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1. Preface

Not only in physical systems but also in chemical and biological systems transport processes,
where matter and energy is exchanged between distinct and yet connected subsystems, occur
widely. Wherever such processes have been discovered both theoretical and experimental
researchers showed keen interest, as the study of transport processes often provided insights
into basic laws of nature and also gave rise to promising applications. Over the last decades
substantial progress has been made to improve the experimental capabilities and to gain deeper
understanding of the underlying physical mechanisms. In particular the fact that one is able
to develop smaller and ever smaller systems plays a key role. These days, the length scales on
which one can reliably fabricate structures and manipulate their dynamics are of the order of
a few nanometers. This corresponds to the wavelength of visible light as well as to the size of
a few atoms or molecules and not least to the wavelength of the enveloping wave functions of
electrons in semiconductors [1]. An immediate consequence of the scale reduction is that we can
no longer neglect the quantum properties of transport processes through such tiny structures
and devices. On these scales, in contrast to classical transport, quantum properties and effects,
such as nonlocality and uncertainty, as well as superposition and interference of states and not
least entanglement occur. Due to the growing interest that came with the cognition of the
fundamentally different nature of quantum systems, an entirely new field of physics has emerged,
the study of mesoscopic transport [2].

Widely studied examples for experimental systems where quantum transport can be observed
are mesoscopic solid-state systems: self-assembling nanocrystals [3], quantum dots (QD) [4, 5, 6]
nanowires [7] or carbon-nanotubes [8].
Of particular relevance are two-dimensional electron-gases (2DEG) generated in doped semi-
conductors. Usually additional metallic surface gates are applied on top of the semiconductor
substrate, where the 2DEG is formed. When one applies a voltage to the metallic gates the
2DEG is locally depleted. This process enables experimentalists to define almost arbitrary
nanostructures within the 2DEG. Beyond single QDs one can build devices in various geometries,
such as quantum-point contacts (QPC) [9, 10], serially coupled QDs [11, 12, 13, 14] [compare.
fig. 1.1], triple QDs [15, 16].
Another widely used method for the fabrication of quantum dot structures are lithographic
methods [17, 18].
Especially transport spectroscopy of electrons in mesoscopic structures is a powerful tool, to
get deeper insight into electronic structures. It not only enables researchers to study the level
structures but also fundamental interactions springing from the quantum nature of matter. Also
the investigation of the interplay of electronic structures with phonons, photons or nuclear spins
of the surrounding material is possible. In recent years research on single-electron transport
through single molecules [19], QDs [4], or quantum wires [20, 21] has developed rapidly. Quantum
transport is also a tool for studying spin states [22] or coherent dynamics [23] on a microscopic
level. Recent research – theoretically and experimentally – provides some insight into level
structures [24, 25, 22], Coulomb- and spin blockade effects [26], phonon-emission [27] and also
full counting statistics of electron-tunneling processes [28, 29, 30].
Electronic quantum coherence in a few-orbital conductor [such as coupled semiconductor or

1



Figure 1.1.: Double quantum dot devices. (a) Scanning electron micrograph of a double dot
defined by metallic gates (light gray areas). The dimensions of the dots defined by
the gate pattern are 320 × 320 nm2 (dot 1, left) and 280 × 280 nm2 (dot 2, right).
(b) Schematic diagram of a double dot defined by a combination of dry etching
and metallic gates. A double quantum dot (dot 1, D1; dot 2, D2) can be formed
by applying negative gate voltages to gates GL, GC, and GR. A microwave field
can be applied to the center gate GC. – Images taken from Ref. [11]

molecular QDs] which is subject to single-electron transfer, can cause intriguing measurable effects
such as transient current oscillations [31], complete current suppression [32], and enhanced current
fluctuations [33, 34]. Such types of effects have been studied theoretically and experimentally
in various QD geometries: in serially coupled dots [11, 13], in parallel QDs [35, 36, 37, 38], in
triangular setups [39], and in coupled orbitals in single molecules [19].

In chapter 2 the theory of open quantum systems is reviewed. This theory relies on the idea of
dividing a thermodynamical system into a part that contains the dynamics one is interested
in and its environment with which matter and energy is exchanged. If the coupling between
system and environment is weak a perturbation theory in their interaction can be exploited [40].
Together with further approximation, such as the Markovian approximations, we derive master
equations that describe transport processes the validity of which has been proven in various
experiments. Of special interest will be the theory of coarse grained Markovian dynamics [41],
that makes it possible to reduce transport models when significantly different time scales occur.
Moreover, the thermodynamical implications of the theory are reviewed.

We investigate models where electrons transported through QD structures are interacting with
large external spins. Of particular relevance is the coupling of electrons in QD structures to the
large number of nuclear spins in the host material. Therefore, in chapter 3, we, briefly, introduce
the hyperfine interactions and corresponding effective magnetic fields [cf. fig. 1.2] originating
from the ensemble of nuclei. In our transport models we are especially interested in the rich
dynamics coming from anisotropic spin couplings and we also take into account the relations of
quantum descriptions and semiclassical approaches for isotropic and anisotropic interactions.

Consequently, our transport models studied in chapters 4 and 6 consider the single electron
transport through single QD (SQD) and double QD (DQD) devices where the electron spins
are exchange coupled to large external spins. We develop a Markovian master equation for
exchange-coupling assisted transport, where the transport theory is combined with semiclassical
spin dynamics and we are left with a set of equations of motion, that can be solved numerically.

The last aspect of this thesis is the introduction of a closed-loop feedback model that is
incorporated phenomenologically into the master equations. It is idealized as a mechanism

2



Figure 1.2.: (a) Scanning electron micrograph of a sample consisting of electrostatic gates
on the surface of a 2DEG. Voltages on gates GR and GL control the number of
electrons in the left and right dots. The state of the DQD is read out by the
quantum point contact (QPC). (b) The electrons dwelling the device experience an
additional effective field from the nuclear spins, Bnuc

z . Images taken from Ref. [42]

that is capable of modifying the entropy balance of the device without changing the energy
balance, i.e. as a Maxwell demon. The simplest implementation of such a closed feedback loop
for transport through a single electron transistor (SET) was shown by Schaller et al. where
the demon gets its information from a nearby QPC [43] and conditioned on the measurement
modifies the tunneling rates. A microscopic implementation of an actual demon feedback acting
on the SET was given by Strasberg et al., where the detection was realized by an capacitively
coupled additional QD [44]. Via stochastic thermodynamics a regime could be identified that
ensures that the SET’s energetics are not affected.
Based on the ideas of Strasberg and coworkers we show a generic feedback model in chapter 5
that provides a microscopic interpretation of the feedback introduced phenomenologically in
chapter 4.
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2. Open quantum systems

2.1. Introduction

In this chapter we review the system-bath theory. It provides the basic framework to derive
the dynamics of the transport setups considered in this thesis. The main idea is to divide a
given thermodynamic system into two parts; One part describes the system of interest, with
typically only few degrees of freedom. The second part is referred to as bath or environment,
usually. It has many degrees of freedom the dynamics of which are not of particular interest. To
simplify the treatment of the environment we often assume it to be in the thermodynamic limit,
i.e. environments consist of an infinite number of particles in an infinitely large volume, where
the particle density is kept constant.
The environment is weakly coupled to the system by matter- and energy- exchange processes,
which is why it is often termed reservoir for heat and particles. Given these exchange processes
the environment is clearly influencing the system significantly, which complicates the extraction
of the dynamics of the interesting degrees of freedom. This influence can be analyzed by applying
a perturbation theory in the system-bath-interaction. If the coupling between system and bath
is sufficiently weak, the perturbation series can be truncated. This fundamental approach is
called weak-coupling approximation. It is well studied and its theoretical results obtained by it
have been proven in many experiments.
Furthermore, it is always possible to include higher order corrections of the perturbative approach,
in order to add corrections to the weak coupling limit. However, the perturbation theory in low
orders is in general still very complicated. In order to obtain numerical or even analytical results
further approximations are needed.
In the following sections quantum master equations in the weak coupling limit are derived which
describe the dynamics of few-level quantum systems weakly coupled to multiple baths. The
major approximations performed are the Born (section 2.4), the Markov (2.5) and the secular
approximation (2.6). We set h̵ = 1 throughout this thesis.
In the development of the open-quantum system theories and the resulting master equations we
greatly benefit from the preeminent discussions by Breuer and Petruccione [40] and the just as
well composed lecture notes by Gernot Schaller [45] and respective chapters in the PhD thesis
of Christian Nietner [46]. To a large extent we follow their reasoning. Admitting this, we will
refrain from giving multiple references to their work throughout this chapter.
An outstanding review of open quantum systems with respect to the mathematical structure, i.e.
the quantum dynamical semigroups, is provided by Rivas and Huelga [47]. The book by Alicki
and Lendi [48] does also give a deep insight into the mathematical structure.

2.2. System bath theory

We start from Hamiltonians of the form

Ĥ = ĤS ⊗ 1B + 1S ⊗ ĤB + Ĥ I , (2.1)
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where the system and bath Hamiltonian ĤS and ĤB act only on the system and bath Hilbert
spaces, respectively. We assume that the environment is in a grand-canonical thermal equilibrium
state, i.e.

ρ̂eq
B =

e−β(ĤB−µN̂B)

Tr{e−β(ĤB−µN̂B)}
, (2.2)

which is characterized by its chemical potential µ and its (inverse) temperature β = 1/T , with
kB ≡ 1 throughout. If the total number operator for the particles in the bath, N̂B, commutes
with the bath, [ĤB , N̂B] = 0, obviously, [ĤB , ρ̂

eq
B ] = 0, follows directly.

The density operator for the entire system, including both system and bath degrees of freedom
is denoted by ρ̂ = ∑i ci ∣ψi⟩ ⟨ψi∣. Although it is in general possible to calculate the evolution for
the states ∣ψi⟩ and extract expectation values, it is very complicated to find those states in the
first place, which is why one has to revert to approximations.
The interaction Hamiltonian, however, acts on both Hilbert spaces

Ĥ I = ∑
α

Âα ⊗ B̂α . (2.3)

where system and bath operators Âα and B̂α act on their Hilbert spaces only. As we consider
physical observables here, all Hamiltonians are required to be self-adjoint, in particular Ĥ I = Ĥ

†
I .

This puts some restrictions on our choice of the system and bath operators. However, we can
always split them into hermitian and anti-hermitian parts

Âα = Â
H
α + Â

A
α , B̂α = B̂

H
α + B̂

A
α . (2.4)

With

Â
H
α =

1
2
(Âα + Â

†
α) , Â

A
α =

1
2
(Âα − Â

†
α) , (2.5)

B̂
H
α =

1
2
(B̂α + B̂

†
α) , B̂

A
α =

1
2
(B̂α − B̂

†
α) , (2.6)

we can rewrite the interaction Hamiltonian as

Ĥ I =
1
2
(Ĥ I + Ĥ

†
I) = ∑

α

(Â
H
α ⊗ B̂

H
α + Â

A
α ⊗ B̂

A
α) = ∑

α

(Â
H
α ⊗ B̂

H
α − i ÂA

α ⊗ i B̂A
α) . (2.7)

Note that for any anti-hermitian operator ÔA it holds that (i ÔA
)† = i ÔA is hermitian. Therefore,

all parts of (2.7) are hermitian and we can always define the system and bath operators in terms
of hermitian operators

Ãα = Ã
†
α , B̃α = B̃

†
α . (2.8)

It is, therefore, valid to assume that the interaction Hamiltonian (2.3) consists of hermitian
system and bath operators.

2.3. Weak coupling limit
When the interaction Ĥ I is small, perturbation theory is justified.
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We start our considerations from the von-Neumann equation that describes the full evolution of
the combined density matrix,

∂

∂t
ρ̂ = −i [ĤS ⊗ 1 + 1⊗ ĤB + Ĥ I , ρ̂] . (2.9)

We obtain a formal solution by the unitary evolution

ρ̂ (t) = e−iĤt ρ̂ (0) e+iĤt . (2.10)

This is impractical, since the full Hamiltonian Ĥ involves too many degrees of freedom.
We transform the latter to the interaction picture (interaction picture operators are denoted by
bold symbols)

ρ̂(t) = e−i(ĤS+ĤB)t ρ̂ (0) e+i(ĤS+ĤB)t . (2.11)

Thus, the von-Neumann-equation now reads

∂

∂t
ρ̂(t) = −i [Ĥ I(t), ρ̂(t)] , (2.12)

where we introduced the time-dependent interaction Hamiltonian

Ĥ I(t) = e+i(ĤS+ĤB)t Ĥ I e−i(ĤS+ĤB)t = ∑
α

e+iĤSt Âα e−iĤSt⊗ e+iĤBt B̂α e−iĤBt

= ∑
α

Âα(t) ⊗ B̂α(t) . (2.13)

This prerequisites allow for perturbation theory.
We formally integrate (2.12) and reinsert it self-consistently into the right-hand side. Then we
get the time-derivative of the system density matrix by tracing out the bath, i.e. we apply the
partial trace and obtain with ρ̂S = TrB {ρ̂}

∂

∂t
ρ̂S = −iTrB {[Ĥ I(t), ρ̂ (0)]} −

t

∫

0

TrB {[Ĥ I(t), [Ĥ I(t
′
), ρ̂(t′)]]dt′} . (2.14)

The latter equation is a still exact integro-differential equation, but not closed as the right-hand
side does depend on the complete density matrix at all previous times. In order to close the
equation we will apply some approximations as carried out in the next sections.

2.4. Factorization of the initial density matrix (Born)
The idea behind this approximation is the assumption that if system and environment initially
were well separated, such that they could not interact, the initial state of the whole system could
be written as direct product state

ρ̂ (0) = ρ̂0
S ⊗ ρ̂

0
B . (2.15)

Here ρ̂0
S is the initial state of the system and ρ̂0

B = ρ̂eq
B is the initial equilibrium density matrix

of the environment, (2.2). Additionally, we assume that Ĥ I(t) = O{λ}, where λ is a small
dimensionless perturbation parameter. Moreover we note, that the environment is large enough
to assume that it is hardly affected by the system.
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We can thus write the full density matrix in the interaction picture as follows

ρ̂(t) = ρ̂S(t) ⊗ ρ̂
eq
B +O{λ} . (2.16)

We neglect all orders higher than two, which is usually referred to as Born-approximation. In
conclusion we see, that it is equivalent to a perturbation theory in the interaction Hamiltonian,
i.e.

∂

∂t
ρ̂S = −iTrB {[Ĥ I(t), ρ̂

0
S ⊗ ρ̂

eq
B ]} −

t

∫

0

TrB {[Ĥ I(t), [Ĥ I(t
′
), ρ̂S(t

′
) ⊗ ρ̂eq

B ]]dt′} +O{λ3
} .

(2.17)

At this point a couple of further simplifications follow directly. First, we include the definition
(2.13) into (2.17) and use the cyclic property of the trace

∂

∂t
ρ̂S = −i∑

α

TrB {B̂α(t) ρ̂
eq
B } [Âα(t), ρ̂

0
S]

−∑
αβ

t

∫

0

dt′[TrB {B̂α(t)B̂β(t
′
) ρ̂eq

B } [Âα(t), Âβ(t
′
)ρ̂S(t

′
)]

+TrB {B̂β(t
′
)B̂α(t) ρ̂

eq
B } [ρ̂S(t

′
)Âβ(t

′
), Âα(t)] ] . (2.18)

Second, we assume that the single bath coupling operator expectation value vanishes

⟨B̂α⟩B = ⟨B̂α(t)⟩B = TrB {B̂α(t) ρ̂
eq
B } = 0 . (2.19)

This assumption is convenient, as it simplifies the calculation, but not restrictive. However, it is
always possible to shift the energy scale of the interaction Hamiltonian, such that

Ĥ I → Ĥ
′
I = ∑

α

Âα ⊗ (B̂α − ⟨B̂α⟩B) = ∑
α

Âα ⊗ B̂α −∑
α

⟨B̂α⟩B (Âα ⊗ 1B) , (2.20)

where it does not matter whether numbers ⟨B̂α⟩B are zero or not. However, if we take the
average of (2.20) with respect to the bath Hilbert space we obtain

⟨Ĥ
′
I⟩B = ∑

α

Âα (⟨B̂α⟩B − ⟨B̂α⟩B) = 0 . (2.21)

Combining eqs. (2.1) and (2.20) we see that the total Hamiltonian is not changed if we also
rescale the system operators Âα

Ĥ = ĤS ⊗ 1B + 1S ⊗ ĤB + Ĥ I = ĤS ⊗ 1B + 1S ⊗ ĤB + Ĥ
′
I +∑

α

⟨B̂α⟩B (Âα ⊗ 1B)

= (ĤS +∑
α

⟨B̂α⟩B Âα) ⊗ 1B + 1S ⊗ ĤB + Ĥ
′
I . (2.22)

This shows that is valid to assume (2.19).
Finally, we define the so-called bath correlation functions

Cαβ(t1, t2) = Tr{B̂α(t1)B̂β(t2) ρ̂
eq
B } . (2.23)
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We obtain

∂

∂t
ρ̂S = −∑

αβ

t

∫

0

dt′[Cαβ(t, t
′
) [Âα(t), Âβ(t

′
)ρ̂S(t

′
)] +Cβα(t

′, t) [ρ̂S(t
′
)Âβ(t

′
), Âα(t)] ] .

(2.24)

Let us analyze this equation, briefly. The integro-differential equation (2.24) is a nonmarkovian
master equation as its right-hand side still depends on the density matrix at all previous times.
The bath correlation functions act as weights. While trace and hermiticity of the density matrix
are preserved by this equation, this does not necessarily hold for the positivity. This type of
equations have a solution only in special cases. As a consequence we have to use additional
approximations. The key to further processing of this equation is the analysis of the properties
of the bath-correlation functions.
As mentioned above, the bath Hamiltonian commutes with the bath equilibrium density operator,
[ĤB , ρ̂

eq
B ] = 0. Together with the cyclic property of the trace it is straightforward to show, that

the bath correlation functions are homogeneous in time, i.e. just depend on the difference of
their time arguments

Cαβ(t1, t2) = Cαβ(t1 − t2) = Tr{e+iĤB(t1−t2) B̂α e−iĤB(t1−t2) B̂β ρ̂
eq
B } . (2.25)

Given that the bath coupling operators B̂α are chosen to be self-adjoint, we further can state

Cαβ(τ) = C
∗
βα(−τ) . (2.26)

Moreover, if the bath has a dense spectrum the bath correlation functions are typically strongly
peaked around zero.

2.5. Markov approximation

The assumption that the bath correlation functions are peaked around zero has an immediate
consequence, namely that the density matrices far in the past are weighted much less than the
one an instant ago. In the most extreme case we could express the bath correlation functions as
delta distributions Cαβ(t1, t2) ≈ Γαβδ(t1 − t2). Nonetheless, at this point we only need to assume
that the variation of the system density matrix is slower than the decay of the bath correlation
functions [49].

2.5.1. First Markov approximation

This is reflected in the first Markov approximation. We replace ρ̂S(t
′) → ρ̂S(t) in (2.24) and

obtain with the above properties of the bath correlation functions

∂

∂t
ρ̂S = −

t

∫

0

TrB {[Ĥ I(t), [Ĥ I(t
′
), ρ̂S(t) ⊗ ρ̂

eq
B ]]}dt′ , (2.27)
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which is known as Born-Redfield equation. It is local in time, preserves trace and hermiticity
but has still time-dependent coefficients. For convenience we also substitute τ = t − t′

∂

∂t
ρ̂S = −

t

∫

0

TrB {[Ĥ I(t), [Ĥ I(t − τ), ρ̂S(t) ⊗ ρ̂
eq
B ]]}dτ (2.28)

= −∑
αβ

t

∫

0

dτ{Cαβ(τ) [Âα(t), Âβ(t − τ)ρ̂S(t)] +Cβα(−τ) [ρ̂S(t)Âβ(t − τ), Âα(t)] } .

2.5.2. Second Markov approximation
The right-hand side of eq. (2.28) still depends on t, which can be overcome by extending the
integration boundaries to “∞”. That yields

∂

∂t
ρ̂S = −∑

αβ

∞

∫

0

dτ{Cαβ(τ) [Âα(t), Âβ(t − τ)ρ̂S(t)]

+Cβα(−τ) [ρ̂S(t)Âβ(t − τ), Âα(t)] } . (2.29)

This is justified as the two point correlation function evaluates to significant values only when
t ≈ τ , and thus extension of the upper limit is valid.
To put it in other words: the 2nd Markov approximation is justified if the integrand disappears
sufficiently fast for τ ≫ τB, where τB is the time scale over which the bath correlation functions
decay. Moreover, the time scale τS over which the system state varies appreciably is large
compared to τB.
Going back to the Schrödinger picture (2.29) reads

∂

∂t
ρ̂S = − i [ĤS , ρ̂S (t)] −∑

αβ

∞

∫

0

dτ{Cαβ(τ) [Âα , e−iĤSτ Âβ e+iĤSτ ρ̂S (t)]

+Cβα(−τ) [ρ̂S (t) e−iĤSτ Âβ e+iĤSτ , Âα] } . (2.30)

The system density matrix does not depend on system states at former times. Equation (2.30)
has constant coefficients, it preserves the trace and the hermiticity, but does not necessarily
preserve the positivity of the reduced density matrix.
The most general form of the master equation that assures the positivity of ρ̂S is the so-called
Lindblad form, as we will show in the next sections.
Note that the dynamical behavior over times of the order of magnitude of τB is not resolved in
this description!

2.6. Secular approximation
In order to make sure that the positivity of the density matrix is preserved we need another
approximation: the secular approximation. It is also termed rotating wave approximation, due
to its frequent use in quantum optics. Its essence is to neglect the fast oscillating terms in
the master equations. The identification of the fast oscillating terms requires at least formal
calculation of the interaction picture dynamics of the system coupling operators. We write the
Markovian master equation again in the interaction picture.
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We, therefore, evaluate (2.29) by using the system energy eigenbasis ĤS ∣a⟩ = Ea ∣a⟩ and by using
the hermiticity of the coupling operators. Inserting the completeness relation of the system
eigenstates yields

∂

∂t
ρ̂S = −∑

αβ

∑
abcd

∞

∫

0

dτ{Cαβ(τ) [∣a⟩ ⟨a∣ Âα(t) ∣b⟩ ⟨b∣ , ∣c⟩ ⟨c∣ Âβ(t − τ) ∣d⟩ ⟨d∣ ρ̂S(t)]

+Cβα(−τ) [ρ̂S(t) ∣c⟩ ⟨c∣ Âβ(t − τ) ∣d⟩ ⟨d∣ , ∣a⟩ ⟨a∣ Âα(t) ∣b⟩ ⟨b∣] } . (2.31)

With the definition of the system- and bath-operators in the interaction picture (2.13) this reads

∂

∂t
ρ̂S = −∑

αβ

∑
abcd

∞

∫

0

dτ ⟨a∣ Âα ∣b⟩ ⟨c∣ Âβ ∣d⟩ ei(Ea−Eb)t ei(Ec−Ed)(t−τ)

× {Cαβ(τ) [∣a⟩ ⟨b∣ , ∣c⟩ ⟨d∣ ρ̂S(t)] +Cβα(−τ) [ρ̂S(t) ∣c⟩ ⟨d∣ , ∣a⟩ ⟨b∣] } . (2.32)

For large times t the terms proportional to eiωt average out. We replace eiωt → δω,0, introduce
ωa,b = Ea −Eb and the Lindblad operators L̂ab = ∣a⟩ ⟨b∣. Thus, we obtain

∂

∂t
ρ̂S = −∑

αβ

∑
abcd

⟨a∣ Âα ∣b⟩ ⟨c∣ Âβ ∣d⟩ {

∞

∫

0

dτCαβ(τ) eiωd,cτ [L̂ab , L̂cd ρ̂S(t)]

+

∞

∫

0

dτCβα(−τ) eiωd,cτ [ρ̂S(t) L̂cd , L̂ab] }δωa,b,ωd,c

= −∑
αβ

∑
abcd

⟨a∣ Âα ∣b⟩ ⟨c∣ Âβ ∣d⟩ {Γ+αβ(ωd,c) [L̂ab , L̂cd ρ̂S(t)]

+ Γ−βα(−ωd,c) [ρ̂S(t) L̂cd , L̂ab] }δωa,b,ωd,c . (2.33)

In the last step we introduced the half-sided Fourier transformations of the bath correlation
functions, which are defined as

Γ±αβ(ω) =
∞

∫
−∞

dτΘ(±τ)Cαβ(τ) eiωτ , (2.34)

where Θ(t) is the Heaviside step function, defined in terms of the sign-function

Θ(x) =
1
2
(sgn(x) + 1) ,with sgn(x) =

⎧⎪⎪
⎨
⎪⎪⎩

+1 , x > 0
−1 , x < 0

. (2.35)

Equation (2.33) is already preserving trace, hermiticity and positivity of the reduced density
matrix ρ̂S, as it is of Lindblad form. We will introduce and substantiate the Lindblad form in
section 2.7.
At this point a little remark should be made: In eq. (2.33) we have to be sure that the Fourier
transforms Γ±αβ converge. Thus, the bath correlation functions have to decrease as τ increases.
We can decompose the bath operators B̂α into eigenoperators of the bath Hamiltonian (which is
similarly possible for the system operators Âα). We have

B̂α (ω) = ∑
ε−ε′=ω

Π̂ (ε) B̂α Π̂ (ε′) , (2.36)
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where we used the projection Π̂ (ε) on the eigenspace of ĤB with the corresponding eigenenergy
ε. Equivalently we get

B̂α = ∑
ω

B̂α (ω) , (2.37)

Therefore, the bath operator in the interaction picture can be decomposed into

B̂α(τ) = ∑
ω

e−iωτ B̂α (ω) , (2.38)

and we find for the bath correlation functions

Cαβ(τ) = Tr{B̂α(τ) B̂β ρ̂
eq
B } = ∑

ω

e−iωτ Tr{B̂α (ω) B̂β ρ̂
eq
B } . (2.39)

This shows, that the bath correlation functions are periodic in τ and, thus, the integral to infinity
would diverge. We can prevent the integral from diverging by assuming that the environment has
infinite degrees of freedom (thermodynamic limit) and a continuous spectrum. Then eq. (2.37)
is rewritten as

B̂α =

Ω

∫

−Ω

dω B̂α (ω) , (2.40)

where Ω is the maximum eigenfrequency. Correspondingly, (2.39) becomes

Cαβ(τ) =

Ω

∫

−Ω

dω e−iωτ Tr{B̂α (ω) B̂β ρ̂
eq
B } . (2.41)

Now, the bath correlation functions are not periodic any more as according to the Lemma of
Riemann-Lebesgue, that states

lim
τ→∞

b

∫
a

dω e−iωτ f(ω) = 0 , (2.42)

if f(ω) is integrable in [a, b]. In terms of the bath correlation function we, therefore, obtain

lim
τ→∞

Ω

∫

−Ω

dω e−iωτ Tr{B̂α (ω) B̂β ρ̂
eq
B } = 0 . (2.43)

Recall, that in the weak coupling regime we could rewrite Ĥ I → λĤ I, where λ accounts for
the strength of the system-bath-interaction. For small λ the variation of ρ̂S is slow (with the
corresponding time scale τS). The weak-coupling regime is, thus, characterized by τS ≫ τB.
In the limit λ → 0 we would get τS/τB → ∞ for a fixed τB. However, as λ → 0 means that
there is no interaction a rescaling of the time parameter is needed. The limiting procedure was
studied carefully by Davies [50]. Our reasoning above shows, that it is a necessary condition for
the weak coupling limit to exist that the bath has a continuous spectrum. Davies formulated
a sufficient and more rigorous condition for the decreasing behavior of the bath correlation
functions (compare Theorem 3.5 in [50]).
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Now, we will discuss and reshape eq. (2.33). As a beginning, we will split the half-sided Fourier
transforms in their hermitian γαβ and anti-hermitian σαβ parts, which yield

Γ±αβ(ω) =
1
2
γαβ(ω) ±

1
2
σαβ(ω) . (2.44)

Accordingly, the full even and odd Fourier transforms of the bath correlation functions read

γαβ(ω) = Γ+αβ(ω) + Γ−αβ(ω) =
∞

∫
−∞

dτCαβ(τ) eiωτ , (2.45)

σαβ(ω) = Γ+αβ(ω) − Γ−αβ(ω) =
∞

∫
−∞

dτCαβ(τ) sgn(τ) eiωτ . (2.46)

The latter, (2.46), can be rewritten in terms of Cauchy’s principal value, i.e.

σαβ(ω) =
1

2π

∞

∫
−∞

dΩ
⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
−∞

dτ e−i(ω−Ω)τ sgn(τ)
⎤
⎥
⎥
⎥
⎥
⎦

γαβ(Ω) =
i
π

P.V.
∞

∫
−∞

γαβ(Ω)

ω −Ω
dΩ , (2.47)

where we used that the Fourier transform of the sign function evaluates to 2/iω and where ’P.V.’
denotes the principal value.
The master equation (2.33), thus, can be rewritten as

∂

∂t
ρ̂S = −

1
2∑αβ

∑
abcd

⟨a∣ Âα ∣b⟩ ⟨c∣ Âβ ∣d⟩ [ (γαβ(ωd,c) + σαβ(ωd,c)) [L̂ab , L̂cd ρ̂S(t)]

+ (γβα(−ωd,c) − σβα(−ωd,c)) [ρ̂S(t) L̂cd , L̂ab] ]δωa,b,ωd,c . (2.48)

We now transform the indices α↔ β, a↔ c and b↔ d in the second line and collect the terms
proportional to the even and odd Fourier transforms, to obtain

∂

∂t
ρ̂S = −i [ĤLS , ρ̂S] + ∑

abcd

γab,cd[ L̂cd ρ̂S L̂
†
ba −

1
2
{L̂

†
ba L̂cd , ρ̂S} ] , (2.49)

with the so-called Lamb-shift Hamiltonian

ĤLS =
1
2i∑αβ

∑
abcd

σαβ(ωd,c) ⟨a∣ Âα ∣b⟩ ⟨c∣ Âβ ∣d⟩ L̂
†
ba L̂cd δωa,b,ωd,c , (2.50)

and the transition rates

γab,cd = ∑
α,β

γαβ(ωd,c) ⟨a∣ Âβ ∣b⟩ ⟨c∣ Âα ∣d⟩ δωa,b,ωd,c . (2.51)

The Lamb-shift Hamiltonian renormalizes the system Hamiltonian due to the interaction with the
baths. It is self-adjoint, ĤLS = Ĥ

†
LS, and commutes with the system hamiltonian, [ĤS , ĤLS] = 0,

which implies the existence of a basis that diagonalizes both operators.
Let’s assume that the system has orthogonal eigenstates, i.e. ⟨a∣b⟩ = δab, which simplifies the
Lamb-shift Hamiltonian to

ĤLS =
1
2i∑αβ

∑
abd

σαβ(ωd,b) ⟨a∣ Âα ∣b⟩ ⟨b∣ Âβ ∣d⟩ L̂ad δEa,Ed . (2.52)
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If, additionally, the system’s eigenvalues are nondegenerate, δEa,Ed = δa,d, the basis that diago-
nalizes ĤS is unique and also diagonalizes the Lamb-shift Hamiltonian

ĤLS =
1
2i∑αβ

∑
ab

σαβ(ωa,b) ⟨a∣ Âα ∣b⟩ ⟨b∣ Âβ ∣a⟩ L̂aa . (2.53)

Hence, for systems where the density matrix ρ̂S is diagonal in the eigenbasis, the commutator in
(2.49) vanishes.
For systems with nondegenerate eigenvalues an effective rate equation description for the system
density matrix can be written. It follows from that description, that ρ̂S is also diagonal in the
system eigenbasis. Consequently, if we go back to the Schrödinger picture the dynamics of
systems with nondegenerate eigenvalues are described by

∂

∂t
ρ̂S = ∑

abcd

γab,cd[ L̂cd ρ̂S L̂
†
ba −

1
2
{L̂

†
ba L̂cd , ρ̂S} ] , (2.54)

where we use that ĤS and ρ̂S have a common eigenbasis and that [ĤS , ρ̂S] vanishes.

2.6.1. Preservation of positivity
Now, we are left to show that the matrix γab,cd is positive definite and, therefore, (2.49) preserves
positivity of the system density matrix. It suffices to show that the matrix γ = (γα,β) is positive
semidefinite for all ω. The reasoning is as follows, compare [47]:
For any vector v⃗ we have

(v⃗,γv⃗) = ∑
αβ

vαγαβ(ω)vβ =

∞

∫
−∞

dτ eiωτ
∑
αβ

v∗αTr{B̂α(τ) B̂β ρ̂
eq
B } vβ

=

∞

∫
−∞

dτ eiωτ
∑
αβ

v∗αTr{eiĤBτ B̂α e−iĤBτ B̂β ρ̂
eq
B } vβ

=

∞

∫
−∞

dτ eiωτ Tr{eiĤBτ Ĉ
† e−iĤBτ Ĉ ρ̂eq

B } , (2.55)

where Ĉ = ∑α B̂α vα. Now, we can use the so-called Bochner-theorem [51], that states that the
Fourier transform of a “positive type” function is a positive quantity.
A function f(t) is of “positive type” if it is complex-valued, bounded and continuous on Rn with
the property that a matrix f = (fij) with fij = f(ti − tj) is positive semidefinite on CN , where
t1 . . . tN ∈ Rn.
According to this definition we can show, that f(t) = Tr{eiĤBt Ĉ

† e−iĤBt Ĉ ρ̂eq
B } is a function of

“positive type”. If we take the trace in the eigenbasis of ĤB (with the assumption of a continuous
spectrum), we obtain

f(t) = Tr{eiĤBt Ĉ
† e−iĤBt Ĉ ρ̂eq

B } = ∫ dε ⟨ψε∣ eiĤBt Ĉ
† e−iĤBt Ĉ ρ̂eq

B ∣ψε⟩

= ∫ dε eiεt pε ⟨ψε∣ Ĉ
† e−iĤBt ∣ψε⟩ , (2.56)

with

ρ̂eq
B ∣ψε⟩ ≡ pε ∣ψε⟩ . (2.57)
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Since ρ̂eq
B is a positive operator we have pε ≥ 0. By using the completeness relation 1 =

∫ dε
′ ∣ψε′⟩ ⟨ψε′ ∣ we can show the positivity of f(t)

f(t) = ∫ dεdε′eiεtpε ⟨ψε∣ Ĉ
† e−iĤBt ∣ψε′⟩ ⟨ψε′ ∣ Ĉ ∣ψε⟩

= ∫ dεdε′ei(ε−ε′)tpε ∣⟨ψ
′
ε∣ Ĉ ∣ψε⟩∣

2
≥ 0 . (2.58)

With this result we can construct the positive semidefinite matrix that proves that f(t) is of
positive type. We take another arbitrary vector w⃗ and evaluate the inner product

(w⃗, f w⃗) = ∑
ij

w∗
i f(ti − tj)wj = ∫ dεdε′∑

ij

w∗
i e

i(ε−ε′)(ti−tj)wjpε ∣⟨ψ
′
ε∣ Ĉ ∣ψε⟩∣

2

= ∫ dεdε′ ∣∑
i

w∗
i e

i(ε−ε′)ti∣
2
pε ∣⟨ψ

′
ε∣ Ĉ ∣ψε⟩∣

2
≥ 0 , (2.59)

as the integrand is positive on the whole domain of integration.
According to Bochner’s theorem the matrix γαβ is positive semidefinite(v⃗,γv⃗) ≥ 0.

2.7. Excursus: Quantum dynamical semigroups
In this section we want to introduce briefly the mathematical background of the Markovian
evolution in the field of open quantum systems, in particular the general properties of the
underlying dynamical maps. The reader may skip this section, but note that at the very end the
most general form of a master equation that describes the Markovian dynamics of the reduced
density matrix is presented. We recommend the books of Alicki and Lendi [48], Breuer and
Petruccione [40] as well as the very recent review by Rivas and Huelga [47] for further reading.

A Banach space is a complete vector space with a norm ∥ ⋅ ∥. A space is complete if every Cauchy
sequence converges in it. Let’s consider the Banach space B of the trace-class operators on a
Hilbert space H that has a trace-norm ∥ ⋅ ∥1, such that,

∥ Â ∥1 = Tr{
√

Â
†
Â} = Tr{

√

Â
2
} , Â ∈B . (2.60)

In the following we denote an operator ρ̂ ∈B as quantum state if it is positive-semidefinite, i.e.

⟨ψ∣ ρ̂ ∣ψ⟩ ≥ 0 , ∣ψ⟩ ∈ H , (2.61)

and it has trace one, which is - due to the positivity of its spectrum - equal to the trace norm.
Briefly,

ρ̂ ∈B is a quantum state ⇐⇒ ρ̂ ≥ 0 and ∥ ρ̂ ∥1 = 1 . (2.62)

The set of quantum states is now denoted by B̄+ ⊂B. where B is actually the smallest linear
space that contains B̄+.
Let’s recall that we can extract the evolution of our subsystem of interest, labeled S, from the
evolution of the entire system by taking the partial trace, namely

ρ̂S (t1) = TrB {Û (t1, t0) ρ̂ (t0) Û
†
(t1, t0)} . (2.63)
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We want to define dynamical maps. We introduce the map acting on HS that connects states of
S at times t0 and t1

E(t1,t0) ∶ ρ̂S (t0) ↦ ρ̂S (t1) . (2.64)

In general this dynamical maps depend not only on the global evolution Û (t1, t0) and the
properties of system B (the bath) but on the system S itself. We can resolve this problem by
assuming initially uncorrelated product states ρ̂ (t0) = ρ̂S (t0) ⊗ ρ̂B (t0) (Born assumption). Each
dynamical map that is induced from an initial condition like this is called universal dynamical
map (UDM). The UDM is given by

ρ̂S (t1) = E(t1,t0) [ρ̂S (t0)] = ∑
α

K̂α (t1, t0) ρ̂S K̂
†
α (t1, t0) , (2.65)

with ∑α K̂
†
α (t1, t0) K̂α (t1, t0) = 1S, which is fulfilled because the dynamical map is trace pre-

serving Tr{E(t1,t0) [ρ̂S (t0)]} = Tr{ρ̂S (t1)} = 1 for any intial state ρ̂S (t0). The dynamical maps
are positive, i.e. E[Â] is positive for any positive Â acting on the Hilbert space HS. However, we
require an even stronger property. Consider a second Hilbert space H̃ of arbitrary dimensions.
Then, if the combined operation E ⊗ 1 maps positive operators on the combined Hilbert space
HS ⊗ H̃ to positive operators then E is called completely positive. This is a reasonable condition
as we can regard the dynamical map E ⊗1 as an operation that acts on the first of two separated
systems while it does not influence the second one. Note that eq. (2.65) is often referred to
as Kraus decomposition of a completely positive map [52]. Figure 2.1 shows the diagramatic
representation of the UDM.

ρ̂S(t0)⊗ ρ̂B(t0) ρ̂(t1)

ρ̂S(t0) ρ̂S(t1)

TrB

Û(t1, t0)

E(t1,t0)

TrB

Figure 2.1.: Commutative diagram of the universal dynamical map (UDM).

Our focus is now on possible linear transitions on the Banach space B, namely E(B) ∶B→B.
On the other hand, the set of this maps forms the dual space B∗ with the induced norm

∥E∥1 = sup
ρ̂∈B,ρ̂≠0

{
∥E(ρ̂)∥1
∥ ρ̂ ∥1

} . (2.66)

Of particular interest are of course the maps E ∈B∗ that leave the subset B̄+ invariant, i.e. that
connects a quantum state with another quantum state. In fact Kossakowski [53] showed that
this is fulfilled if and only if E preserves the trace and is a contraction on B, that is defined as a
map whose norm is ∥E∥1 ≤ 1.
One last requirement is to be met in order describe Markovian dynamics, which as already
known from classical Markovian processes described by the Chapman-Kolmogorov equation
(compare [40]). This requirement states that in a Markov process a random variable X which
depends on a parameter t (identified with time) and takes a value xn at any arbitrary time tn is
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conditioned only by the value xn−1 that it took at time tn−1 but does not depend on the values
at earlier times.
In the quantum version this can be expressed such that maps E that act as propagators for an
evolution of ρ̂ form a quantum dynamical semigroup.
The dynamical maps {Eτ ∣τ ≥ 0} constitute a one-parameter family, where τ = t2 − t1 and where
the identity map is E0 = 1 and that has the property

E(t2,t0) = E(t2,t1)E(t1,t0) . (2.67)

The latter can be written in terms of time differences, which yields

Eτ1+τ2 = Eτ2Eτ1 . (2.68)

Note that this defines only a semigroup, as in general the inverse elements are not UDMs. That
is due to the fact that a general E(t1,t0) can be inverted only a by unitary map, which is not
always the case.
In conclusion a quantum system undergoes a Markovian evolution if it is described by a contractive
evolution family on B where eq. (2.67) holds.
Now we can show that there exists a linear map, called a generator of a semigroup, compare [48],
such that

∂

∂t
ρ̂S (t) = lim

ε→0

ρ̂S (t + ε) − ρ̂S (t)

ε
= lim
ε→0

(E(t+ε,t) − 1) [ρ̂S (t)]

ε
= L̂t [ρ̂S (t)] . (2.69)

We now define the most general form of L̂t along the lines of [40, 47, 48]. If E(t2,t1) is a UDM
for any t2 ≥ t1 it can be decomposed as in eq. (2.65). Let {F̂ j , j = 1, . . . ,N2} be a complete
orthonormal basis with respect to the Hilber-Schmidt inner product (F̂ j , F̂ k) = δjk where we
choose F̂N2 = 1S/

√
N , which implies that the rest of the operators is traceless. Therefore, the

Kraus operators can be rewritten in this basis

E(t2,t1) [ρ̂S (t0)] = ∑
j,k

cjk(t2, t1) F̂ j ρ̂S F̂
†
k , (2.70)

with the coefficients

cjk(t2, t1) = ∑
α

(F̂ j , K̂α (t2, t1))(F̂ k , K̂α (t2, t1))
∗ . (2.71)

These coefficients form a positive semidefinite matrix c(t2, t1), which is easy to prove by taking
a N2 vector v⃗ and evaluating the inner product

(v⃗,c(t2, t1)v⃗) = ∑
j,k

v∗j cjk(t2, t1)vk = ∑
α

∣(∑
k

vk(F̂ k , K̂α (t2, t1)))∣
2
≥ 0 . (2.72)

This is valid for all t2 ≥ t1. When we substitute t1 → t and t2 → t + ε the generator reads

L̂t [ρ̂S] = lim
ε→0
∑
j,k

cjk(t + ε, t) F̂ j ρ̂S F̂
†
k + 1S

ε

= lim
ε→0

⎡
⎢
⎢
⎢
⎢
⎣

1
N

cN2N2(t + ε, t) −N

ε
ρ̂S +

N2−1
∑
j,k=1

cjk(t + ε, t)

ε
F̂ j ρ̂S F̂

†
k

+
1

√
N

N2−1
∑
j=1

(
cjN2(t + ε, t) −N

ε
F̂ j ρ̂S +

cN2j(t + ε, t) −N

ε
ρ̂S F̂

†
j)

⎤
⎥
⎥
⎥
⎥
⎦

. (2.73)
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We now identify the new coefficients ajk(t) by

aN2N2(t) = lim
ε→0

cN2N2(t + ε, t) −N

ε
,

ajN2(t) = lim
ε→0

cjN2(t + ε, t)

ε
, j = 1, . . . ,N2

− 1 ,

ajk(t) = lim
ε→0

cjk(t + ε, t)

ε
, j, k = 1, . . . ,N2

− 1 , (2.74)

and introduce the operators

F̂ (t) =
1

√
N

N2−1
∑
j=1

ajN2(t) F̂ j ,

Ĝ (t) =
aN2N2

2N
1S +

1
2
(F̂

†
(t) + F̂ (t)) ,

Ĥ (t) =
1
2i

(F̂
†
(t) − F̂ (t)) . (2.75)

In terms of these operators the generator yields

L̂t [ρ̂S] = −i [Ĥ (t), ρ̂S] + {Ĝ (t), ρ̂S} +
N2−1
∑
j,k=1

ajk(t) F̂ j ρ̂S F̂
†
k . (2.76)

This equation can be even more compactly rephrased by taking into account that the generator
preserves the trace, Tr{L̂t [ρ̂S]} = 0,

L̂t [ρ̂S] = −i [Ĥ (t), ρ̂S] +
N2−1
∑
j,k=1

ajk(t) (F̂ j ρ̂S F̂
†
k −

1
2
{F̂

†
k F̂ j , ρ̂S}) . (2.77)

The matrix (ajk)(t) is, like (cjk)(t + ε, t), positive semidefinite. Therefore, we can diagonalize it
for any time t by using a unitary matrix u(t),

∑
j,k

umj(t)ajk(t)u
∗
nk(t) = γm(t)δmn . (2.78)

Each eigenvalue of the diagonal matrix is positive at all times γm(t) ≥ 0. With the operators
L̂k (t)

L̂k (t) =
N2−1
∑
j=1

u∗kj F̂ j (t) , F̂ j =
N2−1
∑
j=1

ukj L̂k (t) . (2.79)

we can eventually write the diagonal form of the generator

L̂t [ρ̂S] = −i [Ĥ (t), ρ̂S] +
N2−1
∑
k=1

γk(t) (L̂k (t) ρ̂S L̂
†
k (t) −

1
2
{L̂

†
k (t) L̂k (t), ρ̂S}) . (2.80)

with γk(t) ≥ 0,∀k, t and Ĥ (t) is self-adjoint.
When the problem is time-homogeneous, i.e. the dynamical maps depend merely on time-
differences τ than the generator becomes time-independent, with Eτ = exp[L̂ τ]. That was proven
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by Kossakowski [53] for finite dimensional semigroups and by Lindblad for inifinite dimensional
semigroups [54], which is why the most general generator of the Markovian dynamics,

L̂ [ρ̂S] = −i [Ĥ , ρ̂S] +
N2−1
∑
k=1

γk (L̂k ρ̂S L̂
†
k −

1
2
{L̂

†
k L̂k , ρ̂S}) , (2.81)

is called Lindblad master equation.
In section 2.6.1 we have shown, that the matrix γαβ is positive semidefinite and, therefore, (2.49)
has Lindblad form.

2.8. Effective rate equations

The shape of the Lindblad operators L̂ab in (2.49) suggest evaluation in the eigenbasis. Let’s
assume an orthogonal eigenbasis and that the eigenvalues are nondegenerate. If we compute the
matrix elements ρnm = ⟨n∣ ρ̂S ∣m⟩ the commutator in (2.49) vanishes.

ρ̇nm = ∑
abcd

γab,cd [δn,cδb,mρda −
1
2
δb,c {δn,aρdm, δm,dρna}]

= ∑
a,d

γam,ndρda −
1
2∑a,b

[γnb,baρam + γab,bmρna] . (2.82)

Taking into account the definition for the rates, eq. (2.51), further simplification follows straight-
forwardly

ρ̇nm = ∑
ab

γbm,naρab −
1
2∑b

[γnb,bn + γmb,bm]ρnm . (2.83)

We now consider only the populations, which decouple from the coherences. They read

ρ̇nn = ∑
b

[γbn,nbρbb − γnb,bnρnn] , (2.84)

and the respective rates

γnb,bn = ∑
αβ

γαβ(ωnb) ⟨n∣ Âα ∣b⟩ ⟨b∣ Âβ ∣n⟩ , (2.85)

are nonnegative. γnb,bn are the diagonal elements of the rate matrix γab,cd, therefore the effective
rate equations (2.84) also preserve the positivity of the density matrix. As the equations for the
populations are decoupled from those for the coherences, the steady-states are determined by
the dynamics of the populations only, since the coherences decay in the limit of long times.

2.9. Liouville space

The Lindblad master equation (2.81) is often written in a form analogous to the Schrödinger
equation, namely

∂

∂t
ρ̂S = L̂ [ρ̂S] . (2.86)
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The generator of the Markovian dynamics is a so called Liouville super-operator L̂ [ρ̂S] acting
on the system density operator. We can define it (compare (2.54)) as

L̂ [ρ̂S] = ∑
abcd

γab,cd[ L̂cd ρ̂S L̂
†
ba −

1
2
{L̂

†
ba L̂cd , ρ̂S} ] . (2.87)

The Liouville super-operator is linear with respect to ρ̂S. For convenience one can switch
to the Liouville space representation, in which the system density matrix is rearranged as a
vector, ρ̂S → ρ⃗S and hence the Liouvillian super-operator can be represented by a matrix. If the
considered system has dimension d the vector ρ⃗S has d2 entries and the Liouvillian super-operator
is represented by the (d2 × d2)-rate matrix W, which can have complex eigenvalues and is in
general not self-adjoint.
The elements of the density matrix are rearranged in a specific ordering in a vector, commonly
populations followed by coherences.

ρ̂S =
⎛
⎜
⎝

ρ11 ⋯ ρ1d
⋮ ⋱ ⋮

ρd1 ⋯ ρdd

⎞
⎟
⎠
⇒ ρ⃗S =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ11
⋮

ρdd
ρ12
⋮

ρdd−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.88)

This ordering is not unique. However, with this choice the rate matrix, which corresponds to Eq.
(2.83), assumes block form if the spectrum of the system is nondegenerate as the dynamics of
occupations and coherences decouple.
For the sake of simplicity we omit the vector-notation from now on and simply write ρS. In this
convenient representation the evolution of the reduced system density matrix reads

∂

∂t
ρS = WρS , (2.89)

which can formally be solved by the matrix exponential

ρS(t) = eWt ρS(0) . (2.90)

In general it is rather difficult to find analytic solutions to the matrix exponentials since the
Liouvillian is nonhermitian and has no spectral decomposition. Nonetheless, for systems that
can be described by effective rate equations (2.84) the Liouvillian assumes block form with at
least two decoupled blocks; Wpop that contains the transition rates for the occupations and Wcoh

for the coherences. Than the matrix exponential for the occupations only can be calculated by
exp[Wpop], which is in general much easier than calculating the full expression.
The matrix elements of the population block Wpop are given by

W
pop
nn = γnn,nn −∑

b

γnb,bn , W
pop
nm = γnm,mn , (m ≠ n) . (2.91)

It is straightforward to show the following trace preserving property

∑
n

W
pop
nm = 0 . (2.92)
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2.9.1. Multiple reservoirs

Formally, the master equation is not changed for multiple noninteracting reservoirs. The methods
and quantities we introduced above can be generalized to multiple reservoir setups, i.e. each
reservoir is equipped with an index ν and will be characterized by its corresponding thermal
equilibrium state ρ̂eq,(ν)

B with its respective chemical potential µν and inverse temperature βν .
The total Liouvillian (the total rate matrix) can be decomposed as a sum over the respective
single reservoir Liouvillians

W =∑
ν

W
(ν) . (2.93)

2.10. Conditional master equations
One point of particular interest in system-bath theories is the exchange of particle and/or energy
between the system of interest and one or more reservoirs. Moreover, one often finds that the
combined system obeys conservation laws, the most prominent of which are particle number and
energy conservation, obviously. On the other hand, particle number and energy conservation
imply that the loss of particles and/or quanta of energy in the system is accompanied by a gain
in the respective reservoirs, except for generic pure dephasing models [55, 56]. As a consequence,
counting or tracking of particles/energy quanta that leave or enter the respective reservoir is
sufficient to characterize the flow of particles and energy, respectively.
As the contributions due to the coupling to different reservoirs are additive, it is possible to
uniquely identify to which reservoir they belong. Therefore, it is sufficient to consider just one
bath, as we can – without loss of generality – generalize the obtained results.

Our starting point to resolve the particle numbers and energy quanta exchanged between the
considered system and a bath is to rewrite the rate equation (2.89), where we keep only track of
the occupations, as a set of rate equation for the probabilities pi to find the system in state ∣i⟩,
which reads

ṗi = ∑
j

Wijpj . (2.94)

We find the change of the probability during the small time interval dt, accordingly,

dpi = ∑
j

Wijpjdt , (2.95)

where Wijpjdt expresses the probability to reach state ∣i⟩ during dt from an initial state ∣j⟩
invoked by the action of the (jump) operator Wij . Summing over this probabilities yields the
total change of the probability pi. Due to the conservation of energy and the number of particles,
the transitions between states ∣j⟩ and ∣i⟩ are accompanied by the exchange of ∆nij = ni−nj ;ni ∈ Z
particles and a certain amount of energy ∆Eij = Ei −Ej between system and the reservoir. In
the following we denote the probability to find the system in state ∣i⟩ – given that n particles
and the energy E have been transported to the reservoir – by p(n,E)i . The probability without
any information about the prior transfers is then, obviously

pi =
∞
∑

n=−∞

∞

⨋

E=−∞

p
(n,E)
i . (2.96)
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We can now relate the conditional probabilities p(n,E)i to eq. (2.95) and deduce the rate equation

dp
(n,E)
i = ∑

j

W
(∆nij ,∆Eij)
ij p

(n+∆nij ,E+∆Eij)
j dt . (2.97)

This equation is to be interpreted in the following way: the system is in an initial state ∣j⟩ with
nj particles and an energy Ej while the reservoir has n +∆nij excess particles and an energy of
E +∆Eij . When a jump to state ∣i⟩ takes place ∆nij particles and the transition energy ∆Eij
are exchanged with the bath.
In the following we want to take into account only the transitions where no particles or one
particle is transferred, i.e. we explicitly neglect co- and pair tunneling processes, which holds for
the transport setups considered throughout this work. The transition energy for a single jump is
in general not restricted, as long as the transition ∣j⟩ → ∣i⟩ is allowed.
In conclusion, when taking into account all system states we obtain the conditional master
equation

d

dt
ρ
(n,E)
S (t) = W0ρ

(n,E)
S (t) + ∑

∆E
(J

+
∆Eρ

(n−1,E−∆E)
S (t) + J −

∆Eρ
(n+1,E+∆E)
S (t)) . (2.98)

This master equation describes the evolution of the system density operator ρ(n,E)S provided that
n particles and an amount of energy E has been exchanged with the reservoir. The operator
W0 describes the dynamics of the system that don’t involve any particle or energy exchange
with the monitored bath, while the operators J ±

∆E cause the hopping of a single particle and
the transfer of an energy ∆E between the reservoir and the system. The summation takes into
account all possible energy transitions ∆E between system states.
As, in general, the amount of transferred particles and energy is not constrained Eq.(2.98) yields
an infinite set of equations for the density matrix. Furthermore, we note that the evolution and
jump operators W0 and J ± do neither depend on n nor E, which suggests to simplify the set
of equations by suitable Fourier transformations with respect to n and E. For n we obviously
have to choose a discrete Fourier transformation. For the transition energies we can choose both
discrete or continuous Fourier transformation. The continuous Fourier transformation is justified
where the possible transition energies lie dense if we consider a large number of jump processes.
However, in this work we have systems where only few different jump processes happen and the
transition energies are sharp. Therefore, we use

ρS(χ, η, t) =
∞
∑

n=−∞

∞

∫

E=−∞

dEρ
(n,E)
S (t) ei(nχ+Eη) . (2.99)

Its inverse Fourier transformation reads

ρ
(n,E)
S (t) = (

1
2π

)
2 π

∫
−π

dχ

∞

∫
−∞

dηρS(χ, η, t) e−i(nχ+Eη) . (2.100)

The set of equations, (2.98), is transformed to a single equation by applying the Fourier transform
(2.99), which yields

∂

∂t
ρS(χ, η, t) = {W0 + ∑

∆E
[J

+
∆E e+i(χ+∆Eη)

+J
−
∆E e−i(χ+∆Eη)

]}ρS(χ, η, t)

= W(χ, η)ρS(χ, η, t) . (2.101)
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As additional terminals enter additively we can write the multiterminal differential equation

∂

∂t
ρS(χ⃗, η⃗, t) = W(χ⃗, η⃗)ρS(χ⃗, η⃗, t) . (2.102)

Here the vectors χ⃗ = (χ1, . . . , χN) and η⃗ = (η1, . . . , ηN) contain the particle and energy counting
fields for all reservoirs.
Equation (2.102) is formally solved by

ρS(χ⃗, η⃗, t) = eW(χ⃗,η⃗)t ρS(χ⃗, η⃗,0) . (2.103)

In the following section we want to discuss the meaning of the counting fields in more detail.

2.11. Full counting statistics
Up to now we have derived the equations describing the dynamics of probabilities that are
conditioned on the number of particles and the amount of energy quanta exchanged with the
environment. The information that is contained in these probability distributions is closely
related to measurable transfer events in nonequilibrium between a system and its environment.
Recent experiments showed that it is possible to track the tunneling of single electrons through
mesoscopic structures in real-time [28, 57, 58, 59].
These real-time techniques allow for precise measurements of the statistical distribution of the
number of transferred charges, the so-called full counting statistics [60].
Typically, one is not interested in the internal state of the system but in the exchange processes,
which gives rise to a probability distribution

p(n⃗,E⃗)(t) = ∑
i

p
(n⃗,E⃗)
i (t) = Tr{ρ(n⃗,E⃗)(t)} . (2.104)

The inverse Fourier transformation, eq. (2.100), can be generalized for setups with M terminals,
which relates the p(n⃗,E⃗)(t) to the particle and energy counting fields

p(n⃗,E⃗)(t) = (
1

2π
)

2M +π

∫
−π

dχ1 . . . dχM

+∞

∫
−∞

dη1 . . . ηMTr{eW(χ⃗,η⃗)t ρS(χ⃗, η⃗,0)} e−i(n⃗χ⃗+E⃗η⃗) .

(2.105)

The moments of the probability distribution are given by derivatives with respect to the counting
fields. We define the moment generating function (MGF) M

M(χ⃗, η⃗, t) ≡ Tr{ρS(χ⃗, η⃗, t)} = Tr{eW(χ⃗,η⃗)t ρS(χ⃗, η⃗,0)} , (2.106)

and calculate moments of particle and energy distributions

⟨n⃗k(t)⟩ = ∑
n⃗

n⃗kp(n⃗,E⃗)(t) = (−i∂χ⃗)kM(χ⃗, η⃗, t)∣
χ⃗=η⃗=0

, (2.107)

⟨E⃗k(t)⟩ = ∫ dE⃗E⃗kp(n⃗,E⃗)(t) = (−i∂η⃗)kM(χ⃗, η⃗, t)∣
χ⃗=η⃗=0

. (2.108)

On the other hand, one can recover the probability distributions by taking the Fourier transforms
of the MGF.
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Thus, the full particle and energy distributions for a single reservoir ν read

p(ν)n (t) =
1

2π

π

∫
−π

dχνM(χ⃗, η⃗, t) e−inχν ∣
χ⃗=η⃗=0⃗

, (2.109)

p
(ν)
E (t) =

1
2π

∞

∫
−∞

dηνM(χ⃗, η⃗, t) e−iEην ∣
χ⃗=η⃗=0⃗

. (2.110)

The most simple characterization of nonequilibrium processes is to investigate the particle (matter)
and energy currents; i.e. to calculate the time derivatives of the first moments. Therefore, the
particle (M) and energy (E) currents yield

I
(ν)
M = ⟨ṅ⟩ν = −i d

dt

∂

∂χν
M(χ⃗, η⃗, t)∣

χ⃗=η⃗=0⃗
= −iTr{ ∂

∂χν
ρ̇S(χ⃗, η⃗, t)} ∣

χ⃗=η⃗=0⃗
, (2.111)

I
(ν)
E = ⟨Ė⟩ν = −i d

dt

∂

∂ην
M(χ⃗, η⃗, t)∣

χ⃗=η⃗=0⃗
= −iTr{ ∂

∂ην
ρ̇S(χ⃗, η⃗, t)} ∣

χ⃗=η⃗=0⃗
. (2.112)

It is now straightforward to obtain the higher moments of the distributions that disclose
information about variance, skewness and kurtosis. For simple structures, e.g., the tunneling
through single quantum dots, the higher moments are even accessible in experiments [58, 59],
although in general this is more complicated.

2.11.1. Steady-state currents
We now want to investigate setups with more than one reservoir connected to the same system
of interest, which can lead to the formation of nonvanishing steady-state currents. They arise
from nonequilibrium steady-states, that the system runs into in the limit of long times. Its
properties are useful to gain more information about the physical properties of the system or
they might be used to perform work in terms of thermoelectric devices.
In the next sections we want to discuss in more detail the nonequilibrium properties.
To begin with, however, we just want to derive the simplest characterization of the steady-state:
the steady-state currents.
The first step is to determine the steady-state density matrix ρ̄S. With eq. (2.102) we can define

∂

∂t
ρ̄S = 0 = W(0⃗, 0⃗)ρ̄S (2.113)

where it is necessary to require normalization of the steady-state density matrix, i.e. Tr{ρ̄S} = 1.
Thus, the steady-state of the system is uniquely defined, given the system under consideration is
not bistable.
With the above definition, eq. (2.106), the MGF reads in the limit of long times

lim
t→∞

M(χ⃗, η⃗, t) = Tr{eW(χ⃗,η⃗)t ρ̄S} . (2.114)

Then, the steady-state currents with respect to the reservoir ν follow directly. We obtain

Ī
(ν)
M = −i ∂

∂χν
Tr{ d

dt
eW(χ⃗,η⃗)t ρ̄S} ∣

χ⃗=η⃗=0⃗
= −i ∂

∂χν
Tr{W(χ⃗, η⃗) eW(χ⃗,η⃗)t ρ̄S} ∣

χ⃗=η⃗=0⃗

= −iTr{[ ∂

∂χν
W(χ⃗, η⃗)∣

χ⃗=η⃗=0⃗
] e(W 0⃗,0⃗)t ρ̄S} − iTr{W(0⃗, 0⃗) [ ∂

∂χν
eW(χ⃗,η⃗)t ρ̄S∣

χ⃗=η⃗=0⃗
]}

= −iTr{( ∂

∂χν
W(χ⃗, η⃗)∣

χ⃗=η⃗=0⃗
) ρ̄S} = −iTr{ ∂

∂χν
W(χ⃗, η⃗)ρ̄S} ∣

χ⃗=η⃗=0⃗
, (2.115)
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where we used the properties Tr{W(0⃗, 0⃗) σ̂} = 0 for all operators σ̂ and eW(0⃗,0⃗)t ρ̄S = ρ̄S.
The steady-state energy current can be calculated analogously and we obtain

Ī
(ν)
E = −iTr{ ∂

∂ην
W(χ⃗, η⃗)ρ̄S} ∣

χ⃗=η⃗=0⃗
. (2.116)

The steady-state currents have to comply with the conservation of total particle number and the
total energy in the full system, which implies

∑
ν

Ī
(ν)
M = ∑

ν

Ī
(ν)
E = 0 . (2.117)

2.12. Entropy production
In this section we want to shed some light onto the concepts of stochastic thermodynamics.
Classical thermodynamics deals with the general laws governing the transformations in a system,
mainly the exchange of heat, work and matter with the respective environment. The microscopic
justification for the thermodynamic characterization comes from equilibrium statistical mechanics.
One central result is that in any process the entropy never decreases. Classical thermodynamics
are concerned with time-dependent phenomena close to equilibrium, that relax towards a thermal
equilibrium.
On the contrary, in stochastic thermodynamics one deals with small systems far from thermal
equilibrium that do not thermalize, which means that their probability currents do not vanish
even if the system reaches a steady-state, which is called nonequilibrium steady-state (NESS) [61,
62]. Such systems typically need external driving forces that prevent them from thermalizing.
Of particular interest is driving with time-independent external forces, where NESS are reached.
For this class of systems strong results exist: temperatures remain well-defined and if there is a
clear time scale separation between the degrees of freedom in slow systems and the very fast
ones in the reservoirs, such situations allow for a consistent thermodynamical description.
We consider systems in contact with a number of reservoirs ν, that are at fixed temperature Tν ,
i.e. (βν = 1/Tν) and chemical potential µν . The system has discrete and nondegenerate states i,
with energy Ei and the number of particles ni.
For simplicity we consider a single species of particles. Additionally, the system might also
exchange work with external sources of work. The effect of those sources on the energies Ei(ξ)
and particle numbers ni(ξ) is parametrized by the control parameter ξ = ξ(t). In the ensemble
picture, the system state is described by the probability distribution pi to be in state i, with
the normalization ∑i pi = 1. These distributions do not need to be in equilibrated states and,
therefore, thermodynamic concepts are not necessarily well defined for the system. The reservoirs,
however, are assumed to be ideal and, therefore, Tν and µν are referring to them. Although the
actual stochastic path of the system is unpredictable, the probabilities pi(t) evolve according
to the Markovian master equation (2.94); compare [63, 64]. The transition rates satisfy the
probability conservation condition

∑
i

Wij = 0 , (2.118)

and the rates describing transitions induced by different contacts add up

Wij = ∑
ν

W
(ν)
ij . (2.119)
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The basic thermodynamic state functions total energy, particle number and entropy in the
system are given by

ES = ∑
i

piEi , (2.120)

NS = ∑
i

pini , (2.121)

S = −∑
i

pi ln pi . (2.122)

There are two different mechanisms that contribute to their change, i.e. to the energy, matter
and entropy balance: a) due to the change of Ei and ni and b) a change in the occupation of
the levels due to the Markovian dynamics. The energy and particle balances read

ĖS = ∑
i

Ėipi +∑
i

Eiṗi = ξ̇
∂

∂ξ
ES +∑

ν

J
(ν)
E , (2.123)

ṄS = ∑
i

ṅipi +∑
i

Niṗi = ξ̇
∂

∂ξ
NS +∑

ν

J
(ν)
M , (2.124)

where the first parts on the right hand side accounts for changes induced by external sources of
work. In the absence of external driving these parts vanish. The second contributions are the
energy and matter currents entering the system from the reservoir ν

J
(ν)
M = ∑

i,j

W
(ν)
ij pj∆nij , (2.125)

J
(ν)
E = ∑

i,j

W
(ν)
ij pj∆Eij . (2.126)

Note that, as in the derivation for the currents in section 2.11, we assume that at one time
only one particle is tunneling, which implies ∆nij = {−1,0,+1}. Contrarily to our definition for
the currents I(ν)M , I

(ν)
E , eqs. (2.111) and (2.112), where qua definition particles/energy leaving

the system towards the reservoir constitute positive currents, we define the currents here to be
positive when entering the system; compare [41, 65]. Aside from the opposite signs the two
current expressions are equivalent, i.e.

I
(ν)
M = −J

(ν)
M , I

(ν)
B = −J

(ν)
B . (2.127)

The energy balance leads to the formulation of a first law of thermodynamics, namely

ĖS = Ẇ +∑
ν

Q̇(ν) , (2.128)

where we define the work flow, that is contributed to by the coupling to the baths and external
work sources

Ẇ = ∑
ν

µνJ
(ν)
M + ξ̇

∂

∂ξ
ES . (2.129)

The second contribution to the right-hand side of (2.128) defines the heat flow with respect to
the reservoirs

Q̇(ν) = J(ν)E − µνJ
(ν)
M . (2.130)
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Turning to the second law, we see that the definition (2.122) is a proper choice that reduces to
the standard thermodynamic entropy at equilibrium. Additionally, it preserves in nonequilibrium
situations the second law, namely the relation between heat and entropy exchange and the
positivity of the entropy production, i.e.

Ṡ = Ṡe + Ṡi , (2.131)

Ṡe = ∑
ν

Q̇(ν)

Tν
, (2.132)

Ṡi ≥ 0 . (2.133)

These properties can be verified as follows

Ṡ = −∑
i

ṗi ln pi = −∑
ν
∑
i,j

W
(ν)
ij pj ln pi = −∑

i,j

W
(ν)
ij pj ln pi

pj

= ∑
ν

1
2∑i,j

(W
(ν)
i,j pj −W

(ν)
j,i pi) ln

pj

pi
=

1
2∑ν

∑
i,j

J
(ν)
i,j

⎡
⎢
⎢
⎢
⎢
⎣

ln
W
(ν)
ij pj

W
(ν)
ji pi

+ ln
W
(ν)
ji

W
(ν)
ij

⎤
⎥
⎥
⎥
⎥
⎦

, (2.134)

where we introduce using the trace-preservation of the rate matrix,

J
(ν)
ij = W

(ν)
i,j pj −W

(ν)
j,i pi , (2.135)

X
(ν)
ij = ln

W
(ν)
ij pj

W
(ν)
ji pi

, (2.136)

q
(ν)
ij = ∆Eij − µν∆nij . (2.137)

The probability current J(ν)ij is the net transition rate from state j to i, and X
(ν)
ij is the

corresponding thermodynamical force. We can now identify the entropy flow to the environment
Ṡe and the internal entropy production Ṡi. They read

Ṡe ≡
1
2 ∑ν,i,j

J
(ν)
ij

q
(ν)
ij

Tν
= − ∑

ν,i,j

W
(ν)
ij pj ln

W
(ν)
ij

W
(ν)
ji

, (2.138)

Ṡi ≡
1
2 ∑ν,i,j

J
(ν)
ij X

(ν)
ij = ∑

ν,i,j

W
(ν)
ij pj ln

W
(ν)
ij pj

W
(ν)
ji pi

≥ 0 . (2.139)

The entropy flow Ṡe reads after some algebra

Ṡe =
1
2 ∑ν,i,j

J
(ν)
ij

q
(ν)
ij

Tν
= ∑

ν

1
Tν
∑
ij

[W
(ν)
ij pj∆Eij − µνW(ν)

ij pj∆nij]

= ∑
ν

1
Tν

[J
(ν)
E − µνJ

(ν)
M ] = ∑

ν

Q̇(ν)

Tν
, (2.140)

as desired.
Also, it is obvious that Ṡi is clearly nonnegative and it only vanishes when detailed balance is
fullfilled, i.e. every process is equilibrated by its reverse process, such that

W
(ν)
ij pj = W

(ν)
ji pi . (2.141)
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This is a purely mathematical statement. To connect it with the physical setups we are
interested in, we associate to each reservoir (i.e. decoherence mechanism) ν - that is responsible
for transitions between system states - a set of variables at their own equilibrium. That means
we assume idealized reservoirs with well-defined temperatures and chemical potentials. As a
consequence the transition rates associated to a reservoir ν need to obey the local detailed balance
property,

ln
W
(ν)
ij

W
(ν)
ji

= −βν [(Ei −Ej) − µν (ni − nj)] . (2.142)

This property makes sure that a system in contact with a single reservoir of temperature T and
chemical potential µ and without being subject to external driving will reach the grand-canonical
equilibrium with probabilities

peq
i = exp [−β (Ei − µni −Ωeq

)] . (2.143)

The equilibrium grand potential Ωeq is obtained by normalization of the probability distribution
peq

exp [−βΩeq
] = ∑

i

exp [−β (Ei − µni)] . (2.144)

If the system is coupled to multiple reservoirs each reservoir tries to impose its equilibrium on
the system which would clearly violate detailed balance, (2.141), except if all reservoirs had
the same thermodynamic properties (i.e. T and µ). This, on the other hand, would render the
distinction between the reservoirs useless.
We are in particular interested in nonequilibrium steady-states, where one has Ṡ = 0, i.e. the
entropy production compensates the entropy flow to the environment

¯̇Si = −
¯̇Se = −∑

ν

Q̇(ν)

Tν
, (2.145)

which introduces the extracted power

P = −Ẇ = ∑
ν

Q̇(ν) . (2.146)

2.13. Separation of time scales
In the following section we want to address the situation where the rate matrix has a structure that
reveals significantly different time scales. We want to outline a description of the thermodynamical
implications in terms of mesostates, a concept that was introduced in an excellent publication
by Esposito [41], who developed therein a theory for the coarse grained Markovian dynamics of
arbitrary open systems that exchange particles and energy with multiple reservoirs.
The mesostates, denoted by σ, are corresponding to the microstates i, such that that the
microstate i leads to the unique mesostate σ = σ(i). The microstates can be denoted iσ, jσ′ in
the way, that system state i leads to mesostate σ while state j is associated with mesostate σ′.
The probability to find the system in mesostate σ is

Pσ = ∑
iσ

piσ . (2.147)

28



We also introduce the conditional probability to be in a microstate iσ being in the mesostate σ
reads

Pi∣σ =
piσ
Pσ

, (2.148)

which of course satisfies probability conservation ∑iσ Pi∣σ = 1.
We now write the rate equations (2.94) in terms of the conditional probabilities (2.148) and
obtain

ṖσPi∣σ + PσṖi∣σ = ∑
σ′
Pσ′ ∑

ν,jσ′
W
(ν)
iσjσ′

Pj∣σ′ . (2.149)

This enables us to write a master equation that rules the dynamics of the mesostates. We sum
this equation over iσ,

Ṗσ = ∑
ν,σ′

V
(ν)
σσ′Pσ′ . (2.150)

Note that the mesoscopic rate matrix

V
(ν)
σσ′ = ∑

iσ ,jσ′
W
(ν)
iσjσ′

Pj∣σ′ with ∑
σ

V
(ν)
σσ′ = 0 , (2.151)

depends on Pjσ′ and thus on the dynamics of the microstates. Therefore (2.150) do not
close. Although we assume time-independent microstate rate matrices W(ν), V(ν)σσ′ will be time-
dependent. This is due to the fact that the conditional probabilities Pi∣σ are time-dependent, as
long as the distribution of the microlevels evolve.
The notion of mesostate dynamics is of particular usefulness if we consider systems that suggest
a coarse graining procedure such that the dynamics between microstates belonging to the same
mesostate evolve on a time scale much faster than the transitions between microstates that
belong to different mesostates. This implies for the elements of the rate matrix

Wiσjσ ≫Wiσjσ′ , (σ ≠ σ′) . (2.152)

This is to be taken seriously; this condition makes sure that the mesostate approach is valid,
which is formally proven in the appendix in [41].

Given that condition (2.152) is met, the probabilities Pi∣σ will evolve much faster than the
mesoscopic probabilities Pσ. Consider the characteristic short time scale τmic: Pi∣σ will be
governed by almost isolated dynamics within the mesostates σ and eventually relax to its
stationary distribution P̄i∣σ given by

∑
jσ

Wiσjσ P̄j∣σ = 0 . (2.153)

On the same time scale τmic the mesostate probabilities Pσ will barely change.
If the transitions between different microstates belonging to the mesostate σ are due to just one
reservoir the stationary conditional distribution will be given by the equilibrium distribution in
close analogy to eq. (2.143),

Peq
i∣σ = exp [−β (Eiσ − µniσ −Ωeq

(σ))] , (2.154)
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which implies a detailed balance condition within mesostate dynamics. We obtain

WiσjσPeq
jσ
= WjσiσPeq

iσ
. (2.155)

For multiterminal setups we will thus observe an evolution of the mesostate distributions Pσ on
time scales τ ≫ τmic according to the master equation (2.150)

Ṗσ = ∑
ν,σ′

V̄
(ν)
σσ′Pσ′ with V̄

(ν)
σσ′ = ∑

iσ ,jσ′
W
(ν)
iσjσ′

P̄j∣σ′ . (2.156)

We immediately see the time scale τmes on which the mesostate distributions will reach their
stationary state, obtained by

∑
νσ′
V̄
(ν)
σσ′ P̄σ′ = 0 . (2.157)

In the last paragraphs of this sections we want to, very briefly, study which are the consequences of
the coarse graining description in terms of the system’s entropy production. In our reference [41]
Esposito has not only introduced the coarse graining method in the first place, but also
investigated in-depth what follows for the thermodynamical description. For the purposes of
this work we only need to highlight some of the statements therein.
Let us start by noting that the evolution of the system entropy S can be separated into three
parts,

Ṡ = Ṡ(1) + Ṡ(2) + Ṡ(3) , (2.158)

where the first part accounts for the Shannon-like entropy in terms of the mesoscopic probabilities,
i.e. it describes a system made of mesostates without knowing the internal dynamics of the
microstates constituting them. We have already seen above, that the mesostate description
recovers the structure of microscopic dynamics, i.e. the evolution of the mesostate probabilities
obeys a Markovian master equation, eq. (2.150). Accordingly, we find

Ṡ(1) = −∑
σ

Ṗσ lnPσ . (2.159)

The second contribution to eq. (2.158) averages the entropy changes occuring within each
mesostate over the mesostates. Likewise, the third contribution averages the entropy change
due to transitions between microstates pertaining to different mesostates. We will omit the
discussion of these contributions here and refer to Esposito’s work ([41]).
However, the entropy production and entropy flow of the total system can be split up into three
contribution as well

Ṡi = Ṡ
(1)
i + Ṡ

(2)
i + Ṡ

(3)
i ≥ 0 , Ṡe = Ṡ

(1)
e + Ṡ(2)e + Ṡ(3)e . (2.160)

Again, the first contributions to entropy production and entropy flow are associated with the
dynamics of the structureless mesostates, the second belong to the internal dynamics of the
mesostates and the third to the different ways in which mesostate transitions can occur. Note
that the separation of the entropy balance is consistent such that

Ṡ(j) = Ṡ(j)i + Ṡ(j)e , j ∈ {1,2,3} . (2.161)
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Here, we only mention the entropy production and flow pertaining to the structureless mesostate
dynamics, which assume the following form

Ṡ
(1)
i = ∑

ν,σ,σ′
V
(ν)
σσ′P

′
σ ln

V
(ν)
σσ′P

′
σ

V
(ν)
σ′σPσ

≥ 0 , (2.162)

and

Ṡ(1)e = − ∑
ν,σ,σ′

V
(ν)
σσ′P

′
σ ln

V
(ν)
σσ′

V
(ν)
σ′σ

. (2.163)

These expressions provide further evidence that when microstates within mesostates are at
equilibirum stochastic thermodynamics at mesostate level assumes the same form as on the
microstate level, which can be seen by comparing the last expression to eqs. (2.138) and (2.139).
One interesting consequence of the partition of the entropy balance should be noted: we recall
that the entropy production Ṡi is always a nonnegative quantity. This clearly holds also for Ṡ(1)i

and we can prove this property also for the remaining contributions, Ṡ(2,3)i [41]. This, on the
other hand, implies that Ṡ(1)i underevaluates Ṡi

Ṡi − Ṡ
(1)
i = Ṡ

(2)
i + Ṡ

(3)
i ≥ 0 . (2.164)

If the system runs into a steady-state, we find also analogously to the microstate dynamics, that
entropy production Ṡ

(1)
i and entropy flow Ṡ(1)e cancel each other out, namely

¯̇S(1)i = −
¯̇S(1)e = ∑

ν,σ,σ′
V
(ν)
σσ′ P̄

′
σ ln

V
(ν)
σσ′

V
(ν)
σ′σ

. (2.165)
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3. Spin interactions

3.1. Introduction
In this chapter we want to motivate the basic model of interacting spins studied in the course of
this thesis.
On the one hand, we consider effective conservative systems to learn about the interesting
nonlinear dynamics that result from the coupling between spins. We do this in the hope to
understand more of the complicated dynamics that appear in spin systems that are subject to
different mechanisms of dissipation and decoherence. In later chapters we study spin resolved
single-electron transport through quantum dots (QD), which gives rise to modeling the electrons
dwelling in the QD structures as electronic (pseudo)-spins. On the other hand, a semiconductor
QD typically consists of a large number of atoms (typically 102 to 106). Electrons tunneling
through QD devices experience, for instance, hyperfine and spin-orbit interactions with the
nuclear spins of the host material.
The effect of these couplings on the transport characteristics has been subject to research
for various kinds of transport systems, such as self assembled quantum dots [66] or molecular
magnets [67, 68, 69]. Moreover, the decoherence and spin-relaxation due to coupling to ensembles
of nuclear spins have been subject to many theoretical [70, 71, 72] and experimental work [73,
74]. In section 3.2 we want to derive the hyperfine interactions terms for electrons dwelling in
quantum dots.
However, the huge number of nuclear spins can be described as one external spin with a large
magnitude, which gives rise to effective spin-spin interactions, between a collective nuclear spin
and the electronic spin. The general exchange interactions between spin centers can be described
by

Ĥexch = ∑
i,j

⃗̂
Si ⋅ Jij ⋅

⃗̂
Sj . (3.1)

where Jij is a second-rank tensor. To distinguish the nature of different interactions we decompose
the tensor

Jij =
1
2
Jij1 + J

S
ij + J

A
ij , (3.2)

where the symmetric exchange interaction is divided into an isotropic part Jij = 2
3Tr{Jij} and a

traceless tensor for anisotropic exchange interactions J S
ij =

1
2 (Jij + J

T
ij ) −

1
2Jij1. The antisym-

metric exchange interactions are described by the likewise traceless tensor J A
ij =

1
2 (Jij − J

T
ij ).

In most cases the interaction between spin centers is isotropic and the exchange interaction is
modeled by the widely used Heisenberg Hamiltonian

Ĥ = ∑
i,j

Jij
⃗̂
Si ⋅

⃗̂
Sj , (3.3)

which was derived in the theory of ferromagnetism as a result of the interplay between Coulomb
repulsion and the Pauli principle [75]. The Heisenberg interaction describes the dominant
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magnetic interaction in molecular nanomagnets [67, 68, 69], and it is also useful to describe
super-exchange via shared ligands.

The anisotropic symmetric exchange interaction is often very weak. It contains contributions
like dipolar interactions and it is often neglected. It is not negligible in cobalt(II) and rare earth
(lanthanide) ions [76] as well as in quantum dots where the ground states are in p,d,f - orbitals,
such as certain graphene or carbon nanotube QDs [77]. If we neglect the antisymmetric exchange
we can perform a transformation to principal axes and rewrite the exchange tensor to obtain

Jij = Diag (Jij,xx, Jij,yy, Jij,zz) . (3.4)

3.2. Hyperfine interaction in quantum dots

In the following we want to derive the hyperfine interaction terms for electrons which are
confined in quantum dots. Naively, the coupling between the electron and nuclear spins leads
to a hyperfine structure, which can be described, basically, by the dipole-dipole interaction
between the electronic and nuclear magnetic moments. However, this classical form is an
oversimplification and leads to ill-definitions.
A relativistic derivation of the interactions can be found, e.g., in References [78, 79, 80, 81]. We
start from the Dirac Hamiltonian for a spin-1/2 particle in the presence of an EM-field in the
potential of a nucleus

ĤD = cα⃗ ⋅ π⃗ + βmc2
− eV (r⃗) , (3.5)

where m and −e are the rest mass and the charge of the electron, respectively and V (r⃗) represents
the electric potential due to the considered nucleus, c the speed of light. The 4 × 4-matrix
π⃗ = p⃗+ e/cA⃗ is the canonical momentum, where A⃗ is the vector-potential due to the nuclear spin.
α⃗ is a vector of the Dirac matrices γ, with γ0γk = αk and β = γ0

α⃗ = (
0 σ⃗
σ⃗ 0) , β = (

12 0
0 −12

) . (3.6)

The Dirac equation for an electron with energy E = ε +mc2 reads

ĤD Ψ = EΨ , (3.7)

where the four-component spinor Ψ can be written as vector of two-component spinors, which
leads to a pair of coupled linear equations

(ε + eV (r⃗))ψ1 − σ⃗ ⋅ π⃗ψ2 = 0 ,
−σ⃗ ⋅ π⃗ψ1 + (ε + 2mc2

+ eV (r⃗))ψ2 = 0 . (3.8)

By expressing ψ1 through ψ2 these equations can be rearranged into the eigenvalue equation

ĤD,2ψ2 = εψ2 . (3.9)

The electric field produced by the nucleus is E⃗ = −∇⃗V (r⃗) and we find that three parts of ĤD,2
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explicitly contribute to the hyperfine interaction, namely

Ĥ ihf =
e2h̵c

(ε + 2mc2 + eV (r⃗))2 (E⃗ × A⃗) ⋅ ⃗̂σ , (3.10)

Ĥahf =
eh̵c

ε + 2mc2 + eV (r⃗)
(∇⃗ × A⃗) ⋅ ⃗̂σ , (3.11)

Ĥorb =
eh̵c2

(ε + 2mc2 + eV (r⃗))2 A⃗ ⋅ ⃗̂p . (3.12)

The three parts describe the isotropic and anisotropic hyperfine coupling as well as the nuclear-
orbital interaction. Note that ⃗̂σ and ⃗̂p are explicit notations for the electronic spin and momentum
operators, respectively. Additionally, ĤD,2 contains a spin-orbit contribution that reads

ĤSO =
eh̵c2

(ε + 2mc2 + eV (r⃗))2 (E⃗ × ⃗̂p) ⋅ ⃗̂σ . (3.13)

The electric potential reads (in SI-units)

V (r⃗) = −
Ze

4πε0r
, (3.14)

where Ze is the nuclear charge. The vector potential is expressed in terms of the nuclear magnetic
moment operator ⃗̂µ and the electron position operator ⃗̂r

A⃗ =
µ0
4π

⃗̂µ × ⃗̂r

r3 . (3.15)

3.2.1. Isotropic hyperfine interaction
Together with the vector identity ⃗̂r × (⃗̂µ × ⃗̂r) = ⃗̂µ(⃗̂r ⋅ ⃗̂r) − ⃗̂r(⃗̂µ ⋅ ⃗̂r) the isotropic interaction part
(3.10) reads

Ĥ ihf =
µ0
4π

h̵cZe3

(ε + 2mc2 + eV (r⃗))2
1

4πε0r6 (r2 ⃗̂σ ⋅ ⃗̂µ − (⃗̂σ ⋅ ⃗̂r)(⃗̂µ ⋅ ⃗̂r)) . (3.16)

In the next step we define the nuclear length scale d ≡ Ze2/2mc2 ∼ 1.5× 10−5Zm and neglect the
relativistic corrections to the electron rest mass (ε≪mc2) and obtain with the insertion of the
Bohr magneton µB = eh̵/2m

Ĥ ihf =
µ0µB
4πr6

d

(1 + d/r)2 (r2 ⃗̂σ ⋅ ⃗̂µ − (⃗̂σ ⋅ ⃗̂r)(⃗̂µ ⋅ ⃗̂r)) . (3.17)

We can now take matrix elements of Ĥ ihf in the basis of electron wave functions ϕi(r⃗)

⟨ϕi∣ Ĥ ihf ∣ϕj⟩ =
µ0µB

4π

∞

∫

0

dr
d

(r + d)2 f(r⃗) , (3.18)

with

f(r⃗) = ∫ dΩϕ∗i (r⃗) [⃗̂σ ⋅ ⃗̂µ − (⃗̂σ ⋅ ⃗̂r)(⃗̂µ ⋅ ⃗̂r)]ϕj(r⃗) . (3.19)
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The radial integral is dominated by small r ≲ d and, thus, the electron wave functions only need
to be evaluated near the nucleus. Therefore, we approximate the f(r⃗) by f(0) and obtain

⟨ϕi∣ Ĥ ihf ∣ϕj⟩ ≈
µ0µB

4π ∫ dΩ
∞

∫

0

dr
d

(r + d)2 f(0) =
2µ0µB

3
⃗̂σ ⋅ ⃗̂µ . (3.20)

Note that this approximation is only valid for s-type orbital electron wave functions, i.e. for
conduction band states in quantum dots. By inserting ⃗̂µ = gNµN

⃗̂
I, where µN = eh̵/2mp =

5.05 × 10−27J/T is the nuclear magneton and gN is the nuclear g-factor, and replacing ⃗̂σ = 2 ⃗̂
S

and introducing the projector ∣r⃗ = 0⟩ ⟨r⃗ = 0∣ = δ(r⃗) we finally obtain

Ĥ ihf =
2µ0gµBgNµN

3
⃗̂
S ⋅

⃗̂
Iδ(r⃗) , (3.21)

which is often referred to as Fermi contact interaction.
In quantum dots electrons usually interact with a large number of nuclear spins sitting at
lattice sites k, i.e. positions r⃗k. We introduce the electron spin density operator ⃗̂

S(r⃗) =

1
2 ∑s,s′={↑,↓} ψ̂

†
s (r⃗)

⃗̂σss′ ψ̂s′ (r⃗), σss′ = ⟨s∣ ⃗̂σ ∣s′⟩ and generalize (3.21)

Ĥ ihf =
2µ0gµB

3 ∑
k

gNjkµNjk
⃗̂
S(r⃗k) ⋅

⃗̂
Ik . (3.22)

The general field operators are ψ̂s (r⃗) = ∑nϕn(r⃗) d̂ns, where d̂ns is the annihilation operator
for an electron of spin s and with the single-particle orbital wave function ϕn(r⃗). The wave
functions form a complete set; if the level spacing between single-particle orbitals is larger than
the hyperfine energy scale, it is justified to project onto the subspace of the orbital ground state
ϕ0 to obtain an effective isotropic hyperfine Hamiltonian for the quantum dot, i.e.

Ĥ
eff
QDihf = ⟨ϕ0∣ Ĥ ihf ∣ϕ0⟩ = ∑

k

Ak
⃗̂
S ⋅

⃗̂
Ik . (3.23)

Here we also took into account that for low temperatures the wave function of the ground state
is given by the product of the Bloch wave function at k⃗ = 0 and an enveloping part F (r⃗), i.e.
ϕ0(r⃗i) ≈ u0(r⃗i)F (r⃗i). The enveloping function is normalized: ∫ d3r∣F (r⃗)∣2 = 1.
The coupling constant

Ak = Ajkν0∣F (r⃗k)∣
2 (3.24)

takes into account the inhomogeneous couplings of each lattice site (ν0 is the volume of the
primitive unit cell of the crystal)

Ajk =
2µ0gµB

3
gNjkµNjk ∣u0(r⃗)∣

2 . (3.25)

Note that the nuclear Landé factor gNjk depends on the nuclear species and can be both positive
and negative and, thus, the coupling constant can take either sign.
The effective Hamiltonian (3.23) is a common description of the electron-nuclear spin-dynamics
for electrons in the conduction band of III-V semiconductors. The effective magnetic field of all
nuclei

⃗̂
h = ∑

k

Ak
⃗̂
Ik , (3.26)

36



is often referred to as Overhauser field.
In conclusion the isotropic or contact hyperfine interaction plays an important role in materials
where electrons occupy s-type orbitals. In a number of works it was shown that the isotropic
hyperfine interaction as modeled by the Hamiltonian (3.23) is responsible for the loss of coherence
of a conduction band electron-spin in GaAs quantum dots [70, 72, 82, 83], as well as for the
lifting of Coulomb or spin blockades in quantum dots [84, 85].

3.2.2. Anisotropic hyperfine interaction
The same procedure as above can be applied to the anisotropic interaction, Eq. (3.11), and we
get

Ĥahf =
µ0µB
4πr5

1
(1 + d/r)

(3(⃗̂σ ⋅ ⃗̂r)(⃗̂µ ⋅ ⃗̂r) − r2 ⃗̂σ ⋅ ⃗̂µ) , (3.27)

which is the classical dipole-dipole interaction between the electron and nuclear moments if the
electron and nucleus are spatially separated. In quantum dots this is typically not the case and
the strength of this interaction depends strongly on the symmetry of the electron wave functions.
Projecting onto an electronic orbital wave function ϕ0 yields

⟨ϕ0∣ Ĥahf ∣ϕ0⟩ =
µ0µB

4π ∫ dr
1

(r + d)
∫ dΩϕ∗0(r⃗) (3(⃗̂σ ⋅ ⃗̂r)(⃗̂µ ⋅ ⃗̂r)/r2

− ⃗̂σ ⋅ ⃗̂µ)ϕ0(r⃗) . (3.28)

Here, the angular integral vanishes for s-type orbitals, for states of higher angular momentum
(p,d,f . . . -orbitals) it is nonzero. These states, on the other hand, vanish at the origin, and,
therefore, we can set d = 0.
An effective Hamiltonian for the anisotropic hyperfine interaction in quantum dots with many
nuclear spins then reads

Ĥ
eff
ahf = ∑

k

µ0gµBgNjkµNjk
4π∣r⃗ − r⃗kI ∣3

(3(⃗̂nk ⋅ ⃗̂S)(⃗̂nk ⋅ ⃗̂Ik) − ⃗̂
S ⋅

⃗̂
Ik) , (3.29)

where ⃗̂nk = (⃗̂r − ⃗̂rk)/∣r⃗ − r⃗k∣. This can be rewritten by introducing

Ĥ
eff
ahf = ∑

k

⃗̂
S(r⃗) ⋅ Tk(r⃗) ⋅

⃗̂
I(r⃗) , (3.30)

where the traceless tensor Tk [the symmetric anisotropy tensor introduced in (3.2)] is given by
its components

Tαβk (r⃗) =
µ0gµBgNjkµNjk

4π
δαβ − 3nαkn

β
k

∣r⃗ − r⃗k∣3
, α, β ∈ {x, y, z} . (3.31)

For simplicity we rotate to the principal axes and obtain

Ĥ
eff
ahf = ∑

k

T xxk Ŝx Îkx + T
yy
k Ŝy Îky + T

zz
k Ŝz Îkz , (3.32)

which defines an anisotropic (XYZ-type) exchange between electron and nuclear spin.
Thus, the anisotropic hyperfine term (3.32), together with the nuclear-orbital hyperfine interaction
(3.12), facilitates the major interaction between electron spins of p-orbital electrons and the
nuclear spins of the host material [86]. They are also relevant for the physics of electrons
occupying the π-orbital in carbon nanotubes as well as in graphene [77, 87].
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3.2.3. Nuclear-orbital interaction
For the sake of completeness we also denote the third contribution to the hyperfine interaction,
(3.12), which reads

Ĥ
eff
orb = −

µ0gµB
4π ∑

k

µNgNjk

⃗̂
Lk ×

⃗̂
Ik

∣r⃗ − r⃗k∣3
. (3.33)

Here, ⃗̂
Lk is the electron orbital angular momentum at the nuclear site r⃗k and ⃗̂

Ik is the spin
operator of the k-th nucleus. This interaction is in particular important for dynamics where the
electron has an nonzero angular momentum, which typically happens when the electron occupies
p-type valence bands in III-V semiconductors [86, 88].
The nuclear spins are not only subject to an interaction with the electron spin but couple to
each other as well as, i.e. nuclear dipolar terms and nuclear quadrupolar terms occur. We will
not go into detail here, but refer to the Review by Coish and Baugh [89].

3.2.4. Quantum versus classical dynamics for isotropic coupling
In Ref. [90] Coish et al. analyze the dynamics of electrons trapped in semiconductor QDs due to
the isotropic hyperfine interaction we just introduced. Particularly, they compare the classical
mean-field evolution of the electron in the presence of a nuclear field and an additional external
magnetic field with the exact quantum evolution. Consider the Hamiltonian

Ĥ =
⃗̂
S ⋅ (B⃗ +

⃗̂
h) . (3.34)

Again, ⃗̂
S is the vector of components of the electron spin, and the magnetic field B⃗ is directed

along the z axis. For GaAs the coefficient Ajk , (3.25), in the contact hyperfine coupling constants
eq. (3.24) takes an approximate value of A ≈ 90µeV, which is the weighted average over the
coupling for the three naturally occurring isotopes 69Ga,71Ga and 75As that all have a total
nuclear spin of I = 3/2 [91]. In this kind of QD with N ≈ 104 − 106 nuclear spins it seems to be
justified to replace the Overhauser operator by a classical Overhauser field ⃗̂

h→ B⃗N , which has
been done in a number of works, cf. References [70, 71, 83, 84, 92, 93].
However, according to Coish et al. this approximation is for many cases only accurate at times
t < τc = N

η/A with η > 0 [94], as effects of the quantum fluctuations of ⃗̂
h set in for longer times

and the nuclear spins – as they are quantum objects – can even be entangled [95]. Moreover,
the classical description predicts no decay of the electron spin, when one not takes the ensemble
average over the initial Overhauser fields, which contradicts analytical studies by Coish and
Loss [82, 72] and numerical results [96], that show that the interaction with nuclear spins can
lead to the complete decay of the transverse electron spin. This decay is due to the quantum
nature of the nuclei and it can occur even in a static environment, i.e. fixed initial conditions.
Schliemann et al. show that the time evolution of a system described by the Hamiltonian (3.34)
with vanishing magnetic field and an inhomogeneous coupling depends significantly on the type
of the initial state of the spin environment [96]. The time evolution of simple tensor product
states can be quite individual. Randomly correlated, and thus entangled states, however, show a
time evolution that is reproduced by the time average over the time traces of all possible tensor
product states. In Ref. [96] this effect is termed as quantum parallelism: the time evolution of
all classical-like (i.e. uncorrelated) nuclear states is “present” in the time evolution of a linear
superposition of all uncorrelated states. To put it differently, the time evolutions of all simple
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tensor product states are performed in parallel when computing the time evolution of a randomly
correlated state.

Quantum description for uniform coupling

Let us assume uniform contact hyperfine coupling of the form Ak = A/N = λ. Then the
Overhauser operator reads

⃗̂
h = λ

⃗̂
J ,

⃗̂
J =

N

∑
k=1

⃗̂
Ik , (N ≫ 1) , (3.35)

where we introduced the collective nuclear spin operator ⃗̂
J . As initial state we take an arbitrary

product state of electronic and nuclear system

∣ψ(0)⟩ = ∣ψS(0)⟩ ⊗ ∣ψJ(0)⟩ =
j

∑
m=−j

(α↑m ∣↑; j,m⟩ + α↓m ∣↓; j,m⟩) , (3.36)

which is a superposition of the simultaneous eigenkets ∣σ; j,m⟩ of Ŝz, Ĵz and Ĵ2 with eigenvalues
σ = ±1/2, m = −j, . . . , j and j(j + 1). The wave function at later times t is then given by

∣ψ(t)⟩ =
j

∑
m=−j

(α↑m(t) ∣↑; j,m⟩ + α↓m(t) ∣↓; j,m⟩) . (3.37)

The solution then follows by using the time-dependent Schrödinger equation i∂t ∣ψ(t)⟩ = Ĥ ∣ψ(t)⟩
(with h̵ = 1) to generate the set of coupled differential equations for the coefficients {α↑m(t), α↓m(t)}
with m = −j, . . . , j − 1

α̇↑m = −
i
2
(B + λm)α↑m − iλ

2
C−
jm+1α

↓
m+1 ,

α̇↓m+1 =
i
2
(B + λ(m + 1))α↓m+1 − iλ

2
C+
jmα

↑
m , (3.38)

where the C±
jm = ⟨jm ± 1∣ Ĵ± ∣jm⟩ =

√
j(j + 1) −m(m ± 1) are the matrix elements of the operator

Ĵ± that flips one nuclear spin, i.e. raises/lowers the z component of ⃗̂
J by one. Together with

the time-dependent coefficients

α↑j(t) = e−
i
2 (B+λj)t α↑j(0) ,

α↓−j(t) = e
i
2 (B−λj)t α↓−j(0) , (3.39)

which are the prefactors for the stationary states ∣↑, j, j⟩, ∣↓, j,−j⟩ where electron spin and
collective nuclear spin are (anti-)aligned with the magnetic field. Coish et al. obtain the solution
to eq. (3.38) by the means of a Laplace transform [90]. This solutions and eq. (3.39), i.e. the set
{α↑m(t), α↓m(t) ∶m = −j, . . . , j}, provide an exact solution for the dynamics of the wave function
∣ψ(t)⟩ at any time t > 0. The exact dynamics of the expectation values to all spin components
follow straightforwardly,

⟨
⃗̂
S⟩t = ⟨ψ(t)∣

⃗̂
S ∣ψ(t)⟩ , ⟨

⃗̂
J⟩t = ⟨ψ(t)∣

⃗̂
J ∣ψ(t)⟩ . (3.40)
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Mean-field dynamics

In order to evaluate the classical spin-dynamics we carry out a mean-field decomposition of the
Hamiltonian (3.34), as done in [90, 94]. This is done by rewriting the spin operator ⃗̂

S in terms
of its expectation value and its fluctuation, i.e. ⃗̂

S = ⟨
⃗̂
S⟩ + δ

⃗̂
S and ⃗̂

J = ⟨
⃗̂
J⟩ + δ

⃗̂
J . In the next step

the term that contains the product of spin fluctuations (δ ⃗̂S ⋅ δ ⃗̂
J) is neglected. Moreover, we

approximate the dynamics of the spins’ expectation values by their self-consistent mean-field
dynamics, i.e. by classical vectors of conserved length,

⟨
⃗̂
S⟩t ≈ s⃗(t) , ⟨

⃗̂
J⟩t ≈ j⃗(t) . (3.41)

Thus, the contact hyperfine Hamiltonian (3.34) is replaced by the time-dependent mean-field
Hamiltonian (up to a number shift)

Ĥ
MF

(t) = (B⃗ + λj⃗(t)) ⋅
⃗̂
S + λs⃗(t) ⋅

⃗̂
J . (3.42)

Then, the mean-field dynamics are given by the Heisenberg equation of motion (EOM) for the
angular momentum operators Ŝi , Ĵ i (i ∈ {x, y, z}),

d

dt
Ŝi =

1
i
[Ŝi , Ĥ

MF
(t)] ,

d

dt
Ĵ i =

1
i
[Ĵ i , Ĥ

MF
(t)] , (3.43)

With the replacements (3.41) and using the angular momentum computation relations

[Ŝi , Ŝj] = i∑
k

εijk Ŝk , [Ĵ i , Ĵ j] = i∑
k

εijk Ĵk , (3.44)

[Ŝi , Ĵ j] = [Ŝi ,1] = [Ĵ i ,1] = 0 ,

where εijk is the Levi-Civita symbol. We obtain

˙⃗s(t) = [B⃗ + λj⃗(t)] × s⃗(t) ,

˙⃗j(t) = −λj⃗(t) × s⃗(t) . (3.45)

Yuzbashyan et al. show that these equations are integrable and provide an analytic solution to
this equations [94]. Integrability is discussed in terms of anisotropic two-spin models in section
section 3.3.
Equation (3.45) can as well be solved via numerical integration. Coish et al. compared their
numerical solutions to the exact quantum ones by considering the correlation between the
solutions [90]. It turns out that the correlation function decays faster with increased magnetic
fields B. At zero magnetic field the total spin ⃗̂

K ⋅
⃗̂
K, with (

⃗̂
K =

⃗̂
J +

⃗̂
S) commutes with the

Hamiltonian. When the system evolution is started in an eigenstate of ⃗̂
J2 then only one

single frequency occurs in the quantum dynamics [corresponding to energy differences with
k = j±1/2 [97]] and the quantum dynamics correspond to simple periodic precession and coincides
with the classical dynamics for j ≪ 1 [90]. The states for fixed k are degenerate. If one adds a
term – the electron Zeeman term, for instance, – that does not commute with ⃗̂

K2, additional
frequencies are involved in the quantum dynamics, which may lead to decay in the quantum
solution. At the same time the classical solution is still described by the electron spin precession
[cf. solutions provided by Coish et al. [90]].
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3.3. Anisotropic two-spin models
In a number of previous works the anisotropic interaction between two spins in a conservative
system and under the presence of an external magnetic field was a subject of investigation [98,
99, 100, 101, 102]. We consider a system of two localized quantum spins Ŝ1 = h̵ σ̂1 and Ŝ2 = h̵ σ̂2
with an applied magnetic field B in z direction that are anisotropically exchange coupled with
the coupling strength λ. The interaction induces nonlinear dynamics. The Hamiltonian

Ĥ = h̵2λ (σ̂x1 σ̂
x
2 + σ̂

z
1 σ̂

z
2) + h̵B(σ̂z1 + σ̂

z
2) , (3.46)

is a constant of motion. The system has a second constant of motion for vanishing magnetic
field B = 0, namely σ̂ytot = σ̂

y
1 + σ̂

y
2, which is easily varified using

[σ̂im , σ̂
j
l ] = ih̵δl,m∑

k

εijk σ̂
k
l (i, j, k ∈ {x, y, z}) . (3.47)

3.3.1. Classical description
To begin with we treat the two spins classically. We rewrite the Hamiltonian in the semiclassical
limit, i.e. h̵→ 0, σl →∞ and h̵

√
σl(σl + 1) = sl, where we associate the magnitudes of classical

angular momenta with the magnitudes of quantum spins.
Thus, we obtain a system of two angular momenta S⃗1, S⃗2 interacting via the time-independent
Hamiltonian function

H (S⃗1, S⃗2) = λ (Sx1S
x
2 + S

z
1S

z
2) +B (Sz1 + S

z
2) . (3.48)

The system obeys the mean-field EOM (l ≠m)

d

dt
S⃗l = −S⃗l ×

∂H

∂S⃗l
= {H, S⃗l}

= −∑
i
∑
j
∑
k

εijke⃗iS
j
l

∂H

∂Skl

= −(Sxl , S
y
l , S

z
l )

T
× (λSxm,0,B + λSzm)

T , (3.49)

where

{Sil , S
j
m} = −δl,m∑

k

εijkS
k
l , (3.50)

are the Poisson brackets for classical spin variables.
The structure of (3.49) implies that the length ∣S⃗l∣ = sl of each spin remains constant. In other
words the number of independent EOM reduces to 2N instead of 3N , where N = 2 is the
number of spins. This gives rise to writing the components of the spins S⃗l in terms of spherical
coordinates θl, φl, i.e.

S⃗l = (Sxl , S
y
l , S

z
l )

T
= ∣S⃗l∣ (sin θl cosφl, sin θl sinφl, cos θl)T . (3.51)

One can proof that any given system of N classical spins with a corresponding Hamilton
function can be represented by a system of N degrees of freedom, with canonical variables
pl = S

z
l = ∣S⃗l∣ cos θl, ql = φl, l ∈ {1, . . . ,N}.

According to the Liouville-Arnold-theorem [103], autonomous systems of N degrees of freedom or
N classical spins, i.e. a system with a time-independent Hamilton function, are called completely
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integrable if there exist N independent constants of motion Ck(S1, . . . , SN) which are mutually
in an involution. That means that their Poisson-bracket vanishes [cf. [99]]

{Ck,Ck′} = ∑
l

∂Ck
∂pl

∂Ck′

∂ql
−
∂Ck
∂ql

∂Ck′

∂pl
= 0 (l ∈ {1, . . . ,N}) . (3.52)

The first constant of motion is the Hamiltonian function itself. With a vanishing external magnetic
field (B → 0) the system has a second constant of motion, as stated above: C2 = S

y
1 + S

y
2 , which

is easily verified by the equation

d

dt
C2 = ∑

l

∂C2

∂S⃗l
⋅
d

dt
S⃗l = ∑

l

∂C2

∂S⃗l
⋅ (−S⃗l ×

∂H

∂S⃗l
) = 0 . (3.53)

Each phase-space trajectory (pl(t), ql(t)) is confined to one N -torus which is diffeomorphic
to the intersection of the (2N − 1)-dimensional hypersurfaces Ck, k ∈ {1, . . . ,N}. Thus, for
given initial values and couplings λ only parts of the respective Bloch-spheres are accessible.
For a completely integrable system of N spins the motion of the phase point has at most N
characteristics frequencies, which is, clearly, the case for B = 0. Nevertheless, there might be
further constants of motion that are not obvious, which is indicated by more complicated periodic
orbits and a number of additional frequencies.
If there aren’t N invariants in mutual involution the integrability condition is not met, and
therefore, at least for parts of the phase-space new types of trajectories occur that are very
sensitive to slight changes of the initial conditions. These trajectories are referred to as chaotic
and they have a continuous Fourier spectrum.

Throughout this thesis our interest focuses on models where the spins are differing much in
magnitude. Let us introduce the labels S⃗ = S⃗1 and J⃗ = S⃗2 and denote their respective magnitudes
by s = ∣S⃗∣ and j = ∣J⃗ ∣. It is to expect that in the limit r ≡ j

s ≫ 1 the larger spin J⃗ acts as external
“driving” for the smaller spin S⃗, while the back action from S⃗ to J⃗ is rather small.
Poincaré surfaces of section (PSS) for the motion of the small spin suggest that there exist
regions of the parameter space B,λ with a mixed phase-space for the small spin, i.e. regular or
chaotic motion for different initial conditions. In fig. 3.1 we show the PSS where we plot φS
versus θS for a fixed θJ .

Fixed points. To describe the domain of regular motion it is of particular interest to investigate
the system’s fixed points. We denote the fixed points introducing the notation

P = (S∗x , S
∗
y , S

∗
z , J

∗
x , J

∗
y , J

∗
z ) . (3.54)

Due to the nature of the spin interaction one can easily see that there exist trivial fixed points
when both spins are aligned (anti-)parallel with the magnetic field since the spins decouple then.
Thus, we obtain for the spin polarization

P
+
= (0,0,+s,0,0,±j)

P
−
= (0,0,−s,0,0,±j) . (3.55)

These fixed points are independent of the parameters B and λ, and, therefore, exist in the
whole parameter regime. The usual path one would want to go from here is to investigate the
fixed points further via a linear stability analysis. In the limit r ≫ 1 one could linearize the
equations for the larger spin around the fixed points and compute the Jacobian. In contrast to
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(a) (b)

(c) (d)

Figure 3.1.: PSS for spherical coordinates of the small spin S⃗,(a) and (c), and the corresponding
dynamics of the spherical coordinates for J⃗ , (b) and (d). The sections were taken
with θJ = π

2 . For small magnetic fields (B/λ = 0.01) the dynamics of S⃗ remain
regular and are restricted to a torus as depicted in (a) and (b). When increasing the
magnetic field (B/λ = 0.2) the dynamics become chaotic, cf. (c) and (d). S⃗ covers
the whole phase-space, except for the area around the fixed points P± (red ’+’)
and Py (green ’×’). The ratio of the spins’ magnitudes is r = j/s = 20. The initial
conditions for both solutions are θ(0)S = 8

9π,φ
(0)
S = 2

9π, θ
(0)
J = 0.416π,φ(0)J = 0.573π.

two-dimensional systems knowing trace and determinant of the Jacobian are not sufficient and
one needs the Jacobian’s eigenvalues in order to characterize the fixed points as stable centers
or saddle points by computing its eigenvalues [104, 105]. Such analysis, however, requires the
knowledge of the partial derivatives of the small spin’s components with respect to the large
spin’s components, which are in general not accessible, as there are no analytical solutions for
eq. (3.49) with arbitrary nonvanishing magnetic field B ≠ 0.
We observe, however, that systems with initial conditions close to P+ are stable centers with the
spins performing periodic oscillations around it. Contrarily, we find the fixed point P− to be a
saddle point repelling approaching trajectories to induce a quasiperiodic switching between +s
and −s when the system’s dynamics is started in its vicinity, which resembles a strange attractor
that is known, e.g., from the Rössler system [106], cf. the right hand side of fig. 3.2b.
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A numerical Fourier analysis reveals the frequencies in the spins’ motions for the periodic
oscillations: we identify the frequencies ωs and ωj , which are appearing dominantly in the
spins’ motions. For r ≫ 1 we find ωs ≫ ωj . For the z components we find a frequency
doubling ωz = 2ωj as well as additional differential frequencies ω± = ωs ± ωj . Those frequencies
can be understood as, for instance, the Sz component does not couple to the magnetic field
but is a product of Jx(t) and Sy(t). Ideally, those components develop as a superposition of
sinusoidal functions of frequencies ωs and ωj , namely J eff

x (t) = bs sin (ωst + θs) + bj sin (ωjt + θj)
and Seff

y (t) = as sin (ωst + φs) + aj sin (ωjt + φj), respectively. The frequency ωj describes an
enveloping oscillation of the faster ωs oscillations, while, the back-action from S⃗ to J⃗ is typically
very small (bs ≪ bj). Assuming, further, in-phase oscillations with respect to ωj , i.e. φj = θj = 0
formal integration yields (λ = 1)

Seff
z (t) =

t

∫

0

dt′Seff
y (t′)J eff

x (t′)

= −
ajbj sin (2ωjt)

4ωj
+
asbj sin (φs − ω−t)

2ω−
+
asbj sin (φs + ω+t)

2ω+
+ const . (3.56)

The frequency doubling ωz = 2ωj is often termed parametric resonance. The exact frequencies
and amplitudes depend on the system parameters and the initial conditions, which have to be in
proximity to the fixed point.

The system exhibits further fixed points, namely

P
y
=
⎛

⎝
0,±

√

s2 −
B2

λ2 ,−
B

λ
,0,±

√

j2 −
B2

λ2 ,−
B

λ

⎞

⎠
. (3.57)

These can be understood in terms of the anisotropic exchange coupling, since the x and z
components of one and the same spin decouple, having either the trivial consequence of complete
spin polarization (P±) or the z components being determined by the ratio −B/λ and vanishing
x components. It is obvious that this fixed point is only existing for B ≤ λs. If the initial
conditions are close to the fixed point all components oscillate periodically with the same
frequency, determined by the initial conditions. The further away from the fixed point the initial
conditions are, the more we observe the separation of frequencies.
Moreover, there is a third set of fixed points,

P
x
= (±

B1
2Bλ

,0,−B
2 − λ2(j2 − s2)

2Bλ
,∓

B1
2Bλ

,0,−B
2 − λ2(s2 − j2)

2Bλ
) , (3.58)

with B1 =

√

−[B2 − λ2 (j − s)2
] [B2 − λ2 (j + s)2

] that occur only for nonvanishing magnetic
fields that meet the condition ∣B −λj∣ < λs, i.e. for very large magnetic fields. Therefore, we will
omit further analysis of this fixed point.
We verify that for fixed parameters B,λ the system exhibits regular and chaotic dynamics
depending on the chosen initial conditions. We illustrate this by plotting the trajectories for
different initial condition in terms of the Cartesian coordinates Si and Ji with i ∈ {x, y, z} on the
Bloch sphere. As the spins’ lengths are conserved, {S⃗2,H} = {J⃗2,H} = 0, the trajectories are
restricted to the surface of Bloch spheres. Figure 3.2 displays that there are islands of regular
dynamics around the fixed points that are not reached by quasiperiodic or chaotic trajectories.
Note that while the small spin’s chaotic trajectories reach nearly every point on the Bloch sphere
the large spin is confined to a smaller region of the phase-space.

44



(a) (b)

(c) (d)

Figure 3.2.: Plots of the spins’ dynamics in terms of Bloch sphere vectors for different parameters
and initial conditions [small spin S⃗ on the left and large spin J⃗ on the right hand
side of the respective panel]. For all plots the ratio of the spins’ magnitude is set
to r = 20. Panel (a) depicts the dynamics for the completely integrable system,
B = 0, started at S(0)x = s, S

(0)
y = S

(0)
z = 0, J(0)x = j/2, J(0)y =

√
3/2j, J(0)z = 0. The

magnetic fields for the solutions in panels (b) to (d) was B/λ = 0.2. In (b) the
behavior close to the fixed points is depicted: the black trajectory shows the stable
limit cycles with initial conditions close to P+. The red trajectories are obtained
when starting close to P−. The dynamics depicted in magenta started at the fixed
point Py with opposite signs for the y components, i.e. sgnS∗y = − sgnJ∗y ; the
trajectories are restricted to the Sy-Sz and Jx-Jy planes, respectively. The green
line shows the rotation around the stable center Py for sgnS∗y = sgnJ∗y . In (c) and
(d) the system parameters are identical but the dynamics are started from different
initial conditions, i.e. the system is in its mixed phase. In (c) the dynamics are
still periodic but with a number of frequencies involved; the initial conditions were
the same as for (a). Panel (d) shows the PSS for S⃗. It reveals that the small spin
covers the whole Bloch sphere except for the region around the fixed points. The
large spins dynamics are restricted to the upper hemisphere and quasi-periodic, the
region around the fixed points (red dots) is not covered. The initial conditions for
(d) are θS = 8

9π,φS = 2
9π, θJ = 0.416π,φJ = 0.573π.

3.3.2. Quantum-to-Classical transition
Up to now, we have treated the two spin model classically. However, we want to show, briefly,
that certain signatures of chaos can be revealed also in a quantum treatment. We follow the idea
of Peres [107], which was also carried out by Srivastava et al. [108, 100] and Robb et al. [101] to
compute and depict the simultaneous eigenvalues of the Hamiltonian and a second commuting
operator.

Quantum webs of simultaneous eigenstates. This approach is based on the notion that it is
difficult to attribute quantum numbers to the various energy levels in the complicated energy
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spectra of highly excited quantum systems.
Let us consider a system of N degrees of freedom, described by a, in general, nonseparable
Hamiltonian. In the so called Einstein-Brillouin-Keller (EBK) quantization method one looks for
canonical invariants I1, . . . IN of the Hamiltonian, that are called action variables [100, 107, 109].
As already stated above, a system with N degrees of freedom is called integrable (its quantum
analogue is called regular) if invariants can be found everywhere in the phase-space and its orbits
lie on N -dimensional tori. We can draw N topologically independent closed curves γk on each
of those tori, which define the N action variables

Ik =
1

2π∑k
∮
γk

pkdqk . (3.59)

The action variables label the tori and, therefore, any constant of motion CA with respect to the
dynamical variable A is a function CA(I1, . . . , IN).
In the EBK quantization the action variables evaluate to

Ik = ak +mkh̵ , (3.60)

where ak are constants and mk are integers. Moreover, when expanding the CA in powers of h̵
it is straightforward to show that for any constant of motion of the system the eigenvalues differ
by multiples of h̵, i.e. h̵∑kmk∂CA/∂Ik.

However, when a system becomes irregular (classically nonintegrable) there is no unambiguous
way to label the energy levels by quantum numbers, that are related to constants of motion [110].
Moreover, the energies of the irregular spectrum are much more sensitive to slight changes or
fixed perturbation.
Consequently, it would be useful to find a criterion to decide whether one can find “good”
quantum numbers other than the energy, in order to distinguish regular from irregular quantum
systems.
Often it is not known whether a system is integrable, such that we can cannot determine whether
an arbitrary function A(p, q) of the canonical variables is an invariant, i.e. has a vanishing
Poisson bracket with the Hamiltonian.
Nonetheless, for any bounded variable A, which is independent of the Hamiltonian function
H, we can determine its time average over the phase-space trajectory specified by the initial
condition (θ

(0)
1 , φ

(0)
1 , θ

(0)
2 , φ

(0)
2 ), or (S⃗

(0)
1 , S⃗

(0)
2 ) respectively. Obviously, it is invariant and it reads

⟨A⟩ = lim
T→∞

1
T

T

∫

0

dtA (t; S⃗(0)1 , S⃗
(0)
2 ) = CA (S⃗

(0)
1 , S⃗

(0)
2 ) . (3.61)

This nonanalytic invariants are defined everywhere in phase-space except for a set of points with
measure zero [100].
Let us transfer the last statements to the quantum language: We take any bounded operator Â
that represents a dynamical variable independent of Ĥ with [Â , Ĥ] ≠ 0. Then, we consider the
operator Â (t) in its spectral decomposition

Â (t) = ∑
ij

⟨Ei∣ Â (0) ∣Ej⟩ exp [i (Ei −Ej) t/h̵] ∣Ei⟩ ⟨Ej ∣ . (3.62)
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When taking the time average ÂT of Â (t), all off-diagonal elements are eliminated and one
obtains (for a nondegenerate Hamiltonian)

ÂT = lim
T→∞

1
T

T

∫

0

dt Â (t) = ∑
i

⟨Ei∣ Â (t) ∣Ej⟩ ∣Ei⟩ ⟨Ej ∣ . (3.63)

Since ÂT is diagonal in the energy representation it is possible to assign an eigenvalue to operator
ÂT for each eigenvalue of Ĥ.
Let us assume that the considered system has N = 2 degrees of freedom and that we can find two
good quantum numbers, m1 and m2, which correspond in the classical limit to two actions I1
and I2. Then the quantities E(m1,m2) = ⟨E∣ Ĥ ∣E⟩ and AT (m1,m2) = ⟨E∣ ÂT ∣E⟩ are expected
to be smooth analytic functions of the quantum numbers m1 and m2. Reichl argues, that if
E(m1,m2) and AT (m1,m2) are known for a rather large range of m1 and m2 one can find a
functional form for them for (large) sections of the spectrum [111]. The plot of ⟨E∣ ÂT ∣E⟩ versus
E, on the other hand, gives a lattice of discrete points, which is called the quantum web [107,
100, 101, 111].

Srivastava et al. consider different two-spin XY models (coupling between the x and y components
of the two spins), with either single-site anisotropy or exchange anisotropy, cf. [100]

Ĥγ = −h̵
2 [(1 + γ) σ̂x1 σ̂x2 + (1 − γ) σ̂y1 σ̂

y
2] ,

Ĥa = −h̵
2 (σ̂x1 σ̂

x
2 + σ̂

y
1 σ̂

y
2) −

1
2
ah̵2

[(σ̂x1)
2
+ (σ̂x2)

2
− (σ̂y1)

2
− (σ̂y2)

2
] . (3.64)

They studied their energy-spectra and analyzed how they are changed when the second constant
of motion disappears [100]. The spectra can be decomposed with respect to invariant subspaces
of different symmetry groups. For the XY models it is easy to show that they are invariant
under the symmetry group D2 ⊗S2, i.e. the direct product of the group of rotations by an angle
π about the x, y and z axes (D2) and the group of permutations of two particles (S2) [100,
111], which yields eight invariant subspaces. In [100] quantum webs are constructed from the
Hamiltonian and the time average (M2

z )T of the square of the sum M̂ z = σ̂
z
1 + σ̂

z
2 with respect to

just two invariant subspaces. They show, that although the web exhibits some folds it is regular
for Ĥγ in (3.64), as the classical counterpart is proven to be integrable. On the other hand, Ĥa

is not integrable and for parts of the web the analytic structure is lost for higher a, which can
be interpreted as signs of quantum chaos, cf. plots in [100].

We now want to turn back to our quantum two-spin system, eq. (3.46), with the spin quantum
numbers σ1, σ2. For vanishing magnetic fields B = 0 in eq. (3.46) the 2nd constant of motion is
trivial, namely, σ̂y = σ̂y1 + σ̂

y
2. If a nonvanishing magnetic field is applied, we need to construct a

second invariant using eqs. (3.62) and (3.63). Similarly to References [100, 101] we choose the
time average of Â =

√
σ̂2
y to construct a quantum web.

The Hamiltonian in eq. (3.46) is invariant with respect to the interchange of the two spins, P̂ ,
and the rotation of the spins by π about the z axis, i.e. operator

R̂
z

2 (π) = eiπσ̂z , (3.65)

where σ̂z = σ̂z1 + σ̂z2. We, thus, form the quantum webs from the values
√

⟨E∣ σ̂2
y ∣E⟩ versus the

values of E, for the class of states for which the permutation P̂ and R̂
z

2 (π), respectively, have
the eigenvalues (+1,−1). The quantum webs obtained for two spins with quantum numbers
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(a) (b)

(c) (d)

Figure 3.3.: Quantum webs formed from values of
√

⟨E∣ σ̂2
y ∣E⟩ versus the values of E for a

system with Hamiltonian in eq. (3.46). (a) B/λ = 0; (b) B/λ = 0.01; (c) B/λ = 0.2;
(d) B/λ = 0.5. The two spins have quantum numbers σ1 = 5, σ2 = 100, such that
we obtain r = s2/s1 = 20 in the classical limit.

σ1 = 5, σ2 = 100 (in classical limit this yields r = 20 ≫ 1) and different magnetic fields B are
depicted in fig. 3.3. The web is completely regular for a vanishing magnetic field. For small fields
of B/λ = 0.01 a fold is developing, the model is predominantly integrable with this parameters,
which the PSS depicted in fig. 3.1a already suggested. However, for intermediate fields B/λ = 0.2
the folds become more pronounced and the structure of the web is disrupted by many pairs of
eigenvalues that are no longer part of the lattice, which we interpret as signatures of quantum
chaotic behavior. This resembles, also in terms of the amount of chaos, what we have found for
the classical case, cf. the PSS in fig. 3.1c.

The quantum-classical correspondence of two interacting spins was also investigated by Emerson
and Ballentine for a model with a spin-spin coupling that is described by a sequence of δ-
functions, i.e. a kicked interaction [112]. Their model allows for a treatment with Floquet
operators in its quantum version and stroboscopic maps in its classical version. For both classical
and quantum models they also find that for different parameters mixed phase-space regimes
are developing as well as regimes where chaos is dominating. Further, they investigate the
differences between quantum expectation values and classical Liouville averages for both regular
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and chaotic dynamics beyond the short-time regime. For chaotic states the differences initially
grow exponentially with an exponent that is larger than the largest Lyapunov exponent.
Emerson and Balletine have demonstrated that the exponent λqc which governs the initial growth
rate of quantum-classical differences is not dependent on the quantum numbers (i.e. quantum
spin lengths s and j, where s ≤ j) and the effective prefactor of the growth scales with 1/j, which
is termed the logarithmic break-time rule [112]. The break time tb(j, p) determines the time at
which quantum-classical differences go beyond some fixed tolerance p, with classical parameters
and initial conditions kept constant.
On the other hand, it turns out that over long times the quantum observables remain well
approximated by classical Liouville averages even for chaotic motions of few degree-of-freedom
systems.
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4. Transport through a single quantum dot
coupled to a large external spin

[K. Mosshammer and T. Brandes. “Semiclassical spin-spin dynamics and feedback control in
transport through a quantum dot”. Phys. Rev. B 90 (13 2014), 134305]

4.1. Introduction

Of particular interest for the electronic dynamics of QD electrons is the coupling to external
degrees of freedom. In serial semiconductor QDs the coupling to a phononic bath can give rise
to spontaneous emission and absorption of phonons [114, 115], electronic decoherence [116, 34],
or phonon replica in the transport characteristics [117]. Moreover, electrons tunneling to a QD
device experience, for instance, a hyperfine and spin-orbit interaction with the nuclear spins of
the host material [118, 82, 92]. Particularly, large Overhauser fields [119] are experienced by the
electrons.
This interaction enables spin-flip transfer between the electronic and the nuclear spin system,
which resolves the current in the spin-blockade regime of serially coupled QDs.
Transport experiments with QDs show that the hyperfine interaction can lift spin blockades and
even induce self-sustained oscillations in currents with a period in the order of seconds [120]
which is believed due to dynamical polarization of the nuclear spins addressed theoretically in
Ref. [121, 122, 123, 124, 125, 126]. The hyperfine interaction in QDs has also been studied
theoretically in detail [82, 122, 123, 127].
Similar to a previous work [128] our model is inspired by experiments on the hyperfine interaction
with QDs without transport where electronic spins in single QDs [70, 73] or double QDs [129, 42]
are considered in terms of spin relaxation and decoherence. There are also intriguing transport
experiments where nonlinear behavior due to hyperfine interaction is induced: singlet-triplet
state mixing in double QDs that leads to transport bistabilities [84], the single-electron spin
manipulation in a double QD [130] or the lifting of spin blockades that leads to current fluctations
driven by nuclear dynamics [127].
Exchange interactions that induce complex spin-spin dynamics also occur in molecular QDs.
For the transport through molecular QDs [131] two types of degrees of freedom are relevant:
molecule vibrations [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142] or local magnetic
moments in single molecular magnets [67, 143], which establish the research field of molecular
spintronics [144, 145, 74]. In the last couple of years a number of theoretical works have been
done on models with a single orbital as current-carrying channel [146, 147, 49, 148, 149, 150,
151, 152, 128, 153].
For example, Bode et al. [152] have derived Landau-Lifshitz-Gilbert-type equations of motion for
the molecular spin based on a nonequilibrium Born-Oppenheimer-approximation, which assumes
that the time scale of the dynamics of the local magnetic moment is much larger than the dwell
time of the electrons. In Ref. [128] we have treated the dynamics of the average electron spin
semiclassically in the infinite bias limit.
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The host material of QDs often contains a huge number of spins (nuclear or molecular) and can
be described by one large effective spin. Interacting spins in transport models with isotropic
exchange coupling have been studied recently, where a characteristic current induced switching
of magnetic layers [154, 155] or the external spin in QD setups [152, 156] was found as well as
superradiant-like behavior in a single QD [157]. If the exchange coupling is anisotropic more
involved nonlinear dynamics are spawned, that even contain chaos and which have been studied
in detail for closed systems [98, 99, 100, 101, 158]. The nonlinear dynamics of anisotropically
exchange coupled spins with connections to electronic reservoirs show intriguing features like
self-sustained current oscillations, parametric oscillations, and chaotic dynamics. This has been
addressed within different theoretical frameworks: In Refs. [128, 156] a quantum master equation
with a classical large spin was used in an infinite bias limit to study the transport characteristics
of single- and double-QD setups. Metelmann et al.[105] derived the equations of motion by
Keldysh-Green functions.
We are particularly interested in controlling the spin interactions by intervening in the transport
process, i.e. applying a closed-loop feedback to our model. The goal of such an intervention
is to prevent the system from running into chaotic regimes or fixed points. The feedback we
think of is included on the level of the master equation and inspired by the notion of Maxwell’s
demon, capable of sorting particles by conditionally inserting/removing a wall. This mechanism
ideally does not require work to insert or remove the wall, which modifies the entropy balance
(i.e. the second law of thermodynamics) while not affecting the energy balance (first law)[65].
A transport analog to the Maxwell demon is a device that is capable of generating electronic
currents even against a bias voltage or thermal gradient by changing the energy barriers based
solely on information about the current QD occupation. As an interesting application we show
that our feedback scheme is capable of generating spin-currents of opposite directions.
Our Ref. [43] demonstrates the implementation of a demon-like feedback in a single-electron
transistor and Ref. [44] provides an insight on the thermodynamics of a physical implementation.
Recent experiments also show that it is, in fact, possible to transform information about particles
into free energy [159, 160, 161]. For a transport setup the experimental difficulty is, clearly, to
strongly modify the single-electron tunneling rates without changing the QD levels. However,
investigations on quantum turnstile setups show that one can pump electrons by invoking a
pump cycle based on the modulation of tunneling barriers by conventional electronics [162, 163].
Within these cycles electronic levels are not changed.

The remainder of this chapter starts in Sec. 4.2 with a detailed description of the model
with the Hamiltonian (Sec. 4.2.1), the master equation (Sec. 4.3) and the introduction of the
feedback mechanism (Sec. 4.5). The final equations of motion (EOMs) are presented in Sec. 4.6
and their resulting dynamics are discussed in Sec. 4.8. First we discuss the results for the
transport without spin-spin interactions (Sec. 4.8.1). We proceed with discussing the results of
solutions for the full system for infinite bias voltages (Sec. 4.8.2) and the results for the finite-bias
regime are provided in Secs. 4.8.3 and 4.8.4. Finally, we conclude in Sec. 4.9.

4.2. Model

4.2.1. Hamiltonian

We consider a system of a single quantum dot (SQD) with one orbital level that is subject
to an external magnetic field B⃗ in the z-direction which splits the quantum dot level. The
SQD is coupled to electronic leads and without any further interaction the coupling leads to
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λ

Figure 4.1.: Setup of the investigated system. An electronic spin ⃗̂
S (red) in a single quantum dot

(SQD) is coupled to an external spin ⃗̂
J (blue) via an exchange interaction λ (wiggly

line). The SQD level is split up by an external magnetic field B⃗ in z-direction. Due
to coupling to the leads l (characterized by inverse temperatures βl and chemical
potentials µl) electronic transport is taking place on and off the SQD (solid arrows).
The feedback mechanism, introduced in section 4.5, instantaneously modifies the
tunneling barriers conditioned on the system states (dashdotted arrows).

the formation of two distinct spin-dependent current channels, since the spin of the tunneling
electrons is assumed to be invariable while tunneling.
Moreover the model consists of a large spin ⃗̂

J with length j given by ⃗̂
J2 ∣m,j⟩ = j(j + 1) ∣m,j⟩,

the z-component of which couples to the magnetic field as well and which is exchange-coupled
with the electron-spin. For simplicity we comprise the g-factors of the electronic spin and the
large spin and the Bohr magneton in our definition of B and assume the g-factors to be the
same for electronic and large spin.
The full Hamiltonian reads as follows [cf. similar models [128, 156, 105]]

Ĥ = ĤSQD + ĤJ + Ĥ int + Ĥ leads + ĤT , (4.1)

and its components read

ĤSQD = ∑
σ=↑,↓

ε d̂
†
σ d̂σ +B Ŝz ,

ĤJ = B Ĵz , Ĥ int = ∑
i=x,y,z

λi Ŝi Ĵ i ,

Ĥ leads = ∑
klσ

εklσ ĉ
†
klσ ĉklσ (l = L/R) , (4.2)

ĤT = ∑
klσ

(γklσ ĉ
†
klσ d̂σ +H.c.) .

The operators d̂†
σ (d̂σ) describe the creation (annihilation) of an electron with spin σ =↑, ↓ on

the dot, n̂σ is the related occupation number operator, Ŝi are the components of the electronic
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spin operators in second quantization and can be written in terms of the creation/annihilation
operators

Ŝx =
1
2
( d̂

†
↑ d̂↓ + d̂

†
↓ d̂↑ ) =

1
2
( Ŝ+ + Ŝ− ) ,

Ŝy =
1
2i

( d̂
†
↑ d̂↓ − d̂

†
↓ d̂↑ ) =

1
2i

( Ŝ+ − Ŝ− ) , (4.3)

Ŝz =
1
2
( n̂↑ − n̂↓ ) ,

with the usual commutation relations for angular momentum operators (i, j, k = x, y, z, h̵ = 1)

[Ŝi , Ŝj] = i∑
k

εijk Ŝk , (4.4)

where εijk is the Levi-Civita-Symbol.
The electronic leads are assumed to be noninteracting. Electrons of momentum k and spin
σ in the l-th lead are created(annihilated) by the corresponding operators ĉ†

klσ (ĉklσ). The
transitions between a state in the leads and the electronic levels are described by ĤT, the
tunneling amplitudes for these transitions are γklσ.

4.3. Master equation for exchange coupling-assisted transport
The microscopic dynamics of the system described by the Hamiltonian (4.1) is involved. In
particular, we are interested in the dynamics of single-particle observables such as components of
the average electron and large spin and we will consider the reduced density-matrix of electrons
dwelling in the dots.
The system’s dynamics are governed by different time scales. First of all, we assume that
the electronic leads are in thermal equilibrium and we have the time scale τB on which the
bath correlations decay during a tunneling event. The second time scale is set by the electron
tunneling, which we assume is much faster than the precession of the large spin; that implies
that electron spin fluctuations do not affect the large spin dynamics and vice versa, which is
reflected by a mean-field approximation. Another time scale is set by the instantaneous feedback
mechanism that depends only on the occupation of the SQD.
We derive a Born-Markov master equation that governs the evolution of density operator ρ̂S,
for the SQD degrees of freedom. The resulting Liouvillian superoperator L̂ derived in the
following is not only parametrized by the Markovian system-bath tunneling rates Γlσ(ω) =

2π∑k ∣γklσ ∣2δ(εklσ − ω) and the lead Fermi functions fl(ω) = [eβ(ω−µl) +1]−1 but also by the
(slow) dynamics of the large spin ⃗̂

J and in particular by its interaction with the electrons in
the SQD. Within the derivation a mean-field approach, that neglects the (fast) fluctuations of
the large spin, has been made. Therefore, the influence of the large spin is reflected by the
effective Zeeman splitting εz(t) = B + λz ⟨Ĵz⟩t that has a contribution coming from the large
spin’s polarisation. On the other hand the exchange coupling induces flips of the electronic spins
driven by the parameter Λ(t) = λx

2 ⟨Ĵx⟩t + iλy2 ⟨Ĵy⟩t.

4.4. Derivation of the master equation
In terms of a system bath theory, as carried out in chapter 2 the total Hamiltonian (4.1) consists
of three parts, namely

Ĥ = ĤS + ĤB + Ĥ I , (4.5)
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where the system part ĤS = ĤSQD + ĤJ + Ĥ int comprises the dynamics of the system, i.e. the
SQD and the large spin and the interaction between them. The electronic leads form the bath
described by ĤB = Ĥ leads and the coupling between system and bath degrees of freedom is
denoted by the interaction Hamiltonian Ĥ I = ĤT.
Along the lines of our derivation in chapter 2 we derive the dynamics of the system density matrix.
Carrying out the Born- and Markov-approximations we obtain the Born-Markov master-equation
in the Schrödinger picture, eq. (2.30)

∂

∂t
ρ̂S = − i [ĤS , ρ̂S (t)] −∑

αβ

∞

∫

0

dτ{Cαβ(τ) [Âα , e−iĤSτ Âβ e+iĤSτ ρ̂S (t)]

+Cβα(−τ) [ρ̂S (t) e−iĤSτ Âβ e+iĤSτ , Âα] } . (4.6)

4.4.1. Mean-field approximation
We want to treat the interaction of electronic and large spin in a semiclassical manner, which
should be valid as long as the external spin is sufficiently large (j ≫ 1) and we can neglect its
fluctuations. Consequently, there is no decay of the large spin due to dissipation and the length
of the large spin will be conserved on the microscopic level,

[
⃗̂
J2, Ĥ] = 0 . (4.7)

In a mean-field approach we rewrite the Hamiltonian describing the spin-spin interaction, Ĥ int,
by substituting the quantum operators Ŝi, Ĵ i by the sum of their expectation values and their
fluctuation around the expectation values

Ŝi = ⟨Ŝi⟩ + δ Ŝi , Ĵ i = ⟨Ĵ i⟩ + δ Ĵ i , (4.8)

which implies

Ŝi Ĵ i = (⟨Ŝi⟩ + δ Ŝi) (⟨Ĵ i⟩ + δ Ĵ i) = ⟨Ŝi⟩ Ĵ i + Ŝi ⟨Ĵ i⟩ + δ Ŝi δ Ĵ i − ⟨Ŝi⟩ ⟨Ĵ i⟩ . (4.9)

Within the mean-field approximation products of spin fluctuators δ Ŝi δ Ĵ i are neglected, and we
obtain

Ĥ
MF
int = ∑

i

λi (Ŝi ⟨Ĵ i⟩ + ⟨Ŝi⟩ Ĵ i − ⟨Ŝi⟩ ⟨Ĵ i⟩) . (4.10)

The system Hamiltonian in the unitary part of (4.6) is, accordingly,

ĤS = ε (n̂↑ + n̂↓) +
B

2
(n̂↑ − n̂↓) + Ĥ

MF
int + ĤJ , (4.11)

where we find the following vanishing commutators

[⟨Ŝi⟩ Ĵ i , ρ̂S] = [⟨Ŝi⟩ ⟨Ĵ i⟩1, ρ̂S] = [ĤJ , ρ̂S] = 0 . (4.12)

As a consequence we rewrite the system Hamiltonian as an effective Hamiltonian by comprising
all terms contributing to electronic level shifts and all terms that participate in the spin-flip
processes

Ĥ
eff
S (t) = ∑

σ

εσ(t) n̂σ +Λ∗
(t) Ŝ+ +Λ(t) Ŝ−

=
εz(t)

2
Ŝz +Λ∗

(t) Ŝ+ +Λ(t) Ŝ− , (4.13)
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where we have set the absolute electronic levels to ε = 0 for convenience and defined

εσ(t) = ε ±
B

2
±
λz
2

⟨Ĵz⟩t , (4.14)

εz(t) = ε↑(t) − ε↓(t) = B + λz ⟨Ĵz⟩t , (4.15)

Λ(t) =
λx
2

⟨Ĵx⟩t + i
λy

2
⟨Ĵy⟩t . (4.16)

Note that the parameters are explicitly time-dependent, although we assume the time scale set
by εσ(t) and Λ(t) to be much slower than the time scale of the lead-correlations τB and as well
slower than the time scale of the electronic tunneling. However, for convenience, we will not
always write these time-dependencies in the following.

4.4.2. System and bath coupling operators

In order to evaluate the master equation (4.6) we have to identify system operators Âα and the
corresponding bath operators B̂α that define the bath correlation functions.
The system-bath coupling operator reads

ĤT = ∑
klσ

γklσ ĉ
†
klσ d̂σ +∑

klσ

γ∗klσ d̂
†
σ ĉklσ = ∑

σ

d̂
†
σ∑
kl

γ∗klσ ĉklσ −∑
σ

d̂σ∑
kl

γklσ ĉ
†
klσ . (4.17)

This form, obviously, does not comply with the form we postulated in (2.3). We tackle this
problem, by decomposing fermionic operators as tensor products of Pauli matrices σi and the
2-dimensional identity matrix 1, which is called Jordan-Wigner-transformation [164, 165]. We
may, thus, define the fermionic coupling operators in a form that satisfies (2.3). We introduce
the operators

d̃↑ = σ− ⊗ 1 , d̃†
↑ = σ+ ⊗ 1 ,

d̃↓ = σz ⊗ σ− , d̃†
↓ = σz ⊗ σ+ ,

c̃klσ = σz ⊗⋯⊗ σz
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

⊗σ− ⊗ 1⊗⋯⊗ 1 ,

c̃†
klσ = σz ⊗⋯⊗ σz ⊗ σ+ ⊗ 1⊗⋯⊗ 1 . (4.18)

Here we used the auxiliary adjoint matrices σ± = 1
2(σx±iσy), with (σ+)† = σ−. As σz is self-adjoint

and we have σ−σz = σ− and σ+σz = −σ+ it is apparent that the interaction Hamiltonian has the
desired form, namely

Ĥ I = ∑
σ

[d̃†
σ ⊗∑

kl

γ∗klσ c̃klσ + d̃σ ⊗∑
kl

γklσ c̃
†
klσ] . (4.19)

We assume that the fermionic operators are given in the Jordan-Wigner-representation and go
back to our old notation.
When comparing (4.19) and (2.3), it is straightforward to identify the following system operators

Â1 = Â5 = Â
†
2 = Â

†
6 = d̂↑ ,

Â3 = Â7 = Â
†
4 = Â

†
8 = d̂↓ , (4.20)

56



while the corresponding bath coupling operators are identified as

B̂1 = ∑
k

γ∗kR↑ ĉ
†
kR↑ , B̂2 = ∑

k

γkR↑ ĉkR↑ , B̂3 = ∑
k

γ∗kR↓ ĉ
†
kR↓ , B̂4 = ∑

k

γkR↓ ĉkR↓ ,

B̂5 = ∑
k

γ∗kL↑ ĉ
†
kL↑ , B̂6 = ∑

k

γkL↑ ĉkL↑ , B̂7 = ∑
k

γ∗kL↓ ĉ
†
kL↓ , B̂8 = ∑

k

tkL↓ ĉkL↓ . (4.21)

In a next step we will calculate the interaction picture for the system operators Âα by neglecting
the spin-flip terms in the effective Hamiltonian and use the free Hamiltonian instead, which
reads

Ĥ
free
S (t) = ∑

σ

εσ(t) d̂
†
σ d̂σ . (4.22)

The effective Hamiltonian Ĥ
eff
S (t), where the large spin only enters in form of parameters has

block-diagonal form in the local basis ∣a⟩ with a ∈ {0, ↑, ↓, d}. The labels ↑ / ↓ denote that either
the ↑- or the ↓-level is filled, while labels 0 and d denote an empty or an doubly (i.e. by a ↑ and
a ↓-electron) occupied QD. Along its diagonal Ĥeff

S (t) has two 1 × 1 blocks, that correspond to
the states ∣0⟩ and ∣d⟩, the third block is of dimension 2 × 2 associated to the situation where
the QD is occupied either by a ↑- or a ↓-electron. The energies ε↑/↓ are the diagonal elements
and the spin-flip contributions Λ(∗) the off-diagonal elements. Contrarily, Ĥ free

S (t) is already
diagonal in the local basis, as we do not take into account the coupling of the two levels. As a
consequence we do not have to perform the secular approximation explicitly, as there are only
terms rotating with respect to τ in eq. (2.32).

In the following paragraphs we discuss how eq. (4.6) is evaluated with the replacement ĤS (t) →

Ĥ
eff
S (t) → Ĥ

free
S (t) in the integral and under which conditions this is justified. We calculate the

interaction picture terms, e−iĤfree
S τ d̂

(†)
σ e+iĤfree

S τ , by employing the Baker-Campbell-Hausdorff-
formula, i.e.

eX Y e−X =
∞
∑
m=0

1
m!

[X,Y ]m , (4.23)

where [X,Y ]m = [X, [X,Y ]m−1] is defined recursively and [X,Y ]0 = Y . Thus, we have to find
the commutators [X,Y ] and use the fermionic (anti-)commutation relations

[X,Y ] = [−i Ĥ free
S τ, d̂σ] = −i∑

µ

εµτ [d̂
†
µ d̂µ , d̂σ] = −i∑

µ

εµτ [d̂
†
µ {d̂µ , d̂σ} − {d̂

†
µ , d̂µ} d̂σ]

= i∑
µ

εµτδµσ d̂σ = iεστ d̂σ . (4.24)

Applied recursively, we get

e−iĤfree
S τ d̂σ e+iĤfree

S τ
= eiεστ d̂σ , (4.25)

e−iĤfree
S τ d̂

†
σ e+iĤfree

S τ
= e−iεστ d̂

†
σ . (4.26)

Justification for the use of the free Hamiltonian

For a convenient notation we split up the effective system Hamiltonian Ĥ
eff
S = Ĥ0 + Ĥ1, where

Ĥ0 = Ĥ
free
S contains the two SQD levels and Ĥ1 = Ĥ

SF
S describes the spin-flips due to the exchange
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interaction. The transformation of an arbitrary system operator Â to the interaction picture
can be written in terms of the Schwinger-Dyson identity involving superoperators L̂x ⋅ = [Ĥx , ⋅]

e−iL̂Sτ = e−i(L̂0+L̂1)τ = e−iL̂0τ
∞
∑
n=0

(−i)n
τ

∫

0

dτ1

τ1

∫

0

dτ2 . . .

τn−1

∫

0

dτnL̂1(τ1)L̂1(τ2)⋯L̂1(τn) ,

(4.27)

where for any operator Â

L̂1(τ) Â = eiL̂0τ L̂1 e−iL̂0τ Â = [eiĤ0τ Ĥ1 e−iĤ0τ , Â] = [Ĥ1(τ), Â] . (4.28)

The interaction picture operator in terms of this expansion up to the first order reads

e−iĤSτ Â eiĤSτ = e−i(L̂0+L̂1)τ Â = e−iL̂0τ Â − i e−iL̂0τ

τ

∫

0

dτ1 [Ĥ1(τ1), Â] + . . . . (4.29)

where we have to write the spin-flip Hamiltonian Ĥ1 in the interaction picture by applying,
again, the Baker-Campbell-Hausdorff-formula

Ĥ1(τ) = eiεzτ Λ∗ Ŝ+ + e−iεzτ Λ Ŝ− , (4.30)

which introduces the effective Zeeman-splitting εz(t) = ε↑(t) − ε↓(t) = B + λz ⟨Ĵz⟩t.
The integrals in (4.6) then read

(∗) =

∞

∫

0

dτCαβ(τ) [Âα , e−iĤSτ Âβ e+iĤSτ ρ̂S (t)]

=

∞

∫

0

dτCαβ(τ) [Âα , e−iĤ0τ Âβ e+iĤ0τ ρ̂S (t)] + (∗
(1)

) , (4.31)

(∗
(1)

) =

∞

∫

0

dτCαβ(τ)

⎡
⎢
⎢
⎢
⎢
⎣

Âα ,−i e−iL̂0τ

τ

∫

0

dτ1 {eiεzτ1 Λ∗ [Ŝ+ , Âβ] + e−iεzτ1 Λ [Ŝ− , Âβ]} ρ̂S (t)

⎤
⎥
⎥
⎥
⎥
⎦

=

∞

∫

0

dτCαβ(τ)

× [Âα ,−i e−iL̂0τ {
Λ∗

εz
(eiεzτ −1) [Ŝ+ , Âβ] +

Λ
εz

(1 − e−iεzτ) [Ŝ− , Âβ]} ρ̂S (t)] .

Here we have to consider two different time scales: the time scale τB set by the decay of the bath
correlations that is in general much faster than the time scale set by the Zeeman splitting εz, i.e.
εzτB ≪ 1. We can thus perform an expansion in the parameter εzτ : Λ

εz
(1 − e−iεzτ) ≈ −iΛτ . As

a consequence, it is justified to neglect the first-order corrections, (∗(1)) in (4.31), if the bath
correlation time τB is sufficiently short compared to the time scale of the spin-flip dynamics, i.e.
ΛτB ≪ 1. Note that Schuetz et al. have provided a calculation for higher order corrections in a
similar setup which suggests that the n-th order correction scales with (ΛτB)

n.[157]
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4.4.3. Transition rates
In order to calculate the transition rates we first recall the half-sided Fourier transformation of
the bath-correlation functions and its splitting into hermitian and anti-hermitian parts, compare
eqs. (2.34), (2.35) and (2.44).
With the identified system and bath operators, (4.20) and (4.21), we can exemplarily calculate
the dissipator with respect to tunneling between the right lead and the ↑-state

(⋆) =

∞

∫

0

dτC12(τ) e−iε↑τ [d̂↑ , d̂
†
↑ ρ̂S (t)] +

∞

∫

0

dτC21(−τ) e−iε↑τ [d̂
†
↑ ρ̂S (t), d̂↑]

+

∞

∫

0

dτC21(τ) eiε↑τ [d̂
†
↑ , d̂↑ ρ̂S (t)] +

∞

∫

0

dτC12(−τ) eiε↑τ [d̂↑ ρ̂S (t), d̂
†
↑] , (4.32)

which reads with the definition for the half-sided Fourier transformations (2.34)

(⋆) = Γ+12(−ε↑) [d̂↑ , d̂
†
↑ ρ̂S (t)] + Γ−12(−ε↑) [d̂↑ ρ̂S (t), d̂

†
↑]

+ Γ+21(ε↑) [d̂
†
↑ , d̂↑ ρ̂S (t)] + Γ−21(ε↑) [d̂

†
↑ ρ̂S (t), d̂↑]

=
1
2
γ12(−ε↑) ({d̂↑ d̂

†
↑ , ρ̂S} − 2 d̂†

↑ ρ̂S (t) d̂↑) +
1
2
γ21(ε↑) ({d̂

†
↑ d̂↑ , ρ̂S} − 2 d̂↑ ρ̂S (t) d̂

†
↑)

+
1
2
(σ21(ε↑) − σ12(−ε↑)) [d̂

†
↑ d̂↑ , ρ̂S (t)] . (4.33)

This equation is actually equivalent to the dissipator in eq. (2.48). Therefore, the use of the
interaction free Hamiltonian to evaluate the dissipators of the master equation yields essentially
the same results as the secular approximation.

In order to evaluate the coefficient γ12(ω) and γ21(ω) we need to calculate the respective bath
correlations C12(τ) and C21(τ). We use the definition (2.25) and obtain

C12(τ) = ∑
k

∣γkR↑∣
2Tr{ĉ†

kR↑
(τ) ĉkR↑ ρ̂

eq,R
B }

= ∑
k

∣γkR↑∣
2Tr{eiĤBτ ĉ†

kR↑ e−iĤBτ ĉkR↑ ρ̂
eq,R
B }

= ∑
k

∣γkR↑∣
2Tr{eiεkR↑τ ĉ†

kR↑ ĉkR↑ ρ̂
eq,R
B }

= ∑
k

∣γkR↑∣
2Tr{ĉ†

kR↑ ĉkR↑ ρ̂
eq,R
B } eiεkR↑τ , (4.34)

C21(τ) = ∑
k

∣γkR↑∣
2Tr{ĉkR↑(τ) ĉ

†
kR↑ ρ̂

eq,R
B }

= ∑
k

∣γkR↑∣
2Tr{ĉkR↑ ĉ†

kR↑ ρ̂
eq,R
B } e−iεkR↑τ , (4.35)

We assume that each of the leads l is in its respective thermal equilibrium state with ρ̂eq,l
B with

the corresponding temperature βl and chemical potential µl

ρ̂eq,l
B =

e−βl(Ĥ
(l)
B −µlN̂

(l)
B )

Zl
, (4.36)
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introduces the partition function for the grand-canonical ensemble (N̂ (l)
B = ∑j n̂j = ∑j ĉ

†
j ĉj , where

the index j comprises the energy k and the spin σ)

Zl = Tr{e−βl(ĤB−µlN̂B)} = Tr{e−βl∑j(εj,l−µl)nj}

=
m

∏
j=1

1
∑
nj=0

e−βl(εj,l−µl)nj =
m

∏
j=1

[1 + e−βl(εj,l−µl)] , (4.37)

where we eliminated the ∑j by writing products of exponentials and substitute the trace by ∑nj
with nj = {0,1} as micro-state j can only by occupied by 0 or 1 fermion. That means for the
bath correlation functions with respect to lead l

Tr{ĉ†
j′ ĉj ρ̂

eq,l
B } = δj,j′Tr{ĉ†

j ĉj ρ̂
eq,l
B } = δj,j′

1
Zl

m

∏
j=1

1
∑
nj=0

nj e−βl(εj,l−µl)nj

= δj,j′
e−βl(εj,l−µl)

1 + e−βl(εj,l−µl)
= δj,j′

1
1 + eβl(εj,l−µl)

= δk,k′δσ,σ′
1

1 + eβl(εklσ−µl)
= δk,k′δσ,σ′fl(εklσ) , (4.38)

Tr{ĉj′ ĉ†
j ρ̂

eq,l
B } = δk,k′δσ,σ′ [1 − fl(εklσ)] , (4.39)

with eqs. (4.34) and (4.35) this yields

C12(τ) = ∑
k

fR(εkR↑)∣γkR↑∣
2 eiεkR↑τ , (4.40)

C21(τ) = ∑
k

[1 − fR(εkR↑)] ∣γkR↑∣2 e−iεkR↑τ . (4.41)

Here the mean number of quanta in the bath l with energy ω is given by the Fermi-Dirac
statistics, i.e.

fl(ω) =
1

eβl(ω−µl) +1
. (4.42)

Furthermore, we introduce the spectral density Jlσ(ω) = ∑Mk=1 ∣γklσ ∣
2δ(ω − εklσ). As we take the

baths to have a continuous spectrum we take M →∞ and obtain for the correlations

C12(τ) =

∞

∫
−∞

dωJR↑(−ω)fR(−ω) eiωτ , (4.43)

C21(τ) =

∞

∫
−∞

dωJR↑(ω) [1 − fR(ω)] e−iωτ . (4.44)

Finally, we obtain γ12, γ21 by Fourier transforming eqs. (4.43) and (4.44), which yields

γ12(ω) = ΓR↑(−ω)fR(−ω) , γ21(ω) = ΓR↑(ω) [1 − fR(ω)] , (4.45)

where we introduced for convenience the spin-resolved tunneling rates

Γlσ(ω) = 2πJlσ(ω) . (4.46)

Analogously, we find the following nonvanishing coefficients governing the rate of dissipation
with the electronic contacts

γ34(ω) = ΓR↓(−ω)fR(−ω) , γ43(ω) = ΓR↓(ω)(1 − fR(ω)) ,
γ56(ω) = ΓL↑(−ω)fL(−ω) , γ65(ω) = ΓL↑(ω)(1 − fL(ω)) ,
γ78(ω) = ΓL↓(−ω)fL(−ω) , γ87(ω) = ΓL↓(ω)(1 − fL(ω)) . (4.47)
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Lambshift terms

Additionally, the odd Fourier transforms of the bath correlations functions, called Lamb-shift
terms, are calculated from the even Fourier transforms by using the Cauchy principal value
integral (2.47)

σαβ(ω) =
i
π

P.V.
∞

∫
−∞

γαβ(Ω)

ω −Ω
dΩ . (4.48)

We show, straightforwardly, that the Lamb-shift contributions vanish

σ21(ω) − σ12(−ω) =
i
π

P.V.
∞

∫
−∞

ΓR↑ [fR(Ω) + 1 − fR(Ω)]

ω −Ω
dΩ

=
i
π

P.V.
∞

∫
−∞

ΓR↑
ω −Ω

dΩ =
i
π

lim
ω′→∞

P.V.
ω′

∫

−ω′

ΓR↑
ω −Ω

dΩ

=
i
π

ΓR↑ lim
ω′→∞

ln(
∣ω − ω′∣

∣ω + ω′∣
) = 0 , (4.49)

where we set energy independent tunneling rates

Γlσ(ω) → Γlσ (4.50)

i.e. the density of states around the transition frequencies is assumed to be flat, which is usually
termed wide-band limit.

The final master equation has Lindblad form, i.e. preserves trace, hermiticity and the positivity
of the reduced density matrix as it is of Lindblad form (compare (2.80)).

∂

∂t
ρ̂S (t) = L̂t [ρ̂S (t)] = −i [Ĥeff

S (t), ρ̂S (t)] +
N2−1
∑
k=1

γk(t) (Âk ρ̂S (t) Â
†
k −

1
2
{Â

†
k Âk , ρ̂S (t)}) ,

(4.51)

where N = 3 is the dimension of the SQD Hilbert space and we used (4.20). The nonnegative
eigenvalues of the generator L̂t are the rates

γ1(t) = γ21(ε↑(t)) , γ2(t) = γ12(−ε↑(t)) ,

γ3(t) = γ43(ε↓(t)) , γ4(t) = γ34(−ε↓(t)) ,

γ5(t) = γ65(ε↑(t)) , γ6(t) = γ56(−ε↑(t)) ,

γ7(t) = γ87(ε↓(t)) , γ8(t) = γ78(−ε↓(t)) . (4.52)

4.4.4. Complete Liouvillian

We now take matrix elements in an arbitrary basis, ρij = ⟨i∣ ρ̂S ∣j⟩, such that

ρ̇ij = −i ⟨i∣ [Ĥeff
S (t), ρ̂S] ∣j⟩ +

8
∑
k=1

γk(t) (⟨i∣ Âk ρ̂S (t) Â
†
k ∣j⟩ −

1
2
⟨i∣ {Â

†
k Âk , ρ̂S (t)} ∣j⟩) , (4.53)
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and obtain in the local basis (i, j ∈ 0, ↓, ↑). Taking the expectation values for the relevant
observables d

dt ⟨Ô⟩ = TrS {Ô L̂t [ρ̂S (t)]} and writing the vector

ρ⃗ = (⟨ρ00⟩ , ⟨n̂↓⟩ , ⟨n̂↑⟩ , ⟨Ŝ+⟩ , ⟨Ŝ−⟩)
T
, (4.54)

we, finally, obtain the rate equations describing the dynamics of the interesting observables
interested in

∂

∂t
ρ⃗ = Ltρ⃗ . (4.55)

The Liouvillian is represented by the rate matrix Lt = ∑lL
(l)
t

L
(l)
t =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∑σ Γlσflσ Γl↓fl↓ Γl↑fl↑ 0 0
Γl↓fl↓ −Γl↓fl↓ 0 i

2Λ∗ − i
2Λ

Γl↑fl↑ 0 −Γl↑fl↑ − i
2Λ∗ i

2Λ
0 i

2Λ − i
2Λ i

2εz −
1
2 ∑σ Γlσflσ 0

0 − i
2Λ∗ i

2Λ∗ 0 − i
2εz −

1
2 ∑σ Γlσflσ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.56)

The Fermi functions are evaluated at the transition frequencies ε = εσ(t), thus flσ = fl(εσ) and
we define flσ = [1 − flσ].

4.5. Introducing feedback

For small bias voltages across the SQD a device that yields information about its instantaneous
occupation, such as an quantum point contact (QPC), cannot resolve to which of the attached
electron reservoirs an electron has tunneled. Therefore, the simplest feedback mechanisms can
only be conditioned on the occupation of the SQD itself or whether an electron has tunneled
in or out, without knowing the direction. Recent experiments show that the random telegraph
signals of QPCs contains information about the spin-state of electrons in monitored quantum
dots [166]. Now the Maxwell demon feedback is implemented as suggested in Ref. [43]. We
apply different Liouvillians conditioned on whether the SQD is empty(E), populated in ↑-state
or populated in the ↓-state, i.e. we construct new rate matrices by taking the rate matrix (4.56)
and multiplying it by the dimensionless feedback parameters δlν ∈ R;ν ∈ {E, ↑, ↓}, that encode
the modification of the tunneling rates (with δlν = 0 recovering the case without feedback)

Lν ≡ ∑
l=L/R

eδlν L(l) . (4.57)

We construct the effective feedback generator by projecting on the empty and filled dot states
and on the two interesting coherences
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Lfb = LE

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ L↓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ L↑

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ Lnofb

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.58)

where Lnofb = L is the nonmodified Liouvillian, (4.56), where we dropped, again, the index t for
better readability.
This feedback scheme has been named ”Maxwell demon feedback“ by Schaller and Esposito in
Refs. [43, 65] as one can think of a Maxwell demon that is able to instantaneously alter the
tunneling amplitudes for the hopping on and off the SQD only based on the information about
the current state of the system.

4.6. Final EOM of interacting spin system with demon like feedback
The final equations that are the subject of our investigation read

∂

∂t
ρ⃗ = Lfbρ⃗ . (4.59)

where the vector ρ⃗ comprises the relevant observables we need to describe the nonlinear spin-spin
dynamics under feedback.
We now can reduce the amount of equations by eliminating the equation for d/dt ⟨ρ00⟩ by using
Tr{ρ} = 1, which is possible because the transport rate matrix Lfb has rank 4. We obtain with
(4.3) (for the sake of readability we omit the time dependences, here)

d

dt
⟨Ŝx⟩ = +λy ⟨Ĵy⟩ ⟨Ŝz⟩ − εz ⟨Ŝy⟩ −∑

lσ

Γlσ
2
flσ ⟨Ŝx⟩ ,

d

dt
⟨Ŝy⟩ = −λx ⟨Ĵx⟩ ⟨Ŝz⟩ + εz ⟨Ŝx⟩ −∑

lσ

Γlσ
2
flσ ⟨Ŝy⟩ ,

d

dt
⟨Ŝz⟩ = ∑

l

{eδlE [
Γl↑
2
fl↑ −

Γl↓
2
fl↓] (1 − ⟨n̂↑⟩ − ⟨n̂↓⟩) − eδl↑ Γl↑

2
fl↑ ⟨n̂↑⟩ + eδl↓ Γl↓

2
fl↓ ⟨n̂↓⟩}

+ λx ⟨Ĵx⟩ ⟨Ŝy⟩ − λy ⟨Ĵy⟩ ⟨Ŝx⟩ , (4.60)
d

dt
⟨n̂σ⟩ = ∑

l

eδlE Γlσflσ(1 − ⟨n̂↑⟩ − ⟨n̂↓⟩) −∑
l

eδlσ Γlσflσ ⟨n̂σ⟩

+ (λx ⟨Ĵx⟩ ⟨Ŝy⟩ − λy ⟨Ĵy⟩ ⟨Ŝx⟩) (δσ↑ − δσ↓) .

These equations are strongly nonlinear and we need to generate EOM for the components of the
large spin to complete the set of equations.
The large spin components obey the commutation relations [Ĵ i , Ĵ j] = i∑k εijk Ĵk.
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As already stated, we implemented a mean-field approximation, which implies that the large
spin is not decaying due to the electronic leads, i.e. its length j is conserved, and ⃗̂

J is essentially
treated as a classical object. Therefore, we can use the mean-field interaction Hamiltonian,
(4.10), to calculate the Ehrenfest EOM

d

dt
⟨Ĵ i⟩ = −i ⟨[Ĵ i , ĤJ + Ĥ

MF
int ]⟩ + ⟨

∂ Ĵ i
∂t

⟩ . (4.61)

We obtain the EOM of the expectation values of the large spin’s degrees of freedom ⟨Ĵ i⟩

d

dt
⟨Ĵx⟩ = +λy ⟨Ŝy⟩ ⟨Ĵz⟩ − (B + λz ⟨Ŝz⟩) ⟨Ĵy⟩ ,

d

dt
⟨Ĵy⟩ = −λx ⟨Ŝx⟩ ⟨Ĵz⟩ + (B + λz ⟨Ŝz⟩) ⟨Ĵx⟩ , (4.62)

d

dt
⟨Ĵz⟩ = +λx ⟨Ŝx⟩ ⟨Ĵy⟩ − λy ⟨Ŝy⟩ ⟨Ĵx⟩ .

This equations have the form of Hasegawa-Bloch equations, [167, 168] completed by the electronic
back-action.

4.7. Alternative derivations of the EOM
In our derivation we implicitly applied an adiabatic approach when we assumed that the large
spin enters the effective transport Hamiltonian in form of parameters that change on a much
slower time scale than the tunneling time scale.
The model, without the feedback part, (4.1) has been studied before by López-Mońıs et al. [128]
and Metelmann et al. [105]. López-Mońıs and coworkers derived mean-field EOM restricting
themselves to the infinite bias voltages across the device and an adiabatic treatment of the large
spin’s motion. The resulting EOM conincide with (4.60) in the infinite bias limit, except for the
fact, that we explicitly ruled out double occupation of the QD. Metelmann et al. show that the
nonadiabatic approach developed in Ref. [105] includes the short-time dynamics as well as the
level-broadening effects that arise from the coupling of the large spin to the transport leads. They
introduce lead-transition functions, Bl

σσ′(ω, t) = i∑k γklσδ(ω − εlkσ) eiεklσt ⟨ĉ†
klσ (t) d̂σ′ (t)⟩ that

explicitly couple the EOM for the spin correlators ⟨d̂
†
σ (t) d̂σ′ (t)⟩ with the QD-lead correlators

⟨ĉ†
klσ (t) d̂σ′ (t)⟩. This increases the amount of equations to solve drastically and, thus, the

numerical effort. However, the study shows that the nonadiabatic corrections are important in
the regime of low magnetic fields. Metelmann also provides analytic solutions for the adiabatic
approach via Green’s functions.

64



4.8. Analysis and Numerical results

4.8.1. System without exchange-interaction (λi = 0)

If the exchange-interaction is ineffective we do not need to consider any coherences as the
↑- and ↓-transport channels do not mix. With the new vector of probabilities pν to find the
system in states ν = {E, ↓, ↑}, ρ⃗noint = (pE , p↓, p↑)

T
= (⟨ρ00⟩ , ⟨n̂↓⟩ , ⟨n̂↑⟩)

T Eq. (4.59) reduces to
∂
∂t ρ⃗noint = L

(noint)
fb ρ⃗noint, where the rate matrix is merely the 3× 3 submatrix of (4.58) with respect

to the occupations, i.e.

L
(noint)
fb = ∑

l

⎛
⎜
⎜
⎜
⎝

−∑σW
(l)
σE W

(l)
E↓ W

(l)
E↑

W
(l)
↓E −W

(l)
E↓ 0

W
(l)
↑E 0 −W

(l)
E↑

⎞
⎟
⎟
⎟
⎠

. (4.63)

Here the rates for transitions between unoccupied SQD (”E“) and spin-σ states induced by the
coupling to lead l read

W
(l)
σE = eδlE Γlσfl(εσ) , W

(l)
Eσ = eδlσ Γlσflσ(εσ) . (4.64)

Along the lines of Ref. [65] it can be shown straightforwardly, that the local detailed balance
condition, (2.142), of our device is modified once the feedback is applied; i.e. constants ∆lσ ≡

δlσ − δlE are nonzero,

ln
W
(l)
σE

W
(l)
Eσ

= −βl(εσ − µl) −∆lσ . (4.65)

A detailed discussion of the stochastic thermodynamics of the Maxwell demon feedback has
been provided in Refs. [65, 43, 44]. The crucial point is that the feedback mechanism does
not affect the energy and matter balances of the system but does alter the entropy balance;
i.e, besides the matter and energy currents IM and IE, an information current IF is introduced,
that changes the second law of the system. In chapter 5 we will a study a generic model for a
microscopic implementation of Maxwell-demon like feedback, that will shed some more light on
the thermodynamical properties of this kind of feedback.
The currents from lead l read

I
(l)
E = ∑

ν≠ν′
W
(l)
νν′pν′(εν − εν′)

I
(l)
M = ∑

ν≠ν′
W
(l)
νν′pν′(Nν −Nν′)

I
(l)
F = ∑

ν≠ν′
W
(l)
νν′pν′(δlν − δlν′) , (4.66)

where εν , Nν are the respective energies and particle numbers. Since we restrict the number of
particles on the SQD to 1, the matter and energy currents are proportional to each other. The
electron tunneling is spin preserving and, thus, we can treat the ↑ / ↓-channels separately and
find (note that, due to particle conservation, IMσ = I

(L)
Mσ = −I

(R)
Mσ )

IMσ =W
(L)
σE pE −W

(L)
Eσ pσ = Iσ = IEσ/εσ . (4.67)
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If the system is in its stationary state the spin-σ currents read

Iσ =
(e(δLE+δRσ) fLσfRσ − e(δLσ+δRE) fLσfRσ)ΓLσΓRσ

∑l (eδlE flσ + eδlσ flσ)Γlσ +Cσ
,

Cσ =
(∑l eδlE flσ̄Γlσ̄) (∑l eδlσ flσΓlσ)

(∑l eδlσ̄ flσ̄Γlσ̄)
, (4.68)

where negative currents are effective currents from the right to the left lead and positive ones
vice versa. The information current, on the other hand, evaluates to

IF = ∑
σ

(∆Lσ −∆Rσ)Iσ . (4.69)

The system entropy is given in terms of the Shannon entropy, (2.122),

S = −∑
ν

pν ln pν . (4.70)

Consequently, Ṡ is the entropy change in the system and after some algebra we can define the
total entropy production [65],

Ṡi = Ṡ −∑
l

Q̇(l)

Tl
+ IF , (4.71)

which is nonnegative definite and where Q̇(l) = I(l)E −µlI
(l)
M is the heat flow with the l-th reservoir.

In the absence of feedback (IF = 0) the entropy production is just the sum of entropy change in
the system and the reservoirs. The nonnegativity of Ṡi implies that Ṡ ≥ ∑l Q̇

(l)/Tl, which is the
second law of thermodynamics. The presence of feedback may change this, depending on the
sign of IF. The entropy change provided by the feedback mechanism adds to the total entropy.
Once the system reaches its steady state the system entropy remains constant (Ṡ = 0) and the
entropy production becomes

Ṡi = (
1
TR

−
1
TL

) IE − (
µR
TR

−
µL
TL

) IM + IF ≥ 0. (4.72)

If the leads are held at the same temperature TR = TL = T and a chemical potential gradient
is established (µR − µL ≥ 0), the extracted power becomes P = (µR − µL) IM; cf. eq. (2.146).
In the absence of feedback IF the matter flux can only flow with the gradient (IM ≤ 0). If the
feedback mechanism is effective and if the feedback current is sufficiently positive, particles can
be transferred against the chemical potential gradient (IM ≥ 0).
If the device can discriminate spin directions of electrons we can implement the following feedback
schemes.

Feedback schemes. In this paper we investigate the effect of two feedback parameter choices.
First is scheme A with parameters chosen as

δL↑ = δRE = −δ, δR↑ = δLE = δ , δL↓ = δR↓ = 0 , (4.73)

where δ is positive. In scheme A currents of both ↑- and ↓-electrons can be transported against a
chemical bias, but the ↑-currents are preferred. The second scheme, B, implements a spin filter,
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Figure 4.2.: Plots (a) and (c) show the spin-dependent currents as function of the applied bias
voltage V between the left and right transport leads, plotted for different feedback
schemes and compared to the nonfeedback case. ↑(↓)-currents are depicted as
solid (dashed) lines. Scheme B can act as a spin filter, as depicted in (c), where
only ↑-electrons are transported against the bias. For scheme A, shown in (a),
all electrons are transported against the bias, but ↑-currents are preferred. Plots
(b) and (d) show a sketch of the SQD with the respective tunneling rates if the
system is empty(black) or occupied by an ↑(red) or ↓(blue)-electron. Thickness and
directions of the red/blue tunneling arrows show which net currents are reached.
The setup is sketched for fixed bias voltages, V /λ = −1, shown by the dotted
vertical lines in plots (a) and (c).

where ↑-currents are pumped against the bias and ↓-currents are transported with the bias, by
applying the parameters

δL↑ = δRE = δR↓ = −δ , δL↓ = δLE = δR↑ = δ , (4.74)

The physical effect of the two schemes can be seen best in Fig. 4.2, where in subplots (a) and
(c) the current-bias voltage characteristics are plotted and in panels (b) and (d) the tunneling
processes are sketched. Without feedback, all tunneling rates are equal, Γlσ = Γ. Due to the
feedback the rates are changed according to the schemes. The averaged tunneling is depicted by
the red and blue arrows, the thickness and direction of which indicate the direction and strength,
respectively, of the resulting spin-σ currents (red arrows show ↑-currents, while blue ones show
↓-currents).
The spin filter effects can be used to generate oscillating currents with or against the bias
depending on the electron spin in the interacting setup, as shown in Sec. 4.8.4.
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4.8.2. Dynamics in the Infinite Bias Regime
Throughout this analysis we consider an anisotropic coupling between the spins, namely, λy = 0
and λx = λz = λ (compare Refs. [128, 105]). The qualitative system dynamics for double and
single QD systems with isotropic coupling has been investigated in Ref. [156]. For the sake of
clarity we choose the QD level to be ε = 0. Furthermore, we choose the leads to be at equal
temperatures β. The chemical potentials allow for tunneling from left to right only (µL,R → ±∞).
In the following we discuss the difficult nonlinear dynamics occurring in our setup. In particular,
we are interested in the average spin σ-electron current through the barrier l, i.e.

⟨Ilσ⟩ (t) = eΓlσ (eδlσ flσ ⟨n̂σ⟩ − eδlE flσ (1 − ⟨n̂σ⟩ − ⟨n̂σ̄⟩)) , (4.75)

where, by convention, net flux off the SQD is positive. Further, we are interested in the backaction
on the large spin and what the influence of the applied feedback mechanisms is. As stated above,
we consider quantum expectation values of the electronic spin’s components ⟨Ŝi⟩, while the large
spin ⃗̂

J is treated as a classical object, which is justified and motivated as we remain in a limit
where s≪ j.

Analytic fixed points

To describe the domain of regular motion it is of particular interest to investigate whether there
are fixed points. We denote the fixed points introducing the notation [cf. section 3.3.1]

P = (⟨Ŝ
∗
x⟩ , ⟨Ŝ

∗
y⟩ , ⟨Ŝ

∗
z⟩ , ⟨Ĵ

∗
x⟩ , ⟨Ĵ

∗
y⟩ , ⟨Ĵ

∗
z⟩) . (4.76)

For a general choice of parameters it might become difficult to calculate the fixed points straight-
forwardly, since the introduction of the Fermi function renders the equations transcendental.
For special infinite bias setups, nonetheless, it is possible to calculate them directly, by setting
Eqs. (4.60) to zero and solving them.
However, due to the nature of the exchange interaction one can easily see that there exist trivial
fixed points when the large spin is aligned (anti-)parallel with the magnetic field since the spins
decouple then. If there is no coupling to the leads, the electronic spin is conserved and will be
aligned with the magnetic field. However, contrasting the spin-conserving setup we have to take
into account what happens to the electronic spin, once the exchange interaction is ineffective.
This, of course, depends on the dissipative setup, i.e. on Γlσ. The most trivial dissipative setup
consists of setting all tunneling rates to Γ and applying an infinite bias voltage, so that the
electronic spin will simply decay, all further electrons tunnel through the device without being
flipped, and the transport channels are decoupled.
If the setup is changed in a way that tunneling between the right contact and the SQD is only
possible for ↑-electrons, in terms of the tunneling rates ΓR↓ = 0,ΓL↑ = ΓR↑ = ΓL↓ = Γ, ↓-electrons
will be trapped in the system and can only leave the SQD after being flipped. Note that in
this setup (labeled “IB”), which we consider throughout this section, the two feedback schemes
introduced above are identical, which can be verified by applying the scheme to Eqs. (4.60), and
thus the feedback strength enters the equation by the dimensionless parameter δ.
The respective fixed points are, accordingly,

P
±
IB = (0,0,−1

2
,0,0,±j) . (4.77)

These fixed points are independent of the parameters B,λ and, therefore, exist in the whole
parameter regime. The fixed points can be investigated further using linear stability analysis.
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Such analysis requires the knowledge of the partial derivatives of spin components with respect
to other components, which are, in general, not accessible.
There is a second set of fixed points,

P
−y,±
IB = (0,−B3,−

B

λ
,−

Γ
2B
B3,±B2,−

B

λ
) ,

P
+y,±
IB = (0,+B3,−

B

λ
,+

Γ
2B
B3,±B2,−

B

λ
) , (4.78)

with

B2 =

√

j2 − (
B

λ
)

2
−

eδ
5

(
Γ
λ
)

2
(
λ

2B
− 1) ,

B3 = eδ/2 2
√

5

√
B

λ
(

1
2
−
B

λ
) . (4.79)

This fixed point can be understood in terms of the anisotropic exchange coupling, since the x-
and z-components of one and the same spin decouple, having either the trivial consequence of
complete spin polarization (P±

IB) or the z-components being determined by the ratio −B/λ and
vanishing x-components.
These results are very similar to the findings in Refs. [128, 105], only differing due to different
choices of the transport rates and the introduction of the feedback parameter. Note that we
explicitly restricted the number of allowed electrons in the SQD at a time to one, which is not
the case for Ref. [128].
The quantities B2, B3 can assume finite imaginary values. The fixed points P±y,±

IB , therefore, only
have a physical meaning in the region of the parameter space where they remain real valued.
The parameter space can thus be separated into different regions whose boundaries are obtained
by solving B2 = 0 and B3 = 0. We obtain the critical values

B2 = 0→ Γc = e−δ/2
√

10(B3 −Bj2λ2)

2B − λ
,

B3 = 0→ Bc =
λ

2
. (4.80)

A projection of the three-dimensional parameter space (λ,B,Γ) for different feedback parameters
δ with fixed λ on the Γ −B plane is, therefore, divided into three regions as plotted in Fig. 4.3.
P±

IB are physical fixed points for all possible parameters.
The labels 1 to 4 in Fig. 4.3 mark the parameters for which we solve the numerics and plot the
results in Figs. 4.4 to 4.7. The specific dynamics are discussed in the following.

Region I: damped oscillations

In region I with weak magnetic fields B < Bc and very fast tunneling processes, i.e. rates Γ > Γc,
the time scale of electronic transport is much faster than that of the exchange interaction;
therefore, the rate equations results only show damped oscillations in the current and evolution
towards P±

IB. The resulting stationary current will be obviously zero, since the spin-spin
interaction is ineffective once either of the fixed points is reached and a ↓-electron is trapped in
the QD. The origin of the often complicated transient oscillations is the interplay between the
modulation of the electronic current by the large spin and the electronic feedback on the large
spin. Different initial conditions decide which of the two fixed points is reached. Turning on the
demon feedback does not change the behavior qualitatively, but only the shape of the transient
oscillations; their frequency and the damping is increased.
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Figure 4.3.: Parameter regions I,II and III in the infinite bias (IB) setup. Solid lines show the
region-I-II-border [as a reference the borders for larger j (dotted) in (a) or the
nonfeedback case (dashed) in (b) are shown]. The thick dashed lines show the
transition from region II to region III, which is determined by the critical magnetic
field Bc = λ/2. In region I the system always runs into either of the fixed points P±

IB
performing damped oscillations. If the magnetic field is stronger than λ/2 (region
III) the system performs self-sustained oscillations, either according to the effective
model (4.81) or around the polar fixed points P±

IB. For region II, we plot exemplarily
which dynamics the system exhibits with respect to parameters B and Γ. We find
not only damped oscillations towards the system’s fixed points (marked by “×”)
and ongoing oscillations (“+”) but also quasiperiodic (“○”) or chaotic oscillations
(“◇”). Plot (a) shows the typical behavior for the nonfeedback case. In plot (b)
we show how and in which parameter regions the system’s behavior is changed
qualitatively if feedback is applied (δ/λ = 1). The red labels show the regions in
parameter space, where the dynamics are changed significantly. Labels 1–4 show
the parameters for which we plotted solutions in Figs. 4.4 to 4.7.

Region III: self-sustained oscillations, parametric resonance and an effective model

If the magnetic field is increased beyond Bc (parameter region III), however, the numerical
results exhibit solely self-sustained oscillations in the electronic current and both electronic and
large spin.

The system oscillates on orbits around the stable fixed points P±
IB, with the large spin performing

periodic oscillations close to full polarization ±j, driving the electronic spin to a periodic orbit
close to ⟨Ŝ

∗
z⟩ = −1/2.

A second type of self-sustained oscillation can be described by an effective model, where
⟨Ĵz⟩ = −B/λ, and ⟨Ŝx⟩ = 0 remain constant and the oscillation of ⟨Ĵx,y⟩ is driving the periodic
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Figure 4.4.: (a)–(c) Electronic currents and (d) the dynamics of ⃗̂
J for parameters from region III

with respect to different feedback strengths δ. The current becomes more sinusoidal,
while the frequency is decreased; the rotation of ⃗̂

J remains in the x − y-plane.
Parameters: B/λ = 0.6,Γ/λ = 5, j/λ = 10.

oscillation of the small spin, which reduces the system to

d

dt
⟨Ŝx⟩ = −

Γ
2
⟨Ŝx⟩

d

dt
⟨Ŝy⟩ = −

1
2
Bx(t) (⟨n̂↑⟩ − ⟨n̂↓⟩) −

Γ
2
⟨Ŝy⟩ (4.81)

d

dt
⟨n̂↑⟩ = Bx(t) ⟨Ŝy⟩ + eδ Γ − eδ Γ (2 ⟨n̂↑⟩ + ⟨n̂↓⟩)

d

dt
⟨n̂↓⟩ = −Bx(t) ⟨Ŝy⟩ + eδ Γ − eδ Γ (⟨n̂↑⟩ + ⟨n̂↓⟩) ,

with the oscillating effective magnetic Bx(t) = 1√
2

√

j2 − B2

λ2 λ (cos (Befft) − sin (Befft)). Thus, the
oscillation of the electronic plane is taking place in the y − z plane, while the large spin rotates
in the x − y plane. The derivation of this model in Appendix A.1 makes use of the rotational
invariance of the large spin. The effective precession frequency, Beff is decreasing with increasing
Γ, as well as with increasing δ. Due to the term B + λ ⟨Ŝz⟩ and the fact that ⟨Ŝz⟩ < 0 is, on
average, the effective precession frequency Beff is smaller than B for all cases we examined. We
find Beff ≈ B for very small Γ. The same consideration gives rise to the discovery that for the
orbits around the fixed points P±

IB the effective precession frequency is much smaller than B.
In section 3.3 we stated that the regular motion in large parts of the phase-space is dominated
by parametric resonances, cf. eq. (3.56). This effect is also important in the dissipative setup.
However, the larger the dissipation gets, the more the electronic spin assumes the large spin’s
frequency, which is due to the faster decay of SQD states. The initial conditions of the large
spin also play an important role since the exchange interaction is enhanced the more ⃗̂

J is
perpendicular to the magnetic field.
Note also that a frequency doubling for the oscillation of the z-components of the spins and the
electronic currents occur for every periodic oscillation, damped and undamped. Before reaching
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Figure 4.5.: (a)–(c) Electronic currents and (d) the dynamics of ⃗̂
J for parameters from region

III with respect to different feedback strengths δ. The current oscillations become
slower and turn to quasiperiodic oscillations. The oscillation of ⃗̂

J is not planar
anymore and the limit cycles become more complicated. Parameters: B/λ =

0.6,Γ/λ = 1, j/λ = 10.

stationary cycles the system often undergoes transient oscillations.
As long as the feedback mechanism is switched off this holds for the whole parameter region.
Once the feedback is switched on, for instance, with a feedback constant δ in the order of
magnitude of λ, region III exhibits subregions with respect to the magnitude of Γ.
For Γ ≫ λ the large spin oscillates in the ⟨Ĵ

∗
z⟩ = −B/λ plane, independent of δ. The corresponding

currents are regularized to become almost sinusoidal; cf. Fig. 4.4.
With much slower electronic transport Γ ≪ λ the oscillation plane of ⃗̂

J is tilted by an angle φ
around the x-axis and we find even more complicated orbits for the oscillation of ⃗̂

J that is not
restricted to a plane anymore if Γ is close to λ. Since δ enters exponentially into the equations
the tunneling setup is, thus, detuned drastically if the feedback parameter δ is increased. For
some parameters the dynamics change towards quasiperiodic oscillations or even chaos. In
Fig. 4.5 we have plotted the currents and the large spin’s cycles for different δ. We see that the
regular motion becomes quasiperiodic for increasing feedback strength. For intermediate δ the ⃗̂

J
rotation stays planar, but the rotation plane is tilted. This kind of limit cycle oscillation where
the plane of oscillation through ⟨Ĵz⟩ = −B/λ is tilted by an angle φ around the x-axis may be
described by an effective model similarly to (4.81), if one found the angle φ and adjusted the
transformation in Appendix A.1 accordingly.
In Fig. 4.8 we compare the solutions for our effective model to the full solutions for different Γ
and, if possible, for different δ.
One further remark should be given on the periodic orbits. The oscillation around the polarization
fixed point P±

IB is undamped and the magnitude of the electronic spin is nearly constant. In
this case the two interacting spins can be considered as a system of two interacting undamped
Bloch equations. Those could be recast in the form of coupled complex Riccati equations [168,
169]. Unfortunately, to the best of our knowledge these Riccati equations can only be solved for
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special setups, e.g., isotropic coupling.

Region II: mixed dynamics

We observe the full variety of the possible dynamics, in regime II. All fixed points are real
valued, but P±

IB are unstable while P±y,±
IB are stable. We find many parameter settings and initial

conditions where the system will oscillate strongly damped to run into P±y,±
IB . Once one of the

fixed points P±y,±
IB is reached, a stationary current is established that follows straightforwardly

from (4.60). We find the stationary state of the total SQD occupancy N̂ = ∑σ n̂σ by solving

0 = − eδ Γ (5 ⟨n̂∗↑ ⟩ − 4 ⟨Ŝ
∗
z⟩ − 2) , (4.82)

which provides the stationary current of ↑-electrons leaving the SQD (⟨Ŝ∗z⟩ → −B/λ)

⟨IR↑⟩

eΓ
=

2
5

eδ (1 − 2B
λ
) . (4.83)

On the other hand, the current will vanish when the system reaches the full polarization fixed
point P±

IB, as the SQD is found in a Coulomb blockade then.
Additionally, we find quasiperiodic or even chaotic oscillations and two kinds of self-sustained
oscillations as we have found for region III.
If the feedback mechanism is switched on and the system is started from the same initial
conditions we often find the system to respond in a way that an oscillation vanishes and the
system runs into fixed points P±y,±

IB . Periodic oscillations for magnetic fields close to Bc are often
changed to run into fixed points or detuned into quasiperiodic oscillations.
Nonetheless, the numerical results show that there are parts of the parameter space where feedback
turns quasiperiodic oscillations into regular self-sustained, though not planar, oscillations;
compare Fig. 4.7 and labels 3 and 4 in Fig. 4.3. It is possible as well to prevent the system from
running into its fixed points and induce periodic oscillations instead; compare Fig. 4.6.
Chaotic behavior in region II is dominant in parameter regimes where the exchange interaction
is much stronger than the tunnel coupling, i.e. Γ ≪ λ and small magnetic field B ≪ λ. As a
consequence the feedback effect is rather small in these regimes, at least with feedback parameters
δ in the order of magnitude of λ.

4.8.3. Finite bias regime: fixed points and parameter regions

In the finite-bias (FB) regime we choose the tunneling rates asymmetrically as or the infinite
bias setup, because of the richness of the occurring dynamics. In the following we assume
a symmetric detuning of the chemical potentials with respect to the SQD level (ε = 0), i.e.
µL = −µR = V /2. In the limit of vanishing temperatures only electrons with energies between
the leads’ chemical potentials can participate in transport. This so-called transport window
is smeared out due to thermal melting of the Fermi edges if the temperatures are finite. We,
however, consider equal finite temperatures βl = β and choose the bias voltage in a manner that
for given parameters B,λ, j the energies εσ(t) lie between the chemical potentials for all times.
The maximum detuning between the ↑- and ↓-levels is εmax

z = B +λzj, and accordingly we choose
βV > βεmax

z .
We have to remark that bidirectional tunneling for this parameters is only possible for finite
temperatures, obviously.
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Figure 4.6.: (a)–(c) Electronic currents and (d) the dynamics of ⃗̂
J for parameters from region II

with respect to different feedback strengths δ. The evolution towards the fixed point
Py [with a corresponding current (4.83)] is changed into self-sustained oscillations
via feedback. Parameters: B/λ = 0.05,Γ/λ = 0.1, j/λ = 10.
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Figure 4.7.: (a)–(c) Electronic currents and (d) the dynamics of ⃗̂
J for parameters from region II

with respect to different feedback strengths δ. Irregular oscillations are regularized
for both electronic and large spin. Parameters: B/λ = 0.2,Γ/λ = 0.1, j/λ = 10.

Fixed points

As in the previous sections, we find fixed points, where the dynamics of the spins are decoupled
and ⃗̂

J is fully polarized,

P
±
FB = (0,0,+BA,B

4± ,0,0,±j) (4.84)
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Figure 4.8.: Comparison between solutions to the full set of Eqs. (4.60) and (4.62) (dashed
lines) and solutions to the effective model (4.81) (solid lines) for different setups.
Parameters (a) B/λ = 0.6, Γ/λ = 5, j/λ = 10, δ/λ = 1 (red) and δ = 0 (black).
Parameters (b) B/λ = 0.6, Γ/λ = 1, j/λ = 10, δ = 0.

The values BA,B
4± are dependent on the respective feedback scheme. They are denoted in Appendix

A.2. The alignment of the electronic spin is not only asymmetric with respect to the detuning
of the leads’ chemical potentials, but also with respect to the large spin polarization, i.e. for
increasing λ and a large j we find trapped electrons with its spin antiparallel to the polarization
of the large spin: ⟨Ŝ

∗
z⟩ (±j, λ ≫ 0, V = 0) → ∓1/2. In Fig. 4.9 we plot ⟨Ŝ

∗
z⟩ and the stationary

states that are established once the spins decouple; compare Appendix A.2.
As in the infinite bias setup there is a second set of fixed points, with ⟨Ŝ

∗
z⟩ = ⟨Ĵ

∗
z⟩ = −B/λ,

namely,

P
±y,±
FB =

⎛

⎝
0,±

√
2B
λ

1 + e
βV
2

2 + e
βV
2
B

A/B
6 ,−

B

λ
,±

Γ
√

2Bλ
B

A/B
6 ,±BA/B

7 ,−
B

λ

⎞

⎠
, (4.85)

with the parameters

B
A
6 =

¿
Á
Á
Á
ÁÀ−

(4B + eδ+
βV
2 (2B − λ) + λ)

λ (3 + eδ +5 e2δ+βV2 )
C ,

B
B
6 =

¿
Á
Á
Á
ÁÀ−

eδ (4B + e
βV
2 (2B − λ) + λ)

λ (3 + e2δ (1 + 5 e
βV
2 ))

C ,

B
A/B
7 =

√

j2 − (
B

λ
)

2
−

Γ2

2Bλ
(B

A/B
6 )

2
,

C = (2 + e
βV
2 )

1 + e2δ+βV2

(1 + e
βV
2 )

2 . (4.86)

We can, once again, identify a region, where the fixed points P±y,±
FB assume finite real values for

all components (region II) and regions (I,III) where they have no physical meaning. We solve
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the equations B6 = 0 and B7 = 0 and obtain the critical values

BA
c =

λ

2
(1 − 3

2 + eδ+
βV
2

) ,

BB
c =

λ

2
(1 − 3

2 + e
βV
2

) , (4.87)

ΓA
c =

¿
Á
Á
Á
ÁÀ

2B (5 e2δ+βV2 + eδ +3) (B − λj)(B + λj)

((2B − λ) eδ+
V
2 +4B + λ)

1
C
,

ΓB
c =

¿
Á
Á
Á
ÁÀ

2B (5 e2δ+βV2 + e2δ +3) (B − λj)(B + λj)

eδ ((2B − λ) e
V
2 +4B + λ)

1
C
.

Interestingly, the border between regimes II and III for the feedback scheme B is the same as for
the nonfeedback case. Thus, switching between the two considered feedback schemes might go
along with transitions between the parameter regions.
The dynamics for the three parameter regions are quite similar to that in the infinite bias regime.
Though, there are some special features.
The dominant behaviors in region I are damped oscillations towards the polarization of spins
P±

FB. There exist additional fixed points where ⟨Ĵ
∗
y⟩ → 0 for intermediate bias voltages. It is

not possible to calculate them analytically, since ⟨Ĵz⟩ couples to ⟨Ŝx⟩ and ⟨Ŝy⟩ via hyperbolic
functions.
In region II the system can – depending on the tunneling rate Γ and the initial conditions –
run into one of the fixed points P±y,±

FB . For smaller Γ the spins may as well perform periodic
oscillations or even chaotic ones, similar to the behavior for the infinite bias case.
We find dynamics that are very similar to the infinite bias case in region III. Nevertheless,
additional oscillations occur, where ⃗̂

J is only partially polarized antiparallel to the external
magnetic field and its magnitude is increased with increased bias voltage. This partial polarization
is accompanied by the decay of the the electronic states and coherences and, thus, constant
average currents. It takes place for intermediate bias voltage of βV /λ ≈ 5. If the bias voltage
is increased and given suitable initial conditions the system ends up completely polarized and
electrons get trapped while the energy level for electrons of the opposite spin is shifted outside
the transport window. The partial polarization is Pκ = ∣ ⟨Ĵ

∗κ
z ⟩ ∣ with κ denoting the feedback

scheme A,B, or 0 (no feedback applied). It is of magnitude Pκ/βV ≈ 1 and is unique for all
tuples (B,λ,V, δ) and the respective feedback scheme and we find PA > PB > P0.

4.8.4. Typical feedback trajectories, spin filter setups
In the following we want to sketch typical trajectories found for a spin filter setup that makes
use of the demon feedback. As stated above, the setup without interaction with the external
spin generates currents even against small bias voltages (compare Sec. 4.8.1). To demonstrate
the spin filtering effect, while the interaction with the large spin is effective we suggest a small
negative bias voltage with ∣V ∣ > B + λj. For small ratios λ/j the electronic backaction on ⃗̂

J
is very small and for suitable initial conditions the large spin stabilizes at ⟨Ĵz⟩ = −B/λ and
precesses freely. In this special case the energies εσ coincide and become constant in time. Due
to the anisotropic exchange interaction the occupations of the ↑- and ↓-levels oscillate with the
doubled precession frequency, and we find regularly oscillating currents accordingly.
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Figure 4.9.: (a) The values of the Sz-component of the global fixed point P±
FB vs the bias voltage.

The spin-dependent stationary currents after the system reaches the fixed point
P+

FB (b) or P−
FB (c) are shown for feedback schemes A and B and the nonfeedback

case.

If no feedback takes place, the currents are flowing with the bias, i.e. from the right to the left.
Due to the spin interactions the averaged ↑-influx through the right lead splits up to generate
oscillating ↑- and ↓-currents from the SQD to the left reservoir, as we depict in Fig. 4.10(a).
It is due to our feedback scheme B that the direction of the influx is reversed. The inflowing
current, again, is split up and the ↑-electrons are transported to the right while the ↓-electrons
are released to the left; compare Fig. 4.10(c).
Interestingly, for scheme A and for the same parameters we find that the two transport channels
decouple and the expectation values ⟨Ŝi⟩ decay; the averaged probabilities to find the SQD
empty or occupied by an electron of spin σ are equal. As a consequence, the ↓-current through
the left barrier vanishes, i.e. with Eq. (4.75) becomes ⟨IL↓⟩ = (1 − fL↓)/3 − exp[δ]fL↓/3 = 0. At
the same time a constant net ↑-current from the left to the right lead builds up. This critical
point is characterized by the ratio of V /δ = −2. If the ratio is smaller than −2 a net outflux of
↓-electrons to the left lead is generated while the ↑-current flows from left to right. For bias
voltages V > −2δ ↓-electrons are trapped in the SQD and only leave it after being flipped. In
Fig. 4.10(e) we depicted the corresponding currents at and close to the critical parameters.
It is obvious that V = 0 is the critical bias voltages for the nonfeedback and scheme B as
well, where the two transport channels decouple. If one can prepare the large spin to have a
polarization of ⟨Ĵz⟩ the energies εσ are constant and equal to the chemical potentials of the
reservoirs. It is due to the thermal melting of the Fermi edges that transport is still possible,
and therefore we get the net currents (4.68) evaluated for B = 0 since the level splitting is
compensated by the large spin polarization.
We should also mention, that the opposite oscillating currents can as well be generated when the

77



(b) no fb.

µR

εσ
µL

E

fL(E) fR

Γ Γ

~J

λ

↑ ↓

(d) fb. B

µR

εσ
µL

E

fL(E) fR

eδΓ

e−δΓ

eδΓeδΓ

e−δΓ

~J

λ

↑ ↓

(f) fb. A

µR

εσ
µL

E

fL(E) fR

e−δΓ
Γ

eδΓeδΓ

e−δΓ

~J

λ

↑ ↓

Figure 4.10.: Average spin-σ currents through barrier l for small negative biases and different
feedback schemes. Without feedback (a) the currents flow according to the
applied bias voltage from the right lead to the left lead. For feedback scheme
B (c) an oscillating ↑-current against the bias is building up, and ↓-electrons
are ejected with the bias, the device is acting as a spin filter. With the given
parameters the two transport channels decouple for feedback scheme A (e). A
little detuning of the bias voltage leads to the oscillating ↑-currents against the
bias. ↓-electrons are either ejected to the left reservoir(red squares) or trapped
(blue circles). Images (b),(d) and (f) show the SQD with the respective tunneling
rates if the system state is empty (black), ↑ (red) or ↓ (blue). Thickness and
direction of the arrows show which net currents are reached. Level transitions
(spin flips) are shown in violet. In (f) the transport channels decouple, no spin
flips occur, and the ↓-current vanishes (dashed lines). Parameters: B/λ = 0.1,
Γ/λ = 10,δ/λ = 10 and βV /λ = −20.

tunneling rates are chosen symmetrically (Γlσ = Γ), and therefore, spin filter behavior is possible
in setups without polarized leads.
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4.9. Conclusions
In this chapter we have studied the complex dynamics of electronic transport through a SQD
when interacting with a large external spin. We use semiclassical EOM for the large external spin
together with a quantum master equation technique for the dynamics of the SQD. This method
works well if we assume that the large spin precession is taking place on a much slower time scale
than the electronic tunneling. The treatment allows for the introduction of a Maxwell-demon-like
feedback. This feedback uses occupation-dependent alternation of the transport Liouvillian and
can generate currents even against a moderate bias voltage.
We restricted ourselves to studying the special case of an anisotropic exchange interaction and a
polarized right transport lead, since this setup generates a variety of interesting dynamics, such
as parametric oscillation of both electron spin and large spin or complete polarization. We can
calculate a number of fixed points analytically, for both finite and infinite bias and under the
influence of our demon’s feedback.
Furthermore, we studied the effect of two different feedback schemes, which can work as an
effective spin filter for small bias voltages, that “sort” electrons by its spin and generate oscillating
currents in opposite directions.
For the infinite bias regime both feedback schemes are identical. The numerical solutions of
the highly nonlinear equations are very sensitive to the change of initial conditions and the
parameters (B,Γ, δ) with respect to λ.
On the one hand, the asymmetric transport setup as a consequence of the applied feedback can
transfer periodic motions to quasiperiodic dynamics or even chaos, e.g., for magnetic fields close
to Bc and small tunneling rates Γ ⪅ λ.
On the other hand, we have found that for small magnetic fields B ⪅ 0.2λ and tunneling rates
Γ ≈ 0.1λ quasiperiodic oscillations are changed to undamped periodic oscillations when applying
feedback of moderate strengths (δ ≈ λ).

As experimental realizations for the large external spin we think of magnetic impurities in
semiconductor QDs or magnetic moments in single molecules (single molecular magnets). A
possible realization where the mean-field approach is justified might be the hyperfine interaction
with an ensemble of nuclear spins, where the number of spins is reasonably high. Although
experiments suggest that it is possible to determine the spin state of electrons in a device it still
is an open question as to how the spin-dependent tunneling rates can be modified conditionally
in experiments.
On the other hand, the usage of conventional electronic circuits to control the tunneling setup
seems also feasible. In experiments it is possible to measure single electron tunneling events
accurately and is possible to modify tunneling rates on very fast time scales, by detuning gate
voltages [59] to access feedback parameters ln[Γfilled/Γempty] = δ ≈ 1, which lead to the mentioned
feedback effect.
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5. Generic model for a Maxwell demon

5.1. Model Hamiltonian

In this chapter we want to discuss a generic model that implements a Maxwell-demon-like
feedback mechanism, acting on a transport system. The model and the approach is strongly
inspired by the seminal work of Strasberg et al. [44], who first discussed a physical implementation
of a Maxwell-demon like feedback [43, 65] applied with a single electron transistor (SET) system,
which they describe in terms of stochastic thermodynamics [41]. Strasberg also discussed a
similar implementation for two serially coupled QDs [170].
The model consists of two parallel QDs, labeled A and B, with one orbital level each that are
coupled coherently. The so formed double QD (DQD) is interacting capacitively to an additional
single-level QD. We will label the latter as demon or detector QD, respectively, and equip it
with the index d. The parallel DQD is weakly coupled to ideal reservoirs L (left) and R (right),
and the demon QD is coupled to a single reservoir D. The electronic reservoirs ν ∈ {D,L,R} are
characterized by their respective temperatures Tν and their chemical potentials µν .

A B
Tc

d

UA
UB

µR, βR

µL, βL

V

µD, βD

fL fR

fD

Figure 5.1.: Setup of the investigated toymodel system.

The system Hamiltonian reads
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ĤS = εA d̂
†
A d̂A + εB d̂

†
B d̂B + εd ê

† ê + Tc(d̂
†
A d̂B + d̂

†
B d̂A)

+∑
x

Ux ê
† ê d̂

†
x d̂x , x ∈ {A,B} , (5.1)

where d̂x and ê denote the fermionic annihilation operators for the QDs A,B and the demon
dot, respectively. The parameter Tc denotes the strength of the coherent coupling.
For later convenience we introduce a few definitions to rewrite the Hamiltonian

2U0 ≡ UA +UB , 2∆ ≡ UB −UA ⇐⇒ UA = U0 −∆ , UB = U0 +∆ ,

Ω ≡ εA − εB ⇐⇒ εA = ε +Ω , εB = ε . (5.2)

where we choose ∆,Ω ≥ 0.
Equation (5.1) can, thus, be rewritten as follows:

ĤS = (ε +Ω) d̂
†
A d̂A + ε d̂

†
B d̂B + εd ê

† ê + Tc(d̂
†
A d̂B + d̂

†
B d̂A)

+ (U0 −∆) ê† ê d̂
†
A d̂A + (U0 +∆) ê† ê d̂

†
B d̂B . (5.3)

Note that the DQD part of ĤS is effectively equivalent to a charge qubit Hamiltonian ĤQB =
Ω
2 σ̂z + Tc σ̂x, when we disregard the absolute energy levels of QDs A and B. This qubit
Hamiltonian, on the other hand, is equivalent to the effective Hamiltonian, (4.13), we studied
in chapter 4. Let us assume very slow dynamics of the large spin, i.e. constant level splittings
εz in (4.15) and constant coefficients for the spin-flip terms in (4.16). Given, additionally, an
anisotropic coupling (e.g., λy = 0) in (4.16), we can identify εz ↔ Ω and Λ↔ Tc.
The Hamiltonian for the reservoirs and the system-bath coupling read, respectively

Ĥ leads = ∑
k

∑
l∈{L,R}

∑
x∈{A,B}

εklx ĉ
†
klx ĉklx +∑

k

εkD ĉ
†
kD ĉkD ,

ĤT = ∑
k

∑
l

∑
x

(tklx ĉ
†
klx d̂x +H.c.) +∑

k

(tkD ĉ
†
kD ê +H.c.) . (5.4)

Here we treat the reservoirs L,R incoherently, i.e. effectively as four different baths lx where
operators ĉ†

klx create electrons in the mode k and bath lx and the respective couplings to the
DQD levels are t(∗)klx. Note, however, that, in the course of this chapter we will assume that
the effective leads LA and LB assume the same temperatures βL and chemical potentials µL,
respectively, which renders them in fact indistinguishable [and similar for leads RA and RB].
Nevertheless, for later convenience we treat them as separate reservoirs.
As we have done before, we use the Jordan-Wigner transformation to map the fermionic operators
on spin operators; we have three sites where an electron can stay, which yields for the fermionic
annihilation operators

d̂A = σ̂− ⊗ 1⊗ 1 ,

d̂B = σ̂z ⊗ σ̂− ⊗ 1 ,

ê = σ̂z ⊗ σ̂z ⊗ σ̂− . (5.5)

Obviously, we use the Hermitian conjugates for the creation operators. Note that we assume
that the DQD is operated in a Coulomb blockade regime, i.e. the electron number in the DQD
is either 0 or 1.
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In the next step, we obtain the following eigenenergies

E0
0 = 0 ,

E1
0 = εd ,

E0
± = ε +

Ω
2
±

1
2
√

Ω2 + 4T 2
c ,

E1
± = ε +

Ω
2
+ εd +U0 ±

1
2

√

Ω2
1 + 4T 2

c , Ω1 = Ω − 2∆ , (5.6)

The system Hamiltonian is already diagonal in the local basis, which we introduce in the form

∣d, s⟩ = ∣d⟩ ⊗ ∣s⟩ , with d ∈ {0,1} , s ∈ {0,A,B} . (5.7)

In this basis the eigenstates read:

∣0,0⟩ , ∣1,0⟩ ,

∣0,−0⟩ =
1
N0
−
[−η0

− ∣0,A⟩ − ∣0,B⟩] , ∣1,−1⟩ =
1
N1
−
[−η1

− ∣1,A⟩ − ∣1,B⟩] ,

∣0,+0⟩ =
1
N0
+
[−η0

+ ∣0,A⟩ − ∣0,B⟩] , ∣1,+1⟩ =
1
N1
+
[−η1

+ ∣1,A⟩ − ∣1,B⟩] . (5.8)

The coefficients and the normalizations are parametrized by the occupations of the demon dot,
which is reflected by the index d ∈ {0,1}

ηd± =
Ωd ±

√
Ω2
d + 4T 2

c

2Tc
, Nd

± =

√

1 + (ηd±)2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 +
(Ωd ±

√
Ω2
d + 4T 2

c )
2

4T 2
c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1/2

, (5.9)

with Ωd with Ω0 = Ω,Ω1 = Ω − 2∆.
The local basis vectors can be written in terms of eigenvectors. Therefore, we introduce the
transformation matrix Td, and its inverse

Td =
⎛
⎜
⎝

−
ηd+
Nd+

1
Nd+

−
ηd−
Nd+

1
Nd−

⎞
⎟
⎠
Ô⇒ T−1

d = (
αd+ αd−
βd+ βd−

) . (5.10)

Thus, we obtain for the local basis vectors

(
∣d,A⟩

∣d,B⟩
) = T−1

d (
∣d,+d⟩
∣d,−d⟩

) , (5.11)

where the overlap matrix elements read

αd− = ⟨d,A∣d,−d⟩ = −
Nd
−

ηd− − η
d
+
, αd+ = ⟨d,A∣d,−d⟩ =

Nd
+

ηd− − η
d
+
,

βd− = ⟨d,B∣d,−d⟩ = −
Nd
−η

d
+

ηd− − η
d
+
, βd+ = ⟨d,B∣d,+d⟩ =

Nd
+η

d
−

ηd− − η
d
+
. (5.12)
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It is obvious, that these coefficients are real-valued. Later on we need their squares which read

∣αd−∣
2
= ∣βd+∣

2
=

1
2

⎛
⎜
⎝

1 − Ωd
√

Ω2
d + 4T 2

c

⎞
⎟
⎠
=

(ηd−)
2

1 + (ηd−)2 =
1

1 + (ηd+)2 ,

∣αd+∣
2
= ∣βd−∣

2
=

1
2

⎛
⎜
⎝

1 + Ωd
√

Ω2
d + 4T 2

c

⎞
⎟
⎠
=

(ηd+)
2

1 + (ηd+)2 =
1

1 + (ηd−)2 , (5.13)

with ∣αd−∣
2 + ∣βd−∣

2 = ∣αd+∣
2 + ∣βd+∣

2 = ∣αd+∣
2 + ∣αd−∣

2 = ∣βd+∣
2 + ∣βd−∣

2 = 1.

5.2. Rate equations
Along the lines of section 2.8 we can now derive rate equations for the populations of the
eigenstates of our model. To start with, we first identify the system and bath coupling operators.
These are

Â1 = Â5 = Â
†
2 = Â

†
6 = d̂A ,

Â3 = Â7 = Â
†
4 = Â

†
8 = d̂B ,

Â9 = Â
†
10 = ê ,

B̂1 = ∑
k

t∗kRA ĉ
†
kRA , B̂2 = ∑

k

tkRA ĉkRA ,

B̂3 = ∑
k

t∗kRB ĉ
†
kRB , B̂4 = ∑

k

tkRB ĉkRB ,

B̂5 = ∑
k

t∗kLA ĉ
†
kLA , B̂6 = ∑

k

tkLA ĉkLA ,

B̂7 = ∑
k

t∗kLB ĉ
†
kLB , B̂8 = ∑

k

tkLB ĉkLB ,

B̂9 = ∑
k

t∗kD ĉ
†
kD , B̂10 = ∑

k

tkD ĉkD . (5.14)

With the assumption that the electronic reservoirs are in thermal equilibrium it is straightforward
to calculate the rates for the transitions induced by the coupling between system and baths. Using
the definition of the bath correlation functions eq. (2.23) and its even Fourier transformation
eq. (2.45) we obtain the rates [cf. section 4.4.3]

γ12(ω) = ΓRA(−ω)fR(−ω) , γ21(ω) = ΓRA(ω) [1 − fR(ω)] ,
γ34(ω) = ΓRB(−ω)fR(−ω) , γ43(ω) = ΓRB(ω) [1 − fR(ω)] ,
γ56(ω) = ΓLA(−ω)fL(−ω) , γ65(ω) = ΓLA(ω) [1 − fL(ω)] ,
γ78(ω) = ΓLB(−ω)fL(−ω) , γ87(ω) = ΓLB(ω) [1 − fL(ω)] ,
γ9,10(ω) = ΓD(−ω)fD(−ω) , γ10,9(ω) = ΓD(ω) [1 − fD(ω)] , (5.15)

where the effective tunneling rates evaluated at the energy ω yield

ΓD(ω) = 2π∑
k

∣tkD ∣
2δ (ω − εkD) ,

Γlx(ω) = 2π∑
k

∣tklx∣
2δ (ω − εklx) . (5.16)
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The rate equations are then calculated according to (2.84) and (2.85). Their coefficients can be
written in the form of a rate matrix, which represents the Liouvillian generator of the master
equations ∂t ρ̂ = L̂ ρ̂. We rearrange the populations in the density matrix ρ̂ as a vector,

ρ̂→ ρ = (p00, p0−, p0+, p10, p1−, p1+)
T , (5.17)

and decompose the corresponding rate matrix L into parts, that describe the dynamics due to
the reservoirs ν ∈ {L,R,D}. They read

L =∑
ν

L
(ν) , (5.18)

L
(l)

= (
L(l),0 0

0 L(l),1
) , L

(l),d
=
⎛
⎜
⎝

−∑σ γ
d
lσ γdl− γdl+

γdl− −γdl− 0
γdl+ 0 −γdl+

⎞
⎟
⎠
, d ∈ {0,1} , l ∈ {L,R} ,

L
(D)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(⋯) 0 0 γD(εd) 0 0
0 −(⋯) 0 0 κ−−γD(ε−−) κ−+γD(ε−+)
0 0 −(⋯) 0 κ+−γD(ε+−) κ++γD(ε++)

γD(εd) 0 0 −(⋯) 0 0
0 κ−−γD(ε−−) κ+−γD(ε+−) 0 −(⋯) 0
0 κ−+γD(ε−+) κ++γD(ε++) 0 0 −(⋯)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The diagonal elements of the submatrices, denoted by −(⋯) are given by the other elements such
that the column sums of the respective sub-Liouvillian yield Null. The specific block structure
of the rate matrix is due to the ordering eq. (5.17).
The blocks L(l),d contain the rates for the tunneling into qubit eigenstates ∣σd⟩, with σ ∈ {+,−},
that are conditioned on the state of the detector QD. We, therefore, introduced the composed
rates for the hopping of an electron onto the lead l from state ∣σd⟩ and vice versa

γlσ = ∣α0
σ ∣

2
γlA (E0

σ) + ∣β0
σ ∣

2
γlB (E0

σ) , γlσ = ∣α0
σ ∣

2
γlA (E0

σ) + ∣β0
σ ∣

2
γlB (E0

σ) ,

γUlσ = ∣α1
σ ∣

2
γlA (∆E1

σ) + ∣β1
σ ∣

2
γlB (∆E1

σ) , γUlσ = ∣α1
σ ∣

2
γlA (∆E1

σ) + ∣β1
σ ∣

2
γlB (∆E1

σ) ,

γlx(ω) = Γlx(ω)γl(ω) , γlx(ω) = Γlx(ω)fl(ω) , (5.19)

where γlx are the contributions to the rates with respect to the tunneling processes between
leads l and dots x ∈ {A,B}. Note that we have two transport channels through dots x, that
decouple in the limit Tc → 0. Thus, this further splitting of the rates is useful as we want to
investigate how the currents through the distinct channels is influenced by different feedback
schemes, later on.
It is crucial to note that the bare tunneling rates Γlx(ω) are in general energy-dependent as
well as the Fermi energies f(ω). Therefore, the transition rates γ have to be evaluated at the
transition energies E0

σ and ∆E1
σ = E

1
σ −E

1
0 .

The dissipation rates with respect to the demon dot reservoir D are

γD(ω) = ΓDγD(ω) , γD(ω) = ΓDfD(ω) , (5.20)

and in L(D) we introduced for the sake of a shorter notation

κσσ′ = ∣β0
σ ∣

2
∣β1
σ′ ∣

2 (1 + η0
ση

1
σ′)

2
. (5.21)

Additionally we use the new compact notation for the transition energies due to the coupling to
reservoir D, i.e.

εσσ′ = E
1
σ′ −E

0
σ . (5.22)

In fig. 5.2 the tunneling processes are sketched in a graph plot.
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|0,−0〉 |0,+0〉|1, 0〉

|1,−1〉 |1,+1〉

|0, 0〉

γD
γ+

γ−

γU
−

γU
+

γ−−
D γ++

D

γ+−
D

γ−+
D

Figure 5.2.: Transitions between eigenstates of the model. Blue arrows depict transitions
with respect to reservoir D, black ones those with respect to the contacts L,R.
The compact rates for the tunneling from reservoir D are defined as follows:
γD = γD(εd), γσσ

′

D = κσσ′γD(εσσ′), γσ = ∑l γlσ(E
0
σ) and γUσ = ∑l γlσ(∆E1

σ).
Note that for the sake of clearness we do not note down the rates of the reverse
processes, which of course go with γ = 1 − γ.

5.2.1. Currents and entropy production

We can now directly calculate the (nonequilibrium) steady-state particle and energy currents
with respect to terminal ν ∈ {L,R,D} according to eqs. (2.125) and (2.126)

Ī
(ν)
M =

6
∑
ij

L
(ν)
ij p̄j∆ni,j , (5.23)

Ī
(ν)
E =

6
∑
ij

L
(ν)
ij p̄j∆Ei,j (5.24)

where Lρ̄ = 0 defines the system’s steady-state, and p̄j , j ∈ {1 . . .6} are its components.
We obtain the following particle currents (l ∈ {L,R}),

Ī
(l)
M = −∑

σ

[γlσ(E
0
σ)p̄0σ − γlσ(E

0
σ)p̄00 + γlσ(∆E1

σ)p̄1σ − γlσ(∆E1
σ)p̄10] , (5.25)

Ī
(D)
M = −γD(εd)p̄10 + γD(εd)p̄00

− κ−− [γD(ε−−)p̄1− − γD(ε−−)p̄0−] − κ−+ [γD(ε−+)p̄1+ − γD(ε−+)p̄0−]

− κ+− [γD(ε+−)p̄1− − γD(ε+−)p̄0+] − κ++ [γD(ε++)p̄1+ − γD(ε++)p̄0+] . (5.26)

Consequently, the corresponding energy currents read

Ī
(l)
E = −∑

σ

[E0
σ (γlσ(E

0
σ)p̄0σ − γlσ(E

0
σ)p̄00) +∆E1

σ (γlσ(∆E1
σ)p̄1σ − γlσ(∆E1

σ)p̄10)] , (5.27)

Ī
(D)
E = −εd [γD(εd)p̄10 − γD(εd)p̄00]

− ε−−κ−− [γD(ε−−)p̄1− − γD(ε−−)p̄0−] − ε−+κ−+ [γD(ε−+)p̄1+ − γD(ε−+)p̄0−]

− ε+−κ+− [γD(ε+−)p̄1− − γD(ε+−)p̄0+] − ε++κ++ [γD(ε++)p̄1+ − γD(ε++)p̄0+] . (5.28)
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In general the steady-state is rather difficult to calculate analytically, which is a motivation
for an analysis with respect to the separation of time scales. Note, however, that a numerical
evaluation confirms that the energy and the particle numbers are conserved, in the system’s
nonequilibrium steady-state.
At this steady-state the energy balance (i.e. the first law of thermodynamics), eq. (2.128)
becomes

0 = ∑
ν

Q̇(ν) +∑
ν

µν Ī
(ν)
M , (5.29)

where we assumed that there are no external sources of work. With the definition of the heat
flow, eq. (2.130), the first law leads to energy conservation,

0 = ∑
ν

Ī
(ν)
E ⇐⇒ Ī

(D)
E = −Ī

(L)
E − Ī

(R)
E . (5.30)

With the matter balance, eq. (2.124), we can easily confirm that the particle number is also
conserved, i.e.

0 = ∑
ν

Ī
(ν)
M . (5.31)

It is trivial, that there is no net particle current across the junction between the demon dot and
the reservoir D: I(D)M = 0. As a consequence we can explicitly state

0 = Ī(L)M + Ī
(R)
M ⇐⇒ ĪM ≡ Ī

(L)
M = −Ī

(R)
M . (5.32)

Furthermore, we recall that the entropy production in the system is a nonnegative quantity, which
in nonequilibrium steady-states (Ṡ = 0) is compensated by the entropy flow to the environment,
as we have shown in eq. (2.145). We have

¯̇Si = −
¯̇Se = −∑

ν

Q̇(ν)

Tν
≥ 0 . (5.33)

Physically, the DQD is connected to two terminals L and R with temperatures TL and TR and
chemical potentials µL and µR. Let’s assume that the terminals L and R are kept at the same
temperature T = TL = TR. With the results from eqs. (5.30) and (5.32) and the definition of the
heat flow, we can, thus, rewrite the entropy production, (5.33).
We obtain

¯̇Si =
1
T

(µL − µR) ĪM + (
1
T
−

1
TD

) Ī
(D)
E = β (µL − µR) ĪM + (β − βD) Ī

(D)
E ≥ 0 . (5.34)

The latter inequation formulates the condition that has to be met in order to pump electrons
through the DQD against a chemical bias. In order to achieve that we need to have (µL−µR)ĪM ≤ 0.
This yields the condition

(1 − βD
β

) Ī
(D)
E ≥ −(µL − µR)ĪM ≥ 0 , (5.35)

which, clearly, imposes bounds on the possible values for the temperature of the bath and the
energy current. We can read off two immediate consequences: pumping against bias is not
possible if either the temperature of the demon reservoir equals the temperature of the DQD
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contacts, βD = β, or if the energy current vanishes Ī(D)E = 0. Equation (5.35) means in terms of
the extracted power [cf. eq. (2.146)]

(1 − βD
β

) Ī
(D)
E ≥ P ≥ 0 . (5.36)

Thus, a suitable nonvanishing imbalance of the energy currents may lead to positive extracted
power.

5.3. Coarse graining dynamics
Along the lines of the theory presented in section 2.13 we briefly recall how a system with two
distinct time scales can be simplified.
The key to the coarse-grained description is to decompose the microscopic probabilities as

Pd∣s(t) =
pds(t)

Ps
, (5.37)

where Pd∣s(t) denotes the conditional probability to find the demon in state d ∈ {0,1} provided
that the DQD is in state s ∈ {0,−,+}. On the other hand Ps = ∑d pds is the mesoscopic probability
to find the DQD in state s.
In order to reduce the number of rate equations we adiabatically eliminate the faster degrees
of freedom, i.e. the demon degrees. Within the elimination we assume that the mesoscopic
probability distributions Ps are essentially fixed, i.e. time-independent.
We write with eqs. (2.149) to (2.151)

Ṗs = ∑
s′
Vs,s′Ps′ , (5.38)

Vs,s′ = ∑
d,d′

Wds,d′s′Pd′∣s′ , (5.39)

where the mesoscopic rates Vs,s′ depend on the dynamics of the microstates through the
conditional probabilities Pd∣s.
The rate matrices obey the conditions ∑s Vs,s′ = 0, ∑dsWds,d′s′ = 0 and the rates denoted by
Wds,d′s′ are to be identified with the elements of the rate matrix L, eq. (5.18), that can be
written in terms of new submatrices as follows

L = (
L00 L01
L10 L11

) , with Ldd′ =
⎛
⎜
⎝

Wd0,d′0 Wd0,d′− Wd0,d′+
Wd−,d′0 Wd−,d′− Wd−,d′+
Wd+,d′0 Wd+,d′− Wd+,d′+

⎞
⎟
⎠
, (5.40)

which enables us to simply read off the rates W .
In order to close eq. (5.39) we need to find the stationary states of the conditional probabilities.
We thus have to compute [compare eq. (2.153)]

∑
d′
Wds,d′sPd′∣s = 0 . (5.41)

A further approximation is obvious: Given that the tunneling processes in the demon happen on
a much faster time scale (τmic) than the hopping on/off the DQD (τmes), i.e. provided that the
relation ΓD ≫ Γlx(ω) holds for all transition energies ω, it is justified to approximate L by L(D),
which is the fast demon condition introduced by Strasberg et al. in [44]. The extreme limit of
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this condition is ΓD →∞, which means – given an appropriate tuning of the chemical potential
of the demon dot junction – that the demon dot is repopulated immediately after the DQD is
emptied. In other words, the lifetime of states ∣0,0⟩ goes to 0.
We then can solve eq. (5.41) for the conditional probabilities, where we have to take into account
the normalization condition for the conditional probabilities P1∣s + P0∣s = 1.

5.4. Reduction for noninteracting DQD, Tc → 0
The model reduces drastically if the coherent coupling between the two system quantum dots is
switched off, i.e. if we consider the limit Tc → 0. In this limit we obtain two distinct transport
channels through the DQD, namely either through dot A or through dot B.
At first, we study how the rate matrix L reduces. With the assumption that Ω − 2∆ ≤ 0 we find
the following parameter reductions

lim
Tc→∞

(∣α0
−∣

2, ∣α0
+∣

2, ∣β0
−∣

2, ∣β0
+∣

2) = (0,1,1,0) ,

lim
Tc→∞

(∣α1
−∣

2, ∣α1
+∣

2, ∣β1
−∣

2, ∣β1
+∣

2) = (1,0,0,1) ,

lim
Tc→∞

(κ−−, κ−+, κ+−, κ++) = (0,1,1,0) . (5.42)

Consequently, the nontrivial eigenstates become

lim
Tc→∞

(∣0,−0⟩ , ∣0,+0⟩ , ∣−,1⟩ , ∣1,+1⟩) = (∣0,B⟩ , ∣0,A⟩ , ∣1,A⟩ , ∣1,B⟩) . (5.43)

And finally, the energy arguments in the transition rates transform to

lim
Tc→∞

(E0
−,E

0
+,∆E1

+,∆E1
−) = (ε, ε +Ω, ε +U0 +Ω −∆, ε +U0 +∆) , (5.44)

lim
Tc→∞

(ε−−, ε++, ε−+, ε+−) = (εd +U0 +Ω −∆, εd +U0 −Ω +∆, εd +U0 +∆, εd +U0 −∆) .

Therefore, the rate matrix in the master equation assumes, with respect to the basis
(p00, p0B, p0A, p10, p1A, p1B), the form

LTc→0 = L
(L)
Tc→0 + L

(R)
Tc→0 + L

(D)
Tc→0

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(⋯) γB(E0
−) γA(E

0
+) γD(εd) 0 0

γB(E0
−) −(⋯) 0 0 0 γD(ε−+)

γA(E
0
+) 0 −(⋯) 0 γD(ε+−) 0

γD(εd) 0 0 −(⋯) γA(∆E1
−) γB(∆E1

+)
0 0 γD(ε+−) γA(∆E1

−) −(⋯) 0
0 γD(ε−+) 0 γB(∆E1

+) 0 −(⋯)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.45)

γx(ε) = ∑
l

γlx(ε) , γx(ε) = ∑
l

γlx(ε) . (5.46)

Having reduced the full rate matrix we can now compute the stationary conditional probabilities,
i.e. evaluate eq. (5.41) by identifying the respective rates of L(D)Tc→0 in eq. (5.45).
We obtain

P1∣0 = γD(εd) ,

P1∣A = γD(ε+−) = γD(εd +U0 −∆) ,

P1∣B = γD(ε−+) = γD(εd +U0 +∆) . (5.47)
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In the next step we need to tune the demon dot chemical potential µD in a way that the detector
can reliably discriminate between the states in the DQD. We have three possible transition
energies for the tunneling between the reservoir D and the detector dot, namely εd, ε+− and ε−+.
For U0,∆ > 0 and U0 > ∆ we have εd < ε+− < ε−+.
Recall that εd is the transition energy for hopping on/off the demon dot while the DQD is empty,
∣1,0⟩ ↔ ∣0,0⟩. On the other hand ε+− is the energy for transitions ∣1,−1⟩ = ∣1,A⟩ ↔ ∣0,+0⟩ = ∣0,A⟩,
i.e. tunneling with respect to reservoir D while the DQD is in ∣A⟩. Analogously, ε−+ accounts
for transitions ∣1,+1⟩ = ∣1,B⟩ ↔ ∣0,−0⟩ = ∣0,B⟩.
The reduced graph of transitions is shown in fig. 5.3, which clearly discloses that two noninter-
acting transport channels through the QDs A and B, respectively, are formed.
Note that with two distinct channels the currents can be split up, explicitly. Therefore, we can
also formulate condition (5.35) for each transport channel, separately.

|0, 0〉|0, B〉 |0, A〉|1, 0〉

|1, A〉 |1, B〉

|0, 0〉

γD
γA

γB

γU
A

γU
B

γAA
D

γBB
D

Figure 5.3.: Transitions between eigenstates of the model in the limit Tc → 0. Blue arrows depict
transitions induced by the coupling to reservoir D, black ones those with respect
to the contacts L,R. The compact rates for the tunneling from reservoir D are
defined as follows: γD = γD(εd), γAA/BBD = γD(ε−+/+−), γA/B = ∑l γlA/B(E0

+/−
)

and γUA/B = ∑l γlA/B(∆E1
−/+

). Note that for the sake of clearness we do not note
down the rates of the reverse processes, which of course go with γ = 1 − γ. One
can easily see, that the transport channels through dots A and B decouple.

5.4.1. Detection schemes

This considerations give rise to possible detection schemes, two of which we want to discuss and
apply here. Let us start with scheme I, where the detector discriminates between s ∈ {0,A} and
s = B, which can be achieved if the chemical potential µD is chosen such that

εd < ε+− = εd +U0 −∆ < µD < ε−+ = εd +U0 +∆ . (5.48)

We choose µD = εd +U0 which satisfies condition (5.48) as long as ∆ > 0. With the assumption
that ΓD(εd) = ΓD(ε+−) = ΓD(ε−+) = ΓD, i.e. that the tunneling rates with respect to reservoir D
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are energy independent. We divide eq. (5.47) by ΓD and find for the conditional probabilities

P1∣0 = fD(εd) = (exp [−βDU0] + 1)−1 ,

P1∣A = fD(εd +U0 +∆) = (exp [−βD∆] + 1)−1 ,

P1∣B = fD(εd +U0 −∆) = (exp [βD∆] + 1)−1 . (5.49)

In the limit βDU0, βD∆ →∞, which was introduced as precise demon limit in [44], we finally
obtain

P1∣0 → 1 , P1∣A → 1 , P1∣B → 0 . (5.50)

In scheme II we want to discriminate between empty and occupied DQD states, i.e. between
s = 0 and s ∈ {A,B}. In analogy to scheme I we formulate a condition for the chemical potential,
µD

εd < µD < ε+− < ε−+ . (5.51)

We fix the chemical potential at µD = εd +
(U0−∆)

2 and see immediately, that the conditional
probabilities now reduce to (recall that we need U0 > ∆ and the precise demon limit)

P1∣0 = (exp[−βD(U0 −∆)/2] + 1)−1
→ 1 ,

P1∣A = (exp[βD(U0 + 3∆)/2] + 1)−1
→ 0 ,

P1∣B = (exp[βD(U0 −∆)/2] + 1)−1
→ 0 . (5.52)

We can of course design additional detection schemes by detuning U0,∆ and µD, but these two
will suffice for the following elaborations.

5.4.2. Mesoscopic description

Now that we have shed some light onto the conditional probabilities in eq. (5.37), we can
turn our focus on the dynamics of the mesoscopic probabilities Ps of finding the DQD in state
s ∈ {0,A,B}.
Thus, we yield for the dynamics of the mesoscopic probabilities

Ṗ0 = −{[γA(ε +Ω) + γB(ε)]P0∣0 + [γA(ε +Ω +U0 −∆) + γB(ε +U0 +∆)]P1∣0}P0

+ {γA(ε +Ω)P0∣A + γA(ε +Ω +U0 −∆)P1∣A}PA

+ {γB(ε)P0∣B + γB(ε +U0 +∆)P1∣B}PB ,

ṖB = −{γB(ε)P0∣B + γB(ε +U0 +∆)P1∣B}PB

+ {γB(ε)P0∣0 + γB(ε +U0 +∆)P1∣0}P0 ,

ṖA = −{γA(ε +Ω)P0∣A + γA(ε +Ω +U0 −∆)P1∣A}PA

+ {γA(ε +Ω)P0∣0 + γA(ε +Ω +U0 −∆)P1∣0}P0 . (5.53)

Consequently, we find the following effective rate matrices for the dynamics of the mesoscopic
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states (P0, PB, PA) in the limit of detection schemes I and II

V
I
=
⎛
⎜
⎝

−γA(ε +Ω +U0 −∆) − γB(ε +U0 +∆) γB(ε) γA(ε +Ω +U0 −∆)

γB(ε +U0 +∆) −γB(ε) 0
γA(ε +Ω +U0 −∆) 0 −γA(ε +Ω +U0 −∆)

⎞
⎟
⎠

=
⎛
⎜
⎝

−(⋯) γLB + γRB γULA + γ
U
RA

γULB + γ
U
RB −(⋯) 0

γULA + γ
U
RA 0 −(⋯)

⎞
⎟
⎠
, (5.54)

V
II
=
⎛
⎜
⎝

−γA(ε +Ω +U0 −∆) − γB(ε +U0 +∆) γB(ε) γA(ε +Ω)

γB(ε +U0 +∆) −γB(ε) 0
γA(ε +Ω +U0 −∆) 0 −γA(ε +Ω)

⎞
⎟
⎠

=
⎛
⎜
⎝

−(⋯) γLB + γRB γLA + γRA
γULB + γ

U
RB −(⋯) 0

γULA + γ
U
RA 0 −(⋯)

⎞
⎟
⎠
, (5.55)

where we introduced a more compact notation for the transition rates

γlA = ΓlAflA = ΓlA(ε +Ω)fl(ε +Ω) ,

γUlA = ΓUlAfUlA = ΓlA(ε +Ω +U0 −∆)fl(ε +Ω +U0 −∆) ,

γlB = ΓlBflB = ΓlB(ε)fl(ε) ,

γUlB = ΓUlBfUlB = ΓlB(ε +U0 +∆)fl(ε +U0 +∆) . (5.56)

Thermodynamics for detection scheme I

Let us now take a closer look on the thermodynamics of the reduced dynamics with respect to
the detection scheme I. First of all, we find the steady-state mesostate probabilities, which read

P̄0 =
γUAγB

γUAγB + γ
U
Aγ

U
B + γUAγB

,

P̄B =
γUAγ

U
B

γUAγB + γ
U
Aγ

U
B + γUAγB

,

P̄A =
γUAγB

γUAγB + γ
U
Aγ

U
B + γUAγB

. (5.57)

The steady-state entropy production, corresponding to eq. (2.165), yields

¯̇S∗i = ∑
l,i,j

V
(l)
ij P̄j ln

V
(l)
ij

V
(l)
ji

. (5.58)

With respect to the detection scheme I we obtain

¯̇S∗i = Ī
∗(LA)
M ln

γULA
γULA

+ Ī
∗(RA)
M ln

γURA
γURA

+ Ī
∗(LB)
M ln

γULB
γLB

+ Ī
∗(RB)
M ln

γURB
γRB

. (5.59)

We verify analytically that in the stationary state the particle number is conserved, Ī∗(L)M + Ī
∗(R)
M =

0, compare eq. (5.32). Moreover, due to the decoupling of the transport channels through QDs
A and B particle number conservation holds channel-wise

Ī
∗(x)
M = Ī

∗(Lx)
M = −Ī

∗(Rx)
M , x ∈ {A,B} , (5.60)
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and we can identify the two contributions to the entropy production. We rearrange eq. (5.59) in
terms of affinities F , i.e. generalized forces that drive the irreversible transport processes [171],
and obtain

¯̇S∗i = F
∗
AĪ

∗(A)
M +F

∗
B Ī

∗(B)
M . (5.61)

Let us start by analyzing the affinity with respect to the transport through A

F
∗
A = ln [

γULA
γULA

γURA
γURA

] = ln [
ΓULA
ΓULA

ΓURA
ΓURA

] + ln [
fULA(1 − fURA)
(1 − fULA)fURA

] . (5.62)

which evaluates to

F
∗
A = (ε +Ω +U0 −∆) [βR − βL] + βLµL − βRµR . (5.63)

We assume, again, that the reservoirs L and R have the same temperature and therefore we find
that the transport through channel A contributes to the entropy production

¯̇S∗(A)i = F
∗
AĪ

∗(A)
M = β(µL − µR)Ī

∗(A)
M . (5.64)

Here, one can immediately notice that the energy currents at the left and right contact with
respect to A are balanced,

Ī
∗(LA)
E = −Ī

∗(RA)
E = (ε +Ω +U0 −∆)Ī

∗(A)
M , (5.65)

and proportional to the matter current

Ī
∗(A)
M = γULAP̄0 − γ

U
LAP̄A . (5.66)

This means that the detector does not extract energy from transport through A. As a consequence
we ascertain that pumping against a chemical bias V = µL − µR is not possible in this detection
scheme, as the condition (5.35) cannot be met.

Let’s inspect what happens with respect to the transfer of electrons via B. The affinity yields

F
∗
B = ln [

γULB
γLB

γRB
γURB

] = ln [
ΓULBΓRB
ΓLBΓURB

fULB(1 − fRB)

(1 − fLB)fURB
]

= ln [
fLB(1 − fRB)

(1 − fLB)fRB
] + ln [

ΓULBΓRB
ΓLBΓURB

fULBfRB

fLBfURB
] . (5.67)

In the last step we included a “1” and, thus, we can now identify two contributions to the entropy
production that are induced by tunneling onto/from B. Thus, we find

¯̇S∗(B)i = F
∗
B Ī

∗(B)
M

= (ε[βR − βL] + βLµL − βRµR) Ī
∗(B)
M + ln [

ΓULBΓRB
ΓLBΓURB

fULBfRB

fLBfURB
] Ī

∗(B)
M

= β(µL − µR)Ī
∗(B)
M + Ī

∗(B)
F , (5.68)

with the particle current

Ī
∗(B)
M = γULBP̄0 − γLBP̄B . (5.69)
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In the last step we set βL = βR = β and introduced the so called information current Ī∗(B)F . These
results are very similar to those found by Strasberg et al. in [44], who only considered one
transport channel. The first contribution is just the entropy production of the isolated transport
through B while the contribution is to be interpreted as information transferred between the
system and the demon, that modifies the entropy balance of the system (i.e. its second law).
Although we eliminated the very fast dynamics of the detector dot, the demon effectively extracts
energy from channel B. That can be quantified as follows

Ī
∗(LB)
E = εĪ

∗(LB)
M + (U0 +∆)γULBP̄0 ,

Ī
∗(RB)
E = εĪ

∗(RB)
M + (U0 +∆)γURBP̄0 ,

Ī
∗(B)
E = −Ī

∗(LB)
E − Ī

∗(RB)
E = −(U0 +∆)γUB P̄0 . (5.70)

A proper Maxwell demon, however, does not alter the energy balance of the system. Therefore,
we employ another limit, the true Maxwell demon limit, according to Ref. [44]. In this limit we
assume that the temperatures of the reservoirs coupling to the DQD are sufficiently low compared
to the energy scale set by the capacitive couplings U0,∆, i.e. that we can set βU0, β∆→ 0. As a
consequence we find that the Fermi functions evaluated at different transition energies yield the
same values

lim
βU0,β∆→0

fUlx = flx . (5.71)

As a consequence the above energy imbalance for the transport through B vanishes.
In this limit the information current Ī∗(B)F → Ī

eff(B)
F becomes

Ī
eff(B)
F = ln [

ΓULBΓRB
ΓLBΓURB

] Ī
eff(B)
M , (5.72)

which vanishes if the tunneling rates are chosen symmetrically. In other words our setup does
not change the energetics of the system, on the one hand, but at the same time has to change
the energy barriers between the system states in order to modify the entropy production and
generate currents against a chemical bias.

Note that the effective matter currents read

Ī
eff(A)
M = ΓULAfLAP̄ eff

0 − ΓULAfLAP̄ eff
A ,

Ī
eff(B)
M = ΓULBfLBP̄ eff

0 − ΓLBfLBP̄ eff
B , (5.73)

where the stationary probabilities to find the DQD in states 0,A,B in the ideal Maxwell demon
limit are

P̄ eff
0 =

1
N

(∑
l

ΓUlAf lA)(∑
l

ΓlBf lB) ,

P̄ eff
B =

1
N

(∑
l

ΓUlAf lA)(∑
l

ΓUlBflB) ,

P̄ eff
A =

1
N

(∑
l

ΓUlAflA)(∑
l

ΓlBf lB) ,

N = (∑
l

ΓUlAf lA)(∑
l

ΓlBf lB) + (∑
l

ΓUlAf lA)(∑
l

ΓUlBflB) + (∑
l

ΓUlAflA)(∑
l

ΓlBf lB) . (5.74)
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Remarks on the Maxwell demon limit

Let us consider, again, the Maxwell demon limit introduced in eq. (5.71); in this limit we
distinguish between the two transport channels, i.e. flA evaluates differently than flB. This,
however, is particularly useful in setups, where Ω ≫ U0,∆. If this is not the case, one can
evaluate all Fermi functions at the same energy E, that might be chosen somewhere between
E0
−,E

0
+,∆E1

− and ∆E1
+. Then we obtain flA = flB = fl(E). Numerically, we get slightly differing

values for the currents. The scaling of the information current in (5.72), however, is not affected,
as one can easily verify, and thus, the resulting entropy is very close to that one obtained when
applying the limit (5.71). In the course of this section we stick to the distinction of the Fermi
energies flA and flB.

We now want to summarize briefly how the entropy production is written with respect to different
levels of description. Recall, that we demand the lead temperatures for the left and the right
lead to be equal (βL = βR = β). We have found for the entropy productions

¯̇Si = βV ĪM + (β − βD)Ī
(D)
E = −βP + (β − βD)Ī

(D)
E (microscopic) , (5.75)

¯̇S∗i = βV Ī∗M + Ī∗F = −βP∗
+ Ī∗F (mesoscopic) , (5.76)

¯̇Seff
i = βV Īeff

M + Īeff
F = −βPeff

+ Īeff
F (ideal Maxwell demon) . (5.77)

In the microscopic description we have to explicitly take into account the energy currents, while
for the mesoscopic description the information current enters. The numerical investigation
shows that, the currents extracted from the solution to the six microscopic rate equations is
converging to the mesoscopic solutions even if ΓD, βD are finite as long as ΓD ≫ max{ΓUlx,Γlx}
and βDU0, βD∆ ≫ 1. Note also that, in the error free limit (βD →∞) the microscopic entropy
production diverges.
For the ideal Maxwell demon the reformulated condition for pumping against bias, eq. (5.35),
reads in terms of the information current

Īeff
F ≥ −βV Īeff

M = βPeff
≥ 0 . (5.78)

Thus, pumping against the chemical bias V is only possible if the information current is sufficiently
positive. This, once again, confirmes that the extracted power of the device remains nonpositive
as long as the information current is not sufficiently positive.

One last remark should be made concerning the energy currents in the Maxwell demon limit. In
this limit we assume that the dominating contribution to the energy that is exchanged between
the electronic leads l and the DQD is set by εx. This is reflected in the so called tight coupling
property; i.e. the energy and matter currents are proportional [cf. [41]]

Ī
eff(x)
E = εxĪ

eff(x)
M . (5.79)

The same holds for the information current, as we can read off from eq. (5.72).

5.4.3. Nontrivial effects, pumping against a chemical bias
With the results we found up to now, we can make sure that the detector QD in the proposed
setup can in fact distinguish between different states in the transport DQD. However, in order
to achieve any nontrivial effect such as pumping electrons against a chemical bias we need to
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have energy-dependent tunneling rates Γνx(ω). Thus, the wide-band limit that is often assumed
cannot be adopted here.
Instead, let us assume tunneling rates of Lorentzian shape, as done for single electron transistor
models in [172], i.e.

Γ(ω) =
a

b2 + (ω − ω0)2 Γ , (a > 0) . (5.80)

This enables us to model the energy-dependence of the tunneling according to our needs. Let
us choose, for example, the energy ω0 = E0

A, where the bare tunneling rate ΓRA reaches its
maximum and the tunneling rate at the transition energy ∆E1

A as

ΓRA = ΓRA(E0
A) =

a

b2
= e+δ Γ ,

ΓURA = ΓRA(∆E1
A) =

a

b2 + (∆E1
A −E

0
A)

2 = e−δ Γ , (5.81)

we can determine the parameters as a = Γ(U0 −∆)2/2 csch(δ) and b = (U0 −∆)2/2[coth(δ) − 1].
Provided, that we have specific tunneling coefficients tkνx we assume that we can define the
remaining tunneling rates analogously, i.e.

ΓRB = e+δ Γ , ΓURB = e−δ Γ ,
ΓLA = e−δ Γ , ΓULA = e+δ Γ ,
ΓLB = e−δ Γ , ΓULB = e+δ Γ . (5.82)

Throughout, we choose the parameter δ to be nonnegative.

Likely trajectories

Which trajectories become likely with this choice of tunneling rates for the two detection schemes
we probe above?
Recall, that our detection scheme I implies that if QD A is populated the demon dot remains
occupied; i.e. the relevant rates with respect to transport through A are ΓUlA. For transport
through QD A we thus find that a trajectory ∣1,0⟩ Ð→ ∣1,A⟩ Ð→ ∣1,0⟩ is most likely, where the
effective transport direction is determined by the sign of the chemical bias with V > 0 inducing
transport from the left to the right lead. However, invoking transport against the bias is not
possible, although the above choice of the tunneling rates leads to higher net currents for positive
V :

∣Ī
(A)
M (V )∣ > ∣Ī

(A)
M (−V )∣ , δ, V > 0 . (5.83)

Contrarily, for the transport via B we have the following trajectory ∣1,0⟩ Ð→ ∣1,B⟩ ⇒ ∣0,B⟩ Ð→

∣0,0⟩ ⇒ ∣1,0⟩, where the double arrows depict the transitions that happen very fast and in the
error-free instantaneous limit, immediately. Assuming rates according to eqs. (5.81) and (5.82)
with δ > 0 we obtain steady-state currents that are pumping electrons through B against the
chemical bias.
Figure 5.4 show the steady-state currents with respect to the distinct transport channels and
the corresponding coarse-grained entropy productions Ṡ∗i . One can clearly see that even if the
strict Maxwell demon limit is not met the mesostate entropy production is approaching that
of the ideal demon as the ratio U0/Ω decreases. For ε≫ U0 the energy imbalance Ī∗E , i.e. the
modification of the first law (5.70), becomes negligible, cf. [44].
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The entropy production with respect to the two transport channels becomes minimal, for bias
voltages V where the net steady-state current through the respective channel vanishes, as can
be seen in the inset of fig. 5.4b. Accordingly, the overall entropy production becomes minimal
where the sum of the currents vanishes.

Moreover, the numerics show that the solution to the full microscopic model coincide with the
mesoscopic solutions even for finite temperatures βDU0 ≈ 20. To obtain reasonable results for
the microscopic solutions it is of course necessary to increase βD when lowering the capacitive
coupling between DQD and detector.
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Ī
eff(A)
M

(a)

−8 0 8

bias voltage βV

2.5

5.0

7.5

10.0

en
tr

op
y

pr
od

uc
ti

on
¯̇ S

i
in

un
it

s
of

Γ ¯̇S
∗
i , U0/Ω = 2.5

¯̇S
eff

i

¯̇S
∗
i , U0/Ω = 20

¯̇S
∗
i , U0/Ω = 10

−5 0 5

2.5

5.0

7.5

10.0¯̇S
eff(A)

i

¯̇S
eff(B)

i

¯̇S
eff

i

(b)

Figure 5.4.: Steady state currents (a) and entropy production (b) of the system for detection
scheme I and rates chosen according to eqs. (5.81) and (5.82); Parameters: ∆/Ω = 2,
δ/Ω = 10. In subplot (a) also the microscopic currents for one set of parameters are
depicted (red and blue squares, respectively), where the temperature is βD = 10β.

When applying the second detection scheme the trajectories taken are the same for both
transport channels: ∣1,0⟩ Ð→ ∣1, x⟩ ⇒ ∣0, x⟩ Ð→ ∣0,0⟩ ⇒ ∣1,0⟩ with x ∈ {A,B}. Thus, with
the above nontrivial choice of the tunneling rates, (5.81) and (5.82), we obtain the stationary
currents and entropy productions plotted in fig. 5.5. In the limit of an ideal Maxwell demon
currents are only differing due to the small level splitting Ω. Therefore, the channel-wise entropy
productions become minimal for nearly the same bias voltages.

Let us, briefly, consider the power extraction of the device when operated in either of the
detection schemes. To bound the Liouvillian we assume the feedback parameter δ in eqs. (5.81)
and (5.82) to be finite. Then for a fixed δ and equal lead temperatures βL = βR = β the extracted
power P = −V ĪM can be evaluated (channel-wise) as βPeff(x) = −βV Īeff(x)

M , where the parameter
βV = ln [

fLxfRx
fLxfRx

] parametrizes the expression for the current, which can be used to find the
bias voltage where P becomes maximal, cf. [43]. In fig. 5.6 we show contour plots of the power
for fixed parameters U0,∆ and varying bias voltage V and feedback parameters δ, where black
solid lines shows the border between positive and negative power extraction. We also depict the
voltages for maximum power for varying δ (black dotted lines).
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Figure 5.5.: Steady state currents (a) and entropy production (b) of the system for detection
scheme II and rates chosen according to eqs. (5.81) and (5.82); Parameters:
∆/Ω = 2, δ/Ω = 10.

5.4.4. Spin-filter reloaded

We now want to take a look at the explicit expressions for the effective steady-state currents we
obtained in the previous section. Recall, exemplarily, the mesoscopic version of the steady-state
currents for detection scheme I, eqs. (5.66) and (5.69) and the respective steady states eq. (5.57).
In the strict Maxwell demon limit, the rates γ(U)lx and γ

(U)
lx become

γ
(U)
lx = Γ(U)lx flx ,

γ
(U)
lx = Γ(U)lx f lx . (5.84)

In section 4.5 we have implemented the feedback in terms of a state-dependent modification of
the tunneling rates, i.e. without a microscopic mechanism. The system of two parallel QDs is
equivalent to the spin-qubit Hamiltonian in chapter 4. In the noninteracting case, with Tc → 0,
we can identify the states ∣↑⟩ ↔ ∣B⟩, ∣↓⟩ ↔ ∣A⟩ and the magnetic field B ↔ Ω. Thus, we can
rewrite the rates for transitions from an unoccupied DQD (“E”) to state ∣x⟩ as eδlE Γflx and the
reverse rates as eδlx Γf lx. The effective currents eq. (5.73), therefore, become

Ī
eff(A)
M = eδLE ΓfLAP̄ eff

0 − eδLA ΓfLAP̄ eff
A ,

Ī
eff(B)
M = eδLE ΓfLBP̄ eff

0 − eδLB ΓfLBP̄ eff
B . (5.85)

When replacing the rates in the expression for the steady-state probabilities, (5.74), the resulting
current confirms the results from eq. (4.68) (where we set Γlσ = Γ).
Finally, comparing the current expressions (5.73) and (5.85) and taking into account the specific
parametrization of the tunneling amplitudes (5.81) and (5.82), we find the following mapping

δ↔ δLE , −δ↔ δRE , δ↔ δLA , −δ↔ δLB , −δ↔ δRA , δ↔ δRB , (5.86)

which corresponds to the feedback scheme B, (4.74), from section 4.8.1. Hence, in the special
case of noninteracting transport channels (Tc → 0) the ideal Maxwell-demon dynamics of our
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(a) (b)

Figure 5.6.: Contour plots of the power extraction P for varying bias voltages V and feedback
parameters δ. Panel (a) shows the contour for detection scheme I, eq. (5.48), and
(b) the contour for detection scheme II, eq. (5.51). For both panels the parameters
are U0/Ω = 20,∆/Ω = 2 and the tunneling rates chosen according to eqs. (5.81)
and (5.82). The black dotted lines show the numerically obtained voltages where
the power is maximal.

generic model reproduces the dynamics for the closed-loop feedback operations we applied to
the exchange-free transport model in chapter 4.
This can be also be seen when comparing the currents in Figures 4.2(c) and 5.4. The filtering
effect can be even more pronounced when tuning the tunneling amplitudes differently, as shown
in fig. 5.7.

5.5. Coarse grained dynamics for arbitrary Tc

Once we allow for interacting transport channels the coarse graining will in general fail, because
the separation of the microstate probabilities into conditional probabilities and mesoscopic
probabilities is not possible anymore. Naively, one could assign indices d ∈ {0,1} to microstates
and indices s ∈ {0,+,−} to mesostates. In fact, each of the 4 microstates ∣0,−0⟩ , ∣0,+0⟩ , ∣1,−1⟩
and ∣1,+1⟩ belong to different mesostates. This can be understood as there are transitions with
rates Wds,d′s′ , (s ≠ s

′) that are proportional to ΓD and, therefore, determined by a much faster
time scale than the population of the DQD. Contrarily, in the limit Tc → 0 these transitions
vanish.
Thus, the condition eq. (2.152) is not fullfilled and an important requirement for the adiabatic
elimination is not met. However, we still can separate the probabilities for states ∣0,0⟩ and ∣1,0⟩,
which read p00 = P0∣0P0 and p10 = P1∣0P0, without any ambiguity. It follows directly that we can
identify the mesostate 0. In the steady-state we get

P̄0∣0 = 1 − fD(εd), P̄1∣0 = fD(εd) , (5.87)

where we already divided the expression by ΓD.
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Figure 5.7.: Steady state currents and entropy production (insets) of the system. (a) Detection
scheme II, the rates are ΓRA = e+δ Γ,ΓURA = Γ,ΓRB = e−δ Γ,ΓURB = Γ,ΓLA =

e−δ Γ,ΓULA = Γ,ΓLB = e+δ Γ,ΓULB = Γ. (b) Detection scheme II, the rates are ΓRA =

e−δ Γ,ΓURA = e+δ Γ,ΓRB = e+δ Γ,ΓURB = e−δ Γ,ΓLA = e+δ Γ,ΓULA = e−δ Γ,ΓLB =

e−δ Γ,ΓULB = e+δ Γ. System parameters: ∆/Ω = 2, δ/Ω = 10.

The remaining equations of L(D)ρ̄ = 0 read

0 = − [κ−−γD(ε−−) + κ−+γD(ε−+)] p̄0− + κ−−γD(ε−−)p̄1− + κ−+γD(ε−+)p̄1+ ,

0 = − [κ+−γD(ε+−) + κ++γD(ε++)] p̄0+ + κ+−γD(ε+−)p̄1− + κ++γD(ε++)p̄1+ ,

0 = κ−−γD(ε−−)p̄0− + κ+−γD(ε+−)p̄0+ − [κ−−γD(ε−−) + κ+−γD(ε+−)] p̄1− ,

0 = κ−+γD(ε−+)p̄0− + κ++γD(ε++)p̄0+ − [κ−+γD(ε−+) + κ++γD(ε++)] p̄1+ . (5.88)

P. Strasberg [170] points out that in order achieve a unique decomposition of the microstate
probabilities according to eq. (5.37) and to reduce the amount of equations, i.e. to adiabatically
eliminate the demon dot degrees of freedom we need further considerations. The decomposition
is only possible in the extreme case of the fast and precise demon limits; i.e. when we have a)
infinitely fast tunneling to the demon dot ΓD →∞ and b) zero temperature for the demon dot
reservoir βD →∞.
It is important to assume that when taking the limit βD,ΓD → ∞ the scaling of ΓD is only
polynomially and not exponentially. Otherwise all rates γD(ω) and γD(ω) for any energy ω
would diverge. When ΓD scales polynomially we find without any ambiguity [170]

lim
βD,ΓD→∞

γD(ω) = lim
βD,ΓD→∞

ΓDfD(ω) =

⎧⎪⎪
⎨
⎪⎪⎩

0 , ω > 0
∞ , ω < 0

, where ΓD = aβbD , (a, b > 0) .

(5.89)

The numerical solutions to the microscopic rate equations suggests that the transition from finite
tunneling rates and temperatures to infinitely fast tunneling and zero temperature is smooth.
With the above considerations we can divide eq. (5.88) by ΓD, solve them for the probabilities
and proceed with calculating reduced dynamics.
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5.5.1. Tuning the detector

Before defining a detection scheme we need to impose some restrictions on the choice of parameters.
Let us assume that U0,Ω,∆ > 0, and

U0 >
1
2
√

4T 2
c +Ω2 +

1
2
√

4T 2
c + (Ω − 2∆)2 ,

1
2
√

4T 2
c + (Ω − 2∆)2 ≥

1
2
√

4T 2
c +Ω2 ⇔ Ω ≤ ∆ . (5.90)

These conditions imply a ordering of transition energies εd < ε+− < ε−− ≤ ε++ < ε−+.
The only adjustment of the chemical potential of the detector junction that leads to a proper
state reduction in the extreme limit (βD,ΓD → 0) is [170]

εd < µD < ε+− < ε−− ≤ ε++ < ε−+ , (5.91)

which corresponds to the detector tuning, eq. (5.51), we used before.
The condition eq. (5.90) is, of course, arbitrary. We also could adjust the parameters to meet,
e.g., (with Ω < ∆)

−
1
2
√

4T 2
c +Ω2 +

1
2
√

4T 2
c + (Ω − 2∆)2 > U0 >

1
2
√

4T 2
c +Ω2 −

1
2
√

4T 2
c + (Ω − 2∆)2 , (5.92)

which leads to a different ordering of the transition energies, namely ε+− < ε−− < εd < ε++ < ε−+.
Figure 5.8 shows that – when tuning the detector differently than according to (5.91) – the system
reduces such that only two states “survive”, i.e. have nonvanishing lifetime and population
probability. In fact the states ∣d,+⟩ are no longer reached in the long term. This restriction can
also be seen when numerically solving the microscopic equations. As a consequence, with (5.91),
the setup in the extreme limit of the fast demon along with error-free detection is restricted to
the detection whether the DQD is populated or not.

|0,−0〉 |0, +0〉|1, 0〉

|1, −1〉 |1, +1〉

|0, 0〉

γD γ−
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γU
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γ
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D

γ
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D
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D

γ
−+
D

(a)

|0,−0〉 |0,+0〉|1, 0〉

|1,−1〉 |1,+1〉

|0, 0〉

γD
γ− γ+

γU
−

γ
−−
D γ

++
D

γ
+−
D

γ
−+
D

(b)

Figure 5.8.: The stategraph shows which states “survive” (blue blackground) and which not
(gray background), when tuning the detector (a) such that εd < ε+− < µD < ε−− ≤
ε++ < ε−+. Tuning for (b) is ε+− < ε−− < µD < εd < ε++ < ε−+. In the extreme limit
of the fast demon dot the state ∣1,+1⟩ is only populated when it is the initial state.
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5.5.2. Mesoscopic dynamics
The procedure to generate reduced rate equations is now somewhat different to that in sec-
tion 5.4.2 [170]. We start by writing the full system density matrix (DQD and demon dot) in
terms of the energy eigenstates and obtain

ρ = p00 ∣0,0⟩ ⟨0,0∣ + p10 ∣1,0⟩ ⟨1,0∣
+ p0− ∣0,−0⟩ ⟨0,−0∣ + p1− ∣1,−1⟩ ⟨1,−1∣ + p0+ ∣0,+0⟩ ⟨0,+0∣ + p1+ ∣1,+1⟩ ⟨1,+1∣ . (5.93)

To get rid of the detector’s degree of freedom we take the partial trace

TrD {ρ} ≡ ρDQD = (p00 + p10) ∣0⟩DQD ⟨0∣
+ p0− ∣−0⟩DQD ⟨−0∣ + p0+ ∣+0⟩DQD ⟨+0∣ + p1− ∣−1⟩DQD ⟨−1∣ + p1+ ∣+1⟩DQD ⟨+1∣ . (5.94)

The Hilbert space for the empty DQD is spanned by the eigenvector ∣0⟩DQD; the one-particle
Hilbert space is spanned by two vectors of the overcomplete set of the remaining eigenstates
∣−0⟩DQD , ∣+0⟩DQD , ∣−1⟩DQD , ∣+1⟩DQD. We, therefore, choose two states of the 1-electron Hilbert
space as basis and express the other two vectors in terms of them, namely,

1 = ∣−0⟩ ⟨−0∣ + ∣+0⟩ ⟨+0∣ ,

∣−1⟩ = ⟨−0∣−1⟩ ∣−0⟩ + ⟨+0∣−1⟩ ∣+0⟩ ,

∣+1⟩ = ⟨−0∣+1⟩ ∣−0⟩ + ⟨+0∣+1⟩ ∣+0⟩ , (5.95)

where we omitted the index “DQD”.
Therefore, we obtain for the remaining states

∣−1⟩ ⟨−1∣ = ∣⟨−0∣−1⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
κ−−

∣−0⟩ ⟨−0∣ + ∣⟨+0∣−1⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
κ+−

∣+0⟩ ⟨+0∣

+ ⟨−0∣−1⟩ ⟨−1∣+0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶√

κ−−κ+−

∣−0⟩ ⟨+0∣ + ⟨+0∣−1⟩ ⟨−1∣−0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶√

κ+−κ−−

∣+0⟩ ⟨−0∣ ,

∣+1⟩ ⟨+1∣ = ∣⟨−0∣+1⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
κ−+

∣−0⟩ ⟨−0∣ + ∣⟨+0∣+1⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
κ++

∣+0⟩ ⟨+0∣

+ ⟨−0∣+1⟩ ⟨+1∣+0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−√κ−+κ++

∣−0⟩ ⟨+0∣ + ⟨+0∣+1⟩ ⟨+1∣−0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−√κ++κ−+

∣+0⟩ ⟨−0∣ . (5.96)

Note that the wavefunction overlaps fulfill √
κ−−κ+− =

√
κ+−κ−− =

√
κ−+κ++ =

√
κ++κ−+ = κ.

Then the DQD density matrix in the basis {∣0⟩ , ∣−0⟩ , ∣+0⟩} reads with eq. (5.96)

ρDQD = (p00 + p10) ∣0⟩ ⟨0∣ + (p0− + κ−−p1− + κ−+p1+) ∣−0⟩ ⟨−0∣

+ (p0+ + κ+−p1− + κ++p1+) ∣+0⟩ ⟨+0∣

+ κ (p1− − p1+) (∣−0⟩ ⟨+0∣ + ∣+0⟩ ⟨−0∣) . (5.97)

Taking the time derivatives yields

ρ̇DQD = (ṗ00 + ṗ10) ∣0⟩ ⟨0∣ + (ṗ0− + κ−−ṗ1−κ−+ṗ1+) ∣−0⟩ ⟨−0∣

+ (ṗ0+ + κ+−ṗ1− + κ++ṗ1+) ∣+0⟩ ⟨+0∣

+ κ (ṗ1− − ṗ1+) (∣−0⟩ ⟨+0∣ + ∣+0⟩ ⟨−0∣) . (5.98)
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We now can plug the master equations ∂tρ⃗ = Lρ⃗ derived in section 5.2 into eq. (5.98).
Furthermore, we can always write the following decomposition for the microstate probabilities,
which use just the formal definition of conditional probability

p00 = P0∣0P0 ,

p10 = P1∣0P0 ,

p0− = p0−0 = P0∣−0P−0 ,

p0+ = p0+0 = P0∣+0P+0 ,

p1− = p1−1 = P1∣−1P−1 = P1∣−1 [κ++P−0 + κ+−P+0 + κ ((ρDQD)+0,−0 + (ρDQD)−0,+0)] ,

p1+ = p1+1 = P1∣+1P+1 = P1∣+1 [κ−+P−0 + κ−−P+0 − κ ((ρDQD)+0,−0 + (ρDQD)−0,+0)] . (5.99)

That defines formally five mesoscopic probabilities P0, P−0 , P+0 , P−1 and P+1 , where the first
three are the diagonal elements of ρDQD and the remaining are given by them and the off-diagonal
elements.
In the extreme limit the solution to eqs. (5.87) and (5.88) yields for the detection scheme (5.91)

p̄00 = p̄1−1 = p̄1+1 = 0 , p̄10 + p̄0−0 + p̄0+0 = 1 . (5.100)

Therefore, we can identify three effective mesostates

P̄0∣0 = P̄1∣−1 = P̄1∣+1 = 0 , P̄1∣0 = P̄0∣−0 = P̄0∣+0 = 1 ,
p10 ≡ P0 , p0−0 ≡ P− , p0+0 ≡ P+ . (5.101)

With this identities we obtain

ρ̇DQD = Ṗ0 ∣0⟩ ⟨0∣ + Ṗ− ∣−0⟩ ⟨−0∣ + Ṗ+ ∣+0⟩ ⟨+0∣ . (5.102)

Equivalently, we can write down the effective mesoscopic rate matrix. With our definition (5.19)
it reads

V =
⎛
⎜
⎝

−γUL− − γ
U
L+ − γ

U
R− − γ

U
R+ γL− + γR− γL+ + γR+

κ−−(γUL− + γ
U
R−) + κ−+(γ

U
L+ + γ

U
R+) −γL− − γR− 0

κ+−(γUL− + γ
U
R−) + κ++(γ

U
L+ + γ

U
R+) 0 −γL+ − γR+

⎞
⎟
⎠
. (5.103)

We verify ∑s Vs,s′ = 0 as κσσ′ + κσσ = 1 holds for σ ≠ σ′. This implies, howbeit, κ++ = κ−− and
κ+− = κ−+. Figure 5.9 shows the reduction of the stategraph if we tune the demon dot chemical
potential according to (5.91).

The resulting currents to/from mesostates ∣σ⟩ with respect to lead l read [recall the rates defined
in eq. (5.19)]

Ī
∗(l−)
M = [κ−−γl−(∆E1

−) + κ−+γl+(∆E1
+)] P̄

∗
0 − γl−(E

0
−)P̄

∗
− ,

Ī
∗(l+)
M = [κ+−γl−(∆E1

−) + κ++γl+(∆E1
+)] P̄

∗
0 − γl+(E

0
+)P̄

∗
+ . (5.104)

As a sanity check we first make sure that for the limit of noninteracting QDs (Tc → 0) the latter
currents coincide with

Ī
∗(l−)
M → Ī

∗(lB)
M = γlB(ε +U0 +Ω −∆)P̄ ∗

0 − γlB(ε)P̄ ∗
B ,

Ī
∗(l+)
M → Ī

∗(lA)
M = γlA(ε +U0 +∆)P̄ ∗

0 − γlA(ε +Ω)P̄ ∗
A , (5.105)
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Figure 5.9.: Stategraph for detection scheme (5.91) in the extreme limit. (a) shows which states
“survive” (blue blackground) and which not (gray background). The reduction of
degrees of freedom leads to the reduced stategraph (b).

which are the currents we obtained in the previous section for detection scheme II. We verify
numerically that Ī∗(Lσ)M = −Ī

∗(Rσ)
M . The net current through the device [and, thus, also the power

extraction] slightly decreases for increasing Tc and is, therefore, always smaller than for the case
of noninteracting transport channels.
Let us now, briefly, inspect the entropy production for arbitrary couplings Tc. It reads with
(5.58),

¯̇S∗i = ∑
l

{Ī
∗(l+)
M ln

κ+−γUl− + κ++γ
U
l+

γl+
+ Ī

∗(l−)
M ln

κ−−γUl− + κ−+γ
U
l+

γl−
} . (5.106)

When taking into account the definitions for the transition rates, (5.19), and if we further assume
that the bare tunneling coefficients fulfill Γ(U)lA = Γ(U)lB = Γ(U)l , which is also assumed in eqs. (5.81)
and (5.82), (5.106) yields

¯̇S∗i = ∑
l

⎧⎪⎪
⎨
⎪⎪⎩

Ī
∗(l+)
M ln

κ+−ΓUl fl(∆E1
−) + κ++ΓUl fl(∆E1

+)

Γlf l(E0
+)

+ Ī
∗(l−)
M ln

κ−−ΓUl fl(∆E1
−) + κ−+ΓUl fl(∆E1

+)

Γlf l(E0
−)

⎫⎪⎪
⎬
⎪⎪⎭

. (5.107)

This expression cannot be simplified further unless we take additional limits into account. As
previously done we implement the Maxwell-demon limit, where we assume that all the Fermi
energies are evaluated at the same energy E, e.g., the arithmetic average of E0

−,E
0
+,∆E1

− and
∆E1

+. Thus, the effective entropy production becomes (βL = βR = β)

¯̇Seff
i = βV Īeff

M + ln [
ΓULΓR
ΓLΓUR

] Īeff
M , (5.108)

where the information currents resembles the channelwise information current, eq. (5.72). Note
also that the currents eq. (5.104) become identical in the Maxwell-demon limit.

Serial setup. To end the study of this model, we take a look at the thermodynamics when we
switch off the couplings tkLB → 0 and tkRA → 0, or in terms of the rates Γ(U)LA → Γ(U)L , Γ(U)RB → Γ(U)R

and Γ(U)LB ,Γ
(U)
RA → 0. Thus, the model is effectively a model of serially coupled QDs, cf. [170].
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That implies for the currents (already in the Maxwell-demon limit)

Ī
eff(l−)
M = [κ−−∣α

1
−∣

2
+ κ−+∣α

1
+∣

2]γl(E)P̄0 − ∣α0
−∣

2γl(E)P̄− ,

Ī
eff(l+)
M = [κ+−∣α

1
−∣

2
+ κ++∣α

1
+∣

2]γl(E)P̄0 − ∣α0
+∣

2γl(E)P̄+ . (5.109)

The entropy production evaluates to

¯̇Seff
i = βV Īeff

M + ln [
ΓULΓR
ΓLΓUR

] Īeff
M + Ī

eff(L+)
M lnC1 + Ī

eff(L−)
M lnC2 + Ī

eff(R+)
M lnC2 + Ī

eff(R−)
M lnC1 ,

C1 ≡
κ+−∣α1

−∣
2 + κ++∣α1

+∣
2

∣α0
+∣2

=
κ−−∣β1

−∣
2 + κ−+∣β1

+∣
2

∣β0
−∣2

, (5.110)

C2 ≡
κ−−∣α1

−∣
2 + κ−+∣α1

+∣
2

∣α0
−∣2

=
κ+−∣β1

−∣
2 + κ++∣β1

+∣
2

∣β0
+∣2

.

The particle conservation ∑lσ Ī lσM ≡ 0 implies further [confirming [170]]

¯̇Seff
i = βV Īeff

M + ln [
ΓULΓR
ΓLΓUR

] Īeff
M + (Ī

eff(L−)
M − Ī

eff(L+)
M ) ln [

C2
C1

] ,

ln [
C2
C1

] = ln
⎡
⎢
⎢
⎢
⎢
⎢
⎣

4T 2
c +Ω2 − 2Ω∆ + 2∆ (

√
4T 2

c +Ω2 + 2∆)

4T 2
c +Ω2 − 2Ω∆ − 2∆ (

√
4T 2

c +Ω2 − 2∆)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (5.111)

Note that the expression ln[C2/C1] is always positive, given that Ω,∆ > 0. If we assume Γl = ΓUl ,
i.e. no explicit rate modification scheme is applied, the positivity of the entropy production
implies that the current through ∣−⟩ overevaluates that one through ∣+⟩ at least at small bias
voltages, which we verify numerically. Contrarily to the model of parallel QDs, the serial
configuration, thus, introduces a strictly positive entropy production even if no modification of
the tunneling rates is taking place. One could argue that the current via ∣−⟩ is pumped against
the bias due to the wave function overlaps, when considering this current as isolated. However,
as we have to consider the net current in order to calculate the power, we need to take into
account as well the current through ∣+⟩, which compensates that through ∣−⟩. We find that in
the Maxwell-demon limit for all Tc the power P = −V Ieff

M is strictly nonpositive and therefore the
thermoelectric device is in average not transporting electrons against the chemical bias unless
the tunnel couplings are modified appropriately.
In fig. 5.10 we depict the steady state currents and the respective entropy production as a
function of the bias voltage.

5.6. Conclusions
In this chapter we have derived the dynamics for a generic model that implements a Maxwell-
demon like feedback for transport through two parallel QDs. The model is an extension of the
implementation investigated by Strasberg et al. [44]. Its feedback mechanism is based on the
interplay of a fast detector quantum dot and the transport system. The different time scales
give rise to carrying out a coarse graining procedure along the lines of the theory introduced
in section 2.13 to reduce the model. The model of two noninteracting channels (Tc → 0) is a
microscopic implementation for the phenomenological feedback introduced in chapter 4 and we
reproduce the effects we discovered when switching off the interaction with the external spin, cf.
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Ī
eff(L+)
M , Tc/Ω = 1

Ī
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Figure 5.10.: Steady state currents (a) and entropy productions (b) for the model of serially
coupled QDs for different parameters for the coherent coupling. The entropy
production is always strictly positive and symmetric with respect to V , while the
power remains negative. System parameters: ∆/Ω = 2, δ/Ω = 0. The inset in
(b) shows the entropy production vs Tc evaluated at zero bias voltage (with and
without considering the Maxwell-demon limit (MD)). The maximum entropy is
reached for Tc ≈ 1.65Ω.

section 4.8.1. We showed that nontrivial effects in the current only emerge when the tunneling
is energy dependent, such that the interaction with the detector triggers different strengths of
the tunnel coupling.

When the coherent coupling is present (Tc ≠ 0) the coarse graining procedure is restricted,
such that the detector can only distinguish between an empty and an occupied DQD and we
have to imply the extreme limit of very fast detector tunneling. The resulting currents are
slightly decreased compared to the noninteracting case. Although the generic model Hamiltonian
can be mapped onto the Hamiltonian for anisotropic exchange interaction in chapter 4 we
cannot reproduce the complex dynamics discussed in section 4.8.4 as the parameters are strongly
time-dependent and nonlinear. It would be interesting to tackle this problem in the future using,
e.g., Floquet theory or other suitable time-dependent theories.
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6. Transport and semiclassical dynamics of
coupled quantum dots interacting with a
local magnetic moment

[K. Mosshammer, G. Kiesslich, and T. Brandes. “Transport and semiclassical dynamics of
coupled quantum dots interacting with a local magnetic moment”. Phys. Rev. B 86 (16 2012),
165447]

6.1. Introduction

In this chapter, we will extend the method used in chapter 4 and Ref. [128] for the description
of an electronic setup with two serially coupled QDs, which interact with the same magnetic
moment. We will show that in contrast to the single-QD case, the derived equations of motion for
the electronic part will possess a much more involved structure due to the inclusion of coherences.
The resulting coupling of the semiclassical dynamics of the attached magnetic moment with
the spin dynamics of the nonequilibrium electrons gives rise to complex transient dynamics,
such as chaos, and peculiar steady-state dependencies on the initial conditions. Furthermore,
we find the phenomenon of parametric resonance in the current oscillations. We compare the
current-induced switching behavior of the attached magnetic moment in our coupled setup with
the single-QD setup in Refs. [152, 128].

The remainder of this chapter is organized as follows: Sec. 6.2 contains the model with the
Hamiltonian (6.2.1), with a discussion of the level of description in Sec. 6.2.2, with the semiclassical
approximation and derivation of the Ehrenfest equations of motion (6.2.3), and with the final
equations of motion containing the transport dissipator in Sec. 6.2.4. In Sec. 6.3 the results will
be discussed: steady-state currents (6.3.1), isotropic coupling and current-induced switching of
the large spin (6.3.2), and anisotropic coupling (6.3.4). Finally, we will conclude in Sec. 6.4.

6.2. Model

6.2.1. Hamiltonian

We consider a system of two serially coupled QDs with one orbital level each (see Fig. 6.1). The
system is subject to an external magnetic field B in the z−direction, which splits the QD spin
levels. Moreover, the system is coupled to electronic leads, as well as to a large spin ⃗̂

J with
length j given by ⃗̂

J2 ∣m,j⟩ = j(j + 1) ∣m,j⟩. The total system Hamiltonian reads as follows:
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Figure 6.1.: Setup of two QDs mutually tunnel-coupled with strength Tc. The electron spins ⃗̂
Si

interact with a common large spin ⃗̂
J via λαi . The QDs are attached to ferromagnetic

electronic reservoirs with spin-dependent tunneling rates Γiσ.

Ĥ = ĤDQD + ĤJ + Ĥ leads + Ĥ int , (6.1)

ĤDQD = ∑
i=L,R
σ=↑,↓

εi d̂
†
iσ d̂iσ + Tc ∑

i≠j,σ
d̂

†
iσ d̂jσ +B∑

i

Ŝ
z

i ,

ĤJ = B Ĵ
z
, Ĥ int = ∑

α=x,y,z
i

λαi Ŝ
α

i Ĵ
α
,

Ĥ leads = ∑
l,p,σ

εlpσ ĉ
†
lpσ ĉlpσ +∑

lp

tlp∑
σ

ĉ†
lpσ d̂lσ +H.c. .

Here ĤDQD describes the double-QD system (DQD), with the tunnel coupling Tc between the
left and the right dot, and the energies of the orbital levels εL, εR, respectively. Note that our
definition of B comprises the Bohr magneton and g factors. For the sake of simplicity we assume
identical g factors for electron and large spin throughout the following. The Coulomb repulsion
between excess electrons within the QD system is assumed to be much larger than all other
system and bath energies to constrain their maximal number to one (i.e. the system is operated
in the Coulomb blockade regime).
The operators d̂†

iσ(d̂iσ) describe the creation(annihilation) of an electron with spin σ = ↑, ↓ on
the ith dot (i, j, l = L,R); the occupation operator is defined by n̂iσ = d̂

†
iσ d̂iσ. The relationship

between these electronic operators and the αth component of the spin operator ⃗̂
Si is given by

Ŝ
x

i =
1
2
(d̂

†
i↑ d̂i↓ + d̂

†
i↓ d̂i↑) =

1
2
(Ŝ

+
i + Ŝ

−
i ) ,

Ŝ
y

i =
1
2i

(d̂
†
i↑ d̂i↓ − d̂

†
i↓ d̂i↑) =

1
2i

(Ŝ
+
i − Ŝ

−
i ) , (6.2)

Ŝ
z

i =
1
2
(n̂i↑ − n̂i↓) .
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with the usual commutation relations [Ŝ
+
i , Ŝ

−
j ] = δij2 Ŝ

z

j and [Ŝ
z

i , Ŝ
±
j ] = ±δij Ŝ

±
j .

In contrast to most of other related studies, here we also allow for anisotropic coupling between
electronic and large spin: λαi ≠ λ

β
i for α ≠ β.

The lead electrons are assumed to be noninteracting; the corresponding operator ĉ†
lpσ (ĉlpσ)

creates (annihilates) an electron of momentum p and spin σ in the lth lead, while tlp is the
spin-independent coupling strength between lth lead and lth dot.

6.2.2. Level of description and time scale separation
The microscopic dynamics of the system described by (6.1) is involved and contains a lot of
information, which we are not interested in. Therefore we will choose a level of description, where
only the dynamics of single-particle observables such as components of the average electron and
large spin and the reduced density matrix of electrons dwelling in the dots will be considered.
A rigorous derivation of the corresponding equations of motion in a controlled manner can be
performed, e.g., by projective methods [173] or by Keldysh-Green functions [105]. The price one
has to pay for projecting out some “irrelevant” (microscopic) information is the occurence of
non-Markovian terms and residual forces in the equations of motion. One typical way to retain
Markovian (time local) dynamics may be the separation of time scales present in the considered
problem.
In this work we avoid this derivation path and gain the dynamics of the relevant observables
by a simple semiclassical approximation instead (see section 6.2.3 and chapter 4). We argue
phenomenologically that the time scale of the large spin precession is much slower than the
electron dwell time; i.e. electron spin fluctuations do not affect the large spin dynamics and vice
versa. Those electron spin fluctuations arise from the tunnel coupling to the electron reservoirs,
which we are going to treat in the standard Born-Markov approximation.
In our Ref. [128] we have used a technique based on Laplace transform (see Appendix A of that
reference) to combine the semiclassical Ehrenfest equations of motion for the spin observables
with the reduced density matrix for the electrons. The same final equations of motions can
be simply obtained by adding the terms based on the Lindblad master equation for dot-lead
coupling to the spin dynamics as we have proven for the single-QD setup in Ref. [128]. Here,
we take advantage of this observation and employ this simplified method to set up our final
equations of motion (see Sec. 6.2.4).

6.2.3. Semiclassical approximation and Ehrenfest equations of motion
In order to investigate the dynamics of the coupled spin system we employ an equations of
motion (EOM) technique for the expectation values of the involved spin operators. We recall
that, in general, the EOM for the expectation value of an arbitrary operator Ô reads

d

dt
⟨Ô⟩ =

1
i
⟨[Ô , Ĥ]⟩ + ⟨

∂ Ô

∂t
⟩ . (6.3)

Due to the interaction between electrons and large spin in (6.1) an infinite series of coupled
EOM of higher-order spin correlators will be obtained. In order to truncate this hierarchy
we implement a semiclassical approximation on the level of the interaction Hamiltonian: We
substitute Ŝαi = ⟨Ŝ

α

i ⟩+δ Ĵ
α and Ĵα = ⟨Ĵ

α
⟩+δ Ĵ

α into the interaction Hamiltonian Ĥ int and obtain
the already used mean-field interaction [cf. eq. (4.10)]

Ĥ
MF
int = ∑

α,i

λαi (Ŝ
α

i ⟨Ĵ
α
⟩ + ⟨Ŝ

α

i ⟩ Ĵ
α
− ⟨Ŝ

α

i ⟩ ⟨Ĵ
α
⟩) , (6.4)
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where the product of the spin fluctuators δ Ŝαi δ Ĵ
α is neglected, which is justified for j ≫ 1

and λαi /B ≪ 1 (∀α, i). Thus, we essentially treat ⃗̂
J as a classical object. Note, that since the

Hamiltonian (6.1) does not contain any interaction of the large spin with the lead electrons or
with an additional bath its length j will be conserved on the microscopic level ([ ⃗̂

J2, Ĥ] = 0).
Nevertheless, later on we will introduce a way of damping in the large spin EOMs, which is not
microscopically motivated.
Using the semiclassical interaction Hamiltonian (6.4) yields the following correlators [cf. sec-
tion A.3] for the electronic part of EOM (for the sake of clarity we omit the time dependencies)

d

dt
⟨d̂

†
iσ d̂jσ′⟩ =

i
2
[ (δσ↑ − δσ↓) (B + λzi ⟨Ĵ

z
⟩) + (δσ′↓ − δσ′↑) (B + λzj ⟨Ĵ

z
⟩) + 2 (εi − εj) ] ⟨d̂

†
iσ d̂jσ′⟩

+ iTc (⟨d̂
†
īσ d̂jσ′⟩ − ⟨d̂

†
iσ d̂j̄σ′⟩)

+
i
2
[λxi ⟨Ĵ

x
⟩ − i (δσ↑ − δσ↓)λyi ⟨Ĵ

y
⟩] ⟨d̂

†
iσ̄ d̂jσ′⟩

−
i
2
[λxj ⟨Ĵ

x
⟩ − i (δσ′↓ − δσ′↑)λyj ⟨Ĵ

y
⟩] ⟨d̂

†
iσ d̂jσ̄′⟩

− i∑
p

[γ∗Lpσ′δLj ⟨d̂
†
iσ ĉLpσ′⟩ + γ

∗
Rpσ′δRj ⟨d̂

†
iσ ĉRpσ′⟩

− γLpσδLi ⟨ĉ
†
Lpσ d̂jσ′⟩ − γRpσδRi ⟨ĉ

†
Rpσ d̂jσ′⟩ ] , (6.5)

where ī = L(R) for i = R(L), σ̄ =↓ (↑) for σ =↑ (↓).
The EOM for the expectation values of the large spin’s degree of freedom take the form of a
Bloch equation completed by the electronic back-action and the phenomenological damping:

d

dt
⟨
⃗̂
J⟩ (t) = [Be⃗z +∑

i

⟨
⃗̂
S′i⟩ (t)] × ⟨

⃗̂
J⟩ (t) − γJ ⟨

⃗̂
J⟩ (t) , (6.6)

with ⟨
⃗̂
S′i⟩ (t) ≡ ∑α λ

α
i ⟨Ŝ

α

i ⟩ (t)e⃗α.
So far we have derived the Ehrenfest EOM for the closed coupled spin system. In order to
pursue a microscopic derivation of spin-dependent rates for the transport between the electronic
contacts and the system we could follow the method proposed in Ref. [128]. This technique
requires the direct computation of all dot-lead correlators appearing in Eq. (6.5): ⟨d̂

†
iσ ĉjpσ′⟩

and ⟨ĉ†
ipσ′ d̂jσ⟩, respectively. However, the number of relevant dynamical variables in the DQD

⟨d̂
†
iσ d̂jσ′⟩ (t) is far too large for the analytical derivation along the lines of Appendix A in

Ref. [128]. Instead we make use of the fact that for the single-QD the same EOM can be obtained
alternatively by replacing the last term of the right-hand side of (6.5) with terms originating from
the Lindblad-type master equation [cf. chapter 4]. Even though there is no proof of equivalence
we believe that those aproaches lead to the same results in the case of DQD. The corresponding
derivation will be provided in the following section.

6.2.4. Transport master equation

Here, we will combine the Ehrenfest EOM (6.5) with the quantum master equation of the DQD
that is not coupled to the large spin. Specifically, we use the Lindblad-type master equation for the
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system density matrix ρ̂, which is derived by means of the standard Born-Markov-approximation
in the infinite bias limit:

d

dt
ρ̂ (t) = −i [ĤDQD , ρ̂ (t)] (6.7)

−
1
2∑σ

⎡
⎢
⎢
⎢
⎢
⎣

ΓLσ({d̂Lσ d̂
†
Lσ , ρ̂ (t)} − 2 d̂†

Lσ ρ̂ (t) d̂Lσ )

+ ΓRσ ({d̂
†
Rσ d̂Rσ , ρ̂(t)} − 2 d̂Rσ ρ̂ (t) d̂

†
Rσ)

⎤
⎥
⎥
⎥
⎥
⎦

.

The matrix elements of ρ̂ are ⟨d̂
†
iσ d̂jσ′⟩. The tunnel rates are given by Γlσ = 2π∣tl∣2ρlσ with

the spin-dependent density of states ρlσ in the lth lead, which is approximated to be energy-
independent. The asymmetry in the density of states will be parametrized by the degree of spin
polarization (see also [174])

pl ≡
ρl↑ − ρl↓
ρl↑ + ρl↓

, (6.8)

with pl ∈ [−1,1]; pl = 0 corresponds to a nonmagnetic lead and pl = ± 1 describes a spin
up/down-polarized half-metallic ferromagnetic contact, respectively. The tunneling rates then
read Γl↑ = 1

2Γl(1 + pl), Γl↓ = 1
2Γl(1 − pl), and Γl = Γl↑ + Γl↓.

Now we define the density matrix ρ̂ in vector form with the following subvectors (omitting the
time dependence):

ρ⃗σ ≡ (⟨ρ̂σL⟩ , ⟨ρ̂
σ
R⟩ , ⟨ρ̂

σ
LR⟩ , ⟨ρ̂

σ
RL⟩)

T

= (⟨n̂Lσ⟩ , ⟨n̂Rσ⟩ , ⟨d̂
†
Lσ d̂Rσ⟩ , ⟨d̂

†
Rσ d̂Lσ⟩)

T
,

ξ⃗e ≡ (⟨Ŝ
+
L⟩ , ⟨Ŝ

−
L⟩ , ⟨Ŝ

+
R⟩ , ⟨Ŝ

−
R⟩)

T
, (6.9)

ξ⃗u ≡ (⟨d̂
†
L↑ d̂R↓⟩ , ⟨d̂

†
R↓ d̂L↑⟩ , ⟨d̂

†
R↑ d̂L↓⟩ , ⟨d̂

†
L↓ d̂R↑⟩)

T
,

and the vacuum operator ρ̂0 ≡ 1 − N̂ with the total electron number operator N̂ = ∑lσ n̂lσ; its
EOM is obtained by (6.8) and reads

d

dt
⟨ρ̂0⟩ (t) = −ΓL ⟨ρ̂0⟩ (t) + ΓR↑ ⟨ρ̂↑R⟩ (t) + ΓR↓ ⟨ρ̂↓R⟩ (t) . (6.10)

Eventually, the combination of (6.5), (6.8), and (6.10) results in the EOM of the electronic part,
which we provide in a compact vector form

d

dt
ρ̂(t) =M(⟨Ĵx⟩ , ⟨Ĵy⟩ , ⟨Ĵz⟩ )ρ̂(t) , (6.11)

with ρ̂(t) ≡ ( ⟨ρ̂0⟩ (t), ρ⃗
↑(t), ρ⃗↓(t), ξ⃗e(t), ξ⃗u(t))

T and

M≡

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ΓL r⃗↑ r⃗↓ 0⃗T
4 0⃗T

4
l⃗↑ L↑ 04,4 A B
l⃗↓ 04,4 L↓ −A C
0⃗4 −A† A† D E
0⃗4 −B† −C† E F

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.12)
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where 04,4 is the (4,4)-zero-matrix, 0⃗4 is the 4-dimensional zero-vector, l⃗σ ≡ (ΓLσ,0,0,0)T,
r⃗σ ≡ (0,ΓRσ,0,0)T.
Together with the modified Bloch equations (6.6) for the large spin ⟨

⃗̂
J⟩ this forms an involved set

of nonlinear differential equations, which describe the coupled dynamics of the nonequilibrium
QD system and the large spin. Note that due to the internal tunnel coupling coherences between
different spin directions in different QDs (ξe,ξu) also need to be considered in the EOM. The
matrix on the right-hand side of (6.12) provides the coupling structure; the detailed definition of
the 4×4 block matrices Lσ,A,B, . . .F can be found in Appendix A.4. In particular, for vanishing
coupling λαi = 0 the ρ̂ part decouples completely from the ξ̂-part and from the large spin ⟨

⃗̂
J⟩.

The resulting master equation for ρ̂ describes the unidirectional transport of electrons through
two spin channels [175, 176]. Due to the strong Coulomb blockade the electron transfer in those
channels is correlated and for finite coupling λαi they mutually couple due to spin-flip transfer
between electron and large spin.
Since we consider the QD system in the infinite bias limit the average time-dependent electron
current through the DQD can be calculated by the product of occupations and tunnel rates of
the right QD

⟨Î⟩ (t) = ΓR↑ ⟨n̂↑R⟩ (t) + ΓR↓ ⟨n̂↓R⟩ (t) . (6.13)

6.3. Analysis and Numerical results
6.3.1. Steady-state currents
Before we will start with the discussions of the dynamics of large and electronic spin, we consider
the steady-state currents in the uncoupled and coupled case. With the interaction to the large
spin turned off (i.e. λ = 0) the steady-state current can be obtained analytically and reads

⟨Î⟩

e
=

4T 2
c (ΓL↓ + ΓL↑)ΓR↓ΓR↑

4aT 2
c + b↓ + b↑

, (6.14)

where a ≡ 2(ΓL↑ΓR↓ + ΓL↓ΓR↑) + ΓR↓ΓR↑, bσ ≡ ΓLσΓRσ̄(ΓRσ2 + 4ε2), and ε ≡ εL − εR denotes the
level detuning between the left and right dot levels in the system. With the definition of the
tunneling rates and the assumption of symmetric tunnel couplings ΓL = ΓR ≡ Γ this can be
rewritten as

⟨Î⟩

eΓ
=

4T 2
c (1 − p2

R)

4T 2
c [5 − pR(4pL + pR)] + 8ε2(1 − pLpR) + cΓ2 , (6.15)

with c ≡ (1 + pLpR)(1 − p2
R)/2. For symmetric polarizations p ≡ pL = pR we further obtain

⟨Î⟩

eΓ
=

4T 2
c

20T 2
c + 8ε2 + (1 + p2)Γ2/2

, (6.16)

which becomes maximal for nonmagnetic leads (p = 0). We need to note that this current
expression is only valid for incomplete polarization (∣p∣ < 1) since in the polarized case the
steady-state version of the master equation (6.11) is not well defined: In particular, the relevant
part of the coefficient matrix (Liouvillian superoperator) M (6.12) reduces to the left upper
N ×N submatrix (detached by lines) with N = 9. For ∣p∣ < 1 its rank is (N − 1) and a unique
steady state follows. In contrast for ∣p∣ = 1 when one spin channel is completely switched off
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Figure 6.2.: Current-induced magnetization of the large spin. (Top) Components of the electron
spin ⟨Ŝ

x

L⟩ (blue, dotted), ⟨Ŝ
x

R⟩ (blue, dashed) ⟨Ŝ
y

L⟩ (red, dotted), ⟨Ŝ
y

L⟩ (red,
dashed), ⟨Ŝ

z

L⟩ (black, dotted), ⟨Ŝ
z

R⟩ (black, dashed). (Middle) Components of
the large spin: ⟨Ĵ

x
⟩ (blue), ⟨Ĵ

y
⟩ (red), ⟨Ĵ

z
⟩ (black). (Bottom) Electronic current

⟨I⟩ (t) vs. time. In the long-term limit one observes ⟨Ĵ
x
⟩ = ⟨Ĵ

y
⟩ = 0, ⟨Ĵ

z
⟩ = j and

the current vanishes. (Inset) Evolution of the large spin as trajectory in the Bloch
sphere, where the red circle depicts the initial position. Note that the onset time
depends on the initial orientation of the large spin, the more the large spin deviates
from alignment with the magnetic field, the faster the switching process sets in.
Parameters: pL = −pR = 1, B/Γ = 0.1, Tc/Γ = 0.5, λ/Γ = 1, ε = 0, γJ/Γ = 0, large
spin length j = 10.

the rank reduces and more than one steady state is obtained, which is clearly unphysical. The
steady-state master equation is over-determined. In order to obtain the steady state for complete
polarization we have to make use of the spin-polarized master equation considered in Refs. [176,
34] where N = 5. The corresponding current reads

⟨Î⟩p

eΓ
=

4T 2
c

12T 2
c + 8ε2 + Γ2 , (6.17)

which significantly differs from (6.16) and leads to a discontinuity of the current when ∣p∣
approaches one. Therefore, the complete symmetric lead polarization provides a singular case in
our description, which has to be either excluded or treated with caution (see below).

Coupled spins. For arbitrary spin couplings we have not been able to derive an analytical
expression for the current due to the high dimensionality of the EOM. However, when the
large spin components ⟨Ĵx⟩ and ⟨Ĵy⟩ approach zero in the long-term limit, we again obtain the
steady-state current (6.14). This either occurs when the large spin is damped (γJ > 0) or for
isotropic spin coupling (λαi = λ, ∀i, α) as will be discussed in the next section.
As in the uncoupled case complete symmetric contact polarization (∣p∣ = 1) causes pecularities,
such as a dependency of the stationary current on initial conditions or multistable current
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(a) (b)

Figure 6.3.: Contour plots of the stationary currents vs pL and pR. (a) Coupled QDs with
parameters ε = 0, Tc/Γ = 0.5, B/Γ = 0.1. (b) Single-QD with the same magnetic
field B. The black vertical arrows denote switching directions in areas divided by
the straight black lines. For pL = pR = 0, i.e. unpolarized contacts, and on the
borders drawn as black lines no switching takes place. Note that for the DQD
the transition between switching up and down depends on the product λj: For
λj/Γ ≤ 1/2 and λj/Γ ≥ 2 the transition takes place along the line pR = pL (solid);
otherwise the transition line is located in the region bounded by pR ≈ 2.6pL for
λj/Γ = 1 (dashed). Note that those transitions are not linear with respect to pL as
shown, e.g., for λj/Γ = 1.25 (dotted) of λj/Γ = 0.8 (dashed-dotted).

behavior (see Sec. 6.3.4). We note, that this is also caused by the above mentioned failure of the
electronic master equation and not by the semiclassical approximation of the spin interaction.
However, the spin-polarized master equation can not be used here.

6.3.2. Isotropic coupling and current-induced magnetization of the large spin

In this section we consider isotropic coupling λαi = λ (∀i, α) between the electron spin and the
large spin. We will discuss the dynamical behavior of both spins and the current for various
lead polarizations pL and pR.

Reverse lead polarizations. For the sake of clarity we start our discussions with complete reverse
polarization pL = −pR = ±1. An electron transfer through the QD system only takes place when
each spin-up (spin-down) electron entering the left QD is able to down-flip (up-flip) its spin state,
respectively. According to the microscopic spin coupling Ĥ int = λ∑j(

1
2 Ŝ

+
j Ĵ

−
+ 1

2 Ŝ
−
j Ĵ

+
+ Ŝ

z

j Ĵ
z
)

this electron spin-up (spin-down) flip is accompanied with the decrement (increment) of the
large spin magnetic number by one: m∓1 (Ĵz ∣m,j⟩ =m ∣m,j⟩ with ∣m∣ ≤ j). Once the minimal
(maximal) number ∓j is reached, the large spin is completely aligned with the z−direction and
the current vanishes. This process is independent of the external magnetic field and can be
considered as current-induced switching [152] of the attached local magnetic moment. This effect
is also known in magnetic layers described by a Landau-Lifshitz-Gilbert equation for the layer
magnetization [154]. In this approach the current-induced magnetization has been interpreted
as spin-transfer torque [154, 155] acting on the magnetic moment. Unfortunately, for our DQD
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we are not able to identify analogous terms in Eq. 6.6 due to the complex coupling structure
with the electronic part.
Figure 6.2 shows the dynamics of the current-induced switching of ⟨

ˆ⃗J⟩ for our DQD, in the case
of pL = −pR = ±1 and no damping of the large spin γJ = 0. In the transient regime, damped
coherent oscillations of the electron between the QDs with frequency 2Tc (ε = 0) are visible in the
current and in the electron spin evolution. For the sake of clear demonstration we have chosen the
initial large spin to be reversely aligned to its final direction. According to our above explanation
the current then is peaked around the time when the derivative of ⟨Ĵ

z
⟩ (t) is maximal, in the

isotropic case when ⟨Ĵ
z
⟩ = 0, as the spin-spin interaction and thus the spin-transfer becomes

maximal there. In the long-term limit the current is given by (6.14). If one assumes a finite
damping γJ > 0 the z−component of the large spin will approach zero as well.
The inset of Fig. 6.2 contains the large spin evolution in the Bloch sphere – in addition to
the large spin magnetization from ⟨Ĵ

z
⟩ = −j to +j a precession with frequency B occurs. The

time for the magnetization reversal (switching time), however, does not depend on the external
magnetic field.
Since the coupling parameter λ provides the number of spin-flips per unit time and Γ the number
of electrons entering the left QD per unit time the switching time is determined by their ratio:
It diverges when λ/Γ→ 0 and saturates for λ/Γ ≃ 1 as long as the tunnel coupling Tc between
the QDs is on the order of Γ. This provides a lower bound for the switching time, whereas for
Tc/Γ ≫ 1 and ≪ 1 it increases.
Aside from the magnetization time scale, we observe that the onset of the switching process
depends on the initial orientation of the large spin. In particular, if it is nearly aligned
with magnetic field (⟨Ĵz⟩0 ≈ j) the spin-flip rate becomes significantly diminished, since the
corresponding coupling is proportional to λ(⟨Ĵx⟩ + ⟨Ĵ

y
⟩) [see eq. (6.4)]. This leads to a slowing

down of the magnetization onset; in the limit ⟨Ĵ
z
⟩0 = j the large spin keeps his initial orientation.

Arbitrary lead polarizations. So far we have addressed complete reverse lead polarizations.
However, switching also takes place for arbitrary pL and pR as shown in fig. 6.3(a). The direction
of the spin torque is schematically depicted by vertical arrows depending on pL and pR together
with the steady-state current (6.14) as contour plot. For pL < pR (pL > pR) the large spin
will switch to the spin-down (spin-up) direction, respectively. Note that this holds only for
parameters λj/Γ ≤ 1

2 or λj/Γ ≥ 2, respectively. If 1
2 < λj/Γ < 2 the transition between up- and

down-switching lies in the region bounded by pR = pL and pR ≈ 2.6pL for λj/Γ = 1. In this area
the transition lines are not linear with respect to pL, as shown for λj/Γ = 1.25 in fig. 6.3(a).
The switching time is also affected by the choice of lead polarizations. Given that ∣pL∣ = ∣pR∣ = ∣p∣,
the switching time decreases with decreasing ∣p∣, as depicted in Fig.6.4. Given a fixed left lead
polarization ∣pL∣ < 1, while pR is variable, the switching time has a lower bound for the minimum
of −pL/pR. On the other hand the spin transfer is increased as the left lead polarization
is increased. Thus, the switching time is minimized for complete reverse lead polarization
pL = −pR = ±1.
In the nonmagnetic case pL = pR = 0 [origins in Figs. 6.3(a) and (b)] no switching takes place
and the electron spin state ends up in a completely mixed state. When both QDs are presumed
to be initially unoccupied the electronic spin state is completely mixed for the entire evolution.
Consequently, the large spin evolves independently of the electron spins. This enables an effective
description of the electron spin dynamics presented in Appendix A.5. The situation, however,
changes when the QDs are initially occupied. During the decay of the electronic state into a
complete mixture the large spin evolution becomes affected and possesses transient oscillations
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Figure 6.4.: Time-dependent currents in single-QD and DQD setup for different contact po-
larizations pL and pR during the process of magnetization reversal. The currents
possess a maximum when ⟨Ĵ

z
⟩ = 0. With decreasing ∣pL∣ = ∣pR∣ the time for

magnetization switching increases. In DQD the switching time is always larger than
for the single-QD. Parameters: λ/Γ = 1, Tc/Γ = 0.5, B/Γ = 0.1

before it runs into the back-action free precession for γJ = 0. The frequency of the transient
oscillations depend on the parameter λ/Γ while their duration is governed by Γ. It follows that
in the undamped case the large spin steady state depends on the initial QD occupation.

Isotropic coupling with difference between left and right site. For a coupling scheme where
the components of one electronic spin are isotropic, i.e. λαi = λi (∀α) but the coupling differs
between the two electronic sites, i.e, λL ≠ λR, we observe in principle the same current-induced
magnetization behavior as before. However, the difference ∆λ ≡ λL − λR has an impact on the
specific behavior, for instance, on the switching times. The more the couplings differ, i.e. for
increasing ∣∆λ∣, the longer the switching takes. Given that the coupling strengths are on the
order of magnitude of the tunneling rates, the sign of ∆λ is of subordinate importance.

6.3.3. Comparison with single-QD

In the following we will compare the phenomenon of current-induced switching in a single-QD
and in the DQD in the same semiclassical description. Again, we consider the Hamiltonian
Ĥ = ĤSQD + ĤJ + Ĥ int + Ĥ leads + ĤT with its components defined in eq. (4.2). Using the EOM
technique introduced in Sec. 6.2.3 and the Lindblad master equation for the SQD setup

d

dt
ρ̂ (t) = −i [ĤSQD , ρ̂ (t)]

−
1
2∑σ

⎡
⎢
⎢
⎢
⎢
⎣

ΓLσ ({d̂σ d̂
†
σ , ρ̂ (t)} − 2 d̂†

σ ρ̂ (t) d̂σ)

+ ΓRσ ({d̂
†
σ d̂σ , ρ̂ (t)} − 2 d̂σ ρ̂ (t) d̂

†
σ)

⎤
⎥
⎥
⎥
⎥
⎦

, (6.18)

we obtain the following EOM for the QD occupations, the electron spin, and the large spin
(Γ ≡ ΓL = ΓR, omitting the time dependence):

116



d

dt
⟨n̂σ⟩ = (λx ⟨Ĵ

x
⟩ ⟨Ŝ

y
⟩ − λy ⟨Ĵ

y
⟩ ⟨Ŝ

x
⟩) (δσ↑ − δσ↓) − (ΓRσ + ΓLσ) ⟨n̂σ⟩ + ΓLσ (1 − n̂σ̄) ,

d

dt
⟨

ˆ⃗S⟩ = [ ⟨
ˆ⃗J
′
⟩ +Be⃗z] × ⟨

ˆ⃗S⟩ − 1
2

Γ ⟨
ˆ⃗S⟩ − 1

2
Γ(pL + pR) ⟨N̂⟩ e⃗z +

1
2

ΓpL e⃗z ,

d

dt
⟨

ˆ⃗J⟩ = [ ⟨
ˆ⃗S
′
⟩ +Be⃗z] × ⟨

ˆ⃗J⟩ , (6.19)

with ⟨
⃗̂
S′⟩ ≡ ∑α λ

α ⟨Ŝ
α
⟩ e⃗α , ⟨

⃗̂
J ′⟩ ≡ ∑α λ

α ⟨Ĵ
α
⟩ e⃗α and ⟨N̂⟩ = ⟨n̂↑⟩ + ⟨n̂↓⟩, which is the infinite bias

version of eq. (4.60). The anisotropic version of these equations (λx = λz = λ and λy = 0) has
been already studied in Ref. [128], but with a different focus. For isotropic coupling Fig. 6.3(b)
presents the steady-state current and the final direction of the large spin depicted as vertical
arrows in dependence on the lead polarizations pL and pR. The transition between the two
directions occurs for pL = pR, which has been also obtained in Ref. [152]. There the magnetization
change was discussed in terms of the sign of the spin-transfer torque, which is determined by
sgn[ΓL↓ΓR↑ − ΓL↑ΓR↓]. In contrast to the switching in DQD [see Fig. 6.3(a)] the transition does
not depend on λ or j. We further note that since the electrons are assumed to be noninteracting
in the single-QD the current is symmetric with respect to an exchange of pL and pR. This does
not hold for the DQD.
The comparison of the current evolutions for both setups (as shown in Fig. 6.4) reveals that the
SQD switching occurs always faster for the same set of parameters. In other words the coherent
electron transfer between the QDs slows down the switching.

Figure 6.5.: Time-dependent currents in the case of undamped large spin for different initial
system state: (a) empty DQD , (b) nL↑(0) = 1 , (c) nL↓(0) = 1, (d) nR↑(0) = 1
and (e) nR↓(0) = 1. The dominating oscillation frequencies are multiples of 2B
for all currents (parametric resonance; see text), but we observe phase shifts
and different magnitudes. Parameters: pL = pR = −0.9, B/Γ = 0.1, Tc/Γ = 0.4,
λαL = λxR = λzR = Γ, λyR = 0.

6.3.4. Anisotropic coupling
Large spin switching. Given the investigations of the spin magnetization reversal in the
isotropic case we probe for anisotropic coupling schemes that yield spin switching as well. In
principle we observe that the switching process takes place as long as the x-and y-components
of the spins are isotropically coupled (λxi ≈ λ

y
i , ∀i) and the leads polarized suitably. Taking

into account the microscopic spin interaction [see Sec. 6.3.2] this becomes clear since the λzi
terms are not directly contributing in the spin-transfer process. However, the z−couplings affect
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Figure 6.6.: Different transient currents for a setup with strongly polarized contacts (pL =

pR = −0.9 and Tc/Γ = 0.4, B/Γ = 0.1, ε = 0, γJ/Γ = 10−3) and different couplings
between spins: (Left) λαL = λxR = λzR = Γ, λyR = 0 and (Right) λxL/Γ = 0.2, λyL/Γ =

4.2, λzL/Γ = 1.3, λxR/Γ = 2.9 , λyR/Γ = 1.5, λzR/Γ = 0.7. (a) and (e) Components of
the electron spin ⟨Ŝ

x

L⟩ (blue, solid), ⟨Ŝ
x

R⟩ (blue, dashed) ⟨Ŝ
y

L⟩ (red, solid), ⟨Ŝ
y

L⟩

(red, dashed), ⟨Ŝ
z

L⟩ (black, solid), ⟨Ŝ
z

R⟩ (black, dashed). (b) and (f) Components
of the large spin: ⟨Ĵ

x
⟩ (blue), ⟨Ĵ

y
⟩ (red), ⟨Ĵ

z
⟩ (black). (c) and (g) Electronic

current ⟨I⟩ (t) vs. time. The steady-state current is given by Eq. (6.14). (d) and
(h) In the current spectrum of (c) the dominating frequencies are even multiples
(2,4,6. . . ) of the large spin Larmor frequency B, which refers to the phenomenon
of parametric resonance (see text). The current spectrum of (g) is broad and noisy,
which we attribute to chaotic behavior (see also Ref. [128]). For both cases holds:
As the large spin is damped out, the current oscillations vanish, since no more
spin-flips occur.

the speed of magnetization reversal: The magnetization process, e.g., can be slowed down by
increasing the z− couplings on both sites: λzL = λzR ≡ λz > λ. Contrariwise, decreasing λz steps
up the switching. Even if the z-couplings are different switching occurs. The corresponding
currents display a peak at the time when the derivative of ⟨Ĵ

z
⟩ (t) is maximal.

Nonmagnetic leads pL = pR = 0. Basically the same as for the isotropic coupling holds. In
addition we find that the transient phase and, thus, the polar angle for the free precession
depend crucially on the initial electronic states.

Undamped large spin γJ = 0. We obtain various regimes with respect to lead polarization
and spin coupling that exhibit limit cycles in the current, similar to Ref. [128] and chapter 4.
The Fourier spectra of those current time evolutions exhibit peaks at well defined frequencies,
confirming the periodicity of the system’s evolution. We note that in contrast to the single-QD
the initial system occupation plays an important rôle in the evolution of both the DQD and the
large spin, which is illustrated in Fig. 6.5. A similar observation has been made in Ref. [122].
For a more detailed analysis the fix points of the EOM have to be determined. Unfortunately,
due to the size and complexity of the EOM, we did not manage to find them analytically. Even
their numerical computation provides a complicated task.
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Parametric resonance. Studying the rich dynamics provided by the anisotropy, we can observe
parametric resonance in the current oscillations, particularly. The evolutions exhibit current
oscillations at multiples of the doubled Larmor frequency of the large spin, i.e. 2B, as can be
seen in Figs. 6.6(a)– 6.6(c). Although the periodic oscillations are in general very complicated,
due to the nonlinearity in the equations, the dominating frequency of the oscillations of the x
and y components of the electron spins, respectively, is B. The z component and consequently
the current, on the other hand, oscillates with multiples of 2B, which we reveal in the Fourier
spectrum [Fig. 6.6(d)]. The same phenomenon has been observed in the single-QD, so that we
can employ its model to provide an explanation. We assume anisotropic spin-spin coupling, i.e.
λx = λz = λ and λy = 0 and magnetic leads (pL, pR ≠ 0). Given that λj ≪ 1 we can make use of
the back-action free EOM for the large spin (A.20). It follows from Eqs. (6.19) that ⟨Ŝ

x
⟩ and

⟨Ŝ
y
⟩ oscillate with frequency B. We further recognize that the time derivative of ⟨n̂σ⟩ couples

to the product ⟨Ŝ
y
⟩ ⟨Ĵ

x
⟩. Integrating this product of sinusoidal oscillations both with frequency

B leads us to the current and ⟨Ŝ
z
⟩ oscillating with frequency 2B [cf. section 3.3 and [105]].

Given that the large spin is damped by the rate γJ the evolutions for different initial DQD
occupations match in the long-time limit. Consequently, the periodic or nonperiodic oscillations
are only present during the transients (as shown in the panels of Fig. 6.6). We observe different
transient scenarios ranging from quasiperiodic [(a)–(d)] to chaotic motion [(e)–(h)]. In all cases
the steady-state current is given by (6.14).

6.4. Conclusions

In this chapter we have studied electron transport through a DQD setup coupled to electronic
contacts . The spin of the excess electrons in the DQD interacts with a large spin and an external
magnetic field is applied. We use semiclassical Ehrenfest EOM together with a quantum master
equation technique. This method works well if one assumes that the dwell time of the electrons
is much smaller than the average large spin precession period.
We have found that the coupled dynamics of the large spin and the electron spins as well as the
current through the DQD structure strongly depend on the polarization of the electronic leads
and on the isotropy of the spin-spin coupling. Particularly, if the coupling between electron
spin and large spin is isotropic with respect to x and y while the electronic leads are reversely
polarized, a current-induced magnetization process of the large spin is obtained. The speed of
this switching is always lower than for a single-QD setup and depends, most importantly, on the
lead polarization.
On the other hand, a complete anisotropic coupling leads to a rich variety of different dynamical
scenarios, which for an undamped large spin depend on the initial state. In particular, we
have found that the electronic system may show self-sustained oscillations, either quasi-periodic
or even chaotic. Introducing a large spin damping renders these dynamics to be transient.
A remarkable feature of the undamped or damped dynamics is the occurence of parametric
resonance, observable as frequency doubling in the current. Furthermore, we analytically have
derived the stationary currents for the spin-dependent unidirectional single-electron transport,
when no interactions with the external spin are present. It turns out that this current also
applies for the case of current-polarized or damped large spin.
Experimental realizations for the large spin could be either the spin of magnetic impurities in
semiconductor QDs or a net magnetic moment in single molecules (single molecular magnets).
Whether our mean-field approach is applicable for these examples, where the spin typically is
not very large, needs further investigations. However, one possible realization for the large spin,
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that might justify the semiclassical treatment is the hyperfine interaction with an ensemble of
nuclear spins, where the number of spins is reasonably high [157].
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7. Summary

In this thesis we used a combined theory to study the complex dynamics of electronic transport
through QD structures in an external magnetic field. We applied a Markovian master equation
approach to model the transport and additionally exploited a semiclassical theory to model the
nonlinear spin-dynamics that arise when the electron spins of the excess electrons in the QDs
interact with external angular momenta via an exchange coupling. The semiclassical approach is
particularly justified for large external spins, e.g., the collective nuclear spins of the surrounding
material. Moreover, there is an implicit adiabatic approximation in the derivation as we assumed
that the precession of the large external spin is significantly slower than the electronic tunneling.
Thus, we obtain sets of equations of motion that can be solved numerically in an efficient way
and disclose at least some analytic features, such as fixed points. As an extension to the method
used in Ref. [128] our equations of motion for the SQD case work also for finite bias voltages.
The numerical solutions provide the time traces of often complicated dynamics that are not only
prone to the choice of parameters but also to the initial conditions.

Anisotropic couplings between electronic spins and the external spin give rise to different regimes
of complex nonlinear dynamics. For the model of two coupled spins – with or without dissipation
– we found fixed points, that are either stable centers or saddle points. Regular or quasi-periodic
oscillations occur. The determining parameters are the strength of the external magnetic field
and the dissipation rates in relation to the exchange coupling between the spins, which clearly
separates the phase-space into distinct regions, where qualitatively different behaviors occur.
The oscillations are damped if the dissipation exceeds a critical rate and if the magnetic field is
smaller than a critical magnetic field. Above that critical field oscillations remain undamped
and the system can be mapped on an effective model.
For both SQD and DQD setup as well as for nondissipative setups we have found common effects
such as parametric resonance. If the exchange interaction is isotropic we observed that spin
polarized currents switch the external spin to a position (anti-)parallel to the magnetic field,
where the current polarization determines the speed of the switching. In the DQD setup the
switching process is additionally slowed down due to the coherent coupling between the QDs.
Spin systems – particularly with anisotropic coupling – often display chaotic dynamics. The
nondissipative system is completely integrable only if the magnetic field is vanishing. For higher
magnetic fields chaos occurs for large parts of the phase-space of the semiclassical models, but
signatures of chaos emerge also in the quantum versions, as the quantum webs of simultaneous
eigenvalues are disrupted by higher fields. For the transport systems chaos is spotted the easiest
when computing the Fourier analyses of the time traces of the spins’ components or the currents.
In transport systems chaos is most likely to appear for smaller magnetic fields and smaller
tunneling rates. For magnetic fields higher than the critical field no chaos occurs. On the other
hand, one has to be aware that especially for the regime of low magnetic fields higher-order
transitions due to couplings of the external spin and the transport leads can be relevant and our
approach might miss parts of the dynamics as A. Metelmann pointed out [105].

Furthermore, we equipped the SQD model with a Maxwell-demon like feedback that modifies the
transport Liouvillian based on the measurement of the QD-occupation. Due to this modification
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the device is useful to generate currents against a moderate chemical bias. We were able to define
feedback schemes that implement a spin filter that generates currents where ↑- and ↓-currents
have opposite directions. When the spin interaction is turned off one finds constant currents,
but under certain conditions even periodically oscillating currents in opposite directions are
possible when the spin interaction is present.
Finally, we were able to find a microscopic implementation for the Maxwell demon in terms of
an extension of the model P. Strasberg introduced in Ref. [44]. In this model we mapped the
spin-σ levels in the SQD on two parallel QDs that interact capacitively with a third QD, the
detector. The interaction between DQD and detector than triggers different tunnel couplings.
With this generic model we were able to reproduce the spin-filtering effects generated by the
phenomenological feedback introduced in the SQD model. The derivation of the dynamics of the
generic demon model makes use of the Markovian master equation theory we introduced and we,
further, used a coarse graining approach to reduce the amount of equations that describe the
transport characteristics under feedback.
The generic model also works for coherently coupled QDs, although, with some restrictions. In
order to find a microscopic implementation of the feedback when the spin interaction is present
one has to exploit time-dependent theories, as there are many oscillating parameters. This might
be part of future research.
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A. Appendix

A.1. Simplified model for limit oscillation around J⃗z = −B/λ

For this model ⟨Ĵz⟩ is fixed and we transform the equations to a rotation-invariant frame by
using the rotation matrix around the z-axis to obtain a stationary ⃗̃J [cf. [128]]. Note that the
effective rotation frequency Beff is not B, since the backaction of the electronic system on the
precessing large spin is changing this frequency. The transformation reads

⟨
⃗̂
S⟩ = e−ΓtRS(t) ⟨

⃗̃S⟩ , RS(t) =

⎛
⎜
⎜
⎜
⎝

cos(Befft) − sin(Befft) 0 0
sin(Befft) cos(Befft) 0 0

0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

,

⟨
⃗̂
J⟩ = RJ(t) ⟨

⃗̃J⟩ , RJ(t) =
⎛
⎜
⎝

cos(Befft) − sin(Befft) 0
sin(Befft) cos(Befft) 0

0 0 1

⎞
⎟
⎠
. (A.1)

Using the inverse transformations ⟨
⃗̃S⟩ = eΓtR−1

S ⟨
⃗̂
S⟩ and ⟨

⃗̃J⟩ = R−1
J ⟨

⃗̂
J⟩ we can calculate the eom

for the spin components in the rotation invariant frame

d

dt
⟨
⃗̃S⟩ = eΓtR−1

S

d ⟨
⃗̂
S⟩

dt
+
dR−1

S

dt
RS ⟨

⃗̃S⟩ + ΓR−1
S RS ⟨

⃗̃S⟩ ,

d

dt
⟨
⃗̃J⟩ = R−1

J

d ⟨
⃗̂
J⟩

dt
+
dR−1

J

dt
RJ ⟨

⃗̃J⟩ . (A.2)

Inserting Eqs. (4.60) and (4.62) and applying the spin-valve feedback scheme, anisotropic
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coupling, and the infinite bias setup with tunneling rates ΓR↓ = 0,ΓL↑ = ΓR↑ = ΓL↓ = Γ, we obtain

d

dt
⟨S̃x⟩ = −λ (⟨J̃x⟩ cos(Befft) − ⟨J̃y⟩ sin(Befft)) sin(Befft) ⟨S̃z⟩ − λ ⟨J̃z⟩ ⟨S̃y⟩ +

Γ
2
⟨S̃x⟩ ,

d

dt
⟨S̃y⟩ = −λ (⟨J̃x⟩ cos(Befft) − ⟨J̃y⟩ sin(Befft)) cos(Befft) ⟨S̃z⟩ + λ ⟨J̃z⟩ ⟨S̃x⟩ +

Γ
2
⟨S̃y⟩ ,

d

dt
⟨ñ↑⟩ = λ [(⟨J̃x⟩ cos(Befft) − ⟨J̃y⟩ sin(Befft)) (⟨S̃x⟩ sin(Befft) + ⟨S̃y⟩ cos(Befft))] ,

+ Γ (1 − 2 eδ) ⟨ñ↑⟩ − eδ Γ ⟨ñ↓⟩ + eδ−Γt Γ ,
d

dt
⟨ñ↓⟩ = −λ [(⟨J̃x⟩ cos(Befft) − ⟨J̃y⟩ sin(Befft)) (⟨S̃x⟩ sin(Befft) + ⟨S̃y⟩ cos(Befft))]

+ Γ (1 − eδ) ⟨ñ↓⟩ − eδ Γ ⟨ñ↑⟩ + eδ−Γt Γ , (A.3)
d

dt
⟨J̃x⟩ = −λ e−Γt [(⟨S̃x⟩ cos(Befft) − ⟨S̃y⟩ sin(Befft)) sin(Befft) ⟨J̃z⟩ + ⟨S̃z⟩ ⟨J̃y⟩] ,

d

dt
⟨J̃y⟩ = λ e−Γt [− (⟨S̃x⟩ cos(Befft) − ⟨S̃y⟩ sin(Befft)) cos(Befft) ⟨J̃z⟩ + ⟨S̃z⟩ ⟨J̃x⟩] ,

d

dt
⟨J̃z⟩ = λ e−Γt [(⟨S̃x⟩ cos(Befft) − ⟨S̃y⟩ sin(Befft)) (⟨J̃x⟩ sin(Befft) + ⟨J̃y⟩ cos(Befft))] .

In the long-time limit the equations for ⃗̃J are stationary; thus, J̃i are constants in the equations
for ⃗̃S, and thus the number of equations is reduced in this effective model. From the numerical
solutions we know that the large spin’s z-component assumes a characteristic value that is
related two the fixed points P±y,±

IB , namely, ⟨Ĵz⟩ = ⟨J̃z⟩ = −B/λ, and since the large spin is
precessing almost unperturbed we can further assume ⟨J̃x⟩ = ⟨J̃y⟩ =

1√
2

√

j2 − B2

λ2 . The reduced
set of equations for the effective model is obtained by applying the inverse transformation. We
get

d

dt
⟨
⃗̂
S⟩ = e−ΓtRS

⟨
⃗̃S⟩

dt
+
dRS

dt
R−1
S ⟨

⃗̂
S⟩ − Γ ⟨

⃗̂
S⟩ , (A.4)

which leads to (4.81).

A.2. Finite bias fixed points and stationary states

The ⟨Ŝ
∗
z⟩-components of the fixed points P±

FB read for scheme A and B

B
A
4± =

eṼ /2 (− eδ+ε̃
±

z + e2δ
+1) − e3δ+ε̃±z+ 3Ṽ

2 −(e2δ+ε̃±z − eδ + eε̃
±

z) eδ+
ε̃±z
2 +Ṽ

+ eε̃
±

z/2

2((e2δ+ε̃±z +2 eδ + eε̃±z) eδ+
ε̃±z
2 +Ṽ

+ e3δ+ε̃±z+ 3Ṽ
2 + eṼ /2 ((eδ + e2δ

+1) eε̃±z + e2δ
+1) + 2 eε̃±z/2)

,

B
B
4± =

1
2

⎛

⎜
⎜

⎝

(e2δ
+1) (eε̃

±

z +2) eṼ /2 +3 e2δ+ ε̃±z
2 +Ṽ

+3 eε̃
±

z/2

(e2δ
+1) e 3

2 ε̃
±
z+Ṽ + e2δ+ε̃±z+ Ṽ

2 +2 e2δ+ ε̃±z
2 +Ṽ

+ e2δ+ε̃±z+ 3Ṽ
2 + e2δ+ Ṽ

2 +2 eε̃±z+ Ṽ
2 +2 eε̃±z/2 + eṼ /2

− 1
⎞

⎟
⎟

⎠

, (A.5)

with the parameters

ε̃±z ≡ β(B ± λj) , Ṽ ≡ βV . (A.6)

If one of the fixed points P±
FB is reached the exchange interaction becomes ineffective and the

two spin-current channels decouple. Due to the tunneling setup ΓL↑ = ΓL↓ = ΓR↑ = Γ,ΓR↓ = 0,
there is no net ↓-current (⟨I±L↓⟩ = − ⟨I±R↓⟩ = 0) and for ↑-current we obtain ⟨I±R↑⟩ = − ⟨I±L↑⟩ = ⟨I±↑ ⟩,
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which read with respect to the two feedback schemes

⟨I+A
↑ ⟩

eΓ
=

e
ε̃+z
2 −δ

(e4δ+Ṽ
−1)

eδ+ε̃+z+ Ṽ
2 + e2δ+ε̃+z+ Ṽ

2 + eδ+
3ε̃+z

2 +Ṽ
+ e3δ+ 3ε̃+z

2 +Ṽ
+ e3δ+ε̃+z+ 3Ṽ

2 +2 e2δ+ 1
2 (ε̃+z+2Ṽ )

+ e2δ+ Ṽ
2 + eε̃+z+ Ṽ

2 +2 eε̃+z/2 + eṼ /2
,

⟨I−A
↑ ⟩

eΓ
=

eã−δ (e4δ+Ṽ
−1)

e2δ
(e 1

2 (d̃+V ) +2 eã+V + e b̃+Ṽ
2 ) + e3δ

(e 1
2 (d̃+3V )

+ ec̃+Ṽ ) + e 1
2 (d̃+V )+δ + e 1

2 (d̃+V ) +2 eã + e b̃+Ṽ
2 + ec̃+δ+Ṽ

,

⟨I+B
↑ ⟩

eΓ
=

e
ε̃+z
2 −δ

(e4δ+Ṽ
−1)

e2δ
(eε̃+z+ Ṽ

2 + eε̃+z+ 3Ṽ
2 +2 e 1

2 (ε̃+z+2Ṽ )
+ e 1

2 (3ε̃+z+2Ṽ )
+ eṼ /2) + 2 eε̃+z+ Ṽ

2 + e 1
2 (3ε̃+z+2Ṽ )

+2 eε̃+z/2 + eṼ /2
,

⟨I−B
↑ ⟩

eΓ
=

eã−δ (e4δ+Ṽ
−1)

e2δ
(e 1

2 (ã+c̃+Ṽ ) + e 1
2 (ã+c̃+3Ṽ )

+2 eã+Ṽ + e b̃+Ṽ
2 + ec̃+Ṽ ) + 2 e 1

2 (ã+c̃+Ṽ ) +2 eã + e b̃+Ṽ
2 + ec̃+Ṽ

, (A.7)

where the parameters ã ≡ β(B/2 + λj) , b̃ ≡ 3βλj , c̃ ≡ 3βB/2 , d̃ ≡ ã + c̃ have been introduced.

If the system has developed towards the fixed points P±y,±
FB , we only need to consider the spin-

dependent currents at the left lead since the currents are balanced (⟨IyL↑⟩ + ⟨IyL↓⟩ = − ⟨IyR↑⟩). We
obtain

⟨IyA
L↓ ⟩

eΓ
CA = (e2δ+ Ṽ2 +1)((2B − λ) eδ+

Ṽ
2 +4B + λ) ,

⟨IyA
L↑ ⟩

eΓ
CA = e−δ ((2B − λ) e4δ+Ṽ

+ e2δ+ Ṽ2 (− eδ(2B + λ) − 2B + λ) − 2B (eδ +1) + λ) ,

CA = λ (eṼ /2 +1)(5 e2δ+ Ṽ2 + eδ +3) ,

⟨IyB
L↓ ⟩

eΓ
CB = eδ (e2δ+ Ṽ2 +1)(eṼ /2(2B − λ) + 4B + λ) ,

⟨IyB
L↑ ⟩

eΓ
CB = e−δ ((2B − λ) e4δ+Ṽ

−2 e3δ+ Ṽ2 (2B cosh(δ) + λ sinh(δ)) − 2B (e2δ
+1) + λ) ,

CB = λ (eṼ /2 +1) (e2δ
(5 eṼ /2 +1) + 3) . (A.8)

A.3. Commutators for general correlator operators

The most general correlator commutator used in section 6.2.3 reads

[d̂
†
iσ d̂iσ′ , d̂

†
js d̂js′] = δij (δsσ′ d̂

†
iσ d̂js − δs′σ d̂

†
js d̂iσ′) . (A.9)

More specifically one needs

[n̂i,σ , Ŝ
+
j ] = δij (δσ↑ Ŝ

+
i − δσ↓ Ŝ

−
i ) ,

[n̂i,σ , Ŝ
−
j ] = δij (δσ↓ Ŝ

+
i − δσ↑ Ŝ

−
i ) ,

[Ŝ
+
i , Ŝ

−
j ] = δij (n̂i↓ − n̂j↑) ,

[n̂i,σ , n̂j,σ′] = [Ŝ
±
i , Ŝ

±
j ] = 0 . (A.10)
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A.4. Block-matrices and parameters

Here, we provide the coupling matrices used in the EOM for the electronic part (6.11)

Lσ (⟨Ĵ
z
⟩) =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 −iTc iTc
0 −ΓRσ iTc −iTc

−iTc iTc −
ΓRσ

2 + iεσ 0
iTc −iTc 0 −

ΓRσ
2 − iεσ

⎞
⎟
⎟
⎟
⎟
⎠

, (A.11)

A (⟨Ĵ
x
⟩ , ⟨Ĵ

y
⟩) =

⎛
⎜
⎜
⎜
⎝

−Λ−
L Λ+

L 0 0
0 0 −Λ−

R Λ+
R

0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

, (A.12)

B (⟨Ĵ
x
⟩ , ⟨Ĵ

y
⟩) =

⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0

−Λ−
R 0 0 Λ+

L

0 Λ+
R −Λ−

L 0

⎞
⎟
⎟
⎟
⎠

, (A.13)

C (⟨Ĵ
x
⟩ , ⟨Ĵ

y
⟩) =

⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0

Λ−
L 0 0 −Λ+

R

0 −Λ+
L Λ−

R 0

⎞
⎟
⎟
⎟
⎠

, (A.14)

E =

⎛
⎜
⎜
⎜
⎝

−iTc 0 iTc 0
0 iTc 0 −iTc

iTc 0 −iTc 0
0 −iTc 0 iTc

⎞
⎟
⎟
⎟
⎠

, (A.15)

D (⟨Ĵ
z
⟩) = Diag(iε̃L,−iε̃L, iε̃R −

ΓR
2
,−iε̃R −

ΓR
2

) , (A.16)

F (⟨Ĵ
z
⟩) = Diag(iε′+ −

ΓR↓
2
,−iε′+ −

ΓR↓
2
, iε′− −

ΓR↑
2
,−iε′− −

ΓR↑
2

) , (A.17)

with the parameters (i = L,R) , (σ =↑, ↓)

ε ≡ εL − εR ,

εσ ≡ ε +
1
2
(δσ↑ − δσ↓) (λ

z
L − λ

z
R) ⟨Ĵ

z
⟩ ,

ε′± ≡ ±ε +B +
1
2
(λzL + λ

z
R) ⟨Ĵ

z
⟩ , (A.18)

ε̃i ≡ B + λzi ⟨Ĵ
z
⟩ ,

Λ±
i ≡

i
2
[λxi ⟨Ĵ

x
⟩ ± iλyi ⟨Ĵ

y
⟩] , (Λ±

i )
∗
= −Λ∓

i .

126



A.5. Large-spin dynamics with vanishing electronic back-action
Without the electronic spin the EOM of the large spin (6.6) or (6.19) reduce to

d

dt
⟨
⃗̂
J⟩ = B⃗ × ⟨

⃗̂
J⟩ − γJ ⟨

⃗̂
J⟩ , (A.19)

which are readily solved by

⟨
⃗̂
J⟩ (t) = e−γJ t

⎛
⎜
⎝

cos(Bt) − sin(Bt) 0
sin(Bt) cos(Bt) 0

0 0 1

⎞
⎟
⎠
⟨
⃗̂
J⟩0 . (A.20)

This provides the damped Larmor precession of the large spin around the external magnetic field
axis with frequency B. Inserting Eqs. (A.20) into the electronic EOM leads to a set of linear
first order differential equations with time-periodic coefficients. In two dimensions it corresponds
to the Mathieu-Hill equation, which describes the phenomenon of parametric resonance.
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