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Abstract

Deep Neural Networks (DNN) form the backbone of modern Artificial Intelligence (AI) systems.
However, due to the high computational complexity and divergent shapes and sizes. Dedicated
hardware accelerators are required to achieve very high performance and energy e�ciency
across various DNNs to enable AI in real-world applications. To address this problem and
improve the DNN processor’s energy e�ciency, we introduce the multi-bit accelerator. The
multi-bit accelerator achieves the energy-e�cient goals for a low-power DNN processor by
truncating the preceding layer’s partial sums (PSums) before feeding it as an input to the
next layer. Row Stationary (RS) dataflow method is used to implement the design. We start
inferencing with the high order bit-width like 32-bits for the first convolution layers and
sequentially truncate the bits on the MSB/LSB of the integer and the LSB of the fraction
part. Even with the sequential truncation, the processor could achieve a top-1 accuracy of
up to 14-bits and top-5 accuracy of up to 10-bits. The proposed truncation scheme helped
in reducing the resource utilization by 73.25% for LUTs (Lookup tables), 68.76% for FFs
(Flip Flops), and 74.60% for BRAMs (Block RAMs), and 79.425% in DSPs (Digital Signal
Processors). The multi-bit accelerator could achieve an overall throughput of 223.39 GOPS on
a Virtex Ultra Scale FPGA. The corresponding ASIC version implemented on the GF 22nm
FDSOI could achieve an overall throughput of 2.03 TOPS/W with a total power consumption
of 791mW and an overall area of 1.2mm ◊ 1.2mm.

In order to further improvise the energy e�ciency and area e�ciency, we introduce a
hardware-software co-designed FantastIC4 accelerator to handle the compact representations of
the fully connected layers and reduce the total number of required multipliers to four. In order
to make the DNN models amenable for e�cient execution, the DNN models are trained to
handle the 4-bit quantization. The FantastIC4 accelerator achieves a very high throughput of
2.45 TOPS due to the extreme compression of the models with an overall power consumption
of 3.6W on a Virtex Ultrascale FPGA. The equivalent ASIC version implemented on a GF
22nm FDSOI achieves a very high energy e�ciency of 20.17 TOPS/W. When compared to
other accelerators designed for Google Speech Command (GSC) dataset, FantastIC4 is better
by 51◊ in terms of throughput and 145◊ in terms of area e�ciency (GOPS/mm2).





Zusammenfassung

Tiefe neuronale Netze bilden das Rückgrat moderner Systeme der Künstlichen Intelligenz (KI).
Aufgrund der hohen Berechnungskomplexität und der unterschiedlichen Formen und Größen
sind jedoch spezielle Hardwarebeschleuniger erforderlich. Dedizierte Hardware Beschleuniger
sind erforderlich, um eine sehr hohe Leistung und Energiee�zienz bei verschiedenen DNNs zu
erreichen, um eine KI in realen Anwendungen zu ermöglichen. Um dieses Problem zu lösen und
die Energiee�zienz des DNN prozessors zu verbessern, führen wir den Multi-Bit Beschleuniger
ein. Der Multi-Bit Beschleuniger erreicht die energiee�zienten Ziele für einen stromsparenden
DNN Prozessor, indem er die Partialsummen (PSums) der vorhergehenden Schicht abschneidet,
bevor er sie als Eingabe für die nächste Schicht verwendet. Zur Implementierung des Entwurfs
wird die Zeile Stationär Datenflussmethode verwendet. Wir beginnen die Inferenz mit einer
Bitbreite hoher Ordnung wie 32 bits für die ersten Faltungsschichten und schneiden die bits am
MSB/LSB der Ganzzahl und am LSB des Bruchteils sequentiell ab. Selbst mit der sequentiellen
Abschneidung konnte der Prozessor eine Top-1 Genauigkeit von bis zu 14 bits und eine top-5
genauigkeit von bis zu 10 bits erreichen. Das vorgeschlagene Abschneidungschema trug dazu
bei, die Ressourcennutzung bei LUTs (Lookup-Tabellen) um 73,25%, bei FFs (Flip Flops) um
68,76%, bei BRAMs (Block-RAMs) um 74,60% und bei DSPs (Digitalen Signal Prozessoren)
um 79,425% zu reduzieren. Der Multi-Bit Beschleuniger konnte auf einem Virtex Ultra Scale
FPGA einen Gesamtdurchsatz von 223,39 GOPS erreichen. Die entsprechende ASIC Version,
die auf dem GF 22nm FDSOI implementiert wurde, konnte einen Gesamtdurchsatz von 2,03
TOPS/W bei einer Gesamtleistungsaufnahme von 791mW und einer Gesamtfläche von 1,2mm
◊ 1,2mm erreichen.

Um die Energie- und Flächene�zienz weiter zu verbessern, führen wir einen von Hardware
und Software gemeinsam entwickelten FantastIC4 Beschleuniger ein, der die kompakten
Darstellungen der vollständig verknüpften Schichten verarbeitet und die Gesamtzahl der
erforderlichen Multiplikatoren auf vier reduziert. Um die DNN Modelle für eine e�ziente
Ausführung geeignet zu machen, werden die DNN Modelle für die 4-Bit Quantisierung trainiert.
Der FantastIC4 Beschleuniger erreicht aufgrund der extremen Komprimierung der Modelle
einen sehr hohen durchsatz von 2,45 TOPS bei einer Gesamtleistungsaufnahme von 3,6 W auf
einem Virtex Ultrascale FPGA. Die äquivalente ASIC Version, die auf einem GF 22nm FDSOI
implementiert ist, erreicht eine sehr hohe Energiee�zienz von 20.17 TOPS/W. Im Vergleich
zu anderen Beschleunigern, die für den Google Speech Command (GSC) Datensatz entwickelt
wurden, ist FantastIC4 beim Durchsatz um das 51-fache und bei der Flächene�zienz um das
145-fache besser (GOPS/mm2).
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1
Introduction

Due to the abundance of audio, video, image, and text data, AI and related fields have
developed tremendously in the past decade. There is aggressive research in AI, its techniques,
inference, and applications in these fields. The Complementary Metal Oxide Semiconductor
(CMOS) technology has contributed to high-speed computation and low power consumption,
enabling AI to have a rich footprint in today’s technology.

1.1 Artificial Intelligence

AI has changed how the world views technology. It can learn from the environment and act
precisely to achieve its goals. More elaborately, we can define AI as the system’s ability to
understand external information, learn from the information, and use those studies to achieve
required goals and tasks through malleable adaption. A classical AI mainly analyzes the
environment and takes required actions that widen the chance of success. The goal of an AI is
either simple or complex. AI has proved successful in achieving some impressive milestones
like defeating the renowned world chess champion Garry Kasparov [1], winning di�erent "Atari
Games" or constructing SPAUN, an enormous 2.3 million artificial neuron model of the brain
that mimics the behavior of a human [2]. AI has also played a massive part in solving some of
the significant problems in the most knowledge-intensive areas like self-driving cars, adding
intelligent speech-recognized personal assistants in smartphones like Apple’s Siri [3], Google’s
Google Assistant [4], Microsoft’s Cortana [5], Amazon’s Alexa or even creating bots in YouTube
to learn from the specific video generic.

AI development mainly revolves around the use of di�erent algorithms [6]. AI consists of a
cluster of simple algorithms that form a complex algorithm. Most of the AI algorithms can
learn from the data using a cluster of algorithms, and the various branches of AI are shown in
Fig. 1.1. The main sub-branch of AI is Machine Learning (ML), and the further sub-branch is
DNN.
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Artificial Intelligence

Machine Learning

Deep Neural Networks

Figure 1.1: Various branches of AI.

1.2 Machine Learning

ML, a branch of artificial intelligence, learns from historical data to predict accurate new
outputs. ML can improve any software application’s output prediction without explicit
coding. Instead, ML learns from a series of training algorithms to perform predictions on the
input values and make accurate decisions without being programmed. There are a variety of
applications used in ML, such as object recognition, object classification, and virtual personal
assistants, where it is challenging to develop traditional algorithms to perform the required
tasks.

The purpose of ML is for computers to learn how to conduct a particular task without being
explicitly taught or programmed to do so. ML algorithms help computers learn to conduct
specific tasks. Computers do not need to be expressly trained or specifically programmed to
perform simpler operations like mathematical operations, running software, or playing music.
However, it is challenging for humans to develop the necessary algorithms for more advanced
tasks like self-driving cars or intelligent robots. Therefore, in practice, it is more e�ective to
help the machine develop its algorithm than to have algorithms prescribed for every required
step.

The branch of ML employs various approaches like supervised, unsupervised, and
reinforcement learning to train computers to conduct specific tasks without a thoroughly
trained algorithm. In most cases, a series of potential answers exist. It is necessary to label
specific correct answers as accurate. This can be used as computer training data to improve the
algorithm and determine accurate answers. The most common example is using the Modified
National Institute of Standards and Technology Database (MNIST) dataset to learn from
the series of handwritten digits to recognize digital characters. ML approaches are broadly
classified into di�erent categories, as shown in Fig. 1.2.

Supervised Learning: A computer provides examples of inputs and their corresponding
desired outputs. The data, i.e., mainly o�ered, is the training data, which consists of a series
of training examples. Each trained example has more than one input and the corresponding
desired output, known as supervisory data. The training example is a feature vector, and the
corresponding training data is a matrix. By constantly optimizing an objective function (the
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Figure 1.2: Various categories of machine learning.

objective function stands for some of the costs associated with an event or a value of one or
more variables into an actual number), the supervised algorithms learn from a function that
is valued to predict the desired output with a current set of inputs. The optimal function
will allow the algorithm to determine the new outputs for the inputs that are not part of the
corresponding trained data. Over time, the algorithm’s prediction accuracy is expected to
increase as it learns how to perform the task [7].

The supervised learning algorithms are active learning, classification, and regression.
Classification algorithms are the most popular algorithms of this decade. They are employed
when the outputs are constrained only to a defined set of values. Regression algorithms are
used when the outputs have a specific numerical value under the desired range.

Similarly, active learning is between classification and regression. It aims to learn from
the examples of a "similarity function" that decides how two objects are related. Visual
identification, facial recognition, and speech recognition are among the applications of this
technique.

Unsupervised Learning: No inputs or outputs are given to these learning algorithms.
Instead, the algorithms must find their structures at their input. In unsupervised learning,
the algorithm must discover the hidden patterns in the input data or near the end as feature
learning. In unsupervised learning, the algorithms learn from test data that are not classified
or labeled. In contrast to backpropagation and learning, unsupervised learning algorithms find
certain commonalities in the input data and react to the output based on whether they exist
in the new data. The main application for unsupervised learning is in the field of statistics,
mainly in performing the probability density function [8].

Semi-supervised learning: Semi-supervised learning lies between supervised and
unsupervised learning. A few examples of semi-supervised learning are missing training
labels like image classification, text classification and speech analysis. However, many machine
learning researchers have shown that labeled data, when used with unlabeled data, produces
considerable learning accuracy [9].

Reinforcement Learning: Reinforcement learning is a branch of ML that identifies
desirable behaviors and eliminates unwanted ones. Reinforcement learning recognizes and
explains its environment, takes the necessary action, and learns through trial and error [10].

Self-Learning: The self-learning algorithm calculates in a crossbar manner where actions
and emotions are dictated by their consequences. In this algorithm, cognition and emotion are
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the ones that drive the entire system. Therefore, it mainly has one input, situation, action,
and output [11].

Feature Learning: Feature learning algorithms try to store the information in the input
and transform it internally to make it more useful. As a pre-processing step, this is done
before performing classification or prediction. The feature learning technique can be supervised
learning [7] or unsupervised learning [8]. A labeled input set is used to teach supervised learning.
The best examples of supervised feature learning are Artificial Neural Networks (ANN) and
Multi Layer Perceptron (MLP). Similarly, the features are learned from the unlabeled input
data in unsupervised feature learning. Some examples of unsupervised feature learning are
auto-encoders and dictionary learning [12].

Sparse Dictionary Learning: Sparse dictionary learning is another ML algorithm in the
classification category used to decide to which class a previously imaginary training example
belongs. An analogous dictionary is used to find the class of new training examples. The [12]
uses this algorithm primarily for denoising images.

Anomaly detection: An algorithm is used for anomaly detection to detect unique items
and events that change significantly from most of the actual data. Examples of anomaly
detection include bank fraud and medical emergencies. There are three main classifications
for anomaly detection. First, unsupervised anomaly detection detects the abnormality in the
unlabeled set of data under the expectation that most of the instances in the data set are
normal. The supervised anomaly detection technique requires a data set that has already
been labeled as "normal" and "abnormal" and involves training a classifier. Finally, the semi-
supervised anomaly detection technique requires constructing a model that represents the
expected behavior from a given set of standard training data sets that tests the probability of
a test example to be generated by the model [13].

Robot Learning: Robot learning algorithms generate learning experiences to aggregate
new skills through self-exploration and social interaction with the environment [14].

1.3 Deep Neural Networks

DNNs are among the most important keystones of contemporary AI [15] and ML. DNNs
are the heart of the machine learning system, as shown in Section 1.2. Due to modern
DNNs rapid development, they can perform challenging tasks with unprecedented accuracies
like image recognition [16] [17], speech recognition [18], keyword spotting [19], hand gesture
recognition [20] and complex video games [21]. While the first DNNs were introduced in
the 1960s with supervised, feed-forward MLPs, they became more popular after 2010. As
of 2010, large-scale industrial applications have begun making a meaningful impact on the
present-day world thanks to various training data, which led to the development of highly
accurate specialized hardware. Furthermore, most Internet of Things (IoT) and communication
devices focus on simplifying daily life with socially critical applications like auto sentence
generators in Gmail, AI-driven photo editing in Instagram, and Google Maps for navigation.
Consequently, extensive research is being conducted in industry and academia to make the
applications smarter.
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DNN revolutionizes the world by making it a better place and more accessible for day-
to-day work. The powerful DNN algorithms can solve most of the complex tasks from the
previous century. Therefore, the current area of focus is using DNNs to perform complex
machine-learning functions that will help real-world applications. Nevertheless, this poses
a significant challenge to the existing hardware systems and infrastructure. For example,
existing general-purpose processors cannot perform complex estimations such as autonomous
vehicles, innovative healthcare, robots, and smart assistants with the required performance and
e�ciency [22]. Standard processors are unable to handle the requirements of machine learning.
Therefore, the AI chips have an added Neural Processing Unit (NPU) specifically designed
to manage the machine learning data. As a result, AI processors o�er high performance and
better energy e�ciency with diverse computing abilities. For example, image recognition
and processing are faster when using smartphone NPUs, designed to perform multiple tasks
e�ciently. In addition, it can manage specific programming tasks more e�ciently than general-
purpose processors [22]. For example, in 2016, Apple Inc. CEO Tim Cook said, "AI will
become even more of a personal assistant than it is today. So, where you are most likely not
leaving your house without it today, you will be connected to it in the future." [23]. This
statement points out the growing demand for hardware in DNN-related applications. In
addition, dedicated hardware is imperative for meeting computational demands and reducing
operational costs in today’s fast-changing world. These high demands have aroused the
e�cient development of dedicated DNN accelerators that meet accuracy, computational, and
energy-e�cient requirements[24].

In contrast with other standard technologies like cyber security, video coding, wireless
communication, and blockchains, DNNs are growing faster. A high number of scientific papers
have been published on new DNN models that perform more complex tasks with much higher
accuracy than the present State of the Art (SoA). Di�erent DNN models o�er a distinct set of
challenges:

Memory: A typical DNN has a memory of hundreds of MBs to GBs. Hence, storing these
models requires high memory resources, and the transmission cost involved in transmitting the
information through a communication channel with a limited memory capacity is incredibly
challenging.

Execution Speed: Due to layers and increased data movement, some DNN models
for speech and image recognition and natural language processing have high latency. Such
latency will impact the positive user experience in the entertainment field and have a critical
implication in healthcare and autonomous driving. For example, GoogleNet [25] for image
classification takes around 0.006 seconds to classify one image on the Intel CascadeLake.

Energy: Most of the DNN models that perform complex tasks have many parameters
for better accuracy. This will lead to increased data transfer between o�-chip and on-chip
memory elements, increasing the power consumption of the hardware [26]. In most cases, the
data movement has 2◊ the energy cost of the computation cost. For example, as explained in
EIE [27], the 32-bit arithmetic operation consumed a total of 12.1pJ of energy, whereas the
32-bit Dynamic Random Access Memory (DRAM) data movement consumed a total of 640pJ.
As a result, the models with low energy e�ciency will not fit on resource-constrained devices
like mobile phones, VR glasses, and wearable smartwatches.

5



1. Introduction

Cost: To compute the DNN models according to the above criteria will require an expensive
and large hardware device.

The hardware, in terms of bandwidth and speed inferencing a powerful DNN model, should
be capable of handling memory requirements for ample storage of data, e�cient computation
techniques with lower latency, and improved data transfer to reduce the energy and computation
cost. In addition, each DNN model has its configurations and sizes. Thus, building dedicated
hardware for one DNN model could be more e�cient. So, in addition to accuracy, energy
e�ciency, and high performance, the flexibility of inferencing di�erent DNN models is also an
especially crucial factor.

1.4 Need for e�cient processing of DNN models

As mentioned in Section 1.3, even though DNNs are capable of previously defined delivering
SoA accuracy on the majority of AI tasks, they come at a very high computational complexity.
As a result, to infer the power of DNN models, there is a need to enable the e�cient processing
of DNN to improve energy e�ciency and throughput without compromising accuracy. Among
other things, processing e�ciently requires choosing between spatial and temporal architecture,
minimizing data movement between o�-chip DRAM and on-chip Static Random Access Memory
(SRAM), improving computation techniques, especially for MAC operations, and improving
implementation of di�erent data flows.

1.5 Scientific Contributions

This thesis stresses the development of energy-e�cient hardware architectures for deep
learning models and compressed deep learning models. Each contribution to the thesis
can be summarized as follows.

• In Chapter 3, we provide a detailed analysis of di�erent data flows used to infer the DNN
models e�ciently. Each data flow has a wide variety of trade-o�s between throughput,
energy e�ciency, and performance. This chapter provides detailed implementation
techniques for each set of data flows, including the advantages and disadvantages of
ine�cient hardware design. Also, in this chapter, we explain energy-e�cient ways of
data handling for hardware implementation to support di�erent layers of neural networks
like CONV and Fully Connected (FC) layers. We finally conclude with the di�erent
experimental results for di�erent data flows and show which data flow would be used for
the e�cient implementation of the hardware design [28] [29] [30] [31] [32].

• In Chapter 4, we explain the power-e�cient multi-bit accelerator for memory-prohibitive
DNNs. In this chapter, we explain the multi-bit accelerator that reduces the energy and
power requirement by employing the truncation of the Partial Sums (PSums) of the
preceding layer before feeding it into the next layer. The multi-bit accelerator starts
by inferencing the 32 bits for the first convolution layers and sequentially truncating
the bits on the MSB/LSB of integer and fractional parts without further training on
the original network. At the last FC layer, the top-1 accuracy is maintained with the
reduced bit width of 14 and top-5 accuracy up to 10-bit width [30] [31].
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1.6 Thesis Contributions

• In Chapter 5, a compression technique is proposed to reduce the silicon area and power
requirements of MLPs with high predictive performance. Firstly, a novel hardware
architecture named FantastIC4 is discussed, which (1) supports the e�cient on-chip
execution of multiple compact representations of FC layers and (2) minimizes the required
number of multipliers for inference down to only four. Moreover, to make the models
amenable to e�cient execution on FantastIC4, a novel constrained training method is
introduced that makes for e�cient 4-bit quantization and a highly compressed DNN
model. The software development for the entropy constraints and compression of the
DNN algorithms was designed by the authors Mr. Simon Wiedemann and Mr. Daniel
Becking, and the entire hardware development to support these algorithms was done by
Mr. Suhas Shivapakash, who is the main author of the thesis. More information about
the thesis contribution is explained in the below section.

1.6 Thesis Contributions

This thesis’s primary focus was creating e�cient hardware architectures for the DNN models.
That concentrated on e�cient data movement by improving the performance of Terra
Operations Per Second (TOPS) and reducing the total power consumption. The architectures
were implemented in the Field Programmable Gate Arrays (FPGA) and the Application
Specific Integrated Circuits (ASIC).

The thesis contributions for the chapters are condensed as follows:

• For chapter 4:

– Mr. Shivapakash’s contribution: He researched, developed, and designed
the data flow architecture for the multi-bit accelerator, the truncation techniques,
FPGA implementation, and the complete physical design involved in the ASIC
implementation.

– Co-author’s contribution: Mr. Hardik Jain provided the trained data set for
the di�erent DNN models like AlexNet, E�cientNet, SqueezeNet, and MobileNets.
All the co-authors, Hardik Jain, Prof. Olaf Hellwich, and Prof. Friedel Gerfers,
provided critical feedback that helped in the development of the conference and
journal manuscripts [30] [31] on which the multi-bit accelerator chapter is based.

• For Chapter 5:

– Mr. Shivapakash’s contribution: He developed the hardware architecture
and the data flow movement to infer the CSR and entropy-constrained DNN
algorithms for the FantastIC4. Moreover, he was also involved in the hardware
algorithm development for the Accumulate-Multiply (ACM) computational flow and
floating-to-fixed point conversions. In addition, he implemented both the FPGA
implementation and the ASIC implementations for the FantastIC4.

– Co-author’s contribution: Mr. Simon Wiedemann and Mr. Daniel Becking’s
main contribution was engaged in the software development of the CSR to Bit Mask
Conversion, Entropy constrained algorithms, and Decoder techniques. Mr. Simon
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Wiedemann and Mr. Daniel Becking were also involved in the ablation studies for
the FantastIC4 hardware implementation. Along with them, Mr. Pablo Wiedemann,
Prof. Samek Wojciech, Prof. Friedel Gerfers, and Prof. Thomas Wiegand provided
valuable feedback that helped in the development of the journal publication [32] on
which the FantastIC4 chapter is based upon.

1.7 Thesis Organisation

The thesis is organized as follows:

• Chapter 2: In Chapter 2 the theoretical background of the DNNs including its
architecture, training, di�erent operations, di�erent layers and the mathematical
background of the various layers is provided. Moreover, we provide extensive information
on the di�erent DNN development resources and prominent datasets.

• Chapter 3: In Chapter 3, a detailed analysis of di�erent data flows involved in
the e�cient processing of DNNs is explained. In addition, we provide a detailed
implementation technique for other data flows. Furthermore, we will explain the di�erent
data handling methods for energy-e�cient hardware design to support di�erent layers of
neural networks. Finally, we end the chapter with the required metrics for DNN training
and inference.

• Chapter 4: In Chapter 4, we explain the power-e�cient multi-bit architecture for
inferencing the memory-prohibitive deep neural networks. This chapter describes the
multi-bit architecture that truncates the PSums results of the previous layer before it is
fed as an input to the next layer. Here, we provide the e�cient implementation of the PE
array arranged in a systolic array, where the MAC implementation is performed through
approximate computing. The experimental section shows how to truncate bits between
the integer and the fractional part with low RMS error so that the top-1 and top-5
accuracy is una�ected. Finally, we provide the FPGA and ASIC implementation results
and compare our architecture with the present SoA. A majority of the contributions of
this chapter are based on published journal articles, where the author of this thesis is
the first author of the following publications [32].

• Chapter 5: This chapter introduces the FantastIC4, which can utilize low entropy
statistics to enhance the inference accuracy of a compressed model. This chapter explains
a detailed architecture for managing the SoA compressed models targeting the 4-bit
quantization and Hu�man encoding. The experimental results of this chapter explain
the di�erent benchmarking tests and compare our FantastIC4 architecture with other
SoA architectures. Finally, we provide the FPGA and ASIC results of the FantastIC4
and show the e�ect of entropy on the dynamic power consumption. A majority of the
contributions of this chapter are based on published journal articles, where the author
of this thesis is one of the main authors of the following publications [32], where the
software development for the algorithms explained in this chapter was developed by Mr.
Simon Wiedemann and Mr. Daniel Becking and the hardware development to support
these algorithms was done by Mr. Suhas Shivapakash.
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1.7 Thesis Organisation

• Chapter 6: Finally, the last chapter summarizes the obtained results and conclusions
of the thesis and provides the direction for future work in the energy-e�cient hardware
architecture for deep learning.
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2
Deep Neural Networks

2.1 Introduction to Deep Neural Networks

Deep learning belongs to a larger class of machine learning algorithms. These algorithms
can engage in supervised [7], semi-supervised [9], and unsupervised [8] learning techniques,
as explained in Chapter 1. Di�erent architectures exist for deep learning, including
DNNs, Recurrent Neural Networks (RNNs), and Deep Belief Networks (DBNs). Computer
vision, image recognition, speech recognition, natural language processing, social network
filtering, language translation, bioinformatics, radar, and military surveillance use these
architectures [33] [17]. A DNN mimics how information is processed and communicated in the
human brain [34]. Information processing and communication imply how the brain processes
di�erent aspects of information, such as image color, image contrast, and distinguishing
between other objects. Communication refers to sending electrical signals from the brain to
distinct body parts in response to changes in the surrounding environment. The adjective
"deep" in a deep neural network comes from the deep usage of multiple layers in the neural
network.

DNNs o�er a unique set of advantages compared to the traditional computer vision
algorithms like Hough transforms and Geometric hashing that were not evident before the
turn of this decade [35]. Instead of the arduous or the hit-and-miss approach of creating a
near distinct algorithm capable of solving each problem in a particular domain, we can train
these algorithms to learn from the raw data by a process called training to handle a new set of
problems. Within these DNN fields, it is often called brain-inspired computation, as these
algorithms learn to solve the problems independently. The DNNs, brain-inspired computations,
take certain aspects of the brain’s functionality and emulate its function in solving newer
problems.

Scientists across the world are still researching the functionality of the brain. However,
the main computational element of the brain is the “neuron". There are around 100 billion
neurons inside the brain. These neurons are connected by several elements called axons and
dendrites. Dendrites are the elements that enter the brain, and axons are the elements that
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Figure 2.1: Connections to a neuron in the brain. xi, wi, f(MAC functionality), n and b are the
activations, weights, non-linear function, size of the activation matrix, and bias respectively [29].

leave the brain. A neuron accepts the signals via dendrites, performs the computation, and
generates the output signals called axons. The incoming and outgoing signals are called
activations. The axon is the output of one neuron while it is connected to the dendrites of
the other neurons. The connection between a branch of the axon and a dendrite is called the
synapse, as shown in Fig. 2.1. Around 1014 - 1015 synapses exist in the average human brain.
The main characteristic of the synapse is that it can extend the number of input signals xi
crossing it as shown in Fig. 2.1. The extension factor is referred to as the weight wi, and
in this way, the brain is continuously learning from the changes in the weights associated
with the synapses [29]. The di�erent weight values will result in a di�erent response to the
input activation. As shown in Fig. 2.1, the range of “i” ranges from 0 to the maximum size
of the neural network layer under the inference. For example, in the AlexNet for the first
convolutional layer, the maximum length of “i” is 225 ◊ 225.

The computation of the weighted sum of the input activation values influences most current
neural networks. Each weighted sum correlates to the value extension performed by the
synapse and connects those sets of values to a neuron. Each neuron does not just output the
weighted sum but combines the non-linear function with the weighted sum to generate the
final output.

The neural networks use multiple layers to extract higher-level features from raw inputs.
For example, in image classification networks, the lower layers of the neural network identify
the edges, and the higher layers identify the relevant concepts like faces, digits, and letters.
These networks mainly consist of neurons, synapses, weights, biases, and functions. DNNs are
trained to identify the class of particular objects and calculate the probability of that class
in the object. Then, the end-user can review the results, select the probability the network
should display, and return the proposed set of classes. Each mathematical manipulation in the
neural network is considered a label, and complex DNNs have many hidden layers inside them,
hence the name “Deep Neural Networks". An iteration of a simple neural network with three
hidden layers is shown in Fig. 2.2.

In most cases, DNNs have more than a thousand hidden layers embedded inside the network
for an e�cient learning process. Each layer in the DNNs has a weighted sum of inputs, termed
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Figure 2.2: Layers of DNN.

activations, as shown in the above Fig. 2.1. These activations and weights perform a defined
set of mathematical operations called the MAC, followed by non-linear functions to generate
the final output activations as explained in Fig. 2.1. The di�erent non-linear functions that
are used in DNN training and inference are:

• Sigmoid: Sigmoid functions are asymmetric, di�erential, and real functions with no
negative derivative at each point and the inflection point for all input values [36]. The
sigmoid function is defined in Eq. 2.1.

f(x) = 1
1 + e≠x

(2.1)

This approach has the main benefit of making the function more monotonic and
di�erentiable. ML models are widely used to predict output values as a probability
when the values are between zero and one. The disadvantage of the sigmoid function is
that the outputs are not zero-centered and are computationally costly, especially on the
hardware.

• Hyperbolic tangent: As with sigmoid functions, hyperbolic tangent functions are
defined between +1 and -1 but are zero-centered [37]. The hyperbolic tangent function
is defined in Eq. 2.2.

f(x) = ex + e≠x

ex ≠ e≠x
(2.2)

Its main advantage is that the derivative is steeper and has more values to compute.
Therefore, ML models can be computed faster. However, the main disadvantage is that
it is computationally expensive.
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Figure 2.3: Image classification example. The machine learning algorithm takes the input of the
image and outputs the probability scores for a defined set of previously trained classes. The source
of the Tiger picture is ©Google.

• Rectified Linear Unit (ReLU): ReLU technique is computationally cheaper and
hardware friendly [38]. It is defined with a simple function as shown in Eq. 2.3.

f(x) = max(0, x) (2.3)

However, one slight disadvantage is that the function’s gradient becomes zero when the
inputs approach zero or negative. This will prevent the ML models from performing the
backpropagation technique and learning from the error.

The diagrams for each non-linear function are shown in Fig. 2.13, according to Fig. 2.1, In
activations(x), “i” varies from 0 to the maximum size (N) of the activation matrix, such as 227
◊ 227 for AlexNet; similarly, in weights(w), “i” varies from 0 to the maximum size (N) of the
weight matrix, such as 13 ◊ 13 for AlexNet. So, let us consider two simple examples to depict
the functionality of Fig. 2.1, where i ranges from 0 to 1.

Example 1:
Let w0 = 10, w1 = 11, x0 = 5, x1 = 3, b = 20 So, the output y is
y = f(10 ◊ 5 + 11 ◊ 3 + 20)
y = f(103)
Here f(x) is a ReLU function as shown in Eq. 2.3
So, the output y is 103.
Example 2:
Letw0 = 1, w1 = 2, x0 = 3, x1 = 1, b = ≠6. So, the output y is
y = f(1 ◊ 3 + 2 ◊ 1 ≠ 6)
y = f(≠1)
Here, the value of x is -1, so the output y is 0.
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Figure 2.4: Backpropagation example.

2.2 Inference versus Training of the DNNs

The DNNs are part of the machine learning algorithm, as explained in Chapter 1. The basic
functionality stays the same as it learns from the given set of tasks to perform a new task. In
most cases, learning about the DNNs involves determining the value of the network’s weights,
activations, and biases. The process is known as network training. After the training, a
hardware/program can compute the network’s output by using the activations, weights, and
biases generated during the training, running a hardware/program with the generated weights,
activations, and biases.

An image classification example in Fig. 2.3 is the best example for DNN inference. When
we perform the inference of the DNNs, we provide an input image, and the output from the
DNN will be a probability of scores for each object class. The class with the highest probability
will show the most likely class of the object in the image. The main goal of training is to find
the weights that would maximize the probability score of the correct object class and minimize
the score of the incorrect object class. The correct object class is always known during the
network training because it is provided for the images used. The di�erence between the actual
probability scores and those computed by DNN is mainly based on the current weights referred
to as loss (L), as shown in Eq. 2.4. Hence, the main goal of training is to find the proper set
of weights that would reduce the average loss over a complete training set.

The weights are usually amended during the network training using a hill-climbing
optimization technique called gradient descent. The relative loss for the multiple gradients of
each weight is the partial derivative of the loss concerning the weight used to update the new
weight, as shown in Eq. 2.4. Here – is called the learning rate. The gradient indicates how the
loss can be reduced by changing the weights. The process repeats iteratively to minimize the
overall loss [29]. A competitive technique to evaluate the partial derivatives or the gradient is
called backpropagation.

wt+1

ij
= wt

ij ≠ –
ˆL

ˆwij

(2.4)
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2.2.1 Backpropagation

Backpropagation is a chain of partial derivative techniques used to fine-tune the weights of
a neural network based on the error rate obtained from the previous iteration. The error
rates will be reduced by fine-tuning the weights, and the neural network will be more robust
during the general classification. The backpropagation example is shown in Fig. 2.4. The
input activations X1 and X2 arrive in a pre-connected path, and the activations are modeled
with weights according to Fig. 2.1. The final output activations are generated after passing
through the hidden layers. The di�erence error (◊B) is evaluated according to Eq. 2.5 and ◊B

is backpropagated to fine-tune the network until the error is minimized.

◊B = ◊actual ≠ ◊desired (2.5)

The backpropagation computation is a simple technique that is fast and easy to program.
Since the training dataset sums to zero, backpropagation tends to learn faster. The mean value
of each input variable can be subtracted from it to achieve this. The confluence of iteration
usually runs faster when the average of each input variable over the training set is close to zero.
The backpropagation technique is used to backpropagate through each of the hidden layers:

• Compute the gradient loss compared to the weights from the input activations and the
loss gradients compared to the output activations.

• Finally, compute the gradient loss relative to the input activations from the weights and
the gradient loss compared to the output activations.

• Repeat the process until the error is minimal.

The backpropagation technique inherently requires preserving the network’s transitional
outputs for backward computation, which increases the overall storage requirements. Also,
since the gradients use a hill-climbing approach, the precision needed for training will always
be higher than that needed for inference.

Apart from backpropagation, other techniques like Elman Neural Network [39] and Jordan
Neural Network [40] are used to improve the robustness and e�ciency of the training. However,
they are less popular than the backpropagation technique. The loss from the multiple input
data sets is collected before updating the weights. This speeds up and stabilizes the complete
training process.

Let us consider a simple example of the backpropagation algorithm shown in Fig. 2.5.
Firstly, let us calculate the total output value for the net h1:

neth1 = w1 ú x1 + w2 ú x2 + b1 ú 1
neth1 = 0.14 ú 0.07 + 0.26 ú 0.11 + 0.36 ú 1
neth1 = 0.3984
Applying non-linear function, the ReLU according to the Eq. 2.1, the outh1 will be
outh1 = 1

1+e
≠neth1

= 1

1+e≠0.3984 = 0.598303
Similarly, the outh2 will be:
neth2 = w3 ú x1 + w4 ú x2 + b1 ú 1
neth2 = 0.37 ú 0.07 + 0.42 ú 0.11 + 0.36 ú 1
neth2 = 0.4321

16



2.2 Inference versus Training of the DNNs

Initialization

Weights and NN 
model

Forward 
propagation

Loss function 
calculate

Calculate the 
derivative errorBackpropagationUpdate weights

Inputs 
activation

Actual 
output

Desired 
outputs

Loss 
function

Loss error 
compute

Gradient 
update

Iteration until 
convergence

Figure 2.5: iteration for backpropagation algorithm.

outh2 = 1

1+e
≠neth2

= 1

1+e≠0.4321 = 0.606375
After computing the hidden layers, we can now calculate the output layers outo1 and outo2 .
neto1 = w5 ú outh1 + w6 ú outh2 + b2 ú 1
neto1 = 0.18 ú 0.598303 + 0.24 ú 0.606375 + 0.6 ú 1
neto1 = 0.85322454
outo1 = 1

1+e
≠neto1

= 1

1+e≠0.85322454 = 0.701243
neto2 = w7 ú outh1 + w8 ú outh2 + b2 ú 1
neto2 = 0.36 ú 0.598303 + 0.62 ú 0.606375 + 0.6 ú 1
neto2 = 1.19134158
outo2 = 1

1+e
≠neto1

= 1

1+e≠1.19134158 = 0.766980
Now, we will calculate the total error:
Errortotal =

q
1

2
(target ≠ actual)2

The target outputs for o1 is 0.02, o2 is 0.98 and the error for the net output o1 and o2 are:
Erroro1 =

q
1

2
(0.02 ≠ 0.775416)2 = 0.232204

Erroro2 =
q

1

2
(0.98 ≠ 0.766980)2 = 0.0022688

The total error will be:
Errortotal = Erroro1 + Erroro2
Errortotal = 0.232204 + 0.0022688 = 0.2344728
Now, we employ the backpropagation algorithm to update each weight of the DNN model

so that the actual output is equal to the target output, thereby reducing the total errors in
the neuron model’s output. The output o1 is dependent weight w5, so we need to decide how
much change in w5 a�ects the total error of o1. The total error for the weight w5 is calculated
according to the chain rule as shown below:

ˆErrortotal

ˆw5
= ˆErrortotal

ˆoutO1
ú ˆoutO1

ˆnetO1
ú ˆnetO1

ˆw5

We know that,
Errortotal =

q
1

2
(targeto1 ≠ outo1)

2 +
q

1

2
(targeto2 ≠ outo2)

2

Therefore,
ˆErrortotal

ˆouto1
= 2 ú 1

2
(targeto1 ≠ outo1)

2≠1
ú ≠1 + 0

ˆErrortotal

ˆouto1
= ≠ (targeto1 ≠ outo1) = ≠(0.02 ≠ 0.701243) = 0.681243

Similarly the partial derivative of o1 with respect to neto1 would be:
outh1 = 1

1+e
≠neth1
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Figure 2.6: Loss function vs Weight update.

ˆouto1
ˆneto1

= outo1 (1 ≠ outo1) = 0.701243(1 ≠ 0.701243) = 0.209501255
Finally, now we can determine how much net o1 changes concerning the weight w5

neto1 = w5 ú outh1 + w6 ú outh2 + b2 ú 1
ˆneto1

ˆw5
= 1 ú outh1 ú w(1≠1)

5
= outh1 = 0.598303

Now grouping them,
ˆErrortotal

ˆw5
= ˆErrortotal

ˆouto1
ú ˆouto1

ˆneto1
ú ˆneto1

ˆw5
ˆErrortotal

ˆw5
= 0.681243 ú 0.209501255 ú 0.598303 = 0.08539056

To decrease the error, we can refer to the Eq. 2.4, hence the updated weight w+

5
would be:

w+

5
= w5 ≠ –ˆErrortotal

ˆw5
= 0.18 ≠ 0.7 ú 0.08539056 = 0.12022

Similarly,
w+

6
= 0.185980006

w+

7
= 0.375945074

w+

8
= 0, 636160197

Next, we will update the weights w1, w2, w3 and w4. So, update the weight w1 will be,
w+

1
= 0.13654519

Similarly,
w+

2
= 0.25467678

w+

3
= 0.375945074

w+

4
= 0.41449875

After updating the weights, the final output o1 is 0.776454 o2 is 0.761276, the final If we
repeat the process with the forward pass and the backpropagation more than 10000 times, we
will come near to the actual target output. To depict this iteration, Fig. 2.6 shows how the
loss function varies with the weight update, and Fig. 2.5 shows the block diagram of the entire
backpropagation algorithm and overall weight calculation procedure.

2.3 History of the Deep Neural Networks

The foundation stone for the DNNs was laid in the early 1940s by Walter Pitts and Warren
McCulloch when they formulated a mathematical model of a biological neuron in their paper
"A Logical Calculus of the Ideas Immanent in Nervous Activity [41]." In 1957, Frank Rosenblatt
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1940 • First mathematical model of a neuron

1950 • Concept of perceptron

1960 • DNNs were proposed

1970 • Back propagation algorithm was invented

1980 • Neural networks for handwritten object detection

1990 • Hardware for shallow neural nets

2011 • DNN based speech recognition

2012 • Image net classification like AlexNet, GoogleNet and ImageNet

2014 
+

• Rise of DNN accelerators and compression based DNN techniques 

Figure 2.7: A terse history of neural networks.
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Figure 2.8: ImageNet challenge. The y-axis on the top-5 accuracy indicates the total % error.

established the concept of perceptron. Around the 1960s and 1970s, the idea of backpropagation
and deep learning was invented. The first major practical applications of the DNNs were
started in the late 1980s with the invention of LeNet for handwritten digit recognition [42].
The breakthrough in the technology using DNNs began around the 2010s with significant
highlights such as Microsoft’s speech recognition system and AlexNet image classification
system. A concise history of neural networks is shown in Fig. 2.7.

The success of deep learning in the early 2010s is mainly due to three factors. The first
factor is the availability of a large amount of information to train a neural network. Much
training data is needed to learn a new powerful representation. Currently, Google Photos
and Facebook have access to more than 500 million images per day are required. In addition,
Amazon has access to 10 Petabytes of customer shopping information, and YouTube has more
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than 1000 hours of videos uploaded every minute. Hence, most cloud service providers have
access to many data to train their algorithms.

The second factor is the available computation capacity, which is the most critical factor.
The advancement in CMOS technology and path-breaking research in computer architecture
have led to increased computing ability. This has reduced the inference time of the powerful
DNN models and helped fine-tune the network’s training process to obtain improved results.

The major success in the early DNN applications has opened a new pathway for algorithm
development. In addition, the open-source frameworks have helped many researchers explore
the use of DNNs and make them much more e�cient in solving complex tasks. Finally,
combining all these e�orts has led to new algorithmic techniques. This third factor has
improved the application accuracy and broadened the range of applications for DNNs.

Another example of the advancement in deep learning is the ImageNet challenge. This
challenge evaluates di�erent algorithms for object detection and image classification on a large
scale. In the image classification task, the algorithms are given an image, and they must
classify what an image is, as shown in Fig. 2.3. The entire training set consists of around 1.2
million images, each labeled with one of the thousand object classes that the image contains.
Then, in the evaluation phase, the algorithm must correctly identify the class of objects in a
new set of images.

The most accurate networks that won the ImageNet contest over the years are shown in
Fig. 2.8. From the graph, it becomes evident that the accuracy of the algorithms had an error
rate of more than 25%

AlexNet utilized a powerful Graphics Processing Unit (GPU) to evaluate their algorithm,
reducing the error rates. In 2012, only four entrants used GPUs to fine-tune their algorithm.
However, by 2014, the use of GPUs became so dominant that most entrants (around 110) used
them. This trend gradually shifted from the traditional computer vision approach to a deep
learning-based one.

In 2015, ResNet [16] eclipsed human accuracy with a top-5 error rate below 5%. Today,
the error rate is below 3 percent, focusing on 3-D image classification and object detection.
These achievements are a primary contributing factor to the extensive range of applications
that employ DNNs.

2.4 Applications of DNNs

Many applications, ranging from multimedia to the military, are using DNNs. In this section,
we provide a brief overview of the areas in which DNNs are currently making an impact and
highlight the areas where DNNs can potentially impact the future.

2.4.1 Image and video applications

Video is one of the most significant forms of big data. It accounts for over 70%-80% of
today’s internet tra�c. For example, almost over 1000 million hours of video are collected
around the world for video surveillance [43]. Computer vision techniques are essential to
extracting information from videos. DNNs have helped improve the accuracy of computer
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vision tasks such as image classification, object detection, action recognition [44], and image
segmentation [45].

2.4.2 Speech and natural language processing

DNNs have significantly improved machine audio translation accuracy and related tasks
like speech recognition, natural language processing, and audio generation. The e�ciency
of the MLPs has dramatically boosted the performance of the Keyword Spotting (KWS)
applications [46].

2.4.3 Robotics

DNNs have successfully performed robotic tasks and motion planning for ground robots, visual
recognition during the calamity, stabilizing quadcopters’ control, and autonomous driving
strategies [47].

2.4.4 Gaming

The use of DNNs has overcome challenges in the field of gaming. Innovations were performed
in the training techniques for gaming applications, mainly on reinforcement learning. DNNs
have beaten human accuracy in playing games like Alpha Go and Atari. By playing these
games, DNNs have proven that the technology can perform an exhaustive search of di�erent
possibilities needed to make a di�erent number of moves [48].

2.4.5 Medical

DNNs have played a vital role, for instance, in detecting cancer at an early stage, which has
saved many lives. They have also helped in lesion detection and organ segmentation [49].

2.4.6 Other Applications

DNNs are used extensively in many multimedia applications. In the future, DNNs will play
a more significant role in the medical and robotics fields, finance, infrastructure, weather
forecasting, and event detection. The di�erent application areas will provide new challenges
for the e�cient processing of DNNs, both in training and inference. With the novel challenges,
there will be new DNN techniques that will be adaptive and scalable to meet the new
requirements [50].

2.5 Embedded and cloud applications for DNN computation

For DNN processing, both inference and training have di�erent computational requirements.
Training requires many relevant datasets and essential computational resource requirements to
estimate the multiple weight generation and bias values. In most cases, training a DNN model
takes from several hours to numerous days; hence the training is typically performed on the
cloud [27] [29] [51] [52] [53] [54]. However, inference can happen on cloud or edge applications
like IoT or mobile phones.
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Figure 2.9: Di�erent types of neural networks.

In most applications, placing the DNN inference processing near the sensor is proper. For
example, in computer vision applications like predicting tra�c patterns or understanding the
user shopping experience in an e-commerce platform, it is more meaningful to extract the
information from the video at the input of the sensor rather than the cloud to minimize the
communication cost [29]. On the other hand, cloud processing is not desirable in time-critical
applications like autonomous driving, robotics, and drone navigation due to the latency and
security risks involved. Moreover, even though the processing speed is more related to training
in these applications, it also a�ects inference since the performance [29] should be faster and
more reliable to avoid potential hazards. However, videos involving a large amount of data
computationally make processing overly complex. Hence, performing hardware is critical for
the processing of these data.

Speech recognition applications help us connect with electronic devices such as smartphones
conveniently. Most of the processing of these applications happens in the cloud, for example,
Siri from Apple and Alexa from Amazon. However, to reduce latency and dependency on
connectivity and improve security and privacy, performing the recognition on the smart device
is appropriate.

Most embedded devices that perform DNN inferencing have memory cost limitations,
stringent energy requirements, and area constraints. So, it is imperative to process the DNNs
e�ciently. Hence, this thesis will focus on the energy-e�cient inference of the DNNs.

2.6 Overview of DNNs

Depending on the application, DNNs come in various shapes and sizes, which are changing
rapidly to improve accuracy and e�ciency. Most of the time, the input to the DNN is a
collection of values defining the information to be analyzed. The input values can be a pixel of
an image, sampled amplitudes of an audio signal, or the numerical values of the system.

The network that processes the input will come in two primary forms, a feed-forward
network, and a recurrent network, as shown in Fig. 2.9(a). In feed-forward networks, most of
the computation is performed as a sequence of operations on the previous layer’s outputs. The
final set of operations on the last layer will generate the network’s final output. For example,
the two instances are the probability that an image has a particular object and the probability
that the audio signal contains a specific word like "Hey Siri." These feed-forward networks
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don’t include any memory. Thus, the number of outputs and inputs stays the same, regardless
of the previous sequence of inputs.

In contradiction, recurrent neural networks (RNNs), among which Long Short-Term
Memory networks (LSTMs) have internal memory to allow the long-term dependencies to
a�ect the final output. In RNNs, the intermediate operation results are internally stored inside
the network and used to input the next operations layer. However, this thesis focuses on the
feed-forward networks since most of the computation in RNNs is the weighted sums, which is
the MAC computation covered in the feed-forward networks. Also, there needs to be more
attention and importance on the hardware acceleration in the RNNs [55] [56].

DNNs are also composed of only FC layers called as MLPs. In an FC layer, all the output
activations are the MAC results of the input activations. The FC layers require a compelling
amount of memory and computation. The memory requirement for the FC layer of AlexNet [17]
is 111.81 MB [30] [57] and similarly for GoogleNet [25] it is 1.95 MB [30] [57]. In low memory-
centric applications like mobile phones, some connections between the activations are removed
by setting the weight to zero to avoid unwanted memory access and MAC computations. Such
types of layers are called sparsely-connected layers [29] [58].

DNNs can also be made computationally e�cient by reducing the weights that do not
contribute to the output. The weights are decreased mainly during the training by compression,
which is extensively explained in chapter 5. Weight compression reduces the number of floating
operations inside the DNN model. By compressing weight, full-connected layers can generate
fewer floating-point operations [32] [59] [60]. The impact of weight reduction is explained in
Section 5.3 of Chapter 5. The sparsity structure also emerges if each output is a function of a
fixed size of inputs. The hardware can be made more e�cient using the same set of weights
in all computations. Iteratively using the same weights is known as weight sharing, which
reduces overall weight storage needs.

A weight-shared DNN is constructed by structuring the computation as convolution, as
illustrated in Fig. 2.9(b). Input activations are used to calculate the MAC sum for each
output activation, and the same weights are used for all outputs. This type of layer is called a
convolution layer.

2.6.1 Convolutional Neural Networks (CNNs)

The most common form of DNNs is the Convolutional Neural Network (CNN), which
consists of multiple layers as shown in Fig. 2.10 and Fig. 2.11. In these networks, each
layer continuously generates a higher level of abstraction of the input data called a feature
map (fmap), which conserves essential and unique information. The modern CNNs can achieve
a higher level of performance by employing a very deep hierarchy of multiple layers [61].
CNNs have a wide variety of applications, such as image classification, speech recognition, and
robotics [27] [29] [62].

Most of the convolution layers in the CNN network are composed of high dimensional
convolutions, as shown in Fig. 2.12. In the computation, the input activations of a layer are
represented by a set of 2-D Ifmaps, each of which is called a channel. Each channel is convoluted
with specific 2-D filters from the stack of filters, one for each channel. This stack of 2-D filters
is referred to as a single 3-D filter. The convolution results of three di�erent input channels
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Figure 2.10: Convolutional neural networks.
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Figure 2.11: 2-D convolution.

Table 2.1: Parameters of the CONV Layer.

Shape Parameter Description
N Batch size of 3-D feature maps
OC Number of channels in the Output Feature Maps (Ofmaps)
IC Number of channels in the Input Feature Maps (Ifmaps)
FC Number of channels in the filter
OH Height of the Ofmaps
OW Width of the Ofmaps
IH Height of the Ifmaps
IW Width of the Ifmaps
FH Height of the filter weights
FW Width of the filter weights

with three filters are combined and added to the bias data. More recent networks [63] [64]
have removed the usage of bias from certain parts of the layers. The computation results are
the final output activations consisting of one channel Ofmaps explained below. The 3-D filters
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can be used on the same input to create multiple (or added) output channels. In addition,
numerous Ifmaps are processed together as a batch to improve the reuse of filter weights.

The shape parameters with the description are shown in Table 2.1, and the computation of
a convolution layer is defined in Eq. 2.6. I, W, B, and O are the matrices of the maps, filters,
biases, and Ofmaps respectively. Finally, S is the stride size for the convolution operation [29].

O[z][u][x][y] = B[u] +
F
C

≠1ÿ

k=0

F
W

≠1ÿ

i=0

F
H

≠1ÿ

j=0

I[z][k][Sx+ i][Sy + j] ◊ W [u][k][i][j]

0 Æ z Æ N, 0 Æ u Æ OC, 0 Æ x Æ OW, 0 Æ y Æ OH

OH = (IH ≠ FH + S)/S,OW = (IW ≠ FW + S)/S

(2.6)

In SoA, CNN layers typically consist of five to more than a thousand convolution layers.
Normally, the FC layers used for classification comprise one to three layers. The FC layers
apply the filter weights on the Ifmaps like the CONV layers; the filter sizes are of the same size
as ifmaps, and hence, they do not possess the weight sharing property of CONV layers. For
the FC layer computation, the Eq. 2.6 remains the same however there would be additional
constraints on the shape parameters: IH = FH, IW = FW, OW = OH = 1 and S = 1. The
other optional layers in DNN networks are non-linearity, pooling, and normalization [29]. The
function and computation of these layers are:
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Figure 2.13: Di�erent forms of non-linear activations [65].

2.6.1.1 Non-Linearity

Non-linear activation functions are typically used after the CONV or the FC operation.
Di�erent non-linear functions are used in DNN, as shown in Fig. 2.13. They include traditional
non-linear functions such as sigmoid, hyperbolic tangent, and ReLU [66]. ReLU is one of the
most popular models in the hardware AI community due to its simplicity, hardware friendliness,
and ease of training. Variations of ReLU mainly include leaky ReLU [67], parametric ReLU [68]
and exponential LU [69] for the increased accuracy. A non-linearity called maxout function [70]
is used in the speech recognition tasks [71] to determine the maximum value of two intersecting
linear functions. The pros and cons for each non-linear function are explained in Section 2.1.

2.6.1.2 Pooling

Pooling functions reduce the dimensions of the feature maps by selecting the highest magnitude
number and eliminating the other ones. This function is applied separately to each channel,
enabling the network to be more robust and invariant to minor shifts and other distortions.
The primary need for pooling is the dimension reduction in the CNN network. Doing so
reduces the number of parameters that must be learned from the network and its computation.
It also helps summarize the features present in a region in the feature maps generated by the
convolution layer. A set of values are pooled into the receptive field to fewer values. A simple
example of a pooling (max and average) operation is shown in Fig. 2.14. A typical pooling
consists of non-overlapping blocks, where the stride equals the pooling size. In most cases, the
stride is more significant than one, which is used to reduce the dimensions of the feature maps.
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Figure 2.14: Di�erent forms of pooling [65].

2.6.1.3 Normalization

Controlling the input distribution across the layers can be significantly improved by training
speed and accuracy. First, the input activations are distributed across the layer such that it
has a zero mean and a unit standard deviation. Then, the normalization value is scaled and
shifted in batch normalization (BN) as shown in Eq. 2.7. Here, x represents the normalized
input activations, and the parameters (“, —) are learned during the training process. In
addition, adding ‘ to the denominator provides numerical stability and avoids the drawback of
numerical ine�ciencies. Earlier to the use of BN, local response normalization (LRN) [17] was
used, which was mainly inspired by lateral inhibition in neurobiology. In the LRN technique,
higher-value activation subdued the lower-value activations. However, in recent times, for
CNN training, BN is used in more prominence when compared to LRN because it makes the
network more stable during training. It also aids in faster learning rates, which aids in the
quicker learning process. In addition, BN is also performed between the CONV or FC layers
and the non-linear function, while LRN is performed after the non-linear function.

y = x ≠ µÔ
‡2 + ‘

“ + — (2.7)

2.6.2 Popular DNN Models

Several DNN models have been developed in the last two decades and are extremely popular
today. Each model has a unique network architecture regarding layer shapes (number of
channels, filter size, and filters), number of layers, layer types, and connections between layers.
Knowing these variations and trends is essential for building e�cient DNN models. In this
section, we provide a brief overview of popular DNNs like LeNet [42] as well as those that
won the ImageNet Challenge, as shown in Fig. 2.8. Table 2.2 demonstrates the di�erent CNN
models’ summary.

LeNet [42] was the first CNN model introduced in 1989. It was designed and developed
for handwritten digit classification for a grayscale image of size 28 ◊ 28. The most prevalent
version, LeNet-5, has two CONV and two FC layers. The filter size of each CONV layer is 5 ◊
5 (1 filter per channel), with six filters on the first layer and 16 filters on the second layer. A
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Table 2.2: Summary of di�erent CNN models.

Parameters LeNet5 AlexNet Overfeat VGG 16 GoogleNet ResNet 50
Top-5 accuracy N/A 16.4 14.2 7.4 6.7 5.3

Input size 28◊28 227◊227 231◊231 224◊224 224◊224 224◊224
# of CONV layers 2 5 5 13 57 53

Depth in # of CONV layers 2 5 5 13 21 49
Filter sizes 5 3,5,11 3,5,11 3 1,3,5,7 1,3,7

# of channels 1-20 3-256 3-1024 3-512 3-832 3-2048
# of filters 20-50 96-384 96-1024 64-512 16-384 64-2048

Stride 1 1,4 1,4 1 1,2 1,2
Weights 2.6K 2.3M 16M 14.7M 6.0M 23.5M
MACs 283K 666M 2.67G 15.3G 1.43G 3.86G

# of FC layers 2 3 3 3 1 1
Filter sizes 1,4 1,6 1,6,12 1,7 1 1

# of channels 50,500 256-4096 1024-4096 512-4096 1024 2048
# of filters 10,500 1000-4096 1000-4096 1000-4096 1000 1000
Weights 58K 58.6M 130M 124M 1M 2M
MACs 58K 58.6M 130M 124M 1M 2M

Total weights 60K 61M 146M 138M 7M 25.5M
Total MACs 341K 724M 2.8G 15.5G 1.43G 3.9G

larger filter size is chosen for the first two layers to reduce the matrix dimensions. An average
pooling mechanism of size 2 ◊ 2 after each convolution is used instead because smaller filters
are faster to compute. In addition, the sigmoid function is used as a non-linearity function.
LeNet has around 60K weights and 341K MACs/image. To fit such large weights and images,
we use the external DRAM, and a FIFO technique is used in the inference to fit the data into
memory-constrained SRAM. CNN’s first industrial success was LeNet, which ATMs used to
recognize digits for cheque deposits. The main advantage of LeNet is that it is straightforward
to implement and can be used for small applications like character recognition. In contrast,
the disadvantage is that it is built only for black and white images, and the models are not
deep, often leading to mediocre performance.

Among the CNN models, AlexNet [17] won the ImageNet Challenge in 2012 to resolve
the vanishing gradient problem without restricting gradient values. AlexNet was the first
GPU-based model and was faster than LeNet, as LeNet consisted of 60K training parameters,
while AlexNet had 60 million training parameters. AlexNet possesses 5 CONV layers and 3
FC layers. The CONV layer has filters ranging from 96 to 384, and the filter size ranges from
3 x 3 to 11 x11, with the 3 channels of each of the 3 channels of the filter from the first layer
corresponding to the RGB components of the image. The ReLU non-linearity function is used
in this network. A max pooling of stride size 3 ◊ 3 is applied to the outputs of layers 1, 2,
and 5. A stride size of 4 reduces computation at the first computation layer. AlexNet di�ers
from LeNet in terms of the number of weights and the shapes from layer to layer. For the
further reduction in the computation in the second CONV layer, 96 output channels from the
first layer are split into two groups of 48 input channels for the second layer, such that the
filters in the second layer have 48 channels. In the same way, the weights for the fourth and
fifth layers are split into two groups, respectively. AlexNet has 61M weights and 724M MACs
to classify the 227 ◊ 227 input image. The main advantage of AlexNet was that it was deeper
than the other models introduced in 2012. Furthermore, it successfully negated the negative
output summation of gradients without negating the dataset. Thus, the training speed was
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Figure 2.16: 5◊5 constructed from 1◊5 filter and 5◊1 filter in GoogleNet.

improved since all perceptrons were not active. However, the disadvantage of this model is
that it takes longer to reach higher accuracy.

Overfeat [72] is similar to AlexNet with 5 CONV layers and 3 FC layers. Overfeat
architecture demonstrated the implementation of object localization, which AlexNet could not
do. The main architectural di�erences are that the number of filters is increased from 384 to
512 in layer 3, 384 to 1024 in layer 4, and 256 to 1024 in layer 5. In addition, layer 2 is split
into two groups, FC layer has 3072 channels instead of 4096, and the input size is 231 ◊ 231
rather than 227 ◊ 227. The total number of weights is 146M, and the total MACs are up
to 2.8G/image. Overfeat has two di�erent models, namely fast and accurate. The accurate
model used in the ImageNet challenge has a 0.65% lower error rate than the fast model, but it
comes at the cost of 1.9◊, a more significant number of MACs. The main advantage is that it
can perform object localization, while its disadvantage could be more profound, and it takes
more time to achieve higher accuracy than AlexNet.

VGG-16 [44] has deeper layers when compared to AlexNet and Overfeat, which improved
the overall training speed. It has 13 CONV layers and 3 FC layers. Larger filters in the range
of 5◊5 are built using multiple 3◊3 filters with fewer weights to balance the cost of going
more profound, as shown in Fig. 2.15. Hence, most of the CONV layers have a filter size 3◊3.
VGG-16 uses 15.5G MACs to process 224◊224 images with 138M weights. VGG has two
models, namely VGG-16 and VGG-19. VGG-19 has a 0.1% lower error rate than VGG-16 at
1.27◊ MACs. This model has a more significant non-linearity with more small kernels, which
helps reduce negative values more quickly. However, it su�ered from a vanishing gradient
problem and was smaller than the ResNet model.
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Figure 2.17: ResNet with and without bottleneck.

GoogleNet [25] is much more profound with 22 layers, and it also introduced the inception
module, as shown in Fig. 2.16. The inception module has parallel connections, unlike the
previous single serial connection. Unique filter combinations (1◊1, 3◊3, 5◊5) are used for
each parallel connection, and their outputs are concatenated for the module output. Multiple
filter sizes a�ect the input processing at various levels. For e�cient training, GoogleNet stores
weights and activations as a backpropagation during the training phase that could fit into the
entire GPU memory. To reduce the number of weights, 1◊1 filters are used as the bottleneck to
minimize each filter’s total number of channels. The 22 layers have 3 CONV layers, 9 inception
layers, and one FC layer. Since its development, GoogleNet has 3 versions: v1, v3, and v4.
Inception-v3 decomposes the convolutions using the smaller 1-D filters to reduce the number
of MACs and weights to 42 layers. In incoherence with batch normalization, v3 achieves a 3%
lower top-5 accuracy than v1 with a 2.5◊ increase in computation. The main advantage is due
to the deeper layers of the GoogleNet; it trains faster. The pre-trained GoogleNet is 96MB,
comparatively smaller than VGG-16, which is 500MB. Even though there are no significant
disadvantages, there is a divergence limit in the inception module called the Xception network.

ResNet [16] is also known as Residual Net and is a very deep network with more than 34
layers. ResNet was the first DNN network in the ImageNet challenge that exceeded human
accuracy with a top-5 error rate of less than 5%

MobileNet [73] is based on a factorized convolution model called the depthwise separable
convolution model. This DNN factorizes the standard convolution procedure into depthwise
convolution and 1 ◊ 1 convolution called pointwise. The depthwise convolution applies a
single filter to each of the input channels. In contrast, the pointwise convolution applies 1
◊ 1 convolution to combine the outputs of the depthwise convolution as shown in Fig. 2.18.
In MobileNet, all the layers are followed by a BN and ReLU as the non-linear activation
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function with the one FC layer and softmax to perform the classification. MobileNet provides
a top-5 accuracy of 89.9% with 4.24M parameters and 569M MACs/image. MobileNet has
three versions, namely: MobileNetV1, MobileNetV2, and MobileNetV3. The structure of
the MobileNetV1 is as explained in Fig. 2.18. MobileNet V2 [74] builds upon the concepts
from MobileNet V1. However, it introduces two new features into its architecture: linear
bottlenecks between each layer and shortcut connections between the bottlenecks, as shown in
Fig. 2.19. In the V2 version, the pointwise convolution number of channels is smaller than in
the V1 version. Hence, one of the layers is known as the projection layer, which projects the
data with higher dimensions into a tensor with much lower dimensions. In addition, the V2
version supports residual connections like the ResNet. The MobileNet V2 consists of 53 layers,
followed by a classification layer. It has a total of 3.47M parameters and a top-5 accuracy of
91%. MobileNet V3 [75] is the definitive version of the MobileNet series. In this version, small
filters like 3 ◊ 3 were replaced by 16 ◊ 16 to provide good speedup in the computation, and
the non-linear activation function ReLU is replaced by the Swish function according to Eq. 2.8.
MobileNet V3 provides a total of 92.2% top-5 accuracy with 2.9 M parameters. The main
advantage of all the MobileNet architectures is that it has reduced network size of around
17MB, reduced parameters of 4.2 million, and faster performance that helps to fit the mobile
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Table 2.3: Di�erent models of E�cientNet with weight parameters and top-5 accuracy results.

Model Top-5 accuracy # of parameters
E�cientNet-B0 93.30% 5.3M
E�cientNet-B1 94.40% 7.8M
E�cientNet-B2 94.90% 9.2M
E�cientNet-B3 95.70% 12M
E�cientNet-B4 96.40% 19M
E�cientNet-B5 96.70% 30M
E�cientNet-B6 96.80% 43M
E�cientNet-B7 97.00% 66M

devices. There is only a slight disadvantage for the MobileNet: the slight reduction in the
accuracy compared to other SoA DNN models.

f(x) = x · sigmoid(x) (2.8)

SqueezeNet [52] was developed to fit the DNN on low-memory rigid platforms like the
FPGAs. SqueezeNet starts with a standalone convolution layer CONV1, and 8 fire modules
follow it and ends with the last CONV layer CONV10. The number of filter dimensions is
increased for each fire module, and max pooling is employed to reduce the dimensions of the
PSums. As a result, SqueezeNet has a 50%

• SqueezeNet has more aggressive channel reduction by consolidating the two-stage squeeze
module.

• A separate 3 ◊ 3 convolutions are used to reduce the model size and remove the added 1
◊ 1 branch after the squeeze model.

• Residual connection in the element-wise addition is similar to ResNet, which allows the
network to be trained deeper without much of the vanishing gradient problem.

• Optimizing the baseline SqueezeNet architecture by simulating the performance on a
multi-processor embedded system.

Overall, SqueezeNet uses around 1.5M weight parameters and provides a top-5 accuracy
of around 88.80%. Its drawbacks are low classification accuracy and high computational
complexity.

E�cientNet [76] uniformly scales the depth, width, and resolution using a simple and
e�ective technique called compound e�ciency. This network proves that the network saturates
have higher depth and width accuracy. Compared to the other DNNs, E�cientNet is 8.4x
smaller and 6.4x faster on inferences. E�cientNet has seven di�erent versions. Table 2.3 shows
the top-5 accuracy with the total number of parameters.
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2.7 Di�erent DNN Development Resources

The abundance of free development resources available from the academic community and
industry contributed to the rapid development of DNNs. These resources play a pivotal role
in developing DNN accelerators by providing characterizations of the di�erent workloads and
aiding the exploration of trade-o�s in terms of accuracy and model complexity.

2.7.1 Frameworks

Many deep learning frameworks have been developed from various sources to facilitate the
development of DNNs and enable the sharing of trained networks. The open-source libraries
have a large number of software libraries for the DNNs. For example, developed at UC Berkeley
in 2014, Ca�e supports C, C++, Python, and MATLAB. Google released TensorFlow in 2015,
which was created in C++ and Python. TensorFlow supports multiple CPUs and GPUs and is
more flexible when compared to Ca�e. The computation flow is expressed as dataflow graphs
to manage the multidimensional arrays. Facebook developed a torch framework that supports
C, C++, and Lua. Other higher-level libraries run on top of the frameworks above for e�cient
and faster development with a more universal experience. One example is Keras libraries,
which are coded in Python and support other frameworks, such as TensorFlow, CNTK, and
Theano.

These frameworks are one convenient aid for DNN researchers and model designers. In
addition, these frameworks are invaluable for the e�cient processing of the DNN engines. Also,
these frameworks perform large primitive operations like CONV. Moreover, they make use of
optimized software and hardware accelerators. This kind of acceleration is made clear to the
framework user. For example, most of the frameworks use Nvidia’s cuDNN library for fast
execution of the Nvidia GPUs. Similarly, transparent incorporation of dedicated hardware
accelerators can be achieved with the multi-bit accelerator [31], and FantastIC4 [32].

These frameworks are a beneficial source of workloads for most hardware researchers. They
help them drive the experimental designs for di�erent workloads and explore the hardware-
software trade-o�s.

2.7.2 Prominent Datasets for the Classification Application

When comparing DNN models, one of the most important things to consider is how each
model oversees the task’s di�culty. When comparing DNN models, one of the most important
things to consider is how each model manages the task’s di�culty. When comparing DNN
models, one of the most important things to consider is how each model handles the task’s
di�culty. For example, classifying the handwritten digits from the MNIST dataset is much
easier than classifying an object from a thousand di�erent classes like the ImageNet dataset.
For most complex tasks, the DNNs and the MACs size will be 10◊ more than the simple tasks.
Also, the overall throughput will be lower with high energy consumption. LeNet-5 is used for
handwritten digit recognition, while AlexNet, MobileNet, GoogleNet, and ResNet are used for
image classification.

Most AI projects are developed using the freely available datasets in the market. These
freely available datasets are essential for comparing the accuracy of di�erent training approaches.
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Image classification tasks are the most straightforward as they classify one complete image
with a thousand di�erent object classes for which the image belongs to [17] [29].

MNIST dataset was the most widely used dataset for handwritten digit classification. The
grayscale image in the dataset is 28 ◊ 28 pixels. The dataset possesses 10 di�erent object
classes, 60,000 training images, and 10,000 test images. LeNet-5 was the first neural network to
use the MNIST dataset with an accuracy of 99.05%. Since then, accuracy has been increased
to 99.79% using regularization of neural networks with drop connect [77]. The MNIST dataset
is also considered one of the early datasets [78].

CIFAR [79] is a dataset comprising 28 ◊ 28 pixels colored images and a subset of 80 million
image datasets. CIFAR has 10 di�erent object classes, 50,000 training images, and 10,000 test
images. A two-layer convolutional DBN achieved a total accuracy of 64.84% on CIFAR-10.
Since then, due to the development of fractional max-pooling, the accuracy has been increased
to 96.53%.

ImageNet [80] is the largest dataset that predominantly works with a colored image of size
256 ◊ 256 with 1000 di�erent object classes. The object classes are defined using WordNet as
a determining factor to combine synonyms into the same object category. Each object class
has a hierarchy for the ImageNet groups. The 1000 classes are selected so there is no overlap
in the ImageNet hierarchy. The ImageNet dataset has many fine-grained categories, including
100 di�erent classes of plants. In addition, there are almost 1.3M training images, 100K test
images, and 50,000 validation images.

The accuracies for the ImageNet challenges are categorized using two metrics, namely,
top-5 error and top-1 error. The top-5 error means that if one among the top-5 object classes
belongs to the input image, it is considered a correct classification. The top-1 requires the
object class with the highest probability score to match the input image. In 2012, AlexNet
won the ImageNet challenge with 83.6% top-5 accuracy, and the second-highest was 73.8%.
The top-1 accuracy of the AlexNet was 61.9%. In 2017, the highest top-5 accuracy was 98.8%
from the E�cientNet-L2 model.

2.7.3 Datasets for Other Tasks

As most DNNs have surpassed human accuracy in image classification, the ImageNet challenge
has started focusing on more complex tasks such as single object localization and object
detection. In the single object localization tasks, the target object must be classified and
localized out of 1000 classes. DNNs generate the top-5 bounding box locations and top-5
categories. All the objects will be localized and classified among the 200 classes for object
detection. The bounding box for all the objects belonging to a particular category must be
labeled, and the objects not labeled are fined and removed as duplicated detections.

Other datasets are much more powerful and robust than ImageNet for computer vision
tasks. For example, the PASCAL VOC dataset is extensively used for object detection,
and it has 11,000 images representing around 20 classes. Similarly, MS COCO has 2.5M
instances with 328K images for object segmentation, detection, and recognition. For precise
2-D localization, MS COCO has fewer categories but more instances per category. To aid the
contextual information, MS COCO also has more labeled instances per image.
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Presently, they are larger datasets that are made publicly. For example, the YouTube
dataset has 8M videos covering over 4800 classes, and the Google image dataset has over 9M
images holding more than 6000 categories. These large datasets are important as DNNs go
deeper and have more significant weight parameters to train. Moreover, considering the more
complex problems to solve shortly, both the large datasets and datasets with the new domain
are essential for exploring the e�ciency of the DNN engines.

2.8 Summary

DNNs have been essential in the technological world in the past decade. AI applications such
as image and video recognition, speech and natural language processing, computer vision, and
robotics are extensively used and often perform better than humans. This chapter provided
in-depth information on the background of DNNs, di�erent layers of DNNs, the most popular
DNN models, and di�erent frameworks and datasets involved in developing these models.
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3
Hardware Techniques for DNN

Inference

3.1 Introduction

Due to the increased popularity of DNNs in various applications, many hardware techniques
have unique characteristics that allow for the targeting of DNN inference. For example, the
Intel Knights Landing CPU has unique features like special vector instruction sets for deep
learning. The Nvidia GPU PASCAL GP100 has 16-bit floating-point arithmetic support
to perform two floating-point operations on a single-precision core for faster deep-learning
executions. Exclusive systems especially are built for DNN processing tasks, such as Nvidia
DGX-1 and Facebook’s Big Basin custom DNN server [81]. Big Basin can train models with
high e�ciency, from 7T flops to 10.6T flops. DNN processing has been demonstrated on
various SoC platforms like Nvidia Tegra, Samsung Exynos, and other FPGAs. Hence, it is
essential to know the processing in these platforms and how ASIC accelerators are designed
for DNNs to improve throughput and energy e�ciency.

The MAC operations are the standard processing element in both the CONV and FC
layer processing, which can be e�ciently parallelized. Both temporal and spatial architectures
are used to achieve high-performance throughput. Both these architectures have identical
structures, with the control element being centralized, as shown in Fig. 3.1. The temporal
architecture is extensively used in CPUs and GPUs. This architecture mainly employs parallel
computation techniques such as SIMD (Single Instruction Multiple Data) and SIMT (Single
Instruction Multiple Thread). The temporal architecture uses a centralized control for many
processing elements (PE). The PEs can fetch the data from the memory hierarchy and cannot
directly communicate with each other.

In contrast, in spatial architecture, the PEs form a communication chain to pass the data
directly from one another. Each PE inside the spatial architecture also possesses control
logic and a scratchpad’s local memory. Spatial architectures are used in computation-centric
platforms like DNN processing in ALUs and FPGAs.
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Figure 3.1: Parallel computing architectures [29]
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Figure 3.2: Matrix multiplication for fully connected layers [29].

3.2 Matrix Multiplication on CPU and GPU Platforms

Most of the CPUs and GPUs employ SIMD and SIMT parallelization techniques to perform
MAC operations in parallel. The ALUs in the CPU and GPU use the same control, and the
memory of the ALUs for the FC and CONV layers use matrix multiplication. Fig. 3.2 shows
the matrix multiplication for the FC layer. The filter matrix height equals the number of
filters (M), and the matrix width equals the number of weights per filter (N). The height of the
Ifmaps is the total number of activations per Ifmaps (N), and the width is the total number of
Ifmaps (T). The height of the Ofmaps is the total number of channels (M), while the width is
the number of Ofmaps (T). Here, each Ofmaps of the FC layer has the dimension of 1 ◊ 1 ◊
number of output channels.

The CONV layer in DNN can be mapped to matrix multiplication using the Toeplitz
matrix as shown in Fig. 3.3. The main downside of using matrix multiplication for the CONV
layers is the redundant data in the Ifmaps. Most of the time, it leads to complex memory
access or ine�ciency during data storage.

Many software libraries are designed for CPUs like Intel MKL and Open BLAS and for
GPUs like cuDNN and cuBLAS that optimize for matrix multiplications. However, matrix
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Figure 3.4: FFT for DNN processing [29].

multiplication is mainly tiled to the storage hierarchy for most of these platforms, which are
ordered in a few MBs at the higher layers.

Applying computational transformations to the data can speed up CPUs and graphics cards
that perform matrix multiplication while maintaining the same bit-wise accuracy. However,
this comes at the cost of increased additions and irregular data access patterns.

The Fast Fourier Transform (FFT) [82] [83] is one of the popular approaches shown in
Fig. 3.4. FFT reduces the total number of multiplications from O(N2

oN
2

f
) to O(N2

o log2No),
where the output size is No◊No, and the filter size is Nf ◊Nf . For the convolution computation
using the FFTs, we multiply filters and the Ifmaps in the frequency domain and apply an
inverse FFT to the resulting output product to recover the output products in the time domain
or the spatial domain. However, using the FFTs comes with significant drawbacks, such as:

1. Coe�cients in the frequency domain are overly complex.
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2. As the filter size increases, the advantages of FFTs decrease.

3. Size of the Ofmaps is determined by the size of the FFT, which is much larger than the
filter size.

Even though the FFT reduces the total computational requirement, it increases the memory
storage capacity and the bandwidth demand.

Several optimization techniques have been proposed on the FFT to make computation
e�ective for the DNNs. Pre-compiling and storing the FFT of the filter ahead of time reduces
the total number of operations. The Ifmaps should be computed once and reused multiple
times to generate multiple channels in the Ofmaps. Most of the data contain real values, and
its corresponding Fourier Transform is symmetric, which can be exploited to reduce the overall
storage and computation cost.

In practice, di�erent algorithms have been used for di�erent layers and sizes. For example,
FFT uses 3 ◊ 3 filters, Winograd algorithm uses 5 ◊ 5 filters and Gaussian FFT uses 3 ◊
filters [84]. The existing platforms like MKL and cuDNN dynamically chose the appropriate
algorithm for a given shape and size [85].

3.3 Di�erent Dataflow Techniques for Energy E�cient DNN
Accelerators

For the DNN inference, the biggest bottleneck is the memory access from the DRAM to the
on-chip SRAM. Each MAC in the processing unit requires a minimum of three memory reads:
filter weight fetch, activation fetch, and PSums. In addition, it requires one memory write
for the updated PSums as shown in Fig. 3.5. In the worst-case scenario, all the memory
access has to go through the o�-chip DRAM, a�ecting both the throughput and the energy
e�ciency. For example, the AlexNet has 724M MACs operations, which require 3G DRAM
access. In addition, most of the DRAM access requires several orders of more energy than the
computation. The powerful DNN models are more significant and must be fetched for every
image access [27]. As explained in [26], memory for neural networks is required to store input
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Table 3.1: Energy requirement for memory and computation.

Operation Energy Requirement
8-bit integer addition 0.015 pJ
32-bit integer addition 0.096 pJ

8-bit integer multiplication 0.196 pJ
32-bit integer multiplication 3.078 pJ
8-bit floating point addition 0.3108 pJ
32-bit floating point addition 0.9108 pJ

8-bit floating point multiplication 0.565 pJ
32-bit floating point multiplication 3.437 pJ

8KB cache memory access 8 pJ
32KB cache memory access 17 pJ
1MB cache memory access 102 pJ
DRAM memory access 1.5 - 2.8 nJ
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Figure 3.6: Energy consumption for di�erent memory hierarchy [29].

activations, weight data, and corresponding output data of each convolution and FC layer.
Fetching each layer from the external memory increases latency and power consumption since
tens of MBs must access each layer. At the same time, on the computation side, the data are
calculated on-chip without any external interference, thus reducing the power requirement and
the energy consumption. The energy costs for the memory and computation are shown in
Table 3.1.

Fig. 3.6 shows how spatial accelerators reduce energy consumption by introducing multiple
levels of local memory hierarchy with varying energy costs. For example, in addition to the
global bu�er or scratchpad, an extensive inter-PE network, including a systolic array, can pass
data directly between the PEs. Each PE contains a register file (RF) of a few KBs. Also,
multiple memory hierarchy levels will help improve energy e�ciency by providing e�cient data
access. For instance, fetching the data from the RF or the neighboring PEs would be most
e�cient.
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Most accelerators are designed to support a specialized data flow that uses the memory
hierarchy. The data flow also decides what data needs to be read by the memory hierarchy and
what needs to be written or processed by the memory hierarchy. To support the best energy
e�ciency, it is possible to maintain a fixed data flow that can adapt to various DNN shapes and
sizes. The optimized data flow reduces the energy consumption from the memory access. Large
memories consume more energy than compared to smaller memories. In contrast, on-chip
SRAM stores kilobytes of data and consumes less power, while DRAM stores gigabytes. Data
for SRAM is stored in transistor latches, whereas for DRAM, it is stored in capacitors [29].
Thus, whenever data is moved from an energy-expensive memory component to an energy-
coe�cient memory component, we need to reuse them as much as possible to reduce the energy
access requirement. However, the SRAM has a limited storage requirement, and thus, the
reuse factor must be explored as much as possible.

For the DNN processing, we mainly evaluate the di�erent data flows that exploit the input
data reuse like convolutional data reuse, feature map reuse, and filter reuse technique, as
shown in Fig. 3.7. For convolutional reuse, both the Ifmaps activations and filter weights are
reused for a particular channel. Similarly, for feature map reuse, multiple filters are reused
for the same feature map so that the Ifmaps activations are reused multiple times across the
filters. Finally, multiple Ifmaps are refined once for filter reuse, and the corresponding filter
weights are used several times across the Ifmaps.

The three types of data reuse can be performed by storing the data in the local memory,
such as a scratch pad, and reusing those multiple times without going through the DRAM.
Also, for example, in AlexNet, the total DRAM reads can be reduced by 600◊ in the CONV
layers if we are reusing the local memory instead of the DRAMs for storing the PSums. A
local memory hierarchy can reduce DRAM access from 4200M to 62M [29] by reusing and
accumulating data within the on-chip memory without requiring external memory.

The working operation of the DNN accelerators is similar to that of the general-purpose
processors. In conventional processors, the compiler inside the processor translates the machine-
readable binary codes to execute the hardware architecture. Similarly, in the processing of the
DNNs, the mapper translates the DNN size and shapes into a hardware-readable computation
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Figure 3.9: Weight stationary dataflow.

mapping for executing the given data flow. The compiler optimizes the hardware performance,
and the mapper optimizes the energy e�ciency. A simple example is shown in Fig. 3.8.

Di�erent DNN dataflow techniques can be employed to improve data handling for e�cient
data processing.

3.3.1 Weight Stationary (WS) dataflow

In the stationary weight dataflow, weights are read from the DRAM while at the same
time being accessed from the scratchpad (SP) or register file (RF) with the lowest energy
consumption, as shown in Fig. 3.9. In most cases, each of the weights is read from the DRAM
into the RF/SP for each PE, and it stays stationary for further processing. The computation
unit performs as many MAC operations as possible for the exact weights while the weight is
present in the RF/SP. Therefore, it maximizes the use of convolutional and filter weights. In
the WS dataflow, the inputs and PSums move through the spatial array and the SRAM. In the
first step, the Ifmaps activations are broadcast to all PEs. Then, the PSums are accumulated
across the PE array.
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One of the examples of previous work that implements weight static dataflow is NeuFlow [86],
which employs eight 2-D CONV engines for processing a 10 ◊ 10 filter. There are 100 MAC
(PE) units, where the weight remains stationary for processing. The Ifmaps are broadcasted
for all the MAC units, and the PSums are accumulated across the MAC units. Additional
storage elements are added correctly to accumulate the PSums. The power consumption for
di�erent neural networks using a weight stationary dataflow is shown in Fig. 3.10.

3.3.2 Output Stationary (OS) dataflow

The output stationary dataflow helps reduce the energy consumption for reading and writing
of the PSums. The accumulation of the PSums for the same output activation value is stored
in the RF/SP Fig. 3.11. For the PSums accumulation inside the RF/SP, the input activations
are streamed across the array of PEs, and the weights are broadcasted to all the PEs in the
array.

The OS dataflow is implemented in the ShiDianNao processor, where each PE processes
each output activation value by fetching the input activations from the adjacent PEs. The
dedicated network is implemented across the PE array to pass the data horizontally and
vertically. In addition, each PE has a data delay register (typically a D-flip flop) to store
the data for a required number of cycles. At a system level, the SRAM streams the input
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activations and broadcasts the weights across the PE array. The PSums are accumulated
inside each PE and then streamed out back to the PSums memory.

OS dataflow can be implemented for di�erent variants, as the processed output activations
come from other dimensions. For example, one variation targeting the CONV layers has a
single output channel and multiple-output activations; the CONV layer processing is mainly
performed for the output activations to maximize the data reuse. Similarly, for processing
the FC layers, the variants focus on generating the output activations for di�erent channels,
and each channel has only one output activation. The power consumption for di�erent neural
networks using output stationary dataflow is shown in Fig. 3.12.

3.3.3 No local Reuse (NLR) dataflow

In some instances, small RF/SP are very e�cient in energy consumption (pJ/bit) but ine�cient
in area consumption. No local storage is distributed to the PE to minimize the o�-chip memory
bandwidth and maximize the storage capacity. Instead, the entire area is used for the SRAM
access to increase the storage capacity, as shown in Fig. 3.13. In NLR data flow, nothing
stays stationary inside the PE module. Hence, there will be increased tra�c on the SRAM
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Figure 3.14: 1-D convolution reuse within PE for RS dataflow [28].

and the spatial array. All the activations are multi-casted in NLR dataflow, filter weights are
single-casted, and the PSums are accumulated across the PE array.

In [87], the filter weights and input activations are read from SRAM, processed by MAC
units with custom adder trees that process the accumulation results in a single clock cycle.
In contrast, the resulting PSums or the output activations are stored in the global memory.
Another example is DianNao [88], which reads the input activations and filter weights from the
SRAM and processes them through the MAC units with custom-built adder trees. In addition,
DianNao implemented specialized registers to store the PSums in the PE array, which further
helped to reduce the energy consumption of accessing the PSums.

3.3.4 Row Stationary (RS) Dataflow

An RS dataflow maximizes the reuse and accumulation at the RF/SP level for all data types
(weights, input activations, and PSums) to improve energy e�ciency. Therefore, the RS
dataflow di�ers from the WS and OS dataflow, as these dataflows optimize the weights and
PSums, respectively.

For each PE processing a 1-D convolution, multiple PEs are combined to complete a 2-D
convolution, as shown in Fig. 3.14. For example, three 1-D convolutions must create the first
row of activations for a filter with three rows. Therefore, the PSums are vertically accumulated
across three PEs to generate the first output row. To further develop the second row of output,
we use another column of PEs, where the input activations from the three rows are shifted
down by one row, and it uses the same row of filters to perform the three 1-D convolutions.
Additionally, the other columns of PEs are added until all the outputs are computed.

To reduce the expensive memory access to the SRAM, the 2-D arrays of PEs also o�er
a di�erent reuse. For example, each filter row is reused horizontally across the multiple
PEs. Likewise, each row of the input activations is diagonally reused across the various PEs.
In addition, each row of the PSums is accumulated across PE vertically. Hence, the 2-D
convolutional data reuse and accumulation are reused to the maximum extent inside the 2-D
array [89].

For each PE processing a 1-D convolution, multiple PEs are combined to complete a 2-D
convolution, as shown in Fig. 3.15. To generate the first row of output activations with a 3-row
filter, three 1-D convolutions are needed. To generate the first row of output activations with
a 3-row filter, three 1-D convolutions are required. The PSums are vertically accumulated

46



3.3 Di�erent Dataflow Techniques for Energy E�cient DNN Accelerators

Row 2

Row 1 Row 2Row 1 Row 2

PE 4

PE 5

PE 6

Row 2 Row 3Row 2 Row 3

Row 3 Row 4Row 3 Row 4

Row 2

Row 1 Row 2

PE 4

PE 5

PE 6

Row 2 Row 3

Row 3 Row 4

Row 3

Row 1 Row 3Row 1 Row 3

PE 7

PE 8

PE 9

Row 2 Row 4Row 2 Row 4

Row 3 Row 5Row 3 Row 5

Row 3

Row 1 Row 3

PE 7

PE 8

PE 9

Row 2 Row 4

Row 3 Row 5

Row 1

Row 1 Row 1Row 1 Row 1

PE 1

PE 2

PE 3

Row 2 Row 2Row 2 Row 2

Row 3 Row 3Row 3 Row 3

Row 1

Row 1 Row 1

PE 1

PE 2

PE 3

Row 2 Row 2

Row 3 Row 3

Figure 3.15: 2-D convolution reuse within PE for RS dataflow [28].

across three PEs to generate the first output row. To further develop the second row of output,
we use another column of PEs, where the input activations from the three rows are shifted
down by one row, and the same row of filters is used to perform the three 1-D convolutions.
Additionally, the other columns of PEs are added until all the outputs are computed.

To reduce the expensive memory access to the SRAM, the 2-D arrays of PEs also o�er a
di�erent reuse. For example, each filter row is reused horizontally across the multiple PEs.
Each row of the input activations is diagonally reused across the various PEs. In addition,
each row of the PSums is accumulated across PE vertically. Hence, the 2-D convolutional data
reuse and accumulation are reused to the maximum extent inside the 2-D array [89].

As shown in Fig. 3.16, multiple rows are mapped into a single row to manage the high-
dimensional convolution of CONV layers. As in the typical case of convolution computation,
the 2-D convolutions are mapped into a group of PEs, and the extra dimensions are handled
by concatenating the additional data. For the filter reuse technique, the di�erent rows of the
fmaps are concatenated through the same PE as in 1-D convolution. Similarly, for the Ifmaps
reuse, di�erent filter rows are interleaved and run through the same PE. Finally, to increase the
local PSums accumulation inside the PE, filter rows and Ifmaps rows from di�erent channels
are interleaved and run through the same PE as 1-D convolution. The PSums from other
channels are then accumulated inside the PE.

The total number of filters, Ifmaps, channels are dynamically processed simultaneously,
and there is an e�cient way of mapping these parameters to obtain the best energy e�ciency.
However, e�cient mapping depends on the shape contour of the DNN under inference and the
hardware resources. The hardware resources include the total number of PEs, the width, and
the memory depth. Since most of the variables are not known beforehand, it is not possible to
design a compiler, mapper, or control unit to take care of the mapping for the RS dataflow to
improve the energy e�ciency, as shown in Fig. 3.17.

One of the best examples of the RS dataflow is the multi-bit accelerator [30][31]. The detailed
explanation of the multi-bit accelerator is explained in Chapter 5. Hardware architecture must
address two problems to support RS data flow. The first problem is to solve how the fixed-size

47



3. Hardware Techniques for DNN Inference

Row 1 Row 2Row 1 Row 2

PE 4

PE 5

PE 6

Row 2 Row 3Row 2 Row 3

Row 3 Row 4Row 3 Row 4

Row 1 Row 3Row 1 Row 3

PE 7

PE 8

PE 9

Row 2 Row 4Row 2 Row 4

Row 3 Row 5Row 3 Row 5

Row 1 Row 3

PE 7

PE 8

PE 9

Row 2 Row 4

Row 3 Row 5

Row 1 Row 1Row 1 Row 1

PE 1

PE 2

PE 3

Row 2 Row 2Row 2 Row 2

Row 3 Row 3Row 3 Row 3

Row 1 Row 1

PE 1

PE 2

PE 3

Row 2 Row 2

Row 3 Row 3

Filter1 Ifmap 1 & 2 PSum 1 & 2
Multiple fmaps:

Filter 1&2 Ifmap 1 PSum 1 & 2Multiple filters:

Multiple channels: Filter 1&2 Ifmap 

Row 1 Row 2

PE 4

PE 5

PE 6

Row 2 Row 3

Row 3 Row 4

Row 1 Row 3

PE 7

PE 8

PE 9

Row 2 Row 4

Row 3 Row 5

Row 1 Row 1

PE 1

PE 2

PE 3

Row 2 Row 2

Row 3 Row 3

Filter1 Ifmap 1 & 2 PSum 1 & 2
Multiple fmaps:

Filter 1&2 Ifmap 1 PSum 1 & 2Multiple filters:

Multiple channels: Filter 1&2 Ifmap PPSSuumm

Figure 3.16: Multiple rows of di�erent ifmaps, filters, and channels mapped into the same PE
array in RS dataflow [28].

PE array can accommodate di�erent layer shapes, and the second problem is to allow the data
to be fed in a specific pattern by the DNN shapes. So, the main question is how a fixed design
architecture would pass the data e�ciently in di�erent patterns.

The two mapping strategies are used to solve the first problem. In the first case, the
replication strategy can be used to map the shapes that do not use the entire PE array. For
example, in the third and fifth layers of the AlexNet, each of the 2-D convolutions uses the 13
◊ 3 PE array. For the accelerator with 16 ◊ 16 PE array as in [30], the entire architecture
would be replicated four times, running on di�erent filters and channels for each application.
The second strategy involves the folding technique, where, for example, in the second layer of
the AlexNet, it requires a total of 27 ◊ 5 PE array to complete the 2-D convolution. To fit
the 16 ◊ 16 PE array as in [30], it needs to be folded into two parts, i.e. 14 ◊ 5 and 13 ◊ 5,
and each part is vertically mapped into the PE array. Since few PEs are not used, they can
be clock-gated or connected to an Integrated Clock Gating (ICG) cell to avoid unnecessary
dynamic power consumption. Both the folding and the replication strategies are equally
beneficial. However, the folding technique is slightly better regarding power consumption, as
shown in Fig. 3.18. Hence, this strategy is used extensively in the multi-bit accelerator, as
shown in Chapter 4. The power consumption for di�erent neural networks using row stationary
dataflow is shown in Fig. 3.19. As shown in Fig. 3.10, Fig. 3.12 and Fig. 3.19, the RS data
flow is the most e�cient data flow both in terms of power and area consumption.

3.3.5 Comparison of di�erent data flows

We compare the RS data flow with the other data flows in DRAM access and energy
consumption for di�erent layers of AlexNet with a PE size of 1024 and batch size of 1.

DRAM access: DRAM access has a more substantial impact on the energy e�ciency
since the energy needed for DRAM access is more than the on-chip data movement between
the SRAM and the PE. The Table 3.2 shows average DRAM access per operation for the four
di�erent data flows. RS dataflow is 4.92 ◊ better than WS dataflow, 0.88 ◊ better than OS
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Figure 3.17: Mapping the CNN configuration with available DNN resources for row stationary
dataflow [31] [30] [28].

Table 3.2: Average DRAM access per operation for di�erent dataflow with AlexNet using the
Virtex Ultrascale FPGA.

DRAM access for PE size 1024 with batch size 1 for AlexNet
Dataflow Memory Read Memory Write DRAM access/op

RS 0.001 0.007 0.008
WS 0.0025 0.16 0.1625
OS 0.003 0.006 0.009
NLR 0.0012 0.007 0.0082

dataflow, and 0.975 ◊ better than the NLR dataflow. Using RS dataflow has less on-chip
storage than others, highlighting the importance of co-designing the architecture with an
e�cient data flow.

Energy Consumption: Normalized energy consumption per operation is shown in the
Fig. 3.20. From the figure, the RS data flow is 0.28 ◊ - 0.52 ◊ better than the other data
flows due to the low-cost data movement.

3.4 Data Processing for DNNs

In this section, we further discuss the techniques to improve the energy e�ciency of the
DNN accelerator by bringing the DRAM closer to the computation unit or integrating the
computation inside the memory. The latter is called in memory computation. Large-scale
e�orts have been made in most embedded system applications to bring the calculation inside
the data source, such as the sensor unit, where the data is first collected. This section will
discuss computing and data closer to lowering the data movement inside the processor using
mixed-signal and advanced memory techniques.
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Figure 3.19: Power consumption for di�erent neural networks using row stationary data flow.

Most of the previous works use analog processing techniques, which leads to increased
sensitivity and non-idealities [27] [29] [89] [90]. E�ectively, the computation is performed
at a lower precision, which we will consider during the training of the DNNs [29] [89]. By
performing at lower precision, the total amount of memory bandwidth is reduced, increasing
the power e�ciency for neural networks for reduced performance computation. Both neural
network training and inference applications can e�ectively utilize memory bandwidth by
packing more numbers into each byte than a complete precision computation. As a result,
di�erent neurons are implemented, increasing the total cost of operation [91]. Also, DNNs are
trained in the digital domain; thus, analog processing would lead to additional operational
costs for analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC).

3.4.1 DRAM

Advanced memory techniques can help to reduce the energy access for high-density memories
such as DRAMs. The embedded DRAM (eDRAM) o�ers a high-density memory on-chip to
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Figure 3.20: Normalized energy access for PE with an array size of 1024 and batch size of 1 in
Virtex Ultrascale FPGA for di�erent dataflows.

avoid high switching capacitance [92]. The eDRAM is 2.85◊ higher density than SRAM and
322◊ more energy e�cient than DDR3 DRAM [90]. Also, eDRAM o�ers high bandwidth and
lower latency compared to DRAM. For the DNN processing, eDRAM stores 10MB of weights
and activations on-chip to avoid unnecessary o�-chip access, as shown in DaDianNao [88]. The
main drawback of the eDRAM is that it possesses a lower density than the o�-chip DRAM
and can increase the overall cost of the chip.

3.4.2 SRAM

SRAM is the most common on-chip storage platform to store the Ifmaps, weights and PSums.
The storage depends on the neural network under inference and the hardware computation
unit. Most of the SRAM are generated from the memory compiler provided by the foundry.
The available size depends on the width and the depth of the memory. It occupies a significant
amount of silicon area. In addition, it contributes significantly to the power consumption along
with the computation unit, as shown in Table 4.21.

3.5 Energy E�cient Co-Design of DNN Models and Hardware
Architecture

DNNs undergo training to maximize accuracy without considering much of the hardware
complexity. However, since data movement and computation are complicated, these models
can be challenging to implement and deploy. Therefore, it is imperative to co-design the DNN
models and the hardware to maximize the accuracy and throughput while reducing the energy
and silicon area. Some of the co-design approaches are grouped into the following categories:

• Reduced precision of operations and operands. This includes switching from the floating-
point to the fixed-point approach, reducing the bit width, non-linear quantization, and
weight sharing.
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Figure 3.21: Log quantization.

• A total number of reduced operations and size for the DNN model size. This includes
techniques such as compression, pruning, and squeezed network architecture.

3.5.1 Reduced Precision

Quantization involves the mapping of data into a smaller set of quantization levels. The
main goal is to reduce the error between the original and the reconstructed data from the
quantization levels. The actual number of quantization levels contemplates the precision and
the number of bits required to represent the data (usually log2 of the total number of levels).
Thus, the reduced precision mainly refers to the reduced number of levels and bits. Reducing
the number of bits gives benefits such as reduced storage and computation requirements.

There are diverse ways to map the quantization levels. One of the simplest methods is
the linear mapping of each quantization level with a uniform linear quantization distance.
Therefore, the quantization levels are spaced uniformly; however, it has more to do with
the quantization error. A second method involves using a mapping function, such as the
log function, where the distance varies by a small margin. Simple logic operations like shift
operations are often used to implement this kind of mapping, which is advantageous. However,
one drawback is that log quantization places more boundaries for low-magnitude values than
for high-magnitude values. Often, this results in lower quantization error when the error
values are low. However, inappropriate errors when the error values are high can undermine
the accuracy of log quantization to a large extent, leading to worse performance than linear
quantization [93]. A substitute method involves a more complex mapping function that can
be used when the quantization levels are determined from the data, using mainly the k-means
of clustering. This method uses a look-up table approach [54] [94]. Fig. 3.21 and Fig. 3.22
show the pictorial representation of log and linear quantization.

Quantization can also be fixed, i.e. the same quantization method is used for di�erent
types of data, layers, filters, and channels in the network, or it can be variable, i.e. di�erent
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Figure 3.22: Linear quantization.
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Figure 3.23: Fixed and floating point operations.

quantization methods can be used for weights, activations, and di�erent layers, filters, and
channels in the network [29].

Reduced precision experiments mainly focused on reducing the precision of the weights
rather than that of the activations. Since weights increase storage capacity, activations e�ect
on storage capacity depends on the data flow and the network architecture. Due to gradients’
sensitivity to quantization, reduced precision also aims to reduce the precision of inference and
training.

3.5.1.1 Linear Quantization

The first step in reducing the precision is to convert values from the floating-point to fixed-point.
A simple example of floating and fixed-point numbers is shown in Fig. 3.23. In floating point
numbers, the sign bit is (≠1)s and the exponent is (e ≠ 127). The mantissa is m and covers
the range of 10≠38 to 1038 [29] [95] [96].

Similarly, an N-bit fixed-point number is represented as (≠1)s◊m◊2≠f , where f determines
the location of a decimal point used as a scaling factor. For example, in an 8-bit integer, when
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f = 0, the dynamic range of the fixed-point number is -128 to 127, similarly when f = 10, then
the dynamic range is -0.125 to 0.12402348 [29] [62] [97]. The dynamic fixed point allows the
value of f to be dynamically changed for the weights and activations. It allows the dynamic
range to be varied from layer to layer. As per [98], the bit width can be reduced to 8 bits for
weights and 10 bits for the activations without fine-tuning with both weights, and activations
can reach up to 8 bits [99].

A reduced bit width like an 8-bit fixed point adder consumes approximately 3.8◊ lower
area and 3.3◊ lower energy than a 32-bit fixed-point add. Similarly, it consumes 30◊ lower
energy and 116◊ lower area than the 32-bit floating-point add [26]. The area and energy
numbers scale linearly with the number of bits for fixed-point add.

An 8-bit fixed-point multiplier consumes 15.5◊ lower energy and 12.4◊ lower area than a
32-bit fixed-point multiplier. Similarly, it consumes 18.5◊ lower energy and 27.5◊ lower area
than a 32-bit floating-point multiply. The area and energy numbers scale quadratically with
the number of bits for fixed-point multiply [28] [31] [90] [100].

Additionally, reducing precision reduces the memory’s area and energy cost since energy
and area scale approximately linearly with the number of bits. However, the most important
thing is that changing the bit-width from a floating point to a fixed point is the key to reducing
the energy or cost of the memory.

In the MAC operation, the resultant product bits of the multiplication are typically higher
than the activations and weights. To ensure there is no precision loss, weights and the input
activations with N-bit fixed point would require N-bits ◊ N-bits multiplication to generate a
2N-bit output result. The output would then be accumulated with 2N+M-bit precision. The
largest filter size calculates the value of M [31]. After the accumulation, the precision of the
final output activation would be in the order of N-bits, as shown in Fig. 3.24. The reduced
output precision does not significantly impact the accuracy, only if the distribution of the
weights and activations are centered around zero. The accumulation would not move in one
direction, which is particularly important when batch normalization is used.

The reduced precision is used in commercial platforms for DNN processing, like Google’s
TPU unit designed for 8-bit fixed-point arithmetic. Similarly, Nvidia’s PASCAL, developed
in April 2016, also performs the inference on an 8-bit integer. However, in general, most
general-purpose platforms like CPUs and GPUs employ 8-bit computation to increase the
overall throughput, as four 8-bit operations are more beneficial than one 32-bit operation for
one clock cycle.
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The precision can be further reduced by employing a single bit known as binary nets. The
weights are quantized only to +1 and -1 values in binary nets. Multiplication in the MAC is
reduced to addition and subtraction with binary weights. The binary nets provide an accuracy
loss of 29.8%, much more than the CNN because the weight values are limited between +1, 0,
and -1 [101]. The usage of binary nets is explored in a few publications like YodaNN [102],
which uses binary weights. Similarly, BRein [103] uses both the binary weights and activations.

3.5.1.2 Non-Linear Quantization

In the previously published works that involved linear quantization, all the levels were uniformly
distributed. In a few of the research works like [54] [104], the distribution of the weights and
activations are not uniform. Hence, a non-linear quantization improves the accuracy. The two
most common approaches are:

1. Log Domain Quantization: If the quantization levels are based on logarithmic
distribution, then the weights and activations are distributed equally across various
levels, and each level is more e�cient with lower quantization error. For example, using
4-bit linear quantization results in 27.8% loss in accuracy versus 7% loss in logarithmic
quantization for VGG-16 [94] because logarithmic quantization enables the network to
achieve higher classification accuracies than low fixed-point resolutions. Also, logarithmic
quantization helps reduce bulky multipliers. In addition, when weights are quantized in
the powers of two, the multiplication is replaced with a bit-shifting operation [99] [104].

2. Weight Sharing: Weight sharing enables several weights to share a single value. This
reduces the number of unique weights in a particular layer or weight. The weights can
be grouped using a k-means clustering algorithm or hashing algorithm. In unsupervised
machine learning, the k-means algorithm groups the unlabeled data into di�erent clusters.
It is used to solve the clustering problem in machine learning by enhancing the compression
techniques. More details are found in [54].

Similarly, the hashing algorithm assists in vectorizing features by turning arbitrary
features into indices in a vector [105]. The shared weight and the index indicate the
weights for each filter position. The weights are stored in the weight-sharing format.
This is performed in two di�erent steps to fetch the weights: First, read the weight index,
and second, read the weight index and the shared weights. This technique will help
reduce the cost of reading and storing the weights if the weight index is lower than the
bit-width of the weight. The weight sharing does not reduce the precision of the MAC
computation, but it would reduce the weight storage requirement.

3.6 Metrics for DNN Training and Inference

As significant research has been conducted on developing e�cient DNN processing, it is
imperative to consider specific metrics to compare the strengths and weaknesses of the
di�erent architectures and design techniques. Some metrics are accuracy, power consumption,
throughput, latency, and area. The metric comparison is performed for both the DNN models
and the hardware.
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Table 3.3: Metrics for DNN models with AlexNet as an example.

Metrics AlexNet
Dense Sparse

Top-5 error 19.6 20.4
Number of CONV layers 5
Depth of CONV layers 5
CONV Filter Sizes 3,5,11

Number of CONV Channels 3-256
Number of CONV filters 96-384

Stride 1,4
NZ CONV weights 2.3M 351K
NZ CONV MACs 395M 56.4M

FC Layers 3
FC Filter Sizes 1,6

Number of FC Channels 256-4096
Number of FC filters 1000-4096

NZ FC weights 58.6M 5.4M
NZ FC MACs 14.5M 1.9M

Total NZ weights 61M 5.7M
Total NZ MACs 410M 58.3M

3.6.1 Metrics for DNN Models

The following metrics must be considered when evaluating the DNN model.

• The accuracy of the DNN models is characterized in terms of top-5 error on datasets
such as ImageNet.

• The network architecture of the DNN models is reported based on the number of layers,
filter sizes, the total number of filters, and the number of channels. The key parameters
to determine each architecture’s e�ciency are accuracy loss, top-1 and top-5 error rates,
and the total number of MACs.

• The number of weights has an impact on the storage requirement of the DNN models.
Also, it is necessary to report the non-zero weights as they reflect the theoretical minimum
storage requirement.

• The number of MACs is a critical metric to be reported as it indicates the total number
of operations and the throughput. Also, it is necessary to report the non-zero MACs as
they reflect the minimum compute requirements.

An example is shown in Table 3.3 for AlexNet for the various metrics. The accuracy is
reported in terms of top-5 error, the number of weights, and the MACs are coherent. The
non-zero (NZ) operations reduce the total number of MACs and weights. The total number of
NZ MACs depends on the input data.
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3.6.2 Metrics for DNN Hardware

DNN hardware e�ciency is evaluated by considering the following metrics:

• The power and energy consumption are the most critical metric for the DNN hardware.
Here, the DNN model specifications will be provided, including the layers and the bit
precision information supported by the hardware during the measurement. Also, the
DRAM access should be included in the power consumption as they occupy a significant
amount of system power. The power consumption metric mainly reports the power
consumption information of the chip and the total memory access between the o�-chip
and on-chip memories.

• The latency and throughput metric are reported among several DNN models in terms
of batch size and actual run time, which mainly accounts for mapping and memory
bandwidth e�ects. This is a critical metric compared to peak throughput.

• The implementation cost of the chip mainly depends on the area e�ciency, which accounts
for both the memories (i.e. registers and SRAM) and the amount of computation logic.
Therefore, it should be reported in terms of core area or total area of the chip in squared
millimeters.

In terms of the cost, di�erent platforms have di�erent implementation standards. For
example, for FPGA implementation, the specific device should be reported along with resource
utilization like BRAMs, FFs, LUTs, and DSPs as explained in Chapter 4 and 5.

In Tables 4.19 and 5.5, each processor should report various specifications for each metric.
Including all metrics and specifications is crucial for evaluating design trade-o�s since they
reveal how well the inference architecture is designed regarding resource usage, the area
occupied, latency, and throughput. It is essential to report the accuracy of the inference, as
it shows how e�cient processors work with power and area consumption. Without accurate
information, one can quickly run a simple DNN and claim low power, high throughput, and
small form factor processor. As a result, one needs to consider the o�-chip memory bandwidth
since one can build a processor with low cost, high throughput, and low power with few
multipliers. However, when evaluating the system power, it is imperative to consider the
o�-chip memory access.

In summary, the evaluation process of the DNN system should be of the following order:

1. The level of accuracy the system can provide during the inference.

2. The latency and throughput on how fast the system can infer the real-time tasks.

3. The device’s form factor will be dictated primarily by its power and energy consumption.

4. The total cost primarily dictated by the chip area determines how much one should pay
for the required solutions.

3.7 Summary

Data flow forms an integral part of the DNN accelerators. It mainly dictates the overall
performance and the energy e�ciency of the system. It is one of the critical attributes of the
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DNN processor and is analogous to the general-purpose processors. Based on the following
insights, we have reported the four di�erent dataflow techniques and provided each dataflow’s
equivalent dynamic power consumption. Among the four dataflows, the row stationary dataflow
is very e�cient compared to other dataflows. They are 30% better than the weight stationary
dataflow and 38% better than the output stationary dataflow. In addition, this chapter explains
the di�erent quantization techniques that are important during the inference, and how these
techniques influence the truncation is explained in the next chapter. Finally, this chapter o�ers
a complete insight into the metrics like accuracy, throughput, and power consumption that
determine the processor’s e�ciency.
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4
A Power E�cient Multi-Bit Accelerator

for Memory Prohibitive Deep Neural

Networks

4.1 Introduction and Motivation

Deep neural networks (DNN) have been an essential part of computer vision technologies due
to their high accuracy in image classification. Today, deep neural networks have been found
in applications such as face recognition in mobiles, natural language processing, speech-to-
text conversion, user identification, surveillance, military applications, and entertainment
systems. Currently, research is conducted in the DNN thanks to its robustness in
extracting vital information from the data. In addition, the brain-inspired techniques of
deep learning algorithms help tackle object recognition and image classification problems.
The most commonly used CNN networks for image classifications with high accuracy are
AlexNet [17], VGG-16 [106], YoloNet [107], GoogleNet [25], MobileNet [73], SqueezeNet [52]
and E�cientNet [76].

Since the advent of back-propagation in neural networks by Hinton et al. [109], a significant
amount of research has been taking place both in academia and the industry. Two decades
ago, LeCun et al. [110] performed the classification of handwritten digits with less than
1M parameters using LeNet-5 architecture. In 2006, Hinton et al. [111] stacked multiple
RBM(Restricted Boltzmann Machine) layers for the e�cient training of a large amount of data
and termed them as Deep Belief Nets(DBN). Similarly 2011, Glorot et al. [112] implemented
the ReLU activation function to solve the vanishing gradient problem. In ILSVRC-2012 [113],
Krizhevsky et al. [17] introduced AlexNet with 60M parameters trained for 1000 di�erent
classes. Recently, in ISLVRC-2016, PSPNNet [114] with 273M parameters won the challenge.
In 2014, Goodfellow et al. [115] introduced a Generative Adversarial Network (GAN) for
generating real data from random variables.

59



4. A Power E�cient Multi-Bit Accelerator for Memory Prohibitive Deep Neural
Networks

Table 4.1: Di�erent network characteristics with data type of 4 bytes [30] [31] ©2021 IEEE.

Network Layers Weights (MB) Total Parameters
AlexNet [17] 8 250 60 Million
VGG-16 [106] 8 594 138 Million
GoogleNet [25] 15 51.3 12.8 Million
YoloNet [107] 26 206 51.5 Million
ZFNet [108] 16 500 14 Million

Even though these models are robust and accurate, they are computationally expensive
when implemented on-chip, as shown in Table 4.1. These networks consume a significant
amount of memory in weights and input activations. As a result, they have to be stored in the
o�-chip DDR3 DRAM memory. An obvious outcome is increased energy consumption while
accessing them from the o�-chip. Table 4.1 lists the attributes of the most commonly used
CNN for image classification. These weights indicate the maximum size required to store the
weights in DDR3 memory, and the network parameters are computed on all layers.

The present state of art CNNs require hundreds of megabytes of weight to perform billions
of operations on the FPGA. This leads to a significant bandwidth and bottleneck between the
on-chip SRAM and o�-chip DRAM. As a result, the total energy for the data movement is
10◊ greater than the computation as shown in Table 3.1 and as explained in [26]. Therefore,
designing a scheme that can e�ectively reduce the data energy requirements between on-chip
and o�-chip memories is vital to address these hardware design challenges. The energy cost of
the data movement can be reduced in power-sensitive applications by systematically reusing
data in a multilevel memory hierarchy. Furthermore, we can exploit the parallelism in the
processing element (PE) architecture to improve energy e�ciency. In addition, we use adaptive
data processing and bit-width reduction as we move layer by layer in the neural network.

Previous works have employed specialized hardware to accelerate the DNN models [116][117].
The main emphasis of these architectures was on accelerating the dense models, hindering their
utility due to the high energy cost of the external DRAM. As a result, it is more important to
reduce the energy and power costs of these powerful DNN models is more important. However,
the forward propagation of CNNs has very high computational complexity and requires
adequate real-time performance. Moreover, when considering applications with large image
dimensions like 227◊227 sized pixel RGB image, the number of arithmetic operations such as
MAC exponentially increases. Hence, the proposed [87][90][118] classical general purpose (GP)
processors, FPGA accelerators, and ASIC accelerators do not meet the requirement of the
real-time applications that are very sensitive regarding power usage. Therefore, we extend the
multi-bit architecture in our previous work [30] with more details on truncation analysis. The
PE architecture was also modified for lower power consumption and increased throughput by
having larger PE arrays and improved pipelined dataflow movement for enhanced performance
and lower power consumption. The main limitations of the previous works are:

1. Lower precision scalability: Many FPGA accelerator architectures support fixed bit
precision like 4, 8, and 16 bits. However, for two reasons, most deep neural network
architectures will not have the required weight precision. The first reason is that di�erent
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DNNs have di�erent optimal weight accuracy, [119][120], and overall di�erent accuracy
for di�erent bit widths. Secondly, every layer in a DNN has a di�erent accuracy loss [121].
For example, AlexNet has a 10% accuracy loss for 4-bit weight precision compared to
32-bits. Similarly, ResNet has 8%, GoogleNet has 7%, and LSTM has 12% accuracy loss
for 4-bit weight precision compared to 32-bits. In comparing 4-bit and 32-bit accuracy,
the average accuracy loss for all layers is considered. The lower bit-width weights improve
the energy e�ciency of the DNN accelerator due to the reduced data movement. The
desired weight precision also depends on the target accuracy of a particular DNN. So, it
is important to design an accelerator that supports variable bit-width weight precision
to support optimal energy-accuracy trade-o�. However, [86][100][118] did not design the
architecture to support the optimal energy-accuracy trade-o�.

2. Di�erent convolution and FC architecture: The ca�eine processor [122] had a
separate accelerator design for convolution layers (CLs) and FC layers (FCLs), as CLs
are computationally dominant and FCLs are memory dominant. The PEs used for CLs
are not re-configurable for FCLs and vice versa. This reduced flexibility leads to deficient
performance.

In this chapter, the limitations of the previous works are overcome by two distinct features.
First, we propose a multi-bit architecture employing di�erent bit widths for each layer without
compromising the overall performance. Secondly, the architecture supports CLs and FCLs
for the di�erent bit widths. Prior architectures primarily concentrate on fixed bit width
processors, improving the data transfer bandwidth and reducing the computation time in the
processing element part. The objective of these processors was mainly to capitalize on the data
flow movement, to improve the total number of operations per second per watt [27], and to
eliminate unwanted computations. However, networks like RNN and LSTM widely operate on
FC layers. This requires a significant amount of data movement between the o�-chip DRAM
and the on-chip SRAM as the data reuse is impossible. So, in the fixed-bit architecture, every
clock cycle, a MAC operation increases the power consumption. To overcome this drawback,
the FC layers have a lower bit width, which reduces energy and resource consumption without
compromising accuracy. In our architecture, the inference starts with a larger bit width in the
convolution layers while successfully reducing the bit width of the following FC layers. This
technique saves 50% of the total power consumption and 60% of the resource utilization on
the FPGA [31][123].

In the following section, we describe the entire multi-bit architecture and the ALU operations
of each PE. Section 4.3 discusses the comparison metrics used for evaluation, followed by the
methodology. Section 4.4 shows the results for di�erent bit combinations, ASIC results, and
the comparison with other SoA designs. In Section 4.5, we present our conclusion. All the
content of this chapter is published in the journal article [30][31], as the author of this thesis is
also the first author of the published journal.

4.2 Multi-bit Architecture

The top-level architecture of the multi-bit accelerator with memory hierarchy is shown in
Fig. 4.1. It has two clock domains: a clock domain for the processing stage (operating at
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180MHz for FPGA implementation and 800MHz for ASIC implementation) and a memory
clock domain for the communication with MIG-7 (Memory Interface Generator) interface to
access the DDR3 DRAM operating at 200MHz. The two domains communicate with each other
using the AXI clock converter. The processing clock domain mainly works on the PE array
of 1024 PEs arranged in a 32◊32 square pattern while handling data movement between the
memories and other system modules. A 375KB of on-chip SRAM is used to store the Ifmaps
data, filter data (FD), and the bias data (BD) in a SRAM of each 125KB. An accumulator
array module adds the convoluted data with the BD. ReLU module and pooling module are
used to perform the non-linear activation and pooling functions. The truncator is used to
truncate the PSums results, and PSums memory of 125KB is used to store the PSums, and
final Ofmaps is fed back to the o�-chip DRAM. Finally, the AXI master communicates with
the external DRAM memory (through the MicroBlaze and MIG-7) and the architecture. The
corresponding data flow model of the architecture for AlexNet DNN is shown in Fig. 4.2. The
Ifmap data comprising B1 bits is inferred with weights of B1 bits in the first CONV layer of
the AlexNet to generate a truncated PSums results of B2 bits. These PSums results are fed
to the o�-chip DRAM as these results are large and cannot fit on a 125KB SRAM. For the
inference of the next layer, these PSums results of B2 bits are inferred with the weights of
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B2 bits to generate a new PSums of B3 bits. This cycle continues for all eight layers of the
AlexNet. No additional training was performed for reduced bit width on any DNN models, as
the weights/biases were truncated o�-chip from the 32-bit reference weights. The multi-bit
architecture supports DNN models like AlexNet, E�cientNet-pointwise, SqueezeNet, and
MobileNet-pointwise. Our architecture can also help the depthwise operation by computing
each channel of the DNN model separately without accumulating them at the end. However,
the main focus is improving the movement of data flow and reducing power and resource
consumption. The depthwise operation adds to the overhead of extra resources and power not
supported in this architecture.

4.2.1 DDR3 DRAM and MIG-7 Memory Controller

DDR3 DRAM is a double data rate architecture that supports high-speed operation up to
200MHz. It performs a single read/write operation on a single 8-bit-wide data bus at a core
voltage of 1.5V. Each 8-bit wide data is transmitted and received with a data strobe signal
(DQS). The DQS is a di�erential bi-directional signal, where the edge is aligned with the read
clock and the input with the write clock. The DQS uses both the clock edges [124]. The DQS
has mainly two essential features:

1. During the write operation: The FPGA controller drives the signal and will center
aligned with the DDR data.

2. During the read operation: The signal is driven by the DDR3 SDRAM chips, and it is
edge-aligned with the change in the DDR data.

The DDR3 DRAM operates on a di�erential clock, and the read and write access is burst-
oriented. In addition, it is a pipelined, multi-bank architecture that performs the concurrent
operation. Thereby providing high bandwidth and a low pre-charge and activation time.
Furthermore, a self-refresh mode is provided with the power-saving and power-down modes.

DDR3 memory is furnished through MIG-7. The MIG-7 memory controller uses the AXI4
interface for communication. By nature, the AXI4 interconnect block in our architecture
follows a point-point protocol. Therefore, the AXI4 user interface signals communicate through
the AXI4 interconnect block and the memory controller to access the data from the DRAM.
The complete architecture of AXI4 communication protocol with DDR3 using MicroBlaze CPU
is shown in Fig. 4.3, with di�erential clock signal operating at 200MHz. In Fig. 4.3, the red
line indicates the reset signal from the processing system reset unit. The green line indicates
the debugging signal from the MicroBlaze debugger and the CPU. The blue line indicates the
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master the slave communication protocol, and the purple line indicates the communication
between the block memory generator and the AXI BRAM controller.

Microblaze CPU is a 32-bit embedded RISC processor core used for the optimized
implementation in the FPGA. It enables the communication between the AXI user interface
and the o�-chip DDR3 DRAM through the MIG memory controller. The main objective
behind using this processor is the advanced flexibility in providing new instructions every clock
cycle and maintaining the single-cycle throughput. The processor’s local memory bus (LMB)
provides fast on-chip storage. In addition, the CPU o�ers AXI protocol to communicate with
the user interface signals. The MicroBlaze implementation in our architecture consumes 19
BRAM and 5 Digital Signal Processor (DSP) resource elements.

The two AXI4 interconnects are mainly used for accessing memory through the cache and
accessing peripherals in the architecture. The AXI_Interconnect_1 bridges the MicroBlaze
processor instruction and data caches to write the data into the AXI4 BRAM module and the
o�-chip DDR3. The interconnect uses the instruction cache and data cache buses to write
the data from the master memory (user interface signals into AXI BRAM) into the slave
memory (o�-chip DDR3). AXI_Interconnect_2 connects AXI_timer, AXI_UART_Lite, and
AXI_Interrupt_Controller to the AXI peripheral bus of the MicroBlaze processor.

MIG-7 is implemented to generate DDR3 DRAM in the system and uses a memory type of
SODIMMs. MIG consists of an AXI4 slave interface to communicate with the DDR3 devices,
and the data width is 32 bits. The clock frequency of the controller is 200MHz, and it is mainly
di�erential. Once re-configured as DDR3 DRAM, the MIG controller drives the clock in the
system and acts as a slave of the MicroBlaze processor’s instruction cache and data cache.

The remaining modules: Microblaze debugger enables the JTAG-based debugging on the
MicroBlaze processors. Processing system reset is a soft IP core in Xilinx FPGA that
handles the reset conditions for any given system. The IP can handle multiple input
conditions and generates appropriate resets at the output. The local memory hierarchy
consists of the local memory bus and its respective BRAM controller. The primary function
of the AXI_BRAM_Controller is as an AXI endpoint slave to facilitate the integration
between the AXI interconnect and the local memory hierarchy. AXI_BRAM_Controller
supports a memory size of up to 8MB and performs single and multiple burst transactions.
AXI_Interrupt_Controller acknowledges the interrupts generated from the AXI_Interconnect.
The core of AXI_UART_Lite provides a controller interface between UART signals and the
AXI interface and also provides the feature of a controller interface for an asynchronous data
transfer. It supports a full-duplex communication protocol with a baud rate of 9600. Finally,
AXI_timer IP has a timer module associated with the load register that is used to hold the
counter’s initial value for the event generation. Also, it captures the value depending on
the operating mode of the timer. Each module’s resource and power usage is mentioned in
section 4.4.1.

4.2.2 Central Control Unit

Our proposed accelerator has two levels of control hierarchy through the central control unit.
The first level controls the movement of data tra�c between the o�-chip DDR3 to the on-chip
SRAM through the AXI master. At the second level, it 1) performs the First In First Out
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(FIFO) operation of loading the Ifmaps, weight data, and PSums into the individual memories.
Since each memory is only 125KB, entire activations, weights, or the PSums cannot be directly
loaded into the memory. As a result, the control unit controls the loading of the data into the
memory using a synchronous FIFO. The FIFO determines whether the individual memory is
“full" or “empty," based on which the data is loaded from the o�-chip DRAM. Similarly, based
on the CONV and FC principle, each DNN model “stride" is taken into consideration and
loaded into individual scratch pads of the PE, 2) maps the movement of Ifmaps and filter data
through the individual PEs for convolution and FC operation, 3) ReLU and pooling mode of
operation based on the layers of the neural network under inference, 4) performs truncation
operation on the ReLU or the pooled data 5) writes the truncated data onto the PSums
memory and moves the final Ofmaps onto the o�-chip DRAM and 6) finally performs the
dynamic reconfiguration of the bit width of the PE array and other architecture components
for the next layer of inference. However, the PE array and the memory depth will be of fixed
configuration, and only the bit width will be dynamically changed for the next inference layer.

4.2.3 Processing Element Array

The backbone of the multi-bit architecture is the processing element (PE) array that performs
the computation of the CONV and the FC layers. The block overview of the PE architecture
is shown in Fig. 4.4. The CONV mapper statically configures the regulation of the PE by
mapping the FD by the sliding window mechanism for a particular convolution and FC layer.
For example, in AlexNet, the CONV1 has a filter size of 11◊11 with a stride of 4, so based on
the stride value, the filter data is loaded into each PE, and the data is reused to minimize
the energy requirement. The Ifmaps scratchpad is implemented in a 4KB SRAM, and the
filter scratchpad is implemented in a 32b◊11 register. The two scratch pads are separated to
provide enough bandwidth for data movement. The sizes of the scratchpad described here are
maximum as the bit width of the succeeding layers will be truncated, and the requirement will
be lower than this.

The row stationary (RS) data flow method is employed in the proposed architecture. This
technique provides the advantage of fixed reconfiguration into varied sizes and shapes for any
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given neural network layer under inference. The fixed reconfiguration involves the movement
of input activations, weight data, and the PSums results to and from the DRAM. The central
control unit maps the entire reconfiguration operation. Furthermore, the RS dataflow provides
the best energy e�ciency as it reduces the data movement among the Ifmaps, FD, and the
Ofmaps, as all the FD and the Ifmaps are stored in the scratchpad in each of the individual
PEs.

The other dataflows, like weight and output stationary, were implemented on the MobileNet
and other DNN models. Based on this, the corresponding dynamic power consumption was
measured for each data flow. The weight stationary dataflow, from the SRAM to the individual
scratchpads, resulted in a power consumption of 150mW, and with the output stationary
method, the dynamic power consumption was around 117mW. However, in the RS dataflow
method with an e�cient filter reuse strategy, the dynamic power requirement was 45mW.
Hence, RS data flow uses only 30% power of the weight stationary and 38% power of the
output stationary dataflow. Here, one row of filter weights and one row Ifmaps generates one
row of PSums, and each row pair stays stationary in the individual PE. For the continuous
iteration of each layer, one row of filter weights is kept static in the PE, and the Ifmaps are
streamed in from the scratchpad to reduce the bandwidth access. During each layer iteration,
the scratchpad size mainly depends on the filter size of the layer and not on the Ifmaps size
or the PSums size. For example, in AlexNet, for CONV1 layer, the scratchpad size is 11, for
CONV2, it is 5, and for CONV3-CONV5, it is 3. The same row of filter weights is shared
across all the PEs horizontally in a two-dimensional convolution using the filter reuse strategy.
The PSums from all the PEs are finally accumulated together. Reusing the filter weights
avoids unnecessary data movement and helps improve the processor’s energy e�ciency. The
filter reuse technique has higher benefits, especially in FC operations, as the order of weights
is substantial for computation.

The computation unit consists of the PE elements arranged in a systolic array [126], where
the Ifmaps are accessed from the top, and weight data are accessed horizontally. With 1024
elements, a 1-D convolution is aggregated to perform a 2-D convolution. Each PE consists of
an N-bits approximate multiplier and an adder unit arranged in a pipelined manner. Each
Ifmaps is accumulated and multiplied with the weight data once. Rather than performing
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the MAC with every new Ifmaps, we term this Accumulate-Multiply (ACM) technique. This
technique reduces the dynamic power consumption by around 30%

The two leading detectors in the architecture are mainly used to locate the most significant
‘1’ in each of the respective N-bits operands. The most significant ‘1’ location selects the
following N-2 consecutive bits on the desired accuracy. For example, if the input to the leading
one detector (LOD) is 16‘b0010_1111_1010_1111, then the output of the circuit will be
16‘b0010_0000_0000_0000. The output of LOD is priority encoded to generate the log(n)
bits. The two multiplexers are responsible for selecting N-2 bits from each operand. Starting
from the most significant ‘1’, the barrel shifter shifts the multiplication output to the right
to generate the 2N bit results. Finally, the 2N bits are reduced to N-bits by categorically
truncating based on the fixed-point q-format. The accumulated data will be multiplied with
weight data to generate PSums results. After the first activation is performed in CONV1 layer,
most of the PSums results will be sparse. To avoid unnecessary computation of sparse results,
a zero-gating logic is provided at the multiplier input to detect if the N-2 bits of the IF are
zero. If the results are sparse, the multiplication operation is avoided to reduce the dynamic
power consumption. The zero-gating logic and the approximate multiplier save up to 25% of
dynamic power consumption.

4.2.4 Other System Modules

The accumulator array adds the PSums from the PE array with the bias data to generate
the final convolution and FC results. The same non-linear activation function ReLU (f(x) =
max(0, x)) is used for the sake of uniformity in the inference of di�erent DNN models. The
pooling module is used to obtain the maximum of the matrix. Truncator block truncates the
pooling data for CONV1, CONV2, CONV5 and ReLU data for CONV3, CONV4 layers of
the AlexNet. Finally, the truncated results are stored in the PSums memory to compute the
next layer. During the next cycle of operation, PSums results from the previous layer are
calculated with the subsequent layer weights of the same bit-width pattern as that of the
truncated output of the previous layer.

4.3 Evaluation

4.3.1 Comparison Metric

To observe the influence of bit width on the overall response of the network, we evaluated
the network output after each layer. The output of a convolution layer is a 3D tensor. Each
2D slice (matrix) of this 3D tensor corresponds to the output of a particular kernel for that
layer. The output 2D matrix is compared with the reference output of that kernel. The
TensorFlow implementation of the AlexNet1 is used to obtain the reference output. For each
matrix, root means square error (RMSE) is computed according to Eq. 4.1.
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ı̂ıÙ

Aq
nr

r=1

q
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!
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"2

nr ◊ nc

B

(4.1)

1
https://www.cs.toronto.edu/≥guerzhoy/tf_alexnet/
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and FcEl are calculated ’ k œ {1, . . . , nk}, where Fl, Rl denote the 3D tensor

of FPGA output and reference output, respectively for any particular layer l and (r, c, k),
are row, column, and channels respectively. For example, in AlexNet, the output of the first
convolutional layer (l = 1) is of size 55 ◊ 55 ◊ 96 (nr ◊ nc ◊ nk). Comparison performed on
this layer would result in 96 element array E1. Unlike convolutional layers, the output of a
FC layer is the 1-D array for which RMSE is calculated according to the Eq. 4.2. For the last
FC layer (FC8), the accuracy is shown in the form of top-1 and top-5 accuracy.
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Let us consider a simple example in the first convolution layer of the AlexNet, where the
3D tensor output from the FPGA after the first inference is 220, and the reference output is
210. The nr is 55, the nc is 55, the final RMS error convEl

k
is 0.181 as shown in Eq. 4.3. The

FPGA outputs and the reference output are obtained after computing all the rows, columns,
and channels of the first layer of the AlexNet. Similarly, the RMS error for the FC layer is
also computed.

convEl

k =

Û
(220 ≠ 210)2

55 ◊ 55 (4.3)

4.3.2 Methodology

The proposed architecture was implemented using System Verilog, and behavioral simulations
were performed using a commercial Verilog simulator. For each layer of the network, a text file
of the inference output was generated, which in turn was compared with the reference output of
the trained ideal DNN to determine the RMS error according to Eq. 4.1 or 4.2. The synthesis,
implementation of the architecture, and calculation for the power consumption, timing, and
hardware resource usage were performed using Xilinx Vivado. Ten di�erent random images
from the web were used to evaluate the architecture.

The architecture was synthesized using the Synopsys Design Compiler (DC) for the ASIC
implementation using the GF 22nm FDSOI CMOS technology. The design was placed and
routed using Synopsys IC Compiler2 (ICC2). After the post-layout extraction, the timing and
power sign-o� were performed using Prime Time.

4.4 Experimental Results

One main objective of this work is to propose an advanced truncation strategy, i.e. hardware
optimization approaches to perform a multi-bit operation on the inferences of DNN models for
this accelerator. In the brief overview of this section, we will report the resource utilization
and power consumption of each module of the DDR3 and MIG-7 memory controller. Secondly,
the di�erent fixed bit widths of various DNN models are compared based on the RMS error,
resource utilization, and power consumption. Then, a truncation of the DNN models is
presented. Di�erent sets of multi-bit analysis experiments were performed based on the
truncation outcome. Finally, we conclude with the best truncation combination with the lowest
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Table 4.2: Resource utilization and power consumption of DDR3-MIG7 memory controller on
the Virtex Ultrascale FPGA [31] ©2021 IEEE.

Modules BR LUT FF DSP P (W)
MIG-7 0 12902 11056 0 1.691

Proc Sys Rst 0 18 38 0 0.001
Micoblaze
Debugger 0 91 110 0 0.001

Microblaze 19 2559 2062 5 0.086
AXI_Int_Connect_1 0 397 348 0 0.002
Local Mem. Hierarchy 2 12 14 0 0.001
AXI_Int_Connect_2 0 115 113 0 0.001
AXI_BRAM_Ctrl 0 269 243 0 0.002

AXI_timer 0 293 240 0 0.001
AXI_int_cntrl 0 59 62 0 0.001
AXI_uartlite 0 100 109 0 0.001

Block Mem. Gen 2 10 10 0 0.003
Total 23 16825 14405 5 1.791

RMS error and higher accuracy suitable for the multi-bit accelerator and present its results
for di�erent DNN models.

4.4.1 Resource Utilization and Power Consumption of DDR3-MIG7 Mem-
ory Controller

The resource utilization and power consumption of the DDR3-MIG7 memory controller are
shown in Table 4.2. The memory interface generator consumes the highest resources and
power, accounting for 77%. From Table 4.2, it is evident that our architecture consumes less
than 1% of comprehensive resources and a meager amount of power on the FPGA due to the
e�cient implementation of the communication interface protocol between the on-chip and
o�-chip memories.

4.4.2 Fixed Bit Architecture

This sub-section presents the results for di�erent bit widths starting from 32 bits to 8 bits. Each
bit was inference for a hundred di�erent images, and an average of their resource utilization
and power consumption is shown in Table 4.4-4.7 for AlexNet, MobileNet, SqueezeNet, and
E�cientNet respectively. As expected, 32-bits have the highest resource utilization, and the
8-bits have the least. From Table 4.4, we can also observe that the resource utilization of
FC layers is more than the preceding CONV layers due to its enormous weight data and the
PSums results. From each of the tables, it can be observed that the power consumption is
relatively lower when compared to our previous work [30]. PE is now performed using the
ACM technique instead of the MAC method previously used. A MAC technique for a 1024
PE array consumes around 18W. However, an ACM technique and approximate multiplication
consume around 5.8W. Hence, there is only 30% of the previous power requirement due to
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Table 4.3: Mean error for di�erent bit width for all layers of AlexNet [31] ©2021 IEEE.

Layers 32-Bits 28-Bits 24-Bits 16-Bits 8-Bits
Conv1 0.02 0.05 0.73 69.92 97.46
Conv2 0.04 0.18 5.80 125.64 134.83
Conv3 0.06 0.25 9.96 119.10 118.78
Conv4 0.05 0.20 7.18 73.85 73.76
Conv5 0.04 0.14 4.74 45.53 45.60
FC6 0.04 0.14 2.35 21.68 21.76
FC7 0.06 0.09 0.77 6.24 7.16
FC8 0.09 0.22 1.42 17.99 18.05

the ACM technique. In Table 4.4, the resource utilization and the power consumption for the
FPGA are from the largest layers for each DNN model.

For the 32-bit analysis in the CONV1 layer of AlexNet, the total number of DSPs is 2714,
and the corresponding peak performance throughput is 0.18GHz ◊ 2714 ◊ 2 = 977.04 GOPS.
The value “2" in the performance throughput signifies multiplication and addition operations.
Similarly, in the FC6 layer, the total DSPs were 2266, and the peak performance was 815.76
GOPS. With the decrease in bit width, the peak performance also reduces in all the layers
of the di�erent DNN models, as shown in Fig. 4.6. For the fixed bit architecture, the mean
RMS error (according to Eq. 4.1 and Eq. 4.2) for di�erent layers of the AlexNet is shown in
Table 4.3. When the bit width is reduced, the RMS error increases and goes beyond 100% if
there is a vast di�erence between the inference and the reference results.

The di�erence is also due to scaling from the floating-point during the training phase to
the fixed-point during the inference phase and truncation in the integer and fractional parts.

In Table 4.4-4.7, the power consumption and resource utilization will not scale proportion-
ately as they depend on multiple factors like the layers under the inference, the truncation
performed on the particular layer, the sparsity from the Ofmaps of each layer and the static
power consumption of the device under inference. The number of channels and the filter size
will decide the power consumption. With smaller filter sizes and shorter strides, more MAC
operations are required to complete the evaluation, increasing power consumption.

From the above experiments, with the decrease in the bit-width, the RMS error does not
increase significantly due to the pertinent truncation process, as the bits are not truncated
randomly but in the proper scheme as explained in the next subsection 4.4.3. So, if we truncate
the previous layer’s output before feeding it into the next layer, we could achieve improved
performance with an acceptable reduction in RMS error. The truncation can be performed
either in the integer or fractional part. In the following subsection 4.4.3, we explore di�erent
bit arrangements and their response to overall performance and power consumption.

4.4.3 Truncation Loss

It can be truncated before feeding the previous layer’s output to the next layer’s input.
Truncation is usually performed on the LSB of the fractional part, and MSB is avoided as
the RMS error is relatively high. In the integer part, both MSB and LSB are sequentially
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Table 4.4: Resource utilization (BR: BRAM, FF, LUT, DSP) in % and power (P) in W of fixed
bit for AlexNet, measured on Virtex Ultrascale FPGA[30] [31] ©2021 IEEE.

Layers 32-Bits - 1_15_16 28-Bits-1_13_14 24-Bits-1_11_12 16-Bits-1_7_8 8-Bits-1_3_4
BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P

Conv1 78 62 76 94 11.4 74 59 73 92 11.1 67 56 68 89 10.5 59 51 63 83 9.1 54 46 60 80 9.9
Conv2 33 26 28 78 11.1 32 24 28 74 10.9 35 24 27 72 10.3 30 22 24 69 8.7 27 22 24 65 7.2
Conv3 27 19 21 73 11.1 27 19 20 70 10.8 28 19 20 68 9.9 22 18 18 64 8.2 20 18 18 61 6.9
Conv4 28 19 21 71 11.3 28 19 20 66 11.1 27 19 20 64 9.5 22 18 18 61 7.7 19 18 18 59 6.5
Conv5 26 19 21 69 11.0 24 19 20 65 10.8 27 19 20 62 9.8 21 18 17 59 7.8 18 18 17 56 7.0
FC6 28 41 43 79 12.8 28 28 40 78 12.5 29 28 40 76 12.0 23 24 36 74 9.4 21 23 34 71 7.9
FC7 21 37 36 75 12.1 20 33 36 72 12.0 22 31 34 70 11.4 16 26 33 66 8.7 13 19 28 63 6.9
FC8 18 33 34 73 11.5 17 32 33 68 10.9 17 29 31 63 10.1 14 23 28 62 7.4 12 19 21 52 3.9

Table 4.5: Resource utilization (BR: BRAM, FF, LUT, DSP) in % and power (P) in W of fixed
bit for MobileNet, measured on Virtex Ultrascale FPGA [31] ©2021 IEEE.

Layers 32-Bits - 1_15_16 28-Bits-1_13_14 24-Bits-1_11_12 16-Bits-1_7_8 8-Bits-1_3_4
BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P

Conv1 76 66 80 88 12.1 71 61 75 83 11.6 69 57 73 81 11.2 64 54 68 77 7.9 60 51 65 73 7.6
Conv2 86 86 85 90 11.8 81 84 82 88 11.5 85 81 80 87 11.0 73 78 76 83 7.6 68 74 73 87 7.4
Conv3 84 87 87 92 11.8 80 82 84 91 11.3 83 78 82 92 10.6 71 74 77 89 7.0 66 69 71 84 6.5
Conv4 82 91 84 94 12.0 79 84 81 92 11.7 78 78 78 90 10.2 70 71 72 86 6.7 62 66 68 81 6.1
Conv5 80 86 95 93 11.7 78 82 92 88 11.4 73 77 88 86 10.5 68 72 83 82 6.8 59 66 80 76 5.9
Conv6 83 92 93 96 13.6 80 84 84 93 13.1 76 78 82 89 12.8 71 74 76 86 9.1 63 72 71 81 5.2
Conv7 79 84 88 94 12.8 81 81 81 93 12.6 72 77 78 87 12.2 70 72 74 82 8.9 62 67 67 78 4.4
Conv8 78 82 85 97 12.2 79 78 76 95 11.5 70 72 75 90 10.8 68 66 72 79 7.4 60 61 65 73 4.0
Conv9 77 81 85 98 12.1 76 78 75 95 11.7 68 73 74 88 10.9 63 67 68 83 7.6 57 61 64 80 4.3
Conv10 77 79 84 97 12.2 74 79 75 92 11.9 67 72 76 91 11.8 61 68 72 84 8.2 59 63 67 76 5.2
Conv11 76 78 83 96 12.1 73 76 73 89 11.9 66 72 70 87 11.6 60 63 65 81 8.1 57 58 63 71 5.0
Conv12 72 69 67 77 12.3 69 66 64 74 12.1 55 59 62 68 11.8 58 56 56 63 8.4 54 53 54 61 5.4
Conv13 71 67 64 72 12.1 66 62 62 66 11.7 51 58 57 63 11.3 54 54 52 59 7.8 51 49 47 54 5.0
Conv14 64 66 57 68 11.5 61 61 55 63 11.1 46 56 51 59 10.7 52 52 46 54 7.4 48 47 42 50 4.7
FC15 58 61 51 62 11.3 54 56 47 59 10.9 50 53 43 56 10.5 48 43 38 49 7.0 42 41 36 47 4.1

Table 4.6: Resource utilization (BR: BRAM, FF, LUT, DSP) in % and power (P) in W of fixed
bit for SqueezeNet, measured on Virtex Ultrascale FPGA [31] ©2021 IEEE.

Layers 32-Bits - 1_15_16 28-Bits-1_13_14 24-Bits-1_11_12 16-Bits-1_7_8 8-Bits-1_3_4
BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P

Conv1 76 66 80 88 12.06 71 61 75 83 11.56 69 57 73 81 10.45 64 54 68 77 8.30 60 51 65 73 6.87
Fire 2 56 61 73 83 8.83 53 57 71 80 8.26 51 52 67 76 7.81 47 47 65 73 6.54 43 44 62 70 5.69
Fire 3 56 61 73 83 8.83 53 57 71 80 8.26 51 52 67 76 7.81 47 47 65 73 6.54 43 44 62 70 5.69
Fire 4 69 68 78 86 8.98 66 66 77 83 8.38 61 63 74 81 7.90 58 59 72 78 6.60 56 56 70 74 5.73
Fire 5 51 63 75 83 8.76 48 59 71 80 8.21 46 56 66 77 7.77 42 53 63 73 6.51 39 51 58 70 5.67
Fire 6 53 67 80 86 8.95 51 62 75 83 8.36 48 58 71 80 7.89 46 54 50 77 6.59 43 49 46 73 5.72
Fire 7 53 67 80 86 8.95 51 62 75 83 8.36 48 58 71 80 7.89 46 54 50 77 6.59 43 49 46 73 5.72
Fire 8 59 72 85 88 8.98 57 68 81 87 8.38 53 66 77 83 7.90 51 63 75 80 6.66 47 63 54 76 5.77
Fire 9 50 61 73 81 8.57 47 58 70 78 8.06 43 56 66 74 7.65 40 52 63 71 6.43 37 48 58 67 5.62
Conv10 52 67 77 87 8.66 48 62 74 83 8.13 46 58 71 80 7.70 43 59 67 77 6.46 40 57 64 73 5.64

Table 4.7: Resource utilization (BR: BRAM, FF, LUT, DSP) in % and power (P) in W of fixed
bit for E�cientNet, measured on Virtex Ultrascale FPGA [31] ©2021 IEEE.

Layers 32-Bits - 1_15_16 28-Bits-1_13_14 24-Bits-1_11_12 16-Bits-1_7_8 8-Bits-1_3_4
BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P BR FF LUT DSP P

Stage 1 83 72 85 84 13.1 80 68 82 81 11.7 78 66 78 78 10.6 74 63 76 76 8.4 73 61 73 72 6.9
Stage 2 78 68 73 80 12.8 76 66 71 78 11.4 73 63 67 76 10.3 71 61 66 73 8.2 69 58 63 71 6.8
Stage 3 80 71 76 82 12.9 78 68 74 80 11.5 77 66 71 79 10.4 72 64 68 77 8.3 70 59 66 73 6.9
Stage 4 78 67 74 79 12.8 74 64 70 77 11.4 72 62 66 74 10.3 70 58 63 72 8.2 67 54 60 69 6.8
Stage 5 73 62 71 74 12.0 71 59 68 72 10.8 69 57 63 71 9.8 64 54 60 69 7.9 61 51 57 66 6.6
Stage 6 70 58 66 72 11.7 68 56 65 69 10.6 66 51 61 68 9.7 62 49 57 66 7.8 59 46 53 61 6.5
Stage 7 68 54 62 70 11.6 66 52 60 67 10.5 62 48 58 63 9.6 59 46 54 61 7.7 54 42 51 58 6.5
Stage 8 71 58 66 72 12.1 70 56 64 70 10.9 66 53 61 67 9.9 62 48 58 64 7.9 58 44 54 60 6.6

Table 4.8: Truncation results for the di�erent bit combinations of integer and fractional values
for di�erent conv layers of AlexNet[30] [31] ©2021 IEEE.

Conv1-Conv2 Conv2-Conv3 Conv3-Conv4 Conv4-Conv5
Input
Comb

Truncation RMS
Error

Input
Comb

Truncation RMS
Error

Input
Comb

Truncation RMS
Error

Input
Comb

Truncation RMS
ErrorMSB Int LSB Int LSB Frac MSB Int LSB Int LSB Frac MSB Int LSB Int LSB Frac MSB Int LSB Int LSB Frac

15_16

0 0 0 0.018

15_16

0 0 0 0.034 15_16 0 0 0 0.058 15_16 0 0 0 0.038
2 0 2 0.06 2 0 2 0.051 12_11 0 0 0 0.058

13_14
2 0 2 0.218

0 2 2 142.25 4 0 0 6.742 13_14 0 0 0 0.06 1 0 3 0.214
1 0 3 0.057 0 0 4 0.06

12_11

2 0 2 32.245 0 0 4 0.214
0 1 3 93.48 0 0 8 0.061 0 2 2 118.145

12_11
1 0 7 1.645

4 0 0 6.56 3 0 5 0.054 1 0 3 3.897 2 0 6 3.587
0 4 0 177.6 2 0 6 0.06 0 1 3 78.542 3 0 5 27.142
0 0 4 0.05

13_14
1 0 3 0.176 4 0 0 117.654

12_7
1 0 3 18.546

3 0 1 0.05 0 0 4 0.176 0 4 0 146.82 0 0 4 18.546
0 3 1 165.23 2 0 2 20.146 0 0 4 1.896 2 0 2 19.412

truncated. Removing MSB from the fractional part would significantly a�ect the fractional
value, which may be undesirable in some cases. Therefore, a majority of the calculations are
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Figure 4.6: Peak performance of di�erent layers for fixed bit combinations for di�erent
networks [31] ©2021 IEEE.

Table 4.9: Truncation results for the di�erent bit combinations of integer and fractional values
for CONV5 and FC6 layers of AlexNet[30] [31] ©2021 IEEE.

Conv5-FC6
Input
Comb

Truncation RMS
ErrorMSB Int LSB Int LSB Dec

15_16 0 0 0 0.029
11_12 0 0 0 0.214

11_4

0 0 0 1.645
2 0 2 76.412
0 2 2 65.982
1 0 3 76.412
0 1 3 65.874
4 0 0 67.142
0 4 0 67.142
0 0 4 67.965

Table 4.10: Truncation results for the di�erent bit combinations of integer and fractional values
for FC layers of AlexNet [30] [31] ©2021 IEEE.

FC6-FC7 FC7-FC8
Input
Comb

Truncation RMS
Error

Input
Comb

Truncation RMS
ErrorMSB Int LSB Int LSB Dec MSB Int LSB Int LSB Dec

15_16 0 0 0 0.04 15_16 0 0 0 0.03
11_4 0 0 0 1.68 11_4 0 0 0 10.45

11_12

2 0 2 0.645

9_10

2 0 2 0.684
1 0 3 0.65 0 0 4 0.678
0 0 4 0.65 1 0 3 0.678
3 0 1 3.145 0 1 3 5.46

7_4

0 2 2 33.412 3 0 1 3.266
1 0 3 33.412 0 3 1 9.191
0 1 3 33.412 0 2 2 7.944
4 0 0 34.956 3_4 4 0 0 34.965

performed in the fractional part. Based on the above hypothesis, we performed truncation
between consecutive pairs of layers, as shown in Table 4.8. "Input comb" denotes the bit
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Figure 4.7: RMS error for di�erent layers of AlexNet for various bit combinations. The bit width
of layers is shown as data labels[30] [31] ©2021 IEEE.

Table 4.11: RMS error results for all the layers of MobileNet based on analysis 1 [31] ©2021
IEEE.

Layers Input
Comb

Truncation RMS
ErrorMSB Int LSB Int LSB Frac

Conv1

15_16

0 0 0 0.025
Conv2 0 0 0 0.028
Conv3 0 0 0 0.031
Conv4 2 0 2 0.272
Conv5

13_14
0 0 0 0.276

Conv6 0 0 0 0.286
Conv7 2 0 2 0.56
Conv8

11_12

0 0 0 0.568
Conv9 0 0 0 0.587
Conv10 0 0 0 0.588
Conv11 2 0 2 0.972
Conv12

9_10
0 0 0 0.986

Conv13 0 0 0 0.986
Conv14 0 0 0 0.99

arrangement of the output of the previous layer. For example, in the first pair: CONV1 -
CONV2, the output of CONV1 is 32 bits with a bit arrangement of 1_15_16 where 1, 15,
and 16 represent the sign, integer, and fractional bit width, respectively. For simplicity, the
sign part, which is fixed, therefore, is not shown. The truncation is performed in MSB/LSB
of an integer and LSB of a fractional part. Each pair explores ten truncations, and the
corresponding RMS error is computed. In the first pair CONV1 - CONV2 of Table 4.8, the
input combinations were 32 32-bits, and we truncated them into 28 bits before performing
the CONV2 operations. The MSB int indicates the truncation of the bits from the MSB on
the integer part, LSB int indicates the truncation of the bits from the LSB on the integer
part, and LSB dec indicates the truncation of the bits from the LSB on the decimal part.
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Table 4.12: RMS error results for all the layers of E�cientNet based on analysis 1 [31] ©2021
IEEE.

Layers Input Comb Truncation RMS
ErrorMSB Int LSB Int LSB Frac

Stage 1 15_16 0 0 0 0.046
Stage 2 2 0 2 0.149
Stage 3 13_14 0 0 0 0.156
Stage 4 2 0 2 0.305
Stage 5 11_12 0 0 0 0.315
Stage 6 2 0 2 0.45
Stage 7 9_10 0 0 0 0.488
Stage 8 0 0 0 0.489

Table 4.13: RMS error results for all the layers of SqueezeNet based on analysis 1 [31] ©2021
IEEE.

Layers Input
Comb

Truncation RMS
ErrorMSB Int LSB Int LSB Frac

Conv1
15_16

0 0 0 0.035
Fire 2 0 0 0 0.038
Fire 3 2 0 2 0.265
Fire 4

13_14
0 0 0 0.279

Fire 5 0 0 0 0.279
Fire 6 2 0 2 0.671
Fire 7 11_12 0 0 0 0.687
Fire 8 2 0 2 0.887
Fire 9 9_10 0 0 0 0.896
Conv10 0 0 0 0.896

Here, we have not included the truncation of the bits from the MSB on the decimal part, as
it is not feasible and leads to higher RMS errors. For example: From Table 4.8 the second
combination of the first pair, we have truncated 2 bits from the MSB of the integer part, 0
bits from the LSB of the integer part, and 2 bits from the LSB of the decimal part. So, the
output combination of bits will be 1_13_14, which is 28 bits, and its RMS error is according
to Eq. 4.1. The bolded values indicate the selected truncation combination of a pair, which
also serves as the input combination for the next pair. In Table 4.9, we present the truncation
results of the last convolution layer CONV5 and the first FC layer FC6. Table 4.10 shows
the results of FC6-FC7 and FC7-FC8 pairs, where the RMS error is calculated according to
Eq. 4.2. These truncation results with its MSB/LSB combination and errors were consistent
when explored on the other DNN models.

4.4.4 Multi-Bit Architecture

From the performance of the truncation, we were motivated to explore the reduction in bits
systematically. From the pairs highlighted in Table 4.8, 4.9, 4.10, we created four sets of
analyses which were explicitly evaluated. Table 4.14, Table 4.15, Table 4.16 and Table 4.17

74



4.4 Experimental Results

Table 4.14: Resource utilization in % and power (P) in W for di�erent bit combinations for
AlexNet on Virtex Ultrascale FPGA[30] [31] ©2021 IEEE.

Layers Analysis 0 Analysis 1 Analysis 2 Analysis 3
Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P

Conv1

15_16

78 62 76 94 11.38 15_16 78 62 76 94 11.38 15_16 78 62 76 94 11.38 15_16 78 62 76 94 11.38
Conv2 33 26 28 78 11.11 33 26 28 78 11.11 33 26 28 78 11.11 13_14 32 24 28 74 10.95
Conv3 27 19 21 73 11.13 13_14 27 19 20 70 10.75 12_11 28 19 20 68 9.94 12_11 28 19 20 68 9.94
Conv4 28 19 21 71 11.29 28 19 20 66 11.11 27 19 20 64 9.54 12_7 25 18 19 62 8.76
Conv5 26 19 21 69 11.02 11_12 27 19 20 62 9.83

11_4
21 18 17 59 7.82 11_4 21 18 17 59 7.82

FC6 28 41 43 79 12.82 29 28 40 76 12.01 23 24 36 74 9.36 7_4 17 14 14 54 6.98
FC7 21 37 36 75 12.10 9_10 15 26 28 59 9.97 16 26 33 66 8.69 3_4 13 19 28 63 6.88

Table 4.15: Resource utilization in % and power (P) in W for di�erent bit combinations for
MobileNet on Virtex Ultrascale FPGA [31] ©2021 IEEE.

Layers Analysis_0 Analysis_1 Analysis_2 Analysis_3
Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P

Conv1

15_16

76 66 80 88 12.06

15_16

76 66 80 88 12.06

15_16

76 66 80 88 12.06 15_16 76 66 80 88 12.06
Conv2 86 86 85 90 11.78 86 86 85 90 11.78 86 86 85 90 11.78 86 86 85 90 11.78
Conv3 84 87 87 92 11.80 84 87 87 92 11.80 84 87 87 92 11.80 13_14 80 82 84 91 11.29
Conv4 82 91 84 94 11.97 82 91 84 94 11.97 82 91 84 94 11.97 79 84 81 92 11.66
Conv5 80 86 95 93 11.68

13_14
78 82 92 88 11.37 80 86 95 93 11.68 12_11 73 77 88 86 10.48

Conv6 83 92 93 96 13.59 80 84 84 93 13.13

12_11

76 78 82 89 12.81 76 78 82 89 12.81
Conv7 79 84 88 94 12.83 81 81 81 93 12.59 72 77 78 87 12.17 12_7 70 74 76 84 11.70
Conv8 78 82 85 97 12.21

11_12

70 72 75 90 10.79 70 72 75 90 10.79 67 69 72 88 10.50
Conv9 77 81 85 98 12.13 68 73 74 88 10.90 68 73 74 88 10.90 11_4 63 67 68 83 7.60
Conv10 77 79 84 97 12.18 67 72 76 91 11.79 67 72 76 91 11.79 61 68 72 84 8.16
Conv11 76 78 83 96 12.10 66 72 70 87 11.65

11_4

60 63 65 81 8.05 7_4 58 62 63 78 7.70
Conv12 72 69 67 77 12.25

9_10
55 59 62 68 9.65 58 56 56 63 8.44 55 55 53 61 7.90

Conv13 71 67 64 72 12.12 48 57 61 61 9.24 54 54 52 59 7.84 3_4 51 49 47 54 4.98
Conv14 64 66 57 68 11.47 44 54 57 58 8.71 52 52 46 54 7.40 48 47 42 50 4.68

Table 4.16: Resource utilization in % and power (P) in W for di�erent bit combinations for
SqueezeNet on Virtex Ultrascale FPGA [31] ©2021 IEEE.

Layers Analysis 0 Analysis 1 Analysis 2 Analysis 3
Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P

Conv1

15_16

76 66 80 88 12.1
15_16

76 66 80 88 12.1

15_16

76 66 80 88 12.1 15_16 76 66 80 88 12.1
Fire 2 56 61 73 83 8.8 56 61 73 83 8.8 56 61 73 83 8.8 56 61 73 83 8.8
Fire 3 56 61 73 83 8.8 56 61 73 83 8.8 56 61 73 83 8.8 13_14 53 57 71 80 8.3
Fire 4 69 68 78 86 9.0

13_14
66 66 77 83 8.4 69 68 78 86 9.0 66 66 77 83 8.4

Fire 5 51 63 75 83 8.8 48 59 71 80 8.2
12_11

46 56 66 77 7.8 12_11 46 56 66 77 7.8
Fire 6 53 67 80 86 9.0 51 62 75 83 8.4 48 58 71 80 7.9 48 58 71 80 7.9
Fire 7 53 67 80 86 9.0 11_12 48 58 71 80 7.9 48 58 71 80 7.9 12_7 47 56 68 75 6.9
Fire 8 59 72 85 88 8.98 53 66 77 83 7.9

11_4
51 63 75 80 6.7 49 62 73 76 7.1

Fire 9 50 61 73 81 8.57 9_10 40 53 62 72 7.43 40 52 63 71 6.4 11_4 40 52 63 71 6.4
Conv10 52 67 77 87 8.66 44 54 67 77 7.58 43 59 67 77 6.5 43 59 67 77 6.5

Table 4.17: Resource utilization in % and power (P) in W for di�erent bit combinations for
E�cientNet on Virtex Ultrascale FPGA [31] ©2021 IEEE.

Layers Analysis 0 Analysis 1 Analysis 2 Analysis 3
Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P Bits BR FF LUT DSP P

Stage 1

15_16

83 72 85 84 13.1 15_16 83 72 85 84 13.1
15_16

83 72 85 84 13.1 15_16 83 72 85 84 13.1
Stage 2 78 68 73 80 12.8 78 68 73 80 12.8 78 68 73 80 12.8 78 68 73 80 12.8
Stage 3 80 71 76 82 12.9 13_14 78 68 74 80 11.5 80 71 76 82 12.9 13_14 78 68 74 80 11.5
Stage 4 78 67 74 79 12.8 74 64 70 77 11.4

12_11
72 62 66 74 10.3 74 64 70 77 11.4

Stage 5 73 62 71 74 12.0 11_12 69 57 63 71 9.8 69 57 63 71 9.8 12_11 69 57 63 71 9.8
Stage 6 70 58 66 72 11.7 66 51 61 68 9.7 66 51 61 68 9.7 66 51 61 68 9.7
Stage 7 68 54 62 70 11.6 9_10 62 48 58 63 9.6 11_4 59 46 54 61 7.7 12_7 62 49 76 65 7.9
Stage 8 71 58 66 72 12.1 65 51 60 67 9.9 62 48 58 64 7.9 11_4 62 48 54 64 7.9

lists all the four analyses with the bit combinations, followed by resource utilization and power
consumption for all the four DNN models. For comparison, we created a reference set with 32
bits called Analysis_0. Peak performance for di�erent analyses for di�erent DNN models is
shown in Fig. 4.8.

The corresponding RMS error for these analyses was also computed and is shown in Fig. 4.7
for AlexNet. For RMS errors, a logarithmic scale was used to visualize significant variations.
Analysis_1 had a better trade-o� between accuracy, power, and resource utilization on the
Virtex Ultrascale FPGA among all the di�erent bit combinations. So, based on the Analysis_1,
we have reported the RMS error results for MobileNet, E�cientNet, and SqueezeNet in
Table 4.11, Table 4.12 and Table 4.13 respectively.

The last layer of each DNN model is the classification layer on which the softmax function
is applied. Extending Analysis_1, we further tried to reduce the bit width of the last layer
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Figure 4.8: Peak performance of di�erent layers for multi-bit combinations for di�erent
networks [31] ©2021 IEEE.

Table 4.18: Resource utilization in %, power measured (P) in W and peak performance (PP) in
GOPS for last layers measured on Virtex Ultrascale FPGA [30] [31] ©2021 IEEE.

AlexNet MobileNet SqueezeNet E�cientNet
Bit Width Bits BR FF LUT DSP P PP BR FF LUT DSP P PP BR FF LUT DSP P PP BR FF LUT DSP P PP

20 9_10 19 23 31 66 7.37 167.44 50 53 43 56 10.5 141.12 45 62 73 79 7.1 199.08 65 51 60 67 9.92 168.84
19 9_9 18 23 31 65 7.12 164.64 49 50 42 54 10.26 136.08 45 61 72 78 6.9 196.56 64 52 59 65 9.4 163.8
18 8_9 18 22 30 64 6.9 161.84 49 47 42 53 9.8 133.56 44 61 70 78 6.78 196.56 64 50 59 65 8.8 163.8
17 8_8 17 22 30 64 6.79 161.84 48 45 40 50 9.27 126 44 60 68 77 6.65 194.04 63 49 58 64 8.34 161.28
16 7_8 17 22 28 63 6.17 159.04 48 44 38 49 8.5 123.2 43 59 67 77 6.5 193.2 62 48 58 64 7.9 162.4
15 7_7 15 22 27 62 5.95 156.24 47 43 38 48 7.6 120.96 42 58 66 76 6.3 191.52 62 48 58 63 7.6 158.76
14 7_6 15 21 27 60 5.63 150.64 47 43 37 46 7 115.92 42 57 65 76 6.27 191.52 62 47 57 63 7.4 158.76
13 6_6 14 20 26 59 5.24 147.84 46 43 37 45 6.64 113.4 41 57 63 75 6.21 189 61 47 56 62 7.1 156.24
12 5_6 13 20 25 58 5.04 145.04 45 42 36 45 6.3 113.4 41 56 63 75 6.19 189 60 46 56 62 7.03 156.24
11 4_6 13 19 24 56 4.9 142.24 44 42 36 44 5.89 110.88 41 55 62 74 6.12 186.48 60 45 55 61 6.87 153.72
10 3_6 12 18 23 55 4.47 139.44 44 41 35 43 5.47 108.36 40 54 62 74 6.1 186.48 59 45 55 61 6.82 153.72
9 3_5 12 17 22 53 4.18 133.84 43 41 35 42 4.96 105.84 40 53 61 74 5.98 186.48 58 44 54 61 6.74 153.72
8 3_4 12 16 21 52 3.99 131.04 42 40 34 42 4.13 105.84 40 57 64 73 5.94 184.8 58 44 54 60 6.6 151.2
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Figure 4.9: Top-1 accuracy for di�erent bit width for di�erent DNNs[30] [31] ©2021 IEEE.

of each of the four DNN models. Based on that, we reported the resource utilization, power
consumption, and peak performance shown in Table 4.18. Further, top-1 and top-5 accuracy
computation for di�erent DNN models is shown in Fig. 4.9 and Fig. 4.10. For computing the
top-1 and top-5 accuracies, we exploited the di�erent orders of bit width on the last layer
of the DNNs, where the softmax function is applied and the image class is derived. The
accuracies obtained are relative to the performance of the original network. The overall FPGA
resource utilization for the inference DNN models consumed 1253 (49%) BRAMs, 2E6 (50%)
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Figure 4.10: Top-5 accuracy for di�erent bit width for di�erent DNNs[30] [31] ©2021 IEEE.

Table 4.19: Layout results of the ASIC version [31] ©2021 IEEE.

Technology GF 22nm FDSOI SLVT
Chip Size 1mm ◊ 1.2mm
Core Area 805µm ◊ 805µm

Memory Type SRAM (375KB)
Total Gate Count 785K

Frequency 800MHz
Precision Fixed 16-bit
Total PE’s 1024

Power 791mW
Latency 2.85ms

Performance 1.63 TOPS
Performance/W 2.06 TOPS/W

Energy 2255 µJ

DNN Models Inferenced AlexNet, MobileNet, SqueezeNet
and E�cientNet

FFs, 1E6 (55%) LUTs, and 2016 (70%) DSPs on the Virtex Ultrascale FPGA for the device
XCVU440-flga2892-3-e.

4.4.5 Comparison with Previous Architecture

A comparison of the proposed accelerator design with prior SoA accelerator designs based on
power, latency, performance, performance/watt, DSP, and DSP e�ciency is shown in Table 4.20.
Our work significantly surpasses other works, mainly in terms of power usage. The proposed
accelerator consumes 2.5◊ less power compared to [87] and 4◊ lesser compared to [127] for
AlexNet inference. Similarly, power consumption is less than 10W for other networks, whereas
these networks are several MBs larger when compared to AlexNet and VGG-16. For the
performance/watt comparison, proposed accelerator is 1.57◊ better compared to [127] and more
than 3.63◊ better compared to other state of art designs [87] [118] [122] [128] [86] [127] [129].
Our accelerator o�ers a latency of 10ms and o�ers a high speed up for all the inference DNN
models.
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4.4 Experimental Results

Figure 4.11: Layout view [31] ©2021 IEEE.

Table 4.21: Power and area breakdown of the ASIC version [31] ©2021 IEEE.

Modules Area (µm2) Power (mW)
AXI Master 251.33 14.32
Control Unit 206.66 10.45

ReLU 13.97 2.53
PE_Array 446137.62 350.12
SRAM 200418.42 359.87

Bias Mem 146.10 7.36
Pooling 78.36 36.78

Truncator 28.36 10.53
Total 647252.48 791.96

Evaluating inference on di�erent DNN models using various analytical studies shows that
we can start with higher-order bit width and successively truncate the bits as we go down
the layers. This way, we could save around 49% of power and an average of around 74% of
resources due to e�cient data movement and a robust truncation scheme while maintaining
accuracy.

4.4.6 ASIC Results

We implemented the ASIC version of our accelerator in the 22nm CMOS process. Table 4.19
shows the layout specification, and the layout view is shown in Fig. 4.11. For the SLVT, we
employed the SLVT process to meet the timing requirement of 800MHz, which was not possible
in the LVT and RVT processes. The Table 4.19 was implemented for a fast corner at 0.88V
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4. A Power E�cient Multi-Bit Accelerator for Memory Prohibitive Deep Neural
Networks

VDD at a temperature of 125¶C. The ASIC version is for the multi-bit accelerator, as shown
in Fig. 4.1, and it remains the same for all the DNN models inference. In the ASIC version,
we could achieve a total throughput of 2.06 TOPS/W with a total power consumption of
791mW, a static power consumption of 317mW, and a dynamic power consumption of 474mW.
The inference latency was around 2.85ms, and the energy consumption to achieve the total
throughput was 2255µJ. The area and power breakdown are shown in Table 4.21, where the
major area and power consumption is by the SRAM memory and the PE array.

4.5 Summary

Deep neural network models consume significant power, energy, and memory. Therefore,
deploying them on a mobile platform is resource-expensive. To solve this drawback, we propose
a multi-bit architecture. We start with a large bit-width of 32 bits, truncate the bits as we
propagate through the network, and finally compute the last layer on a lower bit-width of 10
bits. An extensive memory-intensive network such as AlexNet, MobileNet, E�cientNet, and
SqueezeNet was used as a benchmark model, and the architecture was evaluated on Virtex
Ultrascale FPGA. While maintaining 100% top-1 accuracy, our proposed multi-bit architecture
saves up to 49% of the power compared to its 32-bit fixed-bit architecture. Resources utilization
was 74.60% for BRAMs, 68.76% for FFs, 73.25% for LUTs, and 79.425% for DSPs, less when
compared with 32-bit architecture. The top-5 accuracy was maintained up to a reduced bit
width of 10 bits at the last layer. The design achieves a peak performance of 130.3 GOPS/W
on a Virtex Ultrascale FPGA. The design has an overall gain of 8.15◊ throughput compared
to other prior FPGA accelerators. In addition, the overall power consumption is 4.5◊ lower
when compared to other prior architectures. The ASIC version of the accelerator was designed
in a 22nm FDSOI CMOS process to achieve an overall throughput of 2.03 TOPS/W at a
power consumption of 791mW and a surface area of 1.2mm ◊ 1.2mm.

In future work, the architecture can be extended to incorporate the support for the
depthwise operation by providing separate channels for each channel without performing the
final accumulation. In addition, for each channel, a separate ReLU, pooling, and truncator
module would be used.
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5
FantastIC4: A Hardware-Software

Co-Design Approach for E�ciently

Running 4bit-Compact Multi-layer

Perceptrons

5.1 Introduction

In recent years, the topic of “edge” computing has gained significant attention due to the
benefits of processing data directly at its collection source [130]. For instance, latency issues
can be significantly mitigated by running machine learning algorithms directly at the edge
device (e.g., wearable). In addition, increased privacy can be guaranteed since no data must be
sent to third-party cloud providers. Their high predictive performance has triggered interest
in deploying deep learning models to such embedded devices. However, traditional deep
learning models are usually resource-hungry since they entail many parameters. In particular,
processing many parameters requires expensive hardware components such as large memory
units. Moreover, if high throughput and low latency are desired, many multipliers for parallel
processing are high. This comes at the expense of spending many hardware resources on high
power consumption and chip area, significantly limiting their application in use-cases with
tight area and power consumption budgets, such as in the automotive, Internet of Things
(IoT), or wearable.

This motivates the research of methods that can highly compress the DNN’s weight
parameters since, by doing so, we minimize the respective data movement and, therefore,
its power consumption and the required chip area during execution. However, the e�cient
processing of compressed data representations comes with challenges, including bit-alignment
problems, reduction of locality, and increased serialization. Moreover, SoA compression
techniques require complex decoding before performing arithmetic operations, limiting the
savings attained from compression, especially when the hardware is not tailored to such
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5. FantastIC4: A Hardware-Software Co-Design Approach for E�ciently Running
4bit-Compact Multi-layer Perceptrons

decoding algorithms. This motivates a hardware-software co-design paradigm where, on the
one hand, novel training techniques that make DNNs highly compressible are proposed. On the
other hand, novel hardware architectures support the e�cient, on-chip execution of compressed
representations.

This work proposes a software-hardware optimization paradigm, which allows for the
e�cient execution of highly compact representations of DNNs based on FC layers. We
specifically focus on fully-connected layers since they are usually the most significant size in a
typical DNN model, and their execution is fundamentally more memory-bounded than other
types of layers (e.g., convolutional layers). Moreover, many popular DNN architectures are
entirely composed of FC layers, such as LSTMs and Transformers, which are highly relevant
for time series and natural language processing tasks. Moreover, MLPs are already the status
quo in use cases with very tight resource constraints since many studies identified MLPs to be
one of the best algorithms to solve tasks in the IoT domain using wearable devices [131]. We
apply several optimization techniques from both the hardware and software fronts, all tailored
to increase the area e�ciency and lower the power consumption of inference. We aim to make
SoA MLP models more amenable, for example, in the applications above.

Our contributions can be summarized as follows:

• Firstly, we design a specialized hardware accelerator, named FantastIC4, which
implements a first ACM technique to minimize the required number of multipliers
for inference down to only 4 (thus the name of the architecture). By implementing ACM,
we significantly reduce the computational resource utilization compared to the usual
MAC paradigm, naturally due to performing less multiplication in total, but also due to
better data movement of the activations for MLP models (activation stationary) as well
as the reduction in the required area and power consumption for computations.

• FantastIC4 also supports the e�cient, on-chip execution of multiple compressed
representations of the weight parameters of FC layers. This boosts the compression rate
of the layers, consequently improving the o�- and on-chip data movement and reducing
power consumption and area requirements since smaller-sized memory units can be
implemented.

• To make the models amenable for the e�cient execution on FantastIC4, a novel
training algorithm is proposed that makes the models robust to 4-bit quantization
while simultaneously encouraging low entropy statistics of the weights. Furthermore,
explicitly enforcing low entropy statistics reduces the parameters’ size requirements and
simultaneously encourages sparsity, which is exploited by converting the parameters to
compressed sparse formats.

• Our experimental results show that we can save 80% energy by compression and avoiding
unwanted data movement between the (DDR3) DRAM and the on-chip SRAM and 75%
of power by handling the 4-bit precision and sparsity in the processing elements (PEs).

• We evaluate the FantastIC4 on FC layers of popular DNN models and custom MLP
trained on hand gesture and speech recognition tasks. We compare our accelerator to
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other SoA FPGA and ASIC accelerators and see an improvement by 51◊ in terms of
throughput and by 145◊ in terms of area e�ciency (GOPS/mm2).

In Section 5.2, we describe the other SoA techniques both on the hardware and software
platforms. Section 5.3, we describe the need for using 4-bit quantization and how we handle the
sparsity. Section 5.4 explains the training of the 4-bit-compact DNNs. The complete hardware
architecture with PE design and other floating-point operations is described in Section 5.5. The
experimental methodology is explained in Section 5.6, followed by the conclusion in Section 5.7.
This chapter’s content is published in the journal article [32], as the author of this thesis is
also the first author of the published journal.

5.2 Related works

In the past few years, a great deal of work has been published on the e�cient processing
of DNNs, including topics such as neural architecture search, pruning and sparsification,
quantization, compression, and designing specialized hardware architectures. An excellent
overview of the landscape of di�erent approaches and techniques studied on this topic is
in [132][133].

5.2.1 Techniques for reducing the information content of the DNNs
parameters

The previous compression technique [54] pioneered a paradigm based on chaining sparsification,
quantization, and lossless compression methods to reduce the redundancies in DNN’s weight
parameters significantly. As a result, [54] could compress SoA DNN models by up to 49◊.
However, several follow-up works have improved on all three fronts: compression, quantization,
and sparsity.

Lossless Compression. Through a quantization scheme that minimizes the rate-
distortion function while simultaneously considering the quantization to improve overall
DNN performance, the work [51] demonstrated that compression gains on the same models as
VGG-16 could be boosted to 63◊ by coupling quantization with a powerful universal entropy
coder. However, although the proposed method achieves impressive compression gains, the
resulting representation of the DNNs weights requires decoding to perform inference. In
contrast, similar to the Compressed Sparse Row (CSR) matrix format employed in [54], [134]
derives a representation that compresses the weights and enables inference in the compressed
representation without requiring decoding. Furthermore, [134] showed that their proposed
Compressed Entropy Row (CER) matrix format is up to 2◊ more compact and e�cient than
the CSR format when applied to DNNs. Lastly, compression o�ers a high advantage of reduced
memory storage and faster inference time. However, there will be a slight disadvantage in loss
of accuracy if the models are compressed properly.

Quantization. In recent years, researchers have been able to push the limits of quantization
more and more. In particular, there is a growing amount of work showing that extreme
quantization of the weights down to 4-bits is possible while minimally a�ecting the prediction
accuracy of the network [135, 136, 137, 138, 139, 140, 141]. A 4-bit quantization o�ers directly
8◊ compression gains and similar improvements in computational e�ciency. More robust
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quantization techniques such as ternary and binary networks have also been proposed [142,
143]. Although they o�er highly e�cient implementations on a hardware level, they usually
come at the expense of significant degradation of the accuracy of the network.

Simultaneous Optimization of Sparsity, Quantization and Compression. Some
recent work has attempted to derive a unified framework for sparsifying, quantizing, and
compressing DNN parameters. In particular, some have proposed novel regularizers that
constrain the entropy of the weight parameters during training, thus explicitly minimizing the
information content of the weights [144, 143]. Concretely, in these works, the first-order entropy
is considered the entropy value as measured by the empirical probability mass distribution
of the parameters. This regularization technique is theoretically well-motivated, directly
measures the possible size reduction of the model, and simultaneously encourages sparsity
and quantization of the weights too low bit-widths. These works were able to attain SoA
compression results, e.g., [143] was able to train highly sparse and ternary DNNs, becoming
one of the top 5 finalists in the NeurIPS19 Micronet Challenge1.

5.2.2 Hardware Accelerators

There are many hardware accelerators from both academia and industry that concentrate
on high performance and energy e�ciency. Some of the topics that have been studied and
analyzed are:

Data Flow Movement. Data flow movement is one of the important aspects of designing
the hardware accelerators for any AI application. Activations and weight movements that are
e�ective reduce energy requirements. The work in [90] provides an e�ective row stationary
method and competent reusing of weights, Ifmaps, and PSums reuse. The DNN accelerator
in [145] was manufactured using a 28nm process, supports parameter reuse, detects circuit
timing violations to minimize worst-case guard bands and is tolerant of algorithmic noise. To
maximize kernel e�ciency and decrease o�-chip memory access, the CNN-Recurrent Neural
Network (RNN) processor in [146] implemented LUT-based multiplication and quantization
table-based matrix multiplication. The PSums truncation from each of the preceding layers and
performing inference on the truncated PSums and weights was shown in [30]. Bit Fusion [147]
dynamically shared the weights across the di�erent layers of a DNN model. The FantastIC4
reduces the data movement by 4-bit precision and uses FIFOs as a data bu�er. Bitmask
encoding is used to fetch the data from the FIFOs based on sparsity. In addition, FantastIC4
also supports the e�ective handling of layer weights by fetching the bitmask encoded non-zero
values in a FIFO manner. Lastly, the floating-point operations are pipelined to save the
dynamic power without compromising accuracy.

Systolic Arrays and Bit Serial Computations. The systolic arrays were first reported
in [148] to e�ciently compute DNN models to reduce unwanted power consumption when
performing the MAC and matrix-vector multiplication. Using binary weights in [102] reduced
the need for expensive multiplications. The bit-serial MAC operation was used in [149] to
conserve the MAC operation’s energy and save the chip’s area. In FantastIC4, only four
multiplications are performed with a proposed ACM paradigm.

1https://micronet-challenge.github.io
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5.3 FantastIC4 Design

Sparse Data Compression. The compression with sparsity and pruning was shown
in [54] to fit the DNN models and on-chip SRAM. Based on the pruning and sparsity, the
hardware accelerator is implemented in [150], and it is 19◊ more energy e�cient than the
uncompressed versions [28] [31] [62]. The compression was extended to convolutional layers
in [151]. The weights and activations were compressed using CSC format [152]. The scalpel
accelerator [153] showed that the weight pruning achieves a total speedup of 1.9◊. In contrast
to FantastIC4, all mentioned accelerators support only one compressed format, significantly
limiting the attainable compression gains and, consequently, the power savings from o�-chip
to on-chip data movement.

Analog and Mixed Signal Accelerators. Even though the digital DNN accelerators
are in high prominence, analog and mixed-signal accelerators get the attraction to the AI
hardware domain. The main goal of the [154] is to implement the minimum energy requirement
for CIFAR-10 using binary networks. Here, the XNOR operation replaces the multiplication
operation, as the weights are constrained to +1 and -1. This technique allows o�-chip memory
access to be avoided. The mixed-signal hardware error handling was reported in [155] to
maintain good accuracy and have a low bit precision of 2 bits. Even though analog and
mixed-signal hardware are less complicated in the implementation, the robustness in handling
large data sets or maintaining the accuracy could be better. FantastIC4 uses non-binary
weights and activations but maintains higher accuracy, better throughput, and low power
consumption, as explained in other sections.

FPGA based Accelerators. Several FPGA accelerators have proposed solutions for
optimized accelerator designs in the industry and academia. The energy-e�cient FPGA
accelerator [156] performed inference on CNN with binary weights. The processor achieves a
throughput of 2100 GOPs with a latency of 4.6ms and power of 28W. The hardware-software
co-design library to e�ciently accelerate the entire CNN and FCN on FPGAs was shown in [122].
The floating-point arithmetic CNN accelerator [157] introduced an optimized quantization
scheme based on rounding and shifting operations. They reported an overall throughput of
760.83 GOPs. The other accelerators worked on sparse matrix-vector multiplications mainly for
the MLPs [158][159]. Even though these accelerators perform well, they still lack throughput,
power, or latency requirements. The FantastIC4 FPGA version utilizes an e�cient computation
approach to achieve high throughput with minimal power, latency, and resource requirements.

5.3 FantastIC4 Design

In this work, we propose to apply several optimization techniques that, in combination, are
tailored to reduce the area and energy requirements for performing inference. The main idea
is to minimize the memory requirements and the number of multiplications needed to perform
inference since both are the primary sources of area utilization and power consumption.

5.3.1 4-bit quantization

As mentioned in the related work Section 5.2, it is well known that quantization is a powerful
technique for lowering the memory and computational resources for inference [132, 133].
However, the increasing demand for deployment of DNNs on edge devices with very tight
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5.3 FantastIC4 Design

hardware constraints (ex: microcontrollers) has pushed researchers to investigate methods for
extreme quantization, resulting in weights with merely 4 bits or lower. The result is an 8◊
compression of the model, which helps minimize the cost of the o� and on-chip movement
of weights data. In particular, FC layers have shown to be highly redundant and robust to
extreme quantizations down to 4-bit [54, 150], again, our work’s primary focus.

5.3.1.1 Increasing the Computational E�ciency

However, the inference modules of extremely quantized layers are often implemented
following the usual multiply-accumulate (MAC) computational paradigm. We argue that
this computational paradigm could be more e�cient in the regime of extremely low precision.
Instead, we propose first accumulating the activations at each bit level and multiplying the
results, thus creating an accumulate-multiply (ACM) computational paradigm. ACM is a
unique form of Distributed Arithmetic (DA) used in DSPs for dot product computation
between a fixed and a variable data vector. In [160], DA was used for the first time in a
deep-learning scenario. More concretely, we follow the equation described below.

W ·A¸ ˚˙ ˝
MAC

=
A

3ÿ

i=0

ÊiBi

B

·A =
3ÿ

i=0

Êi(Bi ·A)
¸ ˚˙ ˝

ACM

(5.1)

where we denote as W the weight parameters of, e.g., a fully-connected layer, A the input
activations, · the operator denoting the dot product, and Bi a binary mask corresponding to
the base Êi. Thus, as shown in equation (5.1), we represent the weight parameters W as a
linear combination of four binary masks Bi with respective coe�cients Êi. This representation
generalizes any 4-bit representation that is applied to the weights. For instance, if Êi = 2i,
the elements of W are represented in the uint4 format. The uint4 format is a 4-bit unsigned
integer format.

As one can see from the right-hand side of Eq. (5.1), we can first accumulate the activation
values that are positioned as indicated by the bitmasks Bi, and then multiply the output by
the base value (or base centroid) Êi. As a result, the number of multiplications is significantly
reduced. In this work’s setup, only 4 multiplications are required per output element, which is
almost negligible for large dimensions of input activations. For example, by utilizing a fully
connected layer to map 1000 input activations to 100 output activations, the MAC paradigm
requires 100,000 multiplications. On the other hand, the proposed ACM approach scales only
with the number of output activations and requires 400 multiplications. Thus, the inference
procedure is now dominated by the complexity of performing additions. Figure 5.1 sketches this
procedure for a concrete example and compares it to the traditional MAC paradigm. Here, given
two input vectors, the MAC calculates the respective scalar product by multiplying the elements
and adding them. In contrast, the accumulate-multiply (ACM) first sums the elements of one
of the vectors (in this diagram, the right-hand-side vector) according to the bit-decomposition
of the other, then multiplies the respective basis values and reduces the output. In the above
sketch, the base values were [-1.43, -0.77, 0.13, 2.53], and we color-coded according to [blue,
green, red, pink]. Thus, the original element values result by performing the linear combination
in the vertical direction, for instance, ≠2.2 = 1◊ (≠1.43)+1◊ (≠0.77)+0◊ (0.13)+0◊ (2.53).
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Figure 5.2: Di�erence in sensitivity between the activations and weight parameters of the
E�cientNet-B0 model. Activations are more sensitive to quantization since the model’s prediction
performance drops significantly faster (at higher precision values) [32] ©2021 IEEE.

5.3.1.2 Increasing the Capacity of the Model

Moreover, the usual MAC computational paradigm requires quantizing the activations of
the model down to 4 bits (or lower) to exploit the benefits of extreme quantization. Since
activations are often more sensitive to perturbations than the weights, as shown in Fig. 5.2,
this significantly degrades the neural network prediction performance. Moreover, bias and
batch-normalization tend to be more sensitive than the weight parameters. Therefore, it
motivates the support of mixed-precision layers, where input and output activations, bias, and
batch-norm parameters can be represented with higher precision than weights to compensate
for the degradation inaccuracy. FantastIC4 design supports higher precision activation values
since this can be easily integrated within the ACM computational flow. In addition, we support
the full-precision representation of the batch-norm parameters and the bias coe�cients since
their memory and compute costs are relatively low compared to the operations involved in the
weight parameters.

In addition, in our work, we do not constrain the values of the linear coe�cient Êi to be of
powers of 2, as it is most common in the MAC approach, but allow Êi œ R. The expressive
power of W and the model’s capacity increases, allowing it to learn more complex tasks.

5.3.2 Why do we focus on low entropy?

Lowing the entropy of the weights has several benefits in terms of memory and computational
complexity, as discussed in [134] in detail. We stress that by entropy, we mean the first-
order entropy, as measured by the empirical probability mass distribution of the parameters.
Concretely, H = ≠

q
i Pi log2 Pi, where Pi measures the empirical probability mass distribution

of the i-th cluster center. Additionally, low entropy is calculated from the DNN model, where
we calculate the total number of times the weights have appeared in the whole model. The
calculation is straightforward, where the probability of an element is equal to the number of
times it appears in the DNN model divided over the total number of weights of the DNN. The
probability mass distribution is calculated according to Eq.5.2, where E refers to the total
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number of elements and W refers to the total number of weights. In the following, we explain
how we leverage the low-entropy statistics of the weights in this work.

pi =
E

W
(5.2)

5.3.2.1 Saving Arithmetic Operations

Low entropy statistics encourage sparsity [134]. As thoroughly explained in previous work [150,
90, 151], sparsity allows to save computations by skipping zero-valued operations. In particular,
FantastIC4 does not perform additions of activations when zero-valued weights are present,
thus saving on arithmetic operations and, consequently, dynamic energy consumption.

Moreover, low entropy statistics also encourage the low number of unique non-zero values,
thus a high probability of encountering the same non-zero value. This property can be
exploited when loading non-zero values by reducing the dynamic power required when loading
the same value. A simple example of how the arithmetic operations are saved by employing
the accumulate-multiply technique instead of the MAC technique is shown in Fig. 5.1.

5.3.2.2 Multiple Lossless Compression

There are several ways to compress sparse weights. One is by converting the weights in the
Compressed Sparse Row (CSR) format [54], which is based on applying run-length coding for
saving the signaling of the positions of non-zero values. Another is using a simple form of
Hu�man coding, which consists of storing a bitmask indicating the positions of the non-zero
values followed by an array of non-zero values organized in, e.g., row-major order. In the high
sparsity regime (>90% of zeros), the CSR format attains higher compression gains, whereas,
for smaller sparsity ratios (25% - 90% of zeros), the Hu�man code compresses the weights.
Since the sparsity ratio of di�erent layers can vary significantly, FantastIC4 supports processing
both sparse representations on-chip. Furthermore, the bye model can increase compression
gains and reduce transmission costs from o� to on-chip by enabling more flexible compression
opportunities.

5.4 Training of 4-bit compact DNNs

As described in the previous Sections 5.3, our proposed optimization paradigm is based on the
fact that the weight parameters exhibit low-entropy statistics and can be represented with
4-bits. However, suppose we naively lower the entropy and strongly quantize a pre-trained
model. In that case, we will most likely incur a significant drop in accuracy, as explained in
the experimental section 5.6. Therefore, we propose a novel training algorithm in this work
that makes DNN models robust to such transformations.

5.4.1 Entropy-constrained training of DNNs

Our method is strongly based on EC2T, proposed in [143] that trains sparse and ternary DNNs
to SoA accuracies. Instead, we generalize their approach so that DNNs with 4-bit weights
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Figure 5.3: Entropy constraining of DNNs [32] ©2021 IEEE.

and low entropy statistics are attained. Concretely, our training algorithm is composed of the
following steps:

1. Quantize the weight parameters (but keep a copy of the full-precision weights) by applying
the entropy-constrained Lloyd (ECL) algorithm [161].

2. Apply the straight-through estimator (STE) [162] and forward + backward pass the
quantized version of the model.

3. Update the full-precision weights and the centroids with the computed gradients.

Fig. 5.3 sketches the training method. The 4-bit entropy-constrained training method for
compressing DNNs is based on the straight-through estimator (STE). Firstly, the full-precision
parameters are quantized using the entropy-constrained Lloyd (ECL) algorithm, whereas the
quantization points are constrained to be linear combinations of 4 bitmasks with 4 basis
centroids. Then, the gradients are calculated concerning the quantized DNN model. The
full-precision parameters are updated respectively, whereas each basis centroid’s gradients are
computed by grouping and reducing their respective shared gradient values.

5.4.2 Definition of the centroids

As described in equation (5.1) (section 5.3), we represent the weight parameters W of the
DNN as a linear combination of 4 binary masks Bi with respective coe�cients Êi. With this,
we can define 16 di�erent cluster center values (or centroids), four of which are the coe�cients
Êi and the rest a linear combination. To increase the capacity of the models, we assign to each
weight parameter W his unique set of four centroids �.

5.4.3 Entropy-Constrained Lloyd algorithm (ECL)

The ECL algorithm is a clustering algorithm that also considers the entropy of the weight
distributions. Throughout this work, we define entropy as H = ≠

q
i Pi log2 Pi, where Pi

measures the empirical probability mass distribution of the i-th cluster center. To recall, the
H states the minimum average amount of bits required to store the output samples of the
distribution [163]. Thus, ECL tries not only to minimize the distance between the centroids and
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the parameter values but also the information content of the clusters. Again, this regularization
term is theoretically well-motivated, directly measures the possible size reduction of the model,
and encourages sparsity + quantization of the weights to low bit-widths.

However, we slightly modified the algorithm so that the ECL method does not update
the cluster centers. Instead, we fine-tune the cluster centers with the information from the
gradients (more in subsection 5.4.5).

5.4.4 Making DNNs robust to post-training quantization

As stated earlier, the accuracy drop may be significant if we naively apply the ECL algorithm
to a pre-trained network. Therefore, we use the STE method [162] to make them robust to
extreme quantization. In the case of neural networks, this means applying further training
iterations to update the full-precision parameters about the gradients computed by the
quantized parameters. We adapt the full-precision weight parameters to the prediction error
incurred by the quantization, thus forcing them to move to minima, where they are robust to
ECL-based quantization.

5.4.5 Fine-tuning centroids

Our particular contribution is reflected in the definition of the 16 clusters and their respective
gradient propagation (i.e. fine-tuning). To recall, we represent each (quantized) weight
parameter as a linear combination of 4 binary masks Bi with respective coe�cients Êi, thus
W =

q
3

i=0
ÊiBi. Therefore, we only update the four basis centroids Êi at each training

iteration since 12 out of the 16 centroids are linear combinations of these. Hence, we calculate
the gradients ”Ê

i
of each centroid Êi as follows: Let ”W be the gradient tensor of the weight

parameter W , then
”Ê

i =
ÿ

j=0

”Wj Bi (5.3)

with Bi being the binary mask respective to the coe�cient Êi, and j being the dimension that
iterates over all parameter elements. After computing the gradient of each centroid, we update
them by applying the ADAM optimizer. The simple example of fine-tuning of centroids is
shown in 5.1.

5.5 Hardware Architectures for FantastIC4

Fig. 5.4 shows the overview of the FantastIC4 system. The entire system is a heterogeneous
combination of a CPU and FPGA. The system consists of the CPU, the external DDR3
memory, and the FPGA chip. The software part mainly consists of the CPU that transfers
the input data and the DNN model (only one time) to the FPGA. Since all the data is usually
extensive and can not entirely be stored on an on-chip BRAM, some of it is stored in an o�-chip
DRAM. The data is then accessed through a memory controller built across a Memory Interface
Generator (MIG) IP. We have the FantastIC4 control unit, memory controller, I/O Bu�ers,
and the FantastIC4 accelerator on the FPGA chip. The memory controller facilitates the
movement of the input data from o�-chip DRAM to the accelerator and stores the computation
results into the DRAM. The control unit controls the behavior of other modules on the FPGA.
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Figure 5.4: FantastIC4 system [32] ©2021 IEEE.

Table 5.1: Control states of the FantastIC4 control unit [32] ©2021 IEEE.

Data
Movement - Acts,Wt,Bias

alpha and CSR
CSR
Data - - - - - - -

Computation - - BM Conv Wt ID Add tree/
MAC Fix-Flt Flt

Mul1
Flt
Add

Flt
Mul2 Flt-Int

State Start State1 State2 State3 State4 State5 State6 State7 State8 State9
Time(ns) 0 5000 10 10 10 30 50 50 40 20

It is responsible for data movement and computation inside the accelerator. The I/O bu�ers
store the input data for processing and return the PSums data from the accelerator for the
subsequent layer inference. The FantastIC4 accelerator is the heart of the entire system, which
reads the data from the DRAM, performs the computation, and stores the results back into
the DRAM memory.

5.5.1 Memory Controller and Input/Output Bu�ers

The FantastIC4 accelerator accesses the DDR3 memory through a MIG interface operating at a
clock frequency 200MHz. We employ the AXI communication protocol for the data movement
between the FPGA chip and the o�-chip DRAM. The MicroBlaze CPU and other AXI control
IPs communicate through the MIG interface with the DDR3. The memory controller receives
instructions from the FantastIC4 control unit through the AXI master to read and write the
data from/to the memory. The I/O bu�ers provide dual bu�ering for the data movement in a
ping-pong manner.

Our proposed accelerator has two levels of the control hierarchy. Table 5.1 shows the
control states for our accelerator. The first level of the hierarchy, i.e. the Start and then State1,
controls the data movement between the DRAM, memory controller, and the accelerator on the
FPGA chip. Here, the activations, weights, biases, alpha values for floating-point operations,
FIFO data, and 256-bit CSR Pointer data are moved into their respective memory/registers
for computation. At this level, all the data movement operations are performed sequentially.
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Figure 5.5: FantastIC4 architecture [32] ©2021 IEEE.

The total time to complete these two states is around 5000ns for MLP models. Here, the
total time taken mainly depends on the DNN model under inference. At the next level of the
hierarchy, we perform the computations. State2-State9 shows the various stages of processing
performed on the accelerator. The di�erent orders of computation performed are CSR to
bitmask conversion, weight ID generation, accumulation and multiply operation, and finally,
the single-precision floating-point operation. The total time taken to perform the computation
is around 220ns. The computation time is less because all the states work concurrently, and
each state is independent of the other states except on the first iteration.

5.5.2 FantastIC4 Architecture

The top-level hierarchy of the FantastIC4 architecture is shown in Fig. 5.5. The architecture
operates on a single clock frequency domain of 150MHz (FPGA-based) and 800MHz (ASIC-
based). FantastIC4 is composed of CSR to bitmask logic to perform CSR to bit mask conversion,
FIFO modules to store the weight IDs for 256 adder trees, and a weight ID generator fetches
the data from the FIFO modules based on the outcome of CSR to bit mask conversion. An
adder tree accumulates the activations based on the weights IDs from the ID generator. The
MAC array performs four multiplication and three addition operations. The fixed point to
floating point converter converts a 16-bit fixed point MAC output into a 32-bit single-precision
float output. This 32-bit floating-point MAC output will be multiplied by a 32-bit alpha1
value; where the alpha1 value is an array of single-precision floating-point data, the output of
the multiplier1 will be added with the bias. The output of the adder will undergo a non-linear
activation operation called ReLU to perform the computation as explained in Eq. 2.3. Final
floating-point multiplication is performed with another 32-bit single-precision alpha2 value.
The 32-bit result from the multiplication will be rounded back to the 16-bit integer value to
generate the final PSums.

CSR to Bitmask Logic. By default, FantastIC4 loads the positions of the non-
zero elements of a row of the sparse weight matrix according to the compressed Hu�man
representation, which consists of a straightforward binary mask of width 256. The Hu�man
encoding algorithm is a data compression algorithm where the variable-length code is assigned
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Figure 5.6: CSR to bitmask conversion logic [32] ©2021 IEEE.

to each input character, where the frequently occurring character gets the smallest code, and
the least occurring characters get the largest code [164]. The bitmask controls the weight ID
movement into the adder tree. However, when a layer of non-zero positions is compressed
following the CSR format, a logic must be implemented that converts them back to a bitmask
representation, which is the purpose of the CSR to bitmask logic. The conversion logic is
shown in Fig. 5.6. The compressed non-zero position data pointers comprising 256 bits will be
split into chunks of 32, which is 8-bit wide. Based on the 8-bit value, each bit of the encoded
bitmask will be set to ‘1’. For example, As shown in Fig. 5.6, the 0th chunk had a value of 241,
and the 31st chunk had a value of 51. So, the corresponding 241st bit and 51st bit will be set
to 1, and the remaining bits will be set to 0 to generate a 256-bit encoded bitmask data. The
CSR pointer and bitmask data will be selected from a 2 ◊ 1 multiplexer through a “Select
Bits” to generate the final encoded data for weight ID generation.

FIFO Module and Weight ID Generator. The FIFO module has 256 individual
FIFOs with a width of 4 and a depth of 256, each storing the non-zero weight elements of a
particular column of the layer’s weight matrix. These FIFO modules are stored in an array
of registers. The weight ID generator has a simple selection logic, where each IDs of 4 bits
is fetched from the FIFOs based on the encoded bitmask data. For example, if the encoded
bitmask is ‘1’, an ID will be fetched from the FIFOs, and the pointer points to the exact
location of the fetched data. The weight ID generator has 256 ID modules, which store the
4-bit IDs from the FIFO if the 256 individual bits from the bitmask are ‘1’ or store 4-bit zero
data.

Adder Tree and MAC Array. Adder trees consist of an array of 256 adders arranged in
a logarithmic fashion. The adder tree has two stages: Adder Stage1 and Adder Stage2. Stage1
has 128 adders arranged in one group. Each adder in the stage1 has three hierarchy levels
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Figure 5.7: Adder schematic [32] ©2021 IEEE.

with a control parameter in each hierarchy. Fig. 5.7 shows the adder schematic in Stage1. The
adders are fed with the weight ID generator’s two di�erent activations and two di�erent IDs.
All the activations in the adder tree are static and used for all computations cycles. The static
activations in the adder tree enable significant power consumption. Having static activations
inside the adder rather than accessing it from memory saves up to 15% of power consumption.
In the level1 hierarchy, the 4-bit weight IDs control the movement of the activations inside
the adder. Each bit from the weight IDs forms a channel that regulates the activation flow to
level2. If the ID is 1, the 16-bit activation is fed, or a zero value is fed to the level2. Eight
groups of activation data will come out of the level1 hierarchy. In the level2 hierarchy, the
activation switches between the upper and lower half of 8 bits. This technique fits the more
extensive networks into the hardware and improvises the prediction. In this hierarchy, if the
activation switch is low, the lower or upper half of the bits is selected. In the level3 hierarchy,
the actual computation is performed. The sign mode determines whether the activations need
to be added or subtracted. Finally, four di�erent computations are performed among the eight
groups to generate the four-output data of 16 bits from each adder. The adder stage2 has
128 adders arranged in multiple groups. The first group in the adder stage2 has 64 adders,
the second group has 32 adders, and similarly, other groups are logarithmically scaled down.
The adders in the adder stage2 perform only the computation, unlike those in the stage1.
Depending on the sign-bit in the output data from the stage1, either addition or subtraction
is performed.

The MAC array performs four multiplications and three additions, respectively. Therefore,
the four outputs, each of 16 bits from the adder tree, will be multiplied with the 16-bit basis
weights to generate a 32-bit product, which we will accumulate to create the final 32-bit MAC
output.

Floating Point Operations. The floating-point operation mainly comprises fixed to
floating-point conversion, floating-point multiplications, floating-point addition, and final 32-bit
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Algorithm 1 Fixed Point to Floating Point Conversion
mac_out: 32-bit fixed point MAC output
convert_out: Single precision floating point number
procedure FixedtoFloat(mac_out, convert_out)

lod Ω Leading one detector
convert_out_sign Ω Sign bit of floating point
convert_out_exponent Ω Exponent of floating point
convert_out_mantissa Ω Mantissa of floating point
for k Ω 30 downto 0 do

if (mac_out[k] == 1) then
lod = k;

end if
end for
convert_out_sign = mac_out[31];
convert_out_exponent = lod + 127;
convert_out_mantissa = mac_out << (23 - lod);
Combine sign, exponent, and mantissa to generate convert_out
return convert_out

end procedure

floating-point to 16-bit integer conversion. In the fixed-to-floating-point conversion, a 32-bit
fixed-point MAC data is converted into equivalent single-precision floating-point data as shown
in the Algorithm. 1, a leading one will be detected from the MAC output, and a corresponding
conversion operation is performed.

The converted floating-point data will undergo a single-precision floating-point multiplica-
tion with Alpha1 values. The Alpha1 values are stored in a SRAM of only 1KB. With these
scaling factors, FantastIC4 can accommodate for de-quantization and batch norm parameters,
as explained in Section 2.6.1.3. As shown in Fig. 5.8, both the inputs will be normalized
and split into their equivalent sign, mantissa, and an exponent part. The 23-bit mantissa
will be multiplied with each other to generate 48-bit output. The MSB of the multiplied
output will be used to calculate the final mantissa and the exponent part. The sign bits
of both inputs will be XORed to generate the final sign bit. The final sign, exponent, and
mantissa will be concatenated to generate the final 32-bit multiplied output. Subsequently, the
multiplied floating point will be added with the bias data stored in another 1KB SRAM. This
operation is similar to the multiplication operation in terms of the normalization of the data.
Then, the added data will undergo a non-linear activation ReLU function as f(x) = max(0, x)
since it is the status quo non-linear function for most MLP models. The example for this
ReLU function is shown in Section 2.1. The ReLUed output will be further multiplied with
a single 32-bit Alpha2 value to generate the final 32-bit multiplied output. These scaling
factors consider di�erent quantization parameters, which is vital for correctly calibrating the
subsequent quantization step, consisting of a final rounding of 32 bits to a 16-bit integer. The
16-bit integer is the final PSum that will be used as an activation for the inference of the next
layer.
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Figure 5.8: Floating point multiplier [32] ©2021 IEEE.

5.6 Experiments

5.6.1 Experimental setup

5.6.1.1 Datasets and Models

In the experiments section, we distinguish between hardware-conform and non-conform models.
Those confirmed models that are fully compatible with our hardware architecture and a bit
accurate can be used for the entire inference process. Consequently, conform models include
only FC layers with 512 input/output features. Optionally, batch norm layers (as explained in
2.6.1.3) are allowed, which can result in accuracy gains.

To cover a variety of use cases with the conform models, we trained and deployed several
models solving classification tasks for audio, image, biomedical, and sensor data. Concretely, we
considered the Hand Gesture Recognition (HR) task based on the biomedical and sensor dataset,
the Google Speech Commands (GSC) dataset for audio classification, and the MNIST and
CIFAR-10 datasets for the small-scale image classification task. We trained and implemented
custom and well-known MLPs for solving the tasks mentioned above. In addition, to benchmark
our quantization algorithm, we also used non-conform models, which we have not trained
ourselves but obtained from publicly available sources. Concretely, ResNet-50 and -34 come
from the torchvision model zoo2, E�cientNet-B0 3 and ResNet-20 4. We further trained
these models by applying our entropy-constrained method (Section 5.4) and benchmarked

2https://pytorch.org/docs/stable/torchvision/models.html
3https://github.com/lukemelas/EfficientNet-PyTorch, Apache License, Version 2.0 - Copyright (c) 2019

Luke Melas-Kyriazi
4https://github.com/akamaster/pytorch_resnet_cifar10, Yerlan Idelbayev’s ResNet implementation for

CIFAR10/CIFAR100 in PyTorch
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their accuracies at di�erent regularization strengths. We refer to the appendix for a more
in-depth description of the experimental setup, the models, and the datasets employed in the
experimental section.

Hand Gesture Recognition (HR). The authors in [20] collected Inertial Measurement
Unit (IMU) and electromyogram (EMG) readings from 5 di�erent subjects in 5 di�erent
sessions to capture 12 defined hand gestures. Di�erent from [20], we deploy a small MLP to
solve the classification task. It outperforms the proposed Hidden Markov Model, which achieves
a mean accuracy of 74.3% for person-independent hand gesture recognition. Our proposed
4-layer deep MLP achieves a person-independent mean accuracy of 84.0%. Quantizing all
network layers to 4-bit with the FantastIC4 algorithm is possible with almost no drop in
accuracy. The model consists of an input layer, two hidden layers, and an output layer with
512, 256, 128, and 12 output features, where a BatchNorm layer follows each FC layer. The
data corpus 5is used for Hand Gesture Recognition.

Google Speech Commands (GSC). The Google Speech Commands dataset consists of
105,829 utterances of 35 words recorded from 2,618 speakers. The standard is to discriminate
ten words "Yes", "No", "Up", "Down", "Left", "Right", "On", "O�", "Stop", and "Go", and
adding two additional labels, one for “Unknown Words”, and another for “Silence” (no speech
detected) [19]. No overlapping speakers exist between the train, test, and validation sets. We
deploy an MLP consisting of an input layer, five hidden layers, and an output layer featuring
512, 512, 256, 256, 128, 128, and 12 output features. Our model achieves a classification
accuracy of 91.0%, outperforming the default CNN model (88.2%) in the TensorFlow example
code mentioned in [19]. The FantastIC4 4-bit quantization regularly a�ects the full-precision
MLP and further improves the classification accuracy to 91.35% while introducing 60%
sparsity. The authors in [165] show that CNNs, especially RNNs, usually achieve better
accuracy than MLPs for the GSC dataset. Still, our proposed model yields a comparable
accuracy to their proposed CNN and outperforms their 8-bit quantized MLP (88.91%). For
another comparison, [166] quantized their network composed of three convolution layers and
two fully-connected layers to 7-bit using 8-bit activations and achieved an accuracy of 90.82%.

Image Classification. We utilized two neural networks for small-scale image classification.
One MLP would fit our proposed accelerator, LeNet-300-100, and one CNN (ResNet-20).
CIFAR-10 [167] is a dataset consisting of natural images with a 32 ◊ 32 pixels resolution. It
contains 10 classes. The train and test sets contain 50,000 and 10,000 images. MNIST [168]
is drawn from 10 classes where each class refers to a handwritten digit (0-9). The dataset
contains 60,000 training and 10,000 test images with a 28◊ 28 pixels resolution. To benchmark
our quantization algorithm with ImageNet, we deployed E�cientNet-B0, ResNet-50, and -34
networks. The ImageNet [169] dataset is a large-scale dataset containing 1.2 million training
images and 50,000 test images of 1000 classes. The resolution of the image data varies and
ranges from several hundred pixels. We crop the ImageNet data in all experiments to 224◊224
pixels.

5https://www.uni-bremen.de/en/csl/research/motion-recognition.html
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5.6.1.2 Hardware Simulation Setup

The proposed FantastIC4 was implemented in System Verilog, and corresponding behavioral
and gate-level simulation was performed using the Mentor Graphics Simulator. Next, the
FPGA version of the FantastIC4 was implemented using the Xilinx Vivado tool. Finally, we
synthesized the place and routed the design to a Virtex Ultrascale FPGA on the XCVU440
device.

We synthesized the architecture using Synopsys Design Compiler (DC) under the ASIC
version’s GF 22nm FDSOI SLVT technology. Next, we placed and routed the design using
Synopsys IC compiler (ICC2). After the sign-o� and RC extraction using STARRC, we
performed the timing closure using Synopsys Prime Time. Finally, we annotated the toggle
rates from the gate-level simulation, dumped the toggling information into the Value Change
Dump (VCD) file, and estimated the power using Prime Time.

The closest related training method to ours is EC2T, which trains sparse and ternary
networks under an entropy-constrained regularizer [143]. However, our generalization allows
us to train DNNs with more expressive power due to their ability to express 16 di�erent
cluster centers instead of only 3. Moreover, thanks to full-precision scaling factors, which can
accommodate batch norm parameters, we expect our DNN models to be more robust to strong
quantization plus the sparsification, consequently attaining better prediction for performance
vs. compression trade-o�s. Fig. 5.9 shows this phenomenon. Our DNN models trained with
our entropy-constrained approach reach better "Pareto-Optimal" fronts regarding accuracy vs.
sparsity than the EC2T method.

Furthermore, in Table 5.2, we show the prediction performance of our models on the
datasets described above and summarize the results attained by other authors. We can see
that we consistently attain similar or higher prediction performance than the previous work.
Table 5.2 also shows the benefits of applying a hybrid compression scheme instead of the
single compression format approach as proposed by previous work. Our compression scheme
encodes each layer using the CSR, the simple Hu�man code (or bitmask format), and the
trivial 4-bit dense representation, and we choose the most compact representation between
them. We see that we attain about 2.36 ◊ boost in the compression gains on average as
compared to the CSR-only approach proposed by [150, 152], and 1.77◊ higher compression
rates than the trivial 4-bits dense format. These gains directly translate to reduced memory,
o�-to-on-chip data movement, and area requirements, stressing the importance of supporting
multiple representations.

5.6.2 Benchmarking Hardware E�ciency

5.6.2.1 Results on MLPs

We benchmarked FantastIC4 hardware performance on the fully connected layers of several
popular models such as E�cientNet-B0, MobileNet-v3 and ResNet-50. Furthermore, we
benchmarked the end-to-end inference e�ciency of two of our custom and fully hardware-
conform MLPs, trained for the Google Speech Commands and Hand Gesture Recognition task.
Both MLP models, which we named MLP-GSC & MLP-HR respectively, reach SoA prediction
performance on their tasks.
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Table 5.2: Comparison of the FantastIC4-quantization approach vs previous SoA 4-bit quantization
techniques. We report two results for each network, one showing the highest accuracies we attained
and the other with the highest compression ratios. Our models, as well as the best results, are
highlighted in bold. All models belonging to the same row block have the same architecture, except
the Google Speech Command and Hand Gesture Recognition datasets. Unless otherwise specified,
all approaches quantize all network layers, including input- and output layers, excluding batch
normalization- and bias parameters [32] ©2021 IEEE.

Model Org. Acc. (%) Acc. Size (MB) CRc CSRd

ImageNet

E�cientNet-B0 76.43 75.01 21.15 7.62 3.31
E�cientNet-B0 76.43 74.08 21.15 8.25 3.91
LSQ+ [135] 76.10 73.80 21.15 7.48 2.59

ResNet-50 76.15 75.66 102.23 8.21 3.50
ResNet-50 76.15 75.29 102.23 9.97 4.50
PWLQ [136]† 76.13 75.62 102.23 7.86 2.64
KURE [137]† 76.30 75.60 102.23 7.88‡ 2.64‡

ResNet-34IO† 73.30 72.98 87.19 7.80 4.32
ResNet-34I† 73.30 72.86 87.19 9.30 4.37
QIL [138]† 73.70 73.70 87.19 6.82 2.65
DSQ [139]† 73.80 72.76 87.19 6.82 2.65

CIFAR-10

ResNet-20 91.67 91.60 1.08 8.43 3.92
ResNet-20 91.67 91.15 1.08 16.23 11.31
SLB [140]† 92.10 92.10 1.08 7.64 2.62
GWS [141]† 92.20 91.46 1.08 7.72‡ 2.62‡

MNIST

LeNet-300-100 98.70 98.63 1.07 13.31 7.62
LeNet-300-100 98.70 98.16 1.07 29.31 19.81

Google Speech Commands

MLP-GSC 91.00 91.19 2.57 10.88 5.55
MLP-GSC 91.00 90.41 2.57 13.59 7.99
HE [HE] 86.40 86.40 0.2 - -

Hand Gesture Recognition

MLP-HR 88.50 88.33 1.30 8.51 3.96
MLP-HR 88.50 87.22 1.30 13.57 8.35
HMM [20] 74.30 74.30 - - -

a
Compression ratio is defined as the ratio of the full precision model size to the quantized model size, where

FantastIC4 stores each layer in its optimal format, which is CSR, bitmask format, or the trivial 4-bit dense

format.
b
Compression ratio defined as the ratio of the full-precision to the quantized model size, where each layer is

stored in CSR format.
†
QIL and DSQ use full-precision (32-bit) for the first and last layer, PWLQ and SLB use full-precision for the

first layer and KURE and GWS provide no information about first/last layer quantization. Our ResNet-34IO

benchmark has 32bit input- and output layers, and the ResNet-34I benchmark has a 32bit input layer.

Table 5.3 shows the resource utilization breakdown of our FantastIC4 accelerator for
di�erent DNN models. The proclaimed results are based on the post-implementation results
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Figure 5.9: Accuracy as a function of the sparsity ratio of di�erent DNN models. (top) LeNet-
300-100 model trained on the MNIST dataset by the previous method EC2T [143], compared to
FantastIC4 generalized form of entropy-constrained training method. (bottom) same as top, but
for ResNet20 trained on the CIFAR10 dataset [32] ©2021 IEEE.

Table 5.3: FantastIC4 resource utilization breakdown for di�erent DNN Models on a Virtex
Ultrascale FPGA. Here, BR stands for BRAMs, FF for flip flops, LUT for look-up tables, DSP for
digital signal processing, and LR stands for LUTRAMs [32] ©2021 IEEE.

Modules MLP-HR E�cientNet-B0 MobileNet-V3 ResNet-50 MLP-GSC
LUT FF BR DSP LR LUT FF BR DSP LR LUT FF BR DSP LR LUT FF BR DSP LR LUT FF BR DSP LR

CSR to BM 5K 255 0 0 0 5K 255 0 0 0 5K 255 0 0 0 5K 255 0 0 0 5K 255 0 0 0
Wt ID Gen 0 512 0 0 0 0 512 0 0 0 0 512 0 0 0 0 512 0 0 0 0 512 0 0 0

MAC
Array 565 153 0 4 0 570 158 0 4 0 568 156 0 4 0 580 162 0 4 0 566 153 0 4 0

Fixed point
to Float point

Op
707 483 8 4 0 717 491 8 4 0 711 17 12 4 0 719 500 16 4 0 709 484 8 4 0

Adder tree 35K 4K 0 0 0 35K 4K 0 0 0 35K 4K 0 0 0 35K 4K 0 0 0 35K 4K 0 0 0
FIFO
Module 53K 6K 0 0 8K 103K 119K 0 0 160K 830K 95K 0 0 128K 1661K 190K 0 0 256K 53K 6K 0 0 8K

BM Memory 21 821 8 0 0 38 842 36 0 0 33 834 31 0 0 48 821 63 0 0 28 822 8 0 0
Total 95K 12K 16 8 8K 108K 125K 44 8 160K 872K 101K 43 8 128K 1703K 196K 79 8 256K 95K 12K 16 8 8K

Table 5.4: FantastIC4 final resource utilization [32] ©2021 IEEE.

Resource LUT LUTRAM FF BRAMs DSP
Used 1703,187 128,000 196,909 79 8

Available 2532,960 459,360 5065,920 2,520 2,880
Utilization 67.24% 27.86% 3.88% 3.13% 0.27%

from Xilinx Vivado 2018.2. The activations values are quantized down to 8-bit precision,
whereas the four basis weights use a precision of 16-bits. This configuration was found to be
accurate enough to perform the inference without harming the prediction performance of the
models. As shown in Table 5.3, we consume the lowest resources among all the accelerators
reported so far that perform on FC layers. Here, we engage fixed and floating-point operations
for faster processing and improved accuracy during the inference. As a result, we consume
just 8 DSPs to perform the computation, significantly reducing dynamic power consumption.
Moreover, very few BRAMs are used in the inference operation due to the extreme quantization
and compression. Instead, the LUTRAMs are explicitly used to store the weightIDs inside the
FIFOs. As one can see, the floating-point operations utilize the lowest resources on the FPGA
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Figure 5.10: Layout view [32] ©2021 IEEE.

Table 5.5: Post layout results of the ASIC version [32] ©2021 IEEE.

Technology GF 22nm FDSOI SLVT
Chip Size 1mm ◊ 1.2mm
Core Area 800µm ◊ 800µm

Core Voltage 0.88V
Memory Type SRAM (10KB)

Total Gate Count 961K
Frequency 800MHz
Precision Fixed 16bit
Power 454mW
Latency 1.31µs

Performance 9.158 TOPS
Performance/W 20.17 TOPS/W

Energy 595 nJ
DNN Models Inferenced MLP-HR and MLP-GSC

chip due to the enhanced data flow modeling. Table 5.4 shows the final resource utilization
summary.

We further evaluated the ASIC version of FantastIC4 on a 22nm process node with a clock
frequency of 800MHz. Table 5.5 reports the layout version, and its layout view is shown in
Fig. 5.10, the total area of our processor was found to be 1mm ◊ 1.2mm.

102



5.6 Experiments

 

  
 

    
 

  
 

(a) Area Breakdown (b) Power Breakdown

Figure 5.11: Area and power breakdown of FantastIC4 ASIC version [32] ©2021 IEEE.

5.6.2.2 Power Consumption, Latency and Throughput on the FPGA

The FantastIC4 accelerator is highly energy-e�cient due to the low-weight storage and the
static activations inside the adder tree. The static activations inside the adder tree reduce
the total power consumption by 15◊, as the decreasing data movement consumed around
64mW of dynamic power compared to the conventional SRAM access, which had 960mW
of power consumption. We measured the power consumption for di�erent DNN models.
Throughout the inference, the static power consumption was significantly higher than the
dynamic power consumption, as the static power consumed on the XCVU440 FPGA was
2.856W. The total power measured from the inference of MLP-HR was 3.472W, E�cientNet-B0
was 10.14W, ResNet-50 was 12.34W, MobileNet-V3 was 8.46W, and MLP-GSC was 3.6W.
The average latency measurement of each layer for MLP-HR was 6.45µs, E�cientNet-B0 was
8.6µs, MobileNet-V3 was 6.3µs, ResNet-50 was 10.2µs, and MLP-GSC was 7.2µs. To infer our
entire custom DNN model, we had a latency of 72µs for MLP-HR and 80µs for MLP-GSC.
The overall throughput measurement was 2.45TOPS, as the processing unit remains constant
irrespective of the DNN model under inference. On average, the total o�-chip to on-chip
data movement was saved by 10.55◊ compared to the parameters’ original (non-compressed)
representation. Furthermore, due to our on-chip support of hybrid compressed representations,
we could boost the savings by 2◊ compared to the compressed formats proposed by [150] and
[152].

Similarly, for the ASIC version, as shown in Table 5.5, we could achieve a peak performance
throughput of 13.1 TOPS and a performance/watt of 28.87 TOPS/W. The performance/watt
is the unit used to evaluate the total number of operations performed by the inference
architecture per power consumption unit. The total latency to perform the inference was
1.31µs for the MLP-HR model and 1.37µs for the MLP-GSC model. Since we first perform all
the accumulation on the adder tree and then perform the MAC operation, we significantly
save the resources and power required for computations by 2.7◊. For example, an array of 256
MAC units with 16-bit width consumes an area of 346.58µm ◊ 346.58µm, whereas the same
ACM unit will consume an area of 216.54µm ◊ 216.54µm. Similarly, an array of 256 MAC
units consumes a power of 101.23 mW, and a variety of 256 ACM units consumes a power
of 40.46 mW. So, by our ACM technique, we save a total area of around 39% and power of
around 40%. The ASIC version’s location and power breakdown are shown in Fig. 5.11. In
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Table 5.6: Performance comparison with other SoA FPGA accelerators [32] ©2021 IEEE.

Parameters Dinelli [170] Ours
Device XCVU65 XCVU440

Benchmark GSC GSC
Quantization Fixed-16 Fixed-16

Sparsity N/A 60%
Accuracy 90.23% 91%

Throughput (TOPS) N/A 2.45
Throughput/W (GOPS/W) N/A 198.54

Static Power (W) 0.626 2.856
Dynamic Power (W) 1.235 0.744
Total Power (W) 1.861 3.6
Latency (µs) 570 80
Energy (mJ) 1.06 0.288

Frequency (MHz) 78.4 150

Table 5.7: Performance comparison with other SoA ASIC compression-based accelerators [32]
©2021 IEEE.

Platform EIE [150] Eyeriss V2 [152] Thinker [171] Our’s
Technology (nm) 65 65 65 22
Frequency (MHz) 800 200 200 800

Precision Fixed-16 Fixed-16 Fixed-8/16 Fixed-16
Throughput (GOPS) 572 858.62 368.4 9158.65

Power (mW) 590 606 290 454
Power E�ciency (GOPS/W) 969.49 1416.87 1270.34 20173.23

Area (mm2) 40.8 N/A 19.6 1.2
Area E�ciency (GOPS/mm2) 14.02 N/A 18.79 7632.208

most areas, the adder tree and the FIFOs dominate power consumption as they form the core
part of the architecture.

5.6.3 Comparison to previous work

Here, we compare the performance of other SoA accelerators on FPGA that work on multi-
layer perceptrons with a benchmark on the GSC dataset. The Keyword Spotting (KWS)
accelerator [170] was the closest FPGA accelerator that benchmarked on GSC, so for a fair
comparison, we are comparing it with this accelerator. The KWS accelerator [170] also
quantized their DNN models, implemented the entire architecture using on-chip memories,
and benchmarked the results on di�erent Xilinx and Intel FPGA devices. Table 5.6 shows
the comparison results. Here, we are mainly benchmarking for sparsity, accuracy, throughput,
and power consumption. We evaluated the performance of our accelerator on our custom
MLP-GSC, as our custom-built network had more sparsity and higher accuracy for the KWS
application. Our FantastIC4 accelerator has an overall throughput of 2.45 TOPS due to the
parallel execution of the adder tree and the MAC array and lower clock cycle requirement for
the floating-point operations. We have 50◊ lower dynamic power consumption compared to
[170] due to the static activations inside the adder tree, lesser number of multiplications, and
pipelined approach with the floating point operations. Regarding latency, we are 14◊ faster to
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Table 5.8: Performance comparison with other SoA ASIC KWS Accelerators [32] ©2021 IEEE.

Platform EERA-ASR [172] Guo [173] Our’s
Technology (nm) 28 65 22
Frequency (MHz) 400 75 800

Latency (us) N/A 127.3 1.31
Keywords Number 20 10 10

Dataset GSC
Accuracy 91.88% 90.20% 91%

Throughput (GOPS) 179.2 614.4 9158.65
Power (mW) 54 52.5 454
Energy(nJ) N/A 6683.25 594.74

Power E�ciency (TOPS/W) 3.31 11.7 20.17
Area(mm2) 3.34 6.2 1.2

Area E�ciency (GOPS/mm2) 53.65 52.51 7632.208

infer one complete network that works on the KWS application. Regarding energy e�ciency,
we are 27.16◊ better compared to the other accelerator.

For the ASIC version, arguably the closest related work to FantastIC4 are EIE [150] &
EyerissV2 [152] since both accelerators also leverage on compressed representations of the DNNs
parameters. We stress that more recent accelerators exploiting compressed representations
exist, such as [151]. However, these were optimized for convolutional layers, whereas FantastIC4
optimizes the execution of fully-connected layers.

In the following, we provide benchmarks across di�erent accelerators for each component,
as shown in Table 5.7. In the throughput comparison, FantastIC4 is better than EIE by 16◊,
Eyeriss v2 by 15◊, and Thinker by 31◊. Regarding power e�ciency, FantastIC4 outperforms
EIE by 20◊, Eyeriss v2 by 14◊, and Thinker by 16◊. We could not compare our accelerator
with Eyeriss v2 because the Eyeriss v2 area is reported in terms of the total number of gates.
So, by comparing the total gates, we are smaller by 2.9◊. However, for other accelerators, we
are better than EIE by 544◊ and Thinker by 406◊.

Table 5.8, we compare our accelerators with the other state of art ASIC KWS accelerators.
We are comparing FantastIC4 with EERA-ASR[172] and RNN-based speech recognition
processor [173]. Both the processors work with the same Google Speech Command dataset.
Compared to other works, we have a better throughput by 51◊ and 14◊. Similarly, we are
more power e�cient by 6◊ and 1.8◊, respectively. Regarding area e�ciency, we are e�cient
by 142◊ concerning [172] and 145◊ concerning [173].

Finally, a few of the things that FantastIC4 can improve upon is by making the architecture
compatible for the inference of the convolution layers of the DNN and further improving the
performance/watt by reducing the dynamic power consumption in both the FPGA and ASIC
inference.
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Figure 5.12: Power consumption of our MLP-HR model as a function of its entropy distribution.
(blue) Dynamic power consumption measured on an FPGA, (red) measured on ASIC simulation [32]
©2021 IEEE.

5.6.4 Ablation Study: Execution e�ciency of the models as a function of
their entropy

In Section III, we argued that one of our significant contributions is that FantastIC4 hardware
architecture is specially designed to exploit low-entropy statistics of the weight parameters.
Thus, we should expect the execution e�ciency of DNN models to increase as the entropy of
the weight parameters decreases. Figure 5.12 shows precisely this trend. In this experiment,
we measure the power e�ciency of our MLP-HR model at di�erent overall entropy levels
of the model. To perform this study, we ran our post-layout simulation (ASIC) and post-
implementation timing simulation (FPGA) to generate the corresponding Value Change Dump
(VCD) for ASIC and Switching Activity Interchange Format (SAIF) for FPGA. Using these
files, we measured the dynamic (vector-based) power consumption on Synopsys PrimeTime
and Vivado. Based on the measurement, the power consumption decreases quasi-linearly
with the entropy of the model. Again, this trend is because FantastIC4 supports (1) the
e�cient processing of compressed representations of the weight parameters, (2) the e�cient
computation of 4-bit non-zero values, and (3) the e�cient loading of repeated values from the
FIFOs, all being properties that become more and more predominant as the entropy of the
model’s parameters decreases.

5.7 Summary

This chapter proposed a software-hardware optimization paradigm for maximally increasing the
area and power e�ciency of MLP models with SoA predictive performance. First, we introduce
a novel entropy-constrained training method for making the models compressible in size, which,
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in combination with FantastIC4s support for the e�cient on-chip execution of multiple compact
representations, can boost the data movement e�ciency of the parameters by up to 29◊ (on
average 10.55◊ across di�erent models) as compared to the original models, and by 2◊ as
compared to the previous compression approaches. In addition, our training algorithm renders
the models robust to 4-bit quantization while inducing sparsity, properties that FantastIC4
exploits to further increase the power e�ciency by 2.7◊ and area e�ciency by 2.6◊. Finally,
it implements an activation stationary data movement paradigm, increasing the on-chip data
movement e�ciency of the activation values by 15◊. FantastIC4 was implemented on a Virtual
Ultrascale FPGA XCVU440 device. The experimental results show an overall throughput of
2.45 TOPS with a total power consumption of 3.6W. Furthermore, we achieved the lowest
resource utilization for a MLPs inference by consuming 67.24% of LUTs, 27.86% of LUTRAMs,
3.88% of FFs, 3.13% of BRAMs, and 0.27% of DSPs. This is the first FPGA accelerator
to achieve high throughput using a few resources and power. We further benchmarked our
FantastIC4 on a 22nm process. The ASIC version achieved a total power e�ciency of 20.17
TOPS/W and latency of 1.31µs per layer inference of the GSC dataset. FantastIC4 outperforms
other SoA GSC accelerators by 51◊ in terms of throughput and 145◊ in area e�ciency.
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6
Conclusion

6.1 Summary of the Contributions

Research on DNN architectures is becoming immensely popular with its wide performance
and applicability. Despite the high amount of related works in this ever-booming field, this
thesis makes a few solid contributions to the DNN hardware research community:

• Energy E�cient Dataflows: As we have seen how data movement inside the DNN
processor is a very crucial attribute, this thesis systematically exploits the multi-
level storage in the form of SRAM and scratch pad usage as explained in
Chapter 4 with an optimized pipelined dataflow to achieve energy e�ciency.
Furthermore, unlike previous works, which perform one-size-fits-all dataflows regardless
of the DNN shapes and sizes, we have shown quantitatively that better results can be
achieved when the dataflow is dynamically adapted to the DNN data structures.

• E�cient PE utilization and ACM Engine for high-performance: The biggest bottleneck
in the DNNs processing is the data reuse variation, which can lead to ine�cient throughput
due to low PE utilization. This thesis describes how to reuse the data and
improve the performance throughput by avoiding the traditional MAC engine
and replacing it with the ACM engine, as explained in Chapter 5. ACM
engines avoid underutilization of PEs. Also, it supports the highly sparse
DNN networks by turning o� the computation to save the dynamic power
consumption when zero weights or activations are loaded into the PE unit.
Unlike the earlier works that mainly concentrate on the lower performance bounds,
such as the peak performance or the number of active PEs to evaluate the hardware
performance. We have quantitatively shown the e�ect of the ACM when compared to
the traditional MAC units and the need for approximate multiplication to save power
consumption.
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• Energy e�cient dataflows: The RS dataflow in the multi-bit accelerator in Chapter 4
and the pipelined dataflow of FantastIC4 in Chapter 5 demonstrated the need for highly
adaptive dataflows that optimizes for the energy e�ciency of the DNN models.

• Dynamic truncation of the PSums: The multi-bit accelerator sets an example of how
dynamically the PSums data can be truncated that serves the wide variety of DNNs in
one design by inferencing on the multiple bits. The developed accelerator proves
that there is no need to have a fixed-bit architecture to achieve high accuracy,
and it quantitatively proves that with reduced bit-width, we can achieve low
power, high throughput, low resource utilization, and high accuracy.

• Hardware-software co-design processor: FantastIC4 processor showed that hardware-
software co-designing could achieve both computational e�ciency and an increased model
capacity. It also quantitatively proved that compression could increase the throughput
and fit larger DNN models into the on-chip SRAM. In addition, this processor design
also proved that the fixed and floating-point operations could be supported on the same
architecture.

Overall, this thesis demonstrates the need for the hardware-software co-design to achieve
an e�cient performance, power, and area processor. Achieving the proper balance between the
two methods will open more opportunities in the AI hardware field to be applied in real-world
applications with energy and performance constraints.

6.2 Drawbacks

Although the thesis adds significantly to other SoA architectures, Chapter 4 and Chapter 5 still
can improve on some aspects of their architectures. For example, the multi-bit architecture
supports only the point-wise convolutions, and it can be extended to support the depth-wise
convolution and the swish activation function. In addition, the latency for inference can be
further improved for the next generation DNN models.

Similarly, the FantastIC4 architecture can be extended further to the convolution layers as
it supports only the FC layers.

6.3 Future Work

As research on DNNs continues, more challenges and opportunities will arise in developing
DNN accelerators.

• Hardware Friendly DNN Designs: The design of DNN hardware architectures is lagging
compared to DNN model development. Since algorithm designers and hardware architects
depend on each other for e�cient design development, this creates a significant knowledge
gap. Research and development on providing instant feedback on the processing
throughput and energy e�ciency in the design or during the training will be beneficial
to bridge the gap and yield hardware-friendly DNNs.
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6.3 Future Work

• Hardware Architecture for Training: This thesis aims to investigate the inference part of
DNN models. Using hardware to train the models would reduce overall computation
time and benefit applications that require privacy and customization. Training is mainly
done o�ine due to the increased hardware resources and run time. Building e�cient
hardware for training will help open up more opportunities in the AI field.

• Generalization to other fields: Most of the design principles presented in this thesis apply
to di�erent fields. For example, the computations to handle the sparsity in DNNs can
benefit sparse linear algebra. Furthermore, GPUs can cue from the DNN data flow as
the computation flow remains unchanged.
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