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Zusammenfassung

In dieser Arbeit studieren wir das Abtasten und die Rekonstruktion von Signalen, die
eine dünnbesetzte Struktur besitzen. Wir werden dabei verschiedene Modelle betrachten.
Zuerst studieren wir das Abtast- und Rekonstruktionsproblem mittels Generalized Sam-
pling. Generalized Sampling ist eine lineare Rekonstruktionsmethode, die es erlaubt zwei
beliebige Frames zu benutzen, einen für das Abtasten und den anderen für die Rekon-
struktion. Ein wesentlicher Fokus wird in dieser Arbeit auf Shearlets liegen, welches ein
Repräsentationssystem ist, das die sogenannte Optimal Sparse Approximation Rate fuer
cartoon-ähnliche Funktionen erfüllt. Für das Abtastystem werden wir häufig die Fourier-
basis betrachten, da diese auch in der Magnetresonanztomografie (MRT) verwendet wird.
Unabhängig von dem Abtast- und Rekonstruktionsproblem mit Hilfe von Shearlets werden
wir die fundamentale Eigenschaft der linearen Unabhängigkeit von Shearlets untersuchen
und eine neue Konstruktion für Shearlets auf beschränkten Gebieten geben.

Des Weiteren studieren wir die Rekonstrution von dünn besetzten Signalen durch
`1-Minimierung was fundamental ist im Gebiet des Compressed Sensings – eine The-
orie, die die Akquisition und Rekonstruktion von dünnbesetzten Signalen durch lösen
eines Optimierungsproblems anhand von einer unvollständigen Menge an Messungen
studiert. Dabei werden wir zwei verschiedene Situationen studieren: Zunächst unter-
suchen wir das unendlich dimensionale Problem mit Hilfe von multiskalen Abtaststrate-
gien und lokalisierten Rekonstruktionssystemen, welche wiederum mit einer natürlichen
Multiskalenstruktur versehen sind, wie zum Beispiel die Shearletsysteme. Insbesondere
werden wir eine Verallgemeinerung der Shearlets betrachten, nämlich das der α-Moleküle.
Wir zeigen, dass eine stabile Rekonstruktion von Fouriermessungen für solche Systeme
möglich ist, dabei werden wir insbesondere die Balancing Property untersuchen, die im
Wesentlichen das Abtastschema unter Berücksichtigung der Struktur des Rekonstruktion-
ssystems bestimmt und zeigen, wie man diese für Systeme wie α-Shearlets nachweisen
kann.

Anschließend studieren wir nicht-konvexes Compresses Sensing in dem wir über `p-
quasinormen für p ∈ (0, 1) minimieren. Wir zeigen die Stabilität der Lösungen die man
durch eine derartige Minimierung über Primal Frame Coefficients oder über Dual Frame
Coefficients erhält. Für Letzteres führen wir ein neues Konzept ein, das der sogenannten
Frames mit identifizierbaren dualen Frames. Die Resultate hierzu werden in größerer
Allgemeinheit bewiesen und sind anwendbar auf alle Abtastmatrizen, die die sogenannte
Restricted Isometry Property erfüllen. In einigen zusätzlichen numerischen Experimenten
vergleichen wir dann Rekonstruktionen, die durch `p-quasinormen erhalten wurden, mit
Rekonstruktionen die durch klassisches Compressed Sensing, erhalten worden sind, d.h.



durch Minimierung über die `1-Norm. Diese Experimente sind dann für Shearletrekon-
struktionen anhand von Fouriermessungen durchgeführt worden.

Wir werden außerdem einen neuen Algorithmus vorstellen der auf der Multiskalen-
struktur der sparsifizierenden Transformen beruht, wie zum Beispiel die Shearlet- oder
Wavelettransformation. Insbesondere wird diese Stuktur mit reweighted `1-minimization
kombiniert. Wir testen den Algorithmus an diversen Bildern, in dem von einigen Fouri-
ermessungen der jeweiligen Bilder, Shearletrekonstruktionen berechnen werden.

Darüberhinaus werden wir in dieser Arbeit Shearlets auf reale Daten anwenden. Als
erstes rekonstruieren wir medizinische Daten anhand von Fouriermessungen, die von
einem MRT-Gerät aufgenommen worden sind. Insbesondere rekonstruieren wir ein 3D
Volumen anhand eines radial abgetasteten k-Raums. Anschließend betrachten wir ein
Inpainting Problem aus der Elektronenmikroskopie.



Abstract

The main topic of this thesis is to study the sampling and reconstruction problem of
signals that have a sparse structure. We thereby consider different models. First, we
study the sampling and reconstruction problem using generalized sampling which is a
linear reconstruction method that allows to use two arbitrary frames one as a sampling
system and another one as a reconstruction system. The particular focus is then on using
shearlets as a reconstruction system, since they provide the optimal sparse approximation
rate for cartoon-like functions, which are compactly supported functions that are smooth
up to a piecewise smooth discontinuity curve. As for the sampling process we often focus
on the Fourier system, as these have a direct application to magnetic resonance imaging.
In the context of shearlets, we also study the fundamental property of linear independence
and present a novel construction of shearlets on bounded domains in this thesis.

Further, we study the recovery of sparse signals by using `1-minimization which is at
the heart of compressed sensing – a theory that studies the acquisition and recovery of
sparse signals via an optimization problem from an incomplete amount of acquired data.
This will be done in two ways: First, we investigate the infinite dimensional problem
using multilevel sampling schemes as well as localized systems that carry an intrinsic
multiscale structure such as shearlets. In fact, we will consider the more general case
of α-molecules and show how recovery guarantees can be obtained for such systems in
combination with Fourier samples. One focus will be on the balancing property which
essentially determines the samples that must be acquired for successful recovery. It relates
the sampling procedure to the sparsity structure of the system and we will show how it
can be verified for certain type of systems such as α-shearlets.

Next, we consider non-convex priors such as the `p-quasi norms for p ∈ (0, 1). We show
theoretical stability of solutions that are obtained from `p-minimization when minimizing
over dual coefficients as well as over primal coefficients. For the latter case we introduce
a new concept called identifiability of duals which guarantees the sparsity equivalence
between the primal and the dual system. The theoretical results are presented in full
generality and apply to all sampling matrices that fulfill the restricted isometry property
RIP. In some numerical experiments we will then compare the different solutions that
are obtained by `1-minimization and `p-minimization, respectively, for the case of Fourier
samples and shearlet reconstructions.

We then also introduce a novel algorithm that is based on the multilevel structure
of sparsifying transforms such as shearlets or wavelets. In particular, this structure is
combined with the idea of reweighted `1-minimization. This algorithm is intensively tested
and compared to other methods. Again the focus will be on Fourier measurements in these



experiments.
Finally, we apply shearlet based recovery to real data. First, we recover medical images

from Fourier measurements as they appear in the applications. In fact, we will recover
a 3D volume from radially subsampled k-space data. Furthermore, we also consider an
inpainting problem appearing in electron microscopy.



Acknowledgements

I want to thank my advisor Gitta Kutyniok for her constant help and support during my
PhD. It has been my great pleasure to be her PhD student, thereby learning and profiting
from her experience. Furthermore, I want to thank Ben Adcock, Akram Aldroubi, Anders
Hansen, Christoph Kolbitsch, Gitta Kutyniok, Maximilian März, Philipp Petersen and
Zineb Saghi for collaborations and/or fruitful discussions.

I also want to thank all my colleagues in Berlin for the wonderful memories that we
share, especially I want to thank Philipp Petersen for being a great friend and collaborator.

Finally, I want to thank Akram Aldroubi and Anders Hansen for being part of the
refereeing committee of this thesis.

Jackie Ma

May 17, 2016



Contents

I Theory

Introduction 1

1 Shearlets 6
1.1 Classical shearlet frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Approximation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Linear independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Shearlets on bounded domains . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Generalized sampling 24
2.1 Reconstruction method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Stable sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Generalized sampling using shearlets . . . . . . . . . . . . . . . . . . . . . 30
2.4 Comparison to wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Structured compressed sensing 45
3.1 Structured sampling and structured sparsity . . . . . . . . . . . . . . . . . 48
3.2 Stability guarantee for general frames . . . . . . . . . . . . . . . . . . . . . 50
3.3 Sufficient condition for the balancing property . . . . . . . . . . . . . . . . 54
3.4 Balancing property for α-shearlets . . . . . . . . . . . . . . . . . . . . . . 56

4 Non-convex compressed sensing 66
4.1 Restricted isometry property . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Stability of analysis-based `p-minimization solutions . . . . . . . . . . . . 70
4.3 Stability for the dual analysis formulation . . . . . . . . . . . . . . . . . . 78
4.4 Algorithm for the analysis-based `p-minimization problem . . . . . . . . . 82

5 A multilevel based reweighting algorithm 89
5.1 Reweighted `1-minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Split Bregman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Multilevel based reweighting algorithm . . . . . . . . . . . . . . . . . . . . 93
5.4 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



II Applications

6 Magnetic resonance imaging 108
6.1 Reconstruction problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Electron microscopy 113
7.1 Reconstruction problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix

A Frames 117

B Wavelets 121

C Supplementary proofs 126





Part I

Theory



Introduction

In this thesis we present several new results for different models that are prominently
used in applied mathematics for sampling and reconstruction problems. By a sampling
and reconstruction problem we understand the recovery of a certain object of interest from
an incomplete amount of samples. Such sampling and reconstruction problems appear in
many different practical areas such as signal transmission, medical imaging, and image
inpainting.

The latter two are of particular interest and serve as leading motivations of our the-
oretical results when it comes to applications. Indeed, the theoretical foundations and
results that are presented in this thesis will be supplemented with applications to special
image reconstruction tasks considered in magnetic resonance imaging (MRI) and electron
microscopy (EM). In particular, we will use real experimental MR data in Chapter 6 to
recover a spatial volume from its k-space measurements. Further, in Chapter 7 we will re-
cover certain objects from its pixel data acquired in scan transmission electron microscopy
to verify some of the theoretical concepts of this thesis.

Representation systems

Wemodel the sampling and reconstruction problem in a (separable) Hilbert space (H, 〈·, ·〉)
with a particular focus on L2 – the space of square integrable functions. Modelling the
problem in a Hilbert space has the advantage that we can rely on many powerful results
from functional analysis and especially harmonic analysis in the scenario where H is L2.
Also this assumption is general enough so that the results that we obtain can be applied to
many problems such as the medical data reconstruction in MRI where essentially Fourier
coefficients of the signal are acquired.

Furthermore, the model assumption of working in a Hilbert space has the advantage
that every signal f ∈ H that we wish to recover has a representation of the form

f =
∑
λ∈Λ

〈f, ψλ〉ψλ (0.1)

for some orthonormal basis (ψλ)λ∈Λ of H. However, one should not expect that (0.1) is
the only possible representation formula of f and indeed, this is not case. Let us generally
call any (ψλ)λ∈Λ ⊆ H a representation system for H if for any f ∈ H there exists at least
one sequence of scalars (cλ)λ∈Λ ∈ `2(Λ) such that

f =
∑
λ∈Λ

cλψλ. (0.2)

1



Introduction 2

Clearly, any orthonormal basis (ψλ)λ∈Λ of H is a representation system.
Another different type of representation system in a Hilbert space is given by the

concept of frames. (i) We call a sequence of elements (ψλ)λ∈Λ of H a frame for H if there
exist two constants 0 < A ≤ B <∞ such that for all f ∈ H

A‖f‖2 ≤
∑
λ∈Λ

|〈f, ψλ〉|2 ≤ B‖f‖2 (0.3)

holds. Equation (0.3) guarantees that the so-called frame operator

S : H −→ H,

f 7→
∑
λ∈Λ

〈f, ψλ〉ψλ,

which is indeed a linear bounded operator as per definition, possesses a linear bounded
inverse operator S−1. Note that

〈Sf, f〉 =
∑
λ∈Λ

|〈f, ψλ〉|2.

Therefore a frame is indeed a representation system since

f = SS−1f =
∑
λ∈Λ

〈S−1f, ψλ〉ψλ.

Now, given an orthonormal basis it is easy to construct a frame that itself is not an
orthonormal basis, in particular every Hilbert space contains infinitely many frames.
Thus, in general, one might pursuit to find a frame that suits the problem at hand better
than others.

For example, if H is the Hilbert space L2 and we were interested in the approximation
of functions that have certain characteristic properties, such as smoothness properties,
then one might be better off with a representation system that itself consists of smooth
functions and share similar properties as the function that one tries to approximate. This
idea leads to the following general philosophy: First one specifies the class of functions that
one is interested in. Then the second step is to develop a notion of optimal approximation
for this class functions. The next crucial step is then to construct an actual representation
system that achieves the optimal approximation rate.

One particular instance that fits perfectly into this philosophy are shearlet frames
that have been introduced in [GKL06, LLKW05] as an optimal approximating system
for so-called cartoon-like functions which are a simplified mathematical model for natural
images.

Shearlet frames will play a great role in the upcoming content of this thesis, thus, in
Chapter 1 we will give a compact introduction into shearlets as well as present a novel
construction of shearlets systems on bounded domains such as [0, 1]2.

(i)In Appendix A.1 - we provide some basic definitions and properties of frame theory.
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Sampling and reconstruction model

In the previous section we mentioned the flexibility of choosing a representation system
in order to represent the initial object of interest efficiently. Now we want to specify how
this can be used for certain types of sampling and reconstruction models but first, we fix
the model for the sampling procedure.

Suppose we are given some linear functionals mk : H −→ C, k ∈ N that are ought to
measure an object of interest f ∈ H. More precisely, given the set of measurements

{mk(f) : k = 1, 2, . . .}, (0.4)

how can we retrieve f? Note that the model assumption (0.4) covers the case where
Fourier measurements are acquired. Moreover, how can the information be used that f
can be nicely approximated by a specific representation system? In other words, given
the measurements (0.4) and an a priori chosen representation system (ψλ)λ∈Λ, we want
to find coefficients (c̃λ)λ∈Λ ∈ `2(Λ) such that∑

λ∈Λ

c̃λψλ ≈ f.

At this point it becomes very evident why it could be of great advantage to choose the
representation system accordingly. In fact, if we know something about the coefficients in
the expansion above – such as sparsity, i.e. only very few coefficients in the representation
are non-zero – then possibly less (non-zeros) coefficients need to be computed so that the
error in the approximation is small. Indeed, if the first exact coefficients of a representation
can be computed, then the error of the approximation would decay as the tail of this
coefficient sequence. (ii)

Sampling and reconstruction problems of this kind can mathematically be formalised
by the concept of generalized sampling which was developed by Adcock et al. in [AH12a,
AH12b, AHP13]. Generalized sampling is a reconstruction method that allows one to
study the existence and error behaviour of reconstructions given a fixed number of mea-
surements of the above form (0.4) and an arbitrary reconstruction system of choice. In
particular, generalized sampling provides certain characteristic quantities that, if properly
understood, can tell us precisely how many measurements are needed to be acquired - in
an asymptotic sense - in order to recover a fixed number of coefficients that one wants to
recover. For that purpose it is again a great advantage to have some a priori knowledge
about the representation system or in particular the coefficients that are needed in the
representation (0.2) of it.

We will introduce the method of generalized sampling and its main characteristics
in Chapter 2 in more detail and study its capabilities of recovering functions from their
Fourier measurements, i.e. in (0.4) we have mk(f) = (Ff)(ξk) for appropriately chosen
frequencies ξk ∈ R2, k = 1, 2, . . .. We thereby focus of reconstructions using a shearlet
frame. In this context, we will also draw a comparison with a similar analysis that have
been done for wavelet systems. (iii)

(ii)Provided the synthesis operator T : `2(Λ) −→ H, (cλ)λ∈Λ 7→
∑
λ∈Λ cλψλ is bounded.

(iii)Some basic definition and properties of wavelets will be presented in Appendix B.
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Sparse recovery via optimization

In the above reconstruction scheme we already mentioned sparsity as a possible desired
ingredient in the model. Note that the sparsity of an element depends on the represen-
tation system and is measured by its number of non-zero coefficients in that particular
representation system, cf. (0.2).

The additional information of having a sparse signal that one wants to reconstruct
allows one to reconstruct the (sparse) object from significantly less number of measure-
ments than one might first expect. For instance, in the event of Fourier measurements,
i.e. mk(f) = (Ff)(k), k ∈ Z, it is known that every L1-function f on the torus T (iv) can
be represented in terms of complex exponentials by

f =
∑
k∈Z

mk(f)e−2πi(·)ξ, almost everywhere

provided the sequence of measurements (mk(f))k∈Z is in `1(Z). This means that the
measurements can immediately be used for the reconstruction. However, if we were to
subsample the data in that way as well as reconstruct it by this reconstruction procedure,
then one might observe that the truncated Fourier series

N∑
k=−N

mk(f)e−2πi(·)ξ

converges considerably slow and thus results in a far from optimal reconstruction. Note
that it is in particular this example for which a novel method called compressed sensing has
led to astonishing new recovery results. However, the recovery guarantees in compressed
sensing usually come at the cost of a reconstruction formula. In particular, in compressed
sensing the reconstruction is not obtained by a closed form solution, such as the truncated
Fourier series in the previous example, but rather via solving a convex optimization
problem of the form

min
g

∑
λ∈Λ

|〈g, ψλ〉| subject to mk(g) = mk(f), (0.5)

where (ψλ)λ∈Λ denotes the sparsifying system, for example a shearlet system. Note that
minimizing the sum of absolute values in (0.5) tends to impose a sparsity constraint of
the reconstruction are sought. In Chapter 3 we will give a more detailed introduction into
compressed sensing and analyse it for the scenario where again Fourier measurements are
acquired and shearlet reconstructions.

In Chapter 4 we then consider a different type of minimization problem namely we
will study solutions that are obtained from the non-convex optimization problem

min
g

∑
λ∈Λ

|〈g, ψλ〉|p subject to mk(g) = mk(f), 0 < p < 1 (0.6)

and arbitrary sparsifying systems (ψλ)λ∈Λ. Further, in a sequence of numerical examples
we will explain what can potentially be gained by considering the minimization (0.6) for
any p smaller than one.
(iv)That is the unit sphere with opposite sites identified.



5

Basics and notations

In this thesis we will assume the reader to have some basic knowledge in Fourier analysis,
frame theory and wavelet analysis. At the end of the thesis we have also included some
basic definitions and results that are helpful.

Furthermore, the following notations are used in this thesis unless it is stated other-
wise:

#: Cardinality of a set.

| · |: Absolute value of scalars of C.
‖ · ‖: Norm of the Hilbert space H.
a . b: a is less than equal to b up to a constant with a and b being positive scalars.

CN (Rd): Space of N -times differentiable functions on Rd with d ∈ N.

F , f̂ : Fourier transform of a function f ∈ L1(Rd) ∩ L2(Rd), i.e.

(Ff)(ξ) = f̂(ξ) =

∫
Rd
f(x)e−2π〈x,ξ〉 dx.

The Fourier transform can be extended to L2-functions and we will use the
same notation for this case.

〈·, ·〉: Standard inner product of either L2, `2, or CN .
j: Scaling number which is always assumed to be an integer in N ∪ {0} In

particular, we will often write j ≥ 0 which always means j ∈ N ∪ {0},
Λ: Countable index set which will often be left out as it is clear in most cases.

For example we shall write (cλ)λ instead of (cλ)λ∈Λ everywhere where it
cannot cause any confusion. We will do the same with sums, i.e. we write∑

λ instead of
∑

λ∈Λ.

`p(Λ): Sequence space equipped with norm

‖(cλ)λ∈Λ‖p =

(∑
λ∈Λ

|cλ|p
)1/p

, 1 ≤ p <∞.

We will write `p on many occasions.

Lp(Ω): Lebesgue space with norm

‖f‖p =

(∫
Ω
|f(x)|p dx

)1/p

, 1 ≤ p <∞.

If Ω = Rd, then we will simply write Lp whenever it cannot cause any
confusion.

N0: Extended set of positive integers, i.e. N0 = N ∪ {0}.
supp : Support of a vector in Cd or an everywhere defined function.

All other variables and notations are introduced in the respective sections.



Chapter 1

Shearlets

We already mentioned shearlets in the introduction as a powerful representation system
that is in fact optimal for a certain class of images. In this chapter we present an overview
of shearlet systems and their approximation properties to make this statement more
precise. We start with a recap of the most common constructions of shearlet systems,
namely band-limited shearlet systems and compactly supported shearlet systems. Then
we discuss the class of cartoon-like functions for which shearlets yield an optimal sparse
approximation rate. We will then also discuss how such systems can be implemented and
the last section of this chapter is devoted to a novel construction of shearlet systems on
bounded domains.

1.1 Classical shearlet frames

Shearlets were first introduced by K. Guo, G. Kutyniok, D. Labate, W.-Q Lim and G.
Weiss in [GKL06, LLKW05] and are representation systems for L2(Rd) that are based
on anisotropic scaling, shearing, and translations. Anisotropic scaling and in particular
shearing are concepts that only make sense in dimension two or greater. We will restrict
our presentation to the case d = 2. However, constructions for higher dimensions are
known in the literature [KLL12].

The anisotropic scaling that is used for a shearlet system is obtained by using parabolic
scaling matrices

A2j =

(
2j 0

0 2j/2

)
, Ã2j =

(
2j/2 0

0 2j

)
,

with scaling parameter j ∈ N0. The shear action can also be achieved by a matrix; we
denote by

Sk =

(
1 k
0 1

)
the shearing matrices with shearing parameter k ∈ Z.

Using the anisotropic scaling matrix, the shearing matrix and the standard integer
shifting operation of functions in L2(R2) one can define the cone adapted discrete shearlet
system as follows.

6



7 1.1. Classical shearlet frames

Definition 1.1 ([KKL12]). Let φ, ψ, ψ̃ ∈ L2(R2) be the generating functions and c =
(c1, c2) ∈ R+ × R+. Then the (cone adapted discrete) shearlet system is defined as

SH(φ, ψ, ψ̃, c) = Φ(φ, c1) ∪Ψ(ψ, c) ∪ Ψ̃(ψ̃, c),

where

Φ(φ, c1) = {φ(· − c1m) : m ∈ Z2},

Ψ(ψ, c) =
{
ψj,k,m = 23j/4ψ ((SkA2j ) · −cm) : j ≥ 0, |k| ≤ 2j/2,m ∈ Z2

}
,

Ψ̃(ψ̃, c) =
{
ψ̃j,k,m = 23j/4ψ̃

(
(STk Ã2j ) · −c̃m

)
: j ≥ 0, |k| ≤ 2j/2,m ∈ Z2

}
,

and the multiplication of c and c̃ = (c2, c1) with the translation parameter m should be
understood entry wise.

The first question we want to address is under which assumptions does this shearlet
system form a frame for L2(R2). The possibility of reaching this property certainly
depends on the choice of generators. In general, the type of generators are divided into
two different types namely band-limited ones and those that are compactly supported.
The first known shearlet system that achieves the frame property is build on band-limited
generators. Moreover, for these types of shearlet systems one can even obtain a Parseval
frame for L2(R2).

Band-limited shearlets

The following example of a band-limited shearlet Parseval frame can be found in [GL09,
GKL06] and is called classical shearlet.

Let ψ1 be in L2(R) satisfying the following so-called Calderón condition∑
j∈Z
|ψ̂1(2−jξ1)| = 1 for every ξ1 ∈ R,

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−1/2,−1/16] ∪ [1/16, 1/2]. Furthermore, let ψ2 be in
L2(R) such that

1∑
l=−1

ψ̂2(ξ2 + l) = 1 for every ξ2 ∈ [−1, 1]

with ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1]. The classical shearlet is then defined as

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2ξ1).

The system

{ψj,k,m : j, k ∈ Z,m ∈ Z2}

then forms a Parseval frame for L2(R2). As outline in [GKL06] a modified cone-adapted
shearlet system that forms a Parseval frame for L2(R2) can be constructed by projecting
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and tilting the shearlet elements that live inside one a priori fixed cone as well as choosing
an appropriate generator for φ.

This second type of shearlet generators are constructed to be compactly support. With
the implied perfect localization in time, cone-adapted shearlet systems can be constructed.
In this thesis we will only focus on compactly supported shearlet frames.

Compactly supported shearlets

Compactly supported shearlets have perfect spatial localization which is useful for ex-
ample in edge classification [KP15], image separation [KL12b], construction of optimal
boundary adapted systems [GKMP15], etc. For the latter see also Section 1.4.

The first explicit construction of a compactly supported shearlets system was pre-
sented by Kittipoom et al. in [KKL12]. Beyond the explicit construction the authors
have proved the following general result.

Theorem 1.2 ([KKL12]). Let φ, ψ ∈ L2(R2) such that

|φ̂(ξ1, ξ2)| ≤ C1 min{1, |ξ1|−r}min{1, |ξ2|−r}

and

|ψ̂(ξ1, ξ2)| ≤ C2 min{1, |ξ1|α}min{1, |ξ1|−r}min{1, |ξ2|−r},

for some constants C1, C2 > 0 and α > r > 3. Further let ψ̃(x1, x2) = ψ(x2, x1) and
assume there exists a positive constant A > 0 such that

|φ̂(ξ)|2 +
∑
j≥0

∑
|k|≤d2j/2e

|ψ̂(STk (Aj)
−1ξ)|2 +

∑
j≥0

∑
|k|≤d2j/2e

|̂̃ψ(Sk(Ãj)
−1ξ)|2 > A

holds almost everywhere. Then there exists c = (c1, c2) ∈ R+ × R+ such that the cone-
adapted shearlet system SH(φ, ψ, ψ̃, c) forms a frame for L2(R2).

Remark 1.3. The frame bounds of the shearlet system depend on the degree of frequency
decay as well as the sampling parameter c.

We next turn to the approximation properties of shearlets which are really at the
heart of shearlet theory. More precisely, we discuss the sparse approximation rate for
cartoon-like functions.

1.2 Approximation properties

The great benefit of shearlets over more conventional multiscale representation systems
such as wavelets are the optimal sparse approximation rate of cartoon-like functions.
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Cartoon-like functions

The idea of a model for natural images that is based on C2 functions up to some C2 edge
stems from the early works by Donoho [Don99, Don01], see also [CD02] and the references
therein. This class functions was then later coined class of cartoon-like functions and its
definition in one of the latest forms is as follows.

Definition 1.4. Let ν > 0 and f : R2 −→ C a function of the form

f = g + hχB,

where B ⊂ [0, 1]2 is a set whose boundary is a closed C2 curve with curvature bounded by ν
and g, h ∈ C2(R2) are compactly supported in [0, 1]2 with ‖g‖C2 , ‖h‖C2 ≤ 1. Then we call
f a cartoon-like function. The set of cartoon-like functions is called class of cartoon-like
functions and is denoted by E2(ν).

Figure 1.1: Cartoon-like function

Donoho considered this class of functions in [Don01] in order to study the intrinsic
sparsity of images as well as the optimality of dictionies for this model. We briefly discuss
the optimality of dictionaries for such functions since shearlets are indeed one of such
dictionaries.

Optimal sparse approximation rate

Following the discussion in [Don01] one needs additional assumptions in order to exclude
pathological examples of optimal dictionaries. Donoho has chosen to use a polynomial
constraint on the search depth which has the following meaning. In order to find the
first N terms of the approximation of a function f by a countable dictionary (ψλ)λ∈N
one is only allowed to search in the first π(N) elements of the dictionary, where π is an
a-priori chosen polynomial independent of f . As explained in [Don01] this assumption
can be translated into the decay of tail coefficients. More precisely, suppose (ψλ)λ∈N is a
tight frame and one looks for a good N -term approximation, then seeing the first π(N)
coefficients (〈f, ψλ〉)λ∈N is sufficient provided

∑
λ>π(N) |〈f, ψλ〉| has sufficient algebraic
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decay. Therefore, in the context of frames the design of optimal dictionaries for certain
classes of functions is often based on an analysis of the frame coefficients (〈f, ψλ〉)λ∈N.

In the same paper [Don01] Donoho proved that there is no depth-search limited dic-
tionary whose best N -term approximation fN of a cartoon-like function f can have a
error ‖f − fN‖2 that decays faster than N−2. More precisely, an example of a dictionary
reaching this rate was also presented, hence, we have

‖f − fN‖ � N−2.

Thus the following definition of an optimally sparse approximating frame for cartoon-like
functions have been established.

Definition 1.5. Let (ψλ)λ∈N be a frame for L2(Rd), where d = 2, 3. Then (ψλ)λ∈N pro-
vides optimally sparse approximation of cartoon-like images f ∈ E2(Rd), if the associated
N -term approximation fN satisfies

‖f − fN‖2L2 . N−2/(d−1) as N →∞,

and

|c∗n| . n−(d+1)/(2d−1) as n→∞,

where log-factors will be ignored.

One very prominent system that reaches this optimal rate is the curvelet system in-
troduced by Candès and Donoho in [CD02]. This system is a band-limited directional
multiscale system that is based on rotation instead of shearing.

The following theorem whose proof can be found in [KL11] provides a sufficient condi-
tion for compactly supported shearlet frames to fulfill the optimally sparse approximation
rate of cartoon-like functions.

Theorem 1.6 ([KL11]). Let SH(φ, ψ, ψ̃, c) be a compactly supported shearlet frame with

i) |ψ̂(ξ)| ≤ C min{1, |ξ1|α}min{1, |ξ1|−r}min{1, |ξ2|−r},

ii)
∣∣∣ ∂∂ξ2 ψ̂(ξ)

∣∣∣ ≤ |h(ξ1)|
(

1 + ξ2
ξ1

)−r
,

where α > 5, r ≥ 4, h ∈ L1(R), C > 0 is some constant. Further assume ψ̃ fulfills i) and
ii) with switched roles of ξ1 and ξ2. Then for any fixed ν > 0 and f ∈ E2(ν) we have

‖f − fN‖22 ≤ C ′(logN)3N−2, as N −→∞,

where fN is the best N -term approximation obtained using the N largest shearlets co-
efficients of f in magnitude allowing polynomial depth search and C ′ is some constant
independent of N .

Remark 1.7. It is known that standard wavelet orthonormal bases only obtain a rate of
order N−1, see [KL12a]. Moreover, both rates for shearlets and wavelets are sharp.

Speaking of wavelet orthonormal bases one might wonder about the existence of shear-
let orthonormal bases. However, as for today there is no construction of an orthonormal
shearlet basis known. Surely, an orthonormal basis has a lot more structure than a gen-
eral frame, such as linear independence. We will next discuss this property for compactly
supported shearlet systems.
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1.3 Linear independence

As we already mentioned in the beginning of the introduction of this thesis, every Hilbert
space possesses an orthonormal basis. Moreover, every orthonormal basis is linearly
independent. Another representation system that is more general than an orthonormal
basis, yet still linearly independent is a Riesz basis.

Definition 1.8. A complete sequence (ψλ)λ∈Λ ⊆ H is called a Riesz basis if there exists
constants 0 < A,B <∞ such that for all (cλ)λ∈Λ it holds

A
∑
λ∈Λ

|cλ|2 ≤

∥∥∥∥∥∑
λ∈Λ

cλψλ

∥∥∥∥∥
2

≤ B
∑
λ∈Λ

|cλ|2.

Remark 1.9. The Riesz basis property has been studied for shearlets in [FM15].

A frame can be linearly independent but does not necessarily have to be. As there
are different types of linear independence in the infinite dimensional setting we first give
a definition to clarify the terminology.

Definition 1.10. Let (ψλ)λ∈Λ be a sequence of elements in a Banach space X .

i) If
∑

λ∈Λ cλψλ = 0 implies cλ = 0 for every λ ∈ Λ, then we call (ψλ)λ∈Λ ω-
independent.

ii) If for any finite set Λ0 ⊂ Λ we have
∑

λ∈Λ0
cλψλ = 0 if and only if cλ = 0 for all

λ ∈ Λ0, then we call (ψλ)λ∈Λ linearly independent.

We wil now turn to study the linear independence of compactly supported shear-
lets. This has been studied by the author of this thesis and his collaborator in [MP15].
Furthermore, parts of this section follows [MP15] closely.

The linear independence of compactly supported shearlets is examined for the case
when the generators are separable, i.e.

φ(x1, x2) := φ1(x1)φ1(x2), ψ(x1, x2) := ψ1(x1)φ1(x2), ψ̃(x1, x2) := ψ(x2, x1) (1.1)

where φ1 is assumed to be a continuous compactly supported scaling function and ψ1

is a corresponding (compactly supported) wavelet, cf. Appendix B.1 or [Dau92, HW96,
Mal09] for definitions of such functions.

Clearly one can not expect that all type of shearlet systems as in Definition 1.1 are
linearly independent. Furthermore, a shearlet system contains a part of an oversampled
wavelet system whose linear independence has been studied on its own over decades
[CL02, BS10, BS06]. However, one can prove the linear independence for the following
set of admissible, compactly supported, separable shearlet systems.

Definition 1.11. Let φ, ψ be as in (1.1) and let c = (c1, c2) ∈ Q+ ×Q+ with ci = ai/bi,
where ai, bi ∈ N and bi is odd for i = 1, 2. Further, let the wavelet system{

φ1(· − cim), ψ1(2j · −cim) : j ≥ 0,m ∈ Z
}

be linearly independent for i = 1, 2. Then the system SH(φ, ψ, ψ̃, c) is called admissible,
compactly supported, separable shearlet system.
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These type of shearlet systems are a special case of the shearlet systems defined in
Definition 1.1. In fact, in Definition 1.11 the choice of generators and sampling constants
are specified.

The following theorem holds true.

Theorem 1.12 ([MP15]). Every admissible compactly supported separable shearlet system
is linearly independent.

One approach that can be used to examine the linear independence of systems evolved
in harmonic analysis, such wavelets and shearlets, is to study the localization properties
[Grö03, BS06]. The proof of Theorem 1.12 is vastly different in that its arguments are
almost solely based on the support properties such as the shape of the supports. The
proof of Theorem 1.12 is consists of several steps that we shall outline below. The proofs
of the partial results are moved to Appendix C.6 and can also be found in [MP15].

Idea behind the proof of Theorem 1.12

The idea behind the proof of Theorem 1.12 is the following. On the one hand one wants
to chunk the full shearlet system into several smaller systems that have distinct properties
such as the shape of their supports so that across these buckets the functions are linearly
independent. On the other hand each of the subsets itself must be linearly independent
as well. We will now explain how this can be achieved.

The shearlet system contains an oversampled wavelet system, so we first study and
characterise the linear independence of these functions. The following lemma essentially
follows from the multiresoluton analysis of the scaling function.

Lemma 1.13 ([MP15]). Let φ1 be a continuous compactly supported scaling function
with supp φ1 = [0, s] for some s > 0, (Vj)j∈Z an associated multiresolution analysis (cf.
Definition B.1), and let ψ1 be a corresponding wavelet. Moreover, let (Wj)j∈Z denote the
wavelet spaces and let j0, J ∈ N∪{0} with j0 < J . If f ∈ L2(R) has compact support and

0 6= f ∈
⊕

j0≤j≤J
Wj ,

then f is continuous and

min (supp f) ∈ 2−(J+1)Z.

In particular

min (supp f(· − ω)) ∈ 2−(J+1)Z + ω, for all ω ∈ R.

Proof. See Appendix C.1 or [MP15].

Furthermore, it is clear that functions with staggered supports are linear independent,
which is the statement of the next lemma.

Lemma 1.14 ([MP15]). Let N ∈ N and f1, . . . , fN ∈ L2(R) be continuous compactly
supported functions and ai = min (supp fi) ∈ R for i = 1, . . . , N . If ai 6= aj for all 1 ≤
i, j ≤ N with i 6= j, then the functions f1, . . . , fN are linearly independent. Furthermore,
if α = (αi)

N
i=1 ∈ C \ {0}, then min (supp

∑
αifi) ∈ {ai : i = 1 . . . N}.
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Proof. See Appendix C.2 or [MP15].

Lemma 1.13 allows the characterization of the left corner of functions that can be cov-
ered by finitely many wavelet functions. This characterization together with the auxiliary
result Lemma 1.14 one can prove that certain oversampled wavelets are indeed linearly
independent.

Proposition 1.15 ([MP15]). Let (Vj)j∈Z be an MRA with continuous compactly sup-
ported scaling function and let ψ1 be a corresponding continuous compactly supported
wavelet. Moreover, let i = 1, . . . , n, J ∈ N0, (ti)i ∈ (0, 1) such that ti − tj 6∈ 2−J−1Z, for
all i 6= j. Furthermore for j = 0, ..., J let Lij ⊂ Z be of finite cardinality. Then the union
of

Ωi
n :=

{{
ψ1(2j(· − ti) + l

}
l∈Lij

}J
j=0

, 1 ≤ i ≤ n

is linearly independent.

Proof. See Appendix C.3 or [MP15].

Note that the statement of Proposition 1.15 is a result concerning 1D functions. How-
ever, due to the separability assumption of the generators (1.1) the result becomes of
great use as the linear independence of the 2D shearlets can be traced back to their 1D
wavelet parts. In particular, every shearlet is an oversampled wavelet multiplied with an
oversampled scaling function by the separability assumption of the generators. Thus, all
shearlets in one fixed cone can be grouped into a set of functions such that the linear
independence is determined by the linear independence of the 1D scaling functions. This
yields the next theorem.

Theorem 1.16 ([MP15]). Let SH(φ, ψ, ψ̃, c) = Φ(φ, c1)∪Ψ(ψ, c)∪ Ψ̃(ψ̃, c) be an admis-
sible compactly supported separable shearlet system. Then the two cones Ψ(ψ, c) as well
as Ψ̃(ψ̃, c) are linearly independent.

Proof. See Appendix C.4 or [MP15].

The next step is to decompose the shearlet system into parts with and without shear-
ing. To this end, let

Γ1 := {ψj,k,m, with k 6= 0 }, Γ2 := {ψ̃j,k,m, with k 6= 0 }

and

Γ3 := {ψj,k,m, with k = 0 } ∪ {ψ̃j,k,m, with k = 0 } ∪ Φ(φ, c1). (1.2)

The linear independence of the two function systems Γ1 and Γ2 follow from Theorem
1.16. The linear independence of Γ3 is shown separately.

Lemma 1.17 ([MP15]). Let SH(φ, ψ, ψ̃, c) = Φ(φ, c1)∪Ψ(ψ, c)∪Ψ̃(ψ̃, c) be an admissible
compactly supported separable shearlet system. Then, Γ3 is linearly independent.
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Proof. See Appendix C.5 or [MP15].

Summarizing, Theorem 1.16 and Lemma 1.17 show that any finite subset of functions
from Γ1,Γ2, and Γ3 is linearly independent. Theorem 1.12 then follows by showing that
span Γ1 ∩ span Γ2 = {0}, span Γ1 ∩ span Γ3 = {0}, and span(Γ1 ∪ Γ3) ∩ span Γ2 = {0} by
examining the distinct different support structures of functions that are build from linear
combinations of functions from Γ1,Γ2, and Γ3, see Figure 1.2.

These structures are
invariants of
the linear combinations
within the respective cones.

First cone Γ1
1:

Second cone Γ2
1:

Unsheared part Γ3:

Figure 1.2: [MP15]: Display of the supports of two shearlet elements from Γ1, Γ2 and Γ3.

1.4 Shearlets on bounded domains

In many cases the signal of interest is supported on a finite domain. For example images
usually admit a finite region that is interesting for the user. Depending on the specific
application this causes more or less problems. For example, if one were to reconstruct a
brain image in magnetic resonance imaging, then the surrounding of the brain is usually
constant as there are (almost) no corresponding frequencies measured. However, in other
cases, for example bone scanning in computed tomography, the object is very frequently
supported at the boundaries which then causes artifacts.

One way to get around this issue could be to scan a region that is wide enough so that
artifacts of the boundary do not disturb the region of interest. However, if a boundary
adapted system is already available, then such an additional waste of resources is not
necessary.

In order to satisfy such needs, different attempts to construct a systems on bounded
domains has been made, e.g. [KL11], [CDD00], [GKMP15]. In this section we therefore
present the boundary shearlet system introduced by the author and his collaborators
in [GKMP15]. Furthermore, parts of this section follow the presentation in [GKMP15]
closely.
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Construction

Since compactly supported shearlet systems on R2 are already known one can adapt each
of these shearlet system onto a bounded domain Ω which we will assume to be [0, 1]2

in the following. Now for a shearlet system on the bounded domain Ω we will keep
all shearlets whose support are completely contained in Ω. Further, in order to handle
the boundary appropriately we will include boundary elements from a boundary wavelet
system. More precisely, let SH(φ, ψ, ψ̃, c) be a compactly supported shearlet system and
let q be such that supp ψj,k,0, supp ψ̃j,k,0 ⊆ B q

2
2−j/2(0) for all j ≥ 0, |k| ≤ 2j/2, where

Br(0) := {x ∈ R2 : |x1|, |x2| ≤ r}. Then we define

Γr := {x ∈ Ω : d(x, ∂Ω) < q2−r},

which is an inner tubular region that characterizes the used boundary wavelets. Before
we give the precise definition of the boundary shearlet system we fix the notation that we
will use for the boundary wavelets.

2D Wavelets on [0, 1]2

2D boundary adapted wavelets can be constructed in a straight forward manner by tensor
products of 1D boundary adapted wavelets introduced in [CDV93], see also Section B.2
for some basic constructions and properties. For this, let φ1 be a 1D compactly supported
Daubechies scaling function. Further, let ψ1 be the corresponding wavelet to φ1 with p
vanishing moments, and let (φint

j,m)j,m and (ψint
j,m)j,m be the scaling functions and wavelets

as described in Section B.2 of the appendix, respectively.
If J ∈ N denotes the smallest number such that 2J ≥ 2p, then the 2D scaling functions

can be obtained by

ωJ,(m1,m2),0 := φint
J,m1
⊗ φint

J,m2
, 0 ≤ m1,m2 ≤ 2J − 1.

The corresponding 2D wavelet functions are defined by the tensor products given by

ωj,(m1,m2),υ :=


φint
j,m1
⊗ ψint

j,m2
, j ≥ J, υ = 1,

ψint
j,m1
⊗ ψint

j,m2
, j ≥ J, υ = 2,

ψint
j,m1
⊗ φint

j,m2
, j ≥ J, υ = 3,

for 0 ≤ m1,m2 ≤ 2j − 1 with j ≥ J . Then we define the 2D boundary wavelet system as
follows.

Definition 1.18. Let φ1 be a 1D compactly supported Daubechies scaling function, and let
ψ1 be the corresponding wavelet to φ1. Further, assume the interior wavelets ω1 = ψ1⊗φ1,
ω2 = ψ1 ⊗ ψ1, and ω3 = φ1 ⊗ ψ1 satisfy

|ω̂υ(ξ)| . min{1, |ξi|α}
max{1, |ξ1|β}max{1, |ξ2|β}

(1.3)

for some β > α+ 1 > 1. Then

W(φ1) := {ωj,m,ε : (j,m, υ) ∈ ∆}
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is called boundary wavelet system associated with φ1, with indexing set given by

∆ :=
{

(J, (m1,m2), 0) : 0 ≤ m1,m2 ≤ 2J − 1
}

∪
{

(j,m, υ) : j ≥ J, 0 ≤ m1,m2 ≤ 2j − 1, υ ∈ {1, 2, 3}
}
.

Then boundary shearlet system can now be defined as follows.

Definition 1.19 ([GKMP15]). Let SH(φ, ψ, ψ̃, c) be a shearlet frame and τ > 0 as well
as t > 0. Further, let W(φ1) be a boundary wavelet system and set

Wt,τ (φ1) : = {ωj,m,υ ∈ W(φ1) : (j,m, υ) ∈ ∆t,τ},

where

∆t,τ : = {(j,m, υ) ∈ ∆ : supp ωj,m,υ ∩ Γτ(j−t) 6= ∅}.

Further, let

Λ = {(j, k,m, ε) : ε ∈ {0, 1}, ψj,k,m,ε ∈ SH(φ, ψ, ψ̃, c)}

be the index set of all shearlets and

ψj,k,m,ε :=


ψj,k,m if ε = 1,
φm if ε = 0,

ψ̃j,k,m if ε = −1,

Then with

Λ0 := {(j, k,m, ε) ∈ Λ : supp ψj,k,m,ε ⊆ Ω}

denoting the index set of all shearlets whose support is fully contained in Ω we define the
boundary shearlet system with offsets t and τ as

BSHt,τ (φ1;φ, ψ, ψ̃, c) := {ψj,k,m,ε : (j, k,m, ε) ∈ Λ0} ∪Wt,τ (φ1).

Further, we write Λc0 := Λ \ Λ0 and ∆c
τ,t := ∆ \∆t,τ .

This definition of a boundary shearlet system mimics precisely the program we just
intuitively described before. The reader should also notice that as j →∞, the size of the
tubular region shrinks accordingly. This is in particular needed in order to keep a strong
cross localization of the Gramian of the system which will also secure the frame property,
see Theorem 1.20.

The crucial question that first arises for this novel construction of a shearlet system
is whether they still share the same characterizing properties of the compactly supported
shearlet system on R2, that is the frame property and the optimal sparse approximation
of cartoon-like functions. In the next two section we will address these two issues.
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Frame property

The frame property follows from a careful analysis of the decay of the cross Gramian
between the the wavelet system and the shearlet system. The following theorem holds.

Theorem 1.20 ([GKMP15]). Let W(φ1) boundary wavelet system and and α, β be as
in (1.3). Further, let SH(φ, ψ, ψ̃, c) be a compactly supported shearlet frame with frame
bounds A and B and suppose assume the generator ψ satisfies

|ψ̂(ξ1, ξ2)| ≤ C 1

max{1, |ξ1|β′}max{1, |ξ2|β′}
, for a.e. (ξ1, ξ2) ∈ R2,

for some β′ > 1 + α. Additionally, let τ > 0 and µ > 0 such that ((1− µ)/τ − 2)α > 5
2 .

Then there exists a constant C (dependent on φ1, φ, ψ, ψ̃, c, τ, µ) such that for all t > 0:∑
(js,k,ms,ε)∈Λc0

∑
(jw,mw)∈∆c

τ,t

|〈ωjw,mw,υ, ψjs,k,ms,ε〉L2(Ω)|2 ≤ C · 2−2(1−µ)αt.

Furthermore, if t > 0 such that

A′ :=
A− C2−2(1−µ)αt+1

2B
> 0, (1.4)

then the boundary shearlet system BSHt,τ (φ1;φ, ψ, ψ̃, c) yields a frame for L2(Ω). Fur-
thermore, a lower and an upper frame bound are given by A′ and B + 1, respectively.

For the proof of Theorem 1.20 we will use the following auxiliary lemma.

Lemma 1.21 ([GKMP15]). Let ψ ∈ L2(R2) be such that there exists C > 0 with

|ψ̂(ξ1, ξ2)| ≤ C min{1, |ξ1|α}
max{1, |ξ1|β}max{1, |ξ2|β}

, for a.e. (ξ1, ξ2) ∈ R2,

where β/2 > α > 1. Then, for ε = −1, 1,∑
|k|≤2j/2

|(ψj,k,m,ε)∧(ξ1, ξ2)| ≤ 2−3/4jC ′
1

max{1, |2−jξ1|β/2}
1

max{1, |2−jξ2|β/2}
,

for a.e. (ξ1, ξ2) ∈ R2 and a constant C ′.

Proof. We only present the proof for the case ε = −1. The other case can be shown
analogously. We divide the proof in two cases.

Case I: Assume |ξ1| ≥ |ξ2|/2. Then

max{1, |ξ1|β}max{1, |ξ2|β} ≥ max{1, |ξ1|
β
2 }max{1, |ξ1|

β
2 }

≥ 2−
β
2 max{1, |ξ1|

β
2 }max{1, |ξ2|

β
2 }.

Using this estimate, as well as the fact that∑
|k|≤2j/2

min{1, |2−jξ1|α}
max{1, |k2−jξ1 + 2−j/2ξ2|β}

≤ sup
(ξ1,ξ2)∈R2

∑
k∈Z

min{1, |ξ1|α}
max{1, |kξ1 + ξ2|β}

< C ′,
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for some constant C ′ we obtain∑
|k|≤2j/2

|(ψj,k,m,ε)∧(ξ1, ξ2)|

≤ C2−3/4j 1

max{1, |2−jξ1|β}
sup

(ξ1,ξ2)∈R2

∑
|k|≤2j/2

min{1, |2−jξ1|α}
max{1, |k2−jξ1 + 2−j/2ξ2|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β/2}max{1, |2−jξ2|β/2}
.

On the other hand, if Case II: 0 < |ξ1| ≤ |ξ2|/2, then

max{1, |k2−jξ1 + 2−j/2ξ2|β} ≥ max{1, (|2−j/2ξ2| − |k2−jξ1|)β}
≥ max{1, (|2−j/2ξ2| − |2−j/2ξ1|)β}
≥ max{1, (|2−j/2ξ2/2|)β}
≥ 2−β max{1, (|2−j/2ξ2|)β},

and hence∑
|k|≤2j/2

|(ψj,k,m,ε)∧(ξ1, ξ2)|

≤ C2−3/4j 1

max{1, |2−jξ1|β}
∑
|k|≤2j/2

|2−jξ1|α

max{1, |k2−jξ1 + 2−j/2ξ2|β}

≤ C ′2−3/4j 1

max{1, |2−jξ1|β}
∑
|k|≤2j/2

|2−jξ1|α

max{1, |2−j/2ξ2|β}

≤ C ′2−3/4j 1

max{1, |2−jξ1|β}
|2−j/2ξ1|α

max{1, |2−j/2ξ2|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β}
|2−j/2ξ2|α

max{1, |2−j/2ξ2|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β}
1

max{1, |2−j/2ξ2|β−α}
.

The lemma is proven.

We continue with a proof of Theorem 1.20.

Proof of Theorem 1.20. First, observe that for a fixed scale js and fixed shearing param-
eter k the number of shearlet translates (ψjs,k,m,ε)m that have a nontrivial intersection
with the support of one fixed wavelet ωjw,mw,υ is bounded by a constant independent of
jw,mw, js and k.

Second, we observe that the support of an arbitrary wavelet ωjw,mw,υ ∈ W(φ1) has
at least a distance of size q2τ(t−jw) to the boundary. Further, the support of a shearlet
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ψjs,k,ms,ε with index (js, k,ms, ε) ∈ Λc0 is not fully contained in Ω and has at most a
support length of size q2−js/2. Hence, for all (js, k,ms, ε) ∈ Λc0 and jw < 1/(2τ)js + t,
each ωjw,mw,υ ∈ W(φ1) \Wt,τ (φ1) satisfies

supp ωjw,mw,υ ∩ supp ψjs,k,ms,ε = ∅.

Hence, we assume in the sequel jw > 1/(2τ)js + t. Furthermore, assume without loss of
generality that υ = 1. For υ = 2, 3, the following computations can be made in a similar
manner with ξ1 and ξ2 interchanged. Also note that, by the same argument as above, for
υ = 0 we have

〈ωJ0,m′,0, ψj,k,m,ε〉L2(R2) = 0.

Since the total number of wavelet translates for a fixed level jw is of order 22jw a use of
the previous observations as well as Parseval’s identity shows that there exists a constant
C > 0 independent of τ and t such that∑

(j′,m′)∈∆c
τ,t

∑
(j,k,m,ε)∈Λc0

|〈ωj′,m′,1, ψj,k,m,ε〉L2(Ω)|2

≤ C
∞∑

jw=0

(2τ)(jw−t)∑
js=0

∑
|k|≤2js/2

22jw max
ms,mw

|〈ω̂jw,m,1, ̂ψjs,k,ms,ε〉L2(Ω)|2. (1.5)

Using the frequency decay of the corresponding shearlet and wavelet atoms as well as
applying Lemma 1.21 yields by the simples substitution ξ 7→ 2jsξ that

(2τ)(jw−t)∑
js=0

∑
|k|≤2js/2

22jw max
mw,ms

|〈 ̂ωjw,mw,1, ̂ψjs,k,ms,ε〉L2(Ω)|2

.
(2τ)(jw−t)∑

js=0

2−3/2js

(∫
R2

min{1, |2−jwξ1|α}
max{1, |2−jwξ1|β}max{1, |2−jwξ2|β}

· 1

max{1, |2−jsξ1|β′}max{1, |2−jsξ2|β′}
dξ

)2

.
(2τ)(jw−t)∑

js=0

25/2js

(∫
R2

min{1, |2js−jwξ1|α}
max{1, |2js−jwξ1|β}max{1, |2js−jwξ2|β}

· 1

max{1, |ξ1|β′}max{1, |ξ2|β′}
dξ

)2

.

.
∞∑
js=0

25/2js

(∫
R2

min{1, |2js−jwξ1|α}
max{1, |ξ1|β′}max{1, |ξ2|β′}

dξ

)2

.
∞∑
js=0

25/2js+2α(js−jw)

(∫
R2

|ξ1|α

max{1, |ξ1|β′}max{1, |ξ2|β′}
dξ

)2

.
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By assumption we have β′ − α > 1, thus the integral above is finite and we can conclude

(2τ)(jw−t)∑
js=0

∑
|k|≤2js/2

22jw max
mw,ms

|〈 ̂ωjw,mw,1, ̂ψjs,k,ms,ε〉L2(Ω)|2 .
(2τ)(jw−t)∑

js=0

25/2js+2α(js−jw).

(1.6)

By rewriting the the right hand side of (1.6) into

2−2αµjw

(2τ)(jw−t)∑
js=0

25/2js+2α(js−(1−µ)jw). (1.7)

and using jw > 1/(2τ)js + t, we get the following bound

∞∑
js=0

25/2js+2α(js−(1−µ)jw) . 2−2α(1−µ)t
∞∑
js

25/2js+2α(js−(1−µ)(1/(2τ)js).

By assumption the latter sum is finite. Finally, note that

∞∑
js=0

25/2js+2α(js−(1−µ)jw) . 2−2α(1−µ)t. (1.8)

Combining the estimates (1.5)-(1.8) implies the first claim of the theorem

∑
(js,k,m,ε)∈Λc0

∑
(jw,m′)∈∆c

τ,t

|〈ωjw,m′,υ, ψjs,k,m,ε〉L2(Ω)|2 .
∞∑

jw=0

2−2αµjw2−2α(1−µ)t . 2−2α(1−µ)t.

We next turn to prove the frame property. First, observe that

L2(Ω) = span(W(φ1) \Wt,τ (φ1))⊕ span(Wt,τ (φ1)) =: W1 ⊕W2.

Define f1 := PW1f and f2 := PW2f , where PWi denotes the orthogonal projection onto
the spaces Ξi, i = 1, 2.

By the frame property of the full shearlet system restricted to L2(Ω) we have for any
f ∈ L2(Ω)

‖f‖2L2(Ω) ≤
1

A

∑
(j,k,m,ε)∈Λ

|〈f, ψj,k,m,ε〉L2(Ω)|2,

where A is the lower frame bound of the shearlet frame. Splitting the right hand side
appropriately, yields

‖f‖2L2(Ω) ≤
1

A

( ∑
(j,k,m,ε)∈Λ0

|〈f, ψj,k,m,ε〉L2(Ω)|2 + 2
∑

(j,k,m,ε)∈Λc0

|〈f1, ψj,k,m,ε〉L2(Ω)|2

+ 2
∑

(j,k,m,ε)∈Λc0

|〈f2, ψj,k,m,ε〉L2(Ω)|2
)

=: T1 + T2 + T3. (1.9)
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By construction of the boundary shearlet system we only need to further consider T2 and
T3. We continue by estimating T2 first. Using Parseval’s identity and the Cauchy Schwarz
inequality we get∑

(j,k,m,ε)∈Λc0

|〈f1, ψj,k,m,ε〉L2(Ω)|2

=
∑

(j,k,m,ε)∈Λc0

∣∣∣∣∣∣
∑

(j′,m′,υ)∈∆c
t,τ

〈f1, ωj′,m′,υ〉L2(Ω)〈ωj′,m′,υ, ψj,k,m,ε〉L2(Ω)

∣∣∣∣∣∣
2

≤
∑

(j,k,m,ε)∈Λc0

 ∑
(j′,m′,υ)∈∆c

τ,t

|〈f1, ωj′,m′,υ〉L2(Ω)|2
∑

(j′,m′,υ)∈∆c
τ,t

|〈ωj′,m′,υψj,k,m,ε〉L2(Ω)|2


≤ ‖f1‖2L2(Ω)

∑
(j,k,m,ε)∈Λc0

∑
(j′,m′,υ)∈∆c

τ,t

|〈ωj′,m′,υ, ψj,k,m,ε〉L2(Ω)|2.

Hence, from the first claim of the theorem we can conclude∑
(j,k,m,ε)∈Λc0

|〈f1, ψj,k,m,ε〉L2(Ω)|2 ≤ C‖f1‖2L2(Ω)2
−(2α(1−µ))t (1.10)

for some constant C > 0. For T3 we can apply the frame inequality of the shearlet frame
directly so that ∑

(j,k,m,ε)∈Λc0

|〈f2, ψj,k,m,ε〉L2(Ω)|2 ≤ B‖f2‖2L2(Ω).

Further, since f2 ∈W2 we have

‖f2‖2L2(Ω) =
∑

(j,m,υ)∈∆τ,t

|〈f2, ωj,m,υ〉L2(Ω)|2 =
∑

(j,m,υ)∈∆τ,t

|〈f, ωj,m,υ〉L2(Ω)|2. (1.11)

Applying (1.10) and (1.11) to (1.9) yields that A′ is a lower frame bound for the boundary
shearlet system. Note that t was chosen such that A′ > 0. The existence of an upper
frame bound for the boundary shearlet system follows by extending both subsystems to
the full systems and apply the frame inequality for the shearlet frame and Plancherel
for the wavelet ONB. Hence, an upper frame bound for the boundary shearlet system
BSHt,τ (φ1;φ, ψ, ψ̃, c) is given by B + 1.

Having established the frame property we next discuss the sparse approximation rate
of cartoon-like functions.

Cartoon-like functions on bounded domains

As we mentioned several times one of the characteristic properties of shearlet systems
on R2 is their optimal sparse approximation ability of cartoon-like function. To obtain
a similar result for the boundary shearlet system we first want to specify the model of
cartoon-like functions on bounded domains. This is done in the following definition.
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Definition 1.22 ([GKMP15]). Let ν > 0, D ⊂ R2, and f = f1 + χDf2 with fi ∈
C2(R2) and supp fi ⊂ [−csupp, csupp]2 for some csupp > 0 and i = 1, 2 such that f(2csupp ·
−(1/2, 1/2)) ∈ E2. Further, let #(∂D ∩ ∂Ω) ≤ M for some M ∈ N and let ∂D and ∂Ω
only intersect transversely. Then we call PΩf a cartoon-like function on Ω, and denote
the set of cartoon-like functions on Ω by E2(ν,Ω).

Note that in Definition 1.22 it is now allowed to have a discontinuity curve of the
cartoon that intersect the boundary, cf. Figure 1.1 and Figure 1.3.

Figure 1.3: Cartoon-like functions on a bounded domain.

Optimal sparse approximation rate

Let BSHt,τ (φ1;φ, ψ, ψ̃, c) =: (ϕn)n be a boundary shearlet frame for L2(Ω). Further,
let f ∈ E2(ν,Ω), and let (θn(f))n∈N be the non-increasing rearrangement of the analysis
coefficients (| 〈ϕn, f〉L2(Ω) |2)n∈N. Then, by the frame inequality, we have

‖f − fN‖22 .
∑
n≥N

θn(f) for all N ∈ N.

The following theorem can be seen as an analogue of Theorem 1.6 for shearlets on bounded
domains and the new class of boundary adapted cartoon-likefunctions. Indeed the theo-
rem below shows that the optimal sparse approximation rate as presented in Definition
1.5 for the non-boundary adapted scenario is still valid in this case. However, what does
not seem to be clear at first glance is whether the rate is still optimal. But this can be
seen by the following argument: If the optimal rate was faster than N−2, then any system
on [0, 1]2 that reaches this faster rate can be extended to a system on R2 that would have
a faster rate for the classical cartoon-like functions as in Definition 1.5.

Theorem 1.23 ([GKMP15]). Let φ, ψ, ψ̃ fulfill the assumptions of Theorem 1.6, and
let W(φ1) be a boundary wavelet system as in Definition 1.18. Further let t > 0, τ >
1/3, and let BSHt,τ (φ1;φ, ψ, ψ̃, c) =: (ϕn)n∈N be a boundary shearlet frame for L2(Ω).
Then BSHt,τ (φ1;φ, ψ, ψ̃, c) yields almost optimally sparse approximation for cartoon-like
functions on Ω, i.e., for all f ∈ E2(ν,Ω),

‖f − fN‖2L2(Ω) . N−2 log(N)3 for N →∞,
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where fN =
∑

n∈In 〈f, ϕn〉L2(Ω) ϕ
d
n with In containing the N largest coefficients 〈f, ϕn〉L2(Ω)

in modulus and (ϕdn)n∈N is the canonical dual frame of (ϕn)n∈N.

Proof. See Appendix C.7 or [GKMP15].

We end this section with two comments. First, the construction shown in this thesis
which can also be found in [GKMP15] is a first construction of shearlet systems on
bounded domains that has been further developed in [Pet16] to other domains of Ω than
[0, 1]2, as well as more general boundary systems. Indeed in [Pet16] the author has
extended the work of [GKMP15] to biorthogonal Riesz bases. Second, beyond the frame
property as well as the optimal sparse approximation it was also shown in [GKMP15]
that this novel boundary shearlet system can also characterise the Sobolev spaces Hs(Ω).
We refer to the paper [GKMP15] and the thesis [Pet16] for more interest on this matter.



Chapter 2

Generalized sampling

In the previous chapter we have discussed shearlet frames and their optimal sparse ap-
proximation rate of cartoon-like functions. Since the class of cartoon-like functions model
natural images, in a simplified realm, shearlet systems are of great interest as a recon-
struction system. In this chapter we will make this idea more precise and discuss in more
detail the shearlet reconstructions from Fourier measurements.

The reconstruction method that we discuss in this chapter is generalized sampling (GS)
which was first introduced by Adcock et al. in a series of papers [AH12a, AH12b, AHP13].
This reconstruction method is build upon consistent reconstructions which was introduced
in [UA94, Eld03, EW05] and allows one to study the reconstruction of objects in a general
Hilbert space where the system that is used to model the samples and the system that
is used for the reconstruction can be arbitrary frames. However, the theory of consistent
reconstructions requires the number of measurements and the number of elements used for
the reconstruction to be the same. This requirement is relaxed in GS and leads to superior
results [AHP13]. More precisely, it is key in GS to let the number of measurements and the
number of reconstruction elements to vary independently of each other. This idea can also
be expressed in terms of discretizations. Indeed, the reconstruction problem is an infinite
dimensional problem that involves the need of working with bi-infinite matrices U =
(ui,j)i,j∈N. One way to discretize the problem is to apply an (even) finite section method
and consider U [N,N ] = (ui,j)i,j=1,...,N . However, as it was argued in [AH12a] this can lead
to several difficulties concerning the stability and convergence of the discretized problem.
Generalized sampling proposes to use an uneven finite section method by considering
U [M,N ] = (ui,j)i=1,...,M,j=1,...,N .

2.1 Reconstruction method

We first fix some notation that we use throughout this section. For a sampling system
{s1, s2, . . .} ⊂ H - whose elements we call sampling vectors - we define the corresponding
sampling space S ⊂ H as the closure of its span, i.e.

S = span{sk : k ∈ N}.

The finite dimensional analogue of the sampling space S is denoted by

SM = span{s1, . . . , sM},

24
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where M ∈ N indicates the number of sampling vectors and hence the number of mea-
surement. We now assume that the measurements (mf (k))k∈N of an object f ∈ H with
respect to a fixed sampling system {s1, s2, . . .} can be modeled as linear measurements of
the form

mf (k) := 〈f, sk〉, k ∈ N. (2.1)

Analogously for a reconstruction system {r1, r2, . . .} ⊂ H we define the reconstruction
space R ⊂ H as the closed span of the reconstruction elements, that is

R = span{rk : k ∈ N}

and, likewise, its finite dimensional version is denoted as

RN = span{r1, . . . , rN}, N ∈ N.

Using the above notation a reconstruction method shall be the following.

Definition 2.1. For a sampling system {sk : k ∈ N} and a reconstruction space RN a
mapping

FN,M : H −→ RN

is called reconstruction method, if, for every f ∈ H, the signal FN,M (f) depends only on
m(f)1, . . . ,m(f)M , where the samples m(f)j are defined in (2.1).

Remark 2.2. Note that a reconstruction method does not need to be linear.

In order to avoid pathological examples, we will require the following subspace condi-
tion

R∩ S⊥ = {0} and R+ S is closed. (2.2)

Such an assumption is clearly plausible, otherwise there would be reconstructions, i.e.
elements f ∈ R \ {0} whose measurements are all zero, since f is also an element of S⊥.
Moreover, the subspace condition guarantees a well posedness of the finite dimensional
reconstruction problem, cf. Theorem 2.3.

Since in practice we are not able to process an infinite amount of information we are
mainly interested in the finite-dimensional reconstruction problem that reads as follows:

Given a finite number of measurements 〈f, s1〉, . . . , 〈f, sM 〉 of some unknown
f ∈ H, we wish to determine a reconstruction fN ∈ RN such that ‖f − fN‖
is small and fN → f as N →∞ fast.

The existence of a reconstruction to the above problem is guaranteed by the following
theorem.

Theorem 2.3 ([AHP13]). Let SM and RN be as above and PSM be the following finite
rank operator:

PSM : H → SM ,
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f 7→
M∑
k=1

〈f, sk〉sk.

If (2.2) holds, then there exists an M ∈ N such that the system of equations

〈PSM fN,M , rj〉 = 〈PSM f, rj〉, j = 1, . . . , N (2.3)

has a unique solution fN,M ∈ RN . Moreover, the smallest M ∈ N such that the system
is uniquely solvable is the least number M ∈ N so that

cN,M := inf
f∈RN ,
‖f‖=1

‖PSM f‖ > 0. (2.4)

Furthermore,

‖f − PRN f‖ ≤ ‖f − fN,M‖ ≤
1

cN,M
‖f − PRN f‖, (2.5)

where PRN : H → RN denotes the orthogonal projection onto RN .

We close this section with two definitions.

Definition 2.4 ([AHP13]). The solution fN,M in Theorem 2.3 is called generalized sam-
pling reconstruction.

Theorem 2.3 shows that it is sufficient to study the quantity cN,M in (2.4) in order to
guarantee the existence of generalized sampling reconstructions. This quantity has already
been studied in the literature, in particular, in context with sampling and reconstruction
in arbitrary systems by Unser and Aldroubi in [UA94].

Definition 2.5 ([UA94, Tan00]). The quantity cN,M in (2.4) is called the infimum cosine
angle between the subspaces RN and SM .

Remark 2.6. The infimum consine angle between two spaces is not symmetric.

In order to quantify the quality of the reconstruction and compare it to other recon-
struction methods, we will next recall two quality measures that have been proposed in
[AHP13].

Quality measures

We consider two quality measures for general reconstruction methods. The first one is
the quasi-optimality constant.

Definition 2.7 ([AHP13]). For any fixed reconstruction method FN,M : H −→ RN , cf.
Definition 2.1, let µ = µ(FN,M ) > 0 be the least number such that

‖f − FN,M (f)‖ ≤ µ‖f − PRN (f)‖ for all f ∈ H.

Then we call µ the quasi-optimality constant of FN,M . If no such constant exists, then
we write µ =∞. If µ is small, we say FN,M is quasi-optimal.
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The second measure quantifies the robustness against perturbations.

Definition 2.8 ([AHP13]). Let FN,M : H −→ RN be a reconstruction method, cf. Defi-
nition 2.1. The (absolute) condition number κ = κ(FN,M ) > 0 is defined as

κ = sup
f∈H

lim
ε↘0

sup
g∈H,

0<‖m(g)‖`2≤ε

(
‖FN,M (f + g)− FN,M (f)‖

‖m(g)‖`2

)
,

where m(g) = (m(g)1, . . . ,m(g)M , 0, . . .). If κ is small, then we say FN,M is well condi-
tioned, otherwise FN,M is called ill-conditioned.

Using the quasi-optimality constant and the absolute condition number we associate
to any reconstruction method a reconstruction constant which is defined as the maximum
of both quantities and, hence, can be seen as a worst estimate.

Definition 2.9 ([AHP13, AHP14]). Let FN,M : H −→ RN be a reconstruction method.
The reconstruction constant of FN,M is defined as

C(FN,M ) = max{µ(FN,M ), κ(FN,M )},

where µ(FN,M ) is the quasi-optimality constant and κ(FN,M ) is the (absolute) condition
number.

In the event that the sampling system is an orthonormal basis for its span - which is
the situation we are mainly interested in - the infimum cosine angle can be expressed via
the reconstruction constant, in fact, by [AHP13]

1

cN,M
= µ(GN,M ) = κ(GN,M ) = C(GN,M ),

where GN,M refers to the generalized sampling reconstruction method described by The-
orem 2.3.

Now, in order to study the quality of the reconstruction in terms of the convergence
‖f−fN,M‖ it is crucial to have good control on the infimum cosine angle cN,M . Moreover,
it seems intuitively clear, that the number of measurements M must grow if one wants
to increase N . We make this more precise in the next section.

2.2 Stable sampling rate

As we already pointed out it is of great importance to have an estimate for the asymptotic
behaviour of cN,M with regard to increasing N . In particular, we want to study how M
scales with increasingN and a fixed upper value for cN,M since this would tell us how many
measurements M we need for recovering the signal in an N dimensional reconstruction
space. The following quantity carries this information.

Definition 2.10. For any fixed N ∈ N and θ > 1 the stable sampling rate Θ(N, θ) is
defined as

Θ(N, θ) = min

{
M ∈ N : cN,M >

1

θ

}
.
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Linear stable sampling rate

One particular focus is on a linear behaviour of the stable sampling rate. We explain
why this is the case. Suppose the stable sampling rate is linear in N , i.e., Θ(N, θ) =
O(N) as N →∞. Furthermore, we assume that the reconstruction space provides some
approximation behavior of the function of interest. More precisely, let f ∈ H be the
object of interest and suppose there exist Cf , Df , γf > 0 depending on f such that

CfN
−γf ≤ ‖f − PRN f‖ ≤ DfN

−γf , for all N ∈ N. (2.6)

Then the following result holds.

Theorem 2.11 ([AHP13]). Suppose that the stable sampling rate Θ(N, θ) is linear in N ,
i.e. Θ(N, θ) = O(N) as N →∞. Let f ∈ H be fixed and let

FM : (m(f)1, . . . ,m(f)M ) 7→ FM (f) ∈ Rψf (M),

be a reconstruction method, where ψf : N −→ N with ψf (M) ≤ λM for some λ > 0.
Assume that (2.6) holds. Then, for any θ > 1, there exist constants d(θ) ∈ (0, 1) and
c(θ, Cf , Df ) > 0 such that

‖f −Gd(θ)M,M (f)‖ ≤ c(θ, Cf , Df )‖f − FM (f)||, for all M ∈ N,

where GN,M denotes the generalized sampling reconstruction method.

Theorem 2.11 shows that generalized sampling cannot be outperformed in the event
of a linear stable sampling rate.

Stable sampling rate for wavelets

The stable sampling rate for 1D wavelets was first considered in [AHP14]. The results were
then extended to 2D by the author and his collaborators in [AHKM15]. For convenience
we recall the related result here in a shortened form.

A straight forward generalization of dyadic 1D MRA wavelets can be obtained by
considering the dyadic scaling matrix of the form

A =

(
2 0
0 2

)
.

In this section we will restrict to this case only, however, the stable sampling rate can
also be computed for more general scaling matrices and we refer the interested reader to
the work [AHKM15] for such generalizations.

Reconstruction Space

Assume the function f ∈ H = L2(R2) that we want to reconstruct is compactly supported
in, say, [0, a]2 for some positive integer a. Note that with a view to applications such as
image reconstructions this is a reasonable assumption, since images typically have a finite
field of view. Similarly, we assume that the scaling function and the wavelets that are used



29 2.2. Stable sampling rate

as generators for the wavelet reconstruction system to be compactly supported in [0, a]2

as well. As wavelet bases arise from translated and scaled versions of the generators, see
Appendix B, we can now restrict to the following set of functions

Ω1 := {φ0,m : m =∈ Z2, supp φ0,m ∩ [0, a]2 6= ∅}

and

Ω2 := {ψpj,m : j ∈ N ∪ {0}, m ∈ Z2, supp ψpj,m ∩ [0, a]2 6= ∅, p = 1, 2, 3}.

These functions will clearly be sufficient since the other scaling functions and wavelets
that do not intersect the region of interest will have inner product with the object of
interest equal to zero.

The reconstruction space R is now defined as the closed linear span of the functions
in Ω1 and Ω2, i.e.

R = span{ϕ : ϕ ∈ Ω1 ∪ Ω2}.

In order to define the finite dimensional reconstruction space we will first order the ele-
ments in Ω1 ∪Ω2. There are many different possibilities to order this set of functions and
the results also may depend on this ordering. The ordering that we propose arise quite
naturally from the wavelet structure. Indeed, we first group all elements corresponding
to their scale together. This results in J buckets each of them consisting of functions that
differ by their translation parameter. The translation parameter is in Z2 and can thus
be ordered in a lexicographical manner. Finally we order all buckets along their scales.
Using this ordering we define the finite dimensional reconstruction space RN as follows:

RN = span{ϕi : i = 1, . . . , N}, N ∈ N.

In order to take full advantage of the multiresolution structure of wavelets and their
approximation properties, it is very convenient to consider a finite dimensional recon-
struction spaces that contains all elements up to a certain scale. In this case, one could
follow the approach in [AHP14, AHKM15] and construct the reconstruction space via the
space

V
(a)

0 := span{φ0,m : m ∈ Z2, supp φ0,m ∩ [0, a]2 6= ∅}

and the truncated wavelet spaces

W
(a)
j := span{ψpj,m : m ∈ Z2, supp ψpj,m ∩ [0, a]2 6= ∅, p = 1, 2, 3}.

Indeed, the reconstruction space that contains all wavelet elements up to a certain scale
J is then given by

RNJ = V
(a)

0 ⊕W (a)
0 ⊕ . . .⊕W (a)

J−1.

For the finite dimensional reconstruction space RNJ we have 22J many elements (asymp-
totically in J).



Chapter 2. Generalized sampling 30

Sampling space

To define the sampling space consisting of elements of the Fourier basis, we first choose
T1, T2 > 0 sufficiently large such that

R ⊂ L2([−T1, T2]2).

The values T1 and T2 can be computed depending on the length of the support of the
wavelets. Indeed, choosing T1 ≥ a−1 and T2 ≥ 2a−1 is sufficient. To allow an arbitrarily
dense sampling, for each ε ≤ 1

T1+T2
, we define the sampling vectors

s
(ε)
l = εe2πiε〈l,·〉 · χ[

− T1
ε(T1+T2)

,
T2

ε(T1+T2)

]2 , l ∈ Z2. (2.7)

Based on these sampling vectors, we now define the sampling space S(ε) by

S(ε) = span
{
s

(ε)
l : l ∈ Z2

}
.

The finite-dimensional subspaces S(ε)
M , M = (M1,M2) ∈ N× N, are then given by

S(ε)
M = span

{
s

(ε)
l : l = (l1, l2) ∈ Z2,−Mi ≤ li ≤Mi, i = 1, 2

}
.

Note that the total number of reconstruction elements is then of order M1 ·M2.

Theorem 2.12 ([AHKM15]). For the Fourier sampling space and the wavelet reconstruc-
tion space above the stable sampling rate is linear, i.e. Θ(Nj , θ) = O(NJ) as J → ∞,
where NJ denotes the number of generating reconstruction elements in RNJ at scale
J − 1 ∈ N.

Proof. This is Corollary 3.4 in [AHKM15].

Remark 2.13. The stable sampling rate for general expanding matrices has also been
determined in [AHKM15]. Furthermore, in this work the stable sampling rate has also
been investigated for boundary wavelets with the result showing a linear stable sampling
rate again.

The importance and benefit of a linear stable sampling rate was already discussed
previously. Therefore, wavelets are very well suited for the reconstruction from Fourier
measurements in the context of generalized sampling. However, since other systems such
as the shearlet system provide a better sparse approximation rate of cartoon-like functions,
and thus provide a better algebraic decay in (2.6) it is natural to study the stable sampling
rate for shearlets. This is what we will study in the next section.

2.3 Generalized sampling using shearlets

The main objective in this section is the study of the stable sampling rate for compactly
supported shearlets assuming to have access to finitely many Fourier measurements of
the signal of interest. In particular, we will assume the same measurements as in the
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previous wavelets case and only alter the reconstruction space by choosing shearlets in-
stead of wavelets. This will be important as we want to make a comparison between both
reconstructions.

Similar as in the previous section we first start with making the reconstruction space
as well as the sampling space more precise. After having these spaces we will prove a
stable sampling rate for this configuration. In Section 2.4 we will then compare the result
to the stable sampling rate for wavelets. The results of this section are mainly based on
the work [Ma15a] and follows the presentation of the results therein.

Shearlet reconstruction space

We will use the same notations for the shearlet system as we have already introduced
in Chapter 1, in particular, φ, ψ, ψ̃ denote the generators and j refers to the scaling
parameter, k the shearing parameter, and m denotes the translation parameter of a
shearlet atom ψj,k,m. The sampling constant will from now on assumed to be c = (c1, c2) =
(1, 1). This is just to ease some notation and does not have any serious impact on any
argument made. Mostly the constants will change for different values of c1 and c2.

The generators φ, ψ, and ψ̃ that we want to use to build a proper reconstruction space
will be assumed to be compactly supported in [0, a]2 for some positive integer a. The
reconstruction space is then build upon the translated, scaled and sheared elements that
intersect a fixed region of interest which is also assumed to be [0, a]2 for simplicity.

For the scaling functions we define the index set Ω to consist of all translates for which
the elements intersect the region of interested, i.e. let

Ω =
{
m ∈ Z2 : supp φm ∩ [0, a]2 6= ∅

}
= {(m1,m2) ∈ Z2 : −a ≤ m1,m2 ≤ a}.

We now proceed by the same procedure for shearlets as we did for wavelets. This means
we consider all shearlets whose support intersect the region of interest [0, a]2. Depending
on the scale J − 1 ∈ N0 we denote the index set ΛJ to be the set

ΛJ =
{

(j, k,m) ∈ Z× Z× Z2 : 0 ≤ j ≤ J − 1, |k| ≤ 2j/2,m ∈ Ωj,k

}
,

where Ωj,k = {m ∈ Z2 : supp ψj,k,m ∩ [0, a]2 6= ∅} is, due to the compact support of each
(ψj,k,m)m, of finite cardinality. For ψ̃ we similarly define

Λ̃J =
{

(j̃, k̃, m̃) ∈ Z× Z× Z2 : 0 ≤ j̃ ≤ J − 1, |k̃| ≤ 2j/2, m̃ ∈ Ω̃
j̃,k̃

}
with Ω̃

j̃,k̃
= {m̃ ∈ Z2 : supp ψ̃

j̃,k̃,m̃
∩ [0, a]2 6= ∅} being of finite cardinality.

Note that the scale essentially determines the total number of shearlet elements that
intersect the region of interest. In particular for any fixed scale j and any fixed shearing
k with |k| ≤ 2j/2, the number of shearlet elements (ψj,k,m)m that intersect the region of
interest if of order 23/2j . The total number of shearlet elements (ψj,k,m)k,m that intersect
the region of interest is of order 22j . The reconstruction space R is then defined as the
closed span of all feasible shearlets, where the feasibility of a shearlet ψλ is determined
by its belonging to ΛJ . This yields the following finite dimensional reconstruction space:

RNJ = span

{
{φm : m ∈ Ω} ∪ {ψj,k,m : (j, k,m) ∈ ΛJ} ∪

{
ψ̃
j̃,k̃,m̃

: (j̃, k̃, m̃) ∈ Λ̃J

}}
.

(2.8)
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This definition yields that for a fixed scale J−1 we, asymptotically, have NJ = 22J many
reconstruction elements in RNJ as J → ∞. Since we only have finitely many elements
in the reconstruction space per scale, we can perform an ordering. This ordering can be
performed quite naturally. In fact, first, the full system is chunked into its different scales
j = 0, 1, . . . , J − 1 similar to the wavelet case. Then each subsystem can be chunked
into the corresponding shearing parameters k = −2j/2, . . . , 2j/2. The translation are then
ordered in a lexicographical manner. Finally, the system will be ordered along scales and
shears.

The attentive reader might have noticed that the ordering we just described does not
result in a uniquely determined sequence of reconstruction elements, meaning there are
several different orderings that obey the above construction. In particular, we have not
mentioned how the selection should be performed across different cones. However, in our
analysis and also in the numerical experiments, we will only use full shearlet systems
determined by the scale meaning all shearlets across all cones up to a fixed scale, hence
the reconstruction space is uniquely determined for such cases.

Assumptions on the generator

We like to stress that we assume the certain smoothness properties of the shearlet system
that are needed in order to have a frame in the first place. These assumptions are fairly
standard in shearlet theory. More precisely, we will assume the generators φ and ψ to
have sufficient vanishing moments and decay in frequency, i.e. we assume there exist some
constants C1, C2 > 0 such that

|φ̂(ξ1, ξ2)| ≤ C1 ·
1

(1 + |ξ1|)r
1

(1 + |ξ2|)r
(2.9)

and

|ψ̂(ξ1, ξ2)| ≤ C2 ·min{1, |ξ1|α} ·
1

(1 + |ξ1|)r
1

(1 + |ξ2|)r
, (2.10)

where the regularity parameters α > 0 and r > 0 are large enough so that the shearlet
system forms a frame for L2(R2). The generator ψ̃(x1, x2) := ψ(x2, x1) for the second
cone inherits the smoothness properties from ψ.

We next turn to the definition of the Fourier sampling space.

Fourier sampling space

The Fourier sampling space is defined in the same way as for the wavelet case and we
merely recall here for notational purposes. Let T1 and T2 be such that

R ⊂ L2([−T1, T2]2).

Now, let ε ≤ 1
T1+T2

< 1 control the sampling density. The sampling vectors are then
defined as standard complex exponentials restricted on the area [T1, T2]2 with density ε
and samples on the grid Z2, i.e.

s
(ε)
` := εe2πiε〈`,·〉 · χ[

− T1
ε(T1+T2)

,
T2

ε(T1+T2)

]2 , ` ∈ Z2. (2.11)
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These sampling vectors are then used to define the sampling space

S(ε) := span
{
s

(ε)
` : ` ∈ Z2

}
.

Of course a finite dimensional version of this space can be defined directly. However,
similar as for the reconstruction, we are only interested in specific cases. Recall that for
the reconstruction space we considered all shearlet elements up to a certain scale. For
the sampling space we will consider all sampling vectors whose sampling point lies in a
squared lattice of fixed size. In particular, for M = (M1,M2) ∈ N×N we define the finite
dimensional sampling space by

S(ε)
M := span

{
s

(ε)
` : ` = (`1, `2) ∈ Z2,−Mi ≤ `i ≤Mi, i = 1, 2

}
.

The number of acquired measurements are then determined by the width of the sampling
lattice, indeed, asymptotically we have M1 ·M2 many samples taken.

In order to analyse the stable sampling rate we have to put the number of samples
M := M1 ·M2 in relation with the number of reconstruction elements NJ in accordance
with Definition 2.10. This would yield the existence of stable and convergent shearlet
reconstructions which lies in the primal focus of this chapter.

Stable sampling rate for shearlets

The following theorem describes the stable sampling rate for the Fourier sampling space
using a shearlet reconstruction space.

Theorem 2.14 ([Ma15a]). Let SH(φ, ψ, ψ̃) be a compactly supported shearlet frame with
generators φ, ψ, and ψ̃ and let N ≤ NJ = O(22J). Then for all θ > 1 there exists Sθ > 0
such that

cN,M = inf
f∈RN
‖f‖=1

‖PS(ε)
M

f‖ ≥ 1

θ
,

whereM = (M1,M2) ∈ N×N withMi = dSθA
−1/(2r−1)
N ·2J(1+δ)/εe, δ ≥ 2

2r−1 and r > 0 is

the regularity parameter from (2.9) and (2.10). Therefore Θ(N, θ) = O(N1+δA
−1/(2r−1)
N ).

Further, the constant Sθ does not depend on N but on θ, α, and r.

Before we give a proof of Theorem 2.14 we first discuss some important issues. First,
this theorem only gives a sufficient condition but not a necessary one. Second, in contrary
to the wavelet case Theorem 2.14 shows a dependence on the lower frame bound on the
side of the number of measurements. Such a dependence naturally does not occur in the
wavelet case, since there the system was assumed to be an orthonormal basis whereas for
the shearlet case, the reconstruction systems forms a truly redundant system. However, if
one interprets the lower frame bound as a measure for redundancy, then such a dependence
seems very plausible. Theorem 2.14 would roughly speaking mean: The more redundant
the system, i.e. the smaller the lower frame bound, the more measurements need to be
taken in order to guarantee stable and convergent solutions. Third and finally, Theorem
2.14 shows a slightly worse than linear rate as it was obtained in Theorem 2.12 for wavelets.

We will now first justify why Theorem 2.14 is still a useful result.
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2.4 Comparison to wavelets

In Theorem 2.12 it is shown that the stable sampling rate for wavelets is linear, i.e. we have
Θ(N, θ) = O(N). For shearlets the results appears to be worse since we have to consider
an additional oversampling by a factor N δ, where δ is controlled by the regularity of the
shearlet atoms. Note that δ can be made arbitrarily small if the regularity parameters
increase arbitrarily.

As we will explain now this additional oversampling factor N δ is not so harmful.
Our discussion is based on the following principle. We first fix the number of samples,
say M , that are allowed to be used for both reconstructions methods. Now based on this
number of measurementsM and the computed stable sampling rates of Theorem 2.12 and
Theorem 2.14, we are allowed to use more wavelets than shearlets to build the wavelet
reconstruction space and the shearlet reconstruction space, respectively.

More precisely, let σ : N −→ N be the following oversampling function

σ(N) =

N1+δ 1

A
2

2r−1

N

 , N ∈ N. (2.12)

Then the following result can be used to show that shearlet reconstructions are still
more appealing than the wavelet reconstructions in this context, at least for the class of
cartoon-like functions.

Proposition 2.15 ([Ma15a]). Let SH(φ, ψ, ψ̃) be a compactly supported shearlet frame
with generators φ, ψ, and ψ̃ with sufficiently large regularity r and δ ≥ 2/(2r−1). Further,
let f be a cartoon-like function f . For N ∈ N denote by fsN the best N -term approximation
of f using shearlets and fwσ(N) the best σ(N)-approximation using wavelets, cf. Definition
1.5 and the preluding discussion before that. Further, let NJ = 22J , J ∈ N be the smallest
number such that N, σ(N) . NJ . If RsN denotes the shearlet reconstruction space so that
fsN ∈ RsN and Rwσ(N) denotes the wavelet reconstruction space so that fwσ(N) ∈ R

w
σ(N), then

‖f −GsN,M (f)‖ . N−1(logN)3/2,

and

‖f −Gwσ(N),M ′(f)‖ . σ(N)−1/2,

where M and M ′ are of order σ(NJ) and GsN,M (f) as well as GwN,M (f) are the GS
solutions with respect to the spaces RsN and Rwσ(N), respectively.

We first finish the discussion and then give a proof of Proposition 2.15 in the next
section after the proof of Theorem 2.14.

Remark 2.16. We have N−1(logN)3/2 . σ(N)−1/2 if

N−(1−δ)/2(logN)3/2 . A
1/(2r−1)
N , (2.13)

and therefore, if ‖f − f sN‖ � ‖f −GsN,M (f)‖ and ‖f − fwN‖ � ‖f −Gwσ(N),M (f)‖, then

‖f −GsN,M (f)‖ . ‖f −Gwσ(N),M ′(f)‖,

where "�" means equality up to some constant.
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In Proposition 2.15 we required a certain behavior on the oversampling function σ(N)
which again depends on the lower frame bound AN , see (2.12). The asymptotic behavior
of the lower frame bound of a finite shearlets system is in general unknown. It is reasonable
to expect, that there is no general results that can guarantee a stable behaviour of these
bounds as this is also the case for wavelet frames [CL]. However, we will numerically
demonstrate that for compactly supported shearlets used in applications the lower frame
bound decreases in a controlable manner, more precisely, in Figure 2.1 we numerically
confirm Inequality (2.13).

(a) r = 3 and δ = 0.4, 0.5, 0.6 (b) r = 4 and δ = 0.3, 0.4, 0.5

(c) r = 5 and δ = 0.25, 0.35, 0.45 (d) r = 6 and δ = 0.2, 0.3, 0.4

Figure 2.1: Plot of the behavior of lower frame bound and the critical function
N−(1−δ)/2(logN)3/2 for different values of r and δ

The statement made in Proposition 2.15 delivers a positive result for shearlet recon-
struction for cartoon-like functions in terms of generalized sampling, only ifN−1(logN)3/2

grows slower than σ(N)−1/2. Above we show some numerical examples that compare these
two quantities. Note that aiming to verify (2.13) is equivalent to checking the behavior
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of the lower frame bound. More precisely, it is sufficient to check

N−(1−δ)/2(logN)3/2 . A
1/(2r−1)
N

for the lower frame bound AN . For this we compute the lower frame bound for the
scales J = 1, . . . , 8. N is chosen to be exactly 22J . In Figure 2.1 we plot the functions
N−(1−δ)/2(logN)3/2, A

1/(2r−1)
N in terms of N for different values of r and δ. These plots

suggest that (2.13) may hold asymptotically.
We now continue with a proof of Theorem 2.14 which is followed by a proof of Propo-

sition 2.15.

Proof of Theorem 2.14

The main goal of this section is to present a proof of Theorem 2.14. This will be done by
first presenting some preliminary considerations and auxiliary results.

Effective frequency support

The main idea of the proof of Theorem 2.14 is to connect the Fourier sampling with
the behavior of the shearlets in the frequency domain. Although compactly supported
shearlets are everywhere supported in the frequency domain, the shearlets are strongly
localized in the frequency plane. This is due to the decay assumption of the scaling
function (2.9) and the decay assumptions on the shearlets (2.10), respectively. Such
decay properties remain unchanged if the function is scaled or translated, however, it is
not hard to imagine that shearing does affect the localization property.

The next result gives a more quantitative statement about the controllability of the
essential supports of the shearlet atoms (ψλ)λ in the frequency domain, see also Figure
2.2.

Figure 2.2: Effective frequency support of shearlets and tiling of the frequency plane, light
regions correspond to large values, therefore regions with large energy and dark regions
to small values, i.e. regions with small energy. Images are computed using the ShearLab
package downloaded from http://www.shearlab.org/
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Proposition 2.17 ([Ma15a]). Let J ∈ N and (ψλ)λ≤NJ be all shearlets up to scale J − 1
according to the selection procedure explained in the previous sections. Then, for ω > 0
there exists a constant S := S(ω, r, ε) such that for IM := {(`1, `2) ∈ Z2 : −Mi ≤ `i ≤
Mi, i = 1, 2} with Mi = S2J(1+δ), i = 1, 2 and δ ≥ 2

2r−1 we have∑
`∈(IM )c

∑
λ≤NJ

|(ψλ)∧(ε`)|2 ≤ ω.

For the proof of Proposition 2.15 we will use the following auxiliary lemma.

Lemma 2.18 ([Gra08]). For y ∈ R, r > 1, and a, b > 0 we have∫ ∞
0

1

(1 + a|x|)r
1

(1 + b|x− y|)r
dx .

1

max(a, b)

1

(1 + min(a, b)|y|)r
.

Proof of Proposition 2.17. Let ω > 0. Then we have to show the existence of an M =
(M1,M2) ∈ N× N, so that ∑

|l2|>M2

∑
|l1|>M1

+
∑
|l2|<M2

∑
|l1|>M1

+
∑
|l2|>M2

∑
|l1|<M1

 ∑
λ≤NJ

|(ψλ)∧(ε`)|2 ≤ ω, (2.14)

where M1,M2 scales like S2J(1+δ) with a constant S independent of J . By direct compu-
tations we obtain∑
λ≤NJ

|(ψλ)∧(ε`)|2

=
∑
m′∈Ω

∣∣∣εe−2πiε〈l,m′〉φ̂(εl)
∣∣∣2 +

∑
(j,k,m)∈ΛJ

∣∣∣∣ ε

23j/4
e−2πiε〈(SkA2j )

−T
l,m〉ψ̂

(
ε (SkA2j )

−T l
)∣∣∣∣2 +

+
∑

(j̃,k̃,m̃)∈Λ̃J

∣∣∣∣ ε

23j̃/4
e
−2πiε〈

(
S
k̃
Ã

2j̃

)−T
l,m̃〉 ̂̃

ψ

(
ε
(
S
k̃
Ã

2j̃

)−T
l

)∣∣∣∣2 ,

≤ C
∣∣∣εφ̂(εl)

∣∣∣2 +
J−1∑
j=0

2j/2∑
k=−2j/2

∣∣∣ψ̂ (ε (SkA2j )
−T l

)∣∣∣2 +
J−1∑
j̃=0

2j̃/2∑
k̃=−2j̃/2

∣∣∣∣̂̃ψ(ε(Sk̃Ã2j̃

)−T
l

)∣∣∣∣2 ,
(2.15)

since the cardinality of Ωj,k and Ω̃
j̃,k̃

is of order 23/2j . Further, we have used the fact
that the cardinality of Ω is independent of J and solely depends on the size of the region
of interest and the support size of the scaling function φ.

For the rest of the proof we denote by I, II, III the following terms

I :=

 ∑
|l2|>M2

∑
|l1|>M1

+
∑
|l2|<M2

∑
|l1|>M1

+
∑
|l2|>M2

∑
|l1|<M1

∣∣∣εφ̂(εl)
∣∣∣2 ,
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II :=

 ∑
|l2|>M2

∑
|l1|>M1

+
∑
|l2|<M2

∑
|l1|>M1

+
∑
|l2|>M2

∑
|l1|<M1

 J−1∑
j=0

2j/2∑
k=−2j/2

∣∣∣ψ̂ (ε (SkA2j )
−T l

)∣∣∣2 ,
III :=

 ∑
|l2|>M2

∑
|l1|>M1

+
∑
|l2|<M2

∑
|l1|>M1

+
∑
|l2|>M2

∑
|l1|<M1

 J−1∑
j̃=0

2j̃/2∑
k̃=−2j̃/2

∣∣∣∣̂̃ψ(ε(Sk̃Ã2j̃

)−T
l

)∣∣∣∣2 .
In order to obtain (2.14) for sufficiently large S independent on J withMi = 2J(1+δ)

ε S, i =
1, 2 we will now estimate each of these sums by using the decay conditions (2.9) and
(2.10), respectively. By assumption (2.9) we have

∣∣∣εφ̂(εl)
∣∣∣2 ≤ C2

1ε
2

∣∣∣∣ 1

(1 + |εl1|)r
1

(1 + |εl2|)r

∣∣∣∣2 . (2.16)

and thus ∑
|l2|>M2

∑
|l1|<M1

∣∣∣φ̂(εl)
∣∣∣2 ≤ ∑

|l2|>M2

∑
|l1|<M1

C2
1

1

(1 + |εl1|)2r

1

(1 + |εl2|)2r

≤ C2
1

∑
|l1|>M1

1

(1 + |εl1|)2r

≤ C2
1

1

(1 + SJ(1+δ))2r−1
, (2.17)

where the constant C1 changed in each step. Along the same lines one obtains∑
|l2|<M2

∑
|l1|>M1

∣∣∣φ̂(εl)
∣∣∣2 ≤ C2

1

1

(1 + S2J(1+δ))2r−1
(2.18)

and ∑
|l2|>M2

∑
|l1|>M1

∣∣∣φ̂(εl)
∣∣∣2 ≤ C2

1

1

(1 + S2J(1+δ))2r−1
. (2.19)

Hence, combinging (2.17), (2.18) and (2.19) gives

I ≤ C2
1

1

(1 + S2J ′(1+δ))2r−1
(2.20)

Concerning the second sum II we obtain by a use of assumption (2.10) the estimate

J−1∑
j=0

2j/2∑
k=−2j/2

∣∣∣ψ̂ (ε (SkA2j )
−T l

)∣∣∣2

≤
J−1∑
j=0

2j/2∑
k=−2j/2

C2
2

(1 + |ε2−jl1|)2r(1 + | − εk2−jl1 + ε2−j/2l2|)2r
, (2.21)
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and, likewise for III,

J−1∑
j̃=0

2j̃/2∑
k̃=−2j̃/2

∣∣∣∣̂̃ψ(ε(STk̃ A2j̃

)−T
l

)∣∣∣∣2

≤
J−1∑
j̃=0

2j̃/2∑
k̃=−2j̃/2

C2
3

(1 + |ε2−j̃l2|)2r(1 + |ε2−j̃/2l1 − εk̃2−j̃l2|)2r
. (2.22)

We continue with (2.21) and leave out the computations for (2.22) since the arguments
will apply in the same manner.

In order to further bound (2.21) we distinguish between two cases. The first case
concerns shearlets, that are wavelet-like, these are those shearlets part of the full shearlet
system, that are not sheared. These are can be seen as parabolically scaled wavelets.

Case I: Let 0 ≤ j ≤ J − 1, k = 0. By direct computations similar to (2.17) we have

∑
|l2|>M2

∑
|l1|<M1

J−1∑
j=0

C2
2

1

(1 + |ε2−jl1|)2r

1

(1 + |ε2−j/2l2|)2r

≤
J−1∑
j=0

C2
2

∑
|l2|>M2

1

(1 + |ε2−j/2l2|)2r

∑
|l1|<M1

1

(1 + |ε2−jl1|)2r

≤
J−1∑
j=0

C2
2

2j

ε

∑
|l2|>M2

1

(1 + |ε2−j/2l2|)2r

≤
J−1∑
j=0

C2
2

23/2j

ε2

1

(1 + S2J ′(1+δ)−j/2)2r−1

≤ C2
2

23/2J

ε2

1

(1 + S2J(1/2+δ))2r−1
. (2.23)

where C2 changed over time. By similar computations we obtain

∑
|l2|<M2

∑
|l1|>M1

J−1∑
j=0

C2
2

1

(1 + |ε2−jl1|)2r

1

(1 + |ε2−j/2l2|)2r
≤ C2

2

23/2J

ε2

1

(1 + S2Jδ)2r−1
,

(2.24)

and

∑
|l1|>M1

∑
|l2|>M2

J−1∑
j=0

C2
2

1

(1 + |ε2−jl1|)2r

1

(1 + |ε2−j/2l2|)2r

≤ C2
2

23/2J

ε2

1(
(1 + S2Jδ)(1 + S2J(1/2+δ))

)2r−1 . (2.25)

We now turn to the second case of sheared elements.
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Case 2: Let 0 ≤ j ≤ J − 1, k 6= 0. By a use of Lemma 2.18 we have

∑
|l2|>M2

∑
|l1|<M1

J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

C2
2

1

(1 + |ε2−jl1|)2r

1

(1 + | − εk2−jl1 + ε2−j/2l2|)2r

≤
J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

∑
|l2|>M2

C2
2

1

ε|k2−j |
1

(1 + |ε2−j ||2j/2l2/k|)2r

≤
J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

C2
2

2j

ε|k|
|k|2j/2

ε

1

(1 + |Sε 2J ′(1+δ)−j/2/k|)2r−1

=

J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

C2
2

23/2j

ε2

1

(1 + |Sε 2J(1+δ)−j/2/k|)2r−1

≤ C2
2

22J

ε2

1

(1 + |Sε 2Jδ|)2r−1
. (2.26)

Since∑
|l2|<M2

1

(1 + | − εk2−jl1 + ε2−j/2l2|)2r
.
∫
R

1

(1 + | − εk2−jl1 + ε2−j/2x|)2r
dx .

2j/2

ε

we have

∑
|l2|<M2

∑
|l1|>M1

J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

C2
2

1

(1 + |ε2−jl1|)2r

1

(1 + | − εk2−jl1 + ε2−j/2l2|)2r

≤
J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

C2
2

23/2j

ε2

1

(1 + |Sε 2J(1+δ)−j |)2r−1

≤ C2
2

22J

ε2

1

(1 + |Sε 2Jδ|)2r−1
. (2.27)

Lastly, the final sum in II can be bounded as in (2.26). In fact, invoking Lemma 2.18
yields

∑
|l2|>M2

∑
|l1|>M1

J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

C2
2

1

(1 + |ε2−jl1|)2r

1

(1 + | − εk2−jl1 + ε2−j/2l2|)2r

≤
J−1∑
j=0

2j/2∑
k=−2j/2

k 6=0

C2
2

23/2j

ε2

1

(1 + |Sθ2J(1+δ)−j |)2r−1
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≤ C2
2

22J

ε2

1

(1 + |Sε 2Jδ|)2r−1
. (2.28)

Therefore, combining (2.23), (2.24), (2.25), (2.26) (2.27), (2.28) yields

II ≤ C2
2

22J

ε2

1

(1 + |Sε 2Jδ|)2r−1
. (2.29)

As already mentioned above, we can bound III by performing the same computations as
we did for II, therefore we conclude

III ≤ C2
2

22J

ε2

1

(1 + |Sε 2Jδ|)2r−1
. (2.30)

The estimates (2.20), (2.29), and (2.30) yields

I + II + III ≤ C ε2r−3

(S2J(δ−2/(2r−1))2r−1
,

with a constant that does not depend on J . Therefore, if δ ≥ 2
2r−1 the result follows for

S greater than C−1( ε
2r−3

ω )1/(2r−1) which is independent of J .

Proof of Theorem 2.14

The proof of Theorem 2.14 is a consequence of Proposition 2.17.

Proof of Theorem 2.14. Let θ > 1. Then we want to show

inf
f∈RN
‖f‖=1

‖PS(ε)
M

f‖ ≥ 1

θ
(2.31)

for an appropriate M stated in the theorem. For this, let f ∈ RN with ‖f‖ = 1. Instead
of showing (2.31) we equivalently show

‖P⊥
S(ε)
M

f‖2 ≤ θ2 − 1

θ2
, (2.32)

for the claimed M . Since (s
(ε)
` )` is an orthonormal system, we have

‖P⊥
S(ε)
M

f‖2 =
∑

l∈(IM )c

|〈f, s(ε)
l 〉|

2,

where (IM )c denotes the set complement of IM in Z2, in particular∑
l∈(IM )c

|〈f, s(ε)
l 〉|

2

=
∑
|l2|>M2

∑
|l1|>M1

|〈f, s(ε)
l 〉|

2 +
∑
|l2|<M2

∑
|l1|>M1

|〈f, s(ε)
l 〉|

2 +
∑
|l2|>M2

∑
|l1|<M1

|〈f, s(ε)
l 〉|

2.
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Since the frame operator

SN : RN −→ RN , f 7→
∑
λ≤N
〈f, ψλ〉ψλ

is an bijection we have for any f ∈ RN

f =
∑
λ≤NJ

〈f, S−1
N ψλ〉ψλ =

∑
m′∈Ω

αm′φm′ +
∑

(j,k,m)∈ΛJ

βj,k,mψj,k,m +
∑

(j̃,k̃,m̃)∈Λ̃J

γ
j̃,k̃,m̃

ψ̃
j̃,k̃,m̃

with

αm′ = 〈φm′ , sl〉, βj,k,m = 〈ψj,k,m, sl〉, γj,k,m = 〈ψ̃
j̃,k̃,m̃

, sl〉.

Furthermore,∑
m′∈Ω

|αm′ |2 +
∑

(j,k,m)∈ΛJ

|βj,k,m|2 +
∑

(j̃,k̃,m̃)∈Λ̃J

∣∣∣γj̃,k̃,m̃∣∣∣2 =
∑
λ≤NJ

|〈S−1
N f, ψλ〉|2 ≤

1

AN
‖f‖2.

Therefore by Cauchy-Schwarz∑
l∈(IM )c

|〈f, sl〉|2

=
∑

l∈(IM )c

∣∣∣∣〈∑
m′∈Ω

αm′φm′ +
∑

(j,k,m)∈ΛJ

βj,k,mψj,k,m +
∑

(j̃,k̃,m̃)∈Λ̃J

γ
j̃,k̃,m̃

ψ̃
j̃,k̃,m̃

, sl〉
∣∣∣∣2

=
∑

l∈(IM )c

∣∣∣∣ ∑
m′∈Ω

αm′ φ̂m′(εl) +
∑

(j,k,m)∈ΛJ

βj,k,mψ̂j,k,m(εl) +
∑

(j̃,k̃,m̃)∈Λ̃J

γ
j̃,k̃,m̃

̂̃
ψ
j̃,k̃,m̃

(εl)

∣∣∣∣2

≤
∑

l∈(IM )c


∑
m′∈Ω

|αm′ |2 +
∑

(j,k,m)∈ΛJ

|βj,k,m|2 +
∑

(j̃,k̃,m̃)∈Λ̃J

|γ
j̃,k̃,m̃
|2


∑
m′∈Ω

|φ̂m′(εl)|2 +
∑

(j,k,m)∈ΛJ

|ψ̂j,k,m(εl)|2 +
∑

(j̃,k̃,m̃)∈Λ̃J

|̂̃ψ
j̃,k̃,m̃

(εl)|2



≤ 1

AN

∑
l∈(IM )c

[ ∑
m′∈Ω

∣∣∣φ̂m′(εl)∣∣∣2 +
∑

(j,k,m)∈ΛJ

∣∣∣εψ̂j,k,m(εl)
∣∣∣2 +

∑
(j̃,k̃,m̃)∈Λ̃J

∣∣∣εφ̂m′(εl)∣∣∣2
]
.

Now by Proposition 2.17 there exists a constant S(θ, r, ε) independent of J such that for

Mi =

⌈
S(θ, r, ε)2J(1+δ)A

1
2r−1

N

⌉
∈ N, i = 1, 2

we can conclude ∑
l∈(IM )c

|〈f, sl〉|2 ≤
θ2 − 1

θ2

which shows (2.32) and thus finishes the proof.
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Proof of Proposition 2.15

For the proof of Proposition 2.15 we recall some characteristic approximation properties
of shearlets and wavelets. Indeed, by Theorem 1.6 the best N -term approximation fsN of
shearlets for cartoon-like functions obeys

‖f − fsN‖ . N−1(logN)3/2,

and for wavelets the best N -term approximation fwN obeys

‖f − fwN‖ . N−1/2,

see [KL12a]. Furthermore, these bounds are sharp, i.e. there exist cartoon-like functions
such that the above inequalities hold with equality up to some constant.

Proof of Proposition 2.15. Let N ∈ N, fsN , fwσ(N),R
s
N ,Rwσ(N) be as in the proposition. For

a fixed θ > 1 there exist by Theorem 2.14 an M = (M1,M2) such that

cN,M = inf
f∈RsN
‖f‖=1

‖PS(ε)
M

f‖ ≥ 1

θ

and similarly, by Theorem2.12 there exists an M ′ = (M ′1,M
′
2) in N× N so that

cσ(N),M ′ = inf
f∈Rw

σ(N)

‖f‖=1

‖PS(ε)

M′
f‖ ≥ 1

θ
.

More precisely, we can chooseM1 ·M2 andM ′1 ·M ′2 to be of order σ(NJ) due to the stable
sampling rate for shearlets and wavelets, respectively.

By Theorem 2.3 and the approximation rate for cartoon-like functions we can bound
the error of the generalized sampling reconstruction by

‖f −Gwσ(N),M ′(f)‖ . ‖f − PRw
σ(N)

(f)‖ . ‖f − fwσ(N)‖ . σ(N)−1/2.

Analogously, for shearlets we obtain

‖f −GsN,M (f)‖2 . ‖f − PRsN (f)‖2 .

∥∥∥∥∥∥f −
∑
λ∈IN

〈f, ψdλ〉ψλ

∥∥∥∥∥∥
2

.
∑
λ/∈IN

|〈f, ψdλ〉|2,

where (ψdλ)λ is the dual shearlet system of (ψλ)λ and IN denotes the index set of the N
largest coefficients (〈f, ψλ)λ) with respect to the best N -term approximation fsN .

Furthermore, if the regularity is sufficiently large, it was shown in [Gro13] that we can
relate the analysis coefficients of the primal frame with those of the dual frame by the
relation

(〈f, ψλ〉)λ = G(〈f, ψdλ〉)λ,
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where G is the Gramian operator associated to the shearlet system (ψλ). Therefore the
claimed rate follows from the decay rate of the shearlet coefficients. Hence,

‖f −GsN,M (f)‖2 .
∑
λ/∈IN

|〈f, ψλ〉|2 . N−2(logN)3

which yields the result.

So far we have considered the reconstruction of Fourier measurements using compactly
supported shearlets within the framework of GS. Further, our main result showed that
an almost linear stable sampling rate provides successful reconstructions. However, in
practice it would not be efficient to sample with such a rate. In fact, using the concept
of compressed sensing one can reduce the number of measurements dramatically. We will
discuss this in the next section.



Chapter 3

Structured compressed sensing

In this chapter we study the reconstruction problem under the presence of sparsity.
Loosely speaking, a signal is sparse in a system (ψλ)λ if it can be represented in the
span of (ψλ)λ using only very few non-zero coefficients. We shall give a precise definition
further below. The concept of sparsity leads us to a situation that falls into the field of
compressed sensing. In particular, compressed sensing is a theory that was developed by
Donoho in [Don06] and Candès, Romberg and Tao in [CRT06] that allows one to recover
a sparse signal from far less measurements than classical sampling theorems such as the
Nyquist sampling theorem suggests.

In this chapter we will be in particular interested in applying compressed sensing to
multiscale dictionaries such as shearlets. In particular, we will present our results for
α-shearlets which are a special instance of α-molecules [GKKS]. These systems are again
a generalization of so-called parabolic molecules [GK14] which is a concept that unifies the
concepts of wavelets, curvelets and shearlets. We will give some details about the concept
and the notations later in this chapter. First, we proceed with a brief introduction into
compressed sensing.

Compressed sensing

The reconstruction problem considered in compressed sensing can be considered as solving
a linear system of equations

Ax = y, (3.1)

where x takes the role of the signal in Rn, y ∈ Rm represents the acquired measurements
and A is the m× n sampling matrix which is usually fixed and given by the application.
As the matrix A represents the acquisition device it would be of great desire to keep
m, the number of measurements, small. Ideally, one wants m to be much smaller than
n, however, in this event the system (3.1) does not admit a unique solution anymore.
In particular, without any further assumptions we cannot hope to recover the signal x
exactly.

The fundamental property that changes the non-unique solvability of the linear system
of equations is the concept of sparsity.

45
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Definition 3.1. Let x ∈ Rn or Cn. Then x is called s-sparse if the number of non-zero
entries does not exceed s ∈ N. In other words, the ‖.‖0-map

‖x‖0 := #{i ≤ n : xi 6= 0}

of x is bounded by s.

In order to find the sparsest solution fulfilling the constraint (3.1) one could consider
the constraint minimization problem

min
x
‖x‖0 subject to Ax = y. (3.2)

However, this minimization problem (3.2) is unfortunately in general NP-hard [FR13] to
solve wherefore the following convex relaxation has been commonly used in compressed
sensing [CT06, Can08, CT05, CRT05, CRT06]:

min
x
‖x‖1 subject to Ax = y. (3.3)

Furthermore, in order to allow noisy measurements one usually considers the following
minimization problem

min
x
‖x‖1 subject to ‖y −Ax‖2 ≤ ε,

where we call ε the fidelity parameter.

Assuming certain properties such as the null space property for the measurement
matrix A the `1-minimization problem (3.3) is capable of recovering the exact solution,
see, for instance, [FR13].

Now, both minimization problems (3.2) and (3.3) require sparsity of the signal x
directly. This is, however, not always the case. In particular it is not the case for the
type of images that one is interested in applications such as MRI. In fact, it is much more
frequent that the signal is sparse in some specific domain, meaning it is sparse after an
application of some transform Ψ.

For example, natural images are rarely sparse in a pixel basis, but the shearlet trans-
form of the image admits a sparse signal. For instance, in Figure 3.1 we depicted the
distribution of the 5%-largest shearlets coefficients of all available shearlet coefficients up
to a fixed maximum number of scales. It can be observed that most of the largest coef-
ficients are located at the low frequencies and then with increasing scales, the number of
non-zero coefficients decrease very fast.
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Figure 3.1: Left: A natural image of size 2048 × 2048. Right: Distribution of the
shearlet coefficients of the best N -term approximation using 5% of the largest coefficients
in modulus.

The reconstruction problem from Fourier measurements using compactly supported
shearlets studied in the previous Chapter 2 does perfectly fit into the regime of compressed
sensing. In fact, for this specific problem the sensing matrix A is simply the subsampled
Fourier transform and Ψ is the analysis operator of the shearlet frame. This then leads to
a reconstruction that is sparse in the shearlet frame or more precisely, its dual. However,
note that the above introduction considered the finite dimensional scenario whereas the
problem studied in Chapter 2 is an infinite dimensional one. However, the theory of
compressed sensing was generalized by Adcock and Hansen to the infinite dimensional
setting in [AH] which was then later further developed in [AHPR15, Poo15] by, among
other things, taking into account the multilevel structure of sparsifying transforms such
as wavelets and shearlets. The infinite dimensional reconstruction problem reads as

inf
f∈H,Ψ̃f∈�1

‖Ψ̃f‖1 subject to ‖PΩAf − y‖ ≤ ε, (3.4)

where PΩ is the projection onto the span of the unit vector ej ∈ �2 with j ∈ Ω and Ω

determines the subsampling pattern and Ψ̃ denotes the analysis operator associated to the
canonical dual frame. Canonically we will denote by Ψ̃∗ the synthesis operator associated
to the canonical dual frame of (ψλ)λ.

Our main contribution in this chapter is to provide a more detailed analysis on how
the sampling pattern can be designed if structured systems such as shearlets are used.
Before we can present our main results, we first have to generalize the main quantities
and concepts that were introduced in [Poo15]. More precisely, in [Poo15] the author has
investigated the above infinite dimensional minimization problem for Ψ corresponding to a
tight frame. Unfortunately, the compactly supported shearlets that we have investigated
in the previous chapter do not form a tight frame and thus these generalizations are
needed. We therefore first extend the recovery results of [Poo15] to arbitrary frames and
then we discuss the application of the stability result to systems which have a localized
Gramian such as shearlet frames.
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3.1 Structured sampling and structured sparsity

Several main concepts introduced in [AHPR15] and further developed in [Poo15] are
multilevel sampling schemes, structured sparsity, and local incoherence. We now recall
these definitions.

Multilevel sampling scheme

The multilevel sampling scheme is perfectly suited for the reconstruction problem that
deals with sampling Fourier coefficients of a signal and recovering it in a sparse domain
such as those generated by wavelets or shearlets. The general definition is as follows.

Definition 3.2 ([AHPR15, Poo15]). Let r ∈ N,M = (M1, . . . ,Mr) ∈ Nr with 0 = M0 <
M1 < . . . < Mr, m = (m1, . . . ,mr) ∈ Nr with mk < Mk −Mk−1, k = 1, . . . , r. Further,
suppose

Ωk ⊂ {Mk−1 + 1, . . . ,Mk},

with |Ωk| = mk for k = 1, . . . , r are chosen uniformly at random. The set Ω = ΩM,m =
Ω1 ∪ . . . ∪ Ωr is called (M,m)-sampling scheme.

Sparsity in levels

As we already showed in Figure 3.1 natural images are sparse in wavelet domains. How-
ever, this type of sparsity can be characterized more precisely and can generally be ob-
served for other systems such as shearlets and curvelets. We proceed with the definition
of signals that are sparse in levels which is a structure that is inherited in natural signals.

Definition 3.3 ([Poo15]). Let x be in CN or `2(N). For r ∈ N let N = (N1, . . . , Nr) ∈ Nr
with 0 = N0 < N1 < . . . < Nr and s = (s1, . . . , sr) ∈ Nr with sk ≤ Nk − Nk−1 and
k = 1, . . . , r. We say that x is (s,N)-sparse if for each k = 1, . . . , r the level support
∆k := supp (x)∩{Nk−1 + 1, . . . , Nk}, satisfies |∆k| ≤ sk. The set of (s,N)-sparse signals
is denoted by Σs,N.

The next definition concerns the minimal error approximation of an arbitrary signal
by (s,N)-sparse signals.

Definition 3.4 ([Poo15]). Let x be in CN or `2(N). The (s,N)-term approximation is
defined as

σs,N(x) = min
z∈Σs,N

‖x− z‖1.

If one is given a frame (ψλ)λ ⊆ H together with its canonical dual (ψ̃λ)λ and Ψ∗

denotes the synthesis operator with respect to the primal frame and Ψ̃ denote the analysis
operator of the dual frame, then by definition we have for any f ∈ H

Ψ∗Ψ̃f = f.
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However, in general Ψ̃Ψ∗ : `2 −→ `2 is not the identity operator. But since we are
minimizing over the dual coefficients Ψ̃f for f ∈ H, it is a natural question how Ψ̃Ψ∗

distorts the sparsity of a signal Ψ∗x for x ∈ Σs,N. This will be measured by the next
definition which is a straightforward generalization of the analogue given in [Poo15].

Definition 3.5. Let r ∈ N and N = (N1, . . . , Nr) ∈ Nr with 0 = N0 < N1 < . . . < Nr

and s = (s1, . . . , sr) ∈ Nr. Let Λj = {Nj−1 + 1, . . . , Nj} for j = 1, . . . , r − 1 and
Λr = {Nr−1 + 1, Nr−1 + 2, . . . }. Further, let p = 2−J for some J ∈ N ∪ {0} and κ > 0
the smallest number such that

κ1−p/q ≥ sup
{
‖Ψ̃g‖pp : g = Ψ∗x, ‖Ψ̃g‖q = 1, x ∈ Σs,N

}
, q ∈ {2,∞},

where we set p/∞ = 0. Then κ(N, s, p) = κ is said to be the localized sparsity with
respect to N, s and p. For each j = 1, . . . , r let κj > 0 be the smallest number such that

κ
1−p/q
j ≥ sup

{
‖PΛj Ψ̃g‖pp : g = Ψ∗x, ‖PΛj Ψ̃g‖q = 1, x ∈ Σs,N

}
, q ∈ {2,∞}.

Then κj(N, s, p) = κj is said to be the jth localized level sparsity with respect to N, s,
and p.

While Definition 3.5 essentially concerns the localization properties of the cross Gramian
between the primal frame and its canonical dual, the next definition involves the sampling
operator. It is again a straightforward generalization of the definition given in [Poo15] to
the scenario where the frame is not necessarily tight.

Definition 3.6. Let A,Ψ : H −→ H′ be linear bounded operators where H is a Hilbert
space and H′ is either CN or `2. Further, let κ = (κ1, . . . , κr),N = (N1, . . . , Nr),M =
(M1, . . . ,Mr) ∈ Nr with 0 = N0 < N1 < . . . < Nr and 0 = M0 < M1 < . . . < Mr. For
1 ≤ k ≤ r, the kth relative sparsity is given by

κ̂k = κ̂k(N,M, κ) = max
g∈Θ
‖PΓkAg‖

2,

where Γk = {Mk−1 + 1, . . . ,Mk} and Θ is the set

Θ = {g ∈ H : g ∈ ran Ψ∗, ‖PΛlΨ̃g‖
2
2 ≤ κl, l = 1, . . . , r},

where Λl = {Nk−1 + 1, . . . , Nk}.

Local incoherence

The final ingredient that we use in order to analyze the recovery problem for level sparse
signals and multilevel sampling schemes is the definition of local incoherence.

Definition 3.7 ([Poo15]). Let A,Ψ : H −→ H′ where H is a Hilbert space and H′
is either CN or `2. For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr with 0 = M0 < M1 <
. . . < Mr and N = (N1, . . . , Nr) ∈ Nr with 0 = N0 < N1 < . . . < Nr. Furthermore,
let Γk = {Mk−1 + 1, . . . ,Mk}, k ≤ r and Λk = {Nk−1 + 1, . . . , Nk}, k ≤ r − 1 and let
Λr = {n ∈ N : n > Nr}. The (k, l)-local incoherence between A and Ψ with respect to
N and M is given by

µN,M(k, l) =
√
µ(PΓkAΨ∗PΛl)µ(PΓkAΨ∗), k, l = 1, . . . , r.

We now turn to the stability theorem and its assumptions.
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3.2 Stability guarantee for general frames

The stability result for solutions of the problem (3.4) relies on the balancing property that
was first introduced by Adcock and Hansen in [AH] which was then customized for the
analysis case in [Poo15]. We shall introduce the balancing property similar as in [Poo15]
for the general frame case, i.e. not necessarily tight-frame case.

Balancing property

The balancing property is a helpful tool that allows one to exploit more structure of the
reconstruction system and essentially predicts in which measurements should be acquired.

Definition 3.8. Let A,Ψ : H −→ `2 be linear bounded operators. Then M ∈ N and
K ≥ 1 satisfy the balancing property with respect to A,Ψ, N, s ∈ N and κ2 ≥ κ1 > 0 if for
all R = span{{Ψ∗ei : i ∈ ∆} ∪ {Ψ̃∗ej : j ∈ ∆}} where ∆ ⊂ [N ] is such that |∆| = s,

‖ΨPRA∗P⊥[M ]APRΨ∗‖2→2 ≤
√
κ1/κ2

8

(
log

1/2
2 (4

√
κ2KM)

)−1

and

‖ΨP⊥RA∗P[M ]APRΨ∗‖2→∞ ≤ 1/(8
√
κ2)

holds.

Now, let r ∈ N and N = (N1, . . . , Nr), M = (M1, . . . ,Mr), s = (s1, . . . , sr) ∈ Nr with
0 = N0 < N1 < . . . < Nr. For p ∈ (0, 1] let κ = (κ1, . . . , κr) be κj = κj(N, s, p) and
κ̂j = κ̂j(N,M, κ). Further, let

M̃ = ‖Ψ̃Ψ∗‖∞→∞

·min

{
i ∈ N : max

j≥i
‖P[M ]AΨ∗ej‖2 ≤ q/(8

√
κmax),max

j≥i
‖Pran Ψ∗P[N ]

Ψ∗ej‖ ≤
√

5q/4

}
,

and

B(s,N) = sup{B̃(∆) : ∆ is (s,N)-sparse},

where ∆ ⊂ N and

B̃(∆) = max

‖Ψ̃P⊥RΨ∗‖∞→∞,

√√√√‖ΨPRΨ̃∗‖∞→∞ max
l=1,...,r

r∑
t=1

‖PΛlΨPRΨ̃∗PΛt‖∞→∞

 .

Then the stability result is formulated as follows.

Theorem 3.9. Let H be a Hilbert space, A : H −→ `2 a linear, bounded operator and
Ψ the analysis operator of a frame. Let f ∈ H and suppose Ω = ΩM,m is a multilevel
sampling scheme. Further, let (s,N) be such that the following holds:

i) The parametersM = Mr, q
−1 = maxk=1,...,r{(Mk−Mk−1)/mk} satisfy the balancing

property with respect to A,Ψ, N := Nr, κmin = rmin{κj} and κmax = rmax{κj}.
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ii) For γ ∈ (0, e−1] and k = 1, . . . , r

√
r log(γ) log(q−1M̃

√
κmax)B(s,N)

Mk −Mk−1

mk

(
r∑
l=1

µ2
N,M(k, l)κl

)
. 1,

and rm̂kB(s,N)2 log(γ−1) log(q−1M̃
√
κmax) . mk where m̂k is such that

r∑
k=1

(
Mk −Mk−1

m̂k
− 1

)
µN,M(k, l)κ̂k . 1, l = 1, . . . , r.

Suppose that f̂ is a minimizer of (3.4) with y = PΩV f + η and ‖η‖2 ≤ ε. Then with
probability exceeding 1− γ we have

‖f − f̂‖ ≤ C1ε+ C2σs,N(Ψ̃f)

for some constants C1 and C2 that depend on q, γ, κmax and the frame bounds of the frame
corresponding to Ψ. If mk = Mk −Mk−1 for k = 1, . . . , r then this holds with probability
1.

Proof. See Appendix C.8

The proof of Theorem 3.9 is build on the next result which is Proposition 6.1 in
[Poo15] adapted to the non-tight frame case. We include it here for completeness as its
proof also visualizes why we had to enlarge the reconstruction space

R = span{{Ψ∗ei : i ∈ ∆} ∪ {Ψ̃∗ej : j ∈ ∆}}

by the dual elements in the balancing property.

Proposition 3.10. Let f ∈ H, ∆ ⊂ N and R = span{{Ψ∗ei : i ∈ ∆}∪{Ψ̃∗ej : j ∈ ∆}}.
Further, let r ∈ N and q = (q1, . . . , qr) ∈ (0, 1]r and let Ω = Ω1∪ . . .∪Ωr where Ω1, . . . ,Ωr

are disjoint subsets of N. Suppose

i)
∥∥PRA∗ (⊕r

i=1 q
−1
i PΩi

)
APR − PR

∥∥ < 1/4,

ii) supi∈N
∥∥PiΨP⊥RA∗ (⊕r

i=1 q
−1
i PΩi

)
AP⊥RΨ∗Pi

∥∥ < 5/4,

iii) there exists ρ = A∗PΩw and L > 0 such that

a)
∥∥∥Ψ̃∗P∆ sgn(P∆Ψ̃f)− PRρ

∥∥∥ ≤ √q/8,
b)
∥∥P⊥∆ ΨP⊥Rρ

∥∥
∞ ≤ 1/4,

c) ‖w‖2 ≤ L
√
κ.

Let y ∈ `2 be a feasible vector, i.e. ‖PΩAf − y‖ ≤ ε. Then any minimizer f̂ ∈ H of (3.4)
satisfies

‖f − f̂‖ ≤ C1ε+ C2‖P⊥∆ Ψ̃f‖1,

for some constants C1, C2 that depend on B and q. The constant C1 further depends on
L and κ.
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Proof. Let PR denote the orthogonal projection onto R. Then by construction of the
reconstruction space R we have

P⊥Rg = P⊥RΨ∗P⊥∆ Ψ̃g + P⊥RΨ∗P∆Ψ̃g = P⊥RΨ∗P⊥∆ Ψ̃g

for all g ∈ H. Therefore

‖g‖ ≤ ‖PRg‖+ ‖P⊥RΨ∗P⊥∆ Ψ̃g‖ ≤ ‖PRg‖+B1/4‖P⊥∆ Ψ̃g‖1 (3.5)

for all g ∈ H. Now, let f̂ be a minimizer of (3.4) and set h = f̂ − f . Further, we denote
AΩ,q = PRA

∗ (⊕r
i=1 q

−1
i PΩi

)
APR. Then, by i) and Neumann series we have

. ‖AΩ,q − IdPR(H) ‖ < 1/4,

. AΩ,q is invertible on PR(H) with ‖A−1
Ω,q‖ ≤ 4/3,

.
∥∥∥(⊕r

i=1 q
−1/2
i PΩi

)
APR

∥∥∥ ≤√5/4.

By feasibility we have ‖PΩAh‖2 ≤ 2ε, hence

‖PRh‖ = ‖A−1
Ω,qAΩ,qPRh‖

≤ ‖A−1
Ω,q‖

∥∥∥∥∥PRA∗
(

r⊕
i=1

q−1
i PΩi

)
A(Id−P⊥R )h

∥∥∥∥∥
≤ 4/3

[√
5/4

(
q−1/22ε+

∥∥∥∥∥
(

r⊕
i=1

q
−1/2
i PΩi

)
AP⊥Rh

∥∥∥∥∥
)]

. (3.6)

Using ii) we obtain∥∥∥∥∥
(

r⊕
i=1

q
−1/2
i PΩi

)
AP⊥Rh

∥∥∥∥∥ =

∥∥∥∥∥
(

r⊕
i=1

q
−1/2
i PΩi

)
AP⊥RΨ∗P⊥∆ Ψ̃h

∥∥∥∥∥
= sup

i∈∆c

∥∥∥∥∥
(

r⊕
i=1

q
−1/2
i PΩi

)
AP⊥RΨ∗ei

∥∥∥∥∥∥∥∥P⊥∆ Ψ̃h
∥∥∥

≤
√

5/4
∥∥∥P⊥∆ Ψ̃h

∥∥∥
1
. (3.7)

Using (3.7) in (3.6) yields

‖PRh‖ ≤ 4
√

5/3q−1/2ε+ 5/3‖P⊥∆ Ψ̃h‖1. (3.8)

We proceed by bounding ‖P⊥∆ Ψ̃h‖1. By direct estimation we obtain

‖Ψ̃f̂‖1 = ‖P⊥∆ Ψ̃(f + h)‖1 + ‖P∆Ψ̃(f + h)‖1
≥ ‖P⊥∆ Ψ̃h‖1 − ‖P⊥∆ Ψ̃f‖1 + ‖P∆Ψ̃f‖1 + Re〈P∆Ψ̃h, sgn(P∆Ψ̃f)〉

= ‖P⊥∆ Ψ̃h‖1 − 2‖P⊥∆ Ψ̃f‖1 + ‖Ψ̃f‖1 + Re〈P∆Ψ̃h, sgn(P∆Ψ̃f)〉

≥ ‖P⊥∆ Ψ̃h‖1 − 2‖P⊥∆ Ψ̃f‖1 + ‖Ψ̃f̂‖1 + Re〈P∆Ψ̃h, sgn(P∆Ψ̃f)〉
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where we have used that f̂ is a minimizer in the last estimate. By rearranging the terms
above we have

‖P⊥∆ Ψ̃h‖1 ≤ 2‖P⊥∆ Ψ̃f‖1 + |〈P∆Ψ̃h, sgn(P∆Ψ̃f)〉|. (3.9)

By iii) we have

|〈P∆Ψ̃h, sgn(P∆Ψ̃f)〉| = |〈h, Ψ̃∗P∆ sgn(P∆Ψ̃f)〉|

≤ |〈h, Ψ̃∗P∆ sgn(P∆Ψ̃f)− PRρ〉|+ |〈h, ρ〉|+ |〈h, P⊥Rρ〉|

≤ √q/8‖h‖+ ‖PΩAh‖2‖w‖2 + |〈Ψ∗P⊥∆ Ψ̃h, P⊥Rρ〉|

≤
√

5/6ε+ 5
√
q/24‖P⊥∆ Ψ̃h‖1 +

√
q/8‖P⊥Rh‖+ 2εL

√
κ+

+ 1/4‖P⊥∆ Ψ̃h‖1
≤
√

5/6ε+ 2εL
√
κ+ (5

√
q/3 +

√
qB1/4 + 2)/8‖P⊥∆ Ψ̃h‖1.

Hence, (3.9) can further be estimated as

‖P⊥∆ Ψ̃h‖1 ≤
√

5/6ε+ 2εL
√
κ+ (5

√
q/3 +

√
qB1/4 + 2)/8‖P⊥∆ Ψ̃h‖1 + 2‖P⊥∆ Ψ̃f‖1

which is equivalent to

‖P⊥∆ Ψ̃h‖1 ≤
√

5/6ε+ 2εL
√
κ+ 2‖P⊥∆ Ψ̃f‖1

3/4−√q(5/3 +B1/4)/8
(3.10)

By using (3.10) and (3.8) we can conclude

‖h‖ ≤ ‖PRh‖+ ‖P⊥Rh‖ ≤ C1ε+ C2‖P⊥∆ Ψ̃f‖1

with

C1 =
4
√

5/3q−1/2 + (5/3 +B1/4)(
√

5/6 + 2L
√
κ)

3/4−√q(5/3 +B1/4)/8
, C2 =

2(5/3 +B1/4)

3/4−√q(5/3 +B1/4)/8
.

Remark 3.11. Note that the noise free case is also covered in the proof of Proposition
3.10 as ε can simply be set to zero.

In order to prove Theorem 3.9 one has to check that the assumptions of Proposition
3.10 can be fulfilled with high probability. A contruction of a dual certificate such that
this is the case can be done in the same way as it has been done in [Poo15] for tight frames
with corresponding adaptions of the arguments to the non-tight case. We therefore present
this construction in Appendix C.8, see also [Poo15].

In order to make Theorem 3.9 more applicable we discuss its assumption in the next
section in more detail.
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3.3 Sufficient condition for the balancing property

In this section we want to discuss the assumptions of Theorem 3.9 in more detail. More
precisely, we discuss the assumption of the balancing property and present an approach
how to verify it for for systems that are (cross-)localized, i.e. whose Gramians ΨΨ∗

and ΨΨ̃∗ have a strong off diagonal decay and have good incoherence properties, i.e.
essentially ΨA∗ has strong off-diagonal decay. Note that the second assumption ii) of
Theorem 3.9 solely depends on the incoherence properties and the relative sparsities of
the underlying system.

Recall that the balancing property requires to bound the following two terms, first

‖ΨPRA∗P⊥[M ]APRΨ∗‖2→2 ≤
√
κmin/κmax

8

(
log

1/2
2 (4

√
κmaxKM)

)−1
(3.11)

and second

‖ΨP⊥RA∗P[M ]APRΨ∗‖2→∞ ≤ 1/(8
√
κmax). (3.12)

Also recall that

R = span{{Ψ∗ei : i ∈ ∆} ∪ {Ψ̃∗ej : j ∈ ∆}}.

which is twice as large as in the case when the frame is tight.
We now give separate bounds for (3.11) and (3.12) starting with (3.11).

Lemma 3.12. There exists a constant C > 0, such that for any ∆′ ⊂ N we have

‖ΨPRA∗P⊥[M ]APRΨ∗‖2→2 ≤ ‖P∆′ΨΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖
2
2→2 + ‖P∆′ΨPRΨ̃∗P∆ΨA∗P⊥[M ]‖

2
2→2

+ C
(
‖P⊥∆′ΨΨ∗P∆‖22→2 + ‖P⊥∆′ΨΨ̃∗P∆‖22→2

)
.

Proof. Note that

‖ΨPRA∗P⊥[M ]APRΨ∗‖2→2 = ‖ΨPRA∗P⊥[M ]‖
2
2→2

= ‖P∆′ΨPRA
∗P⊥[M ]‖

2
2→2 + ‖P⊥∆′ΨPRA∗P⊥[M ]‖

2
2→2. (3.13)

Let Υ be the following linear bounded

Υ : `2 × `2 −→ H

((cλ)λ, (dλ)λ) 7→
∑
λ

cλψλ +
∑
λ

dλψ̃λ

and P∆×∆ : `2 × `2 −→ `2 × `2 be the orthogonal projection onto the index set ∆×∆ ⊂
`2 × `2. Then we have

. ΥP∆×∆ is a linear and bounded operator,

. R = ran(ΥP∆×∆), and

. PR = ΥP∆×∆ (ΥP∆×∆)†.
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Therefore, we have

‖P∆′ΨPRA
∗P⊥[M ]‖2→2

= ‖P∆′Ψ(Id−P⊥R Ψ̃∗P⊥∆ Ψ)A∗P⊥[M ]‖2→2

= ‖P∆′Ψ(Ψ̃∗P∆Ψ + Ψ̃∗P⊥∆ Ψ− P⊥R Ψ̃∗P⊥∆ Ψ)A∗P⊥[M ]‖2→2

≤ ‖P∆′ΨΨ̃∗P∆ΨA∗P⊥[M ]‖2→2 + ‖P∆′ΨPRΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖2→2

≤ ‖P∆′ΨΨ̃∗P∆ΨA∗P⊥[M ]‖2→2 + ‖P⊥∆′ΨΥP∆×∆ (ΥP∆×∆)†A∗P⊥[M ]‖2→2 (3.14)

Furthermore,

‖P⊥∆′ΨΥP∆×∆ (ΥP∆×∆)†A∗P⊥[M ]‖2→2

≤
(
‖P⊥∆′ΨΨ∗P∆‖+ ‖P⊥∆′ΨΨ̃∗P∆‖

)
‖ (ΥP∆×∆)†A∗P⊥[M ]‖(2,2)→2 (3.15)

Using (3.14) and (3.15) in (3.13) gives the result.

The next result is trivial to prove and we therefore omit it.

Lemma 3.13. We have

‖ΨP⊥RA∗P[M ]APRΨ∗‖2→∞ = ‖ΨP⊥R Ψ̃∗P⊥∆ ΨA∗P[M ]APRΨ∗‖2→∞.

Using Lemma 3.12 and Lemma 3.13 we can obtain bounds for (3.11) and (3.12) by
designing ∆′ ⊂ N such that

‖P⊥∆′ΨΨ∗P∆‖2→2 and ‖P⊥∆′ΨΨ̃∗P∆‖2→2 (3.16)

can be nicely controlled if the system is intrinsically localized. Furthermore, it should also
be designed in such a way, so that

‖P∆′ΨΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖2→2 (3.17)

can be controlled by using either intrinsic localization arguments for

‖P∆′ΨΨ̃∗P⊥∆‖2→2

or incoherence arguments for

‖P∆ΨA∗P⊥[M ]‖2→2.

Note that this has to be done in a balanced way, since ∆′ ∩ ∆c might not be empty
and hence produces some energy in the norm of P∆′ΨΨ̃∗P⊥∆ . More precisely, on the one
hand one wants to choose ∆′ far away from ∆ in order to gain most from the intrinsic
localization which will keep (3.16) small. On the other hand it must not be too far away
from ∆ otherwise there is too much overlap of the index sets ∆′ and ∆c which would
mean that M has to be larger than maybe necessary in order to apply some incoherence
argument.
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Further, by Lemma 3.13

‖ΨP⊥RA∗P[M ]APRΨ∗‖2→∞

can be controlled by incoherence arguments. In fact it is sufficient to bound

‖P⊥∆ ΨA∗P[M ]‖2→2

by incoherence arguments.
In the next sections we will present the precise arguments for the intrinsic localization

that is used in this intuitive discussion and explain how such ∆′ can be designed. We will
thereby focus on α-shearlets although the arguments can be carried over to more general
α-molecules.

3.4 Balancing property for α-shearlets

For the sake of completeness and notation, we first give a short introduction into the
basics of α-molecules. We thereby only focus on the basic definitions and properties that
we will use for α-molecules. For a more detailed presentation of these systems we refer
to [GKKS].

Basics of α-molecules

The systems of α-molecules were introduced by Grohs et al. in [GKKS] as a generalization
of parabolic molecules to arbitray degrees of anisotropy. Indeed for α = 1/2 both systems
agree. We now define a parametrization which will be used to define a system of α-
molecules.

Definition 3.14 ([GKKS]). A parametrization consists of a pair (Λ,Φλ) where Λ is an
index set and ΦΛ is a mapping

Φ : Λ −→ R+ × T× R2

λ 7→ (sλ, θλ, xλ)

which associates with each λ ∈ Λ a scale sλ ∈ R+, a direction θλ ∈ T and a location
xλ ∈ R2 where T denotes the one dimensional torus with opposite sites identified.

A family of α-molecules is defined using an anisotropic scaling matrix and a rotation
matrix. Indeed, for s > 0, α ∈ [0, 1] and θ ∈ [0, 2π) we let

As =

(
s 0
0 sα

)
, Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

be the scaling matrix and rotation matrix, respectively. Then a system of α-molecules is
defined as follows.
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Definition 3.15. Let (Λ,ΦΛ) be a parametrization and R,M,N1, N2 > 0. A family
(ψλ)λ∈Λ ⊂ L2(R2) is called a family of α-molecules with respect to the parametrization
(Λ,ΦΛ) of order (R,M,N1, N2) if it can be written as

ψλ = s
(1+α)/2
λ f (λ)(AsλRθλ(· − xλ))

such that for all |β| ≤ R,

|∂βf (λ)(ξ)| .
min(1, s−1

λ + |ξ1|+ s
−(1−α)
λ |ξ2|)M

(1 + ‖ξ‖2)N1(1 + ξ2
2)N2

, (3.18)

for all ξ = (ξ1, ξ2) ∈ R2, where the constant in (3.18) is uniform over λ ∈ Λ.

The shearlet systems that we have considered in Chapter 2 are a special instance of
α-molecules, indeed, they can be classified as so-called α-shearlet molecules.

Definition 3.16 ([GKKS]). Let α ∈ [0, 1], c > 0 and g > 1 be fixed parameters. Further,
let (ηj)j∈N0 and (Lj)j∈N0 be sequences of positive real numbers with ηj � g−(1−α), η−1 = 0
and Lj . g(1−α)j. Let

Λs := {(0,−1, 0, k) : k ∈ Z2}
∪ {(ε, j, l, k) : ε ∈ {0, 1}, j ∈ N0, l ∈ Z with |l| ≤ Lj , k ∈ Z2}

and

Φs : Λs −→ P, (ε, j, l, k) 7→
(
gj , επ/2 + arctan(−lηj), (Sεlηj )

−1Aεg−jk
)

where

A0
gj =

(
gj 0
0 gαj

)
, A1

gj =

(
gαj 0
0 gj

)
and S0

lηj
= Slηj , S

1
lηj

= STlηj . Then we call the pair (Λs,Φs) an α-shearlet parametrization.
Furthermore, a system (ψλ)λ∈Λs defined by

ψ(ε,j,l,k) := g(1+α)/2f εj,l,k(A
ε
gjS

ε
lηj
· −τk) for some f εj,l,k ∈ L2(R2)

is a system of α-shearlet molecules of order (L,M,N1, N2) if for every |β| ≤ L

|∂βf (λ)(ξ)| . min(1, g−j + |ξ1+ε|+ g−(1−α)j |ξ2−ε|)M

(1 + ‖ξ‖2)N1(1 + ξ2
2−ε)

N2
,

with an implicit constant independent of (ε, j, l, k) ∈ Λs.

It was shown in [GKKS] that an α-shearlet molecule as it is defined above is indeed
a system of α-molecules. In particular, an α-shearlet system with compactly supported
generators is a system of α-molecules. More precisely, the following result summarizes
the properties that we require in the next section.
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Proposition 3.17. Let h = (c, α, L,M,N1, N2) where c > 0, α ∈ (0, 1), M,N1, N2 ∈ N
and L ∈ {0, . . . ,M}. Further, let φ ∈ CN1+N2

0 (R2), ψ1 ∈ CN1
0 , ψ2 ∈ CN2

0 and assume that
ψ1 has M vanishing moments. Define

ψ(x1, x2) := ψ1(x1)ψ(x2) and ψ̃(x1, x2) = ψ(x2, x1).

Then

Σ(h) =
{
φ(· − cm) : m ∈ Z2

}
∪
{
g(1+α)j/2ψ

(
(A0

gjS
0
lηj
· −cm

)
: j ∈ N0, |l| ≤ ηj ,m ∈ Z2

}
∪
{
g(1+α)j/2ψ̃

(
(A1

gjS
1
lηj
· −cm

)
: j ∈ N0, |l| ≤ ηj ,m ∈ Z2

}
(3.19)

is a system of α-molecules of order (L,M−L,N1, N2) with respect to the shearlet parametriza-
tion (Λs,Φs), where g = 2α

−1/2, ηj = g−(1−α)j and Lj = dg(1−α)je. Moreover, we have

|∂βψ(ξ)| . min(1, |ξ1|)M

(1 + ‖ξ‖22)N1(1 + |ξ2|2)N2
and |∂βψ̃(ξ)| . min(1, |ξ2|)M

(1 + ‖ξ‖22)N1(1 + |ξ1|2)N2
.

In particular, there exists an h such that Σ(h) forms a frame for L2(R2).

Proof. The first statement of Proposition 3.17 follows from Proposition 2.11 in [GKKS].
The moreover-part is simply a concatenation of Lemma 3.10 in [GK14] and the fact that
the 1D generators are assumed to be in CN1

0 and CN2
0 , respectively. The in particular-part

follows from Theorem 1.2.

Remark 3.18. In Proposition 3.17 it is stated that there exists a configuration h such that
the corresponding system of compactly supported α-shearlets forms a frame for L2(R2).
This result already follows from Theorem 1.2 as the cone-adapted shearlet system can be
written in the form of (3.19).

In [GV15, Gro13] the authors have shown that if a system (ψλ)λ of α-molecules forms
a frame and is N -localized, i.e. for N > 0 it holds

|〈ψλ, ψµ〉| . ω(λ, µ)−N , (3.20)

where

ω(λ, λ′) = 1 + gj |〈(Sε′l′ηj′ )
−1Aε

′

g−j′
k′ − (Sεlηj )

−1Aεg−jk,
(
ca(ε′π/2, l′ηj′),− sa(επ/2, lηj)

)
〉|2+

+ g2(1−α)j |ε′π/2 + arctan(l′ηj′)− επ/2− arctan(lηj)|2+

+ g2αj‖(Sε′l′ηj′ )
−1Aε

′

g−j′
k′ − (Sεlηj )

−1Aεg−jk‖
2,

and ca(x, y) = cos(x) + arctan(y) and sa(x, y) = sin(x) + arctan(y), then there exists an
N ′ such that

|〈ψ̃λ, ψµ〉| . ω(λ, µ)−N
′
. (3.21)

In other words, if the Gramian is localized then the cross-Gramian between the system
and its canonical dual is localized as well.
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Remark 3.19. The localization the Gramian is one of the key tools in the recent devel-
opments of α-molecules or its predecessor parabolic molecules. Using the localization of
the Gramian and the cross Gramian between different systems the authors of [GK14] were
able to show the sparsity equivalence of two different systems sets of parabolic molecules
at hand which in turn implies the same sparse approximation rate. That again is one of
the characteristics of parabolic molecules themselves such as curvelets and shearlets.

Balancing property for α-shearlets

We now return to the balancing property, i.e. we first ought to bound

‖P⊥∆′Ψ(Ψ∗ + Ψ̃∗)P∆‖2→2

for some appropriately chosen ∆′ ⊃ ∆. Hence, for such ∆′ it would be sufficient to bound∑
λ′ /∈∆′

∑
λ∈∆

1

ω(λ′, λ)N
, (3.22)

provided that the α-molecule used for the reconstruction forms a frame and is N -localized.
Clearly, one can make ∆′ sufficiently large, i.e. the indices belonging to δ and those not
belonging to ∆′ sufficiently wide separated, so that (3.22) becomes sufficiently small.
However, for the balancing property we also have to bound

‖P∆′ΨΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖2→2

which means if ∆′ is too large, then its intersection with ∆c will be large which makes it
unlikely that this second term is small. So we must construct ∆′ so that

(B1)
∑

λ′ /∈∆′
∑

λ∈∆
1

ω(λ′,λ)N
is small: This directly bounds (3.16).

(B2) ∆′ ∩∆c is small enough so that ‖P∆′ΨΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖2→2 can partly be controlled
by intrinsic localization arguments from (3.21) and the rest -that is close to ∆ - by
standard incoherence arguments.

We will now construct such ∆′. To this end, let ∆ denote the index set of all α-shearlets
up to some fixed scale J whose support intersect a fixed region so that the number of
translates at a scale j ≤ J is of the order g2j . By assumption there exist positive number
Kj

1,ε � gj ,Kj
2,ε � gαj such that these give upper bounds for the number of translations

contained in our parameter set, i.e.

∆ ⊆
{

(ε, j, l, k) ∈ N× Z× Z2 : ε ∈ {0, 1}, j ≤ J, |l| ≤ Lj , |k1| ≤ Kj
1,ε, |k2| ≤ Kj

2,ε

}
.

As it is typical for α-molecules we identified λ with (ε, j, l, (k1, k2)). In order to determine
∆′ ⊃ ∆ such that ∑

λ′ /∈Λ′

∑
λ∈Λ

1

ω(λ, λ′)N
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is small we choose to find T > 0 such that∑
ε′∈{0,1}

∑
j′>J+T

∑
|l′|≤Lj′

∑
|k′1|≤K

j′
1,ε′

|k′2|≤K
j′
2,ε′

∑
ε∈{0,1}

∑
j≤J

∑
|l|≤Lj

∑
|k1|≤Kj

1,ε

|k2|≤Kj
2,ε

ω
(
(ε′, j′, l′, k′), (ε, j, l, k)

)−N

is small. Then we could set

∆′ :=
{

(ε, j, l, k) : ε ∈ {0, 1}, j ≤ J + T, |l| ≤ Lj , |k1| ≤ Kj
1,ε, |k2| ≤ Kj

2,ε

}
.

The separation parameter T should ideally be independent of J yielding a linear be-
haviour of the intrinsic localization of the frame (ψλ)λ which in turn implies a linear
intrinsic localization rate between the primal frame and its canoncial dual. The linearity
is important so that we can really use incoherence arguments for the remaining terms in
(3.17).

The next theorem secures that (B1) can be accomplished with an arbitrary small
bound.

Theorem 3.20. Let α ∈ (0, 1) and (ψλ)λ be a compactly supported α-shearlet frame that
satisfies

|〈ψλ, ψµ〉| . ω(λ, µ)−N

with N > (1 + α)/(1− α). Then for any δ > 0 there exists a T > 0 that further depends
on the regularity of the α-shearlet system, such that∑

(ε,j′,l′,(k′1,k
′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

ω((ε, j′, l′, (k′1, k
′
2)), (ε, j, l, (k1, k2)))−N < δ,

where

∆′ :=
{

(ε, j, l, k) : ε ∈ {0, 1}, j ≤ J + T, |l| ≤ Lj , |k1| ≤ Kj
1,ε, |k2| ≤ Kj

2,ε

}
(3.23)

Proof. Clearly, we have∑
(ε,j′,l′,(k′1,k

′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

1

ω ((ε′, j′, l′, k′), (ε, j, l, k))N

.
∑

(ε′,j′,l′,(k′1,k
′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

(
gj
′−j(1 + g2(1−α)j |ε′π/2 + arctan(l′ηj′)− επ/2− arctan(lηj)|2+

+ g2αj‖(Sε′l′ηj′ )
−1Aε

′
j k
′ − (Sεlηj )

−1Aεjk‖2
))−N

.

We will now proceed the proof by assuming
Case I: ε′ = ε and ′ηj′ 6= lηj .
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Let

Aj′,j = g2(1−α)j

(
1 + Lj′ηj′

l′ηj′ − lηj

)2

, Bj′,l′,k′,j,l = k′1g
−j′ − l′ηj′k′2 − lηjk2, Cj′,k′ = g−αj

′
k′2.

Then by direct computations we obtain∑
(ε,j′,l′,(k′1,k

′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆
′ηj′ 6=lηj

1

ω ((ε′, j′, l′, k′), (ε, j, l, k))N

.
∑

(ε,j′,l′,(k′1,k
′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆
′ηj′ 6=lηj

(
gj
′−j
(

1 +Aj′,j + g2αj

((
k′1g
−j′ − l′ηj′k′2 − lηjk2 − g−jk1

)2
+

+
(
g−αj

′
k′2 − g−αjk2

)2
)))−N

.
∑

(ε,j′,l′,(k′1,k
′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆
′ηj′ 6=lηj

 gj−j
′
/Aj′,j(

1 + g2αjA−1
j′,j

((
Bj′,l′,k′,j,l − g−jk1

)2
+
(
Cj′,k′ − g−αjk2

)2))
N

.
∑

(ε,j′,l′,(k′1,k
′
2))/∈∆′

j≤J,|l|≤Lj ,′ηj′ 6=lηj

∫ Kj
1,ε

Kj
1,ε

∫ Kj
2,ε

−Kj
2,ε

(g(j−j′)/Aj′,j)
N(

1 + g2αj (Bj′,l′,k′,j,l−g−jk1)
2
+(Cj′,k′−g−αjk2)

2

Aj′,j

)N dk2dk1

.
∑

(ε,j′,l′,(k′1,k
′
2))/∈∆′

j≤J,|l|≤Lj ,′ηj′ 6=lηj

∫ g−jKj
1,ε−Bj′,l′,k′,j,l

−g−jKj
1,ε−Bj′,l′,k′,j,l

∫ g−αjKj
2,ε−Cj′,k′

−g−αjKj
2,ε−Cj′,k′

g(α+1)jgN(j−j′)A−Nj′,j(
1 + g2αjA−1

j′,j

(
k2

1 + k2
2

))N dk2dk1

.
∑

(ε,j′,l′,(k′1,k
′
2))/∈∆′

j≤J,|l|≤Lj ,′ηj′ 6=lηj

gN(j−j′)A−Nj′,j g
(α+1)j

∫ ∞
0

∫ ∞
0

1(
1 + g2αjA−1

j′,j

(
k2

1 + k2
2

))N dk2dk1

.
∑

j′>J+T

∑
|l′|≤Lj′

∑
|k′1|≤K

j′
1,ε′

∑
|k′2|≤K

j′
2,ε′

∑
j≤J

∑
|l|≤Lj

gN(j−j′)g(1−α)jA−N+1
j′,j

.
∑

j′>J+t

∑
j≤J

Lj′K
j′

1,ε′K
j′

2,ε′Ljg
N(j−j′)g(1−α)jA−N+1

j′,j , (3.24)

where we have used

| arctan(l′ηj′)− arctan(lηj)| ≥ |l′ηj′ − lηj |/(1 + L′jη
′
j)

in the first estimate. By assumption Lj . gj(1−α),Kj
1,ε � gj and Kj

2,ε � gαj . Further-
more, note that

A−1
j′,j ≤ g

2(α−1)j .
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Therefore (3.24) can further be bounded to obtain∑
(ε,j′,l′,(k′1,k

′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

1

ω ((ε′, j′, l′, k′), (ε, j, l, k))N
.

∑
j′>J+t

∑
j≤J

g(2(1−α)+2(α−1)(N−1)+N)jg(2−N)j′

=
∑

j′>J+t

∑
j≤J

g(2(α−1)(N−2)+N)jg(2−N)j′

.
∑
j′>t

g(2(α−1)(N−2)−2)Jg(2−N)j′

=
∑
j′>t

g(2(α−1)(N−2)−2)Jg−(N−2)j′ .

Using the same arguments as above one can verify the claim for
Case II: ε′ 6= ε and l′ηj′ 6= ηj .

We next turn to
Case III: ε′ 6= ε and l′ηj′ = ηj .

In this case the computations are again the same as in Case I, indeed one can choose
Aj′,j to be g2(1−α)j . Then the computations go through.

The claim follows from the following estimate for this case∑
(ε,j′,l′,(k′1,k

′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

ω((ε, j′, l′, (k′1, k
′
2)), (ε, j, l, (k1, k2)))−N

.
∑

(ε,j′,l′,(k′1,k
′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

1(
gj′−j(1 + g2(1−α)j

)N
.

∑
j′>J+t

∑
j≤J

g(1+α)j′g(1+α)j 1(
gj′−j(1 + g2(1−α)j

)N
=

∑
j′>J+t

∑
j≤J

g(1+α)j′g(1+α)jg(j−j′)Ng2(α−1)Nj

=
∑

j′>J+t

∑
j≤J

g((1+α)−N)j′g((1+α)+N−2(1−α)N)j

.
∑
j′>t

g((1+α)−N)j′g((1+α)+N−2(1−α)N−N+(1+α))J

=
∑
j′>t

g((1+α)−N)j′g(2(1+α)−2(1−α)N)J .

As long as α is not equal to 1 this sum becomes small for increasing N . The final case
that needs to be addressed is

Case IV: ε′ = ε and l′ηj′ = ηj .
First, note that

ψ̂((AjSlηj )
−T ξ) = ψ̂

(((
g−j −lηjg−αj
0 g−αj

))T
ξ

)
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.
min{1, |g−jξ1|}M(

1 + ‖(AjSlηj )−T ξ‖22
)N1 (1 + |lηjg−αjξ1 + g−αjξ2|2)N2

.
min{1, |g−jξ1|}M(

1 + ‖A−jξ‖22
)N1 (1 + |lηjg−αjξ1 + g−αjξ2|2)N2

.

Therefore, we have∑
|k′1|≤K

j′
1,ε′

|k′2|≤K
j′
2,ε′

∑
|l′|≤ηj′

∑
|k1|≤Kj

1,ε

|k2|≤Kj
2,ε

|〈ψλ′ , ψλ〉|

.
∑

|k′1|≤K
j′
1,ε′

|k′2|≤K
j′
2,ε′

∑
|l′|≤ηj′

∑
|k1|≤Kj

1,ε

|k2|≤Kj
2,ε

∫
R2

∣∣∣g−(1+α)(j′+j)/2ψ̂
(

(Aj′Sl′ηj′ )
−T ξ

)
ψ̂
(
(AjSlηj )

−T ξ
)∣∣∣ dξ

.
∑

|k′1|≤K
j′
1,ε′

|k′2|≤K
j′
2,ε′

∑
|l′|≤ηj′

∑
|k1|≤Kj

1,ε

|k2|≤Kj
2,ε

∫
R2

g−(1+α)(j′+j)/2 min{1, |g−j′ξ1|}M(
1 + ‖A−j′ξ‖22

)N1
(
1 + |lηj′g−αj′ξ1 + g−αj′ξ2|2

)N2
·

· min{1, |g−jξ1|}M(
1 + ‖A−jξ‖22

)N1 (1 + |lηjg−αjξ1 + g−αjξ2|2)N2
dξ

.
∑

|k′1|≤K
j′
1,ε′

|k′2|≤K
j′
2,ε′

∑
|k1|≤Kj

1,ε

|k2|≤Kj
2,ε

g−(1+α)(j′+j)/2

∫
R2

min{1, |g−j′ξ1|}M−1 min{1, |g−jξ1|}M(
1 + ‖A−j′ξ‖22

)N1
(
1 + ‖A−jξ‖22

)N1
dξ

=

∫
R2

g(1+α)(j′+j)/2g−2(M−1)(j′+j)|ξ1|2(M−1)

(1 + |g−j′ξ1|2 + |g−αj′ξ2|2)
N1 (1 + |g−jξ1|2 + |g−αjξ2|2)N1

dξ

=

∫
R2

g(1+α)(j′+j)/2g−2(M−1)(j′+j)

(|ξ1|−2 + |g−j |2 + |g−αjξ2/ξ1|2)M−1
·

· 1

(1 + |g−jξ1|2 + |g−αjξ2|2)N1−M1+1 (1 + |g−j′ξ1|2 + |g−αj′ξ2|2)
N1

dξ

.
∫
R2

g(1+α)(j′+j)/2−2(M−1)j′

(1 + |g−jξ1|2 + |g−αjξ2|2)N1−M1+1 (1 + |g−j′ξ1|2 + |g−αj′ξ2|2)
N1

dξ

.
∫
R2

g(1+α)(j′+j)/2−2(M−1)j′+(1+α)j

(1 + |ξ1|2 + |ξ2|2)N1−M1+1 (1 + |gj−j′ξ1|2 + |gα(j−j′)ξ2|2
)N1

dξ.

Since the integral is finite with a bound independent of j and j′ we can conclude∑
(ε,j′,l′,(k′1,k

′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

ω((ε, j′, l′, (k′1, k
′
2)), (ε, j, l, (k1, k2)))−N

.
∑

j′>J+t

∑
j≤J

g((1+α)/2−2(M−1))j′+3(1+α)j/2 .
∑

j′>J+t

g2((1+α)−(M−1))j′ .
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Hence, for any δ > 0 there exists T > 0 and N1, N2,M > 0 such that∑
(ε,j′,l′,(k′1,k

′
2))/∈∆′

(ε,j,l,(k1,k2))∈∆

ω((ε, j′, l′, (k′1, k
′
2)), (ε, j, l, (k1, k2)))−N < δ.

Using Theorem 3.20 we can obtain a small bound for (3.11).

Corollary 3.21. For any δ > 0 there exists ∆′ of the form (3.23) such that

‖P⊥∆′Ψ(Ψ∗ + Ψ̃∗)P∆‖2→2 ≤ δ.

Proof. Clearly,

‖P⊥∆′Ψ(Ψ∗ + Ψ̃∗)P∆‖2→2 ≤
∑
λ′∈∆′

∑
λ∈∆

|〈ψλ′ , ψλ〉|2 +
∑
λ′∈∆′

∑
λ∈∆

|〈ψλ′ , ψ̃λ〉|2.

For N ′′ := min{N,N ′}/2, where N ′ is as in (3.21) we conclude

‖P⊥∆′Ψ(Ψ∗ + Ψ̃∗)P∆‖2→2 .
∑
λ′∈∆′

∑
λ∈∆

ω(λ′, λ)−N
′′
.

By Theorem 3.20 we find for fixed δ > 0 some ∆′ of the form (3.23) such that

‖P⊥∆′Ψ(Ψ∗ + Ψ̃∗)P∆‖2→2 ≤ δ.

Corollary 3.21 shows that the intrinsic localization of α-shearlets is sufficient for the
balancing property to hold. A similar conclusion can be drawn for other α-molecules that
satisfy a similar intrinsic localization property.

As for (B2) we must comment on the notation first. The number M refers to the
number measurements that must be drawn. Since we are now in the 2D Fourier domain,
we again consider the same setup as in Chapter 2, in particular Section 2.3. SoM specifies
the width of a grid where we draw the samples from. Then the following holds.

Theorem 3.22. Retaining the notations from Theorem 3.20 we have: For any δ > 0
there exists an M . gJ(1+ρ) such that

‖P∆′ΨΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖2→2 ≤ δ

where ρ ≥ 2/(2 minN1, N2 − 1).

Proof. For T > 0 we define

∆′′T := {(ε, j, l, k) ∈ ∆c ∩∆′ : j ≤ J + T} and ∆′′′ = (∆′′T )c ∩∆c.

Then

‖P∆′ΨΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖2→2
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≤ ‖P∆′ΨΨ̃∗P∆c∩∆′′T
ΨA∗P⊥[M ]‖2→2 + ‖P∆′ΨΨ̃∗P∆c∩∆′′′ΨA

∗P⊥[M ]‖2→2.

By Theorem 3.20 for every σ > 0 we can choose T sufficiently large, but independent of
J such that ∑

(ε,j′,l′,(k′1,k
′
2))∈∆′′′

(ε,j,l,(k1,k2))∈∆′

ω((ε, j′, l′, (k′1, k
′
2)), (ε, j, l, (k1, k2)))−N

′ ≤ σ

with N ′ from (3.21). In particular, for any δ > 0 we can obtain

‖P∆′ΨΨ̃∗P⊥∆ ΨA∗P⊥[M ]‖2→2 ≤ δ/2 + ‖P∆′ΨΨ̃∗P∆c∩∆′′′ΨA
∗P⊥[M ]‖2→2.

Now since

‖P∆′ΨΨ̃∗P∆c∩∆′′′ΨA
∗P⊥[M ]‖2→2 ≤ ‖P∆′ΨΨ̃∗‖2→2‖P∆c∩∆′′′ΨA

∗P⊥[M ]‖2→2

≤ ‖P∆′ΨΨ̃∗‖2→2

∑
λ∈∆′

`∈(IM )c

|ψ̂λ(`)|2

the rest of the proof follows the same argumentation as in Proposition (2.17) which
following from the effective frequency behaviour of compactly supported shearlets with
sufficient regularity. The degree of anisotropy which is regulated by α does not effect the
argumentation but only the estimates. However, following the estimates of the proof of
Proposition (2.17) line by line gives the result.

Remark 3.23. In the proof of Theorem 3.22 we mentioned that the same argumentation
as in the proof of Proposition (2.17) can be applied, in particular, we have assumed that ∆
contains all shearlets up to a certain scale. This again corresponds to the worst possible
sparsity case if ∆ was that large. However, if this is not the case and ∆ was much
smaller, then the estimates for the incoherence can be significantly improved as we only
need to employ the frequency decay of those elements that are indexed by ∆. Note that
the arguments for the intrinsic localization would not change.



Chapter 4

Non-convex compressed sensing

As we have seen in the previous chapter one of the promising methods to retrieve sparse
signals from highly undersampled data is to solve an `1-minimization problem. However,
this `1-minimization program has been considered as a substitution of the `0-minimization
problem. In this chaper we want to study the scenario of `p-minimization with p ∈ (0, 1).
The results presented in this chapter are based on [Ma15b] and we follow the presentation
of these results closely as in [Ma15b].

`p-minimization

Using the `p-quasi norm as a sparsity prior in (3.3) is a prominent approach that has
been widely studied in the literature [Cha07, SCY08, FL09, ACP12, LLSZ13] in order to
strengthen the emphasize of sparse solutions. In fact, the `p-quasi norms are closer to the
`0-function ‖ · ‖0 than ‖ · ‖1 is, see Figure 4.1.

Figure 4.1: From `1 to `0: Unit balls with respect to the `p-quasi norm for decreasing p.

Therefore in this chapter we consider the `p-minimization in analysis formulation, that
is

min
x
‖Ψx‖pp subject to ‖y −Ax‖2 ≤ ε (4.1)

for arbitrary redundant transforms that arise from a general frame. More precisely, we
will focus on the stability of the minimization problem (4.1) for arbitrary redundant
frames and sensing matrices that fulfill a restricted isometry property that is adapted to
the analysis minimization problem. The obtained result can be seen as a generalization
of the work by Candès et al. in [CENR11]. We will make the relation more precise in the
following.
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For the convenience of the reader we continue with an overview of known stability
results for the synthesis formulation as well as the analysis formulation. This will then
make the contribution more clear.

Overview of related work

The following minimization problems are well studied in the literature and the stability
results that are obtained for these problems are the ones that we also want to prove for
(4.1). We will now only discuss the case where the model covers noisy measurements,
i.e. in the equality constrained minimization problem (3.3) the constrained y = Ax is
replaced by a relaxation ‖y −Ax‖2 ≤ ε.

Synthesis approach for `1

The following minimization problem is generally called the synthesis formulation for the
`1-minimization problem

min
x
‖x‖1 subject to ‖y −Ax‖2 ≤ ε. (`1-PεS)

It also known as basis pursuit and has been studied a lot since the early days of compressed
sensing. Furthermore, stability results are known under the presence of the so-called
restricted isometry property ([CRT05, Fou10, FR13]).

Definition 4.1. An m× n matrix A satisfies the restricted isometry property (RIP) of
order s with RIP constant δs, if there exists δs > 0 such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22,

for all s-sparse vectors x ∈ Rn.

A stability estimate is guaranteed by the following theorem.

Theorem 4.2 ([CRT05]). For any vector x ∈ Rn and noisy measurement vector y =
Ax + e with A ∈ Rm×n and ‖e‖ ≤ ε we have if A satisfies the RIP with δ3s + 3δ4s < 2,
there exists constants C1 and C2 such that the solution x∗ of (`1-PεS) satisfies

‖x− x∗‖2 ≤ C1ε+ C2
‖x− xs‖1√

s

where xs is the vector that consists only of the s largest entries of x in magnitude.

Synthesis approach for `p

As we already mentioned in the introduction of this chapter, the `p-quasi norm approxi-
mates the `0-map better than the `1 norm. Hence, the `1-minimization problem above has
been generalized in the works [SCY08, Cha07, FL09] and the resulting `p-minimization
problem reads as follows:

min
x
‖x‖pp subject to ‖y −Ax‖2 ≤ ε (`p-PεS)
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Similar as for the standard `1-minimization problem a stability result is of major interest.
The following theorem delivers such a result

Theorem 4.3 ([SCY08]). For arbitrary signals x ∈ Rn and noisy measurements y =
Ax + e with A ∈ Rm×n and ‖e‖ ≤ ε we can guarantee stability provided that for s ∈ N
there exists k > 1 such that ks ∈ N and

δks = k2/p−1δ(k+1)s < k2/p−1 − 1. (4.2)

More precisely, if (4.2) holds, then there exists constants C1(s, k, p) > 0 and C2(s, k, p) >
0 such that

‖x− x∗‖p2 ≤ C1(s, k, p)εp + C2(s, k, p)
‖x− xs‖pp
s1−p/2

holds, where x∗ denotes the solution of (`p-PεS).

The constants C1(s, k, p), C2(s, k, p) in Theorem 4.3 are given explicitly in [SCY08].
Moreover, these constants agree with the constants C1 and C2 in Theorem 4.2 if p = 1.

Analysis approach for `1

For the case that the signal is sparse after some transformation Ψ it is more convenient
to consider the following analysis formulation:

min
x
‖Ψx‖1 subject to ‖y −Ax‖2 ≤ ε, (`1-PεΨ)

where Ψ is the sparsifying transform, e.g. the analysis operator associated to a frame
that is used as the reconstruction system. A stability result for the case that Ψ is the
analysis operator associated to a tight frame can be proven based on the so-called Ψ-RIP,
see Definition 4.4 below.

Definition 4.4 ([CENR11, KNW15]). Let Ψ ∈ RN×n be a matrix whose rows span Rn
and A ∈ Rm×n. If there exists δs > 0 such that

(1− δs)‖Ψ∗x‖22 ≤ ‖AΨ∗x‖22 ≤ (1 + δs)‖Ψ∗x‖22, (4.3)

for all s-sparse vectors x, then we say A satisfies the Ψ-RIP of order s with Ψ-RIP
constant δs.

The Ψ-RIP can therefore be interpreted as an isometry property of the measurement
matrix A for all vectors that are sparse in the row space of Ψ. The stability result for
this case reads as follows.

Theorem 4.5 ([CENR11, KNW15]). If Ψ ∈ RN×n is a Parseval frame and A ∈ Rm×n
satisfies the Ψ-RIP with δ2s < 0.08. Then the solution x∗ of the minimization problem
(`1-PεΨ) satisfies the stability estimate

‖x∗ − x‖2 ≤ C1ε+ C2
‖Ψx− (Ψx)s‖1√

s
(4.4)

for some constants C1 and C2.
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A generalization of Theorem 4.5 to the `p-quasi norm has been studied by Aldroubi
et al. in [ACP12] if the frame is a Parseval frame. For general frames a stability result
can be obtained based on the so-called Ψ-null space property as it was introduced in
[ACP12]. We will prove stability of the minimization problem for general frames that are
not assumed to be a Parseval frame and thus close this gap. Furthermore, if the frame
is not assumed to be Parseval, then, as we will outline, the restricted isometry property
does not completely fit to the minimization problem (4.1).

Our stability result will also be based on the Ψ-RIP. Therefore we first discuss this
property in more detail first.

4.1 Restricted isometry property

As we have shown in the overview the restricted isometry property can be used to secure
the stability of solutions obtained by `1-minimization, let it be the synthesis or the analysis
problem. Therefore, one is very much interested in RIP guarantees. In [KNW15] Krahmer
et al. presented a result for matrices to satisfy the Ψ-RIP provided the frame Ψ is a
Parseval frame. The proof of their result can be generalized to arbitrary frames in a
straightforward manner. Indeed, the analogous result reads as follows

Theorem 4.6 ([Ma15b, KNW15]). Fix a probability measure ν on {1, . . . , N}, sparsity
level s < N , and constant 0 < δ < 1. Let Ψ = (ψλ)λ≤N be a frame for Rn with frame
bounds c1 and c2 and let A be an n× n matrix whose rows (ri)i≤n satisfy∑

i

rk(i)rj(i)νi = δj,k.

Furthermore, let K be a number such that ‖ψλ‖ ≤ K for all λ ≤ N and

L = sup
‖Ψ∗c‖=1
‖c‖0≤s

‖(ΨΨ∗c)λ‖1√
s

. (4.5)

If Ã is an m× n submatrix whose rows are subsampled from A according to ν, then there
exists C > 0 independent of all relevant parameters such that for

m ≥ Cs
(
KL

δc1

)2

max

{
log3

(
s

(
KL

c1

)2
)

log(N), log(1/γ)

}
.

the normalized submatrix
√

1
mÃ satisfies the Ψ-RIP of order s with Ψ-RIP constant δ

with probability 1− γ.

Remark 4.7. Note that the factor L that appears in Theorem 4.6 is again a localization
factor similar to (3.5) which determines the number of measurements in the case where
analysis minimization is considered.

The proof of this theorem follows very closely the arguments of Theorem 3.1 in
[KNW15] and will be presented in Appendix C.9.
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Remark 4.8. In Theorem 4.6 the localization factor L and the reciprocal of the lower
frame bound c1 determine the number of measurements that are needed. In fact, similar as
in Chapter 3 the use of localized frames can overcome both issues. Indeed, by Greshgorin’s
Circle Theorem there exists a λ ∈ {1, . . . , N} such that∣∣∣∣ 1

c1
− ‖ψλ‖2

∣∣∣∣ ≤∑
µ6=λ
|〈ψ̃λ, ψ̃µ〉|

and therefore

1

c1
≤
∑
µ≤N
|〈ψ̃λ, ψ̃µ〉|.

Therefore good localization properties help to control the lower frame bound and therefore
also the number of measurements.

4.2 Stability of analysis-based `p-minimization solutions

We will show a similar stability result to Theorem 4.5 for the minimization problem (4.1)
while assuming the Ψ-RIP. Recall that this means that we are assuming the measurement
matrix A to behave like an isometry for all signals that are sparse in the primal frame
(ψλ)λ. However, at the same time we are also minimizing over the primal frame coefficients
(〈f, ψλ〉)λ. This causes a sparsity mismatch since the primal frame coefficients, however,
do not lead to a representation of a signal f in general. More precisely, we do not have

f 6=
∑
λ

〈f, ψλ〉ψλ,

unless (ψλ)λ happens to be a Parseval frame. In fact minimizing over the primal coeffi-
cients assumes sparsity with respect to some dual system. Due to this mismatch in the
sparsity we propose two different approaches to proceed.

(A1) We introduce a novel concept – the one of identifiable duals, cf. Definition 4.9 –
that can be used to overcome this sparsity mismatch. For frames that have an
identifiable dual, we will be able to prove a desired stability estimate that extends
Theorem 4.5.

(A2) We study the minimization problem with the ’correct’ transform, namely the anal-
ysis operator with respect to some dual system of the primal frame.

While the second approach seems more natural in the context of compressed sensing,
the first approach also has a merit in its own. In fact, the concept of identifiable duals
extends the class of scalable frames ([KOPT13]) which has arisen in the literature from
a completely different perspective. We give a short introduction into this concept in
Appendix A.2.
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Identifiable duals

As we already explained, we propose the following definition to circumvent the sparsity
mismatch of the the primal frame and the primal frame coefficients.

Definition 4.9 ([Ma15b]). We say a frame Ψ = (ψλ)λ∈I for H has an identifiable dual
if there exists a dual frame Ψ̃ such that for all f ∈ H and any λ ∈ I the coefficient
in modulus |〈f, ψ̃λ〉| can be bounded from above and below by |〈f, ψλ〉|, i.e. there exist
constants d1, d2 > 0 such that

d1|〈f, ψλ〉| ≤ |〈f, ψ̃λ〉| ≤ d2|〈f, ψλ〉| (4.6)

for all f ∈ H and all λ ∈ I.

If Ψ is a frame that has an identifiable dual, then this assures that there exists a dual
such that the sparsity of the primal frame coefficients leads to a sparse representation in
this dual system. We now make a couple of comments about the class of frames that have
an identifiable dual.

Remark 4.10.
(A) Clearly, every tight frame has an identifiable dual.

(B) From the identifiability condition (4.6) we can deduce that

(spanψλ)⊥ = (span ψ̃λ)⊥ ∀λ ≤ N.

which implies that there exists cλ ∈ C such that ψλ = cλψ̃λ. In particular, all
scalable frames(v) have an identifiable dual, cf. Proposition A.10. Therefore, the
class frame that have an identifiable duals is a generalization of the class of scalable
frames.

(C) The set of vectors

Ψ =

{(
2
1

)
,

(
2
2

)
,

(
1
2

)}
is frame for R2 that has an identifiable dual, e.g.

Ψ̃ =

{(
2
1

)
,

(
−2
−2

)
,

(
1
2

)}
with d1 = d2 = 1 but is neither a tight nor a scalable frame.

(D) More generally, the identifiability condition could be studied by considering localiza-
tion properties of the Gramian G := ΨΨ∗ for the system Ψ. Indeed, for all f ∈ H
we have

(〈x, ψλ〉)λ≤N = Ψx = GΨ(Ψ∗Ψ)−1x = G(〈x, ψ̃λ〉)λ.

Hence, if G is close to a diagonal matrix, then using the pseudo inverse is also close
to a diagonal matrix [Gro13] and the identifiability can be analyzed.

(v)A frame (ψΛ)λ ⊆ H is called scalable if there exists cλ ∈ R+ ∪ {0} such that (cλψλ)λ, is a Parseval
frame for H, cf. Appendix A.2.
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(E) With a view to compressed sensing it seems plausible to restrict the set identifiability
condition (4.6) in Definition 4.9 onto a certain set of elements that we expect to be
sparse in the primal frame as one is only interested in these case. This would make
the definition more general.

The second assumption is of technical nature. It will only be used to make the
constants in the proof feasible. In fact, as we are not dealing with tight frames, the frame
bound ratio c1/c2 might be uncontrollable. Hence, we define q-controllable frame bounds.

Stable frame bounds

In order to have stronger control on the frame bound ratio and to exclude pathological
constants we make the following definition.

Definition 4.11 ([Ma15b]). We say a frame Ψ has q-controllable frame bounds if there
exists a q ∈ {1, . . . , N} such that

c
p/(2−p)
1

c
p/(2−p)
2

≥ q

N
, (4.7)

where c1 denotes the lower frame bound and c2 the upper frame bound of Ψ, respectively.

Note that both, the identifiability condition as well as the controllability of the frame
bound ratio is not needed for tight frames.

As we already mentioned, the q-controllability will be of great use to bound several
parameters that yield feasible constants. Beyond that, it is also important to have q
not too small for numerical reasons since a very small frame bound ratio yields a bad
conditioning of the frame. Note that the optimal frame bounds equal the boundaries of
the spectrum of the frame operator.

Stability for analysis formulation

Using the concept of identifiable duals and the controllability of frame bounds we can
guarantee the stability of solutions that are obtained from the minimization problem
(4.1).

Theorem 4.12 ([Ma15b]). Let Ψ be a frame for Rn that has q-controllable frame bounds
and has an identifiable dual. Moreover, let A be an m × n measurement matrix sat-

isfying the Ψ-RIP with δν < 0.5, where ν = s
2·(1+2−p)1/(p−2)c

p/(p−2)
2 d

p/(p−2)
2

c
p/(p−2)
1

and s <
q

2d2
2(1+2−p)1/(p−2) and d2 > 0 is the upper constant in the identifiability conditions. Then

the solution x∗ of (4.1) satisfies

‖x− x∗‖p2 ≤ C1(p)εp + C2(p)
‖Ψx− (Ψx)s‖pp

s1−p/2

for some positive constants C1(p) and C2(p) that depend on p, the frame bounds c1, c2,
the Ψ-constant δν , the sparsity s, the controllability parameter q, and the constants from
the identifiability condition.
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Before we continue with a proof of Theorem 4.12 we mention that for p = 1 Theo-
rem 4.12 generalizes the findings of [CENR11] to the case of non-Parseval frames. Thus
our result can be seen as a generalization of the stability result for the analysis formula-
tion of `1-minimization (`1-PεΨ). Moreover, if Ψ is a Parseval frame, then the constants
C1(p), C2(p) agree for p = 1 with those obtained in [CENR11]. Furthermore, Theorem
4.20 generalizes Theorem 4.3 to the analysis formulation.

In particular we have the following corollary.

Corollary 4.13 ([Ma15b]). Let Ψ be a Parseval frame for Rn and let A be an m × n
measurement matrix satisfying the Ψ-RIP with δ7s < 0.6 and s < q

2·(1+2−p)1/(p−2) . Then
the solution x∗ of (4.1) satisfies

‖x− x∗‖p2 ≤ C1(p)εp + C2(p)
‖Ψx− (Ψx)s‖pp

s1−p/2

for some positive constants C1(p) and C2(p) that depend on p. Moreover, the constants
can be chosen to be monotonically decreasing for decreasing p with maximal constants
agreeing with those obtained in [CENR11] for p = 1.

We now present a proof Theorem 4.12 and after that a proof of Corollary 4.13. More-
over, the proof shows that it is sufficient to have the identifiability condition to be valid
for signals x that we want to recover, which are usually assumed to be sparse.

Proof of Theorem 4.12

The proof of Theorem 4.12 uses a nowadays standard strategy in compressed sensing that
is mainly communicated by the works of Candès et al. in [CENR11] as well Saab et al.
in [SCY08] for adaptations to `p-quasi norms, see also [CRT05] where this strategy was
first developed.

Let x, x∗ be as in Theorem 4.12 and define z = x − x∗. Further, set T0 as the set
consisting of the s largest coefficients of Ψx in p-th modulus. For any set T , ΨT should
denote the matrix restricted to its columns indexed by T . Then we divide T c0 into sets
T1, T2, . . . of size M in order of decreasing magnitude of ΨT c0

h. The explicit value of M
will be determined later. We will now invoke a sequence of results.

The first one, Lemma 4.14 below, is a trivial modification of the cone constraint which
is Lemma 2.1 in [CENR11]. For completeness we provide a proof.

Lemma 4.14 ([Ma15b, CENR11]). The vector Ψz obeys the following cone constraint

‖ΨT c0
z‖pp ≤ 2‖ΨT c0

x‖pp + ‖ΨT0z‖pp.

Proof. Since x and x∗ are both feasible and x∗ is the minizer of (4.1) we have

‖ΨT0x‖pp + ‖ΨT c0
x‖pp ≥ ‖Ψx‖pp
≥ ‖Ψx∗‖pp
= ‖Ψx−Ψh‖pp
≥ ‖ΨT0x‖pp − ‖ΨT c0

x‖pp − ‖ΨT0h‖pp + ‖ΨT c0
x‖pp.
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The following lemma generalizes Lemma 2.2 in [CENR11] to the case p ∈ (0, 1). For
p = 1 the two results coincide.

Lemma 4.15 ([Ma15b]). For ρ = s/M and η = 2‖ΨT c0
x‖pp/s1−p/2, we have∑

j≥2

‖ΨTjz‖
p
2 ≤ ρ

1−p/2(‖ΨT0z‖
p
2 + η).

Proof. By construction we have that every entry in |(ΨTj+1z)|p which will be denoted by
|(ΨTj+1z)|

p
(k) is bounded by

|(ΨTj+1z)|
p
(k) ≤

‖ΨTjz‖
p
p

M
.

Therefore

‖ΨTj+1z‖22 =

M∑
k=1

|(ΨTj+1z)|2(k) ≤M
1−2/p‖ΨTjz‖2p

and thus ∑
j≥2

‖ΨTjz‖
p
2 ≤

∑
j≥1

‖ΨTjz‖
p
p

M1−p/2 =
‖ΨT c0

z‖pp
M1−p/2 .

Applying Lemma 4.14 and the generalized mean inequality gives

∑
j≥2

‖ΨTjz‖
p
2 ≤

( s
M

)1−p/2
(
‖ΨT0z‖

p
2 +

2‖ΨT c0
x‖pp

s1−p/2

)
.

The next lemma is trivial to prove and we will use it without further modifications.

Lemma 4.16 ([CENR11], Lemma 2.3). The vector Az satisfies

‖Az‖2 ≤ 2ε.

Lemma 4.17 ([Ma15b]). Let c2 be the upper frame bound for the frame Ψ. Then we have

(1− δs+M )p/2‖(ΨT01)∗ΨT01 z̃‖
p
2 − (c2(1 + δM ))p/2ρ1−p/2

(
c
p/2
2 dp2‖z‖

p
2 + η

)
≤ (2ε)p

where T01 := T0 ∪ T1.

Proof. Without loss of generality we assume the identifiable dual is the canonical dual
and define z̃ := (Ψ∗Ψ)−1z. Note that Ψ∗Ψ is invertible as it is the frame operator. Then
by using Lemma 4.16 we have

(2ε)p ≥ ‖Az‖p2 = ‖AΨ∗Ψz̃‖p2 ≥ ‖A(ΨT01)∗ΨT01 z̃‖
p
2 −

∑
j≥2

‖A(ΨTj )
∗ΨTj z̃‖

p
2, (4.8)
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and by the Ψ-RIP we have

(1− δs+M )p/2‖(ΨT01)∗ΨT01 z̃‖
p
2 ≤ ‖A(ΨT01)∗ΨT01 z̃‖

p
2 (4.9)

and ∑
j≥2

‖A(ΨTj )
∗ΨTj z̃‖

p
2 ≤ (1 + δM )p/2

∑
j≥2

‖(ΨTj )
∗ΨTj z̃‖

p
2. (4.10)

Recall that by the identifiability there exist d1, d2 be such that

d1|〈z, ψλ〉| ≤ |〈z, ψ̃λ〉| ≤ d2|〈z, ψλ〉| ∀λ ≤ N. (4.11)

Using the frame property, the identifiability and Lemma 4.15 yields∑
j≥2

‖(ΨTj )
∗ΨTj z̃‖

p
2 ≤

∑
j≥2

c
p/2
2 dp2‖ΨTjz‖

p
2 (4.12)

≤ cp/22 dp2ρ
1−p/2(‖ΨT0z‖pp + η) (4.13)

≤ cp/22 dp2ρ
1−p/2(c

p/2
2 ‖z‖

p
p + η). (4.14)

Combing (4.8), (4.9), (4.10) and (4.14) yields the claim.

Lemma 4.18 ([Ma15b]). The following inequality is true:

‖z‖2p2 ≤
1

cp1d
2p
1

(
1

c
p/2
1

‖z‖p2‖(ΨT01)∗ΨT01 z̃‖
p
2 + ρ2−p(c

p/2
2 ‖z‖

p
2 + η)2

)
,

Proof. With T01 := T0 ∪ T1 we have by using the frame property and the identifiability
of a dual

‖h‖2p2 ≤
1

cp1
‖Ψz‖2p2

≤ 1

cp1d
2p
1

(
‖ΨT01 z̃‖

2p
2 + ‖ΨT c01

z‖2p2
)

=
1

cp1d
2p
1

(
(〈z̃, (ΨT01)∗ΨT01 z̃〉)p + ‖ΨT c01

z‖2p2
)

≤ 1

cp1d
2p
1

(
‖z̃‖p2‖(ΨT01)∗ΨT01 z̃‖

p
2 + ‖ΨT c01

z‖2p2
)

≤ 1

cp1d
2p
1

(
1

c
p/2
1

‖z‖p2‖(ΨT01)∗ΨT01 z̃‖
p
2 + ρ2−p(‖ΨT0z‖

p
2 + η)2

)
,

where the last inequality follows from Lemma 4.15.

The proof of the main result can now be derived from the previous lemmas.
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Proof of Theorem 4.12. By Lemma 4.18, we have

‖z‖2p2 ≤
1

cp1d
2p
1

(
1

c
p/2
1

(
γ1‖z‖2p

2
+
‖(ΨT01)∗ΨT01 z̃‖2p

2γ1

)
+ ρ2−p(c

p/2
2 dp2‖z‖

p
2 + η)2

)

=
1

cp1d
2p
1

(
1

c
p/2
1

(
γ1‖z‖2p

2
+
‖(ΨT01)∗ΨT01 z̃‖2p

2γ1

)
+

+ ρ2−p
(
cp2d

2p
2 ‖z‖

2p
2 + 2c

p/2
2 dp2‖z‖

p
2η + η2

))

≤ 1

cp1d
2p
1

(
1

c
p/2
1

(
γ1‖z‖2p

2
+
‖(ΨT01)∗ΨT01 z̃‖2p

2γ1

)
+

+ ρ2−p
(
cp2d

2p
2 ‖z‖

2p
2 +

(
cp2d

2p
2 γ2‖z‖2p2 +

η2

γ2

)
+ η2

))

=
1

cp1d
2p
1

(
1

c
p/2
1

(
γ1‖z‖2p

2
+
‖(ΨT01)∗ΨT01 z̃‖2p

2γ1

)
+

+ ρ2−p
(
cp2d

2p
2 (1 + γ2)‖z‖2p2 +

(
1

γ2
+ 1

)
η2

))
.

Therefore (
1− 1

cp1d
2p
1

(
γ1

2c
p/2
1

+ ρ2−pcp2d
2p
2 (1 + γ2)

))
‖z‖2p2

≤ 1

cp1d
2p
1

(
‖(ΨT01)∗ΨT01 z̃‖2p

2γ1c
p/2
1

+ ρ2−p
(

1

γ2
+ 1

)
η2

)
.

and in particular(
cp1d

2p
1 −

(
γ1

2c
p/2
1

+ ρ2−pcp2d
2p
2 (1 + γ2)

))1/2

‖z‖p2

≤ ‖(ΨT01)∗ΨT01 z̃‖p√
2γ1c

p/2
1

+ ρ1−p/2
(

1

γ2
+ 1

)1/2

η.

Hence, by using Lemma 4.17 we obtain

Γ1(p)‖z‖p2 − Γ2(p)η ≤ (2ε)p

with

Γ1(p) =

√√√√2γ1c
p/2
1 (1− δs+M )p

(
cp1d

2p
1 −

(
γ1

2c
p/2
1

+ ρ2−pcp2d
2p
2 (1 + γ2)

))
−

−
√

(c2d2
2(1 + δM ))pρ2−p
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and

Γ2(p) =

√
2γ1c

p/2
1 (1− δs+M )pρ2−p

(
1

γ2
+ 1

)
−
√

(c2d2
2(1 + δM ))pρ2−p.

It is left to choose γ1, γ2, and ρ so that Γ1(p) and Γ2(p) are non-negative. W.l.o.g. we can
assume c1 ≥ 1; otherwise a rescaling can be performed. We now choose γ1 = c

3p/2
1 d2p

1 and

M = s
2·(1+2−p)1/(p−2)c

p/(p−2)
2 d

2p/(p−2)
2

c
p/(p−2)
1

. Then Γ1(p) is larger than zero and for γ2 sufficiently

small Γ2(p) is also larger than zero. This completes the proof.

Proof of Corollary 4.13

Large parts of corollary 4.13 follow immediately from Theorem 4.12 and we only have
to verify that the statements that appear naturally in the proof are not increasing with
respect to p.

Proof. For c1 = c2 = 1 the computations in the proof of Theorem 4.12 yield

Γ1(p)‖z‖p2 − Γ2(p)η ≤ (2ε)p

with the constants

Γ1(p) =

√
2γ1(1− δs+M )p

(
1−

(γ1

2
+ ρ2−p(1 + γ2)

))
−
√

((1 + δM ))pρ2−p,

Γ2(p) =

√
2γ1(1− δs+M )pρ2−p

(
1

γ2
+ 1

)
−
√

((1 + δM ))pρ2−p.

One possibility to guarantee Γ1(p) and Γ2(p) to be positive is to choose γ1 = 1 and
M = 6s. Then Γ1(p) is positive and for γ2 sufficiently small Γ2(p) is positive. Moreover,
note that

Γ′1(p) < 0 and Γ′2(p) > 0

for γ2 small enough.

We end this section with a comment on the identifiability condition.

On the identifiability condition

The identifiability condition was introduced in order to compensate the mismatch between
the sparsity that is required by the RIP and the sparsity of the dual system due to the
minimization of the primal frame coefficients. However, condition (4.6) does not have to
be assumed for the complete Hilbert space H. In fact, as we already stated, assuming
the identifiability condition (4.6) to hold for all signals f ∈ H is equivalent to have a dual
frame whose elements are multiples of the corresponding elements in the primal frame.
For some frames used in practice, this seems to be a strong assumption. However, in
the proof of Theorem 4.12 we also saw that we only apply the identifiability condition to
the vector x − x∗ so the identifiability condition need not to hold for all signals but can
actually be reduced.
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Remark 4.19. Generally speaking, in practice one can very often observe the identifia-
bility condition for wavelet and also shearlet systems for images that are sparse in either
of these dictionaries. One of the reasons is because, the dual system can be implemented
in the Fourier domain and the explicit dual functions are obtained by a stable Fourier
multiplier of the primal frame elements, i.e. if (ψλ)λ is a frame then a dual system can
often be constructed to be of the form

̂̃
ψλ = ψ̂/â. (4.15)

where â is a function that is uniformly bounded from above and below which means, it
essentially does not change the Fourier behaviour and thus not the sparsity structure in
frequency. In fact, having a dual that is of the form (4.15) yields

|〈f, ψ̃λ〉| . |〈|f̂ |, |ψλ|〉|,

which preserves the multiscale sparsity, see also Figure 4.2. The digital shearlet system
is for instance a system for which duals of the form (4.15) can be constructed, [Lim13].
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Figure 4.2: Simplified presentation (in 1D) of the identifiability condition for functions
f that are well behaved. Stable Fourier multipliers do not change the global sparsity
pattern.

We now return to the discussion that we started with at the beginning of Section 4.2.
Theorem 4.12 and Corollary 4.13 are the desired resulting statements that we aimed to
achieve when formulating the approach (A1). In the next section we discuss approach (A2)
which was to change the minimization problem (4.1) by minimizing over dual coefficients
instead of primal coefficients.

4.3 Stability for the dual analysis formulation

Since the concept of identifiable duals was used to cope with the mismatch in the sparsity
scheme, it is very much expected that when minimizing over dual coefficients, such a
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property is not necessary. Indeed, for the minimization problem

min
x
‖Ψ̃x‖pp subject to ‖y −Ax‖2 ≤ ε (`1-Pε

Ψ̃
)

one can show the following theorem.

Theorem 4.20 ([Ma15b]). For an m × n measurement matrix A that satisfies the Ψ-

RIP with δν < 0.5 where ν = s

(
3

c2p1

)1/(2−p)
and s < N

(
c2p1
3

)1/(2−p)
the solution x∗ of

(`1-Pε
Ψ̃
) satisfies

‖x− x∗‖p2 ≤ C1(p)εp + C2(p)
‖Ψ̃x− (Ψ̃x)s‖pp

s1−p/2

for some positive constants C1(p) and C2(p) that depend on p, the frame bounds c1, c2,
the Ψ-RIP constant δν , and the sparsity s.

The assumptions in Theorem 4.20 are less restrictive than those of Theorem 4.12
which is to be expected as the sparsity setup appears in the correct form. This means we
assume sparsity in the primal frame, hence, we minimize over the dual frame coefficients.
However, this in particular means, we need to know how to compute Ψ̃x for any x ∈ Rn
which sometimes can be a numerical difficulty.

The proof of Theorem 4.20 is very similar to the proof of the previous Theorem
4.12. We therefore shorten it a little bit by summarizing the key steps in the following
proposition.

Proposition 4.21 ([Ma15b]). Retaining the notations and definition of Theorem 4.12
and its proof, the following estimates hold

i) ‖Ψ̃T c0
z‖pp ≤ 2‖Ψ̃T c0

x‖pp + ‖Ψ̃T0z‖
p
p.

ii)
∑

j≥2 ‖Ψ̃Tjz‖
p
2 ≤ ρ1−p/2(‖Ψ̃T0z‖

p
2 + η).

iii) (1− δs+M )p/2‖(ΨT01)∗ΨT01 z̃‖
p
2 − (c2(1 + δM ))p/2ρ1−p/2

(
c
−p/2
1 ‖z‖p2 + η

)
≤ (2ε)p

iv) ‖z‖2p2 ≤ c
p
2

(
‖z‖p2‖(Ψ̃T01)∗Ψ̃T01 z̃‖

p
2 + ρ2−p(‖Ψ̃T0z‖

p
2 + η)2

)
.

Proof. Item i), ii), and iv) are trivial adaptions of the proof of Theorem 4.12 and will be
skipped. As for item iii), note that

(2ε)p ≥ ‖Az‖p2
≥ ‖A(ΨT01)∗ΨT01 z̃‖

p
2 −

∑
j≥2

‖A(ΨTj )
∗ΨTj z̃‖

p
2

≥ (1− δs+M )p/2‖(ΨT01)∗ΨT01 z̃‖
p
2 − (1 + δM )p/2

∑
j≥2

‖(ΨTj )
∗ΨTj z̃‖

p
2.

By ii) we have ∑
j≥2

‖(ΨTj )
∗ΨTj z̃‖

p
2 ≤ c

p/2
2

∑
j≥2

‖ΨTj z̃‖
p
2
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= c
p/2
2

∑
j≥2

‖Ψ̃Tjz‖
p
2

≤ cp/22 ρ1−p/2(‖Ψ̃T0z‖
p
2 + η).

Thus the claim follows.

Proof of Theorem 4.20. By Proposition 4.21 iv) we have

‖z‖2p2 ≤ c
p
2

[(
γ1‖z‖2p2

2
+
‖(Ψ̃T01)∗Ψ̃T01z‖p2

2γ1

)
+ ρ2−p(‖Ψ̃T01z‖

2p
2 + 2‖Ψ̃T0z‖

p
2η + η2

]

≤ cp2

[(
γ1‖z‖2p2

2
+
‖(Ψ̃T01)∗Ψ̃T01z‖p2

2γ1

)
+

+ ρ2−p
(
‖Ψ̃T01z‖

2p
2 + η2 +

(
γ2‖Ψ̃T0z‖

2p
2 +

η2

γ2

))]

≤ cp2

[(
γ1‖z‖2p2

2
+
‖(Ψ̃T01)∗Ψ̃T01z‖p2

2γ1

)
+ ρ2−p

(
1

c2p
1

(1 + γ2)‖z‖2p2 +

(
1 +

1

γ2

)
η2

)]
.

Therefore(
1− cp2γ1

2
− ρ2−p(1 + γ2)

c2p
1

)
‖z‖2p2 ≤

cp2
2γ1
‖(Ψ̃T01)∗Ψ̃T01z‖

2p
2 + ρ2−p

(
1 +

1

γ2

)
η2

which in turn implies√
2γ1

cp2

[(
1− cp2γ1

2
− ρ2−p(1 + γ2)

c2p
1

)
‖z‖p2 − ρ

1−p/2
(

1 +
1

γ2

)1/2

η

]
≤ ‖(Ψ̃T01)∗Ψ̃T01z‖

p
2.

Using Proposition 4.21 iii) we conclude

Γ1(p)‖z‖p2 − Γ2(p)η ≤ (2ε)p

where

Γ1(p) =

√√√√2γ1

cp2

(
1− cp2γ1

2
− ρ2−p(1 + γ2)

c2p
1

)
(1− δs+M )p −

√
(1 + δM )p

(
c2

c1

)p
ρ2−p

Γ2(p) =

√
(1− δs+M )pρ2−p

(
1 +

1

γ2

)
2γ1

cp1
−

√
ρ2−p

(
c2

c1

)p
(1 + δM )p).

Thus choosing, for example, γ1 ≤ c−p1 and M = s

(
2

c2p1

)1/(2−p)
yields the result. Note

that it is possible to choose to choose the constants such that they obey

Γ′1(p) < 0 and Γ′2(p) > 0.
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Optimizing over duals

Of course, when considering the minimization problem (`1-Pε
Ψ̃
) the following question

arises immediately: Which dual should one choose for the optimization? This question is
very delicate, since a dual frame is not always unique, unless Ψ is a basis. One canonical
choice is the canonical dual. However, since the frame coefficients with respect to the
canonical dual minimizes all possible coefficients that are used for representing the signal
in the primal frame, it is fair to believe that these coefficients are not very sparse. In fact,
the dual coefficient vector has very likely the structure of lots of small coefficients with
its energy spread over all entries, as it is the element with the minimal `2-norm.

The problem of choosing a good dual – meaning so that the frame coefficients in that
dual are sparse with respect to the `p-quasi norm – is clearly a same problem in the
infinite dimensional scenario, cf. (4.17), since then a dual is not computed by inverting a
finite matrix, but an operator acting on infinite dimensional spaces.

Remark 4.22. The compactly supported shearlet frame from Section 1.1 also suffers from
the fact that there are no duals known for this system.

If one were to know a set of duals, then one could minimize over this set as well. This
has been done in [LML12]. Consider

min
Ψ̃,x
‖Ψ̃x‖pp subject to ‖y −Ax‖2 ≤ ε, (`p-Pεdual)

where the minimization is to be considered over all Ψ̃ such that Ψ∗Ψ̃ = Id and x ∈ Cn2 .
From a theoretical point of view the minimization problem (`p-Pεdual) is equivalent to the
standard synthesis formulation (`p-PεS)

min
z
‖z‖pp subject to ‖y −AΨ∗z‖2 ≤ ε. (4.16)

This has already been noticed in [LML12] for p = 1 but the proof can be generalized to
p ∈ (0, 1), see Theorem 4.24 below.

Remark 4.23. Although the two problems (`p-Pεdual) and (`p-PεS) are equivalent, practical
results often differ strongly.

Theorem 4.24 ([Ma15b, Li11]). The minimization problems (`p-Pεdual) and (4.16) are
equivalent.

Proof. As shown in [Li11] all duals can be characterized by the formula

Ψ̃∗ = (Ψ∗Ψ)−1Ψ∗ +W (Id−(Ψ∗Ψ)−1Ψ∗), (4.17)

where W is an arbitrary d × n2 matrix. Hence, the minimization problem (`p-Pεdual) is
equivalent to

min
x,x′
‖Ψ̃x+ Px′‖pp subject to ‖y −Ax‖2 ≤ ε. (4.18)

The fact that

Cd = ran Ψ⊕ ker Ψ∗
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implies that any z ∈ Cd can be expressed as

z = Ψ(Ψ∗Ψ)−1x+ Px′

for some x ∈ Cn2
, x′ ∈ Cd. Further, x = Ψ∗z. Thus (`p-Pεdual) reads as

min
z
‖z‖pp subject to ‖y −AΨ∗z‖2 ≤ ε.

Clearly, the above argumentation holds in reversed order which shows that (4.16) can be
written in the form (`p-Pεdual).

Theorem 4.24 in particular implies that if the reconstruction system happens to form
a basis, then the synthesis minimization problem (4.16) is equivalent to

min
x
‖Ψ(Ψ∗Ψ)−1x‖pp subject to ‖y −Ax‖2 ≤ ε.

For linearly independent tight frames this reduces to (`1-PεΨ)

min
x
‖Ψx‖pp subject to ‖y −Ax‖2 ≤ ε.

Remark 4.25. Note that the proof of Theorem (4.24) can also be done in infinite dimen-
sions since the analysis operator has closed range, hence, the argumentation works equally
well by applying the closed range theorem.

Remark on analysis vs. synthesis based methods

In practice both sparse recovery methods – analysis based and synthesis based – are
widely used. From a practical point of view, there is no clear indication which method
works better, in fact, the method of choice should depend on the application and the
signal class. More precisely, it is sometimes easier to design a transform Ψ such that
(〈f, ψλ〉)λ has fast decay than finding a dictionary Ψ such that f has a compressible rep-
resentation in. In particular, both approaches are fundamentally different. The analysis
based method assumes a sparsifying transform and based on this transform there is only
one analysis representation. On the other hand for the synthesis approach one assumes
a sparsifying dictionary and for that dictionary there are possibly infinitely many sparse
representations.

4.4 Algorithm for the analysis-based `p-minimization prob-
lem

Many different algorithms have been proposed to solve or rather approximate the non-
convex `p-minimization problem and a comparison of some methods can be found, for
instance, in [LLSZ13]. Most of these methods are based on reweighted `1-minimization
which originally stems from [CWB08] and has been used to strengthen the effect of spar-
sity. Reweighted `1-minimization will also be of great interest in the next chapter where
we will also properly motivate the ideas behind reweighted `1-minimization. However,
we now present one particular instance of typical methods that are used to heuristically
solve (4.1).
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Approximating the `p-problem by reweighting

The algorithm that we use has also been proposed in [FL09] to solve the `p-minimization
problem in the synthesis formulation. We give a short motivation for how this algorithm
works and then proceed with some theoretical and numerical results of this algorithm.

Solving the minimization problem (4.1), that is

min
x
‖Ψx‖pp subject to ‖y −Ax‖2 ≤ ε,

is equivalent to solving

min
x

∑
λ

|Ψx|λ
|Ψx|1−pλ

subject to ‖y −Ax‖2 ≤ ε,

where we assume for a moment that dividing by |Ψx|λ is legitimate. This minimization
problem can then be tackled by using reweighted `1-minimization, [CWB08], indeed, the
denominator will now be interpreted as a weight that is ideally set in a such way, that the
sparsest solution will be computed. More precisely, if we were to use the exact (sparse)
signal x0, then the minimization problem would read as

min
x

∑
λ

|Ψx|λ
|Ψx0|1−pλ

subject to ‖y −Ax‖2 ≤ ε.

In case (Ψx0)λ = 0, the weight will be set as ∞. Clearly, multiplying the denominator
by some constant, say µ > 0, does not change the minimizer, hence, we consider

min
x

∑
λ

|Ψx|λ
(µ|Ψx0|λ)1−p subject to ‖y −Ax‖2 ≤ ε.

The role of µ is simply to have more numerical flexibility. We expect the optimal choice
for such µ to be signal dependent.

However, we have used the sparse signal x0 as a weight in the above discussion and of
course, that is the vector that one would like to find in the first place. Hence, we consider
an approximative vector xk that iteratively approached to a good, i.e. sparse, weight.
Indeed, consider

min
x

∑
λ

|Ψx|λ
(µ|Ψxk|λ)1−p subject to ‖y −Ax‖2 ≤ ε.

Finally, in order to prevent any instabilities we integrate some ν > 0 and solve

min
x

∑
λ

|Ψx|λ
(µ|Ψxk|λ + ν)1−p subject to ‖y −Ax‖2 ≤ ε. (4.19)
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The vector xk will then be updated iteratively and leads to the following final program.

Input : y, µ, ε,M .
Output: x
Initialize k = 0,W = (wλ)λ = 1.
while k ≤M do

Find solution of (4.19), i.e. find xk+1 such that

xk+1k = argminx ‖WΨx‖1 subject to ‖y −Ax‖2 ≤ ε. (4.20)

Update W by setting

Wλ =
1

(µ|Ψxk|λ + ν)1−p .

Increase k → k + 1.
end
Algorithm 1: Algorithm used to solve the minimization problem (4.1)

Next we show some numerical experiments regarding the recovery of objects that are
sparse in shearlets from their Fourier measurements.

Reconstruction from Fourier measurements using shearlets

As already mentioned in the introduction, one of the applications of the analysis-based
`p-minimization problem is magnetic resonance imaging where the sampling process is
modeled by taking samples of the Fourier transform of the signal. The minimization
problem reads as follows:

min
x
‖Ψx‖pp subject to ‖y −Fx‖2 ≤ ε (4.21)

where Ψ is the sparsifying transform and F is the undersampled Fourier transform.
In the following experiment we use the well known GLPU phantom introduced in

[GKLPU12] which can be downloaded at

http://bigwww.epfl.ch/algorithms/mriphantom/#soft

For the sampling pattern we have used a radial sampling mask consisting of 30 radial
lines, see Figure 4.3.

For solving (4.20) there are many different `1-solvers, however, we have used NESTA
in the upcoming experiments which is available at

http://statweb.stanford.edu/˜candes/nesta/

For shearlets we have used the shearlet transform available at

http://www.shearlab.org/
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Figure 4.3: Left: GLPU Phantom from [GKLPU12]. Middle: Radial sampling pattern
used in Fourier domain. Right: Fourier inversion of data.

We now let Algorithm 1 run for a maximum of 10 iterations, i.e. M = 10. Further,
note that p = 1 indeed corresponds to `1-minimization and resolving the problem itera-
tively, i.e. (4.20) does not contribute anything as W is one in every for every k. Hence,
the error stays constant over k, see also Figure 4.4.
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Figure 4.4: Relative error.

Figure 4.4 suggests that there is some merit in `p-minimization with p much smaller
than 1 and we should now make some further analysis of the reconstructions and the
algorithm itself.
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Reduced artifacts

In Figure 4.5 we display the reconstruction for p = 0.1 and p = 1. The reconstruction
for p = 1 itself shows the significant benefit of applying `1-minimization as opposed to
the Fourier inversion of the data which can be seen in Figure 4.3. This corresponds to
the standard approach of how sparse solutions are obtained in compressed sensing. Now
what the iterative reweighting method does is to return the solution to the algorithm
and uses it to compute a new solution. It can be observed that for p = 0.1 the solution
is significantly better and edges are sharper than for, say, p = 1. Also the amount of
artifacts is reduced which can becomes strongly visible inside the constant regions.

Figure 4.5: Left: Reconstruction for p = 0.1. Right: Reconstruction for p = 1.

Relative error and numerical convergence

Of course one immediate question concerning Algorithm 1 is the matter of convergence.
However, as the algorithm is a special case of reweighted `1-minimization for which no
general convergence results exist, it is not to be expected that one can derive a convergence
result for this algorithm. In fact, the convergence properties strongly depend on the initial
vector x0 as it was outlined in [FL09]. Nevertheless, some weak convergence results that
are known and have been shown in [FL09] for the synthesis formulation can easily be
extended to the analysis formulation.

Theorem 4.26 ([Ma15b]). Let µ ≥ 1, ν > 0 and (xk)k a sequence of minimizers generated
from (4.19). Then (xk)k and (Ψxk)k contain a convergent subsequence.

Proof. The proof follows the lines of [FL09] followed by an application of the frame
inequality. For any ν > 0 we obtain by Hölder’s inequality

∑
λ≤N

(
µ|Ψxk+1|λ + ν

)p
=
∑
λ≤N

(
µ|Ψxk+1|λ + ν

)p
(µ|Ψxk|λ + ν)

p(1−p)

(
µ|Ψxk|λ + ν

)p(1−p)
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≤

∑
λ≤N

(
µ|Ψxk+1|λ + ν

)
(µ|Ψxk|λ + ν)

1−p

p∑
λ≤N

(
µ|Ψxk|λ + ν

)p1−p

≤

∑
λ≤N

(
µ|Ψxk|λ + ν

)
(µ|Ψxk|λ + ν)

1−p

p∑
λ≤N

(
µ|Ψxk|λ + ν

)p1−p

Therefore ∑
λ≤N

(
µ|Ψxk+1|λ + ν

)p
≤
∑
λ≤N

(
µ|Ψxk|λ + ν

)p
. (4.22)

By (4.22) we can conclude

‖Ψxk‖∞ ≤ ‖Ψxk‖p ≤ ‖(µ|Ψxk|λ + ν)λ‖p ≤ ‖(µ|Ψx0|λ + ν)λ‖p =: C.

The boundedness of the sequence (xk)k follows from

‖xk‖∞ ≤ ‖xk‖2 ≤
√
‖Ψxk‖22

a
≤
√
N

A
‖Ψxk‖∞ ≤

√
N

A
C.

In Figure 4.6 we plot the relative error from different number of iterations. Indeed,
the first 3× 3 block of plots show the nine sequences(

‖Ψxk+1
p −Ψxkp‖
‖Ψxk+1

p ‖

)
k=1,...,10

for p = 0.1, 0.2, . . . , 0.9,

where

xk+1
p = argminx ‖WΨx‖1 subject to ‖y −Ax‖2 ≤ ε

with

Wλ =
1

(µ|Ψxk|λ + ν)1−p .

The second 3× 3 block shows the same sequence but starting from k = 2(
‖Ψxk+1

p −Ψxkp‖
‖Ψxk+1

p ‖

)
k=2,...,10

for p = 0.1, 0.2, . . . , 0.9,

and the last one shows(
‖Ψxk+1

p −Ψxkp‖
‖Ψxk+1

p ‖

)
k=3,...,10

for p = 0.1, 0.2, . . . , 0.9.

We plotted the same sequence with k ≥ 2 and k ≥ 3 just for better visual assessment of
the error curves. It can be observed that the relative error decreases very quickly to zero
which suggest fast numerical convergence of the algorithm. However, the method seems
to become less stable for very small p which is visible in the third 3 × 3 block plot for
p = 0.1.
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Figure 4.6: Relative error of the sequence of iterations. Starting from k = 1, 2, and 3,
respectively.



Chapter 5

A multilevel based reweighting
algorithm

In this chapter we present an algorithm that was developed by the author of this thesis
and his collaborator in [MM16] which combines several ideas from compressed sensing and
optimization. Moreover, the algorithm is used to compute the numerical experiments
shown in Chapter 6 of this thesis. The upcoming presentation contains large parts of
[MM16].

In the next two section we recall some basics that we need in order to formalize our
algorithm. First, we recall some basics about reweighted `1-minimization and then, about
the split Bregman algorithm.

5.1 Reweighted `1-minimization

Standard `1-minimization

In this thesis we have considered different types of analyses for the compressed sensing
reconstruction problem that is finding x from the equation

Ax = y, (5.1)

where y is a vector representing the acquired data, A is a sensing matrix, and x is the
object of interest or some intermediate object that can be processed to the sought object.
For example, x could be a coefficient vector that leads to the sought object of interest
by using a synthesis operation. Recall that the common approach to obtain solutions of
(5.1) is to solve the convex optimization problem

min
x∈Cn

‖x‖1 subject to Ax = y. (5.2)

However, there is also an additional step that one can do on top of (5.2) which is to
solve the problem iteratively again by adding weights, similar as we did in the previous
chapter. Before we present our idea and the resulting algorithm, we first recall the basic
idea behind reweighted `1-minimization in the next section which was first developed by
Candès et al. in [CWB08].

89
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Reweighted `1-minimization

In order to improve on the recovery model and to strengthen the effect of sparsity in
the minimization problem Candès and his collaborators have introduced reweighted `1 in
[CWB08].

The idea is as follows. Suppose x0 = (x0,1, . . . , x0,n) ∈ Cn is s-sparse. Further let
y ∈ Cm be the measurements of x0 where the measurement process is represented by a
matrix A ∈ Cm×n with m < n and consider the optimization problem

argminx ‖x‖1 subject to Ax = y. (5.3)

When solving the minimization problem (5.3) iteratively, one would ask for the following
effect: large coefficients should be quickly identified, whereas small coefficients should be
neglected since they are most likely to be zero in the true signal. Such a behaviour can
be obtained by introducing a diagonal n× n weighting matrix W defined by

Wi,i =

{
1
|x0,i| , x0,i 6= 0

∞, x0,i = 0,
(5.4)

in the minimization problem (5.3), that is to consider

argminx ‖Wx‖1 subject to Ax = y. (5.5)

However, since x0 is usually unknown such weights are infeasible. Therefore in [CWB08]
the authors have proposed adaptive weights that change at each iteration depending on the
previously computed solution xk which should serve as an approximation of the weights
corresponding to the true signal x0. This leads to the following iteration of minimization
problems

xk+1 = argminu ‖W kx‖1 subject to Ax = y, (5.6)

with weighting matrix

W k
i,i =

1

|xk,i|+ ε
,

where ε > 0 is a stability parameter and the initial weighting matrix W 0 is set to be
the identity. In a series of numerical experiments it was shown in [CWB08] that such
reweighting methods find sparse solution much faster with significantly reduced errors.

5.2 Split Bregman

Split Bregman (SB) is an algorithm to solve constrained optimization problems by in-
troducing split variables and then solve the resulting decoupled problems with Bregman
Iterations. SB was by Goldstein and Osher in [GO09] and has since then become a pop-
ular algorithm to solve regularized inverse problems [COS10, WT10, PM11, STS10]. We
now present the basic SB algorithm for `1-regularized problems and thereby follow the
presentation given in [OBG+05, GO09, YOGD08].
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Consider the minimization problem

min
x
‖WΨx‖1 subject to ‖y −Ax‖2 ≤ σ, (5.7)

for a possibly redundant dictionary Ψ ∈ RN×n, a measurement matrix A ∈ Rm×n, a
fidelity parameter σ > 0, and an N ×N diagonal weighting matrix W = diag (W (l)) for
l = 1, . . . , N . Then instead of using a continuation method for enforcing the constraint,
i.e. taking β →∞ in

x = argminx ‖WΨx‖1 +
β

2
‖y −Ax‖22,

problem (5.7) is transformed into a sequence of unconstrained problems using Bregman
iterations {

xk+1 = argminx ‖WΨx‖1 + β
2 ‖y −Ax+ yk‖22,

yk+1 = yk + y −Axk+1.
(5.8)

We continue by introducing a split variable d = Ψx for the `1-part of the minimization
problem (5.8) and executing an additional Bregman iteration step to obtain

(xk+1, dk+1) = argminx,d ‖Wd‖1 + β
2 ‖y −Ax+ yk‖22 + µ

2‖d−Ψx− bk‖22,
bk+1 = bk + Ψxk+1 − dk+1,

yk+1 = yk + y −Axk+1.

To solve the (x, d)-minimization problem one or multiple nonlinear block Gauss-Seidel
iterations are used, which alternate between minimizing with respect to x and d. This
yields the Split Bregman Algorithm

for i = 1 : N do
xk+1 = argminu

β
2 ‖y −Ax+ yk‖22 + µ

2‖d
current −Ψx− bk‖22

dk+1 = argmind ‖Wd‖1 + µ
2‖d−Ψccurrent − bk‖22,

end for
bk+1 = bk + Ψck+1 − dk+1,
yk+1 = yk + y −Ack+1,

Algorithm 2: Split Bregman algorithm

where xcurrent denotes the latest available variable. Note that the solution of the d-
subproblem is explicitly given by soft-thresholding

dk+1(l) = shrink
((

Ψxcurrent
)

(l) + bk(l),
1

µ
W (l)

)
,

for l = 1, . . . , N and

shrink (z, λ) =

{
max(‖z‖−λ,0)

‖z‖ z, z 6= 0,

0, z = 0.

In [GO09] it was furthermore observed that the minimization with respect to x in (2)
does not need to be solved to full precision and in many applications only few steps of an
iterative method are sufficient.
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Total generalized variation

Total variation based methods were initially proposed by Rudin, Osher, and Fatemi in
1992 for image denoising [ROF92] and are now widely used for image reconstruction and
in compressed sensing, see, for example, [WYYZ08, NW13]. TV is based on the model
assumption that the image of interest is gradient sparse. A TV regularized minimization
results in reconstructions where sharp edges are preserved, however, for realistic images,
which are usually not piecewise constant and are not truly gradient sparse, this can lead
to the so-called oil painting artifacts or staircasing effects leading to unnatural looking
reconstruction. Among others, Total Generalized Variation (TGV), has been proposed
as a generalization of TV to improve on these issues by involving higher order derivatives
[BKP10]. We will now briefly recall the definition and some basics for the second order
TGV regularizer in R2. This is mainly to fix the notation. Its general derivation and
more details can be found in [BH14, BH15a, BKP10, BH15b, BH15c].

The so-called pre-dual formulation of second order TGV is given by

TGV2
α(x) = sup

{∫
Ω
x div2 v dt : v ∈ C2

c (Ω,S2×2), ‖v‖∞ ≤ α0, ‖ div v‖∞ ≤ α1

}
, (5.9)

for α = (α0, α1) ∈ R2
+, Ω ⊆ R2 a bounded domain with a smooth boundary curve, S2×2

the space of symmetric 2×2 matrices and x ∈ L1(Ω). Thereby the divergences are defined
as

(div v)i =
2∑
j=1

∂vij
∂tj

, i = 1, 2,

and

div2 v =

2∑
i,j=1

∂2wij
∂ti∂tj

,

together with the norms

‖v‖∞ = sup
l∈Ω

 2∑
i,j=1

|vij(l)|2
1/2

,

and

‖ div v‖∞ = sup
l∈Ω

(
2∑
i=1

|(div v)i(l)|2
)1/2

.

Under certain conditions, an equivalent and more convenient form of TGV2
α is given by

the minimum representation as

TGV2
α(x) = inf

v∈BD(Ω,C2)
α1‖∇x− v‖1 + α0‖E(v)‖1, (5.10)
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where BD(Ω) is the space of symmetric tensor fields of bounded deformation and E the
symmetrized derivative defined as

E(v) =

(
∂t1v1

1
2(∂t2v1 + ∂t1v2)

1
2(∂t2v1 + ∂t1v2) ∂t2v2

)
.

In this form TGV2
α can be interpreted as balancing the first and second derivatives of x

controlled by the ratio of α0 and α1. In [BKP10] and [KBPS11] it was observed that the
use of TGV as a regularizer indeed leads to reconstructed images with sharp edges but
without the staircaising effects of TV.

5.3 Multilevel based reweighting algorithm

In this section we explain how we incorporate the ideas of reweighted `1-minimization into
the split Bregman algorithm for multilevel sparsifying transforms combined with a joint
TGV regularizer. We mainly integrate the reweighting process into the split Bregman
algorithm by adapting the soft-thresholding procedure accordingly. The additional TGV
regularizer is added, in order to reduce artifacts and improve the reconstruction of piece-
wise constant regions. This idea of combining a multiscale transform such as shearlets
with TGV has already been studied in great detail by Guo et al. in [GQY14], although
without any reweighting strategy. The algorithm therein is build on an ADMM approach
to solve the optimization problem and is therefore due to the natural connection to the
split Bregman framework also related to the algorithm that we present.

Let A be a measurement operator, y the measurements of our signal of interest x, and
let ε > 0 be a fidelity parameter. The recovery problem can then be stated as

min
x

∞∑
j=1

λj‖WjΨjx‖1 + TGV2
α(x) subject to ‖y −Ax‖2 ≤ σ,

where Ψj corresponds to the j-th level of the multilevel transform with analysis operator
Ψ, λj are regularization parameters accounting for the multilevel structure of Ψ and
Wj are diagonal weights. For the sake of clearness we assume that there is only one
subband per level. Otherwise an additional index has to be attached to Ψj to specify the
current subband. Note that after we have established a basic split Bregman framework
for solving the minimization problem we will aim to update λj and Wj iteratively. Using
the characterization of TGV2

α, the objective can be rewritten as

min
x,v

∞∑
j=1

λj‖WjΨjx‖1 + α1‖∇x− v‖1 + α0‖E(v)‖1. (5.11)

For the discretization let x ∈ Rn2 be the vectorized finite-dimensional image of interest
which is for simplicity assumed to be of square size. Let A ∈ Rm×n2 be the finite di-
mensional measurement matrix and y ∈ Rm the observed data. Let ∇f and ∇b denote a
discrete gradient operator with periodic boundary conditions using forward and respec-
tively backward differences. Following [BKP10, BH15c] we approximate the derivatives
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in (5.11) by

∇x ≈ ∇fx =

(
∇f1x
∇f2x

)
and

E(v) ≈ Ebv =

(
∇b1v1

1
2(∇b2v1 +∇b1v2)

1
2(∇b2v1 +∇b1v2) ∇b2v2

)
.

A finite dimensional approximation of (5.11) is then given by

min
x,v

J∑
j=1

λj‖WjΨjx‖1 + α1‖∇fx− v‖1 + α0‖Ebv‖1, (5.12)

where J is some fixed a priori chosen maximum scale and Ψ is the discrete transform acting
on the vectors. For wavelets and shearlets this is greatly documented in the literature,
see Chapter 8 in [Wal02] for wavelets and [KLR16] for shearlets. Note that the `1-norm
in the second summand is thereby defined as

‖v‖1 =

n2∑
l=1

(
|v1(l)|2 + |v2(l)|2

)1/2
,

and for the third summand as

‖e‖1 =

n2∑
l=1

‖e(l)‖F =

n2∑
l=1

∥∥∥∥(e(l)1 e(l)2

e(l)2 e(l)3

)∥∥∥∥
F

,

where ‖ · ‖F is the Frobenius norm of a 2× 2 matrix.

Split Bregman framework

The proposed constrained optimization problem can be casted into the form given in (5.7)
by introducing the variable x = (x, v)T together with the matrix

Ψ =

 Ψ 0
∇f −I
0 Eb

 .

In order to come up with the explicit form of the resulting split Bregman algorithm as
given in Section 5.2, let us split as follows:wd

t

 =

 Ψx
∇fx− v
Ebv

 .

The (x, v)-subproblem of Algorithm 2 is then given by

(uk+1, vk+1) = argminx,v
β

2
‖y −Au+ yk‖22 +

µ1

2
‖wcurrent −Ψx− bwk ‖22
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+
µ2

2
‖dcurrent − (∇fx− v)− bdk‖22 +

µ3

2
‖tcurrent − Ebv − btk‖22.

(5.13)

We furthermore obtain the subproblems

wjk+1 = argminwj λj‖Wjw
j‖1 +

µ1

2
‖wj −Ψjx

current − bw,jk ‖
2
2, (5.14)

for j = 1, . . . , J , as well as

dk+1 = argmind α1‖d‖1 +
µ2

2
‖d− (∇fxcurrent − vcurrent)− bdk‖22, (5.15)

and

tk+1 = argmint α0‖t‖1 +
µ3

2
‖t− Ebvcurrent − btk‖22. (5.16)

Note that the regularization parameters λj , α0 and α1 have thereby been subsumed into
a weighting matrix W and that we are allowing some more flexibility by incorporating
different values for µi for i = 1, 2, 3. Furthermore we obtain the following Bregman
updates: 

bwk+1 = bwk + Ψxk+1 − wk+1,

bdk+1 = bdk + (∇fxk+1 − vk+1)− dk+1,

btk+1 = btk + Ebvk+1 − tk+1,

as well as

yk+1 = yk + y −Auk+1.

Solutions of the subproblems

The solution of the subproblem (5.13) can be obtained by setting the first derivatives
with respect to x, v1 and v2 to zero. This results in the following linear systemb1 b∗4 b∗5

b4 b2 b∗6
b5 b6 b3

 u
v1

v2

 =

R1

R2

R3

 , (5.17)

where bi are n2 × n2 block matrices defined as

b1 = βA∗A+ µ1Ψ∗Ψ + µ2(∇f )∗∇f ,

b2 = µ3(∇b1)∗∇b1 +
µ3

2
(∇b2)∗∇b2 + µ2I,

b3 = µ3(∇b2)∗∇b2 +
µ3

2
(∇b1)∗∇b1 + µ2I,

b4 = −µ2∇f1 ,

b5 = −µ2∇f2 ,

b6 =
µ3

2
(∇b1)∗∇b2,
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and the components of the right hand side are given by

R1 = βA∗(y + yk) + µ1Ψ∗(wcurrent − bwk ) + µ2(∇f )∗(dcurrent − bdk),

R2 = µ2(bdk,x − dcurrent
x ) + µ3

(
(∇b1)∗(tcurrent

1 − btk,1) + (∇b2)∗(tcurrent
2 − btk,2)

)
,

R3 = µ2(bdk,y − dcurrent
y ) + µ3

(
(∇b1)∗(tcurrent

2 − btk,2) + (∇b2)∗(tcurrent
3 − btk,3)

)
.

Similar to [GO09], it was observed in [GQY14], that in many cases the linear system
in (5.17) can be efficiently solved by using the 2D-Fourier transform F ∈ Cn2×n2 . Note
that ∇f and ∇b are circulant since they correspond to periodic boundary conditions.
Therefore

F∗∇∗∇F

is a diagonal matrix.
In case of Fourier measurements that are generated using the fft2 the measurement

matrix can be written as

A = PF ,

where P ∈ {0, 1}m×n
2

is a binary matrix selecting the measurements. In this case

A∗A = F∗PF

is naturally diagonalized by the 2D Fourier transform.
If all blocks bi for i = 1, . . . , 6 can be diagonalized in this way, the authors of [GQY14]

proposed to multiply with a preconditioner matrix from the left to obtain the systemb̂1 b̂4
∗

b̂5
∗

b̂4 b̂2 b̂6
∗

b̂5 b̂6 b̂3


FuFv1

Fv2

 =

FR1

FR2

FR3

 , (5.18)

where each b̂j = FbjF∗ is a n2× n2 diagonal matrix. A closed form solution can then be
obtained by applying Cramer’s rule. The solutions of the other subproblems are obtained
in closed-form by shrinkage again:

wjk+1(l) = shrink
((

Ψjx
current

)
(l) + bw,jk (l),

λjWj(l)

µ1

)
, (5.19)

for l = 1, . . . , Nj −Nj−1 + 1. For equation (5.15) we obtain

dk+1(l) = shrink2

(
∇fxcurrent(l)− vcurrent(l) + bdk(l),

α1

µ2

)
,

for l = 1, . . . , n2 and the shrinkage rule

shrink2 (x, λ) =

{
max(‖x‖2−λ),0)

‖x‖2 x, x 6= 0,

0, x = 0.
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Similarly, the solution of (5.16) is given by

tk+1(l) = shrinkF
((
Ebvcurrent

)
(l) + btk(l),

α0

µ3

)
,

for l = 1, . . . , n2 and

shrinkF (x, λ) =

{
max(‖x‖F−λ),0)

‖x‖F x, x 6= 0,

0, x = 0.

Combining reweighted `1 with multiscale transforms

Recall that the guiding principle of reweighted-`1 is that small coefficients of an iterative
solution are likely going to be zero in the true signal. However, this principle is not
necessarily valid for multiscale sparse signals, i.e. signals that can be sparsely represented
under a multiscale transform. The magnitudes of multiscale coefficients naturally decrease
with increasing scales, but the high scale nonzero coefficients of an iterative solution are
not necessarily less important or more likely zero in the actual signal, if compared to low
scale coefficients which are intrinsically larger. In the following section we are aiming to
compensate for this misfit by including additional weighting parameters for each level in
the transformation.

Suppose x ∈ Rn2 is the true signal and

Ψx = (Ψjx)j=0,...,J = (〈ψj,l, x〉)j=0,...,J,l=1,...,Nj (5.20)

are the analysis coefficients divided into J subbands with Nj ∈ N many elements per
level. In [AS15] a multi dictionary reweighting algorithm was proposed which iteratively
updates λkj in the objective of

xk+1 = argminx

J∑
j=0

λkj ‖WjΨjx‖1, subject to ‖y −Ax‖2 ≤ σ, (5.21)

by setting

λkj =
Nj

ε+ ‖Ψjxk‖1
, (5.22)

and Wj = I for all iterations of solving (5.21). It was shown therein that the resulting
algorithm can be interpreted as applying a Majorization-Minimization algorithm to the
unconstrained formulation of (5.21) with regularizer

J∑
j=0

Nj log (ε+ ‖Ψjx‖1) .

This update rule was proposed in [AS15] for a composition of multiple different dictionar-
ies instead of just one multiscale dictionary divided into its subbands. In the latter case
it seems to be less likely to expect that log (ε+ ‖Ψjx‖1) promotes the sparsity structure
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Figure 5.1: Upper left: Coefficients of in blue with a multi-level reweighting curve as
in (5.22) in orange. Upper right: Coefficients in blue with multi-level curve in orange
using (5.24) only. Lower left: Coefficients with the proposed reweighting strategy in
orange. Lower right: Zoom of proposed multilevel reweighting strategy.

of x within each of the subbands Ψj sufficiently. Indeed, as it was argued in [CWB08],
the log-sum penalty is more sparsity enforcing than the `1-norm by putting a larger
penalty on small nonzero coefficients. In the case of the `1-norm of an entire subband
this approach seems to be less effective in promoting the sparsity within each level. It
was furthermore proposed in [AS15] to combine the update rule (5.22) with the classical
elementwise reweighting update

Wj = diag

(
1

ε+ |〈ψj,l, xk〉|

)
, (5.23)

for j = 1, . . . , J . However, note that this combination is very different to what we are
aiming for, since there is even more emphasize put on penalizing the smaller coefficients
in higher levels which can happen to delete too many highscale coefficients.

This fact is visualized from a different point of view in Figure 5.1, where we have
depicted the shearlet coefficients of a MRI phantom introduced in [GKLPU12] together
with the reweighting rule we have just discussed in the top-left of the figure. The shearlet
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Figure 5.2: Convergence plot: Behavior of the error and structured similarity index for
reweighting with true shearlet coefficients with respect to increasing number of iterations.
Used signal: phantom from [GKLPU12]. Reconstructed from 6%(!) of Fourier data
with proposed algorithm without TGV. In IRL1 we are choosing Wj as in (5.23) and
λj constant and for the proposed emthod we additionally define λj as in (5.24). Upper
figure: Relative error of in each iteration. Lower figure: SSIM of each iteration.

coefficients are depicted in blue and the values of λj
µ1

for a realistic value µ1 are shown
in orange. Note that according to the update rule (5.19) of the split Bregman algorithm
everything below the orange curve would be thresholded.

Proposed method

Considering the previous discussion one of the disadvantages is that the weights corre-
sponding to higher levels might become too large. This can be prevented, for instance,
by choosing the regularization parameters as

λj = max {|〈ψj,l, x〉| : l = 1, . . . , Nj} , (5.24)

for j = 1, . . . , J and zero otherwise, i.e. if j = 0. Note that we exclude the subband for
j = 0 since for real life signals the low frequency part is usually not sparse. This was
also proposed in [SF09], where it was shown that this idea can be accomplished more
effectively using an analysis prior. For some exotic signals it might happen that the
magnitude of the analysis coefficients are very irregular per level, in particular one could
have strong outliers. For such cases it might be better to take a quantile instead of the
maximum. However, for our test images this will not happen and thus we have used the
maximum. Also note that this is a heuristic rule accounting for the unknown constant in
the theoretical decay of the multilevel coefficients. A schematic representation from the
thresholding perspective of split Bregman can be found in the second image of Figure 5.1.

Our proposed method combines the classical reweighting of (5.23) with the above
choice for λj . The idea behind this is that we are still using the power of pointwise iterative
reweighting, but since our multiscale coefficients naturally come in levels of different orders
of magnitude, we apply it to each level separately weighted with λj . That means that
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within each level we follow the democratic philosophy of reweighting which is that small
coefficients of the current iterate Ψju

current are likely to be zero in u. By multiplying with
the latter choice of λj we also gain more control and account for the multilevel structure
of Ψu. An artificial experiment using the (in reality unknown) true analysis coefficients
demonstrates that this update rule does seem to perform better than standard reweighting
without such a compensation of multilevel weights, see Figure 5.2. For the signal u we are
choosing the phantom of [GKLPU12]. Using the usually unknown shearlet coefficients for
the construction of λj and Wj for j = 1, . . . , J as explained above we are reconstructing
u from only 6% of its Fourier measurements obtained by radial lines through the k-space
origin by using the proposed algorithm of the last section, but without the additional
TGV regularizer. Note that both reconstructions approximately start with the same
error, which indicates that the set of regularization parameters is chosen equally good.
However, it can be said that tuning the iterative reweighted shrinking method within
the split Bregman framework without the automatic choice of the subband-weights λj is
rather difficult and highly signal dependent. This example further shows the potential of
reweighting as the data is significantly undersampled.

Proposed algorithm

Having explained the idea of our method, we now state the final resulting algorithm that
is a composition of the split Bregman framework for solving the constrained optimiza-
tion problem (5.12) and the previously explained idea of multilevel weighting and itera-
tively reweighting, respectively. In contrast to the traditional reweighted-`1 approaches
we do not iterate between solving the `1-problem up to convergence and updating the
weights. We propose to incorporate the multilevel adapted reweighting rule directly into
the split Bregman algorithm. This is done in such a way that only the shrinking of the
w-subproblem is changed to a multilevel adapted, iteratively reweighted shrinking rule.
Note that by choosing the level-weights λj depending on the magnitude of the signal
coefficients the resulting method appears to stable towards the alternation of signals.

Another advantage is that we observe in our numerical experiments that the computa-
tional complexity stays almost the same. In comparison to the traditional split Bregman
approach we are adding only the updates of Wj and λj within each iteration. How-
ever, due to the iteratively selected weights this could potentially lead to a much faster
algorithm.

We like to comment on two things regarding the algorithm above. First, the weighting
matrix Wj depends on the initialization of an ε > 0. The choice of ε is rather empirical
and many cases does not effect the solution. This was already noticed in the beginning
of reweighted-`1 in [CWB08]. This is also the case for our algorithm. The role of ε is
essentially to bound the maximum threshold that the algorithm will perform. It provides
stability by preventing a division by zero, but the magnitude of the coefficient is mostly
determined by the respective analysis coefficient. It is also common to decrease ε iter-
atively as it is assumed that the more iterations one runs, the closer one gets to actual
coefficients of the signal. However, this appears unnecessary for us and is not further
considered.

Furthermore, we have not incorporated an additional stopping criterion besides a
maximum number of iterations. For our algorithm it does not seem to be necessary as
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Input:
Measurement operator A, multilevel transform Ψ,
regularization parameters: α0, α1, µ1, µ2, µ3, β,
iteration numbers N and maxIter.
Data:
Measured data y.
Initialization:
k ← 0;
u0 ← A∗y;
y0, v0, d0, w0, t0, b

t
0, b

d
0, b

w
0 ← 0;

while k ≤ maxIter do
for i = 1, . . . , N do

(uk+1, vk+1)← solve linear system (5.18);
for j = 1, . . . , J do
λj = max {|〈ψj,l, u〉| : l = 1, . . . , Nj};

Wj = diag

(
1

ε+|〈ψj,l,ucurrent〉|

)
;

wjk+1(l)← shrink
((

Ψju
current

)
(l) + bw,jk (l),

λjWj(l)
µ1

)
, l = 1, . . . , Nj ;

end for
dk+1(l)← shrink2

(
∇fucurrent(l)− vcurrent(l) + bdk(l),

α1
µ2

)
, l = 1, . . . , Nj ;

tk+1(l)← shrinkF
((
Ebvcurrent

)
(l) + btk(l),

α0
µ3

)
, l = 1, . . . , Nj ;

end for
bwk+1 ← bwk + Ψuk+1 − wk+1;
bdk+1 ← bdk + (∇fuk+1 − vk+1)− dk+1;
btk+1 ← btk + Ebvk+1 − tk+1;
yk+1 ← yk + y −Auk+1;
k ← k + 1;

end while
return Reconstruction umaxIter.

Algorithm 3: Proposed algorithm
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the convergence plots suggest, see Figure 5.2, 5.4 and 5.5.

5.4 Numerics

In this section we will recover several different signals from their Fourier measurements.
This is a typical problem in applied mathematics, which has a wide range of applications.
One of the most known applications is magnetic resonance imaging (MRI) where data
is collected in the so-called k-space which is the Fourier domain, i.e. every point in the
k-space can be interpreted as a Fourier coefficient of the object of interest. This is also
one of the very first areas where compressed sensing has had a great impact, see, for
instance [LDP07].

We will now present some extensive numerical testings that verify the performance of
the proposed algorithm for the particular setup where Fourier measurements are taken.
However, we like to mention that our algorithm is implemented for very general sampling
operators. These can, for example, be binary masks as in inpainting or non-uniform
Fourier operator for more sophisticated sampling patterns in MRI.

We have chosen the following three criteria that we wish to analyse our algorithm on:

(N1) Quality,

(N2) Convergence,

(N3) Stability.

For (N1) we compare our algorithm with different existing and established methods that
are known to perform well in the recovery problem from Fourier measurements these
methods are shown in Table 5.1.

For (N2) we use two quality measurements. First, the relative error which is computed
by the formula

RE =
‖xref − xrec‖2
‖xref‖2

where xref is the reference image and xrec the reconstructed image. Second, we use the
structural similarity index that as introduced in [ZBSS04]. This value can be directly
computed in MATLAB.

The stability (N3) is verified by the fact that we have chosen the same parameters
for each multiscale transform across all experiments. Although an extensive tuning of
all parameters for different images might yield superior results we have chosen not to do
so. The reason behind is two-fold: First, our algorithm already performance very well
with a fixed choice of parameters for all different images used in this section. Second,
iterative reweighting combined with the proposed multilevel weighting strategy already
suggests the level of thresholds for all coefficients and should therefore be less sensitive
to the choice of additional parameters.
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Numerical setup

The sparsifying transforms that we use in the numerical experiments of this section are
the wavelet transform and the shearlet transform. We first give some more details about
the parameters that are used and then proceed with the results.

As for wavelets we have used the undecimated 2D wavelet transform provided by the
spot package available at

http://www.cs.ubc.ca/labs/scl/spot/

Unless it is stated differently we have used a 4 scale Daubechies-2 wavelet system. The
chosen parameters for the proposed algorithm (WIRL1 + TGV) are

. µ: [6e2 1e1 2e1],

. α: [1 2],

. β: 1e4,

. ε: 1e-4.

For shearlets we have used the shearlet transform from the ShearLab package available
at

http://www.shearlab.org/

The discrete shearlet system is generated by using 4 scales and [1 1 2 2] for the directional
parameters. Further parameters for the proposed algorithm (SIRL1 + TGV) are chosen
as follows:

. µ: [5e3 1e1 2e1],

. α: [1 1],

. β: 1e5,

. ε: 1e-5.

The performance of the algorithm certainly depends on the parameter set. However, it is
very stable with respect to different type of images once a proper parameter set is chosen.
In fact, all experiments of this section are computed with the same parameter set given
above. The parameter that is most sensitive is ε. This is to be expected as this is the
parameter that controls the maximum magnitude of the thresholding value.
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Comparison with other methods

Fourier inverse Fourier inversion of data
RecPF Total variation and wavelet regularization

from [WYYZ08]
FFST+TGV Shearlets with TGV from [GQY14]
Co-IRL1 Composite iterative reweighting from

[AS15]
PANO Patch-based nonlocal operator, [QHL+14]
TV Total variation with our algorithm
TGV Total generalized variation with our algo-

rithm
WL1 Wavelets without reweighting
WIRL1 Wavelets with proposed reweighting
WIRL1+TGV Wavelets with proposed reweighting and

TGV
SL1 Shearlets without reweighting
SR + TGV Shearlets with standard reweighting and

TGV
SIRL1 Shearlets with proposed reweighting
SIRL1+TGV Shearlets with proposed reweighting and

TGV

Table 5.1: Table for abbreviations

Our first experiment shows the recovery from a 256× 256 rose image available from the
open source framework

http://aforgenet.com/framework/

We used 30 radial lines through the k-space origin (≈ 12, 2% of Fourier data) to represent
the subsampling pattern. The data is then obtained by a pointwise multiplication in
MATLAB by multiplying the mask with the Fourier transformed image. This is then used
as the measured subsampled Fourier data.

We then compared our results obtained by the proposed algorithm for wavelets as
a sparsifying transform. Our resulting reconstruction, shown in Figure 5.3 is obtained
by using the proposed iterative multi-level reweighting strategy as well as an additional
generalized total variation regularizer. In the same figure, we compare are results to
RecPF by Yang et al. [WYYZ08], Co-IRL1 by Ahmad and Schniter [AS15], PANO
by Qu et al. [QHL+14], and FFST+TGV by Guo et al. [GQY14]. In order to make
the experiments comparable we have used the same scales and number of directions in
[GQY14]. Furthermore, for Co-IRL1 we have used two redundant Daubechies wavelet
dictionaries with the same number of scales. More precisely, one dictionary consists of
Haar wavelets (Daubechies 2) and the second one of Daubechies 4 wavelets. It can be
observed that the recovery obtained by the proposed method shows the least amount of
artifacts while still recovering all structures.
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Original Fourier inverse: RE = 0.167, SSIM = 0.739

RecPF: RE = 0.105, SSIM = 0.841 Co-IRL1: RE = 0.076, SSIM = 0.898

PANO: RE = 0.086, SSIM = 0.881 FFST+TGV: RE = 0.095, SSIM = 0.855

TGV: RE = 0.113, SSIM = 0.874 WIRL1+TGV: RE = 0.058, SSIM = 0.936

Figure 5.3: Different reconstructions from 30 radial lines (≈ 12, 2%) through the k-space
origin with relative error and structured similarity index. 50 iterations are used for the
reconstruction. See Table 5.1 for used abbreviations.

Convergence, signal independence, and the effect of reweighting

In this section we analyze (N2) for our algorithm. We do this by considering two images,
one that is well suited for wavelets and the other one where shearlets perform better.
We start with a 256 × 256 phantom that was designed by Guerquin-Kern et al. in
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[GKLPU12] for MRI studies. As this image is piecewise constant we have chosen a 4
scale wavelet transform generated by Haar wavelets. We reconstructed the image using
our algorithm for TV only, WL1, WIRL1 and WIRL1+TGV. Moreover, as this image
is very compressible in a Haar wavelet basis, the recovery allows a much lower sampling
rate. In fact, we have only used 21 radial lines which corresponds to only 8.73%. It is
interesting to mention that the exact solution is returned after almost 80 iterations when
WIRL1+TGV is used for 21 radial lines. Additionally, for 24 lines (≈ 9.83%) wavelets
with the proposed iterative reweighting step (WIRL1) will eventually also return the exact
solution, see Figure 5.4.

Original TV WL1 WIRL1 WIRL1+TGV

Figure 5.4: Different reconstructions from 24 radial lines through the k-space origin with
relative error and structured similarity index. The lower left graphics corresponds to 21
radial lines (≈ 8.73%) and the lower right to 24 radial lines (≈ 9.83%). 100 iterations are
used for the reconstruction. See Table 5.1 for used abbreviations.

Our third numerical example concerns the 256 × 256 pepper image, see Figure 5.5.
It has many more structures than the previously considered GLPU phantom. More
importantly, it does not consist of piecewise constant areas. This image is particularly well
suited for shearlets and thus we have chosen the shearlet transform with four scales. We
have compared three different scenarios. First, without any reweighting or exploitation of
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the multilevel structure, in fact, we have used a fixed threshold (SL1). The second image
(SR+TGV) uses reweighting with TGV, but not with the proposed multilevel adaption
of the weights. The third image shows the proposed method (SIRL+TGV) which, in
particular, exploits the multilevel structure of the transform coefficients. It reduces the
artefacts, caused by the subsampling, significantly and thus suggests a better treatment
of the sparsity structure.

Original SL1 SR+TGV SIRL1+TGV

Figure 5.5: Different reconstruction from 30 radial lines (≈ 12, 2%) through the k-space
origin with relative error and structured similarity index. See Table 5.1 for used abbre-
viations. 50 iterations are used for the reconstruction. The two graphs at the bottom
show the relative error and the structural similarity index with respect to the number of
iterations.
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Concluding remarks

Our algorithm shows that standard methods – such as the split Bregman algorithm – can
be significantly improved by adding a reweighting strategy for the sparsifying coefficients.
Furthermore, this reweighting strategy should take into account the multilevel structure,
as we have demonstrated in Figure 5.5. Furthermore, due to the reweighting strategy
the parameter set becomes relatively stable to an alternation of the image that is to be
reconstructed.

As a further step, one could consider a non-convex optimization problem by using the
`p-quasi norm for p ∈ (0, 1) and then work with a reweighting strategy that depends on
p. This has not been tested yet, but could be worth to be considered in more detail in
the future, as we have seen in Chapter 4 that `p-minimization can improve the recovery
significantly.

Finally, the algorithm is implemented is a very general manner. In particular, the
sampling operator and the sparsifying transform are part of the input arguments and
can, thus, be directly changed.
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Chapter 6

Magnetic resonance imaging

In this chapter we present some results of the application of shearlets using the algo-
rithm from Chapter 5 to real experimental MR data. This results will be discussed more
intesively in the upcoming work [MMK+16].

It was mentioned multiple times in this thesis that the measurement process in MRI
can be understood as sampling Fourier coefficients of the signal of interest. In the next
section we want to make this a little bit more precise and discuss the inverse problem that
is considered in MRI. However, our presentation is from a medical and physical perspective
rather loose and we refer to [Kol12, BCH+14, WKM09] for more details about the medical
and physical backgrounds.

6.1 Reconstruction problem

Magnetic resonance imaging is an imaging technique that relies on the spin angular mo-
mentum of hydrogen atoms. In particular, magnetic gradient fields can be applied in
order to align all hydrogen atoms into one specified direction. After the magnetic gradi-
ent field is switched off the spinning atoms will align back to their initial position thereby
inducing a signal that is measured by receiver coils implemented in the MRI machine.
This signal y then represents frequency information an image - or volume in the 3D case
- x. Indeed, the acquired signal y is called k-space information and can be written as the
Fourier transform of x with respect to specific frequencies.

Mathematically speaking, the discretized problem can be formalized as follows: In
order to obtain the image of interest one has to solve the inverse problem

Ax = y, (6.1)

where y represents the acquired k-space information, A is the sampling operator that
is essentially a partial Fourier matrix and hence, not invertible. However, in practice
different modalities can lead to better conditioned sampling matrices A and thus lead
to better image reconstructions. We shall next discuss one particular method which is
parallel magnetic resonance imaging.

108
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Encoding operator A for pMRI

From now on we will call A encoding operator instead of sampling operator in order to
emphasize that the encoding process consists of several operations other than acquiring
partial samples of the Fourier transform as we will explain now. Indeed, in parallel
MRI (pMRI) additional sensitivity coils are involved where each coil has characterizing
sensitivity profiles that are responsible for certain (different) areas of the k-space. This
is additional information of the acquired signal and can be used for an enhanced image
recovery ([PWSB99]).

The sampling matrix A in the inverse problem (6.1) is now a concatenation of the
form

A = PFS,

where PF is a partial Fourier matrix with possibly non-uniform samples and S is a
sensitivity matrix. Depending on the number of sensitivity profiles Ns ∈ N we obtain Ns

equations of the form

Ans = PFSnsx = y, ns = 1, . . . , Ns. (6.2)

Each solution xns of these equations can then be combined, for instance, by using the
sum of squares method [PWSB99]. Therefore the decoding operation A∗ of the encoding
operator A is considered to be the concatenation of the following operations: First, apply
the inverse Fourier transform to each of k-spaces, then a multiplication with the respective
sensitivity maps followed by a combination of the single coil images by, for instance, sum of
squares. The encoding operator A certainly does the opposite by applying the sensitivity
maps first and then the partial Fourier transform.

In particular for the 3D case the encoding operator A, as well as its adjoint operation
A∗ is even more evolved, since it requires an additional handling of motion artefacts.

6.2 Data

The data that we use in the following experiment is k-space data that was acquired
using a radial 3D sampling scheme according the golden radial phase encoding (GRPE)
as documented in [WSK+07]. The data was acquired and provided by the Physikalisch-
Technische Bundesanstalt Braunschweig und Berlin (PTB). In particular, 9216 lines per
coil were acquired in total. Furthermore, 8 coils were used for the sensitivity resulting in
a k-space of dimension 192× 9216× 8 (spatial resolution × number of lines × number of
coils).

The reconstructed signal has a dimension of the size 192 × 192 × 192 and represents
a 3D volume in spatial domain.

6.3 Experiment

We recovered the data in the image domain using the algorithm presented in Chapter 5.
In particular, the sparsifying transform is the 3D shearlet transform available from the
package ShearLab [KLR16] which can be accessed at



Chapter 6. Magnetic resonance imaging 110

www.shearlab.org/

However, as the experiments in 3D are computationally very demanding we did not ap-
plied the iterative reweighting method, but instead used a fixed threshold in the algorithm
presented in Chapter 5. For the shearlet system we have used 2 scales and 3 directions
per scale.

The code for the encoding operator was provided by Dr. Christoph Kolbitsch from
the PTB. Fruther, the experiments have been conducted in MATLAB on ’cluster16’ of
the math cluster of TU Berlin.

6.4 Results

In Figure 6.1 we present the result of the signal recovery from MR data using compactly
supported shearlets in 3D. In particular, we depicted several different slices along different
directions of the whole 3D volume. In the first column of Figure 6.1 we see a reconstruction
by applying the inverse operation of the encoding operator. In the second column the
reconstruction using shearlets is shown. As the reconstruction is a three dimensional
object, say x ∈ C192×192×192 we show a slice along the first dimension, that is x(n, :, :)
for some n ∈ {1, . . . , 192} in the first row. where we have used the matlab notation ’:’
to indicate that the full size along the second and third dimension is used. Furthermore,
single dimensions are squeezed, i.e. x(:, :, n) ∈ C192×192. Similarly, the second row shows
a slice through the second dimension and the third row shows the reconstruction along a
slice in the third dimension, respectively.

Note that the shearlet reconstruction shows almost no streaking artifacts coming from
the sampling pattern opposed also the background noise is reduced significantly. This is
an advantage due to the three dimensional setup, as the background noise as well as the
streaking artifacts have almost no three dimensional volume. Hence, these will not be
picked up in the reconstruction using a 3D shearlet system. The same argument applies
to other systems such as wavelets.
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Figure 6.1: Comparison of reconstruction obtained by the inverse operation of the encod-
ing operator (left) and the shearlet reconstruction (right). First row: Slice 140 along
the first direction. Second row: Slice 65 along the second direction. Third row: Slice
85 along the third direction.
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Figure 6.2: Comparison of reconstruction obtained by the inverse operation of the encod-
ing operator (left) and the shearlet reconstruction (right). First row: Slice 170 along
the first direction. Second row: Slice 140 along the second direction. Third row: Slice
120 along the third direction.
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Electron microscopy

In this chapter we briefly show a different application of shearlets to signal transmis-
sion electron microscopy (STEM) a problem that is located in the larger field electron
microscopy (EM).

The results presented in this paper are obtained in the experimental paper [MBS+16]
and we refer the reader to that work for more interest in the experimental setup, interest
in the particular data sets or the application behind. Further, applications can also be
found in [MHAS+16]. However, we briefly sketch the experiment in form of an inverse
problem and wish to present the application of shearlets to this problem.

7.1 Reconstruction problem

In STEM small objects of nanosize can be visualized by scanning the object. The scanning
is usually done pixelwise, which results in an inpainting problem. More precisely, suppose
x ∈ RN×N is the object of interest and let A ∈ RN×N be a binary mask where 1 represents
the measured pixel and 0 corresponds to a not having measured the pixel, see Figure 7.1.
However, there is usually also a quite significant amount of noise on the data as we shall
see in the data in Section 7.3.

Figure 7.1: Random masks with different subsampling rates.
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The reconstruction problem is then again to find x (the full image) from the equation

Ax = y, (7.1)

where y is the masked data as visualized in Figure 7.2.

Figure 7.2: Masked data.

As the problem is ill-posed we regularized the inverse problem (7.1) using different
methods known to work well in inpainting, indeed, in [MBS+16] we considered

min
x

1

2
‖Ax− y‖22 + λJ(x),

where J is a regularizing functional such as the composition of the `1 norm with a shearlet
transform., wavelet transform, or cosine transform. Furthermore, a regularization based
on total variation and total generalized variation has been considered as well.

7.2 Algorithm

The algorithm used for the wavelet-, shearlet- and cosine transform is an iterative thresh-
olding algorithm which stems from [SED05, KLR16]. For the sake of completeness we
present the algorithm here.

Let y be the masked data, A be the mask itself, λ, µ > 0, and maxIter be the maximal
number of iterations. Further, let thresh denote the thresholding operator given by

threshε(c(k)) =

{
c(k) |c(k)| ≥ ε,
0 else.

Further we use the matlab notation ’A. ∗B’ to denote the entrywise multiplication of the
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matrices A and B.

Input : y,A, λ, µ,maxIter.
Output: x
Initialize x := 0, ε := λ, δ := µ1/(maxIter−1), k := 1.
while k ≤ maxIter do

x̃ := A. ∗ (y − x);
x := Ψ̃∗ threshε Ψ(y − x);
ε := δε;
Increase k → k + 1.

end

Algorithm 4: Algorithm used for image inpainting

7.3 Experiment

For the reconstruction we have applied Algorithm 4 to the shearlet transform again from

www.shearlab.org/

as well as the wavelet transform from the spot toolbox available at

www.cs.ubc.ca/labs/scl/spot/

For the cosine transform we have used the one available from MATLAB.

The data from where a reconstruction is to be computed is shown in Figure 7.2. Note
that the image shows a very uniform chessboard pattern except for certain vacancies.
Furthermore the objects are supposed to be round and smooth which suggest that these
three transform should work fairly well. The computed reconstructions are shown in
Figure 7.3.
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Figure 7.3: Reconstruction of oxides, [MBS+16]

As the original image contains a lot of noise it seems not appropriate to use standard
image quality metrics such as relative error or peak-signal to noise ratio as we have
chosen the parameters so that the noise is also thresholded. Instead we rely on the
visual assessment and present line profiles in Figure 7.4. Indeed the line goes through
the vacancy as shown in Figure 7.4. For a better quality assessment we also depicted the
original fully sampled region in the same figure as well as a median filtered version that
smoothes the data but reduces noise.
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Figure 7.4: Line profiles for the reconstruction shown in Figure 7.3, [MBS+16]

7.4 Discussion

The reconstruction from shearlets, wavelets and cosines are much smoother than the re-
construction obtained from TV and TGV which is mainly the case because of the two
different algorithms that have been used. For the TV and TGV reconstruction an interpo-
lation based approach was used, see [MBS+16] and the references therein where Algorithm
4 thresholds transform coefficients and then synthesises the remaining coefficients in the
respect system which in all three cases consists of smooth functions.

However, there are visual differences between these three transforms. For instance,
using shearlets the elements to not appear perfectly round as the anisotropy destroys
as well as the directionality is not capable of reproducing the structure. On the other
hand, the cosine transform which uses smooth and periodic functions reconstruct perfectly
round objects. However, due to the periodicity it also fills vacancies which where it should
not. For wavelets the reconstruction do show a good shape of the atoms, however, as the
transform is less redundant the algorithm suffers from stability issues and thus fails to
reconstruct the object.

Overall it must be stated, that the optimal transform depends on the data.
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Appendix A

Frames

More than 60 years ago Duffin and Schaeffer introduced the concept of frames in [DS52].
Nowadays, they are widely used in applied harmonic analysis and we next give a short
introduction about the basics of frame theory that are needed for the content of this
thesis. For a more detailed presentation of frames we refer the reader to the excellent
book [Chr03].

A.1 Basic definitions and properties

Recall that H denotes a (separable) Hilbert space.

Definition A.1 ([Chr03]). A set of vectors Ψ = {ψλ : λ ∈ N} ⊂ H is called a frame for
H, if there exist positive but finite constants c1 and c2 such that

c1‖f‖2 ≤
∑
λ∈N
|〈f, ψλ〉|2 ≤ c2‖f‖2 ∀ f ∈ H. (A.1)

The constants c1 and c2 are called lower frame bound and upper frame bound, respec-
tively. If c1 equals c2, then we we call the frame Ψ tight. Moreover, a tight frame with
frame bound equal to one is called a Parseval frame.

The frame bounds c1 and c2 in Definition A.1 are certainly not unique. Clearly, a
multiplication of c1 by a positive constant smaller than one and a multiplication of c2 by
a positive, but finite constant, larger than one gives rise to another pair of frame bounds.
However, in some cases it is important to have the lower frame bound as large as possible
and the upper frame bound as small as possible, respectively. In this case, if c1 is the
largest constants such that (A.1) holds, and c2 is the smallest constant such that (A.1)
holds, then we call these frame bounds optimal.

The frame inequality (A.1) guarantees the boundedness of the following two operators
which we, by a slight abuse of notation, denote by Ψ and Ψ∗, respectively. In fact, the
following synthesis operator

Ψ : `2(N) −→ H

(cλ)λ 7→
∑
λ∈N

cλψλ
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is a linear bounded operator. Its adjoint, called the analysis operator, is given by

Ψ∗ : H −→ `2(N),

f 7→ (〈f, ψλ〉)λ∈N.

The composition of the synthesis operator and the analysis operator is called the frame
operator of the frame Ψ.

Theorem A.2 ([Chr03]). Let Υ be the frame operator of a frame with frame bounds c1

and c2. Then Υ is a bounded, self-adjoint, invertible, and positive operator. Moreover, if
c1 and c2 are the optimal frame bounds, then

‖Υ−1‖ =
1

c1
and ‖Υ‖ = c2.

The inverse of a frame operator can be used to construct another frame in a very
canonical way.

Theorem A.3 ([Chr03]). Under the assumptions of Theorem A.2, with c1 and c2 not
necessarily being optimal, the set of vectors

Ψ̃ := Υ−1(Ψ) =
{

Υ−1ψλ : λ ∈ N
}

=:
{
ψ̃λ : λ ∈ N

}
is a frame with frame bounds c−1

2 and c−1
1 . The frame operator associated to Ψ̃ is Υ−1.

The frame Ψ̃ in Theorem A.2 is called canonical dual frame of Ψ. As already suggested
by the name, the canonical dual frame is one among possibly many other dual frames, cf.
Definition A.4.

Definition A.4 ([Chr03]). Let Φ = {ϕλ : λ ∈} and Ψ = {ψλ : λ ∈} be frames. If
Ψ∗Φ = Id, i.e.

f =
∑
λ∈N
〈f, ϕλ〉ψλ, ∀ f ∈ H

then Φ is called a dual frame of Ψ.

In general a frame possess more than just one dual. Li characterized in [Li11] the set
of all duals. In fact, he proved the following result.

Theorem A.5 ([Li11]). Let Ψ be a frame. Then all left inverses of the analysis operator
Ψ are given by ˜̃

Ψ
∗

= Υ−1Ψ∗ + Υ(Id−ΨΥ−1Ψ∗).

Moreover, if (ηλ)λ denotes an orthonormal basis of H, then all dual frames of Ψ are given
by

˜̃
Ψ =

Υ−1ψλ + ϕλ −
∑
µ∈N
〈Υ−1ψλ, ψµ〉ϕλ : λ ∈ N

 ,

where Φ = {ϕλ : λ ∈ N} is a Bessel sequence in H, i.e. only the second inequality in
(A.1) is assumed for Φ to hold.
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As we outlined in Theorem A.5, a frame might not have a unique dual frame. Among
all duals, the canonical dual has a special property as we have the following theorem.

Theorem A.6 ([Chr03]). Let Ψ be a frame and Ψ̃ its canonical dual frame, cf Theorem
A.3. Let f ∈ H and (cλ)λ ∈ `2(N) such that f =

∑
λ∈N cλψλ. Then

‖(〈f, ψ̃λ〉)λ∈N‖2 ≤ ‖(cλ)λ‖2.

Theorem (A.6) shows that the dual coefficients have the smallest `2-norm. This could
be understood as the most uniform spread of energy among all coefficients. This is not
always a desired property, for instance in the sparsity regime, hence having the flexibility
of alternative duals can be advantageous.

All results presented so far in this section are fairly standard in frame theory and the
interested reader may consult [Chr03] for further results in frame theory.

We shall proceed with a rather new branch of frame theory that is called scalable
frames. This is interesting for us as the new type of frames that we have introduced in
Chapter [?] can be seen as a generalization of this class of frames.

A.2 Scalable frames

Without an argue, Parseval frames are a very special class of frames. Recall that for a
Parseval frame Ψ it holds by definition

‖f‖2 =
∑
λ∈N
|〈f, ψλ〉|2, ∀ f ∈ H (A.2)

which is known as Parseval’s Identity. Equation (A.2) is very reminiscent of an orthonor-
mal bases and, indeed, a normalized Parseval frame is an orthonormal basis.

The question that one might want to ask is whether every frame can be transformed
into a Parseval frame. The authors of [KOPT13] have studied this question and have
introduced the class of scalable frames.

Definition A.7 ([KOPT13]). A frame Ψ = {ψλ : λ ∈ N} for H is called scalable if
there exists scalars cλ ≥ 0, λ ∈ N such that

{cλψλ : λ ∈ N}

forms a Parseval frame for H. If there exists δ > 0 such that cj > δ, then we call Ψ
strictly scalable.

The following result proven in [KOPT13] gives an equivalent condition of scalable
frames using the notion of diagonal operators. An operator D is called a diagonal operator
corresponding to (cλ)λ∈N ⊂ C if it is of the form

D : `2(N) ⊃ dom D −→ `2(N)

(dλ)λ∈N 7→ (cλdλ)λ∈N,

where dom D = {(dλ)λ∈N : (cλdλ)λ∈N ∈ `2(N).



Appendix A. Frames 120

Proposition A.8 ([KOPT13]). Let Ψ be a frame for H. Then Ψ is scalable if and
only if there exists a non-negative operator D such that Ψ∗DDΨ = Id. In particular, if
lim infλ ‖ψλ‖ > 0, then Ψ is strictly scalable if and only if there exists a strictly positive
diagonal operator D such that DΨ is isometric.

Remark A.9. Note that the isometry condition in Proposition A.8 is one of the key steps
used in the proof of Theorem 4.12.

Finally, recall that a frame (ψλ)λ ⊂ H is said to have an identifiable dual if there
exists a dual frame (ψλ)λ ⊂ H and some constants 0 < d1 ≤ d2 <∞ such that

d1|〈f, ψλ〉| ≤ 〈f, ψ̃λ〉| ≤ d2|〈f, ψλ〉|, ∀f ∈ H, (A.3)

cf. Definition 4.9. Then we have the following

Proposition A.10. Every scalable frame has an identifiable dual.

Proof. Let (ψλ)λ ⊂ H be scalable. Then there exists cλ ∈ R+ ∪ {0} such that

f =
∑
λ

〈f, cλψλ〉cλψλ.

Therefore, (c2
λψλ)λ is an identifiable dual of (ψλ)λ as (A.3) holds if and only if there exists

scalars aλ ∈ C such that

ψ̃λ = aλψλ.
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Wavelets

We give a short overview of some wavelet results that we used in this thesis. For a more
detailed presentation of wavelets we refer to the classical book by Daubechies [Dau92],
Mallat [Mal09], and Hernández and Weiss [HW96].

In this thesis we mainly used wavelets as an orthonormal basis for L2(R2) and so will
this be our main focus. There are plenty of other beautiful mathematical properties of
wavelet theory, but this goes beyond the scope of this thesis.

B.1 Multiresolution analysis of 2D wavelets

For a functions ψ ∈ L2(R2) we denote its (dyadically) scaled and translated version by

ψj,m := 2jψ

((
2j 0
0 2j

)
· −m

)
, m ∈ Z2.

If the function is compactly supported, then one can view these two properties as a
zooming into finer resolution and the relocation of the analysing region of interest. This
allows one to analyse signals and their behavior very locally.

Of course, there are different type of wavelet systems possible and their analytical
properties such as, approximation of a certain type of function, depend strongly on the
type of generators that one considers. Typical assumptions on these generators are, for
instance, frequency decay.

We will next give the definition of a multiresolution analysis which is one of the very
famous and desired properties that wavelet systems can achieve.

Let A be the scaling matrix
(

2j 0
0 2j

)
, for the general case we refer to, for instance,

[Maa96].

Definition B.1. A sequence of closed subspaces (Vj)j∈Z of L2(R2) is called a multireso-
lution analysis, if the following properties are satisfied.

i) {0} ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ L2(R2),

ii)
⋂
j∈Z

Vj = {0},

121
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iii)
⋃
j∈Z

Vj = L2(R2),

iv) f ∈ Vj ⇔ f(A·) ∈ Vj+1,

v) there exists a function φ ∈ L2(R2) (called scaling function), such that

{φ0,m := φ(· −m) : m ∈ Z2}

constitutes an orthonormal basis for V0.

The associated wavelet spaces (Wj)j∈Z are then defined by

Vj+1 = Vj ⊕Wj .

It is well known that there exist | detA| − 1 corresponding compactly supported wavelets
ψ1, . . . , ψ| detA|−1 such that{

ψpj,m := |detA|j/2ψp(Aj · −m) : m = (m1,m2) ∈ Z2, p = 1, . . . , | detA| − 1
}

forms an orthonormal basis for Wj for each j, see, e.g., [Mey87]. We now consider the
decomposition

L2(R2) = V0 ⊕
∞⊕
j=0

Wj ,

where

V0 := span{φ0,m : m = (m1,m2) ∈ Z2}

and

Wj := span{ψpj,m : m = (m1,m2) ∈ Z2, p = 1, . . . , |detA| − 1}, j = 0, 1, . . .

As we motivated in Section 1.4 it is often of great interest to restrict the function
system onto a bounded domain. We used wavelets on the interval in order to build
the shearlet system on bounded domains. Therefore, we briefly recap its construction.
However, different approaches are also known, for example by Meyer [Mey92], see also
[Mal09].

B.2 1D Wavelets on [0, 1]

We start with the 1D construction of wavelets on the interval as introduced in [CDV93].
For this, let φ be a compactly supported Daubechies scaling function associated to a
wavelet with p vanishing moments. It is well known that φ must then have a support of
size 2p − 1. By a shifting argument, we can assume that supp (φ) = [−p + 1, p]. Now
let j ∈ N such that 2p ≤ 2j . Then there exist 2j − 2p interior scaling functions scaling
functions φint

j,n defined by

φint
j,n = φj,n = 2j/2φ(2j · −n), for p ≤ n < 2j − p,
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which are fully supported in [0, 1]. Depending on boundary scaling functions {φleft
n }n=0,...,p−1

and {φright
n }n=0,...,p−1, which we will introduce below, the p left boundary scaling functions

are defined by

φint
j,n = 2j/2φleft

n (2j ·), for 0 ≤ n < p,

and the p right boundary scaling functions are

φint
j,n = 2j/2φright

2j−1−n(2j(· − 1)), for 2j − p ≤ n < 2j .

We remark that this leads to 2j scaling functions in total, which is the number of original
scaling functions (φj,n)n that intersect [0, 1].

We next sketch the idea of the construction of boundary scaling functions {φleft
n }n=0,...,p−1

as well as {φright
n }n=0,...,p−1 following [CDV93], to the extent to which we require it in our

proofs. One starts by defining edge functions φ̃k on the positive axis [0,∞) by

φ̃k(x) =

2p−2∑
n=0

(
n

k

)
φ(x+ n− p+ 1), k = 0, . . . , p− 1,

such that these edge functions are orthogonal to the interior scaling functions and such
that they together generate all polynomials up to degree p − 1. After performing a
Gram-Schmidt procedure one obtains the left boundary functions φleft

k , k = 0, . . . , p − 1.
The right boundary functions are then – after some minor adjustments – obtained by
reflecting the left boundary functions. This construction from [CDV93] allows one to
obtain a multiresolution analysis.

Theorem B.2 ([CDV93]). If 2j ≥ 2p, then {φint
j,n}n=0,...,2j−1 is an orthonormal basis for

a space V int
j that is nested, i.e.

V int
j ⊂ V int

j+1,

and complete, i.e. ⋃
j≥log2 2p

V int
j = L2[0, 1].

Next, we define an orthonormal basis for the wavelet space W int
j , which is as usual

defined as the orthogonal complement of V int
j in V int

j+1. For this, let ψ be the corresponding
wavelet function to φ with p vanishing moments and supp ψ = [−p + 1, p]. Similar to
the construction of the scaling functions, we will obtain interior wavelets and boundary
wavelets, which then constitutes the set of wavelets in the interval. Again based on a
careful choice of boundary wavelets (ψleft

n )n and (ψright
k )k, for which we refer to [CDV93],

we define 2j − 2p interior wavelets by

ψint
j,n = ψj,n = 2j/2ψ(2j · −n), for p ≤ n < 2j − p,

p left boundary wavelets

ψint
j,n = 2j/2ψleft

n (2j ·), for 0 ≤ n < p,
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and p right boundary wavelets

ψint
j,n = 2j/2ψright

2j−1−n(2j(· − 1)), for 2j − p ≤ n < 1j .

Summarizing, the following result hold for these wavelet functions.

Theorem B.3 ([CDV93]). Let 2J ≥ 2p. Then the following properties hold:

i) {ψint
J,n}n=0,...,2J−1 is an orthonormal basis for W int

J .

ii) L2[0, 1] can be decomposed as

L2[0, 1] = V int
J ⊕W int

J ⊕W int
J+1 ⊕W int

J+2 ⊕ . . . = V int
J

∞⊕
j=J

W int
j .

iii)
{
{φint

J,m}m=0,...,2J−1, {ψint
j,n}j≥J,n=0,...,2j−1

}
is an orthonormal basis for L2[0, 1].

iv) If φ, ψ ∈ Cr[0, 1], then
{
{φint

j,m}m=0,...,2J−1, {ψint
j,n}j≥J,n=0,...,2j−1

}
is an unconditional

basis for Cs[0, 1] for all s < r.

We start with the 1D construction of wavelets on the interval as introduced in [CDV93].
For this, let φ be a compactly supported Daubechies scaling function associated to a
wavelet with p vanishing moments. It is well known that φ must then have a support of
size 2p − 1. By a shifting argument, we can assume that supp (φ) = [−p + 1, p]. Now
let j ∈ N such that 2p ≤ 2j . Then there exist 2j − 2p interior scaling functions scaling
functions φint

j,n defined by

φint
j,n = φj,n = 2j/2φ(2j · −n), for p ≤ n < 2j − p,

which are fully supported in [0, 1]. Moreover, there exist left and right boundary scaling
functions (φleft

m )m=0,...,p−1 and (φright
m )n=0,...,p−1 such that for

φint
j,m := 2j/2φleft

m (2j ·), for 0 ≤ m < p,

and

φint
j,m := 2j/2φright

2j−1−m(2j(· − 1)), for 2j − p ≤ m < 2j ,

the sequence (φint
j,n)n=0,...,2j−1 forms a multiresolution analysis ([CDV93], [Mal09]), see

also Theorem B.4 below.

Theorem B.4 ([CDV93]). Let V int
j := span(φint

j,n)
n=0,...,2j−1

. Then the sequence of spaces

(V int
j )j∈N0 is nested, i.e.,

V int
0 ⊂ . . . ⊂ V int

j ⊂ V int
j+1 ⊂ . . .

Moreover, for all j ∈ N such that 2j ≥ 2p, the system (φint
j,m)m=0,...,2j−1 constitutes an

orthonormal basis for V int
j and the respective sequence of spaces V int

j is complete, i.e.⋃
j>log2 p

V int
j = L2([0, 1]).
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Let now W int
j denote the orthogonal complement of V int

j in V int
j+1. Then an orthonor-

mal basis of wavelets for each space W int
j can be constructed as follows. Let φ1 be a

compactly supported scaling function with supp ψ1 = [−p + 1, p], and let ψ1 be the
corresponding wavelet possessing p vanishing moments. Similar to the construction of
the boundary scaling functions previously discussed, we can construct wavelets, which
are fully supported in [0, 1]. Again, there exist boundary adapted wavelets (ψleft

n )n and
(ψright

n )n [CDV93, Mal09], leading to 2j − 2p interior wavelets

ψint
j,m := ψ1

j,m := 2j/2ψ1(2j · −m), for p ≤ m < 2j − p,

p left boundary wavelets

ψint
j,m := 2j/2ψleft

m (2j ·), for 0 ≤ m < p,

and p right boundary wavelets

ψint
j,m := 2j/2ψright

2j−1−m(2j(· − 1)), for 2j − p ≤ m < 2j .

This set of wavelets satisfies the following properties.

Theorem B.5 ([CDV93]). Retaining the notations from this subsection, for J ∈ N with
2J ≥ 2p, the following properties hold:

i) (ψint
J,m)m=0,...,2J−1 is an orthonormal basis for W int

J .

ii) L2([0, 1]) can be decomposed as

L2([0, 1]) = V int
J ⊕W int

J ⊕W int
J+1 ⊕W int

J+2 ⊕ . . . = V int
J ⊕

∞⊕
j=J

W int
j .

iii)
{

(φint
J,m)m=0,...,2J−1, (ψ

int
j,m)j≥J,m=0,...,2j−1

}
is an orthonormal basis for L2([0, 1]).

iv) If φ1, ψ1 ∈ Cr([0, 1]), then
{

(φint
j,m)m=0,...,2J−1, (ψ

int
j,m)j≥J,m=0,...,2j−1

}
is an uncondi-

tional basis for Cs([0, 1]) for all s < r.
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Supplementary proofs

C.1 Proof of Lemma 1.13

Exploiting the MRA structure and using the assumptions we can conclude

f ∈ VJ+1.

Furthermore, as (φ1
J+1,l)l∈Z is an ONB for VJ+1 we obtain

f =
∑
l∈Z

〈
f, φ1

J+1,l

〉
φ1
J+1,l. (C.1)

Due to the fact that f 6= 0 and f and φ are compactly supported we obtain from (C.1)
that there exist l0, l1 ∈ Z, l0 < l1 such that〈

f, φ1
J+1,l0

〉
6= 0 and

〈
f, φ1

J+1,l

〉
= 0

forall l /∈ {l0 + 1, . . . , l1 − 1}. Hence,

f =

l1∑
l=l0

〈
f, φ1

J+1,l

〉
φ1
J+1,l.

Since the scaling function is continuous, f must also be continuous. Therefore, we can
conclude that

min (supp f) = min
(
supp φ1

J+1,l0

)
= 2−(J+1)l0 ∈ 2−(J+1)Z.

The in particular part of this lemma is clear.

C.2 Proof of Lemma 1.14

W.l.o.g. let a1 < . . . < aN , otherwise we reorder the indices. Let λ1, . . . , λN ∈ C such
that

N∑
i=1

λifi = 0.

126
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Since a1 < a2 we obtain by continuity of f1, that f1 is non-zero on a non-empty interval

I1 ⊂ [a1, a2). Therefore λ1 must be zero and hence
N∑
i=2

λifi = 0. Repeating this process

leads to λ1 = . . . = λN = 0.

C.3 Proof of Proposition 1.15

W.l.o.g. suppose that supp ψ1 = [0, r] for some r ∈ R+. Let fi ∈ span Ωi
n be non-zero

functions for i = 1, . . . , n. Observe, that since the sets Ωi
n have finite cardinality, the

functions f1, . . . , fn are compactly supported as a finite linear combination of compactly
supported functions. Also, since the wavelets are continuous the functions f1, . . . , fn are
continuous as well.

Claim 1: The functions f1, . . . , fn are linearly independent.

Due to Lemma 1.14, it is sufficient to prove that

min (supp fi1) 6= min (supp fi2) ∀ i1 6= i2.

To this end, let Ty : L2(R) −→ L2(R) be the translation operator that maps f to Ty(f) =
f(· + y). Then, for any f i ∈ span Ωi

n, we clearly have Ti/nf i ∈
⊕

0≤j≤JWj . By Lemma
1.13 we obtain for i1, i2 ∈ {1, . . . , n} with i1 6= i2 that

min (supp fi1) ∈ 2−(J+1)Z + ti1 and min (supp fi2) ∈ 2−(J+1)Z + ti2 .

If

min (supp fi1) = min (supp fi2) ,

then there exist k, s ∈ Z such that

2−(J+1)k + ti1 = 2−(J+1)s+ ti2 . (C.2)

Multiplying (C.2) by 2J+1 yields

2J+1ti1 + k = 2J+1ti2 + s

which is equivalent to

2J+1(ti1 − ti2) = s− k. (C.3)

By the assumptions on ti we obtain that (C.3) cannot be true. Therefore, (C.2) is false.
This proves Claim 1.

Claim 2: For fixed i ∈ {1, . . . , n} the set of functions

Ωi
n =

{
ψ1(2j(· − ti) + l) : l ∈ Lij , j = 0, . . . , J

}
is orthogonal.

Since {ψ1(2j · −l) : l ∈ Z, j = 0, . . . , J} are orthogonal by the MRA property and
orthogonality remains under a fixed shift operation, Ωi

n are orthogonal for fixed 1 ≤ i ≤ n.
This yields Claim 2.
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For the sake of brevity of notation, we now denote the elements of Ωi
n by

Ωi
n =

{
ψ

(i)
j,l = ψ1(2j(· − ti) + l) : (j, l) ∈ Pi

}
, with Pi = {0, . . . , J} × Lij .

for i = 1, . . . , n. Note that each set Pi is of finite cardinality. It now remains to prove the
following statement:

If ∑
j,l∈P1

λ
(1)
j,l ψ

(1)
j,l + . . .+

∑
j∈Pn

λ
(n)
j,l ψ

(n)
j,l = 0, λ

(i)
j,l ∈ C (C.4)

then λ(i)
j,l = 0, for all (j, l) ∈ Pi, i = 1, . . . , n. For this, let us shorten the notation by

f̃i :=
∑

(j,l)∈Pi

λ
(i)
j,lψ

(i)
j,l , for 1 ≤ i ≤ n.

Towards a contradiction we assume, that for some m ∈ {1, . . . , n} there exists (j, l) ∈ Pm
such that λ(m)

j,l 6= 0. Consequently, by Claim 2, f̃m 6= 0. Claim 1 yields linear independence
of the f̃i and thus

n∑
i=1

f̃i 6= 0,

which contradicts (C.4). This finishes the proof.

C.4 Proof of Theorem 1.16

We only show the linear independence of Ψ(ψ, c). The argument for Ψ̃(ψ̃, c) is the same
with ψ replaced by ψ̃. Let γ1, . . . , γN ∈ Ψ(ψ, c) with

γi (x1, x2) = 23ji/4ψ1

(
2jix1 + 2

⌊
ji
2

⌋
kix2 + c1t

(1)
i

)
· φ1

(
2

⌊
ji
2

⌋
x2 + c2t

(2)
i

)
,

where (x1, x2) ∈ R2 and i = 1, . . . , N .A priori for i, l ∈ {1, . . . , N} with i 6= l, it is
possible that we have

(
ji, ki, t

(1)
i

)
=
(
jl, kl, t

(1)
l

)
. By defining an equivalence relation ∼

such that i ∼ l, if
(
ji, ki, t

(1)
i

)
=
(
jl, kl, t

(1)
l

)
, we can write for K = {i ≤ N}/ ∼ and

Li := {l : i ∼ l},

(γi)
N
i=1 =

{
23ji/4ψ1

(
2ji ·+2

⌊
ji
2

⌋
ki ·+c1t

(1)
i

)
· φ1

(
2

⌊
ji
2

⌋
·+c2t

(2)
li

)
, i ∈ K, li ∈ Li

}
.

To obtain linear independence of (γi)
N
i=1 we need to show for α = (αi)

N
i=1 ∈ CN that

0 =
∑
i∈K

ψ1

(
2ji ·+2

⌊
ji
2

⌋
ki ·+c1t

(1)
i

)
·

∑
li∈Li

αliφ
1

(
2

⌊
ji
2

⌋
·+c2t

(2)
li

) =⇒ α = 0.
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By definition we now have that for any i, l ∈ K, with i 6= l(
ji, ki, t

(1)
i

)
6=
(
jl, kl, t

(1)
l

)
. (C.5)

Towards a contradiction, we assume α ∈ CN \ {0} and define the function

gi,α :=
∑
li∈Li

αliφ
1

(
2

⌊
jli
2

⌋
·+c2t

(2)
li

)
, for i ∈ K.

We also set

U(α) =
⋃
i∈K

supp gi,α.

Case 1: Assume U(α) is non-empty.

Our goal is to show, that

∑
i∈K

ψ1

(
2ji ·+2

⌊
ji
2

⌋
ki ·+c1t

(1)
i

)
·

∑
li∈Li

αliφ
1

(
2

⌊
ji
2

⌋
·+c2t

(2)
i

) 6= 0. (C.6)

We can construct a finite covering of U(α) subordinate to the supports of gi,α in the
following sense. We pick Q ∈ N closed sets Uq, q = 1 . . . , Q, that cover U(α) and obey

int {supp gi,α ∩ Uq} 6= ∅ =⇒ supp gi,α ⊇ Uq.

lemma:LinIndNoShear This can be done by taking a disjoint generator of the algebra
generated by the sets supp gi,α, i ∈ K.

We define corresponding index sets Iq = {i ∈ K : supp gi,α ∩ Uq 6= ∅}. Now, for all
i ∈ Iq we have that supp gi,α ⊇ Uq. For all i ∈ K we have that gi,α is continuous and
hence, the interior of U(α) is non-empty. Since the interior of U(α) is non-empty, there
exists a set Uq with non-empty interior. Hence, we can pick a point x̂2 ∈ Uq \ Q such
that gi,α(x̂2) 6= 0. We define t̃i := 2d

ji
2
ekix̂2 + 2−ji(c1ti − bc1tic) and α̃i := gi,α (x̂2) 6= 0

for i ∈ Iq and obtain

∑
i∈Iq

ψ1
(

2ji(·+ t̃i) + bc1t
(1)
i c
)
·

∑
li∈Li

αliφ
1

(
2

⌊
ji
2

⌋
x̂2 + c2t

(2)
i

)
=
∑
i∈Iq

α̃iψ
1
(

2ji(·+ t̃i) + bc1t
(1)
i c
)
. (C.7)

If we have

(ji1 , bc1t
1
i1c) 6= (ji2 , bc1t

1
i2c) or t̃i1 − t̃i2 6∈ 2−J−1Z for all i1, i2 ∈ Iq, i1 6= i2, (C.8)

then, since α̃ 6= 0, an application of Proposition 1.15 to equation (C.7) yields equation
(C.6). In order to show that (C.8) can be achieved, we observe that we can restrict
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ourselves to subsets I ′q of Iq, such that j = js = jr, for s, r ∈ I ′q. By construction we have
that t̃i1 − t̃i2 ∈ 2−J−1Z is only possible if c1t

1
i1
− bc1t

1
i1
c = c1t

1
i2
− bc1t

1
i2
c. In this case we

have by assumption that ki = kj and hence with (C.5) we have that bc1t
1
i1
c 6= bc1t

1
i2
c.

Case 2: U(α) = ∅.

In this case we have that gi,α = 0 for all i ∈ K. Recall that for i ∈ K

gi,α =
∑
li∈Li

αliφ
1

(
2

⌊
ji
2

⌋
·+c2t

(2)
li

)
,

and observe that t(2)
li
6= t

(2)
ki

for all li, ki ∈ Li, li 6= ki. Thus the functions(
φ1

(
2

⌊
ji
2

⌋
·+c2t

(2)
li

))
li∈Li

are linearly independent by Lemma 1.14. This implies αli = 0 for all li ∈ Li and all
i ∈ K. Finally this contradicts the fact that α 6= 0 and consequently we will never be in
the event of Case 2.

C.5 Proof of Lemma 1.17

The proof uses the linear independence of the one dimensional generator functions. By
assumption we have that for a finite set L ∈ Z and J ∈ N the set

{φ1
m, ψ

1
j,m : m ∈ L, 0 ≤ j ≤ J}

is linearly independent. Furthermore by rescaling we obtain that

{φ1
j0,m, ψ

1
j,m : m ∈ L, j0 ≤ j ≤ J} (C.9)

is linearly independent.
Let I1 ⊆ {0} and I2, I3 ⊂ N be finite and assume that for every j ∈ Ii we have finite

sets L1 and Lji ⊂ Z2, i = 2, 3, such that with α1
m 6= 0 for all m ∈ L1 and αij,m 6= 0 for all

j ∈ Ii,m ∈ Lji i = 1, 2, 3 we have

∑
m∈L1

α1
mφm +

∑
j∈I2,m∈Lj2

α2
j,mψj,m +

∑
j∈I3,m∈Lj3

α3
j,mψ̃j,m = 0. (C.10)

If we can show that (C.10) implies L1 ∪
⋃
j∈I2

Lj2 ∪
⋃
j∈I3

Lj3 = ∅, then we obtain linear

independence.
Let jmax = max(I1∪ I2∪ I3) and assume that jmax > 0. It will be clear, that the case

jmax = 0 follows similarly. Then (C.10) is equivalent to∑
m∈L1

α1
mφm +

∑
j∈I2\{jmax},m∈Lj2

α2
j,mψj,m +

∑
j∈I3\{jmax},m∈Lj3

α3
j,mψ̃j,m
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= −
∑

m∈Ljmax2

α2
jmax,mψjmax,m −

∑
m∈Ljmax3

α3
jmax,mψ̃jmax,m. (C.11)

Let us distinguish two cases. The first case is that one of the two terms in (C.11) does
not vanish everywhere. We assume w.l.o.g. that

∑
m∈Ljmax2

α2
jmax,m

ψjmax,m 6= 0. Then,
there exists x̂2 ∈ R2:

0 6=
∑

m∈Ljmax2

α2
jmax,mψjmax,m(·, x̂2) =

∑
m∈Ljmax2

α̃2
jmax,mψ

1
jmax,m1

=: f,

where α̃2
jmax,m

:= α2
jmax,m

φ1
b jmax

2
c,m2

(x̂2). Note that the second term in (C.11) is a sum

of scaling functions φ1
b jmax

2
c,m1

, when sampled in x2. Furthermore, by the linear indepen-

dence of the one dimensional functions (C.9) it is impossible to represent f with functions
on lower levels j < jmax. This contradicts (C.11).

The second possibility we need to examine is that both terms of (C.11) vanish every-
where. Then, for at least one of the terms we have that Ljmaxi 6= ∅, i = 2, 3. W.l.o.g. we
assume that Ljmax2 6= ∅. Then we have that∑

m∈Ljmax2

α2
jmax,mψjmax,m = 0. (C.12)

Using the linear independence of (C.9), it is straightforward to see that the functions

{ψjmax,m : m ∈ Ljmax2 }

are linearly independent. This implies, that (C.12) cannot hold. Hence we obtain that
Ljmaxi = ∅, i = 2, 3 and thus the assumption jmax ≥ 0 cannot hold. Consequently, we
obtain that I1 ∪ I2 ∪ I3 = ∅. This gives the result.

C.6 Proof of Theorem 1.12

By Theorem 1.16 and Lemma 1.17 we obtain that finite subsets of Γ1, Γ2, and Γ3 are
linearly independent.

Thus, we first show

span Γ1 ∩ span Γ2 = {0}. (C.13)

Let n = b1 ·b2 where ci = ai
bi
, i = 1, 2 satisfy the assumptions of the theorem. Furthermore,

let, without loss of generality, supp ψ1 = [0, s1] and supp φ1 = [0, s2] for some s1, s2 ∈ R+.
We use the following observation that is due to the fact that Wj ⊂ VJ for all j < J .

For any 0 ≤ j ≤ J−1 and t ∈ Z there exists an index set Rjt ⊂ Z2 and scalars 0 6= λr ∈ C
with r ∈ Rjt , such that

ψ1(2j · −c1t) =
∑
r∈Rjt

λrφ
1
(
2J · −r/n

)
. (C.14)
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We obtain that for every x2 ∈ R, k ∈ Z

ψ1(2j ·+2b
j
2ckx2 − c1t) =

∑
r∈Rjt

αrφ
1
(

2J ·+2J−d
j
2ekx2 − r/n

)
.

Now, let f ∈ (span Γ1) \ {0}. We assume that the minimal support bound of f in the
second variable is 0, i.e. f(·, z) = 0 for all z < 0. Otherwise this can be achieved by a
suitable global shift of f . Then we have

f(x1, x2) =
N∑
i=1

αiψ
1
(

2jix1 + 2
ji
2 kix2 + c1t

(1)
i

)
φ1
(

2
ji
2 x2 + c2t

(2)
i

)
,

with αi ∈ C \ {0}, N ∈ N. By reordering the indices and a use of equation (C.14), we can
expand any f ∈ span Γ1 by

f(x1, x2) =
∑
i∈I

∑
ri∈Ri

αi,riφ
1

(
2Jx1 + 2

J−
⌈
ji
2

⌉
kix2 − ri/n

)
φ1
(

2
ji
2 x2 + c2t

(2)
i

)
(C.15)

with αi,r 6= 0, ki 6= 0 and Ri = Rji
t
(1)
i

.

For this, we group the indices into the following sets

R̃ρ :=
⋃

{
i∈I : 2

J−
⌈
ji
2

⌉
ki=ρ

}Ri, ρ ∈ Z \ {0}, |ρ| ≤ 2J . (C.16)

Then with

α′ρ(x2) :=
∑

i∈I: 2
J−
⌈
ji
2

⌉
ki=ρ

φ1
(

2
ji
2 x2 + c2t

(2)
i

)
, (C.17)

(C.15) becomes

∑
|ρ|≤2J

∑
rρ∈Rρ

α′ρ(x2)α̂ρ,rρφ
1
(
2Jx1 + ρx2 − rρ/n

)
,

with α̂ρ,rρ 6= 0.
If f 6= 0 there exists x2 ∈ R such that f(·, x2) 6= 0. Furthermore since φ1 is continuous

we have that for every x2 there exists ε > 0 such that for all |ρ| ≤ 2J either α′ρ 6= 0 for
all x̃2 ∈ Bε(x2) or α′ρ = 0 for all x2 ∈ Bε(x2) \ {x2}. Hence we know that there exists
∅ 6= P ⊆ {−2J + 1, . . . , 2J − 1} and ε > 0 such that α′ρ(x̃2) 6= 0 for ρ ∈ P and 0 < x̃2 < ε
and α′ρ = 0 for ρ 6∈ P and 0 < x̃2 < ε.

By (C.15) for fixed 0 < x̃2 < ε we obtain coefficients α′ρ,rρ 6= 0 for rρ ∈ Rρ, ρ ∈ P such
that

f(x1, x2) =
∑
ρ∈P

∑
rρ∈Rρ

α′ρ,rρφ
1
(
2Jx1 + ρx̃2 − rρ/n

)
. (C.18)



133 C.6. Proof of Theorem 1.12

We now aim to compute the behavior of the lower support bound of f in x1 with the
help of the representation obtained in (C.18). Since α′ρ,rρ 6= 0, we can deduce the lower
support bound of f(·, x2) from (C.18).

First of all, we observe that there is a minimum rmin/n of the numbers rρ/n, r ∈ Rρ,
ρ ∈ P . So the lower support bound of the above sum as a function in x1 is given by

min

supp
∑
|ρ|≤2J

α′ρ,rminφ
1
(
2J ·+ρx2 − rmin/n

) . (C.19)

Since x2 > 0 the lower support bound of (C.19) can be found by looking at the unique
smallest lower support bound of the respective terms. In fact, if we denote the largest
0 < |ρ| ≤ 2J such that α̂ρ,rmin 6= 0 by ρmax we observe, that the lower support bound of
f(·, x2) is given by (

2−J
(rmin

n
− ρmaxx2

)
, x2

)
for 0 < x2 < ε. (C.20)

Let x̂1 = 2−J rminn . Assume first, that ρmax > 0. Then for some ε > 0 the lower support
bound of f(x1, ·) is given by(

x1,
(rmin

n
− 2Jx1

)
/ρmax

)
for x̂1 − ε < x1 < x̂1.

However, if ρmax < 0 then locally max (supp f(x1, ·)) is given by(
x1,
(rmin

n
− 2Jx1

)
/ρmax

)
for x̂1 < x1 < x̂1 + ε. (C.21)

Now we will see that this behavior of the support bounds is not possible whenever f ∈ Γ2.
By the same arguments presented above, we can write f as

f(x1, ·) =
∑
i∈I

∑
ri∈Ri

βi,riφ
1

(
2J ·+2

J−
⌈
ji
2

⌉
kix1 − ri/n

)
φ1
(

2b
ji
2
cx1 − c1t

2
i

)
Using the same grouping as in (C.16) and (C.17) we obtain for |µ| ≤ 2J − 1 the index

set Rλ and the function β′µ. Here µ is smaller than 2J because of the assumption on the
parameter set for the second shearlet cone, see Definition 1.1.

Again there exists ∅ 6= M ⊂ {−2J + 1, . . . , 2J − 1} such that for some ε > 0 have that
β′µ(x̃1) 6= 0 for all µ ∈M and x̂1− ε < x̃1 < x̂1 and for µ 6∈M we have β′µ(x̃1) = 0 for all
x̂1 − ε < x̃1 < x̂1 Then we obtain that

f(x̃1, ·) =
∑
µ∈M

∑
rµ∈Rµ

β′µ,rµφ
1
(
2J ·+µx1 − rµ/n

)
.

with β′µ,rµ 6= 0
If ρmax > 0, then by (C.21)∑

µ∈M

∑
rµ∈Rµ

β′µ,rµφ
1
(
2J ·+µx1 − rµ/n

)
6= 0
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for all x̂1 − ε < x1 < x̂1.
Again, there exists r′min ∈

⋃
µ∈M̃ R̃µ and a corresponding µmax as in the first case.

Furthermore, we obtain from Lemma 1.14 that the minimum support bound in a neigh-
borhood of x̃1 of f̃(z, ·) is given by{

(z, 2−J(r′min/n− µmaxz) : z ∈ Bε(x̃1)
}
.

Since |2−Jµmax| < 1 and |2J/ρmax| ≥ 1, we see that the slope of the lower support bound
is different to the previous case. Which implies, that f cannot be in the first and the
second cone at the same time.

If ρmax < 0 then the same arguments yield for an x̃1 such that x̂1 ≤ x̃1 ≤ x̂1 + ε that
the lower support bound of f̃(x̃1, ·) is given by{

(z, 2−J(r′min/n− µmaxz)) : z ∈ Bε(x̃1)
}
.

If furthermore µmax > 0 we obtain that the lower support bound of f̃(·, x̂2) for x̂2 =
2−J(r′min/n− µmaxx̃1) is locally given as

((r′min/n− 2J x̃2)/µmax, x̃2), for x̃2 in a neighborhood of Bε(x̂2),

which contradicts (C.20)
Lastly, if ρmax < 0 and µmax < 0, then 2−J(r′min/n − µmaxx̃1) < 0 which cannot

happen since we assumed, that the smallest x2 such that f(·, x2) 6= 0 is 0.
Hence span Γ1 ∩ span Γ2 = 0. Furthermore, span Γ1 ∩ span Γ3 = 0, since for functions

from Γ3 the lower support bounds along slices remain constant on small intervals in
contrast to functions from Γ1 or Γ2, see Figure 1.2.

Finally, the behavior of lower supports in (C.19) remain unchanged if we assume
f ∈ span (Γ1 ∪ Γ3) with the exception, that ρmin can now be 0. In that case the lower
support bound can also remain constant, which, as we have seen, does not happen for
functions in span Γ2.

C.7 Proof of Theorem 1.23

Let f = PΩ(f1 +χDf2) ∈ E2(ν,Ω) and θωn(f) denote the non-increasing rearrangement of
| 〈f, ϕn〉L2(Ω) |2ϕn∈Wt,τ (φ1). Further, let θψn (f) denote the non-increasing rearrangement of
| 〈f, ϕn〉L2(Ω) |2ϕn∈S0

where S0 = {ψj,k,m,ε : (j, k,m, ε) ∈ Λ0}. Then

‖f − f∗N‖2L2(Ω) ≤
∑
n≥N

θn(f) ≤
∑
n≥ 2N

3

θωn(f) +
∑
n≥N

3

θψn (f) =: I + II. (C.22)

By Theorem 1.6 we can bound II as

II . N−2 log(N)3. (C.23)

As for I we can split the coefficients as follows

θωn(f) = | 〈ϕm, f〉L2(Ω) |
2 =

{
θωn(f)(s), supp ϕm ∩ ∂D 6= ∅
θωn(f)(s), otherwise.
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Then,

I ≤
∑
n≥N

3

θωn(f)(s) +
∑
n≥N

3

θωn(f)(ns). (C.24)

It follows from [Coh00] that the coefficients corresponding to the smooth part can be
bounded as ∑

n≥N
3

θωn(f)(s) . N−2 as N →∞. (C.25)

The wavelet coefficients corresponding to the non-smooth part of f can be estimated by
observing that, since the boundary curve of D intersects ∂Ω only finitely often, due to the
construction of the wavelet system Wt,τ (φ1) for a small enough resolution we obtain that
only ∼ 2(1−τ)j < 2(2/3−µ)j wavelets intersect the boundary of D where 0 < µ < τ − 1/3.

Furthermore, due to the boundedness of f , we have | 〈ωj,m,υ, f 〉L2(Ω)|2 . 2−2j . Hence,
we obtain ∑

n

(θωn(f)(ns))
1
3 .

∑
j∈N

2(2/3−µ)j(2−2j)
1
3 <∞.

Consequently, (θωn(f)(ns))n∈N ∈ `
1
3 which, by the Stechkin Lemma, yields∑

n≥N
(θωn(f)(ns)) . N−2 for N →∞. (C.26)

Applying (C.23)–(C.26) to (C.22) proves the claim.

C.8 Proof of Theorem 3.9

In order to prove Theorem 3.9 we have to construct a dual certificate and verity the
assumptions of Proposition 3.10 i)−iv). This is done precisely as in [Poo15] with canonical
adaptions to the general frame case.

Assumptions and preliminary results

Following the notation in [Poo15], let A : H −→ `2 be a linear bounded operator and
Ψ : H −→ `2 be the analysis operator associated to a frame with upper frame bound
equal to 1 and lower frame bound denoted by c1. For r ∈ N, M ∈ N, and N ∈ N, let
N = (Nk)k=1,...,r, M = (Mk)k=1,...,r, s = (sk)k=1,...,r ∈ Nr and (mk)k=1,...,r ∈ Nr with

. 0 = M0 < M1 < . . . < Mr =: M and let Γk = (Mk−1,Mk] ∩ N.

. 0 = N0 < N1 < . . . < Nr =: N and let Λk = (Nk−1, Nk] ∩ N for k < r and
Λr = (Nr−1,∞) ∩ N.

. mk ≤Mk −Mk−1, qj = mj/(Mj −Mj−1), and Ωk ∼ Ber(qk,Γk).

. sk ≤ Nk − Nk−1 and let ∆ ⊂ [N ] be such that |∆| = s1 + . . . + sr =: s and
∆k = Λk ∩∆ with |∆k| = sk.
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For some p ∈ (0, 1] we write κ = (κl)l=1,...,r let κl = κl(N, s, p) and κ̂k = κ̂l(N,M, κ) for
l = 1, . . . , r. Further, let κmin = rminl=1,...r κl and κmax = rmaxl=1,...r κl. Finally, define
the linear bounded operator

T : `2 −→ `2,

x 7→

((
1

max{1,√rκk}
xj

)
j∈Λk

)
k=1,...,r

.

We start by a sequence of propositions that are proved analogously to the ones pre-
sented in [Poo15].

Proposition C.1 ([Poo15]). Let g ∈ R and let α > 0 and η ∈ (0, 1]. Suppose that

‖TΨ(PRA
∗P[M ]APR − PR)Ψ∗T−1‖2→2 ≤ α/(2c1).

Then

P

(∥∥∥∥∥TΨ

(
PRA

∗

(
r⊕
i=1

q−1
i PΩi

)
APR − PR

)
g

∥∥∥∥∥
2

≥ α‖T Ψ̃g‖2

)
≤ η

provided that

√
rB̃ log

(
3

η

) r∑
l=1

µ2
N,M(k, l)κl . α, k = 1, . . . , r

and

rB̃2 log

(
3

η

) r∑
k=1

(q−1
i − 1)µ2

N,M(k, l)κ̂k . α2, l = 1, . . . , r

where

B̃ = ‖ΨPRΨ̃∗‖∞→∞ max
l=1,...,r

r∑
l=1

‖PΛtΨPRΨ∗PΛt‖∞→∞

Proof. Without loss of generality we assume ‖T Ψ̃g‖2 = 1. Let (δj)j=1,...,M be random
Bernoulli variables such that P(δj = 1) = q̃j where q̃j = qk for j = Mk−1 + 1, . . . ,Mk.
THen

TΨ

(
PRA

∗

(
r⊕
i=1

q−1
i PΩi

)
APR − PR

)
g

=
M∑
j=1

(q̃−1
j δj − 1)TΨPRA

∗(ej ⊗ ej)APRg + TΨ(PRA
∗P[M ]APR − PR)g

By assumption we have

‖TΨ(PRA
∗P[M ]APR − PR)g‖2→2 ≤

1

c1
‖TΨ(PRA

∗P[M ]APR − PR)Ψ∗T−1T Ψ̃g‖2→2 ≤ α/2.
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Therefore it is sufficient to show that the probability that
∑M

j=1(q̃−1
j δj −1)TΨPRA

∗(ej ⊗
ej)APRg is small is large, in particular, we show

P


∥∥∥∥∥∥∥
M∑
j=1

(q̃−1
j δj − 1)TΨPRA

∗(ej ⊗ ej)APRg︸ ︷︷ ︸
=:Yj

∥∥∥∥∥∥∥
2

≥ α/2

 ≤ η.
We first bound maxj ‖Yj‖2. Indeed,

‖Yj‖2 ≤ q̃−1
j ‖TΨPRA

∗(ej ⊗ ej)Ag‖2
= q̃−1

j sup
‖x‖2=1

|〈TΨPRA
∗(ej ⊗ ej)Ag, x〉‖

= q̃−1
j sup
‖x‖2=1

|〈Ag, ej〉〈TΨPRA
∗ej , x〉|.

Furthermore, for each j ∈ Γk

|〈Ag, ej〉| = |〈AΨ∗Ψ̃g, ej〉| ≤
r∑
l=1

|〈AΨ∗PΛlΨ̃g, ej〉| ≤
r∑
l=1

µ(PΓkAΨ∗PΛl)‖PΛlΨ̃g‖1.

By Corollary 5.4 of [Poo15] we obtain

|〈Ag, ej〉| ≤
√
r

r∑
l=1

µ(PΓkAΨ∗PΛl)κl.

Furthermore, for ‖x‖2 = 1 we obtain

|〈TΨPRA
∗ej , x〉|2 ≤

r∑
l=1

‖PΛlTΨPRA
∗ej‖22

=

r∑
l=1

‖PΛlTΨPRΨ̃∗ΨA∗ej‖22

≤
r∑
l=1

1

rκl
‖PΛlΨPRΨ̃∗‖2∞→2‖ΨA∗ej‖2∞

‖ΨPRΨ̃∗‖2∞→2µ
2(PΓkAΨ).

Therefore

max
j
‖Yj‖2 ≤ ‖ΨpRΨ̃∗‖∞→∞

√
r max
k=1,...,r

r∑
l=1

µ2
N,M(k, l)κl.

Furthermore, let F ⊂ `2(N) be a countable subsets and suppose ‖f‖ ≤ 1 for all f ∈ F .
Then

sup
f∈F

E
M∑
j=1

|〈f, Yj〉|2 ≤ sup
f∈F

M∑
j=1

(q̃−1
j − 1)|〈ej , Ag〉|2|〈A∗ej , PRΨ∗Tf〉|2
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≤ sup
f∈F

r∑
k=1

(q̃−1
k − 1)‖PΓkAg‖

2
2 max
j∈Γk
|〈A∗ej , PRΨ∗Tf〉|2

≤ sup
f∈F

r∑
k=1

(q̃−1
k − 1)‖PΓkAg‖

2
2 max
j∈Γk
‖TΨPRA

∗ej‖22.

By definition of κ̂k we obtain ‖PΓkAg‖22 ≤ rκ̂k and for each j ∈ Γk

‖TΨPRA
∗ej‖22 =

r∑
t=1

1

rκt
‖PΛtΨPRA

∗ej‖22

=
r∑
t=1

1

rκt
‖PΛtΨPRA

∗Ψ̃∗‖∞→2‖ΨA∗ej‖∞‖PΛtΨPRA
∗ej‖2

≤
r∑
t=1

1

r
√
κt
‖ΨPRΨ̃∗‖∞→∞‖ΨA∗ej‖∞‖PΛtΨPRΨ̃∗PΛl‖∞→∞‖PΛlΨA

∗ej‖∞

≤
r∑
t=1

1

r
‖ΨPRΨ̃∗‖∞→∞

r∑
l=1

‖PΛtΨPRΨ̃∗PΛl‖∞→∞µN,M(k, l).

Therefore

sup
f∈F

E
M∑
j=1

|〈f, Yj〉|2

≤ r‖ΨPRΨ̃∗‖∞→∞
r∑
l=1

r∑
k=1

(q−1
k − 1)κ̂kµ

2
N,M(k, l)

r∑
l=1

1

r
‖PΛtΨPRΨ̃∗PΛl‖∞→∞

≤ rB̃2 max
l=1,...,r

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l)κ̂k,

with

B̃ = ‖ΨPRΨ̃∗‖∞→∞ max
l=1,...,r

r∑
l=1

‖PΛlΨPRΨ̃∗PΛl‖∞→∞.

Furthermore, we have

E

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥
2

2

 =
M∑
j=1

E ‖Yj‖22

≤
∑
k=1

r(qk−1− 1)‖PΓkAg‖
2
2 max
j∈Γk
‖TΨPRA

∗ej‖22

≤ B̃2 max
l=1,...,r

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l)κ̂k.

This yields

E

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥
2

≤ B̃

√√√√ max
l=1,...,r

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l)κ̂k.
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Let now

C1 = ‖ΨpRΨ̃∗‖∞→∞
√
r max
k=1,...,r

r∑
l=1

µ2
N,M(k, l)κl

and

C2 = rB̃2 max
l=1,...,r

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l)κ̂k.

Then, for C := max{C1, 4C2/α} we have by the above estimates:

max
j
‖Yj‖2 ≤ C and sup

f∈F
E

M∑
j=1

|〈f, Yj〉|2 ≤ αC/4.

Now suppose that C2 ≤ (α/4)2. Then

E

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥ ≤ α/4.
Moreover, by Talagrand’s inequality ([Led01]), see also Proposition 8.1 in [Poo15], there
exists K > 0 such that

P

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥ ≥ α/2
 ≤ P

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥ ≥ α/4 + E

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥


≤ P

∣∣∣∣∣∣
∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥− E

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥
∣∣∣∣∣∣ ≥ α/4


≤ 3 exp

(
− α

4KC
log

(
1 +

αC/4

supf∈F E
∑M

j=1 |〈f, Yj〉|2 + αC/4

))

≤ 3 exp

(
− α

4KC
log

(
3

2

))
.

Thus, for any η ∈ (0, 1] we have

P

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥ ≥ α/2
 ≤ γ

provided

C log(3/η) ≤ α

4K
log(3/2) and C2 ≤ (α/4)2.

In order to let the statement hold it therefore suffices to have

√
rB̃ log

(
3

η

) r∑
l=1

µ2
N,M(k, l)κl ≤ α

log(3/4)

4K
, k = 1, . . . , r
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and

rB̃2 log

(
3

η

) r∑
k=1

(q−1
i − 1)µ2

N,M(k, l)κ̂k ≤ α2 min

{
1/16,

log(3/2)

16K

}
, l = 1, . . . , r.

The next three proposition will be given here without a proof as they use, similar
as the first one, line by line the same arguments with corresponding adaptions to the
non-tight frame case.

Proposition C.2 ([Poo15]). Let g ∈ H be fixed, α > 0 and η ∈ (0, 1]. If

‖ΨP⊥RA∗P[M ]APRΨ∗T−1‖2→∞ ≤ α/2

then

M̃ := min

{
i ∈ N : max

j≥i
2
√
r max
j=1,...,r

κj max
j=1,...,r

q−1
k ‖P[M ]AΨ∗ej‖2 ≤ α

}
is finite and

P

∥∥∥∥∥∥P⊥∆ ΨP⊥RA
∗

 r⊕
j=1

q−1
j PΩj

APRg

∥∥∥∥∥∥
∞

≥ α‖TΨg‖2

 ≤ η
provided that

√
r‖Ψ̃P⊥RΨ∗‖∞→∞ log

(
4M̃

η

)
q−1
k

r∑
l=1

µ2
N,M(k, l)κl . α, k = 1, . . . , r

and

r‖Ψ̃P⊥RΨ∗‖2∞→∞ log

(
4M̃

η

)
r∑

k=1

(q−1
k − 1)µ2

N,M(k, j)κ̂k . α2, j = 1, . . . , r.

Proposition C.3 ([Poo15]). Let α > 0 and η ∈ (0, 1]. Suppose that

‖PRA∗P⊥[M ]APR‖H→H ≤ α/2.

Then

P

∥∥∥∥∥∥PRA∗
 r⊕
j=1

q−1
j PΩj

APR − PRA∗APR

∥∥∥∥∥∥
H→H

≥ α

 ≤ η
provided that

α−2 log

(
4M̃

η

)
r∑
l=1

µ2
N,M (k, l)κl . qk, k = 1, . . . , r.
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Proposition C.4 ([Poo15]). Let α > 0 and γ ∈ (0, 1]. Then

M̃ := min

{
i ∈ N : max j ≥ i‖P[M ]AΨ∗ej‖2 + ‖Pran(Ψ∗P[N ])Ψ

+ej‖2 <
√

5q

4

}
is finite and

P

sup
j∈N

∥∥∥∥∥∥P{j}ΨP⊥RA∗
 r⊕
j=1

q−1
j PΩj

APRΨ∗P{j}

∥∥∥∥∥∥ ≥ 5/4

 ≤ η
provided that for each k = 1, . . . , r and each j ∈ N

‖Ψ̃P⊥RΨ∗‖2 max
j=1,...,r

(q−1
k − 1)µ2

N,M(k, j) log

(
2M̃

η

)
. 1.

Construction of the dual certificate

In this section we want to give a construction of a dual certificate such that the condition
iii) of Proposition 3.10 is satisfied. Properties i) and ii) are verified in [Poo15]. Note
that in [Poo15] the assumption ‖Ψ‖ = 1 is used multiple times so the involved estimates
need to be adapted but they work out similarly. The construction of the dual certificate
follows the construction given in [Poo15]. However, we have to make some adaptions in
the construction.

Let γ̃ = γ/6 and L = log(4q−1κ1/2M̃‖ΨΨ∗‖∞→∞) where

M̃ = min

{
i ∈ N : max

j≥i

{
‖P[M ]AΨ∗ej‖2 ≤ q/(8κ1/2

max

}
max
j≥i
‖Pran Ψ∗P[N ]Ψ

∗ej‖ ≤
√

5q/4

}
.

Further, let

ν = log
(

8q−1κ1/2
maxM̃‖ΨΨ∗‖∞→∞

)
,

µ = 8d3ν + log(γ̃−1/2)e,
q1
k = q2

k = qk/4, , q̃k = q3
k = . . . = qµk , k = 1, . . . , r,

α1 = α2 =
1

2
√
L
, αi)1/2, i = 3, . . . , µ,

β1 = β2 = 1/4, βi = L/4, i = 3, . . . , µ.

For j = 1, . . . , µ define

Uj : `2 −→ `2, Uj :=
1

qj1
P

Ωj1
⊕ . . .⊕ 1

qjr
P

Ωjr
.

Let Z0 := Ψ̃∗ sgn(P∆Ψ̃f) and for i = 1, 2 define

Zi = Z0 − PRYi, Yi =

i∑
j=i

A∗UjAZj−1.
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Let Θ1 = {1},Θ2 = {1, 2} and for i ≥ 3, define

Θi =


Θi−1 ∪ {i}, ‖T Ψ̃(Zi−1 −A∗UiAZi−1)‖2 ≤ αi‖T Ψ̃Zi−1‖2,

‖P⊥δ ΨP⊥RA
∗UiAZi−1‖∞ ≤ βi‖T Ψ̃Zi−1‖2,

Θi−1, otherwise.

Yi =

{∑
j∈Θi

A∗UjAZj−1, i ∈ Θi,

Yi−1, otherwise.

Zi =

{
Z0 − PRYi, i ∈ Θi,

Zi−1, otherwise.

Note that Zi ∈ R for each i = 1, . . . , µ. Using the Proposition C.1-C.4 we can verify the
assumptions of Proposition 3.10 for the dual certificate above. This is examined precisely
as in [Poo15] and will be left out.

C.9 Proof of Theorem 4.6

The optimal δs for which Ã =

 r1
...
rm

 ∈ Rm×n satisfies the Ψ-RIP is given by

δs = ‖Ã∗Ã− Idn ‖∆ := sup
f∈∆
〈(Ã∗Ã− Idn)x, x〉

where

∆ = {x ∈ ran Ψ∗ : x = Ψ∗c, ‖c‖0 ≤ s, ‖x‖ ≤ 1} ⊆ Rn.

Since Er∗i ri = Idn we have

δs = ‖Ã∗Ã− Idn ‖∆ =

∥∥∥∥∥ 1

m

m∑
i=1

1

m

∗

i
ri − IdN

∥∥∥∥∥
∆

=
1

m

∥∥∥∥∥
m∑
i=1

(r∗i ri − Er∗i ri)

∥∥∥∥∥
∆

.

For a Rademacher sequence ε = (εi)i independent of (ri)i we have by Lemma 6.7 in
[Rau10]

Eδs =
1

m
E

∥∥∥∥∥
m∑
i=1

(r∗i ri − Er∗i ri)

∥∥∥∥∥
∆

≤ 2

m
E

∥∥∥∥∥
m∑
i=1

εir
∗
i ri

∥∥∥∥∥
∆

,

hence,

Eδs ≤
2

m
ErEε sup

x∈∆

∣∣∣∣∣〈
m∑
i=1

εir
∗
i rix, x〉

∣∣∣∣∣ =
2

m
ErEε sup

x∈∆

∣∣∣∣∣
m∑
i=1

εi|〈ri, x〉|2
∣∣∣∣∣ .

Define the pseudo-metric

d(x, y) =

(
m∑
i=1

(
|〈ri, x〉|2 − |〈ri, y〉|2

)2)1/2

.
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Then, as shown in [KNW15] we have for x, y ∈ ∆

d(x, y) ≤ 2 sup
z∈∆

(
m∑
i=1

|〈ri, z〉|2p
)1/(2p)( m∑

i=1

|〈ri, x− y〉|2p
)1/(2p)

,

where p, q ≥ 1 such that p−1 + q−1 = 1.
Now, for any h ∈ ∆ of the form z = Ψ∗c with ‖c‖0 ≤ s and any realization of (ri)i we

have

|〈ri, z〉| = |〈Ψ(Ψ∗Ψ)−1ri,ΨΨ∗c〉|

≤
∑
λ≤N
|〈ri, ψ̃λ〉||(ΨΨ∗c)λ|

≤
∑
λ≤N

K

c1
|(ΨΨ∗c)λ|,

where K > 0 is so that ‖ψλ‖ ≤ K for all λ ≤ N and c1 denotes the lower frame bound.
Therefore

|〈ri, h〉| ≤
K

c1
L
√
s

with

L = sup
‖Ψ∗c‖=1
‖c‖0≤s

‖(ΨΨ∗c)λ‖1√
s

.

Therefore we obtain

sup
z∈∆

(
m∑
i=1

|〈ri, z〉|2p
)1/(2p)

= sup
z∈∆

(
m∑
i=1

|〈ri, z〉|2|〈ri, z〉|2p−2

)1/(2p)

≤

(
s

(
KL

c1

)2
)(p−1)/(2p)(

sup
z∈∆

m∑
i=1

|〈ri, z〉|2p
)1/(2p)

.

The rest of the proof follows the argumentation given in [KNW15].
For a set Σ, a metric d and a given t > 0 the covering number N (Σ, d, t) is defined as

the smallest number of balls of radius t centered at points of Σ necessary to cover Σ with
respect to d. By Dudley’s inequality we have

Eε sup
x∈∆

∣∣∣∣∣〈
m∑
i=1

εir
∗
i rix, x〉

∣∣∣∣∣ ≤ 4
√

2

∫ ∞
0

√
log(N (∆, d, t) dt. (C.27)

Using the semi-norm

‖x‖X,q :=

(
m∑
i=1

|〈ri, x〉|2q
)1/(2q)
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we obtain using covering arguments and (C.27)

Eε sup
x∈∆

∣∣∣∣∣〈
m∑
i=1

εir
∗
i rix, x〉

∣∣∣∣∣
≤ C

(
s

(
KL

c1

)2
)(p−1)/(2p)( m∑

i=1

|〈ri, x〉|2q
)1/(2q) ∫ ∞

0

√
log(N (∆, ‖ · ‖X,q, t) dt.

Now, following the arguments in [KNW15] we have∫ ∞
0

√
log(N (∆, ‖ · ‖X,q, t) dt ≤ C

√
q(sL2)m1/q log(n) log2(sL2).

Thus in (C.27) we obtain

Eδs ≤
C

(
s
(
KL
c1

)2
)(p−1)/(2p)√

qm1/qsL2 log(n) log2(sL2)

m
E sup
x∈∆

(
m∑
i=1

|〈ri, x〉|2
)1/(2p)

≤
C

(
s
(
KL
c1

)2
)(p−1)/(2p)√

q log(n) log2(sL2)

m1−1/(2q)−1/(2p)
E

(
1

m
‖

m∑
i=1

r∗i ri − Idn ‖∆ + ‖ Idn ‖∆

)1/(2p)

≤
C

(
s
(
KL
c1

)2
)(p−1)/(2p)√

q log(n) log2(sL2)

m1/2

√
Eδs + 1.

We can assume K/c1 to greater than one, hence

Eδs ≤
C

(
s
(
KL
c1

)2
)(p−1)/(2p)

√
q log(n) log2(s

(
KL
c1

)2
)

m1/2

√
Eδs + 1.

Choosing p = 1 + (log(s(KL)2c−2
1 ))−1 and q = 1 + log(s(KL)2c−2

1 ) yields

(s(KL)2c−2
1 )1/2+(p−1)/(2p) ≤

√
e,

hence,

Eδs ≤ C
√

2 log(n) log2(s(KL)2c−2
1 )/m

√
Eδs + 1.

Finally,

Eδs ≤ C

√
s(KL)2c−2

1 log(n) log3(sL2)

m

provided s(KL)2c−2
1 log(n) log3(s(KL)2c−2

1 )
m ≤ 1. Therefore, Eδs ≤ δ/2 for some δ ∈ (0, 1) if

m ≥ Cδ−2s(KL)2c−2
1 log3(s(KL)2c−2

1 ) logN. (C.28)
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Let fx,y(r) = Re(〈(r∗i ri − Idn)z, w〉) so that

mδs =

∥∥∥∥∥
m∑
i=1

(r∗i ri − Er∗i ri)

∥∥∥∥∥
∆

= sup
x,y∈∆

M∑
i=1

fx,y(ri).

Note that we have

. Efx,y(ri) = 0,

. |fx,y(r)| ≤ s(KL)2c−2
1 + 1,

. E|fx,y(r)|2 = E‖(r∗i ri − Id)x‖22 ≤ (s(KL)2c−2
1 + 1)2.

Now, fix some δ ∈ (0, 1) and choose m in accordance with (C.28). Then by Theorem 6.25
of [Rau10] we haven

P(δs ≥ δ) ≤ P(δs ≥ Eδs + δ/9)

= P

(∥∥∥∥∥
m∑
i=1

(r∗i ri − Er∗i ri)

∥∥∥∥∥
∆

≥ E

∥∥∥∥∥
m∑
i=1

(r∗i ri − Er∗i ri)

∥∥∥∥∥
∆

+ δm/9

)

≤ exp

−
(

δm
9(s(KL)2c−2

1 +1)

)2

2m
(

1 + δ
s(KL)2c−2

1 +1

)
+ 2

3

(
δm

9(sη2+1

)


≤ exp

(
− δ2m

Cs(KL)2c−2
1

)
, (C.29)

where the constant C might changed in the last estimate. Further, if

m ≥ Cδ−2s(KL)2c−2
1 log(1/γ),

then (C.29) is bounded by γ. Thus, δs ≤ δ with probability 1− γ if

m ≥ Cδ−2s(KL)2c−2
1 max{log3(s(KL)2c−2

1 ) log(N), log(1/γ)}.

The proof is complete.
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