Deep Reinforcement Learning Framework to Optimize
Energy Supply for Electric Earthwork Processes

vorgelegt von
M.Sc.
Theodor Svennevig Skaufel

an der Fakultat Ill - Prozesswissenschaften
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

- Dr.-Ing. -
genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Tom Brown

Gutachterin: Prof. Dr.-Ing. Nicole Riediger
Gutachter: Prof. Dr. Frank Behrendt

Tag der wissenschaftlichen Aussprache: 07. Oktober 2022

Berlin 2023

Ich erkldre hiermit, dass ich die vorliegende Arbeit selbstéindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Berlin, den November 5, 2022

Abstract

Diesel-powered earthwork processes are responsible for a considerable portion of
global greenhouse gas emissions. Electrification of earthmoving machines is gener-
ally considered the solution to achieve zero-emission earthwork processes. However,
new routines, flexible scheduling, and coordination of smart operations are required
to achieve efficient electric earthwork processes [1]. Furthermore, efficient charg-
ing of electric earthmoving machinery requires a purpose-built high-power charging
infrastructure. The industry regards battery energy storage systems (BESS) as a
potential solution to enable efficient high-power charging while avoiding unneces-
sary upgrades to the distribution network. Therefore, the energy supply has been
identified as a significant challenge.

Electrification is a recent development in the field of earthwork and is currently not
thoroughly researched. Hence, the factors that affect the energy consumption of
electric earthmoving machines are underspecified. Furthermore, previous modeling
efforts were identified as case-specific and do not offer generalizability. Therefore,
a demand for a generalizable earthwork optimization framework that can handle
uncertainties with underspecified influencing factors was identified.

This thesis proposes a novel deep reinforcement learning framework to optimize
energy supply for electric earthwork processes by scheduling BESS operations in
coordination with the energy consumption and productivity of electric earthmoving
machines. The purpose of this framework is to serve as a decision support tool for
earthwork contractors to identify new routines that can increase earthwork efficiency
and facilitate planning and bidding processes.

The results demonstrate the framework’s performance in developing optimized and
generalizable decision strategies without relying on external data from existing earth-
work projects. Furthermore, the adaptability and scalability of the framework are
demonstrated by applying it to various use cases and scenarios with multiple earth-
moving machines. The framework is validated by applying it to a case study to
compare its performance with data recorded from an actual electric earthwork site.

This thesis builds on existing methods developed to solve problems in the earthwork
literature and extends existing knowledge by combining energy optimization meth-
ods in related fields to fill the knowledge gap regarding the optimization of electric
earthwork processes. Furthermore, this project adds to the field of research aimed at
the development of real-world applications of reinforcement learning-based systems
by bridging the gap between computer science and energy engineering.

Acknowledgments

I would like to sincerely thank my supervisors Prof. Dr. Frank Behrendt and Prof.
Dr.-Ing. Nicole Riediger for granting me the opportunity to pursue this thesis.
Thank you for your encouragement, patience, and commitment. I would not have
been able to achieve my dream of developing a doctoral thesis without your vast
knowledge, guidance, and support.

Thank you for coming together and establishing our research group together with
Nico Dabelstein, Ira Lemm, Olga Tcvetkova, and Dr. Zsuzsa Beseny6i. Being part
of this research group has significantly enhanced my research experience by allowing
me to learn and evolve together with my peers.

I would like to express a special thanks to Nico Dabelstein. You are the reason I
got the chance to pursue a doctoral dissertation, and for that I am forever thankful.
Thank you for teaching me, motivating me, and hosting me in Berlin. I would also
like to thank Dr. Christoph Banhardt for inspiring me to pursue a doctorate. Your
positive attitude and endless creativity motivate me to face new challenges with a
smile.

In addition, I would like to thank the administrative staff and students at Campus
El Gouna for providing me with an inspiring environment where I discovered my
passion for research. Furthermore, I would like to thank Aktiv Veidrift AS and
Nordic Booster AS for sharing experiences and field data with this project.

Finally, endless thanks to my family and friends for supporting me.

Contents

1 Introduction

1.1
1.2
1.3
1.4

Knowledge Gap and Scopeo
Research Questions and Objectives
Justification

Structure of Thesis

2 Background

2.1

2.2

2.3

3.1
3.2

Introduction to Earthwork
2.1.1 Emissions from the earthwork Sector
2.1.2 Transition to Electric Earthmoving Machines
Introduction to Battery Cell Technology
2.2.1 Battery Cell Degradation.
2.2.2 Lithium-ion Battery Cells
2.2.3 Battery Cell Configuration
BESS Applications in the Energy System
2.3.1 Front-of-the-Meter Applications
2.3.2 Behind-the-Meter Applications
2.3.3 BESS in the Earthwork Sector
2.3.4 Challenges with Earthwork BESS

Literature review

Review process L
Factors affecting fuel consumption
3.2.1 Machine Factors o

3.2.2 Operational factors

10
11
13
13
14
14
14
15
18

Contents

3.2.3 Site Factors 23
3.2.4 Soil Factors 24
3.3 Quantifying the Impact on Fuel Consumption 25
3.3.1 Challenges with Data Collection 28
3.4 Previous modeling efforts o oL 28
3.4.1 Multi-linear Regression 28
3.4.2 Supervised Machine Learning 29
3.4.3 Discrete Event Simulation 29
3.4.4 Reinforcement learning L. 30
Mathematical Framework 33
4.1 Introduction to Reinforcement Learning 33
4.2 Markov Decision Process 0L 36
4.2.1 Dynamicsofa MDP 36
422 Rewards 37
423 Policy 38
4.24 Value Functions 0oL 39
4.2.5 Solvingan MDP oo 41
4.3 Deep Reinforcement Learning 42
4.3.1 Artificial Neural Networks 44
4.4 Challenges with Reinforcement Learning 47
State of the Art 49
5.1 Reinforcement Learning and Construction problems 49
5.1.1 Optimizing Scheduling of Construction Tasks 49
5.1.2 Optimizing fulfillment of Earthmoving Tasks 51
5.1.3 Energy Management of Construction Machines 52
5.2 Reinforcement learning and Battery problems 54
5.2.1 Battery Charging Costs 54
5.2.2 Deep Reinforcement Learning for Optimal Battery Arbitrage . 55
5.2.3 Deep Reinforcement Learning for Optimal Control of lithium-
ion based Batteries o0 56
5.2.4 Deep Reinforcement Learning for Optimal Sizing of Battery . 57
5.2.5 Deep Reinforcement Learning for fleet management of multiple

batteries 58

Contents

6 Methodology

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

Framework Introduction
6.1.1 Environment Type and Time Steps
6.1.2 Energy Transfer Calculations
State Space
6.2.1 Remaining Capacity Signals
6.2.2 Workload State Signals
6.2.3 Productivity State Signalso
6.2.4 Electricity Cost State Signals
6.2.5 Challenges with state signals
Action Space
6.3.1 Charge Action
6.3.2 Discharge Actions L
6.3.3 Waiting action oo
Reward Signals
6.4.1 Reward Method for Maximizing Workload
6.4.2 Minimize the time required to complete a productivity goal . .
6.4.3 Reward Method for Minimizing Electricity Cost
Earthwork Dynamics
6.5.1 Earthwork Scenario Generator
6.5.2 Workload Functions 0.
6.5.3 Work Dependency Method
Environment Structureo
6.6.1 Initialization processo
6.6.2 Step process
6.6.3 Reset process
Agent
6.7.1 Network Architecture L.
6.7.2 Training the agent
Methodology for using the trained framework
Other Use cases
6.9.1 Optimized Overnight Charging of BESS and Machines

6.9.2 Estimating the minimum required capacity of a BESS
6.9.3 Direct Control Environment of a BESS

v Contents
7 Results 121
7.1 Influencing Factors oL 121
7.1.1 BESS Factors 122
7.1.2 Machine Factors oo 122
7.1.3 Operational and Site Factors 123
7.1.4 Soil Factorso 124
7.1.5 Other Factors 124
7.2 Maximize Workloads of Machines 124
7.2.1 Results from Maximizing Workloads 126
7.3 Minimize the Time Required to Complete a Productivity Goal 130
7.3.1 Results from Completing a Productivity Goal 132
7.4 Minimize Electricity Cost While Completing a Productivity Goal
Configuration 137
7.4.1 Results from Minimizing Electricity Cost 138
7.5 Results from other use cases 142
7.6 Minimize Electricity Cost for Overnight Charging Configuration . . . 142
7.6.1 Estimating the Minimum Required Capacity of a BESS 145
7.6.2 Results from Direct control of a BESS 147
8 Case Study 149
8.1 Case Study Background 149
8.2 Earthwork Scenario L 150
8.3 Quantitative Data Collection and Analysis 151
8.3.1 Excavator Data L. 151
832 BESSData 156
8.4 Qualitative Data Collection and Analysis 157
8.4.1 Summary from the Interview with the Construction Site Man-
) 158
8.4.2 Summary of the Interview with the BESS developer 158
8.5 Framework Application 159
8.5.1 Optimization Results 163
9 Conclusion 171
9.1 Discussion and Further Research 172

Contents

A Appendix 1
A.1 Python Code Example
A.2 Required Python Libraries
A.3 Construction Scenario Generator .
A.4 Charging Function
A.5 Workload Functions
A.6 Machine Selection for Charging . .
A.7 Action Dynamics
A.8 Get Machine States
A.9 Work Depenceny Example
A.10 Priority Function
A.11 Datalogger
A.12 Environment Structure
A.13 Reward System
A.14 Train Agent
A.15 View Training Returns
A.16 Generate Schedule
A.17 Plot Optimized Schedule
A.18 Estimate BESS size
A.19 Matlab Environment Code Example

Bibliography

175
175
175
175
179
182
187
187
189
190
190
191
192
196
197
198
198
199
202
203

209

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

3D rendering of a prototype BESS
Solar panels on construction site BESS

The controls of construction site BESS

The interaction process of an agent and an environment
Deep Reinforcement Learning Agent

An example of a artificial neural network with two hidden layers . . .

Visualization of Earthwork Scenario
Return Machine States Function
Charge-action dynamics L.
Discharge-actions dynamics
Example of Action Generating Function
Wait-action dynamics L
Function to avoid overdischarge of electric earthwork machines
Simulated working of excavators when not idle
Digging Process Function
Function of the loading process
Simulated working of loaderso
Flow of operations for the truck function
Example of a work dependency
Initialization process for the proposed framework
Step process for solving the task of minimizing electricity cost

Reset process for solving the task of minimizing electricity cost
Returns from training an agent

Estimating minimum required BESS00 000

List of Figures VII

6.19 Modified Step Process of training environment for direct control of

Battery o 115
6.20 Simulink Battery model oL 116
6.21 Modified Step Process for direct control of Battery 118
7.1 Visualization of the maximization scenario 125
7.2 Returns from training to solve the task of maximizing workloads . . . 126
7.3 Optimized Schedule for Maximized Workloads 129
7.4 Amount of Excavated and filled Soil inm? 130
7.5 Visualization of the productivity goal scenario 131

7.6 Returns from training to solve the task of minimizing completion time

of productivity goal 132
7.7 Optimized Schedule to Complete a Productivity Goal 135
7.8 Amount of Soil Excavated or Dumped in m? 136
7.9 Visualization of the Minimize Electricity Cost Scenario 137

7.10 Returns from training to solve the task of minimizing electricity cost 138

7.11 Example of an optimized schedule to minimize electricity cost 140
7.12 Amount of Excavated Soil inm? 141
7.13 Returns from training to solve the task of overnight charging 143
7.14 Example of an Optimized Scheduling for Overnight Charging 145
7.15 Estimating minimum required Capacity for solving the task of mini-
mizing completion time of assigned workloads 146
7.16 Example episode of the direct control version. 147
8.1 Emissions in CO? from construction machines use in Oslo 150
8.2 Data recorded from the 12-ton excavator 152
8.3 Data recorded from the 25-ton excavator 153
8.4 Type of workloads recorded 154
8.5 Emergy Consumption of 12-ton Excavator 155
8.6 Energy Consumption of 25-ton Excavator 156
8.7 Data recorded from the BESS 157
8.8 Visualization of the case study scenario 160
8.9 Case Study Schedule 163

8.10 Returns from training the agent to optimize the case study schedule . 164

VIl List of Figures

8.11 First Optimized Schedule for Case Study 166
8.12 Second Optimized Schedule for Case Study 168

8.13 Estimation of the minimum required capacity for the case study example169

List of Tables

6.1

6.2

7.1
7.2
7.3

8.1
8.2

An example of a table of machine factors generated by the earthwork
scenario generator. Lo oo 85

An example of a table of soil factors generated by the construction

scenario generator program. e 86
Machine Factors 123
Operational and Site Factors 123
Soil Factors 124
Case Study Machine Factors 160

Workload Factors 161

Chapter

Introduction

Annual emissions of 315 million tons of C'O, are directly associated with the combus-
tion of fossil fuels on construction sites [2]. The main source of these emissions are
diesel-powered earthmoving machines [3]. The earthwork industry is incentivized
to reduce emissions in response to volatile fuel prices, carbon pricing, and new
legislation that requires earthwork contractors to reduce emissions to win public

contracts [4].

Electrification of earthmoving machines is generally considered the solution to
achieve zero-emission earthwork sites. However, the management of energy sup-
ply has been identified as the main barrier in the transition from diesel-powered
to electric earthmoving machines [5]. Electric earthmoving machines have internal
battery systems that require significantly more time to recharge compared to refuel-
ing a diesel-powered machine. Efficient charging of electric earthmoving machinery
can only be achieved with a purpose-built high-power charging infrastructure. The
earthwork industry is looking to battery energy storage systems (BESS) to provide
efficient high-power charging while avoiding unnecessary upgrades to the distribution
network. However, a challenge still remains to optimize the energy supply schedule
of electric earthwork processes with a BESS as an interface to avoid scenarios in

which earthwork processes are halted due to recharging of the BESS.

The uncertainty surrounding the factors that influence the energy consumption of
earthmoving machines is identified as the main challenge in optimizing any earthwork
process because earthmoving machines are exposed to varying operating conditions,
fleet configurations, and earth materials. Limited attention has been paid to ex-
ploring uncertainties in the earthwork literature [6-8|. Therefore, optimization of
earthwork processes is an underexplored and underspecified area of research. Fur-

thermore, previous modeling efforts of earthwork processes are based on detailed

2 Chapter 1 Introduction

and specific case study data sets and offer limited or no accuracy when applied else-
where [6]. This is mainly due to the lack of standardized data collection practices in
the earthwork sector. Therefore, a demand for a generalizable earthwork optimiza-
tion framework that can handle uncertainties when applied to varying earthwork

configurations was identified.

This thesis proposes a deep reinforcement learning framework designed to simulate
and optimize several earthwork processes, configurations, and scenarios that contain
a high level of uncertainty. The purpose of this framework is to assist earthwork
contractors in the transition from diesel-powered to electric earthwork processes
by identifying routines to improve the efficiency of electric earthwork processes.
Furthermore, by simulating and demonstrating how an electric earthwork process
will satisfy regulations and meet efficiency targets, earthwork contractors can use
this framework in planning and bidding processes, because current practice relies on
subjective estimates based on experience [6]. The framework is applied to a case
study to validate its performance in a real application and to demonstrate its ability

to improve the efficiency of a case study earthwork process.

1.1 Knowledge Gap and Scope

The field of electrified earthwork contains significant knowledge gaps because elec-
trification of earthwork processes is a recent advancement in the industry. The
first series of commercially available battery-powered excavators was developed in
2018 [9], the first commercially available earthwork BESS was developed in 2020 [10],
and the first zero-emission earthwork projects were commenced in Norway during the
second half of 2021 [11]. Therefore, no methods have been developed to optimize the
scheduling of BESS operations in coordination with multiple electric earthmoving

machines because limited data sets and few related research projects are available.

The scope of this study is designed to partially fill the knowledge gap on optimizing
earthwork processes with a BESS as an interface between the grid and electric earth-
moving machines. To fill this knowledge gap, literature on diesel-powered earthwork
processes and previous modeling efforts are reviewed together with battery optimiza-

tion techniques to develop an optimization framework.

Simulation models for excavators, loaders, and haul trucks are developed, as they are
the most widely represented earthmoving machines in the literature [6]. However, the

code for this framework is designed to be modular and to accommodate simulation

1.2 Research Questions and Objectives 3

models for other earthmoving machines and earthwork processes in the future. Other
researchers are encouraged to expand on this work because earthwork processes are
similar in most infrastructure and mining projects. Furthermore, this work bridges
the gap between computer science and energy engineering by demonstrating how

deep reinforcement learning can be applied to solve a real-world problem.

1.2 Research Questions and Objectives

The main research question for this project is as follows.

How can an earthwork BESS be operated to optimize the energy supply

for electric earthwork processes?

To answer this question, several underlying research questions were identified.

Research Questions

e How can an earthwork BESS make electric earthwork processes more feasible?
e What factors affect the energy consumption of electric earthmoving machines?

e Which mathematical framework is best suited to optimize electric earthwork

processes?
e How can electric earthwork processes be optimized to increase efficiency?
e How can electric earthwork processes be optimized to reduce electricity costs?

e What impact does electrification of earthmoving machines have on earthwork

processes?

To answer these research questions, the fulfillment of several underlying and or-
dered objectives is required. The objectives presented below provide direction and

summarize the accomplishments the author aims to achieve throughout this thesis.

Chapter 1 Introduction

Objectives

10.

1.3

. Explore the roles and responsibilities of a BESS in the electric earthwork sector.

. Review existing earthwork literature to explore how factors that influence the

fuel consumption of diesel-powered earthmoving machines can impact the en-

ergy consumption of electric earthmoving machines.

Review previous modeling efforts to establish what mathematical framework

is best suited to optimize electric earthwork processes.

. Review state of the art modeling efforts in related fields to explore what meth-

ods and approaches are suitable for this project.

. Develop a simulation model that represents the dynamic operations of a BESS

in coordination with electric earthmoving machines.

. Develop methods to assess the impact of factors that influence the energy

consumption of electric earthmoving machines.

Develop an optimization framework that incorporates the simulation model

and the methods developed.

Make the framework scalable and generalizable to various earthwork scenarios.

. Explore different use cases for the optimization framework.

Apply the optimization framework to a case study to demonstrate its perfor-

mance in optimizing an electric earthwork process.

Justification

The sustainable development of cities plays a key role in the transition to fossil-free

energy consumption, because cities influence approximately 70% of global emissions

[4]. Therefore, the transition from diesel to battery-powered earthmoving machines

is an important contribution to reducing emissions, as explained in Chapter 2.

Furthermore, this project is justified by its applicability to several of the Sustain-
able Development Goals (SDGs) developed by the United Nations (UN) that were
adopted by all UN member states in 2015. The SDGs are a collection of 17 in-
terlinked global goals designed to achieve a better and more sustainable future for
countries by 2030 [12].

1.4 Structure of Thesis 5

The goals and targets to which this project directly applies are presented in numerical

order below.

e Goal 7: Ensure access to affordable, reliable, sustainable and modern energy

for all.

— Target 7.3: By 2030, double the global rate of improvement in energy

efficiency.

e Goal 9: Build resilient infrastructure, promote inclusive and sustainable in-

dustrialization and foster innovation

— Target 9.4: By 2030, upgrade infrastructure and retrofit industries to
make them sustainable, with increased resource-use efficiency and greater
adoption of clean and environmentally sound technologies and industrial
processes, with all countries taking action in accordance with their re-

spective capabilities.

e Goal 11: Make cities and human settlements inclusive, safe, resilient, and

sustainable.

— Target 11.3: By 2030, enhance inclusive and sustainable urbanization and
capacity for participatory, integrated and sustainable human settlement

planning and management in all countries.

— Target 11.6: By 2030, reduce the adverse per capita environmental impact
of cities, including by paying special attention to air quality and municipal

and other waste management.
e Goal 12: Ensure sustainable consumption and production patterns.

— Target 12.2: By 2030, achieve the sustainable management and efficient

use of natural resources

1.4 Structure of Thesis

The structure of this thesis is organized into eight additional chapters.

The second chapter provides background information on the ongoing electrification
of the earthwork sector and outlines the applicability of BESS technology in the

electrified earthwork sector.

6 Chapter 1 Introduction

The third chapter is a literature review of previous earthwork studies and modeling

efforts.

The fourth chapter introduces the chosen mathematical framework and explains its

fundamental operations and equations.

The fifth chapter is a review of state-of-the-art applications that utilize the chosen
mathematical framework to solve related research problems that this project can

benefit from.

The sixth chapter details the proposed methodology that was developed to answer

the research questions.

The seventh chapter presents the results of the proposed methodology and its ability

to answer the research questions.

The eight chapter is a case study application of the proposed methodology to exhibit

its applicability to real-world implementations.

The ninth and final chapter concludes the project by summarizing how the proposed

methodology was able to answer the research questions and fulfill the objectives.

Chapter

Background

The purpose of this chapter is to provide background information concerning the

electrification process and the emergence of BESS technology in the earthwork sector.

2.1 Introduction to Earthwork

Earthwork is a term used to describe the processing of earth materials. Earthwork
generally involves the loosening, removing, and handling of earth materials on con-
struction sites. The majority of earthwork processes are performed using heavy duty
earthmoving machines, such as excavators, loaders, bulldozers, and dump trucks.
Earthwork processes can vary from site to site depending on the fleet configuration
and local ground conditions. However, a typical earthwork process consists of an
excavator excavating and loading earth material onto a dump truck that transports
it to an external dump site before returning to the earthwork site [6]. Furthermore,
earthwork is a significant contributor to local and global greenhouse gas emissions
because most earthmoving machines are fueled by diesel, which emits approximately

2.7 kilograms (kg) of carbon dioxide equivalents (C'Oqe) per liter consumed [13].

2.1.1 Emissions from the earthwork Sector

The construction industry accounts for approximately 23% of global carbon dioxide
(C'O9) emissions, where 5.5% of these emissions (315 million tons of C'O3) are directly
associated with the combustion of fossil fuels by earthmoving machines and other
equipment on construction sites [2]. These numbers are expected to increase due to

urbanization and the expansion of cities [4].

8 Chapter 2 Background

Det Norske Veritas (DNV), an international accredited registrar and classification
society, estimates that annual emissions from construction sites in C40 cities, which
represent almost 10% of the world’s population and a quarter of the global economy;,
are in the range of 120 to 240 megatons of carbon dioxide equivalents (MtCOse),
and between 5% and 10% of the total emissions of individual cities [5]. Furthermore,
the total emissions of earthmoving machines in the European Union (EU) was esti-
mated to be 40 MtC'Ose in 2019, which was higher than the total emissions of eight
member countries [4]. Therefore, earthworks processes and earthmoving machines

are a significant source of greenhouse gas emissions.

DNV approximates that diesel-powered earthmoving machines have an average car-
bon footprint of 37kg C'Ose per square meter of the construction site throughout
the construction phase [4]. This average carbon footprint can reach 51kg COqe
during the earthwork subphase [14]. However, approximation and reduction of the
carbon footprint of earthmoving machines during the earthwork subphase have re-
ceived limited attention in the literature because earthwork emissions represent a
relatively small amount compared to emissions from the operational phase of a ver-
tical construction project [6]. Therefore, a disproportionate amount of attention has

been paid to research on reducing emissions from the operational phase of buildings.

However, the earthwork subphase of horizontal infrastructure projects is consistently
identified as one of the main sources of emissions [6,15-17]. In road construction,
the earthwork subphase is responsible for between 14-45% of the total emissions,
and the lack of adequate methods to estimate earthwork emissions has resulted in
estimates that are more than 300% higher than the base case [6]. Therefore, more

research should focus on the factors that affect earthwork emissions.

Furthermore, cities with a higher share of construction activity face increased chal-
lenges with local area pollutants [5]. These pollutants include carbon monoxide
(CO), hydrocarbons (HC), nitrous oxides (NOx), and other particulate matter (PM).
Increased concentrations of these pollutants place a burden on public health systems,
as they are a known contributor to acute lower respiratory infections, chronic ob-
structive pulmonary disease, lung cancer, ischemic heart disease, and stroke [15].
Therefore, reducing the combustion of fossil fuels in earthmoving machines can have
a significant impact on the health and well-being of people living adjacent to con-
struction sites [6]. In recent years, efforts have been made to reduce emissions from
earthmoving machines by imposing emission standards and mandating the use of
filters in the EU [4]. However, it is impossible to completely eliminate emissions

while using fossil fuels.

2.1 Introduction to Earthwork 9

2.1.2 Transition to Electric Earthmoving Machines

Electrification of earthmoving machines is generally considered the solution to elim-
inate local air and noise pollution from construction sites [5]. Earthwork contrac-
tors are incentivized to invest in electric earthmoving machines due to increasingly
volatile fuel prices, carbon pricing, and new regulations that require earthwork
contractors to reduce their emissions to win public contracts [4]. However, there
is a low demand for commercially available electric earthmoving machines due to
comparably higher capital costs resulting from immature markets and high battery
prices [5]. Currently, the capital expense of a new electric earthmoving machine
is approximately 20% higher than that of an equivalent diesel-powered earthmov-
ing machine [18]. However, the operating costs of electric machinery are generally
lower because electric engines are more energy efficient and have fewer moving parts
than internal combustion engines. Furthermore, it is expected that the operating
lifetime of electric earthmoving machines will be 50% longer than a diesel-powered

equivalent [3].

DNV found that electric excavators are more fuel efficient than diesel-powered equiv-
alents by comparing fuel consumption over an operational lifetime of 15,000 hours.
They found that a 25-ton electric excavator can consume up to 2 gigawatt hours
(GWh) of energy (284,000 liters of diesel) less than a comparable diesel-powered ex-
cavator [3]. Furthermore, DNV estimates that substituting a 25-ton diesel-powered
excavator with an electric excavator can reduce fuel costs by between €100,000 and
€240,000, depending on the price of diesel and electricity [18]. Thus, electric earth-
moving machines are considered a viable business case in countries where the price

of diesel is relatively high compared to the price of electricity.

The main challenge with regard to the transition to electric earthmoving machines
is the energy supply. Electric earthmoving machines require up to several hours to
recharge from a standard grid connection, while diesel-powered earthmoving ma-
chines can be refueled in minutes. Currently, the charging times recorded for an
electric excavator range from 1 to 10 hours, depending on its battery capacity and its
connection to the grid [18]. A purpose-built connection to the grid with a high-power
transformer can reduce charging times to the one-hour range for most commercially

available electric earthmoving machines [18].

These grid connections are expensive and permanent upgrades to the distribution
network that will increase the peak demand from the construction site and often do

not serve a purpose when the construction process is complete. Furthermore, it is

10 Chapter 2 Background

also not possible to establish high-power grid connections in areas where the capacity
of the distribution network is low. Therefore, digging to the nearest transition
station may be required. This process is an additional cost and can be very time
consuming for the construction process [1]. Therefore, the lack of access to adequate
energy supply is the most common objection expressed by earthwork professionals

concerning the transition to electric earthmoving machines [4].

The earthwork industry considers BESS as a potential solution to enable efficient
charging of electric earthmoving machines without permanently overdimensioning
the grid connection and avoiding peak demands [1]. A purpose-built BESS can
charge from a standard grid connection and utilize its stored energy capacity to
provide high-power charging to electric earthmoving machines. Thereby, reducing
the potential increase in peak demand and the cost associated with the earthwork
site’s grid connection. Furthermore, a BESS can be reused in several earthwork

projects and reduce the cost of electricity by performing energy arbitrage.

A review of current earthwork processes is required to facilitate the use of this
technology because new routines, flexible scheduling, and coordination of smart op-
erations are necessary to achieve efficient electric earthwork processes [1]. Therefore,
there is a demand to develop systems that efficiently meet the energy supply needs
of the earthwork process without overinvesting in infrastructure [5]. There are still
many unanswered questions concerning the operation, size, and services that an
earthwork BESS should provide. Therefore, background information on battery sys-

tems is provided in the following sections to inform the reader about the technology.

2.2 Introduction to Battery Cell Technology

A BESS is an energy storage system that uses rechargeable electrochemical battery
cells to store and dispatch energy. Battery cells are individual electrochemical units
that can store chemical energy and convert it to electrical energy. A battery cell
consists of two electrodes, an electrolyte, and a semipermeable barrier separating the
electrodes. The electrodes are made from different types of conducting materials,
where one of the electrodes must have a stronger standard potential than the other
to maintain a reduction-oxidation reaction when the electrodes are connected via
an external circuit. The electrode that oxidizes and releases electrons is called the

anode, and the electrode that is reduced by attracting electrons is called the cathode.

2.2 Introduction to Battery Cell Technology 11

When a battery cell is discharged, electrons from the anode are attracted to the
cathode due to its higher standard potential. This attraction forces the anode to ox-
idize by releasing its valence electron(s) and ions. Negatively charged electrons flow
through an external circuit to reduce the positively charged cathode. The difference
between the standard potentials of the electrodes determines the force that moves
electrons between the anode and the cathode. This is referred to as the electrical
potential or voltage of a battery cell, which is measured in volts. Furthermore, the
number of electrons that are passing through a point of the external circuit at any
given time is the battery cell’s current, which is measured in amperes. The maxi-
mum amount of current that can safely low through the external circuit in one hour

is the battery cell’s capacity, which is measured in ampere-hours.

To balance the charge and prevent the discharge reaction from ceasing, positively
charged ions at the anode are attracted by the increasingly negative charge of the
cathode. Tons travel through the electrolyte, which is made of a substance that allows
the free movement of ions, and a semi-permeable barrier, which is only permeable
for electrolytes and ions, prevents electrons from moving through the electrolyte and
short-circuiting the battery cell. The discharge reaction stops when the external
circuit is no longer connecting the electrodes or when the anode depletes its supply
of electrons and ions. If the electrode materials allow for the reverse flow of electrons

and ions, the battery cell can be recharged.

The recharging process occurs when an external power source that produces a voltage
higher than that of the battery cell’s open-circuit voltage is connected to the external
circuit of the electrodes. This process reverses the electrochemical reaction that
occurred during discharge because the external energy source applies a higher force
to the flow of electrons in the opposite direction, forcing the electrons and ions in the
original cathode to return to the original anode. However, this replacement process

is not perfect and degradation of the battery cell will occur.

2.2.1 Battery Cell Degradation

The performance of a battery cell is reduced after every discharge and charge cycle
because the crystal structure of the electrodes becomes less ordered in the replace-
ment process. The cycle life of a battery cell is an indication of how many charge
cycles it can endure without a significant loss of performance. Deeper discharges

reduce the cycle life faster because more charging is required. Therefore, a battery

12 Chapter 2 Background

cell that discharges 20% of its capacity has a much longer cycle life than a battery
that discharges 80% of its capacity [19].

Furthermore, chemical by-products are produced during the reduction-oxidation re-
action. These byproducts build up over time within the cell and cause irreversible
plating on the negative electrode that increases the internal resistance of the battery
cell. Independently of the reduction-oxidation reaction, a rechargeable battery cell
will experience self-discharge, which are internal chemical reactions that result in a
loss of chemical energy and open-circuit voltage regardless of the electrodes being

connected.

The occurrence and significance of the degradation reactions mentioned above is
amplified if the battery cell is operated beyond its safe operating limits. If a bat-
tery cell is discharged beyond its minimum energy capacity, the voltage of a bat-
tery cell will drop below its safe operating voltage. Low voltage will amplify the
production of aforementioned by-products, increasing the internal resistance, which
can lead to short-circuiting the battery cell. This condition is called overdischarge.
Overdischarge also has a significant negative impact on the crystal structure of the

electrodes, making it more energy intensive to recharge the battery cell.

When recharging, overcharge can occur if the voltage of the external power source
is greater than the safe operating voltage range of the battery cell. Overcharge is a
term used to describe when current continues to flow into the battery cell after it
has reached its maximum capacity. Excess current causes an increase in the internal
temperature, which will degrade the electrolyte by evaporation. If there is effectively
no barrier between the positive and negative electrodes due to electrolyte degrada-
tion, the chemical reaction will speed up uncontrollably, causing a rapid increase of
temperature and an uncontrollable release of energy. This reaction is known as ther-
mal runaway. Furthermore, if the battery cell is operated under conditions where
the internal temperature of the battery cell is below a safe operating temperature
range, the movement of ions will slow down and lead to irreversible plating on the
negative electrode. Therefore, the operating temperature of the battery cell has a

significant impact on the cycle life.

The safe operating ranges of a battery cell are defined by the chemistry coupling
of the electrodes and electrolyte. Therefore, the electrochemical properties of the

materials used in a battery cell affect its performance.

2.2 Introduction to Battery Cell Technology 13

2.2.2 Lithium-ion Battery Cells

Lithium is the metal of preference for battery cell applications because it has the
highest electrochemical potential of all metals. This is in part due to the presence
of only one valence electron in the outer shell of a lithium atom. Lithium cobalt
oxide (LiC00Oy), lithium iron phosphate (LiFePO,), and lithium manganese ox-
ide (LiMnyOy) are the preferred cathode material for most commercially available
lithium-ion battery cells [20]. Graphite is the preferred material for the anode, and
the electrolyte generally consists of a polymer solution or a lithium salt, like lithium
hexafluorophosphate (LiPF6).

The emergence of lithium-ion battery cells has made BESS the leading energy stor-
age technology [21]. Commercially available lithium battery cells have a round-trip
efficiency of up to 96% [22], which means that up to 96% of the energy charged to
the battery cell is available for discharge. A lithium-ion battery cell can retain its
charge up to 99% over 24 hours [23] and only self-discharge between 3% and 10%
in a month depending on its cycle life [24]. Lithium-ion battery cells have a near-
instant response time and ramp rate, which means that they can go from standby to
providing power at a desired level at an almost instant rate. Furthermore, lithium-
ion battery cells have a higher energy and power density than other commercially
available battery cell technologies, ranging from 100 to 265 watt-hours (Wh) per
kilogram [24].

2.2.3 Battery Cell Configuration

The configuration of the battery cells determines the voltage and capacity of a BESS.
The voltage of a BESS is the total voltage of battery cells that are connected in series
because of the additive effect that equals the total force at which electrons move from
the anode in the first cell to the cathode in the final cell. The capacity of a BESS is
the accumulated capacity of battery cells that are connected in parallel because it
increases the possible current, which is the total number of electrons flowing through
the battery cells.

Therefore, the configuration of battery cells in a BESS determines the energy and
power rating of the BESS. Energy can be defined as the work capacity of the BESS,
which is measured in watt-hours (Wh). Power can be defined as the rate at which

the work is performed by the BESS, which is measured in Watts (W).

14 Chapter 2 Background

The configuration of the battery cells is modular and provides scalable opportunities
for BESS applications [21]. The configuration of battery cells in a BESS is based on

the system-specific characteristics of its intended application [25].

2.3 BESS Applications in the Energy System

A BESS is able to provide several services on the supply and demand side of an
energy system because it can be considered both a generator and a load. The market
applications of a BESS are differentiated as Front-of-the-Meter or Behind-the-Meter.

2.3.1 Front-of-the-Meter Applications

Front-of-the-Meter applications refer to the ancillary services a BESS can provide
on the supply side of the energy system. The purpose of these applications is to
maintain grid stability and defer system upgrades. In combination with generation
assets, a BESS can provide frequency regulation by correcting frequency imbalances
in the grid [25]. A BESS can also serve as an operating reserve by providing a

continuous power and energy supply if there is a disruption of the generation asset.

A BESS can defer upgrades of the generation capacity by utilizing stored energy for
peak power generation. In addition, a BESS can defer upgrades to transmission and
distribution networks by providing or storing excess energy in areas that experience

congestion [25].

BESS technology plays a key role in the global transition to a sustainable energy
system by increasing the flexibility of a grid to accommodate a higher share of
fluctuating and non-dispatchable renewable energy generation [26]. A Front-of-the-
Meter BESS can regulate frequency and reduce transmission capacity by storing

excess renewable energy generated [25].

2.3.2 Behind-the-Meter Applications

Behind-the-Meter applications refer to the various demand response services that a
BESS can provide on the demand side of an energy system. The purpose of demand
response is to reduce the difference between peak and average load demand levels.

Therefore, the main application of a Behind-the-Meter BESS is to serve as a tool

2.3 BESS Applications in the Energy System 15

for altering customer’s energy consumption patterns in response to governmental

policies or monetary incentives [27].

A Behind-the-Meter BESS provides customers with the flexibility to shift loads from
peak periods to off-peak periods by charging the BESS during periods of low demand
and storing this energy for use when demand increases. Tariff rates are often designed
to induce this behavior by charging less for electricity during periods of low demand
compared to periods of high demand. Therefore, a Behind-the-Meter BESS can be
used to perform energy arbitrage by charging and storing electricity when the prices
are low for utilization or selling back to the grid when the prices of electricity are

comparatively higher.

In combination with a renewable generation asset, a Behind-the-Meter BESS can in-
crease a customer’s self-consumption of renewable energy by storing excess generated
electricity during periods of renewable generation and using the stored renewable en-
ergy when the renewable generation capacity drops. Thus, reducing the customer’s

climate footprint.

2.3.3 BESS in the Earthwork Sector

In 2021, BESS technology was introduced to the earthwork sector to enable effi-
cient charging of electric earthmoving machines in earthwork projects in Norway.
The prototypes developed for the earthwork sector are encased in a standard-sized
shipping container for mobility purposes, and the battery system has an integrated
multi-interfaced charging system to ensure that the majority of commercially avail-
able electric earthmoving machine can charge without providing its own charging

solution.

Figure 2.1 shows a 3D-rendering of a purpose-built BESS for the earthwork sector.

16 Chapter 2 Background

£ |

= Boost Charger

185 kW 400VAC
~ 100 kW230VAC

Inteligent Energy Storage Solutions
390 kWh 200-790 VG
C& } 1§ 10 KV

Figure 2.1: 3D rendering of a prototype BESS

This example is called BoostCharger and it is a prototype developed during 2020
by a Norwegian company called Nordic Booster AS that specializes in earthwork
BESS technology. The BoostCharger is designed to meet all electricity demands
on a zero-emission earthwork site, making fossil fuel generators redundant. It has
a battery energy storage capacity of 390 kilowatt-hours (kWh), several alternating
current (AC) connection points, and two direct current (DC) charging cables ca-
pable of charging two electric vehicles at a rate of up to 150kW, simultaneously.
How the power electronics are configured in this BESS is beyond the scope of this
project. However, the BoostCharger combines galvanic plating with two DC/DC
transformers connected in series, where the first transformer raises the voltage to a
high and stable level and the second reduces the voltage to the variable voltage of

the vehicles during charging.

Figure 2.2 below shows a different example of a BESS prototype called SuperCharge,
which is delivered with solar panels to increase the self-consumption of renewable

energy generation.

2.3 BESS Applications in the Energy System 17

AN E)

Figure 2.2: Solar panels on construction site BESS

When solar panels are used, the carbon footprint of any earthwork project can be
reduced. Moreover, by charging the BESS during times of high renewable share in
the grid’s energy mix, the carbon footprint can be further reduced. Furthermore,
SuperCharge is a good example of how the controls of an earthwork BESS are config-
ured. Figure 2.3 below shows an example of the controls to discharge SuperCharge

to an electric earthmoving machine.

N

S |

Figure 2.3: The controls of construction site BESS

The Supercharge user has the choice between high-power charge (fast), grid-power

charge (slow), and stop charging (stop). These controls show how simple it can be

18 Chapter 2 Background

to operate the BESS. However, several challenges are identified with respect to the

scheduling of operations related to the use of BESS technology on an earthwork site.

2.3.4 Challenges with Earthwork BESS

An earthwork BESS is an intermediate system between the grid and the electric
earthmoving machines. It can discharge its stored energy faster than it can recharge
itself. Therefore, a challenge arises with scheduling the charging and discharging
of the BESS to avoid situations where the earthwork process is halted due to the
recharging of the BESS

Optimizing the scheduling for charging and discharging an earthwork BESS has
not been possible because methods for estimating future load demands of a electric
earthmoving machines have not been developed. This is in part due to the fact
that every earthwork project is unique and the energy demand from earthmoving

machines is significantly affected by local ground conditions.

The current industry practice, as recorded in the case study in this project presented
in Chapter 8, is to constantly charge the BESS when it is not used to charge earth-
moving machines. The charging of the earthmoving machines often occurred during
lunch breaks. However, lunch breaks were often extended to fully recharge the ma-
chines. Moreover, the workday would be extended if additional charging would be
required after the lunch break. This was identified as major concern by the case

study earthwork contractor.

Furthermore, estimating the optimal energy capacity for a earthwork BESS has also
not been possible because it is dependent on the optimal operation schedule. If the
capacity is too low, the construction process is slowed down due to situations where
the energy demand is greater than the available supply from the BESS. Therefore,
the initial commercially available earthwork BESS’ have been delivered with a large
energy capacity of more than 300kW h. However, if the capacity is too high, the fi-
nancial burden of commercially available BESS excludes most earthwork contractors

from transitioning to electric construction machines.

DNV has conducted several interviews with earthwork contractors trying to achieve
electric earthwork sites, and their conclusion states that optimizing the logistics
of earthwork processes is the key to achieving zero-emission earthwork sites [1].
Therefore, the main objective of this project is to develop a methodology to optimize
the scheduling of charging and discharging an earthwork BESS to efficiently supply

energy to earthmoving machines.

Chapter

| iterature review

A literature review of academic works was conducted to identify, examine, and ex-
pand on previous efforts in the earthwork literature. Electrification is a recent de-
velopment in the earthwork sector and is currently not comprehensively researched.
Methods to optimize energy supply in electric earthwork processes have not yet
been developed. However, tracking and modeling fuel consumption during tradi-
tional earthwork processes has received increasing attention in the last decade [6].
Therefore, the findings of previous modeling efforts earthwork literature are reviewed
together with optimization methodologies in related fields to serve as a basis for the
development of a methodology that can fill the knowledge gap on how to optimize

the energy supply in electric earthwork processes.

This review consists of two parts. The first part is a review of the factors that affect
the fuel consumption and productivity of diesel-powered earthmoving machines with
the aim of identifying their application to the modeling of electric earthmoving
machines. The second part is a review of previous modeling efforts to justify the

selection of reinforcement learning as a mathematical framework for this project.

3.1 Review process

The proposed review process follows a systemic approach with four steps.

The first step is to identify and define keywords that allow the discovery of relevant
literature. Primary keywords describe the field of research and were identified as
earthwork, construction, earthmoving, excavating, battery, and energy storage. Sec-
ondary keywords describe outcomes of interest and were identified as zero-emission,

emission, fuel consumption, fuel use, energy consumption, and energy management.

20 Chapter 3 Literature review

Tertiary keywords describe analysis methods and were identified as optimization, es-
timation, scheduling, modeling, simulation, minimization, and reinforcement learn-

ing.

The second step is to identify the relevant literature based on keyword search re-
sults from previous reviews [6] and major academic databases such as ScienceDirect
and Google Scholar. Primary keywords are combined with secondary and tertiary
keywords to filter the resulting literature. Peer-reviewed journals, conference pro-
ceedings, graduate theses, and industry reports were identified as relevant for this

project.

The third step is to examine and filter the resulting literature to discover relevant
findings and methods that are applicable to this project. In this step, the literature
that does not contain relevant findings or methods are discarded from the review

process.

The final step is data extraction, where relevant findings and methods are analyzed.
Relevant findings are extracted, and the advantages, disadvantages, and practicality

of the proposed methods are discussed and evaluated.

3.2 Factors affecting fuel consumption

To accurately estimate and optimize energy consumption in earthwork processes, a
detailed understanding of the factors that affect the energy consumption of earth-
moving machines is required [28]. In the existing literature, productivity and emis-
sion factors have been derived from field studies [29,30], regulatory bodies [31-33], or
machine manufacturers’ handbooks [34, 35]. However, publicly available data from
field studies or regulatory bodies on electric earthwork processes were not discovered,
and manufacturers of electric earthmoving machines have not yet developed detailed
knowledge on how various factors impact the energy consumption of electric earth-
moving machines. Therefore, the identified factors that affect the fuel consumption
of diesel-powered earthmoving machines will be investigated to develop an approach
to estimate the energy consumption of electric earthmoving machines. These factors

are classified as machine factors, operational factors, site factors, or soil factors.

3.2 Factors affecting fuel consumption 21

3.2.1 Machine Factors

Machine factors are factors related to earthmoving machines. Engine power is the
factor most commonly used to model the fuel consumption of earthmoving machines
[6]. It is a measure of the maximum potential output energy of an engine and has
the highest correlation with fuel consumption among static engine variables [36,37].
However, different tasks require different levels of engine power. A load factor defines
the amount of engine power that is used during specific tasks, such as digging,
loading, or idling. An average load factor is often used to model specific earthmoving
tasks because it can be a highly dynamic variable when the earthmoving machine is
active [6,13].

Manufacturers of earthmoving machines typically specify the power and load fac-
tors of specific tasks in machine manuals. However, the manufacturers of electric
earthmoving machines have not yet recorded enough data to present this informa-
tion. The traditional approach to identifying the load factor of an earthmoving
machine is to measure the absolute pressure of its engine manifold while performing
a task [13]. However, electric engines do not have an engine manifold. Therefore,
the load factors of electric earthmoving machines must be identified using field anal-
ysis or simulation, which has been proven to accurately identify the load factors of

diesel-powered earthmoving machines in the past [38].

To estimate the total energy consumption for completing a task, the load factor is
multiplied by the amount of time required to complete the task. The duration of a
task depends on the number of activity cycles required. Therefore, the duration of
a task is broken down into cycle time, which is a measure of the time required to
complete a single cycle of a distinctive earthmoving activity [6]. However, the load

factor and the cycle time depend on several underlying factors.

Attachment selection is one of the key underlying machine factors, as the selection
of attachments has a great impact on the productivity and energy consumption of
earthmoving machines. There exist several buckets or blade attachments that affect
the effectiveness of performing tasks and the volume of soil that can be moved per
cycle. For excavators, larger buckets generally result in reduced fuel consumption
even though the cycle time may be longer, as fewer cycles are required to complete
a task [6,34].

Furthermore, maintenance of earthmoving machines can mitigate engine degradation
that has a negative impact on fuel efficiency [39]. The most common maintenance

approaches in the earthwork domain are run-to-failure maintenance or preventive

22 Chapter 3 Literature review

maintenance [40]. However, electric engines have fewer moving parts and require less
maintenance than combustion engines [18]. Therefore, maintenance is not considered

in this study.

3.2.2 Operational factors

Operational factors are factors for which machine operators or earthworks contrac-
tors have direct decision-making authority. The experience and routines of the ma-
chine operators have a significant impact on fuel use. For excavating, the selection
of methods such as two-tier excavation over slope-toe excavation, reducing engine
speed, and positioning the excavator to reduce the swing angle have been reported
to increase fuel efficiency by up to 8%, 14%, and 3% respectively [35]. For loaders,
reducing the distance by minimizing the v-angle between the loader’s direction and
the truck has been reported to increase fuel efficiency by up to 16% [35]. For trucks,
coasting or driving at constant speed have been reported to reduce fuel consumption
by up to 38% and 16%, respectively [35].

These results apply only to their respective case studies. However, they emphasize
that the skill level of machine operators has a significant impact on fuel consumption
in relation to productivity. Experienced operators of excavators have been recorded
to reduce cycle time and complete tasks twice as quickly as novice operators [41,42].
Moreover, a study on loaders found that experienced operators could be two to
three times more fuel efficient than novice operators, while being significantly more
productive [43]. Productivity factors that represent excellent, average, and novice
operators [1.0, 0.75, 0.6] have been provided in the manufacturer’s handbooks to
indicate its impact on productivity and subsequently fuel consumption [34]. There-
fore, operational factors are implemented in this project to account for earthmoving

techniques and operator skill levels.

Furthermore, machine operators and site managers should ensure that trucks are
loaded to their maximum capacity, as this can have a large impact on the fuel
consumption per m? of the soil moved. A study recorded that fuel consumption
could increase by up to 32% if trucks were only loaded to 67% of their maximum load
capacity [44]. The same study recorded that fuel consumption could increase by up to
120% if truck operators were instructed to leave when another truck arrived. Queuing
theory has been applied to estimate the production rate and the queue lengths
of earthwork scenarios [6,45,46]. These studies found that the fleet configuration

3.2 Factors affecting fuel consumption 23

was the main factor that affects the queue length, fuel efficiency, and idle time of

earthmoving machines

Fleet configuration consists of selecting the number and type of earthmoving machine
to be used in an earthwork process. This factor is especially relevant for electric
earthwork sites with limited access to charging infrastructure, as queues for charging
machines will delay the earthwork process. Furthermore, fleet configuration is the
only factor that can produce significant precision between case studies in predicting

energy consumption when modeled in isolation [6].

The final operational factor is task scheduling. Only one study was discovered that
simulated the impacts on fuel consumption on earthwork task scheduling strategies.
The results of this study revealed that the control strategy (where no action is taken
when a project is behind schedule) required slightly less fuel, but more time than
the catch-up strategy (where more resources are allocated to catch-up if the project
had fallen behind schedule) or the crash strategy (where the goal is to stay ahead of
schedule at all times) [47].

Task scheduling is especially important for this project because the main objective
is to develop a methodology to optimize the scheduling of charging and discharging
an earthwork BESS to efficiently supply energy to earthmoving machines. Several
studies have revealed a strong correlation between project cost and fuel consumption
[45,48-50]. Therefore, scheduling of BESS operations in response to electricity price

signals should be investigated to explore its effect on productivity.

3.2.3 Site Factors

Site factors are factors related to the layout and location of the site that machine
operators or earthworks contractors do not have direct decision-making authority
over. The layout of the site can have a significant impact on fuel consumption and
productivity. The average operational efficiency of earthmoving machines ranges
between 85% and 65% [51]. However, this can be reduced to 50% in restricted
and confined sites due to the lack of optimized movement patterns [52,53]. These
recorded levels of operational efficiency are useful for this project because they are

not specific to the type of fuel and are validated by several studies.

The grade of the site has also been found to have an impact on fuel consumption
[6]. Steep grades require more energy from trucks and loaders to transport soil to

and from the site, and excavators are often required to perform more cut and fill

24 Chapter 3 Literature review

operations to level the site [54]. However, site grade is not considered in this study

due to the lack of quantitative data recorded for electric earthmoving machines.

Furthermore, the distance that trucks must travel to and from the site for material
transport can be responsible for the majority of fuel consumption in an earthwork
project [55]. The only factor an operator can control during transport is speed
optimization, as this significantly influences fuel consumption during transport op-
erations, as explained in the previous section [35,56]. Therefore, the hauling distance

and the average hauling speed are important factors to include in this project.

3.2.4 Soil Factors

Soil factors refer to the impact of ground conditions on fuel consumption. The impact
of soil types on the energy consumption of earthmoving machines has been explored
and evaluated in several studies. Direct relationships have been established between
soil density and load factor [28,36], emissions [54,57-59], and productivity [58,60,61].
According to these studies, an increase in soil density generally results in a linear

increase in fuel consumption [6].

Denser soil types are generally found in deeper sections due to compaction, and sev-
eral studies that modeled the fuel consumption of excavators found that a greater
depth of excavation correlates with an increase in fuel consumption [36,57,59]. More-
over, a greater depth of excavation requires more repositioning and increased move-
ment of the excavator boom to reach deeper sections, also affecting fuel consump-
tion [6].

In addition, soil density can be affected by weather conditions, as rain can increase
the density of certain types of soil. Weather conditions are a significant factor
that can cause earthwork projects to experience delays and cost overruns [62-65].
However, only one study has been discovered that models the impact of weather on
fuel consumption in earthwork processes [6]. Therefore, more research is required
to address the impact of weather conditions on earthwork processes [6]. This is
especially relevant for electric earthmoving machines because temperature can have

a significant effect on battery cells, as explained in the previous chapter.

Furthermore, the grain size of the soil has a significant impact on the fill factor
of the machine attachments. Larger grain size can result in lower fill factors due
to a higher share of empty space between the particles, whereas soil types with

smaller grain sizes can result in fill factors that exceed the rated fill capacity of

3.3 Quantifying the Impact on Fuel Consumption 25

the machine attachments. Therefore, materials with smaller grain sizes can reduce
the number of cycles required to complete an earthwork task, thus reducing energy
consumption. However, comparing studies that have modeled the impact of soil
types on fuel consumption is challenging because qualitative descriptions of soil
types are rarely associated with quantitative properties [6]. Therefore, discrepancies

can be encountered when comparing models with identical input variables.

3.3 Quantifying the Impact on Fuel Consumption

Every construction site is unique and can vary significantly from site to site due
to the range of influencing factors. Therefore, modeling energy consumption and
supply using a single variable is not recommended. Previous modeling efforts have
revealed several ways to estimate fuel consumption and productivity in earthwork
processes. However, comparing the methodologies revealed that they would produce
different results when identical input values were used [6]. Therefore, a review of
selected methodologies is conducted to explore how previous studies have considered

the impact of factors on the fuel consumption of earth moving machines.

According to Adrian Roy’s review of factors affecting earthworks greenhouse gas
emissions and fuel use [6], the most impactful factors are the engine power and the
type of soil. However, their impacts are subject to great variation between various
studies, highlighting that the impacts of other factors are still relevant and should be
considered [6]. This section will review approaches related to excavators and dump

trucks, as these are generally the most used earthwork equipment.

The volume-based equations developed by Hajji [59] are reviewed because the p-
values, which express the statistical relationship between the predicted and actual
results, were less than 0.0001. Indicating that the developed approach has a signif-
icant correlation with the actual fuel consumption of the investigated earthmoving

machines.

Hajji divided the amount of soil moved, dumped, or excavated by the sum of several
site factors and an intercept to define a load factor before multiplying this load factor
by engine power, engine efficiency, and an emission factor. The most important

aspects of Hajji’s equations are extracted and expressed as follows.

Q
Yi+ fs—d+ B+ ft)

Excavator Fuel Use = -E,- BSFC -TAF (3.1)

26 Chapter 3 Literature review

Q
YitC+S—D—t)

Dump Truck Fuel Use = -E,- BSFC -TAF (3.2)
Where Q is the volume of soil moved, dumped, or excavated in m3, Y7 is the resulting
intercept of a case-specific regression analysis, fs is a soil factor, d is an excavating
depth factor, B is the bucket capacity, ft is a case-specific excavator type factor,
E, is engine power, BSF'C' is the brake specific fuel consumption of the engine type
(fuel efficiency), TAF is a transient adjustment factor (used for modeling emissions),
C' is the maximum load capacity of the truck, S is hauling speed, D is the hauling

distance, and t is the cycle time of the truck.

However, the accuracy of this approach is completely dependent on parameter results
from case-specific multi-linear regression analysis, e.g. the soil factor had different
quantitative values depending on the type of equipment used. Therefore, its useful-
ness to this project is limited to its use of different factors to define machine-specific

load factors.

Jassim, Lu, and Olofsson, developed a different approach to estimate fuel consump-
tion of earthmoving machines. Their approach also depends on results from a multi-
linear regression analysis. However, their equations are more general because they
used an artificial neural network to calculate the results. Their estimation equations

are expressed as follows.

Excavator Fuel Use = (3.3)
Pfuel
Ste-Hy - E.
Dump Truck Fuel Use = =1 =2t ~cf (3.4)
Pfuel . Tpr

Where Sy, is a specific fuel consumption factor, Ly is a specific load factor, E.y is
a fuel-to-energy conversion factor (efficiency), Py, is the relative density of diesel
fuel, T}, is a productivity rate factor associated with the time required to move the
soil per hour, and H,; is a truck-specific load factor that incorporates engine power,

hauling speed, site grade, rolling resistance, and truck weight.

This approach is also volume-based and dependent on specific parameter estimations
resulting from a multi-linear regression model. However, it emphasizes that the
accuracy can be derived from the product of the machine’s engine power and load

factor, given that the load factor is sufficiently specific to the task.

3.3 Quantifying the Impact on Fuel Consumption 27

According to the most comprehensive data collection effort currently in the field of
earthwork emission modeling, time-based models have been shown to be more accu-
rate than volume-based models [37]. Therefore, the time-based estimation approach
developed by Roy [6] is also reviewed. This approach is very specific to static values
that were underspecified. Therefore, the following equations are simplified from its

original state to improve the readability.

Excavator Fuel Use = Cy - (E, - Ly - fs)-n (3.5)

Dump Truck Fuel Use = Haul, - (G+ fs)- R, - (E, - Ly) - (3.6)

s
Os
Where C; is the cycle time in minutes, 7 is an engine efficiency factor, Haul,; is the
duration of transport, G is a grade factor, R, is a rolling resistance factor, and O,
is the operator’s skill factor. Although this representation is heavily modified from
its original state, it represents a time-based approach that is more useful to this
project, as time-based scheduling of energy consumption and supply is required for

the optimization process.

This time-based approach lacks quantification of equipment productivity. However,
a productivity equation [35] can be used to complement the time-based fuel con-

sumption equations. A productivity equation can be expressed as follows.

Productivity = q - (60/C;) - OEE (3.7)

Where q is the production of soil (m?) per cycle, 60 represents the number of minutes
in an hour, and OFFE is the operating efficiency of the machine, which is a measure

of the time spent active in relation to idling.

The approaches reviewed to estimate fuel consumption in earthwork processes reveal
that specific values representing various factors generated from regression analysis
of large and detailed data sets are required for accurate results. However, detailed
and publicly available data sets for electric earthwork processes do not exist in the
current state of the electric earthwork literature. Therefore, this study will focus
on developing an optimization framework that can incorporate specific values that

represent the various factors as they become available in the future.

28 Chapter 3 Literature review

3.3.1 Challenges with Data Collection

Previous literature on earthwork reveals a lack of quantity, quality, and uniformity
of data due to the inherent challenges associated with data collection in the earth-
work domain [6]. There are fewer opportunities to perform detailed measurements,
as the duration of the earthwork subphase is generally much shorter than the oper-
ational phase of a construction project. Additionally, coordination and mobilization
of measurement infrastructure and personnel in earthwork processes is challenging
because the earthwork subphase is often initiated within a short time period af-
ter a contractor wins a bid. The data collection process is further complicated by
variances in site conditions, fleet configurations, and subcontractors, which can have
their own fuel sources and privacy concerns. Therefore, data dissemination is limited

by decentralized data collection and privacy concerns [66,67]

Various data collection methodologies have been developed [68-74]. However, these
approaches reveal a lack of standardization for comprehensive data collection. Fur-
thermore, additional costs are associated with the required measurement infrastruc-
ture and tracking personnel, and collecting a sufficient amount of data can lead to

modifications of current practices [6].

Roy’s recommendations for standardized data collection state that data should be
collected directly from equipment reports and interviews with site supervisors re-
garding the type and capacity of machine attachments, the duration of duty cycles,
the volume of soil moved in each duty cycle, engine power (total and during cycles),
fuel consumption, active and idle time of equipment, soil density, soil fill factor, soil
particle size, and weather data [6]. These recommendations are considered for the

case study of this project.

3.4 Previous modeling efforts

3.4.1 Multi-linear Regression

Multi-linear regression (MLR) techniques have been shown to be useful in model-
ing the effect of various influencing factors on the fuel consumption of earthwork
processes [13,36,59,75]. However, these models are specific to their intended case
study and do not offer generalized precision when applied to other case studies [76].
Furthermore, comparing the result of several MLR models [36,59,75] using identical

input values results in inconsistent fuel consumption estimates because the models

3.4 Previous modeling efforts 29

do not consider the same number of factors and the qualitative descriptions of the
soil types in one model do not correspond to the properties of other models that

state the same soil type [6].

According to Adrien Roy’s review of factors affecting earthwork emissions and fuel
use [6], there are no known attempts in which MLR has been used to model earthwork
processes where several earthmoving machines interact. Therefore, MLR should
not be applied to this project because interactions between electric earthmoving

machines are required to optimize the electric earthwork process.

3.4.2 Supervised Machine Learning

The lack of standardization and consistency in data collection has delayed the in-
troduction of data-intensive machine learning methods that have led to significant
optimization advances in other sectors such as medicine and manufacturing [6]. How-
ever, methods have been developed that use artificial neural networks to estimate

the fuel consumption and emissions of earthmoving machines [36, 77].

These supervised machine learning modeling efforts have only been shown to demon-
strate precision in the scenarios for which they were designed [6]. This is due to the
lack of available data from earthwork processes, as the precision of these methods
depends on the accessibility of vast amounts of data detailing the correct behavior in
various earthwork processes to provide generalization. Supervised machine learning
would not be beneficial for this project, as recorded data from electric earthwork pro-
cesses are currently scarce and lack the level of detail required for this optimization

approach.

3.4.3 Discrete Event Simulation

Discrete event simulation (DES) is the most common method for modeling fuel con-
sumption and emissions in earthwork processes with several interacting machines.
This method is used in the field of earthwork because it can solve logically complex
problems that involve a certain level of uncertainties and interdependent compo-
nents [78]. It is also capable of generating multiple output signals, such as schedules,
equipment utilization rate, critical path identification, and insights into how com-
ponents and the system as a whole are affected by changes in input variables [38].

Therefore, different scenarios can be easily tested [79].

30 Chapter 3 Literature review

Several models have been developed to track and estimate emissions using discrete
event simulation [38,45,48 49, 80-85]. However, they are often case study specific.
Other approaches have focused on modeling variations in load-haul configurations,
where one or more loaders interact cyclically with several trucks that transport soil
to a dump site [38,48,77,78,81,82,86]. However, these approaches are generally

applied to a single case study in which different conditions are simulated.

This review has discovered only one generalizable discrete event simulation frame-
work that has been developed for the earthwork process [6]. This approach is de-
signed to estimate the emissions and fuel consumption of diesel-powered earthmoving
machines. However, it does not offer an automatic optimization algorithm. Other
studies have used the DES framework to generate various operating scenarios to

manually discover the scenarios that produce the least emissions [77,80, 87].

The greatest challenge with the DES approach is its inherent inability to estimate
optimal solutions because it lacks an interface between the DES and an optimization
algorithm that can perform actions as a result of the optimization process [88].
Therefore, this project cannot rely on DES, as the purpose is to develop optimal

schedules.

3.4.4 Reinforcement learning

Reinforcement learning has been shown to be applicable to modeling earthwork
processes [89-91]. The reinforcement learning approach is used to consider uncer-
tainty when optimizing earthwork processes. Reinforcement learning does not rely
on existing data sets of correct behavior, as it learns from its own experience in
the simulation process. Recent advances in the field of reinforcement learning have
led to the development of methods that provide a generalized response through the

integration of artificial neural networks.

The reinforcement learning approach is suitable for this project because it can gen-
eralize and optimize electric earthwork processes while considering the uncertainty
surrounding the influencing factors without relying on detailed data sets from electric
earthwork processes. This project will utilize the temporal difference (TD) learning
approach. TD learning is a combination of Monte Carlo simulation and dynamic
programming. Similarly to Monte Carlo simulation, TD learning learns from expe-
riences without requiring an accurate model of the system’s dynamics or detailed
data sets. However, TD learning uses a dynamic programming feature called boot-

strapping or online learning in which it can update multiple decision variables with

3.4 Previous modeling efforts 31

respect to the optimization goal after each simulation time step rather than waiting

for the simulation to terminate [92].

The review did not discover any literature on how TD learning can be applied to
optimize energy supply scheduling for earthwork processes. Therefore, the math-
ematical framework of reinforcement learning is explained in detail in Chapter 4
to inform the reader. Furthermore, a review of state of the art literature that has
used reinforcement learning to solve similar problems is presented in Chapter 5 to

highlight methodologies that are relevant to this project.

Chapter

Mathematical Framework

This chapter serves as a general introduction to the methods that make reinforce-
ment learning suitable for this project. Reinforcement learning is selected as the
mathematical framework for this project because of its ability to optimize dynamic
problems with a high level of uncertainty and generalize its response to unseen
scenarios. These features are required when developing a framework that can opti-
mize the energy supply for electric earthwork processes, as the impact of influencing
factors is underspecified, and earthwork processes can vary substantially from one
earthwork site to another. Moreover, the lack of standardization in electric earth-
moving machines and BESS technology further emphasize the need for a framework

that handles uncertainties well.

4.1 Introduction to Reinforcement Learning

Reinforcement learning is considered the third paradigm of machine learning, to-
gether with supervised and unsupervised machine learning. Reinforcement learning
is an iterative machine learning method to learn desired behaviors in sequential deci-
sion making. It is a computational approach to learn which actions yield the highest
return when interacting with a dynamic system over time. The purpose of reinforce-
ment learning is to develop optimal strategies to solve stochastic control tasks by
trial and error. A reinforcement learning framework consists of an agent software
that interacts with an environment software. The agent is a decision maker that de-
velops optimal strategies to solve stochastic control tasks, whereas the environment
is a demonstration of a specific stochastic control task. The agent interacts with
the environment in discrete time steps by performing actions. Figure 4.1 shows the

iterative process of reinforcement learning.

34 Chapter 4 Mathematical Framework

. Agent
New state Reward Action
Environment -

Figure 4.1: The interaction process of an agent and an environment

Following each action, the agent receives information on how the action affected the
state of the environment in the form of a new state. The agent also receives a reward
from the environment that reflects the quality of performing the specific action with
respect to completing the task. The agent interprets the feedback from the new
state and the reward to decide which actions to perform in future interactions to

yield the highest sum of rewards.

Although agents can be applied to many environments, environments must be
uniquely developed to represent a specific task. An environment is a dynamic system
that provides an agent with a set of actions, states, and rewards at each time step
of the simulation. The actions can represent low-level controls, such as how much
voltage should be applied to a motor, or high-level decisions, such as what day to
run a machine. The states can represent low-level sensations, such as direct sensor
readings, or high-level information, such as the time and date of operation. The
reward signals are designed to guide the agent’s selection of actions by rewarding
favorable state-action combinations or penalizing unfavorable ones in terms of the

tasks to be solved.

However, the environment does not require system identification or an exact math-
ematical representation of the physical system with which the agent is intended
to interact. Reinforcement learning is considered model-free because an agent can
discover and identify relevant system parameters by associating different state and
action combinations with its corresponding rewards. Therefore, an agent that has
trained in a theoretical environment can adapt the learned parameters when applied
to a real-world system. Furthermore, agents are designed to learn an optimal con-
trol strategy exclusively from the data generated by their own interactions with the
environment. Therefore, no external data sets are necessary. These features make
reinforcement learning techniques very versatile and suitable for implementation in

stochastic scenarios where there is limited external data available.

4.1 Introduction to Reinforcement Learning 35

An agent learns through a process referred to as training, where the agent tests
different actions at each state and progressively favors state-action combinations
that return higher rewards over time. Depending on an agent’s approach, each action
is tried several times in the same state to gain a reliable estimate of its expected
reward. Therefore, the agent should only be rewarded for achieving the main goal
of the task. If sub-goals are rewarded, the agent’s performance in finding the most

efficient way to achieve its main goal may be reduced [92].

The agent maps all state and action combinations it encounters in a probability
matrix known as the policy. The purpose of the policy is to store the probability of
which action to take in any perceived state of the environment. An agent develops
several policies during training. However, the agent’s purpose is to develop an op-
timal policy that maximizes the expected cumulative rewards over time. Therefore,

the optimal policy is the optimal strategy to solve the task.

To develop an optimal policy, an agent has to balance the trade-off between explo-
ration and exploitation during training. Exploration occurs when the agent chooses
actions stochastically to discover the rewards of new state-action combinations in
an attempt to improve its policy. Exploration is necessary for the agent to learn
how the environment works and discover relevant system parameters. Without ex-
ploration, the agent would be stuck exploiting immediate rewards. When an agent
exploits, it uses a policy it already knows to make greedy decisions. An agent has to
balance when to exploit and when to explore to reduce the chance of failing a task.
There are several different ways to define how an agent explores. A common method
for balancing the trade-off between exploration and exploitation is called Epsilon-
greedy, where epsilon refers to the probability of choosing to explore at every time
step. A decay is often applied to the epsilon to reduce the amount of exploration as
training progresses to solidify a policy and to avoid distorting discovered sequences

of favorable state-action combinations.

The trade-off between exploration and exploitation sets reinforcement learning apart
from the other machine learning paradigms, as this challenge does not arise in super-
vised or unsupervised learning. The objective of supervised learning is to correctly
label unlabeled data. A supervised model learns by identifying patterns and corre-
lations in prelabeled and external data sets. Therefore, supervised learning is not
suitable for solving stochastic control tasks, as prelabeled data representations of all
possible state-action combinations of a dynamic system rarely exist. Reinforcement
learning overcomes this challenge by generating its own data rather than relying on

external data.

36 Chapter 4 Mathematical Framework

Furthermore, the objective of unsupervised learning is to group or cluster data points
based on patterns, hidden structures, and correlations discovered from unlabeled ex-
ternal data sets. Both unsupervised learning and reinforcement learning do not rely
on examples of correct behavior. However, reinforcement learning’s aim of maximiz-
ing the expected cumulative rewards sets it apart from unsupervised learning. The
formalization of a goal using the reward signal is one of the most distinctive features

of reinforcement learning [92].

4.2 Markov Decision Process

Reinforcement learning is built on a mathematical framework called Markov Decision
Process (MDP) to define interactions between an agent and an environment. MDP
is an extension of a Markov Process, which is a stochastic model that describes
a sequence of possible events where the probability of each event depends on the
information attained in the previous event. Furthermore, MDP is an abstraction
of goal-oriented learning through interaction that reduces any problem of learning
goal-oriented behavior to three signals between an agent and its environment: the
decisions made by the agent (actions), the basis on which the decisions are made
(states), and a signal to define the agent’s goal (rewards). This framework is widely

useful and applicable to represent most decision-making problems.

In a discrete MDP, the number of elements that represent the states, actions, and
rewards of an environment is known. The grouping of state signals is referred to as
the environment’s state space (.5), while the grouping of actions is referred to as the
environment’s action space (A). Representations of states and actions vary greatly
from one environment to another. How they are represented has a large effect on
the performance of the model, and these representational choices are currently more

art than science [92].

4.2.1 Dynamics of a MDP

An agent interacts with an environment in a sequence of time steps, t = 0,1,2, 3,
The time steps can represent real-time or successive stages of decision making. An
environment with a finite number of time steps is referred to as an episodic environ-
ment, and a sequence of discrete time steps is referred to as an episode. At the final

time step, the agent reaches a terminal state and the episodic environment resets

4.2 Markov Decision Process 37

to a standard starting state or to a sample from a standard distribution of starting
states to make every episode independent. When an environment does not have a
final time step, it is referred to as a continuous environment, and the sequence of

time steps is continuous after the initial state.

At each time step t, the agent is presented with the state of the environment s; € S
and selects an action available for that state a; € A(s). As a consequence of the
selected action, the agent receives a reward r;.; € R and a new state s;11. The
next state s;1; and the future reward r;,; have a discrete probability distribution
that depends only on the preceding state and the action. The dynamics of a discrete

MDP is expressed as follows.

p(s',r|s,a) = Pr{sg =5,11=r]s=sa =a}, (4.1)

Vs ,seS reR, anda e A(s)

Where Pr is the probability of transitioning into a new state s’ and receiving reward
r, given the current state s, and action a. The ‘|" is the notation of conditional
probability and is a reminder that p specifies a probability distribution for every
choice of s and a. The probabilities returned by p represent the full dynamics of
the environment because the probabilities for s;y; and r;.; depend exclusively on
the current state s; and the choice of action a;. This is possible when the current
state s; contains all the information of past interactions between the agent and the
environment. This is commonly referred to as the Markov Property, which is the
fundamental expression of transitions between states in any Markov Process. The

Markov Property is expressed as follows.

P[St+1 ’ St] = P[StJrl | 51,82...7825] (42)

Where the transition from the current state s; to the next state s;11 is entirely

independent of the past since s; captures the information of the past states.

4.2.2 Rewards

The probability of transitioning to a new state depends on the reward received by
the agent. The goal of any reinforcement learning agent is to maximize the sum of
rewards received. The cumulative sum of rewards is referred to as the return Gy,

and for episodic environments it is expressed as follows.

38 Chapter 4 Mathematical Framework

Gt =7+ Tt+1 + ...+ (43)

Where the reward received in the initial time step is r;, the reward received in the

second time step is ry11, and rr is the reward received in the final time step.

For continuous environments where 7' = oo, a discount rate v is introduced to
allow exploration and ensure that the sum of rewards does not diverge into co. The
discount rate quantifies how much value should be considered for future rewards
compared to immediate rewards. This enables the agent to select actions that will
maximize the sum of discounted rewards it receives in the future based on the present
value of future rewards. The discount rate is implemented in the returns function

as follows.

o

Gy =1+ + 72Tt+2 +..= Z ’Ykrt+k+1, (4.4)
k=0

Where k is the number of time steps the agent is looking into the future. A reward
received at k steps in the future is worth only 7%~! times what it would be worth if

it were received immediately.

4.2.3 Policy

Every agent follows a policy when it selects an action in a state. A policy defines
the probability distribution for all possible action choices in every state. The policy

function is expressed as follows.

m(als) = Pla; = a | s; =] (4.5)

Where 7 is the policy and 7(als) is the probability of choosing action a in state s.
When combining a deterministic MDP with a trained policy, the MDP behaves sim-
ilarly to a Markov Process because all decisions regarding state-action combinations

have been made.

The goal of an MDP agent is to develop an optimal policy that will yield the highest
return from the environment. To achieve this, the agent must use a set of value
functions to estimate the expected return from being in a state and performing every
action in every consecutive state. There are several approaches to value functions,

and an agent is defined by its approach to value function. Therefore, there are

4.2 Markov Decision Process 39

several different ways for an agent to develop an optimal policy. However, most
value functions are either a variation of the state-value function or the action-value

function.

4.2.4 Value Functions

The state-value function determines the value of being in a particular state following
a policy. Beginning in state s, it calculates the expected return by following policy

7 for the following states until it reaches a terminal state. It is expressed as follows.

ve(s) = IT@[Gt | st = s] = E S AV, | se=3]|,Vs€S (4.6)
k=0

Where v,(s) is the value of state s following the policy 7, and E. denotes the

expected return following policy .

The action-value function calculates the value of performing a specific action in a
given state. This function is commonly referred to as the Quality function or the Q
value function, and returns the value of performing action a in state s following the

policy 7. The action-value function can be defined as follows.

qr(s,a) = IE,[Gt | si =s,a, = a] = E S Ve, | si=s.a=a (4.7)
k=0

Where ¢.(s,a) is the value of performing action a in state s.

A value function is calculated for every state that the agent encounters during train-
ing. When an agent follows policy 7, the average returns of all the states following
state s is that specific state’s v, (s), and the separate averages for each action taken

in every state will converge to ¢.(s,a).

Furthermore, value functions define a partial order of policies where policy 7 is better
than policy #’ if the value returned by policy 7 is greater than the value returned by
policy 7’ [92]. However, the optimal policy is not found before the optimal return

from the value functions are calculated.

The optimal return function, known as the Bellman Equation, is used to find the
optimal return from the value functions, which in turn will reveal the optimal policy
[92]. The Bellman Equation finds the optimal value of a state following a policy

by calculating the value of a state based on the value of all its possible successor

40 Chapter 4 Mathematical Framework

states following the policy w. The Bellman Equation for a state can be expressed as

follows.

vn(s) =D m(a] s) Z d_p(s' 1 | s, a)[r + yua(s)], (4.8)

a

Vaec A, s€ S, andr € R

The Bellman Equation is different from the state-value Equation 4.6 because it cal-
culates the return from all possible future states-action combinations, weighting each
by its probability of occurring. It returns the expected value of a state by computing
the probability p for each triplet of ', a, and r and weighting the quantities in the
brackets by its probability.

Therefore, the optimal state-value function v,(s) is found using the Bellman equation
without reference to any specific policy [92]. This function is referred to as the

Bellman Optimality equation and is expressed as follows.

U.(s) = max Z > (s s, a)[r +yvu.(s')] (4.9)

T

Where the Bellman Optimality equation is written in a form without reference to any
specific policy because it expresses the fact that the value of a state under an optimal
policy must equal the expected reward for the best action from that state(max,).
v, is calculated for every state and outputs the maximum return received from the

environment.

The Bellman Optimality equation is also used to find the optimal action-value func-

tion ¢, which is expressed as follows.

gu(s,0) = 3> p(s',7 | s, 0)[r +ymax q.(s',)] (4.10)

The Bellman Optimality equation for action-value outputs the expected return from

taking the best action a in state s and following an optimal policy thereafter. It is

the maximum action-value function over all policies.

When the optimal value functions are calculated for all combinations of states and
actions, the optimal policy 7, can be found by maximizing over ¢, in terms of v,, as

follows:

m(a | s) = argmax E[ris1 + Y0i(Se41) | st = a, 0, =al, Vs e S (4.11)

4.2 Markov Decision Process 41

Where argmax is an operation that finds the argument that gives the maximum

value of the target function.

4.2.5 Solving an MDP

A Markov Decision Process is considered solved when at least one optimal policy is
found. There can be several optimal policies as long as they have the same return
and share the same optimal state-value function v, and optimal action-value function
g«- However, actual optimal policies are rare in practice because they can only
be found when the environment satisfies the Markov Property (Equation 4.2) and
there is enough enough computational resources to calculate the Bellman Optimality
equation for every state and action combination [92]. The computational burden of
reinforcement learning is referred to as the curse of dimensionality, because the
computational requirements grow exponentially with the number of state variables
[92]. For the game of Backgammon, the environment can be accurately modeled with
the Markov Property, but solving the Bellman Optimality equation for v, could take

hundreds of years with today’s computers since there are 10%° states [92].

Therefore, settling for approximate value functions to solve the task is common
in reinforcement learning. By approximation optimal value functions, the agent is
able to put more effort into learning to make good decisions for more frequently
encountered states at the expense of less effort spent on infrequently encountered
states. There may be several states with such low probability of occurring that
selecting sub-optimal actions for them has little impact on the return received by
the agent. Function approximation also makes it possible for the agent to generalize
its response to states it has not encountered during training. Generalization is one of
the key properties that distinguishes reinforcement learning from other approaches

to approximately solve Markov Decision Processes [92].

Function approximation generalize the value-estimation when it is computational
impossible for an agent to memorize the value of every possible state and state-action
combination. This is often true for real-life environments where the number of state
and action combinations can be very high or continuous. Function approximation
identifies and utilizes features of states to generalize the value-estimation of states
with similar features. This approach will never find the true value of a state nor the
true optimal policy, but it is able to estimate a near-optimal policy that will reach

similar results to the true optimal policy with much less computational effort.

42 Chapter 4 Mathematical Framework

There are many methods for computing function approximators. However, artificial
neural networks have become widely accepted as the best approach due to their
non-linear function approximation possibilities that does not require hand-picked

features or domain knowledge like most linear approaches would have.

4.3 Deep Reinforcement Learning

Deep reinforcement learning is when the policy is developed by an agent utilizing a
parameterized artificial neural network with one or more hidden layers as a function
approximator. The purpose of the artificial neural network is to function approxi-
mate state and action-value functions and to provide generalization for responses to
unseen states. The artificial neural network functions as a policy by finding patterns
in links between the state signals, hyper-parameters of the state signals, and actions
that will generate the highest rewards. Figure 4.2 shows how a deep reinforcement
learning agent interacts with an environment using a artificial neural network as its

function approximator.

4.3 Deep Reinforcement Learning 43

Agent
Input Layer ~ Hidden Layer(s) Output Layer

e —

/
State
—

Policy
I1(60, a)

Estimated parameters (Weights and Biases)
0

Tt

St

Environment

Figure 4.2: Deep Reinforcement Learning Agent

Every deep reinforcement learning agent uses at least one artificial neural network
for developing its policy, where the network is either categorized as a critic or an

actor.

A critic returns the expected value of the return for a given state and action com-
bination. An agent that use a critic approximator relies on an indirect policy rep-
resentation, and are considered value-based because they use the approximator to
represent the state-value and/or the action-value. In general, critic agents function
well with environments that have discrete action spaces. However, they can become

computationally expensive when the action space is continuous.

An actor is better with a continuous action space, because it only returns the action
that will maximize the return in a given state. Actors are considered policy-based
because they rely on a direct policy representation that’s either deterministic or
stochastic. In general, actor agents are simpler and their training algorithms can be

sensitive to noisy measurements and may converge on a local minimum.

Ay

44 Chapter 4 Mathematical Framework

Furthermore, agents that are able to use both actor and critic approximators have
been developed. These actor-critic agents function with the actor learning the best
action to select based on the feedback from the critic. Simultaneously, the critic
learns the value function from the rewards so that it can criticize the choices of
the actor. In general, actor-critic agents can handle both discrete and continuous
action spaces. However, actor-critic agent is not explained further because the use
of multiple artificial neural networks as function approximators is not required for

this project.

4.3.1 Artificial Neural Networks

An artificial neural networks consist of a network of layers with interconnected op-
erations referred to as neurons. The network must have one input layer, one output
layer, and one or more layers in between that are commonly referred to as hidden
layers. The amount of hidden layers depends on the tasks that will be solved. It
is generally considered that one hidden layer offers a near universal approximation
property for reinforcement learning tasks. However, experience show that multiple

hidden layers can make this universal approximation property more efficient [92].

Jeff Heaton’s textbook “Introduction to neural networks with Java” [93] is often
referred to when answering questions regarding the architecture of artificial neural
networks. It states that if there are no hidden layers, the network is only capable
of representing separable linear functions and decisions. However, a network with
one hidden layer can approximate any function that contains a continuous mapping
from one finite space to another. Moreover, a network with two hidden layers can
represent an arbitrary decision boundary to an arbitrary accuracy with rational
activation functions and can approximate any smooth mapping to any accuracy.
Therefore, there is no theoretical reason to use networks with more than two hidden

layers for reinforcement learning tasks.

In deep reinforcement learning, the input for the neurons in the input layer rep-
resents the state signals from the environment, while the neurons of output layer
represents the actions of the environment. The neurons in the hidden layers rep-
resents hyper-parameters or further abstract representations of features from the
neurons in the input layer, where each successive hidden layer compute increasingly
abstract representations of these features. Each neuron in the hidden layers defines
one specific feature that contributes to a hierarchical representation of the overall

input-output functions of the network [92].

4.3 Deep Reinforcement Learning 45

Therefore, the hidden layers may have more or less neurons than the input layer
depending on the complexity of the state signals and the level of abstraction the
user wants to achieve. The amount of neurons in each hidden layer is subject to
trial and error and can vary greatly from tasks to tasks. It is generally considered
that the number of neurons should be kept as low as possible. However, too few
neurons can result in under-fitting where the model is not able to learn enough hyper-
parameters to generalize its response accurately. Furthermore, too many neurons is
computational expensive and can result in over-fitting where the network is able to
memorize the training data to perfection and will have a reduced accuracy when
encountering unseen states.

Figure 4.3 below shows an example of a neural net with two hidden layers.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

50‘ 3 hgl)

/ /x\ ‘s o
Y

B T —

Figure 4.3: An example of a artificial neural network with two hidden layers

The connections between neurons in the network have a weight associated with
it. Depending on the network’s objective, the output value of a neuron is either
amplified, suppressed, or inverted by this weight before serving as the input for the
succeeding neuron. The succeeding neuron has connections with all the neurons
in the previous layer, and must compute a weighted sum of all its input values.
Furthermore, neurons apply a nonlinear function that converts the real value of the
weighted sum into a number in a range between zero and one to produce the neuron’s
output signal. This nonlinear function is commonly referred to as an activation
function, and the Sigmoid function or the rectified linear activation function are
examples of activation functions. Calculating a neuron’s activation can be expressed

as follows.

MY = ReLU((wy * so) + (w2 % 51)...(wy * $,)) (4.12)

46 Chapter 4 Mathematical Framework

Where ReLU is a rectified linear activation function, hgl) refers to the activation
value of the initial hidden neuron in the first hidden layer, and w; is the weight of
the connection applied to the activation value of the first neuron in the previous

layer sq.

The output of a neuron’s activation function is the activation value of that neuron,
which is the output signal sent to the succeeding connected neurons. The activation
value determines how much a neuron is considered in the process. If the activation
value is closer to one, the neuron is considered activated because a higher value is
likely to activate subsequent connected neurons. If the activation value is closer to
0, the neuron is considered deactivated because its output signal is not likely to
activate subsequent neurons. The activation value of neurons in the output layer
represents the likelihood that the agent will choose a specific action. However, the
activation function in the output layer may differ from that of the hidden layers.
In regression problems, the activation function of an output layer is linear because
the values are unbounded, whereas in classification problems a softmax or sigmoid

function is sufficient.

In the hidden layers, a bias value is added to the weighted sum of every neuron to
adjust the value in a favored direction. The purpose of the bias is to ensure that
neurons in the hidden layer only activate when its weighted sum is within a given
range. This feature allows neurons to activate if a specific parameter is in the correct

range or to ignore it if it is not in the correct range.

Mathematically, all activation values are organized as a column of a vector ¢, and all
weights and biases are organized in a matrix . Therefore, the state-value function

is the product of ¢ with respect to €, and can be expressed as follows.

ui(s) = v(e(s) | 01) (4.13)

Where ¢(s) is a vector of the activation values of state s and 6; is a transpose matrix
of all the weights applied to these features. Furthermore, the action-value function

can be expressed as follows.

q(st,a) = q(¢(s, a) | 0) (4.14)

Where all activation values ¢ and weights 6 related to selecting an action in a state

are combined.

4.4 Challenges with Reinforcement Learning 47

During training, the weights and biases are updated after each iteration through the
network to strengthen the connections between neurons that generate a good policy.
Weights and biases are essentially updated to produce activation values that result
in actions that yield high rewards in every given state. Backward propagation of
errors, commonly referred to as backpropagation, is the process of updating these
weights and biases by calculating the gradient of a loss function with respect to all
the weights or biases in the network. Proper tuning of the weights and biases reduces
the error rates and makes the model reliable by increasing its generalization. The
weights and biases 0 are updated by minimizing the difference between the previously
received reward and the new reward received by performing the action a in state s.
This loss function is known as the temporal difference error 9, and is expressed as

follows.

0 4= 1+ ymaxq(d(sei1,a) | 0;) —a(é(si,a) [6:) (4.15)

Where previously known values of 6 are referred to as =, and ¢ in 6; refers to a
specific position in the transpose matrix of weights. Following the calculation of §,

f can be updated as a gradient descent as follows:

Orir = 0, + a0 — q(d(s, a) | 61)) Do, q(4(s, @) | 61) (4.16)

Where 0,1 are the updated weights, ¢; is the temporal difference error of the current
time step, and « is a constant step-size parameter for the gradient descent commonly
referred to as the learning rate. The learning rate controls how much to change the

model in response to the estimated error every time the model weights are updated.

4.4 Challenges with Reinforcement Learning

The adoption of reinforcement learning for real-world applications is slow. Current
methods have proven their abilities in finding high performing policies. However,
utilizing them for real-world applications is generally been viewed as difficult or

impractical.

Dulac-Arnold et al. [94] paper "Challenges of real-world reinforcement learning” high-
lights several challenges of real-world application of reinforcement learning systems.

The challenges are explained below.

48

Chapter 4 Mathematical Framework

Reinforcement agents should not be trained directly on a real system because
exploratory actions may damage the real system or violate safety constraints.

Therefore, a theoretical training environment is necessary.

The transfer of an agent trained on a theoretical training environment to a real
system environment often comes with a loss of performance due to unknown

delays or unexpected faults of the real system.

A significant loss of performance is expected when the real system is partially
observable, meaning that a comprehensive state space is not available. For
example, on a physical system where humans are interacting, there likely no
sensors that can accurately signal wear and tear on motors or the mental state

of the users.

Furthermore, the high dimensionality of a real system’s state and action space

makes the formulation of an adequate training environment challenging.

In systems where inference must be achieved in real-time, the control frequency
of the system dictates time available for analyzing the state signals and select-

ing the best action by the agent.

The formulation of the reward function is a challenge because it is the only
motivation that guides the behavior of an agent to solve the task. Therefore,
the efficiency of solving the task with reinforcement learning relies on the
formulation of the reward function. Furthermore, the reward must also guide
the behavior without violating any constraints expected from the real system
in the model-free training environment. Moreover, If the tasks has multiple
objectives the formulation of the reward function becomes extra challenging
because the agent must be motivated to achieve all objectives simultaneously

at every time step.

It is very challenging to explain the true motivation behind the agent’s policies
on a human-level to system operators who have the responsibility of the real
system. This is especially true for deep reinforcement learning policies because
it is an on-going field of research regarding how to identify the actual hyper-

parameters of the hidden-layers in artificial neural networks.

Chapter

State of the Art

This chapter focuses on recent literature in the field of applied reinforcement learn-
ing. The literature reviewed in this Chapter has been discovered using the review
process explained in Chapter 3. However, the literature has been further surveyed
and analyzed to discuss theories, hypotheses, methods, and results that are applica-

ble to this project.

The main focus of this process has been on the applicability of relevant methods,
as no literature was found that would satisfy the research questions. Therefore,
the advantages and drawbacks of specific methods from the relevant literature are
highlighted together with the justification for selecting the reinforcement learning

framework.

5.1 Reinforcement Learning and Construction problems

The review process discovered three articles in the field of construction that were
identified as relevant to this project, as they contained methods from which this

project could benefit. These articles are reviewed in the following subsections.

5.1.1 Optimizing Scheduling of Construction Tasks

Soman and Molina-Solana [95] paper "Automating look-ahead schedule generation
for construction using linked-data based constraint checking and reinforcement learn-
ing” presents a reinforcement learning framework for generating conflict-free look-

ahead schedules for construction tasks. The purpose of their framework is to act

50 Chapter 5 State of the Art

as a decision support tool during look-ahead planning meetings and to assist con-
struction professionals to efficiently plan construction tasks faster than conventional
methods. Their article was published in Automation in Construction Volume 132,
2022.

Reinforcement learning was selected due to its applicability in solving highly
constrained optimization problems. Their reinforcement learning environment is
episodic, and each episode is initialized by presenting the agent with a list of con-
struction tasks, available resources, and task constraints. The goal of the agent is

to schedule all the tasks without violating the constraints while minimizing costs.

Tasks represent operations that must be performed sequentially to complete con-
struction processes. Each task requires time and resources to complete. The state
space of the environment represents tasks that are completed, in progress, or not yet
scheduled, and the resources required to complete the individual tasks. The action

space represents the scheduling of a set of possible tasks for the following state.

The agent is rewarded based on three different metrics: if the schedule satisfies the
tasks’ constraints, the completion of tasks, and the total cost of resources.

The reward for satisfying the constraints of a task is zero. However, if a constraint is
violated, the agent receives a negative number greater than any achievable positive
episodic return. This enables the agent to quickly learn to avoid making schedules
where constraints are violated.

The reward for the completion of tasks is a positive number associated with the
completion or progress of the task. This reward motivates the agent to schedule
tasks so that they are completed with the greatest efficiency.

The total cost reward represents the total cost of resources associated with a task.
This includes the costs of mobilizing or demobilizing a task. Therefore, the agent is

penalized for rescheduling tasks.

The paper uses a Q-learning agent to schedule the tasks. This type of agent uses
a variation of the action-value equation 4.7 to calculate the value of performing an
action in a given state. This value is stored in a matrix that contains the value of
all state-action combinations encountered. During training, the agent updates the
values for state-action combinations that it encounters on the basis of the state-action
combinations’ previous values. Following training, the agent will always select the
state-action combination with the highest value when encountering states on which
it has been trained. However, this agent does not provide generalization for unseen
states and can therefore become unreliable in states that it has not encountered

several times during training.

5.1 Reinforcement Learning and Construction problems 51

The results of this article found that the methodology could produce meaningful
schedules in seconds, which proved its usefulness in situations where manual methods
are too time consuming. Moreover, the framework was proven to be scalable by being
able to produce results of similar quality when the number of tasks was increased.
However, the results showed that the output of the approach was not as accurate as
that of the manual critical path method. This is probably due to the choice of agent.
A value-based deep reinforcement learning agent would likely produce more efficient
results due to its function approximating capabilities with weights and biases that

are able to examine more features of every state.

The main method extracted from this article is the reward method because the
rewards motivate the agent to schedule tasks in an order that does not violate
constraints, minimize costs, and maximize completion rates. This is a great example

of how multiple rewards can be used to achieve multiple objectives.

5.1.2 Optimizing fulfillment of Earthmoving Tasks

Shitole et al. [90] article "Optimizing earth moving operations via reinforcement
learning” presents a reinforcement learning framework to optimize the loading, trans-
port, and unloading of earth materials with earthmoving machines. Their approach
combines discrete event simulation (DES) of the earthwork process with reinforce-
ment learning to enable optimization of the DES. This article was published in

proceedings of Inform’s 2019 Winter Simulation Conference.

The authors justify the use of reinforcement learning by defining the earthwork pro-
cess as a collection of recurring activities carried out toward an end goal. Therefore,
a complete overview of all construction activities at a given time defines a Markov
state, while the progress deduced from the construction activities defines a return
to be optimized. Furthermore, the control variables used to control construction
activities define action variables, and the different settings of these control variables

correspond to different policies that govern the efficiency of the operation.

The earthwork process in this framework represents the operations required to load
and transport material from a loading area to a dump area by a fleet of trucks. They
applied this framework to a case study example of two excavators and five dump
trucks, where the excavators are operating at two different load sites within the same
general loading area and where the dump site is bound by an upper limit on the
number of trucks that can unload simultaneously. The unloaded trucks return to

the loading area via a common return route.

52 Chapter 5 State of the Art

The purpose of the agent is to learn the most efficient routing strategy as its policy.
However, the action space consists of only two actions, which are route truck to
excavator A or route truck to excavator B. This limits the agent’s impact on solv-
ing the task and does not showcase the full potential of the reinforcement learning
approach. Therefore, the discrete event simulation is likely more rule-based than

dynamic.

The environment is episodic and terminates when a specified amount of material
is delivered to the dump site. They decided that 200 episodes were the maximum
number of iterations for training the model. However, it is not clear why this number
was selected as it could be a limiting factor in the outcome of the policy. Further-
more, each episode began with the same initial state in which the amount of material

delivered to the dumpsite was set equal to zero.

They trained and evaluated the framework in slightly different versions of the envi-
ronment to compare the performance of the policies learned from different scenarios.
However, this step could be avoided by making the environment more dynamic by
substituting static values with semi-stochastic values, especially the initial state of

the dumpsite and the number of machines in the scenario.

The main method extracted from this article is the interaction between the DES
and the reinforcement learning framework. This approach enables the reinforce-
ment learning environment to simulate recurring activities associated with different
construction activities without involving the action space, which reduces the compu-
tational burden of the model and ensures the consistency of dependent construction

activities.

5.1.3 Energy Management of Construction Machines

Zhang et al. [91] article "Reinforcement learning-based intelligent energy man-
agement architecture for hybrid construction machinery” presents a reinforcement
learning-based methodology to improve the energy management of operating hy-
brid construction machines. The purpose of this energy management model is to
minimize fuel consumption and emissions by allocating energy to auxiliary power
sources that drive the walking system and actuators most efficiently. The article

was published in Applied Energy volume 275 on the first of October in 2020.

The reinforcement learning approach was selected due to its dynamic self-learning
and adaptive abilities in unknown environments to assess complex and variable work-

ing environments of construction machines. The authors agree with the findings of

5.1 Reinforcement Learning and Construction problems 53

Wang et al. [96] that generic energy management systems cannot be implemented
in hybrid construction machines due to the significant differences in the working

environment and working conditions.

Their reinforcement learning environment represents the operating characteristics
of a hybrid construction machine and its working conditions. Relevant operating
characteristics are how the remaining energy capacity of the hybrid construction
machine’s battery is limited by a maximum and minimum value to avoid overcharge
and overdischarge. However, the model does not consider the cycle life of the battery

by limiting the frequency of charging and discharging behavior.

Moreover, a virtual-world model designed to approximate a real-world environment
by subdividing and sampling different cyclical working conditions for the machine
to operate in, is introduced. However, the working conditions in this virtual-world
model are cyclical and follow a pattern specific to a case study. To increase the ver-
satility and adaptability of the model, a stochastic approach should be implemented
to select the next working conditions to further assess the complex and variable

working environments of construction machines.

The reinforcement learning agent used in this framework is a combination of DYNA-
learning, explained in Robert Sutton’s book "Reinforcement learning: An Introduc-
tion” [92], and Q-learning where a variation of equation 4.7 is used to update the
probability of moving into the next state. The results indicate that their DYNA-Q
agent outperforms standard Q-learning and rule-based generic energy management

systems in terms of adaptability, real-time performance, and optimality.

They verify their reinforcement model by applying it to a real-world example where
25% of the real-world data samples are used to define the virtual-world model and
the remaining 75% are used for performance verification. They applied their trained
agent to control a simulation model of a hybrid construction machine in Matlab’s
Simulink where the initial state of charge for the hybrid construction machine’s bat-
tery storage was set to different values to explore its adaptability. The outcome of
this verification was that their DYNA-Q approach was closer to a global optimum
than rule-based strategies. This verification process on a simulation model in Mat-
lab’s Simulink is relevant for this project, as this approach is able to demonstrate how

a reinforcement learning agent can be adapted to interact with real-world systems.

The main method extracted from this paper is the virtual-world model that gener-

ates construction scenarios for the hybrid construction machine. This approach is

54 Chapter 5 State of the Art

relevant for this project because it generates unique training episodes that allow the

reinforcement learning agent to learn and adapt its response to various scenarios.

5.2 Reinforcement learning and Battery problems

There were several articles related to reinforcement learning and battery problems.
However, many of these articles had a similar approach or did not offer any relevant
methods for this project. Therefore, the five articles reviewed below were identified as

the most relevant in the review process due to their unique and applicable methods.

5.2.1 Battery Charging Costs

Chang et al. [97] article "Control of battery charging based on reinforcement learn-
ing and long short-term memory networks” presents a novel reinforcement learning
methodology to solve the task of minimizing charging costs for a BESS in an elec-
tricity market with time-varying electricity prices. The article was published in

Computers and Electrical Engineering volume 85, 2020.

The reinforcement learning approach was selected because of the model-free appli-
cability that does not limit the method to any specific energy storage system and
the adaptive capability in updating the decision-making scheme as new data are
presented to it. Their model combines a reinforcement learning framework with a
data-driven forecasting technique based on a long short-term memory network to

predict electricity prices.

The action space consists of charging actions that specify how much a battery should
be charged at each time step. The reward function represents the cost associated
with charging and the increase in the state of charge in relation to its maximum

state of charge. Therefore, discharging is not possible.

They trained their framework on baseline data estimated from historical energy
prices rather than using direct historical electricity prices to improve the efficiency of
the model. However, this limits the framework’s ability to make good decisions when
encountering an electricity price on which it has not been trained. Furthermore, they
used a Q-learning agent that does not offer any generalization for the response to
unseen electricity prices. Therefore, direct historical prices should have been used
in combination with a value-based deep reinforcement learning agent to improve the

response and efficiency of the framework.

5.2 Reinforcement learning and Battery problems 55

Their approach was validated by applying the trained agent in an environment that
was adapted to control a simulation model of a battery in Matlab’s Simulink. The
results showed that their framework performed better than two other model-free
controller techniques, which were fuzzy control and constant charging. However,
these other controllers do not seem to be comparable because their results do not

show any response to varying battery prices.

The main method extracted from this article is the process of validating a trained
agent on an adapted environment that controls a battery simulation model in Mat-
lab’s Simulink, as this demonstrates the applicability of the reinforcement learning

framework in interacting with real-world systems.

5.2.2 Deep Reinforcement Learning for Optimal Battery Arbitrage

Kwon and Zhu [98] article titled "Reinforcement Learning Based Optimal Battery
Control Under Cycle-based Degradation Cost” presents a reinforcement learning
framework that finds the optimal arbitrage control of battery with time-varying
electricity prices while reducing battery degradation. The article is currently being
revised for IEEE’s Transactions on Smart Grid, but was uploaded to ArXiv on
February 17th, 2022.

Deep reinforcement learning was selected because of its ability to adapt to uncer-
tainty in future information and its model-free features that do not require exact

system dynamics and can perform well with uncertain statistical information.

Their state space includes the state of charge, the price of electricity, and several
state-of-charge switching points to keep track of the battery’s depth of discharge.
These switching point state signals are used in a degradation cost calculation that
affects the rewards, in an attempt to optimize the cycle life of the battery model.
However, these switching points can be integrated as rule-based decisions to ensure
that they are not violated unless certain conditions are met. This would increase

the performance of the model due to fewer state signals.

The action space consists of multiple discrete actions that represent the intensity of
charging or discharging. However, the authors state that the framework also works
with a continuous version of this action space. The discrete actions are normalized to
arange between —1 and 1 where actions that are greater than zero represent charging
and actions that are lesser than zero represent discharging. This approach limits
the applicability of the model to real-world applications because actions represent

different intensities rather than actual control of a battery.

56 Chapter 5 State of the Art

The framework includes a Deep Q-Network agent that utilizes a neural network with
two hidden layers to function approximate the optimal action-value function equation
4.10. The ReLU-function is used as the activation function, which is explained in
section 4.3.1. To train the network, a gradient-based optimization called Adam is
used, which is explained in section 6.7. They also used the Epsilon-greedy method

for exploration as explained in section 4.1.

The results conclude that the framework is more effective than existing linearized
approximation approaches with respect to cycle-based degradation. However, com-
paring the performance of this framework to a different non-linear programming

effort would be more applicable.

The main method extracted from this paper is the configuration of the Deep Q-
Network agent because this article demonstrates how the agent can handle multiple

state signals, a continuous action space, and the formation of subgoals.

5.2.3 Deep Reinforcement Learning for Optimal Control of lithium-ion

based Batteries

Sui and Song’s [99] article "A Multi-Agent Reinforcement Learning Framework for
Lithium-ion Battery Scheduling Problems” presents a deep reinforcement framework
for solving battery scheduling problems that can be adapted to various battery

models and applications. The article was published in Energies volume 83, 2020.

The deep reinforcement learning approach was selected because of reinforcement
learning’s model-free ability to identify relevant system parameters without pre-
defining them, the artificial neural network’s ability to adapt to new cases, and its

ability for real-world deployment with complicated use cases.

The action space of the framework consists of three actions: charge, discharge, and
wait. These actions are conditional and are only available for the agent to perform

in situations that can produce beneficial outcomes for the agent.

Their environment theoretically calculates the impact of actions on a lithium-ion
battery system, and battery-specific parameters and dynamics are identified and
isolated by the weights and biases of the artificial neural network of a value-based
deep reinforcement learning agent. Therefore, the battery-specific parameters are
represented as the hyper-parameters in the hidden layers based on a state of charge

state signal and a battery cell temperature state signal.

5.2 Reinforcement learning and Battery problems 57

The results demonstrated that this framework was able to approximate optimized
results for battery system without requiring information on the battery’s electrical
model or its exact charge/discharge current. Therefore, it was able to solve complex
tasks without solving complicated analytical equations. However, only three appli-
cations are shown in the paper. Therefore, specific applications like arbitrage that
require substantial changes to the reward function and state space of the environ-

ment are not proven for the model.

The main method extracted from this article is the action space because it can be
applied to any battery system by relying on the artificial neural network to discover

system-specific parameters.

5.2.4 Deep Reinforcement Learning for Optimal Sizing of Battery

Li et al. [100] article "Battery Optimal Sizing under a Synergistic Framework with
DQN Based Power Managements for the Fuel Cell Hybrid Powertrain” presents a
synergistic framework that utilizes reinforcement learning to estimate the optimal
capacity for a battery system in hybrid fuel cell vehicles. This article was published

in IEEE Transactions on Transportation Electrification in 2021.

The reinforcement learning approach was selected because of its ability to quickly
produce near-optimal performance compared to global optimization algorithms and

its model-free applicability for systems where global information is not available.

Their synergistic framework combines a sizing optimization space with a deep re-
inforcement learning model to solve the sizing task, where the sizing optimization
space produces battery candidates that the reinforcement learning model tests on
the power management of a simulated hybrid vehicle. The outcome of the model
forms the basis for the sizing optimization space to increase or decrease the capacity

of the next battery candidate.

The optimal capacity is found by a comprehensive analysis of the equivalent hydro-
gen cost, battery operational cost, and fuel cell operational cost of each candidate.

Therefore, finding the optimal capacity also finds the optimal power management
for the hybrid vehicle.

This approach trains a Deep Q-Network agent on each battery candidate. However,
if the agent is able to produce a robust policy on an initial training, the consecutive
training can be avoided by testing the different candidates on a pretrained model

and comparing the results to the initial candidate the agent trained on.

58 Chapter 5 State of the Art

The main method extracted from this article is the integration of a sizing optimiza-
tion space because this method expands the possible real-world applications for a
reinforcement learning framework by using it as a supporting application within a

larger framework.

5.2.5 Deep Reinforcement Learning for fleet management of multiple

batteries

Wang et al. [101] article "Reinforcement Learning for Real-time Pricing and Schedul-
ing Control in EV Charging Stations” presents a reinforcement learning framework
for an electric vehicle charging station, where the goal of the agent is to maximize
profits by minimizing the cost of electricity. The article was published in IEEE

Transactions on Industrial Informatics Volume 17, 2019.

The reinforcement learning approach was selected because of its model-free appli-
cability, where decisions do not rely on any assumed stochastic model of uncertain

future events, and where decisions can be made exclusively based on past events.

The framework simulates the operation of an electric vehicle charging station where
vehicles arrive and depart at random times. Therefore, the action space and the
state space are continuous to adapt to vehicles at the charging station at any given
time step. The state space consists of the residual charging demand and the parking
time of the vehicles. The action space consists of the charging price and the charging

rate of every vehicle.

However, they found that it was sufficient to consider the total charging rates of all
vehicles at the charging station at a given time rather than the individual vehicle’s
charging rate. This dramatically reduces the action spaces without compromising
the results. To reduce the state space, they could have done the same to the residual

charging demand for every vehicle at the charging station at a given time.

The main task of the framework is to fulfill the charging demand for each vehicle
before it departs. This task is achieved conditionally by allocating the available
capacity of the charging station proportionally to the load demand from the vehicles
as they arrive. Furthermore, the reward is designed to have the agent maximize the
profit of the charging station, which is based on the hourly price of electricity and
revenues received from the individual charging vehicles. Therefore, the framework

is able to achieve two goals.

5.2 Reinforcement learning and Battery problems 59

They developed their own agent based on the SARSA-algorithm. With this agent,
they stated that they achieved between 20.2% to 138.5% higher charging-station
profits than representative benchmark algorithms. However, these profits margins

rely heavily on how the revenue from charging vehicles is calculated.

The main methods extracted from this paper are the optimization of the total charg-
ing rates for all vehicles instead of the individual vehicle’s charging rate at a given
time step because this can greatly increase the performance of a reinforcement learn-

ing model by reducing the action and state spaces.

Chapter

Methodology

This chapter outlines the structure and methods of a deep reinforcement learning
framework. The purpose of this framework is to generate optimized schedules for
charging and discharging a BESS to efficiently supply energy to electric earthmoving
machines. The framework is designed to optimize earthwork processes with three
different optimization goals: maximizing the workloads of electric earthmoving ma-
chines, minimizing the time required to complete a productivity goal, and minimizing

the costs of electricity while completing a productivity goal.

The fundamental component of this framework is a reinforcement learning environ-
ment that simulates the stochastic nature of unique earthwork scenarios with various
electric earthmoving machines without relying on external data sets. The environ-
ment contains several variables that earthwork professionals can specify to simulate
user-specific scenarios and increase the level of detail. The assumptions, limitations,

and rationale are highlighted as they become relevant.

Furthermore, the framework is developed using the object-oriented programming
language Python because of its flexibility, interoperability, and access to relevant
programming libraries and examples. Moreover, developing this project in Python
makes it more accessible to other data scientists, as a worldwide survey of 19,717
data professionals found that 93% of data scientists used Python [102]. The full
code for this project can be found in the Appendix.

6.1 Framework Introduction

This framework allows for the optimization of electric earthwork scenarios that in-

volve excavation, filling, loading, and hauling because these are the most common

62 Chapter 6 Methodology

earthwork processes found in the literature [6]. The framework is intended to assist
earthwork professionals in decision-making processes regarding fleet configuration
and scheduling the charging of electric earthmoving machines to increase work ef-
ficiency. Furthermore, the framework enables the user to investigate how different

earthwork scenarios affect the expected productivity.

The framework simulates the interactions between a BESS and a number of electric
excavators, loaders, and trucks, where the BESS is an intermediate energy supply
source connected to the grid with a static power supply. A visualization of an

optimizable earthwork scenario is provided in Figure 6.1.

Figure 6.1: Visualization of Farthwork Scenario

The scenario in Figure 6.1 shows two trucks, one excavator, one loader, and a BESS.
However, the user can specify the fleet configuration by setting the number and type

of earthwork machine to be simulated.

To develop a unique earthwork scenario, the user must provide a set of input values
to account for factors that affect the energy supply and energy consumption of
earthmoving machines, which was discussed in Chapter 3. The input values are

presented below.

BESS Factors

e State of charge at the beginning of the earthwork process (Bt]jc)

e Maximum energy capacity in kWh (BM ‘”C“P)

6.1 Framework Introduction 63

e Minimum energy capacity in kWh (BM inCap)

e Maximum charging power in kW (B?)

Maximum discharging power in kW (per cable) (BPT)

Number of charging cables available for simultaneous charging.

Charging efficiency in percentage (Bgj)

Discharging efficiency in percentage (BUD)

Machine Factors

e State of charge at the beginning of the earthwork process (M (z)f¢)

e Maximum energy capacity in kWh (M (z)MaxCap)

e Minimum energy capacity in kWh (M (x)Mincap)

e Maximum Charging Power in kW (M (x)¢F)

7)

e Charging efficiency in percentage (M (z);

v)

e Discharging efficiency in percentage (M (x),

e Maximum output power in kW (M (x)Fower)
e Idling power in kW (M (x)%e)
3

e Attachment specification (e.g. bucket size or loading capacity) in m

e Cycle time (e.g. digging, excavating, loading, hauling, etc.) in percentage of

hour.

e Average hauling speed (for trucks) in km/t

Where in M (z) refers to a specific machine.

Operational Factors

e Operator skill level in percentage
e Operational efficiency (productivity level to account for site layout)

e Fleet Configuration (number of machine types)

64 Chapter 6 Methodology

e Work dependencies (optional)
Soil Factors

e Soil types

Volume of soil to be excavated in m?

Layer location of soil types

Soil power factors for machines

Soil fill factor

e Maximum volume of soil that can stockpiled on site in m?

Distance to dump site in km

These input values can be collected from interviews with a site manager, machine
reports, or machine handbooks. However, if certain values are unknown or under-
specified, the user can set a range determined by the literature or experience-based
estimates because the framework can handle uncertainties and generalize its re-

sponse. The user can input these values into a specified section of the Python code.

The output values generated by the framework are curated to provide earthwork pro-
fessionals with enough information to make high-quality decisions to optimize future
earthwork scenarios. The output information for optimized scenarios is provided to
the user as a CSV file and graphs that represent a timeline of optimized decisions.

The output contains the following information for each run of the simulation.

Output Values

e Energy consumption and charge received by individual machines
e Charging and discharging of the BESS

e Number of cycles performed by individual machine

e Amount of soil moved to dump site

e Total amount of soil excavated

e Total amount of soil filled

e Detailed and total cost of electricity

6.1 Framework Introduction 65

e Comprehensive time schedule of activities

e The total duration of the earthwork activity

The quality of the output information is limited by the quality of the input values.
Since there is a low quantity and quality detailing the relationship between electric
earthmoving machines and energy consumption, ranges of stochastic values are used
to demonstrate the impact of certain factors on the energy consumption of machine.
These values can be substituted for more accurate values as they become available

in the future.

6.1.1 Environment Type and Time Steps

The framework environment consists of a state space, an action space, and a re-
warding system that are configured to enable current and future value-based deep

reinforcement learning agents to interact with it.

The environment is episodic, where each episode represents a working day or a user-
specified earthwork period. The episodic approach is chosen because every earthwork
process has a beginning and an end that can be represented with an initial and final
time step. A continuous approach would not be suitable because an earthwork

process does not continue indefinitely after its initial time step.

The simulation time steps are dynamic and represent the successful completion of an
action. However, the time steps are limited to one simulated hour. Therefore, any
action will be terminated if the simulation reaches the next simulated hour while
an action is active. Furthermore, the simulated hourly time steps are fractionated
by a user-specified numerator to increase the level of detail for intrahourly energy

transfer calculations.

This time-based approach allows the agent to perform new actions within the sim-
ulated hour if the previous action was completed before the full hour is simulated.
In addition, this approach allows the agent to make new decisions as the price
of electricity is updated, since most dynamic tariff systems are generally updated
hourly [103].

6.1.2 Energy Transfer Calculations

This framework simulates electrical energy transfers between battery systems as

the product of a power rating (kW), an intrahourly timestep, and a round-trip

66 Chapter 6 Methodology

efficiency. This approach may not reflect the detailed dynamics of charging and
discharging a specific type of BESS or electric earthmoving machine, but it does
enable the agent to make high-quality decisions and generalize its response to all
types of battery systems. Furthermore, it allows earthwork professionals to use the
framework with the technical information available from manufacturers of electric

earthmoving machines and BESS.

This approach was selected based on a study by Rosewater et al. for Sandia Na-
tional Laboratories [104] that compares multiple representations of battery models
in linear and non-linear programming. By gaining access and comparing the results
of their models, it was revealed that the linear energy reservoir model, where the
battery capacity was measured in kW h, deviated by less than 5% from a non-linear
concentration-based model, where the battery capacity was measured in units of the
concentration (mol/L) of the active materials of the electrodes. Furthermore, the
conclusion of this study states that the linear energy reservoir is more appropriate
for optimizing systems where multiple battery systems interact, which is the case for
this project. Therefore, the energy transfer in this framework will be represented in
kilowatt hours (kWh).

Battery degradation and self-discharge are not considered because the purpose of
the framework is to optimize daily schedules and limited time periods that would
not have a significant negative impact on battery cells in isolation. However, the
depth of discharge can be limited by the user-specified minimum capacity variables

for machines M (z)MC® and BESS BMinCap,

6.2 State Space

The state space consists of several state signals that the agent observes at every time
step during an episode. These state signals reflect the state of the earthwork process
and the state of charge of the battery systems. The purpose of these signals is to
provide the agent with enough information to make high-quality decisions regarding

the selection of actions in following time steps.

6.2.1 Remaining Capacity Signals

The remaining capacity signals M (z)F reflect the individual state of charge of

the simulated earthmoving machine M (x) in kW h. The purpose of providing the

6.2 State Space 67

agent with these signals is to enable the agent to monitor the state of charge of
individual machines to make decisions regarding when specific machine should be
charged to solve the tasks most efficiently. Therefore, the number of simulated
earthmoving machines is equal to the number of remaining capacity state signals.
These state signals are automatically generated by the code after the user inputs

the fleet configuration.

Furthermore, a remaining capacity signal is also provided to reflect the state of charge
of the BESS BFC. This BESS signal enables the agent to monitor how much of the
remaining capacity is available to perform actions with respect to its maximum or
minimum energy capacity. During training, the agent uses this signal to learn when
the BESS is approaching its minimum or maximum capacity because these limits
have a significant impact on how the agent can navigate the action space. When
this signal indicates that the BESS is approaching its maximum capacity, the agent
is penalized for performing the charge action to avoid overcharge. Conversely, when
the signal indicates that the BESS is approaching its minimum capacity, the agent
is penalized for performing a discharge action to avoid overdischarge. The impact

of this state signal on the action space is explained in more detail in Section 6.3.

The remaining capacity state signals can be normalized to limit its numerical range
and reduce the computational burden of the agent by dividing the dynamic values
representing the remaining capacities by the user-specified input values representing

the maximum capacities of the earthwork machine and BESS.

6.2.2 Workload State Signals

The workload state signals M (z)}" are signals that reflect the individual amount
of energy consumed by the simulated earthmoving machine in kWh in a time step.
These signals allow the agent to monitor the amount of energy consumed by the

individual earthmoving machine while being active or idle during each time step.

Furthermore, they allow the agent to identify which machine(s) can perform the
most work and prioritize charging this machine before its minimum capacity limits
the amount of work that can be completed in future time steps. These signals are

especially important when optimizing the schedule to maximize workloads.

Similarly to the remaining capacity state signals, the number of simulated earth-
moving machines equals the number of workload state signals. These state signals

are automatically generated by the code after the user inputs the fleet configuration.

63 Chapter 6 Methodology

6.2.3 Productivity State Signals

Productivity state signals reflect the amount of soil excavated, filled, stockpiled,
and delivered to a dump site, in m?. These signals allow the agent to monitor the
productivity of the earthwork process and tell the agent when a productivity goal

has been achieved.

The productivity state signals can affect the agent’s action decisions process by sig-
naling when the agent should avoid charging specific machines that do not contribute
to the productivity goal or prioritize charging machines that are required to avoid

exceeding the stockpile limit on the site.

Furthermore, these signals can be normalized to reduce the computational burden

of the agent if the corresponding maximum values are specified by the user.

6.2.4 Electricity Cost State Signals

An electricity price state signal and multiple time and date state signals are in-
troduced to enable the agent to make decisions regarding when to select charge
and discharge actions. However, these signals are only relevant when the agent is

configured to minimize the cost of electricity during an episode.

The time and date signals are made up of four separate state signals that include the
hour of the day, the day of the week, the week of the year, and the month of the year.
The purpose of these signals is to enable the agent to associate electricity prices with
specific hours of the year and to discover patterns in the interdaily, daily, weekly,
and seasonal variations of electricity prices. Furthermore, these signals give context
to the time steps of the episode, allowing the user to train the agent on specified
hours and dates. Time and date signals are normalized to reduce the computational

burden by dividing hours by 24, weekdays by 7, weeks by 52, and months by 12.

The electricity price signal reflects the price of electricity in hours represented by the
hourly and intrahourly time steps. For training purposes, data sets of historical price
data or forecasted estimates of a target location are used to adapt the agent’s training
to the currency and price range. This is the only training data that the framework
should not generate by itself due to its regional and political dependencies. The
price signal is not normalized because it is impossible to accurately predict what the
highest electricity price will be in a real-world application. However, unprocessed
price signals are relatively computationally light because prices per kW h are usually

numerically low and in a limited range.

6.2 State Space 69

The performance of the framework was significantly reduced when the price signal
was normalized. Specifically, the agent’s ability to identify which hours had the low-
est or highest price during an episode took significantly longer. When unprocessed
price data were used, it allowed the agent to quickly identify high and low prices
during an episode and subsequently act on small differences in periods with low price
variations. Therefore, this signal can be derived directly from a utility provider in a

real-world application.

6.2.5 Challenges with state signals

Grouped state signals were initially tested for the remaining capacity and workload
signals of the machines, inspired by the paper by Wang et al. [101]. However, the
performance of the model was reduced because the agent was unable to correctly
identify which machine had the highest priority to receive charge, leading to issues in
scaling the framework with multiple machines. The purpose of the grouped signals
was to reduce the computational burden of the framework because there were fewer
state signals to consider for the agent at each time step. However, increasing per-
formance and scalability was deemed necessary at the expense of the computational

burden.

A challenge did arise in collecting the machines’ individual state signals for the
agent when scaling the framework with multiple machines. Therefore, a method
was developed to automatically collect the state signals of individual machines at
each time step to avoid manually altering the framework every time a different
fleet configuration was simulated. This method is a function that iterates over the
machines selected by the user and stores relevant state signals in an ordered array
where the individual signals are in an order corresponding to the individual machines.

Figure 6.2 shows an example of the flow of operations for this method.

70 Chapter 6 Methodology

(Begin)

Y

Sort Fleet Configuration by Machine Name

Y

Array = empty

Y

x+1 For x in range(M (n))

~-

Array.Append(M(CE)ﬁc)

~-

Array.Append(M(ﬂU)}/VL)

no if £ = range(M (n))

yes
v

CReturn Array>

Figure 6.2: Return Machine States Function

Where a table containing the fleet configuration is alphabetically sorted by the user-
specified names of the individual machines to iterate and store the relevant state
signals for each machine in the same order for each execution of the function. The

code for this function is available in the Appendix A.8.

6.3 Action Space

The action space of the environment consists of all available actions that the agent
can choose from in each state and at each time step. The action space is discrete
and consists of one charge action to charge the BESS, one waiting action to wait

until the machines have depleted their remaining capacities, and multiple actions

6.3 Action Space 71

that discharge the BESS to charge individual machines or groups of machines si-
multaneously. Each action is represented by a number for the agent. Therefore,
the number of actions depends on the number of machines selected by the user to
simulate. These actions are developed to represent the real choices that exist on a
earthwork site and to ensure that the BESS cannot be charged while discharging.
This approach was inspired by the experience of the case study detailed in Chapter
8 and the paper by Sui and Song [99].

6.3.1 Charge Action

The charge action represents the charging process of the BESS from a standard grid
connection. This action enables the agent to increase the remaining capacity of the
BESS during a time step. This action is conditional and will only be allowed by the

environment if specific conditions are met.

When the agent selects the charge action at a time step, the environment will check
if the remaining capacity of the BESS is less than its maximum capacity to avoid
overcharge. If the remaining capacity of the BESS is equal to its maximum capacity,
the agent is forced to perform the waiting action as a penalty for selecting the charge
action. The purpose of this penalty is to force the agent to learn to avoid selecting

this action at a time step when it should have selected a different action.

If the remaining capacity of the BESS is not equal to its maximum capacity, a
charging function begins. This function is a loop of operations that simulates the
charging of the BESS from the grid. The loop adds the product of the time fraction,
the charging efficiency of the BESS, and the user-specified power available from the
grid limited by the charging power of the BESS in relation to its remaining capacity.

This operation is expressed as follows:

Bf%\ = Bff“ + min(GP, B°") - At - BY (6.1)

Where B9, is the remaining capacity of the BESS after charging for the period of
the time fraction At¢, min() is a minimization function that returns the lowest value
of two variables, GP is the power available from the connection to the grid, B¢" is

the charging power of the BESS, and Bnc is the charging efficiency of the BESS.

This loop continues until the remaining capacity of the BESS equals its maximum
capacity or until the time spent charging exceeds the hourly time step. The flow of

operations for the charge action is presented in Figure 6.3 below.

72 Chapter 6 Methodology

Begin

Y

’ StartTime =t ‘

t=1t+ At BRC¢ < pMazCap no

yes
v

Charge = min(GP, BET) - At

Y

Charges += Charge

Y

BﬁrCAt = BEC + Charge - Bff

Y

CWorkMachines(M(n), At)>

yes

'
CReturn C hargeD~

Figure 6.3: Charge-action dynamics

Where StartTime is set equal to the time step ¢ at the beginning of the action,
BMazCap ig the maximum energy capacity of the BESS, Charge, is the accumulated
charge from the grid during the action, and WorkMachines is a function that simu-
lates the completion of workloads by the earthmoving machines, which is explained

in Section 6.5.2.

This action seeks to maximize the amount that will be charged to the BESS, and
its output can represent all numbers between 0 and the BESS” maximum charging

capacity over one hour, limited by the remaining capacity of BESS at the time step.

6.3 Action Space 73

This action also incorporates the working of the machines to ensure that the same
time spent charging the BESS is available for the machines to work. The code for

this action is available in the appendix A.7.

In a previous version of this framework, the charge action was calculated as follows:

BtliirC1 — Bﬁc + min((BMaxC’ap o BﬁC)’ BMaxCharge) (62)

Where BMazCharge is the maximum energy in kWh that could be charged to the
BESS over one hour. This approach was replaced because it did not account for the
non-linear characteristics of charging the BESS and it would spend the entire hour
of the time step in situations where the charging process would not require a full

hour.

6.3.2 Discharge Actions

The discharge actions simulate the discharging process of the BESS and the charg-
ing process of electric earthmoving machines. These actions decrease the remaining
capacity of the BESS while increasing the remaining capacity of the electric earth-
moving machine(s). The discharge actions aim to maximize the amount of kWh
discharged from the BESS limited by the depth of discharge of the BESS and the

depth of discharge of the earthmoving machine(s) selected for charging.

There are two discharge actions for each earthmoving machine simulated, where one
discharges the BESS to charge a specific machine exclusively, and the other dis-
charges the BESS to charge a specific machine together with a number of additional
machines, simultaneously. The number of machines that the BESS can charge simul-
taneously is limited by the user-specified number of charging cables available from
the BESS. However, the flow of operations that constitute the discharge actions is

the same for charging one or more machines.

Any discharge action begins with checking if the remaining capacity of the BESS is
greater than its user-specified minimum energy capacity B™¢e? This minimum
capacity can be set to limit the depth of discharge or avoid overdischarge. If the
remaining capacity of the BESS is equal to its minimum capacity, the agent is
penalized by having to perform the waiting action to avoid overdischarge. The
purpose of this penalty is to force the agent to learn to avoid selecting this action

at a time step when it should have selected a different action.

74 Chapter 6 Methodology

If the remaining capacity of the BESS is greater than its minimum capacity, the
discharge action continues. The next operation separates the machines into two
lists; one list for the machine(s) that will be charged (M (n)“"*9"9) and one for

Working) = The action continues

the machine(s) that will not receive charge (M (n)
by checking the remaining capacities of the machine(s) selected for charging. If the
remaining capacity of a machine selected for charging is greater than 98% of its
maximum capacity, the machine is moved from the list of machines available for
charging to the list of working machines. However, this will only occur in the early
stages of training until the agent learns to avoid selecting machines that are fully

charged for charging.

For the remaining machine(s) selected for charging, a function will begin to simulate
the discharging of the BESS and the charging of the machine(s). This function is a
loop of operations that iterates for each time fraction and calculates the discharging
of the BESS and the charging of the machine(s) individually. The first operation in
this loop subtracts the product of the user-specified time fraction and the machine’s
maximum charging power, limited by the BESS discharge power, from the BESS.

This operation is expressed as follows.

B4, = Bf*“ — min(M(x)“", BP¥) - At - BY (6.3)

Where M (x)°F is the charging power of a specific machine, BPF is the discharging
power of the BESS, and BT? is the discharge efficiency of the BESS. Following the
subtraction of energy from the BESS, the charge to the machine is calculated as

follows.

M(x)7%, = M(2)f° + min(M (z)“F, BPF) - At - M(x)g (6.4)

Where M (z){¢,, is the remaining capacity of the machine after receiving charge and

M (x)nc is the charging efficiency of the machine receiving charge.

This operation loops until the remaining capacity of BESS is equal to its minimum
capacity, the next hour is reached, or if all the machine(s) selected for charging are

fully charged.

If multiple machines are being charged simultaneously, the action will check if any
of the machines have reached 98% of its maximum capacity during the process.
Machines that satisfy this condition are moved from the list of machines selected

for charging to the list of machines available to work until there are no machines

6.3 Action Space 75

available for charging, and the action terminates. Therefore, the machine(s) that

are not being charged are working for the same amount of time.

In an attempt to maximize future workloads by reducing charging time, an additional
condition can be activated to terminate the action for machines that reach a state
of charge that the framework expects to be sufficient to maximize its workloads in
the remaining time steps of the episode. This condition, referred to as the charge-
limit function, checks if the remaining capacity of the machine, minus its minimum
capacity, has become greater than the sum of expected future workloads. If this
condition becomes true, the machine is moved to the list of machines not being
charged to avoid allocating more charge to this machine. The sum of future expected
workloads for the remaining time steps is calculated as the product of the average
workload completed by the machine and the remaining time steps of the episode. It

is expressed as follows.

M W LDemand __ Z (M(.I)ZE/L + M((L’)E/L + M(x)zlf/‘le
() = P

) (T —1) (6.5)

Where M (x)}VLPemand jg the expected demand for future workloads in a time step,
M (z)}"" is the workload or energy consumed by the machine in the initial time
step, M (z)}'" is the workload or energy consumed by the machine in the second
time step, and M (ZL')ZK Ll is the workload or energy consumed by the machine in the

previous time step.

The general flow of operations for discharge actions is presented in Figure 6.4 below:

76

Chapter 6 Methodology

no

Begin
StartTime =t
| StartTime = t |

RC MinCap
B > B

yes

'

{ For x in range(M (n)Chaerging); ‘

- (AI(Z‘)I\/IazCap_]\/[(x)RC)
Ap = 'min(Al(aL’)CP,BDPt)

At<Af

yes

'

no +(Return TotalD ischarge)

no—- At = At

DCy = min(M ()T, BPP) . At - B{?

Bg:tC _ DCt < B]WinCa.p

yes »| DCt+At = DC, — (Dct _ (Bg?c _ Bl\linCap))

no
}
BRG, = BFC - DG,

Discharges ay = Discharge; + DCy ‘

M(@)fG, = M(@)FC + 5% - M(@)§

(Check Machine Conditions)

x = range(M (n)Charging)

yes

yes

‘ M(w)chm'ging — M(x)Working

(Wm'k*Machines(]W (TL)W"TM”-‘])>

|

t = StartTime + 1

yes

'

(Return Dischargea

Figure 6.4: Discharge-actions dynamics

6.3 Action Space 77

Where DC} is the amount of discharged energy from the BESS in the time fraction
At, Discharge; is the accumulated amount of discharged energy from the BESS
during the action, and A; is the time required to fully charge a machine. A; is
calculated using an equation that outputs the remaining time required to charge
a machine M (z) to its maximum capacity M (z)MewCer A, is used to adjust the
user-specified time fraction At when the remaining time to charge a machine to
its maximum capacity is less than the user-specified time fraction, to maximize the
efficiency of the intrahourly time steps. The code for this action is available in the
Appendix A.4 and A.6.

6.3.2.1 Challenges with the Discharge-action

A challenge did arise when developing multiple machine-specific discharge actions,
as it would require a lot of manual work to scale the framework and accommodate
more machines. Therefore, a new method was developed to automatically generate
multiple discharge actions and minimize the manual work required by the user when

simulating different fleet configurations.

This method assigns a range of ordered numbers to identify individual machines
that correspond to the numbers that the agent associates with selecting a discharge
action for a specific machine. If the user has specified that the BESS can charge more
than one machine simultaneously, a second discharge action is generated for each
machine with an assigned number that is twice as great as the number representing
charging the machine by itself. However, to avoid generating an exponential number
of discharge actions for simultaneous charging, the other machines that are being

charged simultaneously are selected by a rule-based prioritized ranking function.

The priority ranking function iterates over all simulated machines and updates the
individual machine’s priority based on its depth of discharge and its charging power
in relation to the difference between its current remaining capacity and its maximum
capacity. This function balances how a greater depth of discharge results in higher
priority, while a greater charging power results in a lower priority. This is estimated

using Equation 6.6.

M(2)j"C M (x)Merer — M ()]

Priorit
M(m)t Y= 1— M(x)MaxC’ap ’ M(LE)CP

(6.6)

Where M (z){ ™ is a machine’s priority for receiving charge in a time step. The

code for the priority function is available in appendix A.10.

78 Chapter 6 Methodology

This discharge action method ensures that no discharge action occurs when the agent
selects the charge or waiting action as long as the assigned numbers for the other
actions are greater than twice the number of machines. An example of the flow of
operations for this action assigning method with two charging cables is shown in

Figure 6.5 below.

(Begin)

x> M(n)-

DO

yes »(Not a Discharge Action)

no

yes z < M(n) no

Discharge Action(M (z)) Discharge Action(M (z — M(n)), maz(M (n)f Tioritl/)

(return Discharge—Action>

Figure 6.5: Example of Action Generating Function

Where z is the action number received from the agent, M(n) is the total number of
machines selected by the user, M (x) is a specific machine associated with the action
number, maz() is a function that returns the highest value of an array of numbers,
and M(n); "™ is an array of the machine’s priority ranking. The code for this

function is available in the appendix A.7.

6.3 Action Space 79

6.3.3 Waiting action

The waiting action represents that the BESS is not charged or discharged during a
time step. When the agent selects this action, the agent cannot discharge or charge
the BESS during that time step. The purpose of this action is to help the agent
learn when to strategically wait for the time steps where the charge or discharge
actions are more favorable. Therefore, the agent can learn to select this action when
it estimates that performing a charge or discharge action in subsequent time steps

may yield a higher episodic return.

The waiting action also enables the agent to wait for the earthmoving machines
to complete workloads and deplete their remaining capacities, thus increasing the
transfer capacity of the BESS’ discharge amount. The waiting action ends when the
time step has reached the following hour or when all machines have exhausted their
remaining capacity. The flow of operations for this action is presented in Figure 6.6

below.

Begin

‘ StartTime =t ‘

@I—» t # StartTime + 1 no

yes

¥

(Work:Machines(M(n), At))

no

S(M(n)f*) = (M (n)MinCer)

yes

'

(Return)

Figure 6.6: Wait-action dynamics

80 Chapter 6 Methodology

Where 3°(M(n)EC) is the sum of the remaining capacities of all machines in the
current time step and Y (M (n)M"Ce) is the sum of the minimum capacities of all

machines. The code for this action is available in the Appendix A.7.

6.4 Reward Signals

The purpose of the following reward signals is to guide the behavior of any value-
based agent in solving the tasks of maximizing the machines’ workloads, minimizing
the time required to complete a productivity goal, and minimizing the costs of

electricity while completing a productivity goal.

6.4.1 Reward Method for Maximizing Workload

The reward method to maximize workloads is designed to motivate the agent to
learn the most optimal schedule to charge and discharge the BESS to maximize the
amount of work completed by the machines during an episode of finite time steps.
The purpose of this method is to allow the user to estimate how much work can
be completed in a limited time frame. Furthermore, this reward mechanism must
ensure that the agent learns to maximize the total amount of workload accumulated
during the episode, rather than the workloads in individual time steps. Therefore,
only one reward is presented to the agent at the final time step, which reflects the
total amount of work completed during the episode. This reward signal is expressed

as follows.

rr(Mazimize Workloads) = (M(n)f;/L + M)+ M(n)gYL) (6.7)

Where rp is a reward received in the final time step 7', M (n)fg L'is the workload
completed by all machines in the initial time step of an episode, M (n)ﬁf is the
workload completed by all machines in the second time step, and M (n)¥* is the

workload completed by all machines in the final time step of the episode.

This reward signal emphasizes that the purpose of the agent is to maximize the total
workload for all machines, as the reward increases when the agent is able to have
the machines complete more work during an episode. Furthermore, there are no
other rewards to avoid the formation of subgoals, which could lead to a reduction in
performance [92]. Therefore, the agent must learn by trial and error to select actions

in an order that allows machines to maximize their workloads.

6.4 Reward Signals 81

The drawback of this reward method is that the agent will favor the most powerful
machines that consume more energy during individual time steps. Therefore, a less
powerful machine may be neglected from receiving charge in favor of more powerful
ones in scenarios with multiple machines. However, the presence of a stockpile
volume limit or other productivity-related limits will force the agent to learn how
to maximize the workloads of the machine(s) that can be the most productive in a

scenario.

6.4.2 Minimize the time required to complete a productivity goal

The reward method to minimize the time required to achieve a productivity goal is
designed to motivate the agent to learn the most optimal schedule to charge and
discharge the BESS to the machines to efficiently achieve a productivity goal during
an episode. The user can customize this productivity goal to focus on the amount

of soil excavated, filled, or dumped at a dump site during the episode.

This reward method is inspired by Soman and Molina-Solana [95], where the comple-
tion of tasks is rewarded based on the resources consumed. In this case, the resource

1s time.

This reward method provides the agent with a static negative reward for each time
step required to achieve the productivity goal. The episode terminates when the
productivity goal is reached to limit the negative return. Therefore, the agent’s goal
is to minimize the negative return by reducing the number of time steps required to

achieve the productivity goal. This reward method is expressed as follows.

o , . —100 if Dumped Soil < 200m?
r«(Minimize Completion Time) = (6.8)
0, otherwise

Where —100 is an example of a static negative reward received by the agent at
each time step where the amount of dumped soil is less than the productivity goal,

represented by 200m? in this example.

6.4.3 Reward Method for Minimizing Electricity Cost

The reward method to minimize electricity costs is designed to guide a value-based

agent in selecting the charge action when electricity prices are relatively low com-

82 Chapter 6 Methodology

pared to when selecting the discharge actions. This is achieved by calculating the

reward conditionally on the action.

6.4.3.1 Charge Reward

The reward for performing the charge action is formulated to incentivize the agent
to perform the charge action in time steps when it considers the price of electricity
to be low during an episode. When the charge action is selected, the reward for
the time step is the sum of kWh charged to the BESS (Charge;) converted to a
negative number multiplied by the price of electricity of the hour represented by the

time step. This reward equation is expressed as follows.

ri(Charge — action) = —Charge; * price; (6.9)

Where price; is the price of electricity at the hour of the year represented by the time
step. This reward equation will always produce a negative value, which will motivate
the agent to reduce this reward as much as possible. The agent can minimize this
reward by charging during time steps when the price of electricity is lower during an
episode. Hence, motivating the agent to predict the price of electricity according to
its training data. However, the agent would learn to avoid selecting the charge action
due to its negative reward if the discharge action and its corresponding reward were

not dependent on it.

6.4.3.2 Discharge Reward

The discharge reward is formulated to incentivize the agent to select any of the dis-
charge actions when electricity prices are comparatively higher during an episode.
When the discharge action is selected, the reward is the positive sum of kW h dis-
charged from the BESS (Discharge;) at the time step multiplied by the price of
electricity for the hour represented by the time step. This reward equation is ex-

pressed as follows.

ri(Discharge — action) = Discharge; price; (6.10)

This reward equation motivates the agent to maximize the amount of KWh dis-

charged during the time steps of an episode when electricity prices are relatively

6.4 Reward Signals 83

higher. Hence, motivating the agent to learn to predict when the price of electricity

peaks according to its training data.

The agent is able to maximize this reward by learning to perform the charge action
in previous time steps to increase the BESS’ remaining capacity and wait for the
electric earthwork machines to deplete their remaining capacities. Therefore, this
reward indirectly motivates the agent to select the charge action in previous time

steps, especially when electricity prices are lower.

6.4.3.3 Waiting Reward

The reward for performing the waiting action is zero. When different reward values
for this action were tested, it was found that a negative value will reduce the occur-
rence of the agent strategically waiting or rush the agent’s decision to select either
the charge or discharge actions. Furthermore, if the reward for selecting the waiting
action presented a positive value, a greedy agent would learn to do nothing during

the entire episode.

6.4.3.4 Completion of a Productivity Goal Reward

The completion of a productivity goal reward is a reward signal similar to Equation
6.8. However, this reward is directly dependent on the actions performed in the
previous time steps and is only available to the agent if the productivity goal has

been reached.

This approach multiplies the sum of previously received rewards by a user-defined
factor to amplify the importance of selecting the charge action during time steps
when the prices of electricity are lower and selecting a discharge action when prices

are higher. It is expressed as follows.

, . S(ry,ro..rp_1) % 10 if Excavated Soil >= 450m3
rr(Completing Productivity Goal) =

0, otherwise
(6.11)

Where rp(Completing Productivity Goal) is a reward available at the final time

step v and 10 is a factor defined by the user.

The main challenge with this reward is that it becomes the main goal of the agent

and reduces the importance of action-dependent rewards to subgoals during training.

84 Chapter 6 Methodology

However, it is the only guarantee that the agent will learn to complete a productivity
goal during an episode. This performance sacrifice is considered necessary, as the
primary focus should be on achieving a productivity goal while the secondary focus
should be on reducing electricity costs. Moreover, if the agent is only rewarded for

arbitrage, it will not consider the earthwork process.

A secondary challenge with this reward signal arises when the agent strug-
gles to achieve the productivity goal during training. If the agent cannot
generate a positive return from action-dependent rewards during an episode,
rr(Minimize Completion Time) will be negative and penalize the agent for achiev-
ing the productivity goal. Therefore, the performance of the framework can become
unpredictable when the productivity goal is too great and when there is a limited

number of time steps available.

6.5 Earthwork Dynamics

The environment includes several novel methods and functions developed to simulate
the earthwork process. These methods include a scenario generator that generates
semi-stochastic earthwork scenarios for every training episode, workload functions
that simulate the earthwork process with the machines, and a work dependency

method that enables work dependencies and specific tasks to be simulated.

6.5.1 Earthwork Scenario Generator

The Earthwork Scenario Generator is a method to generate earthwork scenarios that
the agent must learn to navigate while optimizing the schedule. During training,
these scenarios can include semi-stochastic values to make every episode unique and
increase the agent’s ability to generalize when solving unseen scenarios. The gener-
ator contains a data bank where the user can store the input values that represent

the influencing factors.

For training purposes, the generator assigns a semi-stochastic numerical value to
represent the remaining capacity of each machine specified in the fleet configuration,
limited by the machines’ maximum and minimum capacities. The purpose of this
process is to force the agent to explore different scenarios for every training episode
and, ultimately, to develop a robust policy to generalize its response to unseen

scenarios. This approach can also be applied to the formation of a productivity

6.5 Earthwork Dynamics 85

goal, bounded by an upper and lower limit provided by the user to not exceed what
is possible during the time frame of an episode. Furthermore, the initial charge

priority is set by the priority function explained in Section 6.3.2.

The generator stores the generated scenario in several tables that represent the
state of the earthwork scenario at the initial time step of an episode. The dynamic
variables in these tables are modified by actions and other methods during each time

step to reflect the progress of the earthwork process.

Table 6.1 is an example of a table of machine factors generated by the earthwork

scenario generator.

Parameter Excavator Loader Truck
Maximum Capacity 300kWh 210kWh 80kWh
Minimum Capacity 30kWh 21kWh 8kWh
Remaining Capacity (30,300)kWh (21,210)kWh (8,80)kWh

Maximum Charge Power 150kW 100kW 40kW
Maximum Output Power 50kW 30kW 20kW

Idle Power 10kW okW 3kW
Round-trip Efficiency 0.95 0.95 0.95

Cycle Time 0.01 0.03 0.08

Attachment Capacity 1.5m? 3m3 23m3
Operator Skill Level 0.9 0.8 0.7
Operational Efficiency (0.65, 0.85) (0.65, 0.85) (0.65, 0.85)
Priority 1 2 3
Average Hauling Speed - - 80km /t

Table 6.1: An example of a table of machine factors generated by the earthwork scenario generator.

The generator also generates a table of soil factors that affect the estimates of energy
consumption and productivity. Table 6.2 is an example of a table of soil factors

generated.

86 Chapter 6 Methodology

Parameter Rock Clay Sand
Soil to be excavated 100 m® 150 m? 400 m?
Location of Soil lower middle upper
Soil Power Factor ~ (0.7,1) (0.5, 0.7) (0.1, 0.5)
Fill Factor 0.7 0.8 0.9

Table 6.2: An example of a table of soil factors generated by the construction scenario generator

program.

The soil power factor represents the impact of the type of soil on the load factor of
specific machine types. Since quantitative studies have not yet studied the impact of
soil types on the energy consumption of electric earthwork machines, a range is set
to generate stochastic values for every cycle to expose the agent to a varying load

factor in an attempt to increase its ability generalize its response.

Additionally, the distance to the dump site and the number of expected work depen-
dencies are established at this stage. The code for the earthwork scenario generator

is available in the Appendix A.16.

6.5.2 Workload Functions

The workload functions are a set of functions designed to simulate earthwork pro-
cesses and the energy consumption of machines. These functions calculate machine-
specific workloads and productivity estimates based on user-inputted machine, op-
erational, and soil factors. It also records the amount of workload and productivity
achieved by individual machines during the time step for the workload and produc-

tivity state signals, as explained in Section 6.2.

The flow of operations that make up these functions is executed for the same number
of time fractions as the actions performed by the agent, as explained in Section
6.3. Furthermore, these functions impact machines that are not being charged in
the current time step because a machine(s) that is being charged cannot perform

workloads simultaneously.

The functions are machine-specific, meaning that there are separate functions for
different types of earthmoving machines because the machines serve different roles
and responsibilities in earthwork processes. This project has developed functions for

excavators, loaders, and trucks.

6.5 Earthwork Dynamics 87

For machines that are active on-site (e.g. excavators and loaders), the energy con-
sumed and productivity rates are estimated with the same approach due to the lack
of detailed quantitative data on of electric earthwork machines energy consumption
and productivity. The energy consumed by an on-site machine is referred to as the

machine’s workload (W L), and it is estimated as follows.

WL = M(z){ %, = M(z)""" - Spf - M(x)°" - At - M(z)) (6.12)

Where M (z);"%, is the estimated energy consumption of a machine during a time
fraction At, and M (z)7°*¢" is the maximum output power of the machine, Spf is a
soil power factor, M(x)°" is the operational efficiency of the machine, and M (z);

is the machine’s discharge efficiency.

However, Equation 6.12 does not consider that overdischarge may occur. To avoid

overdischarge, a supporting function is developed to limit the workload of any type

of earthwork machine. This function is presented in Figure 6.7 below.

yes» At _ WL—(M(;L‘)?C_M(:E)AMHC(JP)

M(z)fC = WL < M(g)MinCor i

WL=WL— (WL - (M(x)f¢ — MMinCap))

Geturn: WL and AD<

Figure 6.7: Function to avoid overdischarge of electric earthwork machines

88 Chapter 6 Methodology

Where M (z)F¢ is the remaining capacity of the machine in the current time step,
M (z)MinCar is the minimum energy capacity of the machine, and A, is the limited

amount of time spent active.

Following the energy consumed and the time spent active, the productivity of the

on-site machines can be estimated as follows.

At - Ay

M(.??)fmd _ (M(x)BS . Sff) . W

- M (2)°F - M (2)95" (6.13)

Where M (z)Fr°d is the volume of soil handled in m? by the machine during the time
fraction, M (z)P% is the attachment capacity of the machine, Sff is the fill factor
of the type of soil handled, M (x)®? is the cycle time of the machine operation, and

M (z)©5T is the skill factor of the machine operator.

6.5.2.1 Excavator Workload Function

The excavator function simulates the excavation of the user-specified volume of soil
to be excavated to the on-site stockpile. However, if the volume of the on-site
stockpile exceeds the maximum amount specified by the user, the excavator will
load the excavated soil directly into an available truck. On the rare occasion that
the volume of the on-site stockpile exceeds its maximum volume and there are no
trucks available to load, the excavators are forced to idle. If an excavator is forced
to idle, no productivity will be recorded, and equation 6.12 will be replaced by the

following equation.

WL =Mz)" - At-M(z)? (6.14)

Where M (z)™€ is the idling power of the machine. However, if the excavators are
not forced to idle, the excavator function is activated. This function iterates over
all excavators specified in the fleet configuration. For each iteration, the energy
consumed and productivity are estimated. Furthermore, impacts on the volume of
soil to be excavated and the volume of soil stockpiled are simulated. Figure 6.8

shows the flow of operations for the excavator function.

89

6.5 Earthwork Dynamics

x+1

no

Begin

Y

For = in range(M (Excavators))

Spf,Sff = DiggingProcess(STBE)

WL = M(z)Pover. Spf - M(z)9F - At - M (x)f

WL, Ay = Overdischarge(W L)

M (x)f%, = M (2)f¢ — WL

M(z)NK, = M)V + WL

M(a)Prod = (M (2)5S - Sff) - 258 - M(2)OF - M (x)0E

ves > LoadTrucks(M (x)Frod)

Stockpile; > Max.Stockpile

no

b

STBE, a; = STBE, — M ()Pl

Stockpile,ny = Stockpile; + M (x)Frod

x = range(M (Excavators))

yes

3

Figure 6.8: Simulated working of excavators when not idle

90 Chapter 6 Methodology

Where STBE, is the remaining volume of soil to be excavated in m3.

DiggingProcess is a separate function that checks the volume of soil that has
already been excavated during the episode and returns the current soil power factor
Spf and the soil fill factor Sff. The DiggingProcess is shown in figure 6.9 below.

Begin

Y

ES = STBE,, — STBE;

SoilType = Sand |«no

yes

ES > V.Sand + V.Clay no- SoilType = Clay

yes

'

SoilType = Rock

Y

Spf(SoilType), Sff(SoilType)

Y

A

Y

(Return)

Figure 6.9: Digging Process Function

Where ES is the current volume of excavated soil in m3, V.Sand is the volume of

sand in m? to be excavated, and V.Clay is the volume of clay in m? to be excavated.

Furthermore, LoadTrucks() is another separate function that is activated if the
volume of the stockpiled soil exceeds the maximum allowed volume. This function
simulates the loading of soil into trucks. The function is based on the first-in first-
out (FIFO) queuing principle, where the first available truck is selected for loading.

This flow of operations for this function is presented in Figure 6.10 below.

6.5 Earthwork Dynamics 91

Input: M (z)f™™

7y

10—<Trucks are Available

STBE,; = STBE, - M(z)["

Stockpiley, ;= Stockpile; + M(z){™™ ;

Stockpile; > M(z)!™ >-no

v

M(Truck)58 = M(Truck)f*? + M(z){™™

nf Stockpile; =0

M(Truck)}58 = M(Truck)f*? + M(z){™™

Stockpileg, o = Stockpile; — M (x)f rod

A return K

Figure 6.10: Function of the loading process

Where M (Truck)!°* is the current loaded capacity of the first available truck. If no
trucks are available at the current time fraction, the loader or excavator is allowed

to stockpile the excavated soil.

6.5.2.2 Loader Workload Function

The loader function is quite similar to the excavator function. However, the main
goal of the loader is to carry out the loading process 6.10. The flow of operations of

the loader function is presented in Figure 6.11 below.

92

Chapter 6 Methodology

Begin

i

no

For z in range(M (Loaders))

Spf,Sff = DiggingProcess(STBFE;)

Stockpile; =0

no

}

yes~ WL = M(z)e. At- M(z)P

WL = M(z)Pover . Spf - M(x)OF - At - M(x)P E

WL,Ay = Overdischarge(WL) f---------- X

t+At —

M(2)f, = M(2)f¢ = WL |----------- .

t+At

M(z)M R, = M) L+ WL p--mmmomoo--

M(z)frod = (M(x)B5 - Sff) -

At-Ay
M(x)CT

M(:B)OE . M(;E)OSL

LoadTrucks(M (z)fro?)

x = range(M (Loaders))

yes

v

Figure 6.11: Simulated working of loaders

6.5 Earthwork Dynamics 93

This function forces the loaders to idle if the volume of stockpiled soil becomes 0

during the simulation.

6.5.2.3 Truck Workload Function

The final machine-specific workload function developed for this project is the truck
function. This function simulates that the trucks are idle while being loaded. How-
ever, when a truck reaches its maximum loading capacity, the truck begins its journey
to the dump site. The time required to reach the dump site and return to the site
is the quotient of the round-trip distance to the dump site and the average hauling

speed of the trucks.

For each iteration, the simulated time fractions are deduced from the time required
for the round-trip. Therefore, trucks that have started the round-trip trip will not
be available in the loading process 6.10. The truck function is presented in Figure

6.12.

94

Chapter 6 Methodology

Begin

1]

1no

For = in range(M (Trucks))

M(m)ioad <]\[(z.)Maw.Load

" __ Distance-2
@ yes——— ROT: = Siopieet

WL = M(z)Per - At- M(x)?

«—1no

yes

WL, Ay = Overdischarge(WL)

'

WL = M(x)Pe - At- M(x)?

RCTt+At = RCTt - (At . At)

WL, Ay = Overdischarge(WL)

yessl WL = M(xz) - At - M(z)?

WL = M(z) - At- M(x)?

WL, At = Overdischarge(WL)

RCTH»At = RCTt - (At . At)

DumpedSoily, n, = DumpedSoil; + M (x)Food

ROTyya0= 0, M2}l =0

M(z)RG, = M(x)f¢ - WL

M(z)k, = M(z)"L + WL

© = range(M(Trucks))

yes

'

Figure 6.12: Flow of operations for the truck function

6.5 Earthwork Dynamics 95

Where M (x)Marload js the maximum loading capacity of a truck and RCT; is re-
maining time required for the round-trip journey to the dump site. This function
assures that when RC'T; is reduced to 0, the loaded soil is dumped at the dump site
and the loaded capacity of the truck M (z)F°e? is set to 0.

These function terminates the action ends and all the machines available to work
have been iterated over. The code for the workload functions are available in the
Appendix A.5.

6.5.3 Work Dependency Method

The work dependency method allows the user to add and customize work depen-
dencies to simulate unique events during an episode. The structure of the work
dependency is subject to the user. However, an example is provided to explain its

functionality.

When the capacity of the main dump site is full, the trucks have to be

redirected to another dump site that is further away.

In this example, the work dependency can be a conditional statement that changes
the static value that represents the distance to the main dump site to a new static

value that represents the distance to another dump site.

Furthermore, the method ensures that each work dependency occurs only one time
during an episode by checking a variable that is initially set to "not complete” for
each work dependency. Following the activation of any work dependency, the "not
complete” variable is updated to "complete” to ensure that it is only activated ones
during the episode. The dynamics of this method is visualized by using the work

dependency example in Figure 6.13 below.

96 Chapter 6 Methodology

CDump Truck Dependenc@

Complete = Yes yes» Do Nothing

A

no

DumpSiteCacity — fyl]

yes

1L

DumpSitePistance — 30km

Complete = Yes

Update Table

Figure 6.13: Example of a work dependency

The code for the work dependency example is available in the Appendix A.9.

6.6 Environment Structure

The environment compiles all previously explained methods and functions into a
structure that value-based reinforcement learning agents can interact with. The
structure of this environment is formulated to fulfill the requirements of OpenAl’s
Gym, which ensures that the environment remains comprehensible for multiple ex-
isting and future reinforcement learning agents [105]. The environment structure
begins with an initialization process, followed by a step process, and resets with a

reset process.

6.6 Environment Structure 97

6.6.1 |Initialization process

The main purpose of the initialization process is to initialize the default values that
must be declared before any episode can begin. These values include the influencing
factors presented in Section 6.1. These values are set by the user and represent
the dynamic variables and static values that the agent must comply with when

interacting with the step process.

6.6.1.1 Action and State Space

In this process, the dimensions of the action and state spaces are established to let
the agent know the number of actions it can choose from and the number of state

signals it is required to observe in every time step.

The action space is the sum of the available actions. This number is equal to twice
the number of machines selected by the user since there are two discharge actions
per machine, plus 2 to represent the charge action and the waiting action of the
BESS. The size of the action space is automatically detected when the user specifies

the fleet configuration by equation 6.15 below.

ActionSpace = (M(n) - 2) + 2 (6.15)

Furthermore, the state space is the sum of all observable state signals. This number
also depends on the number of machines selected by the user, as explained in Section
6.2. The state space is set equal to twice the number of machines in the fleet
configuration to represent the remaining capacity and workload signals, plus one

that represents the remaining capacity of the BESS.

Four productivity state signals are added if the user wants to minimize the time
required to achieve a productivity goal. If the user wants to minimize the electricity
cost, five additional signals are added to the state space representing the hour of the
day, day of the month, week of the year, month of the year, and the electricity price
of the hour. The size of the state space is automatically detected by equation 6.16

below.

(M(n)-2)+2 Maximize Workload
StateSpace = (M(n) -2) +2 + 4 Minimize Time Required (6.16)
(M(n)-2)+2+4+5 Minimize Electricity Cost

98 Chapter 6 Methodology

6.6.1.2 Dynamic Values

For training purposes, the initialization process can set the state space signals to
semi-stochastic values within its corresponding limits for the initial time step in the
step process. The purpose of using semi-stochastic state signals at the beginning of
an episode is to make every episode unique. This forces the agent to explore more
state-action combinations to increase its ability to provide high-quality generaliza-

tion for unseen states.

The initial remaining capacity of the BESS can be set to a semi-stochastic value,
bounded by its maximum and minimum capacities. This is done to resemble real-
world scenarios in which the remaining charge of the BESS is defined by previous

work, transportation, or overnight charging. This operation is expressed as follows.

B = Random(BM"“ pMarcapy (6.17)

Where Btlgc is the remaining capacity of the BESS in the initial time step of the

step process.

The remaining capacity state signals of the earthwork machines are set by the earth-
work scenario generator in this process to produce a unique earthwork scenario for
every episode. A semi-stochastic remaining charge can be set for every machine,

bound by its maximum and minimum capacities, similarly to Equation 6.17.

Furthermore, the productivity goal and various influencing factors can be set to
stochastic values if the user does not have access to values that accurately represent
the impact of certain factors on the earthwork process. However, all of these values
can be set to a static value if the user wants to train the model with a specific

starting point.

6.6.1.3 Time Steps

The user defines the number of time steps of every episode by setting a time step
limit, which will terminate the episode when reached. To minimize the time required
to achieve a productivity goal, a maximum number of time steps is not required, as
the episode will terminate when the productivity goal is reached. However, the user
must provide a time step limit when maximizing workloads because the limited time

frame will motivate the agent to explore more efficiently.

6.6 Environment Structure 99

Furthermore, to minimize the electricity cost, the user must define a time and date
range on which the framework should train. If the user wants to train the framework
on data for a full year, the time and date range must include all 8760 hours of a
normal year. However, training can be limited to certain periods within a year by

setting this range between the hours of specific dates.

The user can also specify the hour of the day at which every episode will begin.
Additionally, the framework stores the user-provided hourly electricity price data in
this process. It is important to note that the user must provide hourly price data

that correspond to the selected time and date range.

For training purposes, the state signals for the time and date range are set by
choosing a random day of the year within the given time and date range. This
operation forces the agent to explore different time and date ranges with various
electricity prices for each episode. If the time and date range is a full year and every
episode should begin at the 9;, hour of a day. The initial time step is expressed as

follows.

to = Random(9, 8736, 24) (6.18)

Where tg is the initial time step of the step process, Random is an operation that
chooses a number stochastically in the given range of 9 to 8736 by increments of 24,
where 9 is the eighth hour of the year and 8736 is the first hour of the last day of
a normal year. ty modifies the values of the state signals: hour of year, day of year,

week of year, month of year, and current electricity price.

The full dynamics of the initialization process is shown in Figure 6.14.

100 Chapter 6 Methodology

(Initialization—process Activation)

’ Set various earthwork factors ‘

3= 01

’ Action Space size = M(n) -2+ 2 ‘

’ State Space size = M(n) - 2 ‘

Select Optimization Focus

Maximize WL Minimize Electricity Cost Minimize Time Required
’ StateSpace += 2 ‘ ’ StateSpace +=2+4+5 ‘ ’ StateSpace += 2+ 4 ‘
Mn)FE =0 |t = Random(6,8736,24) ———{ Prod.Goal = 450m* |

{ TimeSteps = 12 }

to = Random(9, 8736, 24) \

ngc — Random(BJ\/IinCap,BMamCap)

’ Scenarioy, = EarthworkScenarioGenerator ‘

CReturn to step process: StateSpace;, and Scenariota

Figure 6.14: Initialization process for the proposed framework

The code for this process is available in the Appendix A.12.

6.6 Environment Structure 101

6.6.2 Step process

The step process defines the agent’s interactions with the environment for each
time step of every episode. The step process begins with receiving a number that

represents the action selected by the agent for the initial time step.

If the action-number is equal to twice the number of selected machines plus one,
the agent has selected the waiting action, and the waiting process is simulated as
explained in Section 6.3.3. If the action number is greater than twice the number
of selected machines plus one, the agent has selected the charge action, and the
charging process is simulated as explained in Section6.3.1. If the action-number is
less than or equal to twice the number of selected machines, the agent has selected a
discharge action, and the discharge process is simulated for the specific machine(s)

selected as explained in Section 6.3.2.

If the environment is configured to solve the tasks of minimizing electricity cost, a
action-dependent reward is calculated based on the result of the action performed
in the time step, as explained in 6.4.3. If the user has implemented any work
dependencies, the work dependencies are checked to see if any should be fulfilled at

the current time step, as explained in Section 6.5.3.

Following this process, all updated states are recorded. This logged information is
used to generate schedules for the user to interpret and visualize how the agent was

able to optimize the task.

The final process is to check if the current time step is equal to the final time step of
the episode. If it is not the final time step, the step process returns the reward and
updated state space to the agent, and the step process repeats itself for the following
time step. If it is the final time step, the step process terminates and a final reward

is calculated and returned to the agent together with the final state space.

The dynamics of the step process configured to minimize electricity cost is shown in
figure 6.15 below.

102 Chapter 6 Methodology

(Step—process Activation)

t +L } For t in TimeSteps ‘

(Receive Action X from agent)

yes (4+1) X > (M(n)-2) yes (+2)

Eﬂ ‘ ry = —Charge, * price; }—

yes

l

‘Discharge(]\/I(X)) ‘ noH‘ Discharge(M(X — M(n)), maz(M (n)F")) ‘

L) ry = Disharge; x price; }(—

WorkDependency = Complete no {Check WorkDependency)

yes

Log states

t =ty + TimeSteps

(Return (StateSpaces, 4 D<— no

yes

yes STBEr >= Prod.Goal

‘TT:Z(T‘l,’I‘Q...T’T_l)*l()} rp =10

(Return (StateSpacer, rp))

Figure 6.15: Step process for solving the task of minimizing electricity cost

6.6 Environment Structure 103

The code for this process is available in the Appendix A.12.

6.6.3 Reset process

The reset process is activated after the completion of the step process to reset the
environment and provide the agent with a new independent episode. This process

continues until a user-specified number of training episodes is completed.

Similarly to the initialization process, the reset process can set the state signals
to semi-stochastic values for the initial time step of the step process. Therefore,
the reset process can provide the agent with new earthwork scenarios generated by
the earthwork scenario generator, as explained in Section 6.5.1. It can also set the
remaining capacity of the BESS to a stochastic value with Equation 6.17. However,

all static factors defined in the initialization process remain unchanged.

To solve the tasks of minimizing the cost of electricity, a new day is selected within
the given time and date range with Equation 6.18 to expose the agent to new elec-
tricity price patterns. To solve the task of maximizing workloads, the completed

workloads for the initial time step of the new episode are set to zero.

The purpose of resetting the semi-stochastic values for each episode is to force the
agent to explore new action-state combinations during training and expose the agent
to new earthwork scenarios. This allows the agent to learn a more robust policy that
can be used to generalize its response to unseen scenarios. If the initial state signals
remain the same for every episode during training, the agent’s policy may become
overfitted, and the trained agent will fail at maximizing its return when applied to

unseen scenarios.

The dynamics of the reset process is shown in Figure 6.16 below.

104 Chapter 6 Methodology

(Reset Process Activation)

Episode = Final Episode yes+{ End Training

no

!

to = Random(6,8736, 24)

B{SC — Random(BMinCap’BMaa:Cap)

Scenarioy, = EarthworkScenarioGenerator

WorKDependency = Not Complete

(Return to step process: StateSpacey, and Scenario@

Figure 6.16: Reset process for solving the task of minimizing electricity cost

The code for this process is available in the Appendix A.12.

6.7 Agent

The type of agent selected for this framework is Deep Mind’s Deep Q-Network Agent
(DQN) [106]. This agent was chosen based on the experience detailed in Kwon and
Zhu’s paper [98], and because it is a well-proven value-based agent that utilizes
a fully connected artificial neural network as a critic to approximate an optimal

action-value function, which is expressed as follows.

q"(s,a) = maxElry + yree + Y ripo + .8 = 5,0, = a, 7] (6.19)

6.7 Agent 105

Where ¢*(s,a) maximizes the expected sum of rewards E discounted by v for each

time step.

Furthermore, using a DQN agent can significantly reduce the time it takes an agent
to learn a high-quality policy because it periodically updates its policy with random
samples from the agent’s experience with the environment, which reduces training
instabilities caused by constant small updates of the policy and the computational
burden of assessing all discovered states, actions, and rewards when updating the

policy.

This process is achieved by storing the agent’s discovered states, actions, and rewards
in a data set D, dividing the data set into samples U, and updating the weights and
biases of the artificial neural network 6 by applying a loss function on samples chosen

uniformly at random. The loss function for the DQN agent is expressed as follows.

2

L) = B |(reymaxg(salo)) —als.alt)) | (620)
(s,a,r,s")~U(D) a’

Where L;(;) is the loss function (;) for the parameters 6 in iteration ¢, E(s q.r.s/)~u(D)

is the expected value of a sample in the data set U € D in terms of the difference

between a target reward r + v max, q(s’,a’'|#;") and the actual reward ¢(s, a|6;)

The occurrence of updating the weights by the samples is calculated using Diederik
P. Kingma and Jimmy Lei Ba’s Adam Optimizer [107]. Adam Optimizer was cho-
sen because it is widely adopted for deep learning applications and has become a
standard for stochastic gradient-based optimization for deep reinforcement learn-
ing agents. The benefit of using Adam over a standard stochastic gradient descent
method is that it provides a learning rate for each of the network’s weights and bi-
ases and adapts it separately as learning unfolds. However, Adam requires an initial
learning rate to base its adaptations from. For this project, the initial learning rate
was set at 0.001 because higher learning rates were found to make the framework
unstable and slow, while lower learning rates did not allow the agent to adapt to

minor changes in state signals.

6.7.1 Network Architecture

The architecture of the artificial neural network made available for the DQN agent in
this framework consists of an input layer with the number of neurons representing the

state signals of the environments configuration, two hidden layers with 24 neurons

106 Chapter 6 Methodology

in each layer, and an output layer with a number of neurons dependent on the
number of machines simulated representing the actions. The number of neurons in

the hidden layers was subject to trial and error.

The number of adjustable parameters is bound by the number of neurons in each
connected layer. The number of adjustable weights in the first hidden layer is the
product of neurons in the input layer and neurons in the first hidden layer. The
number of adjustable biases is equal to the number of neurons in the first hidden
layer. However, the number of neurons in the input layer must be equal to the size
of the state space, which depends on the number of simulated machines. Therefore,

the number of adjustable parameters in the first hidden is calculated as follows.

Adjustable Parameters 1g hidden layer = (M(n) -2+ X)) - 24 + 24 (6.21)

Where X is the number of state signals for the configuration of the environment.

The number of adjustable parameters in the second hidden layer is the product of
the number of neurons in the first hidden layer and the number of neurons in the
second hidden layer, in addition to 24 adjustable biases. Therefore, the number of

adjustable parameters in the second hidden layer is calculated as follows.

Adjustable Parameters 2,4 hidden layer = 24 - 24 4+ 24 (6.22)

The number of adjustable parameters in the output layer is the product of the num-
ber of neurons in the second hidden layer and the neurons in the output layer, plus
the number of adjustable biases, which is equal to the number of actions. Therefore,

the adjustable parameters for the output layer are calculated as follows.
Adjustable Parameters output layer =24 - (M(n)-y+2) + (M(n) -y +2) (6.23)

Where y is the number of charging cables available in the configuration of the envi-

ronment.

The ReLU function was chosen as the activation function for both hidden layers
because it is generally more efficient than the Sigmoid function. The activation
function for the output layer is a linear regression function because it predicts actions
based on unbounded quantities. The code for the training process is available in the
Appendix A.14.

6.7 Agent 107

6.7.2 Training the agent

The number of episodes in which the agent is required to train in a configuration of
the environment to learn a high-quality policy is estimated by training the agent for
a substantial number of episodes and plotting the returns of each episode. An opti-
mized policy has been found if the returns from the episodes have reached a steady
rate. Therefore, the number of episodes can be reduced to the number required to
reach this steady rate of return. However, the number of training episodes should
be increased if returns are still approaching a steady rate, as this indicates that the

policy can be further improved by training.

Figure 6.17 below shows an example of training a DQN agent for 3000 episodes in

an environment where a reward of approximately 0 indicates that the task is solved.

Results

250

=250

=500

Return

-750

-1000

-1250

—1500

0 500 1000 1500 2000 2500 3000
Episode

Figure 6.17: Returns from training an agent

Figure 6.17 shows that the agent was exploring different policies to familiarize itself
with the environment in the first 500 episodes. In the following 1000 episodes, the
agent was able to develop certain policies that were able to solve the task in certain
scenarios. However, it still explored different variations of this policy to improve the
consistency of the returns. Between episodes 1500 and 3000, the agent developed
an optimized policy that was able to reach a steady rate of return. However, the

performance is somewhat reduced between episodes 2500 and 3000. Therefore, this

108 Chapter 6 Methodology

agent should train in this environment for approximately 2500 episodes. The code

for this visualization process is available in the Appendix A.15.

6.8 Methodology for using the trained framework

There are several real-world applications for this deep reinforcement learning frame-
work. The main application is to provide earthwork professionals with a decision
support tool to plan efficient electric earthwork processes by generating optimized

energy supply schedules for electric earthwork processes.

The process of generating an optimized schedule is achieved in 7 steps.

1. Select the optimization goal and configure the environment.
2. Select the type and number of machines to be simulated.

3. Set the user-specific static and semi-stochastic variables that represent influ-

encing factors of real-world earthwork scenarios.
4. Train the agent in the configured environment.

5. Substitute the semi-stochastic values in the environment with static values

that represent a specific scenario to be optimized.

6. Log the dynamics of the BESS and earthmoving machines for each time step

when applying the trained agent in the static environment for one episode.

7. Plot the data logged from the previous step and review.

For different variations of the schedule, steps 5, 6, and 7 can be repeated. However,
the user must repeat all steps if the user wants to optimize a different goal or simulate
other machines. The codes for logging and visualizing the generated schedules are
available in the Appendix A.17 and A.11.

Furthermore, this framework can be used to generate optimized schedules during
the earthwork process. The purpose of this application is to assist earthwork pro-
fessionals to decide which machine(s) has the highest priority to charge during the
work day.

This is achieved by applying a trained agent’s policy on a version of the environment

that is modified to represent the actual earthwork scenario at the current hour.

6.9 Other Use cases 109

However, the trained agent must have been trained in a version of the training
environment that represents the semi-stochastic nature of the intended earthwork

site.

To modify the environment to represent the current earthwork scenario, the semi-
stochastic variables in the environment’s initialization process 6.6.1 and reset process
6.6.3 must be replaced with actual values or sensor readings from the earthmoving
machines and BESS. The time and date range must be set to the actual date and
time of the working day, and the remaining time steps must be defined to represent
the remaining hours of the specific working day. Additionally, expected electricity

prices can be collected directly from a utility company’s intraday prognosis.

This process can be automated by developing a version of the environment that is
able to collect sensor readings from machines and BESS through a data acquisition
and supervisory control system. However, no such system has been developed yet

for electric earthwork processes.

6.9 Other Use cases

The framework can be applied to solve related optimization problems in the electric
earthwork field. This section presents three novel applications that validate the

generalizable performance and real-world applicability of the framework.

6.9.1 Optimized Overnight Charging of BESS and Machines

The environment can be configured to optimize the overnight charging of BESS and
machines. The purpose of this application is to optimize the schedule to charge
the BESS and the machines to their maximum capacity during longer periods when
there are no earthwork activities. This configuration is set to minimize the electricity
cost by automatically charging the BESS during hours when the price of electricity
is comparatively lower than the hours when the agent is discharging it to charge the

machines.

This is achieved by training the agent in a modified version of the environment
configured to solve the task of minimizing the cost of electricity, where the workload
functions are deactivated. Furthermore, the remaining capacities of the BESS and
machines are set to low values for the initial time step of each episode to force the

agent to select the charge action multiple times.

110 Chapter 6 Methodology

The action-dependent reward signals are the same as described in Section 6.4.3.
However, the completion of a productivity goal reward signal 6.11 is substituted for
a reward signal that rewards the agent if the machines and BESS are fully charged

in the final time step. This modified reward signal is expressed as follows:

ro(Fully Charged Reward) =Y (M (n)§°) + BFC +3 (ri,re..rp—1) (6.24)

Where 3" (M (n)£) is the sum of the remaining capacity of all machines in the final
time step, BEC is the remaining capacity of the BESS in the final time step, and
>>(71,72...77—1) is the sum of all rewards previously received before the final time

step.

This reward signal motivates the agent to maximize the remaining capacities of the
machines and BESS by the final time step, and it considers the action-dependent
rewards received in previous time steps in an effort to motivate the agent to minimize

electricity cost.

The challenge with this reward signal is that the importance of the action-dependent
rewards are reduced to a sub-goals. Therefore, performance is unreliable in scenarios

where the agent struggles to completely recharge the BESS and machines.

After training the agent in the modified training environment, the trained agent can
generate schedules that optimize overnight charging process. This application can
be automated using a rule-based method that executes the schedule generated by
the framework. However, this only works if the electricity prices for the charging
period are known. If the electricity prices in the period are unknown, the agent must
have direct control of the BESS to apply its trained generalization in real time to

adapt to unseen electricity price patterns as they are updated.

6.9.2 Estimating the minimum required capacity of a BESS

This framework can be used to estimate the minimum required capacity of a earth-
work BESS. The purpose of this application is to help earthwork professionals es-
timate the minimum required energy capacity of an earthwork BESS. This is an
important use case because earthwork professionals can use it to avoid overinvest-
ing in BESS technology and subsequently increase the economic feasibility of an

electrified earthwork site.

6.9 Other Use cases 111

Finding the minimum required capacity of a BESS can be achieved manually follow-
ing the steps to generate an optimized schedule as outlined in Section 6.8. When the
agent has developed a robust policy, the user can substitute the value representing
the maximum capacity of BESS BMe¢Ce in the training environment initialization
process and repeat steps 6 and 7. The user can then learn if the updated BCar jg
capable of generating returns similar to the original BMe*¢e ysed during training.

However, this approach is subject to manual trial and error.

Therefore, an estimation method has been developed to automate the task of find-
ing the minimum required capacity of an earthwork BESS, inspired by the method
presented in the paper "Battery Optimal Sizing under a Synergistic Framework with
DQN Based Power Managements for the Fuel Cell Hybrid Powertrain” by Li et
al. [100].

This method consists of a function that automates the task of finding the minimum
required capacity by sequentially testing a trained agent in its training environment
over a user-specified of episodes. Where BMC ig initially set to zero and is
increased by a user-specified value for each consecutive sequence of episodes. The
function terminates when the average return of a sequence indicates that the updated
value of BMeCar consistently generates similar optimization results as the original

BMazCap ysed during training.

Figure 6.18 shows the dynamics of the estimation function to find the minimum

required BESS capacity.

112 Chapter 6 Methodology

<Estimating minimum required Capacity of BESS>

~N-

BMa:UCap — 0

~

FxpectedReturn = 850

~

Returns = DQN.test(Env, Num.Episodes)

AMR = mean(Returns)

no AM R < FxpectedReturn

yes

p

BMa:L’C’ap — BMaxC’ap 1+ UDV

~

Returns = DQN.test(Env, Num.Episodes)

~

AMR = mean(Returns)

<Retu'rn (BMaxC“p)>

Figure 6.18: Estimating minimum required BESS

Where EzpectedReturn is the optimized return from training the agent, DQN.test
represents the process of testing the trained agent in the environment FEnuv,
NumEpisodes is a user-specified number of episodes in a sequence, AM R is a func-

tion that finds the average return of the sequence, and UDYV is the user-specified

6.9 Other Use cases 113

value to increase BMarCap The code for this estimation method is available in the
Appendix A.18.

This application shows that the framework is able to generate policies that are
robust enough to handle changes of the static values that serve as limits for most of
the framework’s equations during training because the maximum discharge power
and the minimum capacity of the simulated BESS are dependent on the maximum
capacity of the BESS. Therefore, the same rate of change applied to the maximum

capacity is applied to the maximum discharge power and the minimum capacity.

6.9.3 Direct Control Environment of a BESS

This deep reinforcement learning framework is designed with the real-time control
of a BESS in mind, inspired by methods presented in the paper "Control of battery
charging based on reinforcement learning and long short-term memory networks” by
Chang et al. [97]. A new training environment and a direct control environment are
developed to demonstrate the performance of this framework with real-time control.
The main application for this use case to perform automatic energy arbitrage if the
connection to the grid allows the BESS to be reimbursed for selling electricity back
to the grid.

The first step in using this application is to modify the training environment config-
ured to solve the tasks of minimizing the cost of electricity by removing all functions,
state signals, and actions related to the earthwork machines. The modified training
environment has the same structure and rewards as the original training environ-
ment. However, the state space is limited to only monitor the remaining capacity of
the BESS, electricity prices, and the time and date range. Furthermore, the action
space has only one discharge action in addition to the charge and waiting actions.

The new mathematical operation for the charging action is expressed as follows.

Charge, = min(BA°Y . 1, pMazCar _ pRC) (6.25)

Where C'harge; is the maximum charge receivable by the BESS for one hour, limited
by its current depth of discharge, and BA“" represents a static hourly amount of
charged energy to the battery. Furthermore, the new mathematical operation for

the discharging action is expressed as follows.

Discharge; = min(BAPP .1, B¢ — pMinCap) (6.26)

114 Chapter 6 Methodology

Where Discharge; is the maximum discharge achievable by the BESS for one hour,
limited by its current depth of discharge, and BAPT represents a static hourly amount
of discharged energy from the battery. The full dynamics of the step process of the

modified training environment is presented in Figure 6.19 below.

6.9 Other Use cases

115

Step-process Activation

Wait

For t in TimeSteps

Recieve Action from Agent

Discharge
}

Charge

Wait-action

Discharget - mm(BADP 1 BtRC _ BMinCap)

ACP 1 pMaCap _ pRC
BB - B

Charge, = min

RO _ pie
BH’I _Bt

‘T“FU

BtRﬁ = B - Discharge

ry = Discharge * price;

B =B + Charge

1y = =Chargey * price;

10

t =1+ TimeSteps

(Retum fo agent(Bfﬁ, ‘TtD

yes

|
(Retum 0 agent(ngC, TTD

Figure 6.19: Modified Step Process of training environment for direct control of Battery

116 Chapter 6 Methodology

The second step is to set up a programmable controller for the intended BESS. As
proof of concept, a battery simulation model is used. The chosen battery simulation
model was developed by Olivier Tremblay and Louis-A. Dessaint [108], and features
an automatic charge and discharge process of a battery connected to a constant
load. This model is developed in Matlab Simulink and is featured in Matlab’s

documentation as a verified example of a battery simulation model.

This simulation model was chosen because it can accurately represent the behavior
of various types of batteries, provided the battery parameters are well defined [108].
The parameters of the battery simulation model are deduced from the discharge
characteristics of the real types of batteries and are assumed to be the same for
charging. However, the internal resistance is constant during the charge and dis-
charge cycles and does not vary with the amplitude of the current. Similarly to
the representation of a battery in the previous training environments, the battery
capacity does not change with the amplitude of the current, the temperature does
not affect the model’s behavior, self-discharge is not represented, and the battery

has no memory effect.

The original configuration of the simulation model would automatically charge the
battery if it went below a 40% state of charge and discharge the battery if the
state of charge exceeded 80%. However, the simulation model was adapted for this
application by replacing the automatic switching between charge and discharge with
a manual switch that is controlled by the direct control environment. Figure 6.20
below shows the adapted Matlab Simulink model.

manual switch relay block

I 5 [:]

»
| <Speed wm (rad/s)>
1/100 . -

N <SOC (%)> s0C § <Armature current ia (A)>
Continuous
m

- Lo TL
powergui
[A@A

==, H

DC Machine
m @ amps o
e O,
¥

<Voltage (V)> |

A,

Yy v

Figure 6.20: Simulink Battery model

6.9 Other Use cases 117

Where a constant block controls the manual switching between the charge and dis-

charge actions.

To control the battery simulation model, a direct control environment with a
programming-bridge between Python and Matlab Simulink is developed. The math-
ematical operations of the actions in this direct control environment are replaced by
direct sensor readings and controls of the simulation model. Figure 6.21 below shows
the step process of the modified control environment for direct control of the battery

simulation model.

118 Chapter 6 Methodology

(Step—process Activation>

t+1 # For t in TimeSteps

Wait Recieve Action from Agent Charge

Discharge
i’
Wait-action Start Discharging Start Charging
| | |
for X rfinutes for X minutes for X minutes
B = pfC Stop Discharging Stop Charging
ry =10 ry = Discharge; * price; ry = —Charge; x price;

t =ty + TimeSteps

(Return to agent(B[C, r; Di 1o

yes

!

(Return to agent(BC r TD

Figure 6.21: Modified Step Process for direct control of Battery

6.9 Other Use cases 119

When the agent selects the charge action, the control environment will first record
the current remaining capacity BFC from the simulation model. If BFC is less
than the maximum capacity of the simulated battery model BM*Car it will set
the manual switch block to 0, which represents the charging process. Subsequently,
it will send a command to the simulation model to start a simulation period that
represents one time step. If the battery reaches BMe*¢ hefore the simulation
period terminates, the simulation model will not overcharge the battery, because
this is limited by the simulation model itself. After the simulation finishes, the
direct control environment will record the new remaining capacity of the simulated
battery as Bf§ and subtract BES from B¢ to calculate Charge;, which is used to

calculate the reward in Equation 6.9.

When the agent selects the discharge action, the control environment will first record
the current remaining capacity Bf from the simulation model. If Bf*“ is above the
batteries depth of discharge threshold BM™Cer it will set the manual switch block
to 1 representing the discharging process. Subsequently, it will send a command to
start a simulation period for one time step. If the battery reaches its BM"¢@ hefore
the simulation period terminates, the simulation model will not overdischarge the
battery because this is limited by the simulation model itself. After the simulation
ends, the modified environment will record the new remaining capacity of the sim-
ulated battery as Bfq and subtract B9 from B to calculate Discharge;, which

is used to calculate the reward in Equation 6.10.

When the agent selects the waiting action, the modified environment will record the
current remaining capacity B from the simulation model and set Bf9 equal to
BEC. The reward received by the agent is 0 as explained in Section 6.4.3.3. The

code for the direct control environment is available in the Appendix A.19.

Furthermore, by training the agent in this direct control environment, the agent
can develop a policy that satisfies the detailed dynamics of a real battery system.
This may further increase the performance of BESS-specific applications. However,
training would require significantly more time as a result of the latency caused by

simulating every time step in Matlab Simulink.

Chapter

Results

This chapter details how the electrified earthwork process can be optimized using
the deep reinforcement learning framework presented in the previous chapter. The
purpose of this chapter is to demonstrate the performance and generalizability of the
framework in optimizing electrical earthwork processes. Specifically, the framework’s
training environment will be configured to maximize the machines’ workloads within
a specified time frame, minimize the time required to complete a productivity goal,

and minimize the cost of electricity while completing a productivity goal.

The optimization results serve as a sensitivity analysis by demonstrating how dif-
ferent influencing factors, fleet configurations, and optimization goals affect the per-
formance of the framework. Furthermore, the framework is applied to optimize the
other use cases presented in Section 6.9 as validation of the generalizability of the

framework.

The training of framework’s agent was conducted on a personal computer with a 2.2
GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 RAM. The training time
ranged from 5 minutes (<2000 episodes) to 20 minutes (6000 episodes), depending
on the framework configurations. Therefore, training time was not identified as a

significant obstacle to this framework.

7.1 Influencing Factors

The training environment is configured to represent different scenarios on the same
construction site. Therefore, several influencing factors are static for all scenarios.

However, arbitrary and estimated ranges are provided for influencing factors that

122 Chapter 7 Results

were not discovered or were underspecified in the literature to account for the lack

of specification.

The uncertainty surrounding these ranges selected for underspecified factors will in-
crease the number of unique scenarios, as the agent will be exposed to more stochastic

values during training. Hence, the generalizability of the framework will increase.

7.1.1 BESS Factors

The same BESS factors were used for all configurations. The BESS is modeled after
the BoostCharger prototype, introduced in Section 2.3.3.

BESS Factors

e Maximum energy capacity of 390kWh
e Minimum energy capacity of 39kWh

e Maximum charging power (30, 37)kW

Maximum discharging power of 150kW (per cable)

2 charging cables available for simultaneous charging.

Charging efficiency of 95%

Discharging efficiency of 105%

The maximum charging power range was set to account for variations in the grid’s

power supply, which was recorded for the case study in the following chapter.

7.1.2 Machine Factors

The type of machines simulated by this framework are excavators, loaders, and
dump trucks. These types of machines were selected on the basis of their prominent
representation in the literature. The machine factors are collected directly from the
manufacturer’s brochures and site visits. However, certain performance factors are
not yet known to manufacturers and are not represented in the literature. These
unknown factors are represented as ranges. The machine factors are presented in
Table 7.1 below.

7.1 Influencing Factors 123

Parameter Excavator Loader Truck
Maximum Capacity 300kWh 200kWh 180kWh
Minimum Capacity 30kWh 15kWh 18kWh

Maximum Charging Power 150kW 75kW 40kW
Maximum Output Power 50kW 30kW 20kW
Round-Trip Efficiency 0.95 0.95 0.95
Idling Power (0, 5kW (0, 3)kW (0, 1)kW
Attachment Bucket Bucket Loading Bed
Attachment Capacity 1.5m3 3m3 23m?3
Cycle Time 36sec 106sec 18min

Table 7.1: Machine Factors

The cycle time set for excavators represents the excavation and stockpiling of the
soil, while the cycle time set for loaders represents moving the stockpiled soil to
load a dump truck. These cycle times are based on the duration of specific tasks
presented in [6] and estimates derived from observations at a real construction site.
The cycle time set for trucks is the time required to travel from the construction site
to an adjacent dump site and back. This value is deduced from the division of an

average travel speed of 80 km/t [53] and an arbitrary round-trip distance of 14.5km.

7.1.3 Operational and Site Factors

The operational and Site factors included in this framework are presented in Table
7.2 below.

Parameter Excavator Loader Truck
Number of machines (1,2) (0,2) (0,1)
Operator Efficiency 95% 95% 95%

Operational Efficiency (65, 83)% (65, 83)% 100%

Table 7.2: Operational and Site Factors

Here, the number of machines represent the fleet configurations for the various config-
urations. Furthermore, the operator efficiency represents the impact of the operators
skill level on productivity. The operational efficiency impacts the energy consump-

tion and productivity of machines to account for the impact of the site layout. The

124 Chapter 7 Results

operational efficiency ranges are established on the basis of recommendations from
the literature [51].

7.1.4 Soil Factors

The soil factors are presented in Table 7.3 below.

Soil Type Sand Clay Rock

Min. volume to be excavated 200 m3 200 m® 200 m?
Location of soil upper middle lower
First Soil Power Factor (0.4,0.6) (0.6,0.8) (0.8, 1)
Second Soil Power Factor (0.2, 0.4) (0.2, 0.5) (0.5, 0.8)
Soil Fill Factor 1 0.8 0.6

Table 7.3: Soil Factors

Here, the volume to be excavated represents the amount of soil, clay, or rock located
in the upper, middle, or lower layer of the excavation site. The soil power factors
represent the impact of soil density on the energy required to move them. These
are set to arbitrary ranges because the literature on electric earthmoving machines
has yet to define them. However, the selected ranges correlate with soil factors for
diesel-powered earthmoving machines, where denser soil types have a greater impact

on the energy required to move them [59].

7.1.5 Other Factors

Other factors that are specific to the configuration are specified in the following
sections. However, The time fraction At for all configurations is set to 0.1 to simulate
the productivity, energy consumption, and charging of equipment in intervals of 6

minutes.

7.2 Maximize Workloads of Machines

The optimization framework’s training environment is configured to maximize the
workloads of the machines by including workload state signals and setting the reward

signal to maximize workloads, as described in Sections 6.2.2 and 6.4.1, respectively.

7.2 Maximize Workloads of Machines 125

Furthermore, the time step range is set to 8 time steps, which provides the agent

with 8 simulated hours to maximize the workloads.

The construction scenario generator is configured to generate scenarios with two
excavators and two loaders for each training episode. The excavators are using the
first soil power factor, while the loaders are using the second soil power factor. The
remaining capacities of these machines at the initial time step of every episode are
set stochastically within a range of 50% and 90% of the machine’s maximum energy
capacity. Furthermore, The maximum volume of stockpiled soil is set to 300m3,
and the loaders are set to fill the excavated soil on site because there are no trucks
to haul the soil to a dump site. Figure 7.1 shows a visualization of the earthwork

scenario for this configuration.

Figure 7.1: Visualization of the maximization scenario

For every episode, the remaining capacity of the BESS is set to its maximum capacity
in ¢y by setting Bfgc equal to BMarCap in the initialization and reset process. This
approach is selected to maximize the available energy capacity to charge machines in
order for them to efficiently complete workloads, which in turn will allow the agent

to maximize its return. The rewards are calculated using Equation 6.7.

Furthermore, the number of training episodes for this version is set to 2000. This

number was identified using the method explained in Section 6.7.2.

126 Chapter 7 Results

7.2.1 Results from Maximizing Workloads

The returns of training the framework to solve the task of maximizing workloads are

shown in the graph 7.2 below.

Results

1000

900

Return

700

600

500

0 500 1000 1500 2000
Episode

Figure 7.2: Returns from training to solve the task of mazrimizing workloads

The graph shows that the agent was testing different policies to for the first 400
episodes. Between episodes 400 and 500, the agent develops a policy that was able
to generate a return of up to 1000 from some scenarios. However, this policy was
not stable, as the returns quickly drops in the following 100 episodes. Therefore,
the agent chose to explore different policies in the following 200 episodes. This
exploration leads to the development of a more stable policy in which the perfor-
mance does not drop and more returns of 1000 are achieved. In the remaining
1000 episodes, the agent improves this policy with minor adjustments, and a slight

increase in maximum return is noticeable.

An example of how the agent maximizes the workloads was generated using this

policy and is presented in Figure 7.3 below.

7.2 Maximize Workloads of Machines 127

BESS
1000
400 —— Workload
[BESS Remaining Capacity
wam BESS Charge
[BESS Discharge
350
800
300
250 600
kS
K= S
200 =t
z E
400
150
100
200
50
a7
39 385 39 39 39 0
0
0.0 1.0 2.0 3.0 3.7 4.0 5.0 5.2 6.0 7.0
(a) BESS Energy Flow
excavatorQ
—— Workload
[excavator0 Remaining Capacity 350
[excavatorO Workload
I excavatorQ Charge
250
300
200 250
200
@
< o
E 150 Aé.
2513 150
100 157
182.4 100
1572
1148 1148
50 104.4 50
87
30 30 0
0
0.0 1.0 2.0 3.0 37 4.0 5.0 5.2 6.0 7.0

(b) First Excavator Energy flow

128 Chapter 7 Results

excavatorl
—— Workload 300
[excavatorl Remaining Capacity
[excavatorl Workload
I excavatorl Charge
250
250
200 200
B
= =}
150 150 2
z ¥
¥ g
249.7
100 100
190.1
1539
118.6 50
50
65.1
45
30 30 30 30 0
0
0.0 1.0 2.0 3.0 3.7 4.0 5.0 5.2 6.0 7.0
(c) Second Excavator Energy Flow
loader0
—— Workload
[loader0 Remaining Capacity 140
140 == = loader0 Workload
I loaderQ Charge
120
120
100
100
80 -
o 80 g
= £
139.3 g
60

60 117.9
93.2
2 40
615

20

20 379
28.8
15 15 15 15
0 [4]
37 4.0 X . .

0.0 10 2.0 3.0

(d) First Loader Energy Flow

7.2 Maximize Workloads of Machines 129

loaderl

—— Workload
- [loaderl Remaining Capacity
160

= loaderl Workload
120 I loaderl Charge
140
100
120

80

,_.
1=}
S

kWh
Workload

@
S

125.6

“ e

1054
60

52 51.9

20
20

0.0 1.0 2.0 3.0 37 4.0 5.0 5.2 6.0 7.0

(e) Second Loader Energy Flow

Figure 7.3: Optimized Schedule for Maximized Workloads

Graph (a) shows that the agent performed a discharge action using both available
charging cables in the initial time step. The agent decided to charge the first exca-
vator (Graph (b)) and the second excavator (Graph(c)) for a period equivalent to
1 hour. In the next three time steps, the agent is recharging the BESS because it
is expecting to discharge the BESS again. It is noticeable that the excavators were
reaching deeper layers of soils as the workloads increase between time steps 1.0 and
3.0.

At time step 3.7, the agent discharges the BESS to the first excavator and the second
loader (Graph (e)). The action is terminated before the end of the simulated hour
because the BESS reaches its minimum energy capacity. Therefore, time step 4.0
represents only 18 minutes, and allows the agent to make other decisions for the

remaining time of the simulated hour.

Furthermore, the agent decides to charge the BESS in time steps 4.0 and 5.0 in order
to discharge it in time step 5.2. The discharged amount was allocated to charge the
second excavator and the first loader (Graph (d)), which enabled these machines
to perform a final workload in the next time step. The episode ends when the 8

hours are simulated (in time step 7.0). This example proves that agent was able to

130 Chapter 7 Results

maximize the workloads of the machines during the episode because the remaining
capacities of all machines are equal to their minimum energy capacities at the final

time step.

The productivity result of this example is shown in Figure 7.4 below.

soil

—— Excavated Soil
~~— 1 Stockpiled Soil

/ = Filled Soil

400 7/ 2067 2973

7/ . 2779

2443

500 _——

m 300 2291

' 2108

Figure 7.4: Amount of Excavated and filled Soil in m3

This graph shows that the machines were able to excavate more than 500m? of soil
consisting of sand, clay, and rock during the 8 hours. Additionally, the agent did
not breach the maximum stockpile volume of 300m?, and the loaders were able to
fill 257m? of the excavated soil.

7.3 Minimize the Time Required to Complete a Productivity
Goal

The optimization framework’s training environment is configured to minimize the
time required to complete a productivity goal by including the productivity state
signals and setting the reward signal to minimize the number of time steps required
to complete a productivity goal, as described in Sections 6.2.3 and 6.4.2, respec-

tively. Furthermore, there is no maximum number of time steps, as the purpose

7.3 Minimize the Time Required to Complete a Productivity Goal 131

of this configuration is to minimize the number of hours required to complete the

productivity goal.

The construction scenario generator is configured to generate scenarios with one ex-
cavator, one loaders, and one truck for each training episode. Both the excavators
and loaders are using the second soil power factor. Similarly to the previous config-
uration, the remaining capacities of these machines at the initial time step of every
episode are set stochastically within a range of 50% and 90% of the machine’s max-
imum energy capacity. Figure 7.5 shows a visualization of the earthwork scenario

for this configuration.

Figure 7.5: Visualization of the productivity goal scenario

For every episode, the remaining capacity of the BESS is set to a stochastic value
calculated using Equation 6.17. This is done to force the agent to develop a robust
policy that is capable of minimizing the time required to complete a productivity

goal in several different scenarios.

Furthermore, the productivity goal is set to 200m?® of dumped soil. Therefore, an
episode will not terminate until the agent has developed a strategy in which 200m? of
soil is excavate and stockpiled by the excavator, loaded onto the truck by the loader,
and dumped at the dump site by the truck. This productivity goal is formulated for
the agent using Equation 6.8.

Furthermore, the maximum allowed volume of soil stockpiled is set at 200m3. This

makes the task more complicated for the agent, as it must develop a strategy in

132 Chapter 7 Results

which the volume of soil stockpiled does not exceed this amount at any time step

during the episode.

The number of training episodes for this version is set to 1300. This number was

identified using the method explained in Section 6.7.2.

7.3.1 Results from Completing a Productivity Goal

The returns of training the framework to minimize the time required to complete a

productivity goal are shown in the graph 7.6 below:

Results

—900

—1000

-1100

—-1200

Return

—-1300

—1400

-1500

—1600

0 200 400 600 800 1000 1200
Episode

Figure 7.6: Returns from training to solve the task of minimizing completion time of productivity

goal

This graph shows that the agent was developing different policies that were strug-
gling to complete the productivity goal in less than 14 time steps in the first 300
episodes. In the following 200 episodes, the agent explored several new policies. The
exploration clearly shows a performance drop where more time steps are required to
complete the productivity goal. However, the agent was able to use this exploration
to develop a more robust policy that is evident from Episode 600 and onward. This
robust policy is able to consecutively complete the productivity goal in 10 simu-
lated hours for various scenarios because a return of —1000 indicates that the agent

received the time step reward of —100 10 times in a row.

7.3 Minimize the Time Required to Complete a Productivity Goal 133

Following Episode 900, the agent was unable to reduce the average completion time
further, except for a few scenarios where it was completed in 9 hours. This is likely
because several stochastic values were favorable in those scenarios. Therefore, 10

hours is considered the optimized time required to reach this productivity goal.

An example of how the agent uses this policy to complete the productivity goal is
presented in Figure 7.7 below.

BESS

. . .
=
200

—— Workload
[BESS Remaining Capacity 600
WM BESS Charge

[BESS Discharge

500

400

. :

200

kWh

2825

Workload

2542 2505

2238 218.7 2185 2201

1934 _—/

100

50 106.8

100

0.0 10 2.0 29 3.0 4.0 5.0 6.0 7.0 8.0 9.0

(a) BESS Energy Flow

134 Chapter 7 Results

excavator0
250 —— Workload
[excavatorQ Remaining Capacity
[excavatorQ Workload 300
I excavatorO Charge
200
250
150 200
B
K= °
E | §
2155 150
100
187.2 _/
156.8 L]
100
12901 125.9
50
62.1 50
=8 30 30
0
0.0 1.0 2.0 2.9 3.0 4.0 5.0 6.0 7.0 8.0 9.0
(b) Ezcavator Energy Flow
loader0
120 —— Workload
[loader0 Remaining Capacity
== loader0 Workload
I loaderQ Charge 120
100
100
80 .
80
B
< S
=
E 60 g
110.6 60
100
89.7
40 79.3 788,
——-/ 73.4 0
L
614
54.8
45.1
20
20
26.7 26.7
0
0.0 10 2.0 29 3.0 4.0 5.0 6.0 7.0 8.0 9.0

(¢) Loader Energy Flow

7.3 Minimize the Time Required to Complete a Productivity Goal 135

truckO

—— Workload

[truck0 Remaining Capacity 160
160 . = truck® Workload

B truckO Charge
140
140
120
120

100

kwh

5
(=]
Workload

172.4
80
160.2,
80 155.2
1318 131.2
60 L] 60
114 114 / 1134
106.8
89

40 40

20
20

0.0 1.0 2.0 2.9 3.0 4.0 5.0 6.0 7.0 8.0 9.0

(d) Truck Energy Flow

Figure 7.7: Optimized Schedule to Complete a Productivity Goal

Graph (a) shows that the agent charges the BESS for the first three time steps.
During time step 2.9, the agent discharges the BESS to charge the truck (Graph
(d)). This is the only charge that the truck receives because the agent estimates
that its remaining capacity is more than enough to complete its expected workloads
in the remaining time steps. The time step terminates at 2.9 and not 3.0 because
the truck reached its maximum energy capacity before the full hour was complete.
Therefore, time step 3.0 represents only 6 minutes and is available to the agent to

perform other actions to maximize the utilization of the simulated hour.

In the following two time steps, the agent charges the BESS again. During these
time steps, it is noticeable that the excavator (Graph (b)) has reached a new layer
of a denser soil type, as the workloads increase for both the excavator and the loader
(Graph (c)). In time step 6.0, the agent performs the waiting action. This is probably
due to the truck being loaded by the loader. However, it can be discussed whether
charging the excavator would be a better decision since it reaches its minimum energy

capacity in this time step.

In time step 7.0, the agent discharges the BESS to recharge the excavator and the

loader to avoid reaching the loaders minimum energy capacity. If the agent had not

136

Chapter 7 Results

recharged the excavator and loader in this time step, the earthwork process would

have halted and more waiting would be required to complete the productivity goal.

The productivity goal is completed in time step 9.0, which is shown in Figure 7.8

below.

400
350
300

250

m3

soil

184.1
203.1

1841

—— Excavated Soil
[Stockpiled Soil
mmm Dumped Soil

=

200.6

201.6

Figure 7.8: Amount of Soil Excavated or Dumped in m?>

This graph shows that the agent was able to complete the productivity goal of

dumping 200m? soil within 10 simulated hours. Furthermore, the agent did not

exceed the maximum allowed volume of stockpiled soil by more than 1.6 m3, which

is considered acceptable.

Figure 7.8 also shows that the earthwork process was not halted, as there is a steady

increase in the volume of soil excavated and dumped. Therefore, the agent did

not cause delays by not charging the excavator in time step 6.0, as the volume of

stockpiled soil was already sufficient to complete the productivity goal. This serves as

a reminder of how impactful the formulation of the reward signal is in reinforcement

learning.

7.4 Minimize Electricity Cost While Completing a Productivity Goal Configuration 137

7.4 Minimize Electricity Cost While Completing a Productivity

Goal Configuration

The optimization framework’s training environment is configured to minimize elec-
tricity cost while completing a productivity goal by including the electricity cost
state signals and setting the reward signal to minimize electricity cost, as described

in Sections 6.2.4, and 6.4.3, respectively.

The time step range is set to maximum 10 time steps. However, the agent can
reduce the number of time steps by completing the productivity goal on an earlier
time step. The purpose of the time step range is to limit the agent’s attempts to

minimize the electricity cost within a certain number of hours.

The construction scenario generator is configured to generate scenarios with two
excavator for each training episode. The excavators are using the second soil power
factor. Both excavators begin every episode with a full charge, while the initial
remaining capacity of the BESS is set to a stochastic value calculated using Equation
6.17. This is done to force the agent to charge the BESS and experience the negative
rewards associated with the charging action. Figure 7.9 shows a visualization of the

earthwork scenario for this configuration.

Figure 7.9: Visualization of the Minimize Electricity Cost Scenario

138 Chapter 7 Results

The time and date range are set to a full year and every episode begins at the 9y,
hour of the day. This is achieved by applying Equation 6.18. The electricity prices
for an entire year are collected from NordPool [109] and represent the electricity

prices for Oslo, Norway, in 2021.

Furthermore, there are multiple reward signals for this configuration, as explained
in Section 6.4.3. The agent is rewarded based on the actions performed and for
completing the productivity goal. When the agent selects the charge action, the
agent’s reward signal is calculated using Equation 6.9. When the agent selects any
of the discharge actions, the agent’s reward signal is calculated with Equation 6.10.
If the agent is able to complete the productivity goal during the episode, the agent
receives a reward signal calculated with Equation 6.11. The productivity goal of this
configuration is to excavate 800m? of soil because there are no trucks or loaders in

this configuration.

The number of training episodes for this version is set to 6000. This number was

identified using the method explained in 6.7.2.

7.4.1 Results from Minimizing Electricity Cost

The returns of training the framework to minimize electricity cost while completing

a productivity goal are shown in the graph 7.10 below.

Results

10000

8000

6000

Return

2000

0 1000 2000 3000 4000 5000 6000
Episode

Figure 7.10: Returns from training to solve the task of minimizing electricity cost

7.4 Minimize Electricity Cost While Completing a Productivity Goal Configuration 139

The results show that the agent was struggling to complete the productivity goal
while reducing electricity costs for the initial 3000 episodes. In the following episodes,
the agent developed a policy that was able to complete the productivity goal and
produce a positive return from the sum of action-dependent rewards. For certain
days, this resulted in returns that were significantly higher than others. This is due

to the high variety of electricity prices on which the agent was trained.

For most episodes, the agent was presented with unseen price pattern for electricity.
This forces the agent to recognize the features of the electricity pricing structure that
is applicable to most days. Therefore, the generalized response to unseen scenarios

for this policy is deemed strong enough after 6000 episodes.

An example of how the agent solves the task for an unseen scenario was generated

using the trained policy and is presented in Figure 7.11 below.

BESS

250

" I
) I

100

—— Electricity Price
[BESS Remaining Capacity
WM BESS Charge

[BESS Discharge

0.60

0.58

0.56

ctricity Price

kWh

0549
w
183.6

149.4

1152
50 /

0.0 10 2.0 3.0 38 4.0 5.0 6.0 7.0 73 8.0

(a) BESS Energy Flow

140

Chapter 7 Results

300

250

200

100

50

300

250

200

e
2 150

100

50

Figure 7.11: Ezample of an optimized schedule to minimize electricity cost

excavator0

—— Workload

[excavatorQ Remaining Capacity
[excavatorQ Workload

I excavatorO Charge

—
2414
2305
192.4
178.9
140.7 1406
126.8
69.4 9.4 676
0.0 1.0 2.0 3.0 3.8 4.0 5.0 6.0 7.0 1.3 8.0
(b) First Excavator energy flow
excavatorl
—— Workload
[excavatorl Remaining Capacity
[excavatorl Workload
I excavatorl Charge
268 /
—
2385
229
190.1
1745
136.8 136.9
1182
66.1 66.1 08
0.0 1.0 2.0 3.0 3.8 4.0 5.0 6.0 7.0 1.3 8.0

(c) Second Excavator Energy Flow

350

300

250

N
(=]
o

Workload

150

100

50

350

300

250

N
(=]
o
Workload

150

7.4 Minimize Electricity Cost While Completing a Productivity Goal Configuration 141

Graph (a) shows that the agent charged the BESS for the first four time steps while
the price of electricity increased. The agent correctly identified that the price of
electricity would peak in time step 3.8 and selected a discharge-action to charge
both excavators. The agent was able to foresee this peak because of pattern recog-
nition derived from its training and its generalized response. The agent was able
to maximize its discharge reward because the excavators had time to deplete their

remaining capacities in the previous time steps.

In the following two time steps the agent waits as the price of electricity drops.
However, the BESS is at its minimum energy capacity and the agent must perform
a charge action to be able to discharge at a later time step. Therefore, the agent
selects the charge-action for time steps 6.0 and 7.0. In time step 7.3, the agent
discharges the previously charged amount of energy to both excavators to capitalize

on the second peak electricity price peak.

This is a very good example on how the agent is able to minimize the electricity cost
while completing a productivity goal. However, most of the agent’s attempts are
not this great due to high variation of electricity price patterns, as seen in Figure
7.10. Therefore, a limited time and date range should be used to train the agent on

more specific periods rather than a full year.

The productivity result of this example is shown in Figure 7.12 below.

soil

—— Excavated Soil
800 [Stockpiled Soil

700 7/

600 /

400

8118
756.1 756.1

N\

665.5

300
5715

480.2

200

270.1

100
144.6

Figure 7.12: Amount of Excavated Soil in m3

142 Chapter 7 Results

This graph shows that the agent was able to complete the productivity goal of
excavating 800m? of soil within 9 simulated hours. Therefore, the agent did not

require the 10 simulated hours that was available to it.

7.5 Results from other use cases

The framework was configured to optimize the other use cases that were explained
in Section 6.9. The purpose of applying this framework to other use cases is to
demonstrate the framework’s applicability to optimize other use cases in the elec-
tric earthwork domain. Therefore, this section serves as further validation of the

generalizability and applicability of the framework.

7.6 Minimize Electricity Cost for Overnight Charging Configu-

ration

The optimization framework’s training environment can be configured to minimize
the electricity cost for overnight charging by including the electricity cost state sig-
nals and setting the reward signal to minimize electricity cost, as described in Sec-
tions6.2.4, and 6.4.3.

However, the reward for completing a productivity goal is replaced by a reward
that motivates the agent to reach the maximum energy capacity of the machines
and BESS at the end of the episode, as explained in Section 6.9.1. Furthermore,
the workload functions 6.5.2 are deactivated to ensure that the workloads are not

simulated for the machines.

The generated earthwork scenarios consist of one excavator and one loader. Each
training episode begins with a low remaining capacity for the BESS and the ma-
chines. This is done to train the agent to charge the BESS multiple times in order
to provide enough charge to the machines. Therefore, the initial remaining capacity
of the BESS is calculated using Equation 6.17 with a limit of maximum 150kW h.

Furthermore, the time and date range is set to the month of October, where each
episode begins at the seventeenth hour of the day, and the time step range is set
to 18 hours. The same electricity prices are used as in the previous configuration.
However, only the prices for October are available to the agent to increase the

training results.

7.6 Minimize Electricity Cost for Overnight Charging Configuration 143

There are multiple action-dependent reward signals for this configuration, as ex-
plained in Section 6.4.3. When the agent selects the charge action, the agent’s
reward signal is calculated using Equation 6.9. When the agent selects any of the
discharge actions, the agent’s reward signal is calculated with Equation 6.10. How-

ever, Equation 6.24 is used as the reward signal for the final time step.

The number of training episodes for this version is set to 1400. This number was

identified using the method explained in 6.7.2.

The returns of training the framework to solve the task of minimizing the electricity

cost for overnight charging are shown in the graph 7.13 below.

Results

1500

1000

Return

500

-500

0 200 490 600 800 1000 1200 1400
Episode

Figure 7.13: Returns from training to solve the task of overnight charging

The results show that the agent struggled to increase the return from 500 in the first
400 episodes. Between episode 400 and 600, the agent explored different policies
and attempted to exploit the varying electricity price patterns. From Episode 600,
the agent’s maximum return is identified as approximately 1500. However, the noise
in the return for the remaining episodes is due to the varying electricity price pat-
terns. Therefore, the agent can only maximize its return on certain days in October.

However, these returns are more consistent than from the previous configuration.

An example of how the agent solves the task for an unseen scenario was generated

using the trained policy and is presented in Figure 7.14 below:

144 Chapter 7 Results

BESS

350 w0
—— Electricity Price
[BESS Remaining Capacity
wam BESS Charge 0.60
[BESS Discharge .
300]
250 0.55
200 b
- 050,
S ps2] £
= EEE| £
]
E! o)
150 i [
- 704
237 0.45
100 Jo3p
163
1
150.
374
225 11
0 0.40
Nt [
0
86 9.6 101 106 11.6 12.6 136 14.6 156 16.6 17.0 17.6
(a) BESS Energy Flow
excavatorQ - o e oo -
BN excavator0 Charge
3 excavator0 Remaining Capacity
250
0 00
200
é 150 e e 296 | | 296 | |296 | | 296 | | 296 | | 296 | [296 | | 296 | | 296
~
226 || 226 | |226 | | 226 | | 226 | | 226 | p24.g
100
150 | [150 | [150 | | 150 | [147.9
50
85.4
0

00 06 16 26 36 42 46 56 66 76 86 96 101 106 116 126 136 146 156 16.6 17.0 17.6

(b) Ezcavator energy flow

7.6 Minimize Electricity Cost for Overnight Charging Configuration 145

loader0

-
[loader0 Remaining Capacit:
140 g Capacity

120
100

80
149 | [149 || 149 || 149 | [149 || 149 | |149 | | 149

kwh

130 | (130 || 130 | [130 | | 130 | [130 | | 120
60

40

20

00 06 16 26 36 42 46 56 66 7.6 8.6 96 101 106 11.6 126 136 146 156 16.6 17.0 17.6

(¢) Loader Energy Flow

Figure 7.14: Ezample of an Optimized Scheduling for Overnight Charging

Graph (a) shows that the agent immediately discharges the BESS to capitalize on
the high electricity price. In the following time steps, the BESS is charged as the
price of electricity drops. The agent discharges the BESS again as the electricity
price stabilizes in the fourth time step. The agent continues to charge the BESS
until a final peak in the electricity price is expected. The agent correctly identified
the peak and was able to charge the remaining amounts to the machines shown
in graphs (b) and (c). This allowed the agent to fully recharge the BESS in the

remaining time steps while the electricity price was at its lowest during the episode.

7.6.1 Estimating the Minimum Required Capacity of a BESS

The method to automatically estimate the minimum required capacity of a BESS
was applied to the framework that was trained to maximize workloads, as explained

in Section 6.9.2.

The results from this use case serves as a further sensitivity analysis of the input
parameters because the maximum discharge power and the minimum capacity of the

simulated BESS are dependent on the maximum capacity of the BESS. Therefore,

146 Chapter 7 Results

the same rate of change applied to the maximum capacity is applied to the maximum

discharge power and the minimum capacity.

For visualization purposes, an average reward of 10000 indicates that the updated
maximum capacity of the BESS was able to generate a consistent return within
the range of 800 to 900, as identified in figure 7.2 depicting the training results of
maximizing the workloads. This was done to improve the visualization of the results
of the estimation function and did not affect the policy, as the agent was already

trained with reward equation 6.7.

The user-defined value to increase the maximum capacity of BESS was set at 10kWh,
and the number of episodes in each sequence was set to 10. Graph 7.15 shows the

results of the estimation process.

Minimum BESS Capacity

10000

8000

@
<}
S
S}

Average Return

8
8

2000

25 50 75 100 125 150 175
Capacity in kWh

Figure 7.15: Estimating minimum required Capacity for solving the task of minimizing completion

time of assigned workloads

For this configuration of the framework, the minimum required capacity of the BESS
was identified as 190kWh. The graph shows a clear trend towards improved com-

pletion rates as the capacity of the BESS increases.

7.6 Minimize Electricity Cost for Overnight Charging Configuration 147

7.6.2 Results from Direct control of a BESS

This use case demonstrates the frameworks ability to control a system in real time

after training in a theoretical environment.

The methods explained in Section 6.9.3 were applied to the agent to allow it to
perform direct control of a battery simulation model in real time. The agent was
trained in the modified training environment shown in Figure 6.19. As explained in
Section 6.9.3, this environment is a simplified version of the environment configured
to solve the task of minimizing the electricity cost. This modified environment does
not include any earthwork dynamics methods, and there is only one discharge action.

Therefore, its identified use case is battery arbitrage, as explained in 6.9.3.

After training the agent in the simplified environment, the trained agent is applied
to the direct control environment presented in figure 6.21. This environment uses
the programming bridge to control actions and read state signals from the Matlab
Simulink model 6.20.

An example episode from the direct control version of the framework is presented in
graph 7.16 below.

P Py o Py
—— Electricity Price

[BESS Remaining Capacity
wam BESS Charge

=9 BESS Discharge

80

70

0.86
60

b
®
by

@

[

@

8

=

B

@

8
Electricity Price

83

kWh
&

5 0.82
30 591203

20
0.80

10 X
15(24p85/24p8 15 24B8

0.78

0 1 2 3 4 5 6 7 8 9 0 1 12 13 14 15 16 17 18 19 20 21 22

Figure 7.16: Example episode of the direct control version

148 Chapter 7 Results

In the first two time steps of the example 7.16, the agent charged the battery sim-
ulation model from nearly empty to its maximum capacity while the prices were at
its lowest. In the next three time steps, the agent performs the wait action while
the price of electricity is increasing. In the fifth time step, the framework predicts
that the price of electricity has reached its first peak of the episode and performs
the discharge action. The framework was almost correct as the peak occurred in the
following time step. From time steps 6 to 11, the framework performs two charge
and discharge cycles in which the agent fails to charge when the prices are lower

than when it discharges. However, it is again successful from time steps 12 to 14.

Following time step 14, the agent predicts that there will be a second peak in the price
of electricity in the remaining time steps, but the prediction is wrong. Therefore, the
agent performs the discharge action in the final time step to secure a final discharge
reward. The performance of the framework in this example is not perfect. However,
it shows that the agent can perform well enough to break even, since the total cost

of electricity for this example was approximately €2.6.

Chapter

Case Study

A case study is introduced to compare the performance of the deep reinforcement
learning framework with a real world scenario. A zero-emission earthwork site in the
Greater Oslo region of Norway was selected because it tested the use of a purpose-

built BESS as a single source of energy supply for electric earthmoving machines.

8.1 Case Study Background

In Norway, 340,000 tons of C'Ose are associated with construction sites, where
211,000 tons of C'Oye are directly related to earthmoving machines [110]. Oslo,
the capital of Norway, contributes the most to these emissions due to the rapid ex-
pansion of the city. In 2019, it was estimated that 7% of Oslo’s total C'O, emissions
were related to construction site activity and that earthwork machinery accounts for

up to 30% of all traffic emissions in the city [18].

Furthermore, the Norwegian Environmental Agency (Miljgdirektoratet) [111], has
collected data on direct emissions from earthwork machines in Oslo. Figure 8.1
shows these data from 2009 to 2020.

150 Chapter 8 Case Study

100 000

80 000

60 000

540 000

tonn CO _-ekvivalenter

20000

0

2009 201 2013 2015 2016 2017 2018 2019 2020

Figure 8.1: Emissions in CO? from construction machines use in Oslo

The data presented in Figure 8.1 show that the annual emissions of the earthwork
machines in Oslo range from 59,000 tons of C'Ose to 97,000 tons of C'Ose. The
average annual emissions were approximately 74,000 tons of COse. However, there
is no indication that annual emissions are being reduced, as the varying annual

emissions may be the result of normal variation.

Oslo Municipality estimates that they can reduce future annual emissions by up to
100,000 tons of C'Oy by replacing diesel-powered machinery with electric earthmov-
ing machines [18]. Moreover, Oslo’s municipality plans to reduce construction site
emissions by 95% by 2030, requiring all public construction sites to operate electric
earthmoving machinery by 2025. Therefore, earthwork contractors are required to

use electric earthwork machines to win public contracts.

Furthermore, the time required to increase the capacity of a local distribution net-
work in Norway is a minimum of two months and can take up to several years de-
pending on the level of power demanded [1]. Therefore, earthwork BESS have been
introduced to enable the transition from using diesel-powered earthmoving machines

to electric earthmoving machines.

8.2 Earthwork Scenario

The zero-emission construction site of the case study was established in Septem-
ber 2021 with the purpose of developing a new suburban road. The earthwork
machines included a 25-ton electric hydraulic excavator with a battery capacity of
300kW h and a 12-ton electric hydraulic excavator with an original battery capacity
of 150kW h. However, the battery capacity of the 12-ton excavator was reduced to

8.3 Quantitative Data Collection and Analysis 151

130kWh, due to unknown circumstances. On working days, the excavators would

work simultaneously from 07:00 in the morning to 17:00 in the evening.

The BESS used in the case study was the BoostCharger developed by Nordic Booster
AS, as explained in Section 2.3.3. The maximum capacity of the BESS is 390kW h,
and it has two charging cables that are capable of charging two machines simultane-
ously at a rate of up to 150kW each. The BESS was connected directly to the local
grid with a standard connection to the grid that could provide power up to 36kW.

The BESS was leased to the construction company from an energy supply company.
The construction company paid a flat rate per week to rent the BESS, which in-
cluded the price of the electricity charged from the grid. Therefore, the hourly price
of electricity did not affect the earthwork contractor. However, it did affect the
energy supply company, which had no control over when the BESS was charged or

discharged.

8.3 Quantitative Data Collection and Analysis

Quantitative data on energy consumption were recorded during the month of Novem-
ber 2021. The excavator data was recorded by the earthwork contractor that was
responsible for the earthwork processes, while the BESS data was recorded by the
company that developed the BESS. Access to these data sets was provided by the
site manager and the BESS developers.

8.3.1 Excavator Data

The excavators’ state of charge was recorded by machine operators for each working
day. The machine operators were instructed to record the state of charge at the
beginning of the work day (07:00), at 09:00, before lunch (11:00), after lunch (12:00),
at 14:00, and at the end of the work day (17:00). For every recording, the workers
would also specify the type of workload achieved by the machine as light, moderate,

or heavy. Figure 8.2 shows a summary of the data recorded for the 12-ton excavator.

152 Chapter 8 Case Study

12-ton Excavator

———3 ‘
b -
80

SOC
3

40

-
-

20

Time

Figure 8.2: Data recorded from the 12-ton excavator

The box plot graph shows that the 12-ton excavator began each working day with a
state of charge of between 80% and 90%. This was its full charge as a result of the
reduction in its battery capacity. At 09:00, the state of charge would be reduced to
approximately 70%. At 11:00, the state of charge could be as low as 20%. However,

the average state of charge at this time was around 40%.

From 11:00 to 12:00, the 12-ton excavator was recharged from the BESS while the
operators were on lunch break. However, it is noticeable that the excavator was
not charged to its maximum capacity, since the average state of charge at 12:00 is
slightly lower than at the beginning of the workday. This is also noticeable at 14:00,
where the state of charge is slightly lower than at 09:00.

Furthermore, the state of charge was recorded at 15:00 on certain days when the
operator had to charge the 12-ton excavator a second time to continue working for
the remaining two hours. At 17:00, the state of charge was recorded as low as 6%.

However, the average state of charge was approximately 25%.

Figure 8.3 shows a summary of the data recorded for the 25-ton excavator.

8.3 Quantitative Data Collection and Analysis 153

25-ton Excavator

.

60 '

SoC

40

20 +

Time

Figure 8.3: Data recorded from the 25-ton excavator

The box plot graph shows that the 25-ton excavator began each working day with a
state of charge of 100%. This shows that there was no damage to its battery packs.
At 09:00, the state of charge would be reduced to approximately 80%. Before lunch
break, the average state of charge was approximately 55%. However, on some days

it could be as low as 35%.

From 11:00 to 12:00, the 25-ton excavator was also recharged from the BESS while
the operators were on lunch break. The average state of charge at 12:00 is also
slightly lower than at the beginning of the workday. This is also noticeable at 14:00,
where the average state of charge is slightly lower than at 09:00.

This excavator did not require a second charge on any day as its remaining capacity
at 14:00 was sufficient to continue working for the remaining time. The state of
charge was recorded at 16:30, rather than at 17:00. This indicates that the 25-ton
excavator tasks were completed before the 12-ton excavator tasks. However, it is
unknown if this is the case. The average state of charge at 16:30 was approximately
45%.

The box plot graphs reveal a linear trend in the average values for the state of charge.
However, the outliers depict that there are many influencing factors that can have

a non-linear and unpredictable impact on the excavators’ energy consumption.

154 Chapter 8 Case Study

The type of workload was the only recorded influencing factor for this case study.
Figure 8.4 shows when the different types of workloads were recorded for both ex-

cavators.

Type of Workload

light

heavy

Worklevel

medium

Time

Figure 8.4: Type of workloads recorded

In Figure 8.4, a trend can be observed where medium workloads are recorded more
frequently between 11:00 and 14:00, while heavier workloads are recorded after 14:00.
This is correlated with the deeper depth of discharge recorded by the excavators at
the end of the working day. The reason for this occurrence has not been specified.
However, it is feasible to assume that the excavation process reaches deeper layers
with denser soil types that demand more energy to be excavated as the excavation
process progresses and that similar excavation processes are repeated daily as the

development of the road unfolds.

In 2022, the company began to record detailed energy consumption data directly
from the excavators. The quality of the data is poor, as the data points are scattered
and several timestamps are missing. However, all recorded data points are collected
for the month of July in 2022 in an attempt to identify the energy consumption
trends of the two excavators. The data recorded from the 12-ton excavator were the

most incomplete. Figure 8.5 shows the energy consumption of the 12-ton excavator.

8.3 Quantitative Data Collection and Analysis 155

Energy Consumption of 12-ton Excavator

.

-5 \
.

-10 .

N
-15

.
0
g
.

7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0
Hour

+

Energy Consumption in kWh

Figure 8.5: Energy Consumption of 12-ton Excavator

This graph gives an indication that the 12-ton excavator consumes between 10k h
and 20kWh an hour, and that it can consume up to 35kWh in rare occasions.

However, some data are missing (e.g., for timestep 07:00 and 11:00). Therefore, the

average values cannot be trusted.

Figure 8.6 shows the energy consumption of the 25-ton excavator.

156 Chapter 8 Case Study

Energy Consumption of 25-ton Excaavator

3

_1 0 l
.
. ‘
+ .

: .
_30 - ¢

. * .

]

.

Energy Consumption in kWh

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
Hour

Figure 8.6: Energy Consumption of 25-ton Excavator

This graph shows that there were more data points recorded for the 25-ton excavator

than for the 12-ton. The graph indicates that the 25-ton excavator consumes between
20kWh and 40kWh an hour.

8.3.2 BESS Data

The energy consumption data from the BESS used in the case study were collected
directly from a human-machine interface that recorded data points every five min-
utes. During November, the BESS consumed a total of 9,612kW h where 5, 809kW h
was supplied as AC to the excavators for overnight charging and 3,803kWh as DC

to fast charge the excavators during working hours.

A maximum discharge power of 252kW was recorded when both excavators were
charged simultaneously, and the average duration of these DC fast charge processes
was 57 minutes. Furthermore, the charging power from the grid to the BESS ranged
from 31kW to 36kW , and the average daily consumption from the grid was 480kW h
with several days reaching up to 600k h.

Figure 8.7 shows a summary of the remaining capacity of the BESS during the

working days in the month of November.

8.4 Qualitative Data Collection and Analysis 157

Remaining Capacity of BESS

l::ll—:—|- - (Y

.o
-

250 0

-

200

Remaining Capacity

=

.o

150 .

e e o
-
-

100

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
Time

Figure 8.7: Data recorded from the BESS

The box plot graph shows that the BESS began each working day with a capacity
of around 330kW h, and that the excavators were charged between 10:00 and 12:00.
However, the deepest discharges are recorded between 11:00 and 12:00, which is con-
sistent with the data collected from the excavators. Furthermore, the graph reveals
that the BESS began recharging immediately after the excavators were charged.
However, the graph shows that the BESS was sometimes discharged for the second
time between 15:00 and 17:00 with lesser intensity. This is in correlation with the
12-ton excavator that demanded an additional charge on certain days. However, this
could also be the result of other load demands that were not recorded (e.g., electric
cars or trucks visited the site). The lowest state of charge of the BESS was recorded
at 11% while the highest was 95%.

8.4 Qualitative Data Collection and Analysis

Separate interviews were conducted with the site manager of the case study earth-
work site and the company that developed the purpose-built BESS for the earthwork
process. The purpose of the interviews was to explore experiences related to electri-

fication of earthwork processes.

158 Chapter 8 Case Study

8.4.1 Summary from the Interview with the Construction Site Manager

The site manager owned an earthwork company that specialized in road construction.
The company had acquired two electric excavators in 2021. However, this was the
company’s first project in which a BESS was used as an interface between the grid

and the excavators.

He explained that the electrified earthwork processes were kept as similar as pos-
sible to the diesel-powered earthwork processes by purposefully charging the exca-
vators during lunch breaks to reduce the impact of the transition from diesel to
electric-powered machines. Therefore, the construction process was not adapted to

accommodate the use of electric earthmoving machines.

To enable efficient charging at lunch time, the excavators had to start the working
day fully charged. This was achieved by overnight AC charge from the BESS to the
excavators. This process did not account for fluctuating electricity prices, as the

electricity price did not directly impact the construction company.

The construction manager’s main concern regarding the transition to electrified
earthmoving machines was to identify processes that would make the work more
efficient. This could potentially save costs by reducing the time workers are paid
to wait while machines are charging because lunch breaks were often extended from
45 minutes to an hour to allow excavators to charge to their respective maximum
capacities. Therefore, his goal was to reduce the charging time per excavator to a

maximum of 45 minutes per day.

Furthermore, daily productivity goals were deduced from three-week plans. These
productivity goals represented excavation from one point to another, and a cross
section of the path would indicate how intense the work would be based on the
layers of soil types. However, no other influencing factors were used when planning

the earthwork process.

8.4.2 Summary of the Interview with the BESS developer

The BESS developer explained that earthwork companies and other stakeholders
are slowly adapting to new roles and responsibilities associated with zero-emission
construction sites. However, the developer’s service technicians were often called to

assist earthwork professionals with the new BESS technology on site.

The main challenge emphasized by the developer was estimating the appropriate

maximum energy capacity of the BESS. A BESS with a large energy capacity faced

8.5 Framework Application 159

challenges with internal temperature, as battery cells would generate a lot of heat,
which proved to be difficult to manage with the available air conditioning systems.
Therefore, the earthwork process could be halted when the BESS was not available

due to temperature-mitigating measures.

This problem could be avoided by minimizing the number of battery cells required to
operate efficiently. However, neither developers nor earthwork professionals have ac-
cess to a method to estimate the minimum energy capacity required for an earthwork
BESS.

Furthermore, battery cell technology was identified as the main cost per unit sold.
Therefore, the estimation of optimal capacities for the intended use of their products

was identified as a key performance indicator to reduce costs and increase sales.

The method used by the BESS developer to decide on the maximum energy capacity
of the BESS prototype was to ensure that it could fully recharge two 12-ton excava-
tors over a period of one hour. However, testing the product on the market resulted

in a demand for a BESS with lower energy capacity.

8.5 Framework Application

The performance of the framework was compared with the actual results of the case
study to evaluate how the electric earthwork process can be improved. The frame-
work was used to generate a schedule that would represent the case study approach
using the quantitative data collected. The earthwork scenario generator was con-
figured to generate scenarios with one 25-ton excavator and one 12-ton excavators.

Figure 8.8 is a visualization of the case study scenarios.

160 Chapter 8 Case Study

Figure 8.8: Visualization of the case study scenario

In addition, the input values of the framework’s environment were configured to

represent these specific machines, as shown in Table 8.1.

Parameter 25-ton Excavator 12-ton Excavator
Remaining Capacity at t 300kWh 130kWh
Maximum Capacity 300kWh 130kWh
Minimum Capacity 30kWh 13kWh
Maximum Charge Power 150kW T0kW
Maximum Output Power 120kW 50kW
Round-Trip Efficiency 0.95 0.95
Idling Power 5kW 3kW
Bucket Capacity 1.5m? 1m?
Cycle Time 36sec 36sec
Operator Efficiency 95% 95%
Operational Efficiency (65, 83)% (65, 83)%

Table 8.1: Case Study Machine Factors

Operators were assumed to be experienced and the operational efficiency is repre-

sented by the recommended range in the literature [51].

8.5 Framework Application 161

Furthermore, the types of workloads recorded by machine operators were represented
by adapting the soil power factors of the framework to generate excavator-specific
workloads that are within the ranges provided in Figure 8.6 for the 25-ton excavator

and Figure 8.5 for the 12-ton excavator. Table 8.2 shows how these workloads are

represented.
Workload Type Light Medium Heavy
Volume of Soil Assoc. with Workload 350 m? 400 m? 400 m?
Location of soil upper middle lower
12-ton Soil Power Factor (0.3, 0.45) (0.55,0.6) (0.6, 0.8)
25-ton Soil Power Factor (0.3, 0.35) (0.35,0.45) (0.5, 0.55)

Table 8.2: Workload Factors

Here, the type of workload changes when excavators have excavated the volume of
soil associated with the type of workload to generate similar energy consumption
patterns as recorded in Figure 8.3 for the 25-ton excavator and Figure 8.2 for the

12-ton excavator.

The case study configured framework was used to generate a schedule to represent
the case study approach. This was done by manually selecting when actions were
to be performed, without training any agent. Figure 8.9 is a generated schedule in

which the case study approach is used.

162

Chapter 8 Case Study

300

250

200

kwh

150
100

50

300

250

200

£ 150
z

100

50

. N . - BESS
—— Workload
[BESS Remaining Capacity 500
wam BESS Charge
[BESS Discharge
400
300 o
(]
=}
330 330 330 330 ~
g
200
1989
166.9
136.9
105.9 105.9
100
08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
(a) BESS Energy Flow
25-ton Excavator
—— Workload
1 Remaining Capacity | 350
= Workload
I Charge
300
250
©
@
2008
<
2503
2156 2205 150
171 1739
100
1249 1249 1239
732
50
08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(b) 25-ton Ezcavator Energy flow

8.5 Framework Application 163

12-ton Excavator

Workload
Remaining Capacity
Workload 140
Charge

100

B .

l 1o
80
I ”
60
1109 1101
28

60

kWh
Workload

486
20

20

08:00 09:00 10:00 11:.00 12:00 13:00 14:00 15:00 16:00

(¢) 12-ton Excavator Energy Flow

Figure 8.9: Case Study Schedule

Graph (a) shows that the BESS began the working day with full charge and that it
was discharged to charge both excavators between 11:00 and 12:00. Following dis-
charge, the BESS was recharged with the same intensity as recorded in 8.7. Graphs
(b) and (c) show the energy consumption patterns of the excavators. This schedule
represents the case study approach because the hourly energy consumption values
are within the ranges presented in Figures 8.6 and 8.5, and the remaining capaci-
ties of the excavators are within the state of charge ranges presented in Figures 8.3
and 8.2. The accumulated workloads simulated for the excavators in this scenario
amounted to 493kWh.

8.5.1 Optimization Results

The optimization process was applied to the environment representing the case study
approach by training the agent to maximize the workloads of the two excavators for

4000 episodes. The training results are shown in figure 8.10.

164 Chapter 8 Case Study

Results

525

500

475

450

Return

425

400

375

350

0 500 1000 1500 2000 2500 3000 3500 4000
Episode

Figure 8.10: Returns from training the agent to optimize the case study schedule

The results show that the agent explored different policies for 800 episodes. Between
episodes 800 and 1000, the agent developed a policy that was able to generate returns
of approximately 500. In the remaining time steps, the agent explored different ways
to improve the developed policy. However, it was not successful in significantly im-
proving the developed policy. Therefore, a return of approximately 500 is considered

optimal.

Two optimized schedules are presented to show the performance of the framework in

optimizing the case study schedule. Figure 8.11 shows the first optimized schedule.

8.5 Framework Application

165

300

250

200

kwh

150

100

50

300

250

200

Wh

i 150

100

50

BESS

o o

[} N

b T T
Workload

BESS Remaining Capacity
BESS Charge

BESS Discharge

400

300

Workload

200

100

300

250

150

100

50

/ 226
2175
195 | 7 195
08:00 09:00 10:00 10:30 10:36 11:00 12:00 13:00 14:00 15:00 16:00
(a) BESS Energy Flow
25-ton Excavator

—— Workload

[Remaining Capacity

= Workload

- I Charge
2655
2=d) 253.2
2317
/ 205
186.7 186.8 /
156.4
107.9
575
30

08:00 09:00 10:00 10:30 10:36 11:00 12:00 13:00 14:00 15:00 16:00

(b) 25-ton Ezcavator Energy flow

166 Chapter 8 Case Study

12-ton Excavator
120 I

100
120
80 I

60

Workload

Remaining Capacity
Workload

Charge 140

100

,_.
1=}
=}

80

Workload

1085 1111 1101

kwh

20

20
15

08:00 09:00 10:00 10:30 10:36 11:00 12:00 13:00 14:00 15:00 16:00

(¢) 12-ton Excavator Energy Flow

Figure 8.11: First Optimized Schedule for Case Study

The first optimized scheduled generated a total workload of 508. The agent was able
to increase the total workload by spending less time charging the excavators. The
excavators were charged between 10:00 and 10:36, and the agent did not use the full
hour to charge the excavators because the charge-limit function determined that the
excavators had enough individual charge to maximize workloads for the remaining

time steps.

However, the agent was unable to maximize the excavators’ workload in the final time
step, as the excavators reached their respective minimum energy capacities. This
revealed an interesting feature of the framework, in which the agent has learned
that using the rule-based charge-limit function early in the simulation process may
lead to reduced performance. Therefore, the agent decided to continue charging the
excavators after the initial charging process was terminated at 10:30 in an attempt to
further increase the remaining capacities of the excavators to maximize the workloads
in the final time step. However, this charging process was also terminated by the
charge-limit function at 10:36. This is a great example of how the agent can develop

ways to optimize the schedule when a rule-based function limits its behavior.

8.5 Framework Application

167

A second optimized schedule was generated using the same trained agent to show

how a different approach would generate an even greater total workload of 519.

Figure 8.12 shows the second optimized schedule.

kWh

300

250

200

150

100

50

o o o o BESS
—— Workload
[BESS Remaining Capacity
WM BESS Charge
[BESS Discharge
]] .
330 330 330 330 /
L—"
//
/ 244
225 225 225
211
180 180
08:00 09:00 10:00 11:00 11:42 12:00 13:00 13:36 14:00 15:00 16:00

(a) BESS Energy Flow

500

400

300

Workload

200

100

168 Chapter 8 Case Study

25-ton Excavator

300 —— Workload
[Remaining Capacity
mm= Workload 350
B Charge
250
300
200 250
B
= =}
200 <
3
Z 150 . :
. [
2204 1102 150
100
1832
1718
143 100
1335 1335
1232
50
733
50
30
08:00 09:00 10:00 11:.00 11:42 12:00 13:00 13:36 14:00 15:00 16:00
(b) 25-ton Excavator Energy flow
12-ton Excavator
—— Workload
120 [Remaining Capacity
mm= Workload
I Charge 140
100
120
80 100
B
_g °
80 i
~ 60 g
109.3
9.7
60
40 788
59.1
53.8 40
445
20 38.7
39
20
19 19
15
08:00 09:00 10:00 11:.00 11:42 12:00 13:00 13:36 14:00 15:00 16:00

(¢) 12-ton Excavator Energy Flow

Figure 8.12: Second Optimized Schedule for Case Study

8.5 Framework Application 169

The second optimized schedule shows how the agent is able to maximize the total
workloads of both excavators on all non-charging time steps by charging the excava-
tors individually on different time steps. More time is spent charging than the first
optimized schedule. However, the earthwork process is not disrupted, as one exca-
vator can continue working while the other is charging. This result shows how the
case study process can be improved by charging the machines separately to further

accommodate the use of electric excavators and increase productivity.

Furthermore, the sizing method was applied to the case study version of the frame-
work to estimate the minimum required BESS capacity that would generate similar
total workloads. The estimation function was configured as explained in Section
7.6.1. The results of estimating the minimum required BESS capacity are shown in
Figure 8.13.

Minimum BESS Capacity

10000 ’

8000

Average Return
=Y
3
3
8

8
8

2000 A

[20 40 60 80 100 120 140
Capacity in kWh

Figure 8.13: Estimation of the minimum required capacity for the case study example

The results indicate that the minimum required capacity of a BESS that will produce
similar results is 140kW h. This further undermines the concern of BESS developers

about the sizing of future BESS products.

Chapter

Conclusion

The deep reinforcement learning framework proposed in this thesis is developed to
optimize energy supply schedules for electric earthwork processes where a single
BESS is used to charge multiple electric earthmoving machines. The framework
is designed to be applicable to several purposeful use cases to provide earthwork
professionals with a tool to facilitate the transition from diesel-powered to electric

earthwork processes.

The background chapter explains how an earthwork BESS can make electric earth-
work processes more feasible by charging electric earthmoving machines efficiently

while avoiding unnecessary upgrades to the distribution network.

The literature review identified factors that affect the energy consumption of electric
earthmoving machines and addresses previous modeling efforts of diesel-powered
earthwork processes due to the lack of standardization, data scarcity, and under-
specified influencing factors in the field of electric earthwork research. Moreover,
the inability of multi-linear regression methods and discrete event simulation in
optimizing electric earthwork processes is emphasized due to their reliance on system
identification, detailed data sets, and lack of a generalized response to stochastic
scenarios. The proposed methodology is capable of overcoming these challenges by
utilizing the model-free features of reinforcement learning in combination with the
generalizability of artificial neural networks to optimize decision-making strategies

in stochastic electric earthwork scenarios.

Furthermore, the framework generates unique earthwork scenarios to serve as train-
ing data for the generalized response based on a set of input values that the user
can obtain from case studies, earthwork contractors, and manufacturers of electric
earthmoving machines. A trained framework outputs values that represent opti-

mal energy supply decisions for individual machines and the BESS in terms of an

172 Chapter 9 Conclusion

optimization goal set by the user. The results show the performance of the frame-
work in achieving multiple optimization goals with varying configurations and input
values. The results also demonstrate how this framework can be used to facilitate
bidding and reporting processes by generating optimized energy supply schedules

and identifying opportunities to increase efficiency.

The optimization goals were identified to answer the main research question on
how an earthwork BESS can be operated to optimize the energy supply for electric
earthwork processes. The goal of maximizing workloads in a given time frame,
together with the goal of minimizing the time required to complete a productivity
goal, answers the question of how electric earthwork processes can be optimized
to increase efficiency. The goal of minimizing the electricity cost while completing
a productivity goal (and charging overnight) answers the question of how electric

earthwork processes can be optimized to reduce electricity costs.

The applicability and generalizability of the framework are validated by controlling a
battery system in real-time and by estimating the minimum required energy capacity
for an earthwork BESS by evaluating ascending values for the maximum energy

capacity of a BESS in the environment of a pre-trained version of framework.

The case study explores the impact electrification of earthmoving machines have on
earthwork processes by demonstrating how the framework can be used to improve ex-
isting earthwork processes to further adopt the use of electric earthmoving machines

by estimating future workloads and reducing the time spent charging machines.

The framework was designed with industry application in mind. Therefore, scaleabil-
ity, modularity, and automation were prioritized when formulating the code. This
framework lays the foundations for research aimed at the development of decision

support tools to realize efficient electric earthwork processes.

9.1 Discussion and Further Research

The accuracy of the current state of the framework can be significantly improved by
better understanding the factors that influence the energy consumption of electric
earthmoving machines. Therefore, further research efforts must be made to collect
and standardize data from commercially available electric earthmoving machines.
This is especially relevant to be able to integrate more earthwork processes, such as

grading, spreading, and compacting.

9.1 Discussion and Further Research 173

The framework does not address the nonlinear battery dynamics with respect to
battery degradation and the effect of temperature on battery cells. Rosewater et
al. [104] states that a non-linear energy reservoir model is an underexplored middle
ground that may provide improved accuracy with a modest increase in computational
complexity. Therefore, a nonlinear energy reservoir model should be considered to

improve this framework.

A natural continuation of this project is the integration of temperature management.
Specifically, the control of an air conditioning system in the BESS to maintain bat-
tery cell temperatures within a safe operating range during charge and discharge
cycles. This can be achieved by optimizing precooling schedules based on optimized

operation schedules.

Furthermore, multi-agent reinforcement learning, where there is an agent for every
earthmoving machine and for the BESS, could potentially improve the performance
of the framework. However, this is an underexplored and developing research topic

in reinforcement learning where there are few applicable examples.

Appendix

Appendix 1

A.1 Python Code Example

A.2 Required Python Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import gym

from gym import spaces

import random

import numpy as np

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam

from rl.agents import DQNAgent, SarsaAgent

from rl.policy import EpsGreedyQPolicy, MaxBoltzmannQPolicy

from rl.memory import SequentialMemory

A.3 Construction Scenario Generator

def dailywork_train(y, num_ex, num_loader ,num_trucks):

Excavator_dict = {’machine_type’: Excavator’,

"Max_capacity ’: 300, "Min_capacity’: 30,

176

Chapter A Appendix 1

"MaxChargepower’: 150, ’Roundtrip’: 0.95,
"Power’: 120, ’'Priority ’':float (0),

"Workload ’: float (0), ’alreadycharged’:float (0),
"Charge ’: float (0), ’charging’:float (0),

"StepWork ’: float (0), "operator’:Operatordict [experienced’],
"bucketsize’: 1.5, ’idle_power’:5, ’cycletime’: 0.01}

loader_dict = {’machine_type’: ’Loader’, "Max_capacity’: 150,
"Min_capacity ’: 15, MaxChargepower’: 75, ’Roundtrip’: 0.95,
"Power’: 50, 'Priority ’:float (0), 'Workload’: float (0),
"alreadycharged ’: float (0), ’'Charge’: float (0),

"charging ’: float (0), "StepWork ’: float (0),

"operator ’: Operatordict ["experienced '], ’'bucketsize’: 2,

"Max_cycle_time ’:0.05, ’idle_power ’:5, ’cycletime’: 0.01}

Truck_dict = {'machine_type’: "Truck’, "Max_capacity’: 180,
"Min_capacity ’:18, "MaxChargepower’: 75, 'Roundtrip’: 0.95,
"Power’: 60, Unloaded_power’: 20, ’Priority ' :float (0),
"Workload ’: float (0), ’alreadycharged’:float (0),

"Charge ’: float (0), ’charging’:float (0), ’'StepWork’: float (0),

Y

"operator ’: Operatordict ["experienced '], "Max_load_capacity ':23,
"load_capacity ":0, "Max_cycle_time’:0.5, ’idle_power’:1,

"cycletime ’: 0.3, ’remaining_cycle_time’: 0}

#FEzxcavators

for i in range(num_ex):

Excavator_dict .setdefault (’Machine’, [])
Excavator_dict [’"Machine ' |. append (" excavator”+str (1))
Excavator_dict.setdefault ('SOE’, [])
if vy = 1:

Excavator_dict ['SOE’ | . append (299)
elif y = 2:

Excavator_dict ['SOE’ | . append (random . uniform (150,250))
elif y = 3:

Excavator_dict ['SOE’ | . append (random . uniform (Excavator_dict
["Min_capacity], 200))

A.3 Construction Scenario Generator 177

Excavator_dict.setdefault (' Tasks’, [])
Excavator_dict ["Tasks’|.append (random.randint (300,310))

excavators=pd.DataFrame(Excavator_dict)

excavators=excavators.set_index (' Machine ")

if num_loader > O:

#Loaders
for i in range(num-_loader):
loader_dict.setdefault (’Machine’, [])

loader_dict ["Machine’ | . append (”loader”+str (1))

loader_dict .setdefault ('SOE’, [])
if y = 1:
loader_dict ['SOE’ | . append (125)
elif y = 2:
loader_dict ['SOE’ | . append (random . uniform (100, 150))
elif y = 3:
loader_dict ['SOE’ | . append (random . uniform (loader_dict
["Min_capacity '], 100))
loader_dict.setdefault ('Tasks’, [])

loader_dict [’Tasks’].append (random.randint (150,170))
#loader_dict [’ Tasks ’]. append (150)

loaders=pd.DataFrame(loader_dict)
loaders=loaders.set_index (’Machine ")
else:

loaders=pd.DataFrame ()

if num_trucks > 0:
#Trucks
for i in range(num_trucks):
Truck_dict.setdefault (’Machine’, [])
Truck_dict ["Machine’] . append (" truck "+str (i))

178 Chapter A Appendix 1
Truck_dict.setdefault (’SOE’, [])
if y = 1:
Truck_dict ['SOE’ | . append (Truck_dict ["Max_capacity '|)
elif y = 2:
Truck_dict ['SOE’] . append (random . uniform (100,
Truck_dict ["Max_capacity ']))
elif y = 3:
Truck_dict ['SOE’ | . append (random . uniform (
Truck_dict ["Min_capacity '], 100))
Truck_dict.setdefault (’Tasks’, [])
Truck_dict ["Tasks’].append (random.randint (180,200))
#Truck_dict [’ Tasks ’]. append(100)
trucks=pd.DataFrame(Truck_dict)
trucks=trucks.set_index (’Machine ")
else:
trucks=pd.DataFrame ()
dataframes = [trucks ,loaders ,excavators]
df = pd.concat(dataframes)
df [’Original_Tasks’|] = df[’ Tasks’|
df= df.reset_index ()
return df
def set_conditions ():

Operatordict = {’newguy’: 0.5, ’'experienced’: 0.7, ’expert’: 1}

Soil_amount = {’rock’:200, ’clay’: 200, ’sand’:100}

SoilDict = {’rock’:0.6, ’'clay’: 0.8, ’sand’:1}

Soil_power_factor = {’rockhigh’:1, ’rocklow’:0.8, ’clayhigh’:
0.6, claylow’: 0.8, ’sandhigh’:0.4, ’sandlow’:0.6}

Soil_power_factor2 = {’rockhigh’:0.8, 'rocklow ’:0.5,

"clayhigh’: 0.2, ’claylow’: 0.5, ’sandhigh’:0.2, ’sandlow’:0.4}

A.4 Charging Function 179

return Soil_amount, SoilDict, Soil_power_factor , Operatordict,

Soil_power_factor?2

Soil_amount , SoilDict , Soil_power_factor , Operatordict ,

Soil_power_factor2= set_conditions ()

def digging_progress(soil_level ; Soil_power_factor , Soil_amount):

if soil_-level <= 0 and soil_level > —Soil_amount | sand’|:
soilstate =’sand’
elif soil_level <= —Soil_amount|’sand’] and soil_level >

—(Soil_amount ["sand ']+ Soil_amount ["clay ']):

soilstate =’clay’

elif soil_level <= —(Soil_amount [’clay ’|+Soil_amount | sand’|):
soilstate ="rock’

else:
soilstate ="rock’

x = Soil_power_factor [soilstate+ high’]

y = Soil_power_factor [soilstate+’'low |
Current_soil_hardness = random.uniform (x,y)

return Current_soil_hardness , soilstate

A.4 Charging Function

def charging_machines(self , df, start_time):

total_discharge = 0

for i in df.index:
if df.at[i, 'SOE’] >= df.at[i, 'Max_capacity’|%0.98:
df .at[i, ’charging’]=0

180

Chapter A Appendix 1

df .at[i, ’'Charge’] =0
df.at[i, ’'StepWork’]=0
chargefromBESS=0

while self.soe > self.minCap:

if sum(df.charging) = 0:
break

for i in df.index:
if df.at[i, charging’]==1:

remaining_charge_time= (df.at[i, 'Max_capacity’]
—df.at[i, 'SOE’])/ df.at[i, "MaxChargepower’]

if self.chargetime < remaining_charge_time:
chargefromBESS = float (df.at |1,
"MaxChargepower ’ |x self . chargetime)
else:
chargefromBESS = float (df.at[i,

"MaxChargepower ’ |« remaining_charge_time)

if self.soe — chargefromBESS < self.minCap:
chargefromBESS= chargefromBESS —
(chargefromBESS— (self.soe—self.minCap))

self.soe —= chargefromBESS

total_discharge += chargefromBESS

df .at[i, 'SOE’] 4= chargefromBESS =x
df.at[i, 'Roundtrip’]

df.at[i, ’alreadycharged’] += chargefromBESS
« df.at[i, ’Roundtrip’]

df.at[i, ’'Charge’] += chargefromBESS
« df.at[i, ’Roundtrip’]

A.4 Charging Function

181

df = work_machine (self , df)

for i in df.index:
if df.at[i, 'SOE’] >= df.at[i, 'Max_capacity |*0.98:
df.at[i, ’charging’]=0

#Remaining- WL = check_previous_charges (self, df, i)
if df.at[i, 'SOE’] > Remaining-WLx1.1:
df.at[i, ’“charging’]=0

self . hour 4+= self.chargetime

if int(self.hour) >= start_time+1:
break

if self.soe<= self .minCap:
break

for 1 in df.index:

df.at[i, ’charging’|=0
self . df=df

return self.df, self.soe, total_discharge
def set_charge_to_zero(df):
for i in df.index:
df.at[i, ’'Charge’| =0
#df . at[i, "StepWork’]=0

return df

def check_previous_charges(self, df, i):

Time_spent = int (self.hour)—self.Starto

182 Chapter A Appendix 1

Time_remaining = self.maxtimestep — Time_spent

#if Time_remaining < Time_spent:

if Time_spent > 2:
Avg WL = df.at[i, "Workload’] / Time_spent #average workload

Remaining WL = Time_remaining * Avg WL
else:
Remaining WL = 1000

return Remaining WL

A.5 Workload Functions

def work_machine(self , df):
for i in df.index:
if df.at[i, charging’|]==0:

if df.at[i, 'machine_type’|=="Excavator’:

if self.soil_deponi >= self.max_deponi:
#and df[df.remaining_cycle_time == 0]. empty
— True:
Workload = df.at[i, idle_power’] % self.chargetime
time_spent , Workload = MinCap_cond(df, i, Workload)
else:
Current_soil_hardness , soilstate =
digging_progress(self.soil_level |
Soil_power_factor2 , Soil_amount)
OEE = random . uniform (0.65,0.83)
Workload = df.at[i, Power’] * df.at[i, Roundtrip’]
x self.chargetime % Current_soil_hardness
x OEE

time_spent , Workload = MinCap_cond(df, i, Workload)

A.5 Workload Functions 183

Productivity = (df.at[i, bucketsize]
x SoilDict [soilstate]) =x
((self.chargetimestime_spent)/

df .at[i, cycletime’]) % OEE

x df.at[i, operator’]

if self.soil_deponi < self.max_deponi:
self.soil_level —= Productivity

self.soil_deponi 4= Productivity

elif self.soil_deponi >= self.max_deponi:
df , self.soil_level , self.soil_deponi =
load_trucks (self, df, Productivity) ##

elif df.at[i, 'machine_type’|=="Loader’:
if self.soil_deponi <= 0:
Workload = df.at[i, idle_power’] % self.chargetime
time_spent , Workload = MinCap_cond(df, i, Workload)
#elif df[df.remaining_cycle_time == 0].empty == True:
Workload = df.at[i, idle_power '] x self.chargetime
time_spent , Workload = MinCap_cond(df, i, Workload)
else:
Current_soil_hardness , soilstate =
digging_progress(self.soil_level |
Soil_power_factor2 ,Soil_amount)
OEE = random.uniform (0.65,0.83)
Workload = df.at[i, Power’] * df.at[i, Roundtrip’]
x self.chargetime * Current_soil_hardness
x OEE

time_spent , Workload = MinCap_cond(df, i, Workload)

Productivity = (df.at[i, bucketsize’] x
SoilDict [soilstate]) * ((self.chargetime
xtime_spent) / df.at[i, cycletime’])
x OEE x df.at[i, operator’]

184 Chapter A Appendix 1

#df, self.soil_level , self.sotl_deponi =
load_trucks (self , df, Productivity)
self.soil_level —= Productivity

self.soil_deponi 4= Productivity

elif df.at[i, 'machine_type’|=="Truck :
if df.at[i, load_capacity’] < df.at[i,
"Max_load_capacity’] x 0.9:
Workload = df.at[i, idle_power’] x

self.chargetime

time_spent , Workload = MinCap_cond (df,
i, Workload) ##

elif df.at[i, load_capacity’] >= df.at][i,
"Max_load_capacity '] % 0.9:

if df.at[i, remaining_cycle_time’] = 0:
df.at[i, ’'remaining_cycle_time’']| =
df.at[i, ’cycletime’| #set full cycle time
Workload = df.at[i, Power’] x df.at[i,

"Roundtrip’] % self.chargetime

time_spent , Workload = MinCap_cond (df,
i, Workload) ##

df.at[i, ’remaining_cycle_time’']| —=

self.chargetime % time_spent

elif df.at[i, ’'remaining_cycle_time’]| >
self.chargetime: Workload = df.at[i,
"Power’| % df.at[i, Roundtrip’]

x self.chargetime

time_spent , Workload = MinCap_cond (df,
i, Workload) ##

A.5 Workload Functions 185

df.at[i, ’'remaining_cycle_time’| —=

self.chargetime * time_spent

elif df.at[i, ’remaining_cycle_time |
<= self.chargetime:
Workload = df.at[i, 'Power’] * df.at[i,

"Roundtrip ’|* self.chargetime

time_spent , Workload = MinCap_cond (df,
i, Workload) ##

df.at[i, ’'remaining_cycle_time’] = 0
#self.chargetime x time_spent

self . dumped_soil += df.at[i, 'load_capacity ’]

df.at[i, load_capacity’] = 0

self .dump_counter +=1

df.at[i, ’'SOE’|—= Workload
#df.at[i, 'Tasks’|]—= workload
df .at[i, 'Workload ’]+= Workload
df .at[i, ’StepWork’| += Workload

return df

def MinCap_cond(df, i, Workload):
if df.at[i, 'SOE’]-Workload < df.at[i, *Min_capacity’]:
time_spent = (Workload —(Workload—
(df.at[i, ’SOE’]—df.at[i, ’Min_capacity’])))
/Workload
Workload= Workload —(Workload—(df.at[i, 'SOE’]—
df.at[i, 'Min_capacity’]))
else:
time_spent =1

return time_spent, Workload

186 Chapter A Appendix 1

def load_trucks (self, df, Productivity):

if self.trucks = 1:
Available_trucks = df[df.remaining_cycle_time =— 0]
Available_trucks = Available_trucks.sort_values (by=
"load_capacity ', ascending = False)
if Available_trucks.empty = False and

self.soil_deponi > Productivity:
self .soil_deponi —= Productivity
truck_name=Available_trucks.iloc [0,0]
df . at [df[df.Machine = truck_name |.index[0],
"load_capacity '] += Productivity

elif Available_trucks.empty = False and
self.soil_deponi <= Productivity:
truck_name=Available_trucks.iloc [0,0]

df.at [df[df.Machine = truck_name|.index[0],

"load_capacity '] += self.soil_deponi
self.soil_deponi —= self.soil_deponi
else:# Awailable_trucks.empty == True:

if self.soil_deponi > Productivity and

self.fill_volume < self.max_fill:

self.soil_deponi —= Productivity /2

self . fill_volume += Productivity /2
else:

self.soil_level —= Productivity /3

self .soil_deponi 4= Productivity/3
else:
if self.soil_deponi > Productivity and
self.fill_volume < self.max_fill:
self.soil_deponi —= Productivity /2
self.fill_volume += Productivity /2
else:

self.soil_level —= Productivity /3

A.6 Machine Selection for Charging 187

self.soil_deponi += Productivity /3

return df, self.soil_level , self.soil_deponi

A.6 Machine Selection for Charging

def select_machines_for_charging (df,i):
df.at[i, charging’|=1
df=sort_priority (df)
df=df.sort_values (by="Priority ', ascending=False)
test= df[’charging '|==
k=df[test |.head(1).index
df .at [k, charging '|=1

return df

def can_machine_charge(df, i):

if df.at[i, ’machine_type’]=="Truck’ and df.at[i,
‘remaining_cycle_time’| > 0:
boolo = False

else:

test=df.at[i, 'SOE’] < df.at[i, ’Max_capacity’]
x0.98 #and df.at[i, 'Tasks’] > 0
boolo= bool(test)

return boolo

A.7 Action Dynamics

def set_charge_to_zero(df):
for i in df.index:
df.at[i, ’'Charge’]| =0
#df.at[i, 'StepWork’']=0

return df

def action_reaction2(self , action):

188 Chapter A Appendix 1

Machine_actions = self.action_space.n—2

action2= Machine_actions— action

if action < Machine_actions/2 and self.soe >

self .minCap and can_machine_charge(self.df,
action)==True and self.discharge_count < 4:

start_time = int(self.hour)

self.df=select_machines_for_charging (self.df,
action)

self.df, self.soe, total_discharge =
charging_machines (self , self.df ,start_time)

pre_reward = total_discharge x self.prices[start_time |

total_charge = 0

self.discharge_count +=1

elif action > Machine_actions/2 and action < Machine_actions+1 and

self .soe > self.minCap and can_machine_charge(self.df,
action2)==True and self.discharge_count < 4:

start_time = int(self.hour)

self.df.at[action2,’charging’|=1

self.df, self.soe, total_discharge =charging_machines(self ,

self.df,start_time)

pre_reward = total_discharge x self.prices[start_time |

total_charge = 0

self.discharge_count +=1

elif action = Machine_actions+1 and self.soe < self.maxCap
total_charge=0
start_time = int(self.hour)
while self.soe < self.maxCap:
charge = self.grid * self.chargetime
self.soe += charge * self.RE
total_charge += charge

self . df=work_machine(self , self.df)

A.8 Get Machine States 189

self . hour 4+= self.chargetime
if self.hour >= start_time+1:
break

#self.df=pd.concat ([self.df, completed])
pre_reward =total_charge x self.prices[start_time |
total_discharge=0

self.df = set_charge_to_zero(self.df)

else:

start_time = int(self.hour)

while int(self.hour) != start_time+1:
self . df=work_machine(self , self.df)
self . hour 4= self.chargetime
if self.hour >= start_time+1:

break
pre_reward = 0

total_charge=0
total_discharge=0
self.df = set_charge_to_zero(self.df)

return pre_reward, self.soe, self.df, total_discharge, total_charge

A.8 Get Machine States

def get_machine_states (df):
df=df.sort_values (by="Machine’, ascending=False)
MachineStates={}
for i in df.index:
SOEname=df.at[i, ”"Machine”]+ SOE’
MachineStates.setdefault (SOEname, [])
MachineStates [SOEname] . append (df.at[i, "SOE”])

Tasksname=df.at [i, ”Machine”]+ Workload’
MachineStates.setdefault (Tasksname, [])

190 Chapter A Appendix 1

MachineStates [Tasksname | . append (df.at[i, "Workload”])
data = list (MachineStates. values|())

return np.array (data).ravel ()

A.9 Work Depenceny Example

def work_dependencie(self):
if self.workDP = 1:
pass
else:
if self.df.at[2, "Tasks”] <= 60:
#self.df.at[2, "Original_-Tasks”]/6:
self.df.at[0, "Tasks”] += 20
#self . df.at[0, "hourlydemand ”]2
self .workDP = 1
else:
pass

return self.df

A.10 Priority Function

def sort_priority (df):
for i in df.index:
SOC = 1-—(df.at[i, "SOE”]/df.at[i, ’Max_capacity’])
#percentage SOC the higher it gest the less important

before subtracting it from one

if df.at[i, ’machine_type’|=="Truck’ and df.at[i,
‘remaining_cycle_time’] > 0
df .at[i, "Priority”] =0

else:
df .at[i, "Priority”] = float (SOC)zx

(df.at[i, MaxChargepower’]/

A.11 Datalogger 191

df.at[i, 'Max_capacity’])

return df

A.11 Datalogger
def get_info_from_worksite (df):

machinenamesSOE =]
machinenamesTasks =[]
machinenamesWorkload =]
MachinenamesStepWork =[]
MachinenamesCharge =||

MachinenamesTotalCharge =[]

MachineSOE =]
MachineTasks =[]
MachineWorkload =[]
MachineStepWork =[]
MachineCharge =[]
MachineTotalCharge =[]

for i in df.index:

machinenamesSOE . append (df.at [i, ”"Machine”]|+ SOE")
machinenamesTasks.append (df.at[i, "Machine”]+ Tasks’)
machinenamesWorkload . append (df.at [i, ”"Machine”]+’Workload ")
MachinenamesStepWork . append (df.at [i, ”Machine”]+’StepWork ")
MachinenamesCharge . append (df.at [i, "Machine”]+ ' Charge’)
MachinenamesTotalCharge . append (df. at [i,

”Machine”]+ "alreadycharged ")

MachineSOE . append (df.at [i, "SOE”])
MachineTasks.append (df.at[i, ”"Tasks”])
MachineWorkload . append (df.at [i, "Workload”])
MachineStepWork . append (df.at [i, ”"StepWork”])
MachineCharge . append (df.at[i, ”Charge”])

192 Chapter A Appendix 1

MachineTotalCharge . append (df.at[i, "alreadycharged”])

info_worksite=dict (zip (machinenamesSOE, MachineSOE ,))

tasks= dict (zip (machinenamesTasks, MachineTasks))

work=dict (zip (machinenamesWorkload , MachineWorkload))

StepWork= dict (zip (MachinenamesStepWork , MachineStepWork))
Charge=dict (zip (MachinenamesCharge , MachineCharge))
TotalCharge=dict (zip (MachinenamesTotalCharge , MachineTotalCharge))

info_worksite .update (tasks)
info_worksite .update (work)
#info_worksite . update (Step Work)
#info_worksite . update (Charge)
info_worksite .update(TotalCharge)

return info_worksite

A.12 Environment Structure
class Batt(gym.Env):
def __init__(self):

self .day = []
for i in range (6000, 7000, 24): #to start everyday at 6
self.day.append (i)

#prices
df2 = pd.read_csv(’elspot_2021.csv’)

self.prices = np.array(df2.price)
self . hour_of_day = np.array(df2.hour_of_day)
self . weekday = np.array(df2.Day_in_week)

self .hour = 392#random_hour()
self . intrahour = []

self.Starto = self.hour

A.12 Environment Structure 193

self .maxtimestep = 9

self . trucks = 0#1#0 #with trucks?

#newnew
self.soil_deponi = 0
self.soil_level = 0

self . dumped_soil =0
self . dump_counter = 0
self . max_deponi = 10000
self . fill_volume = 0
self . max_fill = 10000

#Power outputs
self.grid = np.random.randint (30, 37)

##work dependency##
self .workDP= 0 #work dependency concept

#batterypara

self.capacity =390

self .maxCap = self.capacity *0.9
self .minCap = self.capacity 0.2
self.soe=230

self . RE = 0.95
self.charging_cables=2
self.discharge_rate = 150

#construction
self.df = dailywork_train(2,2,0,0)

#Timesteps
self.chargetime = 0.1
self .SOC = []
self . logger =]]
self.logger2=|]

194 Chapter A Appendix 1

self.additional_actions = 2

self .dischargecount =0

#spaces
self.action_space = spaces.Discrete (len(self.df.index)x2)+

self.additional_actions)
self . observation_space = spaces.Box(low=0, high=1,
shape=(5+(len(self.df)*2),), dtype=np.float32)

def get_normalized_states(self):

norm_time = self.hour_of_day[int (self.hour)]
norm_weekday = self.weekday[int (self.hour)]
norm_BC = self.soe

prices = self.prices[int(self.hour)]
Soil_lvl = self.soil_level

#Stockpile = self.soil_deponi
Dumped = self.dumped_soil
overview = np.array ([norm_time, Dumped, norm_weekday ,
norm_BC, prices])
#overview = np.array ([norm_BC])
machineStates= get_machine_states(self.df)
total_states = np.concatenate ((overview, machineStates))
return total_states
def step(self, action):

pre_reward , self.soe, self.df, total_discharge ,

total_charge = action_reaction2(self, action)

self.logger2.append(pre_reward)

#work_dependencie (self) VD

A.12 Environment Structure 195

info = {’BCSOE’: self.soe,

).

"price self .prices[int(self.hour)—1],
"cost ’: pre_reward ,
"time’: self.hour,

"Charge’: total_charge |,
"Discharge’: total_discharge ,
"action ’:action ,

b

"soil_deponi self.soil_deponi ,

"soil_level’ : self.soil_level ,
"dumped_soil > : self.dumped_soil,
"fill 7 ¢ self . fill_volume ,
"dump_counter’ : self.dump_counter

}

info_worksite=get_info_from_worksite (self.df)

info.update(info_worksite)

self.logger.append(info)
#print (action)

done, reward=reward_system (self , pre_reward, 3)

return(self.get_normalized_states (), reward, done, info)

def reset(self):
self.soe = np.random.randint ((self.capacity*0.5),
(self.capacity x0.6))
self . hour = 392
self.Starto=self.hour
self . logger =]]
self.logger2=]]
self .df = dailywork_train(2,2,0,0)
self.workDP= 0

self.soil_deponi = 0

196 Chapter A Appendix 1

self.soil_level = 0

self.dumped_soil =0
self .dump_counter = 0
self . fill_volume = 0

self.dischargecount =0

return self.get_normalized_states|()

def render(self):

pass

A.13 Reward System

def reward_system (self , pre_reward, x):
if x ==1:
if int(self.hour)==self.Starto+self.maxtimestep:
reward = sum(self.df. Workload)
done=True
else:
reward = 0

done =False

elif x==2:
if —self.soil_level >= 800:
reward = 0

done = True

elif int(self.hour) >= self.Starto+10:
done = True
reward = —100

elif int(self.hour) < self.Starto+24:
reward = pre_reward

done =False

A.14 Train Agent 197

elif x ==3:

if self.dumped_soil >= 300:
reward = (sum(self.logger2)+100)%10
done = True

elif int(self.hour)==self.Starto+24:

done = True
reward = 0
else:
reward = pre_reward

done =False

return done, reward

A.14 Train Agent

env = Batt ()
states =env.observation_space.shape[0]

actions = env.action_space.n

def build_model(states, actions):
model=Sequential ()
model . add (Flatten (input_shape=(1, states)))
model . add (Dense (24, activation="relu ’))
model . add (Dense (24, activation="relu ’))
model . add (Dense(actions ,activation="linear "))

return model

def build_agent (model, actions):
policy = EpsGreedyQPolicy ()#MazBoltzmannQPolicy ()

memory = SequentialMemory (limit=50000, window_length=1)
dgqn = DQNAgent (model=model , memory=memory ,
policy=policy , nb_actions=actions,

nb_steps_warmup=4000, target_model_update=le—3)

198 Chapter A Appendix 1

return dqn

model =build_model(states, actions)
dgqn = build_agent (model, actions)
dqn. compile (Adam(learning_rate=le—3), metrics=|["'mae’])

scores=dqn. fit (env, nb_steps=60000, visualize=False, verbose=1)

A.15 View Training Returns

fig , ax = plt.subplots(figsize=(20, 14))
plt.plot(scores.history | episode_reward’])
ax.set_ylabel ("Return’, fontsize=20)
ax.set_xlabel ("Episode’, fontsize=20)
ax.set_title (’Results’, fontsize=20)
ax.yaxis.set_tick_params(labelsize=15)
ax.xaxis.set_tick_params(labelsize=15)

fig .savefig (fname="RegularResults)

plt .show ()

A.16 Generate Schedule

dgn. test (env, nb_episodes=1, visualize=False)

df = env.logger

df=pd.DataFrame (df)

#df.to_csv(arbitrage.csv’)

for i in env.df.Machine:
#df [i+'SOEb) '] = df[i+'SOE’]. shift (1)
df [i+'Chargo’] = df[i+ alreadycharged’]. diff ()
df [i+’Worko’ | = df[i+ Workload’]. diff ()

for i in env.df.Machine:
df [i+’Charg