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Abstract. Molecular dynamics (MD) simulation allows for the study of
static and dynamic properties of molecular ensembles at various molecu-
lar scales, from monatomics to macromolecules such as proteins and nu-
cleic acids. It has applications in biology, materials science, biochemistry,
and biophysics. Recent developments in simulation techniques spurred
the emergence of the computational molecular engineering (CME) field,
which focuses specifically on the needs of industrial users in engineering.
Within CME, the simulation code ms2 allows users to calculate ther-
modynamic properties of bulk fluids. It is a parallel code that aims to
scale the temporal range of the simulation while keeping the execution
time minimal. In this paper, we use empirical performance modeling to
study the impact of simulation parameters on the execution time. Our
approach is a systematic workflow that can be used as a blue-print in
other fields that aim to scale their simulation codes. We show that the
generated models can help users better understand how to scale the sim-
ulation with minimal increase in execution time.

Keywords: Molecular dynamics · Performance modeling · Parallel pro-
gramming.

1 Introduction

Molecular dynamics simulation is a fundamental approach for understanding
the behavior of matter at the molecular level. In physics, molecular dynamics is
used to study the behavior and interactions between single atoms. In biomedical
research, scientists simulate macromolecules such as proteins and viruses to bet-
ter understand cell structures in organisms, as well as to design better medical
drugs. In chemistry and chemical engineering, molecular simulations are used to
understand and predict thermodynamic properties of fluid mixtures.
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Some of the well-known molecular simulation packages are LAMMPS [7,22],
NAMD [8, 11], and GROMACS [6, 9]. Although all these codes are based on
the same principle, they have different aims and target different scientific fields.
LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simula-
tor and is a versatile code designed to be easily modified or extended with new
functionality. It supports both solid-state materials (e.g., metals) as well as soft
matter (e.g., biomolecules and polymers). The primary objective of LAMMPS is
providing a platform for further research in molecular simulation. NAMD stands
for Nanoscale Molecular Dynamics and is implemented in Charm++ [19]. It is
specifically designed to simulate large biomolecular systems such as viruses. Sim-
ilar to NAMD, GROMACS (GROningen MAchine for Chemical Simulations) is
designed to simulate biomolecular structures such as proteins, lipids, and nucleic
acids. This code is most often used for simulation of protein folding. One no-
table example is the Folding@home [5] project, which is a massively distributed
computing effort that exploits the idle time of processing elements of personal
computers owned by a large group of volunteers worldwide.

To support chemical engineering needs, recent advances in simulation tech-
niques of fluids ushered in a new field of Computational Molecular Engineering
(CME). It falls under the category of simulation-based engineering and aims to
adapt existing simulation techniques, optimized for soft matter physics, to the
requirements of the chemical and process engineering industry [17]. Rather than
providing scientific insight, the goal of CME is to provide a systematic approach
to replace experiments that are otherwise too complex, hazardous, or expensive.

LAMMPS, NAMD, and GROMACS, albeit powerful and flexible, focus in
most cases on scaling the size of the molecular system rather then the simulation
time. On the other hand, chemical engineering in general and thermodynamics
in particular have more benefit from longer running simulations. Furthermore,
industrial applications require a proportional increase both in size of the system
and simulation time.

One of the simulation packages in CME is ms2 (molecular simulation: 2nd
generation) [15, 16, 23]. It is aimed at industrial users and samples the full set
of thermodynamic properties of bulk fluids. Since these properties can reliably
be calculated from a relatively smaller number of molecules (i.e., the order of
104), ms2 is not designed for larger molecular systems. The challenge, therefore,
is to keep the execution time (i.e., time-to-solution) of ms2 low as various other
parameters of the simulation increase.

In this paper, we use empirical performance modeling to understand the im-
pact of simulation parameters on the execution time of ms2. Empirical perfor-
mance modeling produces human-readable performance models from real mea-
surements. It has been extensively studied before [12,13,24,25], but in this work,
we focus on specific challenges related to modeling the performance of a CME
code. The produced models can help users select appropriate input values for the
simulation such that the execution time stays within potential constraints. The
workflow we provide can also help developers optimize individual computational
procedures during simulation. We make the following specific contributions:
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– Systematic and reliable workflow that can be used as a blue-print in perfor-
mance engineering efforts of simulation codes in other fields

– Identification of pitfalls in the process of producing measurements for em-
pirical modeling

– Exhaustive set of two-parameter and three-parameter models of execution
time for the ms2 application

The remainder of the paper is organized as follows. Section 2 provides a brief
overview of the design of ms2. Next, Section 3 discusses the modeling method-
ology in detail. In Section 4, we describe the experimental setup for evaluating
the methodology, and then provide a detailed analysis of the results in Sec-
tion 5. Finally, we review related work in Section 6, before drawing conclusions
in Section 7.

2 ms2 Application

The ms2 simulation application offers a choice between two fundamental molec-
ular simulation techniques, namely, Monte-Carlo (MC) and Molecular Dynamics
(MD) [15, 16, 23]. The MC technique investigates the behavior of molecular en-
sembles stochastically. In other words, during each iteration the MC technique
displaces molecules in the volume randomly, such that the probability of ac-
cepting a displacement is chosen in a way that allows obtaining a representative
set of configurations. By repeating this step a large number of times, the MC
technique generates a Markov chain of configurations. From this chain, static
(i.e., time-independent) thermodynamic properties of the simulated molecular
ensembles can be obtained. The MD technique, on the other hand, relies on
the numerical solution of Newton’s equations of motion. In each time step, the
technique evaluates intermolecular interactions (i.e., forces and torques) that are
then used to determine the spatial displacement of all molecules during the time
step. Each time step results in a new configuration. Ordered chronologically, the
sequence of configurations represents an approximation of the molecular prop-
agation process such that both static and dynamic thermodynamic properties
can be calculated.

Although MC is more limited in terms of accessible thermodynamic proper-
ties, it is a technique that can be parallelized easily (i.e., embarrassingly-parallel
problem) since each process can generate an independent Markov chain and
all chains have to be gathered only once at the end of the simulation run. To
parallelize the MD technique, on the other hand, one has to parallelize the in-
teraction calculation. For this purpose, ms2 relies on force decomposition as
proposed by Plimpton [22]. Instead of traditional domain decomposition, the
interaction matrix is rearranged such that the interacting molecules are almost
equally distributed in the matrix. Assuming n is the number of molecules and p
is the number of processes, each process is responsible for n

p columns of the in-
teraction matrix. Figure 1 presents a schematic of this interaction matrix. Each
gray cell represents an interaction between a pair of molecules that has to cal-
culated for the simulation to proceed to the next time step. The assumption
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Fig. 1: Parallelization in ms2 using force decomposition. The shaded area shows the
pair interactions that have to be calculated for the simulation to proceed. Vertical
black lines delimit the range of molecules for which a single process calculates the
interactions.

is that each process stores all molecule data (coordinates, momenta, etc.) lo-
cally. However, each process calculates only the interaction for a subgroup of
molecules—exactly the group of molecules delimited by the black vertical lines
in the figure. In this way, the work load is distributed almost equally between the
processes. The root process then reduces all the resulting interaction components
to sum up the molecular forces exerted on each individual molecule. For both
MC and MD parallelization, the ms2 application uses MPI [15]. Specifically, the
MPI collective operations Barrier, Bcast, Reduce, and Allreduce are employed.

3 Methodology

In this section, we describe the methodology to produce performance models
for the execution time of ms2. In general, the methodology follows the prac-
tice established by earlier studies. Specifically, we draw upon past experience in
modeling the isoefficiency functions of task-based applications [25].

Figure 2 provides an overview of our methodology. In general, we can iden-
tify three separate phases: selecting parameters, benchmarking, and empirical
modeling. Code instrumentation is an optional step that should be included if
the aim is to produce models and derive predictions for specific parts of the code
rather than the simulation as a whole. The subsections below cover the phases
in the workflow in more detail.

3.1 Simulation parameters

The ms2 application has a group of parameters that characterize the simulation
scenario. The most important parameters identify the type of the simulated
molecule (i.e., a molecular model), the number of molecules, density (or the
simulated volume), temperature, and the number of time steps.
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Fig. 2: Modeling workflow.

To accurately describe the interaction between molecules, ms2 uses potential
functions that describe different interaction types. Each molecular model speci-
fies the placement of an interaction site on the molecule and the type of this site.
A Lennard-Jones (LJ) site represents dispersive and repulsive interactions, while
point charge (PC), point dipole (PD), and point quadrupole (PQ) sites represent
electrostatic interactions. The complexity of molecular models depends on the
molecules they represent. A simple Ar (argon) atom has only a single LJ site. A
more complex CO2 (carbon dioxide) molecule consists of three LJ sites and one
PQ site. A (CH3)2CO (acetone) molecule, however, has four LJ sites, one PD
site, and one PQ site. ms2 calculates the interaction forces between pairs of the
same type of sites. For example, the interaction between two CO2 molecules will
be a combination of nine interactions between the LJ sites (three sites in each
molecule equals nine different pairs) and one interaction between the PQ sites.

Using appropriate interaction sites in a molecular model is crucial for obtain-
ing correct thermodynamic properties. However, from a computational point of
view, the difference between calculating the interaction between any of the dif-
ferent sites is small. Furthermore, the calculation does not depend on any other
simulation parameter. A far more important factor is the total number of sites in
a molecule, since the computation time of molecule interaction grows quadrati-
cally with the number of sites of each type.

Following an analysis of the ms2 design, we identified the group of param-
eters that should be considered for modeling the execution time of ms2 (i.e.,
independent variables in our modeling):

– n: number of molecules in the simulation; range: 103–104

– m: number of interaction sites; range: 1–8
– d: density of the fluid; range: 0.001–0.9 (in reduced units σ−3)
– c: cut-off radius; range: 1–10 (in reduced units σ)
– p: number of MPI processes
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The values for different parameters can be provided in SI units, but internally,
the ms2 application uses reduced quantities for the calculations. For example,
the reducing unit for length σ is on the order of 3 Å (i.e., 3 · 10−10 meters).

The first three parameters, namely, n, m, and d, are part of the parame-
ters that determine the simulation scenario. The last two, namely, c and p, are
optimization and execution parameters. The cut-off radius c defines the radius
around a molecule within which the interactions with other molecules are cal-
culated explicitly. Decreasing c results in less computational effort to evaluate
the interactions for each molecule, since less neighbors have to be considered.
Basically, the cut-off radius provides a trade-off between the accuracy of ther-
modynamic properties and the runtime of the simulation.

To simplify benchmarking and modeling, we used synthetic molecular models
with m LJ sites. Each such model is comparable to a model of a real molecule
with the same number of interaction sites m, independent of the site type. There-
fore, performance models based only LJ sites (synthetic molecules) are a viable
proxy for performance models based on ensembles of real molecules. The advan-
tage of the former is the ease of generating synthetic molecular models. The LJ
sites in the synthetic molecule were placed at the vertices of a regular polygon
with m edges and an edge s = 0.1 Å. This allowed us to conveniently generate
molecular models for arbitrary values of m. If the center of the polygon was at
(0, 0), then the coordinates (xi, yi) of vertex i are given by (k is the circumradius
from the center of the polygon to one of the vertices):

r =
s

2 sin( πm )

xi = r · cos(2π
i

m
)

yi = r · sin(2π
i

m
)

The list of parameters above is not exhaustive. Additional parameters of ms2
are the specified boundary conditions (i.e., simulated ensemble type), the length
and the number of time steps, frequency of writing results and errors to a disk,
temperature, and so on. Some of these parameters, such as temperature, have
little influence on the computational cost. The number of time steps influences
the execution time, but the relation is simply linear such that this parameter
does not have to be considered in the modeling process. The same rationale also
applies to other parameters omitted from the list above.

3.2 Benchmarking

Once the group of independent parameters has been identified, we can move
to the benchmarking phase. However, one optional step before benchmarking is
instrumentation. By instrumenting the relevant regions of the code (i.e., func-
tions, kernels, or code blocks), one can produce a model for each region. In this
way, for example, we can obtain a model for the execution time of a single time
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Fig. 3: Common calltree extraction from two different trees (top). The two trees at
the bottom have a common structure.

step in ms2. Whether such high-resolution modeling is needed depends on the
application and the analysis goals. In the ms2 case, a model for a single time
step makes little sense, since a simulation with a single time step is useless. The
aim of the simulation is to simulate an evolving environment of molecules. Nev-
ertheless, we ran benchmarks with both an instrumented and an uninstrumented
version of ms2 to evaluate our workflow. We used Score-P [20] for the instrumen-
tation since it integrates easily with the Extra-P [4] modeling tool (discussed in
the next subsection) and provides flexible instrumentation approaches. In other
words, one can either automatically instrument all of the regions in the code or
manually instrument just the most relevant ones.

During the execution of an instrumented application Score-P creates a call-
tree, where the root node is the first (main) function called and each new node
(i.e., cnode) represents a called subfunction. An edge between nodes represents
a caller-callee relation. Once the application terminates, Score-P writes a perfor-
mance profile to disk. Each profile is a CUBE [2] file that contains performance
data arranged in three dimensions—metrics, calltree (cnodes), and system (pro-
cesses / threads). Basically, there is a measurement value for each combination of
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(metric, cnode, process / thread). When Extra-P is used to generate a model of
the execution time from these data, it collapses the system dimension by taking
the maximum value and generates a separate model for each cnode. Therefore,
it is important to ensure that the calltree structure is similar across all of the
data used for modeling. Since the application is executed with different values for
independent parameters, differences in calltrees are inevitable. To extract a com-
mon calltree, we used the cube commoncalltree utility provided with CUBE.
This utility looks for cnodes that do not appear in every calltree and then merges
them into the parent cnode by adding the inclusive value of performance data
of the child cnode to the parent’s exclusive value. An inclusive value is a sum
of values for the cnode itself and all of its descendants, whereas an exclusive
value includes only the cnode itself, without its descendants. This computation
is repeated as long as non-common cnodes are present.

Figure 3 shows an example of extracting a common calltree from two dif-
ferent trees. The numbers in brackets are example values for some metric (e.g.,
execution time). If a node has child nodes, then the number in the bracket is
the exclusive value, otherwise it is an inclusive value. Note that if a node has
no children, then the exclusive value is the same as the inclusive one. The figure
shows that the value for the sub2 node was merged into its parent func3, and
the exclusive value of func3 was updated accordingly. In a similar way, fsub1
was merged into func4.

It is important to note that common calltree extraction is necessary only if
all code regions are instrumented. If we do not use instrumentation at all or
manually instrument just some regions of the code that are always executed, we
can skip the common calltree extraction.

3.3 Empirical modeling

The benchmarking phase is followed by the empirical modeling phase. Specif-
ically, we use the performance-model generator in Extra-P [4], a tool for au-
tomated performance modeling of HPC applications. The model generator has
already shown to confirm known performance models of real applications as well
as discover previously unknown scalability bottlenecks [13,27], and has also been
validated using a wide range of synthetic functions [12]. Furthermore, specific
usage examples include modeling the performance of OpenMP constructs [18]
and the isoefficiency functions of task-based programs [25].

A multi-parameter model aims to capture how a number of independent
parameters, such as process count, problem size, and algorithmic parameters,
influence a target metric, such as runtime, floating-point operations, and so on.
The key concept of the modeling approach in Extra-P is the performance model
normal form (PMNF) for multiple parameters [12]:

f(r1, r2, ..., rq) =

n∑
k=1

ck ·
q∏
l=1

r
ikl

l · logjkl (rl) (1)
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Fig. 4: Typical benchmark results for two parameters; in this case, the number of
MPI processes p and the number of molecules n were varied. The color of each point
represents the execution time in seconds.

In this form, parameters rl are represented by q combinations of monomials
and logarithms, which are summed up in n different terms to form the model. The
exponents ikl and jkl are chosen from sets I, J ⊂ Q, respectively. Essentially,
these sets define the scope of all possible terms. Consider, for example, n =
3, q = 2, and I = {0, 0.25, 0.5}, J = {0, 1}. In this case, the search space
for possible terms would be {1, log(r), r0.25, r0.25 log(r), r0.5, r0.5 log(r)}, and an
example model could be: f(r1, r2) = c1 + c2 · r0.5

1 + c3 · r0.25
1 r0.25

2 log(r2).

The generator requires a set of measurements as input whose precise nature
depends on the scaling objective (e.g., number of processes vs. input size, weak
vs. strong). As a rule of thumb, it needs at least five different settings for each
independent parameter. For example, if there is only a single parameter, such
as the number of processes, we need to benchmark the application with five
different values of this parameter. If there are two or more parameters, we need to
benchmark the application for each combination of parameter values. This means
at least 5q measurements are required for q parameters. Each such measurement
has to be repeated a number of times to obtain a statistically significant result.
If k repetitions are required, the application has to be executed k · 5q times.
Figure 4 shows typical benchmarking results for two parameters. In this case,
the number of MPI processes p and the number of molecules n were varied.
The points represent parameter combinations for which execution times were
measured. There are six different values for each parameter, which means that
there are 36 combinations. Each of the 36 points represents a median value of
k = 10 repetitions.

The modeling technique in Extra-P is based on an iterative modeling refine-
ment process that stops when R̄2—the adjusted coefficient of determination—
cannot be improved any further. The adjusted coefficient of determination is a
standard statistical fit factor ∈ [0, 1] such that a value of 1 indicates a perfect fit.
Since even small increases in n and q can lead to a prohibitively large search space
of possible terms, the technique employs a heuristic that reduces the number of
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candidate models. Specifically, the search space of possible terms is generated
from the best single parameter models for each individual parameter. This leads
to a smaller number of candidate models, which greatly reduces the time for
finding the best fitting model, but still retains a high degree of accuracy [12].

4 Experimental Setup

We performed our evaluation on Hazel Hen, a Cray XC40 system at the High
Performance Computing Center Stuttgart (HLRS). The system has 7712 com-
pute nodes with the Aries interconnect fabric and Dragonfly topology. Each node
comprises two Intel Xeon E5-2680 v3 processors with 12 cores each and 128 GB
of memory. In other words, there are 24 cores per node and more than 5 GB of
memory per core on Hazel Hen.

The ms2 application uses OpenMP to parallelize the calculation of interac-
tions in each process. A performance audit of ms2, performed as part of the
Performance Optimisation and Productivity project [3], suggested that the opti-
mal number of OpenMP threads is four (i.e., four cores are used by one process).
Following this observation, we used four OpenMP threads in all of our bench-
marks. Consequently, there were six MPI processes per node.

4.1 Parameter values

For each independent parameter discussed in Section 3.1, at least five different
values have to be chosen. The following list specifies our choices:

– n: 2000, 3000, 4000, 5000, 6000, 7000
– m: 1, 2, 3, 4, 5, 6
– d: 0.05, 0.20, 0.35, 0.50, 0.65, 0.80
– c: 1, 2, 3, 4, 5, 6
– p: 12, 24, 36, 48, 60, 72

As discussed in Section 3.3, producing a model with all independent vari-
ables (e.g., T (n,m, d, c, p)) is not feasible since it would require at least 55 mea-
surements. The alternative is to generate a series of two-parameter and three-
parameter models that describe the application behavior and allow us to produce
useful time predictions. For example, we can generate models T (n, p), T (n,m),
T (n,m, p), and so on. In each case, however, we vary only a subset of two or
three parameters. The values for the other parameters have to remain constant
throughout the benchmarking phase of each particular model. For example, if
one runs benchmarks to generate the model T (n, p), the values for m, d, and c
have to remain constant.

4.2 Measurements variability

Earlier studies showed that applications that run on Cray XC40 might experi-
ence a high degree of variability in execution time and performance [10, 14, 28].



11

Table 1: Variability (i.e., coefficient of variation (CV)) of measurements for generating
the model T (n, p). The columns specify values for the time step number and cut-off
radius, as well as whether the code was instrumented and a compact placement (CP)
of nodes was used.

Time steps Cut-off Instr. CP CV

3,000 2.0 3.3%
3,000 2.0 X 13.5%
30,000 2.0 10.5%

3,000 4.0 6.2%
3,000 4.0 X 58.7%

40,000 4.0 X 26.6%
40,000 4.0 X X 8.3%

The reason is that Cray XC40 uses the Dragonfly topology. It is a high-radix,
low-diameter network that utilizes shared links and is designed to improve band-
width and reduce packet latency. Furthermore, it uses adaptive routing and ran-
dom node placement, both of which can alleviate congestion and achieve better
load-balancing. However, the combination of these characteristics makes each ap-
plication highly susceptible to the behavior of other applications that are being
executed at the same time. In other words, a communication-intensive applica-
tion can cause performance degradation in less-intensive applications executed
concurrently.

For empirical modeling, the execution of the application for any combina-
tion of parameter values has to be repeated k times (see Section 3.3). In our
evaluation, we set k = 10, and sometimes k = 5 to reduce the total time to
obtain the measurements. The purpose of these repetitions was to increase the
statistical significance of the measurements. However, a high degree of variabil-
ity between repetitions indicates a high level of noise, which makes modeling far
less accurate [13].

Table 1 shows how various factors influence the variability of the measure-
ments. In this case, the measurements were performed to generate the model
T (n, p), which means repeated executions for different combinations of param-
eter values for n and p. Variability was measured as the coefficient of variance
(CV) between the repetitions for each combination of values. The CV is defined
as the ratio of the standard deviation to the mean and shows the extent of
samples variability in relation to the mean.

The two leftmost columns in Table 1 specify the values for the number of time
steps and the cut-off radius, respectively. The column Instr specifies whether the
code was fully instrumented and column CP specifies whether the nodes were
placed compactly in the machine, that is on the same blade and in the same
chassis. The table indicates that increasing the number of time steps increases
the variability. It also shows that fully instrumenting the code increases the
variability as well. However, one factor which helps reduce the CV is placing the
nodes physically together. These observations can be explained by the Dragonfly
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Fig. 5: Graphical user interface of Extra-P.

topology studies [10,14,28] and the low intensity of communication in ms2 [15].
The longer the ms2 code runs, the more time it is under the influence of other
communication-heavy applications on the machine, which causes the variabil-
ity to increase. This is also the reason why placing the nodes together reduces
the variability—only local communication links are used in such cases. Unfortu-
nately, this placement mode is not generally available on Hazel Hen as it has a
negative effect on the utilization of the system.

Full instrumentation has a minimal perturbation in terms of performance,
but has a significant effect on the variability. One likely explanation is that code
instrumentation uses more communication to collate some of the measured data
while the program runs. As discussed earlier, full instrumentation is not needed
to model the total simulation time. Consequently, to reduce the variability we
ran uninstrumented code with 3,000 time steps and cut-off radius of 2.0 (when
it is not a parameter in the model).

5 Result Analysis

In this section, we discuss the results of our evaluation. As described above, we
chose to focus on the execution time of full simulations rather than the execution
time of individual steps, so that there was no need for full instrumentation of
the code. Nevertheless, Section 3 provides a detailed description of how the
workflow can support full instrumentation for later analysis of ms2 or other
codes. To complete the discussion on full instrumentation, we briefly present the
Extra-P graphical user interface (GUI) that allows users to analyze the model
at each cnode. Figure 5 shows a screenshot of the Extra-P window. The left
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Table 2: 2-parameter models for the execution time of the ms2 application.

Model Fixed parameters Model R̄2

T (n,m) d = 0.84, c = 2.0, p = 72 4.41 + 8.03 · 10−5 ·m · n · logn 0.99
T (p,m) n = 4,000, d = 0.84, c = 2.0 6.6 + 3.21 ·m2 − 0.42 ·m2 · log p 0.92
T (p, d) n = 4,000, m = 1, c = 2.0 20.67 − 2.2 · log p 0.88
T (p, c) n = 4,000, m = 1, d = 0.84 33.83 + 0.05 · c3 − 4.89 · log p 0.79
T (n, c) m = 1, d = 0.84, p = 36 −0.99 + 0.06 · c3 + 1.81 · 10−5 · log2 n 0.95
T (m, c) n = 4,000, d = 0.84, p = 36 −23.49 + 10.09 ·m+ 0.22 · c3 ·m 0.95

Table 3: 3-parameter models for the execution time of the ms2 application.

Model Fixed parameters Model R̄2

T (p, n,m) d = 0.84, c = 2.0 62.28 + 2.03 · 10−8 ·m2 · n1.5 · log2 n− 9.63 · log p 0.83
T (n,m, c) d = 0.84, p = 72 9.24 + 5.71 · 10−6 · n · logn · c2 · log c ·m 0.88

part is divided into two areas. The upper area has a dropdown box that shows
the selected metric (e.g., time, visits, etc.) and allows users to choose a different
metric. The lower area contains the calltree with a model for each cnode and fit
factors such as R̄2 (adjusted coefficient of determination) besides each model.
By clicking on any one of the cnodes, the plot of the corresponding model is
displayed in the right part of the Extra-P window. The figure shows an example
plot for a two-parameter model T (p,m). It is a three-dimensional surface where
the vertical axis is the time dimension.

The Extra-P GUI provides a convenient way to explore and compare multiple
models from the same calltree. However, when no instrumentation is involved,
Extra-P provides a programmatic interface to produce models directly from the
measurement results. We used this interface in our evaluation and produced a
set of models summarized in Tables 2 and 3. The leftmost column specifies the
independent parameters in each model and the following column specifies the
values of the parameters that were fixed in each case. The second column from the
right shows the two-parameter and three-parameter models produced by Extra-P
and the rightmost column specifies the adjusted coefficient of determination.

Unsurprisingly, the model T (p,m) shows that the execution time increases
in quadratic proportion to the number of interaction sites m. Furthermore, all
models with the cut-off radius c as an independent parameter show that the time
increases in cubic proportion to c. This is because every increase in the cut-off
radius leads to a cubic increase in the cut-off volume around each particle, which
also means a cubic increase in the number of particles in the cut-off sphere. These
results confirm our expectations about the factors that influence the simulation.
Although m depends on the simulated fluid and cannot be reduced without
breaking the simulation, the cut-off radius c is an important optimization factor
and should be as minimal as the simulation goals permit.

The model T (p, d) has no terms with density d, which suggests that increasing
d has a minimal or no effect on the execution time at all. This is surprising since
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Fig. 6: Contour lines of the plots for 2-parameter models of the ms2 execution time.
All times are in seconds.
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Fig. 7: Stacked plots of 3-parameter models of the ms2 execution time. All times are
in seconds.

increasing the density leads to a linear increase in the number of particles in the
cut-off sphere. One reasonable explanation is that not all the molecules in the
cut-off sphere are taken into the account during the interaction calculation. The
interaction matrix, discussed in Section 2, is arranged in a way that makes each
process calculate only part of the interactions. Therefore, additional interaction
calculations that are caused by a higher number of molecules in the cut-off sphere
are distributed evenly between the processes leading only to a slight increase in
the wallclock time of the simulation.

Furthermore, all models containing the number of processes p clearly show
that increasing p leads to just a logarithmic improvement in the execution time.
Although an increase in the number of processes means less interactions have to
calculated by each single process, the cost of communication (i.e., MPI collective
operations) still increases. This suggests that to achieve shorter execution time,
we might look at changing other parameters rather than p.

Figure 6 depicts the plots of two-parameter models from Table 2 as contour
lines. The label on each line specifies the time value along that line. The shape of
the lines and their density provide a visual cue as to how fast the execution time
increases and which parameter has more impact on this increase. Furthermore,
each contour line shows how both parameters have to be increased so that the
execution time remains constant. Figures 6b and 6d, for example, show that
increasing p reduces the execution time. However, the shape of the contour lines
in these figures is different. For higher p values, increasing c leads to faster
increase in the runtime in Figure 6d compared to equivalent increase of m in
Figure 6b. As another example, Figures 6e and 6f show that the impact of
increasing both m and c is much more severe than increasing n and c at the
same time.

Figure 7 depicts three-parameter models from Table 3, namely, T (p, n,m) and
T (n,m, c). As these functions are four-dimensional entities it is not straightfor-
ward to visualize them. The figure shows 3 axes—one for each parameter—and
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horizontal slices of data for different values of the z axis. The colors represent
execution times. For example, the topmost slice in Figure 7a represents the func-
tion T (p, n, 7). The differences between the slices show the impact of increasing
the parameter represented by the vertical axis, that is m in Figure 7a and c in
Figure 7b. The figures suggest that one should find a balance between different
parameters to keep the execution time under a certain threshold.

6 Related Work

The empirical modeling approach that forms the basis for Extra-P was first pro-
posed by Calotoiu et al. [13] in the context of identifying scalability bugs. A
scalability bug is a part of the program in which scaling behavior is uninten-
tionally poor. In this study, the authors produced scaling models of execution
time as a function of the MPI process count, but no other independent param-
eters were considered. In another study, Vogel et al. [27] used both Score-P and
Extra-P to analyze the scalability of the whole UG4 framework, which simulates
drug diffusion through the human skin. The authors showed that Extra-P was
able to produce over 10,000 models—spanning the whole calltree—in less than
a minute. Each model was a scaling model of execution time as a function of
the number of MPI processes. These studies had only one independent parame-
ter and did not have to overcome pitfalls that arise when dealing with multiple
parameters.

The capability to produce empirical models with multiple parameters was
introduced by Calotoiu et al. [12]. This functionality is based on a number of
important heuristics that make the approach feasible in practice. The authors
performed their evaluation using a number of scientific codes that were executed
on a Blue Gene/Q system. They produced multi-parameter models of execution
time and floating point operations. In the present study, we go one step further
and provide a systematic workflow that can be readily applied in performance
engineering of simulation codes.

Shudler et al. [24] proposed a framework, based on empirical modeling, for
validating performance expectations of HPC libraries. The framework targets
both developers and users, and provides a systematic method that allows, with
as little effort as possible, to evaluate whether the observed behavior corresponds
to the expected behavior. The authors focused on scaling models with one inde-
pendent parameter, namely, the number of MPI processes. The benefits of this
framework for performance engineering inspired the methodology developed in
this work. Furthermore, past experience of Shudler et al. [25] in modeling the
isoefficiency functions of task-based applications [25] provided important guiding
points for designing the present workflow.

Singh et al. [26] and Marathe et al. [21] used machine learning techniques to
model the effects of various input parameters on the performance of scientific
codes. The authors showed that some of these techniques can handle a large
parameter space without the costs associated with our methodology. However,
machine learning techniques are inherently black-box, meaning that users can
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use the models to obtain predictions, but the models themselves provide little
insight. We use a transparent technique that produces human-readable models,
which indeed can provide additional insights.

7 Conclusion

In this paper, we propose a versatile methodology for understanding the per-
formance of simulation codes in particular and scientific codes in general. It is
based on a systematic workflow for producing empirical performance models.
Empirical performance modeling is a proven technique for automated genera-
tion of performance models from the results of code benchmarking. Using our
methodology, we generated two-parameter and three-parameter models for the
execution time of ms2, a molecular dynamics code for studying thermodynamic
properties of bulk fluids. The models provide insight on the impact of various
parameters on the execution time. They also show in which situations the impact
is compounded, for example, increasing both the number of interaction sites and
the cut-off radius leads to a much higher increase in execution time.

Besides providing insight, the generated performance models are analytical
expressions that can be used to calculate the execution time for given parameter
values. In other words, the models allow us to predict the performance of the
application. This capability was employed in the TaLPas project [1], which aims
to provide a solution for fast and robust simulation of many, potentially de-
pendent particle systems in a distributed environment. Specifically, performance
prediction is used to support a purpose-built scheduler in the process of finding
optimal execution configurations for individual simulation runs.

The study also identifies potential pitfalls in the workflow and provides sug-
gestions for overcoming them. Specifically, we discuss the necessity of extracting
a common calltree from performance profiles, and also provide guidelines for per-
forming the benchmarking. Furthermore, we highlight the influence of various
factors on the variability of the measurements and the importance of reducing
it to obtain accurate models.

Acknowledgements. This work was supported by the German Research Founda-
tion (DFG) through the Program Performance Engineering for Scientific Soft-
ware and the ExtraPeak project, by the German Federal Ministry of Edu-
cation and Research (BMBF) through the TaLPas project under Grant No.
01IH16008D, and by the US Department of Energy through the PRIMA-X
project under Grant No. DE-SC0015524. The authors would like to thank the
partners of the TaLPas project for fruitful discussions. Finally, the authors would
also like express their gratitude to the High Performance Computing Center
Stuttgart (HLRS) and the University Computing Center (Hochschulrechenzen-
trum) of Technische Universität Darmstadt for providing access to machines
Hazel Hen and Lichtenberg, respectively.



18 S. Shudler et al.

References

1. BMBF project TaLPas – Task-based Load Balancing and Auto-tuning in Parti-
cle Simulations. https://wr.informatik.uni-hamburg.de/research/projects/talpas/
start, accessed: 2018-05-22

2. Cube 4.x series. http://www.scalasca.org/software/cube-4.x/download.html, ac-
cessed: 2018-05-22

3. European Union’s Horizon 2020 project POP – Performance Optimisation and
Productivity. https://pop-coe.eu, accessed: 2018-06-25

4. Extra-P – Automated Performance-modeling Tool. http://www.scalasca.org/
software/extra-p, accessed: 2018-05-22

5. Folding@home. https://foldingathome.org/, accessed: 2018-07-04
6. GROMACS: Molecular Dynamics Package. http://www.gromacs.org/, accessed:

2018-07-03
7. LAMMPS: Molecular Dynamics Simulator. http://lammps.sandia.gov/, accessed:

2018-07-03
8. NAMD: Scalable Molecular Dynamics. http://www.ks.uiuc.edu/Research/namd/,

accessed: 2018-07-03
9. Berendsen, H., van der Spoel, D., van Drunen, R.: GROMACS: A message-passing

parallel molecular dynamics implementation. Computer Physics Communications
91(1), 43–56 (1995). https://doi.org/10.1016/0010-4655(95)00042-E

10. Bhatele, A., Jain, N., Livnat, Y., Pascucci, V., Bremer, P.T.: Analyz-
ing Network Health and Congestion in Dragonfly-Based Supercomputers.
In: Proc. of the 30th IEEE International Parallel & Distributed Process-
ing Symposium (IPDPS). pp. 93–102. IEEE Computer Society (May 2016).
https://doi.org/10.1109/IPDPS.2016.123

11. C., P.J., Rosemary, B., Wei, W., James, G., Emad, T., Elizabeth, V.,
Christophe, C., D., S.R., Laxmikant, K., Klaus, S.: Scalable Molecular Dynam-
ics with NAMD. Journal of Computational Chemistry 26(16), 1781–1802 (2005).
https://doi.org/10.1002/jcc.20289

12. Calotoiu, A., Beckingsale, D., Earl, C.W., Hoefler, T., Karlin, I., Schulz, M., Wolf,
F.: Fast Multi-Parameter Performance Modeling. In: Proc. of the IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). pp. 1–10. IEEE (September
2016). https://doi.org/10.1109/CLUSTER.2016.57

13. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using Automated Performance Mod-
eling to Find Scalability Bugs in Complex Codes. In: Proc. of the ACM/IEEE
Conference on Supercomputing (SC). pp. 45:1–45:12. ACM (November 2013).
https://doi.org/10.1145/2503210.2503277

14. Chunduri, S., Harms, K., Parker, S., Morozov, V., Oshin, S., Cherukuri, N., Ku-
maran, K.: Run-to-run Variability on Xeon Phi Based Cray XC Systems. In: Proc.
of the ACM/IEEE Conference on Supercomputing (SC). pp. 52:1–52:13. ACM
(November 2017). https://doi.org/10.1145/3126908.3126926

15. Deublein, S., Eckl, B., Stoll, J., Lishchuk, S.V., Guevara-Carrion, G., Glass, C.W.,
Merker, T., Bernreuther, M., Hasse, H., Vrabec, J.: ms2: A molecular simulation
tool for thermodynamic properties. Computer Physics Communications 182(11),
2350–2367 (November 2011). https://doi.org/10.1016/j.cpc.2011.04.026

16. Glass, C.W., Reiser, S., Rutkai, G., Deublein, S., Köster, A., Guevara-Carrion,
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