bias term.
For further detail, see Chapter 2, Section 2.6. In this implementation, the class not
active was assigned to negative or zero outputs and class active was assigned to positive
outputs.

Evaluation of performances

The performances of the GLM analysis and the LDA-based method were evaluated by
computing receiver operating characteristic (ROC) curves.

ROC curves for the GLM results were computed by varying the significance threshold
for the t-test p-values, from 0 to 1 in increments of 0.001, and computing the corre-
sponding false positive rate and true positive rate for each threshold. ROC curves for
the LDA results were computed by comparing the distributions of output values of
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active and not active channels. We defined a significance threshold, varying from 0
to 1 in increments of 0.001, in the following manner: on the distribution of not active
outputs, we defined a reference value as the percentile corresponding to the considered
threshold. We defined as True Negatives (TN) the samples of the not active distribu-
tion that were smaller than the reference value, False Positive (FP) the samples of the
not active distribution that were equal or greater than reference value, True Positives
(TP) the samples of the active distribution that were equal or greater than the refer-
ence value and False Negative (FN) the samples of the active distribution that were
smaller than the reference value. We repeated the procedure by sliding the reference
value until 100% of the not active distribution was covered (i.e., significance threshold
= 1). For example, by setting the threshold at 0.05, we computed the reference value
on the distribution of not active outputs corresponding to its 5% percentile, and based
on this reference value we computed TP, TN, FP, FN at p = 0.05.

For both GLM and LDA, classification accuracy was computed as the rate of correct
classifications, (TP + TN)/(TP + TN + FP + FN), at p = 0.05. In order to investigate
the impact of double-bump HRFs on classification accuracy, we conducted two separate
analyses on the two subsets of data characterized by, respectively, only HRFs with no-
double bumps and only HRFs coupled with double-bumps.

Analysis of the correlation between subjects’ demographics and classifica-
tion accuracy

Demographic information such as gender, age and chronobiology has been reported to
play a role in the cerebral metabolism [106, 107, 108, 109], and therefore we tested for
correlations between the individual-subject classification accuracies and each subject’s
characteristics. To do so, a linear mixed-effects (LME) model was fitted in Matlab
2017, with a random intercept for each participant and fixed effects for age, gender,
hair color (two levels: Blond, Brown), and time-of-day of the measurement (three
levels: 10 AM-1 PM, 1 PM-3 PM, 3 PM-6 PM):

Accuracy ∼ Age+HairColor+Gender+ TimeMeasurement+ (1|Participant)
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This analysis was carried out for LDA (HbO+HbR), GLM (HbO) and GLM (HbR)
separately. Analysis of variance (ANOVA) was performed on each model to test the
significance of the effects (error DF = 10 (15 observations minus 5 modelled effects)).

3.4 Application of the algorithm to experimental
data

To provide a practical example of use of the proposed algorithm and compare it with the
GLM analysis in the framework of a real experiment, a paradigm was chosen—finger
tapping—that has a well-known effect on the motor cortex. In particular, it is expected
to elicit a recognizable and significant response in the primary motor cortex (M1,
Brodmann area 4, likely to underlie the C3/C4 positions of the EEG 10-20 system)
and the premotor cortex (PMC, Brodmann area 6, likely to underlie the FC3/FC4
positions) [110].

3.4.1 Experimental setup and data collection

Seven healthy young adults (a subset of the 15 participants in the preceding study;
mean± SD age 26.0± 2.3 yr, age range 23-30 yr; 5 female, 2 male) participated in
this study. The experiment consisted of 16 trials of finger tapping (8 left, 8 right,
alternating), each of 10 s duration, with 20 s rest periods between successive episodes.
Before the experiment began, the subject was required to sit quietly for the collection
of 4 minutes of resting-state data.

NIRS recordings were conducted with a NIRSport system (NIRx GmbH, Berlin, Ger-
many), with sampling frequency 7.81 Hz, at wavelengths 760 nm and 850 nm, with
8 sources and 8 detectors. Sources and detectors were placed into a cap (EASYCAP,
Herrsching, Germany), arranged according to the International 10-20 system. The
source-detector distance was 2.5-3 cm, to form 20 channels evenly distributed between
the hemispheres (Figure 3.4).
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Figure 3.4: (A) 8 sources × 8 detectors montage (covering the motor
region); (B) Source-Detector pairs and corresponding channels

A spatial sensitivity profile was calculated based on the Monte Carlo photon migration
modeling available in the AtlasViewer software [111], to prove that the probe design
was selective for the regions relevant to the finger tapping task (underlying the 10-20
positions FC3/FC4 and C3/C4). The Monte Carlo modeling was performed with 106

photons. Figure 3.5 shows the probe arrangement and the resulting sensitivity profile.

3.4.2 Data analysis

The data analysis aims at identifying which channels are significantly activated by the
motor task and can therefore be labeled active, as opposed to the not active channels
that are not significantly activated by the task. For this reason, no distinction was
made between left and right-hand finger tapping. The data was analyzed with the
GLM analysis and the LDA-based method described in the previous section.
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Figure 3.5: (Left) Probe setup. The arrangement of optodes fol-
lows the 10-20 standard and the placement is analogous in the other
hemisphere. Red dots indicate the sources, blue dots indicate the detec-
tors, and yellow lines indicate the formed channels. (Right) Sensitivity
profile of the probe setup. The sensitivity profile has units of mm−1.
Multiplying the value of the sensitivity profile of a given measurement
channel by an absorption change (mm−1) and the area over which that
change occurs (mm2) will give an estimate of the optical density change
that would be measured by that channel as a result of that absorption

change [111]
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Analysis with GLM

For the GLM analysis, the stimulus times of the task were convolved with a canonical
hemodynamic response function (peakTime = 6s) to produce the single column (“Task”
condition) of the design matrix. A GLM was applied using the autoregressive iteratively
reweighted least squares algorithm available in the NIRS Brain AnalyzIR toolbox [65].

Analysis with LDA

For the LDA analysis, amplitudes and slopes were computed for each trial of finger
tapping. For the “Rest” condition, an equal number (n = 16) of time intervals were
produced by randomly sampling the initial 4 minutes of resting-state data of each
measurement, and features were extracted. The sampling of “Rest” trials and the
classification Task vs. Rest was iterated 2000 times for each channel and for each
subject, to ensure robustness of the analysis. Ten repetitions of 4-fold cross validation
were conducted and each of the 32 trials (16 task and 16 rest) was assigned a classifier
output via Equation 3.2.

3.4.3 Statistical analysis

The results of the GLM analysis were statistically assessed by computing the channel-
wise t-statistics (Equation 3.1) from the resulting β values, then testing them via
two-tailed t-tests. The outputs of the LDA analysis were divided into “Task” and
“Rest”, then averaged over folds and over repetitions, and tested by comparing the
two distributions (Task and Rest). The rationale of this procedure is that, if the task
elicited a hemodynamic response and the classifier had a good discrimination between
“Task” and “Rest”, then the distributions of the outputs should be well separated and
the channel will be labeled as active. If, on the contrary, the two distributions are not
well separated, it means that for that channel the execution of the task did not elicit a
response substantially different from the resting state, and the channel will be labeled
as not active. As explained in Section 2.1.2, the class label active is assigned to positive
outputs, while not active to the negative outputs. Therefore, the channel-wise p-value
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in this case was computed as the fraction of “Rest” outputs equal or greater than the
mean value of the distribution of the “Task” outputs [112].

3.5 Results

3.5.1 Theoretical formulation

Performance of the algorithms: overall classification accuracies

Our first goal was to theoretically compare the two algorithms in terms of overall clas-
sification accuracy, both on synthetic and on real data. The other important objective
was to evaluate whether, with real data, the achieved results are consistent across sub-
jects, and to evaluate the impact of inter-subject variability on the performance of each
algorithm.

Figure 3.6: (A) ROC curves for GLM and LDA, using HbO, HbR and
HbO+HbR features (only for LDA). The curves for the real resting-state
data (solid lines) are obtained by averaging the individual curves across
subjects, while dotted lines refer to the completely synthetic dataset.
(B) The table reports the mean classification accuracies, over all itera-
tions, of the three algorithms applied to synthetic and real resting-state
data. The classification accuracy is computed from the ROC curves at

the false positive rate of 0.05.

Figure 3.6 A shows the ROC curves obtained using synthetic and real resting-state
data. In both cases the LDA classifier based on HbO+HbR features outperforms GLM
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applied to either HbO or HbR, with results tabulated in Figure 3.6B. A difference
between GLM results for synthetic and real resting-state data is also seen, in that
GLM(HbO) is more accurate than GLM(HbR) in the former case, while GLM(HbR)
is more accurate than GLM(HBO) in the latter.

We speculate that this difference indicates that the synthetic data does not entirely
represent the properties of the real physiological data. For example, it certainly does
not reflect the frequency structure of the resting-state signal, or its spatial dependence
across the different channel positions. In addition, the temporal correlation in the
synthetic data was imposed by using an autoregressive model of fixed order (N =
30) [5], which doesn’t account for the variability that can be found in real data from
different subjects.

To further investigate the performances of the three methods, we computed the classi-
fication accuracies for each subject individually (Figure 3.7 A). The barplots indicate
the classification accuracy as computed from the individual subjects’ ROC curves at
p = 0.05, and the red line indicates the mean accuracy over all subjects, respectively
(mean± SD) 78.76± 5.1% for LDA(HbO+HbR), 65.76± 10.2% for GLM(HbO) and
70.29± 8.9% for GLM(HbR), the standard deviation being computed across the 15
subjects. The individual errorbars represent the standard error of the mean across the
5000 repetitions.

Finally Figure 3.7 B shows the classification accuracies computed on two separate sets
of data: data for all the channels that did not have Mayer waves modelled (i.e., no
“double bumps” [Figure 3.2 A]) and data for all the channels that did have them. In
this case, for the data without Mayer waves we found that LDA achieves an accuracy
of 79.1 ± 6%, GLM(HbO) 77.8 ± 9.3% and GLM(HbR) 82.4 ± 8.2%, while for data
with Mayer waves, the accuracy decreases to 77.0 ± 11% for LDA, 62.4 ± 7.5% for
GLM(HbO)and 64.8± 6.8% for GLM(HbR).
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Figure 3.7: (left) Individual classification accuracies for the
real-resting-state datasets, for LDA(HbO+HbR), GLM(HbO), and
GLM(HbR) (left, middle, right). The red line indicates the mean ac-
curacy reached by each algorithm over all the subjects. The errorbars
represent the standard error of the mean for each individual subject, over
all the iterations performed. The individual mean accuracies achieved
by the LDA method is significantly higher than those achieved by the
GLM(HbO) (p = 0.0002) and GLM(HbR) (p = 0.01), but no signifi-
cant difference was found between GLM(HbO) and GLM(HbR) (p =
0.24, Repeated Measures ANOVA 1-way with Fixed Effect: “Analysis
Method”). Also, the individual standard errors of the mean yielded by
the LDA are significantly lower than those achieved by the GLM(HbO)
and GLM(HbR) (p=0.021 and p=0.022, respectively), but no differ-
ence was found between those yielded by GLM(HbO) and GLM(HbR)
(p=0.97). (right) Classification accuracies computed on two subsets
of the real-resting-state datasets, one completely free from Mayer-wave
oscillations and the other one with all the HRFs tainted by double-
bumps. For the LDA, there is no significant difference between the ac-
curacies reached in presence and absence of Mayer waves (paired t-test,
p = 0.44), while for the GLM the difference was statistically significant
(GLM(HbO), p < 0.001, GLM(HbR), p < 0.001) Note: the analysis,
both with LDA and with GLM, was conducted on the two datasets

(with and without Mayer waves) independently

Correlation between classification accuracies and individual measures

The goal of this analysis was to quantitatively assess the impact of individual charac-
teristics (hair color, gender, age), and of the measurement time of day, on the indi-
vidual classification accuracy. Table 3.1 shows the results of the LME analysis. The
model shows a significant correlation between Hair Color and individual accuracies for
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GLM(HbR), but not for any of the other fixed effects in the model, and there are no
significant correlations for either LDA or GLM(HbO). Figure 3.8 reports distributions
of individual accuracies grouped by hair color. More plots of accuracy distributions
grouped by the other effects are provided in the Appendix (Figures A.1, A.2, A.3).

LDA:HbO + HbR GLM:HbO GLM:HbR
ß p-value ß p-value ß p-value

Age 0.0042 0.1762 0.0010 0.8734 0.0068 0.1120
Hair Color 0.0361 0.1875 -0.0936 0.1020 -0.1408 0.0052
Gender 0.0038 0.1476 -0.0077 0.1552 -0.0026 0.4904
Time of Measurement -0.0187 0.5109 0.0573 0.3308 -0.0072 0.7540

Table 3.1: Results of the linear model fitted to the individual classifi-
cation accuracies, with fixed effects: Age, Hair Color, Gender and Time

of Measurement

Figure 3.8: Distribution of individual classification accuracies within
the two hair color classes (six blond and nine brown). The accura-
cies reached by the GLM(HbR) are significantly higher for blond-haired
subjects than brown-haired. More distributions for the other modelled
effects can be found in the Appendix. The central red marks represent
the median values, the blue boxes extend from the 25th to the 75th per-
centiles, and the black whiskers extend to the most extreme data points

not considered outliers (which are marked with red crosses).

3.5.2 Experimental results

Results from the experimental-data study are reported in Figure 3.9, as t-statistic
values for GLM(HbO) and GLM(HbR), and classifier outputs for LDA, for p ≤ 0.05
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threshold. White cells indicate that the channel did not reach statistical significance.

Figure 3.9: Classifier results for the finger-tapping experimental data,
for the three different analyses. GLM t-statistic values and LDA clas-
sifier outputs (the latter derived from application of the separating hy-
perplane formula) are thresholded at p ≤ 0.05. Blank cells indicate non-
significant values (i.e., that the corresponding channel was classified as
not active). The individual minimum value for statistical significance
for the results of the LDA classifier varied across channels, ranging from
0.12 to 1.18. The numbers of channels classified as active by the three
analyses are significantly different (p = 0.01, 1-way repeated measures

ANOVA).

To better understand the source of the variability in the results, plots of the block-
averaged trials for those channels, and topographic images of the channel-wise output
values (LDA output values, and βs for GLM HbO/HbR), were produced for each
subject. The images were produced via the visualization tool available in nirsLAB
v2017.06 [66].

Plots for all subjects and corresponding output values are available in the Appendix,
while here only the plots for subject 1 and subject 2 are reported.

Subject 1: Subject 1 results are non-significant at p = 0.05 for every channel according
to the GLM(HbO) analysis, and significant for channels 1, 4 and 16 in the GLM(HbR)
analysis, while the great majority of channels are classified as active (p<0.05) by the
LDA classifier.

In the plots of Table 3.10, we observe that the HbO time traces are greatly affected
by the double-bump typical of the 0.1 Hz systemic oscillation, and also that the first
peak after stimulus occurs earlier than the onset-to-peak time of the theoretical model
(6 sec).
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An enlarged depiction of the block-average behaviour for Channel 16 is shown in Figure
3.11, together with the plots of the HRF model used in the GLM analysis and the
block averages of the resting-state trials used by the LDA classifier. The resting-
state HbO trace also includes a feature that is qualitatively similar to a hemodynamic
response, but the task response is correctly discriminated from the resting-state time
series nevertheless (p<0.001).
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Subject 2: All channels of Subject 2 are classified as active (p = 0.05) in the GLM(HbO)
analysis, while 6 of 20 are classified as active by the GLM(HbR) analysis, and 19 of 20
by the LDA classifier (3.13). A depiction of Channel 5 is presented in Figure 3.12).

Figure 3.11: Block-average data for Subject 1, Channel 16. On the
left the plot of the averaged signal is accompanied by the plot of the
model used by the GLM analysis, namely a canonical HRF with peak
time = 6s. On the right, the same plot is accompanied by the plot of an
example of average of resting state trials against which the task trials

are classified.

Figure 3.12: Block-average data for Subject 2, Channel 5.
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Corresponding results for all subjects can be found in the Appendix. For each subject,
a table is reported with:

• Topographic images of channel-wise GLM β values and LDA classifier outputs.
Large positive (or negative) β values indicate a good fit of the GLM model to the
HbO (or HbR) data, and a correspondingly better chance of that channel having
a statistically significant hemodynamic response. LDA outputs are negative if
the channel is classified as not active and positive is the channel is classified as
active. Therefore, a large positive classifier output value indicates a good chance
that the channel is labeled as active.

• Block averages of the signal in response to the stimulus (read and blue curves for
HbO and HbR, respectively). The shaded error bars indicate the standard error
computed over the experimental trials. The GLM plots are accompanied by the
canonical basis function used by the model; the LDA plots are accompanied by
the block averages of the resting-state trials. The block averages are shown only
for the channels covering the motor cortex.

3.6 Discussion

The statistical analysis of fNIRS data is often complicated by serial correlations, inter-
subject variability of the hemodynamic response, and the presence of systemic oscilla-
tions and possibly motion artifacts. The study presented in this paper demonstrates
that a data-driven approach (linear discriminant analysis, LDA) to data analysis is
more robust than the most commonly employed model-based approach (general linear
model, GLM) to many of these issues, and can therefore improve the detection of the
hemodynamic activation.

Advantages of the proposed LDA approach are that no assumptions on the structure
of the noise are necessary, and that no prior knowledge of the shape of the expected
hemodynamic response is assumed. The LDA method compares data from different
temporal segments of the same recording; namely, it compares, within the same subject,
time intervals corresponding to the resting state and to execution of the task. Thus
it constitutes a self-referencing approach, and in other fNIRS imaging contexts it has
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been shown that this data-analysis strategy can enhance detectability of effects that
are small in comparison to other sources of intra- and inter-subject variance [113]. As
such, LDA can generate information potentially superior, or at least complementary,
to the information yielded by a model-based approach. For example, if LDA recog-
nizes activation where the GLM doesn’t, it could mean that the GLM model does not
accurately represent the real HRF, and it might be worth investigating why this is so.

An additional strength of the multivariate LDA classifier proposed in this study is
that it combines features from the simultaneous variations in HbO and HbR time
series, while the GLM approach analyzes them independently. This results in the
former yielding a univariate channel-wise metric for “activation”, while the latter yields
separate beta coefficients for HbO and HbR. Performing statistical tests on a single
metric is highly desirable, especially for group-level studies.

To quantify and compare the classification performances of the three methods, we
made use of both synthetic and real resting-state data. The use of synthetic data,
for which the ground truth is known with certainty, also allowed us to benchmark our
methodology against recent literature regarding GLM classification accuracy [6].

The multivariate LDA classifier yielded greater classification accuracy than GLM, for
both the synthetic and real resting-state data (78.7% for LDA, 65.76 for GLM(HbO)
and 70.3% for GLM (HbR), in the real resting-state data case [Figure 3.6A]). Moreover,
we demonstrated that the LDA had less inter-subject variability, as illustrated in Figure
3.7, where the standard deviation of individual results was 5.1% about the mean for
LDA, as opposed to 10.2% for GLM(HbO) and 8.9% for GLM(HbR). In addition,
the linear mixed model fit of individual-subject accuracies to predictors Age, Hair
Color, Gender, and Time of Measurement revealed a significant effect only for Hair
Color and only on the accuracy achieved with GLM(HbR) (blond-hair accuracy >
brown-hair accuracy). The latter findings show that the observed differences between
accuracies of the model-based and data-driven approaches is not simply accounted for
by obvious (and easily absorbed into the classification model) demographic or physical
characteristics of either the subject (e.g., gender) or the measurement (e.g., time of
day).

The LDA results also are less sensitive than those for GLM to the “double bumps”
that were used to approximate Mayer waves synchronized with hemodynamic task
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responses (in the presence of double bumps, classification accuracy falls from 79.1± 6%
to 77.0± 11% for LDA, from 77.8± 9.3% to 62.4± 7.5% for GLM(HbO), and from
82.4± 8.2% to 64.8± 6.8% for GLM(HbR) [Figure 3.7B]). These results confirm that
the GLM, at least when used with a fixed basis function for all subjects, as was the
case here, is less successful than LDA at picking up individual variability and atypical
activation patterns, and is at risk of false negatives. These results suggest the possibility
that the model used does not accurately represent the real hemodynamic responses and
that therefore a different model would need to be designed. In this respect, the results
of the one analysis can be used in support of interpreting the results of the other.

As a control study, additional simulations were performed to identify the classification
performance of the LDA-based method when applied to data that did not actually
contain any task-induced responses (either real or simulated) in the “Task” time in-
tervals. The classifier performed at chance level in these cases (results not shown),
suggesting that the possibility of false-positive results in the analyses of simulated and
real task-response data is not an important concern.

To further understand and characterize the performances of the two pipelines in a real
application, we used the two methods to analyze data from a motor experiment. The
optode array covered the motor cortex and its vicinity on both hemispheres. Eight out
of twenty channels were placed over the scalp positions most likely to cover the motor
area. In this scenario we could verify that the LDA-based classifier is less susceptible
to than GLM to 0.1 Hz systemic oscillations. This is illustrated for the subject con-
sidered in Figure 3.10: due to the systemic oscillations, the block-average HbO and
HbR traces in the eight channels over the motor cortex differ from the hemodynamic
response modeled in the GLM computations. Consequently, the GLM recognizes none
of these channels as “active”. Conversely, by contrasting “Task” temporal segments
with “Rest” temporal segments, the LDA classifier finds significant differences in all of
these channels, regardless of the presence of Mayer waves.

On the other hand, the LDA-based method generally classified more channels as active
in response to the motor task than the canonical GLM analysis did. Because no estab-
lished ground truth exists in the real data, this classification result warrants cautious
interpretation. Especially for channels that extend beyond the center of the motor
cortex, the activations found cannot be unambiguously attributed to neural activation
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caused by the motor task. However, the resting-state data classification results, and
inspection of the experimental hemoglobin time traces, show that these classification
results also are not easily dismissed as false positives.

In fact, as shown in recent literature [26], the fNIRS signal is not composed exclusively
of cerebral task-evoked signal but also includes cerebral non-evoked signal (“cerebral
resting state”), extracerebral task-evoked signal (“extracerebral confound”), and ex-
tracerebral non-evoked signal. Quantitative characterization of the three latter com-
ponents is still an open research question [25], which is why they could not be modeled
separately in our simulations. However, they are likely to be present in the motor
experiment data and offer a plausible explanation for the classification results: when
a difference is found between “Task” and “Rest”, not only the cerebral response to
the task, but also all the systemic hemodynamic changes provoked in the extracerebral
compartment by the execution the task (e.g., changes in heart rate, blood pressure, res-
piration rate), is discriminated from the resting state. These changes involve the whole
extracerebral layer, and therefore their effect extends beyond the probes that specifi-
cally illuminate the motor cortex [26]. To exclusively associate the found activations
with cerebral recruitment, a step that would be necessary, but is beyond the scope of
the present work, would be to remove from the data the physiological component mea-
sured in the extracerebral layers before the analysis, for example with multi-distance
NIRS measurements [59].

Finally, it is worthy of note that the experimental data, in agreement with the results
of the theoretical simulations, reveal great inter-subject variability in the comparative
sensitivities of GLM(HbO) and GLM(HbR). That is, some subjects’ hemodynamic
patterns are better interpreted, and hemodynamic task responses more detectable,
using HbO data, while others’ are better explained using HbR. This is a manifestation
of the highly subject-specific hemodynamic fingerprint that has been reported [103]. A
classifier, such as the one proposed, that takes into account simultaneous variations of
both hemoglobin components has the potential to overcome this limitation and offer a
more flexible analysis that adapts to the individual’s own hemodynamic characteristics.
In this respect, the proposed approach would be of especial application for populations,
such as young children, that exhibit “atypical” patterns of hemodynamic responses,
such as uncoupled HbO and HbR or inverted response direction [114, 115].
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Nevertheless, in the current form the proposed approach only classifies “activations”
vs “non-activations.” As a future development, a non-parametric framework can be
formulated in order to test more complex hypotheses on the distributions of classifier
outputs, such as the comparison of amplitudes of the responses induced by different
conditions, within subjects or between groups of subjects.

3.7 Lessons learned

• With the proposed LDA-based approach, no assumptions on the structure of the
noise are required, and no prior knowledge of the shape of the HRF is expected.

• The proposed LDA-based classifier combines features from the simultaneous vari-
ation of HbO and HbR.

• LDA yielded classification accuracies that were, both overall and at individual
level, higher than those yielded by the GLM analysis; also, they were more stable
across subjects, i.e. less susceptible to individual variations, and less affected by
the presence of systemic oscillations.

• When employed in the context of a motor experiment, LDA classified as active
channels that extend beyond the motor cortex; the reason for this result could
likely be found in the systemic hemodynamic changes provoked in the extracere-
bral compartment by the execution of the motor task, that are picked up by the
classifier and used for the “task vs rest” classification.

• Future work should include the removal of the physiological confound from the
data, by means of short-distance channels. This procedure would allow to exclu-
sively associate the found activations with cerebral recruitment.
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Chapter 4

Investigating the effect of literacy
on the functional organization of
the brain with univariate analysis
of fNIRS data

4.1 Introduction

Reading is a complex cognitive task. It is usually acquired during childhood, it requires
explicit effort and training, and it relies on a whole range of brain functions in order
to develop successfully.

In particular, it has been shown that the acquisition of literacy skills is associated
with the activation of a specific brain network that includes the temporo-parietal,
occipito-temporal and inferior-frontal areas of the brain [116]; furthermore, fMRI stud-
ies demonstrated that as the development of these skills progresses, activation of these
areas becomes less and less bilateral: while it is common in beginning readers to “em-
ploy” both left and right hemisphere (LH and RH, respectively), skilled reading involves
mainly the LH only [117, 118].

This knowledge is very useful: if a “typical-development trajectory” can be clearly
charted, then it is also possible to identify deviations from it and to characterize the
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neurobiological features of reading disability, or to follow up a remediation program
for reading skills improvement.

Studies have further shown that, in addition to brain changes, reading skills can also be
predicted at behavioural level, by how well a child can read “pseudo-words”, namely
words that are phonologically but not lexically possible: pseudo-words – or “non-
words” - are often used in conjunction to real words in experiments of developmental
psychology because they allow testing separately phonological and lexical skills. It has
been shown that while both skilled and less skilled readers can repeat real words, less
skilled readers fail to repeat pseudo-words [52, 119].

The knowledge about the changes in brain organization associated with reading devel-
opment and about the predictive power of behavioural measures lay the foundations
of this project.

On one hand, neuroimaging has had a crucial role in the insights we have today about
the brain organization changes, and this is especially true for fMRI; however, there
would be several advantages of using fNIRS to follow these brain changes: its ease-
of-use, low operating costs and portability would facilitate greatly the diagnosis of
reading disability, that could be formulated in a more child-friendly setting and using
ecological conditions; but especially it would make possible a tight-scheduled follow-up
of the treatment, since there are no burdensome costs associated with each session, as
it is the case for fMRI.

For these reasons, the first goal of this project was to ascertain whether it is possible
to gain with fNIRS the same insights about brain organization changes associated to
reading development that have gained with fMRI.

On the other hand, the knowledge about the predictive power of certain behavioural
measures like pseudo-word repetition can be also be explored to see how this measure
correlates with hemodynamic patterns at different levels of literacy skills.

The ultimate ambition of this project is establishing an “fNIRS-based predictor” of
literacy: if it is possible to observe developmental changes in brain organization and also
to verify that non-words elicit different brain patterns depending on reading skills, then
we have a simple yet effective tool for facilitating the diagnosis of reading difficulties.
This project is the object of this Chapter and of Chapter 5.
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In particular, in this Chapter we apply a standard processing routine, that includes
the use of a General Linear Model at subject-level, to respond to the two questions:
can fNIRS see the same as fMRI does? And can fNIRS measure different hemody-
namic patterns depending on reading skills? The first question could be successfully
addressed: as it is illustrated in the Chapter, it was possible to observe a clear shift in
the cerebral recruitment, from bilateral to left-hemispheric, as reading skills develop.

As for the second question, however, we will see that it was not possible, with the
employed analysis approach, to highlight any differential activation to non-words de-
pending on reading skills. For this reason, the focus of the next chapter will be to use
an alternative procedure based on Multivariate Pattern Analysis to try and respond to
the same question.

4.2 Methods

4.2.1 Participants

Eighty-three (83) healthy children (52 males, 31 females) between the ages of 3.7 and
7.9 years (M: 5.6, S: 1.05) participated in this study. Participants were recruited from
New Haven and the surrounding areas of Connecticut. The experimental protocols were
approved by the Yale Institutional Review Board. Participants were native English
speakers. Children who had a formal diagnosis of a developmental disorder did not
meet eligibility criteria for this study.

Measure

n 83
Age (years, M=mean, S= standard deviation) 3.7÷7.8 (M: 5.6, S: 1.05)
Gender (Male:Female) 52:31
IQ 73÷134 (M:110.3, S:13.6)
Letter-Word Decoding (WJ) 4÷55 (M:25.8, S: 12.3)

Table 4.1: Participant’s summary information
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4.2.2 Behavioural assessment

Behavioural testing sessions assessed children’s reading abilities. In particular, the as-
sessment was performed using the standardizedWoodcock-Johnson III Tests of Achieve-
ment (WJ-III; Woodcock, McGrew, and Mather, 2001).

WJ represents a comprehensive battery of psycho-educational tests aimed at measuring
general intellectual abilities, specific skills, oral language and academic achievement
across a wide age range. Out of the comprehensive collection of tests available, we
focused on the “Letter-Word Identification” (WJ-LW): in this sub-test, participants
are presented with written words of increasing difficulty, and they are required to
read them out loud. The raw score represents the number of words that were read
correctly. As simple as it is, the raw WJ-LW identification is an effective score of
reading abilities. For this reason, it was used in this study as a measure of literacy
skills of the participants and will be called from now on just “Reading Score”.

Additionally, children’s verbal and performance intelligence quotient (IQ) was mea-
sured using the Wechsler Abbreviated Scale of Intelligence (WASI-II or WPPSI-IV).

4.2.3 Experimental design

Participants were instructed to passively listen to 16 blocks of auditory stimuli, played
though headphones while looking at a fixation cross that appeared on a monitor.

Each auditory condition consisted of 8 blocks, with each block consisting of the repeated
sequence of one word or non-word. Non-words conformed to the phonological properties
of English, but had no meaningful referent. The duration in each block was 7 s and
contained 6 repetitions of the same word or non-word, with 100 ms of silence between
each repetition. There was a 13 s rest period between each block and the order of
blocks (word vs. non-word) was randomized.

Throughout the exposure to these stimuli, participants’ fNIRS signals were measured.
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Figure 4.1: Structure of the experimental design

4.2.4 Data acquisition

4.2.5 Optode localization

A Patriot 3D Digitizer (Polhemus, Colchester, VT) was employed to measure for each
participant the anatomical locations of optodes in relation to standard head landmarks.
For each channel, the corresponding Montreal Neurological Institute (MNI) coordinates
were obtained using functions available in the NFRI toolbox [120], and used to perform
anatomical labelling, according to the Talairach atlas [121, 110].

The anatomical location of each channel can vary sensibly across different subjects,
due to individual anatomical differences, and this can affect the group level results. To
account for this effect, median MNI coordinates across participants were calculated for
each channel (Table 4.2), and were later used as described in Section 4.2.7. With the
MNI coordinates it was possible to determine the anatomical location of each channel,
using the Talairach atlas [110].

Ch# MNI coordinates Brodmann Area Pr(%)

X Y Z

1 -65.6 -52.33 -14.83 37 - Fusiform gyrus 64.8
2 -70 -28.33 -16.5 21 - Middle Temporal gyrus 97.5
3 -65.5 -8.33 -23.5 21 - Middle Temporal gyrus 58.7
4 -35.6 62.83 -7 10 - Frontopolar area 79.1
5 -12.3 72 -1.5 10 - Frontopolar area 98.8
6 17 72 -0.5 10 - Frontopolar area 100
7 39.3 63.33 -6.5 10 - Frontopolar area 87.3
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8 68.17 -6.33 -21.33 21 - Middle Temporal gyrus 81.6
9 72 -26.5 -14.83 21 - Middle Temporal gyrus 98.7
10 67 -48.67 -15.17 37 - Fusiform gyrus 54.8
11 -62.3 -61 -5.5 37 - Fusiform gyrus 84.7
12 -70 -39.33 -2 21 - Middle Temporal gyrus 88.8
13 -70 -17 -6.33 21 - Middle Temporal gyrus 97.5
14 -62 2.3 -19 21 - Middle Temporal gyrus 100
15 -49.3 45.83 -5.33 47 - Inferior prefrontal gyrus 98.5
16 -25.3 67 9.34 10 - Frontopolar area 100
17 5 70 14.67 10 - Frontopolar area 100
18 28.83 67.67 10.17 10 - Frontopolar area 100
19 52 47.33 -2.83 47 - Inferior prefrontal gyrus 78.3
20 64 4.33 -14.83 21 - Middle Temporal gyrus 100
21 72 -14.5 -3.33 21 - Middle Temporal gyrus 83.5
22 72 -37.67 -0.83 21 - Middle Temporal gyrus 64.2
23 64 -58.5 -5.67 37 - Fusiform gyrus 93.1
24 -67.17 -50.33 9.67 22 - Superior Temporal Gyrus 65.8
25 -69 -26.33 13.5 42 - Primary and Auditory Association Cortex 98.7
26 -66.5 -5.33 7.83 22 - Superior Temporal Gyrus 93.2
27 -56.67 25.17 3.33 45 - pars triangularis Broca’s area 56.8
28 -12 66.67 24.83 10 - Frontopolar area 100
29 15.67 67 25.83 10 - Frontopolar area 100
30 60 27.67 7.67 45 - pars triangularis Broca’s area 96.3
31 68 -3.33 9 22 - Superior Temporal Gyrus 96.1
32 71.17 -25.33 13.17 42 - Primary and Auditory Association Cortex 97.5
33 69 -48.17 10.83 22 - Superior Temporal Gyrus 88.3
34 -63 -59.33 21.33 39 - Angular gyrus, part of Wernicke’s area 50.7
35 -68 -36.5 30.67 40 - Supramarginal gyrus part of Wernicke’s area 100
36 -67 -12.33 27.33 1, 3 - Primary Somatosensory Cortex 50.5
37 -61 11.33 14.17 44 - pars opercularis, part of Broca’s area 100
38 -51 41 14.33 46 - Dorsolateral prefrontal cortex 98.6
39 -24.7 54.83 34.33 9 - Dorsolateral prefrontal cortex 90.6
40 1.67 57.17 39.67 9 - Dorsolateral prefrontal cortex 100
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41 27.33 55 34.67 9 - Dorsolateral prefrontal cortex 98.2
42 53 40.33 18.67 46 - Dorsolateral prefrontal cortex 100
43 63 13.83 17 44 - pars opercularis, part of Broca’s area 90.7
44 69 -9.33 28.5 6 - Pre-Motor and Supplementary Motor Cortex 47.4
45 70 -34.67 29.5 40 - Supramarginal gyrus part of Wernicke’s area 100
46 64 -58.33 21 39 - Angular gyrus, part of Wernicke’s area 44.7
47 -64 -46.5 39.67 40 - Supramarginal gyrus part of Wernicke’s area 100
48 -65 -22.5 39.33 1,2,3 - Primary Somatosensory Cortex 98.8
49 -63 1.83 31.33 6 - Pre-Motor and Supplementary Motor Cortex 97.3
50 -53 30.33 26.67 46 - Dorsolateral prefrontal cortex 95.7
51 -37.67 44.17 36.33 9 - Dorsolateral prefrontal cortex 96.2
52 -12.33 47.67 49.67 8 - Includes Frontal eye fields 100
53 14.33 47.33 50.5 8 - Includes Frontal eye fields 100
54 38.67 44.67 38 9 - Dorsolateral prefrontal cortex 100
55 55 29.67 28.5 46 - Dorsolateral prefrontal cortex 98.6
56 65 3.33 33.33 6 - Pre-Motor and Supplementary Motor Cortex 87.7
57 67.5 -22.5 40.67 1 - Primary Somatosensory Cortex 50.6
58 65.17 -47 38.67 40 - Supramarginal gyrus part of Wernicke’s area 100

Table 4.2: The X, Y, and Z columns represent median MNI coordinates
across subjects. Anatomical labelling of the MNI coordinates was con-
ducted using the Talairach atlas. The last column lists the atlas-based
probability that the channel coordinates are within that anatomical loca-
tion. In this table only the Brodmann area with the highest probability

is displayed; the complete table is available in the Appendix.

4.2.6 Pre-processing

Data were pre-processed using custom scripts written in MATLABTM. In particu-
lar, raw data were converted into optical density and then concentration changes of
oxy- and deoxyhemoglobin (HbO and HbR) using the modified Beer-Lambert Equa-
tion (∆HbO = −1.488× ∆A780 + 0.5970× ∆A805 + 1.4847× ∆A830, ∆HbR = 1.845×
∆A780 − 0.2394× ∆A805 − 1.0947× ∆A830 , with A780, A805 and A830 being the op-
tical absorbances at 780, 805 and 830 nm, respectively).
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After conversion into HbO and HbR changes, time traces were screened to detect and
correct motion artifacts. This step was performed using the Wavelet-based algorithm
described in [55] and available in Homer2 [64], and applied with parameter threshold
=1.5 and order N=2 Daubechies wavelet. After the motion artifacts correction, the
data quality of the channels was evaluated by computing the coefficient of variation
(CV) of each channel, defined as the standard deviation of the timeseries divided by its
mean value. Channels having CV > 8% for either HbO or HbR were discarded from
the analysis. This criterion was defined by visual inspection.

The next step was to remove from the data the contribution of global systemic effects
originating in the superficial layers of scalp, dura, and peripheral vasculature and not in
the cortex [26]. To this end, a spatial filter based on principal component decomposition
[58] was applied to both HbO and HbR time traces.

Finally, a band-pass frequency filter was applied to the data in the range 0.01-0.2 Hz,
to ensure that the time traces did not contain contributions from either the very low
frequency systemic fluctuations, the respiration, or the heart rate oscillations. The
filter was designed as a zero-phase digital FIR filter with the MATLAB function filtfilt.

4.2.7 Statistical analysis

The statistical analysis at Subject Level was performed with a General Linear Model
(GLM), implemented via tools in the NIRS Brain AnalyzIR Toolbox [65]. In particular,
the design matrix was obtained by convolving the stimuli times with a Canonical
Hemodynamic Response Function (onset-to-peak time= 6 s, undershooting time= 16
s, duration= 32 s), and it was fit to the timeseries using the “iteratively reweighted
least squares autoregressive model” presented in [6] and available in the toolbox. This
implementation has been shown to have a good control of type-I-error rate [5].

This analysis resulted in two β coefficients for each experimental condition (Word,
Non-Word).

To account for the fact that the anatomical location of each channel varies across sub-
jects, beta values were projected into the MNI standard brain space, namely, they were
normalized via linear interpolation according to the distance between each subject’s
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actual channel location and the median location of that channel across all subjects
(Table 4.2), according to the procedure described in [122]. This step ensured beta
values could be correctly compared at group-level.

For each channel independently, the Group Level Analysis was carried out by fitting a
2x2 Linear Mixed Model on the ß coefficients resulting from the Subject Level Analysis,
with between-subject factor Group (Non Readers, Readers) and within-subject factor
Stimulus Type (Word, Non Word), random intercept Participant and random slope
Stimulus Type. The model was implemented with the MATLAB function fitlme.

On each model, an Analysis of Variance (ANOVA) was performed aimed at quantify-
ing the main effects of Group and Stimulus Type and the interaction effect Group x
Stimulus Type. Additional T-tests were conducted only on the channels that resulted
significant (p < 0.05) from the previous step.

4.3 Results

4.3.1 Mixed-Effects Linear Model

The results of the channel-wise Mixed Effects Models are reported in Table 4.3, for
both HbO and HbR. To avoid type I errors due to multiple comparisons, p-values were
adjusted using the False Discovery Rate procedure by Benjamini and Hochberg [84].

Both HbO and HbR analyses showed a significant effect of Group in the Right Hemi-
sphere, especially in those channels pertaining to the Middle Temporal Gyrus (BA: 21,
channels 8, 9, 20, 21, 22), Fusiform Gyrus (BA: 37; channel 10, 23), Superior Temporal
Gyrus (BA: 22; channels 31, 33, 46), Supramarginal and Angular Gyri (“Wernicke’s
area", BA:39, 40; channels 45, 46) and the Pars Opericularis and Triangularis parts of
Broca’s area (BA: 44, 45, channels: 30, 43), but only the analysis of HbR results for
channels 32, 33, 44, 45, 46 kept statistical significance after FDR correction.

Only for these channels, additional two-sided t-tests were carried out to assess the
direction of the effect and it was found that in all of them Pre-Readers exhibit a
hemodynamic activation higher than Readers (Table 4.4).
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Main Effect: Group (Non Readers vs Readers)

HbO HbR

Channel F DF1 p pFDR F DF1 p pFDR
8 7.22 203.4 0.0078 0.1130 0.75 243.0 0.3881 0.8658
9 4.69 231.0 0.0314 0.1861 2.30 231.0 0.1310 0.4468
10 0.94 219.0 0.3342 0.6057 6.11 219.0 0.0142 0.0634
20 7.94 243.0 0.0052 0.1011 1.10 243.0 0.2958 0.8658
21 8.07 243.0 0.0049 0.1011 5.17 243.0 0.0238 0.0987
22 4.79 234.0 0.0296 0.1861 6.37 201.9 0.0124 0.0634
23 4.08 213.0 0.0447 0.2159 7.89 187.5 0.0055 0.0510
31 8.07 246.0 0.0049 0.1011 6.72 199.9 0.0102 0.0594
32 6.77 246.0 0.0098 0.1140 8.82 203.4 0.0033 0.0388
33 4.62 234.0 0.0326 0.1861 8.89 191.6 0.0032 0.0388
43 5.80 237.0 0.0168 0.1621 6.21 170.9 0.0137 0.0634
44 4.48 237.0 0.0353 0.1861 10.11 175.1 0.0017 0.0338
45 3.65 243.0 0.0573 0.2555 10.88 191.8 0.0012 0.0338
46 4.59 228.0 0.0332 0.1861 10.19 186.1 0.0017 0.0338
56 2.44 234.0 0.1195 0.4348 7.43 159.5 0.0071 0.0510
57 1.30 225.0 0.2558 0.5506 7.21 180.3 0.0079 0.0510
58 2.34 231.0 0.1274 0.4348 7.36 178.3 0.0073 0.0510

Main Effect: Stimulus Type (Word vs NonWord)

1 4.92 180.5 0.0278 0.4744 4.11 180.9 0.0440 0.3070
2 5.14 185.2 0.0246 0.4744 4.11 179.4 0.0442 0.3070
3 5.73 177.1 0.0178 0.4744 4.17 168.1 0.0427 0.3070
11 3.93 182.7 0.0491 0.4744 3.65 182.5 0.0577 0.3070
12 4.03 181.9 0.0462 0.4744 4.14 177.7 0.0435 0.3070
13 4.31 189.0 0.0393 0.4744 4.81 172.9 0.0297 0.3070
24 3.49 190.4 0.0632 0.5161 4.16 187.9 0.0427 0.3070

Interaction Effect: Stimulus Type x Group

—

Table 4.3: Channels showing a significant (p ≤ 0.05) effect of Group,
Stimulus Type or Stimulus Type x Group, before FDR correction. The
formula employed for the model was ’beta ∼ stim*group + (stim|id)’;
categorical variables were coded with the “effects” coding, that means
that the sum of the dummy coefficients amounts to zero. This is also
known as deviation coding and it is appropriate for testing main effects

and interaction effects [123]90
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Channel t degrees of freedom p
32 -2.62 244 0.0092
33 -2.82 232 0.0052
44 -3.23 235 0.0014
45 -3.37 241 0.0009
46 -3.14 226 0.0019

Table 4.4: Results of two-sided t-tests on HbR activation values be-
tween Pre-Readers and Readers in channels 32, 33, 44, 45 and 46. The
negative t-values indicate that the mean of activation in Pre-Readers is
significantly lower than the mean of activation in Readers, in each of

the tested channels.

Figure 4.2: Bar plots of activation values averaged across conditions,
channels (32, 33, 44, 45 ,46) and subjects within each group; bar plots
are reported for both hemoglobin forms to show that, although the test
did not prove statistically significant on HbO values, they nevertheless
mirror the HbR results, in that they both indicate a higher hemody-
namic response in these RH channels in Pre-Readers as compared to

Readers.
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As for the main effect of Stimulus Type, the Mixed-Effects models showed that a few
channels, all located in the LH, mainly associated with the Middle Temporal Gyrus
(BA: 37, channels 1, 2, 3, 11, 12, 13) are significantly associated with a differential
activation between Words and Non Word, but this effect does not hold when the FDR
correction is applied. Therefore, these channels were not followed up to. Finally, none
of the channels resulted statistically significant for an interaction effect of Stimulus
Type x Group, as opposed to what initially was hypothesized.

4.3.2 Block averages

To visualize the time course of activation, blocks were averaged from the onset of the
presentation of the stimulus with a duration of 15 sec. A period of half a second before
the onset was used for baseline correction.

To highlight the Group effect resulting from the statistical analyses, blocks were av-
eraged over subjects within each group, irrespective of stimulus type, and these block
averages are shown in Figure 4.3 along with the scalp map of F-values reported in
Table 4.4. The shaded errorbars in the block averages’ plots represent standard errors
of the mean across subjects within each group. Scalp plots were produced with the
NFRI toolbox [85, 120].
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Figure 4.3: (center) Scalp plot of F-values resulting from the ANOVA
test on the results of the Linear-Mixed Effects model on HbR beta val-
ues. From this analysis, a main effect of Group resulted statistically
significant for channels 32, 33, 44, 45 and 46, whose block averages are
reported around the scalp plot. The plots confirm that in these channels,
hemodynamic activation is greater in Pre-Readers than in Readers.
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4.4 Discussion

Cortical activation to auditory stimuli is known to be related to changes in brain
organization as children develop their reading abilities [52]. In particular, we know
from fMRI studies that, while beginning readers employ a wide network of brain areas
distributed over both hemispheres, the advancement of reading skills is associated with
a shift in the recruitment of brain regions towards the left hemisphere (LH). Also, we
know that while skilled readers are able to repeat effectively both words and non-words,
less skilled readers have a hard time with the latter ones.

With these two concepts in mind, the ultimate ambition of this project is to explore
the feasibility of developing an “fNIRS-based predictor” of literacy: namely, we aim at
investigating whether it is possible to assess someone’s reading skills based solely on the
analysis of their brain patterns in response to words and non-words. In order to do this,
we had first of all to establish if it is possible to observe, with fNIRS, the changes in
brain organization associated with reading development that have been observed with
fMRI, namely, the shift from bilateral to left-hemispheric brain activation. Secondly,
we wanted to see if participants’ reading skills could be correlated to different patterns
of activation in response to non-words.

To this end, we recorded the fNIRS signal of children of various ages while they were
passively listening to words and non-words.

We divided participants into two groups based on their reading abilities: namely, the
first group included children who were able to read up to the simplest 20 words, while
the second group included children who could read more words. We called the first
group “Pre-Readers” and the second group “Readers”.

It is important to note here that groups were clearly not balanced with respect to the
age factor, i.e., the mean age of the Pre-Readers group was much lower than that of
Readers (M: 4.9, S: 0.7 for the Pre-Readers VS M: 6.1, S:0.8 for the Readers), but they
were characterized by similar IQ (M:109.9, S: 13.6 for Pre-Readers, M:110.7, S: 13.9
for Readers) .

The fact that ages were very different in the two groups can be seen as a limitation
of this analysis, but for the goals of this project this was not a problem: indeed,
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we were not interested in distinguishing the effect of brain maturation from reading
development, but instead in exposing any kind of group difference in the perception of
the non-words, irrespectively of the source of this difference.

In the first steps of this project, described in this chapter, we employed a very stan-
dard analysis procedure: pre-processing included motion artifact correction, removal
of global systemic component and frequency filtering; at subject-level, timetraces were
modelled with a General Linear Model with the two experimental conditions, Words
and Non-Words, as predictors. Coefficients resulting from subject-level statistics were
then employed at group-level, to explore whether there was any significant main effect
of Group (Pre-Readers vs Readers), or Stimulus Type (Word vs Non-Word), or, most
interestingly, an interaction effect of Group x Stimulus Type.

This analysis showed an important main effect of Group in the brain areas of the
RH associated with language processing: the Middle and Superior Temporal Gyri, the
Fusiform Gyrus, the Pars Opericularis and the Pars Triangularis. In these areas, we
found that Pre-Readers exhibit a significantly greater hemodynamic activation com-
pared to Readers, irrespective of the type of stimulus. This finding is very important
because it proves that changes in brain organization during reading development can
indeed be observed also with fNIRS, and that has undeniable benefits: the possibility of
observing the developmental trajectory opens up the way to using fNIRS for following
up a reading remediation program, for example.

The second goal of this project, however, could not be pursued: the analysis did not
show any significant interaction effect between Group and Stimulus type, namely, it
was not possible to detect the differential activation pattern in response to Non-Words
between the two groups that was initially hypothesized. Therefore, another analytical
approach was explored that classifies distributed patterns of neural activity in response
to the different stimuli, and it is the object of Chapter 5.
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4.5 Lessons learned

• Pre-Readers exhibit a greater hemodynamic activation than Readers in certain
channels of the Right Hemisphere, when listening to any auditory token – regard-
less of their meaning.

• The group effect was especially circumscribed to the Right Middle and Superior
Temporal Gyri, the Fusiform Gyrus, the Pars Opericularis and the Pars Trian-
gularis, all known to be associated to language processing.

• The group-level analysis did not show a differential activation to non-words de-
pending on the literacy skills.
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Chapter 5

Decoding the mental representation
of word meaning in children to
predict their literacy skills, with
multivariate analysis of fNIRS data

5.1 Introduction

In the previous chapter, a literacy study was introduced where participants of various
ages and literacy abilities were presented with purely auditory stimuli including only
two conditions: words and non-words.

The goal of the study was twofold: on one hand, we aimed at confirming that learning to
read is accompanied by an increasing lateralization towards the Left Hemisphere of the
functions associated to language processing. On the other hand, we also wanted to test
whether it was possible to determine, based solely on the fNIRS patterns elicited by the
two conditions, the literacy abilities of the participants. Our hypothesis is motivated
by the notion, confirmed by several fMRI and PET studies, that Non-Word reading
and Non-Word verbal repetition is more difficult for non- and beginning readers [124];
a correct non-word repetition requires indeed a phonological processing capacity that
is sculptured by learning to read and write [125]. For this reason, non-word repetition
is known to be strongly predictive of reading outcomes [52].
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Motivated by this understanding, our second goal was to test whether this increased
processing effort - that at behavioral level is manifested in failure in non-word repetition
– is encoded in the fNIRS signal. In other words, we wanted to test if it is possible to
distinguish, without using the behavioral evidence, the mental representations of words
and to non-words and, if such a dissimilarity exists, to use it for predicting reading
outcomes.

The first goal was achieved in the previous Chapter: it was possible, indeed, to expose
a more bilateral activation in the Pre-Readers, as opposed to the skilled Readers. This
finding is completely consistent with the literature on the topic and it is the first time,
to our knowledge, that such result has been revealed with fNIRS and by means of such
a simple experimental setup.

The second point, however, was left unresolved: with the applied approach it was not
possible to bring to light a differential activation for the two groups in response to the
two classes of stimuli. Therefore, we followed-up these results with another analytical
approach: Multi-Variate Pattern Analysis (MVPA).

MVPA is an approach aimed at decoding neural activity represented across a dis-
tributed group of channels, by means of powerful classification algorithms [90].

Several studies have shown that these methods can indeed uncover information that
is not revealed by conventional univariate statistical analysis [126, 127, 128, 129], sim-
ply because distributed patterns of neural activity may encode significant information
without producing a robust contrast when considered in a univariate fashion.

For this reason, the use of these techniques has become much widespread especially in
the EEG field , and gradually to the analysis of other neuroimaging data like fMRI [91,
130], MEG [131] and also extracellular recordings [132]; these studies have confirmed
that the distributed patterns of brain activity can decode many different classes of
stimuli [7, 8].

The goal of this work was to use MVPA to classify patterns of hemodynamic responses
to Words and to Non Words, both within-subject and within-group.

Consistently with the work presented in Chapter 3, a classifier was implemented that
used features drawn from the simultaneous variation of both oxygenated and deoxy-
genated components of the hemodynamic response measured with fNIRS.
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Furthermore, the classifier was developed based on Regularized Linear Discriminant
Analysis (LDA), as it was done in Chapter 3, but also on Support Vector Machines
(SVM), in order to compare the results yielded by the two methods.

As for the within-subject analysis, we explored whether the individual classification
performances were representative of the lexical skills of the individuals, by means of
correlation analysis and also by comparing the averages over groups of subjects.

The within-subject analysis was severely limited by the number of trials available for
the trial-by-trial classification; therefore, we also applied the classifier to trials pooled
across subjects, after they were grouped according to their literacy skills (“within-
group” classification).

This chapter builds upon and extends the findings of the following publication:

[11] Gemignani J., Bayet L., Kabdebon C., Blankertz B., Pugh K.R, Aslin R.N. (2018),
Classifying the mental representation of word meaning in children with Multivariate
Pattern Analysis of fNIRS, 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC)

5.2 Methods

5.2.1 Participants

Participants were the same as those described in Chapter 4. Out of 83 subjects, 11
were excluded because they completed less than 8 trials per condition.

In addition to this, 7 (seven) more subjects were discarded from the analysis because,
based on the quality check of the timeseries described in Section 4.2.6, they had more
than half channels with bad quality.

Therefore, the total number of participants used in this analysis was 65 (sixty-five).
Table 5.1 summarizes the characteristics of the new subset:
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Measure

n 65
Age (years, M=mean, S= standard deviation) 3.7÷7.7 (M: 5.5, S: 1.1)
Gender (Male:Female) 35:30
IQ 74÷134 (M:110, S:13)
Letter-Word Decoding (WJ) 4÷55 (M:20.8, S: 13.7)

Table 5.1: Participant’s summary information

Pre-processing

The pre-processing of the data was identical to the one described in Chapter 4. For the
purpose of trials-classification, after the band-pass frequency filter, time traces were
segmented into trials, with a time window of -0.5 s before each trigger to 15 s after; each
trial was then baseline corrected by subtracting the mean value over the 0.5 seconds
before the trigger. This ensured all trial to be aligned at time 0. The grand averages
of the epoched time traces are depicted in Figure 5.1.
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Figure 5.1: Grand averages of the epoched timeseries; timeseries were
averaged across trials, channels and finally subjects. Errorbars represent
the standard error of the mean across subjects. The shaded area of the
plots represent the period of stimulation of 7 seconds, during which
participants passively listened to the auditory stimuli (Words or Non

Words).
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5.2.2 Within-subject classifier

Feature extraction

Features were extracted for each block and for each channel from both HbO and HbR
time traces, separately. The largest peak values of HbO and HbR were computed
within the time window from 5 to 10 seconds after onset of the stimulus, since it’s the
time interval where the peak of the hemodynamic response is most likely to occur [34].

To ensure the meaningfulness of the features in representing the hemodynamic activa-
tion in response to the task, the peak value was computed as the largest positive value
for HbO and the largest negative value of HbR, because HbR is expected to have a
negative deflection in response to neural activation [19, 24].

Each trial’s feature vector was then built by concatenating features from each of the
selected channels. In order to account for the fact that the two hemispheres may
contribute differently to lexical processing, and to explore the possible impact of this
factor on the classification results, three different schemes were employed for channel
selection and classification: in addition to using all channels (whole-brain), we also
employed, for each hemisphere, a combination of several anatomically-defined regions
of interest. Table 5.2 describes the locations of each of them.
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Figure 5.2: (Top) Features are extracted from each block of HbO
and HbR timeseries as the positive and negative peak value, respec-
tively, within the time window [5-10] seconds after the presentation of
the stimulus. Features were normalized by removing their mean value
and dividing by their standard deviation. (Bottom) Distribution of

normalized features for each class, Word and Non Word.
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Channel
subset ID Description Brodmann

Areas
Selected
channels

1 Whole brain – 1. . . 58

2

(RH) Fusiform Gyrus,
Middle Temporal
Gyrus; Inferior pre-
frontal G., Superior
Temporal G, Supra-
marginal G., Angular
G., Pars Triangularis,
Pars Opericularis

37, 21; 47,
22, 45, 39,
40, 44

1, 2, 3, 11,
12, 13, 14,
15, 24, 26,
27, 34, 35,
37, 47

3

(LH) Fusiform Gyrus,
Middle Temporal
Gyrus; Inferior pre-
frontal G., Superior
Temporal G, Supra-
marginal G., Angular
G., Pars Triangularis,
Pars Opericularis

37, 21; 47,
22, 45, 39,
40, 44

8, 9, 10,
19, 20, 21,
22, 23, 30,
31, 33, 43,
45, 46, 58

Table 5.2: Classification was performed on brain patterns distributed
over the whole brain, plus two hemispheric macro-regions, that were
identified as groups of adjacent anatomically-defined regions of interest.

Features extracted from HbO and HbR timetraces were concatenated into a single fea-
ture vector; each feature was then normalized, by removing its mean value and dividing
by its standard deviation. Figure 5.2 shows the procedure of features’ extraction and
their distributions after normalization.

Classification of Multivariate Patterns

The obtained trials were classified using both Linear Support Vector Machines as well
as Regularized Linear Discriminant Analysis.

Linear SVMs were implemented in MATLAB 2017b with the libsvm-3.11 library [133],
while Regularized LDA was implemented via tools available in the Berlin Brain-Computer
Interfacing (BBCI) Toolbox [104].
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In both cases, cross-validation was performed using 4 folds and 100 permutations: the
sixteen blocks were randomly divided into 4 folds, with each fold containing 2 blocks for
each class. At each repetition, three folds and the remaining fold were used for training
and testing, respectively. At each repetition, the order of the trials was permuted. For
each subject, classification accuracies were averaged across the permutations.

5.2.3 Analysis of individual classification accuracies

The achieved classification accuracies were evaluated both at subject-level and at group-
level.

At subject-level, we wanted to test, for each participant, the statistical significance of
the achieved accuracy; to this end, the empirical subject-level null distribution was
estimated by classifying trials after classes’ labels were randomly shuffled; to produce
a robust distribution, the procedure was repeated 1000 times. After that, each partici-
pant’s observed accuracy was tested by computing its p value as the proportion of the
null distribution greater than, or equal to, the observed value.

Figure 5.3: Examples of how individual classification accuracies were
statistically assessed. In Panel A an example of individual performances
that did not reach statistical significance, while in Panel B the individual
classification accuracy of 76% was higher than the 95th percentile (75%),

obtaining a p-value of 0.049.

At group-level, we were interested in exploring if and how classification accuracies were
related to the reading abilities of the participants. Therefore, firstly, we employed the
Reading Score as a continuous variable, by fitting a Mixed Effect Linear (LME) Model
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with a random intercept for each participant, and Reading Score as fixed effect, for
each subset of channels. The model was fitted in MATLAB 2017b.

Secondly, the Reading Score was used to divide participants into two groups, in the
same fashion used in Chapter 4. For each area, an unpaired t-test was used to compare
classification accuracies achieved by the two groups (Pre-Readers vs Readers).

5.2.4 Within-groups classifier

One of the major limitations of the within-subject classification is posed by the low
number of available observations, especially considering the large number of features
(116, in case of the whole-brain scheme). To mitigate this issue we also performed the
same Word vs Non-Word classification on the trials pooled within the two groups (Pre-
Readers and Readers). Within each group, each individual’s trials were concatenated
together; a feature matrix of 116 x 544 was obtained for the Pre-Readers and a 116 x
496 for the Readers.

The obtained trials were classified using LDA and SVM; in both cases, cross-validation
was performed using 4 folds and 100 repetitions; at each repetition, trials were randomly
permuted, and classification accuracies were averaged over folds and repetitions.

Additionally, for both groups, the null distribution was generated by repeatedly ran-
domly shuffling class labels, and applying the same classification routine (1000 repeti-
tions).

5.3 Results

5.3.1 Overall performances: SVM vs LDA

Across the whole pool of subjects and all brain areas, classification accuracies yielded
by SVM and LDA did not result significantly different.
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Figure 5.4: (Left) Distribution of classification performances across
all subjects and all channel groups. (Right) The performances of the

two algorithms did not significantly differ.

Even when considering the three employed channel subsets separately, the two methods
performed similarly (Figure 5.5).

For this reason, in the subsequent sections only results yielded by LDA will be pre-
sented, but very similar analogous results were found by using SVM-based accuracies.

5.3.2 Individual performances

At individual level, statistically significant classification accuracies were achieved only
for few participants. In particular, when whole-brain channels were employed, only
Subject # 17 had a significant classification accuracy (79%, p= 0.038); when LH chan-
nels were employed, only Subjects # 11 and # 74 had significant accuracy (84%, 80%
, respectively, and p= 0.007 and 0.033); finally, with RH channels, Subjects # 11, #74
and #90 had significantly high accuracies (76%, 77%, 79% with p= 0.040, 0.047, 0.045,
respectively).

5.3.3 Correlation between individual decoding accuracies and
reading abilities

The correlation analysis between achieved classification accuracies and individual read-
ing scores was performed by means of Linear Mixed Effects (LME) models. In neither
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Figure 5.5: Classification accuracies achieved by LDA and SVM within
the channel subsets defined in Table 5.2

of the three combinations of channels was the correlation between accuracies and scores
significant at p= 0.05; correlations where found to be positive when using LH channels
and negative when using RH channels:

Channel group Estimated regression coefficient Standard Error p
Whole Brain 0.03 0.18 0.8548
Whole LH 0.26 0.16 0.1232
Whole RH -0.10 0.20 0.6396

Table 5.3: Results of the LME models performed within each channel
group (’Accuracy ∼ ReadingScores + (1|Participant)’)
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Figure 5.6: In none of the three employed channel groups was the
correlation between Reading Scores and Classification Accuracies statis-
tically significant at p=0.05; nevertheless, a pattern can be qualitatively
detected of negative and positive correlations in the RH and LH, respec-

tively.

In light of the fact that the Reading Score is highly correlated with the age of the
subjects, an additional analysis was performed with the intent of removing the effect
the age from the reading scores, by means of Partial Least Squares regression (Figure
5.7.
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Figure 5.7: Effect of removing the effect of Age from the original Read-
ing Scores, using Partial Least Squares (PLS) regression. The dashed
lines represent the least squares correlation lines (r= 0.67 for the original

scores, r= 0 for the “corrected” scores).

Then, the LME analysis with Classification Accuracies as the response variable was
run again, this time using the residuals of the regression between age and reading
scores as a predictor. The models yielded similar results, namely, negative and positive
correlations, but not statistically significant, in the RH and LH, respectively.

Finally, we also employed the Reading Score to group participants in two groups Pre-
Readers and Readers, to reproduce the conditions we employed in Chapter 4 for the
univariate analysis. Then, classification accuracies of the two groups were compared
using two-tailed unpaired t-tests.

Channel group t 95% Confidence Interval pLower Upper
Whole Brain 1.665 -1.250 13.778 0.100
Whole LH 0.215 -6.399 7.943 0.830
Whole RH 2.248 1.031 17.490 0.026

Table 5.4: Results of unpaired t-tests between groups (Pre-Readers vs
Readers), divided at ReadingScore=20 (degrees of freedom = 63).
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Figure 5.8: Boxplots of individual classification accuracies within the
two groups Pre-Readers vs Readers; the central red line in each box
indicates the median; the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers represent the
whole range of observed values. In the RH, the unpaired t-test revealed
a significant group difference, with Pre-Readers achieving better accu-

racies than Readers (60% vs 50%, respectively).

5.3.4 Within-groups classification

The results of the two within-groups classification support the findings already ob-
served: the classification accuracy reached in the Pre-Readers group is slightly better
than that reached in the Readers, but still not a good accuracy: the mean value is only
53.2%.
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Figure 5.9: Results of within-groups classification. Classification accu-
racies obtained using trials from Readers are not statistically significant
for any of the channel subsets, compared to their corresponding null
distributions. For the Pre-Readers, accuracies are marginally significant
when using whole-brain channels and more so when using RH channels,

but still they are not high (53.2% and 54.1%, respectively).
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Figure 5.10: Boxplots of within-groups classification accuracies, for
the three selections of channels; the central red line in each box indicates
the median; the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers represent the whole range
of observed values. The unpaired t-tests confirm a significant difference
between the two groups when using channels from the RH and also
Whole-Brain; however, the mean classification accuracy does not exceed

54.1%.

5.4 Discussion

Beginning readers make a greater effort, compared to skilled readers, when verbally
repeating non-words; this is due to the fact that correct non-word repetition requires
the emergence of a phonological processing capacity that is carved by the very process
of learning to read.

In this project, we explored whether this differential processing capacity – that at
behavioral level is manifested with a differential outcome in verbal repetition – is also
reflected in the fNIRS signal measured when the subject is only listening to words and
non-words.

To this end, we implemented a neural decoder, based on both LDA and SVM, and
applied it to the classification of distributed patterns of hemodynamic activity elicited
by word and non-words.

In accordance to the findings presented in Chapter 3, the classifier was trained to
use features from both the HbO and the HbR component of the fNIRS signal. To
our knowledge, this is the first attempt at using both hemoglobin components in the
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context of a multi-channel analysis of fNIRS, thus it extends the work done so far in
this field.

Also, to keep into account the possible spatial specificity of the processes under inves-
tigation, not only patterns distributed over the whole brain were examined but also,
separately, patterns distributed only over the Left and over the Right Hemisphere were
used for classification.

The classification was performed at two different levels: firstly, it was performed within-
subject. This allowed to obtain a value of classification accuracy for each individual,
that could be used to interrogate the relation between decoding and literacy skills.

The first interesting result is that the performances of LDA and SVM were basically
equivalent; we were interested in this comparison because in our own previous work
[11], following relevant literature, we had employed only SVM, but several other works
reported that regularized LDA and linear SVMs tend to have both good and not
significantly different performances [134, 135]. Our results supported this observation,
and for this reason we focused on LDA for the remainder of the work.

Nonetheless, the within-subject classification yielded discouraging results: ranging from
20% to 79%, the average accuracy across all subjects did not exceed chance level;
furthermore, when comparing each subject’s observed accuracy with their respective
null distributions, only one subject turned out to have a significant accuracy at p<0.05.

The large variability of the classification outcomes may suggest that the individual
subjects’ data quality was inconsistent, or also that the individuals’ response patterns
to the stimuli differed too much from one another.

Another possible explanations can be found in the limited number of trials available for
classification: having only 8 trials per classes, the experimental design was probably
not well suited for within-subject classification, even more so considering that, by
concatenating HbO and HbR features, the vector included 116 features.

Furthermore, it becomes apparent from Figure 5.2 that using the peak value of each
epoch as a single feature may not necessarily have been representative enough: rather,
it would have been better to sample several values throughout the whole trial, as we
did in Chapter 3 for example. While that would likely capture the characteristics of the
trials much better, it would increase the dimensionality of the features far too much to
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be feasible, considering the limited number of observations available and the number
of channels.

Finally, the large variability could actually be representative of the question under
investigation, namely, it could be related to individual differences in the mental repre-
sentation of non-words and thus to individual differences in reading abilities. To test
whether this was the case, we performed a correlation analysis between the achieved
accuracies and the reading scores, but in neither of the three schemes for channel
selection was the correlation found significant.

However, when looking at accuracies averaged over the groups of subjects, divided using
reading scores, a significant group difference was found when using channels from the
Right Hemisphere (p= 0.026), and a marginally significant difference was found for the
“Whole-Brain” scheme (p= 0.1).

These results, however weak, show a tendency toward a greater word vs non-word
difference in the Pre-Readers; when taken as a group, they exhibit indeed a higher
decoding accuracy than Readers, especially in the Right Hemisphere (median: 60% vs
50%, respectively).

To mitigate the excessively unbalanced ratio between the number of features and the
number of trials, classification was also performed within-groups: trials within each
group, Pre-Readers and Readers, were pooled together so to achieve a higher number
of observations. Also in this case, results were weak: only for Pre-Readers, the achieved
accuracies were only marginally significant in the “Whole-Brain” scheme (p= 0.1) as
well as in the “RH” scheme (p=0.07), with quite low nominal values (53.2% and 54.1%,
respectively).

However low these accuracies are, a group difference does definitely exist: for the group
Readers the distribution of accuracies across permutations overlaps completely with
the null distribution (Figure 5.9) and it is significantly lower than that of Pre-Readers
both when using channels from the Whole-Brain and from the RH (Figure 5.10); this
observation supports the hypothesis that as children strengthen their reading abilities,
the difference in fNIRS patterns between word and non-words lessen.

In this Chapter, we conclude that with multi-variate approaches it is indeed possible
to explore finer-grained effects that escape the lens of the univariate analysis. In the
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very case of this dataset, the experimental design was probably not optimally suited for
this use; we did, however, manage to bring to light a trend, although only marginally
statistically significant, that was not possible to observe in the channel-wise analysis.

Future applications of this method should include a careful planning of the experimental
setup, so as to be suitable for trial-to-trial classification: especially it should have a
sufficient number of trials in consideration of the number of channels to be used.

5.5 Lessons learned

• LDA and SVM performed very similarly.

• Subject-level classification accuracies were largely not significant.

• A statistically significant correlation between subject-level decoding accuracies
and reading abilities could not be identified.

• When averaged across groups, Pre-Readers’ accuracies were significantly higher
than Readers when using patterns from the RH and marginally also when using
whole-brain patterns.

• Within-groups classification accuracies differed substantially between the two
groups, with Pre-Readers achieving a higher decoding accuracy than Readers,
but their nominal value didn’t exceed 54.1% at most.

• MVPA has a great potential to bring to light subtle effects that escape the
channel-wise analysis, but for it to be really successful a careful planning of
the experimental setup is crucial. In particular, a number of trials should be ad-
ministered high enough to allow trial-by-trial classification within each subject.
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Summary and Conclusions

As the use and application of fNIRS is becoming increasingly widespread, the need for
an ad-hoc standardized data analysis procedure is now more pressing than ever.

A long way of work and research is still required to establish guidelines and automated
procedures. Nevertheless, much effort is being made in the direction of developing new
analysis methods and systematically comparing them to traditional ones, in quest of
defining a recipe for achieving the best and most accurate results. This doctoral thesis
is framed within this attempt.

In particular, the goal of this work was to examine and tackle some of the most critical
sources of concern of a typical data analysis workflow, in particular when the subjects
are children.

The first one was the inter-subject variability of the hemodynamic response, which
means that different subjects may not only respond differently to the same task but
that, when responding to the task, their hemodynamic responses may themselves vary
significantly in shape and characteristics. Furthermore, there is also a certain extent
of intra-subject variability: due to changes in muscles’ and small capillaries’ configu-
rations, different brain areas are sometimes characterized by hemodynamic responses
of different shapes. These two issues together speak to the fact that the model-based
type of analysis is oftentimes inaccurate; an a-priori fixed HRF model can hardly cap-
ture this natural variability and actual neural activity may remain undetected. This is
especially relevant with children, since they often display a non-typical hemodynamic
response, that is even more difficult to model.

117



Chapter 6. Summary and Conclusions

Another source of complication is given by the choice of chromophore: by analyzing
separately oxy- and deoxy-hemoglobin, it is rarely the case that the results on one
chromophore do precisely mirror the results on the other. This issue is problematic,
for instance, for the statistical test at group-level: since the hemodynamic fingerprint
is so subject-specific, some individuals may naturally show stronger results with one
chromophore while other individuals with the other one. In such a situation, two
separate group-level analyses for the two chromophores may prove highly ineffective in
uncovering the existing effects.

This doctoral work has been as a two-steps process: in the first part (Chapter 3)
these problems have been tackled in a very theoretical fashion, while the second part
(Chapters 4 and 5) provided a direct application of the newly proposed method to
experimental data collected in the context of a literacy development study.

In the first part, we proposed to classify single channels as “active” or “not active”,
using Linear Discriminant Analysis. Features included amplitude and slope of both
oxy- (HbO) and deoxy- hemoglobin (HbR). To precisely quantify the performances of
this method, a synthetic dataset was generated in which hemodynamic activations of
various sizes and shapes were added to physiological resting state signal. Moreover,
part of the simulated hemodynamic responses were also artificially affected by Meyer
waves; this allowed to compare the uni- and multivariate pipelines also in terms of
robustness against this physiological confound.

The classification was conducted, within each subject, by comparing data from differ-
ent temporal segments of the same recording (“resting state” vs “task”). As for the
univariate approach, data was analyzed by fitting a General Linear Model (GLM) to
HbO and HbR traces, separately. In terms of performances, the multivariate classifier
yielded a significantly greater classification accuracy than GLM, both when applied to
HbO and HbR.

Furthermore, the performances yielded by the (HbO+HbR) classifier also resulted less
susceptible to individual variations and physiological confounds. When considering
the correlation between achieved accuracy and demographic characteristics like Hair
Color, Age, Gender and Time of Measurement, we found that none of these correlated
significantly with the classification accuracies achieved by the multivariate classifier,
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while accuracies achieved by GLM on HbR were significantly higher in blond-haired
subjects compared to brown-haired.

This is a clear indication that a model-based analysis is an approximation that cannot
capture the intrinsic variability that exists between and within subjects, while a data-
driven strategy that works on the comparison “rest” vs “task” not only within the
same subject but also within the same channel enhances the detectability of effects,
also when they are small in comparison to other sources of variability.

In the second part of this project, the comparison between the two pipelines was put in
practice by analyzing a large dataset of fNIRS data collected in the context of a literacy
study. The goal of this project was twofold: on one hand, we aimed at highlighting
a differential functional lateralization in response to auditory stimuli depending on
literacy levels: since the visual system of a young reader specializes gradually, during
the first stages of reading both hemispheres should functionally activate, even when
only listening to speech, while with growing reading expertise, functional activation
should be progressively more focused and should slowly converge to the left occipito-
temporal areas.

The other goal of the project was to reveal a differential activation, depending on
literacy levels, to non-words: this hypothesis comes from the notion that as reading
increases phonological awareness, skilled readers can rely on the phonemic code they
acquired and can easily process speech sounds, even when they are meaningless; on
the other hand, beginning readers do not have yet this phonemic code, therefore they
struggle in processing and repeating non-words. Therefore, we explored whether it
was possible to distinguish various levels of literacy only by looking at hemodynamic
responses to non-words.

To pursue these goals, both analysis approaches were employed: first, a General Linear
Model was fit to the data at subject-level; these results were fed into a group-level
model looking to predict the main effects of Group (Pre-Readers, Readers), Stimulus
(Word, Non-Word) and the interaction effect Group x Stimulus. This step was success-
ful in that it clearly highlighted that Pre-Readers exhibit a more bilateral functional
activation than Readers.

This first result is a very important lesson of this project that should not go overlooked:
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the channel-wise analysis has many limitations, that we extensively listed, but has
the unique ability of providing a clear localization of the brain regions reflecting the
cognitive process under investigation. With this respect, univariate methods have the
advantage of being directly interpretable from a neuroscientific point of view.

However, in our experiment, it failed to expose a differential activation of one group
to one type of stimulus. Therefore a multivariate approach was undertaken.

In doing so, the concept of the classifier proposed earlier was taken even further: while
in the first part it was multivariate in that it combined features from the concurrent
variations of HbO and HbR, here it was also multichannel; the goal was, indeed, to use
HbO and HbR features from the whole pattern of channels to classify trials of Words
and Non-Words, with the expectation that classification accuracies would be higher for
lower levels of literacy skills. In addition, another extension we made to the previously
developed classifier was that this time it was also implemented with Support Vector
Machines (SVMs), for comparison with LDA.

The results of this analysis were admittedly underwhelming: when compared to their
respective null distributions, individual classification accuracies were largely not sig-
nificant. Furthermore, the correlation analysis between classification accuracies did
not reveal a significant relation between different activations between Words and Non-
Words and reading scores, when classifying patterns distributed across the whole brain.

However, when using patterns distributed over the right hemisphere and averaging
accuracies across pre-defined groups, we did find that Pre-Readers’ accuracies were
significantly higher than the Readers’.

There are a few possible explanations for these mediocre results; one is that the starting
hypothesis is flawed: beginning readers and illiterates do have a hard time processing,
memorizing and repeating out loud pseudo-words, and this is a known fact that has
been proven by several studies. However, this may not necessarily translate into a much
different functional activation to non-words with respect to real words, and so into a
high decoding accuracy, especially only at auditory level. This kind of neuroscientific
considerations extend beyond the scope and the field of operation of this doctoral work.

Another, very likely, explanation has to do with the experimental design: with only
8 trials for each class, 58 channels and 2 features for each channel (HbO and HbR),
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the feature matrix ended up having 16 observations and 116 features. This ratio was
definitely excessively unbalanced and so, in order to mitigate the issue, an additional
classification was performed by pooling participants’ data within each group (Pre-
Readers and Readers). This way, the feature matrices had a more balanced ratio
between number of features and number of observations. In this case, classification
accuracies achieved by the Pre-Readers group were marginally higher than those by
Readers group, both using whole-brain patterns and RH patterns.

Therefore, MVPA did manage to uncover, if not really a significant correlation, at least
a trend in the direction that we initially hypothesized.

This thesis has been an evolution: it identified some of the important challenging
factors for fNIRS data analysis; it proposed a new multivariate method to tackle these
challenges, and compared it against the most up to date state-of-the-art univariate
method. Once the comparison proved successful, it moved onto the next level, by
using it for the exploration of very fine-level questions that could not be answered by
the “typical” analysis pipeline. This last step, with all its limitations, showed that
multivariate and multichannel patterns do indeed have the potential of bringing to
light effects that elude the channel-wise analysis.

This doctoral work constitutes a step forward in the scrutiny of the different fNIRS
data analysis techniques, and it taught us many different lessons: first, that despite
all its limitations, the channel-wise approach constitutes still a cornerstone of any
analysis routine, since it’s the only option we have to localize the cognitive processes
of interest. Channel-wise doesn’t necessarily mean GLM: the classifier presented in
Chapter 3 also worked on single channels, and achieved great results by (1) using a
data-driven procedure and (2) combining HbO and HbR features.

Second, we learned that by combining information from different channels we can
decode brain states associated to the experiment, and that decoding models can answer
a whole other range of fine-grained research questions. But for this approach to be really
successful, it cannot just be applied to any dataset: a well-reasoned experimental design
is crucial, especially in terms of number of trials and number of features, if the goal is
trial-by-trial classification.
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To conclude, advocating the exclusive use of one approach against the other is im-
possible: single-channel and multi-channel approaches respond to different questions
and can actually greatly reinforce one another, when used in conjunction on the same
dataset.
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Appendix

A.1 Supplementary information of Chapter 3

A.1.1 Correlation between individual measures and classifica-
tion accuracies

The linear model fitted to the individual classification accuracies revealed a significant
effect of Hair Color on the classification accuracies reached by the GLM with HbR.
The other predictors that were used were Gender, Time of Measurement, and Age.
Reported below are the distributions of classification results for each of these effects.
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Figure A.1: Distributions of classification accuracies grouped by Time
of Measurement. The central red marks represents the median values,
the blue boxes extend from the 25th to the 75th percentiles, and the
black whiskers extend to the most extreme data points not considered

outliers (which are marked with red crosses)

Figure A.2: Distributions of classification accuracies grouped by Gen-
der

A.1.2 Experimental results

In this section, individual subjects’ channel-wise classification results from the GLM-
based and LDA-based analyses are reported.

For each subject, a table is presented, which includes:

• Topographic images of channel-wise output values, namely GLM β coefficient
values and LDA classifier outputs. The images were produced with nirsLAB
v2017.06 [1]. Large positive GLM(HbO) β values, or large negative GLM(HbR)
β values, indicate a good fit of the model to the data, and so a better chance of
that channel being statistically significant (i.e., of being classified as “active”).
LDA outputs are negative if the channel is classified as “not active” and positive
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Figure A.3: (Left) Effect of subject age on classification accuracy,
according to Linear Mixed Effects analysis. Partial-dependency line
for each method is superimposed on the individual-subject data points
(Right) Coefficients estimated by the LME for Predictor: Age, Re-
sponse Variable: Classification Accuracy. None of the methods has a

statistically significant age dependence on accuracy.

is the channel is classified as “active”. Therefore, a high classifier output indicates
a good chance that the channel is labeled as “active”.

• Block averages of the signal in response to the stimulus (red and blue curves for
HbO and HbR, respectively). The shaded error bars indicate the standard error
computed over the 16 episodes of alternating left- and right-hand finger tapping.
The GLM plots are accompanied by the canonical basis function used by the
model; the LDA plots are accompanied by the block averages of the resting-state
trials. The block averages are shown for only the channels covering the motor
cortex.

A second table reports the numerical output of each analysis, along with the cor-
responding p-values. Channels flagged as NaN were of poor quality and therefore
discarded from the analysis.
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A.2 Supplementary information of Chapter 4

A.2.1 Localization of optodes

Ch# MNI coordinates Brodmann Area Pr(%)

X Y Z

1 -65.6 -52.33 -14.83 20 - Inferior Temporal gyrus 28.2
21 - Middle Temporal gyrus 7
37 - Fusiform gyrus 64.8

2 -70 -28.33 -16.5 20 - Inferior Temporal gyrus 2.5
21 - Middle Temporal gyrus 97.5

3 -65.5 -8.33 -23.5 20 - Inferior Temporal gyrus 41.3
21 - Middle Temporal gyrus 58.7

4 -35.6 62.83 -7 10 - Frontopolar area 79.1
11 - Orbitofrontal area 20.9

5 -12.3 72 -1.5 10 - Frontopolar area 98.8
11 - Orbitofrontal area 1.2

6 17 72 -0.5 10 - Frontopolar area 100

7 39.3 63.33 -6.5 10 - Frontopolar area 87.3
11 - Orbitofrontal area 12.7

8 68.17 -6.33 -21.33 20 - Inferior Temporal gyrus 18.4
21 - Middle Temporal gyrus 81.6

9 72 -26.5 -14.83 20 - Inferior Temporal gyrus 1.3
21 - Middle Temporal gyrus 98.7
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10 67 -48.67 -15.17 20 - Inferior Temporal gyrus 38.4
21 - Middle Temporal gyrus 6.8
37 - Fusiform gyrus 54.8

11 -62.3 -61 -5.5 21 - Middle Temporal gyrus 15.3
37 - Fusiform gyrus 84.7

12 -70 -39.33 -2 21 - Middle Temporal gyrus 88.8
22 - Superior Temporal Gyrus 11.3

13 -70 -17 -6.33 21 - Middle Temporal gyrus 97.5
22 - Superior Temporal Gyrus 2.5

14 -62 2.3 -19 21 - Middle Temporal gyrus 100

15 -49.3 45.83 -5.33 10 - Frontopolar area 1.5
47 - Inferior prefrontal gyrus 98.5

16 -25.3 67 9.34 10 - Frontopolar area 100

17 5 70 14.67 10 - Frontopolar area 100

18 28.83 67.67 10.17 10 - Frontopolar area 100

19 52 47.33 -2.83 10 - Frontopolar area 21.7
47 - Inferior prefrontal gyrus 78.3

20 64 4.33 -14.83 21 - Middle Temporal gyrus 100

21 72 -14.5 -3.33 21 - Middle Temporal gyrus 83.5
22 - Superior Temporal Gyrus 16.5
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22 72 -37.67 -0.83 21 - Middle Temporal gyrus 64.2
22 - Superior Temporal Gyrus 35.8

23 64 -58.5 -5.67 21 - Middle Temporal gyrus 6.9
37 - Fusiform gyrus 93.1

24 -67.17 -50.33 9.67 21 - Middle Temporal gyrus 34.2
22 - Superior Temporal Gyrus 65.8

25 -69 -26.33 13.5 40 - Supramarginal gyrus part of Wernicke’s area 1.3
42 - Primary and Auditory Association Cortex 98.7

26 -66.5 -5.33 7.83 22 - Superior Temporal Gyrus 93.2
42 - Primary and Auditory Association Cortex 6.8

27 -56.67 25.17 3.33 45 - pars triangularis Broca’s area 56.8
47 - Inferior prefrontal gyrus 43.2

28 -12 66.67 24.83 10 - Frontopolar area 100

29 15.67 67 25.83 10 - Frontopolar area 100

30 60 27.67 7.67 45 - pars triangularis Broca’s area 96.3
46 - Dorsolateral prefrontal cortex 3.7

31 68 -3.33 9 6 - Pre-Motor and Supplementary Motor Cortex 3.9
22 - Superior Temporal Gyrus 96.1

32 71.17 -25.33 13.17 40 - Supramarginal gyrus part of Wernicke’s area 2.5
42 - Primary and Auditory Association Cortex 97.5

33 69 -48.17 10.83 21 - Middle Temporal gyrus 11.7
22 - Superior Temporal Gyrus 88.3
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34 -63 -59.33 21.33 22 - Superior Temporal Gyrus 45.2
39 - Angular gyrus, part of Wernicke’s area 50.7
40 - Supramarginal gyrus part of Wernicke’s area 4.1

35 -68 -36.5 30.67 40 - Supramarginal gyrus part of Wernicke’s area 100

36 -67 -12.33 27.33 1 - Primary Somatosensory Cortex 32.5
3 - Primary Somatosensory Cortex 18.8
4 - Primary Motor Cortex 20
6 - Pre-Motor and Supplementary Motor Cortex 7.5
43 - Subcentral area 21.3

37 -61 11.33 14.17 44 - pars opercularis, part of Broca’s area 100

38 -51 41 14.33 45 - pars triangularis Broca’s area 1.4
46 - Dorsolateral prefrontal cortex 98.6

39 -24.7 54.83 34.33 9 - Dorsolateral prefrontal cortex 90.6
10 - Frontopolar area 9.4

40 1.67 57.17 39.67 9 - Dorsolateral prefrontal cortex 100

41 27.33 55 34.67 9 - Dorsolateral prefrontal cortex 98.2
10 - Frontopolar area 1.8

42 53 40.33 18.67 46 - Dorsolateral prefrontal cortex 100

43 63 13.83 17 44 - pars opercularis, part of Broca’s area 90.7
45 - pars triangularis Broca’s area 9.3

44 69 -9.33 28.5 3 - Primary Somatosensory Cortex 34.6
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4 - Primary Motor Cortex 10.3
6 - Pre-Motor and Supplementary Motor Cortex 47.4
43 - Subcentral area 7.7

45 70 -34.67 29.5 40 - Supramarginal gyrus part of Wernicke’s area 100

46 64 -58.33 21 22 - Superior Temporal Gyrus 46.1
39 - Angular gyrus, part of Wernicke’s area 44.7
40 - Supramarginal gyrus part of Wernicke’s area 9.2

47 -64 -46.5 39.67 40 - Supramarginal gyrus part of Wernicke’s area 100

48 -65 -22.5 39.33 1 - Primary Somatosensory Cortex 32.5
2 - Primary Somatosensory Cortex 36.4
3 - Primary Somatosensory Cortex 29.9
40 - Supramarginal gyrus part of Wernicke’s area 1.3

49 -63 1.83 31.33 6 - Pre-Motor and Supplementary Motor Cortex 97.3
9 - Dorsolateral prefrontal cortex 2.7

50 -53 30.33 26.67 45 - pars triangularis Broca’s area 4.3
46 - Dorsolateral prefrontal cortex 95.7

51 -37.67 44.17 36.33 9 - Dorsolateral prefrontal cortex 96.2
46 - Dorsolateral prefrontal cortex 3.8

52 -12.33 47.67 49.67 8 - Includes Frontal eye fields 100

53 14.33 47.33 50.5 8 - Includes Frontal eye fields 100

54 38.67 44.67 38 9 - Dorsolateral prefrontal cortex 100

55 55 29.67 28.5 45 - pars triangularis Broca’s area 1.4
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46 - Dorsolateral prefrontal cortex 98.6

56 65 3.33 33.33 6 - Pre-Motor and Supplementary Motor Cortex 87.7
9 - Dorsolateral prefrontal cortex 12.3

57 67.5 -22.5 40.67 1 - Primary Somatosensory Cortex 50.6
2 - Primary Somatosensory Cortex 18.2
3 - Primary Somatosensory Cortex 26
4 - Primary Motor Cortex 5.2

58 65.17 -47 38.67 40 - Supramarginal gyrus part of Wernicke’s area 100

Table A.1: The X, Y, and Z columns represent median MNI coordi-
nates across subjects. Anatomical labelling of the MNI coordinates was
conducted using the Talairach atlas. The last column lists the atlas-
based probability that the channel coordinates are within that anatom-
ical location. The Brodmann area with the highest probability is high-

lighted in bold.
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