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Abstract
Automatic Drum Transcription
with Deep Neural Networks

by Thomas HOLZ

The field of Music Information Retrieval (MIR) has gained a lot of importance over
the last years. One important sub-field of MIR is the subject of Automatic Music
Transcription (AMT) which focuses on extracting a musical score or a symbolic rep-
resentation (e.g. MIDI) from an audio signal. This thesis explores the ability of
deep neural networks to automatically transcribe drums – also known as Automatic
Drum Transcription (ADT). In order to do so, this thesis proposes a deep neural
network (DNN) architecture that is inspired by related work in the field of ADT.
The backbone of this model is a convolutional recurrent neural network (CRNN)
that is supposed to learn both spectral as well as structural patters. This model is
compared to different deep neural network architectures, all of which try to extract
latent feature representations from an audio signal and learn patterns to identify
and distinguish between different drum instruments. The benchmark models are
utilized to gauge the performance of the proposed model on evaluation datasets.
The foundation of the training of the model is the publicly available dataset E-GMD
introduced by Callender, Hawthorne, and Engel (2020) as it features 444.5 hours of
labeled audio files.

This thesis demonstrates the importance of data in a supervised deep learning
setting by showing peculiarities of E-GMD that can impact the performance of
the proposed model negatively. Furthermore, a new dataset is created consisting
of random drum sequences (RGDD) to show that adding new data to an already
existing dataset can be a viable regularization approach. Additionally, it is shown
that random data can serve as standalone datasets and even outperform models
that have been trained on sequences that were played by humans. For this, the
proposed model is evaluated in three different settings. The first setting sheds
light on the performance of the proposed model in a drums-only scenario, that is
audio files that contain multiple drum instruments. After this, the same model is
evaluated on files that only contain single instrument hits which are here referred
to as stems. Lastly, it is investigated if models that were trained on drums-only
sequences can generalize well in full-mix settings where accompanying instruments
like bass, synthesizer, guitar, or vocals are present. In each of the aforementioned
scenarios it is shown that training a model to perform more fine grained instrument
predictions and later group them to a coarser instrument grouping can improve
the overall performance of the model. That means that a model that was trained
to transcribe for example 7 instruments is later used to only transcribe 3 distinct
classes by grouping the corresponding predictions.
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Zusammenfassung
Das Gebiet des Music Information Retrieval (MIR) hat in den letzten Jahren stark
an Bedeutung gewonnen. Ein wichtiges Teilgebiet von MIR ist die automatische
Musiktranskription (AMT), die sich auf die Extraktion einer Partitur oder einer
symbolischen Darstellung (z.B. MIDI) aus einem Audiosignal konzentriert. Diese
Arbeit untersucht die Fähigkeit von neuronalen Netzen, Schlagzeug automatisch
zu transkribieren - auch bekannt als Automatic Drum Transcription (ADT). Zu
diesem Zweck wird in dieser Arbeit eine Architektur für neuronale Netze (DNN)
vorgeschlagen, die von verwandten Arbeiten aus dem Gebiet der ADT inspiriert ist.
Das Grundgerüst dieses Modells ist ein Convolutional Recurrent Neural Network
(CRNN), das sowohl spektrale als auch strukturelle Muster lernen soll. Dieses Mod-
ell wird mit verschiedenen neuronalen Netzwerkarchitekturen verglichen, die alle
versuchen, latenteMerkmalsrepräsentationen aus einemAudiosignal zu extrahieren
und Muster zu lernen, um verschiedene Schlagzeuginstrumente zu identifizieren
und zu unterscheiden. Die Benchmark-Modelle werden verwendet, um die Ergeb-
nisse des vorgeschlagenen Modells auf Evaluationsdatensätzen zu beurteilen. Die
Grundlage für das Training des Modells ist der öffentlich zugängliche Datensatz E-
GMD, der von Callender, Hawthorne, and Engel (2020) vorgestellt wurde und 444,5
Stunden annotierte Audiodateien enthält.

Diese Arbeit demonstriert die Bedeutung von Daten in einer überwachten Deep-
Learning-Umgebung, indem sie Besonderheiten von E-GMD aufzeigt, die sich neg-
ativ auf die Ergebnisse des vorgeschlagenenModells auswirken können. Außerdem
wird ein neuer Datensatz erstellt, der aus zufälligen Schlagzeugsequenzen (RGDD)
besteht, um zu zeigen, dass das Hinzufügen neuer Daten zu einem bereits vorhan-
denen Datensatz ein praktikabler Regularisierungsansatz sein kann. Darüber hin-
aus wird gezeigt, dass Zufallsdaten als eigenständige Datensätze dienen können
und sogar Modelle übertreffen, die auf Sequenzen trainiert wurden, die von Men-
schen gespielt wurden. Zu diesem Zweck wird das vorgeschlagene Modell in drei
verschiedenen Situationen evaluiert. Das erste Experiment beleuchtet die Ergeb-
nisse des vorgeschlagenen Modells in einem reinen Schlagzeugszenario, d. h. Au-
diodateien, die mehrere Schlagzeuginstrumente enthalten. Danach wird dasselbe
Modell für Dateien untersucht, die nur einzelne Instrumentenschläge eines einzigen
Instruments enthalten, die hier als Stems bezeichnet werden. Schließlich wird un-
tersucht, ob Modelle, die auf reinen Schlagzeugsequenzen trainiert wurden, auch
in vollständigen Mischungen mit Begleitinstrumenten wie Bass, Synthesizer, Gi-
tarre oder Gesang gute Ergebnisse erzielen können. In jedem der zuvor genan-
nten Szenarien zeigt sich, dass das Training eines Modells für feinere Instrumenten-
prediktionen und deren spätere Gruppierung zu einer gröberen Instrumentengrup-
pierung das Gesamtergebnis des Modells verbessern kann. Das bedeutet, dass ein
Modell, das für die Transkription von beispielsweise 7 Instrumenten trainiert wurde,
später durch Gruppierung der entsprechenden Prediktionen nur für die Transkrip-
tion von 3 verschiedenen Klassen verwendet wird.
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Chapter 1

Introduction

Today, the applications of machine learning algorithms are more versatile than
ever before. One major field is the topic of image recognition as demonstrated by
Krizhevsky, Sutskever, and Hinton (2012). There, deep neural networks (DNNs)
are used to find patterns in images that set them apart from others, and hence try
to classify them correctly according to their labels which is referred to as supervised
learning. This fact paves the way for deep learning in the audio domain as the same
classification techniques can be applied to audio. Here, the short-time Fourier trans-
form (STFT) creates a visual representation or "image" of the audio signal which is
often times the foundation for deep learning tasks related to audio. Nevertheless, vi-
sual representations of audio are just one option among others to work with in deep
learning. For example, raw audio can also be used for this. The structure of DNNs is
hierarchical in nature which is why they are well suited to explore patterns in data.
Music information retrieval (MIR) focuses on exactly that in the realm of audio. It is
an example of an interdisciplinary research field that combines statistics, signal pro-
cessing, psycho-acoustics, and music theory to gain an in-depth view of the spectral
composition of an audio signal over time so that it can be further analyzed or pro-
cessed. Automatic music transcription (AMT) is a fundamental part of MIR (Benetos
et al. (2019)). It is used to extract an automatically generated symbolic transcription
from an audio signal by using deep neural networks while offering various different
use-cases like score following (Li and Duan (2016)), audio to score alignment (Nieder-
mayer and Widmer (2010)), score-informed source separation (Duan and Pardo (2011)),
or remixing volume balances between individual drum instruments (Dittmar and
Müller (2016)) to name a few. One sub-field of AMT is automatic drum transcription
(ADT) which focuses on transcribing drums or percussion instruments from audio
files. The word transcription is used in thesis to refer to the detection of drum onsets
and their classification. Figure 1.1 shows a simplified high-level overview of ADT
and the fundamental steps taken in this thesis to obtain an automatically generated
drum transcription.

Feature 
Extraction Neural Network

Waveform
Kick Drum

Input Features

Snare Drum

Hi-Hat

Activation Functions
Transcription

Peak 
Picking

FIGURE 1.1: Exemplary building blocks of automatic drum transcrip-
tion (ADT) based on the file drummer1/session1/6_jazz-funk_116_fill_4-
4_57.wav from E-GMD. This 3-hit high-level overview depicts the
main concepts that are used in this thesis to automatically generate

a transcription from an audio signal.
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The starting point of ADT in thesis is an audio file which is transformed into
a spectrogram that serves as input features to a deep neural network. This audio
file can either contain drums-only or other instruments / vocals in addition to
drums (here referred to as full-mixes). This "image" of the audio contains both
spectral and temporal information and lays the foundation for convolutional and
recurrent blocks inside the neural network. In the next step, the neural network
extracts low level features or latent representations with the aid of multiple hidden
layers that allow the neural network to eventually make predictions about where
a certain instrument is in the spectrogram. This is done frame-wise across the
entire spectrogram. The outcome of this is an activation vector that represents the
probabilities of where the neural networks predicts an instrument to be. Finally, in
the post-processing steps a peak picking algorithm is applied to those probabilities
so that a transcription of the remaining peaks can be created.

Motivation and Outline
The goal of this thesis is to thoroughly analyze state-of-the-art supervised deep
learning techniques while proposing an own model architecture. Two benchmark
architectures are compared with the proposed model which is evaluated on datasets
that are commonly used in the ADT literature. This includes datasets that either
contain drums-only mixes, which can be hits of single instruments or beats and fills
of entire drum kits, or entire songs that feature a band consisting of multiple instru-
ments and a singer. The latter of which are referred to as full-mixes. At the same time,
the importance of data in deep learning is emphasized by a comprehensive analy-
sis of the main training dataset called E-GMD introduced by Callender, Hawthorne,
and Engel (2020). On top of this, a new dataset that contains randomly generated
drum sequences fromMIDI notes is introduced to investigate if randomly generated
data are a legitimate foundation for ADT and to see if adding random sequences to
already existing training datasets can have an impact on a model’s performance.
Finally, this thesis explores the impact of training a DNN to initially discriminate be-
tween more instruments than are finally used in the automatic drum transcription.
Note however, that the focus of this thesis is the automatic transcription of drums
while neglecting the velocity of events.

The use cases for automatically generated drum transcriptions are manifold.
Vogl, Dorfer, and Knees (2016) name possible applications like the extraction of sheet
music for music students, MIDI generation/re-synthesis, or utilizing the derived
meta-information for other MIR related tasks like genre classification. At the same
time, ADT allows for re-arranging drum sequences after a recording has already
been finished.

This thesis is subdivided into 6 chapters. Following this introductory part is
Chapter 2 which gives a high-level overview of the aspects of deep learning that
are necessary to understand the main concepts of this thesis. It talks about the two
main concepts used herein namely convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) while touching on the training and testing process of the
DNN using an audio example. Chapter 2 is purposefully kept concise in order to
put the main focus on the datasets, methods, and results presented in this thesis as
well as to highlight the application of deep neural networks with regard to audio
and music. Nevertheless, references for self-study and more in-depth explanations
are given where needed.

After that, Chapter 3 gives an overview of the employed datasets used for train-
ing and evaluation purposes. In order to understand the results presented in this
thesis, this chapter sheds light on characteristics like for example event-, genre-, and
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tempo-distribution as well as overall size and the creation of the datasets where ap-
plicable.

Chapter 4 talks about the entire processing pipeline starting with the introduc-
tion of the features used for training purposes. Following this is the introduction
of the employed pre-processing steps including cutting and padding, annotation fil-
tering, augmentation, and target computation. Afterwards, the proposed network
architecture is presented and compared to two baseline networks to finally conclude
the chapter by talking about post-processing steps as well as evaluationmetrics used
to gauge the overall performance of the proposed model.

Chapter 5 presents and discusses the results of various experiment settings and
compares the outcome of the evaluation on the datasets presented in Chapter 3 of
the proposed model to baseline models where possible. In the first section of this
chapter, the performance of the proposed model is evaluated in a 3-, 7-, and 25-event
setting focusing on transcribing drums from drums-onlymixes. After that, the results
of an explorative approach which investigates whether a model that was trained on
drums-only mixes also performs well on drum stems are presented and discussed.
Lastly, the proposed model which is trained on drums-only mixes is applied to full-
mixes in order to investigate its ability to generalize in a setting it was not trained
in.

Finally, Chapter 6 concludes this thesis by reflecting on the outcome of the in-
vestigate experiments. Key findings are summarized and evaluated while giving an
outlook on future work as well as talking about open topics.
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Chapter 2

Background & Related Work

This chapter first talks about the fundamentals of deep learning and lays the foun-
dation of background knowledge that is later necessary to better understand the
architecture choices in Chapter 4. It serves as a concise high-level overview of the
fundamental concepts of deep learning without going into too much detail. A more
complete and theoretical view on individual parts can be found in Goodfellow, Ben-
gio, and Courville (2016). The concepts described here are underlined by a clear
focus on audio. However, this does not mean that they are not applicable or trans-
ferable to similar tasks or domains. As mentioned in Chapter 1, this section will not
cover an in-depth view of the mathematical background on machine learning either.
However, a great resource for this is given by Deisenroth, Faisal, and Ong (2020). Fi-
nally, this chapter concludes by presenting related work as well as the current state
of research.

2.1 Deep Learning

Finding patterns in data is at the core of machine learning (ML) algorithms. Con-
ventional ML approaches are applied to structured data for which the underlying
patterns have to be understood so that features can be extracted in order for the data
to be further processed or classified under a predefined set of rules. However, this
approach presupposes knowledge about the data and its structure which is not al-
ways given. With regard to large unstructured datasets, for which a manual feature
extraction in a classification scenario increases in difficulty, this problem becomes
even more pronounced. Deep learning tries to solve this by combining both the fea-
ture extraction as well as the classification by enabling an algorithm to "learn" the
rules to classify data by optimizing an error function. The field of deep learning is a
sub-field of machine learning and employs algorithms that were originally inspired
by the function and anatomy of the brain (McCulloch and Pitts (1943); Hebb (1949))
which is why deep learning algorithms are used to create so-called artificial neural
networks. Deep learning is a method of representation learning that enables models
that consist of an input layer, multiple processing layers (also called hidden-layers),
as well as an output layer to extract abstract feature representations that are learned
from data during the training process. That way, multiple layers of abstractions are
created which suppress irrelevant features as well as propagate important ones for
a given problem. Besides applications in the realm of audio, deep neural networks
(DNNs) are employed in a broad spectrum of different use cases like computer vi-
sion (Krizhevsky, Sutskever, and Hinton (2012)), medicine (Esteva et al. (2021)), or
natural language processing (Bahdanau, Cho, and Bengio (2015)). The term deep
refers to the fact that the neural network consists of multiple hidden layers between
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input and output layers. An example of a deep neural network with multiple layers
is shown in Figure 2.1.

OutputDense Layer Dense Layer

Input Features

Convolution Pooling Convolution Pooling

KD

HH

SDLSTM LSTM

Filter / Kernel

FIGURE 2.1: Exemplary deep neural network that has 3 output pre-
diction nodes for kick drum (KD), snare drum (SD), and hi-hat (HH).
This DNN is a reduced and abstracted version of the architecture of

the proposed model.

This approach is motivated by the hierarchical structure of many audio signals
as shown by Burred and Lerch (2004). On the other hand, typical machine learning
algorithms used to require hand-crafted feature extractors that only then could cope
with raw input data (LeCun, Bengio, and Hinton (2015)). Deep learning is able
to circumvent this problem by enabling neural networks to learn the best feature
extractions (latent features) based on the given data during training with the aid
of hidden-layers. The types of hidden-layers that are used in this thesis are dense-,
convolutional-, pooling-, recurrent-, and dropout-layers which are explained in the
following part.

Dense Layer
The basis of a dense layer as shown in Figure 2.1 is an artificial neuronwhere multiple
instances of them arranged in a layer constitute a dense layer with a width of N,
where N is the number of neurons. The artificial neuron can be mathematically
described as follows:

y = f(
n

Â
i=1

wixi + b) = f(wTx+ b) (2.1)

where:

f = activation function
w = weights
x = input vector
b = bias

Equation 2.1 shows that the output y of a single artificial neuron is computed by
passing the dot product of a weight vector w and an input vector x plus an addi-
tional bias term b through a non-linear activation function f(·) to enable the deep
neural network to learn complex functional mappings from data. The parameters b
andw are the ones that are adjusted or "learned" during the training process. In this
thesis, the SELU activation function, introduced by Klambauer et al. (2017), is used
in both convolutional- and dense layers due to its self-normalizing characteristics.
Therefore, no additional batch-normalization layers (Ioffe and Szegedy (2015))
are employed in the proposed model. On top of that, SELU solves the vanishing
gradient problem as described by Hochreiter (1998) for deep neural networks which
may cause the training process to stop. Another commonly used activation function
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employed to solve the vanishing gradient problem is the ReLU function which
introduced by Jarrett et al. (2009). Besides that, the sigmoid activation function is
used in the final dense layers of the DNN as it outputs a probability that is useful for
binary or multi-class multi-label classification tasks. The latter of which describes the
scenario for ADT where the output is not mutually exclusive meaning that there can
be for example two different instruments occurring at the same time. Since the sum
of the predicted outputs does not have to add up to 1, it is an indicator of how certain
the neural network is about classifying one or multiple instruments in a given frame.

Convolutional Layer
A particularly important component in deep learning tasks is the convolutional layer.
Research of the visual cortex of a cat byHubel andWiesel (1959) as well as Hubel and
Wiesel (1962) has shown that depending on the location and orientation of an input
the cells in the cortex fire differently and therefore motivating the birth of convolu-
tional neural networks (CNNs). Convolutional layers are the building blocks of CNNs
as they enable deep neural networks to recognize patterns in images. LeCun et al.
(1998) paved the way for CNNs by introducing LeNet-5, an artificial neural network
that is able to recognize digits. CNNs have a local receptive field that allows the net-
work to extract local relations like for example edges. The name convolutional neural
network stems from the mathematical operation called convolution which describes
an overlap of one function over another.

x ⇤ w =
•

Â
�•

x[m] · w[n�m] (2.2)

Equation 2.2 demonstrates the discrete version of the convolution for 1-
dimensional problems. However, in deep learning the input features as well as the
kernels are usually multi-dimensional arrays. Therefore, when adopting the concept
of convolution to artificial neural networks Equations 2.1 and 2.2 are combined. The
input of a convolutional layer is a grid of pixels which is then convolved with a filter
or kernel that is "learned" during the training process based on the optimization of a
loss function. An exemplary convolution is shown in Figure 2.2.
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c) c)

FIGURE 2.2: Convolution of a 4x4 input vector with a 3x3 kernel and
a stride of 1. See Dumoulin and Visin (2018) for a detailed description

on convolution arithmetic.

Convolutional layers are typically followed by pooling layers which help reduce
the dimensions of the previously extracted feature map while reducing the memory
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footprint of the DNN at the same time. Two commonly employed pooling tech-
niques are average- and max-pooling, the first of which takes the average while the
latter of which takes maximum value of a filter that is applied to a feature map.
Gholamalinezhad and Khosravi (2020) give a more detailed overview of the variety
of pooling methods.

Recurrent Layer
Sequential data like for example text or audio are usually processed using recurrent
neural networks (RNNs) for CNNs struggle to model the relationship between past
and present states as they assume an independence of inputs and outputs. RNNs
are capable of doing exactly that by forwarding a previous cell state to the next cell
and therefore providing the neural network some sort of memory. In case of music
for example, a chord that was played before can influence the chord that occurs next.
In this unidirectional scenario, only past events influence the determination of the
output of a given sequence. Figure 2.3 demonstrates how a cell state at point t is
influenced by the cell state.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

FIGURE 2.3: Schematic representation of an unrolled recurrent neural
network (RNN).

Similar to CNNs, the calculated error is backpropagated into the network to up-
date the weights and biases of the DNN. However, in case of simple RNNs the error
is summed at each time step for they share parameters across each layer. This cir-
cumstance can cause vanishing or exploding gradients during the optimization process
and therefore eventually stop the training. This problem motivated Hochreiter and
Schmidhuber (1997) to introduce a way to store information over a longer period of
time called long short-term memory (LSTM) by using so-called gates in a recurrent cell
as shown in Figure 2.4.

s s Tanh s

⇥ +

⇥ ⇥

Tanh

cht�1i

Cell state

hht�1i

Hidden state

xhtiInput

chti

Cell state

hhti

Hidden state

hhtiOutput

FIGURE 2.4: Schematic representation of an long-short term memory
(LSTM) cell.
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The first gate in an LSTM cell is the forget gate which controls what information
in the cell state to forget based on new information at time step t. For this, the
hidden state of the previous cell is processed with the concatenated input vector x
by the first sigmoid function and then multiplied with the cell state. In a following
processing step, the input gate determines what additional information to encode
into the cell state. Hence, the hidden state and the input are transformed by the
adjacent sigmoid and tanh functions to be then added to the cell state. Finally, the
output gate multiplies the final cell state at time step t (previously passed through a
tanh function) with the concatenated and sigmoid processed hidden state and input
vector to result in the new hidden state or output of the LSTM cell.

The concept of introducing some kind of memory of past time steps can also be
extended to time steps in the future which is especially useful for input data like
music as it enables the DNN to learn from context that lies in the future and not only
in the past. This type of architecture is called bidirectional recurrent neural network
(BiRNN) and was introduced by Schuster and Paliwal (1997). In this thesis, the pro-
posedmodel introduced in Section 4.3 features 3 layers of bidirectional LSTM layers.

Dropout Layer
Overfitting has been a widely discussed topic in the literature (Roelofs et al. (2019);
Salman and Liu (2019)) and describes the problem of DNNs performing well on the
training data but poorly on unseen data and therefore lacking the ability to gener-
alize. One commonly used technique established by Srivastava et al. (2014) to pre-
vent a model from overfitting is dropout. Dropout disables neurons inside the neural
network by randomly multiplying them with zero which forces the network to no
longer rely on certain nodes and look for different paths inside the trained model.
The concept of this approach is demonstrated in Figure 2.5.

Dropout ⇥
⇥

⇥

⇥

⇥

⇥

⇥

FIGURE 2.5: A comparison between a NN with (right) and without
(left) dropout. This is a typical approach to reduce overfitting.

In this thesis, regular dropout is used after each max-pooling layer of a convolu-
tional stack as well as after the last bi-directional LSTM layer. In contrast to regular
dropout, which sets individual bins of the spectrogram to zero with a predefined
probability when used in a convolutional stack, Tompson et al. (2015) introduced
spatial dropout which drops an entire 2D feature map instead of individual bins of
the spectrogram. Contrary to intuition, spatial dropout did not show an advantage
over regular dropout in preliminary investigations for this thesis.

However, implementing dropout is only one technique to regularize the DNN
among others (Benning and Burger (2018); Jacques and Roebel (2019); Thakkar and
Lohiya (2021); Jain et al. (2021)). Additional regularization techniques used in this
thesis are augmenting training data as described in Section 4.2 or increasing the
number of training instances by adding the dataset presented in Section 3.2.
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Supervised Learning
The form of deep learning that is used in this thesis is called supervised learningwhich
means that for every drum event in a dataset there is a corresponding label (also re-
ferred to as ground truth or annotations). The basic concept behind supervised learn-
ing is visualized in Figure 2.6.

Labeled Training Data

Prediction

Evaluation

Training

DNN

Actual Label

Adjust Weights

FIGURE 2.6: Schematics of a supervised deep learning algorithm
based on audio data.

The first step in a supervised learning algorithm is to feed labeled training data
to the deep neural network. In case of this thesis, it is a 12 s log-mel magnitude
spectrogram which is computed prior to the training and then propagated through
multiple layers of the network. The model then outputs a vector of predictions (ac-
tivations vector) for each individual instrument it is trained to transcribe. This thesis
investigates multiple classification scenarios, namely classifying 3, 7, and 25 differ-
ent instruments. A loss- or error-function, here binary cross-entropy loss, computes the
error between the predicted activations vector and the ground truth vector. It is
important to note, that the different drum instrument classes are predicted indepen-
dently of each other because multiple instruments can occur simultaneously. The
parameters that are trained and adjusted after each iteration of this iterative training
process are the weights or filters which are ultimately "learned" by the deep neural
network to minimize the aforementioned error. The model adjusts its weights by
computing a gradient vector by employing backpropagation as it enables the neural
network to propagate the error back into the model and therefore improve its per-
formance based on the calculated error. The foundations of this optimization tech-
nique were laid by Kelley (1960) and Bryson (1961) while the first implementation of
backpropagation in neural networks goes back to Rumelhart, Hinton, and Williams
(1986). It has since then been the foundation of optimizing the parameters inside a
deep neural network. Equation 2.3 introduces the main concept behind backpropa-
gation.

W|t = W|t�1 � h
∂E
∂W

����
t�1

(2.3)

where:

h = learning rate
W = weights & biases
E = error / loss

The learning rate, which determines the size of the gradient descent steps in
order to minimize the error, is among the most important parameters to tune with
respect to training a DNN. Smith (2017) introduced the so-called cyclical learning
rates to circumvent the problem of finding the right setting for this hyper-parameter.
The optimization algorithm employed together with the aforementioned cyclical
learning rates in this thesis is Adamwhich was introduced by Kingma and Ba (2015).
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More information on gradient descent based optimization algorithms is given by
Ruder (2016).

Testing
A test set of unseen data is fed to the deep neural network after the training process
is completed to evaluate the performance of the trained model. This final step gives
indication of how well the model can generalize on data that the model has not seen
before. It is important to note that in supervised learning a deep neural network
cannot generalize well on data that was not present in the training dataset in any
way, meaning that predicting for example a tom in an audio file when there are only
kick drum (KD), snare drum (SD), and hi-hat (HH) events in the training data will
not yield promising results. This fact indicates that data and its variance is a key
factor when it comes to deep learning and generalizability.

2.2 Related Work

Before the advent of deep neural networks, different approaches to tackle ADT tasks
were applied. One of the very first steps in that direction was undertaken by Schloss
(1985) with a focus onmodeling attack characteristics by implementing an automatic
slope detector based on the envelope of an audio signal. Once the onsets of the
drums are identified, an exponential decay constant is determined to discriminate
between either dampened or undamped strokes so that the pitch of the drum can be
figured out.

However, not until the work of Gouyon, Pachet, and Delerue (2000) did ADT ex-
perience a renaissance. This time, the approach was based on using the zero-crossing
rate (ZRC) to classify percussive sounds as either snare drum-like or bass drum-like.
They have found that the zero-crossing rate of the decay region is a proper feature
to discriminate the two aforementioned classes in a clean, non-noisy setting.

Later work focused more on prior subspace analysis (PSA) as for example demon-
strated by Fitzgerald, Lawlor, and Coyle (2003). Their technique showed that when
prior knowledge about the sources in the audio in the form prior frequency subspace
is available, the results can be improvedwhen compared to independent subspace anal-
ysis (ISA) as presented by Fitzgerald, Coyle, and Lawlor (2002).

One year after that, Van Steelant et al. (2004) used support vector machines (SVM)
to classify kick and snare drums in audio signals. Thismethod serves as a supervised
learning algorithm that is applied in binary classification tasks. Multi-dimensional
feature vectors of those two classes are computed to then calculate a hyperplane or
decision boundary so that in the best case scenario all instances belonging to the same
class (either -1 or 1) are on the same side of the hyperplane. The vectors with the
smallest distance to this hyperplane are called support vectors. Note, that this clas-
sification is optimized by maximizing the distance or margin between both support
vectors and the hyperplane.

In contrast to that, Paulus and Virtanen (2005) apply an unsupervised approach
to transcribe drums that combines both PSA as well as non-negative matrix factoriza-
tion (NMF), the latter of which extracts two non-negative matrices that encode the
information of both the average spectral energy distribution (source spectra) of an
instrument as well as the activation or probability of each instrument per time frame
of the magnitude spectrogram of the audio. The multiplication of these two matri-
ces is an approximation of the input spectrogram. This separation process therefore
estimates the proportion or gain of an instrument contributing to the overall signal
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at each time frame. The divergence between the prediction and the observed spec-
trum is minimized in an iterative manner. Finally, after normalizing, compressing,
differentiation, low-pass filtering, and peak-picking the resulting onsets above a pre-
defined threshold are extracted. Through this method they were able to surpass the
performance of SVMs and PSAs.

Another approach was used by Paulus and Klapuri (2009). Here, hiddenMarkov
models (HMMs) are used to transcribe drums from polyphonic music. For this, the
input audio is first processed by sinusoids-plus-residual modelling to suppress tonal
spectral components that are likely to be not part of drums. After that, mel-frequency
cepstral coefficients (MFCCs) are extracted from the audio as input features to the
HMMs to be then reduced in dimensionality by applying a linear discriminant anal-
ysis (LDA). Following this is a maximum likelihood linear regression (MLLR) to adapt
the HMMs. Finally, applying the Viterbi algorithm yields the predicted drum tran-
scription based on the state transitions of the HMMs.

Kaliakatsos-Papakostas et al. (2012) proposed a method to transcribe drums in
real-time using amplifiers as well as band-pass filters that are estimated in an itera-
tive process to determine a characteristic frequency response of a drum onset. Con-
trary to defined frequency ranges as suggested by Tzanetakis, Kapur, and McWal-
ter (2005), these optimized filter ranges allow for a more nuanced and appropriate
range to work in. In order to determine if a certain drum is played, the amplitude
responses of these filters are observed and if a predefined threshold is exceeded, the
corresponding drum is detected.

While this thesis tries to give an overview of techniques to transcribe drums prior
to the advent of deep neural networks, only a selection can be given. However, Wu
et al. (2018) give a more detailed overview of the work that was done prior to the
first approaches towards using deep neural networks like the one by Gajhede, Beck,
and Purwins (2016).

Current state-of-the-art ADT models have a few things in common. Firstly, they
calculate an activation vector for each instrument that is under investigation. These
activation vectors serve as pseudo-probabilities for each investigated frame of the
audio signal indicating whether or not a note onset is present. They are necessary
to compare them to the target activation vectors to eventually compute the error
between both. With the aid of a peak-picking algorithm during post-processing,
the final model predictions can be extracted. Secondly, it is common to have as little
processing steps as possible, and finally, they use a gradient-descent-based approach
for the optimization of the training (Vogl (2018)).

Unlike Gajhede, Beck, and Purwins (2016), Vogl, Dorfer, and Knees (2016) did
not use CNNs to solve ADT tasks but employed four different recurrent neural net-
works (RNNs) since they are well suited to process sequential data as shown by
Böck, Krebs, and Widmer (2016). Vogl, Dorfer, and Knees (2016) focus on predicting
three classes of drums, namely KD, SD, and HH, while showing the best evaluation
scores for the RNN containing a time-shift parameter. Vogl, Dorfer, and Knees (2017)
further underline the successful implementation of RNNs with an additional label
time-shift (tsRNN). In this case, Vogl, Dorfer, and Knees (2017) show that their model
is superior to other models like the ones from Wu and Lerch (2015) or Southall,
Stables, and Hockman (2016) that use either partially fixed NMF or bi-directional
RNNs when transcribing drums from polyphonic music. Following the work on
CNNs and RNNs is the work by Vogl, Widmer, and Knees (2018) who put emphasis
on transcribing multiple instruments of a drum set while at same time showing that
convolutional recurrent neural networks (CRNNs) deliver the best results for almost
every publicly available dataset regardless of the number of drum instruments to be
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transcribed. This approach combines the properties of CNNs that are capable of ex-
tracting local dependencies in the spectrogramwhereas RNNs can capture temporal
long-term dependencies to some extent. Ishizuka, Nishikimi, and Yoshii (2021) try to
further improve this by introducing a self-attention mechanism as transfer learning
in their transcription model which is based on an encoder-decoder model.

All of the abovementioned approaches are supervised in nature which inherently
require large labeled datasets to work with. One of the first steps towards working
with unlabeled data with regard to ADT was done by Wu and Lerch (2017) where
they show that labels that were generated by a teacher model can indeed be used by
a student model and therefore have the student outperform the teacher. Approaches
like the one proposed byWang et al. (2020) introduce a semi-supervisedmethod called
few-shot learning with minimal human input that is able to recognize percussive in-
strument classes that are not present during training. On the other hand, Choi and
Cho (2019) utilized a complete unsupervised approach with which they are able
to score competitive results on a publicly available dataset. These methods are a
promising outlook because a bottleneck of supervised methods is the fact that large
amounts of labeled data are either difficult to acquire or time-consuming to create.

Table 2.1 gives an overview of the selection of related work presented in this
section.

TABLE 2.1: A selection of related work on ADT presented in this the-
sis. A more in-depth overview is given by Wu et al. (2018).

Author(s) Approach

Schloss (1985) Modeling attack characteristics
Gouyon, Pachet, and Delerue (2000) ZCR
Fitzgerald, Coyle, and Lawlor (2002) ISA
Fitzgerald, Lawlor, and Coyle (2003) PSA
Van Steelant et al. (2004) SVM
Paulus and Virtanen (2005) NMF
Paulus and Klapuri (2009) HMM
Kaliakatsos-Papakostas et al. (2012) Band-pass filtering
Gajhede, Beck, and Purwins (2016) CNN
Vogl, Dorfer, and Knees (2016) RNN
Southall, Stables, and Hockman (2016) BiRNN
Wu and Lerch (2017) Student-teacher learning
Vogl, Widmer, and Knees (2018) CRNN
Choi and Cho (2019) CRNN
Wang et al. (2020) Few-shot learning
Ishizuka, Nishikimi, and Yoshii (2021) Self-attention
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Chapter 3

Datasets

As mentioned in Chapter 2, data is key to deep learning. Therefore, a wide selec-
tion of different datasets are used in this thesis to either train a DNN or evaluate its
performance and its capability to generalize on unseen data respectively. The char-
acteristics of each dataset are highlighted which includes for example the number
of files and the musical genre they feature, the tempo where information was pro-
vided, as well as instrument complexity. The latter refers to the number of different
instrument classes or event types that are present in the dataset. On top of that, a
new dataset that comprises randomly generated single event sequences and random
full-mixes is introduced that was created to tackle generalization issues.

3.1 E-GMD

In this thesis, the Expanded Groove MIDI Dataset (E-GMD)1 is used for training pur-
poses of the model that is presented in Section 4.3. It was introduced by Callen-
der, Hawthorne, and Engel (2020) and is an expansion of the Groove MIDI Dataset
(GMD)2 by Gillick et al. (2019). It is the first drum transcription dataset that features
human drum performances with velocity annotations, however, they are not used in
this thesis as the focus solely lies on classifying drum events. Nevertheless, this topic
should be investigated in future work. The dataset consists of audio recordings and
their corresponding annotations in MIDI format. The dataset was created using an
electronic drum set3 featuring 43 different drum kit sounds ranging from electronic
to acoustic drum kits, all of which are present in the train, test, and validation split.

TABLE 3.1: Average duration of Beats (47.1%) and Fills (52.9%) of
E-GMD.

Type # Files ? in seconds

Beats 18,576 82
Fills 26,961 2.85

Total 45,537 35

Generally, this dataset is a drums-only dataset which means that there are no instru-
ments other than drums present in the recordings. The recordings were done at
44.1 kHz, 24 bit and were aligned within 2ms of the original MIDI files. The dataset
distinguishes between Beats and Fills with Beats referring to longer musical phrases

1https://magenta.tensorflow.org/datasets/e-gmd, last accessed July 16, 2021
2https://magenta.tensorflow.org/datasets/groove, last accessed July 16, 2021
3https://www.roland.com/us/products/td-17/, last accessed July 16, 2021

https://magenta.tensorflow.org/datasets/e-gmd
https://magenta.tensorflow.org/datasets/groove
https://www.roland.com/us/products/td-17/
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and Fills being short sequences that are usually used in music to transition from one
part of the song to another which is underlined by their average file duration shown
in Table 3.1.

An important aspect about data in deep learning is variance. Table 3.2 gives on
overview of the distribution of sequences across train, test, and validation splits of
E-GMD and their duration in hours.

TABLE 3.2: An overview of the E-GMD splits and their duration ac-
cording to Table 2 by Callender, Hawthorne, and Engel (2020). It indi-
cates that although the number of sequences/files is large, the actual

number of unique sequences is low (2.3%).

Split # Unique Sequences # Total Sequences Duration (hours)

Train 819 35,217 341.4
Test 123 5,289 50.9
Validation 117 5,031 52.2

Total 1,059 45,537 444.5

It becomes obvious that although the dataset features a large amount of total se-
quences the number of unique ones only amounts to roughly 2.3% across every
split.

In addition to the variety of 43 different drum kit sounds, there is also variety
with regard to genres which can be seen in Figure 3.1. There, a simplified overview
of the genre distribution is shown for the sake of clarity. Rock is the most represented
genre with a share of 28.7% among all 17 that are featured in the dataset. The least
represented genre isMiddle Easternwith a share of 0.1%.

FIGURE 3.1: Coarse genre distribution of E-GMDwith Rock being the
main genre (28.7%). For this, the first genre of an audio file name was

taken into consideration.
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Figure 3.1 shows a clear imbalance among genres which might already be indicator
for poor performance of underrepresented genres as good classification can only be
achieved with a balanced representation of all classes (Kumar et al. (2021)).

Similar to the genres, there is also an imbalance with regard to tempo. The span
of the tempo of the sequences in the dataset range from 50 to 290 BPM as can be seen
in Figure 3.2. Tempos over 200 BPMwere grouped into the category >200 for visual
purposes.

FIGURE 3.2: Absolute tempo distribution of E-GMD grouped into
steps of 10 BPM.

The majority of sequences (19.5%) display an overall tempo of around 90 BPM
whereas the minority of sequences (0.1%) feature a tempo of 43, 160, and 190 BPM.
Overall, this Figure 3.2 underlines an emphasis on lower to mid-tempo ranges. All
of the abovementioned meta-information on Beats, Fills, splits, genres, and tempo are
provided for each individual audio file in a csv file that comes with the dataset.

As mentioned in the introductory statement of the chapter, datasets can have
different levels of instrument complexity. In case of E-GMD, Callender, Hawthorne,
and Engel (2020) distinguish between 3 different levels of complexity. The most
complex and therefore finest level of complexity comprises 25 different event types
or classes. Here, every single instrument of the drum set represents its own indi-
vidual class consisting for example of different kinds of snare drums (SD) and toms
(TT). The next coarser level of complexity groups individual instruments into their
main class. This means that for example all types of hi-hats (HH) are grouped under
the umbrella term (HH) and therefore introduces the first level of information loss
with regard to distinguishing between each individual instrument. At this point, a
model trained on this grouping can for example no longer distinguish between an
open and a closed HH. The last grouping the authors make is to further summarize
the remaining classes (KD, SD, TT, HH, CY, RD, BE) into just 3 classes (KD, SD,
HH). Note, however, that only the 3 and 7 class ADT scenarios are investigated by
Callender, Hawthorne, and Engel (2020) while all scenarios including the 25 classes
are investigated in this thesis. Table 3.3 gives a more granular perspective on the
groupings of the different event types that are present in E-GMD.
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TABLE 3.3: Instrument complexity and grouping of E-GMD accord-
ing to Callender, Hawthorne, and Engel (2020).

Instrument 25 Hits 7 Hits 3 Hits

Kick Drum KD KD KD

Snare Drum Head SDH SD SD
Snare Drum Rimshot SDR SD SD
Snare Cross-Stick SDX SD SD
Clap CL SD SD

Tom 1 T1 TT SD
Tom 1 Rim T1R TT SD
Tom 2 T2 TT SD
Tom 2 Rim T2R TT SD
Tom 3 T3 TT SD
Tom 3 Rim T3R TT SD

Hi-Hat Open Bow HOB HH HH
Hi-Hat Open Edge HOE HH HH
Hi-Hat Closed Bow HCB HH HH
Hi-Hat Closed Edge HCE HH HH
Hi-Hat Pedal HP HH HH
Tambourine TB HH HH

Crash 1 Bow C1B CY HH
Crash 1 Edge C1E CY HH
Crash 2 Bow C2B CY HH
Crash 2 Edge C2E CY HH

Ride Bow RBO RD HH
Ride Edge RED RD HH

Ride Bell REB BE HH
Cowbell COW BE HH

Note, however, that themapping ofMIDI pitches in E-GMDdoes not follow the gen-
eral MIDI mapping4 but the Roland Mapping5 which makes a potential re-synthesis
of the dataset cumbersome.

To better understand the aforementioned instrument groupings and levels of
complexity, it is crucial to take a look at the distribution of instruments across all
groupings. Figure 3.3 shows the relative frequencies of each grouping across all
splits. In the top row, the simplest scenario features only 3 events, namely kick-
drum (KD), hi-hat (HH), and snare drum (SD). Here, the share of each instrument in
the individual split is roughly the same. However, it also shows that the 3 different
event classes are imbalancedwhen compared to each other with KD being underrep-
resented. This imbalance in the dataset can also be seen in the 7 event (middle row)
and 25 event (bottom row) groupings. This circumstance is not ideal as it might
result in a biased DNN by favoring majority classes as described by Johnson and

4https://www.midi.org/specifications-old/item/gm-level-1-sound-set, last accessed July
19, 2021

5https://rolandus.zendesk.com/hc/en-us/articles/360005173411-TD-17-Default-
Factory-MIDI-Note-Map, last accessed July 19, 2021

https://www.midi.org/specifications-old/item/gm-level-1-sound-set
https://rolandus.zendesk.com/hc/en-us/articles/360005173411-TD-17-Default-Factory-MIDI-Note-Map
https://rolandus.zendesk.com/hc/en-us/articles/360005173411-TD-17-Default-Factory-MIDI-Note-Map
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Khoshgoftaar (2019), but it can be counteracted to some degree by applying differ-
ent loss weights in the model (Fernando and Tsokos (2021)). However, this approach
cannot fix major classes imbalances as shown by Cartwright and Bello (2018). A
more effective approach would be to over-sample unrepresented instrument classes
as for example demonstrated by Mohammed, Rawashdeh, and Abdullah (2020) as
well as Shaikh, Changan, and Malik (2021).

FIGURE 3.3: Relative event distributions of E-GMD among train, test,
and validation split. The total number of events is 14,340,500.

In order to be able to compare to the results of this thesis to the results of Callender,
Hawthorne, and Engel (2020), the problem of class imbalance is left unchanged.

3.1.1 E-GMD-Clean

As E-GMD serves as the main training dataset for the models in thesis, further anal-
yses were done. They show, however, that the dataset is not free of flaws which
is why a cleaned version of E-GMD is presented in this thesis to investigate what
the impact of the irregularities might be on the overall performance. For example,
there are 43 audio files that are empty and therefore contain no signal even though
their MIDI counterpart contains events. These files, all of of which are part of the
training splits, would degrade the training process, hence, they are removed from
the dataset. An overview of these files is given in Appendix A.1. On top of that,
there are a total of 496 MIDI files that contain events occurring after the end of their
audio file counterparts. These events are removed from the MIDI files during the
pre-processing procedure so that both the audio and MIDI file have the same length
to ensure a proper training. A full list of these files can be found in Appendix A.2.
Finally, running an onset detection algorithm over all audio files in E-GMD shows
that when comparing the detected onset times to the ground truth onset times awide
range of deviation in the alignment between audio andMIDI files ranging from 0ms
up to 112ms can be detected. This observation was visually confirmed by manually
inspecting a selection of files. The average deviation between audio and MIDI files
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was determined by calculating the median of the 10 onsets in the audio that dis-
played the highest energy and the onset time of the nearest annotation. An example
of the erroneous alignment between audio and MIDI files is presented in Figure 3.4.
The distribution of the described discrepancy is shown Figure 3.5.

FIGURE 3.4: Example of misalignment between audio and MIDI
files (green bars) in E-GMD demonstrated by the example file
drummer8_eval_session_4_soul-groove4-80_beat_4-4_55.wav. The visu-
alization was done by using the software Sonic Visualiser introduced

by Cannam, Landone, and Sandler (2010).

FIGURE 3.5: Distribution of the deviation between audio files and
MIDI annotations of E-GMD. Files that display a deviation of � 6ms
are removed from the dataset and are therefore not part of E-GMD-

Clean.

In order to be able to guarantee a proper training, testing, and validation process,
all files where the MIDI annotations deviate less than 6ms from the audio file are
kept in the dataset whereas the remaining files were excluded. The threshold of
less than 6ms is chosen based on the findings from Litovsky et al. (1999) where trial



Chapter 3. Datasets 19

participants start to hear two distinct clicks reliably when the temporal gap between
two events is around 8ms to 10ms. The remaining data is called E-GMD-Clean from
this point on.

This filtering process changes the distributions presented for E-GMD. There-
fore, updated versions of the overview of unique sequences (Table 3.4), genres (Fig-
ures 3.6), tempos (Figure 3.7), and instruments (Figure 3.8) are given.

TABLE 3.4: An overview of the E-GMD-Clean splits and their dura-
tion. Compared to E-GMD, the number of total sequences is reduced
by 20.5%while the number of unique sequences is reduced by 13.5%.

Split # Unique Sequences # Total Sequences Duration (hours)

Train 731 28,844 250.6
Test 83 3,556 29.4
Validation 102 3,799 32.6

Total 916 36,199 312.6

FIGURE 3.6: Coarse genre distribution of E-GMD-Clean with Rock
being the main genre (28.7%). For this, the first genre of a file name

was taken into consideration.
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FIGURE 3.7: Relative tempo distribution of E-GMD-Clean grouped
into steps of 10 BPM.

FIGURE 3.8: Relative event distributions of E-GMD-Clean among
train, test, and validation split. The total number of events is

10,136,955.

3.2 RGDD

In order to investigate whether real drum sequences perform better than random
drum sequences or adding random sequences to other training data can improve the
performance of DNNs, a dataset consisting of both acoustic and electronic drum kits
is introduced. This new dataset is referred to as Randomly Generated Drums Dataset
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(RGDD) and was created using the Python packageMIDIUtil6. RGDD comprises 52
different drum sets from Logic Pro7 that were used to synthesize MIDI files which
feature both random drums-only mixes and stems with a duration of 12 s each. Ta-
ble B.1 shows the exact overview of the employed drum sets. Randommixes are files
that feature random drum sequences where events occur both simultaneously as
well as sequentially the majority of which are events occurring sequentially though.
The maximum number of events that can occur simultaneously is set to 5. All pa-
rameters that were set either fixed or randomly for the creation of the dataset are
shown in Table 3.5.

TABLE 3.5: An overview of the parameters and their values / ranges
used for the creation of RGDD. Unlike ranges of values, single val-
ues indicate that this parameter is fixed and not randomly changed
from one note to the next. The parameters duration and spacing are
measured in quarter notes. The first range of note spacing is used for
the creation of the stems of RGDD whereas the latter is used for the

mixes.

Parameter Value / Range

Track Tempo 60 BPM
Note Duration 0.01
Note Velocity 40 – 127
Note Spacing 0.3 – 1.4 / 0.1 – 0.3

The tempo of each drum kit track is arbitrarily set to 60 BPM as this parameter
does not play an important role when creating random drum sequences. The du-
ration of each MIDI event is also arbitrarily set to a value of 0.01 and refers to the
duration in quarter notes. Just like tempo, duration can also be neglected with regard
to the creation of the randomly generated dataset as the sustain of drums behaves
differently from melodic instruments like for example piano. The first parameter
that changes from one note to another is velocity with a typical range between 0 and
127. In case of RGDD, the velocity range is set to 40 – 127 to both allow for a wide
dynamic range as well as reasonable loud values so that some events do not get
masked by others too much. This phenomenon can be examined for E-GMD and is
to be avoided. The last randomly set parameter is spacingwhich refers to the time in
quarter notes between the onset of one note and its following note. This range was
chosen to account for two aspects: to give each individual instrument hit similar
space compared to IDMT-Stems for the stems of RGDD, and to have 12 hits of each
instrument for stems and 80 hits of a drum set for mixes fit in a 12 s file.

In order to investigate if a DNN that is trained solely or additionally on stems can
improve the performance of the DNNs that were previously trained on mixes only, a
portion of RGDD is used as a standalone dataset to form the subset that is referred
to as RGDD-Stems. For this part of the dataset only the note spacing of 0.3 – 1.4 is
used. RGDD-Stems features 175,488 files in total which is comparable to E-GMD-
Clean after it is split into 12 s sequences. After splitting RGDD-Stems by a ratio of
0.8 for the train test and 0.1 for the test and validation splits respectively, this yields
the distribution among the different splits shown in Table 3.6.

6https://github.com/MarkCWirt/MIDIUtil, last accessed September 14, 2021
7https://www.apple.com/logic-pro/, last accessed November 5, 2021

https://github.com/MarkCWirt/MIDIUtil
https://www.apple.com/logic-pro/
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TABLE 3.6: An overview of the RGDD (right column) and RGDD-
Stems (left column) splits and their duration. Each of the 12 s long

audio files is created randomly and therefore unique.

Split # Sequences Duration (hours)

Train 128,630 / 163,910 429 / 546
Test 23,429 / 35,189 78 / 117
Validation 23,429 / 35,189 78 / 117

Total 175,488 / 234,288 585 / 780

Due to the fact that the General MIDI Level 1 Percussion Key Map does not ac-
count for all the instruments listed in the 25 Hits column in Table 3.3, the finest level
of instrument grouping for both RGDD and RGDD-Stems is set to 7 to ensure the
ability to compare the results of RGDD to E-GMD and E-GMD-Clean. The resulting
grouping is shown in Table 3.7.

TABLE 3.7: Instrument complexity and grouping of RGDD.

Instrument 7 Hits 3 Hits

Kick KD KD
Sub-kick† KD KD

Snare Sidestick SD SD
Snare Center SD SD
Snare Rimshot SD SD
Hand Claps SD SD

Low Tom TT SD
Mid Low Tom TT SD
Mid Tom TT SD
Mid Hi Tom TT SD
Hi Tom TT SD

Hi-Hat Open HH HH
Hi-Hat Closed HH HH
Hi-Hat Foot Close HH HH
Hi-Hat Foot Splash HH HH
Tambourine HH HH

Crash CY HH

Ride In RD HH
Ride Edge RD HH
Ride Out RD HH

Ride Bell BE HH
Cowbell BE HH

†RGDD-Stems exclusive
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Figure 3.9 shows the instrument for RGDD whereas Figure 3.10 shows the in-
strument distribution for RGDD-Stems, both of which distinguish between 3 and 7
classes.

FIGURE 3.9: Relative event distributions of RGDD among train, test,
and validation split distinguishing both between 3 (top row) and 7
(bottom row) event grouping. The total number of events is 6,809,856.

FIGURE 3.10: Relative event distributions of RGDD-Stems among
train, test, and validation split distinguishing both between 3 (top
row) and 7 (bottom row) event grouping. The total number of events

is 2,105,856.
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3.3 IDMT

The first dataset used for evaluation purposes is IDMT-SMT-Drums8 (in this thesis
referred to as IDMT) introduced by Dittmar and Gärtner (2014) which consists of 608
wav files that feature kick drum (KD), snare drum (SD), and hi-hat (HH) events only,
104 of which are polyphonic drum loops similar to the Beats and Fills of E-GMD. For
each of the drum loops there are 3 stem files containing their individual drum hits
originally intended for training purposes. This is one major difference compared
to E-GMD which only contains files that feature multiple instruments. The corre-
sponding ground truth annotations were manually created and are provided as xml
and svl files. The dataset comprises three different kinds of tracks, that is recorded
(RealDrum), synthesized (TechnoDrum), as well as sampled drums (WaveDrum). The
recordings were made at a sampling frequency fs of 44.1 kHz and 16 bit. The drum
loops named TechnoDrum02 and WaveDrum02 comprise 64 drum loops combined
but also feature 3 stem files each with their individual drum hits originally intended
for source separation purposes. The stems of WaveDrum02 are used for evaluation
purposes in Section 5.2 to investigate the performance of DNNs when transcribing
drums from stems instead of mixes. This part of the dataset is referred to as IDMT-
Stems. The annotations to these files where extracted from the accompanying xml
files. Due to unknown reasons, the available dataset only contains a total of 560 wav
files albeit Dittmar and Gärtner (2014) claim it to be 608. However, this finding is
similar to the findings of Vogl, Dorfer, and Knees (2017). Table 3.8 shows the exact
distribution of the tracks of the dataset available after the download.

TABLE 3.8: An overview of IDMT and its track distribution.

Drum Type # Tracks # Mixes # Stems

RealDrum 56 14 42
TechnoDrum 44 11 33
WaveDrum 460 70 390

Total 560 95 465

This means 9 out 104Mixes plus their corresponding Stems are missing. Here,Mixes
refers to tracks where all three instrument types occur in a file as a beat (previously
referred to as drum loops). Stems, on the other hand, refers to single instrument
tracks only containing for example KD hits. As a result of this, similar to Callen-
der, Hawthorne, and Engel (2020), only the 95 available Mixes (here referred to as
IDMT-Mixes) are used for evaluation purposes with an average duration of 15.14 s.
The total duration of this test set is 23.97min.

Figure 3.11 shows the relative event distribution among KD, SD, and HH events
of IDMT-Mixes.

8https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html, last accessed
July 16, 2021

https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html
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FIGURE 3.11: Relative event distribution of the IDMT Mixes used for
evaluation purposes. The total number of events is 7,972.

Similar to E-GMD, there is also a class imbalance in IDMT with twice as many HH
onsets (54%) as KD onsets (27%) and SD (19%) being the least present instrument
in this test set.

3.4 ENST

Another commonly used dataset for ADT is ENST-Drums (here referred to as ENST)
introduced byGillet and Richard (2006). It features 3 drummers playing various gen-
res like Rock, Salsa, Funk, and Big-Band. Besides the variation with regard to genres,
there is also variation in playing styles that range from sticks, to brushes, to rods.
Overall, three different drum sets are used for the recordings. The dataset comes
with different kinds of tracks that comprise single hits, short phrases, solos, drums-
only tracks (by Gillet and Richard (2006) referred to as minus-one tracks), and a track
that is the isolated accompaniment to the drums-only tracks. ENST is used to evalu-
ate in two different settings in this thesis to investigate the proposed model’s ability
to generalize on both drums-only and full-mixes. The first setting is the evaluation
on the isolated drums-only mixes in Section 5.1. In contrast to that, in Section 5.3 the
drums-only tracks are mixed with their corresponding accompaniment track in an
amplitude ratio of 2/3 for drums-only tracks and 1/3 for the accompaniment which
is in line with Vogl, Widmer, and Knees (2018) and Paulus and Klapuri (2009). Note,
that the wet_mixes of theminus-one tracks are used where equalization, compression,
and reverberation was applied to the audio tracks. This results in a test set of 64 files
with an average duration of 57 s and a total duration of roughly 1 h.

ENST features an instrument granularity of overall 20 different instruments.
Similar to Callender, Hawthorne, and Engel (2020), all of these instruments are
grouped into 7 classes which is different to Vogl, Widmer, and Knees (2018) who
group them into 8 classes. However, since their 8th class is clave/sticks the evaluation
results for ENST can still be compared to each other because there are no annotations
for STICKS in the dataset which means this class can be neglected. Table 3.9 shows
the grouping of all 20 instruments into 7 and 3 classes, respectively.
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TABLE 3.9: Instrument complexity and grouping of ENST. Similar to
Callender, Hawthorne, and Engel (2020), all instruments are grouped
into 7 classes which is different to Vogl, Widmer, and Knees (2018)
who apply a 8-class grouping. Unlike Callender, Hawthorne, and En-
gel (2020), both this thesis as well as Vogl, Widmer, and Knees (2018)

investigate a 3-class scenario as well.

Instrument 20 Hits 7 Hits 3 Hits

Kick Drum BD KD KD

Snare Drum SD SD SD
Snare Drum Brush Sweep SWEEP SD SD
Snare Drum Rimshot RS SD SD
Sticks Together STICKS SD SD
Side-Stick CS SD SD

Mid Tom MT TT SD
Mid Tom Rim MTR TT SD
Low Mid Tom LMT TT SD
Low Tom LT TT SD
Low Tom Rim LTR TT SD
Lowest Tom LFT TT SD

Closed Hi-Hat CHH HH HH
Open Hi-Hat OHH HH HH

Crash Cymbal CR CY HH
Splash Cymbal SPL CY HH
Chinese Ride Cymbal CH CY HH

Ride Cymbal RC RD HH
Other Cymbal C RD HH

Cow Bell CB BE HH

FIGURE 3.12: Relative event distributions of ENST for 3, 7, and 20
event classes. The total number of events is 26,411.
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Overall, the most frequently instrument played in ENST is the hi-hat, followed
by the snare drum and kick-drum. Figure 3.12 shows that all other instrument
classes are sparsely populated. Especially at the most granular level, it becomes
obvious that besides the aforementionedmajority classes mostly ride and other cym-
bals are played.

3.5 MDB

MedleyDB Drums (MDB) is another commonly used dataset in ADT tasks (Vogl,
Widmer, and Knees (2018); Wang et al. (2020); Cartwright and Bello (2018); Wei, Wu,
and Su (2021)) and was published by Southall et al. (2017). It consists of 23 tracks
featuring various genres (e.g. Country, Disco, Rock, Jazz, and Reggae) and is an
annotated subset of the MedleyDB dataset9 which was published by Bittner et al.
(2014). For each of those tracks there are multiple versions that is drums-only, full-
mix, and multi-track files. In this thesis, both the drums-only and full-mixes files are
used for evaluation purposes. Drums-only files are used in Section 5.1 whereas full-
mixes are used in Section 5.3. The average duration of an audio file is 56.9 s while the
overall duration is 21.8min. Two different drum event groupings are provided with
this dataset. The first option groups all events into 6 classes, whereas the second
one delivers a finer grouping with a total of 21 classes. However, for the sake of
this thesis those 21 classes were grouped into 7 classes similar to the one of E-GMD.
Figure 3.13 shows the relative frequency of those two classes plus the additional
grouping of 3 classes as this has been the simplest grouping in previous research
too.

FIGURE 3.13: Relative event distributions of MDB for 3, 7, and 21
event classes. The total number of events is 7,994.

9https://medleydb.weebly.com/, last accessed July 16, 2021

https://medleydb.weebly.com/
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TABLE 3.10: Instrument complexity and grouping of MDB.

Instrument 21 Hits 7 Hits 3 Hits

Kick Drum KD KD KD

Snare Drum SD SD SD
Snare Drum Brush SDB SD SD
Snare Drum Drag SDD SD SD
Snare Drum Flam SDF SD SD
Snare Drum Ghost Note SDG SD SD
Snare Drum No Snare SDNS SD SD
Side-Stick SST SD SD

High Tom HIT TT SD
Mid-High Tom MHT TT SD
High Floor Tom HFT TT SD
Low Floor Tom LFT TT SD

Closed Hi-Hat CHH HH HH
Open Hi-Hat OHH HH HH
Pedal Hi-Hat PHH HH HH
Tambourine TMB HH HH

Crash Cymbal CRC CY HH
China Cymbal CHC CY HH
Splash Cymbal SPC CY HH

Ride Cymbal RDC RD HH

Ride Cymbal Bell RDB BE HH

3.6 RBMA13

The Red Bull Music Academy (RBMA13)10 dataset was introduced by Vogl et al.
(2017) with a focus on transcribing various drum types from full-mixes. It consists
of 30 multi-tracks used for evaluation purposes and features 22 different drum in-
struments. These tracks are fully-produced pieces of music and are therefore the
most difficult dataset to automatically transcribe drums from. However, three of the
multi-tracks (Leo Aldrey - NY Walk; QuietDust - Meridian Lines; Louis Baker - The Way)
do not feature any drums and were therefore excluded from this dataset. The fea-
tured genres range from electronic dance music to techno to fusion-jazz styled music
with an average duration of 3m 50 s while the overall duration amounts to 1 h 43m.
The annotations to the dataset were createdmanually and are publicly available11,12.
Similar to E-GMD, ENST, and MDB, the individual drum instruments were sum-
marized into groups of 3 and 7, respectively. The exact grouping is demonstrated
in Table 3.11. Finally, Figure 3.14 gives an overview of the instrument distribution
among the two different kinds of groupings.

10https://rbma.bandcamp.com/album/various-assets-not-for-sale-red-bull-music-
academy-new-york-2013, last accessed August 11, 2021

11https://github.com/GiantSteps/RBMA_various_annotations/tree/master/RBMA_VA_2013,
last accessed August 11, 2021

12http://ifs.tuwien.ac.at/~vogl/datasets/, last accessed August 11, 2021

https://rbma.bandcamp.com/album/various-assets-not-for-sale-red-bull-music-academy-new-york-2013
https://rbma.bandcamp.com/album/various-assets-not-for-sale-red-bull-music-academy-new-york-2013
https://github.com/GiantSteps/RBMA_various_annotations/tree/master/RBMA_VA_2013
http://ifs.tuwien.ac.at/~vogl/datasets/
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TABLE 3.11: Instrument complexity and grouping of RBMA13.

Instrument 22 Hits 7 Hits 3 Hits

Kick Drum KD KD KD

Snare Drum SD SD SD
Side-Stick SST SD SD
Hand Clap CLP SD SD
Clave, Sticks, Clicks CLV SD SD

High Tom HIT TT SD
Mid-High Tom MHT TT SD
Low Tom LOT TT SD
Low Mid Tom LMT TT SD
High Floor Tom HFT TT SD
Low Floor Tom LFT TT SD

Closed Hi-Hat CHH HH HH
Open Hi-Hat OHH HH HH
Pedal Hi-Hat PHH HH HH
Tambourine TMB HH HH
Shaker, Maracas SHK HH HH

Crash Cymbal CRC CY HH
China Cymbal CHC CY HH
Splash Cymbal SPC CY HH

Ride Cymbal RDC RD HH

Ride Cymbal Bell RDB BE HH
Cowbell CWB BE HH

FIGURE 3.14: Relative event distributions of RBMA13 for 3, 7, and 22
event classes. The total number of events is 40,218.



30

Chapter 4

Methods

The following chapter talks about the pre- and post-processing steps used in this
thesis to train and evaluate the performance of the deep neural network used to
automatically transcribe drums from audio signals. First, the input features of the
DNN are introduced by explaining their computation while at the same time moti-
vating the use of them. After that, pre-processing steps like ensuring that all training
instances have the same length as well as filtering odd annotations are presented. In
addition to that, an augmentation technique is introduced followed by the descrip-
tion of the target computation. The proposed model architecture used to tackle ADT
is compared to benchmark models while highlighting differences between them. Fi-
nally, this chapter concludes by presenting a post-processing step to extract detected
onsets from an activation vector and introducing the necessary metrics to evaluate
the performance of the proposed model on publicly available datasets and therefore
be able to compare this to the benchmark models.

4.1 Features

The input features of the deep neural network used in this thesis are log-mel magni-
tude spectrograms which show the intensity of frequencies over time. The starting
point for this is the Fourier transform which decomposes a continuous time signal
into its constituent frequency components as shown in the following equation:

X(w) =
Z •

�•
x(t)e�jwt dt (4.1)

where:

w = 2p f , angular frequency
x = continuous input signal
t = time
e = Euler’s number
j = imaginary unit

The result of the Fourier transform is the complex spectrum consisting of phase and
magnitude of the entire input signal x.

However, due to the non-stationary nature of music signals, one single Fourier
transform of the entire signal would not yield information on the frequency com-
position at individual time steps or frames which is necessary to make predictions
about when in the input signal a certain drum instrument occurs. Therefore, a win-
dow ofN samples is used to calculate the short-time Fourier transform (STFT) centered
around sample point nwith a step size or hop length ofH samples, which determines
the number of samples the window is shifted across the audio. The STFT is applied
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to the input signal, which has previously been discretized by sampling the input at
a sampling frequency fs, which results in the following equation:

X(m, k) =
N�1

Â
n=0

x(n)w(n�mH)e�j2pkn/N (4.2)

where:

x = discrete input signal
n = sample point
w = window function of length N
m = time frame
H = hop length
k = Fourier coefficient
N = FFT window length in samples

The parameter settings of the feature computation used for this thesis are listed in Ta-
ble 4.1. Given these settings, the time resolution amounts to H/ fs = 10ms whereas
the frequency resolution is fs/N ⇡ 21.5Hz.

TABLE 4.1: Overview of the employed parameter settings of the log-
mel magnitude spectrogram computation.

Parameter Value

Sample rate fs 44.1 kHz
Hop length (H) 441
FFT window length (N) 2,048
Number of mel bands (M) 128
fmin 27.5Hz
fmax 16 kHz

To account for the human perception of sound, two additional post-processing
steps are applied to the STFT of the input signal. First, the spectrogram is mapped
from a frequency scale to M bands of a mel scale to account for the non-linear per-
ception of pitch. Equation 4.3 demonstrates the conversion from a linear frequency
scale to a mel scale where equal distances on this scale have the same perceptual
distance.

m( f ) = 2595 log10

✓
1+

f
700

◆
(4.3)

where:

m = frequency in mel
f = frequency in Hz

Equation 4.3 was introduced by O’Shaughnessy (1987) and maps frequencies up to
1 kHz linearly for humans can discern small changes at low frequencies better than
at higher frequencies. As a result of this, higher frequencies are treated approxi-
mately logarithmically. In order to convert an STFT spectrogram into mel spectro-
gram, both the lowest and the highest possible occurring frequencies are converted
to their equivalent mel frequency. Between this range, a previously defined number
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of mel bands (M) is equidistantly spaced. After that, the mel frequencies are con-
verted back to Hz so that an overlapping triangular filter bank of size (M, N + 1) is
applied to the STFT spectrogram. Second, the resulting amplitude is transformed
from a linear to a logarithmic scale as the latter better describes the way humans
perceive loudness as demonstrated by Fechner (1860). Note, that for the features
employed in this thesis only the magnitude is used which is in line with the work by
Vogl, Widmer, and Knees (2018) as well as Callender, Hawthorne, and Engel (2020).

Unlike Callender, Hawthorne, and Engel (2020), the number of mel bands is re-
duced from 250 to 128 in order to reduce the computational cost during the training
process. As the results in Chapter 5 suggest, this reduction in feature complexity
does not result in a degradation of the model performance. Similar to Callender,
Hawthorne, and Engel (2020), the features are cropped to a length of 12 s which is
done offline before the training process by cutting all audio files into 12 s chunks.
In case the remainder is under 1 s long, it is discarded otherwise the chunked audio
and MIDI files are repeated so many times so that they have a length of 12 s, respec-
tively. The threshold is set to 1 s because the average duration of Fills of E-GMD is
2.85 s. That way it is guaranteed that no file from the original dataset is discarded.

These features are commonly used in current ADT tasks (Vogl, Widmer, and
Knees (2018); Callender, Hawthorne, and Engel (2020)). In order to compute them,
a Python package called librosa which was published by McFee et al. (2015) is used.
Figure 4.1 shows an example of the employed features based on a file taken from
E-GMD.

FIGURE 4.1: Log-mel magnitude spectrogram of the repeated 12 s
version of drummer1_session1_6_jazz-funk_116_fill_4-4_57.wav from E-
GMD. The amplitude spectrum is converted to a normalized dB scale

for visualization purposes.

4.2 Pre-processing

Cutting & Padding
Since the model always expects the same dimensions during the training process, a
cutting and padding process is implemented in the pre-processing pipeline. In case
that an audio file is longer than the predefined 1200 frames, which is equivalent to



Chapter 4. Methods 33

12 s in this thesis, it is cut into segments of the same length. On the other hand, an
audio file is padded with zeros if it is shorter than 12 s to ensure the same length of
all training instances.

Annotation Filtering
An analysis of E-GMD has shown that there are files in the dataset that feature MIDI
files which have events that occur after the end of the corresponding audio file. As
a result of this, part of the pre-processing pipeline is a filter that ensures that MIDI
files do not feature any annotations after the corresponding audio that would. If not
corrected, this would degrade the quality of the training process.

Augmentation
In order to tackle the issue of overfitting, augmentation is applied to the training
datasets of the proposed model. To achieve this, the corresponding audio files
were altered using the Python library audiomentations1 prior to the training process.
The first change was to add Gaussian noise to the file with a probability of 30%.
Next, a pitch shift of ± 2 semitones is applied with a probability of 15% followed
by a gain reduction or increase of ±12 dB with a probability of 75%. Finally, a
bandpass filter is applied with a center frequency between 300Hz and 1000Hz and
a q-factor between 1 and 2 with a probability of 10%. The augmentation is applied
prior to the training to avoid an unnecessary slow-down of the entire training
process. Note, that the augmented audio files are used in addition to the original
dataset to increase the number of files and therefore the variance within the train set.

Target computation
As described in Section 2.1, the core idea in supervised learning is to compare the
predictions of a DNN to the actual label or ground truth of the data. Based on that,
a loss is calculated which is then backpropagated to indicate how the weights or
kernels in the DNN have to be adjusted in order to minimize this error. In this thesis,
a soft-target vector is computed which the predictions of the DNN are compared to.
The approach for this is to compute a vector that contains target probabilities for
each time frame. Unlike a one-hot target vector, it specifies probabilities of an onset in
neighboring frames in addition to the probability for the frame of the actual onset.
This concept is visualized in Figure 4.2.
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FIGURE 4.2: Conceptual comparison between soft-targets (top row)
and one-hot targets (bottom row).

The decision to use a soft-target vector instead of a one-hot target vector is based
on the sparsity of the latter one. Populating the activation vector with additional
target probabilities allows for more information during the training process espe-
cially in cases where the actual onset of an instrument is at the end of a frame of the
computed spectrogram.

1https://github.com/iver56/audiomentations, last accessed Nov 24, 2021

https://github.com/iver56/audiomentations
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4.3 Network Architectures

This thesis proposes a deep neural network architecture that is inspired both by
Vogl, Widmer, and Knees (2018) as well as Callender, Hawthorne, and Engel (2020).
To better understand the main differences between the different architectures, Fig-
ure 4.3 juxtaposes the main building blocks of each of those.
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FIGURE 4.3: Comparison of baseline model architectures and a new
proposed model. The architectures a) and b) by Vogl, Widmer, and
Knees (2018) are used as a baseline for the comparison of the per-
formance on full-mixes of ENST, MDB, and RBMA13, whereas c) is
the proposed model architecture by Callender, Hawthorne, and En-
gel (2020) which is used as a baseline for E-GMD, IDMT, ENST, and
MDB in a drums-only mixes setting. In contrast to that, d) shows the

architecture of the proposed model in this thesis.

Vogl, Widmer, and Knees (2018) propose two different approaches to tackle ADT,
namely a typical CNN and a CRNN both of which are identical with regard to the
first three building blocks, only the last one changes from dense layers in the CNN
(Figure 4.3a) scenario to bi-directional GRUs in the CRNN setup (Figure 4.3b). These
architectures were introduced in a setting to transcribe various numbers of drum in-
struments from full-mixes from ENST, MDB, and RBMA13 ranging from 3 to 8 to
finally 18 instrument classes. These two models serve as benchmarks in the evalua-
tion of the full-mix scenario in Section 5.3 and are here referred to as Vogl-Drums.

Figure 4.3c shows the model that serves as a benchmark in the evaluation of the
drums-only scenario introduced by Callender, Hawthorne, and Engel (2020) which
is called OaF-Drums. This model introduces a dense layer similar to the one from
Vogl-Drums CNN before a bi-directional LSTM layer that features a dropout of 50%
at its output. Additionally, OaF-Drums uses dropout after max-pooling layers which
serve as additional regularization. Besides that, OaF-Drums consists of an additional
velocity prediction head which is not displayed here.
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Unlike the baselines, the proposed model shown in Figure 4.3d does not em-
ploy batch-normalization layers but uses the SELU activation function introduced
by Klambauer et al. (2017) for normalization purposes instead. Overall, the pro-
posed model combines 4 blocks of convolutional, max pooling, and dropout layers
with a block of bi-directional LSTM layers and dropout layers followed by a dense
layer. The LSTM layers’ input dropout is set to 10% so that the model does not rely
too much on the context it sees during training. Generally, the hyperparameter set-
tings of the proposed model were found through a coarse grid search. Besides that,
the motivation for a CRNN in the setting of ADT is based on preliminary experi-
ments that showed a better performance when using a CRNN instead of a CNN.

4.4 Post-processing

The final step in the transcription task is to determine where an onset of a certain
instrument is. This is done by applying a peak-picking algorithm to the output of
the DNN which is an activation array per instrument that indicates the probability
that an instrument is played at a certain time frame. In order to do so, a moving
average filter is applied to the activation array with a filter size of 15 frames. Next, it
is checked at what time frame the activation array is equal or larger than the moving
average plus a threshold which is set to 0.1. This value is motivated by findings of
Vogl, Dorfer, and Knees (2017). At the indices where this condition is met, the value
of the activation function is preserved otherwise it filled with zeros. This process
is followed by applying a maximum filter of 5 frames to the previously determined
array of matches. Finally, this result is compared to the matches, so that eventually
all indices where the values of both the maximum filter array and the matches are
identical are returned. Therefore, the final output of this peak-picking algorithm
is the points in time at which a certain instrument is classified by the DNN. The
described approach is in accordance with Vogl, Widmer, and Knees (2018).

4.5 Evaluation Metrics

In order to gauge the performance of the ADT model, a typical metric called F-
measure is used. It takes the count of True Positives (TP), False Positives (FP), and
False Negatives (FN) into account, which can be summarized as Precision and Recall.
It is a commonly used metric in music transcription tasks as well as imbalanced clas-
sification problems (Ferri, Hernández-Orallo, andModroiu (2009)). In the following,
the constituents of the F-measure are explained and visually demonstrated.

Precision indicates how many of the positive predictions were in fact positive
which is shown in Equation 4.4

Precision =
TP

TP+ FP
(4.4)

Recall (see. Equation 4.5), on the other hand, describes how many percent of the
predictions that should be positive are indeed positive.

Recall =
TP

TP+ FN
(4.5)

Each one of this metric has its own focus. Precision for example focuses on mini-
mizing the amount of False Positive predictions whereasRecall focuses onminimizing
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the number of False Negative predictions. Depending on the task, one of those met-
rics can be favorable. Figure 4.4 visualizes the concept between those two metrics.

True  Negatives False Negatives

True PositivesFalse Positive

Selected Elements

}

Relevant Elements

P = TP

TP FP+

R = TP

TP FN+

=

=

FIGURE 4.4: Overview of how Precision and Recall are constituted.
The harmonic mean of both form the F-measure.

If you combine all correct predictions and compare those against the total number
of predictions, you get the Accuracy of your predictions, shown in Equation 4.6.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4.6)

However, classification tasks want to reduce both the number of FP and FN. Due
to this reasons, the F-measure tries to balance Precision and Recall and still capture the
properties of both of them. Equation 4.7 describes the computation of the F-measure
which is the harmonic mean of Precision and Recall.

Fmeasure =
2 · Precision · Recall
Precision+ Recall

=
2 · TP

2 · TP+ FP+ FN
(4.7)

The Python2 package mir_eval3 is used to compute the above-mentioned met-
rics. To determine if there is a matching annotation in the ground truth to a pre-
dicted instrument, a tolerance window of 50 ms is used which is consistent with
Callender, Hawthorne, and Engel (2020), although some authors use smaller toler-
ance windows such as 20 ms (Vogl et al. (2017)) which results in lower F-measures.
The global F-measure is computed by gathering all TPs, FPs, and FNs of all instru-
ments and tracks. This is more favorable than computing the mean of all tracks and
instruments because of the sparsity of some instrument classes (Vogl et al. (2017)).

2https://www.python.org, last accessed August 1, 2021
3https://craffel.github.io/mir_eval/, last accessed August 1, 2021

https://www.python.org
https://craffel.github.io/mir_eval/
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Chapter 5

Results & Discussion

In the following three sections, different experiment settings of ADT are investi-
gated. The focus of this work is detecting onsets and classifying the individual in-
struments while the velocity of the events is neglected. Two datasets are mainly
used for training purposes, the first of which is E-GMD which was introduced by
Callender, Hawthorne, and Engel (2020). The second one is a newly created dataset
called RGDD which features random drum sequences consisting of both stems and
drums-onlymixes.

Section 5.1 presents the results of automatically transcribing drums from drums-
only mixes, that is recordings which only contain drum instruments and no accom-
paniment. For this purpose, the mixes from IDMT, ENST, and MDB without ac-
companiment are used as test datasets in order to evaluate the performance of the
deep neural network proposed in this thesis. The results for MDB in the drums-only
chapter are presented for the sake of completeness and cannot be compared to a
benchmark because to the best of the author’s knowledge there is no paper in the lit-
erature that evaluates on the drums-only mixes of MDB. Similar to that, the results
for ENST are not compared to a benchmark either. Even though Vogl et al. (2017)
evaluate their models on the drums-only mixes from ENST, they ignore the annota-
tions of all instruments but KD, SD, and HH. As results of this, a direct comparison
with the approach presented in this thesis is not possible.

In contrast to that, Section 5.2 presents the results of a qualitative analysis on au-
tomatically transcribing drums from recordings that only contain one single drum
instrument, namely kick-drum, snare-drum, or hi-hat, at a time. These recordings
are here referred to as stems. For this purposes, only the WaveDrum02 stems from
IDMT are used because they are the only stems from IDMT that come with annota-
tions.

Finally, Section 5.3 extends this to recordings including accompaniments like gui-
tar, bass, keyboard, and vocals to gauge the performance of the proposed model in
a setting it was not trained in. These recordings are referred to as full-mixes. Both
Section 5.1 and 5.3 first present the results of a 3-class ADT scenario which is then ex-
tended to 7 classes. Only Section 5.1 also investigates the performance of 25 classes
since E-GMD is the only dataset used in this thesis that contains 25 drum event types.

As mentioned in Chapter 1, it is investigated if a grouping of predicted activa-
tions to a smaller of number of instruments (e.g. reducing 7 predicted classes down
to 3 and therefore reducing the instrument complexity) has an influence on the over-
all performance. That way, it can be analyzed if a model that is trained to transcribe
a finer level of instrument complexity can have a benefit on simpler tasks. For this
purpose, all predicted activations of a target instrument grouping are collected and
compared to eventually take the overall maximum value of the corresponding in-
strument class at each time step to form the final activations vector. Figure 5.1 visu-
alizes the concept behind this grouping method.
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FIGURE 5.1: Exemplary grouping of SD and TT activations to a single
SD activation vector by taking the overall maximum value at each
time step. This approach is used for models that were initially trained

to transcribe more instruments than finally used.

Furthermore, each section presents the results for unmodified and augmented ver-
sions of the training dataset for the sake of investigating the impact augmented train-
ing data has on the overall performance in ADT. Note, that the augmentation for
OaF-Drums is different from the augmentation for the proposed model. The main
differences are discussed in the next subsection. In case of the augmented version
for the proposed model, the training set consists of both the unmodified as well as
the augmented version to increase the number of training instances and therefore in-
crease the variance. Throughout this thesis, only augmented training datasets are
indicated as such.

The selected models for the evaluation were chosen from a series of training
runs. For each model / training dataset combination numerous training runs were
executed while the one that performed best on its test dataset was chosen to pro-
ceed with for further evaluation on IDMT, ENST, MDB, and RBMA13. This means
that when the proposed model was for example trained on E-GMD-Clean-3 and
RGDD-3 in numerous individual training runs the model that yielded the best over-
all F-measure on the corresponding test dataset of E-GMD-Clean-3 and RGDD-3was
chosen as the final model. This model was then used for evaluation purposes on the
aforementioned datasets. Hence, the results presented in this thesis are based on a
single model only.

Following the results section of each of the aforementioned experiments, the re-
sults are discussed and evaluated while trying to give answers as to why examining
data prior to training is essential andwhy certain training data setups perform better
than others.

5.1 Drums-only Mixes

This section presents the results of automatic transcription of drum events from sig-
nals that only contain drum instruments. The starting point of this investigation
is a 3-event scenario that is commonly used in ADT tasks where all occurring in-
struments are grouped into KD, SD, and HH events as demonstrated in Section 3.
Models that were trained on datasets that contain "-3" as a suffix can only distinguish
between the three aforementioned instruments. In contrast to that, models that were
trained on datasets that contain "-7" or "-25" as a suffix were trained to distinguish
between the corresponding number of instruments. However, in this part of the
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thesis these models are employed to transcribe only 3 instruments. Therefore, their
resulting predictions are grouped into KD, SD, and HH based on the concept shown
in Figure 5.1. This is true for the evaluation results of IDMT, ENST, and MDB while
the results of E-GMD always indicate the model’s performance on the test set with
the corresponding number of instruments.

To compare the performance of the proposed model in a 7-class scenario for E-
GMD and ENST and a 3-class scenario for IDMT, OaF-Drums is used as a bench-
mark. Nevertheless, the performance of the proposed model on 3 classes for E-
GMD, ENST, and MDB are listed for the sake of completeness. OaF-Drums was
introduced by Callender, Hawthorne, and Engel (2020) and is based on a model by
Hawthorne et al. (2018) that was designed for onset and frame predictions in a pi-
ano transcription task. A detailed overview of the model architecture is shown in
Figure 4.3. OaF-Drums was trained on two different versions of E-GMD. The first
unmodified version of the dataset comprises the unaltered training split chunked into
12 s segments. On the other hand, Callender, Hawthorne, and Engel (2020) employ
an augmentation technique called Shuffled mixup that is used for regularization pur-
poses. Here, they group two randomly selected audio files, repeat the shorter one
so that both files have the same length, and then mix their audio samples as well as
annotations. Finally, they split the newly created audio files into 1 s segments, shuf-
fle them randomly, and finally combine them to 12 s segments. This configuration is
called E-GMD ShuMix.

The results of the proposed model also distinguish between unmodified and
augmented, however, a more traditional approach was chosen for augmentation
purposes where noise, pitch shift, gain-boost/reduction, and a bandpass filter
were applied to the audio files prior to the training. A detailed description of this
augmentation process is given in Section 4.2. Besides that, two F-measures are given
for the evaluation on E-GMD, the first of which presents the results when tested
on the uncleaned version of E-GMD while the second one indicates the model’s
performance on the test set of E-GMD-Clean. Again, both results demonstrate the
model’s performance on the test set with the corresponding number of instruments
indicated by the additional suffix.
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3-classes

TABLE 5.1: F-measures of the 3-event scenario tested on drums-only
input signals. All instruments are grouped into either KD, SD, or HH.
Models that were trained on a dataset with the "-7/25" suffix group
their predictions for IDMT, ENST, and MDB as shown in Figure 5.1.
The first column of the E-GMD results show the performance of the
proposed model on the E-GMD test set whereas the second column
shows the results on the E-GMD-Clean test set where files with a devi-
ation between the annotations and the audio of� 6ms were removed
from the dataset. The augmentation approach of OaF-Drums and the
proposed model are not identical. OaF-Drums employs a technique
called Shuffled mixup whereas in case of the proposed model noise,
pitch shift, gain-boost/reduction, and a bandpass filter were applied

to the training data.

F-measures
Model Training Dataset E-GMD IDMT ENST MDB

OaF-Drums E-GMD-3 - .527 - -
E-GMD-3 ShuMix - .857 - -

Proposed CRNN E-GMD-3 .866 / .913 .666 .833 .785
E-GMD-Clean-3 .879 / .927 .675 .826 .789
E-GMD-Clean-3 augm. .879 / .926 .790 .828 .837
E-GMD-Clean-3 + RGDD-3 .873 / .920 .853 .845 .831
E-GMD-Clean-3 + RGDD-3 augm. .869 / .919 .885 .855 .867
RGDD-3 .642 / .678 .803 .792 .801
RGDD-3 augm. .716 / .747 .838 .791 .841

E-GMD-7 .834 / .906 .746 .834 .789
E-GMD-Clean-7 .874 / .921 .766 .830 .794
E-GMD-Clean-7 augm. .876 / .925 .837 .846 .820
E-GMD-Clean-7 + RGDD-7 .868 / .913 .844 .841 .840
E-GMD-Clean-7 + RGDD-7 augm. .849 / .892 .829 .846 .856
RGDD-7 .580 / .599 .815 .784 .804
RGDD-7 augm. .622 / .645 .833 .785 .826

E-GMD-25 .758 / .803 .761 .823 .783
E-GMD-Clean-25 .798 / .840 .785 .851 .809
E-GMD-Clean-25 augm. .805 / .850 .798 .832 .807

Table 5.1 suggests that when training the proposed model on E-GMD-Clean in-
stead of E-GMD an increase in performance of 1.3 percentage points can be achieved
when tested on the regular, uncleaned E-GMD test set, resulting in an F-measure of
.879. However, the proposed augmentation does not impact the performance with
regard to E-GMD in this setting. At the same time, these two models are the best
performing ones in the 3-event transcription for E-GMD. Comparable results can be
achieved with the proposed model trained on E-GMD-Clean-7 (augmented) with re-
sulting F-measures of .874 and .876, respectively. With respect to 25 classes, training
the proposed model on E-GMD-Clean leads to an increase in performance from .758
to .798, albeit these results show worse performance when compared to models that
were trained to classify a coarser instrument grouping. When adding random drum
sequences to E-GMD in the form of RGDD as additional training data to the train-
ing split of E-GMD-Clean, the overall performance on the E-GMD test set slightly
decreases while at the same time performing 0.4 percentage points worse in case of
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augmented training data in the 3-class scenario when compared to training on un-
modified data. In case of E-GMD-Clean-7 + RGDD-7 augmented, the performance
drops by 1.9 percentage points. This downward trend can also be seen when the
model is only trained on RGDD, however, here the augmentation increases the per-
formance by 7.4 percentage points for RGDD-3 and 4.2 percentage points for RGDD-
7. The worst performance on the test set of E-GMD is achieved when training on
RGDD-7. Similar to training on cleaned data, testing on cleaned data also increases
the overall performance. This fact can be seen in all training setups, ranging from
+1.9 percentage points for RGDD-7 to +7.2 percentage points for E-GMD-7. The
best performing model when evaluating on E-GMD-Clean can be achieved with the
proposed model trained on E-GMD-Clean-3 scoring an F-measure of .927 closely
followed by its augmented version (.926) as well as its seven class counterpart E-
GMD-Clean-7 augmented (.925). Figure 5.2 compares a selection of F-measures to
show the discrepancy between models that were trained only on variations of E-
GMD, adding RGDD, or RGDD only when tested on E-GMD. It makes clear that
cleaning or augmenting the training data in case of E-GMD does not result in a ma-
jor improvement in this case. At the same time, it shows that when trained only on
RGDD the model struggles to generalize.

FIGURE 5.2: Overview of selected F-measures for the proposedmodel
evaluated on E-GMD in a 3-class drums-only scenario.

With regard to IDMT, Table 5.1 shows that Callender, Hawthorne, and Engel
(2020) are able to achieve an increase in performance of 33 percentage points by aug-
menting the training data resulting in an F-measure of .857. These values serve as the
benchmark for the 3-class scenario from this point forward. It is assumed that Cal-
lender, Hawthorne, and Engel (2020) trained their model for the IDMT evaluation
to distinguish between only 3 instruments instead of grouping predictions from 7 or
25 to 3 instruments as it is not stated otherwise. In comparison to OaF-Drums, the
results show an advantage of the proposed model when trained on the unmodified
version of E-GMD. For E-GMD-3 a plus of 13.9 percentage points can be achieved,
yet models that were trained on a more granular number of instruments score even
higher F-measures. In case of E-GMD-7, an increase of 21.9 percentage points with
regard to the unmodified benchmark is scored whereas E-GMD-25 extends this to
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23.4 percentage points. The cleaned and augmented version of E-GMD further im-
proves the model’s performance in all of the aforementioned setups while reaching
its peak at .837 for E-GMD-Clean-7 augmented. In contrast to the evaluation on E-
GMD, adding RGDD as additional training data increases the overall performance
in all cases but E-GMD-Clean-7 + RGDD-7 augmented. This combination of train-
ing data results in the overall best score of .885 for E-GMD-Clean-3 + RGDD-3 aug-
mented and therefore surpasses the benchmark by 2.8 percentage points. While the
proposed model trained on RGDD alone does not score the highest F-measure on
IDMT, its ability to generalize on IDMT is better than it was on E-GMD. In addi-
tion to that, the augmentation of the training data yields an increase in performance
of up to 3.5 percentage points. Figure 5.3 summarizes the evaluation results of the
proposed model on IDMT. It shows that while increasing the instrument complexity
in a 3-class scenario can increase the overall performance, augmenting the training
data or adding additional data further improves the ability to generalize on unseen
data.

FIGURE 5.3: Overview of selected F-measures for the proposedmodel
evaluated on IDMT in a 3-class scenario.

The evaluation of the proposed model on ENST also shows that training a model
to initially transcribe 7 instruments and then use it to group its activation vectors so
that it only yields 3 instrument classes can improve the overall performance in case
of E-GMD-Clean augmented. The best results of the proposed model on ENST can
be achieved when trained on E-GMD-Clean-3 + RGDD-3 with an F-measure of .855
which is closely followed by the model trained on E-GMD-Clean-25 which scores
.851. With regard to the impact of the proposed augmentation technique, Table 5.1
shows that in most cases this approach can indeed improve the performance of the
model when compared to the unmodified version of the training data, albeit this
is not always the case as the example of E-GMD-Clean-25 shows where the aug-
mentation introduces a performance decrease of 1.9 percentage points. With regard
to RGDD, the augmentation introduces a performance change of ± 1 percentage
points. A general tendency that can be extracted from the results is that the models
trained on E-GMD(-Clean) exclusively mostly perform better on ENST than they did
on IDMT. Otherwise, all other models show a slight decrease in performance with
the exception of the model trained on RGDD-7 augmented as additional training
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data. When comparing Figure 5.3 and 5.4, performance with regard to SD can be
substantially improved.

FIGURE 5.4: Overview of selected F-measures for the proposedmodel
evaluated on ENST in a 3-class drums-only scenario.

Finally, the evaluation results of the proposed model on MDB show again that
training on the cleaned version of E-GMD can improve the overall performance from
.4 percentage points when trained to distinguish between 3 classes to 2.6 percentage
points when trained to distinguish between 25 classes. Similar to the evaluation on
IDMT and ENST, the model that was trained on E-GMD-Clean-3 + RGDD-3 aug-
mented performs the best scoring an F-measure of .867. The closest results to this
are the models trained on E-GMD-Clean-7 + RGDD-7 augmented (.856) or RGDD-
3 augmented (.841). Augmenting the training data generally improves the perfor-
mance ranging from 1.6 for E-GMD-Clean-7 + RGDD-7 to 4.8 percentage points for
E-GMD-Clean-3, again, with the exception of E-GMD-Clean-25 where the perfor-
mance drops by .2 percentage points. The results of the models trained on RGDD
indicate an increase in performance on MDB over the performance on ENST for all
settings. Especially pronounced is the performance increase with regard to KD as
shown in Figure 5.5.
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FIGURE 5.5: Overview of selected F-measures for the proposedmodel
evaluated on MDB in a 3-class drums-only scenario.

7-classes

TABLE 5.2: F-measures of the 7-class scenario tested on drums-only
input signals. All instruments are grouped into either KD, SD, TT,
HH, CY, RD, or BE. Models that were trained on a dataset with the
"-25" suffix group their predictions for ENST and MDB as shown in
Figure 5.1. The first column of the E-GMD results show the perfor-
mance of the proposed model on the E-GMD test set whereas the sec-
ond column shows the results on the E-GMD-Clean test set where
files with a deviation between the annotations and the audio of �
6ms were removed from the dataset. The augmentation approach of
OaF-Drums and the proposed model are not identical. OaF-Drums
employs a technique called Shuffled mixupwhereas in case of the pro-
posed model noise, pitch shift, gain-boost/reduction, and a bandpass

filter were applied to the training data.

F-measures
Model Training Dataset E-GMD ENST MDB

OaF-Drums E-GMD-7 .631 / - .674 -
E-GMD-7 ShuMix .834 / - .769 -

Proposed CRNN E-GMD-7 .834 / .906 .753 .735
E-GMD-Clean-7 .874 / .921 .739 .700
E-GMD-Clean-7 augm. .876 / .925 .759 .772
E-GMD-Clean-7 + RGDD-7 .868 / .913 .767 .718
E-GMD-Clean-7 + RGDD-7 augm. .849 / .892 .770 .774
RGDD-7 .580 / .605 .655 .675
RGDD-7 augm. .663 / .686 .674 .683

E-GMD-25 .758 / .803 .760 .719
E-GMD-Clean-25 .798 / .840 .768 .756
E-GMD-Clean-25 augm. .805 / .850 .753 .738
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Similar to Callender, Hawthorne, and Engel (2020), the proposedmodel was also
trained to transcribe more instruments than the standard grouping of KD, SD, and
HH. In the following, the results of the 7-class scenario are presented. The suffix "-7"
denotes that the model was trained to distinguish between 7 different drum classes.
In contrast to that, models with a suffix of "-25" indicate models that were trained to
classify 25 instruments but whose predictions are grouped into the desired 7 classes
when evaluated on ENST and MDB. Note, that unlike in the 3-class scenario ENST
and MDB are used for evaluation purposes as IDMT only features 3 different drum
types. The benchmark for both E-GMD and ENST is again Callender, Hawthorne,
and Engel (2020) who scored an F-measure of .834 on E-GMD and .769 on ENST
when training on augmented data. Table 5.2 shows that they are able to achieve
a 20.3 percentage point increase on E-GMD and a 9.5 percentage point increase on
ENST when compared to training on unmodified data.

The proposed model achieves an identical F-measure value of .834 when trained
and tested on the uncleaned version of E-GMD-7. However, when training on E-
GMD-Clean-7 the performance can be further improved by an additional 4 percent-
age points which reaches its best performance of .876 when training on augmented
data. The same model scores an F-measure of .925 when evaluated on the clean ver-
sion of E-GMD. Slightly worse results can be achievedwhen training additionally on
RGDD-7 yielding an F-measure of .868 for the unmodified training data and .849 in
the augmented setup. Here, the augmentation decreases the overall performance by
about 2 percentage points. A comparison between the results of the models trained
to classify 7 or 25 instruments shows that when tested on E-GMD(-Clean) the per-
formance of the finer instrument complexity that is 25 instruments is worse. This
finding is coherent with the results in Table 5.1 of the 3-class scenario. Training the
proposed model on random drum sequences yields the overall worst performances
which was already confirmed in the 3-class scenario.

When evaluating on ENST, the overall trend is also similar to the 3-class scenario.
Training a model on more instruments than are finally classified and later grouping
predictions according to the concept demonstrated in Figure 5.1 can improve the
performance. Even though the results of the proposed model when trained on E-
GMD-7 are better than on E-GMD-Clean-7 by 1.4 percentage points this changes for
the better when looking at E-GMD(-Clean)-25 where training on E-GMD-Clean-25
results in a .8 percentage point increase. Furthermore, adding RGDD-7 as addi-
tional training data improves the overall performance by 2.8 percentage points over
E-GMD-Clean-7. The best performance, however, can be achieved with the pro-
posed model that is trained on E-GMD-Clean-7 + RGDD-7 augmented yielding an
F-measure of .770. Finally, the results of the models trained only on RGDD-7 per-
form better on ENST than they do on E-GMD in this 7-class scenario which is in
accordance with the findings from Table 5.1. Nevertheless, they still perform the
worst in this setting but are still able to achieve the same results as the unmodified
version of OaF-Drums when augmentation is applied.

With regard to MDB, the results indicate no clear trend whether a model that
is initially trained to classify 25 instruments performs better than models are that
trained to classify 7 instruments. In case of the unmodified version of E-GMD, the 25
class setup performsworse while performing better when it comes to E-GMD-Clean-
7. Finally the augmented version of E-GMD-Clean favors a model that is trained on
7 classes and also transcribes 7 classes as compared to the model that is trained on
25 classes and groups its predictions to 7 classes. E-GMD-Clean-25 is also the only
instance where augmentation decreases the overall performance. Otherwise, aug-
mentation improves the performance resulting in the best score for E-GMD-Clean-7
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+ RGDD-7 augmented with an F-measure of .774.
Figure 5.6 compares the results of the proposed model trained on E-GMD-7 and

both versions of E-GMD-Clean-7 to the results of Callender, Hawthorne, and Engel
(2020). However, the benchmark results had to be determined visually from Figure
2 from Callender, Hawthorne, and Engel (2020) since the authors do not list concrete
numbers. Notwithstanding some inaccuracies of the benchmark results, the overall
trend becomes clear.

FIGURE 5.6: Selection of F-measures in a 7-class scenario comparing
OaF-Drums to the proposed model tested on the uncleaned test set of

E-GMD.

Almost every instrument F-measure can be improved by switching to the proposed
model architecture. Exceptions to this are SD, TT, and BE in case the proposed
is trained on the uncleaned train set of E-GMD. In those instances, the largest
deviation is roughly 3.7 percentage points (BE). Otherwise, the proposed performs
better with respect to CY and RD. Cleaning the train data on the other hand leads
to major improvements especially with regard to high-pitched instruments like CY,
RD, and BE.

25-classes
In addition to the aforementioned classification scenarios, a more advanced ap-
proach is presented in the following part of the thesis. Here, the proposed model
was trained to distinguish between all 25 events of E-GMD as presented in Table 3.3.
As a result of this, the outcome cannot be compared to a benchmark because Callen-
der, Hawthorne, and Engel (2020) did not investigate this. On top of this, it is the
most fine grained task for the model to solve, so it is expected to performworse than
in the 3- or 7-class scenario. Figure 5.7 shows the results for every single instrument
present in E-GMD.
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FIGURE 5.7: Overview of all F-measures for all 25 classes present
in E-GMD. The results are based on the proposed model which was

trained and evaluated on E-GMD-Clean-25

As shown in Tables 5.1 and 5.2, the best results when classifying all instruments
of E-GMD(-Clean) can be achieved when training on E-GMD-Clean-25 augmented
yielding an overall F-measure of .805 when evaluating on E-GMD-25 whereas an
evaluation on E-GMD-Clean-25 results in a score of .850. Figure 5.7 shows that Crash
1 Bow (C1B), Crash 2 Bow (C2B), Cowbell (COW), and Clap (CL) display the worst
performance among all instrument classes. In contrast to that, among the best per-
forming instruments are Kick Drum (KD), Ride Bow (RBO), and Snare Drum Rimshot
(SDR).

5.1.1 Discussion

In the first experiment, the proposed model was trained on various different train-
ing data configurations to then automatically transcribe drums from drums-only
mixes of E-GMD, IDMT, ENST, and MDB. The results clearly suggest that training
on clean data can mostly improve the performance of a model when compared to
the performance of the same model trained on uncleaned data. For this, all files that
displayed a deviation between the ground truth and the audio files � 6ms were
excluded from E-GMD. The reason for this decrease in performance with regard to
training and testing on uncleaned data is probably the noise that is introduced to
the data by the deviating annotations as it basically forces the DNN to guess where
the actual onset is. An example of this is the performance of the proposed model
trained on E-GMD-Clean-25 which scores an F-measure of .798 on the test split of
E-GMD and therefore gaining a 4 percentage point advantage over the same model
that is trained on the uncleaned data. This finding is also almost always consistent
when evaluating on other datasets. The only exception to this is the evaluation on
ENST where the F-measure decreases up to .7 percentage points when trained on E-
GMD-Clean-3. However, this does not necessarily mean that this is always the case.
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Since training a DNN is a statistical process, it might be that when averaging over
a number of different training runs this decrease in performance would no longer
be present. Besides that, it was shown that evaluating on clean test data can further
improve the overall performance. When evaluating on E-GMD-Clean, results can
in fact be improved by 7.2 percentage points compared to an evaluation on E-GMD
as shown for the model trained on E-GMD-7. Paying attention to the preciseness
of train and test data ultimately leads to an overall best performance of .927 for the
proposed model when evaluated on E-GMD-Clean-3.

The results for the 7-class scenario shown in Table 5.2 indicate that the proposed
model can in fact score better F-measures when trained on E-GMD by a margin of
20.3 percentage points which is the score OaF-Drums achieves only after applying
augmentation to the training data. At first glance, this might indicate overfitting to
the training data, however, when testing on ENST the results are also better com-
pared to the benchmark when the training data is left unmodified. The same holds
true for the results on IDMT.

Generally, the results of the evaluation on IDMT are worst for models that are
trained on E-GMD(-Clean) only. The reason for this is probably the variance in qual-
ity of recordings of the RealDrum mixes and the sound selection of the synthesized
drums of TechnoDrum and WaveDrum. Despite the fact that E-GMD contains elec-
tronic and synthetic drum kits as well, the model might overfit to the sounds present
in the training data. This becomes especially notable with regard to the performance
on SD. Listening to a selection of these files reveals for example that some KD hits
sound similar to SD hits whichmakes it difficult for the DNN to distinguish between
these two classes. Since the classification is not exclusive, which means that events
can occur simultaneously, it might happen that in fact KD hits are both classified as
such and SD hits as well. This intuition is confirmed by the resulting predictions
shown Figure 5.8.

Ground Truth

BD Predictions

SD Predictions

HH Predictions

Spectrogram

FIGURE 5.8: Juxtaposition of ground truth (upper row) to predictions
(bottom 3 rows) of TechnoDrum01_03#MIX from IDMT using the pro-

posed model trained on E-GMD-3.

Applying augmentation to the training data can substantially improve a model’s
performance on IDMT which is shown by an increase of 11.5 percentage points
when trained for example on E-GMD-Clean-3 augmented. Nonetheless, this trend
decreases the more different classes of instruments the model was initially trained
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to classify. Nonetheless, a comparison with OaF-Drums shows that the presented
form of augmentation in this thesis is not as capable as the Shuffled Mixup approach
with regard to IDMT and ENST because training on E-GMD-Clean only and apply-
ing augmentation to the training data cannot achieve better results, yet results can
get close when training the model to solve a more complex task, that is to classify
7 instruments. In spite of this, adding additional data to the E-GMD-Clean training
dataset can also serve as augmentation. That way it is possible to achieve results that
surpass the benchmark by 2.8 percentage points on IDMT in the 3-class scenario and
.1 percentage points for ENST in the 7-class scenario. This can be explained by the
introduction of further variance in sounds as RGDD contains 20 different acoustic
and 32 electronic drum kits yielding a total of 52 different drum kits which serves
a another technique to prevent the proposed model from overfitting to the training
data. Further, since the number of unique sequences in E-GMD is only 1,059, adding
random sequences increases the overall amount of unique sequences and hence the
variance in the data substantially. The performance of the models trained only on
RGDD confirms this assumption because all of these models perform better than
the ones trained on E-GMD(-Clean) only. On the other hand, they perform worse
than the models that combine E-GMD-Clean and RGDD which can probably be ex-
plained by the fact that the number of events that occur simultaneously in the mixes
of RGDD are fewer than in the mixes of E-GMD(-Clean) and therefore performing
worse when multiple events happen at the same time.

The results of the evaluation on ENST show a notably increased performance
over the results on IDMT in the 3-class scenario for models trained on E-GMD(-
Clean) only. One reason for this might be that ENST does not contain files featuring
synthesized but only acoustic drums which might make it easier for the model to
transcribe drums from these files as the overlap in the frequency domain might not
be as pronounced. Additionally, the quality of recordings does not vary as much as
the ones from IDMT. As for models that were trained on RGDD, the performance
drops compared the performance on IDMT. A reason for that might be the overall
more complex structure of ENST compared to IDMT. Even though ENST features
only 3 different drum kits, the number of playing styles varies from brushes, to
sticks, and finally rods.

With regard to MDB, a similar behavior to the performance on IDMT can be ob-
served. Models trained solely on E-GMD(-Clean) seem to be less capable of handling
the varying quality of recordings from MDB which features recordings with for ex-
ample a lot of reverberation or varying degrees of volume. This can be counteracted
to some degree by applying augmentation to the training data either in the form
of adding noise, pitch shifting, gain-boost/reduction, or filtering the signal, or by
adding RGDD as additional training data while combining both approaches yields
the best results, the latter of which holds true for all test datasets but E-GMD.

The experiments in the drums-only setting show that besides the combination of
adding RGDD as additional training data and augmenting training data as described
in Section 4.2 training the proposed model to classify exactly the number of target
instruments in this setup yields the best results which means that in case of a 3-class
scenario it is best to train the model to distinguish between the same 3 classes to
begin with. The same is applicable to the 7-class scenario. On the other, should
no additional training data be available, training the model on more classes than
desired in the final transcription task results is the favorable approach since this can
serve as another form of regularization.
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5.2 Drum Stems

This section presents the results of a qualitative analysis of the performance of the
proposed model on instrument stems which means that the test set only contains
one single event type at a time per file, that is either KD, SD, or HH. These kinds of
files are here referred to as stems. Although most use-cases probably feature drums-
only mixes or full-mixes, this exploratory approach investigates a DNN’s ability to
generalize on data it did not see during training. No benchmark performance met-
rics can be given for comparison purposes because to the best knowledge of the
author no related work has been done in this direction on the datasets presented in
Chapter 3. To investigate the model’s performance on audio files that only contain
stems, four different training data setups are used. The first two approaches feature
models that are trained on E-GMD-Clean only and E-GMD-Clean + RGDD, respec-
tively. That way it can be determined if adding random drum sequences consisting
of both mixes and stems can improve the model’s ability to generalize on unseen
data. Thirdly, the proposed model is trained on RGDD only which means that the
training data only consists of random drum sequences. Finally, RGDD-Stems — a
subset of RGDD— is used for training purposes to see how a model performs when
trained on stems only.

In order to evaluate the performance of the various model / training data con-
figurations, the stems of IDMT, first mentioned in Table 3.8, in particular the 180
stems of the WaveDrum02 files (IDMT-Stems), are used. These files are isolated in-
strument tracks from WaveDrum02 mixes that were intended to be used for source
separation tasks by Dittmar and Gärtner (2014). Similar to the results in Section 5.1
and 5.3, Table 5.3 distinguish between three instrument grouping scenarios. The
upper part of the table shows the results of the proposed model to classify three
instruments (KD, SD, and HH). In contrast to that, the remaining results show the
performance of models that were initially trained to classify 7 or 25 instruments re-
spectively, but where the predictions were summarized down to KD, SD, and HH as
demonstrated in Figure 5.1. Again, based on the findings of the drums-only mixes
scenario presented in Section 5.1, only models that were either trained on E-GMD-
Clean or RGDD are used for evaluation purposes.

The results shown in Table 5.3 present the F-measures of the evaluation with a
50ms tolerance window so that they can be compared to the results of the evalua-
tion on IDMT-Mixes. These values are identical to the results presented in Table 5.1
and are shown here for comparison purposes. Models that were trained only on E-
GMD-Clean show overall the worst performance when evaluated on IDMT-Stems,
yet they show a clear trend towards performing better the more instruments they
were initially trained to classify. A comparison between these models shows an
increase in performance of 12.4 percentage points for the unmodified version and
6.5 percentage points when changing from E-GMD-Clean-3 augmented to E-GMD-
Clean-25 augmented yielding the best performance for a model solely trained on
E-GMD-Clean with an F-measure of .717 for the model that was trained to classify
25 instruments.
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TABLE 5.3: F-measures of an evaluation based on the stems from
IDMT WaveDrum02. This subset of IDMT contains files that feature
one single instrument that is KD, SD, or HH at a time. For the sake
of comparison, the results of the same models on IDMT-Mixes from
Table 5.1 are listed. All displayed F-measures are computed using a

50ms tolerance window.

F-measures
Model Training Dataset IDMT-Mixes IDMT-Stems

Proposed CRNN E-GMD-Clean-3 .675 .550
E-GMD-Clean-3 augm. .790 .652
E-GMD-Clean-3 + RGDD-3 .853 .859
E-GMD-Clean-3 + RGDD-3 augm. .885 .892
RGDD-3 .803 .819
RGDD-3 augm. .838 .921
RGDD-Stems-3 .455 .890
RGDD-Stems-3 augm. .582 .928

E-GMD-Clean-7 .766 .662
E-GMD-Clean-7 augm. .837 .684
E-GMD-Clean-7 + RGDD-7 .844 .875
E-GMD-Clean-7 + RGDD-7 augm. .829 .785
RGDD-7 .815 .888
RGDD-7 augm. .833 .941
RGDD-Stems-7 .450 .910
RGDD-Stems-7 augm. .353 .925

E-GMD-Clean-25 .785 .674
E-GMD-Clean-25 augm. .798 .717

Adding RGDD to E-GMD-Clean as additional training data improves the per-
formance of all models compared to models solely trained on E-GMD-Clean rang-
ing from an increase of 10.1 percentage points for E-GMD-Clean-7 augmented to
30.9 percentage points for E-GMD-Clean-3. At the same time, the results show that
when RGDD is part of the training dataset the performance of those models can be
improved in comparison to IDMT-Mixes. The only exception to this is the model
trained on E-GMD-Clean-7 + RGDD-7 augmented where the performance decreases
by 4.4 percentage points.

If RGDD is the only dataset the proposed model is trained on, the results are
either comparable or better than the models trained on mixed datasets. The model
trained on RGDD-3 augmented for example is among the best performing models
in this scenario scoring an F-measure of .921 on IDMT-Stems which is an increase
of 8.3 percentage points over its performance on IDMT-Mixes. The overall best per-
formance however is achieved when training on RGDD-7 augmented. This training
setup yields an F-measure of .941 which is even better than models that were trained
on stems only.

Training the proposed model on RGDD-Stems almost always yields F-measures
above .900. The only exception to this is the proposed model trained on RGDD-
Stems-3 which results in an F-measure of .890. Notwithstanding these good results
on IDMT-Stems, it becomes also clear that models trained only on stems perform
poorly when evaluated onmixes which can result in a performance decrease ranging
from 34.6 percentage points for RGDD-Stems-3 augmented to 57.2 percentage points
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for RGDD-Stems-7 augmented. At the same time, this holds true for models that
were trained on mixes that are then used to transcribe drums from stems. Figure 5.9
underlines the described set of problems based on examples taken from IDMT.

Ground Truth

BD Predictions

SD Predictions

HH Predictions

Spectrogram
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FIGURE 5.9: Comparison of exemplary results of the proposed model
trained on either E-GMD-Clean-3 (left column) or RGDD-Stems-3
(right column). The first row presents the automatic drum transcrip-
tion of these models based on WaveDrum02_03#HH.wav which only
features hi-hat hits whereas the bottom row shows the results based
onWaveDrum02_03#MIX.wavwhich features kick-drum, snare drum,
and hi-hat hits. Both of these examples are taken from IDMT. This
comparison underlines the problems that a model has when either

stems or drums-only mixes are not present in the training data.

It becomes clear that the model trained on E-GMD-Clean-3 (drums-only mixes) pre-
dicts an additional SD for every HH hit in the selected section when evaluated on
a stem file as shown in the upper row of Figure 5.9 whereas the model trained on
RGDD-Stems-3 (stems only) correctly classifies the HH hits in the selected section.
On the other hand, the evaluation on a drums-only mix presented in the bottom row
shows that when trained on drums-only mixes the model is able to correctly classify
numerous instrument hits with the exception of SD. Compared to this, the model
which was trained only on stems is neither capable of transcribing events that hap-
pen simultaneously or close to this as it is the case for example for KD and HH or
SD and HH. Instead, it only transcribes SD at all ground truth onset positions. These
findings are underlined in a more granular fashion by the confusion matrices shown
in Figure 5.10.
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(A) Results when trained on E-GMD-Clean-3 .

(B) Results when trained on RGDD-Stems-3 augmented.

(C) Results when trained on RGDD-7 augmented.

FIGURE 5.10: Summary of classification results of single instrument
audio files of IDMT WaveDrum02 (IDMT-Stems). The left part of
each subfigure shows a confusion matrix indicating how many in-
struments were correctly classified and if not what instruments they
were confused with. On the other hand, the right column shows a
bar plot indicating the amount of missing (FN) or false predictions
(FP) for a file that that either has more or fewer instrument hits than

finally predicted.
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The proposed model that was trained on E-GMD-Clean-3 has major problems
to distinguish between hi-hats (HH) and snare drums (SD). This is especially pro-
nounced in case of HHs that are mostly misclassified as SDs. Overall this results in
1,820 false negatives (FN) for HH. On the other hand, although all existing SD hits
are correctly classified, there are 26 additional HH classifications where there are in
fact no SD hits. 287 false positives (FP) for SD indicate that for example instead of
classifying 5 out of 5 SD hits the model predicts more than 5. In addition to that,
there is confusion between KD and SD events showing that the model confuses KD
as SD.

As opposed to that, amodel that is trained on RGDD-Stems-3 augmented outper-
forms the aforementioned model by a big margin. It becomes clear that this model
does not confuse HHs and SDs with other instruments at all while predicting almost
all HHs and therefore reducing the number of FNs. At the same time, the number
of FNs for SDs is reduced substantially. Even though the number of FNs for KD
increases, the confusion between KD and SD is almost completely reduced.

Finally, the best performing model is the one trained on RGDD-7 augmented.
Figure 5.10 shows that the amount of FNs for HHs and FPs for SDs are further re-
duced. Notwithstanding this improvement, there is a small amount of confusion
between SD and HH. Generally speaking, this model is able to classify almost all
instruments correctly while reducing instrument confusions, FPs and FNs.

5.2.1 Discussion

Table 5.3 showed the results of a qualitative analysis where the proposed model
was trained on either mixes, mixes plus additional random sequences, random se-
quences only, or simply random stems to then automatically transcribe drums from
audio files that only contain single instrument hits (stems).

The findings suggest that models trained on mixes only, that is files that feature
multiple instruments, generally exhibit a decrease in performance which indicates
that these models seem to have learned the context in which drum instruments oc-
cur and therefore struggle to generalize when there is only single instruments in a
file. This problem can be counteracted to some degree by adding data that contain
stems. In this case, adding audio files that feature random mixes and stems, here in
the form of RGDD, can in fact improve a model’s performance on stems. However,
themodel trained on E-GMD-Clean-7 + RGDD-7 augmented performs unexpectedly
poorly. Similar to E-GMD-Clean-3 + RGDD-3 augmented, it is to be expected that
augmenting the training data results in a better performance when compared to its
unmodified counterpart which is not the case here. A possible explanation might be
the statistical nature of training a DNN. Therefore, picking a single experiment from
a range of experiments might result in varying performances in some cases. Another
approach that improves the performance of the proposedmodel when evaluating on
stems is to train models to classify more instruments than needed in the final setting.
By increasing the number of instruments in the training process and therefore com-
plicating the task at hand, themodel can be regularized to some extent, albeit it is not
always the case as shown by the model trained on E-GMD-Clean-7 + RGDD-7 aug-
mented or trained on RGDD-Stems augmented. Nevertheless, it is a valid approach
that might help increase the overall performance.
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5.3 Full-mixes

In the following section, the results of the transcription from full-mixes are presented
and compared to the results of Vogl, Widmer, and Knees (2018). The performance
of the proposed model on full-mixes is examined for the sake of investigating its
potential in a different setting than it was trained in. As the amount of labeled data
in a full-mix scenario is limited and the creation and annotation of such a dataset is
labor-intensive, it is explored how effective a DNN that is trained only on drums-
only mixes can be in a full-mix scenario. The benchmark model that is used for
comparison purposes is referred to as Vogl-Drums. In contrast to the drums-only
experiments in Section 5.1, the test datasets now contain a wide range of other in-
struments like for example guitar, bass, vocals, and keyboard in addition to drums.
It is important to note that the results cannot be directly compared to each other be-
cause during the training process of Vogl-Drums, the DNN has seen all types of files
that compose the individual dataset which means that full-mixes were also part of
the training dataset. This is due to the fact that Vogl, Widmer, and Knees (2018) em-
ploy a 3-fold cross-validation strategy which is different from the approach applied
in this thesis where designated train, validation, and test splits exist so that every
dataset has its unique purpose. As a result of this, the performance of Vogl-Drums
on full-mixes is expected to be better when compared to the proposed model’s per-
formance which was solely trained on drums-only mixes. Notwithstanding this fact,
the results give an impression of how capable the proposed model is to generalize
on unseen data.

For each test dataset, two F-measures are presented in Table 5.4. In case of
Vogl-Drums, two different types deep neural network are used as reference, the first
of which refers to the result of the CNN displayed in Figure 4.3a whereas the second
one indicates the performance of the CRNN shown in Figure 4.3b. This is done
due to the reason that sometimes CNN yields better results than the CRNN. The
main difference between these particular deep neural networks is the last hidden
layer of the network that changes from dense layers in the CNN to bi-directional
GRUs in the CRNN. In case of the proposed model, the two F-measures per row
do not indicate two different types of architectures but rather the differentiation
between a more strict tolerance window in the left column and a wider tolerance
window when calculating the overall F-measure. The left column shows the results
when applying a tolerance window of 20ms which is identical to Vogl, Widmer,
and Knees (2018). This column serves as a comparison to Vogl-Drums whereas the
right column shows the results of a tolerance window of 50ms which is identical
to Callender, Hawthorne, and Engel (2020) and therefore to the drums-only results
presented in Section 5.1, the latter of which are presented to get an impression of
what impact a wider tolerance window has on the overall performance.

3-classes
As a first step, all drum events are grouped into the same 3 classes similar to the
first part of the drums-only scenario in Section 5.1. Based on the findings in that
section, only models that are either solely trained on E-GMD-Clean, RGDD, or a
combination of both are included in this section. At first glance, it becomes obvious
that no training setup of the proposed model can outscore the benchmark. Despite
this fact, competitive results can be achieved.

Table 5.4 shows a benchmark performance of .770 for Vogl-Drums on ENST. Un-
like the proposedmodel, however, this is a convolutional neural network. Note, that
Vogl, Widmer, and Knees (2018) take an F-measure value of .784 as state-of-the-art
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when automatically transcribing drum from the full-mixes of ENST. This value is
based on the work by Vogl et al. (2017). However, since their work only takes the
annotations of KD, SD, and HH into consideration while neglecting all other instru-
ments, they cannot be directly compared to the described setting in this thesis. As
a result of this, the F-measure of .770 by Vogl, Widmer, and Knees (2018) is taken as
reference.

TABLE 5.4: F-measures of the 3-class scenario tested on full-mixes. All
instruments are grouped into either KD, SD, or HH.Models that were
trained on a dataset with the "-7/25" suffix group their predictions for
ENST, MDB, and RBMA13 as shown in Figure 5.1. The benchmark
results from Vogl, Widmer, and Knees (2018) demonstrate the evalu-
ation outcome based on the full-mixes of ENST, MDB, and RBMA13
in the same 3-class scenario for a tolerance window of 20ms. For the
sake of comparison, the left column of the proposed model shows the
results for the same tolerance window. In contrast to that, the right
column presents the results for a tolerance window of 50ms. It is
important to note that full-mixes were part of the training dataset for
Vogl-Drums which is due to the fact that a 3-fold cross-validation was
applied. This is an advantage over the proposed model that has nei-
ther seen any drums-only files of ENST, MDB, and RBMA13 nor any

full-mixes.

F-measures
Model Training Dataset ENST MDB RBMA13

Vogl-Drums CNN ENST & MDB & RBMA13 .770 / - .720 / - .630 / -
CRNN ENST & MDB & RBMA13 .760 / - .700 / - .640 / -

Proposed CRNN E-GMD-Clean-3 .628 / .667 .451 / .513 .390 / .431
E-GMD-Clean-3 augm. .589 / .663 .519 / .565 .429 / .470
E-GMD-Clean-3 + RGDD-3 .669 / .706 .552 / .619 .540 / .571
E-GMD-Clean-3 + RGDD-3 augm. .664 / .706 .573 / .635 .522 / .564
RGDD-3 .651 / .698 .575 / .649 .560 / .590
RGDD-3 augm. .615 / .676 .574 / .640 .545 / .583

E-GMD-Clean-7 .589 / .633 .413 / .480 .274 / .332
E-GMD-Clean-7 augm. .645 / .695 .538 / .608 .483 / .532
E-GMD-Clean-7 + RGDD-7 .658 / .698 .557 / .622 .498 / .529
E-GMD-Clean-7 + RGDD-7 augm. .640 / .686 .531 / .606 .496 / .540
RGDD-7 .646 / .687 .596 / .649 .569 / .596
RGDD-7 augm. .619 / .680 .604 / .663 .569 / .605

E-GMD-Clean-25 .626 / .672 .444 / .520 .370 / .412
E-GMD-Clean-25 augm. .652 / .703 .533 / .620 .468 / .523

In contrast to the results in the drums-only scenario, the performance of the
model solely trained on E-GMD-Clean-25 augmented is better than the unmodified
version of the training dataset when compared to the evaluation results of the model
trained on E-GMD-Clean-3 where the unmodified version performs better than its
augmented counterpart. Overall, the proposedmodel trained on E-GMD-Clean aug-
mented performs better the more instruments it was initially trained to classify. This
is similar to the findings in the drums-only scenario with the exception of E-GMD-
Clean-25 augmented. Adding RGDD as additional training data to E-GMD-Clean
can improve the performance of all models but the one trained on E-GMD-Clean-7
model when evaluating on ENST. Models that were trained only on RGDD in fact
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achieve comparable or even higher scores thanmodels that were trained on E-GMD-
Clean only or the combination of both. However, the best performing model with
regard to automatically transcribing 3 classes from ENST is achieved with the pro-
posed model trained on E-GMD-Clean-3 + RGDD-3 scoring an F-measure of .669
while its augmented version only scores .5 percentage points worse. When com-
paring the best results of the proposed model to the results of Vogl-Drums which
includes ENST full-mixes among others in the training set, the difference amounts
to roughly 10 percentage points.

With regard to individual instrument performance, Figure 5.11 shows that in-
creasing the level of instrument complexity can improve the performance for KD
and SD only for HH it decreases slightly. On top of that, adding RGDD as addi-
tional training data can also improve the performance when the instrument level
complexity is set to 3 whereas for 7 instruments it decreases with respect to KD.

FIGURE 5.11: Overview of selected F-measures for the proposed
model evaluated on ENST in a 3-class full-mix scenario.

In case of MDB, all results turn out to be worse when compared to the evaluation
on ENST. This time, the best performing model is trained on RGDD-7 augmented
resulting in an F-measure of .604. Compared to the benchmark, this corresponds to
a difference of 11.6 percentage points. The worst results are achieved for models that
were trained on the unmodified versions of E-GMD-Clean. However, the results on
MDB suggest that augmenting the training dataset almost always yields an increase
in performance. Only E-GMD-Clean-7 + RGDD-7 augmented performs around 2
percentage points worse than its unmodified counterpart. The same holds true for
adding RGDD as additional training data. Figure 5.12 demonstrates the influence
augmenting / adding data or increasing the level of instrument complexity can have
on KD, SD, and HH F-measures.
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FIGURE 5.12: Overview of selected F-measures for the proposed
model evaluated on MDB in a 3-class full-mix scenario.

Finally, the evaluation of the models on RBMA13 shows similar findings to the
evaluation on ENST with the difference that the performance generally decreases
which ranges from 1.2 percentage points for E-GMD-Clean-3 + RGDD-3 to 13.9 per-
centage points for E-GMD-Clean-7. The best performing model is again trained on
RGDD-7 augmented yielding an F-measure of .569 which is matched by its unmod-
ified version. A comparison to the benchmark shows a difference of 7.1 percentage
points. Similar to ENST, the worst performing model is again trained on E-GMD-
Clean-7 which only scores an F-measure of .274. This score is mainly based on the
poor performance on SD and HH as shown in Figure 5.13 which indicates that aug-
mentation helps improve these metrics drastically.

FIGURE 5.13: Overview of selected F-measures for the proposed
model evaluated on RBMA13 in a 3-class full-mix scenario.
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7-classes
Following the 3-class scenario is the evaluation on 7 classes, as opposed to the results
fromVogl, Widmer, and Knees (2018) who group all instruments of ENST, MDB, and
RBMA13 into 8 classes. Compared to the grouping of instruments presented in this
thesis, they treat clave/sticks as an individual class. Therefore, the results cannot be
directly compared with each other. Nevertheless, they give a good intuition about
the performance of the proposed model since the difference in the number of instru-
ments is marginal. On top of that, the overall number of occurrences of this instru-
ment class in the full-mixes of ENST, MDB, and RBMA is either 0 or not among the
most represented instruments as shown in Figures 3.12, 3.13, and 3.14.

Similar to the previously presented results of the 3-class scenario, the same ten-
dency in the 7-class scenario can be seen where Vogl-Drums also performs better on
ENST, MDB and RBMA13. Again, this is due to the fact that the model has seen full-
mixes among others during training. Table 5.5 shows a result of .700 for Vogl-Drums
when evaluated on ENST.

TABLE 5.5: F-measures of the 7-class scenario tested on full-mixes
input signals. All instruments are grouped into either KD, SD, TT,
HH, CY, RD, or BE. Models that were trained on a dataset with the
"-25" suffix group their predictions for ENST, MDB, and RBMA13 as
shown in Figure 5.1. The benchmark results from Vogl, Widmer, and
Knees (2018) demonstrate the evaluation outcome based on the full-
mixes of MDB in an 8-class scenario for a tolerance window of 20ms.
For the sake of comparison, the left column of the proposed model
shows the results for the same tolerance window. In contrast to that,
the right column presents the results for a tolerance window of 50ms.
It is important to note that full-mixes were part of the training dataset
for Vogl-Drums which is due to the fact that a 3-fold cross-validation
was applied. This is an advantage over the proposed model that has
neither seen any drums-only files of ENST, MDB, and RBMA13 nor

any full-mixes.

F-measures
Model Training Dataset ENST MDB RBMA13

Vogl-Drums CNN ENST & MDB & RBMA13 .630 / - .650 / - .440 / -
CRNN ENST & MDB & RBMA13 .700 / - .630 / - .500 / -

Proposed CRNN E-GMD-Clean-7 .480 / .513 .337 / .393 .241 / .289
E-GMD-Clean-7 augm. .482 / .512 .383 / .434 .353 / .396
E-GMD-Clean-7 + RGDD-7 .497 / .521 .378 / .423 .379 / .405
E-GMD-Clean-7 + RGDD-7 augm. .469 / .496 .381 / .437 .388 / .430
RGDD-7 .438 / .462 .360 / .389 .411 / .431
RGDD-7 augm. .458 / .494 .410 / .443 .451 / .481

E-GMD-Clean-25 .503 / .535 .388 / .455 .323 / .396
E-GMD-Clean-25 augm. .545 / .581 .406 / .478 .347 / .360

The model that comes closest to this is trained on E-GMD-Clean-25 augmented scor-
ing an F-measure of .545 which corresponds to a difference between the benchmark
and the proposed model of 15.5 percentage points. All other models perform worse
ranging from a 26.2 percentage point difference for RGDD-7 to 19.7 percentage
points for E-GMD-Clean-25 which makes the models trained on RGDD the worst
performing ones on ENST.
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However, this changes with respect to MDB. Here, the model that was trained on
RGDD-7 augmented performs the best with an F-measure of .410. When comparing
this to the benchmark of .650, this yields a difference of 24 percentage points. Besides
that, similar to the results of the evaluation on ENST, the proposed model trained on
E-GMD-Clean-25 augmented scores the second best F-measure with a value of .406.
In this evaluation scenario, the model trained on E-GMD-Clean-7 yields the worst
performance which is similar to the findings in the 3-class scenario.

With regard to RBMA13, the proposed model trained on RGDD-7 augmented is
in fact able to surpass the score of the CNN baseline from Vogl, Widmer, and Knees
(2018) by 1.1 percentage points with an F-measure of .451. Nonetheless, this is not
enough to surpass the CRNN baseline that scores an F-measure of .500. Contrary to
the evaluation on ENST and MDB, the results for RBMA13 indicate that the models
trained 25 instruments are not among the best ones. This time, adding RGDD as
additional training data improves the overall performance especially regarding the
training on E-GMD-Clean-7 which only scores an F-measure of .241 as compared to
scoring an F-measure of .379 when RGDD-7 is added.

5.3.1 Discussion

In the full-mix scenario, the proposed model’s ability to perform ADT on audio
files that contain accompanying instruments besides drums was investigated in Sec-
tion 5.3. For this purpose, RBMA13 was used as an additional test set because it
features files that are commercially produced songs. In order to be able to gauge
the performance of the proposed model, Vogl-Drums is used as a benchmark which
was introduced by Vogl, Widmer, and Knees (2018). As described in Section 5.3,
the comparison with the benchmark is not completely fair because it contains full-
mixes in the training process and is therefore expected to outperform the proposed
model which did not see any full-mixes during training. This expectation is indeed
confirmed by the findings in both the 3- and 7-class scenario. As for the 3-class sce-
nario, Vogl-Drums has an advantage ranging from 7.1 percentage points in case of
RBMA13 to 11.6 percentage on MDB while performing from 4.9 percentage points
better on RBMA13 up to 25 percentage points on MDB. One main reason for this is
probably an overlap of instruments in the time and frequency domain in the full-
mixes and therefore making it more difficult for models that were solely trained on
drums-only mixes. Despite this fact, the results show that even though the proposed
model was not trained on full-mixes, it can still achieve scores that seem promising.
Hence, it can be assumed that when trained on full-mixes the overall performance
can at least get in the same range as the benchmark.

Generally speaking, the results of the 3-class scenario show the best perfor-
mances on ENST when the DNN is trained on the unmodified version of both E-
GMD-Clean-3 and RGDD-3 while still performing comparably well in the 7 instru-
ment setup of the same training data or when trained on E-GMD-Clean-25 aug-
mented. In contrast to that, the evaluation on MDB and RBMA show an advan-
tage of models that were trained on random drum sequences only, namely RGDD-7
augmented. The results of the evaluation on MBD suggest that for MDB the accom-
panying instruments might in fact mask the drums in the audio more than it is the
case for ENST as the overall performance drops for all models when evaluated on
MDB. A model that was initially trained to solve a more difficult task, that is being
trained to transcribe more instruments than finally needed, can be favorable. When
comparing the full-mixes of ENST and MDB sonically, it is easy to tell that the ones
from MDB sound more natural and homogeneous since they are real recordings as
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opposed to the full-mixes of ENST that feature a lot of MIDI accompaniments which
make the drums stand out of the mix. Therefore, one possible explanation for the
better performance on ENST might be the more unnatural accompaniment as well
as the volume balance between accompaniment and drums.

The same applies to RBMA13 which seems to be the most challenging ADT task
in this setting. One major contributing factor is the overall complexity and variety
of both drum set sounds featuring distorted samples among others as well as the ac-
companying instruments of the songs in RBMA13. They are commercially produced
tracks mostly featuring synthesized sounds in the realm of electronic dance music
(EDM) and techno which makes it difficult for the DNN to distinguish between e.g.
a synthesizer playing a bass note or playing a synthetic kick drum because they can
look similar in the frequency domain. This is probably the reason why the proposed
model trained on RGDD-7 augmented performs best in both the 3- and 7-class sce-
nario when evaluated on RBMA13 as it features a wide variety of sounds.

Notwithstanding the reasonably good results of the benchmark models, it re-
mains a challenge to transcribe drums from full-mixes. Therefore, more labeled data
of drums in a full-mix scenario are necessary to be able to further improve the per-
formance of deep neural networks in ADT tasks. Otherwise, models that did not see
full-mixes during training will not yield a competitive outcome.
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Chapter 6

Conclusion and Outlook

In this thesis, deep neural networks were employed to automatically transcribe
drums from audio files that contain either drums only or accompanying instruments
in addition to drums. The proposed model for this ADT task was inspired by the
models from Callender, Hawthorne, and Engel (2020) and Vogl, Widmer, and Knees
(2018) which serve as benchmarks in the two aforementioned scenarios. In addi-
tion to that, a qualitative analysis on files that only contain one single drum event
type at a time was done. The publicly available dataset called E-GMD introduced by
Callender, Hawthorne, and Engel (2020) served as the fundamental training data.

A comprehensive analysis of E-GMD as training data has underlined the impor-
tance of clean data with respect to the performance on benchmark datasets. It has
become obvious that when removing files from E-GMD with a deviation of � 6ms
between audio and MIDI files the employed evaluation metric could be improved
in almost all cases. Furthermore, it was shown, based on the results of the proposed
model on IDMT-Mixes, that the suggested technique of augmenting audio files can-
not compete with the Shuffled mixup approach presented by Callender, Hawthorne,
and Engel (2020). However, the evaluation of the 7-event scenario on the drums-
only mixes of ENST has shown that the proposed model is indeed capable of scoring
comparable results even without applying augmentation to the training data.

Besides that, two additional methods of regularization were presented, the first
of which is adding a newly created dataset consisting of random drum sequences —
called RGDD — to E-GMD in order to increase the variance of the training dataset.
It has been shown that in the majority of cases adding RGDD as additional training
data improved the performance when evaluated on IDMT, ENST, MDB, or RBMA
in comparison to the corresponding model that was not trained on RGDD as sup-
plementary training data. Moreover, models trained solely on RGDD can indeed
outperform models that were trained on E-GMD or the combination of both in a 3-
event scenario when evaluated on IDMT, MDB, and RBMA13. A conclusion from
this finding is that it is not necessary to have drum sequences played by humans for
ADT as random data proved to be a good starting point as well. The second type of
regularization method proposed in this thesis has been to train a model to classify
more instruments than needed in the final ADT task and later group this finer level
of predictions to a more coarse grouping. This approach has proven to be another
valid method in many evaluations if no additional training data is available.

Finally, the evaluation results of the drum stems have shown that models which
are trained on drums-only mixes struggle to generalize on data that is not repre-
sented in the training data by any means. Every model that was trained only on
E-GMD(-Clean) has shown to be performing worse on IDMT-Stems than on IDMT-
Mixes. Even though this finding is somewhat counter-intuitive as it might seem
easier to transcribe drum events from files that only contain one single drum event,
it confirms the inherent characteristic of the supervised machine learning approach
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where the DNN can only learn to generalize well when presented with a large vari-
ance in the data during training. The same holds true for models that were trained
on stems only since they encounter problems of generalization when evaluated on
drums-only mixes. While adding RGDD to E-GMD-Clean during training can al-
ready substantially improve the performance of a DNN on stems, training only on
RGDD yielded the best results. This confirms again the finding from the ADT in the
drums-only and full-mixes scenario where randomly generated data proved to be a
legitimate approach to tackling ADT.

This work has shown that data is at the core of deep learning tasks. The data-
centric approach presented here demonstrated that altering the training data or in-
troducing further variance to the training data can result in substantial performance
gains. The augmentation technique presented by Callender, Hawthorne, and Engel
(2020) seems to be a promising starting point towards this direction while showing
that additional data is needed for good generalization on publicly available datasets
or (supposedly) easy ADT task on stems. Future work should also further focus on
applying semi-supervisedmethods like few-shot learning to ADT tasks as presented
by Wang et al. (2020) or completely unsupervised methods as shown by Choi and
Cho (2019) as large labeled datasets are rare or not completely open to the commu-
nity due to copyright issues like the one presented by Zehren, Alunno, and Bienti-
nesi (2021). This becomes notablymore relevant as the sonic complexity of drum sets
especially with regard to electronic or synthetic drum sets in commercially produced
music varies a lot.

Future work should also focus on improving the performance of ADT with re-
gard to full-mixes by either training on more labeled data comprising full-mixes or
to combine ADT with source separation. Défossez (2021) introduced a DNN called
Demucs that performs especially well on separating drums from full-mixes which
could be combined with a model that focuses on ADT to yield good results in a
full-mix scenario.

In addition to that, it should be investigated if a DNN expresses a bias towards
certain genres or tempos as E-GMD turns out to be unbalanced with regard to these
two parameters.

Lastly, more work needs to be done in the direction of automatically transcribing
the velocity of drum events as this is a key factor when it comes to natural sounding
drum sequences. Creating synthetic datasets in the form of random drum sequences
can be a viable approach to create large datasets that contain velocity annotations.
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Appendix A

Odd E-GMD Files

A.1 Audio

TABLE A.1: Overview of the audio files from E-GMD that are empty.
These files are not part of any version of E-GMD-Clean

# File # File

1 drummer7/session3/25_hiphop_67_fill_4-4_23.wav 23 drummer7/session3/25_hiphop_67_fill_4-4_52.wav
2 drummer7/session3/25_hiphop_67_fill_4-4_21.wav 24 drummer7/session3/25_hiphop_67_fill_4-4_51.wav
3 drummer7/session3/25_hiphop_67_fill_4-4_25.wav 25 drummer7/session3/25_hiphop_67_fill_4-4_19.wav
4 drummer7/session3/25_hiphop_67_fill_4-4_36.wav 26 drummer7/session3/25_hiphop_67_fill_4-4_26.wav
5 drummer7/session3/25_hiphop_67_fill_4-4_18.wav 27 drummer7/session3/25_hiphop_67_fill_4-4_28.wav
6 drummer7/session3/25_hiphop_67_fill_4-4_1.wav 28 drummer7/session3/25_hiphop_67_fill_4-4_33.wav
7 drummer7/session3/25_hiphop_67_fill_4-4_8.wav 29 drummer7/session3/25_hiphop_67_fill_4-4_53.wav
8 drummer7/session3/25_hiphop_67_fill_4-4_54.wav 30 drummer7/session3/25_hiphop_67_fill_4-4_32.wav
9 drummer7/session3/25_hiphop_67_fill_4-4_16.wav 31 drummer7/session3/25_hiphop_67_fill_4-4_57.wav
10 drummer7/session3/25_hiphop_67_fill_4-4_42.wav 32 drummer7/session3/25_hiphop_67_fill_4-4_35.wav
11 drummer7/session3/25_hiphop_67_fill_4-4_5.wav 33 drummer7/session3/25_hiphop_67_fill_4-4_6.wav
12 drummer7/session3/25_hiphop_67_fill_4-4_43.wav 34 drummer7/session3/25_hiphop_67_fill_4-4_10.wav
13 drummer7/session3/25_hiphop_67_fill_4-4_12.wav 35 drummer7/session3/25_hiphop_67_fill_4-4_41.wav
14 drummer7/session3/25_hiphop_67_fill_4-4_24.wav 36 drummer7/session3/25_hiphop_67_fill_4-4_14.wav
15 drummer7/session3/25_hiphop_67_fill_4-4_56.wav 37 drummer7/session3/25_hiphop_67_fill_4-4_3.wav
16 drummer7/session3/25_hiphop_67_fill_4-4_11.wav 38 drummer7/session3/25_hiphop_67_fill_4-4_17.wav
17 drummer7/session3/25_hiphop_67_fill_4-4_55.wav 39 drummer7/session3/25_hiphop_67_fill_4-4_44.wav
18 drummer7/session3/25_hiphop_67_fill_4-4_34.wav 40 drummer7/session3/25_hiphop_67_fill_4-4_37.wav
19 drummer7/session3/25_hiphop_67_fill_4-4_31.wav 41 drummer7/session3/25_hiphop_67_fill_4-4_4.wav
20 drummer7/session3/25_hiphop_67_fill_4-4_13.wav 42 drummer7/session3/25_hiphop_67_fill_4-4_2.wav
21 drummer7/session3/25_hiphop_67_fill_4-4_15.wav 43 drummer7/session3/25_hiphop_67_fill_4-4_58.wav
22 drummer7/session3/25_hiphop_67_fill_4-4_22.wav
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A.2 MIDI

TABLE A.2: Overview of the files from E-GMD where MIDI events
occur after their audio counterparts, Part 1/4.

# File # File

1 drummer7/session3/146_soul_105_fill_4-4_52.midi 69 drummer7/session3/156_soul_98_fill_4-4_33.midi
2 drummer7/session3/63_funk_112_fill_4-4_10.midi 70 drummer3/session2/2_rock_100_beat_4-4_19.midi
3 drummer3/session2/2_rock_100_beat_4-4_41.midi 71 drummer7/session3/149_soul_105_fill_4-4_11.midi
4 drummer7/session2/81_country_78_fill_4-4_10.midi 72 drummer7/session3/146_soul_105_fill_4-4_55.midi
5 drummer1/session1/5_jazz-funk_116_beat_4-4_52.midi 73 drummer7/session3/156_soul_98_fill_4-4_15.midi
6 drummer1/session1/5_jazz-funk_116_beat_4-4_18.midi 74 drummer7/session2/81_country_78_fill_4-4_8.midi
7 drummer7/session3/109_rock_95_beat_4-4_43.midi 75 drummer1/session1/5_jazz-funk_116_beat_4-4_8.midi
8 drummer7/session3/25_hiphop_67_fill_4-4_28.midi 76 drummer7/session3/25_hiphop_67_fill_4-4_19.midi
9 drummer3/session2/2_rock_100_beat_4-4_2.midi 77 drummer7/session2/81_country_78_fill_4-4_51.midi
10 drummer3/session1/9_rock_105_beat_4-4_14.midi 78 drummer7/session3/149_soul_105_fill_4-4_5.midi
11 drummer7/session3/109_rock_95_beat_4-4_1.midi 79 drummer7/session3/109_rock_95_beat_4-4_33.midi
12 drummer7/session2/81_country_78_fill_4-4_26.midi 80 drummer7/session1/15_jazz_112_beat_4-4_3.midi
13 drummer7/session3/109_rock_95_beat_4-4_6.midi 81 drummer7/session3/156_soul_98_fill_4-4_58.midi
14 drummer7/session3/156_soul_98_fill_4-4_2.midi 82 drummer7/session3/63_funk_112_fill_4-4_17.midi
15 drummer3/session1/9_rock_105_beat_4-4_55.midi 83 drummer7/session3/63_funk_112_fill_4-4_33.midi
16 drummer3/session1/9_rock_105_beat_4-4_35.midi 84 drummer3/session1/9_rock_105_beat_4-4_24.midi
17 drummer3/session1/9_rock_105_beat_4-4_22.midi 85 drummer1/session1/5_jazz-funk_116_beat_4-4_56.midi
18 drummer7/session1/15_jazz_112_beat_4-4_25.midi 86 drummer10/session1/8_jazz-swing_215_beat_4-4_28.midi
19 drummer7/session1/15_jazz_112_beat_4-4_24.midi 87 drummer7/session3/149_soul_105_fill_4-4_33.midi
20 drummer7/session3/25_hiphop_67_fill_4-4_25.midi 88 drummer3/session2/2_rock_100_beat_4-4_12.midi
21 drummer7/session3/109_rock_95_beat_4-4_31.midi 89 drummer7/session3/25_hiphop_67_fill_4-4_21.midi
22 drummer7/session2/81_country_78_fill_4-4_43.midi 90 drummer3/session2/2_rock_100_beat_4-4_10.midi
23 drummer7/session3/25_hiphop_67_fill_4-4_16.midi 91 drummer7/session3/149_soul_105_fill_4-4_42.midi
24 drummer1/session1/5_jazz-funk_116_beat_4-4_13.midi 92 drummer7/session2/81_country_78_fill_4-4_31.midi
25 drummer7/session3/156_soul_98_fill_4-4_5.midi 93 drummer7/session2/81_country_78_fill_4-4_33.midi
26 drummer7/session1/15_jazz_112_beat_4-4_19.midi 94 drummer7/session3/149_soul_105_fill_4-4_23.midi
27 drummer3/session1/9_rock_105_beat_4-4_53.midi 95 drummer3/session2/2_rock_100_beat_4-4_33.midi
28 drummer3/session1/9_rock_105_beat_4-4_2.midi 96 drummer7/session3/63_funk_112_fill_4-4_37.midi
29 drummer7/session3/149_soul_105_fill_4-4_21.midi 97 drummer10/session1/8_jazz-swing_215_beat_4-4_42.midi
30 drummer3/session1/9_rock_105_beat_4-4_58.midi 98 drummer1/session1/5_jazz-funk_116_beat_4-4_51.midi
31 drummer7/session3/25_hiphop_67_fill_4-4_8.midi 99 drummer7/session3/63_funk_112_fill_4-4_21.midi
32 drummer7/session3/149_soul_105_fill_4-4_16.midi 100 drummer3/session1/9_rock_105_beat_4-4_43.midi
33 drummer7/session3/156_soul_98_fill_4-4_44.midi 101 drummer7/session3/149_soul_105_fill_4-4_35.midi
34 drummer7/session3/109_rock_95_beat_4-4_21.midi 102 drummer3/session1/9_rock_105_beat_4-4_33.midi
35 drummer3/session1/9_rock_105_beat_4-4_34.midi 103 drummer7/session3/156_soul_98_fill_4-4_35.midi
36 drummer7/session3/109_rock_95_beat_4-4_15.midi 104 drummer7/session1/15_jazz_112_beat_4-4_42.midi
37 drummer7/session2/81_country_78_fill_4-4_15.midi 105 drummer7/session3/63_funk_112_fill_4-4_24.midi
38 drummer3/session1/9_rock_105_beat_4-4_54.midi 106 drummer3/session1/9_rock_105_beat_4-4_44.midi
39 drummer10/session1/8_jazz-swing_215_beat_4-4_10.midi 107 drummer7/session3/25_hiphop_67_fill_4-4_5.midi
40 drummer7/session3/149_soul_105_fill_4-4_18.midi 108 drummer7/session3/146_soul_105_fill_4-4_58.midi
41 drummer1/session1/5_jazz-funk_116_beat_4-4_34.midi 109 drummer7/session2/81_country_78_fill_4-4_53.midi
42 drummer7/session3/25_hiphop_67_fill_4-4_56.midi 110 drummer7/session3/25_hiphop_67_fill_4-4_23.midi
43 drummer7/session3/109_rock_95_beat_4-4_32.midi 111 drummer1/session3/8_rock_135_beat_4-4_33.midi
44 drummer7/session3/149_soul_105_fill_4-4_52.midi 112 drummer7/session3/25_hiphop_67_fill_4-4_26.midi
45 drummer7/session3/25_hiphop_67_fill_4-4_43.midi 113 drummer7/session3/109_rock_95_beat_4-4_58.midi
46 drummer7/session3/146_soul_105_fill_4-4_11.midi 114 drummer7/session3/25_hiphop_67_fill_4-4_36.midi
47 drummer7/session3/146_soul_105_fill_4-4_16.midi 115 drummer1/session1/5_jazz-funk_116_beat_4-4_19.midi
48 drummer7/session1/15_jazz_112_beat_4-4_16.midi 116 drummer1/session1/5_jazz-funk_116_beat_4-4_12.midi
49 drummer7/session1/15_jazz_112_beat_4-4_51.midi 117 drummer7/session1/15_jazz_112_beat_4-4_52.midi
50 drummer7/session2/81_country_78_fill_4-4_1.midi 118 drummer7/session3/149_soul_105_fill_4-4_14.midi
51 drummer7/session2/81_country_78_fill_4-4_12.midi 119 drummer10/session1/8_jazz-swing_215_beat_4-4_23.midi
52 drummer3/session1/9_rock_105_beat_4-4_42.midi 120 drummer1/session1/5_jazz-funk_116_beat_4-4_15.midi
53 drummer7/session2/81_country_78_fill_4-4_25.midi 121 drummer7/session3/63_funk_112_fill_4-4_57.midi
54 drummer7/session3/149_soul_105_fill_4-4_28.midi 122 drummer7/session3/25_hiphop_67_fill_4-4_22.midi
55 drummer7/session3/56_funk_112_fill_4-4_19.midi 123 drummer3/session1/9_rock_105_beat_4-4_51.midi
56 drummer10/session1/8_jazz-swing_215_beat_4-4_2.midi 124 drummer7/session2/81_country_78_fill_4-4_56.midi
57 drummer7/session3/149_soul_105_fill_4-4_37.midi 125 drummer1/session1/5_jazz-funk_116_beat_4-4_25.midi
58 drummer7/session3/149_soul_105_fill_4-4_36.midi 126 drummer7/session3/156_soul_98_fill_4-4_41.midi
59 drummer7/session3/156_soul_98_fill_4-4_34.midi 127 drummer7/session3/149_soul_105_fill_4-4_2.midi
60 drummer7/session3/25_hiphop_67_fill_4-4_42.midi 128 drummer7/session1/15_jazz_112_beat_4-4_41.midi
61 drummer3/session2/2_rock_100_beat_4-4_56.midi 129 drummer3/session1/9_rock_105_beat_4-4_5.midi
62 drummer7/session3/63_funk_112_fill_4-4_28.midi 130 drummer3/session1/9_rock_105_beat_4-4_57.midi
63 drummer1/session1/5_jazz-funk_116_beat_4-4_10.midi 131 drummer3/session1/9_rock_105_beat_4-4_18.midi
64 drummer1/session1/5_jazz-funk_116_beat_4-4_26.midi 132 drummer3/session1/9_rock_105_beat_4-4_28.midi
65 drummer7/session3/109_rock_95_beat_4-4_57.midi 133 drummer7/session1/15_jazz_112_beat_4-4_35.midi
66 drummer7/session2/81_country_78_fill_4-4_17.midi 134 drummer7/session3/109_rock_95_beat_4-4_24.midi
67 drummer3/session1/9_rock_105_beat_4-4_8.midi 135 drummer7/session3/63_funk_112_fill_4-4_13.midi
68 drummer7/session1/15_jazz_112_beat_4-4_34.midi 136 drummer7/session2/81_country_78_fill_4-4_5.midi
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TABLE A.3: Overview of the files from E-GMD where MIDI events
occur after their audio counterparts, Part 2/4.

# File # File

137 drummer7/session1/15_jazz_112_beat_4-4_55.midi 210 drummer7/session3/25_hiphop_67_fill_4-4_33.midi
138 drummer7/session3/149_soul_105_fill_4-4_34.midi 211 drummer7/session2/81_country_78_fill_4-4_32.midi
139 drummer7/session3/156_soul_98_fill_4-4_16.midi 212 drummer7/session3/63_funk_112_fill_4-4_41.midi
140 drummer3/session2/2_rock_100_beat_4-4_15.midi 213 drummer7/session2/81_country_78_fill_4-4_44.midi
141 drummer7/session3/109_rock_95_beat_4-4_8.midi 214 drummer7/session2/81_country_78_fill_4-4_4.midi
142 drummer3/session2/2_rock_100_beat_4-4_25.midi 215 drummer3/session2/2_rock_100_beat_4-4_42.midi
143 drummer7/session3/63_funk_112_fill_4-4_35.midi 216 drummer7/session3/146_soul_105_fill_4-4_37.midi
144 drummer7/session2/81_country_78_fill_4-4_13.midi 217 drummer7/session3/63_funk_112_fill_4-4_15.midi
145 drummer7/session3/146_soul_105_fill_4-4_4.midi 218 drummer7/session3/156_soul_98_fill_4-4_10.midi
146 drummer7/session3/146_soul_105_fill_4-4_44.midi 219 drummer7/session3/63_funk_112_fill_4-4_16.midi
147 drummer7/session3/109_rock_95_beat_4-4_22.midi 220 drummer7/session3/146_soul_105_fill_4-4_32.midi
148 drummer3/session2/2_rock_100_beat_4-4_1.midi 221 drummer7/session1/15_jazz_112_beat_4-4_31.midi
149 drummer1/session1/5_jazz-funk_116_beat_4-4_6.midi 222 drummer3/session1/9_rock_105_beat_4-4_6.midi
150 drummer3/session1/9_rock_105_beat_4-4_56.midi 223 drummer7/session1/15_jazz_112_beat_4-4_1.midi
151 drummer7/session1/15_jazz_112_beat_4-4_18.midi 224 drummer3/session1/9_rock_105_beat_4-4_10.midi
152 drummer3/session2/2_rock_100_beat_4-4_8.midi 225 drummer7/session3/63_funk_112_fill_4-4_18.midi
153 drummer3/session1/9_rock_105_beat_4-4_16.midi 226 drummer7/session3/63_funk_112_fill_4-4_12.midi
154 drummer7/session3/146_soul_105_fill_4-4_54.midi 227 drummer7/session3/63_funk_112_fill_4-4_54.midi
155 drummer7/session3/146_soul_105_fill_4-4_1.midi 228 drummer7/session2/81_country_78_fill_4-4_23.midi
156 drummer1/session1/5_jazz-funk_116_beat_4-4_28.midi 229 drummer7/session3/146_soul_105_fill_4-4_34.midi
157 drummer7/session3/63_funk_112_fill_4-4_11.midi 230 drummer3/session2/2_rock_100_beat_4-4_22.midi
158 drummer7/session3/156_soul_98_fill_4-4_43.midi 231 drummer7/session3/146_soul_105_fill_4-4_31.midi
159 drummer10/session1/8_jazz-swing_215_beat_4-4_13.midi 232 drummer7/session3/25_hiphop_67_fill_4-4_31.midi
160 drummer7/session3/146_soul_105_fill_4-4_13.midi 233 drummer3/session2/2_rock_100_beat_4-4_28.midi
161 drummer7/session3/149_soul_105_fill_4-4_12.midi 234 drummer7/session3/63_funk_112_fill_4-4_53.midi
162 drummer7/session3/109_rock_95_beat_4-4_34.midi 235 drummer7/session3/156_soul_98_fill_4-4_31.midi
163 drummer7/session3/63_funk_112_fill_4-4_14.midi 236 drummer7/session3/146_soul_105_fill_4-4_57.midi
164 drummer7/session3/149_soul_105_fill_4-4_24.midi 237 drummer7/session3/109_rock_95_beat_4-4_11.midi
165 drummer7/session3/25_hiphop_67_fill_4-4_3.midi 238 drummer3/session1/9_rock_105_beat_4-4_3.midi
166 drummer7/session3/146_soul_105_fill_4-4_56.midi 239 drummer3/session1/9_rock_105_beat_4-4_52.midi
167 drummer7/session3/146_soul_105_fill_4-4_8.midi 240 drummer7/session3/156_soul_98_fill_4-4_11.midi
168 drummer10/session1/8_jazz-swing_215_beat_4-4_16.midi 241 drummer7/session3/146_soul_105_fill_4-4_15.midi
169 drummer7/session3/109_rock_95_beat_4-4_56.midi 242 drummer7/session3/146_soul_105_fill_4-4_33.midi
170 drummer7/session2/81_country_78_fill_4-4_21.midi 243 drummer7/session3/109_rock_95_beat_4-4_51.midi
171 drummer7/session1/15_jazz_112_beat_4-4_44.midi 244 drummer3/session2/2_rock_100_beat_4-4_3.midi
172 drummer7/session3/138_soul_105_fill_4-4_33.midi 245 drummer7/session3/63_funk_112_fill_4-4_31.midi
173 drummer1/session1/5_jazz-funk_116_beat_4-4_43.midi 246 drummer7/session1/15_jazz_112_beat_4-4_14.midi
174 drummer7/session3/149_soul_105_fill_4-4_15.midi 247 drummer1/session1/5_jazz-funk_116_beat_4-4_32.midi
175 drummer1/session1/5_jazz-funk_116_beat_4-4_53.midi 248 drummer7/session3/146_soul_105_fill_4-4_6.midi
176 drummer7/session3/109_rock_95_beat_4-4_44.midi 249 drummer7/session3/146_soul_105_fill_4-4_26.midi
177 drummer7/session3/109_rock_95_beat_4-4_5.midi 250 drummer1/session1/5_jazz-funk_116_beat_4-4_4.midi
178 drummer7/session1/15_jazz_112_beat_4-4_13.midi 251 drummer3/session1/9_rock_105_beat_4-4_31.midi
179 drummer7/session1/15_jazz_112_beat_4-4_22.midi 252 drummer7/session1/15_jazz_112_beat_4-4_57.midi
180 drummer7/session3/146_soul_105_fill_4-4_3.midi 253 drummer7/session3/149_soul_105_fill_4-4_3.midi
181 drummer7/session1/15_jazz_112_beat_4-4_5.midi 254 drummer7/session3/149_soul_105_fill_4-4_1.midi
182 drummer7/session3/156_soul_98_fill_4-4_4.midi 255 drummer7/session2/81_country_78_fill_4-4_18.midi
183 drummer7/session3/149_soul_105_fill_4-4_51.midi 256 drummer7/session3/25_hiphop_67_fill_4-4_51.midi
184 drummer7/session1/15_jazz_112_beat_4-4_53.midi 257 drummer7/session2/81_country_78_fill_4-4_37.midi
185 drummer3/session1/9_rock_105_beat_4-4_13.midi 258 drummer7/session3/146_soul_105_fill_4-4_36.midi
186 drummer7/session2/81_country_78_fill_4-4_28.midi 259 drummer7/session3/109_rock_95_beat_4-4_2.midi
187 drummer3/session2/2_rock_100_beat_4-4_11.midi 260 drummer7/session3/138_soul_105_fill_4-4_56.midi
188 drummer7/session2/81_country_78_fill_4-4_14.midi 261 drummer7/session3/109_rock_95_beat_4-4_16.midi
189 drummer7/session3/109_rock_95_beat_4-4_3.midi 262 drummer7/session3/146_soul_105_fill_4-4_53.midi
190 drummer7/session2/81_country_78_fill_4-4_11.midi 263 drummer3/session2/2_rock_100_beat_4-4_13.midi
191 drummer7/session3/156_soul_98_fill_4-4_57.midi 264 drummer7/session2/81_country_78_fill_4-4_19.midi
192 drummer1/session1/5_jazz-funk_116_beat_4-4_5.midi 265 drummer7/session3/156_soul_98_fill_4-4_55.midi
193 drummer7/session1/15_jazz_112_beat_4-4_43.midi 266 drummer7/session3/149_soul_105_fill_4-4_22.midi
194 drummer1/session1/40_latin-samba_116_fill_4-4_2.midi 267 drummer3/session2/2_rock_100_beat_4-4_55.midi
195 drummer7/session3/146_soul_105_fill_4-4_23.midi 268 drummer10/session1/8_jazz-swing_215_beat_4-4_41.midi
196 drummer7/session3/146_soul_105_fill_4-4_24.midi 269 drummer10/session1/8_jazz-swing_215_beat_4-4_33.midi
197 drummer7/session3/109_rock_95_beat_4-4_10.midi 270 drummer7/session3/63_funk_112_fill_4-4_2.midi
198 drummer7/session3/156_soul_98_fill_4-4_19.midi 271 drummer3/session1/9_rock_105_beat_4-4_15.midi
199 drummer7/session3/109_rock_95_beat_4-4_14.midi 272 drummer1/session1/5_jazz-funk_116_beat_4-4_35.midi
200 drummer7/session3/149_soul_105_fill_4-4_53.midi 273 drummer7/session3/25_hiphop_67_fill_4-4_2.midi
201 drummer7/session3/149_soul_105_fill_4-4_25.midi 274 drummer7/session3/146_soul_105_fill_4-4_51.midi
202 drummer3/session1/9_rock_105_beat_4-4_21.midi 275 drummer7/session3/63_funk_112_fill_4-4_55.midi
203 drummer7/session3/109_rock_95_beat_4-4_28.midi 276 drummer10/session1/8_jazz-swing_215_beat_4-4_15.midi
204 drummer1/session1/5_jazz-funk_116_beat_4-4_44.midi 277 drummer10/session1/8_jazz-swing_215_beat_4-4_34.midi
205 drummer7/session3/63_funk_112_fill_4-4_1.midi 278 drummer7/session2/81_country_78_fill_4-4_36.midi
206 drummer7/session3/109_rock_95_beat_4-4_18.midi 279 drummer7/session3/25_hiphop_67_fill_4-4_34.midi
207 drummer7/session3/149_soul_105_fill_4-4_10.midi 280 drummer7/session3/146_soul_105_fill_4-4_25.midi
208 drummer7/session3/63_funk_112_fill_4-4_42.midi 281 drummer3/session2/2_rock_100_beat_4-4_32.midi
209 drummer7/session1/15_jazz_112_beat_4-4_11.midi 282 drummer1/session1/5_jazz-funk_116_beat_4-4_24.midi
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TABLE A.4: Overview of the files from E-GMD where MIDI events
occur after their audio counterparts, Part 3/4.

# File # File

283 drummer7/session3/156_soul_98_fill_4-4_3.midi 356 drummer3/session2/2_rock_100_beat_4-4_6.midi
284 drummer3/session1/9_rock_105_beat_4-4_41.midi 357 drummer3/session1/9_rock_105_beat_4-4_32.midi
285 drummer7/session1/15_jazz_112_beat_4-4_33.midi 358 drummer7/session2/81_country_78_fill_4-4_42.midi
286 drummer7/session1/15_jazz_112_beat_4-4_15.midi 359 drummer7/session3/146_soul_105_fill_4-4_19.midi
287 drummer7/session3/25_hiphop_67_fill_4-4_13.midi 360 drummer7/session3/156_soul_98_fill_4-4_23.midi
288 drummer7/session1/15_jazz_112_beat_4-4_37.midi 361 drummer7/session3/156_soul_98_fill_4-4_25.midi
289 drummer7/session3/146_soul_105_fill_4-4_22.midi 362 drummer7/session3/149_soul_105_fill_4-4_57.midi
290 drummer7/session3/146_soul_105_fill_4-4_17.midi 363 drummer7/session2/81_country_78_fill_4-4_58.midi
291 drummer7/session3/25_hiphop_67_fill_4-4_35.midi 364 drummer3/session1/9_rock_105_beat_4-4_37.midi
292 drummer7/session3/63_funk_112_fill_4-4_32.midi 365 drummer7/session1/15_jazz_112_beat_4-4_54.midi
293 drummer7/session3/63_funk_112_fill_4-4_56.midi 366 drummer7/session3/156_soul_98_fill_4-4_37.midi
294 drummer10/session1/8_jazz-swing_215_beat_4-4_17.midi 367 drummer7/session3/146_soul_105_fill_4-4_10.midi
295 drummer7/session3/25_hiphop_67_fill_4-4_11.midi 368 drummer3/session2/2_rock_100_beat_4-4_16.midi
296 drummer7/session3/156_soul_98_fill_4-4_28.midi 369 drummer7/session3/25_hiphop_67_fill_4-4_15.midi
297 drummer1/session1/5_jazz-funk_116_beat_4-4_23.midi 370 drummer7/session3/146_soul_105_fill_4-4_18.midi
298 drummer7/session3/63_funk_112_fill_4-4_51.midi 371 drummer3/session2/2_rock_100_beat_4-4_43.midi
299 drummer7/session3/109_rock_95_beat_4-4_42.midi 372 drummer7/session1/15_jazz_112_beat_4-4_2.midi
300 drummer7/session3/156_soul_98_fill_4-4_8.midi 373 drummer1/session1/5_jazz-funk_116_beat_4-4_3.midi
301 drummer7/session3/149_soul_105_fill_4-4_8.midi 374 drummer7/session1/15_jazz_112_beat_4-4_23.midi
302 drummer3/session1/9_rock_105_beat_4-4_25.midi 375 drummer3/session1/9_rock_105_beat_4-4_26.midi
303 drummer7/session3/156_soul_98_fill_4-4_51.midi 376 drummer7/session2/81_country_78_fill_4-4_57.midi
304 drummer10/session1/8_jazz-swing_215_beat_4-4_31.midi 377 drummer7/session3/25_hiphop_67_fill_4-4_54.midi
305 drummer7/session3/146_soul_105_fill_4-4_2.midi 378 drummer7/session3/63_funk_112_fill_4-4_43.midi
306 drummer7/session1/15_jazz_112_beat_4-4_56.midi 379 drummer7/session3/109_rock_95_beat_4-4_26.midi
307 drummer7/session3/109_rock_95_beat_4-4_19.midi 380 drummer7/session2/81_country_78_fill_4-4_55.midi
308 drummer7/session3/109_rock_95_beat_4-4_12.midi 381 drummer7/session3/109_rock_95_beat_4-4_17.midi
309 drummer7/session1/15_jazz_112_beat_4-4_10.midi 382 drummer1/session1/5_jazz-funk_116_beat_4-4_37.midi
310 drummer7/session3/25_hiphop_67_fill_4-4_14.midi 383 drummer3/session2/2_rock_100_beat_4-4_37.midi
311 drummer7/session3/25_hiphop_67_fill_4-4_53.midi 384 drummer7/session3/25_hiphop_67_fill_4-4_58.midi
312 drummer7/session3/109_rock_95_beat_4-4_4.midi 385 drummer3/session2/2_rock_100_beat_4-4_23.midi
313 drummer7/session3/156_soul_98_fill_4-4_54.midi 386 drummer7/session3/25_hiphop_67_fill_4-4_41.midi
314 drummer7/session3/146_soul_105_fill_4-4_41.midi 387 drummer7/session2/81_country_78_fill_4-4_24.midi
315 drummer7/session3/146_soul_105_fill_4-4_42.midi 388 drummer7/session3/149_soul_105_fill_4-4_55.midi
316 drummer3/session2/2_rock_100_beat_4-4_36.midi 389 drummer7/session3/63_funk_112_fill_4-4_44.midi
317 drummer7/session3/149_soul_105_fill_4-4_43.midi 390 drummer3/session2/2_rock_100_beat_4-4_57.midi
318 drummer7/session3/156_soul_98_fill_4-4_36.midi 391 drummer7/session1/15_jazz_112_beat_4-4_4.midi
319 drummer7/session3/149_soul_105_fill_4-4_32.midi 392 drummer7/session3/109_rock_95_beat_4-4_35.midi
320 drummer1/session1/5_jazz-funk_116_beat_4-4_41.midi 393 drummer3/session1/9_rock_105_beat_4-4_1.midi
321 drummer7/session3/156_soul_98_fill_4-4_56.midi 394 drummer7/session1/15_jazz_112_beat_4-4_36.midi
322 drummer1/session1/5_jazz-funk_116_beat_4-4_57.midi 395 drummer7/session3/63_funk_112_fill_4-4_26.midi
323 drummer3/session2/2_rock_100_beat_4-4_26.midi 396 drummer7/session3/149_soul_105_fill_4-4_41.midi
324 drummer7/session3/146_soul_105_fill_4-4_14.midi 397 drummer7/session3/63_funk_112_fill_4-4_52.midi
325 drummer3/session1/9_rock_105_beat_4-4_4.midi 398 drummer7/session3/63_funk_112_fill_4-4_6.midi
326 drummer7/session3/149_soul_105_fill_4-4_6.midi 399 drummer3/session2/2_rock_100_beat_4-4_58.midi
327 drummer7/session1/15_jazz_112_beat_4-4_17.midi 400 drummer1/session1/5_jazz-funk_116_beat_4-4_31.midi
328 drummer1/session1/5_jazz-funk_116_beat_4-4_36.midi 401 drummer7/session3/63_funk_112_fill_4-4_23.midi
329 drummer7/session3/25_hiphop_67_fill_4-4_1.midi 402 drummer3/session2/2_rock_100_beat_4-4_4.midi
330 drummer7/session3/25_hiphop_67_fill_4-4_24.midi 403 drummer7/session3/156_soul_98_fill_4-4_17.midi
331 drummer7/session1/15_jazz_112_beat_4-4_8.midi 404 drummer7/session3/63_funk_112_fill_4-4_3.midi
332 drummer7/session3/109_rock_95_beat_4-4_52.midi 405 drummer7/session3/25_hiphop_67_fill_4-4_52.midi
333 drummer1/session1/5_jazz-funk_116_beat_4-4_11.midi 406 drummer7/session3/146_soul_105_fill_4-4_21.midi
334 drummer3/session1/9_rock_105_beat_4-4_11.midi 407 drummer1/session1/5_jazz-funk_116_beat_4-4_22.midi
335 drummer3/session1/9_rock_105_beat_4-4_23.midi 408 drummer7/session2/81_country_78_fill_4-4_52.midi
336 drummer3/session2/2_rock_100_beat_4-4_18.midi 409 drummer7/session3/149_soul_105_fill_4-4_58.midi
337 drummer7/session3/25_hiphop_67_fill_4-4_37.midi 410 drummer7/session3/63_funk_112_fill_4-4_36.midi
338 drummer1/session1/5_jazz-funk_116_beat_4-4_33.midi 411 drummer1/session1/5_jazz-funk_116_beat_4-4_2.midi
339 drummer7/session3/156_soul_98_fill_4-4_18.midi 412 drummer3/session2/2_rock_100_beat_4-4_44.midi
340 drummer1/session1/5_jazz-funk_116_beat_4-4_21.midi 413 drummer7/session3/146_soul_105_fill_4-4_5.midi
341 drummer7/session3/109_rock_95_beat_4-4_23.midi 414 drummer1/session1/5_jazz-funk_116_beat_4-4_14.midi
342 drummer7/session3/149_soul_105_fill_4-4_19.midi 415 drummer7/session3/109_rock_95_beat_4-4_41.midi
343 drummer7/session3/109_rock_95_beat_4-4_54.midi 416 drummer7/session1/15_jazz_112_beat_4-4_21.midi
344 drummer7/session3/156_soul_98_fill_4-4_12.midi 417 drummer7/session3/63_funk_112_fill_4-4_34.midi
345 drummer7/session3/138_soul_105_fill_4-4_12.midi 418 drummer7/session3/63_funk_112_fill_4-4_4.midi
346 drummer7/session3/15_pop-soft_83_fill_4-4_57.midi 419 drummer1/session1/5_jazz-funk_116_beat_4-4_54.midi
347 drummer7/session3/109_rock_95_beat_4-4_36.midi 420 drummer7/session3/63_funk_112_fill_4-4_5.midi
348 drummer7/session3/149_soul_105_fill_4-4_56.midi 421 drummer7/session3/146_soul_105_fill_4-4_28.midi
349 drummer7/session2/81_country_78_fill_4-4_3.midi 422 drummer7/session3/25_hiphop_67_fill_4-4_6.midi
350 drummer7/session3/149_soul_105_fill_4-4_44.midi 423 drummer1/session1/5_jazz-funk_116_beat_4-4_58.midi
351 drummer7/session3/156_soul_98_fill_4-4_21.midi 424 drummer1/session1/5_jazz-funk_116_beat_4-4_17.midi
352 drummer7/session3/25_hiphop_67_fill_4-4_12.midi 425 drummer3/session2/2_rock_100_beat_4-4_24.midi
353 drummer7/session3/109_rock_95_beat_4-4_37.midi 426 drummer7/session3/156_soul_98_fill_4-4_53.midi
354 drummer7/session3/146_soul_105_fill_4-4_43.midi 427 drummer10/session1/8_jazz-swing_215_beat_4-4_19.midi
355 drummer1/session1/5_jazz-funk_116_beat_4-4_16.midi 428 drummer7/session3/156_soul_98_fill_4-4_52.midi
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TABLE A.5: Overview of the files from E-GMD where MIDI events
occur after their audio counterparts, Part 4/4.

# File # File

429 drummer7/session3/25_hiphop_67_fill_4-4_57.midi 463 drummer7/session2/81_country_78_fill_4-4_22.midi
430 drummer7/session3/109_rock_95_beat_4-4_13.midi 464 drummer1/session1/5_jazz-funk_116_beat_4-4_42.midi
431 drummer7/session1/15_jazz_112_beat_4-4_32.midi 465 drummer7/session3/25_hiphop_67_fill_4-4_10.midi
432 drummer7/session3/63_funk_112_fill_4-4_25.midi 466 drummer3/session2/2_rock_100_beat_4-4_54.midi
433 drummer7/session3/146_soul_105_fill_4-4_35.midi 467 drummer3/session1/9_rock_105_beat_4-4_17.midi
434 drummer3/session2/2_rock_100_beat_4-4_53.midi 468 drummer7/session2/81_country_78_fill_4-4_35.midi
435 drummer7/session3/156_soul_98_fill_4-4_26.midi 469 drummer7/session3/25_hiphop_67_fill_4-4_18.midi
436 drummer3/session1/9_rock_105_beat_4-4_19.midi 470 drummer7/session3/156_soul_98_fill_4-4_13.midi
437 drummer7/session3/109_rock_95_beat_4-4_25.midi 471 drummer3/session2/2_rock_100_beat_4-4_17.midi
438 drummer3/session1/9_rock_105_beat_4-4_36.midi 472 drummer7/session1/15_jazz_112_beat_4-4_12.midi
439 drummer7/session3/149_soul_105_fill_4-4_26.midi 473 drummer7/session3/63_funk_112_fill_4-4_8.midi
440 drummer7/session3/63_funk_112_fill_4-4_22.midi 474 drummer7/session3/156_soul_98_fill_4-4_32.midi
441 drummer3/session2/2_rock_100_beat_4-4_14.midi 475 drummer3/session2/2_rock_100_beat_4-4_35.midi
442 drummer7/session2/81_country_78_fill_4-4_34.midi 476 drummer7/session2/81_country_78_fill_4-4_6.midi
443 drummer7/session3/156_soul_98_fill_4-4_14.midi 477 drummer7/session1/15_jazz_112_beat_4-4_58.midi
444 drummer7/session3/63_funk_112_fill_4-4_58.midi 478 drummer7/session3/156_soul_98_fill_4-4_42.midi
445 drummer7/session3/146_soul_105_fill_4-4_12.midi 479 drummer10/session1/8_jazz-swing_215_beat_4-4_26.midi
446 drummer7/session3/149_soul_105_fill_4-4_17.midi 480 drummer7/session1/15_jazz_112_beat_4-4_28.midi
447 drummer7/session3/109_rock_95_beat_4-4_53.midi 481 drummer7/session1/15_jazz_112_beat_4-4_6.midi
448 drummer7/session3/149_soul_105_fill_4-4_54.midi 482 drummer7/session2/81_country_78_fill_4-4_16.midi
449 drummer7/session3/25_hiphop_67_fill_4-4_17.midi 483 drummer7/session3/25_hiphop_67_fill_4-4_55.midi
450 drummer7/session3/156_soul_98_fill_4-4_22.midi 484 drummer3/session2/2_rock_100_beat_4-4_21.midi
451 drummer3/session1/9_rock_105_beat_4-4_12.midi 485 drummer7/session3/156_soul_98_fill_4-4_1.midi
452 drummer7/session3/25_hiphop_67_fill_4-4_4.midi 486 drummer7/session3/156_soul_98_fill_4-4_24.midi
453 drummer3/session2/2_rock_100_beat_4-4_51.midi 487 drummer7/session3/63_funk_112_fill_4-4_19.midi
454 drummer7/session3/149_soul_105_fill_4-4_31.midi 488 drummer3/session2/2_rock_100_beat_4-4_5.midi
455 drummer7/session3/25_hiphop_67_fill_4-4_32.midi 489 drummer3/session2/2_rock_100_beat_4-4_52.midi
456 drummer3/session2/2_rock_100_beat_4-4_34.midi 490 drummer3/session2/2_rock_100_beat_4-4_31.midi
457 drummer7/session2/81_country_78_fill_4-4_41.midi 491 drummer7/session3/156_soul_98_fill_4-4_6.midi
458 drummer7/session3/149_soul_105_fill_4-4_4.midi 492 drummer7/session3/149_soul_105_fill_4-4_13.midi
459 drummer7/session2/81_country_78_fill_4-4_2.midi 493 drummer7/session3/25_hiphop_67_fill_4-4_44.midi
460 drummer10/session1/8_jazz-swing_215_beat_4-4_5.midi 494 drummer7/session2/81_country_78_fill_4-4_54.midi
461 drummer1/session1/5_jazz-funk_116_beat_4-4_55.midi 495 drummer1/session1/5_jazz-funk_116_beat_4-4_1.midi
462 drummer7/session3/109_rock_95_beat_4-4_55.midi 496 drummer7/session1/15_jazz_112_beat_4-4_26.midi
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Appendix B

RGDD Creation

B.1 RGGD Drum Set Selection

TABLE B.1: Overview of the Logic Pro drum sets used for the creation
of RGDD(-Stems). Drum sets 1-20 are acoustic drum set whereas the
rest are electronic drum kits. Delay or reverb buses were turned off
where necessary to ensure that the synthesized audio, and therefore
the corresponding spectogram too, only contains intentional drum
hits and that are also present in the ground truth. For the creation of
RGDD-Stems, drum sets 1-17 and 21-52 are used. The remainder of

RGDD comprises drum sets 1-20.

# Drum set # Drum set # Drum set # Drum set

1 Blue Ridge 2 Bluebird 3 Brooklyn 4 Detroit Garage
5 East Bay 6 Four on the Floor 7 Heavy 8 Liverpool
9 Manchester 10 Motown Revisited 11 Neo Soul 12 Portland
13 Retro Rock 14 Roots 15 Scientific Method 16 Slow Jam
17 Smash 18 SoCal 19 Speakeasy 20 Sunset

21 808 Flex 22 Advanced Machines 23 After Party 24 Agogo Funk
25 Analog Circuits 26 Arcade Frenzy 27 Atlanta 28 Beat Machine
29 Control Voltage 30 Cream Soda 31 CR-78 Made Iconic 32 Crate Digger
33 Deep Tech 34 Depth Charge 35 Hybrid Knock 36 Ibiza
37 Infinity 38 Modern CR-8000 39 Modern TR-707 40 No Man’s Joint
41 Pawn Shop 808 42 Roland CR-78 43 Roland TR-808 44 Roland TR-909
45 Silverlake 46 Snapback 47 Synthia 48 Tension
49 Titans of Bass 50 Trap Door 51 Uptown Flow 52 Video Star



70

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). Neural Machine
Translation by Jointly Learning to Align and Translate. arXiv: 1409.0473 [cs.CL].

Benetos, Emmanouil et al. (2019). “Automatic Music Transcription: An Overview”.
In: IEEE Signal Processing Magazine 36.1, pp. 20–30.

Benning, Martin and Martin Burger (2018). “Modern regularization methods for in-
verse problems”. In: Acta Numerica 27, 1–111.

Bittner, Rachel et al. (2014). “MedleyDB: A multitrack dataset for annotation-
intensive MIR research”. In: Proceedings of the 15th International Society for Music
Information Retrieval Conference. ISMIR, pp. 155–160.

Bryson, Arthur Earl (1961). “A gradient method for optimizing multi-stage alloca-
tion processes”. In: Proc. Harvard Univ. Symposium on digital computers and their
applications. Vol. 72, p. 22.

Burred, Juan José and Alexander Lerch (2004). “Hierarchical Automatic Audio Sig-
nal Classification”. In: Journal of the Audio Engineering Society (JAES) 52, pp. 724–
739.

Böck, Sebastian, Florian Krebs, and Gerhard Widmer (2016). “Joint Beat and Down-
beat Tracking with Recurrent Neural Networks”. In: Proceedings of the 17th Inter-
national Society for Music Information Retrieval Conference. ISMIR, pp. 255–261.

Callender, Lee, Curtis Hawthorne, and Jesse Engel (2020). Improving Perceptual Qual-
ity of Drum Transcription with the Expanded Groove MIDI Dataset. arXiv: 2004 .
00188 [cs.SD].

Cannam, Chris, Christian Landone, and Mark B. Sandler (2010). “Sonic visualiser:
an open source application for viewing, analysing, and annotating music audio
files”. In: Proceedings of the 18th ACM international conference on Multimedia.

Cartwright, Mark and Juan Pablo Bello (2018). “Increasing drum transcription vo-
cabulary using data synthesis”. In: Proceedings of the 21st International Conference
on Digital Audio Effects (DAFx18), pp. 72–79.

Choi, Keunwoo and Kyunghyun Cho (2019). “Deep Unsupervised Drum Transcrip-
tion”. In: Proceedings of the 20th International Society for Music Information Retrieval
Conference. ISMIR, pp. 183–191.

Défossez, Alexandre (2021). “Hybrid Spectrogram and Waveform Source Separa-
tion”. In: Proceedings of the ISMIR 2021 Workshop on Music Source Separation.

Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong (2020).Mathematics for
Machine Learning. Cambridge University Press.

Dittmar, Christian and Daniel Gärtner (2014). “Real-Time Transcription and Separa-
tion of Drum Recordings Based on NMF Decomposition”. In: Proceedings of the
17th International Conference on Digital Audio Effects (DAFx14).

Dittmar, Christian and Meinard Müller (2016). “Reverse Engineering the Amen
Break — Score-Informed Separation and Restoration Applied to Drum Record-
ings”. In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9,
pp. 1535–1547.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2004.00188
https://arxiv.org/abs/2004.00188


Bibliography 71

Duan, Zhiyao and Bryan Pardo (2011). “Soundprism: An Online System for Score-
Informed Source Separation of Music Audio”. In: IEEE Journal of Selected Topics
in Signal Processing 5.6, pp. 1205–1215.

Dumoulin, Vincent and Francesco Visin (2018). A guide to convolution arithmetic for
deep learning. arXiv: 1603.07285 [stat.ML].

Esteva, Andre et al. (2021). “Deep learning-enabled medical computer vision”. In:
NPJ Digital Medicine 4.

Fechner, Gustav Theodor (1860). Elemente der Psychophysik. Vol. 2. Leipzig: Breitkopf
und Haertel.

Fernando, K. Ruwani M. and Chris P. Tsokos (2021). “Dynamically Weighted Bal-
anced Loss: Class Imbalanced Learning and Confidence Calibration of Deep
Neural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–12.

Ferri, Cèsar, Jose Hernández-Orallo, and R. Modroiu (2009). “An experimental com-
parison of performancemeasures for classification”. In: Pattern Recognition Letters
30.1, pp. 27–38. ISSN: 0167-8655.

Fitzgerald, Derry, Eugene Coyle, and Bob Lawlor (2002). “Sub-band independent
subspace analysis for drum transcription”. In: Proceedings of the 5th International
Conference on Digital Audio Effects (DAFx02), pp. 65–69.

Fitzgerald, Derry, Robert Lawlor, and Eugene Coyle (2003). “Prior Subspace Analy-
sis for Drum Transcription”. In: Journal of The Audio Engineering Society.

Gajhede, Nicolai, Oliver Beck, and Hendrik Purwins (2016). “Convolutional Neural
Networks with Batch Normalization for Classifying Hi-Hat, Snare, and Bass Per-
cussion Sound Samples”. In: Proceedings of the Audio Mostly 2016. New York, NY,
USA: Association for Computing Machinery, 111–115.

Gholamalinezhad, Hossein and Hossein Khosravi (2020). Pooling Methods in Deep
Neural Networks, a Review. arXiv: 2009.07485 [cs.CV].

Gillet, Olivier and Gaël Richard (2006). “ENST-Drums: an extensive audio-visual
database for drum signals processing”. In: Proceedings of the 7th International Con-
ference on Music Information Retrieval. ISMIR, pp. 156–159.

Gillick, Jon et al. (2019). “Learning to Groove with Inverse Sequence Transforma-
tions”. In: International Conference on Machine Learning (ICML). arXiv: 1905.06118
[cs.SD].

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Gouyon, Fabien, Francois Pachet, and Olivier Delerue (2000). “On the Use of Zero-
Crossing Rate for an Application of Classification of Percussive Sounds”. In: Pro-
ceedings of the COST G-6 Conference on Digital Audio Effects (DAFx00).

Hawthorne, Curtis et al. (2018).Onsets and Frames: Dual-Objective Piano Transcription.
arXiv: 1710.11153 [cs.SD].

Hebb, Donald O. (1949). The organization of behavior: A neuropsychological theory. New
York: Wiley. ISBN: 0-8058-4300-0.

Hochreiter, Sepp (1998). “The Vanishing Gradient Problem During Learning Recur-
rent Neural Nets and Problem Solutions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6, pp. 107–116.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-term Memory”. In:
Neural computation 9, pp. 1735–80.

Hubel, David H. and Torsten N. Wiesel (1959). “Receptive fields of single neurones
in the cat’s striate cortex”. In: The Journal of physiology 148.3, pp. 574–591.

— (1962). “Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex”. In: The Journal of physiology 160.1, pp. 106–154.

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/2009.07485
https://arxiv.org/abs/1905.06118
https://arxiv.org/abs/1905.06118
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1710.11153


Bibliography 72

Ioffe, Sergey and Christian Szegedy (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv: 1502.03167 [cs.LG].

Ishizuka, Ryoto, Ryo Nishikimi, and Kazuyoshi Yoshii (2021). Global Structure-
Aware Drum Transcription Based on Self-Attention Mechanisms. arXiv: 2105.05791
[cs.SD].

Jacques, Céline and Axel Roebel (2019). “Data Augmentation for Transcription with
Convolutional Neural Networks”. In: 2019 27th European Signal Processing Con-
ference (EUSIPCO), pp. 1–5.

Jain, Arjit et al. (2021). SpliceOut: A Simple and Efficient Audio Augmentation Method.
arXiv: 2110.00046 [cs.SD].

Jarrett, Kevin et al. (2009). “What is the best multi-stage architecture for object recog-
nition?” In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–
2153.

Johnson, JustinM. and TaghiM. Khoshgoftaar (2019). “Survey on deep learningwith
class imbalance”. In: Journal of Big Data 6.1.

Kaliakatsos-Papakostas, Maximos et al. (2012). “Real-Time Drums Transcription
with Characteristic Bandpass Filtering”. In: Proceedings of the 7th Audio Mostly
Conference: A Conference on Interaction with Sound. AM ’12. Corfu, Greece: Associ-
ation for Computing Machinery, 152–159.

Kelley, Henry J. (1960). “Gradient theory of optimal flight paths”. In: Ars Journal
30.10, pp. 947–954.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Opti-
mization”. In: 3rd International Conference on Learning Representations, ICLR 2015.

Klambauer, Günter et al. (2017). Self-Normalizing Neural Networks. arXiv: 1706.02515
[cs.LG].

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet classifi-
cation with deep convolutional neural networks”. In: Communications of the ACM
60, pp. 84 –90.

Kumar, Pradeep et al. (2021). “Classification of Imbalanced Data:Review of Meth-
ods and Applications”. In: IOP Conference Series: Materials Science and Engineering
1099.1, p. 012077.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep Learning”. In: Na-
ture 521, pp. 436–44.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

Li, Bochen and Zhiyao Duan (2016). “An Approach to Score Following for Piano
Performances With the Sustained Effect”. In: IEEE/ACM Transactions on Audio,
Speech, and Language Processing 24.12, pp. 2425–2438.

Litovsky, Ruth et al. (1999). “The precedence effect”. In: The Journal of the Acoustical
Society of America 106, pp. 1633–54.

McCulloch, Warren S. andWalter Pitts (1943). “A logical calculus of the ideas imma-
nent in nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–
133.

McFee, Brian et al. (2015). “librosa: Audio and Music Signal Analysis in Python”. In:
Proceedings of the 14th python in science conference, pp. 18–24.

Mohammed, Roweida, Jumanah Rawashdeh, andMalak Abdullah (2020). “Machine
Learning with Oversampling and Undersampling Techniques: Overview Study
and Experimental Results”. In: 2020 11th International Conference on Information
and Communication Systems (ICICS), pp. 243–248.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2105.05791
https://arxiv.org/abs/2105.05791
https://arxiv.org/abs/2110.00046
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515


Bibliography 73

Niedermayer, Bernhard and Gerhard Widmer (2010). “A Multi-Pass Algorithm for
Accurate Audio-to-Score Alignment”. In: Proceedings of the 11th International So-
ciety for Music Information Retrieval Conference. ISMIR, pp. 417–422.

O’Shaughnessy, Douglas (1987). Speech communication: human and machine. Addison-
Wesley Publishing Company.

Paulus, Jouni and Anssi Klapuri (2009). “Drum Sound Detection in Polyphonic Mu-
sic with HiddenMarkovModels”. In: EURASIP Journal on Audio, Speech, and Mu-
sic Processing 2009, pp. 1–9.

Paulus, Jouni and Tuomas Virtanen (2005). “Drum transcription with non-negative
spectrogram factorisation”. In: 13th European Signal Processing Conference, pp. 1–4.

Roelofs, Rebecca et al. (2019). “AMeta-Analysis of Overfitting inMachine Learning”.
In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates,
Inc.

Ruder, Sebastian (2016). An overview of gradient descent optimization algorithms. arXiv:
1609.04747 [cs.LG].

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning
representations by back-propagating errors”. In: Nature 323, pp. 533–536.

Salman, Shaeke and Xiuwen Liu (2019). Overfitting Mechanism and Avoidance in Deep
Neural Networks. arXiv: 1901.06566 [cs.LG].

Schloss, W. Andrew (1985). “On the Automatic Transcription of Percussive Music -
From Acoustic Signal to High-Level Analysis”. PhD thesis. Stanford, CA: Stan-
ford University.

Schuster, Mike and Kuldip K. Paliwal (1997). “Bidirectional recurrent neural net-
works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681.

Shaikh, Salahuddin, Liu Changan, and Maaz Rasheed Malik (2021). “An Empirical
And Comparatively Research On Under-Sampling and Over- Sampling Defect-
Prone Data-Sets Model In Light Of Machine Learning”. In: International Journal of
Advanced Networking and Applications 12, pp. 4719–4724.

Smith, Leslie N. (2017). “Cyclical Learning Rates for Training Neural Networks”. In:
2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–
472.

Southall, Carl, Ryan Stables, and Jason Hockman (2016). “Automatic Drum Tran-
scription Using Bi-Directional Recurrent Neural Networks”. In: Proceedings of
the 17th International Society for Music Information Retrieval Conference. ISMIR,
pp. 591–597.

Southall, Carl et al. (2017). “MDB Drums: An annotated subset of MedleyDB for
automatic drum transcription”. In: Proceedings of the 18th International Society for
Music Information Retrieval Conference. ISMIR.

Srivastava, Nitish et al. (2014). “Dropout: A SimpleWay to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15.56, pp. 1929–1958.

Thakkar, Ankit and Ritika Lohiya (2021). “Analyzing fusion of regularization tech-
niques in the deep learning-based intrusion detection system”. In: International
Journal of Intelligent Systems 36.

Tompson, Jonathan et al. (2015). Efficient Object Localization Using Convolutional Net-
works. arXiv: 1411.4280 [cs.CV].

Tzanetakis, George, Ajay Kapur, and Richard I. McWalter (2005). “Subband-based
Drum Transcription for Audio Signals”. In: 2005 IEEE 7thWorkshop onMultimedia
Signal Processing, pp. 1–4.

Van Steelant, Dirk et al. (2004). “Classification of Percussive Sounds using Support
VectorMachines”. In: Proceedings of AnnualMachine Learning Conference of Belgium
and The Netherlands, BENELEARN 2004, pp. 146–153.

https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1901.06566
https://arxiv.org/abs/1411.4280


Bibliography 74

Vogl, Richard (2018). “Deep Learning Methods for Drum Transcription and Drum
Pattern Generation”. PhD thesis.

Vogl, Richard,Matthias Dorfer, and Peter Knees (2016). “Recurrent Neural Networks
for Drum Transcription”. In: Proceedings of the 17th International Society for Music
Information Retrieval Conference. ISMIR, pp. 730–736.

— (2017). “Drum transcription from polyphonic music with recurrent neural net-
works”. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 201–205.

Vogl, Richard, GerhardWidmer, and Peter Knees (2018). “Towards multi-instrument
drum transcription”. In: Proceedings of the 21st International Conference on Digital
Audio Effects (DAFx18).

Vogl, Richard et al. (2017). “Drum Transcription via Joint Beat and Drum Model-
ing Using Convolutional Recurrent Neural Networks”. In: Proceedings of the 18th
International Society for Music Information Retrieval Conference. ISMIR, pp. 150–157.

Wang, Yu et al. (2020). “Few-Shot Drum Transcription in Polyphonic Music”. In: Pro-
ceedings of the 21st International Society for Music Information Retrieval Conference.
ISMIR, pp. 117–124.

Wei, I.-Chieh., Chih-Wei Wu, and Li Su (2021). “Improving automatic drum tran-
scription using large-scale audio-to-midi aligned data”. In: ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Vol. 2021-June, pp. 246–250.

Wu, Chih-Wei and Alexander Lerch (2015). “Drum Transcription using Partially
Fixed Non-Negative Matrix Factorization with Template Adaptation”. In: Pro-
ceedings of the 16th International Society for Music Information Retrieval Conference.
ISMIR, pp. 257–263.

— (2017). “Automatic Drum Transcription Using the Student- Teacher Learning
Paradigm with Unlabeled Music Data.” In: Proceedings of the 18th International
Society for Music Information Retrieval Conference. ISMIR, pp. 613–620.

Wu, Chih-Wei et al. (2018). “A Review of Automatic Drum Transcription”. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 26.9, pp. 1457–
1483.

Zehren, Mickaël, Marco Alunno, and Paolo Bientinesi (2021). “ADTOF: A large
dataset of non-synthetic music for automatic drum transcription”. In: Proceedings
of the 7th International Conference on Music Information Retrieval. ISMIR, pp. 818–
824.


	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Background & Related Work
	Deep Learning
	Related Work

	Datasets
	E-GMD
	E-GMD-Clean

	RGDD
	IDMT
	ENST
	MDB
	RBMA13

	Methods
	Features
	Pre-processing
	Network Architectures
	Post-processing
	Evaluation Metrics

	Results & Discussion
	Drums-only Mixes
	Discussion

	Drum Stems
	Discussion

	Full-mixes
	Discussion


	Conclusion and Outlook
	Odd E-GMD Files
	Audio
	MIDI

	RGDD Creation
	RGGD Drum Set Selection

	Bibliography

