
On Structural Similarities of

Finite Automata and Turing Machine

Enumerability Classes

Till Tantau

A× Ā

A×A Ā× Ā

On Structural Similarities of

Finite Automata and Turing Machine

Enumerability Classes

vorgelegt von
Diplom-Informatiker und Diplom-Mathematiker

Till Tantau

von der Fakultät iv – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Bernd Mahr
Berichter: Prof. Dr. Dirk Siefkes
Berichter: Prof. Dr. Johannes Köbler

Tag der wissenschaftlichen Aussprache: . Februar 

Berlin 

D 

Preface

This dissertation presents the lion’s share of the research I did since I
started working at the Technical University of Berlin at the end of .
Unfortunately, since I failed to focus my research on a single subject during
the last three years, the results of several interesting research projects could
not be included. If I had included them, the title would have had to be ‘On
a Bunch of Interesting, but Unrelated Theorems of Theoretical Computer
Science’. When I went to my advisor Dirk Siefkes at the beginning of
, we pondered on which papers would be fit to form the basis of a
dissertation. There were two alternatives: either two papers on a new
concept, namely enumerability by finite automata; or different technical
reports on reducibility to selective languages, prover-verifier protocols, and
reachability problems. Reducibility classes of selective languages would
have been more ‘en vogue’ and the results applicable in standard complexity
theory and in practice (like a constant parallel time reachability algorithm
for tournaments). In the end, the mathematical beauty of results that are
presented in the following won over.

I have presented the central theorems of this dissertation at two con-
ferences in , namely at the th Symposium on Theoretical Aspects of
Computer Science in Antibes–Juan les Pins, France, and at the th Sym-
posium on Mathematical Foundations of Computer Science in Warsaw,
Poland. This dissertation also includes results that were presented at other
conferences and in technical reports, but these are not at the core of my
topic. Compared to the two main conference papers, this dissertation fo-
cusses on demonstrating how the main results are part of broader contexts.

This text is best read front to back, but each chapter is as self-contained
as possible. Especially the fifth chapter, which is a ‘tutorial’ on a new
diagonalisation method, can be read independently of the other chapters.
Notations and special terminology are explained directly preceding their
first use and they are also explained in the list of notations.

There are many people whom I have to thank, since without them this
dissertation would have been much worse. My ‘being indebted’ relation on
them forms a partial ordering, but I decided to linearise this ordering to
simplify its presentation, see theorems . and . for more details on lin-
earisations. So, in alphabetical ordering I am deeply grateful to Sebastian
Bab, Lane Hemaspaandra, Chris Homan, Johannes Köbler, Carsten Lenz,
Arfst Nickelsen, Margit Russ, Birgit Schelm, Dirk Siefkes, Gerda Tantau,
Karl Tantau, Leen Torenvliet, and Tux.

Till Tantau
Berlin, autumn of 



Abstract

There are different ways of measuring the complexity of functions that map
words to words. Well-known measures are time and space complexity. Enu-
merability is another possible measure. It is used in recursion theory, where
it plays a key rôle in bounded query theory, but also in resource-bounded
complexity theory, especially in connection with nonuniform computations.
This dissertation transfers enumerability to automata theory. It is shown
that enumerability behaves similarly in recursion theory and in automata
theory, but differently in complexity theory.

The enumerability of a function f is the smallestm such that there exists
an m-enumerator for f . An m-enumerator is a machine that produces, for
every input word w, a set of up to m possibilities for f(w). By varying the
parameter m and the class of allowed enumerators, different enumerability
classes can be defined. In recursion theory, one allows arbitrary Turing
machines as enumerators; in automata theory, only finite automata. A
deep structural result that holds both for finite automata and for Turing
machine enumerability is the following cross product theorem: if f × g is
(n + m)-enumerable, then either f is n-enumerable or g is m-enumerable.
In contrast, this theorem does not hold for polynomial-time enumerability.

Enumerability can be used to quantify the difficulty of a language A
by asking how difficult it is to enumerate its n-fold characteristic func-
tion χnA and cardinality function #n

A. A language is (m,n)-verbose if χnA
is m-enumerable. The inclusion structures of Turing machine and of fi-
nite automata verboseness classes are identical: all (m,n)-Turing-verbose
languages are (h, k)-Turing-verbose iff all (m,n)-finite-automata-verbose
languages are (h, k)-finite-automata-verbose. The structure of polynomial-
time verboseness classes is different.

The enumerability of #n
A has been studied in detail in recursion the-

ory. Kummer’s cardinality theorem states that if #n
A is n-enumerable by a

Turing machine, then A must be recursive. Evidence is gathered that this
theorem also holds for finite automata: it is shown that the nonspeedup
theorem, the cardinality theorem for two words, and the restricted cardi-
nality theorem all hold for finite automata. The cardinality theorem does
not hold for polynomial-time computations.

The central proofs rely on two proof techniques that promise to be appli-
cable in other situations as well: generic proofs and branch diagonalisation.
Generic proofs use elementary definitions, a concept from logic, to define
enumerators in terms of other enumerators. They can be instantiated for
all computational models that are closed under elementary definitions. Ex-
amples of such models are finite automata, but also Presburger arithmetic
and ordinal number arithmetic. The second technique is a new diagonal-



isation method, where machines are tricked on codes of diagonalisation
decision sequences, rather than on codes of machines. Branch diagonalisa-
tion is not applicable universally, but where it is applicable, it can be used
to diagonalise against Turing machines, using only finite automata.

Results on enumerability classes have applications in unrelated areas,
like finite automata protocol testing, classification problems where exam-
ples are provided, and separability. An intriguing example of such an ap-
plication is the following theorem: if there exist regular supersets of A×A,
A× Ā, and Ā× Ā whose intersection is empty, then A is regular.



Zusammenfassung

Die Komplexität von Funktionen, die Worte auf Worte abbilden, kann auf
verschiedene Arten gemessen werden. Bekannte Maße sind Zeit- und Platz-
komplexität. Aufzählbarkeit ist ein weiteres Komplexitätsmaß. Sie wird in
der Rekursionstheorie eingesetzt, wo sie eine zentrale Rolle in der Theorie
fragenbeschränkter Reduktionen spielt, sowie in der ressourcenbeschränk-
ten Komplexitätstheorie, insbesondere in Verbindung mit nichtuniformen
Berechnungen. In dieser Arbeit wird das Konzept der Aufzählbarkeit auf
endliche Automaten übertragen. Es wird gezeigt, dass sich Aufzählbarkeit
in der Rekursionstheorie und in der Automatentheorie gleichartig verhält,
in der Komplexitätstheorie hingegen andersartig.

Die Aufzählbarkeit einer Funktion f ist die kleinste Zahl m, für die ein
m-Aufzähler für f existiert. Ein m-Aufzähler ist eine Maschine, die bei Ein-
gabe eines Wortes w eine Menge von höchstens m Möglichkeiten für f(w)
ausgibt. Verschiedene Aufzählbarkeitsklassen können durch Veränderung
des Parameters m und der Art der erlaubten Maschinen definiert wer-
den. In der Rekursionstheorie erlaubt man beliebige Turingmaschinen als
Aufzähler, in der Automatentheorie lediglich endliche Automaten. Ein
tiefliegendes strukturelles Resultat, das sowohl für Turingmaschinen als
auch für endliche Automaten gilt, ist der folgende Kreuzproduktsatz : Ist
f × g eine (n+m)-aufzählbare Funktion, so ist f eine n-aufzählbare oder g
eine m-aufzählbare Funktion. Dieser Satz gilt nicht im Polynomialzeitfall.

Aufzählbarkeit kann auch benutzt werden, um die Komplexität von
Sprachen zu quantifizieren. Dazu wird gefragt, wie schwierig es ist, die n-
fache charakteristische Funktion χnA und die n-fache Kardinalitätsfunktion
#n
A einer Sprache A aufzuzählen. Eine Sprache A ist (m,n)-verbose, falls χnA
m-aufzählbar ist. Die Inklusionsstrukturen der Verbosenessklassen von
Turingmaschinen und der von endlichen Automaten sind gleich: alle (m,n)-
Turing-verbosen Sprachen sind genau dann (h, k)-Turing-verbose, wenn alle
in Bezug auf endliche Automaten (m,n)-verbosen Sprachen (h, k)-verbose
sind. Dies gilt nicht im Polynomialzeitfall.

Die Aufzählbarkeit von #n
A ist in der Rekursionstheorie wohluntersucht.

Kummers Kardinalitätssatz besagt, dass A rekursiv ist, falls #n
A von einer

Turingmaschine n-aufgezählt werden kann. Vermutlich gilt dieser Satz
auch für endliche Automaten: Zumindest der Nonspeedupsatz, der Kardi-
nalitätssatz für zwei Worte und der eingeschränkte Kardinalitätssatz gelten
für endliche Automaten. Der Kardinalitätssatz gilt nicht im Polynomial-
zeitfall.

Die Hauptbeweise in dieser Arbeit benutzen zwei Techniken, deren Ein-
satz auch in anderen Gebieten vielversprechend erscheint: generische Be-
weise und Astdiagonalisierung. Generische Beweise benutzen elementare



Definitionen, ein Konzept aus der Logik, um Aufzähler zu definieren. Solche
Beweise lassen sich auf alle Berechnungsmodelle anwenden, die unter ele-
mentaren Definitionen abgeschlossen sind. Dies ist für endliche Automaten
der Fall, aber auch für die Presburgerarithmetik und die Ordinalzahl-
arithmetik. Die zweite Technik ist eine neue Diagonalisierungsmethode, bei
der Maschinen auf dem Kode der bisherigen Folge von Diagonalisierungs-
entscheidungen ausgetrickst werden und nicht auf ihrem eigenen Kode.
Astdiagonalisierung ist nicht universell einsetzbar, aber wo sie eingesetzt
werden kann, kann man mit ihrer Hilfe gegen Turingmaschinen mittels
endlicher Automaten diagonalisieren.

Die Resultate über Aufzählbarkeitsklassen haben Anwendungen, so bei
Protokolltests mittels endlicher Automaten, bei Klassifikationsproblemen
mit Beispielen und bei Trennbarkeitsfragen. Ein schönes Beispiel einer
solchen Anwendung lautet wie folgt: Existieren regulär Obermengen von
A×A, A× Ā und Ā× Ā, deren Schnitt leer ist, so ist A regulär.



Table of Contents

Preface . 
Abstract . 
Zusammenfassung . 
List of Notations . 
List of Figures . 

First Chapter

Introduction 

. My Thesis . 
. Concepts of this Dissertation 
. Results of this Dissertation . 
. Methodology of this Dissertation 
. Organisation of this Dissertation 
. My Motivation . 

Second Chapter

The Class of Regular Relations and Its Closure Properties 

. Review of Finite Automata . 
. Definition of Regular Relations 
. Review of First-Order Logic and Second-Order Logic 
. Logical Characterisations of the Class of Regular Relations . . 

Third Chapter

Enumerability 

. Review of Turing Enumerability 
. Review of Finite Automata Enumerability 
. Definition of Generic Enumerability 
. The Generic Cross Product Theorem 

Fourth Chapter

Towards a Cardinality Theorem for Finite Automata 

. The Generic Generalised Nonspeedup Theorem 
. The Generic Cardinality Theorem for Two Input Words 
. The Generic Restricted Cardinality Theorem 
. Constructiveness of the Generic Theorems 



Fifth Chapter

The Branch Diagonalisation Method 

. The Art of Branch Diagonalisation 
. Branch Diagonalisation and Separation of Verboseness Classes . 
. Branch Diagonalisation and Separable Sets 
. Branch Diagonalisation and the Complexity of Odd Languages 

Sixth Chapter

Applications of Enumerability and Cardinality Computations 

. Cardinality Computations and Separable Sets 
. Finite Automata Protocol Monitors 
. Classification with Examples 

Seventh Chapter

Conclusion 

. Which Results Hold for Which Models? 
. Relevance of the Main Results 
. Outlook . 

Bibliography . 



List of Notations

The notations are sorted alphabetically with Greek symbols inserted ac-
cording to their English transliteration. Special symbols are put at the
front. Modifiers on languages and alphabets, like the star in A∗, are listed
at the letter A. Modifiers on words and bitstrings are listed at the letter W.
Modifiers on relations are listed at the letter R.

| . | The cardinality of a set. Also the length of a word.
=ae Denotes that two set are equal almost everywhere,

that is, that their symmetric difference is finite.
< Denotes irreflexive well-orderings.
≤lex, ≤std The lexicographical (dictionary) and standard (first

lengthwise, then lexicographical) orderings of words.
v Prefix relation on words.
≺, � The irreflexive and reflexive lengthwise preorderings

of words; see example ..
|= The modelling relation; see page .
× The cross product of sets as in A×B. Also the cross

product of functions as in f × g, which is defined by
(f × g)(u, v) :=

(
f(u), g(v)

)
.

→partial Denotes partial functions as in f : A→partial B.
(a, b] The half-open interval {x ∈ R | a < x ≤ b}.
(x1, . . . , xn)t . . . Column vector obtained by transposing the row vector

(x1, . . . , xn).
#n
A The cardinality function of the language A, which is

defined by #n
A(w1, . . . , wn) :=

∣∣{w1, . . . , wn} ∩A
∣∣.

A A language.
Ā The complement of A, that is, Ā := Σ∗ \A.
A+ The set of words that can be formed out of words in A,

that is, A+ := {w1 · · ·wn | n ≥ 1, wi ∈ A}.
A∗ The Kleene star of A, that is, A∗ := A+ ∪ {ε}.
An Set of n-tuples of words in A.
A(n) Set of n-tuples of pairwise different words in A; see

notation ..
A(nk) Set of n-tuples of pairwise different words such that

exactly k of them are in A; see notation ..
A〈n〉 The tupling alphabet for n words over the alphabet A;

see definition ..
α An assignment; see definition ..



binG Binary representation of the graph G.
binM Binary representation of the machine M .
binn Binary representation of the natural number n.
bin` n Binary representation of the natural number n padded

with leading zeros to a minimum length of `.
cS The constant symbol c interpreted in the logical struc-

ture S; see definition ..
χA, χnA The characteristic function and the n-fold character-

istic function of the language A. The ith bit of the
bitstring χnA(w1, . . . , wn) is 1 iff wi ∈ A.

δ, δ̂ The transition function and the extended transition
function of a dfa; see Definitions . and ..

∆ The transition relation of an nfa; see definition ..
distinct(u1, . . . , un) Logical formula that expresses that all ui are pairwise

distinct.
dtime[f] The class of languages decidable by deterministic Tur-

ing machines in time f .
ε The empty word.
Er(C) The r-reduction closure of the class C; see page .
ENC(n) The generic enumerability class of a class C of rela-

tions; see definition ..
ENfa(n) The class of all n-fa-enumerable functions; see exam-

ple ..
ENOn(n) The class of all functions that are n-enumerable in

ordinal number arithmetic; see example ..
ENPa(n) The class of all functions that are n-enumerable in

Presburger arithmetic; see example ..
ENre(n) The class of all n-Turing-enumerable functions; see

example ..
F The set of accepting states of a finite automaton; see

definition ..
fn A function symbol of arity n; see definition ..
fS The function symbol f interpreted in the logical struc-

ture S; see definition ..
fdspace[s] The class of functions computable by deterministic

Turing machines in space s.
FL The class of functions computable by deterministic

Turing machines in logarithmic space.
FP The class of functions computable by deterministic

Turing machines in polynomial time.
IΣ The index structure over the alphabet Σ; see defini-

tion ..



Iσ(u, v) True if the |v|-th letter of u is σ; see definition ..
I2(u, v) True if the |v|-th letter of u ‘is a blank’; see exam-

ple ..
K The halting problem, that is, K = {binM | M halts

on input binM}.
L(M) The language accepted by the automaton M ; see def-

inition .. Also the language accepted by the Turing
machine M .

L
(
M (), X

)
. . . . The language accepted by the oracle Turing machine

M () relative to the oracle X.
M A deterministic finite automaton. Also a deterministic

Turing machine.
M () An oracle Turing machine.
MX An oracle Turing machine whose queries are answered

by the oracle X.
M(w) The final output of the dfa M on input w; see defi-

nition .. Also the output of the Turing machine M
on input w.

N A nondeterministic finite automaton.
N The set of natural numbers, that is, N = {0, 1, 2, . . .}.
NP The class of languages that are decidable in polyno-

mial time by nondeterministic Turing machines.
O(f) The class of functions that are ‘Big Oh of f ’.
odd

n
A Set of n-tuples of words such that an odd number of

them is in A; see definition ..
P The class of languages that are decidable in polyno-

mial time by deterministic Turing machines.
P/f Polynomial-time advice class with f(`) advice bits for

words of length `; see definition ..
P/k Polynomial-time advice class with k advice bits per

word length; see definition ..
P/poly Polynomial-time advice class with polynomially many

advice bits per word length; see definition ..
P-sel, PX-sel . . . The class of sets that have a selector in FP, respec-

tively FPX ; see definition ..
φ, ψ First-order or second-order formulæ.
φ(u1, . . . , un) . . . A first-order or second-order formula in which the free

variables are (u1, . . . , un).
φS(u1, . . . , un) . . The relation that is elementarily defined by φ in S;

see definition ..
φε(v) True if v is the empty word; see example ..



Q A finite set of states; see definition ..
Qinitial The set of initial states of an nfa; see definition ..
qinitial The initial state of a dfa; see definition ..
Qσ(i) True in a word structureWw if the ith letter of w is σ;

see definition ..
R A relation, that is, R ⊆ Un for some universe U .
R[u1, . . . , uk] . . . The set

{
(uk+1, . . . , un) ∈ Un−k | (u1, . . . , un) ∈ R

}
for an n-ary relation R ⊆ Un; see notation ..

Rn A relation symbol of arity n; see definition ..
RS The relation symbol R interpreted in the logical struc-

ture S; see definition ..
Rr(C) The r-reduction closure of the class C; see page .
S A logical structure; see definition ..
SC|U Structure for ‘talking about’ the relations in C that

have universe U ; see definition ..
σ∗ A fixed element of an alphabet Σ.
Σ An alphabet, that is, a nonempty finite set.
Σ〈n〉 The tupling alphabet for n words over the alphabet Σ;

see definition ..
semirec The class of semirecursive sets; see definition ..
τ A logical signature.
τΣ Signature for word structures over the alphabet Σ; see

definition ..
U Universe of a logical structure; see definition ..
u1, u2, u3, Variables for formal first-order variables.
v1, v2, v3, Formal first-order variables; see definition ..
Vn

1 ,V
n
2 ,V

n
3 , Formal second-order variables of arity n; see defini-

tion ..
VC(m,n) The generic class of all (m,n)-verbose languages of a

class C of relations; see definition ..
Vfa(m,n) The class of all (m,n)-fa-verbose languages; see defi-

nition ..
Vre(m,n) The class of all (m,n)-Turing-verbose languages; see

definition ..
w A word, that is, an element of Σ∗ for some alphabet Σ.
w[i1, . . . , ik] . . . The i1th, . . . , ikth letters of the word w.
wreversed The word w read backwards.
|w| Length of the word w.
〈w1, . . . , wn〉 . . . The coded tuple of the words w1, . . . , wn; see defini-

tion ..
Ww The word structure of the word w; see definition ..



List of Figures

- An Automaton that Accepts the Lexicographical Ordering . . . 
- Impossible Situation in Linearised Tournaments 
- How to Simulate a Virtual Tape 

- Finite Automata Enumerability of Characteristic Functions . . 
- Finite Automata Enumerability of Cardinality Functions 
- How to Obtain a Pool from a Hard Element 
- How to Obtain a Pool for an Easy Element 

- Visualisation of the Branch Diagonalisation Process 
- Membership Claims Made in a Branch Diagonalisation Proof . 
- Languages Used in a Branch Diagonalisation Proof 



First Chapter

Introduction



Section .

My Thesis

The enumerability and verboseness classes of finite automata on the one
hand and of Turing machines on the other hand share numerous struc-
tural properties. They do not share these properties with intermediate
resource-bounded computational models. Especially the finite automata ver-
sions of these classes have applications in areas unrelated to enumerability.
Two methods that are used for the proofs of the structural similarities—
elementary definitions of regular relations and branch diagonalisation—will
be applicable to other proofs in automata, complexity, and recursion theory.

If you are already convinced of my thesis, you can stop reading now since
you have attained my goal. However, I presume that you will accept my
thesis (or any other) only after sufficient proof has been given. For this
reason, this dissertation contains five chapters that try to provide ample
evidence for my thesis. The distinction between ‘my thesis’ (by which I refer
to the above claims) and ‘my dissertation’ (by which I refer to the whole
dissertation essay) is admittedly rather old-fashioned, but hopefully useful:
the thesis states succinctly what I try to convince you of, the dissertation
is my not-so-succinct means of achieving this.

This introductory chapter is organised as follows. In section . an
overview is given of the concepts treated in this dissertation. This overview
is only intended to explain the intuition behind the concepts—detailed
formal definitions are given in the main text. In section . the main results
that I have obtained are listed. In section . an overview is given of the
methods that are employed in the proofs of the main results. In section .
the organisation of this dissertation is sketched. In section . I present
my personal motivation and the a priori motivation for studying the main
concepts. An a posteriori analysis of the actual relevance of the obtained
results is given in the conclusion chapter.

Section .

Concepts of this Dissertation

Three core concepts are treated in this dissertation: enumerability, verbose-
ness, and cardinality computations. They are motivated below. Non-core
(though by no means unimportant) concepts like separability, protocol test-
ing, or classification with examples are explained at the beginnings of the



chapters that treat them. The central proof concepts are explained in the
methodology section.

Enumerability

Most results of this dissertation concern the enumerability of functions.
Functions can be used to formalise problems: problems ask us to produce
solutions (like the least cost of a sightseeing tour) for problem instances
(like a city map together with a list of sightseeing points to be visited).
The formal mapping of problem instances to solutions is a function. Unfor-
tunately, many interesting functions turn out to be too difficult to compute
within the time or space available. Fortunately, we often do not need to
compute functions exactly, but require only some sort of approximation of
the correct value.

An approximation is ‘close’ to the correct value. In classical approxima-
tion theory, see (Ausiello et al., ) for an introduction, approximations
are within a constant factor of the correct value. For example, for the
‘sightseeing tour problem’, a good approximation of the cost of an optimal
sightseeing tour is a number z that is within a small constant factor α of
the cost of the optimal tour. If such a number z is output, the optimal cost
is known to lie between z/α and z, that is, it is known to be an element of
the set {dz/αe, . . . , z}.

The idea behind enumerability is to allow more general sets. An enu-
merator for a function f outputs, for every input w, a small set that con-
tains f(w). This set need not be an interval. In particular, it can contain
values that are far removed from the correct value. The only requirement
is that the set of possibilities is small. For example, consider the function
#sat that maps (the code of) every propositional formula φ to (the code
of) the number of satisfying assignments of this formula. On input of the
formula p ∨ q ∨ r, an enumerator for #sat might output {0, 1, 6, 7}, which
contains the correct value 7. Another enumerator might produce the set
{4, 5, 6, 7} or any other set, as long as it contains the number 7. Enumer-
ators are classified according to the size of the sets they enumerate, since
a small set is a better ‘approximation’ than a larger set, and according to
the computational resources they use. An enumerator that always outputs
sets of size at most m is called an m-enumerator.

What functions are easy to enumerate? Certainly, functions having
only a small range can easily be enumerated. For example, we can triv-
ially -enumerate the characteristic function of every language and we can
-enumerate the cross product of any two characteristic functions. How-
ever, many functions that arise in practice cannot be enumerated easily
(possibly unless certain unlikely collapses of complexity classes occur). For



example, Cai and Hemachandra () have shown that #sat cannot be
poly-enumerated unless sat ∈ P. This means that unless P = NP, we can-
not enumerate a set of size polynomial in the length of the input formula
that contains the correct number of the formula’s satisfying assignments.
Beals et al. () have shown that if the function that maps a graph to the
number of its automorphisms is poly-enumerable, then the graph isomor-
phism problem is in RP. Mitsunori Ogihara and myself () have shown
that the graph automorphism problem is in P under the same assumption.

Enumerability is a relatively new concept, despite its simplicity and
its range of applications. It was introduced thirteen years ago by Cai
and Hemachandra () in the context of resource-bounded computations,
was transferred to resource-unbounded computations five years later by
Kummer and Stephan (), and was transferred to finite automata only
recently (Tantau, a,b).

Verboseness

The second concept studied is the verboseness of languages. Verboseness is
closely related to enumerability: the verboseness of a language A quantifies
how difficult it is to enumerate the n-fold characteristic function χnA of A.
This function takes n words as input, n being some fixed number, and
yields a bitstring as output whose ith bit is 1 iff the ith word is an element
of A. Characteristic strings tell us exactly which words are in a language
and which are not. If the n-fold characteristic function of a language is
m-enumerable, the language is called (m,n)-verbose.

Studying verboseness means studying the enumerability of functions
of a special kind, namely characteristic functions. Results obtained for
enumerability classes thus apply directly to verboseness.

Verboseness was originally defined differently, namely in terms of boun-
ded query classes, see (Beigel, ), (Gasarch, ), and (Gasarch and
Martin, ). The relationship is the following: if one can compute the
n-fold characteristic function of a language by asking k queries to some or-
acle X, one can also 2k-enumerate the function without asking any queries;
and conversely. Verboseness has been studied extensively for polynomial-
time computations. An important result in this context was independently
submitted by three research groups to the  Structure in Complex-
ity Theory Conference, see (Agrawal and Arvind, ), (Beigel et al.,
a), and (Ogihara, ) for the journal versions. It states that no
NP-hard problem can be polynomial-time (2n − 1, n)-verbose for any n,
unless P = NP. The finite automata version of verboseness classes was first
defined in (Tantau, a).



Cardinality Computations

The third central concept studied is cardinality computations. In such a
computation we do not try to determine which input words are in a lan-
guage, but how many. We get n input words and are asked to count the
number of words in A among these input words.

This counting problem, raised in its general form by Gasarch (),
plays an important rôle in a variety of proofs, both in complexity theory
(Mahaney, ; Immerman, ; Szelepcsényi, ; Hemachandra, ;
Kadin, ) and recursion theory (Kummer, ; Kummer and Stephan,
; Beigel et al., ). To give just one example: the core idea behind
the Immerman–Szelepcsényi theorem is to decide the reachability problem
by first counting the number of reachable vertices in a graph.

The enumerability of cardinality functions is a fruitful subject. A pro-
found result, due to Martin Kummer (), states that if the n-fold car-
dinality function of a language is n-enumerable, then the language must
be recursive. This result is known as the cardinality theorem. Extensions
in different directions were obtained by Kummer and Stephan () and
Nickelsen (). The study of the enumerability of cardinality functions
by finite automata was started in (Tantau, b).

The three concepts ‘enumerability’, ‘verboseness’, and ‘cardinality compu-
tations’ are studied by addressing the following questions:

. What are the structural properties of enumerability classes for dif-
ferent computational models? That is, how are the classes of m-enu-
merable functions related?

. What does the inclusion structure of verboseness classes look like for
different computational models? That is, for which numbers m, n, h,
and k are all (m,n)-verbose languages also (h, k)-verbose?

. What can be said about languages whose cardinality function is enu-
merable by a finite automaton?

. Which applications of enumerability exist in other areas?

Section .

Results of this Dissertation

About sixty theorems, corollaries, and lemmas are proved in this disserta-
tion. All of them are enlightening in one way or another—otherwise there
would be no point in presenting them. In the following I point out only



those results that directly support my thesis. Recall that it states that
the structures of Turing machine and finite automata enumerability classes
are similar, while they are different from the corresponding structure for
resource-bounded computations.

. I prove a purely structural theorem on enumerability classes, which
holds both for Turing machines and for finite automata. It states
that if the cross product (or, equivalently, the parallel application)
of two functions is (n+m)-enumerable, then either the first func-
tion is n-enumerable or the second function is m-enumerable. Unlike
previous results due to Beigel () and Beigel et al. (b), this
cross product theorem is true for all functions, not just for functions
of a special kind. The theorem does not hold for resource-bounded
computations.

. I prove that, somewhat surprisingly, the intricate inclusion structure
of verboseness classes is identical for Turing machines and for finite
automata and different from the inclusion structure for resource-
bounded Turing machines. This result is derived directly from the
cross product theorem and from a branch diagonalisation argument
(see below).

. I prove that different weak forms of Kummer’s recursion-theoretic
cardinality theorem hold for finite automata. Recall that Kummer’s
theorem states that if the n-fold cardinality function of a language
can be n-enumerated by a Turing machine, then the language must
be recursive. I conjecture that not only the weak versions, but also
the complete cardinality theorem holds for finite automata. Even
the weak forms of the cardinality theorem do not hold for resource-
bounded computations.

My thesis states that enumerability classes have applications in seemingly
unrelated areas. The following results, which are shown in the sixth chap-
ter, support this claim.

. Enumerability and cardinality computations can be applied to the
study of separability. For example, I show that the following state-
ment is equivalent to Kummer’s cardinality theorem: if A is a lan-
guage for which there exist recursively enumerable supersets of A(n0),
A(n1), . . . , A(nn) whose intersection is empty, then A is recursive. Here
A(nk) is the set of all n-tuples of pairwise different words such that
exactly k of them are in A. For finite automata I show that if A is a
language for which there exist regular supersets of A×A, A× Ā, and
Ā × Ā whose intersection is empty, then A must be regular. A final



example of a result of this type is a counterexample to an old theorem
of Kinber (): I show that there exist disjoint (3, 5)-fa-separable
languages that are recursively inseparable. Kinber had claimed that
such languages must be separable by finite automata.

. Consider a finite automaton that monitors n high-speed data lines.
It should tell us which lines are faulty, that is, on which lines some
protocol is violated. I show that the automaton must receive at least
blog2 nc + 1 bits from some external device in order to compute the
set of faulty lines, if the protocol is not regular. This lower bound is
tight.

. I show that, for decision problems, ‘examples do not help’ Turing
machines and finite automata, but examples do help in resource-
bounded computations. An n-example decision problem asks us to
decide whether an input w is in a certain language, but we get help
in the form of n further examples of words that are also in the lan-
guage if w is, and that are not in the language if w is not.

Section .

Methodology of this Dissertation

The way the main results are proved is perhaps as important as the re-
sults themselves. Three techniques are used: the core results are proved
in a ‘unified’ or ‘generic’ way; regular languages are constructed using ele-
mentary definitions; and branch diagonalisation is used to separate classes
defined in terms of finite automata from classes defined in terms of Turing
machines.

Generic Proofs are Applicable to Different Computational Models

My thesis states that the enumerability and verboseness classes of finite
automata and Turing machines share numerous structural properties. This
thesis is supported by theorems like theorem ., which states that the in-
clusion structure of finite automata and Turing machine verboseness classes
is identical. However, although such theorems tell us that similarities exist,
they do not tell us why they exist. A priori there are two opposing possi-
ble explanations: finite automata and Turing machines might just happen
to share these structures—but just ‘by coincidence’ and totally different
proofs and techniques are needed to establish and prove these structures;
or they might have the same structure because essentially the same proof
works both for finite automata and for Turing machines.



At least in some cases, the latter is true. I formulate ‘generic’ theorems
that leave the underlying computational model open. They have the form
‘for every computational model with certain properties, the structure looks
like this: . . . ’. Since finite automata and Turing machines satisfy these
properties, the structures are the same for them. The generic proof pins
down why this is the case.

For verboseness classes I formulate strong generic theorems that can be
instantiated for finite automata and for Turing machines.

For cardinality computations, the situation is (currently) different. The
generic theorems formulated for them impose stronger requirements on
the computational model: the class of accepted relations must be closed
under elementary definitions. While finite automata enjoy this property
(see below), Turing machines do not. For this reason, my proofs for the
weak forms of the cardinality theorem for finite automata are conceptually
different from the proofs in the literature for Turing machines. It might be
possible that the weak forms of the cardinality theorem ‘happen’ to hold
for finite automata and for Turing machines, but for different reasons.

One might argue that the generic proof approach is unnecessary for the
finite automata versions of the cardinality theorem, since it is not ‘generic
enough’ to work also for Turing machines. There are two reasons why I
believe that the generic approach is still useful here. First, there are various
interesting computational models that satisfy the strong properties required
in the proofs. They include Presburger arithmetic, which has recently had
a renaissance in model checking; the arithmetical hierarchy, which is closely
linked to Turing machine computations; and in a limited way even ordinal
number arithmetic, which is a central tool in set theory. Second, there
might be a generic proof of the complete cardinality theorem that works
both for Turing machines and for finite automata.

Elementary Definitions of Regular Relations

In many proofs I define regular languages and relations in terms of existing
ones and in terms of first-order formulæ. Using logic for the specification
of languages and problems has a long tradition and numerous characterisa-
tions are known. Surveys have been written by Immerman (), who
treats logical characterisations of complexity classes, or by Ebbinghaus
and Flum (), who focus on regular languages. I have met theorists
who claim that ‘a complexity class deserves that name iff it has a logical
characterisation’.

Often, the study of logical characterisations of language classes is moti-
vated by the desire to understand the classes better. For example, consider
the characterisation of the class P of problems decidable in polynomial time



in terms of first-order logic augmented by least fixed point operators. This
characterisation pins down the complexity of the class P rather nicely, but it
is only very seldomly, if at all, used in writing programs. The same is true of
Büchi’s beautiful second-order characterisation of regular languages: regu-
lar languages are commonly defined in terms of finite automata or in terms
of regular expressions, but almost never in terms of formulæ in monadic
second-order logic. In these cases, the logical formalism is, at best, a theo-
retical foundation for real specification purposes.

Quite differently, my study of the first-order characterisation of regu-
lar languages was directly motivated by a need for an appropriate way of
defining regular languages in terms of existing ones. A corollary of the
characterisation provides such a way.

The first-order characterisation states that there exists a simple logical
structure IΣ, whose universe is Σ∗, such that a language over Σ is regu-
lar iff there exists a first-order formula φ with one free variable with the
following property: in order to ‘test’ whether a given word is an element
of the language, we plug in this word for the free variable in φ and then
check whether φ holds. This characterisation has been known for a long
time: it was first reported by Büchi in . However, his conceptually
different characterisation of regular languages in terms of monadic second-
order logic received much more attention. Nevertheless, work on first-order
characterisations of regular languages did not stop, see for example Bruyère
and Hansel () for some recent results.

An important corollary of the characterisation states that every first-
order formula, interpreted in any logical structure in which all relations are
regular, defines a regular language. A relation is regular if it is accepted by
a finite automaton that gets word tuples as input. The components of the
tuple are put on separate tapes, which are read synchronously. For example,
(the graph of) the addition function is regular and thus the corollary allows
us to make claims like the following one: ‘the language A = {binn | n ≡ 0
mod 7} is regular since it can be defined by x ∈ A :⇐⇒ ∃y

(
y + y + y +

y + y + y + y = x)’, where binn denotes n’s binary representation.
The method of ‘defining regular relations in terms of other regular re-

lations’ is used in various proofs. The use of the logical formalism is never
strictly necessary. Each time it could be replaced by a direct argument.
Union, intersection, and complementation can ‘simulate’ logical disjunc-
tions, conjunctions, and negations in formulæ. Quantifiers can be simu-
lated by clever constructions of alternating automata. However, already
for formulæ involving just one quantifier alternation, as in the proof of
theorem ., ‘logic-free’ arguments quickly become hopelessly involved.

The whole treatment of first-order formulæ was born out of a desire to
simplify the presentation of the proofs of this dissertation. However, it has



now become an integral part of the generic proof approach: in order to
apply the generic theorems to finite automata, the closure of the class of
regular relations under elementary definitions is vitally needed.

There is no reason to believe that the method cannot also be applied to
other problems. One example is given at the end of the next chapter, where
it is used to show that every tournament on words with a regular edge
relation can be ‘linearised’ using a finite automaton. The corresponding
statement for polynomial-time computations is still an open problem, see
Hemaspaandra et al. () for an informed guess.

The Branch Diagonalisation Method

I introduce a new diagonalisation technique that I call ‘branch diagonalisa-
tion’. Except for one proof in a technical report by Kummer and Stephan
(), where a similar but weaker argument is used, branch diagonalisa-
tion seems to be a new concept. The method is not universally applicable,
but where it is, it yields extremely strong separations. Branch diagonal-
isation, like other diagonalisation methods, is a method, not a particular
theorem.

Just as in any other diagonalisation we construct a language L by sys-
tematically tricking every machine that could witness that L has a certain
property. For each machine M we make an appropriate diagonalisation de-
cision, which means that we define the characteristic string of some words
in such a way that M does witness that L has the property. The words for
which we trick the machines are called diagonalisation points. By choos-
ing the diagonalisation points appropriately, we can ensure that L still has
certain desirable properties. Diagonalisation methods differ mainly in how
the diagonalisation points are chosen.

Most diagonalisation methods follow a variant of a simple rule for choos-
ing diagonalisation points: trick the ith machine on its own binary encod-
ing. Advanced methods from recursion theory, namely finite and infinite in-
jury arguments, also use this rule, but they reassign diagonalisation points
if this turns out to be necessary. An advanced method from complexity
theory, the super-sparse set technique, does not interpret words themselves
as codes of machines, but rather the iterated logarithm of their length.

Branch diagonalisation uses a different rule for choosing diagonalisation
points: trick each machine on the binary code of the string of all previous
diagonalisation decisions. This rule ensures that every diagonalisation point
encodes the whole previous diagonalisation process. Given two words that
encode two different diagonalisation sequences, even a finite automaton can
compute up to which point the diagonalisation sequences agree and it can



compute what ‘happened’ when the sequences split. In certain situations
this information suffices for showing that the diagonalisation language has
a certain property, like being (m,n)-finite-automata-verbose.

To give a flavour of the strength of branch diagonalisation when com-
pared to standard diagonalisation techniques, consider the classes Vp(m,n)
and VXp (m,n). The first class contains all polynomial-time (m,n)-verbose
languages, that is, all languages whose n-fold characteristic function is m-
enumerable by a polynomially time-bounded Turing machine. The second
class is the relativisation of Vp(m,n) to the oracle X.

Using a super-sparse set diagonalisation, Richard Beigel (; )
has shown that, for fixed n, the classes Vp(m,n) form a proper hierarchy:

Vp(1, n) (Vp(2, n) (· · · (Vp(2n − 1, n) (Vp(2n, n).

This hierarchy is not the end of the story. By ‘thinning out’ the diagonal-
isation language, one can show that for every recursive oracle X we also
have Vp(m + 1, n) 6⊆ VXp (m,n) for m < 2n. This is no longer true for
all m < 2n if we take a nonrecursive language as oracle X. For exam-
ple Vp(n, n) ⊆ VK

p (n− 1, n), where K is the halting problem, by Beigel’s
nonspeedup theorem (Beigel, ).

For some m we have Vp(m+1, n) 6⊆ VXp (m,n) for all oracles X, regard-
less of whether they are recursive or not. Using branch diagonalisation we
can identify all such m. A non-trivial example is n, but other examples
also exist. This shows that in the hierarchy some non-inclusions are ‘more
robust’ than others. The robust ones can only be shown by branch diago-
nalisation, the less robust ones by standard diagonalisation techniques.

Branch diagonalisation is used to prove one of the core results that
support my thesis: the inclusion structures of Turing machine and finite
automata verboseness classes are identical. I do not know of a way of
proving this result without the use of branch diagonalisation.

Just as for the definition of regular relations in terms of existing ones,
there is no reason to believe that branch diagonalisation can only be applied
to the study of verboseness. There is a lot of evidence that the method is
applicable to other problems. For example, using branch diagonalisation, I
show that the intersection of two P-selective languages need not be semire-
cursive. This is a stronger statement than what was previously known:
Hemaspaandra and Jiang () have shown that for every recursive time
bound t, the intersection of two P-selective languages need not have a se-
lector that can be computed in time t. Their proof cannot be extended
to prove the stronger statement established in this dissertation, since their
proof is based on super-sparse sets. The branch diagonalisation proof is
also simpler.



Section .

Organisation of this Dissertation

This dissertation consists of five main chapters, plus the present introduc-
tory chapter and a conclusion chapter. As far as possible, each of the main
chapters is devoted to a single subject. The second chapter and most of
the third chapter introduce the machinery needed for the formulation and
the proofs of the main results. These are proved at the end of the third
chapter, in the fourth chapter, and in the fifth chapter. The sixth chapter
discusses applications in areas unrelated to enumerability.

Second Chapter:
The Class of Regular Relations and Its Closure Properties

In the second chapter regular relations are studied. Different concepts are
called ‘regular relations’ in the literature. Although these concepts are
similar, there are subtle differences that cause different properties. My def-
inition yields the same class as the one studied by Büchi (), although
his definition is more complicated. My definition has the following advan-
tages: it is easy to formulate and to use; the class of regular relations is
a robust class that is closed under many operations; and functions whose
graphs are regular can be computed in logarithmic space and in linear time.

Apart from presenting numerous examples of regular relations, the sec-
ond chapter also includes a proof of the main closure property of the class
of regular relations: they are closed under elementary definitions. Since
first-order and monadic second-order logic are needed for the proof of this
closure property and since first-order logic is used in all sorts of proofs later
on, the second chapter includes a short review of first-order and second-
order logic.

Third Chapter:
Enumerability

In the third chapter enumerability classes are introduced. First, enumer-
ability classes that have previously been studied in the literature are re-
viewed. Since one of the aims of this dissertation is to give unified proofs
of the main results whenever possible, I introduce a generic form of enu-
merability. In essence, a function is m-enumerable with respect to some
class C if there exists a relation in C that contains the function’s graph
and is m-bounded. By varying the class C, previously studied enumerabil-
ity classes can be obtained. Generic theorems can be formulated that hold



for all enumerability classes defined in terms of a class C that satisfies cer-
tain closure properties. The generic definition of enumerability is general
enough to capture ‘computational models’ like Presburger arithmetic and
even ordinal number arithmetic. At the end of the third chapter the first
generic theorem is proved, namely the cross product theorem. It is proved
there and not alongside the other generic theorems in the fourth chapter,
because it is a ‘pure’ structural theorem on enumerability classes.

Fourth Chapter:
Towards a Cardinality Theorem for Finite Automata

In the fourth chapter generic proofs of weak forms of the cardinality theo-
rem are presented. The driving force behind the whole chapter is my desire
to prove the following conjecture: if the n-fold cardinality function of a
language A can be n-enumerated by a finite automaton, then A is regular.
I do not know whether this conjecture is true, but the weak forms of the
cardinality theorem support it.

First, I prove a generic generalised nonspeedup theorem. It can be in-
stantiated both for finite automata and for Turing machines, which yields
a unified proof of these results. Second, I prove a generic cardinality theo-
rem for two input words. This theorem cannot be instantiated for Turing
machines, since the class of recursively enumerable languages is not closed
under complement. However, it can be instantiated for finite automata
and also for Presburger arithmetic. Thus the cardinality theorem is true
for finite automata at least for n = 2. Interestingly, in recursion theory the
cardinality theorem had also first been shown for two words, before Kum-
mer succeeded in proving it for all n. Third, I prove a generic restricted
cardinality theorem, which can also be instantiated for finite automata.

Together, these three results bring us as near to a proof of the cardinality
conjecture for finite automata as did the results in recursion theory before
Kummer’s breakthrough proof of the cardinality theorem.

Fifth Chapter:
The Branch Diagonalisation Method

The fifth chapter is a ‘tutorial’ on the branch diagonalisation method. The
method is crucially needed in the proof that the inclusion structures of Tur-
ing machine and finite automata verboseness classes coincide. The chapter
starts with an example of a ‘simple’ branch diagonalisation. Then I extract
the core ideas of the proof and construct a framework for branch diago-
nalisations. In the main section of the chapter, this framework is applied
to verboseness classes. In the following sections, branch diagonalisation is



used to construct a counterexample to a theorem of Kinber and it is applied
to the study of reduction closures of selective languages.

Sixth Chapter:
Applications of Enumerability and Cardinality Computations

In the sixth chapter results on enumerability are applied to unrelated set-
tings. These are: separability of languages and relations, protocol checking
using finite automata, and classification with examples.

Seventh Chapter:
Conclusion

In the conclusion chapter the ideas, concepts, and results of the five main
chapters are regrouped and analysed ‘in hindsight’. A summary is given
of which results hold for which computational models; an appraisal is at-
tempted of the relevance of the ideas, concepts, and results; and possible
future work is outlined.

Section .

My Motivation

Much of the research presented in this dissertation was initiated a little
over two years ago by a talk given by Ulrich Hertrampf at a complexity
theory workshop in Ilmenau. His talk, which was entitled ‘Über (m,n)-
reguläre Sprachen’, treated frequency computations by finite automata. In
a frequency computation a finite automaton gets n input words and outputs
a bitstring that agrees on at least m positions with the characteristic string
of the words.

Here in Berlin, we were also studying frequency computations, but only
as part of the more general theory of ‘partial information algorithms’ due
to Arfst Nickelsen (). We had not thought of applying our theory to
finite automata. During his talk, Ulrich conjectured that if a frequency
computation is possible for a language for some m ∈ {1, . . . , n}, then the
language must be regular. Arfst and I managed to produce a counterexam-
ple to this conjecture on the spot, namely appropriate standard left cuts.
This raised the interesting (and still open) question of what the inclusion
structure of finite automata frequency classes looks like.

Frequency classes are related to verboseness classes: a frequency com-
putation for m = 1 is possible iff the language is (2n − 1, n)-verbose.



Thus it was only natural to define finite automata verboseness classes. We
knew that nonregular (3, 2)-fa-verbose languages exist and, obviously, every
(1, 2)-fa-verbose language is regular. This left the case of (2, 2)-fa-verbose
languages open. What could be said about them?

On the way back from Ilmenau, which I still remember vividly since it
was raining madly and the autobahn was packed with cars, I pondered on
this question. For Turing machines, Beigel’s nonspeedup theorem stated
that (2, 2)-verbose languages are recursive. For polynomial-time computa-
tions, it was known that (2, 2)-verbose languages need not be polynomial-
time computable. The reason was, roughly spoken, that polynomially time-
bounded machines ‘run out of time’ when trying to perform a certain search
procedure used in the proof of the nonspeedup theorem. Surely finite au-
tomata, being even less powerful than polynomial-time machines, should
‘fail even more’ when trying to perform a search.

I fully believed that there exist arbitrarily complex (2, 2)-fa-verbose
languages. It was very surprising to me when a week later or so I stumbled
across an argument that seemed to show that (2, 2)-fa-verbose languages
are decidable at least in polynomial space. Excitedly, I rushed to Arfst,
whose office is next door, and sketched the proof. Since my proof sketches
tend to be a little, well, sketchy at times, he looked at me a little doubtfully,
but could not find any obvious fault in the reasoning. I returned to my
office and continued to ponder on the problem. About half an hour later I
rushed into Arfst’s office once more, even more excitedly, and explained an
improvement: all (2, 2)-fa-verbose languages can be decided in linear time.
Once more Arfst listened patiently. I returned to my office once more, only
to rush back yet again half an hour later, this time with a proof that all
(n, n)-fa-verbose languages are regular.

Since then, my research on enumerability by finite automata has both
been challenging and rewarding. Perhaps the most interesting spin-off of
this research is the branch diagonalisation method, since, when applicable,
it gives simple, elegant proofs of strong results. Although finite automata
are such ‘simple’ devices and although finite automata have been studied for
such a long time (at least compared to, say, polynomial-time computations),
some questions that arose during my research seem to be as difficult as
the corresponding problems for Turing machines. In particular, proving
the cardinality conjecture for finite automata might well be as difficult as
proving the cardinality theorem for Turing machines.

Despite all these exciting results, one may still ask whether it is worth-
while to study enumerability by finite automata. Some cynics claim that
‘results in automata theory are either trivial or have been proved thirty
years ago or both’. There are several reasons why the cynics are wrong.

First, the proofs in this dissertation are hardly trivial and there is good



reason to believe that they cannot be proved in a much simpler way. For ex-
ample, I shall demonstrate that there are ‘difficult’ regular languages (they
can only be accepted by automata with a very large number of states)
whose -fold cardinality function can be -enumerated by an automaton
with only four states. This shows that every proof of the finite automata
cardinality theorem for two words must turn ‘simple’ automata into ‘arbi-
trarily complex’ ones.

Second, some of the results obtained thirty years ago turn out to be
wrong, as my counterexample to a claim of Kinber () shows.

Third, the different applications in the sixth chapter show that results
on finite automata enumerability are useful in other areas. They are ar-
guably ‘more useful’ than the corresponding classical results from recursion
theory: from a practical, and often also from a theoretical point of view,
it is better to know that a language is regular than just knowing that it is
recursive.

Fourth, the results obtained by branch diagonalisation are ‘so strong’
that even weak corollaries of these results are interesting in their own right.
To give an example, from theorem . we can derive a condition on num-
bers n, m, h, and k such that for every oracle X there exists a polynomial-
time (m,n)-verbose language that is not polynomial-time (h, k)-verbose,
not even relative to X. The interesting aspect of this separation is that
theorem . does not refer to polynomial-time computations at all. The
theorem states a stronger separation that can be ‘weakened’ to this strong
statement about polynomial-time computations. As another example, I
show that there exist fa-selective languages whose intersection is not even
semirecursive. An immediate corollary is the statement that the class of
P-selective languages is not closed under intersection.



Second Chapter

The Class of Regular Relations and Its Closure Properties



Introduction and Overview

Regular relations generalise regular languages. Instead of letting a finite
automaton decide whether a single word is an element of a certain language,
the automaton must decide whether a word tuple is an element of a certain
relation. The different components of the word tuple are put on different,
synchronously read input tapes. All heads on the input tapes advance
exactly one symbol in each step. Equivalently, one may think of the words
being fed to a single tape automaton in the following way: the first symbol
on the input tape encodes the first symbols of the words, the second symbol
encodes the second symbols, and so on. Shorter words are padded with
blanks such that all words have the same length. Examples of regular
relations are the lexicographical, standard, and prefix orderings of words,
the graph of the addition function, and even the next-move relation on
configuration graphs of fixed Turing machines. ‘Difficult’ relations, like the
graph of the multiplication function, are not regular.

This particular definition of ‘regular relation’ yields the same class of
relations as a definition of ‘regular relation’ due to Büchi (), although
Büchi’s definition is more complicated. In the literature, other classes of
relations are also called ‘regular’ or ‘rational’. Rabin and Scott () con-
sider two-tape automata where the heads may move at different speeds.
Perrin () considers automata with output and defines ‘rational rela-
tions’ as the graphs of the output functions of these automata.

Regular relations as defined here are useful both for the definition of
more advanced concepts and as mere tools in proofs. Their usefulness stems
from the fact that the class of regular relations inherits a great robustness
from the class of regular languages. Nondeterminism is as powerful as
determinism. It does not matter whether we read the words from left to
right or from right to left. The class is closed under union, intersection, and
complement. These latter closure properties are just special cases of the
closure under elementary definitions. This means the following: Suppose a
relational logical structure is given whose universe is Σ∗ for some alphabet Σ
and whose relations are all regular. Furthermore, a first-order formula over
this structure is given that has certain free variables u1, . . . , un. Then the
set of all word tuples (w1, . . . , wn) that make this formula true is regular.

The importance of this closure property for the proofs in later chapters is
immense. All proofs of core results, including the finite automata versions
of the generalised nonspeedup theorem, the cardinality theorem for two
words, and the restricted cardinality theorem, make heavy use of the closure
property. My earlier proofs of these theorems in (Tantau, a,b), which
use direct arguments, required a much more verbose reasoning. Basing
proofs on closure properties of the class of regular relations allows an easy



transfer to other computational models that share these closure properties.
This gives deep insights into the structural similarities of Turing machine
and finite automata enumerability classes.

In section . the notation and terminology are fixed for the different
kinds of finite automata that will be used. I have not included an intro-
duction to automata theory in general, which can be found in standard
textbooks like the book of Hopcroft and Ullman ().

In section . regular relations are defined. The definition is accompa-
nied by numerous examples. Most intuitively ‘simple’ relations are regular.
Of course, no formal definition can faithfully capture a non-precise concept
like ‘simple’ or ‘efficient’ as is well-discussed for the class P as representing
the ‘efficiently solvable’ problems. Some intuitively simple relations, like
the relation that relates a word and its reversal or the relation that relates a
word and the doubled word, are not regular. A remedy would be to consider
the class of relations that are accepted by multitape automata that read the
tapes asynchronously, that is, considering the automata studied by Rabin
and Scott. Unfortunately, this class lacks the crucial closure property of
the class of regular relations: its closure under first-order definitions yields
the complete arithmetical hierarchy since concatenation can be defined in
this model. As demonstrated in the fifth chapter, my definition of regular
relations is still general enough to allow their use in diagonalisation proofs.

In section . notations and terminology of first-order logic, second-
order logic, and elementary definitions are reviewed. Two new theorems
are presented that demonstrate the power of elementary definitions: the
transitive closures of finite tournaments are elementarily definable; and the
same is true for linearisations of tournaments on well-ordered sets.

In section . logical characterisations of the class of regular relations
are formulated and proved. A corollary of the first-order characterisation
is the main closure property of this class: every elementary definition in a
regular structure defines a regular relation. At the end of the section, first
applications are presented. One of them is a rephrasing of the closure prop-
erty in the terminology of database theory: the class of regular structures
is closed under first-order queries.

Section .

Review of Finite Automata

This section fixes the notation and terminology for three kinds of finite
automata: deterministic automata that recognise languages (Rabin–Scott
recognisers), deterministic automata that have an output attached to each



state (Moore automata), and nondeterministic automata. The only non-
standard notion, introduced alongside Moore-type output, is what I call
final output, see definition ..

. Definition of Deterministic Finite Automata

A deterministic finite automaton (DFA) consists of an input alphabet Σ,
a finite set Q of states, an initial state qinitial ∈ Q, a transition function
δ : Q× Σ→ Q, and a set F ⊆ Q of accepting states.

Deterministic finite automata are also called Rabin–Scott automata. Fig-
ure - on page  shows an example of how dfa’s shall be depicted. Just
like deterministic Turing machines, dfa’s will be denoted by the letter M .

. Definition of the Behaviour of dfa’s

The extended transition function δ̂ : Q × Σ∗ → Q of a dfa is defined
recursively as follows: let δ̂(q, ε) := q; and for σ ∈ Σ and w ∈ Σ∗ let
δ̂(q, σw) := δ̂

(
δ(q, σ), w

)
. A dfa M accepts the language L(M) := {w ∈

Σ∗ | δ̂(qinitial, w) ∈ F }. A language is regular if it is accepted by a dfa.

. Definition of dfa’s with (Moore-type) Output

A DFA with output consists of an input alphabet Σ, an output alphabet Γ,
a finite set Q of states, an initial state qinitial ∈ Q, a transition function
δ : Q× Σ→ Q, and an output function γ : Q→ Γ.

The output function γ generalises the usual set F ⊆ Q of accepting states.
When depicting dfa’s with output, the output attached to a state is shown
in the lower part of the state’s circle, see figure - on page  for an
example.

In the next definition, w[i1, . . . , ik] denotes the symbols of the word w
at positions i1, . . . , ik. For example abc[2, 2, 1] = bba.

. Definition of Final- and Moore-Output

Let M be a dfa with output and w an input word. The final output M(w)
of M is the value γ

(
δ̂(qinitial, w)

)
, that is, the output attached to the last

state reached by M on input w. The Moore output of M on input w is the
string M

(
w[1]

)
M
(
w[1, 2]

)
M
(
w[1, 2, 3]

)
· · ·M(w).

. Definition of Nondeterministic Finite Automata

A nondeterministic finite automaton with ε-moves (NFA with ε-moves) con-
sists of an input alphabet Σ, a finite set Q of states, a set Qinitial ⊆ Q of
initial states, a transition relation ∆ ⊆ Q× (Σ∪{ε})×Q, and a set F ⊆ Q
of accepting states. If the transition relation is a subset of Q× Σ×Q, the
automaton is called an NFA without ε-moves.

Nondeterministic finite automata will be denoted by the letter N .



. Definition of the Behaviour of nfa’s

For every nfaN = (Σ, Q,Qinitial,∆, F) with ε-moves, the pair (Q,∆) forms
a directed graph whose edges are labelled with symbols from Σ or, in case of
the ‘label’ ε, unlabelled. The set of all strings of labels on paths that start
in Qinitial and end in F is called the language accepted by N , written L(N).

. Fact (Rabin and Scott, )
For every NFA N with ε-moves there exists a DFA M with L(N) = L(M).

Section .

Definition of Regular Relations

Theorists usually ignore the difference between a set of words and a set of
word tuples. Tuples can easily be converted to words and vice versa. You
will only rarely find an explicit definition of, say, polynomial-time decidable
relations, because it is assumed that you will infer their definitions from the
definition of polynomial-time decidable languages and from the definition
of your pet tupling function.

For the definition of regular relations more care has to be taken. Differ-
ent reasonable tupling functions yield different notions of regular relations.
For example, just writing the words alongside, separated by marker sym-
bols, yields a boring class of regular relations. I propose to use the following
tupling method: Given a word tuple (w1, . . . , wn), image each word to be
written on a new line on a sheet of squared paper. The first symbols of
all words are now on top of each other, just like the second symbols, and
so on. These ‘columns of symbols’ will be the individual symbols of the
coded tuple 〈w1, . . . , wn〉, which is a word over the alphabet Σ〈n〉 of all pos-
sible columns of symbols. Since the words may have different lengths, some
columns may contain blank squares. For example 〈123, 31〉 =

(
1
3

)(
2
1

)(
3
2

)
.

This tupling method will be used throughout this dissertation since it can
be used for finite automata, for polynomial-time computations, and for
recursive computations.

The class of regular relations defined in terms of this tupling function
has a number of useful properties:

. It includes numerous relations that are intuitively ‘simple’, like the
lexicographical ordering or the standard ordering of words.

. It can be defined equivalently in terms of multi-tape automata with
synchronously moving heads. These automata model finite memory
online devices that are fed multiple data streams.

. It enjoys strong closure properties.
. It is large enough to be useful in diagonalisation proofs.



The class has previously been studied by Büchi () and he also called
its members ‘regular relations’. However, his more complicated definition
is based on monadic second-order logic. I believe that my definition is more
intuitive and more easily applicable than Büchi’s.

The multi-tape automata model that can be used for an alternative
definition of regular relations has previously been studied by Kinber ()
and recently by Austinat et al. (, ). It is defined as follows: An
n-tape automaton has n input tapes instead of the usual single input tape.
There is a head for each tape, but the heads must move synchronously.
This means that in each step all heads advance exactly one symbol—no
head may lag behind or dash ahead or turn around. One can think of the
heads as a slot that moves over the tapes through which the automaton
‘sees’ exactly one symbol of each tape at a time. At the beginning of
the computation each tape is initialised with one component of a word
tuple (w1, . . . , wn). If the words have different lengths, shorter words are
padded with blanks. At the end of the computation, when all heads hit the
ends of the tapes, the automaton can accept or reject the tuple, depending
on whether it has reached an accepting state or not. (More generally, a
multi-tape automaton with output could now produce some final output.)
Clearly, a relation is regular iff it is accepted by an appropriate multi-tape
automaton.

In the following, formal definitions of the tupling function, of regular
relations, and of regular functions (functions with a regular graph) are
given. The definitions are accompanied by numerous examples. The clo-
sure properties of the class of regular relations are proved in section ..
Their usefulness for diagonalisation arguments is demonstrated in the fifth
chapter.

. Definition of Tupling Alphabets

Let Σ be an alphabet and let 2 /∈ Σ be a special blank symbol. The n-fold
tupling alphabet Σ〈n〉 is the following set of column vectors:

Σ〈n〉 :=
(
Σ ∪ {2}

)n ∖ {(2...
2

)}
.

For example, {0, 1}〈2〉 =
{(

0
0

)
,
(

0
1

)
,
(

1
0

)
,
(

1
1

)
,
(
2

0

)
,
(
2

1

)
,
(

0
2

)
,
(

1
2

)}
.

. Definition of Coded Tuples

Given words w1, . . . , wn ∈ Σ∗, the coded tuple 〈w1, . . . , wn〉 ∈
(
Σ〈n〉

)∗ is
the sequence of columns of a matrix with n rows and ` columns, where `
is the length of the longest wi. The first row of the matrix contains the
symbols of w1, the second row contains the symbols of w2, and so on, up
to the nth row. Rows that are not completely filled by a word are filled up
with 2.



. Definition of Regular Relations

A relation R ⊆ (Σ∗)n is regular if the language{
〈w1, . . . , wn〉

∣∣ (w1, . . . , wn) ∈ R
}

over the alphabet Σ〈n〉 is regular.

For a relation R ⊆ U1× · · ·×Un let us call U1 ∪ · · · ∪Un the universe of R.
By the above definition, the universe of a regular relation is always of the
form Σ∗ for some alphabet Σ. However, the question of whether a relationR
is regular is also meaningful if the relation is a subset of Σ∗1 × · · · ×Σ∗n for
different alphabets Σi. In this case, let us implicitly unite all the alphabets
Σi, forming a big alphabet Σ := Σ1 ∪ · · · ∪ Σn, and consider R to be a
subset of (Σ∗)n. In other words, let us implicitly enlarge the universe of R
from Σ∗1 ∪ · · · ∪ Σ∗n to (Σ1 ∪ · · · ∪ Σn)∗.

. Example: Lexicographical, Standard, and Prefix Orderings

For every alphabet Σ, the lexicographical ordering ≤lex of Σ∗ (also known
as dictionary ordering), the standard ordering ≤std (first lengthwise, then
lexicographically), and the prefix ordering v are all regular. Figure -
depicts an automaton that witnesses, for Σ = {0, 1}, that ≤lex is regular.

. Example: Graph of a Final Output Function

Recall that the final output M(w) of a dfa M is the output γ
(
δ̂(qinitial, w)

)
attached to the last state reached by M on input w. For every dfa M the
graph

{(
w,M(w)

)
∈ Σ∗ × Γ | w ∈ Σ∗

}
⊆ Σ∗ × Γ∗ of M ’s final output

function is regular.
To see this, note that the second component of the first symbol of〈

w,M(w)
〉

is M(w). An automaton can accept the graph by first reading
the first symbol, storing the second component in its state, and by then
simulating M on the first components of the following symbols. Once the
input has been completely read, the automaton accepts if M(w) equals the
stored value.

. Example: Graph of a Moore Output Function

For every dfa M with output, the relation{(
w,M(w[1])M(w[1, 2]) · · ·M(w)

)
∈ Σ∗ × Γ∗

∣∣ w ∈ Σ∗
}

is regular. This relation is the graph of M ’s Moore output function. This
shows that the relations called ‘rational’ by Perrin () are regular in the
sense of our definition.

In the next example, binn denotes the canonical encoding of the natural
number n as a bitstring. For example bin 6 = 110. The notation binX
is similarly used to denote canonical binary encodings of other objects X,
like graphs or machines. The reverse of a word w is denoted wreversed.



start

(2
x

)
,
(0

1

)
(
x

2

)
,
(
1

0

)
(

0
0

)
,
(

1
1

)

(
y
z

)

(
y
z

)

Figure -
Given two words u, v ∈ {0, 1}∗, the dfa accepts the coded word 〈u, v〉 iff
u ≤lex v. The variables x ∈ {0, 1} and

(
y
z

)
∈ {0, 1}〈2〉 represent arbitrary

values. Double circles around states indicate accepting states.



. Example: Addition

The addition relation{(
(binm)reversed, (binn)reversed,bin(m+ n) reversed

)
| m,n ∈ N

}
is regular, because it is the graph of a Moore output function.

. Example: Next Configuration Relation

For a Turing machine M with state set Q, a disjoint tape alphabet Γ, and
a single semi-infinite tape, let us code configurations (which are sometimes
also called ‘instantaneous descriptions’) as follows: if u ∈ Γ∗ is the word
before the head, v ∈ Γ∗ is the word starting at the head, and q ∈ Q is the
current state, we encode the configuration as uqv ∈ (Γ ∪Q)∗.

With this coding, M ’s next-move relation on configurations is regular.
Note that this is also true for other reasonable codings of configurations.

. Counterexample: Nonregular Relations

The relation
{

(w,ww) | w ∈ {0}∗
}

is not regular. Setting a :=
(

0
0

)
and

b :=
(
2

0

)
, if it were regular, so would be the language {anbn | n ∈ N}. The

relation
{

(w,wreversed) | w ∈ {0, 1}∗
}

is not regular. If it were regular,
so would be its intersection with the regular relation

{
(0n10m, 0n10m) |

m,n ∈ N
}

. However,
{

(0n10n, 0n10n) | n ∈ N
}

is not regular.

Since the most important special cases of relations are functions, it is only
fitting to introduce a name for relations that are both regular and functions.

. Definition of Regular Functions

A function f : Σ∗ → ∆∗ is regular if its graph
{(
w, f(w)

)
⊆ Σ∗ × ∆∗ |

w ∈ Σ∗
}

is regular.

By examples . and ., the final and Moore output functions of dfa’s
with output are regular functions.

A function need not be efficiently computable just because its graph
is easily decidable. For example, the graph of the function that maps
each word w to 22|w| many 0’s is decidable in logarithmic space, but the
function itself is not even computable in exponential time. Fortunately,
regular functions have reasonably low complexity. They can be computed
in logarithmic space and also, alternatively, in linear time, see theorem ..

Section .

Review of First-Order Logic and Second-Order Logic

In this section the notation and terminology for the syntax and semantics
of first-order and second-order logic are fixed. The exposition follows the



book of Ebbinghaus and Flum (). At the end of the section I present
two new examples of powerful elementary definitions that have interesting
applications, see (Nickelsen and Tantau, ) and (Hemaspaandra et al.,
). Although these examples are not needed for proofs in other parts,
they give a first flavour of the arguments that will be used later on.

. Definition of Logical Signatures

A logical signature consists of a set of symbols and an arity function. Three
types of symbols exist, namely constant symbols, function symbols, and rela-
tion symbols. The arity function assigns a positive integer to each function
symbol and each relation symbol.

Typical logical signatures are finite or at least countable, but this is not
required. As is customary, when writing down signatures, the arity of a
symbol is written as a superscript. Constant symbols and function sym-
bols are written in lower case, relation symbols in upper case. For special
symbols it will be clear from context whether they are function symbols or
relation symbols. For example, the logical signature τ = {E2, s, t} consists
of a binary relation symbol E and two constant symbols s and t. The
logical signature τ ′ = {0, <2,+2} consists of a constant symbol 0, a binary
relation symbol <, and a binary function symbol +.

. Definition of Logical Structures

Given a logical signature τ , a τ -structure S consists of a nonempty set U ,
called the universe of S, of an element cS ∈ U for every constant symbol
c ∈ τ , of a function fS : Un → U for every function symbol f ∈ τ of arity n,
and of a relation RS ⊆ Un for every relation symbol R ∈ τ of arity n.

Logical structures in which all relations are regular will be particularly
important.

. Definition of Regular Structures

A logical structure S is regular if its universe is Σ∗ for some alphabet Σ
and if all its relations RS and all its functions fS are regular.

Examples of regular {R2}-structures are
(
{0, 1}∗,≤lex

)
and

(
{a, b, c}∗,v

)
.

. Definition of Terms

Given a logical signature τ , the set of τ -terms is defined inductively as
follows: every first-order variable, drawn from the fixed set {v1, v2, v3, . . .},
is a term; every constant symbol in τ is a term; and if t1, . . . , tn are terms
and f ∈ τ is a function symbol of arity n, then f(t1, . . . , tn) is a term.

As is customary, to make terms more readable, the infix notation is used
for special symbols. Thus 0 + v2 should be understood as +(0, v2). The
variables vi are ‘formal’ or ‘syntactic’ variables. In order to avoid too many



subscripts, lower case letters set in italics, like ‘x’, are used as variables for
formal variables. For example, if x represents the formal variable v2, the
term f(x, v3) represents the term f(v2, v3).

. Definition of (Positive) First-Order formulæ

Given a logical signature τ , the set of first-order τ -formulæ is defined induc-
tively as follows: if s and t are τ -terms, then s = t is a first-order τ -formula;
if t1, . . . , tn are τ -terms and R ∈ τ is a relation symbol of arity n, then
R(t1, . . . , tn) is a first-order τ -formula; if φ is a first-order τ -formula, then
so is ¬φ; if φ and ψ are first-order τ -formulæ, then so are (φ ∨ ψ) and
(φ ∧ ψ); and if φ is a first-order τ -formula and vi is a first-order variable,
then ∃vi φ is a first-order τ -formula. A first-order formula is positive if it
does not contain a negation.

The set of free variables in a formula is defined in the usual way. As is
customary, in order to make formulæ more readable, I use the abbreviations
→, ↔, and ∀. I use the ‘dot notation’ to denote bindings as in φ→ �ψ ∧ ρ
for φ→ (ψ∧ρ). The exact meaning of the dot is: ‘insert an opening bracket
here and a closing bracket after the longest well-formed formula following
the dot’. Parentheses are omitted if there is no risk of confusion.

. Definition of (Monadic) Second-Order formulæ

Given a logical signature τ , the set of second-order τ -formulæ is defined
inductively in the same way as first-order τ -formulæ, with two additions:
if t1, . . . , tn are terms, then Vn

i (t1, . . . , tn) is a second-order τ -formula for
each i ∈ {1, 2, 3, . . .}; and if φ is a second-order τ -formula, so is ∃Vn

i φ. The
variables Vn

i are called second-order variables. A second-order τ -formula is
monadic if it does not contain any occurrence of a variable Vn

i with n ≥ 2.

As for first-order variables, capital letters set in italics, like ‘X’, are used
as more readable substitutes for the variables Vn

i .

. Definition of Assignments

Given a structure S, a first-order S-assignment is a function α that assigns
an element α(vi) ∈ U to every first-order variable vi. A second-order S-
assignment also assigns an n-ary relation α(Vn

i) ⊆ Un to each second-order
variable Vn

i with n, i ∈ {1, 2, 3, . . .}.

Given a τ -structure S, an assignment α, and a τ -formula φ, the modelling
relation S |= φ[α] is defined in the usual way for first-order and second-
order formulæ. A model of a first-order or second-order formula φ is a
structure S such that S |= φ[α] for every assignment α. For pairwise
different first-order variables u1, . . . , un, let S |= φ[u1 = x1, . . . , un = xn]
denote that S |= φ[α] holds for every assignment α with α(u1) = x1, . . . ,
α(un) = xn. Let S |= φ denote that S |= φ[α] holds for every assignment α.



. Definition of Elementary Definitions

Given a τ -structure S, a first-order τ -formula φ, and pairwise different
variables u1, . . . , un, we define a relation φS(u1, . . . , un) ⊆ Un by

φS(u1, . . . , un) :=
{

(x1, . . . , xn) ∈ Un
∣∣

S |= φ[u1 = x1, . . . , un = xn]
}
.

The relation φS(u1, . . . , un) is called elementarily definable in S. If φ is
a positive formula, the relation is called positively elementarily definable
in S. A function is elementarily definable in S if its graph is. An element
is elementarily definable in S if its singleton set is.

Elementary definitions will be our prime vehicle for defining new relations
out of existing ones. To give an example, consider an {R2}-structure S and
the formula φ := ∃y R(x, y). The relation φS(x) is the domain of the rela-
tion RS . It will be convenient to have a handy notation for this situation.
Instead of having to write sentences like ‘the domain of a relation R is the
set φS(x), where φ = ∃y R(x, y) and where S is a structure over the signa-
ture {R2} in which RS = R’, we can use the abbreviation ‘the domain D of
a relation R is defined by x ∈ D :⇐⇒ ∃y R(x, y)’. A slightly more complex
example is the elementary definition (x, y) ∈ R :⇐⇒ ∃z � P (x, z) ∧Q(z, y).
It shows that R = Q ◦P can be defined elementarily. In the following, two
new examples of elementary definitions are presented.

. Example: Has Sir Galahad Beaten Sir Lancelot?

A group of knights has gathered to hold a tournament. It consists of a series
of jousts between every two knights. In each joust exactly one knight wins.
After the tournament, Sir Galahad and Sir Lancelot meet. Sir Galahad
exclaims, ‘Bravely met Sir Lancelot! It is just that thou hast beaten me
in our joust. Thou art more skillfully than I am.’ Sir Lancelot replies,
‘Bravely met indeed, Sir Lancelot! But I am not so sure. Methinks thou
hast beaten a knight who hath beaten a knight, and so on, who hath beaten
me. Is that not true?’

In order to answer Sir Lancelot’s question, we must solve the reacha-
bility problem for tournaments. Tournaments are directed graphs in which
there is exactly one directed edge between any two different vertices and in
which there are no self-loops. In (Tantau, ), see (Nickelsen and Tan-
tau, ) for a generalisation, it is shown that there exists a first-order
formula φ over the signature {E2, s, t} of graphs with two designated ver-
tices such that for every finite vertex set V we have (V,E, s, t) |= φ iff the
following two conditions hold:

. (V,E) is a tournament and
. there exists a path from s to t in this tournament.



By replacing s and t in φ by the free variables v1 and v2, we obtain a
first-order formula that defines the transitive closures of finite tournaments
elementarily.

. Counterexample: Arbitrary Graphs and Large Tournaments

Using the compactness theorem, it can be shown that the transitive closures
of arbitrary finite graphs cannot be defined elementarily, see (Ebbinghaus
and Flum, ) for a detailed proof. Arfst Nickelsen and myself ()
have shown that the transitive closure of arbitrary tournaments (finite and
infinite ones) cannot be defined elementarily.

. Example: Linearisations of Tournaments

A linearisation of a directed graph G = (V,E) is a linear ordering E′

of V such that whenever (u, v) ∈ E′ there is a path from u to v in G.
A well-ordering is a linear ordering such that every subset has a smallest
element. The following theorem shows that we can elementarily define a
linearisation of every tournament, provided we have access to an arbitrary
well-ordering of the universe. The proof of the theorem transfers an idea of
Nickelsen, see Hemaspaandra et al. (), to a logical setting. Nickelsen
has used the proof idea to show that every P-selective language has an
associative selector in FPNP. Note that the theorem holds for tournaments
of arbitrarily large cardinality, not just for finite ones.

. Theorem

There exists a first-order formula φ such that for every tournament (V,E)
and every irreflexive well-ordering < of V, the relation φ(V,E,<)(v1, v2) is
a linearisation of (V,E).

Proof. Let {E2, <2} be the signature of graphs together with a binary
relation. The formula φ is build up from several other formulæ that are
defined as follows (they are explained below):

φvia(x, y, z) :=
(
E(x, z) ∨ x = z

)
∧
(
E(z, y) ∨ z = y

)
,

φconn(x, y, z) := φvia(x, y, z) ∨ φvia(y, x, z),
φminconn(x, y, z) := φconn(x, y, z) ∧ ∀z′ � z′ < z → ¬φconn(x, y, z′),

φ := ¬ v1 = v2 ∧
∃z � φminconn(v1, v2, z) ∧ φvia(v1, v2, z).

Let a structure S = (V,E,<) be given such that (V,E) is a tournament
and < is a well-ordering of V . The formula φvia expresses that we can
‘go from x to y via z’. For u, v ∈ V , let us call c ∈ V a connector of u
and v, if (u, v, c) ∈ φSconn(x, y, z). Note that u and v themselves are always
connectors of u and v. The smallest connector c of u and v with respect
to the well-ordering < is the unique c for which (u, v, c) ∈ φSminconn(x, y, z)



holds. Thus in the formula φ the existential quantifier refers exactly to this
particular c. This shows that for u 6= v we have (u, v) ∈ φS(v1, v2) iff for
the smallest connector c of u and v we can go from u to v via c. Let us
abbreviate φS(v1, v2) by E′.

It remains to show that (V,E′) is a linearisation of (V,E). First, (u, v) ∈
E′ implies that there is a path from u to v (via some c). Second, it is a linear
ordering: It is clearly irreflexive. It is antisymmetric since for u 6= v, if we
can go from u to v via c, we cannot also go from v to u via c. Nevertheless,
we always have either (u, v) ∈ E′ or (v, u) ∈ E′. To prove transitivity,
assume that we had a ‘circle’ in E′, that is, (u, v) ∈ E′, (v, w) ∈ E′, and
(w, u) ∈ E′ for distinct u, v, w ∈ V . Let cuv, cvw, and cwu be the respective
smallest connectors of the three pairs (u, v), (v, w), and (w, u). We may
assume without loss of generality that cuv is the smallest of these three
connectors. This situation is depicted in figure -. Then (cuv, w) ∈ E is
impossible, since this would imply that cuv is a connector of u and w no
larger than cwu, and thus (u,w) ∈ E′. But (w, cuv) ∈ E is also impossible,
since this would imply that cuv is a connector of w and v no larger than cvw,
and thus (w, v) ∈ E′. qed

Section .

Logical Characterisations of the Class of Regular Relations

In this section we study how regular relations can be defined using formulæ.
For regular languages, rather than relations, this study has a long tradi-
tion, dating back to the pioneering work of Richard Büchi (, ).
As we shall see, the logical characterisations of regular languages also ap-
ply to regular relations. This is hardly surprising, since regular relations
are defined in terms of regular languages. A corollary of the characterisa-
tions is the central closure property of the class of regular relations: every
elementary definition in a regular structure defines a regular relation.

It is rather well-known that Büchi showed that all regular languages
can be defined in terms of monadic second-order logic. It is less well-
known that he also showed that regular languages can be defined in terms
of first-order logic. Two different notions of ‘definability’ are involved here.
Since most papers and textbooks deal with only one of these notions at a
time, both are often just called ‘definability’. The first is commonly used in
descriptive complexity theory: by associating a structure with each word,
the set of models of a formula defines a language. I call these definitions
model definitions. The second notion, where the set of all words that make
a certain formula true forms a language, is the classical logical concept of



u

v

w

E
′ E

′

E′

cuv

E

E

E

Figure -
Impossible situation from the proof of theorem .. If u, v, w ∈ V were to
form a circle with respect to the relation E′ and if cuv were the smallest of
the connectors cuv, cvw, and cwu, then both (w, cuv) ∈ E and (cuv, w) ∈ E
would be impossible.



elementary definitions from the previous section. Note that elementary
definitions implicitly always refer to first-order formulæ, whereas model
definability can be applied to a large variety of logics.

Theorem . states that for each alphabet Σ that contains at least
two letters there exists a logical structure IΣ such that the following three
statements are equivalent for relation on Σ∗:

. It is regular.
. It is model-definable in monadic second-order logic.
. It is elementarily definable in IΣ.

Although Büchi has already given a proof of this theorem for a different
structure, I present a partly new, complete proof for the above equivalences.
I do so for three reasons.

First, showing a cyclic implication among the three statements gives
a shorter proof than Büchi’s, who shows the equivalence of the first two
statements and then the equivalence of the last two statements.

Second, Büchi’s universe is the set of natural numbers and operations
on them are arithmetical operations. Words have to be coded as numbers in
an awkward manner that gives rise to subtle problems like leading zeros and
having to choose an appropriate base. In my proof, the universe consists
of words, which are hence treated as ‘first-order citizens’ and for which
these problems do not occur. A historically similar, though more difficult
rephrasing of an arithmetical proof in terms of words is due to Quine ().
He reproved Gödel’s result that the first-order theory of arithmetic, that
is, of the structure (N,+, ·), is undecidable by showing that the first-order
theory of concatenation, that is, of the structure

(
{0, 1}∗, ◦

)
, is undecidable.

Third, Büchi’s original claim is wrong, since the structure (N,+,V2)
that he uses does not do the trick. The monadic predicate V2 is true for all
powers of two. McNaughton () corrected the mistake by keeping the
addition function and replacing V2 by a binary predicate e2 on pairs (m,n)
that is true if m is a power of two and the (log2m)-th bit (from the right)
of the binary representation of n is 1. For a recent study of arithmetical
structures that can be used, especially for bases other than 2, see Bruyère
et al. () and Bruyère and Hansel (). The structure IΣ, which I
propose to use instead, is defined as follows: its universe is Σ∗; and for
each symbol σ ∈ Σ it contains a binary relation Iσ that contains all word
pairs (u, v) with u[|v|] = σ, that is, where the |v|-th symbol of u is σ. For
the binary alphabet it resembles McNaughton’s structure, but misses the
addition function and instead contains a dual of e2 for positions having a 0.

Quite different logical characterisations of regular languages have also
been studied. For example, much research has been devoted to axiomatic



systems for regular languages based on equality formulæ, rather than on
first-order formulæ. See (Salomaa, ) for an introduction.

In the following, the relevant definitions for the characterisations are
presented first. Then the main characterisation theorem is proved and, as
a corollary, we obtain the closure of the class of regular relations under
elementary definitions. At the end of the section examples are given that
employ the corollary. The two most important are: the class of regular
structures is closed under first-order queries; and all regular functions are
computable in logarithmic space and in linear time.

Terminology for the Monadic Second-Order Characterisation

For the characterisation of regular relations in terms of monadic second-
order formulæ, a word is coded as a finite logical structure as follows: its
universe is the set of the word’s letter positions; and monadic relations
indicate whether there is a certain letter at a given position or not.

. Definition of Word Structures

For an alphabet Σ, let τΣ :=
{
Q1
σ | σ ∈ Σ

}
∪ {<2}. The word structure

of a word w ∈ Σ+ is the following τΣ-structure Ww: its universe is the set
{1, . . . , |w|} of positions in w; the predicate QWw

σ is true for a position i
if w[i] = σ; and <Ww is the standard ordering of {1, . . . , |w|}. The word
structure of the empty word has the universe {1} and all relations are
empty.

In the literature, word structures are often misleadingly called ‘word mod-
els’. The term is problematic since many word structures will not be models
of a given formula.

The special rule for the empty word is necessary, because the universe
of a structure may not be empty by definition. Note that the empty word
structure is the only word structure that satisfies ∀i

∧
σ∈Σ ¬Qσ(i). It is also

the only structure that satisfies ∃i
∧
σ∈Σ ¬Qσ(i). Only simple formulæ are

needed to ‘check’ whether a given structure is the empty word structure.

. Definition of Model-Definable Relations

Let Σ be an alphabet and let φ be a (first- or second-order) τΣ〈n〉 -formula.
The formula model-defines the relation{

(w1, . . . , wn) ∈ (Σ∗)n
∣∣W〈w1,...,wn〉 |= φ

}
.

. Example

Let R ⊆ {0, 1}+ × {0, 1}+ be defined as follows: (u, v) ∈ R if u and v
have the same length and if u is the bitwise negation of v. This relation is



model-defined by the first-order formula

∀i �Q(0
1)(i) ∨Q(1

0)(i).

In theorem . it is shown that exactly the regular relations are model-
definable in monadic second-order logic.

Terminology for the First-Order Characterisation

For the characterisations of regular relations in terms of first-order formulæ
we need a special structure, which I call the index structure. The only
available operation is an indexing operation.

. Definition of the Index Structure

The index structure IΣ of an alphabet Σ is the following {I2
σ | σ ∈ Σ}-struc-

ture: its universe is Σ∗; and (u, v) ∈ IIΣ
σ iff 1 ≤ |v| ≤ |u| and u[|v|] = σ.

At first glance, only few relations seem to be definable elementarily in the
index structure. Before reading on, I invite you to try to find a first-order
formula φ such that φI{0,1}(v) = {01}. The poverty of the structure is only
superficial: theorem . states that all regular relations are elementarily
definable in it. Before we prove this statement, let us have a look at some
examples of easy relations that are definable elementarily in IΣ.

. Example: How to Define the Empty Word

The empty word is the only word with the property that whatever index
you try, there will not be a letter at that index. Thus the formula φε :=
∀x
∧
σ∈Σ ¬ Iσ(v, x) has the property φIΣ

ε (v) = {ε}.

. Example: Lengthwise Preorderings

The formulæ u � v := φε(u)∨
∨
σ∈Σ Iσ(v, u) and u ≺ v := ¬ v � u express

that u is not longer, respectively shorter, than v. Instead of u ≺ v I shall
also write ‘I2(u, v)’ since v is longer than u iff the ‘|v|-th symbol of u’
is a ‘blank’. Note, however, that I2 is not an element of IΣ’s signature
and that I2(u, v) is just an abbreviation for the lengthy formula ¬φε(v) ∧∧
σ∈Σ ¬Iσ(u, v).

The Logical Characterisation Theorem

. Logical Characterisation Theorem for Regular Relations

Let n be a positive integer and let Σ be an alphabet with |Σ| ≥ 2. Then for
every n-ary relation R on Σ∗ the following statements are equivalent:

11. R is regular.
22. R is model-definable by a monadic second-order τΣ〈n〉-formula.
3. R is elementarily definable in IΣ.



Proof. The following proof establishes a cycling implication among the
three statements. Let σ∗ ∈ Σ be a fixed symbol.

Statement  implies Statement .
Let R be regular via a dfa M = (Σ, Q, qinitial, δ, F). We must construct a
monadic second-order formula φ that model-defines R. For simplicity, let us
only consider the case where the coded input tuple is not the empty word.
The following construction adapts the proof from the book of Straubing
() to relations.

On input of a coded tuple t = 〈w1, . . . , wn〉, the computation of M
passes through a sequence p1, p2, . . . , p|t|, p|t|+1 of states with p1 = qinitial.
The computation is accepting if p|t|+1 ∈ F . Roughly spoken, the formula φ
will say ‘there exists a sequence of states that is the computation of M on
input t and this sequence accepts’. To encode the sequence, for each state
q ∈ Q =

{
q1, . . . , q|Q|

}
let us introduce a special monadic second-order

variable Xq. The idea is to ensure that the formula Xq(i) is true for an
index i ∈ {1, . . . , |t|} iff q = pi.

We first need a formula that expresses that the element pi of the se-
quence is a specific state q: let ψq(i) := Xq(i) ∧

∧
q′ 6=q ¬Xq′(i).

The following formula expresses that the first state is qinitial:

φstart := ∀m � (∀i ¬ i < m)︸ ︷︷ ︸
m=1

→ ψqinitial(m).

Note that only the number 1 has the property ∀i ¬ i < 1. Thus φstart

enforces ψqinitial(1) and thus p1 = qinitial.
In order to ensure pi+1 = δ

(
pi, t[i]

)
we use the following formula:

φmiddle :=
∧
q∈Q

∧
σ∈Σ〈n〉

∀i �
(
ψq(i) ∧Qσ(i)

)︸ ︷︷ ︸
q=pi and σ=t[i]

→
[
∀i′ �

(
i < i′ ∧ ∀j � j < i→ ¬ j < i′

)︸ ︷︷ ︸
i′=i+1

→ ψδ(q,σ)(i′)︸ ︷︷ ︸
pi+1=δ(pi,t[i])

]
.

Finally, let δ−1(F) :=
{

(q, σ) ∈ Q × Σ〈n〉 | δ(q, σ) ∈ F
}

be the set all
state-symbol pairs that lead into an accepting state. Let

φend := ∀m � (∀i ¬m < i)︸ ︷︷ ︸
m=|t|

→
∨

(q,σ)∈δ−1(F)

(
ψq(m) ∧Qσ(m)

)
.

With these definitions, the formula φ := ∃Xq1 · · · ∃Xq|Q| � φstart ∧ φmiddle ∧
φend will be true iff the computation of M on input 〈w1, . . . , wn〉 is accept-
ing.



Statement  implies Statement .
Let φ be a monadic second-order formula that model-defines R. We must
transform this formula into a first-order formula φ′ in such a way that
(φ′)IΣ(u1, . . . , un) = R holds. Thus for any tuple (w1, . . . , wn) ∈ (Σ∗)n \{

(ε, . . . , ε)
}

we have to ensure

W〈w1,...,wn〉 |= φ iff IΣ |= φ′[u1 = w1, . . . , un = wn].

The core idea of the proof is the following: a monadic relation on a universe
{1, . . . , `} can be encoded as a word whose ith letter is σ∗ iff the relation is
true for i. Monadic second-order quantifications ∃V ψ in φ are replaced by
first-order quantifications ∃v̈ ψ′ in φ′, where v̈ is a fresh first-order variable.
The double dot is intended to remind us that v̈ represents a second -order
variable in φ. This idea is due to Büchi, although he formulated it in his
arithmetical setting.

To give an example of the translation process, assume Σ = {a, b, c} and
σ∗ = a. For ` = 4, a monadic relation on the universe {1, 2, 3, 4} is a subset
like {1, 4}. This relation would be replaced by a word w of length four such
that w[i] = a iff i ∈ {1, 4}. Examples of such words are abba or abca.

Using words to encode the second-order variables of φ raises the problem
of how to encode its first-order variables. Since such a variable is interpreted
as a number between 1 and `, we can use the length of a word to encode
such a value. A first-order quantification ∃v ψ is transformed to ∃v̇ ψ′,
where the single dot indicates that the fresh variable v̇ represents a first-
order variable. Whenever v̇ is used inside ψ, we use only its length.

For example, if the first-order variable x with α(x) = 3 is represented
by the word ẋ = aac, which has length three as desired, and if the second-
order variable V with α(V) = {1, 4} is represented by the word abca,
in order to check whether V (x) holds we can check whether the |aac|-th
symbol of abca is an a. Recall that a second-orderW〈w1,...,wn〉-assignment α
assigns a number α(v) ∈ {1, . . . , `} to every first-order variable v and a set
α(V) ⊆ {1, . . . , `} to every monadic second-order variable V .

Let us call a second-order W〈w1,...,wn〉-assignment α compatible with a
first-order IΣ-assignment α′ if the following holds:

. for all first-order variables v, the length of α′(v̇) is exactly α(v),
. for all second-order variables V, the set {i | α′(v̈)[i] = σ∗} is ex-

actly α(V), and
. α′(uj) = wj for all input variables uj .

Our aim is to give an inductive definition of the formula φ′ such that for
all compatible assignments α and α′ the following equivalence holds:

W〈w1,...,wn〉 |= φ[α] iff IΣ |= φ′[α′]. (∗)



We start with the simplest kind of formulæ φ, namely φ = (x = y). Let
(x = y)′ := ẋ � ẏ ∧ ẏ � ẋ. For this definition (∗) holds, since α(x) = α(y)
holds iff the lengths of α′(ẋ) and α′(ẏ) are equal. Likewise (x < y)′ := ẋ ≺ ẏ
also ensures that (∗) holds.

For the application V (x) of a second-order variable V to a first-order
variable x let

(
V (x)

)′ := Iσ∗(v̈, ẋ). The formula V (x) is true iff α(x) ∈
α(V). Since Iσ∗(v̈, ẋ) holds by definition iff the |α′(ẋ)|-th letter of α′(v̈)
is σ∗, condition (∗) holds.

The indicator predicates Qν are transformed as follows:(
Q(σ1...

σn

)(x)
)′

:= Iσ1(u1, ẋ) ∧ · · · ∧ Iσn(un, ẋ).

Recall that Qν(x) tests whether the α(x)-th symbol of 〈w1, . . . , wn〉 is the
vector ν ∈ Σ〈n〉. By definition of Iσi , for σi ∈ Σ, the test Iσi(ui, ẋ) is true
iff the |α′(ẋ)|-th letter of wi is σi. For σi = 2, the test I2(ui, ẋ) is true iff
wi does not have an |α′(ẋ)|-th letter.

The definitions (¬ψ)′ := ¬ψ′, (ψ∧ ζ)′ := ψ′ ∧ ζ ′, and (ψ∨ ζ)′ := ψ′ ∨ ζ ′
ensure that (∗) is satisfied for negations, disjunctions, and conjunctions.

For quantifications over first-order variables let(
∃v ψ)′ := ∃v̇ � ψ′ ∧ ¬φε(v̇) ∧

∨n
j=1 v̇ � uj .

The formula ¬φε(v̇) ensures that α′(v̇) has length at least 1. The big
disjunction is true if α′(v̇) is not longer than the longest input word. Thus
|α′(v̇)| ∈ {1, . . . , `}, where ` is the length of 〈w1, . . . , wn〉. Once more, (∗)
is satisfied.

Finally, quantifications over second-order variables are transformed by(
∃V ψ)′ := ∃v̈ � ψ′ ∧

∨n
j=1 v̈ � uj .

The disjunction ensures that α′(v̈) is not longer than the longest input
word. Hence the set of positions where α′(v̈) has the letter σ∗ is contained
in {1, . . . , `}. On the other hand, since our alphabet has at least two letters,
for every subset of {1, . . . , `} there exists a word α′(v̈) such that this subset
is exactly the set of positions where α′(v̈) has the letter σ∗.

Putting it all together, (∗) holds for all formulæ φ. SinceW〈w1,...,wn〉 |=
φ iff (w1, . . . , wn) ∈ R, condition (∗) ensures that (w1, . . . , wn) ∈ R holds
iff IΣ |= φ′[u1 = w1, . . . , un = wn].

Statement  implies Statement .
This final part of the proof is new. Unlike the previous implication, the
following arguments also hold for unary alphabets. This is not relevant for
the present proof, but will play a rôle in corollary ..



We prove, by induction on the structure of φ, that φIΣ(u1, . . . , un) is
regular for every first-order τ -formula φ. After possible renaming we may
assume ui = vi.

Let us start with atomic formulæ φ. If φ is of the form ‘vi = vj ’, then
the relation (vi = vj)IΣ(v1, . . . , vn) =

{
(w1, . . . , wn) ∈ (Σ∗)n | wi = wj

}
is clearly regular. Likewise, if φ is of the form ‘Iσ(vi, vj)’, the relation(
Iσ(vi, vj)

)IΣ(v1, . . . , vn) =
{

(w1, . . . , wn) ∈ (Σ∗)n | (wi, wj) ∈ IIΣ
σ

}
is reg-

ular.
For non-atomic φ, the only interesting case is φ = ∃vi ψ. For simplicity,

let us assume i = n + 1. We have to show that if ψIΣ(v1, . . . , vn+1) is
regular, so is

φIΣ(v1, . . . , vn) ={
(w1, . . . , wn) ∈ (Σ∗)n | there exists wn+1 ∈ Σ∗ such that

(w1, . . . , wn+1) ∈ ψIΣ(v1, . . . , vn+1)
}
.

Let M =
(
Σ〈n+1〉, Q, qinitial, δ, F

)
be a dfa that accepts ψIΣ(v1, . . . , vn+1).

We construct an nfa N with ε-moves that ‘guesses’ the word wn+1. I first
give a rough sketch of the construction, see also figure -. The automa-
ton N gets a coded tuple 〈w1, . . . , wn〉 as input. As its first action, N
branches nondeterministically to all states that M would reach upon read-
ing the first symbols of the words w1 to wn plus some arbitrary symbol in
the last component of the input vector. In the next step, it branches to all
states that M reaches upon reading the second symbols of the input words
plus some arbitrary symbol in the last component, and so on. When the
end of the input has been reached, the automaton may go on ‘guessing’
the word wn+1 using ε-moves. At any point N may nondeterministically
decide that the end of the guessed word has been reached. From then on it
simulates deterministically what M would do upon reading blank symbols
in the last component.

In detail, the input alphabet of N is Σ〈n〉. The state set of N is Q ×
{before, after}. The set Q×{before} corresponds to the states of M before
the end of wn+1 has been guessed, the set Q× {after} corresponds to the
states of M afterwards.

The set of initial states is {qinitial} × {before}, the set of accepting
states is F × {after}. The state graph of N is defined as follows. Recall
that the elements (σ1, . . . , σn+1)t of Σ〈n+1〉 are column vectors, where the
superscript ‘t’ stands for ‘transpose’. For every vector (σ1, . . . , σn+1)t ∈
Σ〈n+1〉 with δ

(
q, (σ1, . . . , σn+1)t

)
= q′ there is an edge from (q,before) to

(q′,before), if σn+1 6= 2; and there is an edge from (q, after) to (q′, after),
if σn+1 = 2. The label of the edge is (σ1, . . . , σn)t; except if σ1 = · · · =
σn = 2, where the label is ε instead. For each state q ∈ Q there is an



first tape of N and simulated tape 1 of M
1 0 0 · · · 1

second tape of N and simulated tape 2 of M
1 1 1 · · · 1

nth tape of N and simulated tape n of M
0 0 1 · · · 0

...

simulated tape n+ 1 of M
(guessed content)

0 ? ? · · · ?

NFA N

Figure -
Tapes of the n-tape automata N from the third part of the proof of the-
orem .. The dashed tape is a ‘virtual’ tape. It is a simulation of tape
number n + 1 of the (n + 1)-tape automaton M . Its content is nondeter-
ministically guessed by N while reading the input on the first n tapes.



ε-edge from (q,before) to (q, after), which corresponds to guessing the end
of wn+1.

To see that the construction ensures φIΣ(v1, . . . , vn) =
{

(w1, . . . , wn) ∈
(Σ∗)n | 〈w1, . . . , wn〉 ∈ L(N)

}
, let any coded word tuple 〈w1, . . . , wn〉 with

(w1, . . . , wn) ∈ φIΣ(v1, . . . , vn) be given. Then there exists a word wn+1 ∈
Σ∗ such that 〈w1, . . . , wn+1〉 is accepted by M . For an appropriate non-
deterministic path N will accept 〈w1, . . . , wn〉, namely on the path on
which the word wn+1 is guessed. On the other hand, any accepting path
of N induces a word wn+1 such that M accepts 〈w1, . . . , wn+1〉. Hence
(w1, . . . , wn) ∈ φIΣ(v1, . . . , vn). qed

. Corollary

Let S be a regular τ -structure, let φ be a first-order τ -formula, and let
u1, . . . , un be first-order variables. Then φS(u1, . . . , un) is regular.

Proof. For regular structures over alphabets that contain at least two sym-
bols, the claim can be deduced from theorem . as follows. Given S
and φ, we can use theorem . to switch from the regular relations to
first-order formulæ that provide elementary definitions of these relations
in the index structure IΣ. Substituting the relation symbols in φ by these
first-order formulæ yields a first-order formula once more. Then, again
by theorem ., but this time applied in the other direction, the defined
relation is regular.

For unary alphabets we cannot use theorem . directly. However, we
can repeat the third part of the proof of theorem ., where it is shown
that φIΣ(u1, . . . , un) is regular for every first-order formula φ, but with
IΣ replaced by S. This forces us to treat new atomic formulæ, but these
are easily taken care of. The difficult part of the proof (the existential
quantification) can be copied verbatim since, as pointed out in the proof,
it also works for unary alphabets. qed

Applications of Elementary Definitions of Regular Relations

In the rest of this section, three applications of corollary . are presented.
They are the first in a row of applications that continues in the next two
chapters. The first application is a theorem on ‘regular tournaments’, which
are tournaments on Σ∗ whose edge relations are regular.

. Theorem

Every regular tournament has a regular linearisation.

Proof. Let (Σ∗, E) be a regular tournament. The well-ordering <std of Σ∗

is regular. By theorem ., there exists a linearisation of (Σ∗, E) that
is elementarily definable in (Σ∗, E,<std). By corollary ., it is regular.

qed



It is an interesting open problem whether every polynomial-time decid-
able tournament has a polynomial-time decidable linearisation, see (Hema-
spaandra et al., ) for a detailed discussion of this question. Concerning
recursive computations, the above proof would also work if every relation
were recursive that is elementarily definable in a structure in which all
relations are recursive. It is well-known that this is not the case, see coun-
terexample .. However, the class of recursive relations is closed under
elementary definitions in which all quantifiers are bounded. Since a quick
look at the defining formulæ in theorem . shows that they are bounded,
we get a ‘purely logical’ proof of the below theorem and corollary. Jockusch
() attributes the corollary to Appel and McLaughlin. Semirecursive
languages are defined in definition ..

. Theorem

Every recursive tournament has a recursive linearisation.

. Corollary (Appel and McLaughlin in Jockusch, )
A language is semirecursive iff it is an initial segment of a recursive linear
ordering.

The second application is theorem . below, which belongs to section .
conceptually. The theorem is proved here since part of the following proof
is based on corollary .. The proof demonstrates that corollary . can
be applied in ‘mundane’ proof situations.

. Theorem

Every regular function can be computed in logarithmic space and also in
linear time (though perhaps not both at the same time).

Proof. Let f : Σ∗ → ∆∗ be regular. Let M = (Σ, Q, qinitial, δ, F) be a
dfa that accepts the graph of f . Let R ⊆ Q × Σ∗ × ∆∗ be the following
relation: it contains a triple (q, u, v) if M accepts 〈u, v〉 when started in
state q (instead of qinitial). Clearly, R is regular. Let S ⊆ Q×Σ∗ be defined
by (q, u) ∈ S :⇐⇒ ∃v R(q, u, v). It is regular by corollary ..

The Function is Computable in Logarithmic Space

First, let us prove f ∈ FL via some logarithmically space-bounded Tur-
ing machine M ′. On input w = σ1 · · ·σn the machine M ′ computes the
individual symbols of w̃ := f(w) in a stepwise fashion.

In order to compute the first symbol of w̃, the machine M ′ checks for
which symbols σ̃1 ∈ Σ we have(

δ
(
qinitial,

(
σ1
σ̃1

))
, σ2 · · ·σn

)
∈ S.

In other words, we check which first symbols on the second tape make M
accept. If there is no such σ̃1, then w̃ = ε and we are done. Otherwise,



there must be exactly one σ̃1 ∈ Σ with this property, since there is only
one word w̃ for which 〈w, w̃〉 is accepted by M . We output this σ̃1.

Let q1 := δ
(
qinitial,

(
σ1
σ̃1

))
. We check for which symbol σ̃2 ∈ Σ we have(

δ
(
q1,
(
σ2
σ̃2

))
, σ3 · · ·σn

)
∈ S.

If there is no such σ̃2, then w̃ = σ̃1 and we are done. Otherwise, there must
exist exactly one possible σ̃2, which we can output. Let q2 := δ

(
q1,
(
σ2
σ̃2

))
and repeat the process. In case we reach the end of the input before w̃ has
ended, we provide blank symbols instead of σi’s.

The computation will stop at most |Q| steps after the end of the input
word and we will have produced the correct output f(w). The only space
used is needed for a counter for remembering to which position we must
return after each check.

The Function is Computable in Linear Time

It remains to show that f can also be computed in linear time by some
Turing machine M ′′ (the just given algorithm runs in quadratic time).

During the computation, M ′′ keeps track of a two lists Li and Ki of
pairs (q, u). The index i denotes the current stage. The pairs in the first
list consist of a state q and a ‘possible prefix’ u of f(w). The state q is the
state reached by the automaton M after |u| steps on input 〈w, u〉. This
state could be recalculated easily from u, but in order to get a linear time
algorithm we have to ‘carry this information around’.

The following invariants are maintained over all steps i for the elements
of the first list:

. The ‘prefix parts’ of the list elements have length i.
. One of them is the correct prefix of f(w).

The second list also contains pairs (q, u), but here u is not a possible prefix
of f(w), but rather a possible value of f(w) itself. For (q, u) ∈ Ki, the
state q is the state reached by M on input 〈w, u〉 after i many steps. For
this list we guarantee that the length of each u is at most i, that the correct
value of f(w) will enter this list at least once, and that once it has entered
the list it will not leave the list anymore. Once the end of the input has
been reached (extended by |Q| blanks symbols to allow for the case that
f(w) is longer than w), we only have to check for which pair (q, u) ∈ Ki

we have q ∈ F . Then u will be the correct value of f(w).
Let us start with the lists L0 := {(qinitial, ε)} and K0 := {(qinitial, ε)},

which certainly have the desired properties. Having constructed a list Li,
we first construct a new list L′i+1 in a näıve fashion: we simply extend all



prefixes in all possible ways, that is,

L′i+1 :=
{(
δ(q, σ), uσ

)
| (q, u) ∈ Li, σ ∈ Σ

}
.

Each possible prefix in the newly created list L′i+1 is also a candidate for
the value of f(w). Setting K ′i+1 := Ki ∪ L′i+1 ensures that we do not miss
the correct value when it comes along. Note that we do not have to copy
words when forming the elements of L′i+1, which would take too long, but
can store ‘back pointers’ that tell us which of the already stored words
precedes the letter σ in the word uσ.

Setting Li+1 := L′i+1 would maintain the invariants over the whole pro-
cess, but the size of this list would grow horribly fast, namely exponentially.
In order to achieve a linear time algorithm, we must prune the lists.

If for two different words u and u′ we have both (q, u) ∈ L′i+1 and
(q, u′) ∈ L′i+1, then neither u nor u′ is a prefix of f(w). To see this, assume
uv = f(w). Then 〈w, uv〉 is accepted by M , but also 〈w, u′v〉 since u and u′

lead to the same state q. Let Li+1 be the set of all (q, u) ∈ L′i+1 for which
(q, u′) /∈ L′i+1 for all u′ 6= u. The list Li+1 maintains the invariant and has
at most |Q| elements.

We must also prune the list K ′i+1, since we might otherwise insert a
linear number of elements into this list. The same argument as for L′i+1

works here: if (q, u) ∈ K ′i+1 and (q, u′) ∈ K ′i+1 with u 6= u′, then f(w) is
neither u nor u′. This allows us to keep the size of Ki bounded by |Q|.

The complete algorithm needs linear time—but also linear space. qed

The third ‘application’ of corollary . is just a rephrasing in the ter-
minology of descriptive complexity theory and database theory. In re-
lational database theory, databases can be modelled as relational logical
structures. Operations on databases, called queries, transform databases
into new databases. For example, we might ‘query’ which persons in the
database live in Berlin. This query would map the database structure to a
new, smaller structure containing only these persons.

. Definition of Queries

Given two signatures τ and τ ′, a query is a mapping from the class of all
τ -structures to the class of all τ ′-structures.

A special kind of queries are queries that can be defined in terms of logical
formulæ. First-order queries are especially important, both in database
theory, see for example (Abiteboul et al., ) for an introduction, and in
descriptive complexity theory, see (Immerman, ).

. Definition of First-Order Queries

A query I from τ -structures to τ ′-structures is called a first-order query
if there exists a family (φs)s∈τ ′ of first-order formulæ with the following



property: for every τ -structure S and every symbol s ∈ τ ′, the formula φs
defines the constant, function, or relation sI(S) elementarily in S.

In this terminology corollary . can be formulated in a compact way:

. Theorem

The class of regular structures is closed under first-order queries.



Third Chapter

Enumerability



Introduction and Overview

In this chapter enumerability by Turing machines, as introduced by Kum-
mer and Stephan (), and by finite automata, as introduced by myself
(a), is reviewed. Enumerability is generalised to arbitrary computa-
tional models. At the end of the chapter the cross product theorem is
proved—one of the core results of this dissertation.

The class of functions f : Σ∗ → Σ∗ that are known to be computable
efficiently, say in polynomial time or—even better—by a finite automa-
ton, is frustratingly small. For example, the function #sat mentioned
in the introduction, which maps propositional formulæ to the number of
their satisfying assignments, is presumably not computable in polynomial
time. Theorists have proposed many ways of dealing with their frustra-
tion. One can weaken one’s notion of ‘efficiently computable’; for example
by allowing randomised computations, by studying the problem’s average-
case complexity, its fixed parameter tractability, or all at the same time.
Alternatively, one can weaken the requirement that the function must be
computed exactly. Instead, one requires that there is an efficient way of
approximating the value f(w) for every w.

Enumerability is an abstract way of producing ‘approximations’. An
enumerator for a function f is a machine or device that outputs a small set
of possibilities for f(w) for every input word w. Such a set will be called a
pool in the following.

Two resource measures are of interest for enumerators. First, we can
measure the computational complexity of enumerators. For example, we
can measure how much time or space is needed in order to produce a pool.
Second, the size of pools is of importance. Intuitively, the smaller a pool,
the better.

Regarding the computational complexity of enumerators, the first re-
source bound that has been studied was polynomial time, see (Cai and
Hemachandra, ). I focus on the resource-unbounded case, that is, on
enumerators that are Turing machines, and on the finite automata case.
Regarding the pool size, I focus on constant bounds since the two central
functions considered in later chapters, the n-fold characteristic function
and the cardinality function, both have finite range. However, especially in
the polynomial-time case, one can allow that the pool size varies according
to the length of the input, see for example (Cai and Hemachandra, );
(Beals et al., ); and (Ogihara and Tantau, ) for interesting results
in that direction.

According to my dissertation thesis, Turing machine enumerability and
finite automata enumerability are linked. As we shall see, the links are



surprisingly tight. Many arguments that work in the recursive setting can
also be applied in the finite automata setting and vice versa. Proofs of
recursion-theoretic theorems, like Beigel’s nonspeedup theorem, need only
to be modified slightly in order to prove analogous theorems for automata
theory.

Previous papers that treat the links between Turing machine and finite
automata enumerability use specialised arguments for the two models, see
the proofs in (Tantau, a), (Tantau, b), and (Austinat et al., ).
Using elementary definitions, I unify these proofs as far as possible. The
generic theorems formulated in this chapter and the next apply to all com-
putational models that satisfy certain properties. Finite automata satisfy
these properties, Turing machines do so in several important cases. The
parallel results for Turing machines and for finite automata are obtained
by instantiating the generic theorems with these two computational mod-
els. We can also instantiate them with other models, including Presburger
arithmetic, ordinal number arithmetic, and computation in the arithmetical
hierarchy.

For the formulation of the unified proofs, I introduce the new concept of
generic enumerability. Turing machine enumerability and finite automata
enumerability are instantiations of generic enumerability.

In section . Turing machine enumerators are reviewed. Equivalent
definitions of enumerability from the literature are presented. The equiva-
lence of these definitions shows that enumerability is connected to bounded
query complexity theory.

In section . the definition of finite automata enumerability from (Tan-
tau, a) is reviewed. That definition has the drawback that it is ap-
plicable only to functions whose range is finite. I present a new definition
of finite automata enumerability that is also meaningful for functions hav-
ing an infinite range (like the addition function) and show that the new
definition is compatible with the old one.

In section . generic enumerability is defined. Turing machine enu-
merability, strong Turing machine enumerability (see below), and finite
automata enumerability are instantiations of this concept.

In section . the generic cross product theorem is proved. Corollaries
of this theorem include Beigel’s nonspeedup theorem (), Beigel et al.’s
generalised nonspeedup theorem (b), and the ‘key lemma’ of (Tantau,
a).

The proofs of other generic theorems are postponed to the next chapter,
because they require the introduction of several new concepts for their
formulation. By comparison, the cross product theorem is a ‘pure’ theorem
on the structure of enumerability classes.



Section .

Review of Turing Enumerability

A Turing machine can be used as an enumerator of a function in two
different ways. The difference lies in whether we require the enumerator to
halt on all inputs or not, see the following two definitions, which are due
to Kummer and Stephan (). Two easy examples demonstrate that the
notions differ. At the end of this section alternative definitions of Turing
enumerability are reviewed. They show how enumerability is linked to
other concepts, for example to bounded query complexity.

. Definition of Turing Enumerators

Let m be a positive integer and let f : Σ∗ → Σ∗ be a function. A Turing
m-enumerator for f is a deterministic Turing machine with an input tape,
an output tape, and work tapes. For every input word w ∈ Σ∗, it starts
its computation with the input tape initialised with w. Its computation
may be finite or infinite. During its computation it may print words on
the output tape, separated by marker symbols. At most m words may be
printed and one of them must be f(w).

. Definition of Strong Turing Enumerator

A strong Turing m-enumerator is a Turing m-enumerator that halts on all
inputs.

Functions for which there exists a (strong) Turing m-enumerator are called
(strongly) m-Turing-enumerable. The word ‘Turing’ is omitted in text-
books on enumerability in recursion theory. Since I study different types
of enumerability, adding ‘Turing’ helps to avoid confusion.

At first sight, every Turing enumerator seems to be transformable to
a strong Turing enumerator: once m different words have been printed on
the output tape, we can stop the enumerator since no more words will be
enumerated. However, an enumerator could also output only m− 1 words
in total. In this case, after it has output these m− 1 possibilities it could
continue its computation infinitely long. We have no way of determining
whether an mth word will be output at some time in the future. The
following theorem, which is adapted from a slightly less general result in
the book of Gasarch and Martin (), demonstrates this effect. In the
theorem, χnK denotes the n-fold characteristic function of the halting prob-
lem K. Theorem . gives an even tighter separation, using a simple new
argument.

. Theorem

Let n be a positive integer. Then χnK is (n+ 1)-Turing-enumerable, but not
strongly (2n − 1)-Turing-enumerable.



Proof. Consider the following Turing enumerator: on input 〈binM1, . . . ,
binMn〉 it first outputs the bitstring 0n; then it starts a parallel simulation
of the Turing machines Mi and every time one of them stops, it outputs
the bitstring that is 1 exactly for those indices i for which the machine Mi

has already stopped. The correct characteristic string will be output when
the last machine that is going to stop at all has stopped. Clearly, at most
n+ 1 many different outputs are produced.

For the sake of contradiction, assume that χnK is strongly (2n − 1)-
Turing-enumerable via some M . Since M halts on all inputs, there exists
a total Turing machine M ′ that on input 〈binM1, . . . ,binMn〉 outputs a
bitstring of length n that is not equal to χnK(binM1, . . . ,binMn). Consider
machines M1, . . . , Mn that do the following: independently of the input,
Mi halts iff the ith bit of M ′

(
〈binM1, . . . ,binMn〉

)
is a 1. The existence

of the machines Mi is ensured by the recursion theorem, see (Odifreddi,
). Then χnK(binM1, . . . ,binMn) = M ′

(
〈binM1, . . . ,binMn〉

)
, which

is a contradiction. qed

. Theorem

There exists a function that is 22-Turing-enumerable, but not strongly m-
Turing-enumerable for any m ≥ 1.

Proof. Define a function f as follows: for a Turing machineM , let f
(
binM

)
be the number of steps that M makes on an empty input; if M never
stops, let f

(
binM

)
:= 0. The function f is -Turing-enumerable via a

machine M ′ that first outputs 0, starts a simulation of its input, and out-
puts the number of simulation steps made if the simulated machine halts
at some point. The function f is not strongly m-Turing-enumerable for
any m ≥ 1, since it is not bounded by any total recursive function while
every strongly m-Turing-enumerable function is. qed

The next two theorems characterise (strong) Turing enumerability in terms
of other notions. Only the third point is new, the other characterisations
are proved in (Gasarch and Martin, ). A relation R ⊆ U2 is m-bounded
if for every x ∈ U there exist at most m different y ∈ U with (x, y) ∈ R.

. Characterisation Theorem for Turing Enumerability

Let m be a positive integer and f : Σ∗ → Σ∗ a function. Then the following
statements are equivalent:

11. The function f is m-Turing-enumerable via a machine M .
22. There exist partial recursive functions f1, . . . , fm : Σ∗ →partial Σ∗

such that f(w) ∈
{
fi(w) | i ∈ {1, . . . ,m}, fi(w) is defined

}
for all

w ∈ Σ∗.
3. There exists a recursively enumerable, m-bounded relation R that con-

tains f’s graph.



If log2m is an integer, the statements are furthermore equivalent to:

4. There exists an oracle X and an oracle Turing machine M () such
that on every input w the machine M () computes f(w) relative to the
oracle X and asks at most log2m queries.

Proof. The equivalence of statements , , and  is shown in (Gasarch and
Martin, ). Let us concentrate on the first and third statement. Sup-
pose the first statement holds. Let R be the relation that contains all pairs
(w, v) such that v is one of the outputs of M on input w. Clearly, R is re-
cursively enumerable, m-bounded, and f ’s graph is contained in R. For the
other direction, let R be recursively enumerable via a Turing machine M ′.
Consider the following Turing machine M : on input w it starts an infinite
dovetailed computation that simulates M ′ on all inputs (w, v). Whenever
(w, v) ∈ R, the machine M outputs v. Since R is m-bounded, this machine
will output at most m different v’s. Since

(
w, f(w)

)
∈ R, this machine will

also output f(w). qed

The following theorem shows how strong Turing enumerability can be de-
fined equivalently. Once more, only the third statement is not treated
in (Gasarch and Martin, ) and the missing equivalence can be proved
similarly to the above proof. Note that, somewhat counter-intuitively, a re-
lation can be recursive and m-bounded without being recursively bounded.
For example, the graph of the function introduced in theorem . has this
property.

. Characterisation Theorem for Strong Turing Enumerability

Let m be a positive integer and f : Σ∗ → Σ∗ a function. Then the following
statements are equivalent:

11. The function f is strongly m-Turing-enumerable.
22. There exist (total) recursive functions f1, . . . , fm : Σ∗ → Σ∗ such that
f(w) ∈

{
f1(w), . . . , fm(w)

}
for all w ∈ Σ∗.

3. There exists a recursive, recursively bounded, m-bounded relation R
that contains f’s graph.

If log2m is an integer, the statements are furthermore equivalent to:

4. There exists an oracle X and an oracle Turing machine M () such
that on every input w the machine M () computes f(w) relative to the
oracle X, asks at most log2m queries, and halts on all inputs relative
to all oracles.



Section .

Review of Finite Automata Enumerability

Finite automata enumerators were first proposed in (Tantau, a), where
they are defined as follows: for a positive integer m, a finite set X, and
a function f : (Σ∗)n → X, a finite automaton m-enumerator for f is a
dfa M whose final output on every input of the form 〈w1, . . . , wn〉 is a set
of size at most m that contains f(w1, . . . , wn). Such a function f is called
m-fa-enumerable.

. Example

Let B = {ε, b1, b1b2, b1b2b3, . . .} with bi ∈ {0, 1} for i ∈ {1, 2, 3, . . .} be a
branch in the ‘tree’ {0, 1}∗. Consider the function χ2

B : {0, 1}∗×{0, 1}∗ →
{00, 01, 10, 11}. It maps a pair (u, v) of bitstrings to its characteristic string
with respect to B. Trivially, this function is -fa-enumerable. The automa-
ton in figure - shows that it is also -fa-enumerable, even if B is not
regular. It is easily seen that χ2

B is -fa-enumerable iff B is regular.
This leaves one open case: for which B is χ2

B a -fa-enumerable func-
tion? A major result of the next chapter, the finite automata nonspeedup
theorem, shows that χ2

B is -fa-enumerable iff B is regular.

. Example

For a positive integer k, let A be the following regular language:
{

0k1w |
w ∈ {0, 1}∗

}
. Let #2

A : {0, 1}∗ × {0, 1}∗ → {0, 1, 2} be the function that
maps every pair (b, c) of bitstrings to

∣∣{b, c} ∩A∣∣.
Since A is regular, #2

A is -fa-enumerable via an appropriate automaton.
However, any such automaton must have at least k states. Opposed to this,
we can trivially construct a finite automaton -enumerator for #2

A with just
one state (we can do this for every language A).

Concerning -fa-enumerability, figure - shows that #2
A can be -fa-

enumerated by an automaton that has just four states. This observation is
important, because we shall see in the next chapter that every language A
for which #2

A is -fa-enumerable must be regular. Thus, the four-state
automaton from figure - ‘proves’ that A is regular, although every au-
tomaton that accepts A must have at least k states.

A disadvantage of the above definition of finite automata enumerators is
that we can only enumerate functions that have a finite range. In order to
investigate the enumerability of functions like the addition function or the
multiplication function, we need a more general definition of enumerability.
Preferably, this general definition should be ‘compatible’ with the existing
definition for finite ranges. The following definition achieves this.



q=

{00, 11}

q 6v, 6w

{00, 01, 10}

qv

{00, 10, 11}

qw

{00, 01, 11}

start

(�
x

)
(

0
1

)
,
(

1
0

)
(
x
�
)

(
x
x

)

(
y
z

)

(
y
z

)

(
y
z

)

Figure -
A dfa that witnesses that χ2

B is -fa-enumerable, if B is a branch in the
tree {0, 1}∗. Here x ∈ {0, 1} and

(
y
z

)
∈ {0, 1}〈2〉 denote arbitrary values.



q1

{0, 1}

q2

{0, 1}

q3

{0, 2}

q4

{0, 1}

start

(1
1

) (
x
y

)

(
x
y

)
(

0
0

)

(
z
z

)
(
u
v

)

(
u
v

)

Figure -
A dfa that witnesses that #2

A is -fa-enumerable, where A =
{

0k1w | w ∈
{0, 1}∗

}
for some fixed positive integer k. Here x, y ∈ {0, 1,2} with x 6= y

denote arbitrary values, just like z ∈ {0, 1} and
(
u
v

)
∈ {0, 1}〈2〉. To see

that this automaton works correctly, assume that two different words in A
are given. The automaton will pass through the states q1, q2, and will end
in q3, where the output {0, 2} is produced. This output is correct since
it contains the number 2. If only one of the words is in A or if they are
identical, the state q3 cannot be reached and the output {0, 1} is correct.
If none of the words is in A, the output is correct since all output pools
contain the number 0.



. Definition of Finite Automaton Enumerators

Let m be a positive integer and let f : Σ∗ → Σ∗ be a function. A finite
automaton m-enumerator for f is a dfa M such that for all words w ∈ Σ∗

. the coded pair
〈
w, f(w)

〉
is accepted by M and

. there are at most m different u such that 〈w, u〉 is accepted by M .

We say that the function f is m-fa-enumerable.

The definition is easily transferred to functions f : (Σ∗)n → (Σ∗)k that take
multiple words as input and produce multiple words as output.

The following theorem shows that the definition of finite automata enu-
merability given in (Tantau, a) is a special case of definition ..

. Theorem

Let m be a positive integer and X a finite set. A function f : Σ∗ → X is
m-fa-enumerable in the sense of (Tantau, 22000022A) iff it is m-fa-enumerable
in the sense of definition 3.9.

Proof. For the first direction, assume that f is m-fa-enumerable in the
sense of (Tantau, a) via some dfa M with output. A finite automaton
m-enumerator M ′ for f in the sense of definition . works as follows:
On input 〈w, x〉, it ‘stores x in its state’ and starts a simulation of M
on input w. The input is accepted iff the final output of the simulated
automaton contains x. For the other direction, on input w, we run M ′ in
parallel on 〈w, x〉 for each x ∈ X and output the set of all x for which
〈w, x〉 is accepted. qed

Just like m-Turing-enumerability, m-fa-enumerability can be defined alter-
natively. The following theorem is an analogue to theorems . and ..

. Characterisation Theorem for Finite Automata Enumerability

Let m be a positive integer and f : Σ∗ → Σ∗ a function. Then the following
statements are equivalent:

11. The function f is m-fa-enumerable via a DFA M .
22. There exist regular functions f1, . . . , fm : Σ∗ → Σ∗ such that f(w) ∈{

f1(w), . . . , fm(w)
}

for all w ∈ Σ∗.
3. There exists a regular, m-bounded relation R that contains f’s graph.

Proof. The equivalence of the first and last statements follows directly from
the definitions. Let us show that the second and third statements are
equivalent. Suppose the second statement holds. Define a relation R as
follows:

(w, v) ∈ R :⇐⇒ v = f1(w) ∨ · · · ∨ v = fm(w).



By corollary ., this elementary definition of R in terms of regular func-
tions guarantees that R is regular. Clearly, R is m-bounded and contains
f ’s graph.

Suppose the third statement holds. We must define the functions fi. For
a word w let v1 <std · · · <std v` be all words for which we have (w, vi) ∈ R.
Since R is m-bounded, ` ≤ m. Define fi(w) as follows: let fi(w) := vi
for i ∈ {1, . . . , `} and let fi(w) := v1 for i ∈ {` + 1, . . . ,m}. This ensures
f(w) ∈ {f1(w), . . . , fm(w)} for all w ∈ Σ∗. It remains to show that the
functions fi are regular.

The following formula ψ≥i(w, v) is true if v = vj for some j ≥ i. The
formula ψ=i(w, v) is true if v = vi.

ψ≥i(w, v) := R(w, v) ∧ ∃v1 · · · ∃vi−1 �
distinct(v1, . . . , vi−1) ∧

∧i−1
j=1 vj <std v ∧

∧i−1
j=1R(w, vj).

ψ=i(w, v) := ψ≥i(w, v) ∧ ¬ψ≥i+1(w, v).

Here, distinct(v1, . . . , vi−1) is a shorthand for
∧

1≤j<k≤i−1 ¬ vj = vk. With
this preparation, the functions fi can be defined as follows:

fi(w) = v :⇐⇒ ψ=i(w, v) ∨ � ψ=1(w, v) ∧ ∀v′ ¬ψ=i(w, v′).

The formula expresses that fi(w) = v if either v is the i-th word in standard
ordering with (w, v) ∈ R or, if there does not exists an ith such word, v is
the first such word. By corollary ., the functions fi are regular. qed

Section .

Definition of Generic Enumerability

In this section a new notion called generic enumerability is defined. By
‘plugging in’ different computational models, different notions of enumer-
ability are obtained that have been studied in the literature. Generic enu-
merability is general enough to deal with functions that do not map words
to words, but numbers to numbers or even ordinal numbers to ordinal
numbers.

How should we define generic enumerability? Theorems ., ., and
. from the previous two sections showed that Turing enumerability,
strong Turing enumerability, and finite automata enumerability can all be
characterised equivalently in similar ways. Both the second and the third
statements of the characterisation theorems could be used for a generic def-
inition of enumerability: in all three theorems, the statements differ only



in the class of functions, respectively relations, that is used. By making
these classes a parameter, we obtain generic enumerability. I choose the
characterisation of enumerability in terms of bounded relations as the ba-
sis of my definition of generic enumerability. The reason is that classes of
relations are technically easier to handle than classes of (possibly partial)
functions.

. Definition of Generic Enumerability

Let m be a positive integer. A function f is m-enumerated by a relation R
if f ’s graph is contained in R and R is m-bounded. The class of all func-
tions that are m-enumerated by some relation in a class C of relations is
denoted ENC(m).

It will be convenient to consider the set product × to be associative. With
this convention, the graph of a function f : Un → Um can be a subset of a
relation R ⊆ Un+m. This will be useful whenever definition . needs to
be applied to functions that take multiple input elements. The following
notation is another convenience.

. Notation

Let n ≥ k ≥ 1 and let R ⊆ Un be an n-ary relation. For u1, . . . , uk ∈ U ,
let R[u1, . . . , uk] :=

{
(uk+1, . . . , un) ∈ Un−k | (u1, . . . , un) ∈ R

}
. Let us

call R[u1, . . . , uk] the set enumerated by R on u1, . . . , uk. In formulæ, the
notation ‘(uk+1, . . . , un) ∈ R[u1, . . . , uk]’ means ‘R(u1, . . . , un)’.

. Example: Turing Enumerability

Let re-relations denote the class of all recursively enumerable relations
over arbitrary alphabets. By theorem ., m-Turing-enumerability is an
instantiation of definition . for C = re-relations. Let us abbreviate
ENre-relations(m) by ENre(m). In the literature on recursion theory sub-
scripts are usually omitted for this class since, there, Turing enumerability
is the central notion of enumerability.

. Example: Strong Turing Enumerability

Let rec-relations-bounded denote the class of all recursive relations
that are recursively bounded. By theorem ., strong m-Turing-enumer-
ability is captured by the class ENrec-relations-bounded(m). This class
is denoted ENS(m) in the book of Gasarch and Martin ().

. Example: Finite Automata Enumerability

Let regular-relations denote the class of all regular relations. By theo-
rem ., m-fa-enumerability is an instantiation of definition . for C =
regular-relations. Let ENfa(m) abbreviate ENregular-relations(m).



. Example: Enumerability in Presburger Arithmetic

Let presburger-arithmetic denote the class of relations that are elemen-
tarily definable in the structure (N,+). This class is a fragment of Peano
arithmetic, due to Giuseppe Peano, where alongside the addition function
the multiplication function is also available. While Kurt Gödel (),
see also (Gödel, ), has shown that full Peano arithmetic is not decid-
able, Mo̇żesz Presburger () has shown that the fragment is decidable.
For this reason it is nowadays called Presburger arithmetic. Functions in
ENpresburger-arithmetic(m) will be called m-enumerable in Presburger
arithmetic. Let us abbreviate this class by ENPa(m).

Despite its roots in pure logic, Presburger arithmetic has had a recent
renaissance in model checking and protocol specification, see (Bultan et al.,
) as a starting point for further references. Presburger arithmetic is
useful in these applied areas since it is not only decidable, but also decidable
in double exponential time (Oppen, ). In many practical situations it
can even be decided much more efficiently, see for example the article by
Wolper and Boigelot () for details.

. Example: Enumerability in Ordinal Number Arithmetic

Let ordinal-arithmetic denote the class of all relations that are elemen-
tarily definable in the structure (On,+, ·). The universe is the class On
of ordinal numbers, see for example (Jech, ) for an introduction, and
the two binary functions +, · : On×On→ On are interpreted as the usual
ordinal addition and multiplication. That is, α + β is the order-type of
the ordering α followed by the ordering β; and α · β is the order-type of α
many copies of β. Functions in ENordinal-arithmetic(m) will be called
m-enumerable in ordinal number arithmetic. Let us abbreviate this class
by ENOn(m).

As the above examples show, generic enumerability can be instantiated in
a variety of ways. You might fear that this very variety shows that the
definition is so general that we cannot hope to prove anything useful about
it. However, in the next section I prove a profound statement about generic
enumerability—the generic cross product theorem—that holds for all of the
above classes.

Section .

The Generic Cross Product Theorem

In this section the first generic theorem is proved: the generic cross product
theorem. Unlike the generic theorems of the next chapter, which concern



the enumerability of special functions, the cross product theorem is a struc-
tural theorem on enumerability classes. It states that if the cross product
f × g of two functions f and g is (n + m)-enumerable, then either f is
n-enumerable or g is m-enumerable. This statement holds for all notions
of enumerability that are defined in terms of classes of relations satisfying
a relatively weak closure property: in essence, they must be closed under
positive elementary definitions, see definition . for details. The class
of regular relations and the class of recursively enumerable languages en-
joy this closure property and the cross product theorem holds for them.
Opposed to this, classes defined in terms of polynomial-time computations
do not have this closure property and we shall see that the cross product
theorem fails in the polynomial-time setting.

The statement of the theorem is deceptively innocent looking, but it
implies Beigel’s nonspeedup theorem (Beigel, ); Beigel et al.’s gener-
alised nonspeedup theorem (Beigel et al., b); and the ‘key lemma’ of
(Tantau, a).

This section starts with the definition of the weak closure property
needed for the formulation of the generic cross product theorem. I also
define a stronger closure property that will be used in the next chapter.
Several examples of computational models are presented that enjoy these
closure properties. The main part of this section is taken up by the proof
of the generic cross product theorem. At the end of the section the generic
theorem is instantiated for different computational models.

Definition of Closure Properties

The definitions of weak and strong closure properties refer to two simple
concepts, namely single-valued refinements and the structure SU |C , which
are defined first.

. Definition of Single-Valued Refinements

A single-valued refinement of a relation R ⊆ Un is a relation R′ ⊆ R
such that for every (u1, . . . , un) ∈ R there is exactly one u′ ∈ U such that
(u1, . . . , un−1, u

′) ∈ R′.

A single-valued refinement of a relation R is the graph of a partial ‘choice
function’ f on R. It ‘chooses’ for any elements u1, . . . , un−1 ∈ U an element
un := f(u1, . . . , un−1) such that (u1, . . . , un) ∈ R. It is a partial function
since it is undefined if such a choice is not possible. The name ‘single-
valued refinement’ stems from complexity theory, more precisely from the
study of NP-selective languages, see the survey entitled ‘Much Ado about
Functions’ by Alan Selman () for details.



The next definition makes classes C of relations accessible to logical
formulæ by transforming them to logical structures SC|U . The structure
SC|U allows us to ‘talk about every relation in C’ in formulæ.

. Definition

For a class C of relations and a set U , let SC|U be the following structure:
Its universe is U . Its signature includes an n-ary relation symbol for each
n-ary relation R ∈ C that has universe U . This symbol is interpreted as
the relation R. Furthermore, its signature includes a constant symbol for
every singleton set {r} ∈ C with r ∈ U . This symbol is interpreted as r.

The constants are included only as a convenience: for every singleton set
R = {r} ∈ C, every formula φ containing the symbol r can be replaced by
the formula ∃x � R(x) ∧ φ′, where in φ′ every occurrence of r is replaced
by the fresh variable x. Note that the structure SC|U does not necessarily
contain a constant symbol for every element of U , but only those for which
the singleton set is in C. Thus in order to use a constant in a formula over
the signature of SC|U , we must first ascertain that its singleton set is in C.

An example is the structure Sre-relations |{0,1}∗ . Its universe is the set
{0, 1}∗. It contains every recursively enumerable relation whose alphabet
is {0, 1}. It contains a constant for each bitstring since the singleton set of
any bitstring is recursively enumerable.

. Definition of Weakly Closed Relation Classes

A class C of relations is weakly closed if for every universe U ∈ C of relations
in C the following conditions are satisfied:

. C contains an irreflexive well-ordering of U ,
. every relation that is positively elementarily definable in SC|U is in C,
. every finite relation that is elementarily definable in SC|U is in C, and
. every relation in C has a single-valued refinement in C.

Recall that a well-ordering is a linear ordering in which every subset has
a smallest element. A more precise name for the above closure property
would be ‘positive elementary definition closed, elementarily definable finite
relation closed, irreflexively well-ordered, single-valued refinable class’, but
that name has turned out to be too cumbersome for everyday use.

Note that the second condition refers to positive definitions, whereas the
third condition refers to all elementary definitions. The third condition is
automatically satisfied if every singleton set is in C.

. Definition of Strongly Closed Relation Classes

A class C of relations is strongly closed if for every universe U ∈ C of
relations in C the following conditions are satisfied:



. C contains an irreflexive well-ordering of U ,
. every relation that is elementarily definable in SC|U is in C, and
. every finite relation on U is in C.

The next lemma justifies the names ‘strongly closed’ and ‘weakly closed’.

. Lemma

Every strongly closed class is weakly closed.

Proof. Let C be strongly closed. The first three properties of weakly closed
classes follow trivially from the corresponding properties of strongly closed
classes. To prove the existence of single-valued refinements, consider any
relation R ∈ C and let < denote the irreflexive well-ordering of R’s universe.
A single-valued refinement R′ of R can be defined by

(x1, . . . , xn) ∈ R′ :⇐⇒
R(x1, . . . , xn) ∧ ∀x′ � x′ < xn → ¬R(x1, . . . , xn−1, x

′).
qed

. Example: Recursively Enumerable Relations

The class of recursively enumerable relations over arbitrary alphabets is
weakly closed. To see this, first note that the irreflexive standard ordering
is a well-ordering. Second, the class is closed under positive elementary def-
initions since it is closed under union and intersection and since dovetailing
can be used to ‘search’ for elements in an existential quantification. Third,
every finite relation on words (elementarily definable or not) is recursively
enumerable. Fourth, the class contains a single-valued refinement R′ for
every recursively enumerable relation R ⊆ (Σ∗)n. The refinement can be
obtained as follows: Suppose R is accepted by a Turing machine M . On in-
put 〈w1, . . . , wn〉 the refinement machine M ′ starts a dovetailed simulation
of M on 〈w1, . . . , wn−1, w〉 for all w ∈ Σ∗. For the first w for which this
simulation accepts, M ′ checks whether w = wn. If so, it accepts; otherwise,
it rejects.

The class of recursively enumerable relations is not strongly closed since
it is not closed under complement.

. Counterexample: Polynomial-Time Computations

The class of relations that are accepted by deterministic, polynomially time-
bounded Turing machines is not weakly closed. To see this, note that

R :=
{

(binM, t) ∈ {0, 1}∗ × {0, 1}∗ |
M halts within |t| steps on input binM

}
is an element of this class, while the set K defined by

binM ∈ K :⇐⇒ ∃tR(binM, t)



is exactly the halting problem. For the same reason, the class of recursive
relations is not weakly closed.

. Example: Regular Relations

The class of regular relations is strongly closed. First, the irreflexive strict
standard ordering is regular. Second, by corollary . all relations that
are elementarily definable in the regular structure SC|U are regular. Third,
every finite relation is regular.

. Example: Presburger Arithmetic

The class of relations definable in Presburger arithmetic is strongly closed,
since the well-ordering < of N can be defined by a < b :⇐⇒ ¬ a = b ∧
∃c a+ c = b.

. Example: Ordinal Number Arithmetic

The class of relations that are definable in ordinal number arithmetic is
weakly closed, but not strongly closed. It enjoys the first two closure prop-
erties of strongly closed classes: First, we can define an irreflexive well-
ordering of On by α < β :⇐⇒ ¬α = β ∧ ∃γ α + γ = β. A proof that
this does, indeed, define a well-ordering can be found in the book of Jech
(). Second, the class is closed under elementary definitions by defini-
tion. However, the third closure property is not satisfied, since there are
finite relations on ordinal numbers that are not definable in ordinal number
arithmetic. To see this, note that there are only countably many first-order
formulæ over the signature of ordinal number arithmetic. Hence there are
only countably many singleton sets that are definable in ordinal number
arithmetic, but there are uncountably many ordinal numbers.

The Generic Cross Product Theorem

. Generic Cross Product Theorem

Let n and m be positive integers, let C be weakly closed, and let U ∈ C be
a universe. Then for any two functions f, g : U → U the following holds:
if f × g ∈ ENC(n+m), then f ∈ ENC(n) or g ∈ ENC(m).

Proof. Let f × g ∈ ENC(n + m) via a relation R. In the following, two
relations F and G are constructed such that either f ∈ ENC(n) via F or
g ∈ ENC(m) via G. The relations are constructed using positive elementary
definitions and the closure properties of C ensure F ∈ C, respectively
G ∈ C.

The construction of the relations F and G is based on an abstract form
of easy-hard arguments. Easy-hard arguments have been used in complexity
theory in different proofs, see for example (Kadin, ) or (Hemaspaandra
et al., ). In such an argument one shows that either all words in Σ∗



are easy (in a sense to be defined), in which case a language is, well, easy;
or there exists a hard word, which allows us to decide all other words,
provided we know the characteristic value of the hard word.

Translated to the more abstract setting of this proof, ‘easy’ is a property
of the elements of U . If all u ∈ U are easy, then f ∈ ENC(n) via F will
hold. Otherwise, in case a hard element uhard exists, g ∈ ENC(m) via G
will hold.

Before we proceed, let us fix some notations. Let< be an irreflexive well-
ordering of U that is contained in C. Recall that R[u, v] =

{
(x, y) ∈ U2 |

(u, v, x, y) ∈ R
}

is the set of all pairs that are ‘enumerated’ by R for the pair
(u, v). Recall also that in formulæ ‘(x, y) ∈ R[u, v]’ means ‘R(u, v, x, y)’.

Definition of Easy Elements and Advisors

Let us call an element u ∈ U easy if there exists a v ∈ U such that in R[u, v]
at least m+1 pairs have the same first component x. Such a v will be called
an advisor for u. The ‘advisor relation’A :=

{
(u, v) | v is an advisor for u

}
can be positively elementarily defined as follows:

(u, v) ∈ A :⇐⇒
∃x∃y1 · · · ∃ym+1 � y1 < · · · < ym+1 ∧

∧m+1
i=1 (x, yi) ∈ R[u, v].

Since this formula is positive, we have A ∈ C. The set of easy elements is
also in C, since φeasy(u) := ∃v A(u, v) is also a positive formula. However,
the set of hard elements, defined by φhard(u) := ¬φeasy(u), need not be an
element of C since its definition involves a negation.

Following the proof outline sketched at the beginning of the proof, let
us consider two cases, depending on whether all elements are easy or not.

Case : A Hard Element Exists

Suppose there exists a hard element. Let uhard ∈ U be the smallest such
element with respect to <. For the moment, let us assume that both
the singleton sets {uhard} and

{
f(uhard)

}
are elements of C. On this

assumption, definition . allows us to use uhard and f(uhard) as constants
in formulæ.

Let y ∈ G[v] :⇐⇒
(
f(uhard), y

)
∈ R[uhard, v]. The graph of g is a subset

of G since for all v ∈ U we have
(
f(uhard), g(v)

)
∈ R[uhard, v]. Since uhard

is hard, for all v the set
{
y ∈ U |

(
f(uhard), y

)
∈ R[uhard, v]

}
has size at

most m, see also figure -. Thus G is m-bounded and g ∈ ENC(m) via G.
It remains to show that the assumption was correct. The first part is

easy: since uhard is elementarily definable, by the third closure property
of C we have {uhard} ∈ C. The second part is trickier since the function f
could map uhard to some ‘unmentionable’ element f(uhard). Let us fix some
element v∗ ∈ U whose singleton set is in C and consider the set R[uhard, v∗].



element v

enumerate R[uhard, v]

R[uhard, v] =
{
. . . ,(
f(uhard), y1

)
,(

f(uhard), y2

)
,

...(
f(uhard), ym

)
,

. . .
}consider second components of pairs

with first component f(uhard)

G[v] = {y1, y2, . . . , ym}

Figure -
Procedure from the proof of theorem . for enumerating a set that has
size at most m and that contains g(v), using the existence of a hard ele-
ment uhard. By definition, in the set R[uhard, v] there can be at mostm pairs
sharing the same first component. Thus there can be at most m different
second components of pairs that have f(uhard) as their first component.



It has size at most n + m and we can thus elementarily define the first
element of this set, the second element, and so on. Since one of these
elements is

(
f(uhard), g(v∗)

)
, say the ith one, we can construct a formula

that singles out the ‘first component of the ith element of R[uhard, v∗]’.
This formula defines f(uhard) elementarily. By the third closure property
of C, this implies {f(uhard)} ∈ C.

Case : All Elements are Easy

Suppose that all u ∈ U are easy. Let A′ ∈ C be a single-valued refinement of
the advisor relation A. Since all elements u are easy, they all have advisors.
Thus A′ is the graph of a (total) function that maps every element u to an
advisor for u. Let

x ∈ F [u] :⇐⇒ ∃v �A′(u, v) ∧ ∃y (x, y) ∈ R[u, v].

The first part of the formula fixes v to be the advisor for u. In the set R[u, v]
at least m + 1 pairs have the same first component (recall that this was
the defining property of advisors). Thus there are at most n+m−m = n
different x with (x, y) ∈ R[u, v], see also figure -. Since the graph of f is
a subset of F and since by the closure properties of C we have F ∈ C, we
get f ∈ ENC(n). qed

The theorem can also be seen as a lower bound on the enumerability of
the cross product of two functions, since its contraposition states that if f
and g are not n- and m-enumerable respectively, then f × g is not (n+m)-
enumerable. Compare this to the trivial lower bound that f × g is not
(max{n,m})-enumerable.

Applying the theorem repeatedly yields the following generalisation:

. Theorem

Let ` and n1, . . . , n` be positive integers, let f1, . . . , f` : U → U be func-
tions, and let C be weakly closed. If f1 × · · · × f` ∈ ENC(n1 + · · · + n`),
then fi ∈ ENC(ni) for some i ∈ {1, . . . , `}.

Instantiations of the Cross Product Theorem

The following corollaries instantiate the cross product theorem for several
computational models that are weakly closed. I also show that the theorem
does not hold for polynomial-time computations.

. Corollary (Tantau, a, Key Lemma)

If f × g ∈ ENre(n+m), then either f ∈ ENre(n) or g ∈ ENre(m).

. Corollary (Tantau, a, Key Lemma)

If f × g ∈ ENfa(n+m), then either f ∈ ENfa(n) or g ∈ ENfa(m).



easy element u

use A′ to find an advisor

advisor v

enumerate R[u, v]

R[u, v] =
{

(x1, y1), (x1, y2), . . . , (x1, ym+1),
(x2, ym+2),
(x3, ym+3),

...
(xn, ym+n)

}consider only first components

F [u] = {x1, x2, . . . , xn}

Figure -
Procedure from the proof of theorem . for enumerating a set of size at
most n containing f(u) for easy elements u. Using A′, an advisor v is
obtained for the easy element u. Since u is easy, R[u, v] will contain m+ 1
pairs that have the same first component (like x1 in the figure). After
removing the second components, at most n possibilities for f(u) are left.



. Corollary

If f × g ∈ ENPa(n+m), then either f ∈ ENPa(n) or g ∈ ENPa(m).

. Corollary

If f × g ∈ ENOn(n+m), then either f ∈ ENOn(n) or g ∈ ENOn(m).

The cross product theorem does not hold for polynomial-time computa-
tions. In order to show this, some results and terminology from partial
information theory (Nickelsen, ) are needed.

. Definition of Languages That are But One in P (Tantau, )
A language A is in the class P-but-one if there exists a polynomially time-
bounded Turing machine that on input of any number of pairwise different
words outputs the characteristic values of all but one of these words.

In other words the machine may choose one word that it deems ‘too com-
plicated’, but must decide all other words in time polynomial in the total
length of the words. This class is also studied in (Nickelsen, ), where
it has the slightly cryptic name Pdist[2-weakMIN]. Using a super-sparse
set diagonalisation, Nickelsen has shown that there exists a language in
P-but-one that is not in P. By increasing the height of the jumps between
diagonalisation steps, one can use Nickelsen’s argument to show the follow-
ing stronger result:

. Theorem

For every recursive function f there exist a language in P-but-one that is
not in dtime[f].

For languages A in P-but-one that are not in P, the function χA×χA is still
-enumerable via a polynomial-time machine, since on input of different
words we can decide at least one word. However, neither f = χA nor
g = χA is -enumerable in polynomial time since A /∈ P. This shows that
the cross product theorem fails in the polynomial-time setting.



Fourth Chapter

Towards a Cardinality Theorem for Finite Automata



Introduction and Overview

I conjecture that Kummer’s recursion-theoretic cardinality theorem also
holds for finite automata. In this chapter I gather evidence for this con-
jecture. Three theorems are presented that support it: the (generalised)
nonspeedup theorem for finite automata, the cardinality theorem for finite
automata for two words, and the restricted cardinality theorem for finite
automata. Applications of these theorems, which are discussed in the sixth
chapter, show that these theorems do not only support my conjecture, but
that they are also of independent interest.

The classical recursion-theoretic cardinality theorem concerns the fol-
lowing question: how difficult is it to compute the cardinality function #n

A

for a given language A? The cardinality function takes n words as input
and counts how many of them are in A. Formally, it maps 〈w1, . . . , wn〉
to
∣∣{w1, . . . , wn} ∩ A

∣∣. Raised in its general form by William Gasarch
(), this counting problem plays an important rôle in a variety of proofs
both in complexity theory (Mahaney, ; Immerman, ; Szelepcsényi,
; Hemachandra, ; Kadin, ) and recursion theory (Kummer
and Stephan, ; Beigel et al., ). For example, in the proof of the
Immerman-Szelepcsényi theorem, which states that nondeterministic space
is closed under complementation, the key idea is to count the number of
reachable vertices in a graph in order to decide whether a certain vertex is
reachable.

One way of quantifying the complexity of #n
A is to consider its enumer-

ation complexity, that is, the smallest m for which #n
A is still m-Turing-

enumerable. Intuitively, the larger m, the easier it should be to m-Turing-
enumerate #n

A. This intuition is wrong, except for the trivial observation
that #n

A is n+ 1 enumerable, since its range is contained in {0, 1, 2, . . . , n}.
Kummer’s cardinality theorem states that even n-Turing-enumerating #n

A

is just as hard as deciding A. Intriguingly, the intuition is correct for poly-
nomial-time computations: the work of Gasarch (); Hoene and Nick-
elsen (); and Nickelsen () shows that a polynomial-time version of
the cardinality theorem does not hold.

. Cardinality Theorem (Kummer, )
Let A be a language and n ≥ 1. If #n

A ∈ ENre(n), then A is recursive.

Kummer’s proof of the cardinality theorem combines ideas from different
areas. Several less general results had already been proved when Kummer
wrote his paper ‘A Proof of Beigel’s Cardinality Conjecture’. The title of
Kummer’s paper refers to the fact that Richard Beigel () was the first
to conjecture the cardinality theorem as a generalisation of his so-called
nonspeedup theorem.



. Nonspeedup Theorem (Beigel, )
Let A be a language and n ≥ 1. If χnA ∈ ENre(n), then A is recursive.

The premise of the nonspeedup theorem is much stronger than the premise
of the cardinality theorem: in order to n-enumerate the function χnA one
must narrow the range of possibilities from 2n possibilities to n possibilities,
whereas for #n

A one must narrow this range from only n + 1 to n. The
nonspeedup theorem is a consequence of the cardinality theorem: χnA ∈
ENre(n) implies #n

A ∈ ENre(n) since every possibility for χnA(w1, . . . , wn)
induces one possibility for #n

A(w1, . . . , wn).
Two years after Beigel’s dissertation had been published, James Owings

wrote a paper in the Journal of Symbolic Logic entitled ‘A Cardinality
Version of Beigel’s Nonspeedup Theorem’. He succeeded in proving the
cardinality theorem for n = 2. For larger n he could only show that #n

A ∈
ENre(n) implies that A is recursive in the halting problem.

. Cardinality Theorem for Two Words (Owings, )
Let A be a language. If #2

A ∈ ENre(2), then A is recursive.

. Fact (Owings, )
Let A be a language and n ≥ 1. If #n

A ∈ ENre(n), then A is recursive in
the halting problem.

Harizanov et al. () have formulated the following ‘restricted’ cardinal-
ity theorem, whose proof is somewhat simpler than the proof of the full
cardinality theorem.

. Restricted Cardinality Theorem (Harizanov et al., )
Let A be a language and n ≥ 1. If #n

A ∈ ENre(n) via a Turing machine that
never enumerates both 0 and n, then A is recursive.

As stated above, I conjecture that the cardinality theorem also holds for
finite automata.

. Conjecture

Let A be a language and n ≥ 1. If #n
A ∈ ENfa(n), then A is regular.

The following three results support the conjecture. They are proved in
sections ., ., and . respectively.

. The (generalised) nonspeedup theorem holds for finite automata, see
corollary ..

. The conjecture holds for n = 2, see corollary ..
. The restricted form of the conjecture holds for all n, see corollary ..

Together, these results bring us as near to a proof of conjecture . as did
the results in recursion theory before Kummer’s breakthrough proof.



Similarly to the previous chapter, the proofs in this chapter are generic
and can be applied to different notions of enumerability, provided the notion
is defined in terms of a class of relations that has certain closure properties.
The last two results require a stronger closure property than the one needed
for the proof of the cross product theorem: instead of the classes’s being
weakly closed, it is necessary that they are strongly closed.

Since the class of recursively enumerable relations is not strongly closed
(it is not closed under complement), the generic proofs of the cardinality
theorem for two words and of the restricted cardinality theorem cannot be
instantiated for Turing enumerability. In particular, we do not get new
proofs of these theorems. However, we do get results similar to Owing’s
result: since negation can be ‘simulated’ by an oracle query to the halting
problem, we get new proofs of the statements that if #2

A ∈ ENre(2) or if
#n
A ∈ ENre(n) via a Turing machines that never enumerates both 0 and n,

then A must be recursive in the halting problem.
In section . we study which results of this section can be proved con-

structively (or, if you prefer, which are ‘uniform’). Many results in au-
tomata, complexity, and recursion theory can be proved constructively.
Consider a statement like ‘the intersection of recursively enumerable lan-
guages is recursively enumerable’. A typical proof of this statement actually
shows the stronger statement ‘there exists an (effective) algorithm that gets
two Turing machines M1 and M2 as input and outputs a Turing machine M
such that L(M) = L(M1) ∩ L(M2)’. For this reason, statements like ‘the
intersection of recursively enumerable languages is recursively enumerable’
are called constructively provable.

In the recursive setting, the results of this chapter are not construc-
tively provable. For example, the proof of the nonspeedup theorem, which
states ‘if χnA ∈ ENre(n), then A is recursive’, shows that A is decidable,
but it provides no clue to a concrete decision procedure. Indeed, it can
be shown that no constructive proof of the nonspeedup theorem is possi-
ble. Kaufmann and Kummer () were even able to quantify its ‘degree
of nonconstructiveness’, see fact .. The situation is different for finite
automata. I show that ‘fair versions’ of the three core theorems of this
chapter can be formulated constructively.

Section .

The Generic Generalised Nonspeedup Theorem

The first of the three results supporting conjecture . is the generalised
nonspeedup theorem for finite automata, which is proved in this section.



The generalised nonspeedup theorem is a statement about inclusions
of verboseness classes. These were originally defined in an effort to better
understand the structure of undecidable problems. A language A is called
(m,n)-verbose (Beigel et al., b) if χnA ∈ ENre(m). The verboseness of a
language expresses how difficult it is to enumerate the n-fold characteristic
function of the language. The class of all (m,n)-verbose languages will be
denoted Vre(m,n).

All languages are in Vre(2n, n), whereas Vre(1, n) contains exactly the
recursive languages. The structure between these two extremes has been
subject to thorough investigation. We have Vre(n, n) = Vre(n − 1, n) =
· · · = Vre(1, n) for all n by fact .. Beigel et al. (b) have shown that
all recursively enumerable and all semirecursive (Jockusch, ) languages
are in Vre(n + 1, n), which equals Vre(3, 2) for n ≥ 2. They also present a
procedure, based on finite combinatorics, for deciding whether Vre(m,n) ⊆
Vre(h, k) holds for given numbers m, n, h, and k.

Verboseness has also been studied extensively for the situation where the
enumerating Turing machine is restricted to use only a polynomial amount
of time. The inclusion structure of polynomial-time verboseness classes,
denoted Vp(m,n) in the following, is quite different from the structure in
the recursive setting. For example Vp(m,n) (Vp(m+ 1, n) for all m < 2n.
Languages that are in Vp(n, n) for some n are commonly called cheatable
(Beigel, ), languages in the class Vp(2n−1, n) are called n-approximable
(Beigel et al., a) or n-membership comparable (Ogihara, ). A
systematic comparison of polynomial-time verboseness classes with other
notions of ‘polynomial-time partial information classes’ can be found in
the dissertation of Arfst Nickelsen () and in the survey (Nickelsen and
Tantau, ).

In (Tantau, a) finite automata verboseness classes have been de-
fined in the obvious way by letting A ∈ Vfa(m,n) if χnA ∈ ENfa(m). As in
the recursive setting, all languages are in Vfa(2n, n) and Vfa(1, n) contains
exactly the regular languages. Austinat et al. () have presented differ-
ent examples of fa-verbose languages that lie between these extremes: for
every infinite bitstring b, both the set of all words that are lexicographi-
cally smaller than b and the set of all finite prefixes of b are in Vfa(3, 2), see
figure - on page . They show that Vfa(3, 2) contains context-sensitive
languages that are not context-free and context-free languages that are not
regular; but also, that infinite context-free languages lacking infinite regular
subsets (like {aibi | i ∈ N}) lie outside Vfa(2n − 1, n) for all n.

The generalised nonspeedup theorem, due to Beigel et al. (b), is
a statement about the inclusion structure of verboseness classes. It states
that Vre(m + h, n + k) ⊆ Vre(m,n) ∪ Vre(h, k) for all m, n, h, and k. In
the following I present a generic proof of this theorem. Instantiated for



Turing machines and for finite automata, we get the original generalised
nonspeedup theorem, respectively the finite automata version.

The generalised nonspeedup theorem is not the ‘end of the story’ con-
cerning the inclusion structure of verboseness classes. The next step is the
derivation of conditions for numbers n, m, h, and k for which Vre(m,n) ⊆
Vre(h, k) holds. Such a condition can indeed be formulated: ‘every (m,n)-
good k-pool has size at most h’, see below for the definition of ‘good pools’.
In the present chapter we still lack the necessary proof machinery for show-
ing this condition to be necessary. This is fixed in the next chapter, which
treats branch diagonalisation. Nevertheless, in this section we can at least
show that the condition is sufficient.

Formulation and Proof of the Generalised Nonspeedup Theorem

. Definition of Generic Verboseness

Let C be a class of relations and let m and n be positive integers. The
class VC(m,n) contains all sets A for which χnA ∈ ENC(m).

. Generic Generalised Nonspeedup Theorem

Let m, n, h, and k be positive integers and let C be weakly closed. Then

VC(m+ h, n+ k) ⊆ VC(m,n) ∪ VC(h, k).

Proof. Suppose A ∈ VC(m + h, n + k). Then χn+k
A ∈ ENC(m + h). Since

χn+k
A = χnA × χkA, we can apply theorem . with f = χnA and g = χkA.

This yields that either χnA ∈ ENC(m) or χkA ∈ ENC(h) holds. In the first
case, A ∈ VC(m,n), and in the second case, A ∈ VC(h, k). qed

. Generic Nonspeedup Theorem

Let n be a positive integer and let C be weakly closed. Then

VC(n, n) = VC(1, 1).

Proof. The generalised nonspeedup theorem yields

VC(n, n) ⊆ VC(n− 1, n− 1) ∪ VC(1, 1).

Iterating this inclusion yields VC(n, n) ⊆ VC(1, 1). qed

Since the classes of recursively enumerable relations and of regular relations
are weakly closed, we get the following corollary:

. Corollary (Generalised Nonspeedup Theorems)

Let m, n, h, and k be positive integers. Then

Vre(m+ h, n+ k) ⊆ Vre(m,n) ∪ Vre(h, k),
Vfa(m+ h, n+ k) ⊆ Vfa(m,n) ∪ Vfa(h, k).



. Corollary (Nonspeedup Theorems)

Let A be a language and n a positive integer. If A ∈ Vre(n, n), then A is
recursive. If A ∈ Vfa(n, n), then A is regular.

A Sufficient Condition for the Inclusion of Verboseness Classes

Theorem . can be used to prove inclusions of verboseness classes. An
example is the proof of theorem ., where we used the generic generalised
nonspeedup theorem to show VC(m+ 1, n+ 1) ⊆ VC(m,n). A systematic
study of the derivable inclusions in the recursive setting has lead Beigel
et al. (b) to a notion that they call (m,n)-goodness. For its definition
a special notation is useful, which is also due to Beigel et al. (b). In
the following, a k-pool is an arbitrary subset of {0, 1}k.

. Notation

Let n and k be positive integers. Let P be a k-pool. Let gP (n) denote
the maximum cardinality of {b[i1, . . . , in] | b ∈ P }, where the maximum
is taken over all index tuples (i1, . . . , in) ∈ {1, . . . , k}n.

The intuition behind the value gP (n) is the following: it is an upper bound
on the size of a pool that we have to output for a selection of n words out
of k words whose characteristic string is known to lie in P . More precisely,
assume that for some language for some words w1, . . . , wk we know that
their characteristic string is contained in the pool P . Now suppose we
have a selection wi1 , . . . , win of n words out of the words w1, . . . , wk
and we wish to output a minimal n-pool that is guaranteed to contain the
characteristic string of these n words. Such an n-pool is given by the set
{b[i1, . . . , in] | b ∈ P }. The number gP (n) is a tight upper bound on the
size of this pool.

The following definition of goodness is essentially due to Beigel et al.
(b), although I have modified it slightly by dropping the requirement
that the indices must be sorted. This will simplify the proofs later on.

. Definition of Good Pools (Beigel et al., b)

Let m, n, and k be positive integers. A k-pool P is (m,n)-good, if for every
` ∈ {1, . . . , n} and every partition n1 + · · · + n` = n with n1, . . . , n` ∈
{1, . . . , n} we have

gP (n1) + · · ·+ gP (n`)− `+ 1 ≤ m.

The notion of goodness generalises the intuition behind gP (n). For ` = 1,
the definition requires that an (m,n)-good pool P must have the property
gP (n) ≤ m. Thus if we are given a selection of n words out of k words for
which we know that their characteristic string is contained in an (m,n)-
good pool, then we can compute an n-pool of size m for them.



However, most of the time we will be given n words that are not chosen
out of k words with such a nice property. Rather, n1 many of the n words
are among k words for which we know that the characteristic string is
contained in P ; the next n2 many of the n words are among (different)
k words for which we also know this to be the case; and so on. For the
n words, which are scattered among the different blocks of k words, we
wish to produce a pool that is as small as possible and that contains their
characteristic string.

For the moment, assume that the pool is not only (m,n)-good, but that
it also satisfies the requirement ‘gP (n1) · . . . · gP (n`) ≤ m’. Such a pool
might be called (m,n)-hyper-good. For a hyper-good pool, we can easily
produce a pool of maximum size m for the input words: simply output all
combinations of the possible bitstrings for the first n1 words, for the next
n2 words, and so on. Since there are at most gP (n1) possibilities for the
characteristic string of the first n1 words, at most gP (n2) possibilities for
the characteristic string of the next n2 words, and so on, there are at most
gP (n1) · . . . ·gP (n`) possibilities altogether, which would be bounded by m.

Unfortunately, good pools are not necessarily hyper-good. For good
pools it is only required that the much smaller number gP (n1) + · · · +
gP (n`) − ` + 1 is bounded by m. In order to output just m possibilities
for the n input words, the language must have some extra structure that
allows us to combine the bitstrings for the ` different word blocks in a
more economic way. This ‘economic way of combining’ must ensure that
each additional block of ni words only produces gP (ni) − 1 new possible
bitstrings for all input words. Languages for which this is possible will be
studied in the next chapter.

. Theorem (Sufficient Condition for Inclusion)

Let m, n, h, and k be positive integers and let C be weakly closed. Let every
(m,n)-good k-pool have size at most h. Then VC(m,n) ⊆ VC(h, k).

Proof. Let A ∈ VC(m,n) via a relation S. To prove A ∈ VC(h, k) we show
that there exists a relation R ∈ C that contains the graph of χkA for which
R[x1, . . . , xk] is an (m,n)-good k-pool for all x1, . . . , xk in the universe
of S. By assumption, this will ensure that R[x1, . . . , xk] has size at most h.
Thus R will be h-bounded.

For each i ∈ {1, . . . , n} let mi be the smallest number such that A ∈
VC(mi, i) via some relation Ri ∈ C. Applying theorem . to the class
VC(mi+j , i+ j) yields

A ∈ VC(mi+j , i+ j) ⊆ VC(mi − 1, i) ∪ VC
(
mi+j − (mi − 1), j

)
.

Since A is not an element of VC(mi−1, i) by the minimality of mi, it must
lie in VC(mi+j −mi + 1, j). Because of the minimality of mj , this yields



mj ≤ mi+j −mi + 1 and thus mi +mj ≤ mi+j + 1.
The relation R is defined as follows:

b ∈ R[x1, . . . , xk] :⇐⇒
n∧
j=1

k∧
i1=1

· · ·
k∧

ij=1

b[i1, . . . , ij] ∈ Rj
[
xi1 , . . . , xij

]
.

The formula is not entirely legal, since ‘b[i1, . . . , ij]’ is not a legal first-order
term. This abuse of notation could be avoided by replacing for example
b[5, 4] ∈ R2[x5, x4] by the more verbose formula

∨
b′∈{0,1}k � b = b′ ∧

b′[5, 4] ∈ R2[x5, x4].
The definition of R ensures χkA(x1, . . . , xk) ∈ P := R[x1, . . . , xk]. It

remains to show that P is (m,n)-good for all x1, . . . , xk in S’s universe.
To see this, let n1 + · · · + n` = n be any partition with ` ∈ {1, . . . , n}
and n1, . . . , n` ∈ {1, . . . , n}. We have gP (j) ≤ mj , since for any indices
i1, . . . , ij ∈ {1, . . . , k} the set Rj

[
xi1 , . . . , xij

]
has size at most mj . Hence

for every partition n1 + · · · + n` = n with ` ∈ {1, . . . , n} and n1, . . . , n` ∈
{1, . . . , n},

gP (n1) + · · ·+ gP (n`)− `+ 1 ≤ mn1 + · · ·+mn` − `+ 1
≤ mn ≤ m.

This follows from the inequality mi+mj ≤ mi+j +1 established above and
the trivial inequality mn ≤ m. qed

. Corollary

Let m, n, h, and k be positive integers. Let every (m,n)-good k-pool have
size at most h. Then Vre(m,n) ⊆ Vre(h, k) and Vfa(m,n) ⊆ Vfa(h, k).

Section .

The Generic Cardinality Theorem for Two Input Words

The aim of this section is to prove the finite automata cardinality conjec-
ture for n = 2. As before, we start with a generic version of the claim.
Unlike the generic theorems of the previous section, the following theorem
is formulated only for classes of relations that are strongly closed.

. Theorem

Let C be strongly closed and let A be a set. If #2
A ∈ ENC(2), then A ∈ C.

Proof. Suppose #2
A ∈ ENC(2) via a relation R ∈ C. Our first aim is to

switch from the cardinality function #2
A to the characteristic function χ2

A.



Ideally, if we could show χ2
A ∈ ENC(2), then theorem . would yield the

claim. Unfortunately, if R enumerates both the numbers 0 and 1 on input
(x, y) with x 6= y, we only know χ2

A(x, y) ∈ {00, 01, 10}; and if R enu-
merates both the numbers 1 and 2, we only know χ2

A(x, y) ∈ {01, 10, 11}.
Thus, as first step, we only show χ2

A ∈ ENC(3).
Let C2 ∈ C be the ternary relation that is defined as follows:

b ∈ C2[x, y] :⇐⇒
(
b = 00 → � 0 ∈ R[x, y] ∨ x = y

)
∧
(
b = 01 ∨ b = 10→ � 1 ∈ R[x, y] ∧ ¬x = y

)
∧
(
b = 11 → � 2 ∈ R[x, y] ∨ x = y

)
.

The graph of χ2
A is contained in C2 (hence the name) and C2[x, y] is always a

subset of one of the following pools: {00, 01, 10}, {00, 11}, and {01, 10, 11}.
You may have noticed that, unlike 0, 1, and 2, the constants 00, 01,

10, and 11 are not necessarily in the universe of the relation R. Thus we
might be unable to refer to these constants in the formula that defines the
relation C2. However, these constants are only used ‘internally’ and we can
pick any four distinct elements of R’s universe and interpret them as 00,
01, 10, and 11 respectively. (If R’s universe has less than four elements,
the claim is trivial since the universe is ordered and all of its subsets can
be defined elementarily.)

The second aim is to enumerate pools of minimal size for χ3
A, that is, for

any three input elements. This is achieved by a relation C3 that is defined by
b ∈ C3[x, y, z] :⇐⇒ b[1, 2] ∈ C2[x, y]∧b[1, 3] ∈ C2[x, z]∧b[2, 3] ∈ C2[y, z].
The formula expresses that the bitstring b ∈ {0, 1}3 is consistent with the
sets enumerated by C2 on every selection of two elements. In particular,
χ3
A(x, y, z) ∈ C3[x, y, z]. As in the proof of theorem ., the formula could

be legalised if desired.
The next step is to employ an easy-hard argument similar to the ar-

gument used in the proof of theorem .. This time, let us call a pair
(x, y) of elements easy if there exists an element z such that

{
b[1, 2] |

b ∈ C3[x, y, z]
}

has size at most 2. The element z will be called an advisor
for (x, y). The advisor relation, denoted B in this proof in order to avoid
a name clash with the language A, is the following ternary relation:

(x, y, z) ∈ B :⇐⇒
¬

∨
b,c,d∈{0,1}2,
b,c,d distinct

�
(
b0 ∈ C3[x, y, z] ∨ b1 ∈ C3[x, y, z]

)
∧
(
c0 ∈ C3[x, y, z] ∨ c1 ∈ C3[x, y, z]

)
∧
(
d0 ∈ C3[x, y, z] ∨ d1 ∈ C3[x, y, z]

)
.

The formula φeasy(x, y) := ∃z B(x, y, z) is true exactly for easy pairs (x, y).



Case : Existence of a Hard Pair that is Partly In and Out

Suppose there exists a hard pair (xhard, yhard) with χA(xhard) 6= χA(yhard),
that is, χ2

A(xhard, yhard) = 01 or χ2
A(xhard, yhard) = 10. We only need to

consider the case χ2
A(xhard, yhard) = 01 since the other case is symmetric.

We can freely use xhard and yhard in formulæ in the following, because all
singleton sets are elements of C by the third closure property of strongly
closed classes.

I claim that z ∈ A holds iff 011 ∈ C3[xhard, yhard, z]. To prove this,
we show that there exists at most one bitstring in P := C3[xhard, yhard, z]
that starts with 01. Suppose we had both 010 ∈ P and 011 ∈ P . Then
000 /∈ P , since otherwise {b[2, 3] | b ∈ P } ⊇ {10, 11, 00}, contradicting
the assumption that one possibility has been excluded for #2

A(yhard, z).
Likewise, 101 /∈ P and also 111 /∈ P , since otherwise {b[1, 3] | b ∈ P } ⊇
{00, 01, 11}.

Since (xhard, yhard) is a hard pair, we have either {b[1, 2] | b ∈ P } =
{00, 01, 10} or {b[1, 2] | b ∈ P } = {01, 10, 11}. In the first case, since
000 /∈ P and 00 ∈ {b[1, 2] | b ∈ P }, we must have 001 ∈ P . Likewise,
since 101 /∈ P and 10 ∈ {b[1, 2] | b ∈ P }, we must have 100 ∈ P . But
then P ⊇ {010, 011, 001, 100} and thus {b[2, 3] | b ∈ P } ⊇ {10, 11, 01, 00},
a contradiction. Similarly, in the second case we must have 100 ∈ P and
110 ∈ P and thus P ⊇ {010, 011, 100, 110}, which yields {b[2, 3] | b ∈
P } ⊇ {10, 11, 00}, also a contradiction. This shows that P contains only
one bitstring starting with 01.

Case : All Hard Pairs are Either In or Out

For this case, assume that χA(xhard) = χA(yhard) holds for every hard
pair (xhard, yhard). The aim is to show χ2

A ∈ ENC(2), which implies the
claim by theorem .. The rough idea is as follows. On input of two
elements x and y, we first check whether the pair (x, y) is hard, using the
formula ¬φeasy. If so, by assumption we know that χA(x) = χA(y) and we
can output the pool {00, 11}. Otherwise the pair is easy. In this case we
know that there exists an advisor z such that

{
b[1, 2] | b ∈ C3[x, y, z]

}
has

size at most 2. Once we have fixed such an advisor, we can output the set.
In detail, the construction is as follows. Let B′ ∈ C denote a single-

valued refinement of the advisor relation B. The relation B′ is the graph
of a partial function that maps every easy pair (x, y) to an advisor for it
and that is undefined for all hard pairs. Consider the following relation S:

b ∈ S[x, y] :⇐⇒
(
¬φeasy(x, y)→ � b = 00 ∨ b = 11

)
∧
(
φeasy(x, y)→ ∃z �B′(x, y, z)

∧
(
b0 ∈ C3[x, y, z] ∨ b1 ∈ C3[x, y, z]

))
.



The first line ensures that S enumerates {00, 11} if (x, y) is a hard pair.
If it is easy, the second line first fixes z such that it is an advisor and
then outputs all bitstrings in the set C3[x, y, z] with the last bit removed.
Since (x, y) is easy, this set will have size at most 2. Thus χ2

A ∈ ENC(2)
via S. qed

. Corollary

Let A be a language. If #2
A ∈ ENfa(2), then A is regular.

. Corollary

Let A ⊆ N. If #2
A ∈ ENPa(2), then A is definable in Presburger arithmetic.

Note that we do not obtain the corollary ‘if #2
A ∈ ENre(2), then A is recur-

sive’. There are two reasons for this. First, the theorem would only claim
that A is recursively enumerable, not that it is recursive. But this problem
is easily taken care of, since #2

A ∈ ENre(2) iff #2
Ā
∈ ENre(2). The second

reason is more profound: the class of recursively enumerable relations is
not closed under universal quantification, but such a quantification is used
for the definition of the relation S. The statement ‘if #2

A ∈ ENre(2), then A
is recursive’ is nevertheless true by fact ., whose proof is quite different
from the proof of theorem ..

We do not obtain the corollary ‘if #2
A ∈ ENOn(2), then A is definable in

ordinal number arithmetic’ either. This time, the reason is that the class
of relations definable in ordinal number arithmetic does not contain all
singletons, see example .. The following theorem shows that, in contrast
to the recursive setting, this claim also cannot be proved by other means.

. Theorem

There is a set A ⊆ On that is not elementarily definable in ordinal number
arithmetic, but for which #2

A ∈ ENOn(2) (even via a relation that never
enumerates both 0 and 2).

Proof. Let A := {α} such that α ∈ On is not definable in ordinal number
arithmetic. Such an ordinal exists, as argued in example .. We have
#2
A ∈ ENOn(2) via the relation On × On × {0, 1}, which is elementarily

definable in ordinal number arithmetic and never enumerates 2. qed

Section .

The Generic Restricted Cardinality Theorem

In this section I prove that the restricted cardinality theorem holds for
finite automata. A central idea of the proof, namely the use of a tuple
(y1, . . . , yn) in the definition of easy tuples, is due to Austinat et al. ().



. Theorem

Let n be a positive integer, let C be strongly closed, and let A ⊆ U be a set.
If #n

A ∈ ENC(n) via a relation R for which R[x1, . . . , xn] never contains
both 0 and n for any x1, . . . , xn ∈ U , then A ∈ C.

Proof. We prove the claim by induction on n. For n = 1 the claim is true.
So suppose the claim has already been shown for n− 1.

Let #n
A ∈ ENC(n) via a relation R such that R[x1, . . . , xn] never contains

both 0 and n for any xi ∈ U . As in the previous proofs, we define easy
elements, based on a notion of advisors. Let us call a tuple (y1, . . . , yn) ∈
Un an advisor for a tuple (x1, . . . , xn−1) ∈ Un−1, if it satisfies the following
relation:

(x1, . . . , xn−1, y1, . . . , yn) ∈ B :⇐⇒
distinct(x1, . . . , xn−1, y1, . . . , yn)

∧ 0 ∈ R[y1, . . . , yn] ∧
∧n
i=1 n ∈ R[x1, . . . , xn−1, yi].

Note that an advisor tuple can only, but need not, exist if at least one xi is
in A. Let us call a tuple (x1, . . . , xn−1) of pairwise different elements easy
if

. at least one xi is not in A or
. there exists an advisor for it.

A tuple (x1, . . . , xn−1) of pairwise different elements is hard if it is not easy.

Case : Existence of a Hard Tuple

Suppose that there exists a hard tuple (xhard
1 , . . . , xhard

n−1). Since the class C
contains all singletons, we can freely use the xhard

i in formulæ in the fol-
lowing. Let

y ∈ Â :⇐⇒ n ∈ R
[
xhard

1 , . . . , xhard
n−1 , y

]
∨
∨n−1
i=1 y = xhard

i .

I claim Â =ae A. This means that A and Â are equal almost everywhere,
that is, that their symmetric difference is finite. This will prove A ∈ C.

Since condition  does not hold for hard tuples, all xhard
i are in A. For

y ∈ A \ {xhard
1 , . . . , xhard

n−1 } we thus have #n
A(x1, . . . , xn−1, y) = n, which

implies n ∈ R[xhard
1 , . . . , xhard

n−1 , y]. Thus for all y ∈ A we have y ∈ Â.
For y /∈ A, we can have n ∈ R[xhard

1 , . . . , xhard
n−1 , y] for at most n − 1

different y’s, since any such y’s would form an advisor for (xhard
1 , . . . , xhard

n−1),
contradicting the assumption that condition  does not hold. Thus y /∈ Â
whenever y /∈ A, except for these finitely many exceptions.

Case : All Tuples are Easy

Suppose all tuples of pairwise different elements are easy. We argue that



#n−1
A ∈ ENC(n − 1) via a relation S for which S[x1, . . . , xn−1] never con-

tains both 0 and n − 1 for any xi. This yields the claim by the induction
hypothesis. For the definition of S, first consider the following relation S̃,
which ‘works’ only for distinct xi:

k ∈ S̃[x1, . . . , xn−1] :⇐⇒[(
∃y1 · · · ∃yn B(x1, . . . , xn−1, y1, . . . , yn)

)
→
∨n−1
i=1 k = i

]
∧
[(
¬∃y1 · · · ∃yn B(x1, . . . , xn−1, y1, . . . , yn)

)
→
∨n−2
i=0 k = i

]
.

For distinct xi, if there exists an advisor tuple for (x1, . . . , xn−1), the very
existence of the advisor tuple ensures that for at least one xi we have
xi ∈ A. Thus #n−1

A (x1, . . . , xn−1) > 0. If there does not exist an advisor
tuple, which can only happen if condition  holds, at least one xi is not
in A. Thus #n−1

A (x1, . . . , xn−1) < n− 1.
The desired relation S that works for all xi, not just for distinct xi, can

be obtained from S̃ as follows:

k ∈ S[x1, . . . , xn−1] :⇐⇒(
distinct(x1, . . . , xn−1)→ k ∈ S̃[x1, . . . , xn−1]

)
∧
(
¬distinct(x1, . . . , xn−1)→

∨n−2
i=0 k = i

)
.

qed

. Corollary

Let n be a positive integer and A a language. If #n
A ∈ ENfa(n) via an

automaton that never enumerates both 0 and n, then A is regular.

. Corollary

Let n be a positive integer and A ⊆ N. If #n
A ∈ ENPa(n) via a relation

that never enumerates both 0 and n, then A is definable in Presburger
arithmetic.

Section .

Constructiveness of the Generic Theorems

This section addresses the question of whether the results of the previous
sections can be proved in a constructive way. As we shall see, this depends
on the computational model: for Turing machines the answer is negative,
for finite automata it is positive (at least for a fair version of the question).

Both the nonspeedup theorem and the cardinality theorem for two
words rely on the cross product theorem. In order to investigate whether



these theorems can be proved constructively, let us revisit the proof of the
cross product theorem, paying close attention to its constructiveness. The
theorem tells us that if f ×g is (n+m)-enumerable, then there exists an n-
enumerator for f or there exists an m-enumerator for g. The proof provides
us with a construction of these enumerators, starting with the enumerator
for f × g and using the closure properties of the class C.

Unfortunately, the closure properties themselves are not constructive for
all computational models. For the class of recursively enumerable languages
the third closure property of weakly closed classes, see definition ., is
highly nonconstructive: the closure property amounts to the statement ‘ev-
ery singleton set in the arithmetical hierarchy is recursively enumerable’.
This statement is certainly true since every singleton set is trivially re-
cursively enumerable, but there is no way of computing the element of
the singleton set from the code of a machine that witnesses the singleton’s
membership in the arithmetical hierarchy. When the cross product theorem
for Turing machines is proved directly, as done in (Tantau, ), the ‘hard
elements’ uhard appear magically and must be hardwired into machines.

A conceptually different source of nonconstructiveness is the value of
f(uhard). We know that it is among a set of at most n + m possibilities,
but we cannot ‘construct’ the correct one. Instead, we must hardwire the
index of the correct choice into the formulæ.

These sources of nonconstructiveness are not just peculiarities of my
proof. For Turing enumerability, the work of Beigel et al. () shows
that it is an integral part of the cross product theorem: they show that
every proof of the nonspeedup theorem, which is a direct corollary of the
cross product theorem, must be nonconstructive. More precisely, there is no
algorithm that gets as input (the code of) a Turing machine witnessing A ∈
Vre(n, n) and yields as output (the code of) a Turing machine deciding A.

To be fair, a machine M that witnesses A ∈ Vre(n, n) typically also
witnesses B ∈ Vre(n, n) for different languages B. It is hence impossible
for any algorithm to ‘output’ exactly A on input M . A fair version of this
construction problem, which is called ‘search problem’ by Kaufmann and
Kummer (), is formulated next.

. Definition of Fair Construction Problems for Turing Machines

A Turing machine solves the construction problem for the nonspeedup theo-
rem, respectively for the restricted cardinality theorem, if it has the follow-
ing properties:

. As input, it gets the code of a machine Mwitness that witnesses χnA ∈
ENre(n) for some language A, respectively #n

A ∈ ENre(n) such that 0
and n are never enumerated both.

. As output, it yields the code of a machine M .



. The Turing machine Mwitness witnesses χnL(M) ∈ ENre(n), respectively
#n

L(M) ∈ ENre(n) such that 0 and n are never enumerated both.

Even the fair version of the construction problem cannot be solved. That
is, no Turing machine M solves the construction problem for the non-
speedup theorem or for the restricted cardinality theorem. In a detailed
study, Kaufmann and Kummer () were able to ‘quantify’ the ‘degree of
nonconstructiveness’. The following definition and theorem explain what
is meant by this.

. Definition of the Weak Construction Problem

Let k be a positive integer. A Turing machine solves the weak k-construc-
tion problem for the nonspeedup theorem, respectively for the restricted
cardinality theorem, if it has the following properties:

. As input, it gets the code of a machine Mwitness that witnesses χnA ∈
ENre(n) for some language A, respectively #n

A ∈ ENre(n) such that 0
and n are never enumerated both.

. As output, it yields the codes of k machines M1, . . . , Mk.
. For at least one machine Mi we have L(Mi) =ae B for some lan-

guage B for which Mwitness witnesses χnB ∈ ENre(n), respectively
#n
B ∈ ENre(n) such that 0 and n are never enumerated both.

A solver for the weak construction problem yields only somewhat crude
constructive approximations of the language A. The following facts show
that even these crude approximations are hard to come by.

. Fact (Kaufmann and Kummer, )
The weak k-construction problem for the nonspeedup theorem is solvable
exactly for k ≥ 2n− 1.

. Fact (Kaufmann and Kummer, )
The weak k-construction problem for the restricted cardinality theorem is
solvable exactly for k ≥ (n+ 1)/2.

The situation is quite different for finite automata. Since the class of regular
relations is strongly closed in a uniform way, the first source of nonunifor-
mity in the cross product theorem disappears for finite automata: the set
of hard words is regular and we can nicely refer to all its elements. We can
even effectively check whether hard words exist at all, by checking whether
a language specified by a finite automaton is empty or not. The second
source of nonuniformity, namely the unknown value of f(uhard), is a per-
sisting problem. Before we investigate how this problem can be dealt with,
let us define the problem we wish to solve.



. Definition of Fair Construction Problems for Finite Automata

A Turing machine solves the finite automata construction problem for the
nonspeedup theorem, respectively for the cardinality theorem for two words,
respectively for the restricted cardinality theorem, if it has the following
properties:

. As input, it gets the code of a dfa Mwitness that witnesses χnA ∈
ENfa(n) for some language A, respectively #2

A ∈ ENfa(2), respectively
#n
A ∈ ENfa(n) such that 0 and n are never enumerated both.

. As output, it yields the code of a dfa M .
. The dfa Mwitness witnesses χnL(M) ∈ ENfa(n), respectively #2

L(M) ∈
ENfa(2), respectively #n

L(M) ∈ ENfa(n) such that 0 and n are never
enumerated both.

. Theorem

There exists a Turing machine that solves the finite automata construction
problem for the nonspeedup theorem.

Proof. In case n = 1, the claim is trivial and we are done. So assume n > 1.
Let A be a language for which Mwitness witnesses A ∈ Vfa(n, n).

Consider the proof of the cross product theorem for f = χn−1
A and

g = χA. In the proof, two cases are distinguished. For the second case
(all word tuples are easy), the dfa Mwitness is constructively turned into a
dfa M ′witness that witnesses A ∈ Vfa(n − 1, n − 1) and we can repeat the
argument. Note that checking whether all word tuples are easy amounts to
checking whether a relation specified by a finite automaton is (Σ∗)n−1. For
the first case (a hard word tuple exists), the machine Mwitness is construc-
tively turned into an automaton that accepts A, provided the characteristic
string of a certain word tuple is known. Although we do not know this value,
we can ‘try’ all 2n−1 possible values. Each value yields a candidate for a
dfa that accepts A and (at least) one of them will be correct. For each can-
didate we can check (effectively) whether Mwitness witnesses membership
in Vfa(n, n) for them and output the dfa for which this is the case. qed

For the solution of the other two construction problems, the following
lemma is helpful.

. Lemma

Let n and k be positive integers. There is a Turing machine that works
as follows: It gets as input the codes of two DFA’s that accept a (k + 1)-
ary relation R and an (n+ 1)-ary relation Rwitness. If there exists a word
tuple (x1, . . . , xk) for which Rwitness witnesses #n

R[x1,...,xk] ∈ ENfa(n), the
machine yields such a tuple as output. If no such tuple exists, a special
output is produced.



Proof. Using the formula ∀z1 · · · ∀zn¬∃i1 · · · ∃in+1 � distinct(i1, . . . , in+1) ∧∧n+1
j=1 Rwitness(z1, . . . , zn, ij) we first check whether Rwitness is n-bounded.

If this is the case, we consider the following relation:

(x1, . . . , xk) ∈ S :⇐⇒
∀z1 · · · ∀zn #n

R[x1,...,xk](z1, . . . , zn) ∈ Rwitness[z1, . . . , zn].

The term ‘#n
R[x1,...,xk](z1, . . . , zn)’ is not legal, but it could easily be re-

placed by a more verbose legal version. The relation S is true for a tuple
(x1, . . . , xk) if the language R[x1, . . . , xk] is ‘consistent’ with the witness
relation Rwitness. Thus the smallest tuple for which this relation is true is
the sought tuple. This tuple can be obtained constructively, since its def-
inition is based on the closure properties of the class of regular relations.
Checking whether the set is empty can also be done effectively. qed

. Theorem

There exists a Turing machine that solves the finite automata construction
problem for the cardinality theorem for two words.

Proof. As in the proof of the previous theorem, most steps of the proof of
the finite automata cardinality theorem for two words are constructive. The
only exception is the beginning of the first case: a hard pair whose compo-
nents have differing characteristic values appears ‘magically’ and there is
no way to avoid this. However, we can invoke the above lemma for the re-
lation (x, y, z) ∈ R :⇐⇒ 011 ∈ C3[x, y, z]. If the first case of theorem .
is the ‘right’ case, for an appropriate pair (x, y) the language R[x, y] will be
consistent with the witness machine. By lemma ., we can obtain such a
pair constructively. If the second case is ‘right’, the proof of theorem .
invokes the finite automata nonspeedup theorem. Since the fair construc-
tion problem for this theorem can also be solved by theorem ., we get
the claim. qed

. Theorem

There exists a Turing machine that solves the finite automata construction
problem for the restricted cardinality theorem.

Proof. Once more, most steps of the proof of theorem . are constructive.
This time the nonconstructive element in the proof is the fact that the
constructed language Â might differ on up to n−1 positions from A. As in
the previous proof, we get around this nonconstructive part by defining all
languages that differ from Â in at most n − 1 places in a parametric way
and then invoke lemma . to find the ‘right’ n− 1 places. qed

There exists a much simpler algorithm that solves the three construction
problems discussed above: on input of a witnessing automaton Mwitness,



systematically check for all dfa’s whether they accept a language for which
Mwitness is a witnessing automaton. If we find such an automaton, we out-
put it. This straight-forward construction method has two severe draw-
backs: first, if the automaton Mwitness is not a witnessing machine after
all, this will not be noticed and the algorithm loops endlessly; second, the
brute-force search is computationally more expensive than the transforma-
tion algorithms used in the theorems.





Fifth Chapter

The Branch Diagonalisation Method



Introduction and Overview

This chapter is a tutorial to a new diagonalisation method, which I call
‘branch diagonalisation’. Unlike other diagonalisation techniques it is not
only applicable to Turing machines, but also to finite automata. The
method is not universally applicable; for example one of the involved classes
must be uncountable. But when it is applicable it yields extremely strong
separations. An example is the separation of verboseness classes: using a fi-
nite injury argument, Beigel et al. (b) were able to show that Vre(m,n)
is not contained in Vre(h, k) for certain numbers m, n, h, and k; using
branch diagonalisation, I show that for the same numbers the much smaller
class Vfa(m,n) is not even contained in the much bigger class VXre (h, k) for
any oracle X. The class VXre (h, k) contains all languages that are (m,n)-
verbose via a Turing machine that has oracle access to X.

The first use of diagonalisation dates back to Georg Cantor’s famous
proof (Cantor, ) that the continuum is ‘larger’ than the set of natu-
ral numbers. Diagonalisation was first used in computer science by Alan
Turing () at a time when computer science did not even exist as a
discipline. Since then, diagonalisation has evolved and is now used exten-
sively both in recursion theory, see the tenth chapter of (Odifreddi, )
for an overview, and in complexity theory, see the recent survey article by
Fortnow () for the current state of the art.

All diagonalisation methods, including branch diagonalisation, follow
the same pattern: We start with a countable set of, say, Turing machines
that witness that a language has a certain property. For example, we
might start with the set of (clocked) polynomially time-bounded Turing
machines that witness that a language is in the class P. We then construct
a language that does not have this property by systematically tricking all
machines. This is ensured by defining the characteristic values of some
appropriate words in such a way that the first machine cannot witness that
the language has the property. Then, for some other words, we ensure that
the second machine is tricked, and so on. The words for which we trick
the machines will be called diagonalisation points. By carefully choosing
the diagonalisation points we can ensure that the resulting language still
has certain desirable properties, like being decidable in exponential time.
Diagonalisation methods differ mainly in how the diagonalisation points
are chosen.

The simplest way of choosing them is to trick each machine on its own
binary encoding. For example, let us construct a language L that is not
recursively enumerable: Take the first Turing machine M1 that could prove
this. In order to ensure that M1 does not accept L, we study the behaviour
of M1 on its own binary encoding binM1. If M1 halts (and, for the purposes



of this example, accepts by definition) on input binM1 we do not put binM1

into L, otherwise we do. In the same way we trick M2 on input binM2,
and so on. The language L constructed in this way is surely not recursively
enumerable. Note that L = {binM | M does not halt on input binM } is
exactly the complement of the halting problem. Thus we have recovered
Turing’s result that the halting problem is not co-recursively enumerable.
This choice of diagonalisation points, namely machine codes (possibly aug-
mented by an input or a number of steps), is also used in numerous proofs in
complexity theory: the space and time hierarchy theorems use this method.

More advanced diagonalisation arguments use a more complicated ap-
proach. For the super-sparse set technique, first used by Kurtz ()
according to Hemaspaandra and Jiang (), we do not directly interpret
words as codes of machines, but rather the iterated logarithm of their
length. This causes the diagonalisation points to be spaced extremely
far apart: the ith machine is tricked on words of length tow(i), where
tow(0) = 1 and tow(n+ 1) = 2tow(n).

The most important diagonalisation techniques in recursion theory are
finite and infinite injury methods. These methods have in common that
diagonalisation points ‘move around’. ‘Urgent problems’ during a later
stage of the diagonalisation process can make it necessary to reassign a
diagonalisation point.

All these methods have one thing in common: they are not applica-
ble to finite automata. Finite automata lack the ability to decode the
code of another finite automaton, let alone the ability to keep track of the
reassignments performed during a finite injury argument. The branch di-
agonalisation method was born out of a need to diagonalise using finite
automata. This method chooses the diagonalisation points in such a way
that even a finite automaton can ‘work with them’.

We start with a finite set Q of ‘diagonalisation choices’ or ‘diagonali-
sation actions’. Each element of Q represents a possible action taken in
a diagonalisation stage. For example, for the halting problem diagonali-
sation above, Q = {d0, d1} where d0 is the decision ‘leave the word out,
since the machine halts’ and d1 is the decision ‘put it in, since the ma-
chine does not halt’. Consider the tree Q∗, whose predecessor relation is
the prefix relation. Each branch of this tree represents an infinite sequence
of diagonalisation decisions. During a diagonalisation such a branch is in-
crementally constructed: the way we trick the first machine determines
the first node of the branch, the way we trick the second machine deter-
mines the second node, and so on. For example, for the set Q for the
halting problem the diagonalisation might result in a branch of Q∗ like
{ε, d0, d0d0, d0d0d1, d0d0d1d0, . . .}.

The key idea of the branch diagonalisation method is to use a binary en-



coding of the nodes of the diagonalisation branch as diagonalisation points.
For example, if we encode d0 by 0 and d1 by 1, for the above branch we
diagonalise against the first Turing machine on the word ε. We diagonalise
against the second machine on the word 0, against the third machine on 00,
against the fourth on 001, and so on. In more complicated settings we may
need more than one word for each diagonalisation stage, say k many. We
obtain these words be appending k different tags to the binary encoding of
the current diagonalisation node.

In a branch diagonalisation every diagonalisation point encodes the
whole previous diagonalisation process. Given two words that encode two
different diagonalisation sequences, even a finite automaton can compute
up to what point the diagonalisation sequences agree and it can compute
what ‘happened’ when the sequences split. In certain situations this infor-
mation suffices for showing that the diagonalisation language has a certain
property, like being (m,n)-fa-verbose.

Branch diagonalisation, which was called ‘structural diagonalisation’
in (Tantau, ), has been used before. In a technical report, Kummer
and Stephan () introduced k-branches, which are a special case of the
branches considered in this dissertation. They use k-branches in an ad hoc
fashion for a separation of frequency classes, but do not use or propose
their diagonalisation as a general method. In the tenth chapter of the book
of Odifreddi (), a special finite injury argument called ‘tree diagonal-
isation’ is introduced. This method has in common with branch diago-
nalisation that diagonalisation choices drive the construction of a branch
in a tree of diagonalisation choices. Odifreddi traces the roots of tree di-
agonalisation back to an article of Lachlan (). Both k-branches and
tree diagonalisation are defined in such a way in the literature that they
apply only to Turing machines. As I shall demonstrate, branch diagonali-
sation gives especially powerful results when used in conjunction with finite
automata.

Section ., entitled ‘The Art of Branch Diagonalisation’, introduces
the branch diagonalisation method. First, a simple example is presented.
Then the essential ideas are extracted from the proof. This leads to a formal
framework for branch diagonalisation, which is developed in the course of
the section. The remaining sections present theorems whose proofs employ
a branch diagonalisation.

In section . a beautiful theorem is proved: the separation theorem
for verboseness classes. A consequence of this theorem is that the inclu-
sion structures of finite automata and Turing machine verboseness classes
coincide: Vfa(m,n) ⊆ Vfa(h, k) iff Vre(m,n) ⊆ Vre(h, k).

Section . studies relations that are separable or inseparable by regular
relations. Separation by regular relations is defined analogously to separa-



tion by recursive or polynomial-time computable sets: two sets A and B are
fa-separable if there exists a regular set C with A ⊆ C ⊆ B̄. Using branch
diagonalisation, I prove that two languages A and B can be disjoint and
recursively inseparable, while the closely related relations A(2) and B(2)

are fa-separable. A surprising result of this section is theorem ., which
provides a counterexample to a theorem of Kinber ().

In section . branch diagonalisation is used to separate reduction clo-
sures of selectivity classes. In the recursive setting these reduction closures
play a key rôle in the solution of Post’s problem, in the polynomial-time set-
ting they have applications in the study of problems having small circuits.
A strong separation is shown for the bounded queries reduction closures of
selective languages: for every k, there exists an fa-selective language whose
parallel (k + 1)-queries equivalence closure is not contained in the parallel
k-queries reduction closure of any semirecursive language. Apart from a
branch diagonalisation, the proof of the separation uses a combinatorial
result on walks on hypercubes. Although the obtained results are stronger
than some previously known results, they are not quite as strong as the
results presented in (Beigel et al., ) and (Tantau, ). I have not
included proofs of these stronger results, which are proved differently, since
this chapter focusses on ‘branch diagonalisation in action’.

Section .

The Art of Branch Diagonalisation

In this section branch diagonalisation is introduced and formalised. A the-
orem is presented whose proof uses a simple branch diagonalisation. It
states that the intersection of P-selective languages need not be semire-
cursive, which improves an earlier result due to Hemaspaandra and Jiang
(). The proof is reviewed and the ‘essence’ of the ideas is extracted.
Building on the analysis, I develop a formal framework for branch diago-
nalisation.

Although a general ‘branch diagonalisation theorem’ is formulated at
the end of this section, see theorem ., branch diagonalisation is still a
method. It cannot be completely described by a single theorem. In this
respect it resembles other methods like, say, induction. In many textbooks
an ‘induction theorem’ is formulated that states, for example, that if a set S
of natural numbers contains 0 and contains together with each number n
also n+1, then S is the set of all natural numbers. However, such theorems
are rarely applied directly and the ‘induction method’ often needs to be
adapted to specific situations.



Example of a Branch Diagonalisation

We start with a simple proof that uses a branch diagonalisation. The
theorem refers to P-selective and semirecursive languages. These notions
are due to Selman () and Jockusch () respectively.

. Definition of Selective Languages

A selector for a language A ⊆ Σ∗ is a function f : Σ∗ × Σ∗ → Σ∗ such
that f(u, v) ∈ {u, v} for all words u, v ∈ Σ∗ and such that f(u, v) ∈ A
whenever u ∈ A or v ∈ A. A language is P-selective if it has a selector that
is computable in polynomial time, it is semirecursive if it has a recursive
selector, and it is fa-selective if it has a regular selector.

Hardly surprisingly, branch diagonalisation proofs refer to trees and bran-
ches. For our purposes, they can be defined as follows. Note that branches
are required to be infinite.

. Definition of Trees and Branches

A tree is a language that is closed under prefix. Its alphabet is called the
tree alphabet. The elements of a tree are called nodes. The empty word is
the root node. A node u is a descendant of a node v if v is a proper prefix
of u. A descendant is a successor of a node if it is exactly one symbol
longer. A branch of a tree T is an infinite set {u1, u2, u3, . . .} ⊆ T such
that u1 is the root node and each ui is a successor of ui−1.

. Theorem

There exist two P-selective sets whose intersection is not semirecursive.

Proof. I present this proof in more detail than customary in order to make
its analysis easier later on. For a crisp presentation of this proof see theo-
rem . of the book of Hemaspaandra and Torenvliet ().

Preparation

Our aim is to construct a language A that is not semirecursive. The special
way we do this will ensure that A is the intersection of two P-selective
languages B and C.

Let M1, M2, M3, . . . be an enumeration of all Turing machines that
compute recursive selector functions. Note that this enumeration need not
be effective (indeed, it cannot be effective). For each machine Mi, let
fi denote the selector function computed by Mi and let Di denote the
class of all languages for which fi is a selector. Thus L ∈ Di if for all
words u, v ∈ Σ∗ with u ∈ L or v ∈ L we have fi(u, v) ∈ L. Since the
sets Di cover the class of semirecursive languages, for the construction of
the diagonalisation language A it suffices to ensure that A is not an element
of any Di.



Construction of the Diagonalisation Branch

A requirement like ‘A /∈ Di’ can be satisfied as follows: given any word u,
consider the ‘behaviour’ of fi on the words u0 and u1. Either fi(u0, u1) =
u0 or fi(u0, u1) = u1. In the first case, all languages L ∈ Di have the
property that u1 ∈ L enforces u0 ∈ L. Setting χ2

A(u0, u1) := 01 ensures
A /∈ Di. In the second case, A /∈ Di is ensured by setting χ2

A(u0, u1) := 10.
The two cases correspond to two possible ‘diagonalisation decisions’,

which will be called d1 and d2. The decision d1 means ‘put u1 into A
and leave out u0’; whereas d2 means ‘put u0 into A and leave out u1’.
Let Q := {d1, d2} and let us encode d1 by the symbol 1 and d2 by the
symbol 0. For a node u ∈ Q∗, let binu denote its binary encoding; for
example bin d1d2d1 = 101.

Recall that the key idea of the branch diagonalisation method is to trick
each machine on the code of the previous diagonalisation decisions. For the
present proof this means the following: The first diagonalisation point u1

is the empty node ε ∈ Q∗ (no decisions have been made, yet) and we trick
M1 on the words binu1 0 = 0 and binu1 1 = 1. If f1(0, 1) = 0, the first
diagonalisation decision is d1, otherwise it is d2. We set χ2

A(0, 1) = 01 or
χ2
A(1, 0) = 10 accordingly. For a node u ∈ Q∗, let us call the words binu 0

and binu 1 associated with u.
The second diagonalisation node u2 is either u1d1 or u1d2, depending

on the first diagonalisation decision. We trick M2 on the words binu2 0
and binu2 1 that are associated with u2. This results in a specific value of
χ2
A(binu2 0,binu2 1), a second diagonalisation decision, and a new node u3.

We trick M3 on the words associated with u3, which yields a third diago-
nalisation decision and a node u4; and so on.

As we trick all machines, a branch {u1, u2, u3, . . .} ⊆ Q∗ is constructed.
The characteristic values of the words associated with the nodes on this
branch are fixed during the diagonalisation process. For all other words,
no matter how we choose their characteristic values, the language A will
not be an element of any Di. Let us put no other words into A, except for
the empty word (this is for æsthetic reasons, see below).

The Diagonalised Set is the Intersection of P-Selective Sets

It remains to show that the language A is the intersection of two P-selective
languages. Before we construct them, let us first scrutinise A’s structure.

I claim that the language A itself forms a branch in the full binary tree
{0, 1}∗. First, the root node is an element of A by definition. Second, for
any node ui of the diagonalisation branch either the bitstring binui 0 or the
bitstring binui 1 is an element of A. By definition of ui+1, these nodes ‘hap-
pen’ to be binui+1. Thus A is exactly the set {binu1,binu2,binu3, . . .}.
(This is a peculiarity of this particular proof. In other branch diagonalisa-
tions the language A is more complicated.)



For showing that A is the intersection of two P-selective languages, the
only relevant property of A is its being a branch. It will not be important
how this branch is formed exactly or how many times it veers to the left or
right. Rather, every branch {x0, x1, x2, . . .} ⊆ {0, 1}∗ is the intersection of
two P-selective languages: let

B :=
{
w ∈ {0, 1}∗ | w ≤lex x|w|

}
and

C :=
{
w ∈ {0, 1}∗ | w ≥lex x|w|

}
.

These languages are P-selective via the following two selector functions: fB
maps a pair (w1, w2) to the lexicographically smaller one of the two words,
fC maps the pair to the larger one. These functions are even regular, and
thus in particular polynomial-time computable. Clearly, A = B ∩C. qed

. Corollary (Hemaspaandra and Jiang, )
The class of P-selective languages is not closed under intersection.

The branch diagonalisation proof of theorem . gives a stronger result
than the original proof of Hemaspaandra and Jiang () of corollary ..
Their proof uses a super-sparse set diagonalisation. Although it can be used
to show that for arbitrary recursive functions f there exist two P-selective
languages whose intersection does not have a selector that is computable
in time f , it cannot be used to establish the claim of theorem .. The
reason is, roughly spoken, that their diagonalisation involves a simulation of
selectors for earlier stages of the diagonalisation. The proof of theorem .
avoids such a simulation and yields a much stronger result. It can be
recycled to show an even stronger statement:

. Theorem

For every oracle X, there exist two fa-selective languages whose intersection
does not have a selector that is recursive in X.

A Formalisation of the Branch Diagonalisation Method

In the remainder of this section the branch diagonalisation method is for-
malised. The aim is to formulate a ‘branch diagonalisation theorem’, see
theorem ., that encapsulates the core idea of the method. The frame-
work is developed by analysing the proof of theorem ..

The first step of the proof was the introduction of machines Mi that
served as possible witnesses for showing that the diagonalisation language A
is semirecursive. The exact details of these machines turned out to be
irrelevant. It was only important that the language A is not an element of
any of the classes Di. The class Di contained all languages L for which the
selector computed by Mi witnesses that L is semirecursive.



The first building block of the framework is an abstraction of the first
proof step. It provides an abstract way of talking about sets of languages
for which devices (like Turing machines) witness membership in a class of
languages (like the class of semirecursive languages).

. Definition of Countable Coverings

Let C be a class of languages. A countable covering of C is a countable set
of subclasses of C that cover C.

In other words, a countable covering V of C has the property that for each
language L ∈ C there exists a class D ∈ V with L ∈ D. For example,
the set {D1, D2, D3, . . .} from the proof of theorem . forms a countable
covering of the class of semirecursive languages.

. Example: Countable Language Classes

Let C be any countable class of languages. Then V :=
{
{L} | L ∈ C

}
is a

trivial countable covering of C.

The next example refers to advice classes, which are defined as follows.

. Definition of Advice (Karp and Lipton, )
Let f : N → N be a function, which will be called advice bound. The class
P/f contains all languages A for which there exists a polynomially time-
bounded Turing machine M and an advice function h : N → {0, 1}∗, with
|h(n)| = f(n) for all n, such that A =

{
w ∈ Σ∗ |

〈
w, h(|w|)

〉
∈ L(M)

}
.

As is customary, if k is a constant, P/k denotes the class P/f with f(n) = k
for all n. The class P/poly contains all languages that are in P/f for some
polynomial f .

. Example: Advice Classes

For every constant k, a countable covering V of P/k that can be used
in branch diagonalisations can be defined as follows: for each polynomi-
ally time-bounded machine M let V contain the class of all languages L
for which there exists an advice function h : N → {0, 1}k such that L ={
w ∈ Σ∗ |

〈
w, h(|w|)

〉
∈ L(M)

}
.

At first sight, the definition of countable coverings is too broad to be useful
for an abstract notion of diagonalisation. Indeed, every class C has a
countable covering: just take V = {C}, which corresponds to the rather
silly machine model of a single device that witnesses membership in C
for every language L ∈ C. In order to use countable coverings in a branch
diagonalisation we have to restrict ourselves to coverings that have a special
property: the property of being Q-diagonalisable, which is introduced next.

The second step in the proof of theorem . was the construction of
the language A. We systematically ensured that A /∈ Di holds for all



i ∈ {1, 2, 3, . . .}. To achieve this, for each i, two words binui 0 and binui 1
were chosen and the characteristic values of these words with respect to A
were defined in such a way that A /∈ Di. In a more abstract setting, instead
of two words we allow a finite number n of words w1, . . . , wn where we
diagonalise. Instead of just two diagonalisation decisions d1 and d2, we
allow Q to contain a finite number of possible diagonalisation decisions.

Each diagonalisation decision corresponds to a way of defining the char-
acteristic string of the words w1, . . . , wn. Although a diagonalisation
decision is conceptually different from the corresponding bitstring, the no-
tation can be simplified by identifying them. For this reason, let us require
Q ⊆ {0, 1}n, that is, Q is a set of possible choices for characteristic strings.
Recall that subsets of {0, 1}n are called n-pools.

. Definition of Diagonalisable Classes

Let Q be an n-pool. A language class C is Q-diagonalisable if there exists
a countable covering V of C with the following property: for all classes
D ∈ V and for all pairwise distinct words w1, . . . , wn ∈ Σ∗ of the same
length we have Q 6⊆

{
χnL(w1, . . . , wn) | L ∈ D

}
.

. Example: Semirecursive Languages

The class of semirecursive languages is Q-diagonalisable for Q = {01, 10}:
the countable covering is given by the covering {D1, D2, D3, . . .} from the
proof of theorem .; for each class Di, for any two words w1 and w2 the
set

{
χ2
L(w1, w2) | L ∈ Di

}
is either {00, 10, 11}, namely if fi picks w1;

or {00, 01, 11}, if it picks w2. In either case, the set does not contain
Q = {01, 10}.

. Example: Countable Language Classes

Every countable class is Q-diagonalisable for all Q that contain at least
two different bitstrings. To see this, just take the countable covering from
example . where each class D contains just one language. Then for any n
words w1, . . . , wn the set

{
χnL(w1, . . . , wn) | L ∈ C

}
has just one element

and is thus not a superset of Q.

Note that every language class that is defined through some computational
formalism, like ‘is accepted by machines of a certain type’ or ‘is generated
by a grammar of a certain type’, is countable and thus Q-diagonalisable for
all Q of size at least two.

. Example: Advice Classes

The class P/k is Q-diagonalisable for all Q that contain at least 2k + 1
different bitstrings. To see this, consider the countable covering V from
example .. Each D contains all languages L that are accepted by a
specific polynomially time-bounded Turing machine M for some advice.



For any pairwise different words w1, . . . , wn ∈ Σ` of the same length `, the
set
{
χnL(w1, . . . , wn) | L ∈ D

}
contains at most 2k different bitstrings: one

bitstring for each advice for words of length `. This set cannot contain all
of Q.

The third step of the proof of theorem . was the construction of a branch
that dictated the diagonalisation points. Since we identified diagonalisation
decisions with their encodings, each node in the diagonalisation tree can
be interpreted as a long bitstring. We no longer have two words that
are associated with a node, but n words if Q is an n-pool. In the proof
of theorem . the two words associated with a node u ∈ {0, 1}∗ were
obtained by appending 0 and 1, respectively. For a node u ∈ Q∗, we
similarly associate the words u binn 1, u binn 2, . . . , u binn n. Here binn t
denotes the binary encoding of t, filled up with enough leading zeros to
ensure that its length is exactly n. Instead of binn t, one could also use
the more economical tag bindlog2 ne+1t, but that would be too long to write
down.

. Definition of Associated Words

Let Q be an n-pool. The diagonalisation tree for this pool is the tree Q∗.
For a node u ∈ Q∗, the words u binn 1, . . . , u binn n ∈ {0, 1}∗ are associated
with u.

For example, if n = 3 and Q = {000, 001, 101, 110}, the three words associ-
ated with the node 101 001 ∈ Q∗ are 101001001, 101001010, and 101001011,
see figure -. Note that every bitstring b ∈ {0, 1}∗ can be decomposed in
at most one way in the form u binn t with u ∈ Q∗ and t ∈ {1, . . . , n}.

Just as in the proof of theorem ., during the diagonalisation process
a branch {u1, u2, u3, . . .} in the tree Q∗ is constructed. The characteristic
values of the words associated with the nodes on this branch become fixed
during the diagonalisation. For the other words we are free to choose
their characteristic values in any way that suits us. Figure - depicts this
situation.

. Definition of Diagonalisation along a Branch

Let Q be an n-pool and let B = {u1, u2, u3, . . .} be a branch of Q∗. Let
ui+1 = uibi with bi ∈ Q. A language A ⊆ {0, 1}∗ diagonalises along B if
for all i ∈ {1, 2, 3, . . .} we have χnA

(
ui binn 1, . . . , ui binn n

)
= bi.

We now have the necessary machinery for the formulation of the branch
diagonalisation theorem.

. Branch Diagonalisation Theorem

Let n be a positive integer and let C and C ′ be language classes. Suppose



there exists an n-pool Q such that

11. C is Q-diagonalisable and
22. for every branch of Q∗ there exists a language in C ′ that diagonalises

along this branch.

Then C ′ 6⊆ C.

Proof. Let V = {D1, D2, D3, . . .} be a countable covering for which a Q-
diagonalisation of C is possible. We construct a branchB = {u1, u2, u3, . . .}
of Q∗ such that no language that diagonalises along this branch is an ele-
ment of any Di ∈ V . It is thus not an element of C, but, by assumption,
there exists a language in C ′ that diagonalises along this branch.

The branch is defined inductively by u1 := ε and ui+1 := uibi, where
for each i ∈ {1, 2, 3, . . .} we choose the bitstring bi ∈ Q in such a way
that χnL

(
ui binn 1, . . . , ui binn n

)
6= bi for all languages L ∈ Di. Each time,

such a bitstring must exist since C is Q-diagonalisable. No language that
diagonalises along B will be an element of any Di. qed

Section .

Branch Diagonalisation and Separation of Verboseness Classes

In this section the branch diagonalisation method is applied to verboseness
classes. Recall that Vre(m,n) and Vfa(m,n) were defined as the classes of
all languages whose n-fold characteristic function is m-Turing-enumerable,
respectively m-fa-enumerable. Using branch diagonalisation we can com-
pletely characterise the inclusion structure of these verboseness classes. The
main result is that the two structures are identical.

Theorem . from the previous chapter gives a sufficient condition for
the inclusions Vre(m,n) ⊆ Vre(h, k) and Vfa(m,n) ⊆ Vfa(h, k): it suf-
fices that all (m,n)-good k-pools have size at most h. For the recursive
case Beigel et al. (b) have shown that this is also a necessary condi-
tion, which reduces the inclusion and also the equality problem for Tur-
ing verboseness classes to finite combinatorics. In order to check whether
Vre(m,n) ⊆ Vre(h, k) holds, we just have to check whether all (m,n)-good
k-pools have size at most h.

In the following we shall see that the condition is also necessary for finite
automata: if there exists an (m,n)-good k-pool of size at least h+ 1, then
there exists a language in Vfa(m,n) that is not an element of Vfa(h, k). The
proof technique for this result must necessarily be different from the finite
injury argument used by Beigel et al. (b), since this technique cannot



∈ /∈ ∈

∗ ∗ ∗ ∗ ∗ ∗ /∈ /∈ ∈

∗ ∗ ∗ ∈ ∈ /∈ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

000 001 10
1

000

001

11
0

10
1 110

110

Figure -
Visualisation of the diagonalisation process for Q = {000, 001, 101, 110}
and n = 3. A diagonalisation branch B = {ε, 101, 101 001, 101 001 110, . . .}
is depicted in bold. The boxes at the tree nodes represent the words that
are associated with these nodes. For example, the two boxes in the top row
containing the symbol ∈ represent the words 101 001 bin3 1 = 101001001
and 101 001 bin3 2 = 101001010. For languages that diagonalise along this
branch, boxes containing the symbol ∈ must be in the language, boxes
containing the symbol 6∈ may not be in the language, and boxes containing
a ‘don’t-care-star’ may or may not be in the language.



be applied to finite automata. Instead, I use branch diagonalisation. As
promised in the introduction to this chapter, branch diagonalisation yields
powerful results, provided it is applicable. Here it yields that there exists a
language in Vfa(m,n) that is not even an element of the much larger class
Vre(h, k). A corollary is the strong class separation of theorem .. We
also get a new, finite-injury-free proof of the result of Beigel et al. (b).

We must show that Vfa(m,n) 6⊆ Vre(h, k) if there exists an (m,n)-good
k-pool Q of size h + 1. The first step is to show that the class Vre(h, k) is
Q-diagonalisable. As the following theorem shows, this is even true for the
class VXre (h, k) of languages A for which χkA is h-Turing-enumerable relative
to the oracle X.

. Theorem

Let h and k be positive integers. Let Q be a k-pool of size at least h + 1.
Then VXre (h, k) is Q-diagonalisable for every oracle X.

Proof. Let M
()
1 , M ()

2 , M ()
3 , . . . be an enumeration of all oracle Turing

machines that h-enumerate functions relative to the oracle X. Let Di

denote the class of languages L for which χkL is h-enumerated by M
()
i

relative toX. TheDi form a countable covering of VXre (h, k) and given any k
pairwise different words w1, . . . , wk ∈ Σ∗ the set

{
χkL(w1, . . . , wk) | L ∈ Di

}
has size at most h. Thus Q is not a subset of this set. qed

To complete the branch diagonalisation, we must now show that for every
branch in Q∗ there exists a language in Vfa(m,n) that diagonalises along
this branch. At this point, for a given branch of Q∗ we are still free to
assign the characteristic values of the words that are not associated with
the nodes on the branch. We make only scant use of this freedom: words
not associated with the branch are not in the language.

. Theorem

Let m, n, h, and k be positive integers. Let Q be an (m,n)-good k-pool with
0k ∈ Q. Then for every branch of Q∗ there exists a language in Vfa(m,n)
that diagonalises along this branch.

Proof. Let {u1, u2, u3, . . .} be any branch of Q∗. Let A ⊆ {0, 1}∗ be the
smallest language that diagonalises along this branch, that is, let A contain
no words that are not associated with a node on the branch.

In order to show A ∈ Vfa(m,n), we construct a finite automaton that
produces on input of any n words w1, . . . , wn an n-pool P as its final
output that has size at most m and that contains χnA(w1, . . . , wn).

For the definition of the automaton we define a series of regular functions
that ‘preprocess’ the input words. (Recall that a function is regular if its
graph is regular.) Since the composition of regular functions is regular, the
preprocessing can be performed by a finite automaton.



First Step: Replacement of Bothersome Words

The first function f1 replaces ‘bothersome’ input words by ‘nice’ fixed input
words. An input is bothersome if it is not of the form u binn t for some node
u ∈ Q∗ and some t ∈ {1, . . . , n}. Bothersome words are not elements of A.
We replace them by a fixed word of the correct form, such that in the
following we can assume that all input words have correct form.

Let u∗ be a fixed node and let t∗ ∈ {1, . . . , n} be a fixed number such
that u∗ binn t∗ /∈ A. The function f1 is defined as follows: it maps an
input tuple (w1, . . . , wn) to a tuple (w′1, . . . , w

′
n), where w′i = wi if wi is not

bothersome, and w′i = u∗ binn t∗ if it is. The graph of f1 is clearly regular.
The output of f1 does not contain any bothersome words and it has the
same characteristic string as its input.

Second Step: Decomposition into Node Part and Tag Part

The second preprocessor function f2 decomposes the input words wi =
u binn t into their ‘node part’ u and their ‘tag part’ t. Formally, the function
maps a tuple (w1, . . . , wn) to a long tuple (v1, . . . , vn, t1, . . . , tn), where
wi = vi binn ti, vi ∈ Q∗, and ti ∈ {1, . . . , n}. This function is also regular.

Third Step: Which Nodes are Ancestors of other Nodes?

The third function f3 takes a tuple (v1, . . . , vn, t1, . . . , tn) as input. Its task
is, roughly spoken, to discern how the nodes vi are related with respect to
the ancestor relation.

The tuple (v1, . . . , vn) may contain a node vi several times, since several
input words may be associated with the same node. Let ` ≤ n be the
cardinality of the set {v1, . . . , vn} and let {y1, . . . , y`} = {v1, . . . , vn}. For
j ∈ {1, . . . , `} let nj denote the number of input words that are associated
with yj , that is, the number of indices i for which vi = yj .

The output of f3 equals its input extended by the following graph: Its
vertex set is {1, . . . , `}. There is an edge from a vertex i to another vertex j
with the label b ∈ Q if yi is a proper prefix of yj and if the path through
yi to yj ‘heads in the direction b at yi’. More precisely, there is such an
edge if yib v yj with b ∈ Q. Since there are only finitely many possible
edges and since checking whether yib v yj holds can be done by a finite
automaton, the function f3 is regular.

Fourth Step: Computation of the Branching Sequences

The function f4 gets a tuple (v1, . . . , vn, t1, . . . , tn, G) as input, where G
is the graph produced by f3. The task of f4 is to replace G by a set of
branching sequences, which is an ad hoc concept that I introduce only for
the purposes of this proof. For a branch {ũ1, ũ2, ũ3, . . .} of Q∗, the first
element of the corresponding branching sequence is a pair (j1, b1) where j1
is the index of the first yj through which the branch heads and where b1 ∈ Q
is the ‘direction’ in which the branch heads at yj , that is, yj1b1 v ũk1 for



a minimal index k1. The next element of the sequence is the pair (j2, b2)
where j2 is the index of the second yj through which the branch heads
and where b2 ∈ Q is the corresponding direction, that is, yj2b2 v ũk2 for
a minimal k2 > k1. In this way a sequence of pairs is defined. Note that
the maximum length of such a sequence is `. Thus there are only finitely
many such sequences.

The set output by f4 contains all branching sequences that are induced
by the branches of Q∗. At first sight, this set might seem a little hard to
compute since Q∗ has uncountably many branches. However, we just need
to check for every given sequence, of which there are only finitely many,
whether it is induced by some branch. This can be done by checking for
a given sequence whether it respects the ancestor relation stored in the
graph G: nodes later in the branching sequence must be ancestors of all
previous nodes and no node may be ‘skipped’ by the sequence. Formally,
a sequence

(
(j1, b1), . . . , (jp, bp)

)
respects the relation if j1 →b1 j2 →b2

· · · →bp−1 jp is a path of maximal length to jp in G. This shows that
the computation of the branching sequences can be implemented by a big
lookup table. Thus it can trivially be performed by a finite automaton.

Fifth Step: Characteristic Values from Branching Sequences

The final step is to turn the branching sequences into characteristic strings
for the input words. For each branching sequence

(
(j1, b1), . . . , (jp, bp)

)
we

output a possible characteristic string for the input words. It is defined as
follows: for input words v binn t where v is not one of the nodes yj1 , . . . , yjp
we output 0; for input words yji binn t with i ∈ {1, . . . , p} we output the tth
bit of bi. The important observation here is that for the branching sequence
of the ‘right’ branch {u1, u2, u3, . . .} the just defined bitstring will be the
characteristic string of the input words with respect to the language A. Thus
the correct characteristic value of the input words will be output by this
procedure. Since this final step can also be implemented by a table lookup,
the whole enumeration process can be performed by a finite automaton.

The Produced Pool is Good

It remains to show that the produced set P of bitstrings has size at most m.
To prove this, let us first summarise what bitstrings are enumerated: P is
the set of characteristic strings of the input words with respect to minimal
languages that diagonalise along branches of Q∗. Let us count how many
such bitstrings exist.

Consider a branch that goes through none of the nodes vi. Let L be the
minimal language that diagonalises along this branch. The characteristic
string χnL(w1, . . . , wn) is 0n. This will be the first bitstring found in P .

Now consider a node vi that is not a descendant of another node vj and
consider all branches going through vi, but going through no other node vj .



For words not associated with vi, the characteristic values will once more
be 0. However, the characteristic values of words associated with vi can
both be 0 and 1, depending on the ‘direction’ in which the branches head
at vi. If the tags of the input words associated with vi are t1, . . . , tni , then
all bitstrings in {b[t1, . . . , tni] | b ∈ Q} are possible characteristic strings
of these words.

Recall from notation . that the number gQ(ni) is an upper bound
on the size of {b[t1, . . . , tni] | b ∈ Q}. Thus the branches going through
vi, but going through no other node vj , induce at most gQ(ni) bitstrings
in P . However, since the branches going through vi that head off in the
‘direction’ 0k ∈ Q all induce the bitstring 0n once more, the branches solely
going through vi actually induce at most gQ(ni) − 1 new bitstrings in P
apart from 0n.

Now consider a node vi that has no ancestor in the set {v1, . . . , vn}
and consider a direct descendant vj of vi. ‘Direct’ means that there exists
no node in the set {v1, . . . , vn} that is a descendant of vi and an ancestor
of vj . Consider the branches going exactly through vj and vi. The branches
induce gQ(nj) many bitstrings in P , but once more one of them will already
be found in P , namely the one induced by branches that go through vj
and vi and head off in the direction 0k in vj . Using structural induction one
can now show that for each node vi, the branches going exactly through vi
and its ancestors induce at most gQ(ni) − 1 new bitstrings in Q. In total
we get

|P | ≤ 1 +
(
gQ(n1)− 1

)
+
(
gQ(n2)− 1

)
+ · · ·+

(
gQ(n`)− 1

)
= gQ(n1) + · · ·+ gQ(n`)− `+ 1 ≤ m,

where the (m,n)-goodness of Q was used in the last step. qed

. Verboseness Class Inclusion Theorem

Let m, n, h, and k be positive integers. Let X be any oracle. Then the
following statements are equivalent:

11. All (m,n)-good k-pools have size at most h.
22. Vre(m,n) ⊆ Vre(h, k).
3. Vfa(m,n) ⊆ Vfa(h, k).
4. Vfa(m,n) ⊆ VXre (h, k).

Proof. Statement  implies both statements  and  by corollary .. Since
the inclusions Vfa(m,n) ⊆ Vre(m,n) ⊆ VXre (m,n) hold trivially for all m
and n, both statements  and  imply statement . To show that state-
ment  implies statement , let us argue by contraposition. If there exists
an (m,n)-good k-pool of size h+ 1, there also exists one containing 0k (if



necessary, toggle the bits in all bitstrings at appropriate positions). For
this pool Q, the branch diagonalisation theorem, theorem ., can be
applied to the classes C ′ := Vfa(m,n) and C := VXre (h, k). The two con-
ditions from the branch diagonalisation theorem are met by theorems .
and .. qed

Theorem . reduces not only the decision problem for the inclusion of
finite automata and Turing machine verboseness classes to finite combina-
torics, but also the decision problem for equality. We have Vfa(m,n) =
Vfa(h, k) iff Vre(m,n) = Vre(h, k) iff the following combinatorial property
holds: all (m,n)-good k-pools have size at most h and all (h, k)-good n-
pools have size at most m. In a complicated analysis Beigel et al. (b)
were able to simplify this combinatorial property, see the following theorem,
where (a, b] := {x ∈ R | a < x ≤ b}.

. Verboseness Class Equality Theorem

Let n and k be positive integers. Let m ∈ {1, . . . , 2n} and h ∈ {1, . . . , 2k}.
Then Vfa(m,n) = Vfa(h, k) iff Vre(m,n) = Vre(h, k), which in turn holds
iff

11. m = h and n = k, or
22. the quotients m/n and h/k both lie in the same of the following in-

tervals:(
0, 1
]
;
(
1, 3

2

]
;
(

3
2 ,

5
3

]
;
(

5
3 ,

7
4

]
;
(

7
4 ,

9
5

]
;
(

9
5 ,

11
6

]
;
(

11
6 ,

13
7

]
;

The first of these intervals represents the nonspeedup theorem: if both
m/n ∈ (0, 1] and h/k ∈ (0, 1], then m ≤ n and h ≤ k and hence, by
the nonspeedup theorem, Vre(m,n) and Vre(h, k) both contain exactly the
recursive languages.

Section .

Branch Diagonalisation and Separable Sets

This section starts the study of sets that are separable by finite automata.
This study is continued in the next chapter. Using branch diagonalisation,
we show that there exist languages A and B that are inseparable by finite
automata, but for which the closely related relations

{
(x, y) ∈ A2 | x 6= y

}
and

{
(x, y) ∈ B2 | x 6= y

}
are separable by a finite automaton. Once more,

the branch diagonalisation method allows us to derive a stronger result:
there even exist recursively inseparable languages with this property. The



result can also be extended in a different direction, which allows the con-
struction of a counterexample to an old result of Kinber (, theorem ).

Two sets A and B are separable by a set C if A is a subset of C and
B is a subset of C’s complement. For elements in C we know that they
cannot be elements of B and for elements not in C we know that they
cannot be elements of A. A graphic way of envisioning separability is the
following: think of the sets A and B as two pieces of cake and think of the
separating set as a cheese-cover. In order to separate the sets A and B, the
cheese-cover must completely cover the first piece of cake, while the second
piece of cake must lie completely outside the cover.

Given two sets A and B, one usually seeks a separating set C that is as
simple as possible. It can happen that two difficult sets A and B can be
separated by a very simple set C. For example, if A is an arbitrary subset
of {0}+ and B is a subset of {1}+, then A and B can be separated by the
regular language {0}∗. This is true even if A and B are nonrecursive. On
the other hand, a language A can be separated from its complement Ā only
by A itself. In particular, it cannot be separated from its complement by
any set that is simpler than A.

Sets that can be separated by a recursive set are commonly called re-
cursively separable. Sets that can be separated by a set that can be decided
in polynomial time are called polynomially separable. I propose calling sets
that can be separated by a regular set fa-separable.

. Example: Polynomially Separable Languages

An example of supposedly difficult, but still polynomially separable sets
are the languages k-clique and (k − 1)-colourable. The first language
contains all coded pairs 〈binG,bin k〉 such that G is an undirected finite
graph that contains a clique of size k. The second language contains all
coded pairs 〈binG,bin k〉 such that G can be coloured with k − 1 colours.
The languages are disjoint: any colouring of a graph that contains a clique
of size k has to assign a different colour to each vertex of the clique; thus
at least k different colours are needed. It is much harder to see that the
languages are polynomially separable. The proof is based on the ‘sandwich
theorem’ due to Lovász (), see (Knuth, ) for an overview. It states
that the Lovász number ϑ(G) of a graph G is sandwiched between the clique
number and the chromatic number of G. Since Grötschel et al. () have
shown that the Lovász number can be computed in polynomial time, we get
a polynomial-time separation algorithm. Further examples of polynomially
separable languages are presented in an article of Pudlák ().

The first result on separable sets uses the following notation.

. Notation

Let A ⊆ U be a subset of a universe U . For a positive integer n, let



A(n) denote the set of all n-tuples of pairwise different elements of A. For
k ∈ {0, . . . , n}, let A(nk) denote the set of all n-tuples of pairwise different
elements in U such that exactly k of them are in A.

The set A(n) is ‘almost’ the n-fold Cartesian product An of A, only tuples
that contain the same component twice are missing. Note that A(2) ={

(x, y) ∈ A2 | x 6= y
}

is the ‘inequality relation’ on A. For elements of A(nk),
we ‘choose’ exactly k elements in A out of n elements in total. Note that
A(nn) = A(n) and A(n0) = Ā(n).

The following proof employs the branch diagonalisation method, but
it does not appeal to the branch diagonalisation theorem since the basic
objects involved are pairs of (separable or inseparable) languages rather
than individual languages. It would be possible to rephrase the branch
diagonalisation theorem for this more general setting, but the following
proof demonstrates nicely how branch diagonalisation can be used as a
method without referring to a particular theorem.

. Theorem

For every oracle X, there exist disjoint languages A and B that are not
separable by any language that is recursive in X, but for which A(n) and
B(n) are fa-separable for all n ≥ 2.

Proof. For a branch Z = {u1, u2, u3, . . .} of the binary tree {0, 1}∗, let
AZ := {u2, u3, u4, . . .} denote the nodes on this branch except for the root,
and let BZ denote the set of all elements in AZ with the last bit toggled,
that is, with 0 replaced by 1 and vice versa.

The first part of the branch diagonalisation is the construction of a
branch Z such that AZ and BZ are recursively inseparable relative to the
oracle X. This branch is constructed as follows: let M ()

1 , M ()
2 , M ()

3 , . . .
be an enumeration of all oracle Turing machines that could witness such a
separation relative to X. As always, the enumeration need not be effective.
In stage i we guarantee that the set Li := L

(
M

()
i , X

)
of words accepted

by M
()
i relative to the oracle X does not separate AZ and BZ , that is,

either AZ 6⊆ Li or BZ 6⊆ Li.
Suppose we have already constructed ui and must now decide how to

define ui+1. We check whether both ui0 ∈ Li and ui1 /∈ Li hold. If this is
the case, let ui+1 := ui1, which will ensure both AZ 6⊆ Li and BZ 6⊆ Li.
If it is not the case, let ui+1 := ui0, which will ensure either AZ 6⊆ Li
or BZ 6⊆ Li. In either case we guarantee that Li does not separate AZ
and BZ .

The relations A(n)
Z and B

(n)
Z are fa-separable for every branch Z: Any

two words in AZ are comparable with respect to the prefix ordering, but
no two different words in BZ are comparable with respect to the prefix



ordering. Thus for every branch Z the relation A
(2)
Z is a subset of v,

whereas B(2)
Z is a subset of the complement of v. In particular, A(n)

Z and
B

(n)
Z are fa-separable for every Z and all n ≥ 2. qed

The proof of the above theorem was a by-product of a futile attempt to
prove a strengthened version of a theorem of Kinber (). I ran into
problems that, ultimately, lead to the formulation of theorem ., whose
claim is almost the exact opposite of (Kinber, , theorem ). The ‘op-
posite’ of theorem . above would be the following claim: ‘if A(n) and
B(n) are fa-separable, then A and B are fa-separable’. Kinber did not
quite claim this. Rather, he claimed that A and B are fa-separable under
the slightly stronger assumption that A and B are (m,n)-fa-separable for
m > n/2. In order to refute Kinber’s claim, one thus has to construct
fa-inseparable languages A and B that are nevertheless (m,n)-fa-separable
for some m > n/2. This is possible as the argument of theorem . below
shows. Before we prove this theorem, let us first review Kinber’s notion of
(m,n)-fa-separability, which is a generalisation of fa-separability.

For two languages A and B let us call a pair (w, b), consisting of a word
w ∈ Σ∗ and a bit b ∈ {0, 1}, bad if either b = 1 and w ∈ B or if b = 0 and
w ∈ A. Two disjoint languages A and B are called recursively (m,n)-separ-
able, respectively (m,n)-fa-separable, if there exists a recursive, respectively
regular, n-ary function f that on input of any n pairwise different words
w1, . . . , wn outputs a bitstring b ∈ {0, 1}n such that at most n − m of
the pairs

(
w1, b[1]

)
, . . . ,

(
wn, b[n]

)
are bad. The intuition behind this

definition is that an (m,n)-separating function must output 1 for words
in A and 0 for words in B and it may make up to n−m mistakes. Words
that are neither in A nor in B play no rôle. Note that languages are (1, 1)-
fa-separable iff they are fa-separable.

. Theorem

For every oracle X, there exist disjoint (3, 5)-fa-separable languages that
are not recursively separable relative to X.

Proof. For the purposes of this proof, a forest is partial ordering (F,≤)
such that for every node y ∈ F the set {x | x ≤ y}, called the path to y, is
well-ordered by ≤.

I show that for every branch Z of the tree {0, 1}∗ the languages A :=
AZ and B := BZ constructed in the proof of theorem . are (3, 5)-fa-
separable. To prove this, we must construct a dfa M that on input of any
five words w1, . . . , w5 ∈ {0, 1}∗ will claim ‘wi ∈ A’ or ‘wi ∈ B’ for each i
such that among the claims for words in A ∪ B at most two claims are
wrong.

Let W := {w1, . . . , w5}. Let yi denote the word wi without the last bit
(if wi is the empty string, then wi /∈ A ∪ B and we can ignore it). Let us



say that wi is associated with yi. Let us call two words wi and wj siblings
if they are associated with the same word yi = yj . Let Y := {y1, . . . , y5}.

Similarly to the proof of theorem ., the automaton scans the for-
est structure of (Y,v). This means that for each pair (i, j) it determines
whether yi v yj holds. Then it considers all paths in the forest (Y,v) for
which at least three words are associated with the nodes on this path. Given
such a path, leading to a node y, the automaton assigns outputs to some of
the input words according to the following rule: for each i ∈ {1, . . . , 5}, if
yi is a proper prefix of y and wi v y we claim ‘wi ∈ A’; and if yi is a proper
prefix of y and wi 6v y we claim ‘wi ∈ B’. Since a word may be associated
with a node that lies on more than one path, the just given rule may assign
conflicting outputs to a word wi. Also, it may not assign any output to wi
at all. In either case the automaton outputs ‘wi ∈ A’. Note that in both
cases, if wi has a sibling wj , the automaton also outputs ‘wj ∈ A’. See
figure - for an example.

According to the construction, the output of the automaton for a word
wi ∈ A∪B can be incorrect only if yi is not a proper prefix of the last node
of any of the above-mentioned paths or if two of these paths ‘split’ exactly
at yi. Note that if wi ∈ A ∪ B has a sibling, at least one output will be
correct for the sibling pair.

I now argue that the described procedure (3, 5)-fa-separates A and B.
Let W ′ := W ∩ (A∪B) be the words for which our algorithm must produce
a correct output with an error margin of 2. Since for |W ′| ≤ 2 we can
output anything, the interesting cases are |W ′| ∈ {3, 4, 5}.

For |W ′| = 5, there can only be a mistake for one word associated
with the top node. Since there cannot be any splits, we make at most one
mistake.

For |W ′| = 4, a mistake is possible for one word associated with the
top node, and there can be another mistake caused by a split earlier on the
path to which the words in W ′ are associated. In total, we can make at
most two mistakes.

For |W ′| = 3, if a sibling pair is associated with any node on the path,
at least one output is correct and we are done. Otherwise, one mistake is
again possible for the word associated with the top node. If there is no split
at the root node, we make at most one additional mistake at the ‘middle’
node. So assume that there is a split at the root node. Then two additional
input words must be associated with the path leading away in the wrong
direction from the root (since we considered only paths to which at least
three words are associated). But then there cannot be another split at the
middle node of our main path and the output for it must be correct. qed



w1

w2

w3 w4

w5

0

0 1

0

‘∈ A’

‘∈ A’

‘∈ B’ ‘∈ A’

w1

w3

w2

w4

w5

0 1

0 0

‘∈A’

‘∈A’, ‘∈ B’ ‘∈ A’, ‘∈ B’

Figure -
Two possible arrangements of input words and the claims made for these
words in the proof of theorem .. In both examples, w3 and w4 are
siblings. In the left example, the path leading to w3 causes the claims
‘w1 ∈ A’ and ‘w2 ∈ A’ to be made. The path leading to w5 also causes
these claims to be made, plus the additional claims ‘w3 ∈ B’ and ‘w4 ∈ A’.
No claim is made for w5 and hence, in the end, ‘w5 ∈ A’ would be claimed.
In the right example, the path leading to w2 causes the claims ‘w1 ∈ A’,
‘w3 ∈ A’, and ‘w4 ∈ B’ to be made. The path leading to w5 causes the
claims ‘w1 ∈ A’, ‘w3 ∈ B’, and ‘w4 ∈ A’ to be made. The conflicting
claims and the missing claims for the top nodes are resolved by claiming
membership in A for all of these nodes. Hence in the end, ‘wi ∈ A’ is
claimed for all nodes.



The above proof is specific for the numbers 3 and 5 and it is not clear
how it could be adapted to different numbers. I conjecture that, as in the
recursive setting, the claim is true for all m < n.

. Conjecture

Let m and n be positive integers with m < n. Then there exist disjoint
(m,n)-fa-separable languages that are recursively inseparable.

Although theorem  of Kinber’s paper fails, corollaries of this theorem can
still be true. For example, Kinber’s claim is true if instead of arbitrary
disjoint sets A and B we consider A and Ā: if a set and its complement
are (m,n)-fa-separable for m > n/2, then it is regular. Austinat et al.
() were the first to give a (correct) proof of this corollary. In the
next chapter we shall see that it can also be derived from the restricted
cardinality theorem for finite automata.

To conclude this section on separability and branch diagonalisation, I
present a final example of a language is difficult and closely related rela-
tions are fa-separable. As we shall see in the next chapter, things change
drastically if either A×Ā or Ā×A is removed from the claim of the theorem.

. Theorem

There exists a language A that is not semirecursive, but for which there exist
regular supersets of A×A, A× Ā, Ā×A, and Ā× Ā whose intersection is
empty.

Proof. Consider the language A constructed in the proof of theorem ..
The language is a branch {u1, u2, u3, . . .} of the tree {0, 1}∗ that is not
semirecursive. As pointed out in the caption of figure - on page , every
branch of {0, 1}∗ is (3, 2)-fa-verbose. Lemma . from the next chapter
states that for (3, 2)-fa-verbose languages there exist regular supersets of
A×A, A× Ā, Ā×A, and Ā× Ā whose intersection is empty. (The proof
of lemma . does not use the present theorem, big promise.) qed

Section .

Branch Diagonalisation and the Complexity of Odd Languages

Branch diagonalisation can be used to separate bounded queries reduction
closures of selective languages. Recall from definition . that a language
is selective if a selector function can select from any two words one word
that is ‘more likely’ to be in the language.

Bounded queries reductions are reductions in which only a fixed number
of queries may be posed to the oracle. They are often motivated as follows:



Suppose we wish to solve some difficult problem A, but we have insufficient
resources to do so. For this reason, we introduce an oracle B to which we
pose questions. The oracle models an expensive resource like a database
or a computationally difficult problem for which we have a special purpose
software or hardware. We wish to minimise and bound the number of times
we have to invoke the expensive oracle in order to solve our problem A. The
number of times we have to invoke the oracle is the query complexity of A
relative to B. For a recent overview of the known recursion-theoretic results
and applications see the book ‘Bounded Queries in Recursion Theory’ by
Gasarch and Martin ().

The study of the structure of reduction closures of selective languages
has a long tradition. First, and most importantly, the reduction closures
of semirecursive languages are one of the key ingredients of the solution
of Post’s problem (Post, ). Post asked whether there are nonrecur-
sive, recursively enumerable languages that are not Turing-equivalent to
the halting problem. Informally speaking, he asked whether there exist
problems that are ‘easier’ than the halting problem, but that cannot be
solved by any computer. The answer to Post’s problem is positive. The
original proof uses reduction closures (though not with a bounded number
of queries) of semirecursive languages, see the book of (Odifreddi, ) for
details.

Recently, bounded queries reduction closures of semirecursive languages
have been studied by Beigel et al. (). In an article in the Journal
of Symbolic Logic entitled ‘The Complexity of odd

A
n ’ they show that, for

each k, asking k parallel queries to any nonrecursive, semirecursive language
allows one to decide a language that cannot be decided asking only k − 1
parallel queries to any semirecursive language. In particular, the parallel
k-queries reduction closure of the class semirec is larger than its parallel
(k − 1)-queries reduction closure.

In a different line of research, Hemaspaandra et al. () have studied
bounded queries reduction closures of P-selective languages. As in the re-
cursive setting, it turns out that k parallel queries to the class of P-selective
languages are more powerful than k−1 parallel queries. In the polynomial-
time setting, the research is mainly motivated by the fact that the Turing
reduction closure of the class P-sel of P-selective languages is the class
P/poly of languages having small circuits. Thus, the bounded queries re-
duction closures of P-sel are part of the fine structure of P/poly. This study
has been remarkably fruitful. For example, Agrawal and Arvind ();
Beigel et al. (a); and Ogihara () have independently shown that
if the satisfiability problem is bounded queries reducible to a P-selective
language, then P = NP. It is not known whether sat ∈ P/poly has the
same consequence.



In the following branch diagonalisation is used to prove a strong separa-
tion of the bounded reduction closures of selective languages. Both of the
above-mentioned results of Beigel et al. () and of Hemaspaandra et al.
() concerning the k-queries reduction closures of semirec, respectively
P-sel, are corollaries of this separation. In essence, I show that there exists
an fa-selective language A such that the language odd

k
A, which contains all

k-tuples of words such that an odd number of them is in A, is not reducible
to any semirecursive language asking only k − 1 parallel queries.

The focus of this section is on the employment of a branch diagonali-
sation to obtain the results—both Beigel et al. and Hemaspaandra et al.
also show different or stronger results that do not follow from the results
proved in this section. A general treatment of reduction closures of selective
languages can be found in the technical report (Tantau, ).

The following notations are used in this section. Let semirec
X de-

note the class of all languages that have a selector that is recursive in X.
Let PX-sel denote the class of all languages that have a selector that
is polynomial-time computable with (arbitrary) oracle access to X. Let
A ≤Xk-tt B denote that A is reducible to B with k parallel queries via a Tur-
ing machine that has (arbitrary) oracle access to X. Let A≤PX

k-tt B denote
that the Turing machine is furthermore polynomially time-bounded. For a
reduction ≤r and a class C of languages, let Rr(C) := {A | A ≤r B ∈ C}
denote the reduction closure of C and let Er(C) := {A | A ≤r B, B ≤r A,
B ∈ C} denote the equivalence closure of C.

. Definition of Odd Languages

For a language A ⊆ Σ∗ and a positive integer n let

odd
n
A :=

{
〈w1, . . . , wn〉 | w1, . . . , wn ∈ Σ∗, #n

A(w1, . . . , wn) is odd
}
.

. Theorem

For every oracle X, there exists an fa-selective language A such that for all
positive integers k

odd
k+1
A 6∈ RX

k-tt

(
semirec

X
)
.

Proof. Before we plunge into the details of the branch diagonalisation, a
little preparation is helpful. We begin with some simple combinatorics.
Then we construct a pool Q such that the class RX

k-tt

(
semirec

X
)

is Q-
diagonalisable. Once this is done, we show that for every branch of Q∗

there exists an fa-selective language A such that a language A′ in the
many-one reduction closure of odd

k+1
A diagonalises along this branch. The

languages A and A′ are constructed in tandem with the diagonalisation
branch.



Walks and Transition Counts

A walk on the n-dimensional hypercube or just an n-walk is a sequence
(b1, . . . , b`) of bitstrings of length n such that from one bitstring to the
next exactly one bit changes. An example of a 3-walk is the sequence
(000, 010, 011, 010, 110). For a position p ∈ {1, . . . , n}, the transition set Tp
is the set of indices i with bi[p] 6= bi−1[p]. The transition count of a
position p is the cardinality of Tp. For example, the transition sets of the
above walk are T1 = {5}, T2 = {2}, and T3 = {3, 4}; its transition counts
are 1, 1, and 2.

The length of an n-walk having transition counts at most k is bounded
by nk+ 1. For any positive integers n and k with nk+ 1 < 2n there exists
an n-walk (b1, . . . , b`) with transition counts at most k+ 1 such that no n-
walk (b′1, . . . , b

′
m) with transition counts at most k visits all bitstrings in the

set {b1, . . . , b`}. To see this, consider a walk (b′1, . . . , b
′
m) visiting a maxi-

mum number of bitstrings among all n-walks that have transition counts at
most k. Since nk + 1 < 2n, there exists a bitstring b′ ∈ {0, 1}n that is not
visited. Extend the walk (b′1, . . . , b

′
m) to a walk (b′1, . . . , b

′
m, b

′
m+1, . . . , b

′)
as follows: from b′m to b′m+1 flip the first bit where b′m and b′ differ, from
b′m+1 to b′m+2 flip the second bit where they differ, and so on. This will
increase all transition counts by at most one and the new walk will visit at
least one bitstring more than any walk having transition counts at most k.

The Reduction Closure is Q-Diagonalisable

Let n be chosen large enough such that nk+ 1 < 2n. Let Q = {b1, . . . , b`},
where (b1, . . . , b`) is an n-walk with transition counts at most k + 1 that
is not covered by any n-walk having transition counts at most k. We may
assume b1 = 0n.

I claim that the class RX
k-tt

(
semirec

X
)

is Q-diagonalisable. Let M ()
1 ,

M
()
2 , M ()

3 , . . . be an enumeration of all Turing machines that compute
selectors relative to the oracle X. Let R()

1 , R()
2 , R()

3 , . . . be an enumeration
of all Turing reduction machines that ask k parallel queries on every input
relative to the oracle X. Let Dm,r be the set of all languages L that are
reduced by RXr to a language for which MX

m computes a selector. Clearly,
the sets Dm,r form a countable covering of RX

k-tt

(
semirec

X
)
.

We have to show that for any n different words w1, . . . , wn we have Q 6⊆{
χnL(w1, . . . , wn) | L ∈ Dm,r

}
. To prove this, we show that the elements

of the set
{
χnL(w1, . . . , wn) | L ∈ Dm,r

}
are visited by an n-walk with

transition counts at most k.
The reduction machine RXr maps each word wi to queries q1

i , . . . , qki .
The queries are posed to an oracle Y for which MX

m computes a selector.
Let S := {q1

1 , . . . , q
k
n} be the set of all queries produced for the words.

There exist different ‘scenarios’ that correspond to the possible charac-



teristic strings of these queries with respect to Y . In other words, they
correspond to different possible answers to these queries.

The sought walk is constructed as follows: it starts at the characteristic
string that is induced for the input words in the scenario where all queries
are answered ‘no’. The walk then leads directly to the characteristic string
that is induced in the scenario where only one query is answered ‘yes’ and
all other queries are answered ‘no’. This one query is the query that is ‘most
likely’ to be in Y according to MX

m . The walk then leads directly to the
bitstring that is induced in the scenario where another query is answered
‘yes’, namely the ‘second most likely’ query according to MX

m . This way,
the complete walk is constructed.

For every L ∈ Dm,r one scenario is correct. Thus the walk visits the
correct value of χnL(w1, . . . , wn). To see that the transition counts are
bounded by k, note that the value of χL(wi) depends only on the value of
χkY (q1

i , . . . , q
k
i). The ith bit of the walk can only be toggled if the answer

for one of the queries q1
i , . . . , qki changes from ‘no’ to ‘yes’. Since there are

only k queries, only k changes are possible for each position.

Construction of the Odd Language

It remains to show how that for every branch B = {u1, u2, u3, . . .} of Q∗

there exist languages A and A′ such that

. A is fa-selective,
. A′ many-one reduces to odd

k+1
A , and

. A′ diagonalises along B.

Let ui+1 = uici with ci ∈ Q. Let Σ := {1, . . . , `} be an alphabet that
contains a symbol for each index of the walk (b1, . . . , b`). Let s : Q→ Σ be
a mapping that assigns an index i ∈ Σ with b = bi to each bitstring b ∈ Q.
(Several such mappings exist if the walk visits the same bitstring twice.)
Let s∗ : Q∗ → Σ∗ denote the extension of s to words. Let

A :=
{
v ∈ Σ∗ | v ≤lex s

∗(u|v|+1

)}
.

The language A is clearly fa-selective and the first requirement is hence
satisfied. Let

A′ :=
{
u binn p |
u ∈ Q∗, p ∈ {1, . . . , n},

∣∣A ∩ {s∗(u) j | j ∈ Tp
}∣∣ is odd

}
.

Recall that Tp denotes the set of indices i in the walk (b1, . . . , b`) where
there is a bitflip at the pth position from bi−1 to bi. Figure - visualises
how the languages A and A′ are related.



4 3 1 ∈ A

4 3 2 ∈ A

4 3 3 ∈ A

4 3 4 ∈ A

4 3 5 /∈ A

010 011 bin3 1 /∈ A′

010 011 bin3 2 ∈ A′

010 011 bin3 3 /∈ A′

Figure -
Example situation for the proof of theorem .. The diagonalisation set is
Q = {000, 010, 011, 110}. The diagonalisation branch {u1, u2, u3, . . .} ⊆ Q∗
passes the node u4 = 010 011 010. A walk that visits all elements of Q is
(000, 010, 011, 010, 110). Note that 010 is visited twice. The alphabet Σ is
the set {1, 2, 3, 4, 5} and the mapping s : Q → Σ is given by s(000) = 1,
s(010) = 4, s(011) = 3, and s(110) = 5. On the right hand side, words
associated with the node u3 = 010 011 are shown. The arrows indicate
which words in Σ∗ determine, via their parity with respect to A, the mem-
bership of words in A′. Since u4 = 010 011 010 is mapped to 4 3 4 by s∗, the
language A contains all words in Σ3 that are lexicographically smaller or
equal to 4 3 4. This yields χ3

A′(u3 bin3 1, u3 bin3 2, u3 bin3 3) = 010, which
is exactly what is required of languages that diagonalise along the branch,
since the branch heads in the ‘direction’ 010 in u3.



The language A′ is easily many-one reducible to odd
k+1
A , since the sizes of

the Tp are bounded by k+ 1. Thus the second requirement is satisfied. To
prove the third requirement, for positive integers i we must show

χnA′
(
ui binn 1, . . . , ui binn n

)
= ci.

By definition, χA′
(
ui binn p

)
is the parity of the cardinality of the set A ∩{

s∗(ui) j | j ∈ Tp
}

. By definition of A, we have s∗(ui) j ∈ A iff s∗(ui) j ≤lex

s∗(ui+1), which is in turn equivalent to j ≤ s
(
ci
)
. The number of j’s in Tp

that satisfy this is exactly the number of times there has been a bitflip at
position p before the walk reaches ci. Thus the parity of this number equals
the pth bit of ci. qed

. Corollary (Tantau, )
For every oracle X, for every positive integer k we have

EP
(k+1)-tt(P-sel) 6⊆ RPX

k-tt

(
PX-sel

)
.

Proof. Just note odd
k+1
A ∈ EP

(k+1)-tt(A). qed

For X = ∅, the above corollary is due to Hemaspaandra et al. ().

. Corollary (Beigel et al., )

R1-tt(semirec) (R2-tt(semirec) (R3-tt(semirec) (. . . .

As mentioned earlier, a stronger result than theorem . can be shown.
Beigel et al. (), see also Tantau (), show that the claim does not
only hold for some fa-selective language A, but for every semirecursive
language that is not recursive in X.



Sixth Chapter

Applications of Enumerability and Cardinality Computations



Introduction and Overview

The aim of this chapter is to show that the results of the previous chapters
are not isolated theorems formulated in an artificial setting called ‘finite
automata enumerability and cardinality computations’. Rather, they have
applications in areas that are at first glance quite unrelated—which is, at
least in my opinion, a desirable property of any theoretical result. Indeed,
the most intriguing aspect of the results of the present chapter is their
lack of any mentioning of cardinality computations and enumeration. The
finite automata versions of the cardinality theorem and of the nonspeedup
theorem have ‘practical’ applications that their recursive counterparts do
not have.

Fact ., Kummer’s cardinality theorem for Turing machines, is a beau-
tiful theorem. It can be formulated in a nice and short way. Its proof
combines ideas from different areas in an elegant way. However, just like
its predecessor, the nonspeedup theorem, it suffers a severe drawback: it
concerns languages that are recursive, but generally computationally ex-
tremely complex.

This is rather unfortunate, since at first sight the cardinality theorem
might be used to make the description and specification of algorithms more
economic: for a given problem, one might be tempted to give an algorithm
that n-Turing-enumerates the function #n

A. By the cardinality theorem,
this algorithm can always be transformed to an algorithm that decides the
language A.

There are two problems with this idea. First, as discussed in sec-
tion ., the transformation is not constructive. The cardinality theorem
and even the nonspeedup theorem only show that there exists a decision
algorithm for A, they do not explicitly construct this algorithm. Rather,
‘hard words’ and their characteristic values appear magically in the proofs.
Second, there is no correspondence between the computational complexity
of an enumerator for #n

A and the computational complexity of a decision
algorithm for A. By ‘thinning out’ the diagonalisation language of the
proof of theorem . of (Nickelsen, ), one can show that for every
recursive function f there exists a language A /∈ dtime[f] for which #n

A

is polynomial-time n-enumerable. Thus although the cardinality theorem
states that A must be recursive if #n

A ∈ ENre(n), its computational com-
plexity can become arbitrarily large, even if the enumerator is efficiently
computable.

In the finite automata setting the situation is much more favourable—
at least for n = 2. First, by theorem . the finite automata cardinality
theorem is constructive. More precisely, its fair construction problem can be
solved effectively. Second, it states that A must be regular if #2

A ∈ ENfa(2).



From a practical (but also from a theoretical) point of view it is often
more ‘useful’ to know that a language is regular than knowing that it is
recursive—especially if there exists a constructive algorithm for obtaining
a finite automaton that decides the language.

Each of the three sections of this chapter presents a different situation
(or ‘setting’) in which the previous chapter’s results can be applied. The
focus is on the finite automata versions of these results, but other computa-
tional models are also considered. While in the last two sections ‘practical’
settings are discussed, the first section argues that results on cardinality
computations are ‘separability results in disguise’.

The first setting, introduced in section ., rephrases the finite automata
cardinality theorem for two words in terms of disjoint supersets of regular
relations. It is shown that a language A must be regular if there exist dis-
joint regular supersets of the relations A×A, A× Ā, and Ā× Ā. ‘Disjoint’
means that the intersection of the three sets is empty. The restricted car-
dinality theorem can also be rephrased in terms of fa-separability: A must
be regular if the sets A(n) and Ā(n) are fa-separable. Recall that A(n) is
the set of all n-tuples of pairwise different words in A. Kummer’s original
cardinality theorem can also be rephrased in an equivalent way, based on
disjoint recursively enumerable supersets.

In the second setting, introduced in section ., a finite automaton is
used to monitor n data lines. The class of protocols that can be checked
in such a way is severely restricted by the limited capabilities of finite au-
tomata. For example, since finite automata cannot count, they are unable
to monitor even a simple protocol in which the number of ‘send’ tokens
must match the number of ‘acknowledge’ tokens. In order to increase the
number of checkable protocols, a special purpose hardware is allowed to
‘help’ the automaton. An example of such a hardware might be a counter.
For this setting, it is discussed how much information must flow from the
special purpose hardware to the automaton for nonregular protocols. Us-
ing the nonspeedup theorem for finite automata, corollary ., I show that
blog2 nc+ 1 bits is a lower bound on the amount of this information.

The third setting, introduced in section ., concerns the new notion of
classification with the help of examples. We are given objects (formalised as
words) and are asked to classify these objects according to some partition of
the universe of objects. For a complicated partition this classification may
be too difficult to perform in the computational model under consideration.
For example a finite automaton will only be able to classify words if every
equivalence class of the partition is regular. Likewise, a Turing machine
will only be able to classify words if every equivalence class is recursive.
In order to facilitate the classification procedure, together with the input
object we provide n further (different) objects that are known to have



the same classification as the input object. This problem will be called the
‘classification problem with n examples’. In the recursive setting additional
examples do not help. In the finite automata setting additional examples
do not help if there are only two equivalence classes (for three and more
equivalence classes the problem is left open). In the polynomial-time setting
additional examples do help and allow us to decide arbitrarily complex
languages.

Section .

Cardinality Computations and Separable Sets

I claim that results on cardinality computations are separability results in
disguise. This section explains what is meant by this. The cardinality
theorem, the cardinality conjecture, and weaker forms of the cardinality
theorem are rephrased as separability theorems. The rephrasings no longer
refer either to enumerability or to cardinality computations, but only to
regular or recursively enumerable relations and separability. To give an
example: the cardinality theorem is equivalent to the statement that A
must be recursive if there exist recursively enumerable supersets of A(n0),
. . . , A(nn) whose intersection is empty. Recall that A(nk) is the set of all n
tuples of pairwise different words such that exactly k of them are in A.

Separability by finite automata was studied already in section ., where
we studied whether for difficult languages there exist closely related fa-
separable relations. In the present section we study whether the fa-sepa-
rability of relations can enforce the separability or regularity of related
languages. For example, it is shown that if A(n) and Ā(n) are fa-separable,
then A must be regular. Compare this with the result from section . that
A(n) and B(n) can be fa-separable without A and B being fa-separable.

In the following, two notions of separability for multiple sets are in-
troduced. For pairs of sets these notions coincide with the usual notion
of separability of sets. Lemma . shows how the enumerability of the
cardinality function is linked to separability. The rest of the section lists
rephrasings of results of previous chapters in terms of separability.

Separability for Multiple Sets

We start with a generalisation of the notion of separability to multiple sets
A1, . . . , Ak. There are two different ways of defining such a generalisation.
First, one can require that there exist pairwise disjoint supersets of the



sets Ai. For example, any three subsets of the sets {0}+, {1}+, and {2}+
are separable by pairwise disjoint regular sets.

A second, less restrictive way of defining separability of multiple sets is
the following: let us once more consider supersets of the sets Ai, but we only
require that these sets are disjoint, but not necessarily pairwise disjoint.
Recall that multiple sets are called ‘disjoint’ if their intersection is empty.
In this case, the sets Ai are called separable by disjoint regular sets. This
is a weak condition: if two sets A1 and A2 are separable, then A1, A2, A3,
. . . , An are separable by disjoint sets for all sets A3, . . . , An. In particular,
sets that are separable by disjoint sets must be disjoint themselves, but not
necessarily pairwise disjoint.

. Definition of Separability by (Pairwise) Disjoint Sets

Let C be a class of sets and let k ≥ 2. Sets A1, . . . , Ak are separable
by disjoint sets in C if there exist supersets Bi ⊇ Ai with Bi ∈ C for
i ∈ {1, . . . , k} such that B1 ∩ · · · ∩ Bk = ∅. If, in addition, the sets Bi are
pairwise disjoint, the sets Ai are separable by pairwise disjoint sets in C.

Two languages are recursively separable iff they are separable by disjoint
recursive sets in the sense of the above definition. It is well-known that
there exist disjoint recursively enumerable languages that are recursively
inseparable, see (Rosser, ). Indeed, this is true for any number of sets
as the following theorem shows, whose proof is adapted from the proof in
(Odifreddi, ) for two languages. Note that the theorem claims that
there exist sets that cannot be separated by disjoint sets, which is much
stronger than claiming that the sets cannot be separated by pairwise dis-
joint sets. The theorem is intended to demonstrate the usefulness of the
concept of separability by disjoint sets. It will not be used in other proofs.

. Theorem

For every k ≥ 2 there exist pairwise disjoint, recursively enumerable lan-
guages A1, . . . , Ak that are not separable by disjoint recursive sets.

Proof. For i ∈ {1, . . . , k} let Ai contain the codes binM of all Turing
machines M that halt on input binM and output i. Clearly, these sets are
recursively enumerable and pairwise disjoint. Suppose there exist recursive
sets Bi ⊇ Ai whose intersection is empty. Define a function f by f(w) :=
min

{
i ∈ {1, . . . , k} | w /∈ Bi

}
. Since the intersection of the Bi’s is empty,

this is a well-defined recursive function.
Let M be a Turing machine that computes f and consider the output i

of this machine M on input binM . This output is the smallest number i
such that binM /∈ Bi. In particular, binM /∈ Ai. By definition, this means
that M does not output i on input binM , which is a contradiction. qed



Cardinality Theorems are Separability Results in Disguise

The following lemma relates cardinality computations to separability. The
rephrasing of the cardinality theorem and the cardinality conjecture in
terms of separability is based on this lemma.

. Lemma

Let n be a positive integer and let C be weakly closed. Then for every set A
the following equivalences hold:

11. #2
A ∈ ENC(2) iff A× A, A× Ā, and Ā× Ā are separable by disjoint

relations in C.
22. χ2

A ∈ ENC(3) iff A × A, A × Ā, Ā × A, and Ā × Ā are separable by
disjoint relations in C.

3. #n
A ∈ ENC(n) via a relation that never enumerates both 0 and n iff
A(n) and Ā(n) are separable by disjoint relations in C.

4. #n
A ∈ ENC(n) iff A(n0), . . . , A(nn) are separable by disjoint relations

in C.

Proof. For the proofs of the first, third, and fourth equivalence we can
focus on tuples of pairwise distinct elements. The reason is that, given a
relation R̃ that n-enumerates #n

A for pairwise different elements, we can
turn it into a relation R that n-enumerates #n

A for all elements as follows:

i ∈ R[x1, . . . , xn] :⇐⇒[(∨
i 6=j xi = xj

)
∧ � i = 0 ∨ · · · ∨ i = n− 1

]
∨
[(∧

i 6=j xi 6= xj
)
∧ i ∈ R̃[x1, . . . , xn]

]
.

The formula ‘xi 6= xj ’ is an abbreviation for the positive formula ‘xi < xj ∨
xj < xi’, where < is an irreflexive well-ordering in C.

The First Equivalence

Assume that there exist disjoint supersets B2 ⊇ A × A, B1 ⊇ A × Ā, and
B0 ⊇ Ā× Ā with B0, B1, B2 ∈ C. Consider the following relation R̃ ∈ C:

i ∈ R̃[x, y] :⇐⇒
(
i = 0 ∧ �B0(x, y) ∧B0(y, x)

)
∨
(
i = 1 ∧ �B1(x, y) ∨B1(y, x)

)
∨
(
i = 2 ∧ �B2(x, y) ∧B2(y, x)

)
.

The cardinality of R̃[x, y] is always bounded by 2, since R̃[x, y] = {0, 1, 2}
would imply either (x, y) ∈ B0 ∩ B1 ∩ B2 or (y, x) ∈ B0 ∩ B1 ∩ B2. Both
are impossible by the assumption that the sets Bi are disjoint. Next, we
have #2

A(x, y) ∈ R̃[x, y] for all elements x and y with x 6= y: If x, y ∈ Ā,



then both (x, y) ∈ B0 and (y, x) ∈ B0 and thus 0 ∈ R̃[x, y]. Likewise, if
x, y ∈ A, then 2 ∈ R̃[x, y]. If exactly one of x and y is in A, then either
(x, y) ∈ B1 or (y, x) ∈ B1 and thus 1 ∈ R̃[x, y].

For the other direction let #2
A ∈ ENC(2) via R. Then the following sets

are disjoint supersets of A×A, A× Ā, and Ā× Ā, respectively:

(x, y) ∈ B2 :⇐⇒ 2 ∈ R[x, y] ∨ x = y,

(x, y) ∈ B1 :⇐⇒ 1 ∈ R[x, y] ∧ x 6= y,

(x, y) ∈ B0 :⇐⇒ 0 ∈ R[x, y] ∨ x = y.

The Second Equivalence

Assume B00 ⊇ Ā × Ā, B01 ⊇ Ā × A, B10 ⊇ A × Ā, and B11 ⊇ A × A
for disjoint Bb ∈ C with b ∈ {00, 01, 10, 11}. Then χ2

A ∈ ENC(3) via the
relation R defined by

b ∈ R[x, y] :⇐⇒
∨
b′∈{0,1}2 � b

′ = b ∧Bb′(x, y).

For the other direction assume χ2
A ∈ ENC(3) via a relation R. For b ∈

{00, 01, 10, 11} define Bb by (x, y) ∈ Bb :⇐⇒ b ∈ R[x, y]. The Bb are
disjoint since R is 3-bounded, and B00 ⊇ Ā×Ā, B01 ⊇ Ā×A, B10 ⊇ A×Ā,
and B11 ⊇ A×A.

The Third Equivalence

Assume A(n) ⊆ B ∈ C, Ā(n) ⊆ B′ ∈ C, and B ∩ B′ = ∅. Then ‘#n
A ∈

ENC(n) for pairwise different elements’ via the following relation:

i ∈ R̃[x1, . . . , xn] :⇐⇒
(
i = 0 ∧B′(x1, . . . , xn)

)
∨
(
i = 1 ∨ · · · ∨ i = n− 1

)
∨
(
i = n ∧B(x1, . . . , xn)

)
.

The defining formula states: ‘enumerate {1, . . . , n− 1} plus the numbers 0
and n, depending on whether (x1, . . . , xn) is an element of B′, respec-
tively B’. Note that 0 and n are never both elements of R̃[x1, . . . , xn].

For the other direction assume #n
A ∈ ENC(n) via a relation R ∈ C that

never enumerates both 0 and n. The separating disjoint sets B,B′ ∈ C
with A(n) ⊆ B and Ā(n) ⊆ B′ can be defined as follows:

(x1, . . . , xn) ∈ B :⇐⇒ n ∈ R[x1, . . . , xn],
(x1, . . . , xn) ∈ B′ :⇐⇒ 0 ∈ R[x1, . . . , xn].

The Fourth Equivalence

Assume that disjoint sets B0, . . . , Bn ∈ C are given with Bi ⊇ A(ni). Then
‘#n
A ∈ ENC(n) for pairwise different elements’ via the relation

i ∈ R̃[x1, . . . , xn] :⇐⇒
∨
i′∈{0,...,n} � i

′ = i ∧Bi′(x1, . . . , xn).



The relation R̃ never enumerates more than n different numbers, because
the Bi are disjoint. We have #n

A(x1, . . . , xn) ∈ R̃[x1, . . . , xn] for all pairwise
different elements, since #n

A(x1, . . . , xn) = i implies (x1, . . . , xn) ∈ A(ni) ⊆
Bi and thus i ∈ R̃[x1, . . . , xn].

Finally, assume #n
A ∈ ENC(n) via a relation R. Define sets Bi for

i ∈ {0, . . . , n} by (x1, . . . , xn) ∈ Bi :⇐⇒ i ∈ R[x1, . . . , xn]. These relations
do the trick. qed

The equivalences of the above lemma allow us to rephrase numerous results
on cardinality computations as separability results. The following theorems
and conjecture are rephrasings of, in order, fact ., corollary ., corol-
lary ., and conjecture ..

. Cardinality Theorem (Separability Version)

Let n be a positive integer and let A be a language. If A(n0), . . . , A(nn) are
separable by disjoint recursively enumerable sets, then A is recursive.

. Cardinality Theorem for Two Words (Separability Version)

Let A be a language. If A×A, A× Ā, and Ā× Ā are separable by disjoint
regular sets, then A is regular.

. Restricted Cardinality Theorem (Separability Version)

Let n be a positive integer and let A be a language. If A(n) and Ā(n) are
fa-separable, then A is regular.

. Cardinality Conjecture (Separability Version)

Let n be a positive integer and let A be a language. If A(n0), . . . , A(nn) are
separable by disjoint regular sets, then A is regular.

The next theorems combine lemma . with the results on Presburger arith-
metic. They are rephrasings of corollaries . and ..

. Theorem

Let A ⊆ N and let φ and ψ be formulæ in Presburger arithmetic with the
same n free variables. Let φ ∧ ψ be unsatisfiable, but let φ(x1, . . . , xn) be
true for all pairwise different xi ∈ A, and let ψ(x1, . . . , xn) be true for all
pairwise different xi /∈ A. Then A is definable in Presburger arithmetic.

. Theorem

Let A ⊆ N and let φ, ψ, and ρ be formulæ in Presburger arithmetic with
two free variables x and y. Let φ ∧ ψ ∧ ρ be unsatisfiable, but let φ(x, y) be
true for x, y ∈ A, let ψ(x, y) be true for x ∈ A and y ∈ Ā, and let ρ(x, y)
be true for x, y ∈ Ā. Then A is definable in Presburger arithmetic.

The separating sets used in the separability version of the cardinality theo-
rem, theorem . above, are recursively enumerable. Clearly, if we require
these sets to be even recursive, the theorem is also true. But what happens



if we allow them to be co-recursively enumerable? It turns out that the
theorem is also true in this case. The proof is based on an old idea that,
according to Odifreddi (), is due to Sierpinski () and Laventrieff
().

. Theorem

Let n be a positive integer and let A be a language.If A(n0), . . . , A(nn) are
separable by disjoint co-recursively enumerable sets, then A is recursive.

Proof. It suffices to show that if there exist disjoint co-recursively enumer-
able supersets Bi of any sets A1, . . . , Ak, then there also exist disjoint
recursive supersets Ci of A1, . . . , Ak.

The sets Ci are defined as follows: On input w, run the ‘co-recursive
enumerators’ for the sets Bj for j ∈ {1, . . . , k}. Sooner or later, one of
these enumerators must reject the word w since the Bj are disjoint. If the
co-enumerator for Bi is the first to reject the word, let w /∈ Ci, if some
other enumerator rejects it first, let w ∈ Ci.

The sets Ci are clearly recursive. To see that they are disjoint, consider
any word w. Let j be the index of the set Bj that is the first for which w
is rejected by the co-enumerator for Bj . Then w /∈ Cj . To see Ai ⊆ Ci,
consider any word w ∈ Ai. Since Ai ⊆ Bi, the word will never be rejected
by the co-enumerator for Bi, and thus w /∈ Ci is impossible. qed

Section .

Finite Automata Protocol Monitors

Suppose we are asked to construct a testing device that monitors n signal
lines. The device is synchronously fed as input the n symbols currently
transported on the different lines. It should check whether all symbol
streams are valid with respect to some protocol. When the streams end,
the device should tell us on which lines the protocol was not adhered to.

A simple protocol might be ‘the stream may not contain the same sym-
bol four times in succession’. If the symbols on the streams represent
voltages, this protocol might be used to verify that the signal lines are free
of direct current. A more complicated protocol is ‘the stream consists of
valid cd-rom sectors’. It might be used to decide for which sectors a time-
consuming error correction is necessary. The following definition formalises
the setting.

. Definition of the Protocol Monitoring Function

A token is an indivisible entity that is transported on a data line. The token
alphabet is the set of all possible tokens that can be transported. A stream is



a word over the token alphabet. A protocol is a set of valid streams, that is,
a language over the token alphabet. The protocol monitoring function for
n streams maps any n words over the token alphabet to their characteristic
string with respect to the protocol.

. Example: Manchester Code

The Manchester code, see for example (Illingworth, ), encodes a se-
quence of bits in such a way that at most two bits in succession have the
same value and that 0’s and 1’s appear equally often. This is achieved by
coding 0 as 01 and 1 as 10. For example, 00110 is encoded as 0101101001.
The protocol of the Manchester code is the set of all bitstrings that are
valid Manchester encodings of bitstrings. For example, 0101101001 is an
element of this protocol, whereas the streams 0111 and 101 are not.

The advantage of encoding a bitstring in Manchester code is that the en-
coded stream is self-clocked or self-synchronised and it is free of direct
current. To illustrate the self-clocking property, imagine that you wish to
transfer once    zeros at one megahertz and once    zeros. If
the zeros are transmitted directly without reencoding, the receiver mea-
sures a low voltage for one second in the first case and a low voltage for
one second and one millionth of a second in the second case. In order to
tell the difference, the receiver and the sender have to synchronise their
clocks extremely well. Opposed to this, for the Manchester code, in the
first case the receiver measures    times a switch from low voltage
to high voltage, directly followed by a switch back; whereas in the second
case the receiver measures this double switch    times. The clock of
the receiver must now only be able to differentiate between one zero and
two zeros, not between    zeros and    zeros.

We can use a dfa with output as introduced in definition . to compute
the Manchester code monitoring function for n streams. For complicated
protocols, where the set of valid streams is not regular, we cannot hope to
use a finite automaton for the monitoring. This is rather unfortunate since
the high speed used on most signal lines typically forces the use of a sim-
ple online device—like a finite automaton. Examples of more complicated
protocols are the Internet protocol (Postel, ) and the set of all valid
html streams (Raggett et al., ).

Salvage by Advice Bits

To salvage the idea of using finite automata in such situations, one might
attempt to employ a mixed strategy: we use a finite automaton plus an-
other simple special purpose hardware that also monitors the signal lines.
For example, such a special purpose hardware might be a counter that is



increased every time a ‘send’ tag is transported on some line, and decreased
every time an ‘acknowledge’ tag is transported. At some point, the special
hardware device could communicate some information to the finite automa-
ton, which should then decide which signal lines were faulty. The special
hardware might tell the automaton whether the ‘send’ and ‘acknowledge’
symbols paired up correctly, or it could tell the automaton the index of a
line where this was not the case. The following definition formalises this
‘mixed strategy’.

. Definition

Let FC be a class of functions. A function f can be FC -computed with
k bits of advice per word if there is a function g ∈ FC such that for all
words w there exists a bitstring b ∈ {0, 1}k with f(w) = g

(
〈w, b〉

)
.

Surely a special hardware should allow us to compute the protocol moni-
toring function of some nonregular protocols. However, the finite automata
nonspeedup theorem tells us that the special hardware must communicate at
least blog2 nc+ 1 bits to the automaton. In particular, even getting the in-
dex of one (possibly faulty) line does not suffice to compute the monitoring
function of any nonregular protocol.

. Logarithmic Lower Communication Bound Theorem

Let A be a nonregular protocol and n a positive integer. Then A’s protocol
monitoring function for n streams cannot be computed by finite automata
with only blog2 nc bits of advice per tuple.

Proof. Suppose we could compute χnA with blog2 nc bits of advice per tuple.
Then χnA ∈ ENfa

(
2blog2 nc

)
⊆ ENfa(n). By corollary . this implies that

A is regular, contrary to the assumption. qed

Salvage by Massive Failure Detection

A different way of trying to salvage the idea of using finite automata is
to weaken the requirement that the automaton must output the exact set
of faulty lines. For example, we might require that the automaton must
only detect massive failures. This means that on input of any n distinct
streams, the automaton must accept if all streams are valid and must reject
if all streams are invalid. If some streams are valid and some invalid or if
some streams are identical, the automaton may accept or reject. Thus,
the automaton is only required to detect a massive failure. The following
theorem shows that massive failure detection is not easier than individual
failure detection.

. Massive Failure Detection Theorem

Let A be a protocol and let n be a positive integer. Suppose there exists an
automaton that accepts all n tuples of pairwise different streams in A and



that rejects all n tuples of pairwise different streams not in A. Then A is
regular.

Proof. Suppose such an automaton M exists for a protocol A. Then the
relation accepted by M separates A(n) and Ā(n). Thus, by theorem .,
A is regular. qed

Section .

Classification with Examples

Suppose we are given objects and are asked to classify these objects accord-
ing to some property. For example, we might be asked to classify objects
according to their colour. On input of an object we would then have to
output a colour classification like ‘red’ or ‘green’ or ‘black’.

In this section we investigate whether this classification problem gets
any simpler if we are provided, together with the input object, further ob-
jects that are guaranteed to be classified the same way. This is not the case
for Turing machines and, if there are only two possible classifications, nei-
ther for finite automata. Opposed to this, for polynomially time-bounded
Turing machines extra examples allow the classification of problems that
cannot be classified without. These problems can even become arbitrarily
complex computationally. The same is true for multitape automata that
may move their heads at different speeds.

A formal definition of the classification problem is given below. Ob-
jects are modelled as words. The classification is performed according to a
partition of Σ∗.

. Definition of Classification Problems

A classification problem is a partition A1, . . . , Ak of Σ∗. The associated
classification function maps every word w ∈ Σ∗ to the index i for which
w ∈ Ai holds.

A simple classification problem is given by
{
w ∈ {0, 1}∗ | w contains no 0

}
,{

w ∈ {0, 1}∗ | w contains exactly one 0
}

, and
{
w ∈ {0, 1}∗ | w contains at

least two 0’s
}

. A more complicated classification problem is the classifica-
tion of bitstrings according to whether they contain more, equally many,
or less 0’s than 1’s.

Classification problems are, roughly spoken, ‘as difficult as languages’.
For example, a finite automaton can compute the classification function
of a classification problem A1, . . . , Ak iff all Ai are regular. Analogously,
a Turing machine can compute the classification function iff all Ai are



recursive. Thus we cannot hope to solve a classification problem if some of
the involved partitions are not regular, respectively not recursive.

As in the previous section, we allow some sort of ‘external help’ that is
intended to help us in solving the classification problem for, say, nonregular
sets using a finite automaton. The idea is to provide, together with the
input object, n further (different) objects that have the same classification
as the input object. For the above example of classifying objects according
to their colour, on input of a red ball, some external agent would provide
further examples of red objects like a red cube and a red hat. The automa-
ton sees these three red objects on its tapes and should then produce the
output ‘red’. If we provide an incorrect input, like a red ball together with
a black hat and a black cat, the automaton is allowed to get confused and
may produce an arbitrary output.

. Definition of Example Classification Functions

Given a classification problem A1, . . . , Ak, an n-example classification
function is a function f : (Σ∗)n+1 → {1, . . . , k} with the following prop-
erty: for every i ∈ {1, . . . , k} and every n + 1 pairwise different words
w1, . . . , wn+1 ∈ Ai we have f(w1, . . . , wn+1) = i.

An especially important and interesting special case of the classification
problem with examples is the decision problem with examples. An n-
example decision function for a language A is an n-example classification
function for the classification problem A1 = A and A2 = Ā.

In the following we study, for different computational models, whether
there exist classification problems for which an n-example classification
function can be computed, but whose classification function (without ex-
amples) cannot. The presentation is sorted according to increasing power
of the computational models. We start with finite automata that read the
tapes synchronously, that is, with the standard model studied up to now.

Classification by Finite Automata with Synchronously Moving Heads

The first theorem of this section shows that for finite automata that read
their tapes synchronously examples do not help if there are only two equiv-
alence classes, that is, they do not help for the decision problem. For a
larger number of equivalence classes I conjecture that extra example also
do not help. This conjecture is motivated by the observation that in the
recursive setting, which is studied at the end of this section, extra examples
do not help for any number of equivalence classes, see theorem ..

. Theorem

Let n be a positive integer and let A be a language. If A has a regular
n-example decision function, then A is regular.



Proof. We show that A(n+1) and Ā(n+1) are fa-separable, which shows that
A is regular by theorem .. Let f be the n-example decision function.
Consider the set B :=

{
(w1, . . . , wn+1) ∈ (Σ∗)n+1 | f(w1, . . . , wn+1) = 1

}
.

It is regular and it has the properties A(n+1) ⊆ B and Ā(n+1) ⊆ B̄. qed

. Classification Conjecture

Let n and k be positive integers. Let A1, . . . , Ak be a classification prob-
lem that has a regular n-example classification function. Then all Ai are
regular.

For recursive computations the above conjecture holds, see theorem ..
Unfortunately, it is not clear how its proof might be transferred to finite
automata.

Classification by Finite Automata with Asynchronously Moving Heads

Before turning our attention on recursive computations, let us first increase
the computational power of finite automata only a little bit: let us allow the
automata to move their heads at different speeds and in different directions.

Formally, we now study deterministic, multitape, space-bounded, offline
Turing machines. For a space bound s : N → N, such a machine has the
following components: it has n read-only input tapes on which it finds n
input words; it has a work tape that stores bits and may both be read and
written, but only on s(`) cells, where ` is the length of the longest input
word; and it has a write-only output tape on which it writes its output.
Let fdspace[s] denote the class of all functions that can be computed by
such a machine with space bound s. The sought formalisation of functions
computable by finite automata that may move their heads arbitrarily is
fdspace[0].

The following example presents a nonregular language that has a one-
example decision function in fdspace[0].

. Example: The Arithmetic Progression

Let progression := {bin 1; bin 2; bin 3; bin 4; . . . ; binn | n ∈ N} denote
the arithmetic progression language (the semicolon is a marker symbol).
This language can be decided in double logarithmic space, but it cannot be
decided in less space, since it is not regular and since Hartmanis et al. ()
have shown that any language decidable in less than double logarithmic
space is regular. Thus the characteristic function of this language is in
fdspace

[
O(log log n)

]
, but not in fdspace[0].

The following theorem shows that there is a one-example decision func-
tion for progression in fdspace[0]. The proof is loosely based on an idea
that Frank Stephan told me about in a personal communication.



. Theorem

There is a one-example decision function for progression in fdspace[0].

Proof. Let u be an input word on the first tape that is to be decided and
let v be an example put on the second tape that is classified the same way
as u. Then either u, v ∈ progression or u, v /∈ progression. Note that
if v is not classified the same way as u then the following algorithm may
produce a wrong output (which we are allowed to do).

We may assume that the input word u is shorter than the example v,
since otherwise we can just exchange the rôles of u and v. The decision
algorithm works as follows: First, it checks whether u is a prefix of v. If
this is not the case, then it is impossible that both u and v are elements of
progression and u is classified as ‘u is not an element of progression’.

If u is a prefix of v, the heads are returned to the beginning of the
inputs. On the second tape, the machine checks whether the first number
before the first semicolon is 1. If so, it places the head for the second
tape on the beginning of the first digit of the second number of this tape
(which must be bin 2 = 10 if both words are in the language). Then the
machine enters a loop during which it verifies that the current number
on the first tape is exactly one less than the current number on the second
tape. Then it advances to the next numbers on both tapes. If the first tape
ends and everything ‘went fine’, the machine outputs ‘u is an element of
progression’; otherwise it outputs ‘u is not an element of progression’.

qed

The above theorem shows that even a single example allows us to solve
a classification problem in zero extra space that we cannot solve without
such an extra example. This raises the question of how powerful extra
examples are for zero extra space. The following theorem states that we
can ‘trade space for examples’. A key idea of the proof, namely to encode
logarithmically many bits of the work tape as the position of a head on a
tape, is due to Hartmanis ().

. Theorem (Trading Space for Examples)

Let n and k be positive integers. Let A1, . . . , Ak be a classification problem
that has an n-example classification function in fdspace[s]. Then there
exists a number n′ such that the classification problem has an n′-example
classification function in fdspace[s′] where s′(`) = max{s(`)− log2 `, 0}.

Proof. Let M be a machine that uses n examples and space s. We wish
to construct a machine M ′ that saves log2 ` space on inputs of maximum
length ` by using a larger number n′ of examples.

The machine M ′ works in two stages. In the first stage, it sorts the n′+1
input words according to their length. Naturally, since the input tapes are



read-only, no actual reordering takes place. Rather, the reordering is done
‘virtually’ in the state of M ′: it scans all input words; keeps track of their
relative lengths in its state; returns to the beginning of all the words; and
from then on treats the shortest word as if it were on tape 1, the second
shortest word as if it were on tape 2, and so on.

During the second stage, M ′ simulates M on the first n+ 1 words. The
tapes n+2 through to n′+1 will be called auxiliary tapes. The input words
on the auxiliary tapes will not be considered at all. However, the positions
of the heads on these tapes will be used to encode the missing log2 ` bits
of the work tape, where ` is the longest of the first n+ 1 words. Note that
all words on the auxiliary tapes have at least length `.

In detail, the simulation of M by M ′ works as follows: the machine M ′

keeps only the last max{s(`)− log2 `, 0} many bits of M ’s work tape on its
own work tape. Whenever M reads or writes the contents of a bit stored
in one of the first log2 ` many cells, which are ‘missing’ on the tape of M ′,
the machine M ′ extracts this information from the head positions of the
auxiliary tapes. How this information is extracted is explained below, after
we have argued that the auxiliary tapes can be treated like the registers of
a random access machine.

The position of the head on the ith auxiliary tape, that is, the number
of cells from the left end to the current head position, is a number between
0 and at least `. These numbers form an array. It is easily seen that, given
enough auxiliary tapes, the machine M can perform some basic operations
on this array: it can copy a number from one position in the array to
another position, it can compare numbers, it can add and subtract numbers,
and it can multiply and divide numbers by constants. Thus we can perform
all basic operations of random access machines with a fixed number of
registers that can hold the maximum number `.

The information of the missing log2 ` bits can be stored as follows: one
‘register’ holds the current head position if the head is on one of the missing
bits; another register holds the bits before this head, coded as a binary
number; and one register holds the bits starting at the head position, also
coded as a binary number, but in reverse. For example, if the contents
of the missing part of the tape is 110.01011, then the register for the
head position stores the number 4, the register for the bits left of the head
stores 6 since bin 6 = 110, and the register for the bits starting at the head
position stores 26 since (bin 26)reversed = 11010reversed = 01011.

With this coding, moving the head in the missing part can be simulated
by doubling and halving the numbers in the registers for the tape contents
of the missing part. The machine M ′ also notices when it reaches the left
or right end of the missing part. Thus it can perform a simulation of M in
space max{s(`)− log2 `, 0}. qed



By repeatedly applying the above theorem we get the following corollary.

. Corollary

Let n be a positive integer. If a classification problem has an n-example
classification function in fdspace

[
O(log n)

]
, then it has an n′-example

classification function in fdspace[0] for some suitable n′.

The above corollary shows that finite automata with asynchronously mov-
ing heads are just as powerful as logarithmically space-bounded Turing
machines with respect to classification problems in the presence of exam-
ples. As a final example of the power of examples, I show that there exist
arbitrarily complex languages that can be decided in zero space when ex-
amples are given.

. Example: But-One Logarithmically Space-Bounded Languages

Let us define a class L-but-one analogously to the class P-but-one from
definition . as the class of languages that are ‘but one in L’. Nickelsen’s
proof of theorem . can be adapted to show that for every recursive
function f there exists a language in L-but-one that is not in dtime[f].
However, every language in L-but-one is decidable with one example: on
input of u, together with an example v, decide one of them and then output
the result. Together with corollary ., this proves the following theorem.

. Theorem

For every recursive function f, there exists a language A /∈ dtime[f] and
a positive integer n such that A has an n-example decision function in
fdspace[0].

Classification by Turing Machines

I now show that conjecture . is true in the recursive setting. The proof
is based on Boris Trakhtenbrot’s co-recursively enumerable tree lemma, see
lemma . below. I present a proof of this lemma since you may find
it worthwhile to compare its proof with the proof of theorem . for the
finite automata case. Recall that definition ., where trees and branches
are defined, requires that branches are always infinite.

. Co-Recursively Enumerable Tree Lemma (Trakhtenbrot, )
Let T be a co-recursively enumerable tree that has at least one and at most
countably many branches. Then T has a recursive branch.

Proof. Let T ′ denote the subtree of T that contains all nodes that have
infinitely many descendants. Let us call a node u ∈ T ′ good if there is
only one branch in T ′ that contain u. There must exist a good node:
otherwise T ′ would either be empty, which is forbidden by assumption, or



every node would have two incomparable descendants and T ′ would hence
have uncountably many branches.

Consider a good node u and the branch B through it. Without loss of
generality we can assume that u is the root, that is, the empty word. I claim
that B is recursive. A word is in B iff it is in T and has infinitely many
descendants. To check this, we run the following algorithm: run the co-
recursive enumeration algorithm for T in a dovetailed fashion. Every time
an element of T̄ is enumerated, we mark this word as ‘dead’. Furthermore,
if all successors of a node are dead, the node also dies. No word in B will
ever die and all words in B̄ will die sooner or later. Thus, we can reject
input words that die at some point and accept input words for which all
other words of the same length die at some point. qed

. Theorem

Let n and k be positive integers. Let A1, . . . , Ak be a classification problem
that has a recursive n-example classification function. Then all Ai are
recursive.

Proof. Let A1, . . . , Ak be a partition of the set Σ∗. Let w1, w2, w3, . . .
denote the words in Σ∗ in standard ordering. Let f : (Σ∗)n+1 → {1, . . . , k}
be the n-example classification function. Define a tree T as follows:

. The tree alphabet is the set Γ := {1, . . . , k}.
. A node x1 · · ·x` ∈ Γ∗ with xi ∈ Γ is in T , iff for all pairwise different

indices i1, . . . , in+1 ∈ {1, . . . , `} with xi1 = · · · = xin+1 = j we have
f
(
wi1 , . . . , win+1

)
= j.

Intuitively, the branches of the tree correspond exactly to the partitions
of Σ∗ for which f is an n-example classification function. More precisely,
a branch {u1, u2, u3, . . .} of T corresponds to the partition in which the
word wi is in the equivalence class Aj , where j is the last letter of ui+1.
The ‘direction’ in which a branch ‘heads’ at the ith node tells us in which
equivalence class the ith word of Σ∗ lies. The definition ensures that the
branch that corresponds to the classification problem A1, . . . , Ak is a
branch of T .

I claim that there is a fixed number r such that the letters of any two
nodes in T of the same length differ on at most r positions. To see this,
consider any two nodes x1 · · ·x` ∈ T and y1 · · · y` ∈ T . Consider a graph
with multiple edges whose vertex set is Γ. For each i ∈ {1, . . . , `} with
xi 6= yi let there be an edge from the vertex xi ∈ Γ to the vertex yi ∈ Γ
with label i. Then for any two different vertices p and q of this graph there
can be at most n edges going from p to q: otherwise the labels on the n
edges would be indices of words for which f outputs both p and q, which
is impossible. In total, there can be at most r := nk(k − 1) edges in the



graph. This number bounds the number of positions where any two nodes
in T of the same length can differ.

The tree T has at most countably many branches. To see this, fix one
branch. Then every other branch is obtained by changing at most r letters
at the same positions in all nodes. By lemma ., this shows that T has a
recursive branch. But then all other branches are also recursive, including
the branch corresponding to the partition A1, . . . , Ak. This shows that
each Aj is recursive, since we can decide whether wi ∈ Aj holds by tracing
the branch up to the (i + 1)-th node and checking whether the last letter
is j. qed





Seventh Chapter

Conclusion



Please reread the thesis stated at the beginning of this dissertation. If I
have not been able to convince you of this thesis, I would like to apologise
for having wasted your time. In any case, I would like to thank you for
having read this dissertation.

This conclusion regroups and analyses the ideas, concepts, and results
of the five main chapters ‘in hindsight’. First, a summary is given of which
results hold for which computational models. Second, an appraisal is at-
tempted of the relevance of the ideas, concepts, and results with respect to
both theory and practice. Third, possible future work is outlined.

Section .

Which Results Hold for Which Models?

Which of the main results of this dissertation hold for which computational
models? The body text does not always answer this question directly, since
it is organised according to proof methods, not according to computational
models. Proofs that a certain theorem holds for one model and does not
hold for another model are sometimes presented in different chapters. In the
following I summarise which results hold for which computational models.
When repeating results, only the core statement is repeated. For example,
restrictions like ‘n must be a positive integer’ are omitted; please see the
main text for detailed statements of the theorems.

I do not mention most of the results obtained in the sixth chapter on
applications. This is not due to a lack of faith in their importance. Rather,
these are treated as part of the next section’s discussion of the relevance of
the results of this dissertation.

The Cross Product Theorem

The first core result was the cross product theorem. To my knowledge,
this theorem is the only known purely structural result on enumerability
classes. (Except for the simple observation that enumerability classes form
a proper hierarchy for reasonable computational models.)

. Generic Cross Product Theorem

For weakly closed C, if f × g ∈ ENC(n + m), then either f ∈ ENC(n) or
g ∈ ENC(m).

Since the class of recursively enumerable languages, the class of regular re-
lations, Presburger arithmetic, first-order arithmetic, and ordinal number



arithmetic are all weakly closed, the theorem holds for all of these mod-
els. Resource-bounded computations like polynomial-time computations
are not weakly closed and the theorem makes no claims for them. By the
discussion following theorem ., the cross product theorem does not hold
for resource-bounded computational models.

The cross product theorem

· holds for Presburger arithmetic,
· holds for finite automata,
· does not hold for polynomial-time computations,
· holds for recursive computations,
· holds for first-order arithmetic,
· holds for ordinal number arithmetic.

An immediate corollary of the cross product theorem was the following
generic version of the generalised nonspeedup theorem.

. Generic Generalised Nonspeedup Theorem

For weakly closed C we have VC(m+ h, n+ k) ⊆ VC(m,n) ∪ VC(h, k).

The generalised nonspeedup theorem is just the restriction of the cross
product theorem to functions f and g that are both of the form χnA, re-
spectively χmA , for some fixed language A. As the cross product theorem
shows, this restriction is unnecessary. Indeed, proving the theorem for ar-
bitrary functions f and g makes the proof even simpler, since one avoids
having to handle big tuples of words. The generic approach adds a bit
of complication to the proof, but comparing the one paragraph proof in
(Tantau, ) for the cross product theorem for Turing machines with the
longer proof given in (Beigel et al., b) demonstrates this point.

The counterexample to the cross product theorem for polynomial-time
computations is also a counterexample to the polynomial-time version of
the generalised nonspeedup theorem. Concerning the computational mod-
els listed above, the generalised nonspeedup theorem and the cross product
theorem hold for exactly the same models.

The Cardinality Theorem

The next central topic was the question of whether Kummer’s cardinality
theorem holds for other computational models, in particular, whether it
holds for finite automata. This questions was not answered, but strong
evidence was collected that suggests a positive answer.

. Kummer’s Cardinality Theorem

If #n
A ∈ ENre(n), then A is recursive.



I have shown that Kummer’s cardinality theorem can be rephrased equiv-
alently in terms of separability. This rephrasing allows some interesting
modifications, like replacing the recursively enumerable supersets by co-
recursively enumerable supersets, see the following two theorems.

. Kummer’s Cardinality Theorem (Separability Version)

If A(n0), . . . , A(nn) are separable by disjoint recursively enumerable sets,
then A is recursive.

. Theorem

If A(n0), . . . , A(nn) are separable by disjoint co-recursively enumerable sets,
then A is recursive.

Since the nonspeedup theorem is a direct consequence of the cardinality the-
orem, we know that the cardinality theorem does not hold for polynomial-
time computations. However, for finite automata the situation is unclear.

The cardinality theorem

· might or might not hold for Presburger arithmetic,
· might or might not hold for finite automata,
· does not hold for polynomial-time computations,
· holds for recursive computations,
· holds for first-order arithmetic,
· does not hold for ordinal number arithmetic.

Weak Cardinality Theorems

The weak forms of the cardinality theorem can all be proved using the
generic proof method. The three weak forms are: the nonspeedup theo-
rem, the cardinality theorem for two words, and the restricted cardinality
theorem.

. Generic Nonspeedup Theorem

For weakly closed C we have VC(n, n) = VC(1, 1).

. Generic Cardinality Theorem for Two Words

For strongly closed C, if #2
A ∈ ENC(2), then A ∈ C.

. Generic Restricted Cardinality Theorem

For strongly closed C, if #n
A ∈ ENC(n) via a relation that never enumerates

both 0 and n, then A ∈ C.

The nonspeedup theorem, the cardinality theorem for two words, and the
restricted cardinality theorem

· hold for Presburger arithmetic,
· hold for finite automata,



· do not hold for polynomial-time computations,
· hold for recursive computations,
· hold for first-order arithmetic,
· do not hold for ordinal number arithmetic, except for the nonspeedup

theorem, which does hold.

The rôle of ordinal number arithmetic is somewhat peculiar. The restricted
cardinality theorem fails for it, because there exist ordinal numbers that
are not definable in ordinal number arithmetic. However, this ‘deficiency’
is not a problem for the nonspeedup theorem.

For finite automata and for Turing machines, the proofs of the car-
dinality theorem for two words and of the restricted cardinality theorem
are quite different. My proofs for finite automata are based on first-order
formulæ that involve negation. The classic proofs for Turing machines
are based on Kummer’s recursively enumerable tree lemma () and on
Trakhtenbrot’s co-recursively enumerable tree lemma, see lemma ..

A natural question in this context is: can we give a proof of the cardi-
nality theorem (at least for two words) that works both for finite automata
and for Turing machines? I do not know whether this is the case.

Closure of Regular Relations under Elementary Definitions

Elementary definitions of regular relations are the first of the two central
proof methods used in this dissertation.

. Corollary

Let S be a regular τ -structure and φ a first-order τ -formula. Then the
relation φS(u1, . . . , un) is regular.

This theorem allows us to use the formalism of first-order logic for the
definition of regular relations in terms of existing ones. I made use of this
method throughout the text. All instantiations of the generic theorems for
finite automata depend on the above closure property of the class of regular
relations.

· Presburger arithmetic is closed under elementary definitions.
· The class of regular relations is closed under elementary definitions.
· The class of polynomial-time decidable relations is not closed un-

der elementary definitions, not even under positive elementary defi-
nitions.
· The class of recursively enumerable relations is not closed under el-

ementary definitions, but it is closed under positive elementary defi-
nitions.



· First-order arithmetic is closed under elementary definitions.
· Ordinal number arithmetic is closed under elementary definitions, but

some ordinal numbers are not elementarily definable.

The Branch Diagonalisation Method

The second central proof method of this dissertation is branch diagonalisa-
tion. It is not universally applicable (for example it can only be applied to
uncountable classes), but if it is applicable it yields strong separations. A
main result that was proved using branch diagonalisation is the following:

. Verboseness Class Inclusion Theorem

The following statements are equivalent for all oracles X:

11. Vre(m,n) ⊆ Vre(h, k).
22. Vfa(m,n) ⊆ Vfa(h, k).
3. Vfa(m,n) ⊆ VXre (h, k).

Once more, the theorem cannot be extended to polynomial-time computa-
tions: there exist polynomial-time (2, 2)-verbose languages outside P, for
example the languages in P-but-one.

At first sight, branch diagonalisation might seem useful only for show-
ing separations of classes defined in terms of finite automata and per-
haps Turing machines. This impression is wrong, since separations for
polynomial-time computations can be obtained as simple corollaries from
the strong separation results obtained by branch diagonalisation: for ex-
ample, if Vfa(m,n) 6⊆ VXre (h, k), then also the much larger class Vp(m,n) ⊇
Vfa(m,n) is not contained in the much smaller class VXp (h, k) ⊆ VXre (h, k).

Separability Results

‘Results on cardinality computations are separability results in disguise.’
Two pairs of theorems support this claim, which was made at the begin-
ning of section .. While the two parts of each pair are proved in different
chapters in the main text since their proofs require different proof tech-
niques, in this conclusion I present these results as pairs. The second part
of each pair shows that the first part is optimal in a certain sense.

In the main text, the results are formulated in an even more general
way, namely relative to an arbitrary oracle X. For the purposes of this
conclusion this extra generality seems more distracting than enlightening.

. Theorem

If A× A, A× Ā, and Ā× Ā are separable by disjoint regular sets, then A
is regular.



. Theorem

There exists a language A that is not semirecursive, but for which A × A,
A× Ā, Ā×A, and Ā× Ā are separable by disjoint regular sets.

The beauty of the above theorems lies in the fact that they neither refer
to enumerability nor to cardinality computations. Separability results are
much easier to explain to ‘non-specialists’ since only standard terminology
is used in their formulation. I taught a first-year undergraduate course in
 where I explained (the claim of) the above results to my students
and several of them were startled and intrigued by the theorems. (Several
other were quite indifferent, but that might have had to do with their lack
of interest in theoretical computer science in general and automata theory
in particular.)

The next two theorems form the second pair.

. Theorem

If A(n) and Ā(n) are fa-separable, then A is regular.

. Theorem

There exist disjoint recursively inseparable languages A and B for which
A(n) and B(n) are fa-separable for all n ≥ 2.

Section .

Relevance of the Main Results

A popular question asked on many lecture evaluation forms is: ‘How do
you rate the relevance of what was taught?’ Phrased this way, the question
is difficult to answer for students attending courses on theoretical com-
puter science, because there are different forms of ‘relevance’ of theorems:
practical relevance to programming and program specification; relevance
to proofs of other, unrelated theorems; and relevance with respect to proof
techniques. In the following, I try to appraise the relevance of the results
obtained in this dissertation, differentiating between these different forms.

Practical Relevance

Theoretical results can be relevant to ‘real programming’ insofar as they
propose algorithms or specification methods. For example, Kleene’s funda-
mental result that one can turn every regular expression into a deterministic
finite automaton is a theoretical result of immense practical relevance. It
offers a way of turning a simple specification into a highly effective algo-
rithm.



The first result of this dissertation that I think might have a ‘practical’
application is the cardinality theorem for finite automata for two words.
As argued in the introduction to the sixth chapter, this theorem allows us
to ‘specify’ a regular language using automata that are arbitrarily smaller
than the smallest deterministic or nondeterministic automaton that can
decide the language.

The practical relevance of this ‘specification method’ should certainly
not be overestimated. It is, in its current form, only applicable to a narrow
class of languages. As a matter of fact, it takes some pondering to come
up with a language for which such a specification is possible—in the main
text I give just one example, namely {0k1w | w ∈ Σ∗} for fixed k.

One result of this dissertation refers to practical settings directly: the-
orem . states that for nonregular protocols the n stream protocol mon-
itoring function cannot be computed with less than blog2 nc bits of advice
from some external source. This is a practical result, albeit a negative
one. It just tells us that certain protocol checkers do not exist. Negative
results only help in a rather indirect way in the construction of devices or
algorithms: they inform us that trying to come up with a certain kind of
algorithm is futile. This can be used as a guide for the construction, but
not as a tool.

While the setting of theorem ., and also of the related theorem .
on massive failure detection, is practical, one can question its relevance.
That is, is it really realistic that one would perform a protocol check using a
finite automaton coupled with a special purpose hardware? Unfortunately,
there is a good reason to believe that this is possible only in very specialised
situations: The whole setting only makes sense if one transmits at most
n− 1 bits for n data lines. Thus all protocols for which the setting might
be applicable are (2n−1, n)-fa-verbose. Austinat et al. () have shown
that no inherently context-free language can be (2n − 1, n)-fa-verbose for
any n. Thus, even for simple languages like {0n1n | n ∈ N} the setting
cannot be used. On the other hand, this is an interesting negative result
in itself. Furthermore, Austinat et al. have also shown that there exist,
for example, (2n−1, n)-fa-verbose context-sensitive languages that are not
context-free.

A third practical result is theorem .. It states that if a language
can be decided with n examples by a finite automaton, then the language
is regular. There are numerous situations, both in theory and in practice,
where we are given a bunch of objects that are known to be classified in the
same way. For example, a biometric access device might make numerous
measurements of a fingerprint or a voice and compute a set of short signa-
tures from them. All signatures belong to the same person and should all



be classified the same way, namely ‘grant access’ or ‘deny access’.
Once more, theorem . is a negative result. It just tells us that finite

automata are useless for the decision of nonregular languages, even in the
presence of examples. An intriguing open problem in this context is the
classification conjecture, see conjecture ..

For polynomial-time computations (and even for finite automata that
may move their heads arbitrarily) the situation is different. Here we can
decide arbitrarily difficult problems if we have access to enough examples.
However, the practical relevance of this result is once more diminished
by the fact that examples can only help for polynomial-time (2n − 1, n)-
verbose languages, so-called non-p-superterse languages. It is known that
many natural problems, including all NP-complete problems, the graph
isomorphism problem, and the graph automorphism problem, are either
in P or they are p-superterse. Thus for these natural problems examples
do not help. Once more, this is an interesting negative result in itself.

To sum up, I believe that the main results have practical applications
only in certain specialised situations.

Relevance to Other Proofs

Theoretical results can be relevant to other parts of theory. For example,
the celebrated pcp-theorem on polynomially checkable proofs has beautiful
applications in non-approximability proofs.

The nature of mathematical progress makes it hard to predict whether
some, or any, of the results proved in this dissertation will be used in proofs
in unrelated areas. In order to apply results from one area in another area
a ‘terminological chasm’ has to be bridged. If the chasm is too great, the
bridge will never be build.

There are two reasons why I think my results on finite automata enumer-
ability classes and cardinality computations will be useful in other areas.

First, the separability results are already an example of the application
of the main theorems to a setting that has nothing to do with enumerability
or cardinality computations. Indeed, I found these applications only some
time after the main theorems had already been proved.

Second, in the recursive setting it took some time before the cardinal-
ity theorem was used in other proofs. An example is the proof of Beigel
et al. () that for every nonrecursive, semirecursive languages A the
language odd

k+1
A is not weakly k-truth-table reducible to any semirecur-

sive language. The proof given by Beigel et al. relies on the cardinality
theorem.



Relevance of the Proof Techniques

Theoretical results can have an impact not so much because they have
numerous corollaries, but because the proof method can be used in other
situations or because the proof offers new insights into a field. An example
are proofs that show that there are oracles relative to which the P-NP-
problem is answered affirmatively, respectively negatively. These results
are not really ‘useful’ since they tell us nothing about the status of the
P-NP-problem ‘in the real world’ nor do they bring us nearer to a proof
of P 6= NP. (One might argue, ironically, that they bring us further away
from such a proof.) Nevertheless, oracles and relativisations are certainly
relevant to theoretical computer science and have provided us with a new
way of approaching problems and proofs.

I believe that the two proof techniques ‘elementary definitions of regular
relations’ and ‘branch diagonalisation’ will be applicable in new situations,
including topics totally unrelated to this dissertation.

In both cases my main reason for this belief is that both methods arose
out of necessity, not out of curiosity. I had results on the enumerability of
cardinality functions using finite automata that were difficult to prove and
whose proofs were even more difficult to write down. The search for a con-
sistent and elegant way for writing down these proofs lead me to the proof
of the main closure property of the class of regular relations. Indeed, it was
only afterwards that I noticed that Büchi had already (implicitly) proved
this closure property. This also explains why the proof of theorem . uses
a logical structure that is different from the structures previously used in
the literature: it is the structure that I used before Dirk Siefkes brought
Büchi’s proof to my attention.

The branch diagonalisation method also arose out of necessity. I needed
a way of transferring a diagonalisation proof from the recursive setting to
finite automata. This seemed impossible since all standard diagonalisation
methods involve some kind of simulation, which is impossible to do using
only finite automata. Fortunately, at that time I was also studying the
relationship of different partial information classes, a concept due to Arfst
Nickelsen (), in the recursive setting. In particular, I was interested in
the question of whether there exists a partial information class that con-
tains the union of any n branches, but that does not contain the union of
appropriately chosen n + 1 branches (such classes exist). The proofs in-
volved arguments that were an early form of branch diagonalisation. These
arguments also worked for finite automata, but noticing this took one of
those rare moments of clairvoyance.

What convinced me that branch diagonalisation is a method whose
applications are not restricted to the study of verboseness was a discussion



I had with Leen Torenvliet in Rochester, New York, in September 2001.
Together with Lane Hemaspaandra, Leen was busy adding the finishing
touches to a book on semi-feasible algorithms; or so they thought—it took
over a year before the book finally went into print (Hemaspaandra and
Torenvliet, ). They had asked several other graduate students and
myself to do some proofreading. The manuscript included a proof that
the class of P-selective languages is not closed under intersection. When
I read their proof, I recalled a different proof of this result, which is now
presented as theorem . in this dissertation. I had found this different
proof during my study of the branch diagonalisation method. Assuming
that my proof was well-known since it was ‘so simple’ and assuming that
it was the standard, obvious way of proving this, I sketched my proof on
the backside as a ‘correction’. (What I wrote on the backside, you can
now read on page  of their book.) When Leen turned the page and
read the backside, his startled expression made me realise that branch
diagonalisation is a method that has a surprising range of applications.

Section .

Outlook

In the following I list problems not solved in this dissertation that I would
like to suggest for further research. In all cases I believe that even a partial
solution would be valuable not only for the study of enumerability, but
also for the study of other concepts of automata, complexity, and recursion
theory.

Does the Cardinality Theorem Hold for Finite Automata?

For me, the most intriguing question raised in this dissertation is whether
the cardinality theorem holds for finite automata. That is, I would like to
know whether the following conjecture is true:

. Cardinality Conjecture for Finite Automata

If #n
A ∈ ENfa(n), then A is regular.

Most likely, a proof of this conjecture would increase also our understanding
of the cardinality theorem for Turing machines. Two possible routes to
a proof seem possible to me: either, one might try to extend the proof
method I used in the proof of the conjecture for n = 2, or one might try
to adapt Kummer’s proof from the recursive setting to finite automata.
Unfortunately, both routes appear to be quite stony.



Can all Main Theorems be Derived from One Theorem?

I now formulate a conjecture that would imply all of the following theorems:
the sum theorem (see below), the cardinality theorem, the cross product
theorem, the generalised nonspeedup theorem, and the nonspeedup theo-
rem. I formulate this conjecture once for Turing machines and once for
finite automata.

Kummer and Stephan () have generalised the cardinality theorem
as follows: their ‘sum theorem’ states that a function f : N → N must be
recursive if Σnf ∈ ENre(n), where Σnf (x1, . . . , xn) := f(x1) + · · ·+ f(xn).

Recall that the nonspeedup theorem, which states that χnA ∈ ENre(n)
implies that A is recursive, follows from the cross product theorem, which
states that f × g ∈ ENre(n + m) implies f ∈ ENre(n) or g ∈ ENre(m).
The cross product theorem is the ‘pure core’ of the nonspeedup theorem.
Perhaps, the sum theorem also has a ‘pure core’, namely the following
claim: ‘if f ∗ g ∈ ENre(n + m) then either f ∈ ENre(n) or g ∈ ENre(m)’.
The star operator, which is a mixture of the addition operator and the
cross product operator, is defined by (f ∗ g)(x, y) := f(x) + g(y). I have
not been able to find a counterexample to this statement and believe that
the following two conjectures hold:

Conjecture

If f ∗ g ∈ ENre(n+m) then either f ∈ ENre(n) or g ∈ ENre(m).

Conjecture

If f ∗ g ∈ ENfa(n+m) then either f ∈ ENfa(n) or g ∈ ENfa(m).

In what Situations Can We Use Branch Diagonalisation?

In this dissertation, branch diagonalisation was applied to uncountable clas-
ses defined in terms of finite automata. One might try to make branch di-
agonalisation applicable to a broader range of situations. First, the method
might be useful also for computational models below finite automata. For
example, we may ask whether we can use it for star-free languages (lan-
guages obtained from regular expressions that do not include the Kleene-
star) or for diagonalisation proofs in Presburger arithmetic. If this works,
one might also be able to prove new results for low complexity circuit
classes like AC0 or TC0. Second, the method might be adaptable to count-
able classes by imposing further requirements on the branches. In this way,
it might be possible to construct branch diagonalisations between standard
complexity classes.



Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases.
Addison-Wesley, .

Manindra Agrawal and Vikraman Arvind.
Quasi-linear truth-table reductions to P-selective sets.
Theoretical Computer Science, (–):–, .

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Al-
berto Marchetti-Spaccamela, and Marco Protasi.
Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties.
Springer-Verlag, .

Holger Austinat, Volker Diekert, and Ulrich Hertrampf.
A structural property of regular frequency computations.
Theoretical Computer Science, ():–, .

Holger Austinat, Volker Diekert, Ulrich Hertrampf, and Holger Petersen.
Regular frequency computations.
In Proceedings of the RIMS Symposium on Algebraic Systems, Formal
Languages and Computation, volume  of rims Kokyuroku, pages
–. Research Institute for Mathematical Sciences, Kyoto University,
Japan, .

Robert Beals, Richard Chang, William I. Gasarch, and Jacobo Torán.
On finding the number of graph automorphisms.
Chicago Journal on Theoretical Computer Science, ():–, .

Richard Beigel.
Query-Limited Reducibilities.
PhD thesis, Stanford University, usa, .

Richard Beigel.
Bi-immunity results for cheatable sets.
Theoretical Computer Science, ():–, .

Richard Beigel.
Bounded queries to sat and the Boolean hierarchy.
Theoretical Computer Science, ():–, .

Richard Beigel, William I. Gasarch, John Gill, and James C. Owings, Jr.
Terse, superterse, and verbose sets.
Information and Computation, ():–, .



Richard Beigel, William I. Gasarch, Martin Kummer, Georgia Martin, Tim-
othy McNicholl, and Frank Stephan.
The complexity of odd

A
n .

Journal of Symbolic Logic, ():–, .

Richard Beigel, Martin Kummer, and Frank Stephan.
Approximable sets.
Information and Computation, ():–, a.

Richard Beigel, Martin Kummer, and Frank Stephan.
Quantifying the amount of verboseness.
Information and Computation, ():–, b.

Véronique Bruyère and Georges Hansel.
Bertrand numeration systems and recognizability.
Theoretical Computer Science, ():–, .

Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Ville-
maire.
Logic and p-recognizable sets of integers.
Bulletin of the Belgian Mathematical Society, ():–, .

Julius Richard Büchi.
Weak second-order arithmetic and finite automata.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, :
–, .

Julius Richard Büchi.
On a decision method in restricted second-order arithmetic.
In Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors, Proceedings
of the 119600 International Congress on Logic, Methodology and Philosophy
of Science, pages –. Stanford University Press, .

Tevfik Bultan, Richard Gerber, and William Pugh.
Model checking concurrent systems with unbounded integer variables:
Symbolic representations, approximations, and experimental results.
ACM Transactions on Programming Languages and Systems, ():–
, .

Jin-Yi Cai and Lane A. Hemachandra.
Enumerative counting is hard.
Information and Computation, ():–, .

Georg Cantor.
Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen.
Journal für die reine und angewandte Mathematik, :–, .



Martin Davis, editor.
The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems, and Computable Functions.
Raven Press, .

Heinz-Dieter Ebbinghaus and Jörg Flum.
Finite Model Theory.
Perspectives in Mathematical Logic. Springer-Verlag, .

Lance Fortnow.
The computational complexity column: Diagonalization.
Bulletin of the European Association for Theoretical Computer Science,
:–, .

William I. Gasarch.
Bounded queries in recursion theory: A survey.
In Proceedings of the Sixth Annual Structure in Complexity Theory Con-
ference, pages –. ieee Computer Society Press, .

William I. Gasarch and Georgia A. Martin.
Bounded Queries in Recursion Theory, volume  of Progress in Com-
puter Science and Applied Logic.
Birkhäuser, .

Kurt Gödel.
Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I.
Monatshefte für Mathematik und Physik, :–, .

Kurt Gödel.
On undecidable propositions of formal mathematical systems.
Mimeographed notes by Stephen C. Kleene and Barkley Rosser of lec-
tures at the Institute for Advanced Study, Princeton, New Jersey, .
See Davis () for a reprint.

Martin Grötschel, László Lovász, and Alexander Schrijver.
The ellipsoid method and its consequences in combinatorial optimization.
Combinatorica, ():–, .

Valentina Harizanov, Martin Kummer, and Jim Owings.
Frequency computations and the cardinality theorem.
Journal of Symbolic Logic, ():–, .

Juris Hartmanis.
On non-determinancy in simple computing devices.
Acta Informatica, :–, .



Juris Hartmanis, Philip M. Lewis, and Richard E. Stearns.
Hierarchies of memory-limited computations.
In Proceedings of the Sixth Annual IEEE Symposium on Switching Circuit
Theory and Logic Design, pages –. ieee Computer Society Press,
.

Lane A. Hemachandra.
The strong exponential hierarchy collapses.
Journal of Computer and System Sciences, ():–, .

Edith Hemaspaandra, Lane A. Hemaspaandra, and Harald Hempel.
A downward collapse within the polynomial hierarchy.
SIAM Journal on Computing, ():–, .

Lane A. Hemaspaandra, Harald Hempel, and Arfst Nickelsen.
Algebraic properties for P-selectivity.
In Jie Wang, editor, Proceedings of the Seventh Annual International
Computing and Combinatorics Conference, volume  of Lecture Notes
on Computer Science, pages –. Springer-Verlag, .

Lane A. Hemaspaandra, Albrecht Hoene, and Mitsunori Ogihara.
Reducibility classes of P-selective sets.
Theoretical Computer Science, ():–, .

Lane A. Hemaspaandra and Zhigen Jiang.
P-selectivity: Intersections and indices.
Theoretical Computer Science, (–):–, .

Lane A. Hemaspaandra and Leen Torenvliet.
Theory of Semi-Feasible Algorithms.
Monographs in Theoretical Computer Science. Springer-Verlag, .

Albrecht Hoene and Arfst Nickelsen.
Counting, selecting, and sorting by query-bounded machines.
In Patrice Enjalbert, Alain Finkel, and Klaus W. Wagner, editors, Pro-
ceedings of the Tenth International Symposium on Theoretical Aspects of
Computer Science, volume  of Lecture Notes on Computer Science,
pages –. Springer-Verlag, .

John E. Hopcroft and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, .

Valerie Illingworth, editor.
Dictionary of Computing.
Oxford University Press, .



Neil Immerman.
Nondeterministic space is closed under complementation.
SIAM Journal on Computing, ():–, .

Neil Immerman.
Descriptive Complexity.
Graduate Texts in Computer Science. Springer-Verlag, .

Thomas Jech.
Set Theory, volume  of Perspectives in Mathematical Logic.
Springer-Verlag, second edition, .

Carl G. Jockusch, Jr.
Reducibilities in Recursive Function Theory.
PhD thesis, Massachusetts Institute of Technology, usa, .

Carl G. Jockusch, Jr.
Semirecursive sets and positive reducibility.
Transactions of the American Mathematical Society, :–, .

Jim Kadin.
PNP[O(log n)] and sparse Turing-complete sets for NP.
Journal of Computer and System Sciences, ():–, .

Richard M. Karp and Richard J. Lipton.
Some connections between uniform and non-uniform complexity classes.
In Proceedings of the Twelveth Annual ACM Symposium on Theory of
Computing, pages –. acm Press, .

Susanne Kaufmann and Martin Kummer.
On a quantitative notion of uniformity.
Fundamenta Informaticæ, ():–, .

Efim B. Kinber.
Frequency computations in finite automata.
Cybernetics, :–, .

Donald E. Knuth.
The sandwich theorem.
The Electronic Journal of Combinatorics, (a):–, .

Martin Kummer.
A proof of Beigel’s cardinality conjecture.
Journal of Symbolic Logic, ():–, .



Martin Kummer and Frank Stephan.
Some aspects of frequency computation.
Technical Report /, Universität Karlsruhe, Fakultät für Informatik,
Germany, .

Martin Kummer and Frank Stephan.
Effecitive search problems.
Mathematical Logic Quarterly, ():–, .

Stuart A. Kurtz.
A relativized failure of the Berman-Hartmanis conjecture.
Technical Report -, Department of Computer Science, University
of Chicago, .

Alistair H. Lachlan.
A recursively enumerable degree which will not split over all lesser ones.
Annals of Mathematical Logic, :–, .

M. Laventrieff.
Sur les sous-classes de la classification de M. Baire.
Comptes Rendus de l’Académie des Sciences, :–, .

László Lovász.
On the Shannon capacity of a graph.
IEEE Transactions on Information Theory, ():–, .

Stephen R. Mahaney.
Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis.
Journal of Computer and System Sciences, ():–, .

Richard McNaughton.
Review of (Büchi, ).
Journal of Symbolic Logic, ():–, .

Arfst Nickelsen.
On polynomially D-verbose sets.
In Rüdiger Reischuk and Michel Morvan, editors, Proceedings of the 114th
International Symposium on Theoretical Aspects of Computer Science,
volume  of Lecture Notes on Computer Science, pages –.
Springer-Verlag, .

Arfst Nickelsen.
Polynomial Time Partial Information Classes.
Wissenschaft und Technik Verlag, .
Dissertation, Technische Universität Berlin, .



Arfst Nickelsen and Till Tantau.
On reachability in graphs with bounded independence number.
In Oscar H. Ibarra and Louxin Zhang, editors, Proceedings of the Eighth
Annual International Computing and Combinatorics Conference, volume
 of Lecture Notes on Computer Science, pages –. Springer-
Verlag, .

Arfst Nickelsen and Till Tantau.
Partial information classes.
SIGACT News, ():–, .

Piergiorgio Odifreddi.
Classical Recursion Theory I, volume  of Studies in Logic and the
Foundations of Mathematics.
North-Holland, .

Piergiorgio Odifreddi.
Classical Recursion Theory II, volume  of Studies in Logic and the
Foundations of Mathematics.
North-Holland, .

Mitsunori Ogihara.
Polynomial-time membership comparable sets.
SIAM Journal on Computing, ():–, .

Mitsunori Ogihara and Till Tantau.
On the reducibility of sets inside NP to sets with low information content.
Technical Report -, Computer Science Department, University
of Rochester, .

Derek C. Oppen.
A 222pn

upper bound on the complexity of Presburger arithmetic.
Journal of Computer and System Sciences, ():–, .

James C. Owings, Jr.
A cardinality version of Beigel’s nonspeedup theorem.
Journal of Symbolic Logic, ():–, .

Dominique Perrin.
Finite automata.
In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume b, chapter , pages –. Elsevier, .

Emil L. Post.
Recursively enumerable sets of positive integers and their decision prob-
lems.
Bulletin of the American Mathematical Society, :–, .



Jon Postel.
Internet protocol—darpa internet program protocol specification.
Technical report, Information Sciences Institute, University of Southern
California, .

Mo̇żesz Presburger.
Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt.
In Comptes Rendus du Premier Congrès des Mathématiciens des Pays
Slaves, pages –, Warsaw, Poland, .

Pavel Pudlák.
On reducibility and symmetry of disjoint NP-pairs.
In Jǐŕı Sgall, Aleš Pultr, and Petr Kolman, editors, Proceedings of the
226th International Symposium on Mathematical Foundations of Com-
puter Science, volume  of Lecture Notes on Computer Science, pages
–. Springer-Verlag, .

Willard von Orman Quine.
Concatenation as a basis for arithmetic.
Journal of Symbolic Logic, ():–, .

Michael O. Rabin and Dana Scott.
Finite automata and their decision problems.
IBM Journal of Research and Development, ():–, .

Dave Raggett, Arnaud Le Hors, and Ian Jacobs, editors.
HTML 4.0011 Specification, wc Recommendation, www.wc.org, th De-
cember . World Wide Web Consortium.

Barkley J. Rosser.
Extensions of some theorems of Gödel and Church.
Journal of Symbolic Logic, ():–, .

Arto Salomaa.
Theory of Automata, volume  of Monographs in Pure and Applied
Mathematics.
Pergamon Press, .

Alan L. Selman.
P-selective sets, tally languages, and the behavior of polynomial time
reducibilities on NP.
Mathematical Systems Theory, :–, .



Alan L. Selman.
Much ado about functions.
In Proceedings of the Eleventh Annual IEEE Conference on Computa-
tional Complexity, pages –. ieee Computer Society Press, .

Waclaw Sierpinski.
Sur une propriété des ensembles ambigus.
Fundamenta Mathematicæ, :–, .

Howard Straubing.
Finite Automata, Formal Logic, and Circuit Complexity.
Progress in Theoretical Computer Science. Birkhäuser, .

Robert Szelepcsényi.
The method of forced enumeration for nondeterministic automata.
Acta Informatica, ():–, .

Till Tantau.
Combinatorial representations of partial information classes and their
truth-table closures.
Diploma thesis, Technische Universität Berlin, Germany, .

Till Tantau.
On the power of extra queries to selective languages.
Technical Report -, Electronic Colloquium on Computational Com-
plexity, www.eccc.uni-trier.de/eccc, .

Till Tantau.
A note on the complexity of the reachability problem for tournaments.
Technical Report -, Electronic Colloquium on Computational Com-
plexity, www.eccc.uni-trier.de/eccc, .

Till Tantau.
Comparing verboseness for finite automata and Turing machines.
In Helmut Alt and Afonso Ferreira, editors, Proceedings of the 119th Inter-
national Symposium on Theoretical Aspects of Computer Science, volume
 of Lecture Notes on Computer Science, pages –. Springer-
Verlag, a.

Till Tantau.
Towards a cardinality theorem for finite automata.
In Krzysztof Diks and Wojciech Rytter, editors, Proceedings of the 227th
International Symposium on Mathematical Foundations of Computer
Science, volume  of Lecture Notes on Computer Science, pages –
. Springer-Verlag, b.



Boris A. Trakhtenbrot.
On the frequency computation of functions.
Algebra i Logika, :–, .
In Russian.

Alan M. Turing.
On computable numbers with an application to the Entscheidungs-
problem.
Proceedings of the London Mathematical Society, :–, .

Pierre Wolper and Bernard Boigelot.
On the construction of automata from linear arithmetic constraints.
In Susanne Graf and Michael Schwartzbach, editors, Proceedings of the
Sixth International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, volume  of Lecture Notes on
Computer Science, pages –. Springer-Verlag, .



	Preface
	Abstract
	Zusammenfassung
	Table of Contents
	List of Notations
	List of Figures
	Chapter 1: Introduction
	1.1 My Thesis
	1.2 Concepts of this Dissertation
	1.3 Results of this Dissertation
	1.4 Methodology of this Dissertation
	1.5 Organisation of this Dissertation
	1.6 My Motivation

	Chapter 2: The Class of Regular Relations and Its Closure Properties
	2.1 Review of Finite Automata
	2.2 Definition of Regular Relations
	2.3 Review of First-Order Logic and Second-Order Logic
	2.4 Logical Characterisations of the Class of Regular Relations

	Chapter 3: Enumerability
	3.1 Review of Turing Enumerability
	3.2 Review of Finite Automata Enumerability
	3.3 Definition of Generic Enumerability
	3.4 The Generic Cross Product Theorem

	Chapter 4: Towards a Cardinality Theorem for Finite Automata
	4.1 The Generic Generalised Nonspeedup Theorem
	4.2 The Generic Cardinality Theorem for Two Input Words
	4.3 The Generic Restricted Cardinality Theorem
	4.4 Constructiveness of the Generic Theorems

	Chapter 5: The Branch Diagonalisation Method
	5.1 The Art of Branch Diagonalisation
	5.2 Branch Diagonalisation and Separation of Verboseness Classes
	5.3 Branch Diagonalisation and Separable Sets
	5.4 Branch Diagonalisation and the Complexity of Odd Languages

	Chapter 6: Applications of Enumerability and Cardinality Computations
	6.1 Cardinality Computations and Separable Sets
	6.2 Finite Automata Protocol Monitors
	6.3 Classification with Examples

	Chapter 7: Conclusion
	7.1 Which Results Hold for Which Models?
	7.2 Relevance of the Main Results
	7.3 Outlook

	Bibliography

