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”Cruelty to animals is one of the most significant vices of a low and ignoble people.

Wherever one notices them, they constitute a sure sign of ignorance and brutality

which cannot be painted over even by all the evidence of wealth and luxury. Cruelty

to animals cannot exist together with true education and true learning.”

– Alexander von Humboldt

†

”I am not interested to know whether vivisection produces results that are profitable

to the human race. The pain which it inflicts upon unconsenting animals is the basis

of my enmity toward it, and it is to me sufficient justification of the enmity without

looking further”.

– Mark Twain

†

”Imagine living your life in a small, filthy cage constantly in pain, unable to stand

or lie down comfortably. After months of agony, your torture finally ends, but not

at the slaughterhouse. Instead, two gentle hands reach down to lift you out of the

darkness, and bring you to a safe, loving place. For the first time in your life you

can stretch your wings and legs and feel soft straw and cool grass beneath your feet.”

– Dr. Karen Davis

†
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Introduction

Let m ∈ N, m > 1 and G ⊂ C be a domain and let A be a complex Banach algebra.

We consider functions F : G → A of the type

F (λ) = λmI −A(λ), (I)

where I denotes the identity in A and A(λ) =
∑

j∈Z λ
jAj , Aj ∈ A, is a Laurent

series. We will call functions of this typem–monic functions. In applications various

special cases of functions of this type appear.

For instance, in modeling of queueing problems, where Markov chains play a major

role, matrix functions of the type

F (λ) = λI −
∞∑

j=−1

λj+1Aj

with entrywise nonnegative n× n matrix coefficients Aj arise. They are associated

with the transition matrix of the Markov chain the entries of which are the transition

probabilities from one to each other state of the stochastic process. The coefficients

satisfy the condition (
∑∞

j=−1 Aj)1n = 1n, where 1n denotes the vector in Rn the

entries of which are all equal to 1. Very crucial for the analysis of these Markov

chains is the minimal entrywise nonnegative solution of the matrix equation

X =

∞∑
j=−1

AjX
j+1.

It is strongly connected to certain factorizations of the function F and key to find

so-called stationary vectors, which represent equilibrium probability distributions

of the Markov chain. See e.g. [BLM05], [GHT96], [LR99], [Mei06], [Neu94], [Neu89].

Another field of application is in hydrodynamics. For instance, the study of small

motions and normal oscillations of a viscous incompressible fluid in an open con-

tainer leads to a spectral problem for functions of the type

L(λ) = I − λA− λ−1B,

where A is a positive definite and B a nonnegative definite operator. See e.g.

[AKL68], [AHKM03], [KL68]. Multiplying with λ on both sides leads to the 1–

monic function

F (λ) = λL(λ) = λI − (λ2A+B).

Another example can be found in [AKS97], [Suk97], where the investigation of

small convective motions of a fluid in a container results in spectral problem for the

operator function

Lϵ(λ) = λ2A− λ(ϵQ− I) + C = λI − (−λ2A+ λϵQ− C),

where A,Q,C are compact self adjoint operators in a Hilbert space, A is positive

definite, C is nonnegative definite and ϵ is a positive parameter.

Another instance where m–monic functions arise implicitly is in [Mar88], where

factorizations of functions with arbitrary operator coefficients are investigated.
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However, m–monic functions have not been studied explicitly, yet. Clearly, for any

arbitrarily chosen m ∈ N, any function in Laurent representation can be rewritten

as an m–monic function. Nevertheless, the m–monic form loses this arbitrariness

when the coefficients of A are supposed to have special properties like entrywise

nonnegativity, nonnegative definiteness.

The intention of this thesis is to study spectral properties of m–monic functions

where the coefficients Aj are elements of a complex Banach algebra A. A major

focus lies on the two cases where the coefficients are linear bounded self adjoint

operators in a Hilbert space or entrywise nonnegative n×n-matrices. Furthermore,

we study very closely the case when F is a polynomial.

The behavior of the spectral radius of A(λ) as λ varies through G has a considerable

impact on the structure and distribution of the spectral points of F . We exploit

this connection by investigating the real valued function

ϕA : G ∩ [0,∞) → R+, ϕA(τ) = max
|λ|=τ

sprA(λ),

where sprA(λ) denotes the spectral radius of A(λ).

This strategy has already been used for special cases in [FN05a] to study spectral

properties of quadratic 1– monic matrix polynomials where the coefficients of A are

entrywise nonnegative matrices and the sum of the coefficients is irreducible. Fac-

torizations of m–monic polynomials are studied in [FN05b], where the coefficients

are elements of a cone in an ordered Banach algebra.

A similar approach has been used by H. K. Wimmer and J. Swoboda. The pe-

ripheral eigenvalues of monic matrix polynomials (monic polynomials of degree m

are m–monic) with Hermitian coefficients are investigated in [Wim08] under a con-

dition which is closely related to the spectral radius of |A|(λ), where |A|(λ) ..=∑
j∈Z λ

j(A2
j )

1/2. [SW10] studies the spectrum of monic operator polynomials with

bounded nonnegative definite coefficients under the same condition.

A special role in the study of spectral properties of m–monic functions is played by

1–monic functions. For certain problems, it is much easier to handle the 1–monic

case using fixpoint iterations. Therefore, the subject of suitable transformations

from m–monic polynomials to 1–monic ones is studied as well.

We will proceed as follows. In Section 1.1 we will consider arbitrary m–monic

functions with coefficients in a Banach algebra, which are analytic on an annulus.

We will present a general framework to study m–monic functions with coefficients

that are either nonnegative definite linear bounded operators acting on a Hilbert

space or entrywise nonnegative square matrices. The function ϕA is introduced in

this section. It will be used to describe spectral properties of F , for instance to

exclude certain regions from the spectrum of F , to give the distribution of spectral

points with respect to certain circles, or to give a criterion for the existence of so-

called spectral factorizations of F .

In Section 1.2 we will make some technical preparations for the investigation of

matrix valued m–monic functions. We specify circles containing certain numbers

of eigenvalues of F and give representations for the derivatives of the mapping

detF : τ 7→ detF (τ) at the points where the function ϕA intersects with the

mapping τ 7→ τm. These results will be useful to study the eigenvalues of F on
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circles with radii determined by these intersection points in later sections.

Section 1.3 is dedicated to the special case when F is a matrix polynomial. We give

a short overview of eigenvalues and Jordan chains of matrix polynomials.

In Sections 2.1 and 2.2 we extend results of H. K. Wimmer and J. Swoboda, given

in [Wim08] and [SW10]. It is shown there that monic polynomials P (λ) = λmI −∑m−1
j=0 λjAj with self adjoint matrix coefficients or with bounded nonnegative defi-

nite operator coefficients which in both cases satisfy the condition
∑m−1

j=0 |Aj | 6 I,

where |Aj | = (A∗
jAj)

1/2 = (A2
j )

1/2, have eigenvalues on the unit circle that are rota-

tion invariant with respect to angles corresponding to certain roots of unity.

We extend these results to m–monic operator functions that are analytic on an

annulus with self adjoint coefficients. We impose a slightly different condition on

the coefficients, more precisely, we suppose that there exists a positive real ρ such

that ∑
j∈Z

ρj |Aj | 6 ρmI. (0-1)

For ρ = 1, this is the condition of H. K. Wimmer and J. Swoboda. We first prove

that if λ ∈ C is an eigenvalue of F such that |λ| satisfies the condition (0-1), then

|λ| is an eigenvalue of the function F|A|, defined via F|A|(λ) = λmI −
∑

j∈Z λ
j |Aj |.

If an additional condition concerning the connection of the coefficients Aj and |Aj |
is satisfied, then the reverse implication is also true. Further results deal with the

rotation invariance of the eigenvalues of F the modulus of which satisfy condition

(0-1). The corresponding angle of invariance is the greatest common divisor of all

m− j such that Am−jv ̸= 0, where v is a corresponding eigenvector of F .

In the treatment of nonlinear eigenvalue problems, degree reduction and, in partic-

ular, linearizations are a well proven tool to give access to their analysis. Since we

also focus on matrix and operator polynomials, it might not be surprising that we

bring into play degree reductions as well. Chapter 3 presents a special reduction of

degree which greatly helps to deal with m–monic polynomials.

In Section 3.1 we consider general A–valued polynomials Q, where A denotes an

algebra, and give a degree reduction Q of Q which is suited to reduce m–monic poly-

nomials to 1-monic ones. We will use this reduction in Chapter 4, when we deal

with matrix polynomials with nonnegative entrywise coefficients. The considered

reduction is a generalization of the well known companion form used for lineariza-

tions of matrix polynomials, see e.g. [GLR82], [Mar88], [Rod89] and its coefficients

are elements in the algebra Am,m for some m ∈ N. Similar to linearizations via

the companion form and other linearizations (see e.g. [AV04], [MMMM06]), the

reduction given in Section 3.1 is obtained via an equivalence transformation

Q(λ)⊕ Im−1 = E(λ)Q(λ)F(λ),

where E and F are unimodular Am,m-valued polynomials, i. e. they are invertible

for all λ ∈ C. Reducing the degree of Q in the given way leaves its spectrum un-

changed.

In Section 3.3 we will study the effect of the degree reduction on the Jordan struc-

ture of Q if the coefficients are square matrices. We will give formulas to cal-

culate the Jordan chains of the reduction from the original polynomial and vice

versa. Furthermore, we will see that while linearizing a polynomial via a unimod-

ular transformation does not change the number of eigenvalues (finite and infinite,

with multiplicities) of the original polynomial, this number will in general increase
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for degree reductions via unimodular transformations to a degree greater than one.

The objective in Section 3.2 is to establish a connection between factorizations

Q(λ) =

k−1∑
j=0

λjBj

λl−k+1I −
l−k∑
j=0

λjCj

 , Bj , Cj ∈ A

of the polynomial Q and factorizations

Q(λ) = B(λ)(λIm − C), B(λ), C ∈ Am,m (0-2)

of the reduction Q. Here, l and k denote the degree of Q and Q, respectively.

We will see that if Q has a factorization of the type (0-2), then C has to be the

companion matrix of the right factor. Furthermore, each of these factorizations can

be calculated from the other one.

In Chapter 4 we will concentrate on matrix polynomials with entrywise nonnegative

coefficients.

It is well known from Perron-Frobenius theory (see e.g. [HJ85],[Min88], [BP94])

that the peripheral spectrum of an entrywise nonnegative irreducible matrix A is

rotation invariant with respect to certain angles. These angles correspond to the

dth roots of unity, where d is the so-called index of imprimitivity of A.

In [FN05a], K. H. Förster and B. Nagy investigated quadratic n×n–matrix polyno-

mials P (λ) = λI − (λ2A2 + λA1 +A0) with entrywise nonnegative coefficients such

that the sum of the coefficients is irreducible. They proved that eigenvalues which

can be seen as ”peripheral” in the sense that they are located on the boundary cir-

cles of a certain spectrum-free annulus, are rotation invariant. The corresponding

angles of invariance are characterized via graph theoretical concepts and are asso-

ciated with a generalization of the index of imprimitivity of a nonnegative matrix.

We will extend this result to m–monic matrix polynomials of degree l ∈ N, l > m.

Analogously to [FN05a], this is done via convenient spectral factorizations

P (λ) =

In −
l−m∑
j=1

λjBj

B0

λmIn −
m−1∑
j=0

λjCj

 (0-3)

of P , such that the coefficients Bj , Cj are also entrywise nonnegative and B0 is a

nonsingular M–matrix. We will call the right factor of this factorization a Perron-

Frobenius factor of P .

For these factorizations it is crucial to study the case of 1-monic matrix polynomials,

which we will do in Section 4.1. We will see that the existence of a Perron-Frobenius

factor in the case m = 1 is strongly connected to the convergence of a fixpoint iter-

ation.

In Section 4.2, the results from Chapter 3 and Section 4.1 are put together to prove

that there exists a factorization of the type (0-3) of an m–monic matrix polynomial

with entrywise nonnegative coefficients if and only if there exists a ρ > 0 such that

sprA(ρ) < ρm. This result was already proved by K. H. Förster and B. Nagy in

[FN05b] in the more general setting where the coefficients are elements of a closed

normal algebra cone in an ordered Banach algebra. The proof relies on an abstract

factorization result in ordered decomposing Banach algebras [GKS03]. We give a

proof for the matrix case which completely relies on matrix theoretical concepts.

In Section 4.3 we associate with P an infinite graph and an integer d, the index of
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phase imprimitivity, which determines the angles of invariance of the ”peripheral”

eigenvalues. Furthermore, we will see that with respect to the existence of factor-

izations of P of the type (0-3) and separation of eigenvalues of P , exactly one of

eight possible cases holds, which we will also characterize in this section.

Chapter 5 presents a numerical method to calculate the factorization (0-3) of P ,

assumed it exists. It is mainly based on the method of cyclic reduction for certain

Markov chains, as given by D. A. Bini, G. Latouche and B. Meini in [BLM05]. It

is possible to apply this method to our setting if we transform the m–monic matrix

polynomial P to a generating function of a convenient Markov chain. We will do this

in Section 5.1. In Section 5.2, we will give the complete algorithm which calculates

the coefficients of the desired factorization from the nonnegative coefficients of the

given m–monic matrix polynomial.

In what follows we give frequently used notations for reference. Let T be an ele-

ment of a Banach algebra A and let E be a linear operator in a Hilbert space H.

Furthermore, let A = (aij)ij ∈ Cn,n, B = (bij)ij ∈ Cm,n, D = (dij)ij ∈ Cm,n,

C = (cij)ij ∈ Cr,s.

B(H) the space of bounded linear operators in H
D the open unit disc {z ∈ C : |z| < 1}
Dr the open disc {z ∈ C : |z| < r}

Ar,R the open annulus {z ∈ C : r < |z| < R}
T the unit circle {z ∈ C : |z| = 1}
Tr the circle {z ∈ C : |z| = r}
Ek the set {z ∈ C : zk = 1} of the kth roots of unity

E∗ the adjoint of E w.r.t. to the inner product in H
N(E) the kernel of E

R(E) the range of E

ρ(T ) the resolvent set of T

σ(T ) the spectrum of T

sprT the spectral radius of T

|A| the matrix (|aij |)ij , where A = (aij)ij

|E| the operator (EE∗)1/2

⟨n⟩ the set {1, . . . , n}
⟨n⟩0 the set {0} ∪ ⟨n⟩

B 6 D bij 6 dij for all i ∈ ⟨m ⟩ , j ∈ ⟨n ⟩
B < D bij < dij for all i ∈ ⟨m ⟩ , j ∈ ⟨n ⟩
B ⊕ C the block diagonal matrix

[
A | 0
0 | B

]
B ⊗ C the Kronecker product (bijC)ij ∈ Cmr,ns

(for properties see e.g. [Bar83], [HJ91].)

1n the vector [1 · · · 1]T ∈ Rn

1n,n the matrix 1n ⊗ 1T
n ∈ Rn,n

12



1 Spectral properties of algebra valued functions

that are analytic in an annulus

1.1 Introduction and general results

In this first section, we give a short introduction to the fundamental notions and

concepts of spectral theory in Banach algebras which we use throughout the whole

thesis. Apart from that we assume the notation and basic properties of Banach

algebras as given in [Con85].

A denotes a complex Banach algebra with unit I, zero element 0 and the norm ∥ · ∥.

W.l.o.g. we may assume that ∥I∥ = 1, since by [Żel73, Corollary 2.5], there exists

a norm ∥ · ∥I equivalent to the original norm ∥ · ∥ with ∥TS∥I 6 ∥T∥I∥S∥I and

∥I∥I = 1.

For an element T of A, the spectrum of T is is defined as the set

σ(T ) = {λ ∈ C : λI − T is not invertible in A}.

The spectrum σ(T ) of T ∈ A is a compact set and, since we only consider complex

Banach algebras, the spectrum of an element T of A is never empty (see e.g. [Con85],

[Aup91]). Furthermore, define the spectral radius spr(T ) of T as

spr(T ) = max{|λ| : λ ∈ σ(T )}.

Remember that spr(T ) = limk→∞ ∥T k∥1/k (see e.g. [Con85], [Aup91]).

For 0 < η 6 ∞ denote by Dη the open disc

Dη = {λ ∈ C : |λ| < η},

where we set D∞ = C. For 0 6 η1 < η2 6 ∞ let

Aη1,η2 = {λ ∈ C : 0 6 η1 < |λ| < η2}

be the annulus with the inner radius η1 and the outer radius η2.

Consider a function F : G → A which is analytic in G, where G denotes either

Aη1,η2 , Dη or C. F has a Laurent series representation in G, i. e.

F (λ) =
∑
j∈Z

λjAj , λ ∈ G, (1-4)

with coefficients Aj ∈ A for j ∈ Z. As usual, we refer to
∑∞

j=1 λ
−jA−j as the

principal part of F and to
∑∞

j=0 λ
jAj as the regular part of F .

Note that if G = C, then we have Aj = 0 for j < 0, i. e., F has a trivial principal

part.

Define the spectrum σ(F ) of F as the set

σ(F ) = {λ ∈ C : F (λ) is not invertible in A}.

Note that if F (λ) = λI − A with some A ∈ A, then σ(F ) = σ(A). Analogously to

the spectral radius of elements of A defined above, denote by

spr(F ) = sup{|λ| : λ ∈ σ(F )}

13



the spectral radius of F .

If, F is a function mapping from G into the space B(H) of bounded linear operators

in a Hilbert space H, then a complex number λ ∈ σ(F ) is called an eigenvalue

of F if there is a nonzero element v ∈ H such that F (λ)v = 0. Then v is called a

corresponding eigenvector.

We call a real valued function f defined on any topological space D upper semi-

continuous on D if the set {x ∈ D : f(x) < a} is open for all a ∈ R ∪ {±∞}. Let

G ⊂ C be a region. A function f : G → R ∪ {∞} is said to be subharmonic on G

if it is upper semi-continuous on G and if it satisfies

f(λ0) 6
1

2π

∫ 2π

0

f(λ0 + reiφ)dφ

for all λ0 ∈ G and for all r > 0 such that the closed disk Dλ0,r = {λ ∈ C : |λ−λ0| 6
r} is contained in G.

By a result of E. Vesentini (see [Aup91, Theorem 3.4.7]) the function λ 7→ ln
[
spr(A(λ))

]
is subharmonic on Aη1,η2 . From the theory of subharmonic functions (see [HK76,

Theorem 2.13]) it then follows that the function

τ 7−→ sup
|λ|=τ

(ln
[
sprA(λ)

]
) = ln

[
sup
|λ|=τ

sprA(λ)
]
, τ ∈ [0,∞) ∩G

is convex in ln τ on (η1, η2). In other words, the function t 7−→ ln
[
max
|λ|=et

sprA(et)
]
,

et ∈ [0,∞) ∩G is convex in t.

If we introduce the real valued function

ϕA : G ∩ [0,∞) → R+, τ 7−→ sup
|λ|=τ

sprA(λ),

then it follows that for τ1, τ2 ∈ (η1, η2) and ν ∈ [0, 1] the functional inequality

ϕA(τ1
ντ2

1−ν) 6 (ϕA(τ1))
ν(ϕA(τ2))

1−ν

holds. Such functions are called geometrically convex, see e. g. [Kuc85]. The

geometric convexity of ϕA and the functional inequality are rather crucial for us.

Recall that for a compact set K ⊂ C, the polynomially convex hull K̂ is defined

to be set

K̂ = {z ∈ C : |p(z)| 6 max
u∈K

|p(u)| for all polynomials p}.

K̂ is the union of K with the bounded components of C \K or in other words K̂ is

obtained by filling any “holes” in K, see e.g. [Aup91], [Con85, Proposition 5.3]. K

is said to be polynomially convex if K = K̂. For more simple notations, in some

occasions it is more convenient to write Kˆ instead of K̂, e.g. σ(A)ˆ, which we will

do when appropriate.

Let T be an element of a Banach algebra A. The spectrum σ(T ) of T is contained

in the closed disc Dspr(T ). By definition of the polynomially convex hull and by

considering the polynomial p : z 7→ z, z ∈ C, it follows that σ(T )ˆ does not contain

any points outside of Dspr(T ). This justifies the following remark.

Remark 1.1. Let T ∈ A. Then sprT = sup{|λ| : λ ∈ σ(T )ˆ}.
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Recall Liouville’s Spectral Theorem, see for instance [Aup91, Theorem 3.4.14].

Theorem 1.2 (Liouville’s Spectral Theorem). Let A be an analytic function from

C into a Banach algebra A. Suppose there exists a bounded set M ⊂ C such that

σ
(
A(λ)

)
⊂ M for all λ ∈ C. Then σ

(
A(λ)

)ˆ
is constant, i. e. it does not depend on

λ.

The following proposition follows from Theorem 1.2.

Proposition 1.3. Let G = C and consider A as in (1-4). Then the following are

equivalent.

(a) ϕA is bounded.

(b) ϕA is constant.

(c) σ(A(λ))ˆ is independent of λ, i. e. σ(A(λ)) = σ(A0).

Proof. Suppose that (a) holds. Hence, there exists a c > 0 such that ϕA(τ) 6 c for

all τ > 0. Due to sprA(λ) 6 ϕA(|λ|) 6 c for all λ ∈ C, we have σ(A(λ)) ⊂ M for

some bounded set M ⊂ C. Theorem 1.2 then implies (c).

The implication (c) ⇒ (b) follows from Remark 1.1 and (b) ⇒ (a) is trivial.

One important property of geometrically convex functions is the following.

Proposition 1.4. Let A be as in (1-4) and suppose that there exist ρ1, ρ2 ∈ R∩G,

0 < ρ1 6 ρ2 such that ϕA(ρj) = ρmj for j = 1, 2. Then exactly one of the following

assertions holds.

(i) ϕA(ρ) = ρm for all ρ ∈ [ρ1, ρ2].

(ii) ϕA(ρ) < ρm for all ρ ∈ (ρ1, ρ2).

Proof. Since ϕA is geometrically convex, the function θ : R → R with

θ(τ) = (ln ◦ϕA ◦ exp)(τ) = lnϕA(e
τ )

is convex. Setting τj = ln ρj , j = 1, 2 the assumption ϕA(ρj) = ρmj reads θ(τj) =

mτj . Due to the monotonicity of the exponential function, ρ = eτ ∈ (ρ1, ρ2) if and

only if τ ∈ (τ1, τ2). Hence, due to the convexity of θ, either

(i) θ(τ) = mτ for all τ ∈ [τ1, τ2], i. e. ϕA(ρ) = ρm for all ρ ∈ [ρ1, ρ2]

or

(ii) θ(τ) < mτ for all τ ∈ (τ1, τ2), i. e. ϕA(ρ) < ρm for all ρ ∈ (ρ1, ρ2).

The following examples show that in Proposition 1.4 the assumption ρ1 > 0 cannot

be omitted. They can be found in [FN05a].
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Example 1.5. Let A = C2,2, p > 0 and

A(λ) =

[
λ2 1

λp λ2

]
.

For τ > 0 we have sprA(τ) = τ2 +
√
τp. Setting τ = ξ2 for ξ > 0 we see that

sprA(τ) = τ is equivalent to ξ− ξ3 =
√
p. The function [0,∞) → R, ξ 7→ ξ− ξ3 has

its global maximum at ξ0 = 1√
3
. Hence, the equation ϕA(τ) = τ or ξ− ξ3 =

√
p has

exactly two positive solutions if and only if
√
p < ξ0 − ξ30 or p < 4

27 . In addition,

τ = 0 is always a solution, hence, for p < 4
27 , the equation sprA(τ) = τ has exactly

three nonnegative solutions.

Example 1.6. Let n ∈ N, A = Cn,n, and kj ∈ ⟨ l ⟩0 ..= {0, 1, . . . , l} for j ∈ ⟨n⟩. For
λ ∈ C consider the n× n matrix

A(λ) =



0 λk1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 0
. . . λkn−1

λkn 0 · · · · · · 0


.

A is an n × n matrix polynomial with entrywise nonnegative coefficients. For

λ ̸= 0 the set of eigenvalues of the matrix A(λ) is σ(A(λ)) = {z ∈ C : zn = λk},
where k =

∑n
j=1 kj . Since the eigenvalues are all pairwise distinct, their alge-

braic and geometric multiplicities are 1. The corresponding eigenspaces of A(λ)

are span(
[
1 λ−k1z λ−k1−k2z2 · · · λkn−kzn−1

]T
).

We have ϕA(ρ) = sprA(ρ) = ρ
k
n . Hence, for k < n, ϕA is concave and ϕA(ρ1 =

0) = ρ1, ϕA(ρ2 = 1) = ρ2.

We come now to the objects which are subject of our main interest. Fix m ∈ Z,
and define the A-valued function F : G → A by

F (λ) = λmI −A(λ) = λmI −
∑
j∈Z

λjAj , (1-5)

which is also analytic in G. Functions of this form play a major role in this thesis.

We call such an F an m–monic function with coefficients Aj .

By means of the function ϕA we can easily exclude a certain region from the set of

possible spectral points of the A-valued function F . This is the statement of the

next Proposition.

Proposition 1.7. Let F be as in (1-5) and let ρ1, ρ2 ∈ [0,∞) ∩ G, ρ1 < ρ2, such

that ϕA(τ) < τm for all τ ∈ (ρ1, ρ1). Then

σ(F ) ∩ Aρ1,ρ2 = ∅.
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m<

Figure 1: spectrum-free annulus Aρ1,ρ2

Proof. Suppose that there exists a µ ∈ σ(F )∩Aρ1,ρ2
. This means that |µ| ∈ (ρ1, ρ2)

and µm ∈ σ
(
A(µ)

)
, since F (λ) = λmI −A(λ). Hence

|µ|m 6 sprA(µ) 6 sup
|λ|=|µ|

sprA(λ) = ϕA(|µ|) < |µ|m,

which is a contradiction.

In the following we will establish conditions on the coefficients Aj under which ϕA

satisfies

ϕA(τ) = sprA(τ) ∈ σ(A(τ))

for all τ > 0. This property is very important for our further analysis. For this

purpose we will introduce cones in general Banach algebras and normal cones in

ordered Banach algebras.

Denote by S(A) = {T ∈ A : ∥T∥ = 1} the unit sphere in the Banach algebra A and

for X ∈ S(A) define

SX(A′) = {f ∈ A′ : f(X) = ∥f∥ = 1},

where A′ denotes the dual space of A.

Note that due to the Hahn-Banach theorem, which states that each bounded linear

functional defined on a subspace of a Banach space can be extended to the whole

space leaving the norm unchanged (see e.g. [Con85], [Kat76]), SX(A′) is nonempty

for each X ∈ S(A). For T ∈ A define the numerical range V(T ) of T by

V(T ) = {f(TX) : X ∈ S(A), f ∈ SX(A′)}.

By [BD71, Lemma 2, Section 2], we have convV(T ) = {f(T ) : f ∈ SI(A
′)}, where

convV(T ) denotes the closure of the convex hull of V(T ), i. e. the closure of the

intersection of all convex sets containing V(T ). We define the numerical radius

nr(T ) of T by

nr(T ) ..= sup{|λ| : λ ∈ V(T )} = sup{|f(T )| : f ∈ SI(A
′)}.
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Note that, since by [BD71, Theorem 1, Section 10] we have σ(T ) ⊂ V(T ), this im-

plies that spr(T ) 6 nr(T ). According to [BD71], [BD73], we call T ∈ A Hermitian

if V(T ) ⊂ R. Furthermore, introduce the set

P = {T ∈ A : V(T ) ⊂ R+}.

We call T ∈ P nonnegative definite. By definition, for T ∈ P and f ∈ SI(A
′)

we have that f(T ) > 0. It is clear that a nonnegative definite element of A is

Hermitian.

A subset C ⊂ A is called a cone if it satisfies

(i) C+ C ⊂ C and (ii) λC ⊂ C for all λ > 0 (iii) I ∈ C.

If C satisfies −C ∩ C = {0}, then C is called a proper cone. Obviously, P is a

cone in A. Furthermore, if we suppose that T ∈ −P ∩ P, then this implies that

nr(T ) = 0. By Proposition (1.9) then it follows that T = 0 and hence, P is a proper

cone.

Example 1.8. Let H be a complex Hilbert space with inner product ⟨·, ·⟩. Then

A = B(H) equipped with the composition as multiplication and normed with the

operator norm is a complex Banach algebra. The operators that are self adjoint

with respect to the inner product constitute the set of Hermitian elements of the

algebra B(H). The elements of the set

P = {T ∈ B(H) : ⟨Tx, x⟩ > 0 for all x ∈ H}

of nonnegative operators is a cone of nonnegative definite elements of A, see [BD71,

Theorem 8, Section 9].

The following result is rather important for this thesis. It is well known, at least for

the bounded operator case as in Example 1.8. The first statement of this Proposition

was proved in [Sin71]. The fact that σ(T ) ⊂ V(T ) ⊂ R+ is a compact set implies

the second one.

Proposition 1.9. Let T ∈ A be an element of the Banach algebra A. Then the

following statements hold.

(i) If T is Hermitian, then spr(T ) = nr(T ) = ∥T∥;

(ii) If T ∈ P, then spr(T ) ∈ σ(T ).

We are now able to give a more simple representation of ϕA under the assumption

that the Laurent coefficients of A are nonnegative definite.

Proposition 1.10. Suppose that A is an A-valued function which is analytic in its

domain G and suppose that the coefficients Aj ∈ A of its Laurent representation are

in the cone P ⊂ A of nonnegative definite elements of A. Then for all ρ ∈ [0,∞)∩G
we have that

ϕA(ρ) = sprA(ρ).

Proof. Clearly, sprA(ρ) 6 ϕA(ρ). Hence, only sup
|λ|=ρ

sprA(λ) 6 sprA(ρ) must be

verified.
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We have that A(|λ|) ∈ P for all λ ∈ Aη1,η2
and

spr(A(λ)) 6 nr(A(λ)) = sup{|f(A(λ))| : f ∈ SI(A
′)}

6 sup
{∑

j∈Z
|λj ||f(Aj)| : f ∈ SI(A

′)
}

= sup
{∑

j∈Z
|λj |f(Aj) : f ∈ SI(A

′)
}

= sup
{
f(A(|λ|) : f ∈ SI(A

′)
}

= nr(A(|λ|)) = spr(A(|λ|)),

where the last equality holds due to Proposition 1.9.

ϕA has the same simple representation if the Laurent coefficients Aj of A are ele-

ments of any so-called normal algebra cone of A, which we will define now.

We will call a subset C ⊂ A an algebra cone if it satisfies the following conditions

(i) C+ C ⊂ C, (ii) λC ⊂ C for all λ > 0,

(iii) I ∈ C, (iv) C · C ⊂ C.

It is well-known that for the cone P of nonnegative definite elements, Property (iv)

does not hold, see e.g. [Con85].

If A has an algebra cone C, we call the pair (A,C) an ordered Banach algebra,

which is due to the fact that C induces an ordering “6” on A by

T 6 S if and only if S − T ∈ C.

An algebra cone C of A is called normal if there exists a constant α > 0 such that

∥T∥ 6 α∥S∥ for all S, T ∈ A with 0 6 T 6 S.

Suppose that C is a normal algebra cone in A and take T ∈ −C∩C, i. e. 0 6 T 6 0.

So ∥T∥ 6 α∥0∥ = 0, which implies that a normal algebra cone is automatically

proper.

Example 1.11. Let A = Cn,n be the set of all complex n × n matrices with the

normal matrix multiplication and equipped with any matrix norm ∥ · ∥ such that

∥In∥ = 1. Recall that a matrix norm is a function from Cn,n to R+ that satisfies

(i) ∥A∥ > 0 and ∥A∥ = 0 ⇔ A = 0, (ii) ∥µA∥ = |µ|∥A∥ ∀µ ∈ C, (iii) ∥A + B∥ 6
∥A∥+ ∥B∥ and (iv) ∥AB∥ 6 ∥A∥∥B∥ for all A,B ∈ Cn,n.

Then (Cn,n, ∥ · ∥) is a complex ordered Banach algebra and the subset

C = {A = (aij)
n
i,j=1 : aij > 0 for all i, j ∈ ⟨n ⟩} ⊂ Cn,n,

where ⟨n ⟩ ..= {1, . . . , n}, is closed and it is a normal algebra cone, see also e.g.

[KLS89].

For A,B ∈ Cn,n, A = (aij)
n
i,j=1, B = (bij)

n
i,j=1, we write A 6 B, if B − A ∈ C.

Note that A 6 B is equivalent to aij 6 bij for all i, j ∈ ⟨n ⟩. Furthermore, we write

A < B if aij < bij for all i, j ∈ ⟨n ⟩.

The next Proposition can be found e.g. in [RR96].
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Proposition 1.12. If A is a complex ordered Banach algebra with closed normal

algebra cone C, then for all T ∈ C we have spr(T ) ∈ σ(T ).

In order to prove that ϕA has the same representation as in Proposition 1.10, if the

coefficients of A are in a normal algebra cone, we state one more lemma. The proof

is a modification of the proof of [Bon55, Lemma 3] and [FN05b, Lemma 3.1].

Lemma 1.13. Let C ⊂ A be a normal algebra cone in A. Then there exists a positive

constant γ such that for an analytic function F : G → A with F (λ) =
∑

j∈Z λ
jAj

as in (1-4) with coefficients Aj ∈ C (j ∈ Z) we have

∥F (λ)∥ 6 γ∥F (|λ|)∥

for all λ ∈ G.

Proof. Since C is a normal cone, there exists a positive constant α such that B1, B2 ∈
C and B1 6 B2 imply that ∥B1∥ 6 α∥B2∥. We first prove that if C ∈ C and B ∈ A

with −C 6 B 6 C then ∥B∥ 6 2α∥C∥. Indeed, from C − B > 0 and C + B > 0 it

follows that

2α∥C∥ = α∥C +B + (C −B)∥
> max{∥C +B∥, ∥C −B∥}

> 1

2
(∥C +B∥+ ∥C −B∥) (1-6)

=
1

2
(∥C +B∥+ ∥B − C∥)

> ∥B∥.

Set λ = reiφ for some r > 0 and some φ ∈ [0, 2π) and fix any ϑ ∈ [0, 2π). Then

∥F (λ)∥ = ∥eiϑF (λ)∥ =

∥∥∥∥∥∥eiϑ
∞∑
j=0

λjAj + eiϑ
∞∑
j=1

λ−jA−j

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑
j=0

rjei(ϑ+jφ)Aj +

∞∑
j=1

r−jei(ϑ−jφ)A−j

∥∥∥∥∥∥
6

∥∥∥∥∥∥
∞∑
j=0

rj cos(ϑ+ jφ)Aj +

∞∑
j=1

r−j cos(ϑ− jφ)A−j

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∞∑
j=0

rj sin(ϑ+ jφ)Aj +

∞∑
j=1

r−j sin(ϑ− jφ)A−j

∥∥∥∥∥∥
6 2 sup

ω1,ω2∈[0,2π]

∥∥∥∥∥∥
∞∑
j=0

rj cos(ω1 + jφ)Aj +
∞∑
j=1

r−j cos(ω2 − jφ)A−j

∥∥∥∥∥∥ .
Since for j > 0

−rjAj 6 rj cos(ω1 + jφ)Aj 6 rjAj ,

and for j > 1,

−r−jA−j 6 r−j cos(ω2 − jφ)A−j 6 r−jA−j ,
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by adding these inequalities, it follows that

−
∑
j∈Z

rjAj 6
∞∑
j=0

rj cos(ω1 + jφ)Aj +
∞∑
j=1

r−j cos(ω2 − jφ)Aj 6
∑
j∈Z

rjAj ∈ C.

Therefore, using (1-6), we get

∥F (λ)∥ 6 4α
∥∥∥∑

j∈Z
rjAj

∥∥∥ = 4α∥F (|λ|)∥.

Note that due to Lemma 1.13 we also have ∥F (λ)k∥ 6 γ∥F (|λ|)k∥ with the same

constant γ, since F (·)k is still a function analytic in G with coefficients in A.

Proposition 1.14. Suppose that A is an A-valued function which is analytic in its

domain G and suppose that the coefficients Aj ∈ A of its Laurent representation are

in a closed normal algebra cone C ⊂ A of A. Then for all ρ ∈ [0,∞) ∩ G we have

that

ϕA(ρ) = sprA(ρ).

Proof. Clearly, sprA(ρ) 6 ϕA(ρ). Hence, only max
|λ|=ρ

sprA(λ) 6 sprA(ρ) must be

verified. By Lemma 1.13 we have that

ϕA(ρ) = sup
|λ|=ρ

sprA(λ) = sup
|λ|=ρ

lim
k→∞

∥A(λ)k∥1/k 6 sup
|λ|=ρ

lim
k→∞

(
γ∥A(|λ|)k∥

)1/k
= sprA(ρ),

since γ1/k → 1 when k → ∞.

1.2 Matrix valued functions

In this section we study some spectral properties of an m–monic function F for the

special case where A = Cn,n, i. e., the coefficients Aj of the function (1-5)

F (λ) = λmI −
∑
j∈Z

λjAj , λ ∈ G, (1-7)

are complex n× n-matrices for all j ∈ Z. The spectrum σ(F ) of F consists only of

eigenvalues. If λ ∈ C is an eigenvalue of F , then obviously λ is a root of the analytic

function λ 7→ detF (λ), λ ∈ G. Hence, clearly, F can have all λ ∈ C as eigenvalues.

We call the order of λ as a root of detF the multiplicity of the eigenvalue λ.

The first proposition of this section gives necessary conditions in terms of the func-

tion ϕA for disks around zero to contain a certain number of eigenvalues of F . These

conditions will be useful later.

Proposition 1.15. Let F be as in (1-7).

(i) Let ρ ∈ (0,∞) ∩ G be such that ϕA(ρ) < ρm. Then F has exactly mn eigen-

values (counting multiplicities) in Dρ.

(ii) Let ρ ∈ (0,∞) ∩G and δ > 0 such that ϕA(τ) < τm when τ ∈ (ρ, ρ+ δ) ⊂ G.

Then F has exactly mn eigenvalues (counting multiplicities) in the closed disc

Dρ.
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(iii) Let ρ ∈ (0,∞) ∩G and ρ > δ > 0 such that ϕA(τ) < τm when τ ∈ (ρ− δ, ρ).

Then F has exactly mn eigenvalues (counting multiplicities) in Dρ.

Proof. (i) Let ϵ ∈ [0, 1] and consider the function Fϵ with Fϵ(λ) = λmIn− ϵA(λ).

For any ϵ ∈ [0, 1] the matrix Fϵ(λ) is invertible for all λ ∈ Tρ; indeed

spr(ϵA(λ)) 6 sprA(λ) 6 sup
|λ|=ρ

sprA(λ) = ϕA(ρ) < ρm = |λ|m.

Therefore, since the eigenvalues of Fϵ continuously depend on ϵ, the number

of eigenvalues of Fϵ in Dρ is the same for every ϵ ∈ [0, 1]. F0(λ) = λmIn has

mn eigenvalues in the disc Dρ and so has F1(λ) = F (λ).

(ii) By (i), F has mn eigenvalues in Dτ for ρ < τ < ρ+δ , i. e., in
∩

τ∈(ρ,ρ+δ)

Dτ = Dρ.

(iii) Analogously, by (i), F has mn eigenvalues in
∪

τ∈(ρ−δ,ρ)

Dτ = Dρ.

We now briefly look at the restrictions on the principal part of A, which follow if

the function ϕA, which is closely associated with the spectral radii of the matrices

A(τ) (τ > 0), is bounded.

Proposition 1.16. Let G = C and A as in (1-4) with Aj ∈ Cn,n for all j ∈ N.
Suppose that ϕA is bounded. Then for j ∈ N, j ̸= 0 the following statements hold.

(i) If Aj is entrywise nonnegative, then Aj is nilpotent.

(ii) If Aj is nonnegative definite, then Aj = 0.

Proof. ϕA is bounded, so let M ∈ R+ be such that sprA(ρ) = ϕA(ρ) 6 M for all

ρ ∈ [0,∞).

(i) If Aj > 0, then we have ρjAj 6 A(ρ), i. e. Aj 6 ρ−jA(ρ) for all ρ > 0. Hence,

sprAj 6 ρ−j sprA(ρ) 6 ρ−jM
ρ→∞−→ 0.

Therefore, sprAj = 0, i. e., Aj is nilpotent.

(ii) For v, w ∈ Cn denote by ⟨v, w⟩ = w∗v the standard inner product in Cn.

If Aj is positive semidefinite, then, due to Proposition 1.9(i), for all j ∈ N\{0}
and for all v ∈ Cn with ∥v∥ = 1 we have that

ρj ⟨Ajv, v⟩ 6
∑
j∈Z

ρj ⟨Ajv, v⟩ = ⟨A(ρ)v, v⟩ 6 nrA(ρ) = sprA(ρ) 6 M,

i. e.,

⟨Ajv, v⟩ 6 ρ−jM

for all ρ > 0. Analogously to (i) it follows that ⟨Ajv, v⟩ = 0 for all v ∈ Cn

with ∥v∥ = 1, hence, due to Proposition 1.9, ∥Aj∥ = 0, i. e., Aj = 0.
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Remark 1.17. Note that Proposition 1.16(ii) also holds if the coefficients Aj are

bounded operators in a Hilbert space. The proof works in exactly the same way.

The next example shows that the reverse direction of Proposition 1.16(i) does not

hold in general.

Example 1.18. Let A = C2,2 and

A(λ) =

[
0 λ

λ2 0

]
,

then A1 and A2 are entrywise nonnegative and nilpotent. But, since σ(A(λ)) =

{±λ3/2}, it follows that ϕA(ρ) = ρ3/2, which is not bounded.

Proposition 1.19. Let A be as in (1-4) with entrywise nonnegative coefficients

Aj ∈ Cn,n. Suppose that there are ρ1, ρ2 ∈ R ∩G, 0 < ρ1 6 ρ2 such that ϕA(ρj) =

ρmj for j = 1, 2. Then we have that

(i) ϕA(ρ) = ρm for all ρ ∈ [ρ1, ρ2] if and only if σ(F ) = G;

(ii) ϕA(ρ) < ρm for all ρ ∈ (ρ1, ρ2) if and only if σ(F ) ∩ Aρ1,ρ2 = ∅.

Proof. (i) If ϕA(ρ) = ρm for all ρ ∈ [ρ1, ρ2], then by Proposition 1.14, sprA(ρ) =

ρm. A(ρ) is a nonnegative matrix. By the well known Perron-Frobenius the-

orem, see e. g. [BP94], [HJ85], [Min88], the spectral radius of A(ρ) is an

eigenvalue of A(ρ). Hence, det(ρmIn − A(ρ)) = 0 for all ρ ∈ [ρ1, ρ2]. A is an

analytic matrix function in G, hence, det(λmIn −A(λ)) = 0 for all λ ∈ G.

If σ(F ) = G holds, then for every ρ ∈ [ρ1, ρ2], ρ
m is an eigenvalue of A(ρ),

hence, ϕA(ρ) = sprA(ρ) > ρm for all ρ ∈ [ρ1, ρ2] and therefore case (ii) from

Proposition 1.4 cannot occur, thus, ϕA(ρ) = ρm for all ρ ∈ [ρ1, ρ2].

(ii) The ’only if’ part is precisely Proposition 1.7. For the ’if’ part suppose that

σ(F ) ∩ Aρ1,ρ2 = ∅. The assertion then follows from (i) and Proposition 1.4.

The following lemma can be found in [HJ91, p.491, formula (6.5.9)]. Here we adopt

it to our setting.

Lemma 1.20. Let F : R → Cn,n be a differentiable matrix function. Then

(detF )′(τ) =
n∑

j=1

(detF(j))(τ), (1-8)

where F(j)(τ) is the matrix that coincides with F (τ) except that the j-th column is

differentiated with respect to τ .

Proposition 1.21. Let F (λ) = λmIn − A(λ) be as in (1-5) and suppose that for

all τ > 0 we have ϕA(τ) ∈ σ(A(τ)). Then the following statements hold.

(i) Let ϕA be differentiable in ρ ∈ G ∩ R, ρ > 0. Then ϕA(ρ) = ρm implies that

(detF )′(ρ) =
(
mρm−1 − ϕ′

A(ρ)
)
tr [adj(F (ρ)] .
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(ii) Let ϕA be twice differentiable in ρ ∈ G ∩ R, ρ > 0. Then ϕA(ρ) = ρm and

ϕ′
A(ρ) = mρm−1 imply that

(detF )′′(ρ) =
(
m(m− 1)ρm−2 − ϕ′′

A(ρ)
)
tr [adj(F (ρ)] .

Proof. Define the function G : R+ → Cn,n, τ 7→ ϕA(τ)In −A(τ).

In order to simplify the notation, in this proof we introduce the following abbrevi-

ations. We write F and G column wise as

F (ρ) =
[
F1(ρ), . . . , Fn(ρ)

]
and G(ρ) =

[
G1(ρ), . . . , Gn(ρ)

]
,

with Fj(ρ), Gj(ρ) ∈ Cn, j ∈ ⟨n ⟩ and denote by ej ∈ Cn the j-th unit vector.

For v, w ∈ Cn, τ > 0 and j ̸= k set

D
(τ)
j (v) =

n∑
j=1

det
[
F1(τ), . . . , Fj−1(τ), v, Fj+1(τ), . . . , Fn(τ)

]
and

D
(τ)
jk (v, w) =



det
[
F1(τ), . . . , Fj−1(τ), v, Fj+1(τ), . . . ,

Fk−1(τ), w, Fk+1(τ), . . . , Fn(τ)
]
, j < k

det
[
F1(τ), . . . , Fk−1(τ), w, Fk+1(τ), . . . ,

Fj−1(τ), v, Fj+1(τ), . . . , Fn(τ)
]
, j > k

.

(i) Since ϕA(τ) ∈ σ(A(τ)) for all τ > 0, the function detG : R+ → R is constantly

zero, hence, differentiable with (detG)′ ≡ 0.

By assumption we have F (ρ) = G(ρ). Furthermore, if we denote by (A′(ρ))j
the derivative of the jth column of A(ρ) with respect to ρ, F ′

j(ρ) = mρm−1ej−
(A′(ρ))j and G′

j(ρ) = ϕ′
A(ρ)ej −A′

j(ρ) implies

F ′
j(ρ) = G′

j(ρ) +
(
mρm−1 − ϕ′

A(ρ)
)
ej (j ∈ ⟨n ⟩). (1-9)

Then due to Lemma 1.20

0 = (detG)′(ρ) =
n∑

j=1

det
[
G1(ρ), . . . , Gj−1(ρ), G

′
j(ρ), Gj+1(ρ), . . . , Gn(ρ)

]
=

n∑
j=1

D
(ρ)
j

(
G′

j(ρ)
)

and therefore

(detF )′(ρ) =
n∑

j=1

D
(ρ)
j

(
F ′
j(ρ)

)
=

n∑
j=1

D
(ρ)
j

(
G′

j(ρ)
)
+D

(ρ)
j

((
mρm−1 − ϕ′

A(ρ)
)
ej
)

=
(
mρm−1 − ϕ′

A(ρ)
) n∑
j=1

D
(ρ)
j (ej) =

(
mρm−1 − ϕ′

A(ρ)
) n∑
j=1

[
adjF (ρ)

]
jj

=
(
mρm−1 − ϕ′

A(ρ)
)
tr [adj(F (ρ)] .
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(ii) Note that by assumption (1-9) implies F ′
j(ρ) = G′

j(ρ) for j ∈ ⟨n ⟩. Further-

more,

F ′′
j (ρ) = G′′

j (ρ) + (m(m− 1)ρm−2 − ϕ′′
A(ρ))ej .

Differentiating (detF )′ and considering the derivative at ρ we obtain

(detF )′′(ρ) =
n∑

j=1

d

dτ
D

(τ)
j

(
F ′
j(τ)

)∣∣∣∣
τ=ρ

=
n∑

j,k=1
j ̸=k

D
(ρ)
jk

(
F ′
j(ρ), F

′
k(ρ)

)
+

n∑
j=1

D
(ρ)
j

(
F ′′
j (ρ)

)

=
n∑

j,k=1
j ̸=k

D
(ρ)
jk

(
G′

j(ρ), G
′
k(ρ)

)
+

n∑
j=1

D
(ρ)
j

(
G′′

j (ρ)
)

+
(
m(m− 1)ρm−2 − ϕ′′

A(ρ)
) n∑
j=1

D
(ρ)
j (ej)

=(detG)′′(ρ) +
(
m(m− 1)ρm−2 − ϕ′′

A(ρ)
) n∑
j=1

D
(ρ)
j (ej),

where the last equality follows from F (ρ) = G(ρ). Since already (detG)′ ≡ 0,

as was shown in (i), and thus (detG)′′ ≡ 0, we have

(detF )′′(ρ) =
(
m(m− 1)ρm−2 − ϕ′′

A(ρ)
) n∑
j=1

D
(ρ)
j (ej)

=
(
m(m− 1)ρm−2 − ϕ′′

A(ρ)
) n∑
j=1

[adjF (ρ)]jj

=
(
m(m− 1)ρm−2 − ϕ′′

A(ρ)
)
tr [adjF (ρ)] .

Note that in the case that the matrix coefficients Aj of the function F in (1-5) are

nonnegative definite matrices and also in the case that the Aj are entrywise non-

negative, the conditions of Proposition 1.21 are met. This follows from Proposition

1.9 and Proposition 1.12, respectively.

1.3 Matrix polynomials

In Chapter 4 and 5 we will study special matrix functions, namely polynomials,

i. e., functions P with values in A = Cn,n that can be written as

P (λ) =
l∑

j=0

λjAj , (1-10)

where Aj ∈ Cn,n for all j ∈ ⟨ l ⟩0. Notice that P is analytic on the whole complex

plane, so G can be chosen as C.

In the following we will recall some notation and definitions concerning the spectrum

of matrix polynomials in general.
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A matrix polynomial P is called regular if the scalar polynomial detP (λ) is not

identically zero. It is called singular if it is not regular. P is called unimodular

if detP (λ) is constant nonzero for all λ ∈ C.

Two matrix polynomials P1 and P2 are called equivalent if there are unimodular

matrix polynomials E and F such that

P2(λ) = E(λ)P1(λ)F (λ)

for all λ ∈ C. We write P1 ∼ P2.

Let P be a matrix polynomial with P (λ) =
∑l

j=0 λ
jAj . The scalar polynomial

detP (λ) is called the characteristic polynomial of P . The set of its roots coin-

cides with the (finite) spectrum σ(P ) of P , which consists only of eigenvalues. The

algebraic multiplicity a(P, λ0) of an eigenvalue λ0 of P is the multiplicity of λ0

as a root of detP (λ). The geometric multiplicity g(P, λ0) is the dimension of the

kernel N(P (λ0)) of P (λ0). If P is regular, the degree deg detP is not greater than

ln, hence, the number of eigenvalues of P counting algebraic multiplicities does not

exceed ln.

Next we introduce the notion of Jordan chains and Jordan pairs for a finite eigen-

value as it is done in [GLR82]. For k ∈ N denote by P (k)(λ) the k-th derivative

P (k)(λ) =
∑l

j=k
j!

(j−k)!λ
j−kAj of P with respect to λ.

Let λ0 ∈ C be an eigenvalue of a matrix polynomial P and let x0, x1, . . . , xκ, be a

sequence of n-dimensional vectors with x0 ̸= 0, for which the identities

ν∑
j=0

1

j!
P (j)(λ0)xν−j = 0, ν = 0, ..., κ

hold. Then x0, x1, . . . , xκ is called a Jordan chain of length κ + 1 for P corre-

sponding to the eigenvalue λ0. Setting ν = 0 shows that x0 is an eigenvector of P

corresponding to λ0.

Let P be a matrix polynomial as in (1-10) and suppose it is regular. Let λ0 ∈ C be

an eigenvalue of P and let

x
(i)
0 , . . . , x

(i)
κi−1, i = 1, . . . , γ0 = g(P, λ0)

be a set of Jordan chains for P corresponding to λ0. Then this set is called a

canonical set of Jordan chains for P if the eigenvectors x
(1)
0 , . . . , x

(γ0)
0 are linearly

independent and
∑γ0

i=1 κi = a(P, λ0). We call the lengths of the Jordan chains of a

canonical set of Jordan chains the partial multiplicities of P at λ0.

Note that arbitrary sets of Jordan chains of matrix polynomials are in general

neither canonical nor can they be prolonged to become canonical. Consider for

instance

P (λ) = λI −

(
λ2

[
−1 0

0 −1

]
+ λ

[
1 1

0 1

])
=

[
λ2 −λ

0 λ2

]
.

We have detP (λ) = λ4, so 0 is the only eigenvalue and, since P (0) = 0, each nonzero

vector from C2 is an eigenvector of P corresponding to 0. Now P ′(0) =
[
0 −1
0 0

]
and

P ′′(0) = [ 2 0
0 2 ], so x0, x1 = [ 10 ] , [

1
0 ] and y0 = [ 01 ] form a set of Jordan chains

corresponding to the eigenvalue 0. Suppose that x0, x1, x2 with x2 ∈ C2 is a Jordan
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chain corresponding to 0. This implies that P ′′(0) [ 10 ] + P ′(0) [ 10 ] = 0, or [ 20 ] = 0.

If we suppose that y0, y1 with y1 ∈ C2 is a Jordan chain, then P ′(0) [ 01 ] = 0 or[−1
0

]
= 0. Hence, the Jordan chains cannot be prolonged and we have κ1 + κ2 =

2 + 1 < a(P, 0).

The next important theorem and its proof can be found in [GLR82, Chapter S1]

for the general case of m × n matrix polynomials. We formulate it for the case of

n× n matrix polynomials.

Theorem 1.22. Let P be any matrix polynomial with coefficients in Cn,n. Then

there exist unimodular n× n matrix polynomials E and F such that

P (λ) = E(λ)D(λ)F (λ),

where

D(λ) =



d1(λ)
. . .

dr(λ)

0
. . .

0


and di, i = 1, . . . , r, are monic scalar polynomials such that di is divisible by di−1

for i = 2, . . . , r.

Note that Theorem 1.22 also holds for singular matrix polynomials. The diagonal

of D(λ) contains zeros if and only if P is singular.

The matrix polynomial D in Theorem 1.22 is called the Smith form of P and the

polynomials di are called the invariant polynomials of the matrix polynomial P .

The invariant polynomials di are of the form

di(λ) = (λ− λ1)
αi1 · · · (λ− λκi)

αiκi ,

where λ1, . . . , λκi are mutually different and αi1, . . . , αiκi are positive integers. The

factors (λ− λj)
αij , j ∈ ⟨κi ⟩ i ∈ ⟨ r ⟩ are called elementary divisors of P .

One can easily read off the number and lengths of Jordan chains in a canonical

set of Jordan chains for each eigenvalue of P from the Smith form. The number

of elementary divisors corresponding to an eigenvalue λ0 appearing in the Smith

form coincides with the number of Jordan chains corresponding to λ0 and therewith

also gives the dimension of the eigenspace N(P (λ0)). Furthermore, the degree of

each elementary divisor gives the length of the corresponding Jordan chain, see e.g.

[GLR82]. For illustration we give a simple example.

Consider the regular matrix polynomial

P (λ) =

 λ2−λ 1 2λ2−2λ−2 0 2λ3−2λ2+λ
λ−1 0 −5λ2+5λ λ6+λ5−2λ4 λ6−λ5−3λ4+3λ2

0 0 λ2−λ 0 λ3−λ2

λ3−λ2 λ 2λ3−2λ2−2λ λ4+λ3−2λ2 2λ4−2λ3+λ2

−λ+1 0 5λ2−5λ −λ6−λ5+2λ4 5λ3−5λ2


of degree l = 6. Its Smith form turns out to be

D(λ) =

 1
λ−1

λ(λ−1)

λ2(λ−1)(λ+2)

λ2(λ−1)3(λ+2)

 .
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Therefore, the finite spectrum of P consists of {λ1 = −2, λ2 = 0, λ3 = 1} with

a(P,−2) = g(P,−2) = 2, a(P, 0) = 5, g(P, 0) = 3 and a(P, 1) = 6, g(P, 1) = 4.

There are two Jordan chains corresponding to λ1, each of length one. Correspond-

ing to λ2, there are three Jordan chains, two of them with length two and one

with length one. Finally, there are four Jordan chains corresponding to the third

eigenvalue, λ3. One has length three and the remaining three have lengths one,

respectively.

We introduce the following notation. If for k > 1, (Xj)
k−1
j=0 is any sequence of

µ× ν-matrices, we denote by col(Xj)
k−1
j=0 the k × 1 block matrix

[
X0

...
Xk−1

]
∈ Ckµ,ν .

Let (X,J) be a pair of matrices, where X is an n × µ matrix and J is a µ × µ

Jordan matrix with only eigenvalue λ0 ∈ C. We call (X,J) a Jordan pair of P

corresponding to the eigenvalue λ0 if the following conditions hold.

1. λ0 is a zero of detP (λ) with multiplicity µ,

2. rank col(XJj)l−1
j=0 = µ, with col(XJj)l−1

j=0 ∈ Cln,µ, µ 6 ln,

3. AlXJ l +Al−1XJ l−1 + · · ·+A0X = 0.

Notice that in [GLR82] the notion of a Jordan pair is defined in a different way.

Theorem 7.1 in the same book states that the three conditions which we used to

define a Jordan pair are necessary and sufficient for (X, J) to be a Jordan pair for

λ0. Suppose the Jordan matrix J is of the form

J =


J1

J2
. . .

Jd

 ,

with d 6 µ and Jj is a κj × κj Jordan block corresponding to λ0 for j = 1, . . . , d.

Then, we have
∑d

j=1 κj = µ.

Again, let P be a matrix polynomial as in (1-10). The matrix polynomial revP

with

revP (λ) = λlA0 + · · ·+ λAl−1 +Al = λlP (1/λ)

is called the reverse matrix polynomial of P . We say that P has an eigenvalue

at infinity if 0 is an eigenvalue of revP . The notions of algebraic and geometric

multiplicities, Jordan chains, canonical sets of Jordan chains, invariant polynomials,

elementary divisors and Jordan pairs for infinite eigenvalues can be introduced in a

completely analogous and obvious way.

Consider a regular matrix polynomial P of degree l. Then the scalar polynomial

det(P (λ)) has at most degree nl. Let us suppose that the degree of det(P (λ)) is d,

i. e., it has precisely d roots, counting multiplicities. Now consider

det(revP (λ)) = det(λlP (1/λ)) = λln det(P (1/λ)).

Therefore, the determinant of the reverse polynomial revP has zero as a root exactly

with multiplicity nl − d. Hence, we can state the following remark.
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Remark 1.23. If P is a regular n × n-matrix polynomial of degree l, it always

has exactly nl eigenvalues, counting finite and infinite eigenvalues each with their

multiplicities.

A major part of this thesis is dedicated to m–monic matrix polynomials

P (λ) = λmIn −
l∑

j=0

λjAj = λmIn −A(λ),

where n,m, l ∈ N, m < l, A(λ) =
∑l

j=0 λ
jAj and Aj ∈ Cn,n for j ∈ ⟨l⟩0.

Clearly, it is possible to write every matrix polynomial in m–monic form. This

form becomes interesting when the coefficients Aj are supposed to have special

properties. In Chapter 4 and 5 we study m–monic matrix polynomials such that

the coefficients Aj are entrywise nonnegative or even irreducible nonnegative.

In some occasions we have to deal with monic matrix polynomials such that all

but the highest order coefficient are entrywise nonpositive. The following simple

consequence of [FN91] will turn out useful, so we present it here.

Recall that for entrywise nonnegative matrices A,B > 0 with A 6 B it follows that

spr(A) 6 spr(B), see e. g. [BP94], [HJ85], [Min88].

Proposition 1.24. Let P be a monic matrix polynomial with

P (λ) = λlIn −A(λ) = λlIn −
l−1∑
j=0

λjAj , (1-11)

where the coefficients Aj are entrywise nonnegative matrices for j ∈ ⟨ l − 1 ⟩0. Let

0 < r = sprP < ∞ be the spectral radius of P . Then

rl = spr(A(r)).

Furthermore, for ρ > 0, we have that sprA(ρ) < ρl if and only if r < ρ.

Proof. Due to the main theorem in [FN91] we have

r = spr(revA(1/r)) = spr

(
Al−1 +

1

r
Al−2 + · · ·+ 1

rl−2
A1 +

1

rl−1
A0

)
.

Multiplying this equation with rl−1 proves the first assertion.

Let α1, . . . , αl−1 be such that Aj 6 αj1n,n for j ∈ ⟨ l − 1 ⟩0, where 1n,n denotes the

matrix with all entries equal to 1. Note that spr(1n,n) = n. Then we have for τ > 0

sprA(τ) = spr

 l−1∑
j=0

τ jAj

 6
l−1∑
j=0

τ jαj spr(1n,n) =
l−1∑
j=0

nαjτ
j .

Therefore, for the function ϕA : 0 < τ 7→ sprA(τ) we have that ϕA(τ) = O(τ l−1),

i. e. lim supτ→∞

∣∣∣ϕA(τ)
τ l−1

∣∣∣ < ∞. Furthermore, there exists at most one τ > 0 such

that spr(A(τ)) = τ l, see [FN91]. Hence, the last assertion follows.

For the next result, recall that a nonsingular M-matrix is an invertible Z-matrix

(i. e. a matrix the off-diagonal entries of which are nonpositive), such that its inverse

is entrywise nonnegative. The next well known lemma can be found in e.g. [BP94].
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Lemma 1.25. A Z–matrix is a nonsingular M–matrix if and only if it can be

written as τI−B, where τ > 0 and B is an entrywise nonnegative matrix such that

spr(B) < τ .

Proposition 1.26. Let P be a monic matrix polynomial with

P (λ) = λlIn −A(λ) = λlIn −
l−1∑
j=0

λjAj ,

where the coefficients Aj are nonnegative matrices for j ∈ ⟨ l − 1 ⟩ and let spr(P ) =

0. Then for all τ > 0 the matrix P (τ) is a nonsingular M -matrix.

Proof. Suppose there exists a τ > 0 such that sprA(τ) = ϕA(τ) > τ l. Then, since

ϕA(τ) = O(τ l−1), there exists a ρ > τ such that ϕA(ρ) = ρl, which implies that ρ

is an eigenvalue of P . This is a contradiction to spr(P ) = 0.

Monic polynomials as in (1-11) have been thoroughly studied for instance in [PT04],

[Rau92].
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2 m–monic operator functions which are analytic

on an annulus with self adjoint coefficients

In [Wim08] it was shown that if monic matrix polynomials of the form λmI −∑m−1
j=0 λjAj , where A0, . . . , Am−1 are self adjoint matrices, have eigenvalues on the

unit circle, then they are rotation invariant with respect to the angles of certain

roots of unity, if the condition
∑m−1

j=0 |Aj | 6 I is satisfied. In [SW10], this result

was extended to monic operator polynomials with bounded nonnegative definite

operator coefficients.

In this chapter we extend the results of J. Swoboda and H. K. Wimmer to functions

F with values in the Banach algebra B(H) of bounded operators on a Hilbert space

H which are analytic on an annulus and can be written as F (λ) = λmI−
∑

j∈Z λ
jAj ,

where the coefficients Aj are self adjoint. We will show that some eigenvalues of F

are distributed like certain roots of unity on circles corresponding to their modulus.

2.1 Preliminaries

The setting in this chapter is the following.

(a) H is a Hilbert space, with inner product ⟨. , .⟩;

(b) For −∞ < ρ0 < ρ2 6 ∞, ρ2 > 0 set

Aρ0,ρ2 = {λ ∈ C : ρ0 < |λ| < ρ2}

and ρ1 = max{0, ρ0};

(c) Let m ∈ Z, and let F be a function with values in B(H) which is analytic in

Aρ0,ρ2 and can be written as

F (λ) = λmI −A(λ) = λmI −
∑
j∈Z

λjAj with Aj ∈ B(H), j ∈ Z; (2-12)

(d) Aj = A∗
j for j ∈ Z.

Note that if ρ0 < 0, then Aρ0,ρ2 = Dρ2 . In this case we have for F that A−j = 0 for

all j ∈ N \ {0}, i. e. the Laurent representation of F has only a regular part.

For T, S ∈ B(H), we will write T > 0 if T is nonnegative definite in the sense of

Example 1.8 and more generally, T > S or S 6 T if T − S > 0. If T is nonnegative

definite, denote by T 1/2 the unique nonnegative definite operator in B(H) such that

(T 1/2)2 = T . T 1/2 is called the nonnegative square root of T , see e.g. [Kat76],

[Wer00].

In this section we always suppose that the following assumption is satisfied.

Assumption 2.1. There exists a ρ ∈ (ρ1, ρ2) such that

|A|(ρ) :=
∑
j∈Z

ρj |Aj | 6 ρmI, (2-13)

where |Aj | = (A2
j )

1/2 for j ∈ Z.
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Define the function F|A| : Aρ0,ρ2
→ B(H) via

F|A|(λ) = λmI − |A|(λ) = λmI −
∑
j∈Z

λj |Aj |. (2-14)

The next simple observation will be used frequently in what follows.

Lemma 2.2. For T ∈ B(H), T ∗ = T and v ∈ H, v ̸= 0 the inequality

| ⟨Tv, v⟩ | 6 ⟨|T |v, v⟩

holds and therefore |T | − T is a nonnegative definite operator.

Proof. This follows immediately from the spectral theorem (see any standard text-

book on functional analysis, e.g. [Heu06], [Wer00], [Kre89], [Con85], [Kat76]). De-

note by Eλ the spectral function of T . Then

| ⟨Tv, v⟩ | =
∣∣∣ ∫

R
λ d ⟨Eλv, v⟩

∣∣∣ 6 ∫
R
|λ| d ⟨Eλv, v⟩ = ⟨|T |v, v⟩ .

As in Chapter 1, consider the geometrically convex function ϕ|A| : (ρ1, ρ2) → [0,∞),

ϕ|A|(τ) = sup
|λ|=τ

spr |A|(λ).

The next corollary gives a representation of ϕ|A| and follows directly from Proposi-

tion 1.10.

Corollary 2.3. For all ρ ∈ (ρ1, ρ2) we have ϕ|A|(ρ) = spr |A|(ρ).

We will study the consequences of Assumption 2.1 and the property of ϕ|A| being

geometrically convex on (ρ1, ρ2) for the spectrum F in Section 2.2. Let us first take

a brief look on the connection between Assumption 2.1 and the function ϕ|A|.

Let Assumption 2.1 hold. Then due to Proposition 1.9 we have

ϕ|A|(ρ) = spr |A|(ρ) = ∥|A|(ρ)∥ 6 ρm, (2-15)

where the last inequality is due to (2-13).

If conversely ϕ|A|(ρ) 6 ρm holds, then for all v ∈ H

⟨ |A|(ρ)v, v⟩ 6 ∥ |A|(ρ)∥∥v∥2 = ϕ|A|(ρ)∥v∥2 6 ρm∥v∥2 = ⟨ρmv, v⟩ , (2-16)

which means that |A|(ρ) 6 ρmI.

If even ϕ|A|(ρ) < ρm is satisfied, then similar to (2-16) for v ̸= 0

⟨ |A|(ρ)v, v⟩ < ⟨ρmv, v⟩ .

Obviously if |A|(ρ) = ρmI then ϕ|A|(ρ) = ρm. Conversely, if ϕ|A|(ρ) = ρm then by

(2-16) there must be a v ∈ H, v ̸= 0 such that ⟨ |A|(ρ)v, v⟩ = ρm∥v∥2. Hence,⟨
F|A|(ρ)v, v

⟩
= 0, where due to (2-16), F|A|(ρ) = ρmI − |A|(ρ) is a nonnegative

definite operator. Therefore, ∥
(
F|A|(ρ)

)1/2
v∥ = 0, hence, F|A|(ρ)v = 0 or |A|(ρ)v =

ρmv.

Summarizing these considerations we obtain the following statement.
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Lemma 2.4. For ρ ∈ (ρ1, ρ2),

ϕ|A|(ρ) 6 ρm if and only if |A|(ρ) 6 ρmI

and if ϕ|A|(ρ) < ρm, then

⟨ |A|(ρ)v, v⟩ < ⟨ρmv, v⟩ for all v ∈ H, v ̸= 0.

Furthermore, if ϕ|A|(ρ) = ρm, then there is a v ∈ H, v ̸= 0 such that |A|(ρ)v = ρmv,

i. e., ρ is an eigenvalue of F|A| with eigenvector v.

Due to Lemma 2.4, the general Assumption 2.1 is equivalent to ϕ|A|(ρ) 6 ρm for

some ρ ∈ (ρ1, ρ2). If ϕ|A|(ρ) < ρm, there is a maximal interval I = (ρα, ρω) ⊆
(ρ1, ρ2) with ϕ|A|(τ) < τm for all τ ∈ I. Because of Proposition 1.4 we have

ϕ|A|(τ) > τm for all τ ∈ (ρ1, ρ2) \ [ρα, ρω]. So there is precisely one open interval

in (ρ1, ρ2) (its boundary points can coincide with ρ1 or ρ2) on which ϕ|A|(ρ) =

spr |A|(ρ) < ρm holds. By Proposition Proposition 1.7, F|A| has no spectrum in

Aρα,ρω .

From ρα, ρω ∈ (ρ1, ρ2), it follows that ϕ|A|(ρα) = ρmα and ϕ|A|(ρω) = ρmω . Lemma

2.4 then implies that ρα and ρω are eigenvalues of F|A|.

2.2 Rotation invariance of eigenvalues

In this section we study the distribution of eigenvalues of F on circles of radius ρ

satisfying ϕ|A|(ρ) = ρm. We will see that they have a certain rotation invariance

property.

For v ∈ H, v ̸= 0 and ρ ∈ (ρ1, ρ2) let us introduce two sets of numbers which we

will make frequently use of.

(a) I(v) = {j ∈ Z \ {m} : ⟨Ajv, v⟩ ̸= 0},

(b) S(ρ, v) = {λ ∈ C : ⟨F (λ)v, v⟩ = 0, |λ| = ρ}.

Lemma 2.5. Let F be as in (2-12). Let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1. Let

λ ∈ S(ρ, v) for some v ∈ H, v ̸= 0. Then we have

(i)
(
ρ
λ

)m−j ⟨Ajv, v⟩ = ⟨|Aj |v, v⟩ for all j ∈ Z;

(ii)
(
ρ
λ

)m−j
= ±1 for all j ∈ I(v).

Proof. Let w.l.o.g. ∥v∥ = 1. We then have λm =
∑
j∈Z

λj ⟨Ajv, v⟩ . By multiplying

with ρm

λm we obtain

ρm =
∑
j∈Z

ρj
(ρ
λ

)m−j

⟨Ajv, v⟩ =
∑

j∈I(v)∪{m}

ρj
(ρ
λ

)m−j

⟨Ajv, v⟩ (2-17)

=

∣∣∣∣∣∣
∑

j∈I(v)

ρj
(ρ
λ

)m−j

⟨Ajv, v⟩

∣∣∣∣∣∣ 6
∑

j∈I(v)

ρj |⟨Ajv, v⟩| (2-18)

6
∑

j∈I(v)

ρj ⟨|Aj |v, v⟩ 6
∑
j∈Z

ρj ⟨|Aj |v, v⟩ 6 ρm, (2-19)
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so in (2-18) and (2-19) we have equality.

Recall that if for αj ∈ C (j ∈ Z) the identity
∑

j∈Z αj =
∑

j∈Z |αj | holds, then we

have αj = |αj | for all j ∈ Z.

Due to (2-17)-(2-19) we have that

∑
j∈Z

ρj
(ρ
λ

)m−j

⟨Ajv, v⟩ =
∑
j∈Z

∣∣∣∣ρj (ρλ)m−j

⟨Ajv, v⟩
∣∣∣∣ =∑

j∈Z
ρj ⟨|Aj |v, v⟩ ,

which implies (i).

Since λ ∈ S(ρ, v), we have that
∣∣ ρ
λ

∣∣ = 1. Thus from (i) and ⟨Ajv, v⟩ ∈ R, (ii) follows
immediately.

Corollary 2.6. Consider F be as in (2-12). Let S(ρ, v) ̸= ∅ for some v ∈ H,

v ̸= 0 and let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1. Then for all j ∈ Z the following

statements are equivalent.

(i) ⟨Ajv, v⟩ = 0; (ii) Ajv = 0;

(iii) ⟨|Aj |v, v⟩ = 0; (iv) |Aj |v = 0.

Proof. The equivalence of (i) and (iii) follows immediately from Lemma 2.5(i).

To prove the remaining equivalences, observe that

⟨|Aj |v, v⟩ = 0 iff ∥|Aj |
1/2v∥ = 0 which implies |Aj |v = 0.

Now 0 = |Aj |v = (A2
j)

1/2v implies A2
jv = 0 and thus by the self adjointness of Aj ,

Ajv = 0. Clearly, that implies ⟨Ajv, v⟩ = 0, which completes the proof.

Note that, therefore, under the assumptions of Lemma 2.5, the set I(v) takes the

form

I(v) = {j ∈ Z \ {m} : Ajv = 0}. (2-20)

The next proposition shows that under a certain condition on the coefficients Aj ,

λ ∈ C is an eigenvalue of F if and only if |λ| is an eigenvalue of F|A|.

Proposition 2.7. Let F be as in (2-12) and F|A| as in (2-14). Let ρ ∈ (ρ1, ρ2)

satisfy Assumption 2.1. Then for v ∈ H \ {0} and λ ∈ C the following statements

are equivalent.

(i) λ ∈ S(ρ, v);

(ii) F (λ)v = 0 and |λ| = ρ;

(iii) F|A|(ρ)v = 0 and we have Ajv =
(

λ
ρ

)m−j

|Aj |v for all j ∈ Z.

Proof. (ii) ⇒ (i): This follows immediately from the definition of S(ρ, v).

(i) ⇒ (iii): By Lemma 2.5,
(
ρ
λ

)m−j ⟨Ajv, v⟩ = ⟨|Aj |v, v⟩ for all j ∈ Z, hence⟨(
|Aj | −

(ρ
λ

)m−j

Aj

)
v, v

⟩
= 0 for all j ∈ Z. (2-21)
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Since |
(
ρ
λ

)m−j
Aj | = |Aj |, Lemma 2.2 implies that the operators ∆j = |Aj | −(

ρ
λ

)m−j
Aj (j ∈ Z) are nonnegative operators. So (2-21) implies that ∥∆1/2

j v∥ = 0,

hence, ∆jv = 0 and therefore

|Aj |v =
(ρ
λ

)m−j

Ajv for all j ∈ Z, (2-22)

which is precisely the second identity in (iii).

(2-19) implies that
⟨(

ρmI −
∑

j∈Z ρ
j |Aj |

)
v, v
⟩
= 0, where due to the assumption

that ϕ|A|(ρ) 6 ρm, the operator ρmI −
∑

j∈Z ρ
j |Aj | is nonnegative definite, hence,

by the square root argument again,

ρmv =
∑
j∈Z

ρj |Aj |v, (2-23)

and (iii) is proved.

(iii) ⇒ (ii): This immediately follows from

ρmv =
∑
j∈Z

ρj |Aj |v =
∑
j∈Z

ρj
(ρ
λ

)m−j

Ajv,

i. e., λmv =
∑

j∈Z λ
jAjv.

Corollary 2.8. Let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1, and let v ∈ H v ̸= 0. Then

the following assertions hold.

(i)

S(ρ, v) = {λ ∈ C : F (λ)v = 0, |λ| = ρ},

i. e., S(ρ, v) consists of all eigenvalues of F with modulus ρ, for which v is an

eigenvector.

(ii) If S(ρ, v) ̸= ∅ for some ρ > 0, then we have that ϕ|A|(ρ) = ρm.

(iii) λ ∈ S(ρ, v) if and only if λ̄ ∈ S(ρ, v).

Proof. (i) This is a direct consequence of Proposition 2.7.

(ii) From (i) and Proposition 1.7, it follows that if ϕ|A|(ρ) < ρm, then ρ is no

spectral point of F|A| and due to Proposition 2.7, S(ρ, v) is empty for all

v ∈ H.

(iii) Due to F (λ)∗ = F (λ̄), we have 0 = ⟨F (λ)v, v⟩ =
⟨
F (λ̄)v, v

⟩
, hence, λ̄ ∈

S(ρ, v).

The aim for the remainder of this section is to study the geometry of the set S(ρ, v).

For k ∈ Z denote by Ek ⊂ T ⊂ C the set of the k-th roots of unity, i. e., the set

Ek = {z ∈ C : zk = 1} = {ei
j
k 2π : j ∈ ⟨ k ⟩}.

For z ∈ Ek denote by ord z the order of z, i. e., the smallest divisor s of k such that

zs = 1. Note that Ek constitutes a multiplicative group with unit 1 and inverse

element (ei
j
k 2π)−1 = ei

k−j
k 2π.
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Lemma 2.9. Let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1. For v ∈ H\{0} and j ∈ I(v)
the following statements hold.

(i) S(ρ, v) ⊂ ρE2(m−j).

(ii) S(ρ, v) ⊂ ρEm−j if ρ ∈ S(ρ, v).

Proof. Take λ ∈ S(ρ, v) and j ∈ I(v). By Proposition 2.7, we haveAjv =
(
λ
ρ

)m−j |Aj |v,
and hence, (ρ

λ

)m−j

⟨Ajv, v⟩ = ⟨|Aj |v, v⟩ > 0.

By Lemma 2.5,
(
ρ
λ

)m−j
= ±1, i. e.

(
λ
ρ

)2(m−j)
= 1, in other words λ

ρ ∈ E2(m−j).

This proves (i). If furthermore ρ ∈ S(ρ, v), then due to Proposition 2.7 we have

ρm−jAjv = λm−j |Aj |v and ρm−jAjv = ρm−j |Aj |v,

thus, (λm−j − ρm−j)|Aj |v = 0. From Ajv ̸= 0 and Corollary 2.6 follows that

|Aj |v ̸= 0. Since j ̸= m, we get
(
λ
ρ

)m−j
= 1 and (ii) follows.

Lemma 2.10. Let F be as in (2-12) and let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1.

For v ∈ H, v ̸= 0, let λ ∈ S(ρ, v) with ord λ
ρ = k. Then the following statements

hold.

(i) If k is odd, then

(a) k |(m− j) for all j ∈ I(v) (i. e., j = m+ νk for some ν ∈ Z.).

(b) Ajv = |Aj |v for all j ∈ Z.

(ii) If k is even, i.e., k = 2s, then

(a) s |(m− j) for all j ∈ I(v) (i. e., j = m+ νs for some ν ∈ Z.)

(b) Ajv = (−1)ν |Aj |v for all j ∈ I(v), where ν ∈ Z s.t. j = m+ νs.

Proof. (i) If k = ord λ
ρ is odd, then

(
λ
ρ

)ν ̸= −1 for all ν ∈ Z. Indeed, suppose

that
(
λ
ρ

)ν
= −1. Then k | (2ν) and, since k is odd, k | ν. But this implies(

λ
ρ

)ν
= 1, which contradicts the assumption. So, since due to Lemma 2.5, for

all j ∈ I(v) we have
(
λ
ρ

)m−j
= ±1, it follows that

(
λ
ρ

)m−j
= 1, and therefore

k |m− j for all j ∈ I(v).

Equation (b) clearly holds for j ̸∈ I(v). Using Proposition 2.7 and (a), we

immediately obtain Ajv = |Aj |v for j ∈ I(v).

(ii) (a) is clear, this is Lemma 2.9.

Let j ∈ I(v) and j = m− νs for some ν ∈ Z. By Proposition 2.7

Ajv =

(
λ

ρ

)m−j

|Aj |v =

(
λ

ρ

)νs

|Aj |v.

Since
(
λ
ρ

)k
=
(
λ
ρ

)2s
= 1 and k is the smallest integer s.t.

(
λ
ρ

)k
= 1, we have(

λ
ρ

)s
= −1. Hence, Aj = (−1)ν |Aj |v.
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Corollary 2.11. Let F be as in (2-12) and let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1

and fix some nonzero v ∈ H. Suppose that S(ρ, v) ̸= ∅ and I(v) ̸= ∅. Then the

following statements are equivalent.

(i) There exists λ ∈ S(ρ, v) such that k = ord λ
ρ is odd

(ii) Ajv = |Aj |v for all j ∈ Z

(iii) ρ ∈ S(ρ, v).

Proof. (i) ⇒ (ii): This is Lemma 2.10(i).

(ii) ⇒ (iii): Take λ ∈ S(ρ, v). Then by Proposition 2.7

ρmv =
∑
j∈Z

ρj |Aj |v =
∑
j∈Z

ρjAjv,

i. e., ρ ∈ S(ρ, v).

(iii) ⇒ (i) is clear, since ord ρ
ρ = 1.

Lemma 2.12. Let F be as in (2-12) and let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1.

Suppose that ρ ∈ S(ρ, v) for some v ∈ H, v ̸= 0 and let d ∈ Z. Then the following

statements are equivalent.

(i) I(v) ⊂ {m+ kd : k ∈ Z}.

(ii) F (λ)v = λm(λd − ρd)θ(λd) with θ : C → H such that the function λ 7→ θ(λd)

is analytic in Aρ1,ρ2 .

(iii) ρEd ⊂ S(ρ, v).

(iv) There exists a λ ∈ S(ρ, v) such that ord λ
ρ = d.

Proof.

(i) ⇒ (iii): Take λ ∈ ρEd, i. e. λ
d = ρd. Then due to (i)

F (λ)v =

λmI −
∑
j∈Z

λjAj

 v =

(
λmI −

∑
ν∈Z

λm+νdAm+νd

)
v

= λm

(
I −

∑
ν∈Z

λνdAm+νd

)
v

=
(λ
ρ

)m(
ρmI −

∑
ν∈Z

ρmλνdAm+νd

)
v (2-24)

=
(λ
ρ

)m(
ρmI −

∑
ν∈Z

ρm+νdAm+νd

)
v =

(λ
ρ

)m
F (ρ)v = 0.

(iii) ⇒ (i): From Lemma 2.9 it follows that ρEd ⊂ S(ρ, v) ⊂ ρEm−j for all j ∈ I(v), and
hence, d | (m− j) for each j ∈ I(v), which is equivalent to (i).
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(iii) ⇔ (ii): Suppose that (ii) holds. Then for each λ ∈ C such that λd = ρd we have that

F (λ)v = 0, i. e., λ ∈ S(ρ, v).

Now, suppose that (iii) holds. Since we already proved that (iii) is equivalent

to (i), we can write F (λ)v = λmF̃ (λd). Due to (iii), each λ ∈ C such that

λd = ρd is a zero of the analytic function λ 7→ F (λ)v mapping from Aρ1,ρ2 to

Cn. Hence, the assertion (ii) follows.

(iii) ⇒ (iv): Obviously, any λ ∈ ρEd will do.

(iv) ⇒ (i): Due to Lemma 2.9 (i) we have that λ ∈ ρEm−j for all j ∈ I(v). From

d = ord λ
ρ it follows that d |(m− j) for all j ∈ I(v).

We will now prove the main results of this section.

For a subset M ⊂ Z denote by gcd(M) the greatest common divisor of M , i. e.,

the greatest integer µ ∈ N such that µ divides all elements of M and by lcm(M)

the least common multiple of M , i. e. the smallest integer ν ∈ N such that ν is a

multiple of each element of M .

Theorem 2.13. Let F be as in (2-12) and let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1,

i.e. ∑
j∈Z

ρj |Aj | 6 ρmI.

Suppose that ρ ∈ S(ρ, v) for some v ∈ H, v ̸= 0 and set

d̂ = max {d ∈ Z : d |(m− j) for all j ∈ I(v)}
= gcd {m− j : j ∈ I(v)}.

Then S(ρ, v) = ρEd̂.

Proof. Let j0 ∈ I(v). From Lemma 2.9, we know that ρ−1S(ρ, v) ⊂ Em−j0 .

We show that ρ−1S(ρ, v) is closed under multiplication.

Let λ1

ρ , λ2

ρ ∈ ρ−1S(ρ, v) with ord λi

ρ = ki, i = 1, 2. From Lemma 2.12 it follows

that for i = 1, 2 and for all j ∈ I(v) we have that ki |(m − j), i. e., Ajv ̸= 0 only if

m− j ∈ k1Z ∩ k2Z = pZ, where p = lcm{k1, k2}. Hence, p |(m− j) for all j ∈ I(v)
and furthermore

(
λ1

ρ
λ2

ρ

)p
= 1, i. e., λ1

ρ
λ2

ρ ∈ Ep. Applying Lemma 2.12 again, it

follows that Ep ⊂ ρ−1S(ρ, v), thus λ1

ρ
λ2

ρ ∈ ρ−1S(ρ, v).

So ρ−1S(ρ, v) is a multiplicative subgroup of Em−j0 , which means that ρ−1S(ρ, v) =
Ed̃, where d̃ = max{ord λ

ρ : λ ∈ S(ρ, v)}. Once more by Lemma 2.12 we have

{ord λ

ρ
: λ ∈ S(ρ, v)} = {d ∈ Z : d |(m− j) for all j ∈ I(v)},

so d̃ = d̂.

Theorem 2.14. Let ρ ∈ (ρ1, ρ2) satisfy Assumption 2.1, i.e.,∑
j∈Z

ρj |Aj | 6 ρmI.
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Suppose that S(ρ, v) ̸= ∅ for some v ∈ H, v ̸= 0 and ρ ̸∈ S(ρ, v). Then ord λ
ρ is

even for all λ ∈ S(ρ, v). Let

d̂ = lcm{1
2
ord

λ

ρ
: λ ∈ S(ρ, v)}.

Then d̂ |(m− j) for all j ∈ I(v),

S(ρ, v) = {λ ∈ C : λd̂ + ρd̂ = 0}

and

F (z)v = zm(zd̂ + ρd̂)θ(zd̂), (2-25)

with θ : C → H such that the function λ 7→ θ(λd) is analytic in Aρ1,ρ2 .

Proof. The statement about ord λ
ρ follows directly from Lemma 2.11.

Let S(ρ, v) = {λ1, . . . , λr} with ord
λµ

ρ = kµ and kµ = 2sµ, µ = 1, . . . , r. Since by

Lemma 2.9 kµ |(2(m− j)), clearly sµ|(m− j) for all j ∈ I(v) and for all µ = 1, . . . , r.

Hence, d̂ |(m − j). This means, that from Ajv ̸= 0 it follows that j = m + νd̂ for

some ν ∈ Z holds true. Therefore, analogously to (2-24), for all z ∈ C we get

F (z)v =
(z
ρ

)m(
ρmI −

∑
ν∈Z

ρmzνd̂Am+νd̂

)
v. (2-26)

Clearly
(
λ
ρ

)d̂ ∈ {−1, 1} for all λ ∈ S(ρ, v). Suppose that for some λ ∈ S(ρ, v) we

have
(
λ
ρ

)d̂
= 1, i. e., λd̂ = ρd̂. Then,

0 = F (λ)v =
(λ
ρ

)m(
ρmI −

∑
ν∈Z

ρmλνd̂Am+νd̂

)
v

=
(λ
ρ

)m(
ρmI −

∑
ν∈Z

ρm+νd̂Am+νd̂

)
v

=
(λ
ρ

)m
F (ρ)v,

which would imply that ρ ∈ S(ρ, v), and contradict the assumption.

So
(λµ

ρ

)d̂
= −1 for µ ∈ ⟨ r ⟩ i. e., S(ρ, v) ⊂ {λ ∈ C : λd̂ + ρd̂ = 0}.

Suppose now that λ ∈ {λ ∈ C : λd̂ + ρd̂ = 0}. This means that λd̂ = −ρd̂ = λd̂
µ for

µ ∈ ⟨ r ⟩. Then

0 = F (λµ)v = λm
µ I −

∑
ν∈Z

λm+νd̂
µ Am+νd̂v = λm

µ

(
I −

∑
ν∈Z

λνd̂
µ Am+νd̂

)
v.

Multiplying this equation with
(

λ
λµ

)m
and using λd̂ = λd̂

µ, we obtain

0 = λmI −
∑
ν∈Z

λm+νd̂Am+νd̂v = F (λ)v.

Hence, λ ∈ S(ρ, v) and therefore S(ρ, v) = {λ ∈ C : λd̂ + ρd̂ = 0}.

(2-25) follows as in the proof of Lemma 2.12.
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2.3 m–monic operator polynomials with Hermitian coeffi-

cients

Consider now the case that F is an m–monic operator polynomial F (λ) = λmI −
A(λ) such that A is of degree l < m, i. e., F is monic. If ρ ∈ (ρ1, ρ2) satisfies

Assumption 2.1 with S(ρ, v) ̸= ∅ for some nonzero v ∈ H, then the eigenvalues of

F on Tρ are always simple. For the matrix case this has been proved in [Wim08].

For the operator case this is also true. Indeed, suppose that µ ∈ S(ρ, v) for some

nonzero v ∈ H and that there exists a w ∈ H such that v, w is part of a Jordan

chain of F corresponding to µ, i. e. we have F ′(µ)v+F (µ)w = 0. Multiplying both

sides of this identity with v, we obtain with Corollary 2.8

0 = ⟨F ′(µ)v, v⟩+ ⟨F (µ)w, v⟩ = ⟨F ′(µ)v, v⟩+ ⟨w,F (µ̄)v⟩ = ⟨F ′(µ)v, v⟩ .

This can be written as

l∑
j=1

jµj−1 ⟨Ajv, v⟩ = mµm−1∥v∥2,

or due to Proposition 2.7(iii) and m > j for all j ∈ ⟨ l ⟩0,

∥v∥2 =
l∑

j=1

j

m
µj−m ⟨Ajv, v⟩ =

l∑
j=1

j

m
ρj−m ⟨|Aj |v, v⟩

=

l∑
j=0

j

m
ρj−m ⟨|Aj |v, v⟩ <

l∑
j=0

ρj−m ⟨|Aj |v, v⟩ ,

hence, ⟨|A|(ρ)v, v⟩ > ⟨ρmv, v⟩, which contradicts Assumption 2.1.

In the case l > m, when ρ ∈ (ρ1, ρ2) satisfies Assumption 2.1 and S(ρ, v) ̸= ∅ for

some nonzero v ∈ H, there can exist eigenvalues on Tρ with corresponding Jordan

chains of length more than one. This is shown in the following example.

Example 2.15. Let

A(λ) =

[
2
3λ

3 + 1
3 0

0 5
12

]

and F (λ) = λ2I2 −A(λ) =
[
− 2

3λ
3+λ2− 1

3 0

0 λ2− 5
12

]
.

Then we have that |A| = A and ϕ|A|(τ) = sprA(τ) =

{
5
12 , τ > 1

2
2
3τ

3 + 1
3 , τ > 1

2

. Since

ϕ|A|(ρ = 1) = 1 = ρ2,

ρ = 1 satisfies Assumption 2.1, see Lemma 2.4. Since F (1) =
[
0 0
0 7

12

]
, we obtain that

ρ is an eigenvalue of F and that the corresponding eigenspace is one dimensional.

A corresponding eigenvector is given by v = [ 10 ]. We have F ′(1) = [ 0 0
0 2 ]. Hence, the

equation F (1)w + F ′(1)v = 0 has a solution w = [ 10 ], so v, w constitute a Jordan

chain of length 2 for F to the eigenvalue ρ = 1.
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3 Degree reduction of m–monic matrix polynomi-

als and preservation of spectral properties

The aim of this chapter is to develop degree reductions of a given m–monic matrix

polynomial P to a 1-monic matrix polynomial P.

We start with a general polynomial Q with coefficients that are elements of a com-

plex algebra and introduce a reduction to degree 1 6 k 6 l. For k = 1 this will be

e.g. the classical linearization via the companion form. In the second section of this

chapter the correspondence between factorizations of the original polynomial Q and

its reduction Q is developed. In both sections, the reduction for the m–monic case,

which is a reduction by m− 1, is formulated separately.

In the last section we focus on polynomials with matrix coefficients and investigate

the recovery of Jordan chains of the original polynomial from the reduction.

3.1 Degree reduction of polynomials with coefficients that

are elements of a complex Banach algebra

Consider a complex algebra A with identity I. Let ν ∈ N and denote by Aν,ν

the set of ν × ν matrices with entries which are elements of A equipped with the

normal matrix multiplication induced by the multiplication in A. Clearly, Aν,ν is

an algebra. We will also call A ∈ Aν,ν a block algebra matrix of order ν.

Let Q be a polynomial with

Q(λ) =

l∑
j=0

λjQj

of degree l ∈ N where Qj ∈ A for all j ∈ ⟨ l ⟩0. For simplicity we will call such a

polynomial an algebra polynomial. Furthermore, letQ be the algebra polynomial

with

Q(λ) =
k∑

j=0

λjQj

of degree k ∈ N, k < l with Qj ∈ Am,m for some m ∈ N.

In view of unimodular matrix polynomials (i. e. matrix polynomials with constant

nonzero determinant) we call an algebra polynomial Q unimodular if Q(λ) is

invertible for all λ ∈ C. Note that if A = Cn,n, this notion coincides with the notion

of unimodular matrix polynomials. Indeed, since if the matrix Q(λ) is invertible

for all λ ∈ C, the scalar polynomial detQ(λ) has no zeros and thus it has to be a

nonzero constant.

For ν ∈ N define

Iν =

[
I

. . .
I

]
∈ Aν,ν .

We will call Q a reduction of Q to degree k with 1 6 k 6 l if there are unimodular

algebra polynomials E and F such that

E(λ)Q(λ)F(λ) =

[
Q(λ)

Im−1

]
=: Q(λ)⊕ Im−1
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In analogy to the equivalence of matrix polynomials we say that Q and Q⊕ Im−1

are equivalent.

The next proposition was established through private communication with B.Nagy

[Nag07].

Proposition 3.1. Let Q be an algebra polynomial with Q(λ) =
l∑

j=0

λjQj and Qj ∈

A for all j ∈ ⟨ l ⟩0. For k ∈ N, 1 6 k 6 l define the (l − k + 1) × (l − k + 1) block

algebra matrices

Q0 =


Ql−k · · · · · · Q0

−I
. . .

−I 0

 , Q1 =


Ql−k+1

I
. . .

I

 ,

Qj =


Ql−k+j

0
. . .

0

 for j = 2, . . . , k

and define the algebra polynomial Q with

Q(λ) =
k∑

j=0

λjQj =



k∑
j=0

λjQl−k+j Ql−k−1 · · · Q0

−I λI
. . .

. . .

−I λI

 .

Then Q is a reduction of Q to degree k. Furthermore, we have

E(λ)Q(λ)F(λ) = Q(λ)⊕ Il−k, (3-27)

where E and F are algebra polynomials defined as follows:

E(λ) =



I Q′
l−k(λ) Q′

l−k−1(λ) · · · Q′
1(λ)

−I −λI · · · −λl−k−1I

. . .
. . .

...

−I −λI

−I


,

where Q′
j are matrix polynomials recursively defined by

Q′
0(λ) := Q(λ) and Q′

j(λ) :=
1

λ

(
Q′

j−1(λ)−Qj−1

)
, j ∈ ⟨ l − k ⟩ .

F(λ) =



λl−kI I

λl−k−1I 0
. . .

...
. . .

. . .

λI
. . . I

I 0


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Proof. We verify (3-27) by direct calculation. First we have

Q(λ)F (λ) =



Q(λ)
k∑

j=0

λjQl−k+j Ql−k−1 · · · Q1

−I λI
. . .

. . .

. . . λI

−I



=



Q(λ) Q′
l−k(λ) Ql−k−1 · · · Q1

−I λI
. . .

. . .

. . . λI

−I


.

Hence, the first row of E(λ)Q(λ)F(λ) is



Q(λ)

0

Ql−k−1+λQ′
l−k(λ)−Q′

l−k−1(λ)

Ql−k−2+λQ′
l−k−1(λ)−Q′

l−k−2(λ)

...

Q1+λQ′
2(λ)−Q′

1(λ)



t

,

where for B1, . . . , Bk ∈ A we define

[
B1

...
Bk

]t
= [B1 ··· Bk ].

Note that for p ∈ ⟨ l − k − 1 ⟩, by definition of the polynomials Q′
j ,

Ql−k−p + λQ′
l−k−p+1(λ)−Q′

l−k−p(λ)

= Ql−k−p +Q′
l−k−p(λ)−Ql−k−p −Q′

l−k−p(λ) = 0,

hence

E(λ)Q(λ)F(λ) =


Q(λ)

I
. . .

I

 .

Remark 3.2. Since E(λ) and F(λ) are invertible for all λ ∈ C, it is immediately

clear that Q(λ) is invertible if and only if Q(λ) is invertible.

We will call the reduction Q as depicted in Proposition 3.1 the canonical reduc-

tion of the algebra polynomial Q to degree k and will consequently denote this

reduction and its coefficients with calligraphic letters. Note that the canonical re-

duction to degree k = l leaves the original polynomial unchanged and for k = 1 the

canonical reduction coincides with the linearization via a companion form.

If we consider an m–monic algebra polynomial P (λ) = λmI −
∑l

j=0 λ
jAj we can

apply Proposition 3.1 with Qj = δmjI − Aj and k = l − m + 1 and immediately

obtain the canonical reduction P of P . We formulate this in the following corollary.
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Corollary 3.3. Let P be an m–monic algebra polynomial, with

P (λ) = λmI −A(λ) = λmI − (λlAl + · · ·+ λA1 +A0), (3-28)

and Aj ∈ A for all j ∈ ⟨ l ⟩. Define the m×m algebra polynomial

P(λ) = λIm −A(λ) = λIm − (λl−m+1Al−m+1 + · · ·+ λA1 +A0), (3-29)

where

A0 =


Am−1 · · · · · · A0

I
...

. . .
...

I 0

 (3-30)

and

Aj =


Aj+m−1

0
. . .

0

 for j = 1, . . . , l −m+ 1. (3-31)

Then P is equivalent to P (λ)⊕ Im−1 via the unimodular transformation

E(λ)P(λ)F(λ) = P (λ)⊕ Im−1 =

[
P (λ)

Im−1

]
,

where E(λ) and F(λ) are defined as follows.

E(λ) =



I P ′
m−1(λ) P ′

m−2(λ) · · · P ′
1(λ)

−I −λI · · · −λm−2I
. . .

. . .
...

−I −λI

−I


,

and P ′
j(λ) are algebra polynomials recursively defined by

P ′
0(λ) := P (λ) and P ′

j+1(λ) :=
1

λ
(P ′

j(λ) +Aj), j ∈ ⟨m− 2 ⟩ .

The right transformation is given by

F(λ) =



λm−1I I

λm−2I 0
. . .

...
. . .

. . .

λI
. . . I

I 0


.
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3.2 Reduction and factorizations

In this section we will point out the connection between certain factorizations of

the original polynomial Q and factorizations of its canonical reduction Q to degree

k < l in the sense of Proposition 3.1. Clearly, nothing has to be investigated if

k = l. We will see that if Q has a factorization of the type

Q(λ) = B(λ)(λIl−k+1 − C),

then C has to be a certain block algebra companion matrix (for simplicity, in the

following, we will simply talk of companion matrices). This is due to the special

structure of the canonical reduction introduced in Section 3.1.

Theorem 3.4. Consider the algebra polynomial Q(λ) =
l∑

j=0

λjQj and its reduction

Q(λ) =
k∑

j=0

λjQj to degree k < l according to Proposition 3.1. Then the following

assertions hold.

(i) If Q has a factorization

Q(λ) = B(λ)C(λ) =

k−1∑
j=0

λjBj

λl−k+1I −
l−k∑
j=0

λjCj

 , (3-32)

then Q has a factorization

Q(λ) = B(λ)(λIl−k+1 − C) (3-33)

where C =

Cl−k ··· ··· C0

I

...
I 0

 ∈ Al−k+1,l−k+1 is the companion matrix of C.

(ii) If Q has the factorization (3-33), then the block algebra matrix C in the right

factor is of the form C =

[ ∗ ∗ ∗ ∗
I

...
I 0

]
, and Q has the factorization (3-32), such

that C is precisely the companion matrix of C.

Proof. Set m = l − k + 1. Suppose that (3-32) holds. This is equivalent to the

system of equations

Qj = Bj−m −
m∑
i=1

Bj−m+iCm−i (j ∈ ⟨ l ⟩0), (3-34)

where we set Bν = 0 if ν ̸∈ ⟨ l −m ⟩0. Recursively define the block algebra matrices

B0, . . . ,Bl−m by

Bl−m = Ql−m+1, (3-35)

Bj = Qj+1 + Bj+1C (j = l −m− 1, . . . , 0). (3-36)

Then Q has the factorization Q(λ) =

(
l−m∑
j=0

λjBj

)
(λIl−k+1 − C) if only if the re-

maining equation

Q0 = −B0C, (3-37)
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holds, which is arising from comparing coefficients on both sides of the factorization.

In what follows, it is helpful to simplify the notation.

For v = [ v1 ··· vm ]
T ∈ Cm, a complex algebra A and T ∈ A, we write

v ⊗ T ..=


v1T
...

vmT

 .

If B = Cn,n, v ⊗ T is precisely the Kronecker product of v with T . It is easily

checked that basic algebraic operations of the standard Kronecker product (see e.g.

[HJ91]) transfer to our more general case.

In what follows, the identities

Bl−m−ν = e1 ⊗
[

Bl−m−ν

m∑
i=2

Bl−m−ν+i−1Cm−i

m∑
i=3

Bl−m−ν+i−2Cm−i · · ·

· · ·
m∑

i=m−1

Bl−m−ν+i−(m−2)Cm−i Bl−m−ν+1C0

]
+ δν,l−m

 0
I

. . .
I

 ,

(3-38)

for ν = 0, . . . , l−m will be helpful, where e1 ∈ Cm denotes the first unit vector, δij
the Kronecker symbol and again Bj = 0 if j ̸∈ ⟨ l −m ⟩0. The identities (3-38) are

easily, even though not without some technical effort, verified by induction. First,

due to (3-35) and (3-34) we have

Bl−m = Ql−m+1 =

Ql

0

. . .
0

 = e1 ⊗
[
Bl−m 0 · · · 0

]
.

Suppose now that (3-38) holds for some ν ∈ ⟨ l −m− 2 ⟩0. Then by (3-36)

Bl−m−(ν+1) = Ql−m−ν + Bl−m−νC, (3-39)

where

Bl−m−νC = e1 ⊗
([

Bl−m−ν

m∑
i=2

Bl−m−ν+i−1Cm−i

m∑
i=3

Bl−m−ν+i−2Cm−i · · ·

· · ·
m∑

i=m−1

Bl−m−ν+i−(m−2)Cm−i Bl−m−ν+1C0

])
C

= e1 ⊗
[

Bl−m−νCm−1 +
m∑
i=2

Bl−m−ν+i−1Cm−i Bl−m−νCm−2

+
m∑
i=3

Bl−m−ν+i−2Cm−i · · · Bl−m−νC1 +Bl−m−ν+1C0 Bl−m−νC0

]
= e1 ⊗

[
m∑
i=1

Bl−m−ν+i−1Cm−i

m∑
i=2

Bl−m−ν+i−2Cm−i · · ·

· · ·
m∑

i=m−1

Bl−m−ν+i−(m−1)Cm−i Bl−m−νC0

]
.
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Since Ql−m−ν =

Ql−ν−1

0

. . .
0

, we have

Bl−m−(ν+1) = e1 ⊗
[

Bl−m−ν−1

m∑
i=2

Bl−m−(ν+1)+i−1Cm−i · · ·

· · ·
m∑

i=m−1

Bl−m−(ν+1)+i−(m−2)Cm−i Bl−m−(ν+1)+1C0

]
,

thus (3-38) holds for all ν ∈ ⟨ l −m− 1 ⟩0. The induction step from ν = l −m− 1

to ν = l − m works quite similar. In this step, equation (3-39) takes the form

B0 = Q1 + B1C.

Therefore, the summand δν,l−m

 0
I

. . .
I

 appears in (3-38), since Q1 has a struc-

ture different from Q2, . . . ,Ql−m+1, more precisely Q1 =

Qm

I

. . .
I

.
Thus (3-38) holds for all ν ∈ ⟨ l −m ⟩0 .

We are now able to check the remaining identity (3-37). Indeed by (3-38) we have

B0 =



B0

m∑
i=2

Bi−1Cm−i

m∑
i=3

Bi−2Cm−i · · ·
m∑

i=m−1

Bi−(m−2)Cm−i B1C0

I

I

I
. . .

I


(3-40)

and therefore

−B0C = e1 ⊗
[

−B0Cm−1 −
m∑
i=2

Bi−1Cm−i −B0Cm−2 −
m∑
i=3

Bi−2Cm−i · · ·

· · · −B0C1 −B1C0 −B0C0

]
−


0

I
. . .

. . .
. . .

I 0


= e1 ⊗

[
−

m∑
i=1

Bi−1Cm−i −
m∑
i=2

Bi−2Cm−i · · ·

· · · −
m∑

i=m−1

Bi−(m−1)Cm−i −B0C0

]
−


0

I
. . .

. . .
. . .

I 0



=


Qm−1 Qm−2 · · · Q0

−I
. . .

. . .
. . .

−I 0

 = Q0.
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This proves part (i) of the theorem.

Suppose now that C ∈ Al−k+1,l−k+1 is such that

Q(λ) =

l−m∑
j=0

λjBj

 (λIl−k+1 − C) (3-41)

with some m × m block algebra matrices B0, . . . ,Bl−m. Therefore, the equations

(3-35), (3-36) and (3-37) are valid:

Bl−m = Ql−m+1,

Bj = Qj+1 + Bj+1C (j = l −m− 1, . . . , 0), (3-42)

Q0 = −B0C.

They imply that for j = l −m− 1, . . . , 1 the matrices Bj are of the form

Bj =


∗ ∗ ∗ ∗

0
. . .

0

 and B0 = Q1 + B1C =


∗ ∗ ∗ ∗

I
. . .

I

 . (3-43)

Finally from

Qm−1 ··· ··· Q0

−I

. . .
−I 0

 = Q0 = −B0C, it follows that C has the form

C =


∗ ∗ ∗ ∗
I

. . .

I 0

 ,

i. e., C is a companion matrix. In order to finish the proof of (ii), for j ∈ ⟨m− 1 ⟩0
one has to define Cj = C1(m−j), where Cµν denotes the element in the µ-th block

row and ν-th block column of C (If the block algebra matrix already has a subscript,

e.g. Cj , we also write (Cj)µν). Furthermore, for j ∈ ⟨ l −m ⟩0 define Bj to be the

element in the upper left algebra block of Bj .

It remains to show that (3-34) holds. At first suppose that j ∈ ⟨m− 1 ⟩0. Then

Qj = (Q0)1(m−j) = −(B0C)1(m−j) = −B0Cj − (B0)1(m−j+1).

Using (3-42) we can calculate (B0)1(m−j+1) by

(B0)1(m−j+1) = (Q1 + B1C)1(m−j+1) = (B1C)1(m−j+1) = B1Cj−1 + (B1)1(m−j+2).

Again by (3-42)

(B1)1(m−j+2) = (Q2 + B2C)1(m−j+2) = (B2C)1(m−j+2) = B2Cj−2 + (B2)1(m−j+3).

This procedure can be repeated until

(Bj−2)1(m−1) = (Qj−1 + Bj−1C)1(m−1) = (Bj−1C)1(m−1) = Bj−1C1 + (Bj−1)1m,
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where

(Bj−1)1m = (Qj)1m + (BjC)1m = (BjC)1m = BjC0.

Again, we set Bν = 0 when ν ̸∈ ⟨ l −m ⟩0. Now, putting things together we obtain

Qj = −
j∑

i=0

Bj−iCi = −
m−1∑
i=0

Bj−iCi = −
m∑
i=1

Bj−m+iCm−i for j ∈ ⟨m− 1 ⟩0 .

This is precisely (3-34) for j ∈ ⟨m− 1 ⟩0.

Suppose now that j ∈ {m, . . . , l}. Then

Qj = (Qj−m+1)11 = (Bj−m)11 − (Bj−m+1C)11
= Bj−m −Bj−m+1Cm−1 − (Bj−m+1)12.

Because of (Qj)1ν = 0 for ν ̸= 1, we have

(Bj−m+1)12 = (Bj−m+2C)12 = Bj−m+2Cm−2 + (Bj−m+2)13,

(Bj−m+2)13 = (Bj−m+3C)13 = Bj−m+3Cm−3 + (Bj−m+3)14.

Repeating this until

(Bj−2)1(m−1) = (Bj−1C)1(m−1) = Bj−1C1 + (Bj−1)1m,

(Bj−1)1m = BjC0,

we get

Qj = Bj−m −
m∑
i=1

Bj−m+iCm−i for j = m, . . . , l.

Hence, (3-34) holds for all j ∈ ⟨ l ⟩0 and part (ii) of the theorem is proved.

From the proof of Theorem 3.4 it also follows how to obtain the coefficients of the

left factors of one factorization from the other one. For clarity, we will repeat these

identities in the following remark.

Remark 3.5. (i) Suppose that Q has a factorization (3-32). Then the coeffi-

cients of the left factor of the factorization (3-33) of Q can be obtained by

identity (3-38):

Bl−m−ν = e1 ⊗
[

Bl−m−ν

m∑
i=2

Bl−m−ν+i−1Cm−i

m∑
i=3

Bl−m−ν+i−2Cm−i · · ·

· · ·
m∑

i=m−1

Bl−m−ν+i−(m−2)Cm−i Bl−m−ν+1C0

]
+ δν,l−m

 0
I

...
I

 ,

for ν = 0, . . . , l −m.

(ii) Suppose that Q has the factorization (3-33). Then the coefficients Bj of the

left factor of the factorization (3-32) can be obtained by

Bj = (Bj)11 for j ∈ ⟨ l −m ⟩0 ,

where (Bj)11 denotes the upper left algebra block of Bj.
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We reformulate Theorem 3.4 for the m–monic case in the following corollary.

Corollary 3.6. Let m < l and consider the m–monic algebra polynomial P with

P (λ) = λmI−
l∑

j=0

λjAj and its canonical reduction P. Then the following assertions

hold.

(i) If P has a factorization

P (λ) = B(λ)C(λ) =

l−m∑
j=0

λjBj

λmI −
m−1∑
j=0

λjCj

 , (3-44)

then P has a right divisor λIm − C, where

C =


Cm−1 · · · · · · C0

I
. . .

I 0


is the companion matrix of C.

(ii) If λIm − C is any right divisor of P, then C is of the form C =

[ ∗ ∗ ∗ ∗
I

...
I 0

]
,

and P has the factorization (3-44) such that C is the companion matrix of C.

We state one more consequence for the case that the algebra A is the space of n×n

matrices. It follows from the Perron-Frobenius theorem and the fact that C is the

companion matrix of the right factor C(λ) in (3-44), which means that C and C
have the same eigenvalues.

Corollary 3.7. Suppose that A = Cn,n, i. e., P is an m–monic n × n matrix

polynomial and the right factor C(λ) in the factorization (3-44) has coefficients Cj

that are entrywise nonnegative matrices for all j ∈ ⟨m− 1 ⟩0. Then the spectral

radius spr(C) of C is an eigenvalue of C and there is an entrywise nonnegative

eigenvector corresponding to spr(C).

3.3 Recovery of Jordan chains

We now concentrate on the case when the coefficients of the polynomial Q are in the

complex Banach algebra Cn,n of complex n× n-matrices. The connection between

the eigenvalues, eigenvectors and Jordan chains of Q and Q are investigated in this

section.

From Remark 3.2 it follows that a canonical reduction Q of a matrix polynomial Q

has the same finite eigenvalues as Q. Furthermore, due to the equivalence of Q and

Q, they have the same Smith form and therewith the lengths of the Jordan chains

of Q and Q associated with finite eigenvalues coincide. See e.g. [Rod89], [GLR82].

Define the operator valued function

Λ : C → L(Cn,C(l−k+1)n), Λ(λ)u =


λl−k

...

λ

1

⊗ u, for u ∈ Cn. (3-45)
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In the following we will identify Λ(λ) ∈ L(Cn,C(l−k+1)n) with its associated matrix[
λl−k · · · λ 1

]T
⊗ In with respect to the standard basis.

Denote by QΛ : C → L(Cn,C(l−k+1)n) the operator valued function mapping λ ∈ C
to Q(λ)Λ(λ).

The following lemma makes some technical preparations for the main result of this

section.

Lemma 3.8. Let Q and Q be as in Proposition 3.1 and Λ as in (3-45). Let

e1 ∈ Cl−k+1 denote the first vector of the standard basis. Then

(i) (QΛ)(λ) = e1 ⊗Q(λ) for all λ ∈ C;

(ii) Let (xν)
κ−1
ν=0 ⊂ Cn be a sequence of vectors and let λ0 ∈ C. Define the sequence

(ξν)
κ−1
ν=0 ∈ C(l−k+1)n via

ξν =
ν∑

i=0

1

i!
Λ(i)(λ0)xν−i.

Then the identity

ν∑
j=0

1

j!
Q(j)(λ0)ξν−j = e1 ⊗

ν∑
j=0

1

j!
Q(j)(λ0)xν−j

holds for all ν ∈ ⟨κ− 1 ⟩0.

Proof. (i) This follows immediately from computing Q(λ)Λ(λ).

(ii) We verify this assertion by direct calculation.

ν∑
j=0

1

j!
Q(j)(λ0)ξν−j =

ν∑
j=0

1

j!
Q(j)(λ0)

(
ν−j∑
i=0

1

i!
Λ(i)(λ0)xν−j−i

)

=
ν∑

j=0

1

j!
Q(j)(λ0)

(
ν−j∑
i=0

1

(ν−j−i)!
Λ(ν−j−i)(λ0)xi

)

=
ν∑

j=0

ν−j∑
i=0

1

j!(ν−j−i)!
Q(j)(λ0)Λ

(ν−j−i)(λ0)xi

=
ν∑

i=0

ν−i∑
j=0

1

j!(ν−i−j)!
Q(j)(λ0)Λ

(ν−i−j)(λ0)xi

=
ν∑

i=0

1

(ν−i)!

ν−i∑
j=0

(
ν − i

j

)
Q(j)(λ0)Λ

(ν−i−j)(λ0)

xi

=
ν∑

i=0

1

(ν−i)!
(QΛ)(ν−i)(λ0)xi =

ν∑
j=0

1

j!
(QΛ)(j)(λ0)xν−j

=
ν∑

j=0

1

j!

(
e1 ⊗Q(j)

)
(λ0)xν−j = e1 ⊗

ν∑
j=0

1

j!
Q(j)(λ0)xν−j .
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Proposition 3.9. Let Q and Q be as in Proposition 3.1 and let

Λ(λ) ∈ L(Cn,C(l−k+1)n) be defined as in (3-45). Then for κ ∈ N\{0} the following

assertions hold.

(i) (xν)
κ−1
ν=0 is a Jordan chain for Q to the eigenvalue λ ∈ C if and only if (ξν)

κ−1
ν=0

with ξν =
ν∑

i=0

1
i!Λ

(i)(λ)xν−i is a Jordan chain for Q to the eigenvalue λ.

(ii) If Q is regular and ξ ∈ C(l−k+1)n is an eigenvector of Q to the eigenvalue λ,

then ξ = Λ(λ)x, where x ∈ Cn is an eigenvector of Q to the eigenvalue λ.

Proof. (i) From Lemma 3.8(ii) it immediately follows that
ν∑

j=0

1
j!Q

(j)(λ0)ξν−j = 0

if and only if
ν∑

j=0

1
j!Q

(j)(λ0)xν−j = 0.

(ii) The proof works in the same way as the proof of [MMMM06, Theorem 3.8].

The next corollary is a consequence of Remark 1.23.

Corollary 3.10. A regular matrix polynomial Q has ln (finite and infinite) eigen-

values counting multiplicities. Since Q and its canonical reduction Q are equivalent

via the unimodular matrix polynomials E and F from Lemma 3.3, it follows that

Q is regular as well. It has k(l − k + 1)n (finite and infinite) eigenvalues counting

multiplicities. Hence, the difference of these two numbers is

k(l − k + 1)n− ln = (l − k)(k − 1)n > 0,

i. e., in general, Q has more eigenvalues than Q. Again, from the equivalence of Q

and Q it follows that the finite eigenvalues and partial multiplicities of Q and Q are

identical. So the (l−k)(k−1)n additional eigenvalues of Q are infinite eigenvalues.

Note that we do not state anything about the partial multiplicities of the eigenvalue

infinity. We only state that the algebraic multiplicity of infinity as an eigenvalue

of Q does increase if we perform a canonical reduction. In general, partial multi-

plicities of the eigenvalue infinity are not faithfully recovered by degree reductions.

For instance, suppose that infinity has the algebraic multiplicity a(Q,∞) as an

eigenvalue of Q. Then for any combination of partial multiplicities compatible with

a(Q,∞), one can find a linearization of Q (i. e. a linear matrix polynomial L and

unimodular matrix polynomials E and F such that E(λ)L(λ)F(λ) =
[
Q(λ)

I(l−1)n

]
)

which realizes this structure, see [LP05]. To adjust this, special linearizations were

introduced in [GKL88] and were called strong linearizations later in [LP05]. How-

ever, the problem of the conservation and change of the Jordan structure of Q at

infinity after applying a canonical reduction, as we introduced in Section 3.1, is not

studied in this thesis.
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4 m–monic matrix polynomials with entrywise non-

negative coefficients

In this chapter we will deal with m–monic matrix polynomials

P (λ) = λmIn −A(λ),

where A is a matrix polynomial of degree l > m with entrywise nonnegative coef-

ficients. In [PT04], matrix polynomials of the form L(λ) = λmIn − λm−1Am−1 −
· · · − λA1 − A0 with entrywise nonnegative coefficients A0, . . . , Am−1 are called

Perron polynomials. Following these authors, we will call P an m–monic Perron-

Frobenius polynomial (PFP).

If there exists a monic right divisor C of P of degree m of the form

C(λ) = λmIn −
m−1∑
j=0

λjCj , Cj ∈ Cn,n (j ∈ ⟨m− 1 ⟩0), (4-46)

then there exists a unique n× n-matrix polynomial B (see e.g. [Mar88]) with

B(λ) =
l−m∑
j=0

λjBj and P (λ) = B(λ)C(λ). (4-47)

We will call C in (4-46) and (4-47) a (right) Perron-Frobenius factor (PFF) of

degree m of P if the coefficients Cj are entrywise nonnegative for all j ∈ ⟨m− 1 ⟩0.

Since in this thesis we will only consider right PFF’s, the word right will mostly be

omitted.

If C is a PFF of P , then the spectral radius ρ = sprC of C is an eigenvalue of the

polynomial C, since the companion matrix of C is a nonnegative matrix and has

the same eigenvalues as C.

We are especially interested in factors for which the sets of eigenvalues are separated

by a circle in the complex plane around zero. Following the notations in [Mar88],

for ρ > 0 a right factor C of P is called a spectral (right) factor with respect

to Tρ = {z ∈ C : |z| = ρ} if all eigenvalues of C lie inside the open disc Dρ = {z ∈
C : |z| < ρ} and the eigenvalues of B lie outside of Dρ, i. e.

σ(C) = σ(P ) ∩ Dρ, and σ(B) = σ(P ) ∩ (C \ Dρ).

Recall that a matrix polynomial Q(λ) =
∑l

j=0 λ
jQj is called comonic if Q0 = In.

If C is a spectral right factor with respect to Tρ, 0 is not an eigenvalue of the left

factor B and hence, the coefficient B0 is nonsingular. Therefore, there exists a

comonic matrix polynomial B̃ with σ(B̃) = σ(B), such that

B̃(λ) = In −
l−m∑
j=1

λjB̃j and P (λ) = B̃(λ)B0C(λ).

Clearly, in this case, if λ0 is an eigenvalue of P , it is either an eigenvalue of B̃ or

an eigenvalue of C. Hence, P has no eigenvalues on Tρ. This also implies that if P

has a spectral right factor, then P is a regular matrix polynomial.
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A more general version of the following theorem is proved in [FN05b], namely for

coefficients which are in a normal cone of an ordered Banach algebra. The proof

relies on an abstract factorization theorem in decomposing Banach algebras, see

[GKS03, Theorem 2.5]. In section 4.2 we will give a proof in the matrix case using

only matrix theoretical concepts.

Theorem 4.1. (i) Let P be an m–monic PFP. Suppose that for some ρ > 0 the

inequality

ϕA(ρ) < ρm

holds.

Then P has a spectral right PFF C with respect to the circle Tρ, i. e., P (λ) =

B̃(λ)B0C(λ) with

C(λ) = λmIn −
m−1∑
j=0

λjCj and B̃(λ) = In −
l−m∑
j=1

λjB̃j ,

where Ci, B̃j are entrywise nonnegative for i ∈ ⟨m− 1⟩0 and j ∈ ⟨l −m⟩ and
B0 ∈ Cn,n is a nonsingular M -matrix.

The sets of eigenvalues of C and B̃ are

σ(C) = σ(P ) ∩ Dρ and σ(B̃) = σ(P ) ∩ (C \ Dρ).

(ii) Conversely, if the m–monic PFP has a spectral right PFF with respect to the

circle Tρ for some ρ > 0, then ϕA(ρ) < ρm.

4.1 Factorizations of 1–monic matrix polynomials

In this section we study the existence of a spectral PFF for a 1–monic PFP. In

Section 4.2 we will combine this result with the results of Chapter 3 to prove this

theorem for any m–monic matrix polynomial with 1 6 m < l.

Consider a 1-monic PFP P of degree l,

P (λ) = λIn −A(λ) = λIn −
l∑

j=0

λjAj . (4-48)

We will give a sufficient condition for a PFP to have a spectral right PFF with

respect to Tρ for some ρ > 0, i. e.,

P (λ) = B̃(λ)B0C(λ) =

In −
l−1∑
j=1

λjB̃j

B0(λIn − C0), (4-49)

with C0, B̃j > 0 for j ∈ ⟨ l − 1 ⟩, σ(C) = σ(P ) ∩ Dρ, σ(B̃) = σ(P ) ∩ (C \ Dρ) for

some ρ > 0 and a nonsingular M -matrix B0.

In the following we will study the nonnegative solutions of the matrix equation

P (X) = X −
l∑

j=0

AjX
j = 0, X ∈ Cn,n. (4-50)
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By [Mar88, Lemma 22.9], the matrix C0 is a solution of (4-50) if and only if the

linear pencil λIn − C0 is a right factor of P , i. e.

P (λ) = B(λ)(λIn − C0), (4-51)

where B is a matrix polynomial with B(λ) =
∑l−1

j=0 λ
jBj .

We call a solution C0 ∈ Rn,n of (4-50) a right root of P or of the matrix equation

P (X) = 0.

C0 is called a spectral right root of P with respect to Tρ if λIn−C0 is a spectral

right factor of P with respect to Tρ.

Given a right root of P , the next lemma formulates an explicit formula for the

coefficients of the left factor B of P , which we will need later.

Lemma 4.2. Suppose that C0 ∈ Cn,n is a right root of P (λ) = λIn −
∑l

j=0 λ
jAj

and let

P (λ) =

 l−1∑
j=0

λjBj

 (λIn − C0) (4-52)

be the according factorization of P . Then the coefficients Bk, k ∈ ⟨ l − 1 ⟩0 satisfy

the equations

Bk = δ0kIn −
l−k−1∑
j=0

Ak+j+1C
j
0 for k ∈ ⟨ l − 1 ⟩0 . (4-53)

Proof. First write P (λ) =
∑l

j=0 λ
jÃj , where Ãj = δj1In − Aj and consider the

factorization (4-52).

By induction we will show that Bl−k =
k−1∑
j=0

Ãl−k+j+1C
j
0 for k ∈ ⟨ l ⟩. Since this is

equivalent to

Bk =

l−k−1∑
j=0

Ãk+j+1C
j
0 =

l−k−1∑
j=0

δ(k+j)0In −
l−k−1∑
j=0

Ak+j+1C
j
0

= δ0kIn −
l−k−1∑
j=0

Ak+j+1C
j
0 for k ∈ ⟨ l − 1 ⟩0 ,

which proves the assertion.

By (4-52) it directly follows that Bl−1 = Ãl. Suppose that Bl−k =
k−1∑
j=0

Ãl−k+j+1C
j
0

for some k ∈ ⟨ l − 1 ⟩. By formally dividing P (λ) =
∑l

j=0 λ
jÃj by C(λ) = λIn−C0,

performing a polynomial division, one can see that Bl−k−1 is obtained by

Bl−k−1 = Ãl−k −Bl−k(−C) = Ãl−k +

k−1∑
j=0

Ãl−k+j+1C
j

C (4-54)

= Ãl−k +
k−1∑
j=0

Ãl−k+j+1C
j+1 =

k−1∑
j=−1

Ãl−k+j+1C
j+1

=
k∑

j=0

Ãl−k+jC
j .
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From identity (4-53) one can easily observe that the coefficients Bk of B have a

certain structure if P has an entrywise nonnegative right root. The next corollary

formulates this simple observation.

Corollary 4.3. Suppose that C ∈ Cn,n is an entrywise nonnegative right root of

the PFP (4-48). Then the coefficients Bk are nonpositive for k ∈ ⟨ l − 1 ⟩ and B0

is a Z-matrix.

We will now try to find a solution of (4-50) via a fixpoint iteration.

We will say that a sequence of n× n matrices (Xk)k∈N converges to an n× n

matrix X if the n2 sequences of components of Xk converge to the corresponding

components of X. We will write limk→∞ Xk = X.

Recall the order relation induced by the closed algebra cone of entrywise nonnegative

n× n-matrices from Example 1.11.

Before we proof the next proposition, note that for entrywise nonnegative matrices

A = (aij), B = (bij) ∈ Rn,n and C = (cij), D = (dij) ∈ Rn,m we have

AC 6 BD if A 6 B and C 6 D. (4-55)

Indeed, (AC)ij =
∑n

ν=1 aiνcνj 6
∑n

j=1 biνdνj = (BD)ij holds for all i ∈ ⟨n ⟩ and

j ∈ ⟨m ⟩. In particular, this implies that for all j ∈ N we have that

Aj 6 Bj if A 6 B. (4-56)

Proposition 4.4. Let P be a 1-monic PFP of degree l. Then P has a nonnegative

right root if and only if the fixpoint iteration

Xk+1 = AlX
l
k + · · ·+A1Xk +A0 with 0 6 X0 6 A0 (4-57)

converges.

Furthermore, the limit is the entrywise smallest (or minimal) nonnegative root of

P and does not depend on the choice of the initial matrix X0.

Proof. Obviously Xk > 0 for all k > 0. By induction it follows that the sequence

(Xk)k∈N of iterates is entrywise nondecreasing. Indeed, since the coefficients Aj are

nonnegative, clearly X0 6 A0 6 X1. If we suppose that Xk > Xk−1 for some k > 1,

then, due to (4-56),

Xk+1 −Xk = Al(X
l
k −X l

k−1) + · · ·+A1(Xk −Xk−1) +A0.

Hence, if (Xk)k∈N converges, the limit is entrywise nonnegative and the if part

follows.

If we suppose that X ∈ Rn,n is any nonnegative right root of P , i. e., X = AlX
l +

· · · + A1X + A0, then again, by induction it follows that Xk 6 X for all k ∈ N,
indeed 0 6 X0 6 A0 6 X and if Xk 6 X for some k > 0, then, due to (4-56),

Xk+1 =
l∑

j=0

AjX
j
k 6

l∑
j=0

AjX
j = X.

Hence, X is a bound for the entrywise monotonically increasing iteration sequence

(Xk)k∈N. Hence, since the convergence is and boundedness is componentwise,

(Xk)k∈N converges.
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Let X be any right root of P and Xmin be the limit of (4-57) for any entrywise

nonnegative initial matrix X0 6 A0. From Xk 6 X for all k ∈ N it follows that

X −Xmin = X − lim
k→∞

Xk > 0,

hence, Xmin is the entrywise smallest nonnegative root of P. This also implies the

last assertion on the independence of the initial matrix X0.

Proposition 4.5. Let P be a 1-monic PFP of degree l as in (4-48). Suppose that

A(ρ)v 6 ρv for some ρ > 0 and some vector v = (vj)
n
j=1 ∈ Rn, v > 0, i.e. vj > 0

for all j ∈ ⟨n ⟩. Then

(i) P has a nonnegative right root.

(ii) the minimal nonnegative right root Cmin of P satisfies

Cminv 6 ρv and spr(Cmin) 6 ρ.

Proof. (i) We show that the fixpoint iteration (4-57) converges. By induction one

can see that 0 6 Xkv 6 ρv for all k ∈ N. Indeed, since v > 0, X0v 6 A0v 6
A(ρ)v 6 ρv and if Xkv 6 ρv for some k > 0, then due to (4-55)

Xk+1v =
l∑

j=0

AjX
j
kv 6

l∑
j=0

Ajρ
jv = A(ρ)v 6 ρv.

Denote by (Xk)ij the element in the ith row and in the jth column of the

matrix Xk. Then
∑n

j=1(Xk)ijvj 6 ρvi and hence, (Xk)ij 6 ρ vi
vj

for all i, j ∈

⟨n ⟩. Hence, the iteration sequence (Xk)k∈N is bounded by the matrix
(
ρ vi

vj

)
.

In the proof of Proposition 4.4 we already saw that by definition and by

the nonnegativity of the Xk, (Xk)k∈N is entrywise nondecreasing. Hence, it

converges and P has a nonnegative root.

(ii) Cminv 6 ρv directly follows from Xkv 6 ρv (see the proof of (i)) for all

k ∈ N, since Cmin = limk→∞ Xk. [BP94, chapter 2, Theorem 1.11] then

implies spr(Cmin) 6 ρ.

The following example given in [FN05a] shows that that the assumption in Propo-

sition 4.5 is not necessary for the existence of a nonnegative root of a PFP.

Example 4.6. Let a, b > 0 such that ab > 1 and define

P (λ) = λI2 −A(λ) =

(
I2 − λ

[
a 0

0 0

])(
λI2 −

[
0 0

0 b

])
.

Then for all for ρ > 0 and v = [ xy ] > 0 we have P (ρ)v =
[
(1−ρa)ρx
(ρ−b)y

]
.

Now 1 − ρa > 0 implies that a 6 1
ρ , i. e., ρ < b, hence, ρ − b < 0. Conversely if

ρ− b > 0, then ρa > ab > 1, hence, 1− ρa < 0. Therefore, there is no ρ > 0 and no

v > 0 such that A(ρ)v 6 ρv but P has a nonnegative right root.
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Proposition 4.7. Let P be a 1-monic PFP of degree l as in (4-48). Suppose that

there exists a ρ > 0 such that ϕA(ρ) = sprA(ρ) < ρ. Then P has a nonnegative

right root.

In this case, if Cmin is the minimal entrywise nonnegative right root of P and

P (λ) = B(λ)(λIn − Cmin) =

 l−1∑
j=0

λjBj

 (λIn − Cmin) (4-58)

is the according factorization of P , then the following statements hold.

(i) spr(Cmin) < ρ,

(ii) B0 is a nonsingular M -matrix,

(iii) the spectral radius of rev (BB−1
0 ) is strictly less then 1

ρ ,

(iv) σ(Cmin) = σ(P ) ∩ Dρ, σ(B) = σ(P ) ∩ (C \ Dρ),

i. e., Cmin is a spectral right root of P .

Proof. Due to Proposition 1.7, by assumption ρ is not an eigenvalue of P and hence,

P (ρ) is invertible and spr
(

1
ρA(ρ)

)
< 1. Thus, we can write P (ρ)−1 as a Neumann

series (see e.g. [Kre89], [Wer00], [Heu06])

P (ρ)−1 =
1

ρ

∞∑
j=0

(
1

ρ
A(ρ)

)j

> 0.

Take a vector u ∈ Rn with u > 0 and define v = P (ρ)−1u, i. e., P (ρ)v = u > 0,

i.e. A(ρ)v < ρv. The fact that P (ρ)−1 has full rank and is entrywise nonnegative

implies v > 0. From Proposition 4.5 it follows that P has a nonnegative right root

Cmin.

(i) From Proposition 4.5 it follows that spr(Cmin) 6 ρ. Equality cannot hold here,

because this would imply that there exists a vector w > 0, such that Cminw =

ρw, since Cmin is nonnegative. It follows that P (ρ)w = B(ρ)(ρIn−Cmin)w = 0

in contradiction to sprA(ρ) < ρ. Hence, sprCmin < ρ.

(ii) By Lemma 4.2 we have

B0 = In −
l−1∑
j=0

Aj+1C
j
min.

For the vector v from (i), by Proposition 4.5 (ii) and by (4-55) we have

Cj
minv 6 ρjv for j ∈ ⟨ l − 1 ⟩ and, therefore

l−1∑
j=0

Aj+1C
j
minv 6

l−1∑
j=0

ρjAj+1v =
1

ρ

l∑
j=1

Ajρ
jv 6 1

ρ

l∑
j=0

Ajρ
jv < v,

where the last inequality is due to P (ρ)v > 0, see the proof of (i).

From [BP94, chapter 2, Theorem 1.11] it follows that spr(
∑l−1

j=0 Aj+1C
j
min) <

1, hence, due to Lemma 1.25, B0 is invertible with a nonnegative inverse.
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(iii) Due to spr(Cmin) < ρ, (4-58) implies that B(ρ) = P (ρ)(ρIn − Cmin)
−1 is

invertible. Since v > (ρIn−Cmin)
1
ρv, and, since ρIn−Cmin has a nonnegative

inverse, by (4-55) we have (ρIn − Cmin)
−1v > 1

ρv and hence

B(ρ)v = P (ρ)(ρIn − Cmin)
−1v > 1

ρ
P (ρ)v > 0. (4-59)

Set B̃j = −BjB
−1
0 , (j ∈ ⟨ l − 1 ⟩) and define the matrix polynomial B̃ via

B̃(λ) = In −
l−1∑
j=1

λjB̃j .

Note that the coefficients B̃j , j ∈ ⟨ l − 1 ⟩ are nonnegative, since the Bj are

nonpositive for all j ∈ ⟨ l − 1 ⟩ due to Corollary 4.3. In this notation B(λ) =

B̃(λ)B0. Consider the monic matrix polynomial

rev B̃(λ) = λl−1In − β(λ) = λl−1In − (λl−2B̃1 + · · ·+ λB̃l−2 + B̃l−1).

Since B0 is a nonsingularM -matrix, (4-59) implies that B̃(ρ)v > 0. Therefore,

setting λ = 1
ρ we get

rev B̃(1/ρ)v =
1

ρl−1
In − (

1

ρl−2
B̃1 + · · ·+ 1

ρ
B̃l−2 + B̃l−1)v

=
1

ρl−1

[
In − (ρB̃1 + · · ·+ ρl−2B̃l−2 + ρl−1B̃l−1)

]
v

=
1

ρl−1
B̃(ρ)v > 0.

This implies that sprβ(1/ρ) < 1
ρl−1 . Indeed, let r = sprβ(1/ρ) and consider a

vector u > 0, u ̸= 0 such that uTβ(1/ρ) = ruT . Then

0 <
⟨
rev B̃(1/ρ)v, u

⟩
=

1

ρl−1
⟨v, u⟩ −

⟨
v, β(1/ρ)Tu

⟩
=

(
1

ρl−1
− r

)
⟨v, u⟩ ,

hence, r < 1
ρl−1 .

Now apply Proposition 1.24 to the monic matrix polynomial rev B̃, rev B̃(λ) =

λl−1In − β(λ), i. e., from sprβ(1/ρ) < 1
ρl−1 it follows that spr(rev B̃) < 1

ρ .

(iv) From (i) it follows that σ(Cmin) ⊂ Dρ. B̃ = BB−1
0 is a comonic matrix

polynomial, thus 0 is not an eigenvalue of B̃. Since 0 ̸= λ ∈ σ(B̃) if and

only if 1
λ ∈ σ(rev B̃), from (iii) it follows that σ(B̃) ∩ Dρ = ∅. Furthermore,

σ(B) = σ(B̃) and from [Mar88, Section 22] the rest of the assertion follows.

Theorem 4.8. Let P be a 1-monic PFP of degree l as in (4-48) and let ρ > 0.

Then P has a spectral right PFF with respect to Tρ if and only if sprA(ρ) < ρ.

Moreover if C0 is a spectral right root of P with respect to Tρ, then it is the entrywise

smallest nonnegative root Cmin of P .

Proof. The if part follows from Proposition 4.7.
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Suppose that P has a spectral right PFF, i. e., there is a matrix polynomial B̃ and

matrices C0 and B0 such that

P (λ) = B̃(λ)B0C(λ) =
(
In −

l−1∑
j=1

λjB̃j

)
B0(λIn − C0), (4-60)

where C0, B̃1, . . . , B̃l−1 are nonnegative matrices and B0 is a nonsingular M–matrix

and

σ(C) = σ(P ) ∩ Dρ, σ(B̃) = σ(P ) ∩ (C \ Dρ).

So, in particular, spr(C) < ρ and spr(rev B̃) < 1
ρ . Together with Proposition 1.24,

this implies that if

rev B̃(λ) = λl−1In − β(λ) = λl−1In − (λl−2B̃1 + . . . λB̃l−2 + B̃l−1),

then sprβ( 1ρ ) <
1

ρl−1 . By multiplication with ρl−1 we obtain

spr(B̃(ρ)) = spr(ρB̃1 + · · ·+ ρl−1B̃l−1) < 1.

Hence, B̃(ρ) has a nonnegative inverse. Due to spr(C) = spr(C0) < ρ, also (ρIn−C0)

is an invertible M -matrix. We have

P (ρ) =
(
In −

l−1∑
j=1

ρjB̃j

)
B0(ρIn − C0),

where B0 is an invertible M -matrix. Therefore, P (ρ) = ρIn−A(ρ) is a nonsingular

M -matrix and [BP94, p. 137, (N38)] implies that sprA(ρ) < ρ.

The last assertion is verified with Proposition 4.7, since it implies that σ(Cmin) =

σ(P )∩σ(Dρ) = σ(C) and from [Mar88, Lemma 22.8] it follows that C0 = Cmin.

4.2 Factorizations of m–monic matrix polynomials

The main aim of this section is to prove Theorem 4.1, which has already been done

in Section 4.1 for the case of a 1-monic PFP. We will combine the results about

1–monic PFFs in Section 4.1 and results from Chapter 3 to prove the theorem.

Lemma 4.9. Suppose that the m–monic PFP P has a right PFF, i. e.,

P (λ) =

l−m∑
j=0

λjBj

λmIn −
m−1∑
j=0

λjCj

 with Cj > 0 (j ∈ ⟨m− 1 ⟩0).

Then B0 is a Z-matrix.

Proof. For the case m = 1, see Section 4.1.

By Corollary 3.6, the canonical reduction P of P has a nonnegative right root C,

i. e. P(λ) = B(λ)(λImn − C). Let B(λ) =
l−m∑
j=0

λjBj , then Corollary 4.3 implies that

the coefficient B0 is a Z-matrix. From the form of B0, see (3-40) in the proof of

Theorem 3.4 it then follows that also B0 is a Z-matrix.
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In the next Proposition we will use the notion of irreducible matrices. Following

[HJ85, Sec. 6.2] we define that a matrix S ∈ Cn,n is irreducible if there exists no

permutation matrix P ∈ Cn,n such that there is some integer r with 1 6 r 6 n− 1

such that

PTSP =

[
B C

0 D

]
,

where B ∈ Cr,r, C ∈ Cr,n−r, D ∈ Cn−r,n−r.

From the Perron-Frobenius theory it follows that if S is an irreducible matrix, then

spr(S) is a simple eigenvalue of S, i. e. the algebraic multiplicity of spr(S) as an

eigenvalue of S is one (and so is the dimension of the corresponding eigenspace),

and there is a strictly positive eigenvector of S corresponding to spr(S) (see e.g.

[HJ91], [Min88] and for a generalization to infinite dimensions see [Sch71]).

Recall the function

Λ : C → L(Cn,Cmn), Λ(λ)u =

 λm−1

...
λ
1

⊗ u, for u ∈ Cn.

from (3-45), where l − k + 1 = m.

Proposition 4.10. Let m > 2 and let P be an m–monic PFP with P (λ) = λmIn−
A(λ) = λmIn −

∑l
j=0 λ

jAj. Consider the canonical reduction P of P with P(λ) =

λImn −A(λ) according to Corollary 3.3. Then for ρ > 0 we have that

ϕA(ρ) < ρm if and only if ϕA(ρ) < ρ, (4-61)

ϕA(ρ) > ρm if and only if ϕA(ρ) > ρ (4-62)

and

ϕA(ρ) = ρm if and only if ϕA(ρ) = ρ. (4-63)

Proof. We first prove both statements for the case that for all positive τ the matrix

A(τ) is irreducible.

Let ϕA(ρ) = ρm. Since A(ρ) is irreducible, there exists a positive eigenvector x > 0

of A(ρ) to the eigenvalue ρm = sprA(ρ). Hence, P (ρ)x = 0. By Proposition

3.9 the positive vector Λ(ρ)x is an eigenvector for P to the eigenvalue ρ. Hence,

A(ρ)Λ(ρ)x = ρΛ(ρ)x. Since A(ρ) is entrywise nonnegative, we conclude that ρ =

sprA(ρ) = ϕA(ρ) (see e.g. [HJ85, Corollary 8.1.30]).

Conversely, suppose that ϕA(ρ) = ρ. Since A(ρ) > 0, there exists a nonzero vector

v > 0 such that A(ρ)v = ρv, which is equivalent to P(ρ)v = 0. By Proposition 3.9

v is of the form v = Λ(ρ)u, where u > 0, u ̸= 0 is an eigenvector of P to the same

eigenvalue ρ, hence, A(ρ)u = ρmu. Since the matrix A(ρ) is irreducible, it has only

one nonnegative - hence, a strictly positive - eigenvector (except for scalar multiples)

and this corresponds to the eigenvalue sprA(ρ). Therefore, ϕA(ρ) = sprA(ρ) = ρm.

Now suppose that sprA(ρ) < ρm and let v > 0 such that A(ρ)v = sprA(ρ)v < ρmv.

Set v̂ = Λ(ρ)v > 0 and consider

A(ρ)v̂ =


A(ρ)v

ρm−1v
...

ρv

 6


ρmv

ρm−1v
...

ρv

 = ρv̂,
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which implies that sprA(ρ) 6 ρ, see e.g. [HJ85, Corollary 8.1.29]. Due to (4-63),

equality cannot hold, so ϕA(ρ) < ρ. Analogously one can prove that ϕA(ρ) > ρ

when ϕA(ρ) > ρm. Then it follows that ϕA(ρ) > ρm and ϕA(ρ) 6 ρm if ϕA(ρ) > ρ

and ϕA(ρ) 6 ρ, respectively. Analogously, with (4-63) the remainder follows and

(4-61) and (4-62) are proved.

Now suppose that P is anym–monic PFP such that for τ > 0, A(τ) is not necessarily

irreducible. Define Aϵ(λ) = A(λ)+ ϵ1n,n, where 1n,n denotes the n×n matrix each

entry of which is 1.

Let ϕA(ρ) < ρm. Since the eigenvalues of Aϵ depend continuously on ϵ and Aϵ(λ) →
A(λ) entrywise as ϵ → 0, there is an ϵ > 0 such that ϕAϵ(ρ) < ρm.

Consider the canonical reduction Pϵ(λ) = λIn −Aϵ(λ) of λ
mIn − Aϵ(λ) according

to Corollary 3.3. Since Aϵ is irreducible, from the first part of this proof it follows

that ϕAϵ(ρ) < ρ. Since the coefficient A0,ϵ of Aϵ satisfies

A0,ϵ =


Am−1 · · · · · · A0 + ϵ1n,n

In 0
. . .

...

In 0

 , (4-64)

we have ϕA(ρ) = lim
ϵ→0

ϕAϵ(ρ) 6 ρ. Due to ϕA(ρ) < ρm, ρ is not an eigenvalue of

P and, therefore it is not an eigenvalue of P. Therefore, ϕA(ρ) ̸= ρ, and hence,

ϕA(ρ) < ρ.

Now suppose that ϕA(ρ) < ρ and let ϵ > 0 be such that ϕAϵ(ρ) < ρ, where

Aϵ coincides with A except for the coefficient A0, which is replaced by A0,ϵ from

(4-64). Pϵ(λ) = λImn − Aϵ(λ) is the canonical reduction of λmIn − Aϵ(λ), where

Aϵ(τ) is irreducible for all τ > 0. So by the first part of this proof, ϕAϵ(ρ) < ρm.

Again, lim
ϵ→0

ϕAϵ(ρ) = ϕA(ρ), so ϕA(ρ) 6 ρm and due to ϕA(ρ) < ρm, ρ is not an

eigenvalue of P, hence, it is not an eigenvalue of P , therefore ϕA(ρ) < ρm, since

A(ρ) is entrywise nonnegative. The proof of the equivalence with “ > ” works

completely analogous. The last statement then follows immediately.

We now summarize the previous observations in the theorem from the beginning of

this section, Theorem 4.1, and will give a prove.

Theorem 4.1. (i) Let P be an m–monic PFP with

P (λ) = λmIn −A(λ) = λmIn −
l∑

j=0

λjAj .

Suppose that for some ρ > 0 the inequality

ϕA(ρ) < ρm

holds.

Then P has a spectral right Perron-Frobenius factor C with respect to the

circle Tρ, i. e., P (λ) = B̃(λ)B0C(λ) with

C(λ) = λmIn −
m−1∑
j=0

λjCj and B̃(λ) = In −
l−m∑
j=1

λjB̃j ,
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where Ci, B̃j are entrywise nonnegative for i ∈ ⟨m− 1⟩0 and j ∈ ⟨l −m⟩ and
B0 ∈ Cn,n is a nonsingular M -matrix.

Furthermore,

σ(C) = σ(P ) ∩ Dρ and σ(B̃) = σ(P ) ∩ (C \ Dρ).

(ii) Conversely, if the m–monic PFP has a spectral right Perron-Frobenius factor

with respect to the circle Tρ for some ρ > 0, then ϕA(ρ) < ρm.

Proof. (i) For m = 1, see Section 4.1. By Proposition 4.10 ϕA(ρ) < ρ. From

Theorem 4.8 it then follows that P has a nonnegative spectral right root C
with respect to Tρ, i. e.,

P(λ) = B̃(λ)B0(λImn − C) =

Imn −
l−m∑
j=1

λjB̃j

B0(λImn − C),

with σ(C) = σ(P) ∩ Dρ and σ(B̃) = σ(P) ∩ (C \ Dρ) and B0 is a nonsingular

M -matrix. Corollary 3.6 and its proof imply that P has a right divisor C such

that

P (λ) = B(λ)C(λ) =

l−m∑
j=0

λjBj

λmIn −
m−1∑
j=0

λjCj

 ,

where due to (3-40) for B0 we have

B0 =


B0 ∗ ∗ ∗

In
. . .

In

 .

B0 is nonsingular, since B0 is nonsingular, and so by setting B̃j = −BjB
−1
0

for j ∈ ⟨ l −m ⟩ we obtain

P (λ) =

In −
l−m∑
j=1

λjB̃j

B0

λmIn −
m−1∑
j=0

λjCj

 ,

where B0 is a nonsingular M -matrix due to the fact that B0 is a nonsingular

M -matrix and B−1
0 =

B−1
0 ∗ ∗ ∗

In

. . .
In

 . Therefore, the coefficients B̃j (j ∈

⟨ l −m ⟩) are nonnegative.

Since C is the companion matrix of C, we have a splitting of the eigenvalues of

P according to that of P, i. e. σ(C) = σ(P )∩Dρ and σ(B̃) = σ(P )∩ (C \Dρ)

(ii) If conversely P has a spectral right PFF with respect to Tρ, its canonical

reduction P has a spectral right root with respect to Tρ and by Theorem 4.8

we have ϕA(ρ) < ρ, thus ϕA(ρ) < ρm by Proposition 4.10.
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A quick glance on the connection between the right root C of P and the correspond-

ing right PFF of P , see Corollary 3.6(ii), verifies the following proposition.

Proposition 4.11. If there exists a PFF for an m–monic PFP then it also has a

minimal right Perron-Frobenius factor

C̃(λ) = λmIn −
m−1∑
j=0

λjC̃j

in the sense that if C(λ) = λmIn −
m−1∑
j=0

λjCj is another PFF, then C̃j 6 Cj for all

j ∈ ⟨m− 1 ⟩.

4.3 Nonnegative irreducible matrix polynomials

In this section we investigate spectral properties of m–monic PFP’s

P (λ) = λmIn −A(λ) = λmIn −
l∑

j=0

λjAj , (4-65)

m > 1, where the polynomial A satisfies some irreducibility condition. Let ρ, τ ∈ R,

0 < ρ 6 τ. Then
l∑

j=0

τ j−lAj 6
l∑

j=0

ρj−lAj , hence

0 6 ρl

τ l
A(τ) 6 A(ρ) 6 A(τ) 6 τ l

ρl
A(ρ).

Therefore, the matrix A(τ) is irreducible for one positive τ if and only if A(τ) is

irreducible for all positive τ . We define the matrix polynomial A to be irreducible

if A(τ) is irreducible for all τ > 0.

Due to the simplicity of rτ = sprA(τ) as an eigenvalue of A(τ) we have

N
(
rτIn −A(τ)

)
+̇ R

(
rτIn −A(τ)

)
= Cn,

since if we suppose that there exists an 0 ̸= y ∈ N
(
rτIn −A(τ)

)
∩ R
(
rτIn −A(τ)

)
,

then there exists a nonzero x ∈ Cn such that (rτIn−A(τ))x = y, i. e., x ∈ N(rτIn−
A(τ))2, which cannot be the case, since rτ is an algebraically simple eigenvalue.

Take uτ , vτ > 0 such that A(τ)uτ = rτuτ , A(τ)
T vτ = rτvτ and uT

τ vτ = 1. Then

E(τ) = uτv
T
τ is the spectral projection of A(τ) mapping from Cn onto N

(
rτIn −

A(τ)
)
along R

(
rτIn − A(τ)

)
= N(rτIn − AT (τ))⊥. Obviously, E(τ) is strictly

positive, and has rank 1.

The analytic perturbation theory of eigenvalues (see [Bau85, pp. 93, 113, 144], [Kat76,

II - 1, 2]) shows that the maps

ϕA :(0,∞) → [0,∞) with τ 7−→ sprA(τ) and

E : (0,∞) → Rn,n with τ 7−→ E(τ)

are real analytic. Furthermore, by Proposition 1.14, ϕA(ρ) = max
|λ|=ρ

sprA(λ), thus

ϕA is geometrically convex.
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Proposition 4.12. Let P be an m–monic PFP of degree l with irreducible A. Then

either ϕA(ρ) = ρm for all nonnegative ρ or there are at most two positive ρ with

ϕA(ρ) = ρm.

Proof. Suppose there are 0 < ρ1 < ρ < ρ2 such that ϕA(ρ1) = ρm1 , ϕA(ρ) = ρm,

ϕA(ρ2) = ρm2 . Then by Proposition 1.4, ϕA(τ) = τm for all τ ∈ [ρ1, ρ2] and hence,

since the functions ϕA and τ 7→ τm are analytic on (0,∞), we have ϕA(τ) = τm for

all τ ∈ (0,∞).

Consider u, v ∈ Rn \ {0}, u, v > 0, τ > 0. Differentiating the identity

⟨ϕA(τ)E(τ)u,ET (τ)v⟩ = ⟨A(τ)E(τ)u,ET (τ)v⟩

with respect to τ yields

ϕ′
A(τ)

⟨
E(τ)u,E(τ)T v

⟩
+ ϕA(τ)

⟨
E′(τ)u,ET (τ)v

⟩
+ ϕA(τ)

⟨
E(τ)u,E′(τ)T v

⟩
=
⟨
A′(τ)E(τ)u,E(τ)T v

⟩
+
⟨
A(τ)E′(τ)u,ET (τ)v

⟩
+
⟨
A(τ)E(τ)u,E′(τ)T v

⟩
.

(4-66)

Notice that for u > 0 and τ > 0 the vector E(τ)u is a strictly positive eigenvector of

A(τ) corresponding to its spectral radius sprA(τ), and ET (τ)u is a strictly positive

eigenvector of AT (τ) to sprA(τ). Hence, (4-66) reduces to

ϕ′
A(τ)

⟨
E(τ)u,E(τ)T v

⟩
=
⟨
A′(τ)E(τ)u,E(τ)T v

⟩
and we obtain a representation of ϕ′

A.

ϕ′
A(τ) =

⟨
A′(τ)E(τ)u,ET (τ)v

⟩
⟨E(τ)u,ET (τ)v⟩

for τ > 0, u, v ∈ Rn \ {0}, u, v > 0. (4-67)

Proposition 4.13. Let P be an m–monic PFP of degree l with irreducible A. Then

the following assertions hold.

(i) Let P (ρ)u = 0 for some ρ > 0 and a nonzero vector u > 0.

Then ρm = sprA(ρ), u > 0 and N(P (ρ)) = span{u}.

(ii) Let P (ωρ)x = 0 for some ρ with sprA(ρ) = ρm > 0, |ω| = 1 and x ̸= 0.

Then P (ρ)|x| = 0 and |x| > 0.

(iii) dimN(P (ωρ)) 6 1 for ρm = sprA(ρ) > 0 and |ω| = 1.

Proof. (i) P (ρ)u = 0 means that ρm is an eigenvalue of A(ρ) and u is a corre-

sponding nonnegative eigenvector. Since A(ρ) is irreducible, it has exactly

one nonnegative eigenvector except for scalar multiples (see [Min88, Theorem

4.4]). By the Perron Frobenius Theorem this eigenvector corresponds to the

eigenvalue sprA(ρ), i. e., ρm = sprA(ρ) and we have u > 0. Furthermore,

sprA(ρ) is a simple eigenvalue of A(ρ) which implies the last assertion.

(ii) From P (ωρ)x = 0 it follows that ρm|x| = |A(ωρ)x| 6 A(ρ)|x|. A(ρ) is irre-

ducible and ρm = sprA(ρ). Hence, by a completely analogous argumentation

as in [Min88, p.12] we conclude that A(ρ)|x| = ρm|x|.
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(iii) Let x = [ x1
x2

] and y = [ y1
y2 ] be nonzero vectors in N(P (ωρ)). From (ii) it follows

that x1, x2, y1, y2 ̸= 0. Then y1x − x1y is a vector in N(P (ωρ)) with 0 as its

first component. By (ii) this implies that y1x − x1y = 0, hence, x and y are

linearly dependent.

We will characterize the number of eigenvalues of P on the circles Tρ such that

ρm = sprA(ρ) > 0 in a similar way as it is known for the number of peripheral

eigenvalues of an irreducible matrix. We use some graph theoretical concepts used

in [GHT96, Sec. 4] to study the spectral properties of certain Markov chains.

First, we briefly recall the concept of the directed graph associated with an entrywise

nonnegative matrix, see e.g. [BP94], [HJ85]. Define the associated directed

graph GA of an n × n matrix A as the graph with n vertices, V = {1, . . . , n},
such that for i, j ∈ ⟨n ⟩ there is a directed edge from i to j if and only if Aij ̸= 0.

Denote by E = {(i, j) : Aij ̸= 0} the set of edges of GA. We write GA = (V,E).

We say that a sequence (j1, j2), (j2, j3), . . . , (jk−1, jk), (jk, jk+1) of edges in E is

a path of length k in GA connecting j1 and jk+1. For simplicity we also write

j1 → j2 → · · · → jk → jk+1 or (jr)
k+1
r=1 , as appropriate. It is well known that an

entrywise nonnegative matrix A is irreducible if and only if its associated directed

graph GA is strongly connected, i. e. that for each pair i, j ∈ V there exists a

path in GA leading from i to j, see e.g. [BP94], [HJ85].

We now introduce an infinite graph associated with an m–monic matrix polynomial

P (λ) = λmIn−
∑l

ν=0 λ
νAν . Consider the infinite graph Gm(A0, A1, . . . , Al) = G =

(V,E) with the set of vertices and edges

V = {(j, p) | 1 6 j 6 n, p ∈ Z} and

E = {[(j, p), (k, q)] | Am+q−p(j, k) > 0}, respectively,

where Aν(j, k) denotes the entry in the j-th row and the k-th column of the n× n

matrix Aν .

According to [GHT96] we call j the phase and p the level of (j, p) ∈ V.

Note that any level of the infinite graph G0(A0) coincides with GA0 .

Analogously to a finite graph, a sequence of subsequent edges is called a path in G.

For a path

(j1, p1) → (j2, p2) → · · · → (js+1, ps+1)

in G the number

ps+1 − p1 =
s∑

r=1

(νr −m), where Aνr (jr, jr+1) > 0

is called the level displacement of the path.

Example 4.14. Consider P (λ) = λ3I8 − A(λ) = λ3I8 −
∑4

j=0 λ
jAj , where for

j ∈ ⟨ 4 ⟩0, the coefficients Aj ∈ R8,8 are such that their only nonzero entries are

A1(7, 8),

A2(4, 6),

A3(3, 1), A3(2, 4), A3(8, 5), A3(6, 7).

A4(1, 2), A4(5, 3).

66



Then the graph G3(A0, A1, A2, A3, A4) of A is shown in the following image:
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Figure 2: G3(A0, A1, A2, A3, A4)

The path (5,−1) → (3, 0) → (1, 0) → (2, 1), for instance, has the level displacement

2.

Remark 4.15. Note that for the graph Gm(A0, A1, . . . , Al) = (V,E) we have that

[(j, p), (k, q)] ∈ E is equivalent to [(j, p+ u), (k, q + u)] ∈ E for all u ∈ Z.
This implies that if u ∈ Z and ((jr, pr))

s
r=1 is a path in Gm(A0, A1, . . . , Al), then

((jr, pr +u))sr=1 is a path in Gm(A0, A1, . . . , Al) and both paths have the same level

displacement.

We study some properties of the infinite graph G.

Lemma 4.16. Let P be an m–monic PFP of degree l with irreducible A. For

j, k ∈ ⟨n ⟩ the following assertions are equivalent:

(i) There exists a path from j to k in the associated directed graph GA(1) of the

matrix A(1).

(ii) For all p ∈ Z there exists a q ∈ Z such that there is a path from (j, p) to (k, q)

in Gm(A0, A1, . . . , Al).

(iii) For all q ∈ Z there exists a p ∈ Z such that there is a path from (j, p) to (k, q)

in Gm(A0, A1, . . . , Al).

All these paths in (i) to (iii) can be chosen to have the same number of vertices.

Proof. Suppose that (i) holds and let j = j0 → j1 → · · · → js+1 = k be a path

of length s in GA(1). There exist s ∈ N and j1, . . . , js+1 ∈ ⟨n ⟩ such that j1 = j,

js+1 = k and A(1)(jr, jr+1) > 0 for all r ∈ ⟨ s ⟩. Due to the nonnegativity of

the coefficients A0, . . . , Al, for each r ∈ ⟨ s ⟩ there exists some νr ∈ ⟨ l ⟩0 such that

Aνr (jr, jr+1) > 0.

To see that (ii) follows, fix any p ∈ Z and define a sequence (pr)
s+1
r=1 by setting

p1 = p and pr+1 = νr + pr −m for r = 1, . . . , s. Then νr = m + pr+1 − pr and by
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definition each inequality Aνr
(jr, jr+1) > 0 (r ∈ ⟨ s ⟩) corresponds to an edge from

(jr, pr) to (jr+1, pr+1) in the graph Gm(A0, A1, . . . , Al), hence, we obtain a path

((jr, pr))
s+1
r=1 of length s. Finally, (ii) follows by defining q = ps+1.

To obtain (iii), analogously as done above, define a sequence (pr)
s+1
r=1 by setting

ps+1 = q and pr = m + pr+1 − νr for r = s, . . . , 1. Then νr = m + pr+1 − pr and

similar to the proof of (ii), setting p = p1, a path of length s to (k, q) is obtained

starting from (j, p) with some level p.

Suppose that (ii) or (iii) holds. Then there exists a path ((jr, pr))
s+1
r=1 in

Gm(A0, A1, . . . , Al) with j1 = j and js+1 = k. Therefore, Am+pr+1−pr (jr, jr+1) > 0,

and thus A(1)(jr, jr+1) > 0 for r = 1, . . . , s. Hence, (jr)
s+1
r=1 is a path of length s

from j to k in the associated directed graph of A(1).

The last assertion follows from the constructions of the paths in this proof.

An immediate consequence of this lemma is the following

Corollary 4.17. Let P be an m–monic PFP of degree l. Then the following state-

ments are equivalent.

(i) A is an irreducible matrix polynomial.

(ii) For all j, k ∈ ⟨n ⟩ and p ∈ Z there exist a q ∈ Z and a path in Gm(A0, A1, . . . , , Al)

from (j, p) to (k, q),

(iii) For all j, k ∈ ⟨n ⟩ and q ∈ Z there exist a p ∈ Z and a path in Gm(A0, A1, . . . , , Al)

from (j, p) to (k, q).

We call a path (j1, p1), . . . , (js+1, ps+1) in Gm(A0, A1, . . . , , Al) with j1 = js+1 a

phase cycle of Gm(A0, A1, . . . , , Al) through j1 = js+1. If (j, p) is a vertex of this

phase cycle then there exists a phase cycle through j with same level displacement

ps+1 − p1, for example (j2, p2), . . . , (js+2, ps+2) with js+2 = j2 and ps+2 = ps+1 +

p2 − p1 is a phase cycle through (j2, p2).

There are examples of graphs Gm(A0, A1, . . . , , Al) such that the level displacements

of all of its phase cycles are 0, see [FN05a, Example 4.3].

The index of phase imprimitivity of Gm(A0, . . . , Al) is defined as the g.c.d.

(greatest common divisor) of the level displacements of all phase cycles in G. If

the level displacements of all phase cycles in Gm(A0, . . . , Al) are zero, its index of

phase imprimitivity is 0, by definition. Note that the index of phase imprimitivity

of Gm(A0, . . . , Al) is a nonnegative integer.

Example 4.18. Consider

P (λ) = λ2I3 −A(λ) = λ2I3 −
[

0 λ3 0
λ2+λ 0 λ2

0 λ 0

]
.
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A is irreducible and looking at the graph

G2(A0, A1, A2, A3) of A shows that the index of

imprimitivity is 1.
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Figure 3: G2(A0, A1, A2, A3)

Lemma 4.19. Let P be an m–monic PFP of degree l with irreducible A and let

d be the index of phase imprimitivity of the graph Gm(A0, . . . , Al). If Aµ(j, k) > 0

and Aν(j, k) > 0 for some j, k ∈ ⟨n ⟩ and some µ, ν ∈ ⟨ l ⟩0, then d divides ν − µ.

If d = 0, then µ = ν.

Proof. For any p ∈ Z define q ..= µ−m+ p and u ..= ν −m+ p. Then ((j, p), (k, q))

and ((j, p), (k, u)) are edges in Gm = Gm(A0, . . . , Al). Since A is irreducible, by

Corollary 4.17 there exists a path inGm from (k, q) to (j, v) for some v ∈ Z. Then we

have a phase cycle through j in Gm with level displacement v− p. Translating that

path from (k, q) to (j, v) in Gm by changing the levels of its vertices by ν−µ = u−q

we obtain a path from (k, u) to (j, v + ν − µ) and also a phase cycle trough j with

level displacement v+ν−µ−p. Now d divides v−p and v+ν−µ−p and therefore

it divides ν−µ. The last assertion follows immediately, since the level displacement

of all phase cycles is 0 if d = 0.

Lemma 4.20. Let P be an m–monic PFP of degree l with irreducible A and let d

be the index of phase imprimitivity of the graph Gm(A0, . . . , Al). For j ∈ ⟨n⟩ let dj
be the g.c.d. of the level displacements of all phase cycles of Gm(A0, . . . , Al) through

phase j. Then dj = d and the set of the level displacements of all phase cycles of

G through j is closed under addition.

Proof. Clearly, d 6 dj . We show that dj is a common divisor of the level displace-

ments of all phase cycles of G. Then the maximality of d implies the first assertion.

Let C be any phase cycle in G = Gm(A0, . . . , Al) and fix some vertex (i, p), i ∈ ⟨n ⟩ ,
p ∈ Z on C. Since C is a phase cycle in G, there is some q ∈ Z such that C is a

path in G from (i, p) to (i, q), and hence, its level displacement is q − p.

By Corollary 4.17 there exists some µ ∈ Z, a path C1 in G from (j, µ) to (i, p), a

ν ∈ Z and a path C2 in G from (i, q) to (j, ν). Then the path Ĉ from (j, µ) to (j, ν)

obtained by successively following the paths C1, C and C2 in the given order is a

phase cycle in G through j with level displacement ν − µ.

Translate the path C1 from (j, µ) to (i, p) by q − p such that one obtains a path

C3 in G from (j, µ+ q − p) to (i, q). Then the path C0 from (j, µ+ q − p) to (j, ν)

obtained by successively passing along C3 and C2 is a phase cycle in G through

j with level displacement ν − µ − (q − p). Since dj divides the level displacement

ν −µ of Ĉ and the level displacement ν −µ− (q− p) of C0, it also divides the level

69



displacement q − p of C. C was arbitrary, so dj divides the level displacements of

all phase cycles in G, hence, dj = d.

By Remark 4.15 (i), for two cycles in G through j with level displacements k1 and

k2 there is always a cycle in G through j with level displacement k1 + k2. This

implies the second assertion.

For the next important theorem we make use of the following technical lemma.

Lemma 4.21. Let P be an m–monic PFP of degree l with irreducible A. Suppose

that sprA(ρ) = ρm for some ρ > 0 and that u ∈ Rn, u > 0 is an associated positive

eigenvector of A(ρ). Suppose, furthermore, that there exist a nonzero x =

[
x1

...
xn

]
∈

Cn and ω ∈ T such that P (ρω)x = 0. Then

(i) for k ∈ ⟨ l ⟩0 and µ, τ ∈ ⟨n ⟩ we have that Ak(µ, τ) ̸= 0 implies

xµ

xτ
= ωk−muµ

uτ
; (4-68)

(ii) for the level displacement d̃ of any phase cycle in Gm(A0, . . . , Al) we have

ωd̃ = 1 .

Proof. (i) From Proposition 4.13 it follows that |x| = αu for some α > 0. There-

fore, all components xµ (µ ∈ ⟨n ⟩) of x are nonzero. From (ρω)mx = A(ρω)x

it follows that

xµ

uµ
=

n∑
ν=1

l∑
j=0

(
ρj−mAj(µ, ν)

uν

uµ

)(
ωj−mxν

uν

)
.

Now ρmu = A(ρ)u implies that for µ = 1, . . . , n

1 =
n∑

ν=1

l∑
j=0

ρj−mAj(µ, ν)
uν

uµ
.

Therefore, since ρj−mAj(µ, ν)
uν

uµ
> 0,

xµ

uµ
is a convex combination of the

complex numbers ωj−mxν

uν
, ν = 1, . . . n, which all, including

xµ

uµ
, lie on the

circle Tα due to∣∣∣∣ωj−mxν

uν

∣∣∣∣ = ∣∣∣∣xν

uν

∣∣∣∣ = α =

∣∣∣∣xµ

uµ

∣∣∣∣ for ν = 1, . . . , n.

Hence,
xµ

uµ
is an extremal point of the convex hull of

{
ωj−m xν

uν
: ν ∈ ⟨n ⟩

}
.

This implies that for j ̸= k, ν ̸= τ the coefficients ρj−mAj(µ, ν)
uν

uµ
are zero

and ρk−mAk(µ, τ)
xτ

uµ
= 1. Hence,

xµ

uµ
= ωk−m xτ

uτ
, which implies the assertion.

(ii) Let C = ((νk, pk))
s+1
k=1 be a phase cycle in the graph Gm(A0, . . . , Al). Hence,

there exist some jk1
. . . jks

such that Ajk(νk, νk+1) > 0 and the level displace-

ment of this phase cycle is d̃ =
s∑

k=1

(jk −m). Then, from (i) it follows that

ωd̃ =
xν1

xνs+1

s∏
k=1

ωjk−mxνk+1

xνk

=
xν1

xνs+1

s∏
k=1

uνk+1

uνk

=
xν1

xνs+1

uν1

uνs+1

= 1,
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where the last equality holds due to the fact that ν1 = νs+1, since C is a phase

cycle.

Due to [Min88], the following Lemma is a result of I. Schur. I thank Gabriele

Penn-Karras for the main idea of the proof.

Lemma 4.22. Let M be a nonempty set of integers which is closed under addition

and let ν ∈ N be the greatest common divisor gcd(M) of M . Then we have κν ∈ M

for all but finitely many κ ∈ N.

Proof. If ν ∈ M , then we have M = N · ν, since M is closed under addition.

So let ν ̸∈ M . First note that there are finitely many integers n1, . . . , nr ∈ M

such that ν = gcd(n1, . . . , nr). Indeed, if M is finite, this is clear. So suppose that

M = {n1, n2, . . . } and define the sequence (gj)j∈N via

g1 = n1 and gj+1 = gcd(gj , nj+1).

Then (gj)j∈N is monotonically decreasing and, since it is bounded from below, there

is an r ∈ N such that gj remains constant for all j > r. This constant equals ν and

therefore, gcd(M) = gcd(n1, . . . , nr).

The set Mr = {n1, . . . , nr} can be written as

Mr = {k1ν, . . . , krν},

where k1, . . . , kr ∈ N are certain integers. Consider the equation

r∑
j=1

αjnj =
r∑

j=1

αjkjν = ν

which is equivalent to
r∑

j=1

αjkj = 1. (4-69)

By the theory of Diophantine equations (i. e. polynomial equations, investigated

for integer or rational solutions; see e.g. [Mor69], [Ste05]), this equation has in-

teger solutions α1, . . . , αr ∈ Z if and only if the right hand side of this equa-

tion is a multiple of gcd(k1, . . . , kr). Since ν = gcd(n1, . . . , nr), it follows that

gcd(k1, . . . , kr) = 1. Otherwise, there would exist an integer which is larger than

ν and divides all n1, . . . , nr. Hence, there exist α1, . . . αr ∈ Z such that (4-69) is

satisfied. In other words, the g.c.d. ν of the set M is a linear combination of finitely

many elements of M with integer coefficients.

Suppose w.l.o.g. that for p 6 r the coefficients α1, . . . , αp are positive, for s 6 r− p

the coefficients αp+1, . . . , αp+s are negative and the remaining r− p− s coefficients

αp+s+1, . . . , αr are zero. Then, setting α̃j = −αp+j > 0 for j ∈ ⟨ s ⟩, we obtain

ν =

p∑
j=1

αjnj −
s∑

j=1

α̃jnp+j =.. µp − µs.
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Since ν > 0, it follows that p > 0 and, since α1, . . . , αp ∈ Z and since M is closed

under addition, we have that µp ∈ M . But then ν ̸∈ M implies that s > 0, hence,

also µs ∈ M . Furthermore, ν > 0 implies that µp > µs. Therefore,

gcd(µp, µs) = gcd(µp, µp − µs) = gcd(µp, ν) = ν.

Define κ0 =
µpµs

ν2 . We now show that for all κ > κ0 we have that κν ∈ M .

For x ∈ R define ⌈x⌉ = min
n∈Z,n>x

n. Let κ > κ0 and define the integers

a = κ− µs

ν

⌈
κν

µp

⌉
and b =

µp

ν

⌈
κν

µp

⌉
− κ

Obviously, b > 0. Furthermore, by definition of κ0, we have

κνµp − κνµs = κν(µp − µs) = κν2 > µpµs.

This implies that κν
µs

− 1 > κν
µp

, hence, κν
µs

>
⌈
κν
µp

⌉
, i. e., a > 0.

Since M is closed under addition, it follows that 0 < κν = aµp + bµs ∈ M .

Theorem 4.23. Let P be an m–monic PFP of degree l with irreducible A. Let d

be the index of phase imprimitivity of the graph G = Gm(A0, A1, . . . , , Al). Then

for all ρ > 0 with sprA(ρ) = ρm the following statements hold.

(i) d = 0 is equivalent to σ(P ) = C, i. e., P is singular.

(ii) Let d > 0. Then for θ ∈ [0, 2π)

ρ eiθ ∈ σ(P ) if and only if θ ∈
{
0,

2π

d
, 2 · 2π

d
, . . . , (d− 1)

2π

d

}
.

·

·

·

·

·

· ·

·

·

·

·

·
Ρ1 Ρ2

8ΦAHΤL, Τ
m<

Figure 4: example for d = 5

Proof. We will start with an observation that will be useful in both the proof of (i)

and (ii).
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(o) Let ω ∈ T be such that ωd = 1. Note that we can choose any ω ∈ T if d = 0.

Choose a strictly positive eigenvector u =

[
u1

...
un

]
∈ Cn of P to its eigenvalue

ρ. Set x1 = u1 and

ω−j+m uν

uµ
xµ = xν if Aj(µ, ν) ̸= 0,

for µ ∈ ⟨n ⟩. The numbers xν are are well defined, i. e., they do not depend on

j. Indeed, if x
(1)
ν = ω−j1+m uν

uµ
xµ and x

(2)
ν = ω−j2+m uν

uµ
xµ, then

x(1)
ν

x
(2)
ν

= ωj2−j1

and by Lemma 4.19 j2 − j1 = kd for some k ∈ Z. Hence, since ωd = 1,

x
(1)
µ = x

(2)
µ . Furthermore, due to the irreducibility of A, for each ν ∈ ⟨n ⟩, xν

is assigned a value. Set x =

[
x1

...
xn

]
.

By Lemma 4.21, we have for µ ∈ ⟨n ⟩

(
A(ωρ)x

)
µ
= xµ

n∑
ν=1

l∑
j=0

Aj(µ, ν)(ωρ)
j xν

xµ
= xµ

n∑
ν=1

l∑
j=0

Aj(µ, ν)ρ
jωm uν

uµ

= ωmxµ

uµ

l∑
j=0

ρj
n∑

ν=1

Aj(µ, ν)uν = ωmxµ

uµ

l∑
j=0

ρj(Aju)µ

= ωmxµ

uµ

(
A(ρ)u

)
µ
= ωmxµ

uµ
ρmuµ = ωmρmxµ,

hence, ρmωmx = A(ωρ)x. Therefore, ωρ is an eigenvalue of P and x is a

corresponding eigenvector.

(i) If Tρ ⊂ σ(P ), then Lemma 4.21 implies that ωd̃ = 1 for all ω ∈ T for the

level displacement d̃ of any phase cycle of G = Gm(A0, . . . , Al). Hence, d̃ = 0.

Therefore, the level displacements of all phase cycles in G are zero, i. e. d = 0.

Conversely, if d = 0 then by (o) we obtain Tρ ⊂ σ(P ).

Hence, d = 0 if and only if Tρ ⊂ σ(P ), i. e., σ(P ) = C.

(ii) Let d > 0. (o) shows that{
ρ eiφ : φ = 0,

2π

d
,
4π

d
, . . . , (d− 1)

2π

d

}
⊂ σ(P ).

Suppose that ρ eiθ is an eigenvalue of P . From Lemma 4.21(ii), it follows

that for any level displacement d̃j of any phase cycle in G through some

phase j, d̃j θ is a multiple of 2π. Due to Lemma 4.20, d is the g.c.d. of all

level displacements d̃j of all phase cycles through j. From Lemma 4.20 and

Lemma 4.22 we know that all but a finite number of multiples of d are level

displacements of some phase cycles in G through j. Therefore, there exists

a k ∈ Z such that kdθ and (k + 1)dθ are multiples of 2π and hence, dθ is a

multiple of 2π. Thus, θ ∈ {k 2π
d : k ∈ Z}, i. e.

ρ eiθ ∈
{
ρeiφ : φ = 0,

2π

d
,
4π

d
, . . . , (d− 1)

2π

d

}
.
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Remark 4.24. Notice that the angles of rotation invariance in Theorem 4.23 (ii)

only depend on the index of phase imprimitivity of the graph G. This implies that

if there is more than one number ρ > 0 that satisfies ϕA(ρ) = ρm, then the angles

of rotation invariance are the same for each of these numbers.

Proposition 4.25. Let P be an m–monic PFP of degree l with irreducible A. Then

the following statements hold.

(i) If P has a right PFF C, i. e.,

P (λ) = B(λ)C(λ) =

l−m∑
j=0

λjBj

λmIn −
m−1∑
j=0

λjCj

 (4-70)

with Cj > 0 (j ∈ ⟨m− 1 ⟩0), and if ρ ..= spr(C) > 0, then

(a) ϕA(ρ) = sprA(ρ) = ρm.

(b) N(C(ρ)) = N(P (ρ)) = span{v} for some v > 0.

(c) C has algebraically simple peripheral eigenvalues.

(ii) If there is a number τ > 0 such that ϕA(τ) = sprA(τ) = τm, then P has a

right PFF C(λ) = λmIn −
m−1∑
j=0

λjCj with spr(C) 6 τ .

(iii) If P has a right PFF and if the left divisor B(λ) in (4-70) satisfies spr(revB) >

0 and if B0 is a nonsingular M–matrix, then revB has algebraically simple

peripheral eigenvalues.

(iv) Let C̃ be the minimal PFF of degree m of P with spr(C̃) > 0. Then

spr C̃ = min{ρ > 0 | sprA(ρ) = ρm} := ρ̃,

σ(C̃) = σ(P ) ∩ Dρ̃.

Proof. (i) (a) By Corollary 3.7, spr(C) is an eigenvalue of C and thus also for P .

Hence, there exists an entrywise nonnegative vector v ̸= 0 such that

ρmv = A(ρ)v.

Since A(ρ) is an irreducible matrix, v must be strictly positive (see e.g.

[Min88, Theorem I.2.2, p.7]). Hence, ρm = sprA(ρ) (see e.g. [Min88,

Theorem I.4.4, p.16]), which proves (a).

(b) ρ is an eigenvalue of C and therefore, it is an eigenvalue of P . A(ρ)

is irreducible, so ρm is an algebraically and hence, geometrically simple

eigenvalue of A(ρ). Let v be a strictly positive eigenvector v of A(ρ)

corresponding to ρm. Note that N(C(ρ)) ̸= {0}, since ρ is an eigenvalue

of C. Therefore

{0} ̸= N(C(ρ)) ⊂ N(P (ρ)) = N
(
ρmIn −A(ρ)

)
= span{v}

implies that N(C(ρ)) = N(P (ρ)) = span{v}.
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(c) Let λ ∈ C be an eigenvalue of C with |λ| = ρ and let w ̸= 0 be a

corresponding eigenvector. Then P (λ)w = 0, i. e. λmw = A(λ)w. Taking

absolute values componentwise on both sides leads to ρm|w| 6 A(ρ)|w|.
Let u > 0 be a left eigenvector of A(ρ) corresponding to ρm, i. e., A(ρ)Tu =

ρmu. Then, since u > 0,

ρm ⟨|w|, u⟩ 6 ⟨A(ρ)|w|, u⟩ =
⟨
|w|, A(ρ)Tu

⟩
= ρm ⟨|w|, u⟩ . (4-71)

Thus
⟨(
ρmIn −A(ρ)

)
|w|, u

⟩
= 0 and, since u > 0, it follows that

(
ρmIn−

A(ρ)
)
|w| = 0. Since A(ρ) is irreducible and ρm is its spectral radius, |w|

is a multiple of v.

Now, take any two vectors w1, w2 ∈ Cn with w1, w2 ∈ N
(
λmIn−A(λ)

)
and

α ∈ C such that the first component of the vector w̃ = αw1 +w2 is zero.

Then analogously to (4-71) it follows that
(
ρmIn − A(ρ)

)
|w̃| = 0. Since

|w̃| is not strictly positive, it follows that w̃ = 0 and therefore w1, w2 are

linearly dependent. This proves that λ is a geometrically simple eigenvalue

of A(λ), i. e., dimN(P (λ)) = 1. With {0} ≠ N(C(λ)) ⊂ N(P (λ)) the

second part of the assertion follows, see [Sch74, Ex.8(a), p.43], [Sch86,

Cor. 3.5].

(ii) Since A(τ) is an irreducible matrix, there exists a positive vector u > 0 such

that A(τ)u = τmu, hence, u is an eigenvector of P to the eigenvalue τ . By

Proposition 3.9 the positive vector û = Λ(τ)u =
[
τm−1u · · · τu u

]T
is

an eigenvector of P to the eigenvalue τ > 0, where P(λ) = λIn − A(λ) =

λIn −
l−m+1∑
j=0

λjAj is the canonical reduction of P . So P is a 1–monic matrix

polynomial with nonnegative coefficients A0, . . . ,Al−m+1 and with A(τ)û =

τ û, û > 0. Therefore, by Proposition 4.5, P has a nonnegative right root C
with spr(C) 6 τ . Corollary 3.6 then implies that P has a factorization

P (λ) = B(λ)C(λ) =

l−m∑
j=0

λjBj

λmIn −
m−1∑
j=0

λjCj


with spr(C) 6 τ . Since C is entrywise nonnegative and it is the companion

matrix of C, the coefficients C0, . . . , Cm−1 are nonnegative.

(iii) Since by assumption 0 is not an eigenvalue of B, the coefficient B0 is nonsin-

gular. Thus setting B̃j = −BjB
−1
0 , we have

revB(λ) =

λl−mIn −
l−m∑
j=1

λl−m−jB̃j

B0 = rev B̃(λ)B0.

B0 is a nonsingular M–matrix, so B̃j = BjB
−1
0 > 0 for all j ∈ ⟨ l −m ⟩ and

revP (λ) = λlP (1/λ) = λl−mB̃(1/λ)B0 λ
mC(1/λ) = rev B̃(λ)B0 revC(λ),

i. e., rev B̃T is a right PFF of the (l−m)–monic matrix polynomial revPT (λ) =

λl−mIn −
l∑

j=0

λl−jAT
j . Since spr(rev B̃) > 0, we can apply (iii) to rev B̃T , so

rev B̃T and therefore revB = (rev B̃)B0 has simple peripheral eigenvalues.
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(iv) Suppose that C̃ is the companion matrix of the minimal PFF C̃. Then we

have C̃ 6 C for the companion matrix C of any other PFF C of P . C̃ and C
are entrywise nonnegative, hence, spr(C̃) = spr(C̃) 6 spr(C) = spr(C). The

first equality then follows from (i) of this proposition.

For the second identity, note that clearly σ(C̃) ⊂ σ(P ) ∩ Dρ̃. The remaining

inclusion follows from Proposition 1.15.

Following up Proposition 1.21 we formulate the next lemma.

Lemma 4.26. Let P be an m–monic PFP of degree l with irreducible A.

(i) Let spr(A(ρ)) = ρm > 0. Then the following relations hold.

(detP )′(ρ) = 0 if and only if (sprA)′(ρ) = mρm−1,

(detP )′(ρ) > 0 if and only if (sprA)′(ρ) < mρm−1 and

(detP )′(ρ) < 0 if and only if (sprA)′(ρ) > mρm−1.

(ii) Let (sprA)(ρ) = ρm > 0 and (sprA)′(ρ) = mρm−1. Then

(detP )′′(ρ) ̸= 0 if and only if (sprA)′′(ρ) ̸= m(m− 1)ρm−2.

Proof. Since A is irreducible, the function ϕA is differentiable for all positive τ , see

the introduction of this section. By Proposition 1.12 and Proposition 1.21

(detP )′(ρ) =
(
mρm−1 − ϕ′

A(ρ)
)
tr[adj(P (ρ))]

and

(detP )′′(ρ) =
(
m(m− 1)ρm−2 − ϕ′′

A(ρ)
)
tr[adj(P (ρ))].

Using [Min88, Corollary 4.1, p.16] we obtain adj(P (ρ)) > 0, hence, we have

tr[adj(P (ρ))] > 0. The assertions (i) and (ii) then follow immediately, (see also

[GHT96] and [GHT98, p.544]).

Proposition 4.27. Let P be an m–monic PFP of degree l with irreducible A.

Suppose further, that ϕA(ρ) = sprA(ρ) = ρm for some ρ > 0. Then the following

statements hold.

(i) If ϕ′
A(ρ) ̸= mρm−1, then the eigenvalues of P on Tρ are simple; i. e., their

geometric and algebraic multiplicities are 1.

(ii) If ϕ′
A(ρ) = mρm−1 then either sprA(τ) = τm for all τ > 0 or sprA(τ) > τm

for all positive τ ̸= ρ.

In the second case we have ϕ′′
A(ρ) > m(m− 1)ρm−2, and the eigenvalues of P

on Tρ have geometric multiplicity 1 and algebraic multiplicity 2.

Proof. (i) Suppose that ϕ′
A(ρ) < mρm−1. Then there is a δ > 0 such that ϕA(τ) <

τm for all τ ∈ (ρ, ρ+ δ). By Proposition 1.15, P has exactly nm eigenvalues
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(counting multiplicities) in Dρ. Fix one τ ∈ (ρ, ρ + δ). By Theorem 4.1, P

has a nonnegative spectral factorization

P (λ) = B̃(λ)B0C(λ) (4-72)

with respect to the circle Tτ where C is a monic matrix polynomial. Since

degC = m, C has nm eigenvalues and due to σ(C) = σ(P ) ∩ Dτ they lie in

Dτ ⊃ Dρ. There are already nm eigenvalues of C in Dρ, thus sprC 6 ρ. Now

ρ ∈ σ(P ) implies sprC = ρ. By Proposition 4.25 the eigenvalues of C on Tρ

are simple. Since σ(B̃) = σ(P )∩ (C\Dτ ), B does not have eigenvalues on Tρ,

hence, the assertion follows.

Now suppose that ϕ′
A(ρ) > mρm−1. Then there exists a δ > 0 such that

ϕA(τ) < τm for all τ ∈ (ρ − δ, ρ). Fix τ ∈ (ρ − δ, ρ). By Theorem 4.1, P

has a spectral nonnegative factorization (4-72) with respect to Tτ where B̃

is a comonic matrix polynomial with σ(B̃) = σ(P ) ∩ (C \ Dτ ) and therefore

spr(rev B̃) < 1
τ . By Proposition 1.15 (iii), P has no eigenvalues in Aρ−δ,ρ

and therefore, since σ(C) = σ(P ) ∩ Dτ , also C does not have any eigenvalues

there. Hence, sprC < ρ. Since by assumption ρ is an eigenvalue of P , it is an

eigenvalue of B̃ and therefore, spr(rev B̃) = 1
ρ > 0. Proposition 4.25 (iii) then

implies that rev B̃ has simple peripheral eigenvalues, hence, the eigenvalues of

B̃ on Tρ, and therefore the eigenvalues of P on Tρ are simple.

(ii) Suppose that ϕA(τ) = τm does not hold for all τ > 0. Consider the function

ηA : R → R with ηA(t) = lnϕA(e
t). By the geometric convexity of ϕA, ηA

is convex in t. Set r = ln ρ. Then ηA(r) = mr and further we have that

ηA(t) = mt does not hold for all t ∈ R. Thus ηA(t) > mt for all t ∈ R, t ̸= r,

i. e., ϕA(τ) > τm for all τ > 0, τ ̸= ρ. Thus the first statement of (ii) follows.

Suppose now that ϕA(τ) > τm for all τ > 0, τ ̸= ρ. For ϵ ∈ (0, 1) define

Pϵ(λ) := λmIn − ϵA(λ). Then spr(ϵA(ρ)) < ρm and by Theorem 4.1 we have,

therefore,

Pϵ(λ) = B̃ϵ(λ)B0,ϵCϵ(λ),

where Cϵ(λ) = λmIn −
m−1∑
j=0

λjCj,ϵ is the minimal right PFF of Pϵ with

σ(Cϵ) = σ(Pϵ) ∩ Dρ, (4-73)

B̃ϵ(λ) = In −
l−m∑
j=1

λjB̃j,ϵ is a comonic matrix polynomial of degree l−m with

σ(B̃ϵ) = σ(Pϵ) ∩ (C \ Dρ) (4-74)

and B0,ϵ is a nonsingular M -matrix. For j ∈ ⟨ l −m ⟩ set Bj,ϵ = −B̃j,ϵB0,ϵ,

thus,

Pϵ(λ) =

l−m∑
j=0

λjBj,ϵ

Cϵ(λ).

Because ϕA(ρ) = ρm, from Proposition 4.25 we know that P has a minimal

right PFF C. Hence, there is a matrix polynomial B(λ) =
∑l−m

j=0 λjBj such

that

P (λ) = B(λ)C(λ).
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We will show that for all j ∈ ⟨ l −m ⟩0 we have that Bj,ϵ → Bj as ϵ → 1.

Consider the canonical reduction Pϵ of Pϵ to degree k = l −m+ 1 according

to Corollary 3.3. Then Pϵ(λ) = λImn−Aϵ(λ), where Aϵ(λ) =
k∑

j=0

λjAj,ϵ with

A0,ϵ =


ϵAm−1 ··· ··· ϵA0

In

...
. . .

...
In 0

 and Aj,ϵ =

 ϵAj+m−1

0

. . .
0

 for j = 1, . . . , k.

Let Cϵ and C be the companion matrices of Cϵ and C, respectively. By Corol-

lary 3.6, Cϵ is the minimal right root of Pϵ, i. e.,

Pϵ(λ) = Bϵ(λ)(λImn − Cϵ),

where Bϵ(λ) =
l−m∑
j=0

λjBj,ϵ and C is the minimal right root of P, i. e.,

P(λ) = B(λ)(λImn − C)

with B(λ) =
l−m∑
j=0

λjBj .

Let 0 < ϵ1 6 ϵ2 < 1 and denote by
(
C(ϵ1)
k

)
k∈N

and
(
C(ϵ2)
k

)
k∈N

the sequences

generated by the fixpoint iteration (4-57) with initial matrix 0, i.e,

C(ϵν)
0 = 0, C(ϵν)

k+1 =

l∑
j=0

Aj,ϵν

(
C(ϵν)
k

)j
for ν = 1, 2

and let Cϵ1 and Cϵ2 be their limits, respectively. Then obviously Cϵ1 6 Cϵ2 6 C
and hence, the (componentwise) limit of Cϵ exists as ϵ goes to 1. By Proposi-

tion 4.4 we have lim
ϵ→1

Cϵ = C. From (4-53) for j ∈ ⟨ l −m ⟩0 it follows that

Bj,ϵ = δ0jImn −
l−m−j∑
i=0

ϵAj+i+1Cj
ϵ , and Bj = δ0jImn −

l−m−j∑
i=0

Aj+i+1Cj ,

hence, also Bj,ϵ → Bj as ϵ → 1.

Due to the form of Cϵ and C, also Cj,ϵ → Cj for ϵ → 1. From the Remark 3.5

it follows that the upper left n × n blocks of Bj,ϵ and Bj coincide with Bj,ϵ

and Bj , respectively, for j ∈ ⟨ l −m ⟩0. Therefore, Bj,ϵ → Bj as ϵ → 1 for

j ∈ ⟨ l −m ⟩0 .
Therefore, since B̃ϵ has no eigenvalues in Dρ for all ϵ ∈ (0, 1) and the eigen-

values of B̃ϵ depend continuously on ϵ, it follows that B has no eigenvalues

in Dρ. Hence, 0 is not an eigenvalue of B and therefore, B0 is nonsingular.

Furthermore, due to Lemma 4.9, B0 is a Z–matrix. Since B−1
0,ϵ > 0 for all

ϵ ∈ (0, 1) and B0,ϵ → B0 as ϵ → 1, it follows that also B−1
0 > 0, i. e., B−) is

a nonsingular M -matrix.

Therefore, the left factor B of P can be expressed as B(λ) = B̃(λ)B0 with a

comonic matrix polynomial B̃(λ) = In −
l−m∑
j=1

λjB̃j .

Due to ϕ′
A(ρ) = mρm−1 and ϕA(τ) > τm for all positive τ ̸= ρ, the geometrical

convexity of ϕA implies that there is a δ < 1 such that for all ϵ ∈ (δ, 1) there
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are exactly two positive numbers τϵ,1, τϵ,2 with τϵ,1 < ρ < τϵ,2 such that

ϕϵA(τϵ,ν) = τmϵ,ν for ν = 1, 2. Since the roots of the function

τ 7→ spr(ϵA(τ))− τm = ϵ spr(A(τ))− τm, ϵ ∈ (δ, 1)

depend continuously on ϵ, we have that τϵ,1 → ρ and τϵ,2 → ρ as ϵ → 1.

Let d denote the index of phase imprimitivity of G1(A0, . . . , Ak). By assump-

tion and Remark 1.19, P is regular, hence, Theorem 4.23 implies that d > 0.

Note that G(A0, . . . , Al) = G(ϵA0, . . . , ϵAl). So by Theorem 4.23, τϵ,1e
iθ and

τϵ,2e
iθ are eigenvalues of Pϵ if and only if θ ∈ {ν 2π

d : ν ∈ ⟨ d− 1 ⟩0}.
Remember that due to Proposition 1.7, P has no eigenvalues in the annulus

Aτϵ,1,τϵ,2 . This together with (4-73) and (4-74) now implies that spr(Cϵ) = τϵ,1

and spr(revBϵ) = τϵ,2. Letting ϵ → 1, we obtain that spr(C) = spr(rev B̃) = ρ

and {ρeiθ : θ = ν 2π
d , ν ∈ ⟨ d− 1 ⟩0} are the peripheral eigenvalues of both C

and rev B̃. By Proposition 4.25 they are simple eigenvalues for both, C and

rev B̃ and hence, also for B̃. Since detP (λ) = det B̃(λ) detB0 detC(λ), their

algebraic multiplicities as eigenvalues of P are 2. By Proposition 4.13, they

are of geometric multiplicity 1.

To verify the remaining assertion, note that, since ρ is an algebraically double

eigenvalue of P , (detP )′′(ρ) ̸= 0 and by Lemma 4.26 we have ϕ′′
A(ρ) ̸= m(m−

1)ρm−2. Since ϕA is geometrically convex, the function η : t 7→ ln(ϕA(e
t)) is

convex. Let t0 be such that ρ = et0 . Then η′′(t0) = 0 if and only if

ϕ′′
A(ρ)ϕA(ρ)− ϕ′

A(ρ)
2

ϕA(ρ)2
ρ2 +

ϕ′
A(ρ)

ϕA(ρ)
ρ = 0. (4-75)

Using ϕA(ρ) = ρm and ϕ′
A(ρ) = mρm−1 the last identity is equivalent to

ϕ′′
A(ρ) = m(m− 1)ρm−2, (4-76)

which is not the case. Hence, η′′(t0) ̸= 0 and, since it is convex, η′′(t0) > 0.

Completely analogously, by substituting ’=’ by ’>’ in (4-75) and (4-76), one

obtains that this is equivalent to ϕA(ρ) > m(m− 1)ρm−2.

We have made all preparations in order to prove the main result of this section.

Recall once again that if the m–monic PFP P has a right PFF C, i. e.,

P (λ) =

l−m∑
j=0

λjBj

λmIn −
m∑
j=0

λjCj

 with Cj > 0 (j ∈ ⟨m ⟩0),

then by Lemma 4.9, the coefficient B0 is a Z-matrix.

Theorem 4.28. Let P be an m–monic PFP with

P (λ) = λmIn −A(λ) = λmIn −
l∑

j=0

λjAj

of degree l with irreducible A and let d be the index of phase imprimitivity of the

graph Gm(A0, . . . , Al). Then exactly one of the following cases holds.
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(i) ϕA(τ) > τm for all τ ≥ 0. Then P has no

Perron-Frobenius factor. ΦAHΤL

Τm

(ii) ϕA(τ) > τm for all τ > 0 and ϕA(0) = 0.

Then either P has no Perron-Frobenius

factor or B0 is not a regular M -matrix.

ΦAHΤL

Τm

(iii) There exists exactly one ρ > 0 with ϕA(ρ) = ρm. If

(a) ϕ′
A(ρ) < mρm−1, then P has a spectral

right Perron-Frobenius factor, i. e.,

P (λ) = B̃(λ)B0C(λ)

with spr(C) = ρ and spr(rev B̃) = 0.

ΦAHΤL

Τm

In particular, P has

• mn− d eigenvalues in Dρ (counting multiplicities),

• d algebraically simple eigenvalues on Tρ at the dth roots of ρd and

• (l −m)n eigenvalues at ∞ (counting multiplicities).

(b) ϕ′
A(ρ) > mρm−1, then P has a spectral

right Perron-Frobenius factor, i. e.,

P (λ) = B̃(λ)B0C(λ)

with spr(C) = 0 and spr(rev B̃) = 1
ρ .

ΦAHΤL

Τm

In particular, P has

• 0 as an eigenvalue with multiplicity mn,

• d algebraically simple eigenvalues on Tρ at the dth roots of ρd and

• (l−m)n−d eigenvalues outside Dr (including ∞, counting multiplic-

ities).

(c) ϕ′
A(ρ) = mρm−1, then P has a right

Perron-Frobenius factor, i. e.,

P (λ) = B̃(λ)B0C(λ)

with

ΦAHΤL

Τm

• spr(C) = ρ, spr(rev B̃) = 1
ρ ,
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• B0 is a nonsingular M–matrix and

• ϕ′′
A(ρ) > m(m− 1)ρm−2.

Furthermore, P has

• mn− d eigenvalues in Dρ (counting multiplicities),

• d eigenvalues of geometric multiplicity 1 and algebraic multiplicity 2

on Tρ at the dth roots of ρd and

• (l−m)n− d eigenvalues outside Dρ(including ∞, counting multiplic-

ities).

(iv) There exist exactly two numbers ρ2 >

ρ1 > 0 with ϕA(ρj) = ρmj for j =

1, 2. Then P has a spectral right Perron-

Frobenius factor

P (λ) = B̃(λ)B0C(λ)

with respect to any τ ∈ (ρ1, ρ2) with

spr(C) = ρ1, spr(revB) = 1
ρ 2

and B0 is a

nonsingular M -matrix. C is independent

of τ .

ΦAHΤL

Τm

In particular, P has

• mn− d eigenvalues in Dρ1 (counting multiplicities)

• d simple eigenvalues on Tρ1 and d simple eigenvalues on Tρ2 at the dth

roots of ρd1 and ρd2, respectively and

• mn−d eigenvalues outside Dρ2
(including ∞ and counting multiplicities).

(v) ϕA(τ) < τm for all τ > 0. Then P has

a spectral right Perron-Frobenius factor,

i. e.,

P (λ) = B̃(λ)B0C(λ)

with spr(C) = 0, spr(rev B̃) = 0 and B0

is a nonsingular M -matrix. In particular,

P has

ΦAHΤL

Τm

• 0 as eigenvalue with multiplicity mn and

• ∞ as eigenvalue with multiplicity (l −m)n.

(vi) ϕA(τ) = τm for all τ > 0. Then P has a right Perron-Frobenius factor and

the left factor B is not invertible for all λ ∈ C, hence, P is singular.

Proof. (i) Suppose that P has a right Perron-Frobenius factor C(λ). From ϕA(τ) >

τm for all τ > 0 and Proposition 4.25 (i) it follows that sprC = 0. Hence, by

Corollary 3.6 the corresponding right root C of the canonical reduction P of P

to degree l−m+1 according to Corollary 3.3 is nilpotent. By [Rau92, Propo-

sition 2.1], spr
(∑m−1

j=0 τ jCj

)
= 0 for all τ > 0. Hence, 0 = spr

(∑m−1
j=0 Cj

)
>

sprC0, i. e., sprC0 = 0. Since C satisfies (4-50) we have A0 6 C and, therefore,
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by the structure of A0 and C, A0 6 C0. Since A0 and C0 are entrywise nonneg-

ative we have sprA0 6 sprC0 = 0, i. e., ϕA(0) = sprA0 = 0 in contradiction

to ϕA(τ) > τm for all τ > 0. So P has no PFF.

(ii) Suppose that P has a right PFF, i. e., in particular

P (λ) = B̃(λ)B0C(λ)

with C monic and B̃ comonic. Suppose furthermore that B0 is a nonsingular

M–matrix.

By Proposition 4.25, spr(C) = 0, thus C(τ) is invertible for all τ > 0.

We have

P (λ) = λl−mrev B̃(1/λ)B0C(λ),

where rev B̃(λ) = λl−mIn −
∑l−m

j=1 λl−m−jB̃j .

Suppose that ρ = spr(rev B̃) > 0. Clearly, since rev B̃ is monic, ρ < ∞ and

from Proposition 1.24 it follows that ρl−m = spr
(∑l−m

j=1 ρl−m−jB̃j

)
. Hence,

since
∑l−m

j=1 ρl−m−jB̃j is a nonnegative matrix, there exists a nonnegative,

nonzero vector v such that
(∑l−m

j=1 ρl−m−jB̃j

)T
v = ρl−mv, or equivalently

rev B̃T (ρ)v = 0. Therefore, we have

PT (1/ρ)v =
1

ρl−m
CT (1/ρ)BT

0 rev B̃
T (ρ)v = 0,

i. e., v is an eigenvector for PT to the eigenvalue 1
ρ . Then, due to Proposition

4.13, (
1

ρ

)m

= sprAT (1/ρ) = sprA(1/ρ) = ϕA(1/ρ),

which is a contradiction to the assumption. Hence, spr(rev B̃) = 0, B̃ has no

eigenvalues in C and P is invertible for all τ > 0. P (τ) is a Z-matrix and

sprA(τ) = ϕA(τ) > τm, so for all τ > 0 the inverse P (τ)−1 is not nonnegative.

On the other hand

P (τ)−1 =
1

τ l−m
C(τ)−1B−1

0 revB(1/τ)−1,

where by Proposition 1.26 C(τ)−1 > 0 and revB(1/τ)−1 > 0. Hence, P (τ)−1

is nonnegative. This is a contradiction.

(iii) (a) From Proposition 4.25 (ii) it follows that P has a right PFF. Pick the

minimal one and denote it by C, such that P (λ) = B(λ)C(λ).

By assumption, for τ > ρ we have ϕA(τ) < τm, since ϕ′
A(ρ) < mρm−1 and

ρ is the only positive number such that ϕA(ρ) = ρm and ϕA is continuous.

This implies that P (τ) is a nonsingular M -matrix for all τ > ρ and,

therefore, B(τ) is invertible for all τ > ρ.

The assumption and Proposition 1.15 (ii) imply that P has exactly mn

eigenvalues in Dρ and, therefore, has exactly mn finite eigenvalues. C has

exactly mn eigenvalues all of which are finite, since C is of degree m and

it is monic. So all of the mn finite eigenvalues of P are eigenvalues of C
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and furthermore spr(C) = ρ, since ρ is the largest finite eigenvalue of P

in absolute value.

This also implies that spr(revB) < 1
ρ , i. e., B(τ) is invertible for all τ ∈

[0, ρ].

Hence, B(τ) is invertible for all τ > 0 which is equivalent to spr(revB) =

0. Note that this also implies that B0 is nonsingular.

Consider the factorization P(λ) =

(
l−m∑
j=0

λjBj

)
(λImn − C) of the canon-

ical reduction P corresponding to the factorization P (λ) = B(λ)C(λ) of

P . Note that then B0 =

B0 ∗ ∗ ∗
In

. . .
In

 , see (3-43), so B0 is nonsingular.

From Corollary 4.3 it follows that B0 is a Z-matrix and so is B0. From

(4-53) we know that

B0 = Imn −
l−1∑
j=0

Aj+1Cj .

A(ρ) is irreducible, so let v ∈ Cn, v > 0 be such that P (ρ)v = 0 and set

v̂ = Λ(ρ)v > 0, where Λ is the operator from (3-45). Then A(ρ)v̂ = ρv̂

and by Proposition 4.5 Cv̂ 6 ρv̂. Hence,

l−1∑
j=0

Aj+1Cj v̂ 6 1

ρ

l−1∑
j=0

Aj+1ρ
j+1v̂ 6 1

ρ

l∑
j=0

Ajρ
j v̂ =

1

ρ
A(ρ)v̂ = v̂,

so spr

(
l−1∑
j=0

Aj+1Cj

)
6 1. Suppose that equality holds here. Then we

can find a ŵ ∈ Cmn, ŵ ̸= 0 such that
l−1∑
j=0

Aj+1Cjŵ = ŵ, which im-

plies that B0ŵ = 0, thus ŵ = 0, since B0 is nonsingular. Therefore,

spr

(
l−1∑
j=0

Aj+1Cj

)
< 1 and hence, B0 and B0 are nonsingular M -matrices.

By Proposition 1.15(ii) it follows that P has exactly mn eigenvalues in

the open disc Dρ, d of which lie on the circle Tρ at the d-th roots of ρd due

to Theorem 4.23. The remaining (l−m)n eigenvalues of P must belong to

B, which has no eigenvalues in C due to spr(revB) = 0. Hence, these are

eigenvalues at infinity. Since the matrix polynomials B and B̃ = BB−1
0

have the same eigenvalues, the assertion is proved.

(b) By assumption we have that ϕA(τ) < τm for all τ ∈ (0, ρ), since ρ is

the only positive number with ϕA(ρ) = ρm and ϕA is continuous. Let

P(λ) = λImn − A(λ) be the canonical reduction of P . Then ϕA(τ) < τ

for all τ ∈ (0, ρ). Then by Proposition 4.7 for each τ ∈ (0, ρ), P has a

spectral right root and hence, P has a spectral right PFF Cτ w.r.t. Tτ .

ϕA(τ) < τm then implies that spr(Cτ ) = 0, i. e., σ(Cτ ) = {0} and the

eigenvalue zero has the algebraic multiplicity mn. By [Mar88, Lemma

22.8], C = Cτ does not depend on τ .

ρ is an eigenvalue of P , since ϕA(ρ) = ρm. Hence, spr(rev B̃) = 1
ρ . By

Theorem 4.23 the number of eigenvalues of P on Tρ is d and they lie
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at the dth roots of ρd. The last statement on the eigenvalues follows

immediately.

(c) The statements on the second derivative of ϕA and on the eigenvalues of

P on Tρ directly follow from Theorem 4.23 and Proposition 4.27.

(iv) From Theorem 4.23 it follows that P has eigenvalues on Tρ1 and Tρ2 at the

dth roots of ρd1 and ρd2, respectively. For any τ ∈ (ρ1, ρ2) we have ϕA(τ) < τm,

so by Theorem 4.1, P has a spectral PFF w.r.t. Tτ , i. e. P (λ) = B̃(λ)B0C(λ),

with σ(C) ⊂ Dτ and σ(B̃) ⊂ C \ Dτ . Since there are no eigenvalues of P in

the annulus Aρ,1,ρ2 , the eigenvalues on Tρ1 are peripheral eigenvalues of C

and the eigenvalues on Tρ2
are peripheral eigenvalues of rev B̃. Proposition

4.25 (iii) and (iv) imply that these eigenvalues are algebraically simple. The

remaining part of the assertion follows immediately and from the uniqueness

of the spectral PFF with a given spectrum (see [Mar88, Lemma 22.8]).

(v) By Theorem 4.1, P has a spectral PFF Cτ w.r.t. to Tτ for any τ > 0 and

Proposition 4.25 (i) implies that spr(Cτ ) = 0. Again, C = Cτ is independent

of τ and so spr(C) = 0 and also the left factor B̃ does not depend on τ , since

it is uniquely determined by C. So from σ(B̃) ⊂ C\Dτ for all τ > 0 it follows

that B̃ has no finite eigenvalues, hence, all its (l − m)n eigenvalues are at

infinity.

(vi) From Proposition 4.25 it follows that P has a right PFF C, P (λ) = B(λ)C(λ).

Since each τ > 0 is an eigenvalue of P , σ(P ) = C, i. e., P is singular. C is

monic, so C has finitely many eigenvalues and B has to be singular.

Note that the PFF in case (iii)(c) of Theorem 4.28 is not a spectral PFF in the

sense of our definition of the beginning of this chapter.

We now give a few examples concerning Theorem 4.28 and start with the special

case of scalar polynomials.

Example 4.29. Consider the scalar polynomial p(λ) = λm − a(λ) with a(λ) =∑l
j=0 λ

jaj , l > m, aj > 0 and
∑l

j=0 aj > 0. Let d = gcd{m− j : aj > 0}.

p is an irreducible 1× 1 m–monic polynomial and d is the index of phase imprimi-

tivity of the graph Gm(a0, . . . , al), which has only one vertex. We apply Theorem

4.28 to study the roots of p and the existence of factorizations

p(λ) =

b0 −
l−m∑
j=1

λjbj

λm −
m−1∑
j=0

λjcj

 , (4-77)

such that b1, b2, . . . , bl−m, a0, a1, . . . , am > 0 and such that the roots of b(λ) =

b0−
∑l−m

j=1 λjbj and c(λ) = λm−
∑m−1

j=0 λjcj are separated by a certain circle. Note

that the function ϕa in the scalar case can be written as ϕa(τ) = a(τ), τ > 0. This

also implies that the function a : (0,∞) → (0,∞) is geometrically convex. From

Theorem 4.28 it follows that the following five cases can occur.

(i) a(τ) > τm for all τ ≥ 0. Then p has no factorization as in (4-77).

(ii) a(τ) > τm for all τ > 0 and a(0) = 0. Then either p has no factorization as

in (4-77) or b0 6 0.
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(iii) There exists exactly one ρ > 0 with a(ρ) = ρm. If

(a) a′(ρ) > mρm−1, then p has a factorization as in (4-77), such that c only

has 0 as a root with order m, b has d simple roots on Tρ, which are

precisely the dth roots of ρd and l −m− d roots outside of Dρ (counting

orders).

(b) a′(ρ) = mρm−1, then p has a factorization as in (4-77) such that c has

m − d roots in Dρ, b has l − m − d roots outside Dρ and both, b and c

have simple roots on Tρ, respectively, which coincide with the dth roots

of ρd. Furthermore, we have a′′(ρ) > m(m− 1)ρm−2.

(iv) There exist exactly two numbers ρ2 > ρ1 > 0 with a(ρj) = ρmj for j = 1, 2.

Then p has a factorization as in (4-77), c has m − d roots in Dρ (counting

orders) and d simple roots on Tρ1 which coincide with the dth roots of ρd1. b

has l−m− d roots outside Dρ and d simple roots on Tρ1 which coincide with

the dth roots of ρd2.

The next two examples can be found in [FN05a, Example 4.11]. They show that in

case (ii) of Theorem 4.28 both possibilities - either P has no PFF or B0 is not a

regular M -matrix - can occur.

Example 4.30. Let n ∈ N and let A(λ) = λ2A2 +λIn, where A2 ∈ Rn,n is strictly

positive and irreducible. Then we have

P (λ) = λIn −A(λ) = −λ2A2 = (0− λA2)(λIn − 0),

ϕA(τ) = τ + τ2 spr(A2) > τ for τ > 0, and P has the minimal right PFF λIn − 0,

but B0 = 0 is not invertible.

Example 4.31. Consider again Example 1.5, i. e.,

A(λ) =

[
λ2 1

λp λ2

]
,

with p > 0. Then, with the notation from Example 1.5, ϕA(τ) = sprA(τ) > τ for

all τ > 0 is equivalent to ξ − ξ3 <
√
p for all ξ > 0, which holds if and only if

ξ0 − ξ30 <
√
p, or p > 4

27 .

We will show that for p > 4
27 , P (λ) = λI2 − A(λ) has no PFP. Suppose that C is

a nonnegative root of P , i. e. P (λ) = (λB1 + B0)(λI2 − C). Then C is nonzero,

since A0 = [ 0 1
0 0 ] is nonzero and by Proposition 4.25 (i), C is nilpotent. Therefore,

C = [ 0 0
c 0 ] or C = [ 0 c

0 0 ] with c > 0.

From the first case it follows that [ 0 1
0 0 ] = B0C =

[
α 0
β 0

]
, with some α, β ∈ R, which

is a contradiction.

If we suppose the second case and set B0 =
[
α0 β0

γ0 δ0

]
, B1 =

[
α1 β1

γ1 δ1

]
, then we have

[ 0 1
0 0 ] = B0C =

[
0 α0c
0 γ0c

]
, hence, B0 =

[
c−1 β0

0 δ0

]
and therefore

[
1 0
−p 1

]
= I2 −A1 = B0 −B1C =

[
c−1 β0−α1c
0 δ0−γ1c

]
,

which, again, is a contradiction. Hence, P has no PFF.
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4.4 The operator equation X =
∑l

j=0 AjX
j

In this section we show that the fixpoint iteration from Section 4.1 does also con-

verge in a more general setting under slightly stronger conditions. These conditions

appear in [Mar88], where they imply the existence of a spectral factorization of an

operator polynomial.

Proposition 4.32. Let A be a complex Banach algebra and let P (λ) = λI −∑l
j=0 λ

jAj be a 1–monic algebra polynomial with Aj ∈ A. Suppose that there exists

a ρ > 0 such that ϕ̃A(ρ) ..=
∑l

j=0 ρ
j∥Aj∥ < ρ.

Then the fixpoint iteration (Xk)k∈N ⊂ A defined via

X0 = 0, Xk+1 =
l∑

j=0

AjX
j
k (4-78)

converges.

Proof. W.l.o.g. we may assume that γ ..= ϕ̃′
A(ρ) =

∑l
j=1 jρ

j−1∥Aj∥ < 1. Other-

wise, there exists a nonnegative ρ0 < ρ such that ϕ̃A(ρ0) = ρ0 and ϕ̃′
A(ρ0) < 1. We

can choose a ρ1 > ρ0 near ρ0 such that ϕ̃A(ρ1) < ρ1 and still ϕ̃′
A(ρ1) < 1.

We will show that (Xk)k∈N is a Cauchy sequence.

We have that ∥Xk∥ < ρ for all k ∈ N. Indeed, clearly, ∥X0∥ < ρ. Suppose that for

some k ∈ N, ∥Xk∥ < ρ. Then ∥Xk+1∥ 6
∑l

j=0 ∥Aj∥∥Xk∥jk 6
∑l

j=0 ∥Aj∥ρj < ρ, by

assumption. For all k ∈ N \ {0} we have

∥Xj
k −Xj

k−1∥ =

∥∥∥∥∥
j−1∑
ν=0

Xj−ν
k Xν

k−1 −Xj−1−ν
k Xν+1

k−1

∥∥∥∥∥
=

∥∥∥∥∥
j−1∑
ν=0

Xj−1−ν
k (Xk −Xk−1)X

ν
k−1

∥∥∥∥∥
6

j−1∑
ν=0

∥Xj−1−ν
k ∥∥Xk −Xk−1∥∥Xν

k−1∥

<

j−1∑
ν=0

ρj−1∥Xk −Xk−1∥ = jρj−1∥Xk −Xk−1∥.

Hence, from the definition of the iteration it follows that for all k ∈ N

∥Xk+1 −Xk∥ 6
l∑

j=0

jρj−1∥Aj∥∥Xk −Xk−1∥ = γ∥Xk −Xk−1∥.

Let p ∈ N be such that Xp ̸= 0 and Xk = 0 for k < p. Then we have for all k > p

∥Xk+1 −Xk∥ 6 γk−p+1∥Xp −Xp−1∥ = γk−p+1∥Xp∥.

Notice that the condition ϕA(ρ) < ρ from Theorem 4.8 is weaker than the condition

ϕ̃A(ρ) =
∑l

j=0 ρ
j∥Aj∥ < ρ from Proposition 4.32. Indeed, from the latter it follows
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that

ϕA(ρ) = sup
|λ|=ρ

sprA(λ) 6 sup
|λ|=ρ

∥A(λ)∥ 6 sup
|λ|=ρ

l∑
j=0

ρj∥Aj∥ = ϕ̃A(ρ) < ρ.

Let X ∈ A be the limit of the fixpoint iteration (4-78). From [Mar88, Lemma 22.9]

it then follows that under the conditions of Proposition 4.32, λI−X is a right divisor

of the polynomial P . A. S. Markus obtained this result in [Mar88, Section 23] as

a consequence of an abstract factorization result in decomposing Banach algebras,

see [GKS03, Theorem 2.5]. Proposition 4.32 implies the existence of a divisor of P

via basic operator theoretical concepts.
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5 Computing spectral factorizations of m–monic

matrix polynomials with a cyclic reduction al-

gorithm

Suppose that for the m–monic Perron-Frobenius polynomial (PFP, see Chapter 4)

P (λ) = λmIn −A(λ) = λmIn −
l∑

j=0

λjAj

the conditions of Theorem 4.1 hold. In particular, there exists a ρ > 0 such that

spr(A(ρ)) < ρm. In this section, by writing ρ we always refer to this number. Let

P (λ) = B(λ)B0C(λ) =

In −
l−m∑
j=1

λjBj

B0

λmIn −
m−1∑
j=0

λjCj

 (5-79)

be the spectral factorization according to Theorem 4.1. It is, furthermore, assumed

that A is irreducible, i.e. that A(τ) is an irreducible matrix for all τ > 0, see Section

4.3.

In this section we describe how a cyclic reduction method for certain Markov pro-

cess type problems can be used to explicitly calculate the factors B, B0 and C.

Cyclic reduction (CR) was designed as a powerful direct method for solving certain

structured matrix problems, in particular block tridiagonal block Toeplitz systems

encountered in the finite differences discretization of the Poisson equation over a

rectangle. Several modifications have been developed, for instance for solving linear

systems arising from the discretization of boundary value ODEs. The cyclic reduc-

tion method has been rediscovered as a quadratically convergent iterative algorithm

for solving certain infinite systems and nonlinear matrix equations associated with

stochastic processes, see e.g. [AP97], [BLM05], [BM09], [BG94], [BGN70], [Hel76],

[Swe88].

We will refer to the CR method presented in [BLM05, Chapter 7.4]. In this book,

the CR method is used to compute the minimal nonnegative solution Gmin of the

matrix equation

X =
∞∑

i=−1

AiX
i+1, (5-80)

where minimal means that if Y is any other solution of this equation, thenGmin 6 Y .

We will start with sketching the basic idea of CR (for a more detailed description

of the method, see [BLM05]). Before we do that, we will briefly recall the notion of

Toeplitz operators.

Associate with the matrix Laurent power series defined by S(λ) =
∑

j∈Z λ
jSj

the semi infinite block matrix
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T∞[S] =



S0 S1 S2 S3 · · ·

S−1 S0 S1 S2
. . .

S−2 −S−1 S0 S1
. . .

S−3 S−2 S−1 S0
. . .

...
. . .

. . .
. . .

. . .


. (5-81)

This matrix is called a block Toeplitz matrix, since (T∞[S])ij = Sj−i for all

i, j ∈ N, where (T∞[S])ij denotes the n × n block in the i-th block row and j-th

block column of T∞[S].

An infinite block Toeplitz matrix

T =


F0 F−1 F−2 · · ·

F1 F0 F−1
. . .

F2 F1 F0
. . .

...
. . .

. . .
. . .


with Fj ∈ Cn,n for all j ∈ Z, induces a bounded operator on ℓ2n, where ℓ2n denotes

the space of all sequences (xk)k∈N ⊂ Cn such that

∥x∥ ..=

( ∞∑
k=1

∥xk∥2
)1/2

< ∞,

if and only if the entries of T are the Fourier coefficients of a matrix function with

entries in L∞(T), more precisely,

Fj =
1

2π

∫ 2π

0

F (eiφ)e−ijφdφ,

for some matrix function F : T → Cn,n with entries in L∞(T), see e.g. [BS99],

[BLM05].

The basic idea of CR is to rewrite equation (5-80) as the semi-infinite linear system
I −A0 −A1 −A2 · · ·

−A−1 I −A0 −A1
. . .

−A−1 I −A0
. . .

. . .
. . .




X

X2

X3

...

 =


A−1

0
...
...

 .

After applying a suitable (so called even-odd-) permutation, one obtains the system[
I − U

(1)
1,1 −U

(1)
1,2

−U
(1)
2,1 I − U

(1)
2,2

][
X̂+

X̂−

]
=

[
0

B̂

]
,

where U
(1)
1,1 , U

(1)
2,2 , U

(1)
1,2 , U

(1)
2,1 are some semi infinite Toeplitz matrices, X̂+ =

[
X2

X4

...

]
,

X̂− =

[
X
X3

...

]
and B̂ =

[
A−1

0
...

]
. In particular, I − U

(1)
1,1 is an upper block triangular
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matrix with In − A0 on the diagonal. Under suitable conditions U
(1)
1,2 , U

(1)
2,1 , I −

U
(1)
2,2 and (I − U

(1)
1,1 )

−1 represent bounded operators. Performing one step of block

Gaussian elimination, one obtains[
I − U

(1)
1,1 −U

(1)
1,2

0 H(1)

][
X̂+

X̂−

]
=

[
0

B̂

]
, (5-82)

where H(1) = I −U
(1)
2,2 −U

(1)
2,1 (I −U

(1)
1,1 )

−1U
(1)
1,2 is the Schur complement of I −U

(1)
2,2 .

Analyzing H(1), one finds that H(1) has block Hessenberg form (i.e., it has only

zero blocks below the first subdiagonal) and block Toeplitz form except for the first

block row. Hence, the lower system of (5-82), H(1)X̂− = B̂, can be written as


I − Â

(1)
0 −Â

(1)
1 −Â

(1)
2 · · ·

−A
(1)
−1 I −A

(1)
0 −A

(1)
1

. . .

−A
(1)
−1 I −A

(1)
0

. . .

0
. . .

. . .




X

X3

X5

...

 =


A−1

0
...
...

 ,

where the semi infinite block Toeplitz matrix on the left hand side can be proved to

define a bounded operator on ℓ2n, see [BLM05, Section 7.4]. Recursively repeating

this process of permuting and one step of Gaussian elimination leads to the system


I − Â

(k)
0 −Â

(k)
1 −Â

(k)
2 · · ·

−A
(k)
−1 I −A

(k)
0 −A

(k)
1

. . .

−A
(k)
−1 I −A

(k)
0

. . .

0
. . .

. . .




X

X2k+1

X2·2k+1

...

 =


A−1

0
...
...


after the k-th step. The Schur complements H(k) (analogous to H(1)) which appear

in each step are well defined bounded operators, see [BLM05, Section 7.4]. Hence,

the minimal solution Gmin of equation (5-80) satisfies

Gmin =
(
I − Â

(k)
0

)−1

A−1 +
∞∑
j=1

Â
(k)
j Gj·2k+1

min

 .

This method heavily relies on the invertibility of the upper block triangular matrix

I − U
(k)
1,1 which appears in each step after the permutation. We suppose for the

moment that this is satisfied and will return to this question later. It then follows

that for each k ∈ N also I − Â
(k)
0 is invertible, hence, the given representation of

Gmin is well defined.

It can be proved that
∑∞

j=1 Â
(k)
j Gj·2k+1

min converges quadratically to zero for k → ∞
and that (I−Â

(k)
0 )−1 is quadratically convergent, see [BLM05, Section 7.4.1], hence,

G(k) = (I − Â
(k)
0 )−1A−1

is a valid approximation for Gmin.

The CR algorithm presented in [BLM05] is suited for some special type of Markov

chains. Markov chains are stochastic processes, i.e., families {Xj : j ∈ N} of random
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variables Xj , which have the so-called Markov property, i.e., that Xj only depends

on Xj−1.

Associated with this type of Markov process is a so-called generating function of

the form

P(λ) = λIn −
∞∑

j=−1

λj+1Aj , (5-83)

where the coefficients Aj are certain entrywise nonnegative matrices such that∑∞
j=−1 Aj is irreducible and stochastic, i. e.

∑∞
j=−1 Aj1n = 1n. In [BLM05] is

shown that CR can be applied for the substochastic case, i. e.
∑∞

j=−1 Aj1n < 1n,

as well.

5.1 Transformation to a Markov problem

In order to apply CR as depicted above to our PFP P , it has to be transformed in an

appropriate way to a suitable generating function of some Markov chain of the type

(5-83). For a reason that will become clear later in this section, it is useful to reduce

the m–monic polynomial to a 1–monic polynomial via the canonical reduction from

Chapter 3. Roughly spoken, this allows us to easily read off the coefficients Cj

of the right Perron-Frobenius factor (PFF, see Chapter 4) C of P . Therefore, we

suppose in this section that P is a 1–monic matrix polynomial. The factorization of

the original polynomial then can easily be recovered as is described in Section 3.2.

If we have P (λ) = λmIn − A(λ) and P(λ) = λImn − A(λ) is the corresponding

canonical reduction, then, due to Section 3.1,

A(λ) =



l∑
j=m−1

λj−m+1Aj Am−2 · · · A0

I

. . .

I 0


and therefore, unfortunately, A is in general not irreducible if A is. More precisely,

we have the following Proposition. For its proof recall the definition of the associated

directed graph of a matrix as given in Section 4.3.

Proposition 5.1. A is irreducible if and only if A0 has no zero columns.

Proof. Fix any τ > 0 and consider the associated directed graph GA(τ) = (E, V ) of

A(τ) ∈ Cmn,mn.

We have that

A(τ) =



l∑
j=m−1

τ j−m+1Aj Am−2 · · · A0

I

. . .

I 0


.
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For clarity, arrange themn vertices of GA(τ) in a rectangle ofm rows and n columns.

Enumerate them from the left to the right and from top to bottom.

Consider Ã =

[ 0 ··· ··· 0
I
. . .

I 0

]
, obtained by setting A0, . . . , Al = 0 in A(τ). Then, due

to the positions of the identities in Ã, the graph GÃ looks as follows.
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(m−1)n+1 · · · mn

Figure 5: the graph GÃ

Therefore, for each p, p̃ ∈ ⟨m− 1 ⟩0, p̃ < p and for each q ∈ ⟨n ⟩ there exists a path

from pn+ q to p̃n+ q.

The associated graph GA(τ) of A(τ) looks the same with the difference that there

are additional edges with starting vertices only in the first row, i.e. at the vertices

1, . . . , n. Note that GA(τ) = GA(1).

Obviously, if A0 has a zero column, let us say column j, then there is no edge

leading to vertex (m− 1)n+ j, and hence, the graph cannot be strongly connected.

Thus A(τ) is not irreducible.

Now suppose that A0 has no zero columns. This implies that for each j ∈ {(m −
1)n + 1, . . . ,mn} there is an i ∈ ⟨n ⟩ such that (i, j) ∈ E, in other words, each

vertex in the last row has an incoming edge from at least one vertex of the first row.

Since by assumption A(1) =
∑l

ν=0 Aν is an irreducible matrix, we furthermore

have that from each of the vertices in the first row there is a path to each column

of the graph. More precisely, for each i ∈ ⟨n ⟩ and each j ∈ ⟨n ⟩ there is a path

in GA(τ) from i to pn + j for some p ∈ ⟨m− 1 ⟩0. Indeed, fix any i, j ∈ ⟨n ⟩ and

let i → i1 → i2 → · · · → ik−1 → j be a path in A(1) from i to j. Then there are

p1, p2, . . . , pk ∈ ⟨m− 1 ⟩0 such that

i → p1n+ i1 → i1 → p2n+ i2 → i2 → · · · → pk−1n+ ik−1 → ik−1 → pkn+ j

is a path in GA(τ).

Now, with these preparations we can give a path from any vertex pn + q to any

other vertex rn + s (p, r ∈ ⟨m− 1 ⟩0 and q, s ∈ ⟨n ⟩). Let s̃ ∈ ⟨n ⟩ such that

(s̃, (m− 1)n+ s) ∈ E, which exists since A0 has no zero columns. Let furthermore
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r̃ ∈ ⟨m− 1 ⟩0 be such that q → · · · → r̃n+ s̃ is a path in GA(τ). Then a path from

pn+ q to rn+ s is

pn+ q → · · · → q → · · · → r̃n+ s̃ → · · · → s̃ → (m− 1)n+ s → · · · → rn+ s.

Hence, A(τ) is irreducible.

Clearly, in general, we cannot expect A0 to have no zero columns and hence, A of

the canonical reduction is in general not irreducible. But still an important property

of the irreducible A is preserved as the following proposition states.

Proposition 5.2. Let P (λ) = λmIn − A(λ) be an m–monic n× n PFP such that

A is irreducible and let P(λ) = λImn−A(λ) be the canonical reduction of P . Then,

for any τ > 0, there exists a strictly positive eigenvector of A(τ) corresponding to

the eigenvalue spr(A(τ)).

Proof. Since A(τ) is an entrywise nonnegative matrix, it has an entrywise nonnega-

tive eigenvector û ∈ Rmn corresponding to the eigenvalue 0 < r = spr(A(τ)). Write

û =

[
u1

...
um

]
with u1, . . . , um ∈ Rn. Hence, we have that



l∑
j=m−1

τ j−m+1Aj Am−2 · · · A0

I

. . .

I 0



u1

...

um

 = r


u1

...

um

 .

Solving this system, starting with the last row, we obtain um−j = rjum for j ∈
⟨m− 1 ⟩0. The first block row now reads

Ãum =

 l∑
j=m−1

rm−1τ j−m+1Aj + rm−2Am−2 + · · ·+ rA1 +A0

um = rm−1um.

Now, the matrix Ã on the left hand side of the equation is irreducible, since A is

irreducible and therefore, um is strictly positive and rm−1 is the spectral radius of

Ã, see e.g. [Min88, Theorem I.2.2, p.7] and [Min88, Theorem I.4.4, p.16]. But since

û =

 rm−1

...
r
1

⊗ um, û is strictly positive as well.

As mentioned above, and in view of Proposition 5.2 we suppose from now on that P

is a 1–monic PFP of degree l and that there exists a ρ > 0 such that spr(A(ρ)) < ρ

and a strictly positive eigenvector corresponding to the eigenvalue spr(A(ρ)) of A(ρ).

The main step of the transformation to a Markov problem consists of a suitable

scaling of P (λ) = λIn − A(λ) into a polynomial P̄ (λ) = λI − Ā(λ) such that the

matrix Ā(1) is substochastic, i. e., Ā(1)1m < 1m.

First introduce a new variable µ by µ = λ
ρ . Then

P (λ) = P (µρ) = ρ
(
µI − ρ−1A(µρ)

)
.
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Introduce matrix polynomials Ã and P̃ via

Ã(µ) = ρ−1A(µρ) and P̃ (µ) = µI − Ã(µ), (5-84)

i. e., P̃ (µ) = ρ−1P (µρ) and Ãj = ρj−1Aj for j ∈ ⟨ l ⟩0.

Then

spr Ã(1) = spr
(
ρ−1A(ρ)

)
= ρ−1 spr

(
A(ρ)

)
< ρ−1ρ = 1.

SinceA(ρ) has a strictly positive eigenvector v = (vj)
n
j=1 to the eigenvalue spr(A(ρ)),

the matrix Ã(1) = ρ−1A(ρ) has the same strictly positive eigenvector to the eigen-

value θ = spr(Ã(1)). Hence, the matrix D, defined by D = diag(v1, . . . , vn) is

nonsingular. Setting

Ā(µ) = D−1Ã(µ)D

one obtains

Ā(1)1 = D−1Ã(1)D1 = D−1Ã(1)v = D−1θv = θ1 < 1.

Introduce the matrix polynomial P̄ defined by

P̄ (µ) = D−1P̃ (µ)D = µI − Ā(µ) = µI −
l∑

j=0

µjĀj , (5-85)

where Āj = ρj−1D−1AjD for j ∈ ⟨ l ⟩0.

Then P̄ is a 1–monic PFF with Ā(1) substochastic.

The next Proposition gives the connection between spectral factorizations of P and

P̄ . Although we would like the left factor B to have the form given in (5-79), at

this point it is more convenient to use B(λ)B0 =
∑l−1

j=0 λ
jBj , since this simplifies

the following calculations and the desired algorithm. We will retrieve the desired

form of B right at the end of that algorithm.

Proposition 5.3. Let P with P (λ) = λIn−A(λ) be a 1–monic PFP of degree l and

suppose that A(ρ) has a strictly positive eigenvector v = (vj)
n
j=1 to the eigenvalue

sprA(ρ). Suppose that P has a spectral right PFF with respect to Tρ, i. e.,

P (λ) = B(λ)C(λ),

such that

σ(B) = σ(P ) ∩ (C \ D̄), σ(C) = σ(P ) ∩ D

Then P̄ has a spectral factorization with respect to the unit circle T

P̄ (µ) = B̄(µ)C̄(µ) (5-86)

with

B̄(µ) =
l−1∑
j=0

µjB̄j , C̄(µ) = µI − C̄0

and

σ(B̄) = σ(P̄ ) ∩ (C \ D), σ(C̄) = σ(P̄ ) ∩ D.
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With D = diag(v1, . . . , vn), the factors B(λ) and C(λ) are obtained from B̄ and C̄

via

B(λ) =

l−1∑
j=0

λjBj , where Bj = ρ−jDB̄jD
−1, (5-87)

C(λ) = λI − C0, where C0 = ρDC̄0D
−1 (5-88)

(5-89)

Proof. If v > 0 is such that A(ρ)v = sprA(ρ)v, then from (5-84) it follows that

ρÃ(1)v = spr
(
ρÃ(1)

)
v = ρ spr

(
Ã(1)

)
v,

i. e., v is a positive eigenvector of Ã(1) corresponding to the eigenvalue spr Ã(1).

(5-84) and (5-85) then imply that P̄ (µ) = ρ−1D−1P (µρ)D. Using the factorization

for P we obtain

P̄ (µ) = ρ−1D−1B(µρ)C(µρ)D = ρ−1D−1B(µρ)DD−1C(µρ)D.

Define

B̄(µ) = D−1B(µρ)D and C̄(µ) = ρ−1D−1C(µρ)D,

thus P̄ (µ) = B̄(µ)C̄(µ). Obviously λ is an eigenvalue of B (or C, respectively) if

and only if λ/ρ is an eigenvalue of B̄ (or C̄, respectively). We have

B̄(µ) = D−1

 l−1∑
j=0

µjρjBj

D =

l−1∑
j=1

µj
(
ρjD−1BjD

)
and

C̄(µ) = ρ−1D−1 (µρI − C0)D = µI − ρ−1D−1C0D.

Setting B̄j = ρjD−1BjD for j ∈ ⟨ l − 1 ⟩0 and C̄0 = ρ−1D−1C0D immediately

implies (5-87) and (5-88).

In view of Proposition 5.3 we will now assume that P (λ) = λI −A(λ) is such that

A(1) is substochastic.

Now it will pay off that we started with a 1–monic PFP, or in other words, that we

first passed over to the canonical reduction of P , since we can apply the following

theorem, which can be found in [BLM05, Theorem 3.18] or [Mar88, Lemma 22.9].

We already made use of it in Section 4.1. Here, it is adapted to our current situation.

We will write P (X) = X −A(X) = X −
∑l

j=0 AjX
j .

Theorem 5.4. Suppose that the 1–monic PFP P (λ) = λI−A(λ) is of degree l and

that A(1) is substochastic. If P has a spectral factorization

P (λ) = B(λ)B0C(λ) =

In −
l−1∑
j=1

λjBj

B0(λI − C0)

with respect to the unit circle T (i. e., C0 is the spectral right root of P w.r.t. T),
then, C0 is the unique solution of the equation P (X) = 0 such that spr(C0) < 1.

Note that the equation P (X) = 0, or X =
∑l

j=0 AjX
j , is of the form (5-80).

Therefore, the CR-Algorithm applied to this equation delivers an approximation

for the right root C0 of P (for the notion of a right root, see Section 4.1).
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5.2 Algorithm

For the remainder of this chapter we suppose that P (λ) = λI − A(λ) is a 1–monic

PFP and A(1) =
∑l

j=0 Aj is substochastic.

In this section we present an algorithm to compute the coefficients of the spectral

factorization of a given m–monic matrix polynomial. As mentioned in the previous

section, the method of cyclic reduction relies on the invertibility of the matrices

I−U
(1)
1,1 , I−U

(2)
1,1 , . . . which arise after the permutation in each step. To verify this,

it is convenient to shortly introduce the notion of communicating and final classes

according to [BLM05].

Let GA = (V,E) be the associated directed graph of A. For i, j ∈ V define the

relation ∼ via i ∼ j iff there is a path in GA leading from i to j and a path in

GA leading from j to i. We say i communicates with j. Note that if i and

j communicate via the paths P1 and P2 then i communicates with each vertex

on P1 and P2. Hence, with the convention that each vertex in V communicates

with itself, communication is an equivalence relation. We call an equivalence class

induced by the communicate relation a communicating class. For instance, if A

is irreducible, then V itself is the only communicating class in GA.

Although no vertex of a communicating class U ⊂ V communicates with a vertex

which does not belong to U , there can still be paths leading out of it. We call a

communicating class U such that there is no path leaving U , a final class. For

simplicity of speech, we also say that the matrix A has a (final) communicating

class.

We now return to the question if we can guarantee that each step of the CR algo-

rithm is well defined. From [BLM05, Theorem 7.7 and Theorem 7.8] it follows that

for each step k, the matrix I −U
(k)
1,1 is invertible if the matrix A(1) =

∑l
j=0 Aj has

only one final class. This is of course true if we initially started with a 1–monic PFP

such that A(1) is irreducible, since in that case, there is only one communicating

class. However, if the initial polynomial was m–monic with m > 1, we performed a

canonical reduction beforehand and A(1) ∈ Rmn,mn looks as follows

A(1) =



l+m−1∑
j=m−1

Ãj Ãm−2 · · · Ã0

I

. . .

I 0


, (5-90)

where Ã0, Ã1, . . . , Ãl+m−1 ∈ Rn,n are such that
∑l+m−1

j=0 Ãj is irreducible. There-

fore, it remains to prove the following lemma.

Lemma 5.5. The matrix A(1) in (5-90) has exactly one final class.

Proof. Consider the associated directed graph GA(1) of A(1) and Figure 5 in Sec-

tion 5.1. In that section, we already saw that since by assumption
∑l

j=0 Ãj is an

irreducible matrix, we have that from each of the vertices in the first row of the

graph there is a path to each column of the graph. More precisely, for each i ∈ ⟨n ⟩
and each j ∈ ⟨n ⟩ there is a path in GA(1) from i to pn+ j for some p ∈ ⟨m− 1 ⟩0.
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Now, in each column of GA(1) = (V,E), delete all vertices which are below the

last vertex that has incoming edges from the first n vertices. In other words, for

each j ∈ ⟨n ⟩ do the following. Let pj ∈ ⟨m− 1 ⟩0 be the largest integer such that

(i, pjn + j) ∈ E for some i ∈ ⟨n ⟩. Delete each vertex pn + j with pj < p 6 m− 1

as well as its unique single outgoing edge. Note that the vertices 1, . . . , n are never

deleted in this manner, since each column of the graph has at least one incoming edge

from the vertices 1, . . . , n. Completely analogously as in the proof of Proposition

5.1 it follows that the remaining set of vertices is a communicating class. It is also a

final class, since in the process we only deleted vertices that had no incoming edges.

Each of the vertices which where deleted in the process constitutes a communicating

class only consisting of itself. Clearly none of them is a final class, since they all

have an outgoing edge. Hence, GA(1) has precisely one final class.

Now that we know that the method is applicable, we write it down explicitly step by

step. For clarity, we will first summarize the strategy, since it also involves results

from previous chapters.

Start with an m–monic PFP P (λ) = λmIn−A(λ) of degree l and a ρ > 0 such that

ϕA(ρ) = sprA(ρ) < ρm. From Theorem 4.1 it follows that P has a spectral right

PFF C(λ) = λmIn−
∑m−1

j=0 λjCj with respect to the circle Tρ. Suppose furthermore

that A is irreducible. Calculate the canonical reduction P(λ) = λImn − A(λ), see

Corollary 3.3, which is a 1–monic PFF of degree l−m+1 which satisfies ϕA(ρ) < ρ.

Perform a scaling of P to a polynomial P̄, P̄(λ) = λImn − Ā(λ) such that Ā(1)

is substochastic, according to Section 5.1. Ā satisfies ϕĀ(1) < 1, hence, it has

a spectral right root C̄0 w.r.t. the unit circle. Apply the CR-algorithm as given

in [BLM05, Section 7.4] to obtain an approximation for the minimal solution of

the equation P̄(X ) = 0 or X =
∑l−m+1

j=0 ĀjX j , which coincides with C̄0, due to

Theorem 5.4. Use Lemma 4.2 to obtain the coefficients B̄0, . . . , B̄l−m of the left

factor of P̄ and then Proposition 5.3 to calculate the coefficients B0, . . . ,Bl−m, C0 of

the factorization of P. From Corollary 3.6 and Remark 3.5 obtain the coefficients

B0, B1, . . . , Bl−m, C0, . . . , Cm−1 of the desired spectral factorization of the original

PFP P . B0 is a nonsingular M -matrix, see Proposition 4.7.

Algorithm 5.6 (Spectral factorization for P (λ) = λIn−A(λ) = λmIn−
l∑

j=0

λjAj).

Input: The coefficients A0, . . . , Al and ρ > 0 such that sprA(ρ) < ρm.

Output: The coefficients B0, B1, . . . , Bl−m, C0, . . . , Cm−1 of the factorization

P (λ) =
(
In −

l−m∑
j=1

λjBj

)
B0

(
λmIn −

m−1∑
j=0

λjCj

)
.

Computation:

1. Build the matrices

A0 =

Am−1 ··· ··· A0

I 0

. . .
...

I 0

 and Aj =

Aj+m−1

0

. . .
0

 (j ∈ ⟨ l −m+ 1 ⟩)

and set A(ρ) =
∑l−m+1

j=0 ρjAj .

2. Compute a positive eigenvector v of ρ−1A(ρ) to the eigenvalue ρ−1 sprA(ρ).

97



3. Set D = diag v and Āj = ρj−1D−1AjD for j ∈ ⟨ l ⟩0.

4. Apply the CR algorithm [BLM05, Section 7.4] to compute the minimal solu-

tion C̄0 of the matrix equation

X =
l−m+1∑
j=0

ĀjX j .

5. Set

B̄k = δ0kImn −
l−m−k∑
j=0

Āk+j+1C̄j
0 (k ∈ ⟨ l −m ⟩0).

6. Set

C0 = ρD C̄0D−1 and Bk = ρ−kD B̄kD−1 (k ∈ ⟨ l −m ⟩0).

7. Set

Ck = (C0)1(m−k) (j ∈ ⟨m− 1 ⟩0),

B0 = (B0)11 and Bk = −(Bk)11B
−1
0 (k ∈ ⟨ l −m ⟩).
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6 Conclusions

In this thesis we study spectral properties of analyticm–monic operator- and matrix

functions F (λ) = λmI−A(λ). A major focus lies on m–monic operator- and matrix

polynomials with coefficients that satisfy certain nonnegativity conditions.

Chapter 1 establishes a general framework for the investigation of spectral properties

of m–monic Banach algebra functions. A major role is played by a geometrically

convex scalar function ϕA associated with the spectral radius of A(λ). This function

was introduced in [FN05a].

Eigenvalues of m–monic operator functions which lie on some circles around zero

are rotation invariant with respect to angles corresponding to certain roots of unity

if the coefficients of the function are self-adjoint and satisfy some condition which

is closely related to a condition on the function ϕA at some point ρ > 0. This is

investigated in Chapter 2 and extends results of [Wim08] and [SW10].

Very crucial for the investigation of spectral properties of m–monic operator- and

matrix polynomials is the canonical reduction from the m–monic to the 1–monic

case. It is a generalization of the linearization via the first companion form and

allows the application of fixpoint iterations, which are an suitable tool for the study

of factorizations of 1–monic operator- and matrix polynomials. A one–to–one cor-

respondence between factorizations of the m–monic polynomial and its canonical

reduction guarantees that the original polynomial has a factorization if and only if

its canonical reduction has one. Formulas which express one factorization in terms

of the other one are available. Furthermore, in the case of matrix polynomials, it

is possible to calculate Jordan chains of the original polynomial from the Jordan

chains of its canonical reduction and vice versa. The canonical reduction and its

properties are established in Chapter 3.

Spectral properties and factorization results of m–monic matrix polynomials with

entrywise nonnegative coefficients are presented in Chapter 4.

Using fixpoint iterations, a condition for the existence of spectral factorizations

of an 1–monic matrix polynomial P with nonnegative coefficients is given. Those

factorizations separate the eigenvalues of P with respect to certain circles. Via

canonical reduction, this result can be transferred to the m–monic case. This is a

special case of an abstract result in ordered Banach algebras given in [FN05b] and

its proof uses only matrix theoretical concepts. This is given in Sections 4.1 and

4.2.

m–monic matrix polynomials P with entrywise nonnegative coefficients such that

the sum of the coefficients is irreducible can have eigenvalues that have a certain

rotation invariance. This symmetry is very similar to the rotation invariance of

peripheral eigenvalues of entrywise nonnegative irreducible matrices which is a con-

sequence of the well known Perron–Frobenius theory. The study of an infinite graph

associated with P is key for the analysis.

A description of spectral factorizations, their existence and their eigenvalues in the

irreducible case is given via the characterization of eight cases which can occur.

These are extensions to results of [FN05a] and are studied in Section 4.3.

Assumed that an P satisfies the condition for the existence of a spectral factoriza-

tion (Section 4.2), a numerical algorithm for the calculation of the corresponding

factors is available. Its core is constituted by a version of a cyclic reduction method
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suited for a certain type of Markov chains which is presented in [BLM05]. A suit-

able transformation of the factorization problem to a Markov problem allows its

application. This is done in Chapter 5.
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