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Abstract

The measurement and prediction of speech quality are crucial planning tools for Voice
over Internet Protocol (VoIP) communication providers. Current instrumental models
that predict the quality of speech in a conversation scenario mainly rely on parameters of
the transmission system for their prediction. However, for some degradations, it has been
shown that the impact on the conversation, and thus the perceived quality, cannot be
modeled by the parameters of the transmission alone. The effect of transmission delay
on a telephone conversation depends on conversational interactivity, as the delayed
speech signal slows down the turn-taking of the conversation partners. The impact of
packet loss, while being audible in a listening situation, is also dependent on the part of
transmitted information that is lost and, thus, whether the conversation partner needs to
resolve a misunderstanding with additional repairing dialogue. In conversations where
these impairments co-occur, interactivity effects may arise, as the meta-communication
due to lost packets is, in turn, affected by transmission delay. As current instrumental
quality prediction models do not consider these factors and their interaction, they cannot
account for them.

This thesis introduces conversation simulation as a new approach to the instrumen-
tal prediction of conversational quality. A simulation architecture is described based
on incremental spoken dialogue processing that can model standardized conversation
scenarios on the concept, turn-taking, and speech signal level. Especially the changes
in turn-taking during delayed transmission and the retransmission of information due
to packet loss are modeled and evaluated based on empirical conversations. The re-
sulting simulated conversations are assessed with methods from the field of spoken
dialogue systems and speech quality, resulting in parameters that represent the changes
in conversations due to delay and packet loss. The fullband E-model, a standardized
parametric model, is extended for conversational interactivity and bursty packet loss to
utilize the parameters extracted from the conversations. Finally, the conversational qual-
ity is predicted based on the extended E-model and the parameters from the simulated
conversations.
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Zusammenfassung

Die Messung und Vorhersage der Sprachqualität ist ein wichtiges Planungsinstrument
für Anbieter von Voice-over-Internet-Protocol-Diensten. Aktuelle instrumentelle Mo-
delle, die die Sprachqualität in einem Gesprächsszenario vorhersagen, stützen sich
hauptsächlich auf Parameter des Übertragungssystems für ihre Vorhersage. Es hat sich
jedoch gezeigt, dass die Auswirkungen auf das Gespräch und damit auf die wahrge-
nommene Qualität bei einigen Störungen nicht allein durch die Parameter der Übertra-
gung modelliert werden können. Die Auswirkung einer Übertragungsverzögerung auf
ein Telefongespräch hängt von der Interaktivität des Gesprächs ab, da das verzögerte
Sprachsignal die Gesprächsteilnehmer in ihrem Redefluss bremst. Die Auswirkungen
von Paketverlusten sind zwar in einer Hörsituation erkennbar, hängen aber auch davon
ab, welcher Teil der übertragenen Informationen verloren geht und ob der Gesprächs-
partner ein Missverständnis durch einen zusätzlichen Reparaturdialog aufklären muss.
In Gesprächen, in denen diese Beeinträchtigungen gleichzeitig auftreten, kann es zu In-
teraktivitätseffekten kommen, da die Metakommunikation aufgrund verlorener Pakete
wiederum durch die Übertragungsverzögerung beeinträchtigt wird. Da die derzeitigen
Modelle zur Qualitätsvorhersage diese Faktoren und ihre Wechselwirkung nicht berück-
sichtigen, können sie diese nicht in die Vorhersage mit einbeziehen.

In dieser Arbeit wird die Konversationssimulation als neuer Ansatz für die instrumen-
telle Vorhersage der Gesprächsqualität vorgestellt. Es wird eine Simulationsarchitektur
beschrieben, die auf der inkrementellen Verarbeitung gesprochener Dialoge basiert und
standardisierte Gesprächsszenarien auf Konzept-, Turn-Taking- und Sprachsignalebene
modellieren kann. Insbesondere werden die Veränderungen im Turn-Taking bei ver-
zögerter Übertragung und die erneute Übertragung von Informationen aufgrund von
Paketverlusten modelliert und anhand von empirischen Gesprächen bewertet. Die dar-
aus resultierenden simulierten Gespräche werden mit Methoden aus dem Bereich der
gesprochenen Dialogsysteme und der Gesprächsanalyse ausgewertet, so dass sich Para-
meter ergeben, die die Veränderungen in Gesprächen aufgrund von Verzögerungen und
Paketverlusten darstellen. Das Vollband-E-Modell, ein standardisiertes parametrisches
Modell, wird für Gesprächsinteraktivität und Paketverluste erweitert, um die aus den
Gesprächen extrahierten Parameter zu nutzen. Schließlich wird die Konversationsquali-
tät auf der Grundlage des erweiterten E-Modells und der Parameter aus den simulierten
Konversationen vorhergesagt.
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Chapter 1
Introduction

1.1 Motivation

Conversations over the telephone have been an integral part of our everyday lives for
over a century. In recent years, with the rise of smartphones and their ubiquitous inter-
net access, the ways of communication have shifted. While previously, the interaction
was dominated by voice-only telephone calls over publicly switched or mobile net-
works, calls have now moved towards an internet-driven, rich multimedia experience.
This shift has not only been restricted to private calls. Also, in the business telecom-
munication area, distributed and remote teams rely on flexible voice and multimedia
communication over the internet. Especially the COVID-19 pandemic has given a push
to video-conferencing, Over-The-Top (OTT) speech communication services, and re-
mote working communication software, as the remote communication scenario is now
a daily occurrence for many people.

Thus, especially now, it is essential for speech communication service providers to
plan, measure and monitor their networks and services to provide an overall satisfying
experience for their customers. The quality of transmitted speech can be measured by ask-
ing users for their subjective ratings (subjective methods), or it can be predicted to plan
or monitor speech transmission networks (objective methods). Based on those ratings
and predictions, service providers optimize the quality while using the least resources.
Subjective methods for measuring the speech quality include listening, speaking, and
conversation tests, where participants directly rate prepared speech samples, speaking
situations, or even whole conversations using the system under study. This allows re-
searchers to quantify the quality of the transmitted speech as the end-users perceive it.
Objective (or instrumental) methods try to estimate results of the subjective tests by
predicting how end-users would rate a given speech sample or speech communication
service.

With the move towards using the internet to transmit speech with the Voice over In-
ternet Protocol (VoIP), speech communication providers have increased the bandwidth
of transmission and made telephony much more flexible. Also, many OTT services
have emerged that utilize the network capabilities of computers and smartphones to
provide speech and video communication services over the internet. This packet-based
transmission of the speech signal has also changed the types of degradation that speech
communication services deal with. While for the Plain Old Telephone Service (POTS),
problems with loudness, circuit noise, and a small bandwidth were prevalent, impair-
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2 1 Introduction

ments in today’s VoIP telephony are mostly packet related. With speech samples being
split into small packages and transmitted over distributed networks, packets might get
lost during the transmission or arrive too late to be used for the speech decoding pro-
cess. This packet loss results in an audible dropping out of the speech. Current coding
algorithms employ Packet Loss Concealment (PLC) by reconstructing the speech sig-
nal of the missing packet based on the previous and potentially the following packets.
However, depending on the timing and frequency of the packet loss, artifacts can still
be perceived by the end-user. In order to mitigate packet loss, speech communications
services make use of a jitter buffer that buffers a flexible amount of packets to make the
connection robust against packets that arrive too late or even allow for the time to resent
a missing or corrupted packet.

Especially in real-time services like online telephony, the delay caused by the jitter
buffer, the general uncertain latency of the network, and delays due to speech signal pro-
cessing on the user’s device influence the interactivity of conversations. The end-to-end
transmission delay that is often present in IP-based communication cannot be perceived
audibly. Nonetheless, it affects the interaction by slowing down the speed of speaker
changes. Furthermore, it often causes unwanted interruptions and miscommunication
because the orderly turn-taking present in delay-free conversations is no longer possible,
as turn-taking cues in the signal arrive too late. However, it has been shown that these
effects on the interactivity depend not only on the overall delay but also on the type of
conversation being carried out. For example, a highly interactive discussion has faster
and denser speaker changes and is thus more affected by transmission delay. In contrast,
a slow conversation with limited speaker alternations will have fewer interruptions and
turn-taking problems. This difference in the smoothness of the conversation is also
reflected in the overall conversational quality ratings of the interlocutors. For packet
loss, no direct relationship between interactivity and quality ratings has been measured.
However, in conversational contexts, packet loss can cause important information to not
be correctly transmitted, resulting in additional “repairing” communication to retrans-
mit the lost information. In transmission scenarios where both delay and packet loss are
present, the way one impairment affects the conversation might impact the perception
of the other.

Current signal-based speech quality models like NISQA (Mittag et al., 2021) or
POLQA (ITU-T Recommendation P.863, 2014) predict the listening quality and the
underlying perceptual dimensions: coloration, continuity, noisiness, and loudness. How-
ever, this approach cannot model the impact of transmission delay because this impair-
ment is not audible in listening-only tests. Due to the realistic and interactive nature of
conversations, conversational quality is able to capture all effects of transmission im-
pairments on the conversation. For its subjective evaluation, conversation tests are used,
where two participants are connected through a simulated telephone network and carry
out standardized conversation scenarios. Compared to listening quality experiments, the
assessment of conversational quality is more time-intensive and costly. The resulting
conversations can be used to perform a conversation analysis that results in metrics for
measuring the interactivity and the smoothness of turn-taking in the conversation. For
conversational quality, there exists no standardized signal-based model. The E-model, a
parametric model for predicting conversational quality, is able to include impairments
due to delayed transmission. The narrowband version of the E-model includes parame-
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ters that incorporate the interactivity of the conversation. However, there are limits on
how well the conversational quality can be predicted with this approach: the interactivity
parameters require empirical data from previously recorded conversations in order to
be calculated. Also, interactivity effects between delay and other impairments cannot
be calculated, as the E-model assumes degradations to be independent of each other.
These shortcomings limit the network planning capabilities, as no model exists that is
able to include the turn-taking interactions of a conversation.

The simulation of dialogues has been a research area in the fields of computational
linguistics and Spoken Dialogue Systems (SDS) for many years. Here, conversations are
usually simulated by a semantic representation of turns that are exchanged in a dialogue
between a human and a dialogue system. The resulting conversations are either analyzed
to predict the interaction quality of the dialogue system under study or used to train
the dialogue managing component of the dialogue system to create correct and efficient
dialogues. Newer research in the area of SDS also focuses on the turn-taking of dialogues
to increase the interactivity and naturalness of Human-Computer-Interaction (HCI).

In this work, the concepts of dialogue and user simulation in the domain of HCI are
applied to a human-to-human conversation simulation to predict speech quality. Specif-
ically, a simulation is designed to model conversations between two interlocutors that
interact with each other based on conversation scenarios standardized in ITU-T Rec-
ommendation P.805 (2007). To model behavior during conversations with transmission
delay and packet loss, the simulated agents perform smooth turn-taking and simulate
the understanding of incoming information based on incoming packet loss patterns. Be-
tween the two interlocutors, a simulated network introduces both delay and packet loss,
which incites changes in the behavior of the virtual agents. The resulting conversations
are recorded and analyzed, forming the basis for a conversational quality prediction.

To predict the conversational quality from the simulated conversations, the E-model
is being adapted to include interactivity parameters and bursty packet loss. These ex-
tensions are validated with empirical conversations collected in a conversation test.
Additionally, an E-model-independent quality model that is based on the parameters of
the conversations is created and evaluated. In the last step, conversations with combi-
nations of different interactivity levels, transmission delay, and packet loss probabilities
are simulated and used to predict the conversational quality with the extended E-model
as well as the parameter-based model.

1.2 Objective and Research Questions

So far, predictive models for speech quality either do not consider the interactive aspect
of a conversation or include them as parameters that have to be observed empirically
beforehand. This limits the usefulness of such models for network planning. This work
will explore the use of concepts from the area of Spoken Dialogue Systems to simulate
a conversation, allowing for quality models that explicitly include the interactivity of
conversations and take into account the side-effects of combinations of impairments.
While the simulation approach can model changes in ratings due to different interactivity,
it can also model a variety of conversation strategies, thus resulting in a range of distinct
conversations and multiple quality predictions for a single experimental condition.



4 1 Introduction

Because a simulation of human-to-human conversations has not been a research
topic before, the work is split into two main parts. First, a simulation environment
is being designed, that is able to simulate different conversation types and to model
turn-taking and overall the interactivity of conversations. This simulation environment
is then extended to cater for specific behavior required for conversations under the
influence of packet loss and transmission delay. Secondly, a quality model is created
and the existing parametric E-model is extended to be able to incorporate the additional
information from the simulated conversations. Finally, the simulation is evaluated by
predicting the quality from parameters of the recorded audio and transcriptions of the
simulated conversations.

Based on this approach, the following five research questions are answered in this
thesis:

1. Simulation of Conversations: How can the models and methods of dialogue and
user simulation from the area of Spoken Dialogue Systems be applied to the simu-
lation of conversations between two humans?

2. Simulation of Turn-Taking: How can the smooth taking of turns in natural VoIP
conversations of different levels of interactivity be replicated in a simulation?

3. Turn-Taking during Delayed Speech Transmission: How is turn-taking affected
by transmission delay, and what rules and models can be employed to replicate these
changes in a simulation?

4. Understandability and Packet Loss: What impact has bursty packet loss on the
understandability of speech in a conversation, and how can it be modeled in a
simulation?

5. Conversational Quality Prediction: How well can conversational parameters and
the overall quality be predicted with this new approach?

1.3 Thesis Structure

Chapter 2 of this thesis details the fundamental and related work that is needed for
the proposed conversation simulation approach. It introduces the main concepts of
speech transmission and quality. It gives an overview of the standards of conversational
quality and introduces the major conversational parameters that can be extracted with
Parametric Conversation Analysis (P-CA). Afterwards, an overview of instrumental
quality prediction is given, with a focus on the E-model. Lastly, related work in the area
of dialogue and user simulation, as well as incremental dialogue systems, is highlighted.

In Chapter 3, the datasets used in this thesis are presented, the technical design and
architecture of the simulation environment are described, and the simulation is evaluated.
The chapter starts with a description of the datasets and their annotations. This data is
used throughout this work to train and model the simulation, as well as to evaluate the
quality prediction models. Then, a brief overview of the retico incremental processing
framework, which was designed to provide a foundational programming framework
for the implementation of the simulation, is given. Following this, the incremental
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simulation setup is described, detailing all components that are used in the simulation.
Lastly, the semantics and interactivity of the resulting simulated conversations are
analyzed and compared to the above baseline dataset.

Chapter 4 firstly analyzes the changes in turn-taking patterns in conversations with
different levels of interactivity. Based on this, a turn-taking model is created, imple-
mented into the simulation from Chapter 3, and finally evaluated. Following this, the
impact of delay on conversations with distinct interactivity levels is analyzed, and the
turn-taking model is evaluated in regards to the changes occurring with transmission de-
lay. Next, necessary adaptions to the turn-taking model are explained and implemented,
followed by a final evaluation and discussion of the adapted turn-taking model.

In Chapter 5, conversation disruptions, which are a measure of misunderstandings
due to packet loss, are introduced. A model is created to simulate the behavior inside the
simulation and is integrated into the simulation of Chapter 3. The resulting simulated
conversations are then analyzed and compared to empirical conversations and the results
are discussed.

Chapter 6 adapts the E-model towards interactivity, delay, and bursty packet loss
and introduces a new model that predicts conversational quality based on interactivity
parameters of a conversation. Then, these models are used to predict speech quality
from the simulated conversation, validating the simulation approach.

Finally, Chapter 7 recapitulates the results of the simulation with the delay and packet
loss extensions, as well as its quality prediction capabilities, and an outlook on future
work is presented.





Chapter 2
Fundamentals

The conversation simulation approach explored in this thesis draws mainly from two
research fields: the technology and groundwork for the simulation are based on the
methods in the area of Spoken Dialogue Systems, while the analysis of conversational
structures and the prediction of conversational quality falls into the area of Speech
Quality.

This chapter describes the foundations and related work of speech quality, dialogue
systems, and dialogue simulation. The fundamentals in speech quality focus on the
technical impairments delay and packet loss, as well as the assessment of conversational
quality, which includes the parametric conversation analysis method. Also, an intro-
duction to instrumental speech quality prediction, with a focus on the E-model, will be
given. The fundamentals in SDS will outline the use cases of dialogue simulation and
the architectural details needed for the implementation of a conversation simulation.

2.1 Speech Transmission

Currently used speech transmission services fall into three types of categories: the
landline telephone network, the mobile network, and so-called Over-The-Top (OTT)
speech services. Although the types of transmission networks differ in these services,
they all use digital codecs to transmit the speech nowadays.

The landline telephone network, retroactively also called the Plain Old Telephone
Service (POTS), is the oldest speech transmission network. While in the early days
of the telephone, the speech was transmitted as an analog signal over copper wires,
landline networks mostly use digital technology for transmission nowadays. One of
the most widely used digital codecs in this type of network is the one described in
ITU-T Recommendation G.711 (1988). While the human hearing capabilities range
from around 20–20,000 Hz, this codec transmits speech signal in the frequency range
between 300–3,400 Hz, which is also called Narrowband (NB). This small bandwidth
results in a muffled and colored speech, for which a typical landline telephone call
is known. In the newer codec standardized in ITU-T Recommendation G.722 (2012),
speech is transmitted in Wideband (WB), which covers the frequency range of 100–
7,000 Hz.

7
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Mobile networks have become the main way to perform telephone conversations
in more recent history. Here, the speech has to be transmitted via radio waves to the
nearest cellular base station. This form of speech transmission entails its own types
of impairments, like transmission errors and hand-overs of calls between cell towers.
The most common codecs in these types of networks are AMR-NB (3GPP Techni-
cal Specification 26.071, 1999) for narrowband communication and AMR-WB (3GPP
Technical Specification 26.171, 2001; ITU-T Recommendation G.722.2, 2003) for
wideband communication. Most recently, also the Enhanced Voice Services (EVS)
codec (3GPP Technical Specification 26.441, 2014) has been standardized, which
supports Superwideband (SWB) at 50–14,000 Hz and Fullband (FB) at 20–20,000 Hz
speech transmission.

With the rise of the internet, so-called Over-The-Top speech services have become
common. These services provide third-party speech transmission connections over the
internet without controlling and having access to the underlying network. In contrast to
landline telephony and mobile networks, they are generally not directly connected to
the Public Switched Telephone Networks (PSTN). OTT speech communication solu-
tions range from services mostly targeted to businesses (e.g., Zoom, Webex, Microsoft
Teams), to social media apps that include voice communication (e.g., WhatsApp, Face-
book Messenger, Instagram), to dedicated speech and video communication applications
(e.g., Skype, Facetime). Codecs that are used with these services include EVS (3GPP
Technical Specification 26.441, 2014) and OPUS (RFC 6716, 2012), which both pro-
vide SWB and FB speech transmission. Because these types of services only require
basic internet protocol functionality and transmit the speech data on the application
layer, there is no standard protocol for OTT services. However, one standard that has
developed as a framework for many web-based speech and video telephony services is
WebRTC (W3C Recommendation WebRTC, 2021), which provides real-time commu-
nication on web-based platforms.

Nowadays, landline telephony, mobile telephony and OTT services rely mostly on
the packet-switched Voice over Internet Protocol (VoIP) transmission technique. While
previously, in circuit-switched networks, a dedicated communication channel was avail-
able for each call, there are no such guarantees in internet-based telephony. With VoIP,
the speech is coded and transmitted in small data packets. Each packet might take a
different route through the network until it arrives at its destination. This entails that the
order of arrival might not be the same order the packets were sent in, and disruptions
in the network might affect only some of the packets. At the receiving end, the packets
have to be put into the right order and decoded to recreate the speech signal. Because
of the uncertainty in the routing process, a “jitter buffer” is employed, which handles
packets that arrive in the wrong order, are too late, are duplicates, or, in certain cases,
even request a retransmission of a lost packet. If packets arrive more slowly than ex-
pected, the jitter buffer can use the buffered packets to stretch the available speech signal
and increase the size of the buffer. It can also speed up the playback of the buffered
packets to decrease the size of the buffer. To keep the buffer to a reasonable length,
the jitter buffer might also drop a packet when it arrives too late, or is corrupted. This
packet loss leads to a short segment of speech missing, which has to be bridged. In the
simplest case, the codec inserts “zeros“ (i.e., silence) into the speech output, resulting
in an audible cut in the speech. However, most modern codecs deploy some sort of
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Packet Loss Concealment (PLC), which tries to approximate the lost speech with the
previous (and sometimes next) packets (Lecomte et al., 2015). While these concealment
methods work well when a single discarded packet has to be concealed, the algorithms
cannot bridge longer gaps of missing packets, resulting in robotic-sounding artifacts in
the speech.

Increasing the buffer size makes the connection robust against packet loss. However,
it also increases the overall delay with which the speech arrives at the receiver’s ear.
While a high transmission delay is not audible, it affects the interaction between the
conversation partners, making it harder to take turns properly. This results in a slower
conversation with more unwanted interruptions.

2.2 Speech Quality and Assessment

The previous section briefly introduced current speech transmission networks and tech-
nology. Current speech transmission technologies mostly provide intelligible and clear
speech transmission. However, fundamental information used for the planning, moni-
toring, and evaluation of speech transmission systems is the user’s perception of the
quality of the system. In ITU-T Recommendation P.10 (2017), the ITU-T defines speech
quality as:

“The quality of spoken language as perceived when acoustically displayed. The
result of a perception and assessment process, in which the assessing subject
establishes a relationship between the perceived characteristics, i.e., the auditory
event, and the desired or expected characteristics.”

Furthermore it defines the speech transmission quality as:

“The speech quality related to the performance of a communication system, in
general terms.”

Jekosch (2005) describes the quality perception process as a judgment based on a
comparison between the perceived quality features and the listener’s internal desired
quality features. ITU-T has standardized methods for the subjective determination of
the transmission quality (ITU-T Recommendation P.800, 1996). There, a clear dis-
tinction between listening-opinion and conversation-opinion tests is made. During a
listening-opinion test, participants usually listen to short speech samples and rate their
perceived quality on a 5-point Absolute Category Rating (ACR) scale, shown in Ta-
ble 2.1. Averaging the ratings of a sample over all participants produces the Mean
Opinion Score (MOS). Usually, there are multiple speech samples for a particular set
of impairments, whose ratings can be combined into a MOS per condition. Other types
of listening-opinion test methods defined in ITU-T Recommendation P.800 (1996) are
the Degradation Category Rating (DCR), the Comparison Category Rating (CCR), and
the Threshold Method.
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Table 2.1 5-point Absolute Category Rating (ACR) scale recommended by ITU-T Recommen-
dation P.800 (1996).

Label Score

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

ITU-T Recommendation P.800.1 (2016) defines the terminology of the MOS in
different contexts. For audio applications, the MOS is defined for listening-only, con-
versational, and talking contexts. Also, a MOS can result from a subjective experiment,
predicted by an objective model, or it can be estimated with a parametric model. These
different variants of MOS are shown in Table 2.2.

Table 2.2 Different identifiers for MOS as defined by ITU-T Recommendation P.800.1 (2016)

Listening-only Conversational Talking

Subjective MOS-LQS MOS-CQS MOS-TQS
Objective MOS-LQO MOS-CQO MOS-TQO
Estimated MOS-LQE MOS-CQE MOS-TQE

The listening-opinion test method produces one averaged quality judgment on a single
rating scale for each rated sample. While this type of quality assessment gives an accurate
overall rating of a speech sample, it does now allow for the identification of underlying
causes of the degradation or for the classification of degradations. Wältermann (2012)
stated that the perceived quality could be represented as a multidimensional coordinate
system with different perceptual dimensions. In Wältermann et al. (2010) the three main
listening-quality dimension for NB and WB were defined as Discontinuity, Noisiness,
and Coloration, and a fourth dimension Loudness was introduced in Côté et al. (2007).
A different set of 6 perceptual dimensions were identified by Sen and Lu (2012) and
standardized in ITU-T Recommendation P.806 (2014), consisting of dimensions for
slow-varying degradations, fast-varying degradations, low-frequency coloration, high-
frequency coloration, level of background noise, and variability of background noise.

Considering the practical execution of an experiment, the listening-opinion test
method can provide many data points (i.e., user ratings) that very accurately and re-
producibly describe any given condition. Because one speech sample is oftentimes no
longer than 10 seconds, many quality ratings can be obtained from a single participant,
and it is nowadays also used in crowdsourcing (ITU-T Recommendation P.808, 2021).
Because of this, many quality prediction models predict the listening-only quality (ITU-
T Recommendation P.862, 2001; ITU-T Recommendation P.863, 2014).

Despite its predominant use as a quality indicator for speech communication services,
the listening quality has drawbacks. Since participants are only listening to a speech
signal, impairments to speaking (e.g., due to echo) or to the interactivity of a conversation
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(e.g., due to transmission delay) cannot be captured by this assessment method. Also,
the participants in listening-opinion tests might focus on degradations more than in a
real conversational scenario, yielding a difference in the rating of the perceived quality.

2.3 Conversational Quality

In ITU-T Recommendation P.10 (2017), conversational quality is defined as

“The quality of a bi- or multidirectional conversation as perceived by a communi-
cation partner.”

In contrast to the speech quality obtained in a listening-only scenario, this quality
definition is more focused on the user’s experience rather than the user’s perception of
a speech signal. The ITU-T Recommendation P.800 (1996) on methods for subjective
determination of transmission quality defines both listening-opinion and conversation-
opinion tests, stating:

“Listening-opinion tests are not expected to reach the same standard of realism as
conversation tests, and the restrictions are therefore less severe in some respects;
but the artificiality that has to be accepted brings with it a necessity for strict
control of many things which in conversation tests are allowed to find their own
equilibrium.”

The ITU-T standardizes the methods and procedures for conducting conversation
tests and evaluating conversational quality in ITU-T Recommendation P.805 (2007).
For each test, two participants sit in separate, sound-proof rooms. They are connected
with each other through a transmission chain over a telephone network simulation and
are asked to hold a conversation. Afterwards, they give their opinion of the quality on
different rating scales. Optionally, a recording of the conversation can be made for later
analysis. A typical test setup is illustrated in Figure 2.1.

The test conditions may be introduced by the simulated telephone network between
the two test participants or by the environment (e.g., a loudspeaker in the test room
playing environmental noise). The participants may be untrained “naïve”, experienced,
or experts in the field.

2.3.1 Standardized Conversation Tests

The ITU-T Recommendation P.805 (2007) provides instructions on what types of con-
versations the participants of a conversation test should have. For untrained subjects, the
tasks presented should be of cooperative nature and result in semi-structured conversa-
tions. They should allow for interruptions by the subjects, they should be easily learned,
provide intrinsic motivation, and there should exist a sufficient number of equivalent
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Fig. 2.1 Setup of a conversation experiment as described in ITU-T Recommendation P.805
(2007). Two participants are conversing in two different rooms over a telephone simulation. The
audio is usually recorded for later analysis and quality ratings are recorded digitally or with
paper.

versions of the task. Generally, the tasks provide two different sets of information to
each participant with the goal of exchanging the information in a conversation. Already
standardized conversational tasks are referenced in the recommendation. They are split
into tasks that meet the requirements for a realistic, rich two-way conversation and less
realistic, more competitive tasks that focus on being very interactive.

While there are many conversational tasks referenced in the recommendation, this
thesis focuses on two tests in particular: the Short Conversation Test (SCT) and the
Random Number Verification (RNV) task.

Short Conversation Test

The Short Conversation Test (SCT) is a set of conversation tasks in which participants
perform typical telephone conversations in a role-play type of fashion (Möller, 2000;
ITU-T Contribution SG12-C35-E, 1997). The scenarios include booking hotel rooms,
ordering at a pizza delivery service, railway inquiries, and rental of cars and apartments.
In every scenario, one participant is the caller with a certain request, and the other person
is the callee (usually playing the role of an institution or company). The caller has a
specific goal (e.g., buying plane tickets) with some additional restrictions on that request
(e.g., the destination and date of the flight). Both participants have fields that need to be
filled with information by the end of the conversation and certain information that the
interlocutor might request. Lastly, the caller is given an improvisational question (e.g.,
asking for a special deal) to which the callee does not have a specific answer. This incites
some improvisational dialogue that is not pre-determined by the conversation scenario.

Each conversation takes approximately 2–4 minutes, and the scenarios are balanced
so that both participants have roughly the same speaking duration. Also, the information
exchanged in the conversations (i.e., names, places, numbers, etc.) has been designed to
incite meta communication. For example, names are often spelled in an unusual manner,
providing the possibility for clarification requests. Two examples of SCT scenarios are
given in Appendix A.
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Random Number Verification Task

The Random Number Verification (RNV) task was first described in Kitawaki and Itoh
(1991). In this task, participants receive six rows of six numbers. While the numbers are
mostly the same for the two interlocutors, there are one or two numbers in each row that
differ between the two versions. The participants are instructed to take turns reading the
rows to each other as fast as possible while trying to correct any instances where the
numbers do not match.

While this type of scenario is rather unrealistic in nature, it produces highly interactive
conversations with many speaker alternations in a short amount of time. Each RNV
conversation takes approximately 30 seconds up to 2 minutes. An example of an RNV
scenario is given in Appendix B.

2.3.2 Multidimensional Conversation Quality

Based on the perceptional dimension analysis of speech quality in listening scenarios
done by Wältermann (2012), the concept of the multidimensional quality space was
extended to conversation scenarios. According to Köster and Möller (2014) and based
on Guéguin et al. (2008), the conversational quality can be divided into three distinct
phases: the listening phase, the talking phase, and the interaction phase. This separation
is based on the different states of the conversation, where each interlocutor is either
listening, speaking, or engaging in a speaker alternation, which produces an interaction
between the conversation partners.

The quality of the listening phase can be determined in a subjective listening quality
test, as described in Section 2.2. As described by Wältermann (2012) and Côté et al.
(2007), the four perceptual dimensions of the listening phase “coloration”, “noisiness”,
“discontinuity”, and “sub-optimum loudness” can be assessed. The talking phase is tar-
geted to impairments that degrade the own voice. Especially in systems with talker echo,
where the feedback of one’s own voice is audible, the talking quality can be degraded.
For this phase, the two dimensions, “Impact of one’s own voice” and “Degradation of
one’s own voice”, have been identified (Köster and Möller, 2015). The interaction phase
is described as the alternation between talking and listening (Möller et al., 2017). Köster
and Möller (2015) identified one perceptual dimension “interactivity” for this phase.
An overview of the phases, their perceptual dimensions, and possible impairments for
each dimension is shown in Table 2.3.

ITU-T Recommendation P.804 (2017) standardizes a test method for conversational
quality that includes all three phases and their dimensions. In this test procedure, two
participants converse with each other over a simulated telephone line as described in
ITU-T Recommendation P.805 (2007). However, for each condition, the participants
rate three sessions. In the first session, the participants perform a short conversation
test, after which they rate all seven perceptual dimensions. In the second session, each
of the two participants reads a sentence to the other one, after which they rate the quality
of the speaking and listening phases, respectively. This way, each participant is rating
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Table 2.3 Overview of the seven perceptual quality dimension for a conversational situation
from ITU-T Recommendation P.804 (2017)

Phase Perceptual dimension Description Possible Source

Listening phase Noisiness Background noise, circuit
noise, coding noise

Coding, circuit, or
background noise

Discontinuity Isolated and non-stationary
distortions Packet loss

Coloration Frequency response
distortions Bandwidth limitations

Loudness Important for the overall
quality and intelligibility Attenuation

Speaking phase Impact of one’s
own voice

How is the back-coupling
of one’s own voice perceived Sidetone and echo

Degradation of
one’s own voice

How is the back-coupling of
one’s own voice degraded

Frequency distortions
of the sidetone and echo

Interaction phase Interactivity Delay and disrupted
interaction Delay

the speaking phase as well as the listening phase in this session. In the third session,
the participants perform a RNV task and rate the quality dimension of the interactivity
phase.

Fig. 2.2 Extended Continuous Scale of the overall conversational quality as shown in ITU-T
Recommendation P.804 (2017)

Instead of the ACR scale, this test method uses the Extended Continuous Scale
(ECS) (as shown in Figure 2.2), which is developed by Bodden and Jekosch (1996).
In comparison to the discrete ACR scale, the ECS provides the possibility to rate in
between the given categories. This makes the scale more sensitive and conveys to the
user that the categories are equidistant. Also, the scale adds the “overflow areas” very
bad and ideal to each end of the scale. These extreme rating options can encourage
participants to use the rest of the scale more extensively, reducing scale-end effects.

A comparison of the ACR and ECSwas published by Köster et al. (2015), that used
the two scales for speech quality rating. For better comparison between the two scales
and to make the ECS more widely used, a transformation function is given to map
extended continuous MOS ratings into estimates of a 5-point ACR MOS:

̂︄𝑀𝑂𝑆𝐴𝐶𝑅 = −0.0262 · 𝑀𝑂𝑆3
𝐸𝐶 + 0.2368 · 𝑀𝑂𝑆2

𝐸𝐶 + 0.1907 · 𝑀𝑂𝑆𝐸𝐶 + 1 (2.1)
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where ̂︄𝑀𝑂𝑆𝐴𝐶𝑅 is the estimation of the ACR MOS based on the extended continuous
ratings and𝑀𝑂𝑆𝐸𝐶 is the MOS as acquired by the Extended Continuous Scale as shown
in Figure 2.2.

2.3.3 Delay and Interactivity

Transmission delay has long been a focus in speech quality research, as pure delay is
not an audible impairment and only affects the interactivity of a conversation. ITU-
T Recommendation G.114 (2003) defines acceptable values for one-way end-to-end
transmission delay. Generally, delay levels between 0𝑚𝑠 and 150𝑚𝑠 are considered
acceptable for most user applications. Delay levels of over 200𝑚𝑠 are only considered
acceptable for inter-regional calls, and a one-way transmission delay of over 400𝑚𝑠 is
considered not acceptable. While for circuit-switched networks, these limits can be rea-
sonably met, current mobile connections and OTT speech services have limited control
over the IP network used to rout the speech traffic, and extensive signal processing on
the users’ devices further increases delay levels. More recent work points toward an even
higher acceptability threshold for transmission delay in everyday conversations, stating
that transmission delay of over 400𝑚𝑠 has no dramatic effect on the conversational
quality MOS (Egger et al., 2010; Raake et al., 2013). The degradation of perceived
quality due to transmission delay increases the time it takes the speech signal to arrive
at the other end and thus creates different conversation realities at both ends (Ham-
mer, 2006). Events that happen at one end of the conversation (interruptions, pauses,
speaker changes) are not necessarily happening at the other end as well. One example
is illustrated in Figure 2.3.

It has been shown that the impact of end-to-end transmission delay on the con-
versation does not only depend on the transmission time but also on the interactivity
of the conversation (Kitawaki and Itoh, 1991; Hammer et al., 2004). For high delay
levels (above about 800𝑚𝑠), a significant difference in conversational quality MOS
is observed, depending on whether the participants carry out conversations with low
interactivity (e.g., SCT) or high interactivity (e.g., RNV) (Egger et al., 2010).

In order to analyze the interactivity of a conversation and its impact on conversational
quality, quantitative measurements have to be defined to objectively compare con-
versation scenarios and special events in the conversation (i.e., interruptions, speaker
alternations, etc.). These conversational parameters are based on the work of Brady
(1968), in which conversations of two persons 𝐴 and 𝐵 are split up into four states:

• Mutual Silence (MS): Moments in which neither person 𝐴 nor person 𝐵 is talking
• Speaker A (SA): Moments in which only person 𝐴 is talking and person 𝐵 is silent
• Speaker B (SB): Moments in which only person 𝐵 is talking and person 𝐴 is silent
• Double Talk (DT): Moments in which both person 𝐴 and person 𝐵 are talking

Generally, a conversation resides mostly in the states SA and SB, with a sizeable
amount of silence (MS). Situations in which both speaker 𝐴 and speaker 𝐵 are talking
(DT) occur mostly between speaker changes, where a turn is handed over with short
overlaps.
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Fig. 2.3 An illustration of a delayed conversation with different events happening at each end
(Hammer, 2006)

2.3.4 Parametric Conversation Analysis

Based on the analysis method from Brady (1968), and Lee and Un (1986), a multitude
of conversational parameters have been defined that try to capture some aspects of the
interactivity of a conversation. These parameters have been formalized in the Parametric
Conversation Analysis (P-CA) framework by Hammer (2006). The P-CA is based on the
four conversational states SA, SB, MS, and DT, and parameters are mostly described by
a series of transitions between these states. For that, a Markov model with these states
is used, defining transition between the SA and SB states and the MS and DT states
(visualized in Figure 2.4). The reasoning for these transitions is that a speaker change
always involves either an interruption (i.e., two speakers speaking at the same time) or
a period of mutual silence.

In practice, a P-CA can be executed semi-automatically if the conversation is recorded
with two the speakers on separate audio channels. Then, an automated Voice Activity
Detection (VAD) can be performed to determine the conversational states for each point
in the conversation. Based on these states, parameters and metrics can be derived that
are used to analyze the interactivity of conversation and the impact of transmission
delay.
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SA SB

DT

MS

Fig. 2.4 Markov model of a conversation based on the four conversation states. There are no
transitions defined between the states SA and SB - all speaker changes either go through the
states MS and DT.

The following sections will give an overview of conversational metrics and parameters
that are the most useful for analyzing interactivity in telephone conversations, as well
as simulated conversations. Some of the parameters are specifically intended for use in
conversations with transmission delay. An overview of the conversational parameters is
given in Table 2.4.

Table 2.4 Overview of the conversational parameters extracted by the Parametric Conversation
Analysis, split by general parameters and parameters that are specific for conversations with
transmission delay.

Parameter Name Description Unit

length Length of the conversation seconds
State probability MS Ratio of conversation in state MS probability
State probability SA Ratio of conversation in state SA probability
State probability SB Ratio of conversation in state SB probability
State probability DT Ratio of conversation in state DT probability
Sojourn time MS Time conversation sojourns in state MS seconds
Sojourn time SA Time conversation sojourns in state SA seconds
Sojourn time SB Time conversation sojourns in state SB seconds
Sojourn time DT Time conversation sojourns in state DT seconds
Speaker Alternation Rate Number of alternations each minute alternations / minute
Interruption Rate Number of SI each minute interruptions / minute
Active Interruption Rate Number of active SI each minute interruptions / minute
Passive Interruption Rate Number of passive SI each minute interruptions / minute
Double Talk Rate Number of NI each minute double talk / minute
Pause Rate Number of pauses each minute pauses / minute
Turn time Average duration of a turn seconds
Turn count Number of turns in the conversation turns
Conversational Temperature How heated a conversation is degrees

𝑆𝐴𝑅𝐶 SAR corrected for decrease due to delay alternations / minute
Unintended Interruption Rate Interruptions not intended by the speaker interruptions / minute
Intended Interruption Rate Interruptions intended by the speaker interruptions / minute
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State Probabilities and Sojourn Times

The state probabilities and sojourn times are the most basic ones of the conversational
parameter (Brady, 1968). The state probabilities are defined as the ratio of the con-
versation that can be categorized in a certain state. At the same time, it is also the
unconditional probability at which the state will occur at any time in the conversation.

The sojourn times are defined as the average time in seconds the conversation will
sojourn in one of the four states. The sojourn time of SA and SB then represent the
average length of the utterances of the respective speaker, while the sojourn time of DT
and MS yields basic information about how interactive the conversation is. The sojourn
times of an average conversation are used in ITU-T Recommendation P.59 (1993) for
the definition of artificial conversational speech.

For delayed conversations, changes in the state probabilities and sojourn times can be
observed (Egger et al., 2010). Especially the state probabilities for MS and DT increase
for higher one-way transmission delays. However, the initial level and the rate of the
increase differ between lowly and highly interactive conversations. Thus, these state
probabilities alone cannot be used to determine the general interactivity level and the
impact of transmission delay.

Speaker Alternation Rate

The Speaker Alternation Rate (SAR) is one of the main conversational parameters used
to determine the interactivity of a conversation (Egger et al., 2010; Raake et al., 2013;
Hammer et al., 2004). It directly corresponds to the interactivity of a conversation and
can be easily calculated. It is defined by Hammer (2006) as the number of transitions
between the states SA and SB (i.e., SA-MS-SB, SB-MS-SA, SA-DT-SB, and SB-DT-
SA) divided by the length of the conversation in minutes (see Equation 2.2). Short
occurrences of double talk of a continued utterance of a speaker (SA-DT-SA or SB-DT-
SB, e.g., during a backchannel) are not considered a speaker alternation.

𝑆𝐴𝑅 =
#𝑆𝐴-𝑀𝑆-𝑆𝐵 + #𝑆𝐵-𝑀𝑆-𝑆𝐴 + #𝑆𝐴-𝐷𝑇-𝑆𝐵 + #𝑆𝐵-𝐷𝑇-𝑆𝐴

𝐷𝑈𝑅
(2.2)

Because the SAR directly reflects the interactivity of a conversation, it can be used as
an indicator of how much the conversation is impacted by delay (Hammer et al., 2004).
However, the SAR of conversations with high interactivity (i.e., with high SAR values
at 0𝑚𝑠 delay) starts to be impacted at lower delay levels and more strongly. Inversely,
the SAR of conversations with low interactivity starts to drop at higher delay levels,
and the impact is not as pronounced. For this reason, a direct relationship between the
perceived quality and the SAR of a conversation cannot be drawn.

In Egger et al. (2012), the Corrected Speaker Alternation Rate (SARc), a delay-based
extension of the speaker alternation rate, is proposed. Other than the SAR, it takes into
account the added transmission time due to the delay and thus captures the interactivity
of a conversation independently of the transmission delay. As described in Section 2.3.3,
transmission delay only affects the arrival of the speech of one’s interlocutor and thus
results in different conversation realities. Speaker alternations that happen at one end
of the telephone conversation do not necessarily happen at the other end. The definition
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of the SARc is thus dependent on the side of the conversation on which the interactivity
is measured. In Schoenenberg (2015), the SARc for person A in the conversation is
defined as:

𝑆𝐴𝑅𝐴𝐶 =
(#𝑆𝐴-𝑀𝑆-𝑆𝐵𝐴 + #𝑆𝐵-𝑀𝑆-𝑆𝐴𝐴 + #𝑆𝐴-𝐷𝑇-𝑆𝐵𝐴 + #𝑆𝐵-𝐷𝑇-𝑆𝐴𝐴)

𝐷𝑈𝑅 − (#𝑆𝐴-𝑀𝑆-𝑆𝐵𝐴 · 2 · 𝑇𝑎)
(2.3)

Here, 𝑆𝐴𝑅𝐴
𝐶

is the SARc from the perspective of speaker A and #𝑆𝐴-𝑀𝑆-𝑆𝐵𝐴 denotes
the number of transitions from the state SA to MS to SB (i.e., a speaker alternation
with mutual silence as the transition state) from the perspective from speaker A. The
denominator counts all speaker alternation occurrences from the viewpoint of speaker A.
In the divisor, the length of the conversation (𝐷𝑈𝑅) in minutes is reduced by the number
of speaker changes from person A to B with silence in between, multiplied by two times
the one-way transmission delay 𝑇𝑎 in minutes. The reasoning of Schoenenberg (2015)
is that for person B’s response to return to person A, the speech is delayed by twice the
amount of one-way transmission delay. Thus, the duration of the conversation is reduced
by the full two-way transmission delay overhead of all speaker changes from person A
to person B, increasing the calculated speaker alternation rate. The calculation of the
𝑆𝐴𝑅𝐵

𝐶
from the perspective of speaker B is analogous to Equation 2.3, but subtracts the

transitions #𝑆𝐵-𝑀𝑆-𝑆𝐴𝐵 from the duration.
The SARc results in a relatively stable parameter measuring a conversation’s inter-

activity, independent of the transmission delay. However, the definition assumes that
the interlocutors of a conversation with transmission delay do not alter their turn-taking
behavior.

Interruptions and Double Talk

In Schoenenberg (2015), an interruption can be classified into a Successful Interruption
(SI), where a speaker is interrupted by the interlocutor resulting in a speaker alternation,
and into Non-successful Interruption (NI), where the interruption does not end the turn
of the current speaker (e.g., during a backchannel). The Interruption Rate (IR) is defined
as the number of SI per minute, while the Double Talk Rate (DTR) is defined as the
number of NI per minute.

Hammer (2006) additionally defines active and passive interruptions. In an active
interruption, a participant interrupts the currently active speaker, while in a passive
interruption, the speaker under study is interrupted. For telephone conversations without
transmission delay, an active disruption on one side of the conversation results in a
passive interruption on the other end. For conversations with transmission delay, the
number of active and passive interruptions differ between the two sides. Based on the
active and passive interruption, the corresponding rates Active Interruption Rate (AIR)
and Passive Interruption Rate (PIR) are defined.

𝐴𝐼𝑅𝐴 =
#𝑆𝐵-𝐷𝑇-𝑆𝐴𝐴

𝐷𝑈𝑅
(2.4)
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𝑃𝐼𝑅𝐴 =
#𝑆𝐴-𝐷𝑇-𝑆𝐵𝐴

𝐷𝑈𝑅
(2.5)

Equations 2.4 and 2.5 define the active and passive interruptions from the perspective
of speaker A. The active and passive interruptions from the perspective of speaker B
require the opposite state transitions (SA-DT-SB for the AIR and SB-DT-SA for the
PIR).

In VoIP conversations with transmission delay, not every interruption is intended
by the interrupting person. This is due to the fact that a delayed transmission of an
utterance may arrive after the interlocutor has already started their turn. Egger et al.
(2010) defines an Unintended Interruption Rate (UIR) and an Intended Interruption
Rate (IIR) that reflect the unintended nature of an interruption that may arise due to
transmission delay:

“The UIR is based on the rate of passive interruptions that interlocutors experi-
ence during a conversation. However, it counts only those passive interruptions
which were actually caused by delay, thereby excluding all occurrences of active
interruptions that were deliberately caused by a speaker.”

For the calculation of the UIR and IIR, access to the conversation on both ends is
needed. For each passing interruption occurring on one side, the situation of the same
interrupting utterance has to be examined from the other perspective of the conversation.
If the interruption was present from the perspective of the actively interrupting person,
it is counted as an intended interruption. If the other perspective shows no interruption,
it is classified as unintended, because on their end of the conversation there was no
interruption.

Pauses

Hammer (2006) defines a pause as silence between the speaking states of the same
speaker. This corresponds to the state transitions SA-MS-SA and SB-MS-SB. The
Pause Rate (PR) is thus defined as:

𝑃𝑅 =
#𝑆𝐴-𝑀𝑆-𝑆𝐴 + #𝑆𝐵-𝑀𝑆-𝑆𝐵

𝐷𝑈𝑅
(2.6)

where #𝑆𝐴-𝑀𝑆-𝑆𝐴 are the number of pauses by speaker A, #𝑆𝐵-𝑀𝑆-𝑆𝐵 are the
number of pauses by speaker B, and 𝐷𝑈𝑅 is the duration of the conversation in minutes.

Conversational Temperature

The conversational temperature is a metric of conversational interactivity defined by
Reichl and Hammer (2004) and further elaborated in Hammer et al. (2005). The conver-
sational temperature is calculated based on the sojourn times of the four conversational
states, and it is implicitly defined by three axioms. The axiom of “limiting behavior” lim-
its the range of the temperature between 0 and infinity, making the most non-interactive
conversation have a temperature of 0◦. The second axiom of “normalization” scales
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the temperature of the conversation based on the sojourn times of an abstract “average
conversation”. The conversational temperature of this average conversation was scaled
to “room temperature” (21.5◦). The third axiom of “monotonicity/first-order behavior”
describes that decreasing sojourn times of any of the conversational states lead to an
increase in the conversational temperature.

Given these three axioms, the conversational temperature 𝜏 can be estimated with a
least squares estimation with the following equation:

�̂� = arg min
𝜏

∑︂
𝐼

(𝑡𝑅𝑒 𝑓
𝐼

· 𝑒𝑥𝑝( 𝜏
𝑅𝑒 𝑓

𝜏
− 1) − 𝑡𝐼)2 (2.7)

Here, 𝐼 represents a conversational state (SA, SB, MS, or DT), 𝑡𝐼 is the sojourn time
of that state, 𝑡𝑅𝑒 𝑓

𝐼
is the reference sojourn time of that state, and 𝜏𝑅𝑒 𝑓 is the reference

value of an average conversation set to 21.5◦.

2.4 Parametric Quality Prediction

Parametric quality prediction models use characteristics of the transmission system
to estimate the expected overall quality. Network providers may use these models to
plan a new transmission network, or they may tune the parameters of their already
existing network based on the parametric prediction models. Parametric models like the
Bellcore TR model (Cavanaugh et al., 1976) and the OPINE model (Osaka and Kakehi,
1986) were the first models to be used to predict the quality of POTS networks. In
ITU-T Recommendation P.564 (2007), a network monitoring model is standardized that
predicts the one-way listening-only quality based on speech packet-level information.

2.4.1 E-model

The most widely used network planning model and the only parametric model standard-
ized by the ITU-T that predicts conversational quality (MOS-CQE) is the E-model (ITU-
T Recommendation G.107, 2015). The model was a result of merging different opinion
models and was initially standardized by the European Telecommunication Standard
Institute (ETSI) (Johannesson, 1997). The E-model covers the effects of attenuation,
circuit and ambient noise, non-optimum sidetone, talker and listener echo, pure delay,
as well as digital coding at different bitrates. While the E-model predicts speech quality
only for Narrowband (NB) communication, it was extended in ITU-T Recommendation
G.107.1 (2015) for Wideband (WB) communication, and in ITU-T Recommendation
G.107.2 (2019) for Superwideband (SWB) and Fullband (FB) communication scenar-
ios. Unlike many other speech quality models, the E-model predicts the quality of a
conversation and not the listening quality. Thus, it is able to account for delay and the
interactivity of a conversation.

The main output of the E-model is the transmission rating R which describes the
overall quality experienced by a communication partner during conversations over a
telephone channel, which shows the characteristics as defined by the parameters of the
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model. The E-model assumes that impairments are independent of each other and can
be quantified in terms of impairment factors on the transmission rating scale R. This
can be done by subtracting the impairment factors from a maximal transmission rating,
which is given by the basic signal-to-noise ratio of the connection.

The different versions of the E-model have different maximal transmission ratings
and formulae for the impairment factors. Each version will be described in the following
sections, and only formulae important for the impairments considered in this thesis will
be explained in detail.

Narrowband E-model

The transmission rating 𝑅 for the narrowband E-model can be calculated with the
following formula1:

𝑅 = 𝑅𝑜 − 𝐼𝑠 − 𝐼𝑑 − 𝐼𝑒, 𝑒 𝑓 𝑓 + 𝐴 (2.8)

The 𝑅𝑜 term represents the basic signal-to-noise ratio of the connection in the trans-
mission rating scale, with 100 being the maximum value achievable. Included in this
term are noise sources at the sending side, receiving side, circuit noise, and the noise
floor at the receiving side. The impairment factor 𝐼𝑠 is the sum of all impairments
that occur simultaneously with the voice transmission, like non-optimum sidetone and
quantizing distortions. 𝐼𝑑 is the impairment factor that represents impairments caused
by the delay of voice signals. The factor 𝐼𝑒, 𝑒 𝑓 𝑓 is the effective equipment impairment
factor that considers impairments due to codecs, as well as bursty packet loss. 𝐴 is
an advantage factor that increases the transmission rating due to some advantage, like
mobility or access to hard-to-reach locations (e.g., via satellite connections).

The overall transmission rating 𝑅 can be converted into a rating on the 5-point overall
conversational quality scale using an S-shaped function using 𝑅𝑥 = 𝑅:

For Rx < 0:
𝑀𝑂𝑆𝐶𝑄𝐸 = 1

For 0 < Rx < 100:
𝑀𝑂𝑆𝐶𝑄𝐸 = 1 + 0.035𝑅𝑥 + 𝑅𝑥(𝑅𝑥 − 60) (100 − 𝑅𝑥) · 7 · 10−6

For Rx > 100:
𝑀𝑂𝑆𝐶𝑄𝐸 = 4.5

(2.9)

This calculation considers that in a typical subjective experiment, the maximum
average rating commonly being observed is around 4.5 on the 𝑀𝑂𝑆𝐶𝑄𝐸 scale ranging
from 1 to 5. Setting the values for 𝑅𝑥 to different factors of 𝑅, the conversion of the
wideband and fullband E-model can be performed.

1 To be in line with ITU-T Recommendation G.107 (2015), ITU-T Recommendation G.107.1 (2015), and
ITU-T Recommendation G.107.2 (2019), no subscript will be used for E-model formulas.



2.4 Parametric Quality Prediction 23

The 𝐼𝑑 impairment factor consists of the impairments that occur due to the delayed
transmission of the voice signal. Specifically, it is the sum of impairments that occur
due to talker echo (𝐼𝑑𝑡𝑒), listener echo (𝐼𝑑𝑙𝑒), and absolute transmission delay (𝐼𝑑𝑑):

𝐼𝑑 = 𝐼𝑑𝑡𝑒 + 𝐼𝑑𝑙𝑒 + 𝐼𝑑𝑑 (2.10)

The 𝐼𝑑𝑑 impairment factor is calculated based on the absolute one-way transmission
delay 𝑇𝑎 (given in milliseconds) and two interactivity parameters 𝑠𝑇 and 𝑚𝑇 :

For 𝑇𝑎 ≤ 𝑚𝑇 :
𝐼𝑑𝑑 = 0

For 𝑇𝑎 > 𝑚𝑇 :

𝐼𝑑𝑑 = 25{(1 + 𝑋6·𝑠𝑇 ) 1
6·𝑠𝑇 − 3(1 + [ 𝑋

3
]6·𝑠𝑇 ) 1

6·𝑠𝑇 + 2}

(2.11)

with:

𝑋 =
log 𝑇𝑎

𝑚𝑇

log 2
(2.12)

Here,𝑚𝑇 denotes the minimal perceivable delay in milliseconds, and 𝑠𝑇 describes the
delay sensitivity of the users of the system. The minimal perceivable delay parameter
𝑚𝑇 shifts the 𝐼𝑑𝑑 impairment curve to the right and sets the impairment to 0 if the
absolute delay 𝑇𝑎 is smaller than or equal to 𝑚𝑇 . The delay sensitivity parameter 𝑠𝑇
changes the slope of the logistic 𝐼𝑑𝑑 function, with higher 𝑠𝑇 values resulting in a steeper
increase of 𝐼𝑑𝑑. Table 2.5 shows the three delay sensitivity classes recommended by
ITU-T Recommendation G.107 (2015).

Table 2.5 Delay sensitivity classes for different use cases as recommended by ITU-T Recom-
mendation G.107 (2015).

Class sT mT (ms) Use case

Default 1 100 Used when conversations are very interactive
or targeted delay requirements are unknown.

Low 0.55 120 Applicable in cases where users have a low
sensitivity to delay.

Very low 0.4 150 Applicable in cases where users have a very
low sensitivity to delay.

While not being part of the recommendation, Raake et al. (2013) provide two mapping
functions, calculating the𝑚𝑇 and 𝑠𝑇 values based on the SARc (defined in Equation 2.3):

𝑚𝑇 = 436.02 − 71.56 · log (16.76 + 𝑆𝐴𝑅𝐶) (2.13)
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𝑠𝑇 = 0.246 + 0.02 · exp (0.053 · 𝑆𝐴𝑅𝐶) (2.14)

To obtain these equations, the SARc of individual conversations were averaged over
the different delay settings into a scenario-test-specific mean SARc. For each of these
values, the 𝑠𝑇 and 𝑚𝑇 values have been plotted, and the respective functions have been
fitted using a least-squares curve fitting.

The effective equipment impairment factor 𝐼𝑒, 𝑒 𝑓 𝑓 combines the effects of coding
(𝐼𝑒) with impairments due to packet loss:

𝐼𝑒, 𝑒 𝑓 𝑓 = 𝐼𝑒 + (95 − 𝐼𝑒) · 𝑃𝑝𝑙

𝑃𝑝𝑙

𝐵𝑢𝑟𝑠𝑡𝑅
+ 𝐵𝑝𝑙

(2.15)

where 𝐼𝑒 is the equipment impairment factor that is specific for the codec and bitrate
used, 𝑃𝑝𝑙 is the packet loss percentage (between 0 and 20 %), and 𝐵𝑝𝑙 is the packet
loss robustness factor, that is also specific for the codec used. Thus, codecs that employ
a form of Packet Loss Concealment (PLC) can be taken into account. Values for 𝐼𝑒 and
𝐵𝑝𝑙 are listed in Appendix I of the ITU-T Recommendation G.113 (2007). The 𝐵𝑢𝑟𝑠𝑡𝑅
is the burst ratio that defines how bursty the packet loss is to be expected. It is defined
as the average length of observed bursts in an arrival sequence divided by the average
length of bursts expected for the network under “random” loss. A burst ratio of 1 then
denotes randomly distributed loss, while a burst ratio of 2 means that packet loss bursts
are, on average, twice as long as with the same 𝑃𝑝𝑙 under random loss.

The 𝐵𝑢𝑟𝑠𝑡𝑅 can be modeled as a 2-state Markov model with the transition probability
𝑝 from the found state to the loss state and probability 𝑞 from the loss state to the found
state:

𝐵𝑢𝑟𝑠𝑡𝑅 =
1

𝑝 + 𝑞 =

𝑃𝑝𝑙

100
𝑝

=

1−𝑃𝑝𝑙
100
𝑞

(2.16)

The ITU-T Recommendation G.107 (2015) defines, that values of 𝐵𝑢𝑟𝑠𝑡𝑅 > 2 are
only valid for 𝑃𝑝𝑙 values smaller than 2 %.

Wideband E-model

The E-model was extended in Möller et al. (2006) and Raake et al. (2010) to be able to
capture wideband telephony and was standardized in ITU-T Recommendation G.107.1
(2015). Similar to the narrowband version of the E-model, the wideband transmission
rating 𝑅 can be defined as:

𝑅 = 𝑅𝑜,𝑊𝐵 − 𝐼𝑠,𝑊𝐵 − 𝐼𝑑,𝑊𝐵 − 𝐼𝑒, 𝑒 𝑓 𝑓 ,𝑊𝐵 + 𝐴 (2.17)

Because of the greater bandwidth available, the maximum signal-to-noise ratio
𝑅𝑜,𝑊𝐵 is extended to be 129. A conversation of the wideband transmission rating scale
to a 5-point ACR scale can still be performed with Equation 2.9, setting 𝑅𝑥 = 𝑅/1.29.

Unlike in the narrowband version of the E-model, the wideband E-model does not
include the interactivity parameters 𝑚𝑇 and 𝑠𝑇 into the calculation of the delay impair-
ment factor 𝐼𝑑𝑑:
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For 𝑇𝑎 ≤ 100𝑚𝑠:
𝐼𝑑𝑑 = 0

For 𝑇𝑎 > 100𝑚𝑠:

𝐼𝑑𝑑 = 25{(1 + 𝑋6) 1
6 − 3(1 + [ 𝑋

3
]6) 1

6 + 2}

(2.18)

with:

𝑋 =
log ( 𝑇𝑎100 )

log 2
(2.19)

Here, the minimal perceivable delay is intrinsically set to 100𝑚𝑠 and the delay
sensitivity to 1. Thus, unlike the narrowband version, the wideband E-model cannot
predict the differences in MOS between conversations of varying interactivity.

The effective equipment impairment factor 𝐼𝑒, 𝑒 𝑓 𝑓 ,𝑊𝐵 also differs from the nar-
rowband version, as it does not include the burst ratio:

𝐼𝑒, 𝑒 𝑓 𝑓 ,𝑊𝐵 = 𝐼𝑒,𝑊𝐵 + (95 − 𝐼𝑒,𝑊𝐵) · 𝑃𝑝𝑙

𝑃𝑝𝑙 + 𝐵𝑝𝑙 (2.20)

Here, the burst ratio is implicitly set to 1. Thus, the wideband E-model cannot predict
the effects of bursty packet loss. Values for 𝐼𝑒,𝑊𝐵 and 𝐵𝑝𝑙 are listed in Appendix IV
of the ITU-T Recommendation G.113 Amendment 1 (2009).

Fullband E-model

The E-model was further extended in Mittag et al. (2018) and Möller et al. (2019), which
resulted in the standardization of the fullband E-model in ITU-T Recommendation
G.107.2 (2019). As there could be no audible difference found between the ratings of
super-wideband and fullband coded clean speech, this version of the E-model can be
used for both super-wideband and fullband scenarios. Analogous to the narrowband and
wideband E-model, the basic formula is re-written as:

𝑅 = 𝑅𝑜, 𝐹𝐵 − 𝐼𝑆, 𝐹𝐵 − 𝐼𝑑, 𝐹𝐵 − 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 + 𝐴 (2.21)

The even greater bandwidth has increased the maximum R-value to 148. Because
there is, as of now, no noise considered in the basic signal-to-noise ratio 𝑅𝑜, 𝐹𝐵 it is
set to 148. Again, the conversation of the fullband transmission rating scale to a 5-point
ACR scale can be performed with Equation 2.9, setting 𝑅𝑥 = 𝑅/1.48.

For the delay impairment factor 𝐼𝑑, 𝐹𝐵, only the effects of pure delay have been
defined:
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For 𝑇𝑎 ≤ 100𝑚𝑠:
𝐼𝑑𝑑 = 0

For 𝑇𝑎 > 100𝑚𝑠:

𝐼𝑑𝑑 = 1.48 · 25{(1 + 𝑋6) 1
6 − 3(1 + [ 𝑋

3
]6) 1

6 + 2}

(2.22)

with:

𝑋 =
log ( 𝑇𝑎100 )

log 2
(2.23)

No𝑚𝑇 and 𝑠𝑇 parameters to reflect the conversational interactivity are included in the
𝐼𝑑𝑑 formula of the fullband E-model as of now. Notably, in the formula in Equation 2.22,
a factor of 1.48 was added to account for the larger range of the transmission rating
scale in the fullband version. However, the wideband E-model does not include a similar
factor (see Equation 2.18).

The 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 value is calculated analogous to the wideband E-model:

𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 = 𝐼𝑒, 𝐹𝐵 + (132 − 𝐼𝑒, 𝐹𝐵) · 𝑃𝑝𝑙

𝑃𝑝𝑙 + 𝐵𝑝𝑙 (2.24)

As with the wideband E-model, there is no burstiness calculation included, setting the
burst ratio implicitly to 1 and allowing only predictions for randomly distributed packet
loss. Values for 𝐼𝑒, 𝐹𝐵 and 𝐵𝑝𝑙 are listed in Appendix V of the ITU-T Recommendation
G.113 Amendment 2 (2019).

2.5 Signal-based Quality Prediction

Signal-based quality prediction models use speech signals that are either transmitted
over a speech transmission system or degraded by a speech processing pipeline to
estimate the perceived speech quality of these systems. Generally, they can be split into
two categories: full-reference models and reference-free models.

Full-reference (sometimes called intrusive or double-ended) models make use of the
speech that was degraded by the speech transmission system, as well as a reference
signal that does not include any of the degradations added by the system. They are
considered intrusive, as they require the recording of speech on both ends of the speech
transmission system to be able to estimate the speech quality. These types of models time-
align the two speech signals, and, based on the difference between the two signals, they
produce a speech quality estimate. ITU-T defines the narrowband full-reference model
PESQ (Perceptual Evaluation of Speech Quality) in ITU-T Recommendation P.862
(2001) and the current state-of-the-art super-wideband speech quality prediction model
POLQA (Perceptual Objective Listening Quality Assessment) is standardized in ITU-T
Recommendation P.863 (2014). While these models predict only the overall listening-
quality MOS, there exist models that predict the listening dimensions as well. DIAL
(Diagnostic Instrumental Assessment of Listening quality) is a double-ended model that
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predicts the listening dimension of narrowband and wideband speech (Scholz, 2008;
Huo, 2015). Most recently, a full-reference machine-learning-based model similar to
Non-instrusive Speech Quality Assessment (NISQA) was developed, that predicts the
four listening-dimensions (Mittag and Möller, 2020).

Reference-free (sometimes call non-instrusive or single-ended) models only use the
degraded signal from the speech transmission network. They form a speech quality
estimate from the degraded signal and thus do not need a reference. ITU-T standardizes
a narrowband reference-free speech quality model in ITU-T Recommendation P.563
(2004). The state-of-the-art model NISQA is able to predict the quality dimensions in a
listening situation without a reference (Mittag et al., 2021; Mittag, 2022).

These signal-based models focus mainly on the prediction of speech quality in a
listening situation and the four listening-quality dimensions. However, there have been
hybrid models that predict the conversational quality based on a signal that was degraded
by a speech transmission system as well as parameters of the transmission.

2.6 Hybrid Quality Prediction Models

Hybrid quality prediction models utilize the methods of both parametric and signal-
based prediction. This is especially useful for predicting conversational quality, as the
quality in listening situations can be predicted well with the degraded speech signal, and
the degradation of the interaction can be modelled with parameters of the transmission
(i.e., delay) and of the type of conversation. In the following, two hybrid models are
described that predict conversational quality.

2.6.1 Objective Conversational Speech Quality Model

A hybrid, full-reference, narrowband model was developed by Guéguin et al. (2006)
and extended by Guéguin et al. (2008). While it does not have an official name, in this
thesis, it will be referred to as the Objective Conversational Speech Quality (OCSQ)
model, as it was described in Guéguin et al. (2006). Similar to the multidimensional
analysis of conversational telephony by Köster (2018), the conversational quality is split
into three contexts: the listening quality, the speaking quality, and the interaction quality.
However, the goal of this model is not to predict the perceptional dimensions but rather
to predict the overall conversational quality.

For predicting the listening quality, OCSQ makes use of the predictions of PESQ,
which is a narrowband, full-reference, signal-based, listening quality model standardized
in ITU-T Recommendation P.862 (2001).

The speaking quality is predicted with the use of the Perceptual Echo and Sidetone
Quality Measure (PESQM) (Appel and Beerends, 2002). This full-reference model
uses a clean reference speech signal and a special degraded signal. The degraded signal
combines the reference signal with a degraded signal that was transmitted through the
system under study. This way, the model is able to detect and account for the echo that
would otherwise be missed due to time alignment.
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The interaction quality is predicted using the one-way transmission delay as an
additional parameter. Because the effects of echo and sidetone are already captured in
the speaking quality, this part of the model focuses on the effects of pure delay. While
the final model includes a delay threshold parameter that can be changed depending on
the amount of interactivity, this threshold is recommended to be a constant value.

The three different quality ratings of the listening, speaking, and interaction contexts
are assumed to independently contribute to the conversational quality and are combined
using a regression equation:

̂︄𝑀𝑂𝑆𝑐𝑜𝑛𝑣 = 𝛼 · 𝑀𝑂𝑆𝑡𝑎𝑙𝑘 + 𝛽 · 𝑀𝑂𝑆𝑙𝑖𝑠𝑡 + 𝛾 · max (0, delay − delay𝑡ℎ𝑟) + 𝛿 (2.25)

where 𝑀𝑂𝑆𝑡𝑎𝑙𝑘 is the objective talking quality (MOS-TQO) as predicted by PESQM,
𝑀𝑂𝑆𝑙𝑖𝑠𝑡 is the objective listening quality (MOS-LQO) as predicted by PESQ, delay
is the one-way absolute transmission delay in milliseconds and delay𝑡ℎ𝑟 is a delay
threshold (similar to the minimal perceivable delay 𝑚𝑇 of the narrowband E-model,
see Section 2.4.1) and is set to a constant value of 400𝑚𝑠. The coefficients are set in
Guéguin et al. (2008) to 𝛼 = 0.4059, 𝛽 = 0.5519, 𝛾 = −1.7376, and 𝛿 = 0.171.

While the OCSQ model performs very well on the training data, the used dataset did
not contain combinations of impairments. Also, the participants on the conversation tests
only used the SCT (see Section 2.3.1), which resulted in low interactivity conversations.
This explains the high delay threshold delay𝑡ℎ𝑟 of 400𝑚𝑠 suggested in Guéguin et al.
(2008).

2.6.2 Instrumental Diagnostic Conversational Quality

In Köster (2018), a hybrid, super-wideband, diagnostic conversational quality model
is described that predicts the conversational quality, the three conversational phases,
as well as the perceptual dimensions of each phase (see Section 2.3.2) to allow for
diagnostic insights. Although this model has no official name, it will be referred to as the
Instrumental Diagnostic Conversational Quality (IDCQ) model in this thesis. Like the
OCSQ model, the IDCQ model is structured hierarchically. First, for each conversational
phase, the quality of every perceptual dimension of that phase is predicted. Then,
based on the estimations of the dimensions, a quality for the conversation phase is
predicted. Finally, the conversational quality is predicted from the estimated quality of
each conversation phase.

Because this model has been created from a limited dataset, it should be viewed as
the first approach toward such a diagnostic conversational quality model.

Listening Quality

The listening quality is predicted based on the four perceptual dimensions Noisiness,
Discontinuity, Coloration, and Loudness. These are predicted using the DIAL model in
its super-wideband mode. The predicted perceptual dimensions are then combined into
a MOS for the listening phase (MOS-LQO):
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̂︄𝑀𝑂𝑆𝐿𝐼 = −1.955 + 0.436 · ̂︄𝑀𝑂𝑆𝑁𝑜𝑖 + 0.516 · ̂︄𝑀𝑂𝑆𝐷𝑖𝑠
+ 0.117 · ̂︄𝑀𝑂𝑆𝐶𝑜𝑙 + 0.305 · ̂︄𝑀𝑂𝑆𝐿𝑜𝑢 (2.26)

where ̂︄𝑀𝑂𝑆𝑁𝑜𝑖, ̂︄𝑀𝑂𝑆𝐷𝑖𝑠, ̂︄𝑀𝑂𝑆𝐶𝑜𝑙 , and ̂︄𝑀𝑂𝑆𝐿𝑜𝑢 are the DIAL predictions of the
dimension Noisiness, Discontinuity, Coloration, and Loudness respectively.

Speaking Quality

The speaking quality consists of the two perceptual dimensions Impact of one’s own
voice and Degradation of one’s own voice. Both of these dimensions are predicted by
two parameters of the speech signal: the attenuation (𝐴𝑇𝑇) of the speech signal in
regards to the reference signal and the back coupling delay (𝑇𝐵), which describes the
shift between the reference signal and the degraded signal.

The quality dimension Impact of ones own voice (𝑀𝑂𝑆𝐼𝑜𝑠) is estimated as:̂︄𝑀𝑂𝑆𝐼𝑜𝑠 = 3.842 − 0.394 · 𝐴𝑇𝑇 − 0.01 · 𝑇𝐵 (2.27)

The quality dimension Degradation of one’s own voice (𝑀𝑂𝑆𝐷𝑜𝑠) is estimated as:̂︄𝑀𝑂𝑆𝐷𝑜𝑠 = 3.742 − 0.282 · 𝐴𝑇𝑇 − 0.009 · 𝑇𝐵 (2.28)

The overall speaking quality 𝑀𝑂𝑆𝑆𝑃 is then estimated using the predictions form
Equations 2.27 and 2.28:̂︄𝑀𝑂𝑆𝑆𝑃 = 0.144 + 0.026 · ̂︄𝑀𝑂𝑆𝐼𝑜𝑠 + 0.819 · ̂︄𝑀𝑂𝑆𝐷𝑜𝑠 (2.29)

Because of the limited amount of parameters 𝐴𝑇𝑇 and 𝑇𝐵, which do not take into ac-
count any degradation that might occur on the back-coupled speech signal, the accuracy
of the speaking quality prediction is rather low.

Interaction Quality

The interaction quality consists only of one quality dimension: the interactivity. This
dimension is predicted with on the overall one-way transmission delay 𝑇𝑂:̂︄𝑀𝑂𝑆𝐼𝑛𝑡 = 3.554 − 0.001 ∗ 𝑇𝑂 (2.30)

where ̂︄𝑀𝑂𝑆𝐼𝑛𝑡 is the estimation of the perceptual dimension interactivity. Again
because of the limited dataset, the transmission delay 𝑇0 is only contributing very
slightly to the MOS estimate. With the predicted interactivity, the overall interaction
quality (𝑀𝑂𝑆𝐼𝑁 ) is estimated:̂︄𝑀𝑂𝑆𝐼𝑁 = −0.299 = 0.942 ∗ ̂︄𝑀𝑂𝑆𝐼𝑛𝑡 (2.31)

Similar to the prediction for the speaking phase of the conversation, this model
achieves a rather low accuracy.
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Conversational Quality

From the estimation of the listening phase (Equation 2.26), the speaking phase (Equa-
tion 2.29), and the interaction phase (Equation 2.31), the overall conversational quality
is predicted:

̂︄𝑀𝑂𝑆𝐶𝑂 = −0.393 + 0.188 · ̂︄𝑀𝑂𝑆𝐿𝐼
+ 0.354 · ̂︄𝑀𝑂𝑆𝑆𝑃 + 0.477 · ̂︄𝑀𝑂𝑆𝐼𝑁 (2.32)

While the overall conversational quality prediction results in a good prediction when
using the quality ratings of the perceptual dimension directly, it has a low correlation
with the predicted dimensions from the data points available in Köster (2018). While the
listening phase estimation provides an acceptable accuracy, the speaking and interaction
phase prediction have low accuracy, resulting in a consistency of 𝜌 = 0.44. A validation
with more data points and a prediction model with more parameters for the speaking
and interaction phases would be needed to improve a prediction based on this approach.

2.7 Packet Loss and Understandability

When considering the effects of bursty packet loss, the listening quality alone is not
sufficient to describe the impact on the conversation. The effects of packet loss can be
defined by the percentage of packets lost over a given time frame, the length of speech
contained in a single packet, the burstiness of the loss, and the codec that is used (ITU-T
Recommendation G.107, 2015). As described in Equation 2.16, the burstiness can be
described by a two-state Markov model. Depending on the severity of burstiness of the
packet loss, the speech signal might be affected locally but very heavily. This may result
in the speech completely dropping out, even with a PLC algorithm engaged (Raake,
2006).

The Speech Intelligibility Index (SII) and its predecessor, the Articulation Index (AI)
are standardized measures that have a high correlation with the intelligibility of speech in
a listening situation (American National Standards Institute, 1997). The SII itself is not
a measure of how likely a spoken sentence is understood, but instead of how many audio
cues are usable in a given setting (Hornsby, 2004). The SII uses frequency-specific
information on the speech levels, the “noise” levels, and their auditory thresholds,
which are weighted by the importance of each frequency band in regards to speech
understanding. The resulting index can be transformed into speech understanding scores
with the help of transfer functions. These functions are specific to the material that is
listened to, as unknown random syllables and previously known full sentences have
different chances of being understood.

Intelligibility models are also used in speech synthesis, where there is a need to
assess the intelligibility of the synthetic voice. The Semantically Unpredictable Sen-
tences (SUS) test consists of automatically generated grammatically correct but seman-
tically unpredictable sentences (Benoît et al., 1996). Because the participants trying to
understand these sentences are not able to gain information from context, only pure au-
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dible information is available to be able to judge the intelligibility. However, in realistic
conversation scenarios, there is almost always context given and conversation partners
will use this implicit information for the continuation of the conversation.

2.8 Turn-Taking

Turn-taking is the set of practices speakers use to organize the conversation and allocate
speaking turns. The analysis of turn-taking in the conversation has its roots in the
“simplest systematics” defined by Sacks et al. (1974). There, general rules for turn-
taking have been laid out that describe the process of selecting the next speaker (either
through the current speaker or by self-selection), as well as the continuation of a turn
by the current speaker. Turn-taking incorporates many auditory, visual, and contextual
cues (Ford and Thompson, 1996). Especially in telephone conversations, where no
visual cues are present, people rely on the immediacy of signals in prosody and content
to perform smooth and uninterrupted turn-taking.

Recent work in the area of turn-taking focuses on the analysis of turn-taking behavior
in conversations (Lunsford et al., 2016; Niebuhr et al., 2013), end-of-turn prediction (Liu
et al., 2017; Skantze, 2017), and rule-based turn-taking models for the intended use in
SDS (Selfridge and Heeman, 2012; Baumann, 2008).

In Lunsford et al. (2016), the duration of turns and their timings are analyzed. Turns
are analyzed based on the offset from the end of the previous utterance. Thus, turn-
continuations (the current speaker keeps the turn) and turn-transitions (the speaker
changes) are analyzed as equal alternatives to what could have occurred. For this anal-
ysis, gaps and overlaps between turn-transitions are recorded, forming a probability
distribution on the offset in relation to the end of the previous turn. Overlaps in the
speech during the turn-transition are counted as a negative offset, while gaps between
the turns are counted as a positive offset. Turn-continuations are counted separately
with positive offsets (as it is not possible to interrupt oneself). Measuring the turn-
transitions and turn-continuations based on the offset results in two alternative models
on how turns are allocated between the speakers. However, the timing of turn-keeping
and turn-yielding is also dependent on the dialogue context (Heeman and Lunsford,
2017).

During the analysis of turn-taking, generally, short utterances produced by short
backchannels (e.g., “yes” or “okay”) need to be taken into account so as not to distort
the overall length of turns. In Heldner et al. (2011), a minimum utterance length of
200𝑚𝑠 is proposed to remove any very short utterances. Also, in Lunsford et al. (2016),
preprocessing steps are applied to filter out backchannels and other short interruptions
that do not make up a valid turn.

For the field of Spoken Dialogue Systems, modeling turn-taking increases the inter-
activity and thus the naturalness of spoken dialogue systems. Anticipating the end of
the user’s turn can make an interaction more fluid and human-like (Liu et al., 2017).
One approach for the implementation of realistic turn-taking in dialogue systems is the
use of an end-of-turn prediction model that tries to anticipate the end of the user’s turn
in real-time before they have finished their utterance. This approach can lead to more
realistic gaps and overlaps, or at least to a reduction in the silence between requests
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from the user and the answer from the system. Depending on the time-sensitivity, end-
of-turn prediction models include just the prosodic information (Ferrer et al., 2002), or
also lexical information (Liu et al., 2017). More recent approaches include the use of
recurrent neural network (Skantze, 2017), as well as transformer-based models (Ekstedt
and Skantze, 2020). Besides modeling and predicting the end of a turn, also models for
the prediction of backchannels have been build byKawahara et al. (2016).

2.9 Simulation of Dialogue

The simulation of dialogue has been used in the field of dialogue systems to model
user behavior (Eckert et al., 1997), to evaluate the usability of such systems (Hillmann,
2017; Pietquin and Hastie, 2013; Engelbrecht et al., 2009), or to train the dialogue
manager (Schatzmann et al., 2006).

For the user simulation used in the automatic usability evaluation of spoken dialogue
systems, the simulated user is designed in a way to mimic the interaction of real users with
the systems (Möller, 2004). Approaches to simulating a user are closely related to those
of modeling a dialogue system itself. User simulations are trained using agenda-based
dialogue management (Schatzmann et al., 2007), Hidden-Markov-models (Cuayáhuitl
et al., 2005; Schatzmann and Young, 2009), as well as machine learning methods (Ja-
narthanam and Lemon, 2009; Schatzmann et al., 2006). To realistically model the
strategies and behaviors of users, these simulations have been adapted to model changes
in interaction style and overall conversation goals (Hillmann and Engelbrecht, 2015).
Also, misunderstandings by the user and errors in the speech recognition and language
understanding of the system are modelled (Engelbrecht et al., 2009). These simulations
can be evaluated in order to monitor and improve performance. This evaluation can be
done in the form of performance metrics of the conversation (e.g., number of turns,
task success), or a simulated dialogue may be compared to human dialogue. One way
to measure the similarity of two dialogues is to compare the probability distributions
of dialogue acts and measure their distance with the KL (Kullback-Leibler) divergence
and dissimilarity (Pietquin and Hastie, 2013). Kullback and Leibler (1951) defines the
KL divergence between two distributions 𝑃 and 𝑄 as:

𝐷𝐾𝐿 (𝑃 | |𝑄) =
∑︂
𝑖∈𝑋

𝑝𝑖 log( 𝑝𝑖
𝑞𝑖
) (2.33)

With respect to two distributions of dialogue acts that are compared, 𝑝𝑖 and 𝑞𝑖 are the
frequency of dialogue acts in the histogram of the distributions 𝑃 and 𝑄, respectively,
while 𝑋 is the probability space that is shared between the two sets of dialogue acts.
Because this divergence is not symmetric, it may result in different values for 𝐷𝐾𝐿𝑃 | |𝑄
and 𝐷𝐾𝐿𝑄 | |𝑃. Thus Pietquin and Hastie (2013) introduce a dissimilarity formula that
can be used as a distance measure:

𝐷𝑆(𝑃 | |𝑄) = 𝐷𝐾𝐿 (𝑃 | |𝑄) + 𝐷𝐾𝐿 (𝑄 | |𝑃)
2

(2.34)
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The generated dialogue between the dialogue system and the user simulation can be
analyzed to improve the dialogue manager during training, or to predict its quality in
usability tests. Based on measurable parameters like task success or number of turns,
models are built to predict the quality of the system under study (Möller and Skowronek,
2004; Hillmann, 2017).

Dialogue simulations are often executed on a dialogue-act level, where a dialogue
system and a simulated user exchange semantic representations of what is being said.
Notable exceptions include the simulation of spoken dialogue in Baumann (2008),
where the system under study and the user simulation exchange speech signals to
realistically simulate turn-taking. However, because of the focus on turn-taking, there
is no content being exchanged between the simulated interlocutors. Another dialogue
simulation that focuses on turn-taking is described in Padilha (2006), where turn-taking
in group conversations is modeled. Here the simulation is performed on a textual level,
and simulated speakers try to organize and handle turn-taking. In the domain of user
simulation for the prediction of the quality of a dialogue system, Scheffler et al. (2009)
describes an approach to simulate the dialogue on the speech level automatically, thus
interacting with the dialogue system as a black box.

A simulation of conversations in the context of speech quality is standardized as
Artificial Conversational Speech in ITU-T Recommendation P.59 (1993), where the
on-off patterns of conversational speech are simulated based on the average sojourn
times of recorded conversations. However, this simulation also does not concern with
exchanging information, as the simulated interlocutors exchange artificial speech-like
sound (ITU-T Recommendation P.50, 1999).

2.10 Incremental Dialogue Systems

Classical architectures of spoken dialogue systems follow a pipeline approach: each log-
ical module of the dialogue system processes incoming data, extracts useful information,
and forwards the produced data in a new representation to the next module (Jurafsky and
Martin, 2009). Generally, speech from the user is processed by an Automatic Speech
Recognitino (ASR) module that relies on Hidden-Markov-models, Dynamic Time Warp-
ing, or Neural Networks to transcribe the speech of the user into machine-readable text.
This transcription is then processed by a Natural Language Understanding (NLU) mod-
ule that extracts the intent of the user and named entities into a semantic representation
called Dialogue Act (DA). These are given to the Dialogue Manager (DM) that decides
(often with the use of the dialogue history and external data sources) which response to
generate. The abstract representation of the response is turned into text by an Natural
Language Generation (NLG) module. However, this module is sometimes skipped, and
the DM directly produces the response in text form. Finally, a Text-To-Speech (TTS)
module synthesizes the text into speech (Jokinen and McTear, 2009).

While this type of architecture is very robust and used widely, it has some limitations.
One drawback is that dialogue systems designed in a pipeline architecture process the
data sequentially, based on a complete utterance of a user. As a result, the different
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modules of the system are idle during the utterance and start processing only when the
previous module produces output. This may lead to slower reactions from the systems
and worse predictions of the individual modules.

The concept of incremental dialogue systems presented in Schlangen and Skantze
(2009, 2011) is a general model for incrementalizing the processing in dialogue systems.
While dialogues are generally defined incrementally (i.e., each dialogue is made up
of smaller utterances/turns), the incremental dialogue systems model describes the
incrementality on the level of the utterance. With every minimal processable amount
of an utterance, each component will be triggered into activity. The creation of this
processing paradigm is motivated by an increase in the reactivity of the system, a better
quality of prediction in each processing step (e.g., through forming of early hypotheses),
a more natural interaction (e.g., through backchannels like “uh-huh” or “yeah”), and by
adding realism to interactions with dialogue systems.

Generally, the incremental processing model has two main interfaces that are present
in each incremental dialogue system: An incremental module processes incoming in-
crements, forms hypotheses, and forwards them to other incremental modules. An
Incremental Unit (IU) is the basic unit of information transmitted between the incre-
mental modules. These units contain the data that makes up the increment, as well as
auxiliary information about the underlying data and hypotheses based on it.

Incremental modules contain a Left Buffer that contains IUs that should be processed
by the incremental module. When the incremental module produces hypotheses based
on new input, it places them in the form of IUs into the Right Buffer where they are
forwarded to connected incremental modules. The incremental modules keep an internal
record of the data that is currently being processed, as new incremental units are placed
in the Left Buffer. Each incremental unit has to be viewed as a working hypothesis (as not
all the information is available), and thus, they can be revised later on. For this purpose,
IUs can be updated (e.g., an ASR module might update a word or a part of a word
with new speech incoming) and also be revoked (e.g., the NLU module might revoke
a concept if an update in the ASR module changed a recognized word). Generally, not
every new incremental unit that is arriving at the left buffer of an incremental module
will produce an output IU.

Incremental Units are the basic units that transmit the incremental update as a payload.
Additionally, they provide information about their hypothesis, about previous IUs that
were generated by the same incremental module (horizontal relationship), as well as
information about IUs that its hypothesis is based on (vertical relationship). Each IU has
a successor relationship, which creates a chain of IUs from the same line of hypotheses.
The vertical connection of incremental units is the grounded link. With this link, every
IU can reference the unit that the current hypothesis was based on. This unit is usually
of the type one layer above in the abstraction chain. Thus, an IU coming from an NLU
module containing a hypothesis about a concept named in the utterance of the user might
be grounded in an IU from an ASR module, referencing the word (or words) containing
the text of the concept, which in turn might be grounded in an IU from a microphone
module, containing the speech signal of the word. Each IU has a committed flag, that
indicates whether it is no longer used for the current forming of a hypothesis and will
not be revised. This can help improve the accuracy when creating hypothesis based on
these IUs.



2.10 Incremental Dialogue Systems 35

While the incremental processing model describes the method in a general, abstract
way, there are many models and approaches in the domain of spoken dialogue systems
that make use of the concept. Speech recognition models are widely used in an in-
cremental way (Selfridge and Heeman, 2012), end-of-turn prediction’s main use is the
employment in incremental SDSs (Skantze, 2017), and state-of-the-art NLU modules
have been incrementalized as well (Rafla and Kennington, 2019). Especially recent
advances of spoken dialogue in human-robot-interaction are based on the incremental
processing paradigm (Kennington et al., 2020).

InproTK (Incremental Processing Toolkit) is a framework for building incremen-
tal spoken dialogue systems presented in Baumann et al. (2010) and Baumann and
Schlangen (2012b). This framework is based on the programming language Java and
implements the main concept laid out in Schlangen and Skantze (2011). InproTK has
a range of example systems that showcase the concepts of incremental processing and
the features provided by the toolkit. It was extended for the use in situated dialogue in
Kennington et al. (2014), but the development of the toolkit has since been discontin-
ued2. Based on this system, components like an incremental speech synthesis module
have been created (Baumann and Schlangen, 2012a). Since 2019, a new, more modular
version called “InproTK 2” is available online3 and is used in human-robot-interaction
systems (Fischer et al., 2021).

2 Based on the activity of the git-repository https://bitbucket.org/inpro/inprotk/src/
master/, last accessed March 11th, 2022.
3 https://github.com/timobaumann/inprotk, last accessed March 11th, 2022.

https://bitbucket.org/inpro/inprotk/src/master/
https://bitbucket.org/inpro/inprotk/src/master/
https://github.com/timobaumann/inprotk




Chapter 3
Simulation Architecture

A conversation simulation that should accurately reflect the effects of delay and packet
loss has specific requirements. To be able to simulate conversation scenarios with
distinct interactivity and to model misunderstandings due to bursty packet loss, the
simulated interlocutors need to process information on a symbolic level. In order to
model the changes in turn-taking due to transmission delay, the same simulation also
needs to include realistic turn-taking with a focus on timing. For these reasons, the
main requirement for the conversation simulation is an architecture that can reproduce
a conversation on every layer of abstraction: from the speech signal to the textual
information, as well as the dialogue act layer. Also, the architecture needs to process the
information incrementally in order for realistic turn-taking to be modeled.

This chapter describes the simulation architecture used for the conversation simula-
tion. First, a new incremental processing programming framework, “retico”, is intro-
duced that is able to model time-sensitive interactions like turn-taking and the repairing
dialogue caused by misunderstandings due to packet loss. Then, the datasets are de-
scribed that are used to model, train, and evaluate the simulation, as well as quality
models. With the underlying data, the simulation architecture used for the conversa-
tion simulation is described in its incremental parts. The simulation is constructed to
simulate SCT and RNV conversations. The simulation is initially constructed without
a turn-taking model to act as a baseline. Finally, the conversations produced by the
baseline simulation are evaluated semantically on the dialogue act layer, as well as on
the interaction level, by analyzing the conversational interactivity parameters. Finally,
the performance of the system architecture is briefly discussed.

The incremental processing framework retico and an overview of the simulation
architecture have been partially published in Michael and Möller (2018), Michael and
Möller (2019), and Michael (2020). The datasets used for the training and evaluation
of the simulation have been described in Michael and Möller (2020a) and Uhrig et al.
(2018).

3.1 Retico Incremental Processing Framework

During the time of the creation of the conversation simulation architecture, there was
no actively maintained and up-to-date programming framework or toolkit available that
could be used as an incremental platform on which to base the simulation. With the
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requirements for the simulation and the abstract model of incremental processing, a
new framework was developed by me to be used for the conversation simulation. In this
section, the basic implementation mechanics of the framework are outlined, that are all
based on the concepts of incremental processing described in Chapter 2.

The retico (an initialism for real time conversation) incremental processing program-
ming framework is a Python library that implements the basic concepts of incremental
processing as described in Schlangen and Skantze (2011). It is available as an open-
source project on github1. A more modular version is currently in development to serve
as a general-purpose platform for incremental processing2. The core of the framework
defines interfaces and functionality for incremental modules and incremental units, and
it also contains basic sound input and output processing capabilities. It also includes
incremental modules from various fields of a spoken dialogue system. A user interface
provides a way to create new modules and connect them together into an incremental
network.

The basic definition of Incremental Units (IUs) provides access to the grounded_in
and previous_IU references. Every incremental unit tracks its creation time as well
as its age. With this timing information IUs from different sources can be synchro-
nized. Also, IUs track the state of their committed and revoked status. Incremental
units are defined with the inheritance of object-oriented programming in mind so that
functionality can be abstracted and shared over different environments. For example,
a synthesis module might require a TextIU, where the specific implementation might
be a SpeechRecognitionIU generated by an ASR module or a GeneratedTextIU
generated by an NLG module, each with their own set of parameters and functionalities.

The abstract definition of the incremental module provides access to the main process-
ing loop in which each module receives IUs from the left buffer and might return one or
more IUs to the right buffer. The connection between incremental modules and the trans-
mission of IUs is handled by the framework. For this, a type checking is implemented
so that only modules with compatible input and output IU types can be connected. In-
cremental modules have a unified interface to start and stop the processing, as well as a
separate routine for setting up auxiliary functionality. That way, an incremental module
can set up required services before the processing inside the module is started. Based
on this, additional basic module types are defined: the Consuming Module that does
not produce any output IUs (e.g., for access to a speaker or other output peripherals)
and the Producing Module that does not take any IUs as an input (e.g., for access to
microphones and sensors that are not based on the incremental system).

Retico contains basic audio processing functionality. A MicrophoneModule (pro-
ducing module) is available to capture input from an internal microphone, external
microphone, or a line input, and the frame size of the resulting IUs can be set. A
SpeakerModule (consuming) module takes AudioIUs and outputs them on a selected
speaker, while a StreamingSpeakerModule contains a jitter buffer to output the audio
in a smooth and continuous manner. Besides the audio processing modules, retico also
includes online and offline speech recognition modules (CMUSPhinx, Google ASR),
natural language understanding (rasa NLU), dialogue management (agenda-based, rasa
RNN-based, and n-gram-based modules), speech synthesis (Mary TTS, Google TTS),

1 https://github.com/thilomichael/retico

2 Repositories are available at https://github.com/retico-team

https://github.com/thilomichael/retico
https://github.com/retico-team
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as well as a translation module (Google Translate). Several demonstration applications
like a spoken translation service or a restaurant information system built with retico are
available.

Fig. 3.1 Screenshot of the graphical user interface of retico. Incremental modules are showing
details about their configuration. Connections between modules are visualized as arrows. A menu
allows for the instantiation of new modules, the starting and stopping of network execution, as
well as saving and loading of saved networks.

A graphical user interface (called “retico builder”, see Figure 3.1) gives quick access
to instantiate modules and connect them to form incremental networks. During instan-
tiation of modules, parameters can be provided (e.g., the language of an ASR module
can be selected in the user interface), and modules are represented visually on a can-
vas. With visual connection terminals, two modules with compatible input and output
IU-type can be connected, which is visually represented as an arrow. Once multiple
modules are connected, the network can be executed. During execution, each module
displays information about the current state or about the most recent incremental units
that are being processed. Networks can be saved to a file and loaded in later sessions.
Also, a network saved to a file can be loaded in Python code directly. That way, complex
networks (like a conversation simulation) can be created and connected visually, saved
to a file, and later executed on a dedicated simulation server without the graphical user
interface.

While retico defines general incremental processing interfaces, provides a program-
ming interface for new modules, and contains basic audio processing modules, some
functionality is deliberately not provided. The approach to incremental processing pro-
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vided by retico assumes that each incremental module is capable of processing IUs
faster or as fast as they arrive in its left buffer. Also, the time alignment of IUs from
different sources is not handled by the framework. If an incremental module needs to
align information from different sources, this may be achieved with the help of the
time information attached to each IU. While incremental modules in retico may have
multiple types of input IU, each module may only have one type of output IU. While
this restriction helps with a consistent definition of where IUs are routed in the network,
it limits the types of networks that can be created. This can be addressed by either
implementing incremental modules that only concern one specific type of information
or by creating IUs that contain a mixture of data. For example, a dialogue manager may
produce an IU that contains a dialogue act from which text should be generated, but it
also contains information about how to synthesize it.

3.2 Simulation Datasets

In order to model and later on evaluate a simulation that reproduces characteristics of
a real conversation, appropriate datasets are needed. For this, two existing conversation
datasets are used, and one dataset is specifically created for the simulation objective
(see Table 3.1). All conversations were recorded as part of conversation experiments
modeled according to ITU-T Recommendation P.805 (2007). In all three experiments,
participants rated the overall conversational quality of each conversation on a 7-point
extended continuous scale. The ratings were later transformed into ACR values with the
Equation 2.1 provided in Köster et al. (2015).

Table 3.1 Overview over the three datasets used in this thesis.

Dataset Name SMISS CONVSIM UWS
Scenarios SCT #11, RNV #1 SCT, RNV SCT

Delay (ms) - 0, 800, 1600 0, 800, 1600
Packet-Loss - 0 %, 15 %, 30 % -
BurstRatio - 4 -

Participants 40 58 20
Conversations 60 580 130

Coding 16-bit linear PCM
@ 32 kHz

16-bit linear PCM
@ 44.1 kHz

16-bit linear PCM
@ 44.1 kHz

3.2.1 SMISS Dataset

The SMISS dataset was created as part of the research on the multidimensional analysis
of conversational speech at the Quality and Usability Lab, Technische Unviersität Berlin.
The experiment followed the subjective diagnostic test method for conversational speech
quality analysis (ITU-T Recommendation P.804, 2017) and the participants performed
SCT as well as RNV conversations. The test was carried out with a SWB conversational
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system, which allowed the simulation of various impairments. Subjects were placed in
separate, soundproofed booths and communicated over stereo headsets to minimize the
possibility of acoustic echo. 40 naïve, German-speaking participants took part in the
experiment, and each pair performed 11 conversations. The recorded conversations are
stored with 16-bit linear Pulse Code Modulation (PCM) at 32 kHz.

The SMISS dataset was used to model the dialogue in the simulation. For this, one
concrete SCT scenario and one RNV task were selected to be simulated. Because the
baseline data for those two conversations should not include any degradations, the
SCT scenario 11 (ordering a pizza, see Appendix A) and the RNV task no. 1 (see
Appendix B) was selected from the available conversations. 30 of these SCT scenario
11 conversations and 30 of the RNV scenario 1 conversations were extracted from the
SMISS dataset, resulting in 60 clean conversations without any degradations.

The conversations were transcribed and annotated with dialogue acts and concepts, as
well as with end-of-turn information. The transcriptions were automatically generated
with Google ASR, and errors were manually corrected. The conversations were then
annotated with dialogue acts and concepts. The dialogue acts were selected to be
general and thus usable for every standardized conversation type referenced in ITU-T
Recommendation P.805 (2007), while the concepts reflect the specifics of the scenario.

Table 3.2 Annotation schema of the SCT scenario 11 and RNV task 1 conversations.
Dialogue Act Types Description Example

greeting Greeting “Hello, this is pizzeria Roma.”
goodbye Farewell “Goodbye.”
provide_info Providing information “I want a vegetarian pizza.”
provide_partial Providing parts of an information “My phone number is 0 3 0 ...”
request_info Requesting information “What’s your address?”
offer_info Offering information “Should I give you my adress?”
stalling Stalling the conversation “Uhm...”
request_confirm Request a confirmation of information “Main street 46?”
confirm Confirming that information “Yes, 46.”
misunderstanding Something was not understood “I did not understand that.”
thanks Giving thanks “Thank you.”
welcome Receiving thanks “You’re welcome.”

Table 3.2 shows an overview of all dialogue act types that were defined. Generally,
all dialogue acts may occur with concepts. For example, when a person says “Hello,
this is pizzeria Roma” this is annotated as the dialogue act greeting with the addition
of the concept callee_name. The provide_partial dialogue act is used for the
many occurrences where information is split over multiple turns. Examples for this
might be an address that gets split by street name, postal code, and city, or it can
be a block of numbers in the RNV task, where each number gets transmitted with a
provide_partial. Aconfirm dialogue act might be a very general “yes.” or “correct.”
when occurring without a concept. It also can be used in very specific confirmations
when it is used with a concept (e.g., “Yes, a vegetarian pizza.” would be annotated as
confirm:pizza_type). Also, the concept named in the conversation were annotated.
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In contrast to the dialogue acts, which can be used for many different conversation
tests and scenarios, the concepts are specific for each scenario. The concepts used for
scenario 11 of the SCT and scenario 1 of the RNV task are shown in Appendix C.

In addition to the dialogue act annotation and the transcription, the beginning and end
of each turn (defined by an annotated dialogue act) have been annotated with beginning-
of-turn and end-of-turn markers. These turn annotations were used to extract the gaps,
overlaps, and pauses (as described in Section 2.8).

3.2.2 CONVSIM Dataset

The CONVSIM dataset was created specifically for use in the conversation simulation
approach and thus includes delay as well as packet loss impairments (Michael and
Möller, 2020a). The experimental procedure followed ITU-T Recommendation P.805
(2007) and participants rated the conversational quality, as well as the listening dimen-
sions and the interactivity dimension on the 7-point ECS scale. 58 German-speaking
participants (age 18 – 71, 28 of them female) without hearing impairments were located
in separate soundproof booths and communicated through monaural headsets. They
were connected with a fullband telephone simulation (see Table 3.1) that transmits
speech with 16-bit linear PCM at 44.1 kHz. Each pair of participants performed ten
SCT and ten RNV conversations, of which the first two had no impairments and were
used to familiarize the subjects with the test protocol. The following 18 SCT and RNV
conversations were degraded with one of 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 one-way end-to-
end transmission delay levels, combined with 0 %, 15 % and 30 % zero-insertion packet
loss with a burst ratio of 4.0. The high delay values were chosen to incite extreme cases
of interruptions and double talk, as strong impacts on the conversations give a good
baseline for the simulation. The high packet loss probability values and the burst ratio
of 4.0 were chosen so that large chunks of speech were cut out of the utterances, which
incites misunderstandings between the interlocutors. This results in 580 conversations,
each with two ratings of the conversational quality and the recorded quality dimensions.

As each conversation partner was recorded on a separate channel, the turns of each
speaker were segmented based on the automatic VAD of each audio channel. Based on
this turn segmentation, a P-CA (see Section 2.3.4) was performed, and the gaps, overlaps,
and pauses between the turns were extracted (see Section 2.8). For the conversations
with transmission delay, also the delay-dependent conversational parameters (IIR, UIR,
SARc) were calculated. Based on the annotation from the automated turn segmentation,
the individual turns of the conversations with 0 %, 15 %, and 30 % packet-loss were
transcribed, to later aid in the analysis and modeling of disruptions in the conversation
due to packet loss.

An overview over the overall conversational quality (MOS-CQS) of the CONVSIM
dataset can be seen in Figure 3.2 for SCT conversations and in Figure 3.3 for RNV
conversations, with ACR MOS calculated according to Equation 2.1. As already shown
in similar experiments (Raake et al., 2013; Egger et al., 2010), the perceived quality
of RNV conversations is much more strongly impacted by the transmission delay than
the quality of SCT conversations. This is due to the higher conversational interactivity
of RNV conversations. Regarding the conversational quality of packet-loss-affected
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Fig. 3.2 Mean opinion score for the SCT con-
versations of the CONVSIM dataset at 0𝑚𝑠,
800𝑚𝑠, and 1600𝑚𝑠 delay as well as 0 %,
15 %, and 30 % packet loss.
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Fig. 3.3 Mean opinion score for the RNV con-
versations of the CONVSIM dataset at 0𝑚𝑠,
800𝑚𝑠, and 1600𝑚𝑠 delay as well as 0 %,
15 %, and 30 % packet loss.

conversations, the SCT and RNV conversations seem to be impacted the same. However,
in the combination of delay and packet loss, the quality of the RNV conversations are
again more strongly affected.

3.2.3 UWS Dataset

The UWS dataset was recorded at the University of Western Sydney, and the results are
published in Uhrig et al. (2018). In contrast to the SMISS and CONVSIM experiments,
this experiment was done as part of an electroencephalogram (EEG) study. Participants
were located in separate soundproof cabins and communicated over a fullband com-
munication network that transmits the speech with 16-bit linear PCM at 44.1 kHz (see
Table 3.1). During the conversation, the EEG activity of the participants was recorded,
which caused some constraints on the subjective assessment as described by ITU-T Rec-
ommendation P.805 (2007). Participants had only limited movement capabilities during
the study so as to not disturb the recording of the EEG signal. The overall conversational
quality was assessed on the 7-point ECS.

Ten pairs of English-speaking participants conducted 13 SCT conversations each,
and for every conversation, either 0𝑚𝑠, 800𝑚𝑠, or 1600𝑚𝑠 of one-way end-to-end
transmission delay was inserted. While this dataset is limited in the number of im-
pairment conditions, as well as in the number of conversation scenarios, it is the only
dataset containing conversations in English. For this, the SCT scenarios given in ITU-T
Recommendation P.805 (2007) were adapted for Australian participants, as can be seen
in Appendix A.
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3.3 Incremental Simulation Network

The network of incremental modules comprising the simulation architecture is created
with the retico framework. The general simulation approach consists of two spoken
dialogue systems, agent A and agent B, that communicate on the speech signal level.
Each agent represents one person in the conversation. Agent A takes the role of the caller
in each conversation scenario, and Agent B fulfills the role of the callee. The speech
signal gets routed in packets (i.e., incremental units) through a simulated telephone
network module that is able to delay the arrival of the packets, as well as to replace
packets with silence to model zero-insertion packet loss. Logging modules at the non-
degraded and degraded end of each agent saved the resulting speech signal to a file for
later analysis. Additionally, the dialogue acts, and the transcription of the conversation
is logged and saved to a file. An overview of the general layout of the simulation network
can be seen in Figure 3.4.

Agent A
caller

Incremental
Spoken Dialogue System

Agent B
callee

Incremental
Spoken Dialogue System

+ delay
+ packet loss

Simulated Network

Audio Logger
Clean Speech

Person A

Dialogue Act
Logger

Person A and B

Transcription
Logger

Person A and B

Audio Logger
Clean Speech

Person B

Audio Logger
Degraded Speech

Person A

Audio Logger
Degraded Speech

Person B

Speech

Dialogue Acts

Transcriptions Transcriptions

Dialogue Acts

Speech

Fig. 3.4 Incremental network layout of the simulation. The two simulated conversation partners
are abstracted as spoken dialogue systems, a simulated telephone network introduces impair-
ments, and logging modules save the resulting data to disk.

Because of the incremental nature of this simulation, the agents act unsynchronized
and independent of each other. A delay of the speech signal of one agent by the telephone
network does not directly affect the mechanics of the other agent. Thus, the agents are
only able to adapt their behavior based on the arrival of the delayed signals that are
presented by the telephone network.

Current state-of-the-art models in many areas of spoken dialogue systems, like speech
recognition, end-of-turn prediction, or natural language understanding, are not on par
with human abilities in conversational scenarios. Thus, the simulated telephone network
allows for a side channel to transmit information about the current state of the interlocutor
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that might not be easily recoverable from the speech signal alone. The exact usage of
this side channel is described in the sections detailing the incremental modules of the
network.

End-of-Turn
Prediction

Automatic
Speech

Recognition

Natural
Language

Understanding

Natural
Language
Generation

Speech
Synthesis

Audio
Dispatching

Speech Input

Speech Output

Turn-Taking
Dialogue
Manager

Fig. 3.5 Incremental network layout of one agent, including the End-of-Turn prediction, speech
recognition, natural language understanding, dialogue management, language generation, speech
synthesis, and speech dispatching modules.

The two spoken dialogue systems of agent A and agent B are constructed as incremen-
tal networks shown in Figure 3.5. The main component of the agents is a Turn-Taking
Dialogue Manager, which orchestrates the taking of turns, dialogue management, and
speech dispatching. The turn-taking information is provided by the end-of-turn predic-
tion module that feeds directly from the speech input. The dialogue act and concepts
are received by an incremental NLU module that receives the live transcripts from the
incremental ASR module. Once the dialogue manager decides which dialogue acts and
concepts should be returned, it provides this information to the NLG module. There,
also a dispatching flag is provided so that the turn-taking dialogue manager can decide
when the agent should output the speech and when it should stay silent. The generated
text from the NLG module is then synthesized in the TTS module. Here, the dispatching
flag is still included in the IUs that are being produced. Finally, the audio dispatching
module buffers the synthesized speech. When the dialogue manager does not set the
dispatching flag, the audio dispatching module produces silence, which is routed to
the simulated network. Once the dispatching flag of the dialogue manager is received,
it outputs the synthesized speech. The output of the audio dispatching module is also
routed to the turn-taking dialogue manager itself. There it is used to monitor the progress
of its audio output itself.

The following sections provide a more detailed description of the incremental archi-
tecture of the agents and the simulated network environment.
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3.3.1 Speech Recognition, Natural Language Understanding

The speech recognition and natural language understanding modules of the simulation
provide the transcript of the incoming speech and extract the intent and named entities
in that transcription. As described in Section 3.1, the retico framework includes state-of-
the-art ASR and NLU modules. However, current speech recognition models do not yield
the same accuracy as a human would in the same conversation. For example, Siegert
et al. (2020) reports Word Error Rate (WER) as high as 14 % for clean, device-directed,
German speech with current state-of-the-art speech recognition systems. Thus, the
speech recognition and natural language understanding modules used in the simulation
do not actually employ a model, but rather rely on the information provided by the side
channel of the simulated telephone network.

The speech signal IUs coming into the left buffer of the incremental ASR module are
provided by the telephone network. Each IU has metadata attached to it that contains
the transcription of the current packet of speech. This text is then extracted from the
metadata and used as the transcription from the ASR module. In this baseline version
of the ASR module, the speech data contained in the incoming IU is discarded and not
used for the generation of the transcript.

The NLU module receives the transcripts of the speech recognition module. Because
the simulated interlocutor has only a limited number of possible utterances that may
be outputted (see Section 3.3.3), the module looks up the dialogue act and concept
associated with the corresponding speech from the annotated SMISS dataset.

3.3.2 End-of-Turn Detection

Similar to the ASR and NLU modules, the end-of-turn detection module makes use of
meta-information provided in the speech IUs provided by the network. For each packet
of incoming speech, the module uses a voice activity detection based on a Gaussian
mixture model (W3C Recommendation WebRTC, 2021) to classify if the interlocutor is
speaking or not. If so, the meta-information of the IUs contain the information on how
long the turn of the interlocutor will last in seconds. This information is updated for
every packet that arrives from the incremental network. The information on whether the
interlocutor is speaking and, if so, for how long they will continue to do so is forwarded
to the turn-taking dialogue manager.

3.3.3 Language Generation and Speech Synthesis

The NLG module receives a dialogue act and optionally one or multiple concepts from
the turn-taking dialogue manager to be turned into natural language text. Additionally, a
flag is provided on whether the text that will be synthesized later in the pipeline should
be dispatched (i.e., outputted to the interlocutor) or not. This flag is not used in the NLG
module, but it is attached to each text IU that is generated by the module.
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The NLG module contains a database of the dialogue acts and transcripts from the
SMISS dataset. In order to locate an utterance that fits the dialogue act and concept
provided by the dialogue manager, the module first locates all transcriptions that were
annotated with the dialogue act provided. Then, if there are one or more transcriptions
that fit all the provided concepts, a transcription is randomly chosen from the set, and
together with the dispatching flag, it is sent to the TTS module. If there is no fitting
dialogue act, a dialogue act without concepts is chosen. For example, if the dialogue
act confirm is not available with the concept pizza_type (e.g., “Yes, a vegetarian
pizza”), a transcription of the dialogue act confirmwithout any concepts is used (“Yes.”
or “Correct.”).

The speech synthesis (or TTS) module receives the transcripts from the NLG module
and produces the corresponding speech. Each synthesized utterance is cached so that
future requests for the same sentence will be faster. This is often useful when the dialogue
manager “prepares” an utterance without the dispatching flag being set. Then, the natural
language generation and speech synthesis is executed without the speech needing to be
sent to the interlocutor. Once the speech should be dispatched, the dialogue manager
sets the dispatching flag in its output IU and the speech synthesis is able to use the
cached version of the synthesized speech. The production of the utterance itself can be
done either by synthesizing the speech with a state-of-the-art synthesizer, like Google
TTS or Mary TTS, or by using the utterances of the training database. For the use of
the sound files in the SMISS dataset, a database is created, mapping the transcription
to the timestamps in the recorded audio files via the dialogue act and turn annotations.
Thus for each utterance that may be produced by the NLG module, the correct speech
file can be loaded, and the position inside the conversation identified and copied to an
output speech IU.

While the speech synthesis modules offer flexibility in the sentences that can be
synthesized, it has drawbacks when performing turn-taking with them. Synthesized
speech has a generally lower prosodic range, and thus the duration and stress of the
synthesized speech often differ from the soundbites of the recorded conversations. Also,
the addition of silences before and after the synthesis leads to unwanted changes in the
way the agents overlap between turns. During turn-taking, precise overlaps and gaps
(usually in the range of 200𝑚𝑠) between the utterances of the two interlocutors need to
be achieved. Thus, for the simulations described in this thesis, the TTS module is used
in the mode where it uses soundbites from the SMISS dataset as speech output.

In order to aid the ASR module of the other agent, the TTS module adds the text that
was synthesized as meta-data to the speech IU. This meta-data will be sent separately
through a side channel when the speech is transmitted to the simulated telephone
network.
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3.3.4 Speech Dispatching

The agents in the simulation need to perform turn-taking, which requires precise timing
of speaker overlaps and pauses between the turns. Thus, it is important for the turn-
taking dialogue manager to not only monitor the progress of the interlocutor’s turn but
also to monitor and control its own speech output. The audio dispatching module fulfills
both of these tasks.

The audio dispatching module receives the speech that should be spoken by the
agent, together with a speech dispatching flag that is controlled by the turn-taking
dialogue manager. The speech data is stored in a buffer, and depending on whether
the dispatching flag of the incoming incremental module is set, the dialogue manager
starts to dispatch either the buffered speech or silence at a predefined speed. That way,
the audio dispatching module dispatches audio IUs at all times and alternates between
dispatching silence when the dispatching flag is set to off by the turn-taking dialogue
manager and dispatching the buffered speech when the flag is set to on.

The produced speech is sent in small increments to the simulated telephone network,
where it is forwarded to the other agent. It is also sent to its own turn-taking dialogue
manager, where it is used to monitor the current status of the speech output of the agent.

3.3.5 Turn-Taking Dialog Manager

The turn-taking dialogue manager fulfills the classical task of a dialogue manager by
combining the current incoming dialogue act and concepts, the dialogue history, and
an agenda of the dialogue to decide what the agent should say in its next turn (in the
form of a dialogue act and concepts). However, for the simulation of turn-taking, the
agents need to decide when to speak. For this, the module also monitors the progress
of the interlocutor’s speech to decide when to produce an utterance. For turn-taking,
it is also essential for the turn-taking dialogue manager to monitor the progress of its
own production of speech. A dialogue manager usually only produces output in the
form of dialogue acts and concepts and thus does not have information about when it is
producing speech and for how long (as this is usually the task of the speech synthesis
module). In this incremental, turn-taking version of a dialogue system, the turn-taking
dialogue manager also receives information about its own speech production from the
audio dispatching module. This way, it is able to monitor the current speaking status of
both sides (i.e., from the interlocutor and itself) to decide when to say what.

To be able to fulfill these tasks, the turn-taking dialogue manager receives three
different types of input IUs: the end-of-turn prediction IUs are being received from the
end-of-turn prediction module, and dialogue acts and concepts are coming from the
NLU module. These two incremental information streams represent the current turn of
the interlocutor. The turn-taking dialogue manager also receives the speech IUs of its
speech dispatching module to track the progress of its utterances.
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Dialogue Management

The dialogue management part of the module is implemented independently of the
turn-taking mechanism. The dialogue act selection for every dialogue step is realized as
an agenda-based dialogue manager based on Schatzmann et al. (2007), which uses the
dialogue acts annotated in the SMISS dataset (see Table 3.2). The dialogue management
itself is implemented in a two-tiered process. First, the agenda-based part of the dialogue
manager uses the information about the agenda and current requests to select a candidate
dialogue act with the corresponding concepts that represent the current action. In the
second step, a dialogue act guiding system might modify the concepts referenced in the
dialogue act or even the dialogue act itself to be aligned with dialogue acts and concepts
already seen in the annotations of the SMISS dataset. This hybrid form of agenda-based
and data-driven dialogue management is aimed at producing dialogues based on the
structure of the SCT and RNV conversation scenarios while simultaneously modeling
exchanges based on real-world data.

In a first step, a stack-based agenda is prepared based on the concepts that should be
exchanged during the conversation. These concepts are loaded from an agenda file (see
Appendix C) that is specific for each conversation scenario and type of agent (i.e., caller
and callee). In the agenda file, the concepts that need to be requested from and given
out to the interlocutor are structured in categories. In each category, the information
needs to be transmitted before an agent is able to proceed with the next category (e.g.,
the transmission of the address to deliver the pizza to has to always come after the
decision on which pizza to buy). With the concepts from the agenda, a stack is built up
that requests or offers information based on the order defined in the agenda file. The
dialogue acts greeting and goodbye are added on top and on the bottom of the stack.
During the conversation, new dialogue acts (e.g., answers to requests for information)
are put on top of the dialogue stack. In order to avoid unnecessary dialogue acts, the
stack is cleaned after every step by removing dialogue acts that have been made obsolete.

Once a candidate dialogue act with optional concepts is selected, the dialogue act
guiding system is revising it. A dialogue act with concepts that can be found in the
training data will not be modified. When a dialogue act is not seen with the concepts
provided, it is modified to either have less concepts (e.g., a confirm with the concept
pizza_type might result in a confirm without a named concept) or it is modified to
include more concepts (a dialogue act provide_infowith the concept toppingsmight
be paired with the concept price, if the dataset contains this annotation). There are
dialogue acts that do not occur without a concept (e.g., request_info always requires
a concept) in the training data. Thus, when the dialogue act and concept combination
do not occur in the dataset, the dialogue act itself has to be changed. For example, when
the agenda-based part of the dialogue management generates a offer_info dialogue
act with the concept pizza_name (i.e., “Should I tell you the name of the pizza?”), it
might be a valid combination of dialogue act and concept in theory. However, due to
the structure of this particular conversation scenario, this request has never been posed
by a participant in the training data. Thus, the dialogue act guiding system rejects that
dialogue act, and the dialogue manager needs to fetch the next dialogue act from the
stack. In this fashion, the dialogue act and concepts are broadened step by step until a
dialogue act with concepts can be located that is contained in the annotated dataset.
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Turn-Taking

The turn-taking mechanism is the same for both agents in the simulation and is based
loosely on the rules described by Sacks et al. (1974). Grounded in the information
from the end-of-turn prediction module, the agent has the information on whether its
interlocutor is speaking, while based on its own feedback from the audio dispatching
module, it has the information on whether it itself is currently speaking. With these four
states, the main behavior of the agents is modeled with the following rules:

1. If the interlocutor is speaking, the agent is listening.
2. If the agent is speaking, it continues to speak until the current turn is finished.
3. If both the agent and its interlocutor speak at the same time, the agent stops speaking.
4. If neither the agent nor the interlocutor is speaking, the agent determines when to

speak next.

While these rules describe a general interaction, two rules have to be modified in
order for real turn-taking to take place. First, the third rule needs to be adapted in order
for natural overlaps to occur during the changing of the active speaker. That is why
the definition of “both the agent and its interlocutor speak at the same time” needs to
be adapted. Because of possible overlaps, the agent will only stop speaking when the
double talk is happening in the middle of its own turn. This is defined as being speech
that is not in the first and last second of the utterance of the agent. Thus, small overlaps
during turn-taking do not lead the agent to stop with its utterance.

For smooth turn-taking with gaps and overlaps in between the speaker changes, the
fourth rule needs to be specified. At the end of every utterance, the agents need to
independently decide if a turn-transition should occur or if the current speaker should
keep the turn. For this, the concepts of Lunsford et al. (2016) are employed, in which
turn-continuations and turn-transitions are considered equal alternatives. This means
that for every turn, the two agents are filling competing roles. The current speaker
is determining how long the pause between its current turn and its next turn should
be, while the listening interlocutor determines when to take over the turn (either by
a short overlap of the speaker’s turn or by a gap after the current turn has ended).
Depending on which agent speaks first, the turn-taking is negotiated without the need
for a synchronization other than the speech itself. Both the turn-continuation and the
turn-transition are modeled based on the seconds since the previous turn has ended.
However, the turn-transition point might be negative to result in overlaps.

For the baseline simulation, the turn-continuation is kept statically at 2 seconds, while
the turn-transition point is set to 1 second. This results in a simulation where only turn-
transitions occur, as the pause that the current speaker makes is always longer than the
transition timing of the interlocutor.

3.3.6 Data Logging

For the simulation to be evaluated, data needs to be extracted from every conversation
to be analyzed. For this, data from the speech, text, and concept layer of the simulation
are extracted.
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An audio recorder module is placed at the outputs of the speech dispatching modules
of each agent to capture the clean speech (i.e., speech that has not been altered by
the simulated telephone network module) and at the outputs of the telephone network
simulator modules to capture the degraded speech. The fullband audio is stored in wave
files that can be used for parametric conversation analysis.

The transcriptions of the utterances of both agents are stored in a dialogue file. For
this, a text recorder module is connected to the output of the NLG module of each
agent. The text recorder module only records the uttered turns (turns where the dispatch
flag was set) and adds the agent’s type (caller or callee) and the timestamp to every
transcription.

The simulated conversations are also recorded on the dialogue act level. For this, the
produced dialogue acts of the turn-taking dialogue manager of each agent are collected
by a dialogue act recorder module. Analogous to the text recorder module, the dialogue
act recorder adds the agent’s type and the timestamp.

3.3.7 Simulated Telephone Network

The simulated telephone network consists of two network modules that are unidirec-
tional. Each network module may contain one or more degradations that are applied to
the speech signal before it gets inserted into the right buffer. In addition to the degra-
dations, the network maintains a side channel, where the transcriptions provided by the
NLG module of the sending agent are being transmitted. This side-channel information
is tied to the incoming speech IU so that a delayed transmission of incoming speech
results in the same delay of the side channel.

The delay degradation component of the simulated telephone network contains a
buffer that is filled with the incoming speech IUs. Then, once the buffer is filled to the
size determined by the provided one-way transmission delay, the speech is taken from
the buffer in order of first arrival. This results in the delay of the speech signal by the
provided amount.

The packet loss degradation component requires the packet loss probability and
the burst ratio as arguments. Then, following Equation 2.16 of the narrowband E-
model (ITU-T Recommendation G.107, 2015), the 𝑝 and 𝑞 value for the two-state
Markov model are calculated:

𝑞 =
1 − 𝑃𝑝𝑙

100
𝐵𝑢𝑟𝑠𝑡𝑅

(3.1)

𝑝 =

𝑃𝑝𝑙

100 · 𝑞
1 − 𝑃𝑝𝑙

100

(3.2)

where 𝑃𝑝𝑙 is the packet loss probability and 𝐵𝑢𝑟𝑠𝑡𝑅 is the burst ratio. For each
incoming IU the Markov model is used to determine whether the packet will be lost.
The speech of the affected incoming IUs is set to zeroes, resulting in silence.
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3.4 Evaluation of the Simulation Architecture

In order to evaluate the dialogue management and to test whether turn-taking is necessary
to reproduce the interactivity of a conversation, 100 SCT scenario 11 conversations and
100 RNV scenario 1 conversations are simulated and compared to the SMISS dataset
for analyzing the content of the dialogue and to the CONVSIM dataset to analyze
the conversations on the signal level. While the turn-taking mechanisms have been
implemented, but no turn-taking model has been inserted into the turn-taking dialogue
manager, the simulation is operating in turn-steps (i.e., with a one-second pause in
between each turn).

First, to compare the contents of the real conversations with the simulated dialogue,
the distribution of dialogue acts is compared with the KL dissimilarity measure. Then, a
P-CA is performed on the recorded speech of the CONVSIM dataset and the simulations.
The comparison shows similarities and shortcomings of this baseline version of the
simulation in turn steps.

3.4.1 Dialogue Act Evaluation

The dialogue acts of the simulation are compared to the annotations of the SMISS
dataset. In this dataset, only SCT scenario 11 and RNV scenario 1 conversations are
included, and thus, the simulation is expected to be similar in content. However, due to
the structure of SCT and RNV conversation scenarios, the distribution of dialogue acts
in other scenarios is expected to be comparable.

Figure 3.6 shows the average occurrences of each dialogue act in the empirical
and simulated dialogue for the SCT scenario 11 conversations. Overall, the simulation
matches the distribution of dialogue acts in the empirical data closely. However, the
empirical data has more variance (as shown by the 95 % confidence interval in Fig-
ure 3.6). The dialogue act misunderstanding, while being very uncommon in the
empirical data, is not present in the simulation. This is due to the misunderstandings
not being implemented in the baseline simulation. The modeling of misunderstandings
is described in Chapter 5. The dialogue acts request_info and provide_info have
a higher occurrence rate in the simulations than in the SMISS dataset. Here, the reason
is the lack of turn-taking in the simulation. Because the turn-taking model implements
a fixed higher probability for a turn-transition, the active speaker has to change after
each turn (i.e., after each uttered dialogue act). This leads to some unnatural requests
for information that would have been answered if no speaker change had occurred.

As the greeting and farewell are always integrated into the stack of the agenda-
based dialogue, these greeting dialogue act occurrences have no variance over the
simulations (indicated with a missing error bar).

Figure 3.7 shows the dialogue act distribution in the RNV scenario 1 conversations
of the SMISS dataset and the simulations. Compared to the SCT scenario 11, the
conversation is much less diverse and very structured. Again, the simulated conversations
are able to reproduce the distribution of the empirical data for almost all dialogue acts. As
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Fig. 3.6 Occurrences of dialogue acts in the SCT 11 conversation of the empirical data and the
simulation. Error bars indicate the 95 % confidence interval.

with the SCT simulation, due to the nature of the agenda-based dialogue management,
the greeting dialogue act is fixed at two occurrences per simulated conversation (one
for each interlocutor).

The dialogue act stalling occurs more frequently in the simulated conversation
than in the SMISS dataset. Here, as with the SCT simulations, the missing turn-taking
results in the addition of request_info and provide_info dialogue acts. However,
these are not present in the dataset, and thus, the dialogue act guidance system of the
turn-taking dialogue manager rejects the dialogue act. Because the turn-taking dialogue
manager needs to produce an utterance (because of the forced turn-transition in this
baseline), the fallback implemented in the dialogue manager is the stalling dialogue
act. Only then the interlocutor may continue with their agenda. This mismatch occurs
between every block of numbers in the RNV scenario, as one participant confirms the
last number of their interlocutor and then starts reading the next row of numbers (in a
turn-continuation). This results in 5 additional stalling dialogue acts in each RNV
conversation.

In order to evaluate not only the plain occurrences of the dialogue act but also the order
in which they occur, sequences of dialogue acts were extracted from the simulations and
the empirical data. For this, the number of occurrences of single dialogue acts (1-gram),
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Fig. 3.7 Occurrences of dialogue acts in the RNV 1 conversation of the empirical data and the
simulation. Error bars indicate the 95 % confidence interval.

question and answer pairs (2-gram), and full turn cycles (3-grams) was considered.
These n-grams were constructed independently of which speaker uttered the dialogue
act, as only the order in which they were spoken is relevant for this analysis.

Table 3.3 The Kullback-Leibler dissimilarity for n-gram probability distributions with n-grams
of size 1, 2 and 3 of the natural conversations given the simulated conversations and the entropy
of the natural conversations for each of the n-grams. Both split into SCT and RNV conversations.

KL distance Entropy
n SCT RNV SCT RNV

1 0.0159 0.2191 2.9407 2.0948
2 0.4832 0.3763 5.0441 3.0191
3 0.5110 0.4384 6.3933 3.6678

The distribution of n-grams was then compared with the cross-entropy and KL
dissimilarity metric (Equation 2.34). For the calculation, the binary logarithm was
used, so the results represent the number of bits lost if the n-grams of the empirical
conversations are approximated with the simulated ones. The distributions 𝑃 and𝑄 were
modeled by the relative occurrences in the simulation and the empirical data. Table 3.3
shows the KL distance and cross-entropy for the SCT and RNV n-gram distributions.
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The KL distance between the two distributions is very low for dialogue act occurrences
themselves, which is in line with the distributions shown in Figure 3.6 and 3.7. The KL
distance of the dialogue act 2-grams is higher with 0.48 for SCT and 0.37 for RNV
conversations. This increase is expected due to the increase in the 2-gram possibility
space and can be interpreted as half a bit of information missing when encoding one
distribution with the other. For 3-grams, which encodes whole turn cycles, the KL
distances increase slightly. This trend can also be observed in the cross-entropy, which
represents the number of bits needed to encode the distribution of the empirical data with
the n-grams of the simulation. Generally, the SCT conversations have a slightly higher
distance and cross-entropy than the RNV conversations. This is an indicator of the more
complex and diverse structure of the SCT task compared to an RNV conversation. While
the KL dissimilarity and cross-entropy cannot be interpreted as absolute measurements,
the interpretation of the underlying information theory shows a substantial similarity
between the two n-gram sets.

The analysis of the distribution of dialogue acts and the distance between the n-gram
distributions shows that the agenda-based approach, in combination with the data-driven
dialogue act guiding system, is able to model the two types of conversations sufficiently.
Small deviations in the occurrences of dialogue acts can be attributed to the limited
turn-taking capabilities of this baseline implementation.

3.4.2 Interactivity Evaluation

The interactivity of the simulation is evaluated by comparing the conversational pa-
rameters obtained by a P-CA. In this evaluation, the simulations are compared to the
CONVSIM dataset, which includes more conversation scenarios than the ones simu-
lated. Generally, this will lead to more variance in the empirical data, as the simulation
only reflects one conversation scenario for each conversation type. Because the simula-
tion has a fixed length of silence in between turns, differences in interactivity between
SCT and RNV conversations are to be expected.

Figure 3.8 shows the state probabilities for mutual silence, double talk, speaker A,
and speaker B for the simulated and empirical SCT and RNV conversations. The state
probability MS is higher in the simulations, which can be explained by the static, long
silence in between the turns of the simulation. As in the empirical data, the simulated
RNV conversations have more silence than SCT conversations. However, this effect is
very pronounced in the RNV simulations, leading to over 70 % of the conversation in
this state. The state probability DT is not present for the simulation, as, with the fixed
turn duration of one second, no overlap can occur. The empirical data shows that both
SCT and RNV conversations have high variances in the overlaps, but generally, only
3–4 % of the conversation consist of these states. The state probabilities for SA and SB
are lower for the simulations, as the state probability for MS is taking up most of the
conversation. This effect is more pronounced for the RNV conversations, as the long
turn-taking pauses make up a larger proportion of this task. The empirical data shows
that both speaker A and speaker B share a similar proportion of the conversation with
30 %.
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Fig. 3.8 State probabilities for mutual silence, double talk, speaker A, and speaker B for the
empirical data and the simulations with no turn taking, split by SCT and RNV conversation
types. Error bars indicate the 95 % confidence interval.

The sojourn times for the four states can be seen in Figure 3.9. For the sojourn
time of MS, the fixed delay at one second for both simulated SCT and simulated RNV
conversations can be seen. The slight deviations in the mutual silence can be explained
by small areas of silence at the beginning and end of the utterances. The sojourn times
of DT are non-existent for the simulations, as there is no overlap between speakers.
The empirical data, however, shows shorter overlaps for RNV conversations, suggesting
higher interactivity of this type of conversation. The sojourn times for speaker A and
speaker B are very similar for both simulated and empirical conversations. For SCT
conversations, the average length of SA and SB is around one second, while for RNV
conversations, it is roughly half a second. Due to the simulation of the contents of
these two types of conversations, this difference in utterance length is reflected in the
simulations. Together with the state probabilities, it can be reasoned that the mismatch
between the empirical and simulated data in the probabilities of SA and SB can be
explained by the large pauses between turns alone, as the sojourn time of these two
states indicates an accurate replication of the empirical data.

Figure 3.10 shows the Speaker Alternation Rate (SAR) for the simulated and empirical
SCT and RNV conversations. Due to the mix of short utterance (i.e., sojourn times of
SA and SB) and a smaller state probability of Mutual Silence, the SAR of the empirical
RNV conversations is more than twice as high as for SCT conversations. While there
is a difference in interactivity between the simulated SCT and RNV conversations, it
is not as strong and can mostly be attributed to the shorter sojourn times of SA and
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Fig. 3.9 Sojourn times for mutual silence, double talk, speaker A, and speaker B for the empirical
data and the simulations with no turn taking, split by SCT and RNV conversation types. Error
bars indicate the 95 % confidence interval.

empirical simulation
(no turn-taking)

0

10

20

30

40

50

al
te

rn
at

io
ns

 p
er

 m
in

ut
e

type
SCT
RNV

Fig. 3.10 Speaker alternations per minute for
the empirical data and the simulation without
turn taking, split by RNV and SCT conversation
types. Error bars indicate the 95 % confidence
interval.
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Fig. 3.11 Number of turns in a conversation for
the empirical data and the simulation without
turn taking, split by RNV and SCT conversation
types.

SB. The simulation has less variance in the SAR compared to the empirical data, which
can be partly explained by the large number of conversation scenarios included in the
CONVSIM dataset.
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Figure 3.11 shows the number of turns for the simulated and empirical SCT and
RNV conversations. Due to the accurate modeling of the contents of the conversation,
the overall turn count and the difference in turns between SCT and RNV conversations
are matched well. However, the simulations have a slightly higher number of turns due
to the extra requests required by the lack of turn-taking. Again, lower variance in the
simulated data is present.

The interactivity analysis shows that the simulation is able to reproduce the general
interactivity based on SAR, sojourn times, state probabilities, and the number of turns.
A small but significant difference in the SAR can be seen between the simulated SCT
and RNV conversations. However, without a proper turn-taking model, the simulation
cannot match the difference in the interactivity of the two conversation types.

3.4.3 Simulation Performance

The incremental simulation architecture works based on real-time execution of the in-
cremental dialogue systems and the connecting simulated telephone network. Thus,
the run time of each simulated conversation is proportional to the length of that con-
versation. The incremental architecture decouples the processing of each incremental
module, and the synchronization is achieved with the transmission of incremental units.
Each incremental module runs in a separate computing thread, resulting in processing
utilization of 15 % on average for a single simulation on a 2.6 GHz 6-core Intel Core
i7. The overall memory consumption of a single simulation is about 500 MiB, as the
speech files need to be kept in memory for faster processing.

The structure of independently working incremental modules connected with buffers
between them adds additional processing overhead. While the modules in the simulation
do not perform a computationally expensive operation, the transmittance of incremental
units adds a delay of 5–10 ms per agent, which results in an overall processing delay of
a maximum of 0.02 seconds at real-time processing speed. As the increase of the clock
speed increases the processing of the individual modules, the effective processing delay
increases linearly with the processing speedup. In practice, a simulation at twice the
real-time speed still experiences a processing delay of 0.02 seconds for each transmitted
utterance from one agent to the other, resulting in an effective delay of 0.04 seconds.
Because of this constraint in the parallelization, the processing is set to real-time speed
for all simulations described in this thesis.

3.5 Summary

In this chapter, an incremental conversation simulation is presented that is able to
replicate the conversation scenarios SCT and RNV standardized by the ITU-T. The
simulation is based on retico, a framework for incremental processing specifically built
for this simulation that multiple universities have used in teaching and research since its
creation. The simulation architecture is extendable and provides the necessary interfaces
to model turn-taking, misunderstandings, and potentially other effects of transmission
impairments on the conversation. The simulation is comprised of two virtual agents
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that communicate with each other over a simulated VoIP transmission network. These
agents are implemented with the same behavioral patterns and only differ in the dialogue
management. As part of the agents, the system uses a new turn-taking dialogue manager
approach, where one incremental module plans both what and when to speak. However,
the current turn-taking mechanism implements an interaction in turn steps, validating
the necessity of incremental turn-taking. The dialogue managing part of the module is
based on a goal-oriented agenda-based dialogue manager that uses a stack of dialogue
acts to plan the conversation and react to new input. The general dialogue manager is
instructed to produce conversations of SCT and RNV type by providing conversation
files that include all the concepts that should be given to and requested from the
conversation partner. For the turn-taking part of the module, the turn-taking dialogue
manager uses predictions from an end-of-turn module that predicts the time until the
end of the utterance of its interlocutor. In addition, the turn-taking dialogue manager
uses the information of its own speech dispatching module to know about the status
of its current output. Together, these two information sources are accessible to form
hypotheses about the current state of the turns in the dialogue. For natural language
generation speech synthesis, the two virtual agents make use of training data recorded
in real conversations. However, state-of-the-art speech synthesis algorithms may also
be employed.

The evaluation of this simulation architecture and approach, in general, shows that
the specific implementation is able to reproduce the contents of a conversation on the
dialogue act level and the general differences in turn lengths on the interactivity level.
The distribution of dialogue acts between simulated and empirical conversations shows
very similar characteristics, and the n-gram KL distance between two dialogue act
distributions is small. However, it has been shown that for accurate replication of a
conversation’s interactivity, the simulation needs to implement a form of timely turn-
taking, as the simulation in turn-steps fails to replicate the distinct levels of interactivity.
A final performance evaluation has shown that the simulation is able to run in real-time
on standard hardware.





Chapter 4
Simulating Interactivity and Delay

The evaluation of the simulation architecture with the baseline turn-taking model has
shown to be suitable for use in conversation simulation. However, the differences in
interactivity between the SCT and RNV conversation cannot be reproduced without
the implementation of a turn-continuation and a turn-transition model. Especially for
transmission delay, it has been shown that conversations with different levels of conver-
sational interactivity also degrade differently. Also, the delay itself is not audible but
instead impacts the interactivity of a conversation. Thus, to simulate the difference in
interactivity, as well as the effects of transmission delay on a conversation, it is necessary
to reproduce the differences in turn-taking.

In this chapter, the key parameters to model and analyze the difference in turn-taking
between SCT and RNV conversations are identified. Then, the turn-taking mechanism
described in Chapter 3 is extended by a turn-continuation and a turn-transition model
that is designed to replicate those differences. For this, the turn-taking behavior of the
participants in the SMISS dataset is extracted and analyzed. After validation of the new
turn-taking behavior, a one-way transmission delay is added to the simulated telephone
network, and the performance of the simulation is evaluated on the CONVSIM dataset.
After an adaption of the turn-taking model for conversation with transmission delay,
a final evaluation of the turn-taking and interactivity properties of the simulation is
performed.

The modeling of different interactivity levels in the simulation has been in part pub-
lished in Michael and Möller (2020d) and the simulation of the changes in interactivity
due to transmission delay has been described in Michael and Möller (2020c).

4.1 Simulating Turn-Taking in Conversations with Varying
Interactivity

Research has shown that different conversation types have distinct levels of conversa-
tional interactivity (Raake et al., 2013; Egger et al., 2012). This overall interactivity can
be measured with parameters like the SAR or the conversational temperature, which can
be extracted by a P-CA. These parameters and thus the interactivity of a conversation
is influenced by two factors: the length of each turn and the turn-taking behavior of the
interlocutors. As the length of each turn in a conversation dictates how often speaker
alternations and therefore active turn-taking can take place, this factor produces the

61
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basic interactivity. For example, if a conversation is made up of very long utterances,
quick turn-taking would not result in increasing the interactivity by much. However,
for conversations like the RNV task, where speaker turns are short, a difference in
turn-taking has a larger impact on the overall interactivity.

As shown in the interactivity evaluation in Section 3.4.2, the length of utterances of
each speaker in the simulation accurately reflects the turn lengths in the empirical data.
However, with no turn-taking in place, the interactivity of the simulated conversations
is too low. Thus, the timing of the turn-taking in the SCT and RNV conversations has
to be analyzed in order to model the differences in interactivity accurately.

4.1.1 Turn-Taking on a Conversation Level

To model turn-taking in the simulation, the turn-continuations and transitions between
speakers in empirical conversations have to be examined. For this, the SCT and RNV
conversations of the SMISS dataset have been analyzed with a P-CA. Similar to the turn-
taking analysis of Lunsford et al. (2016), the extracted conversational states are used to
determine the timings of turn-transitions and turn-continuations relative to the end of
the previous utterances. Gaps are determined by the mutual silence in between a speaker
transition and overlaps are determined by the double talk between a speaker transition
(measured negative since the beginning of the new turn starts before the last turn has
ended). Finally, pauses are determined by the mutual silence between the utterances of
the same speaker. For this analysis, a turn-continuation is defined as a pause of at least
400𝑚𝑠 between the utterances of the same speaker, and the gaps, overlaps, and pauses
have been averaged over each conversation. With this preprocessing, an analysis of the
timing of turn-taking on the conversation level can be achieved.
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Fig. 4.1 Distribution of gaps, overlaps, and pauses averaged over SCT scenario 11 and RNV
scenario 1 conversations in the SMISS dataset. Lengths are given in seconds relative to the end
of the previous turn.
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Figure 4.1 shows the distribution of gaps, overlaps, and pauses for the SCT and RNV
conversations of the SMISS dataset. The median lengths of the gaps and overlaps of
the RNV conversations are longer compared to the ones of the SCT conversations.
The distribution of gaps show that for SCT conversations, they lie between 0.8 and
1.2 seconds, while for RNV conversations they center around 0.3 to 1.4 seconds. The
distribution of the overlaps shows a greater variance for the RNV conversations, with
the average overlap length in a conversation being 0.7 seconds before the end of the
previous turn. The pauses also show a higher variance in the RNV conversations,
with some conversations having very short pauses in between speaker turns and others
having long pauses of up to 4 seconds on average. In contrast, the pauses in the SCT
conversations lie around 0.5 to 1.0 seconds, indicating a more homogeneous pausing
behavior in between turns.

Overall the RNV conversations have a higher variance in the turn-taking behavior.
Gaps are shorter on average, although the median gap length is increased. These differ-
ences point toward a fundamental difference in turn-taking behavior between those two
conversation scenarios that needs to be modeled.

4.1.2 Modeling Turn-Taking on the Interaction Level

In order to implement turn-taking in the simulation, the turn-transitions and -continuations
need to be modeled on the level of individual speaker alternations and pauses. In the
simulation architecture, an interface for two separate models was implemented. One
model is active during and shortly after the turn of the simulated interlocutor to decide
when a turn-transition should occur. The other model is active after the agent’s own turn
is completed to determine when a turn-continuation should occur. These two competing
models then determine when, relative to the (predicted) end of the current turn, a tran-
sition or continuation should occur. Depending on which agent starts to speak, the other
agent detects the beginning of a new turn, and the turn-taking models of each agent are
restarted.

The gaps, overlaps, and pauses of the SMISS dataset were extracted for every turn-
taking instance (i.e., transition and continuation), as opposed to the conversation level
information for the analysis. In order to model the transitions and continuations as
equal alternatives, the gaps and overlaps are combined in a turn-transitions metric that
represents the instances of gaps and overlaps in one distribution, with overlaps being
negative and gaps being positive.

Figure 4.2 shows the distributions of turn switches and pauses for the SCT scenario
11 conversations of the SMISS dataset. The distribution of turn switches is centered
around 0.27 seconds, with a slight skew towards the overlaps. Due to the fact that pauses
of a speaker longer than 0.4 seconds are considered turn-continuations, the distribution
of pauses has its maximum at that value.

Figure 4.3 shows the same distributions for the RNV scenario 1 conversations. For
the turn-transitions, the distribution of gaps and overlaps is much narrower compared
to the turn switches of the SCT conversations. Here, the short overlaps of up to 0.5
secodns are more pronounced, but longer overlaps (over 1 𝑠) do not occur. In the turn-
switches, there is a slight increase of occurrences at one second. The distribution for
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Fig. 4.2 Turn-transitions (labeled switches)
and turn-continuations (labeled pauses) in con-
versations of the SCT scenario 11 relative to the
end of the utterance in the previous turn.
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Fig. 4.3 Turn-transitions (labeled switches)
and turn-continuations (labeled pauses) in con-
versations of the RNV scenario 1 relative to the
end of the utterance in the previous turn.

turn-continuations is also narrower as compared to the SCT conversations. However, it
is not as concentrated on the 0.4 second cutoff but more distributed. This may indicate
the turn-continuations between blocks of numbers, where the last number is confirmed,
and the next row begins with that same speaker.

The distribution of individual turn-continuations and -transitions shows that the dis-
tributions of both turn switches and pauses of the RNV conversations are narrower and
shifted in comparison to the SCT scenario. Thus, the turn-taking model in the simulation
needs to take the difference in the behavior into account.
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Fig. 4.4 Cumulative probability of the gaps
and overlaps of the SCT conversations relative
to the end of the utterance in the previous turn.
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Fig. 4.5 Cumulative probability of the pauses
of the SCT conversations relative to the end of
the utterance in the previous turn.

In order to model the distributions of gaps, overlaps, and pauses of the two conver-
sation scenarios, the cumulative probabilities of the distributions were calculated. The
cumulative distribution of the gaps and overlaps in the SMISS conversations are shown
in Figure 4.4 and the distribution of the pauses is shown in Figure 4.5. Both figures
show the distribution for the SCT conversations – the cumulative distributions of the
RNV conversations are analogous, however the distribution for gaps and overlaps are
steeper. For points relative to the end of the previous utterance (x-axis), the distribution
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shows the probability that a turn-transition (for Figure 4.4) or a turn-continuation (for
Figure 4.5) has taken place for that value or a lower value. Thus, by randomly sampling
from the probability values on the y-axis, the original distribution is reconstructed with
the according values on the x-axis.

In order to fit the cumulative probabilities of turn-transitions (Figure 4.4), a logistic
function of the form 𝑓 (𝑥) = 𝐿

1+𝑒−𝑘 (𝑥−𝑥0)
is used to approximate the distribution. For

the probabilities of turn-continuations (Figure 4.5), a quadratic function in the form
of 𝑓 (𝑥) = 𝑎 · 𝑥 1

2 + 𝑏 is used. With these functions, the cumulative turn-transition and
turn-continuation distributions of the SCT and RNV conversations are fitted with a
least-squares approach. The resulting functions are then inverted, in order for them to
map from probabilities to seconds since the end of the previous utterance:

�̂� 𝑆𝐶𝑇 = −0.3226 · log(0.433 · (−1 + 1
𝑥
)) (4.1)

�̂�𝑅𝑁𝑉 = −0.1598 · log(0.17 · (−1 + 1
𝑥
)) (4.2)

�̂�𝑆𝐶𝑇 = 0.9251 · (0.8432 + 2.9231 · 𝑥2) (4.3)

�̂�𝑅𝑁𝑉 = 1.3876 · (0.3607 + 1.2007 · 𝑥2) (4.4)

where �̂� 𝑆𝐶𝑇 and �̂�𝑅𝑁𝑉 are the models of the turn-transitions for the SCT and RNV
conversations respectively and �̂�𝑆𝐶𝑇 and �̂�𝑅𝑁𝑉 are the models of the turn-continuations
for the SCT and RNV conversations respectively, with 𝑥 being the cumulative prob-
ability between 0 and 1. By randomly sampling from these distributions, the original
distributions of turn-transition and turn-continuation timings shown in Figure 4.2 and
4.3 are approximated.

Before these models can be used in the simulation to calculate the desired turn-
transition and turn-continuation timing, the differently modeled behavior for SCT and
RNV conversations need to be unified into one model. Based on the work of Heeman
and Lunsford (2017), where turn-taking is analyzed depending on the context of the
conversation, the different models for switches and pauses are conditionally selected
by the dialogue act that preceded it. As the RNV conversations mostly consist of the
confirm and provide_partial dialogue acts, turn-continuations and -transitions that
occur after those dialogue acts are modeled with the RNV turn-taking estimators (�̂�𝑅𝑁𝑉
and �̂�𝑅𝑁𝑉 ). For all other dialogue acts, the turn-taking mechanism of the simulation is
extended to use the SCT turn-taking models (�̂� 𝑆𝐶𝑇 and �̂�𝑆𝐶𝑇 ).

With the new turn-taking mechanism, the turn-transition time of the currently listening
agent and the turn-continuation time of the currently talking agent is calculated based
on a random sample calculated from the respective model. With turn-transition and
turn-continuations as equal possibilities, the turn-transition time of the random sample
decides whether the active speaker is continuing their turn or if the listener is taking the
next turn with either an overlap of speech or with a gap.
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4.1.3 Evaluation of the Turn-Taking Model

In order to evaluate the improved turn-taking model, 100 SCT scenario 11 conversations
and 100 RNV scenario 1 conversations are simulated and compared to the CONVSIM
dataset. The simulated conversations are analyzed on the signal level by extracting the
interactivity parameters with a P-CA. To highlight the changes due to the turn-taking
model, results of the simulations without turn-taking are included. The empirical data
in the CONVSIM dataset includes more scenarios for both SCT and RNV, and thus,
this data has a higher variance than the simulated data, which consists of one scenario
of each type.
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Fig. 4.6 Double Talk Rate (DTR) of the em-
pirical and simulated SCT and RNV conver-
sations, both with and without the improved
turn-taking mechanism.
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Fig. 4.7 Pause Rate (PR) of the empirical
and simulated SCT and RNV conversations,
both with and without the improved turn-taking
mechanism.

Figure 4.6 shows the overlaps in the form of Double Talk Rate (DTR) of the CON-
VSIM dataset, the simulation without turn-taking, and the simulation with turn-taking.
In contrast to the simulation in turn steps, the new turn-taking model is able to reproduce
the difference in double talk. However, the occurrences of double talk per minute are
slightly lower, with about one instance of double talk per minute less. The difference in
DTR between the SCT and RNV scenarios visible in the empirical data is also visible
in the simulated conversation.

Figure 4.7 shows the Pause Rate (PR) of the CONVSIM dataset and the simulations.
While the PR of the simulation without turn-taking failed to reproduce the difference
between RNV and SCT conversations, the simulation with turn-taking is able to model
the higher PR in RNV conversations. In contrast to the DTR, the PR is too high in
the turn-taking simulation, indicating that the implemented mechanism prefers turn-
continuations over turn-transitions. However, with the turn-taking, the variance in the
data is closer to the empirical conversations than the PR of the simulation in turn-steps
is.

Figure 4.8 shows the lengths of the simulated conversations compared to the em-
pirical dataset. Here, the addition of the turn-taking mechanism dramatically reduces
the duration of the conversation while also increasing the variance. Due to the shorter
utterances and faster turn-taking, the RNV conversations are more concise than the SCT
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Fig. 4.8 Comparison of conversations length between the data of the CONVSIM dataset, the
simulated conversations without turn-taking and the simulation with turn-taking.

conversations. The simulated RNV conversations are slightly longer than their empiri-
cal counterparts, which might indicate that the pauses and gaps in the RNV turn-taking
model are too long.
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Fig. 4.9 Comparison of Speaker Alternation Rates between the data of the CONVSIM dataset,
the simulated conversations without turn-taking and the simulation with turn-taking.

Finally, the Speaker Alternation Rate (SAR) shown in Figure 4.9 shows a clear
difference in the overall interactivity of the two scenarios as well as an increase in
variance. While the simulation without turn-taking already achieved a higher SAR for
RNV conversations than for SCT conversations, the difference was not high enough, and
overall, the SAR of these conversations were lower than the empirical conversations.
The simulation with the turn-taking mechanism models the distribution of SAR better,
with SAR conversations being slightly too interactive and RNV conversations having
slightly fewer speaker alternations.
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Overall, the improved simulation is able to model the differences in interactivity
between SCT and RNV conversations on the level of individual gaps, overlaps, and
pauses, as well as on a conversational level. The SAR as the primary indicator of the
interactivity of a conversation shows the distinct interactivity levels of SCT and RNV
conversations.

4.2 Turn-Taking in Conversations with Delay

In order to predict the impact of transmission delay on the conversational quality,
the conversation simulation needs to model the changes in the conversation structure
and, thus, the impact on the interactivity of a conversation. Because the turn-taking
model implemented in the agents of the simulation is continuous and only depends
on the incoming speech signal and the information provided by the side channel, the
simulation is able to model interruptions and pauses due to delayed speech.

4.2.1 Impact of Delay on Conversations

One of the most notable changes in the conversation structure due to delay is the decrease
in the interactivity of the conversation. Figure 4.10 shows the impact on the interactivity
in the form of SAR for SCT and RNV conversations from the CONVSIM dataset.
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Fig. 4.10 Decrease of the Speaker Alternation
Rate for SCT and RNV conversations at 0𝑚𝑠,
800𝑚𝑠, and 1600𝑚𝑠 delay for the CONVSIM
dataset.
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Fig. 4.11 Decrease of the conversational tem-
perature for SCT and RNV conversations at
0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay for the CON-
VSIM dataset.

While the SCT conversations have an overall lower average SAR at no delay (17.51),
the SAR drops down to 13.59 at 800𝑚𝑠 and 12.45 at 1600𝑚𝑠. In comparison, the RNV
conversations have a much higher average speaker alternation rate at no delay (40.26)
and drop much more severely to 24.97 alternations per minute at 800𝑚𝑠 and 16.09
alternations per minute at 1600𝑚𝑠, which is even lower than the SAR of the SCT con-
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versations at no delay. While the transmission delay impacts both conversation types, the
RNV conversations experience a greater reduction in interactivity. The conversational
temperature (shown in Figure 4.11) shows the decrease in conversational temperature for
both conversation scenarios. The SCT conversations are consistently at below-average
temperatures with 16.9◦ at 0𝑚𝑠, 16.2◦ at 800𝑚𝑠, and 16.5◦ at 1600𝑚𝑠, indicating a
low overall interactivity for all delay levels. In contrast, the RNV conversations can
be considered heated with 29.6◦ at no delay and drop down to 24.4◦ at 800𝑚𝑠 and
finally, room temperature with 20.8◦ at 1600𝑚𝑠. This metric visualizes the differences
in these conversation types, as the temperature of SCT conversations is not affected by
the transmission delay, while the temperature of RNV conversations greatly reduces.

0 800 1600
delay (ms)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

S
oj

ou
rn

 ti
m

e 
M

S
 (s

)

type
SCT
RNV

0 800 1600
delay (ms)

0.0

0.2

0.4

0.6

S
oj

ou
rn

 ti
m

e 
D

T 
(s

)

Fig. 4.12 Sojourn times of the states MS (left) and DT (right) for SCT and RNV conversations
at 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay for the CONVSIM dataset.

Figure 4.12 shows the development of the sojourn times for the states Mutual Silence
(MS) and Double Talk (DT). The average sojourn time MS for SCT conversations
starts slightly higher at no delay, but with increasing delay, the sojourn time for RNV
conversations is higher. For 800𝑚𝑠 delay the average sojourn time of state MS is 0.99 𝑠
for RNV and 0.92 𝑠 for SCT conversations, which is higher than the transmission delay
itself. At 1600𝑚𝑠 delay the sojourn time increases to 1.35 𝑠 for RNV and 1.05 𝑠 for SCT
conversations, which is significantly lower than the transmission delay. This indicates
either that unintended interruptions occur more frequently or that the participants adapt
their turn-taking to the higher delay levels. The average sojourn time of state DT shows
a steady increase for SCT conversations, while for RNV conversation the sojourn time is
highest at 800𝑚𝑠 with 0.3 𝑠 and reduces to 0.25 𝑠 at 1600𝑚𝑠 delay. Again, this indicates
a change in turn-taking behavior, as the increase stagnates at higher delay levels.

Figure 4.13 shows the Intended Interruption Rate (IIR) and Figure 4.14 shows the
Unintended Interruption Rate (UIR) for both SCT and RNV conversations at the three
delay levels. The number of intended interruptions per minute drops significantly for
both SCT and RNV conversations at 800𝑚𝑠 and 1600𝑚𝑠 delay. As the transmission
delay increases, the speakers are no longer able to take turns with short overlaps, which
make up the majority of intended interruptions. The UIR (Figure 4.14) is more than
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Fig. 4.13 Intended Interruption Rate (IIR) for
SCT and RNV conversations at 0𝑚𝑠, 800𝑚𝑠,
and 1600𝑚𝑠 delay for the CONVSIM dataset.
Error bars indicate the 95 % confidence inter-
val.
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Fig. 4.14 Unintended Interruption Rate (UIR)
for SCT and RNV conversations at 0𝑚𝑠,
800𝑚𝑠, and 1600𝑚𝑠 delay for the CONVSIM
dataset. Error bars indicate the 95 % confidence
interval.

twice as high for SCT conversations than for RNV conversations. This is consistent with
the higher state probability and sojourn times for the mutual silence state in the RNV
conversations at 800𝑚𝑠 delay. At 1600𝑚𝑠 delay, the number of unintended interruptions
per minute stays consistent, which indicates that participants adapt their turn-taking to
reduce unwanted interruptions.

4.2.2 Performance of the Turn-Taking Model

To evaluate the performance of the previously described turn-taking model when trans-
mission delay is present, for each of the 2 conversation types (SCT and RNV) and
each of the 3 delay levels (0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠) 100 conversation were simu-
lated, resulting in 600 simulated conversations. These simulations are compared to the
conversations of the CONVSIM dataset.

Figure 4.15 shows the SAR for the simulated and empirical RNV conversations at
the three delay levels. The decrease in SAR at 800𝑚𝑠 delay of around 25 alternations
per minute is visible for both the simulated and CONVSIM data. The SAR at 1600𝑚𝑠
delay decreases further in the empirical data. However, it increases for the simulated
conversations. A similar behavior can be observed in the SAR for the SCT conversation
in Figure 4.16. While the overall number of speaker alternations is much lower, the
increase in delay leads to a constant decrease in SAR for the CONVSIM data. For the
simulations, the decrease again only appears for the 800𝑚𝑠 delay, and an increase in
SAR occurs at 1600𝑚𝑠 delay. This saturation in the decrease of the SAR may occur in the
simulations because the agents strictly follow the implemented turn-taking mechanism.
There, an unintended interruption leads to silence from both interlocutors, after which
the turn-taking model again decides which agent speaks in the next turn. This explains
the initial decrease in SAR at 800𝑚𝑠. For the higher delay level of 1600𝑚𝑠, a substantial
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Fig. 4.15 Speaker Alternation Rate (SAR) of
the empirical and simulated RNV conversa-
tions at 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay.
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Fig. 4.16 Speaker Alternation Rate (SAR) of
the empirical and simulated SCT conversations
at 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay.

amount of each turn is transmitted before the agents notice an interruption. This can
lead to short turns that are completely uttered before an interruption can occur. Based on
the turn-taking model for turn-continuations (Equation 4.3 and 4.4), the agents continue
with the next dialogue act while the turn from the interlocutor is still being transmitted.
Because the turn-taking model does not adapt to these conditions, the agents proceed
with the dialogue, resulting in more speaker alternations than for 800𝑚𝑠 delay.
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Fig. 4.17 Unintended Interruption Rate (UIR)
of the empirical and simulated RNV conversa-
tions at 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay.
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Fig. 4.18 Unintended Interruption Rate (UIR)
of the empirical and simulated SCT conversa-
tions at 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay.

The Unintended Interruption Rate (UIR) of the RNV conversations (Figure 4.17) and
SCT conversations (Figure 4.18) show that the simulation produces more unintended
interruptions when compared to the conversations in the CONVSIM dataset. At 0𝑚𝑠
delay, the UIR for both the empirical and simulated data is 0, as all interruptions are
intended by definition, if no delay is present. While for SCT conversations, the relative
increase between 800𝑚𝑠 and 1600𝑚𝑠 matches the increase of the empirical data, the
dampening observed in the SAR is visible in the UIR of the RNV conversations. There,
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the rate of unintended interruptions decreases from 4.2 interruptions per minute at
800𝑚𝑠 delay to 3.6 interruptions per minute at 1600𝑚𝑠. Again, the steady increase
in interruptions as modeled by the simulation does not reflect the turn-taking behavior
seen in the empirical data.

4.2.3 Adaptations of Turn-Taking for Delay

In order to adapt the turn-taking mechanism to conversations with transmission delay,
the turn-transitions and turn-continuations of the empirical data have to be analyzed
on the level of individual turns. For this analysis, the gaps, overlaps, and pauses are
extracted from the conversations with 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay. For each turn,
the conversation reality from the view of the turn-taking (or -keeping) participant was
used. With this method, gaps, overlaps, and pauses are extracted as seen from the
viewpoint of the participant that takes the next turn, and thus no delay is visible in
these measurements. This highlights only the changes in the turn-taking behavior of the
participants and no changes due to the pure transmission delay.
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Fig. 4.19 Distribution and kernel density esti-
mations of gaps and overlaps (turn-transitions)
for the conversations of the CONVSIM dataset
at 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay.
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Fig. 4.20 Distribution and kernel density es-
timations of pauses (turn-continuatios) for the
conversations of the CONVSIM dataset at 0𝑚𝑠,
800𝑚𝑠, and 1600𝑚𝑠 delay.

Figure 4.19 shows the distribution of gaps and overlaps in the CONVSIM dataset
(of both SCT and RNV conversations), separated by the transmission delay. The kernel
density lines of the three distributions show very similar behavior between the three
delay levels, and a one-way ANOVA shows no significant difference between the distri-
butions. This indicates that the turn-transition decisions of the participants (i.e., overlaps
and pauses) do not change with an increase in transmission delay. Figure 4.20 shows
the distribution of pauses in the CONVSIM dataset. Here, a difference between the
distributions is visible in the kernel density estimations, and the one-way ANOVA is
highly significant with 𝑝 ≪ 0.01. With increasing transmission delay, the distribution
of pauses is flatter, resulting in an increase in the average time of a pause. In comparison,
the standard deviation of pauses at no delay is 0.58 seconds, for 800𝑚𝑠 it increases
to 0.69 and for 1600𝑚𝑠 to 1.21 seconds. This increase indicates that participants in
conversations with noticeable transmission delays change their turn-taking behavior.



4.2 Turn-Taking in Conversations with Delay 73

During turn-continuations, participants wait longer to allow for the delayed speech of
their interlocutor to arrive. Their turn-transition behavior, however, does not change.
Thus, in order to model turn-taking during delayed transmissions, it is sufficient to only
model changes in the turn-continuation model.
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Fig. 4.21 Cumulative probabilities of gaps and
overlaps for the empirical conversations at
0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay.
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Fig. 4.22 Cumulative probabilities of pauses
for the empirical conversations at 0𝑚𝑠, 800𝑚𝑠,
and 1600𝑚𝑠 delay.

The differences in the distributions of both turn-transitions and turn-continuations are
also visible in the cumulative distributions shown in Figure 4.21 and 4.22, respectively.
While the cumulative probabilities of gaps and overlaps show no difference between
the delay levels, the pauses have a lower cumulative probability for higher delay levels.
At 0𝑚𝑠 delay 90 % of all pauses were shorter than 1.33 𝑠, for 800𝑚𝑠 delay this value
increased to 1.84 𝑠 and for 1600𝑚𝑠 delay, 90 % of all pauses were only shorter than
2.38 𝑠. This increase in pause time can be interpreted as a change in the participant’s
behavior due to the transmission delay. After each utterance, the participants wait longer
before continuing to talk, waiting for the delayed arrival of the interlocutor’s turn.

In the empirical conversation, the conversation partners do not have knowledge about
the delay level present in the transmission. Thus the adaption of their turn-taking be-
havior has to be based on a change in the interaction. In order to model this change
in turn-continuation behavior without the information on the current delay level, the
simulation needs to adapt its turn-taking mechanism based on parameters that are
accessible to both agents in the conversation. As both agents can identify unwanted
interruptions (i.e., interruptions that occur in the middle of an utterance, as defined in
Section 3.3.5), the number of occurrences of these interruptions can be used to modify
the turn-continuation behavior of the agents. Based on the number of unwanted inter-
ruptions, the turn-taking timing for the pauses is dampened by a constant factor of 0.2 𝑠,
as determined by the median difference of the cumulative distributions divided by the
average number of unwanted interruptions in a simulation. As this dampening reduces
the number of unwanted interruptions, the turn-taking speed finds an equilibrium. This
results in the delay-adapted turn-continuation models for SCT and RNV conversations:ˆ︃𝐶𝐷𝑆𝐶𝑇 = 0.9251 · (0.8432 + 2.9231 · 𝑥2) + (𝐶𝑈𝐼 · 0.2) (4.5)

ˆ︃𝐶𝐷𝑅𝑁𝑉 = 1.3876 · (0.3607 + 1.2007 · 𝑥2) + (𝐶𝑈𝐼 · 0.2) (4.6)
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where ˆ︃𝐶𝐷 is the new turn-continuation model adapted for the overall one-way delay
and 𝐶𝑈𝐼 is the number of unwanted interruptions the agent has experienced. Due to the
delayed transmission of the speech signal, this unwanted interruption counter may be
different between the agents, resulting in slightly different turn-taking behavior. With
higher delay levels, the number of unwanted interruptions increases and, thus, the pause
duration of each agent increases as well. This, in turn, decreases the likelihood of further
unwanted interruptions occurring, which creates a stabilizing turn-taking adaption.

The final, delay-adapted turn-taking model uses Equations 4.1 and 4.2 for turn-
transitioning and Equations 4.5 and 4.6 for turn-continuation, modeling the dampening
of pauses in between turns as shown in Figure 4.22.

4.2.4 Evaluation of the Adapted Turn-Taking Model

In order to evaluate the performance of the delay-adapted turn-taking model, 30 SCT
and 30 RNV conversations from 0𝑚𝑠 transmission delay up to 2000𝑚𝑠 transmission
delay in 100𝑚𝑠 time steps were simulated, resulting in 1260 simulated conversations.
These conversations are compared to the conversation with 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠
transmission delay from the CONVSIM dataset. The interactivity and turn-taking are
evaluated with P-CA parameters on the conversation level and on the turn-transition and
-continuation level with the help of gaps, overlaps, and pauses.
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Fig. 4.23 Speaker Alternation Rate of empirical and simulated conversations with delay-adapted
turn-taking for SCT and RNV conversations.

Figure 4.23 shows the SAR for both simulated and empirical conversations at various
delay levels. The simulated RNV and SCT conversations with no delay match the
experimental data, as the turn-taking algorithm is not impacted by the adaption at this
stage. With an increase in delay, the simulated conversation’s speaker alternation rate
drops until it reaches saturation at around 800𝑚𝑠 delay. For RNV conversation, this
results in the conversation having a higher SAR at 1600𝑚𝑠 than the empirical data, and
for SCT conversation, it is slightly too low at that delay level. Overall, the simulation
with the adapted turn-taking mechanism replicates the interactivity behavior of both
SCT and RNV conversation of the CONVSIM dataset over the three delay levels.
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Fig. 4.24 Unintended Interruption Rate of em-
pirical and simulated conversations with delay-
adapted turn-taking for RNV conversations.
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Fig. 4.25 Unintended Interruption Rate of em-
pirical and simulated conversations with delay-
adapted turn-taking for SCT conversations.

The Unintended Interruption Rate (UIR) of the simulated and empirical RNV con-
versation is shown in Figure 4.24. The simulated conversations have a higher UIR up
to a peak at 700𝑚𝑠 with an average UIR of 4.5 unintended interruptions per minute.
While this value is significantly higher than the UIR of the RNV conversations in the
CONVSIM dataset, the dampening reduces the number of unintended interruptions for
higher delay levels. At 1600𝑚𝑠 the UIR of the simulated RNV conversations matches
the empirical data. The UIR of the simulated and empirical SCT conversations is shown
in Figure 4.25. For this conversation type, the UIR of the empirical conversations is
generally higher, which is accurately modeled by the simulation. In contrast to the
RNV simulations, the overshooting of unintended interruptions at 700𝑚𝑠 is not visible
here. The dampening results in a steady UIR of around 4.2 unintended interruptions
per minute, which is in agreement with the empirical data. Overall, the variance in the
empirical data is very high, which can be explained by the multitude of SCT and RNV
scenarios included in the CONVSIM dataset, while the simulations only model one
scenario of each conversation type.

Figure 4.26 shows the gaps and overlaps and 4.27 the pauses for the simulated
conversations at the three delay levels (RNV and SCT conversations are combined).
The simulation is able to reproduce the changes in turn-continuation (i.e., pauses) and
the consistency of turn-transitions (i.e., gaps and overlaps) of the empirical data as
shown in Figure 4.19 and 4.20. However, the distributions show small differences in
gaps and overlaps, resulting in a significant difference between the three delay levels as
determined by a one-way ANOVA. However, as measured with the results of SAR and
UIR, the turn-taking modeling is able to distinguish between the delay levels sufficiently
enough to model these conversation-level phenomena.

Overall the simulation is able to model the differences in turn-taking during delayed
speech transmission without the need for a delay-based parameter of the turn-taking
models. This results in an overall acceptable reproduction of the interactivity of the
conversation types, as well as the changes in interactivity due to delay.
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Fig. 4.26 Distribution and kernel density esti-
mations of gaps and overlaps (turn-transitions)
for the simulated conversations at 0𝑚𝑠, 800𝑚𝑠,
and 1600𝑚𝑠 delay.
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Fig. 4.27 Distribution and kernel density esti-
mations of pauses (turn-continuations) for the
simulated conversations at 0𝑚𝑠, 800𝑚𝑠, and
1600𝑚𝑠 delay.

4.3 Summary

In this chapter, the simulation was extended with a turn-taking mechanism that is able to
reproduce the differences in the interactivity of SCT and RNV conversations, as well as
the changes in interactivity due to transmission delay. In order to implement a model that
enables the simulation to perform turn-taking, the differences in the interactivity of SCT
and RNV conversations were analyzed on the conversation level. Then, a turn-taking
model was proposed on the level of individual turns by modeling turn-continuations
based on the pauses in turn-keeping and turn-transition based on the gaps and overlaps
between speaker changes. The turn-taking mechanism of the simulation then uses the
turn-transition and turn-continuation depending on the type of dialogue act that is
currently uttered. An evaluation of this approach showed that the turn-taking model is
able to replicate the differences in interactivity between the two simulated conversation
types.

This turn-taking model was then used in a conversation with added transmission
delay. An analysis of the resulting simulated conversations showed that the turn-taking
model is able to replicate the changes in interactivity for low levels of delay. However,
for higher delay levels, the interactivity of the simulated conversations starts to deviate
from the empirical conversations. Thus, the gaps, overlaps, and pauses of conversations
at different delay levels were analyzed and revealed that there is a significant change
in turn-taking behavior during higher delay levels. Specifically, the duration of pauses
in turn-continuations (i.e., pauses in between turns of the same speaker) increased
with higher levels of transmission delay. This behavioral change was implemented into
the turn-taking mechanism by dampening turn-continuations based on the number of
unwanted interruptions an agent encounters in a conversation.

A final evaluation showed that the improved and delay-adapted turn-taking model
of the simulation is able to both replicate the interactivity levels of SCT and RNV
conversations, as well as the degradation of the interactivity due to delay.



Chapter 5
Simulating Conversation Disruptions and Packet Loss

The effects of packet loss on a conversation and its perceived quality can be widely
different, depending on which and how many parts of the conversation are affected. For
small numbers of lost packets that come in short bursts, the degradation mainly affects
the audible perception of the transmitted speech. While PLC methods of modern codecs
try to hide the loss of the speech by interpolating the signal, artifacts such as a robotic
voice or even small section of silence can be perceived by the user. The effects of this
type of short packet loss on the conversational quality have long been studied and can be
modeled by the parameter of the transmission (e.g., the packet loss probability and burst
ratio). However, with increasing packet loss probability or, more commonly, rare but
long bursts of consecutively lost packets, the amount of affected speech starts to impact
the understandability and, thus, the flow of the conversation. Depending on where the
packet loss burst occurs, the transmission of information can be corrupted, resulting
in the need to retransmit the information with repairing dialogue. This changes both
content and structure of the conversation, which cannot be modeled by the parameters
of the transmission alone. That is why the conversation simulation needs to model the
impact of highly bursty packet loss on the conversation.

This chapter focuses on analyzing the structure of conversations affected by bursty
packet loss and modeling the changes in the interaction. First, the interactivity of con-
versations with packet loss is investigated, and the concept of conversation disruptions
is defined, which formalizes misunderstandings that occur due to lost packets. With the
newly defined concept of conversation disruptions, the conversations of the CONVSIM
dataset are analyzed, and differences in the interactivity are shown. Then, based on a
turn-level analysis, conversation disruptions are modeled for the use in the simulation.
Finally, the disruptions and the changes in interactivity are simulated and the resulting
conversations compared to the empirical data.

The analysis of the impact of bursty packet loss on the conversational structure has
been published in part in Michael (2021) and Michael and Ibrahim (2022).

5.1 Interactivity in Conversations with Packet Loss

In order to analyze the impact of bursty packet loss on the interactivity of a conversation,
the conversations of the CONVSIM dataset with 0 %, 15 %, and 30 % packet loss and a
burst ratio of 4.0 were used to perform a P-CA.

77
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Fig. 5.1 Length of SCT and RNV conversa-
tions in the CONVSIM dataset at 0 %, 15 %,
and 30 % bursty packet loss.
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Fig. 5.2 Number of turns in SCT and RNV
conversations of the CONVSIM dataset at 0 %,
15 %, and 30 % bursty packet loss.

Figure 5.1 shows the median and distribution of the conversation lengths of SCT
and RNV conversations at 0 %, 15 %, and 30 % packet loss. While RNV conversations
show an increase in length with higher packet loss probabilities, the SCT conversations
become shorter at 15 % and then increase in length again at 30 % packet loss. Generally,
RNV conversations are shorter than SCT conversations, even at high levels of packet
loss. The increase in conversation length can also be seen in the number of turns
(Figure 5.2). Both SCT and RNV conversations have a similar number of turns at 0 %
packet loss. Again, at 15 %, the number of turns goes down for SCT conversations,
while for RNV conversations, it increases. While the interactivity parameters alone are
not able to explain this reduction in conversation length and turn count for the SCT
conversations at 15 % packet loss, the transcriptions of the conversations indicate a
reduction of small-talk. Participants tend to leave out more open exchanges when the
conversation is affected by packet loss. At 15 % packet loss, this leads to a decrease in
the conversation’s length. At 30 % packet loss, the repairing dialogue due to the severe
packet loss leads to a further increase in length and number of turns. Because the RNV
task does not leave room for open conversations, this phenomenon can only be observed
for SCT conversations.

The increase in conversation length and turn count for the higher packet loss levels in-
dicates that misunderstanding speech causes repairing dialogue, which needs additional
turns and thus prolongs the conversation. Table 5.1 shows the median values for length
and turn count and also the increase relative to the 0 % packet loss condition. While the
relative changes of the turn count seem to match the relative change in the conversation
length, the median length of RNV conversations is almost twice as long (90 %) at the
30 % packet loss level. In contrast, the increase in turn count is only 23.08 %. Because
the length of each turn is similar for each packet loss condition, the disproportionate
increase in conversation length cannot be attributed solely to the increase in the length
of the utterances.

Figure 5.3 shows that the increase in length stems in part from the fact that the
RNV conversations are slowed down by the increasing packet loss, while the SCT
conversation stays at the same level of SAR. The state probability of Mutual Silence in
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Table 5.1 Median length and turn count and turn length for the SCT and RNV conversation at
0, 15 and 30 % packet loss and increase of length and turn count relative to the 0 % packet loss
condition.

Scenario Packet
Loss

Median
length (s)

increase
in %

Median
turn count

increase
in %

Median
turn length (s)

0 % 135.15 - 24 - 1.25
SCT 15 % 104.50 −22.68 20 −16.67 1.17

30 % 162.05 19.90 30 25.00 1.29

0 % 57.90 - 25 - 0.63
RNV 15 % 71.82 24.04 26 4.00 0.61

30 % 109.95 89.90 32 23.08 0.75
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Fig. 5.3 SAR of SCT and RNV conversations
in the CONVSIM dataset at 0 %, 15 %, and
30 % bursty packet loss.
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Fig. 5.4 State probability MS of SCT and
RNV conversations in the CONVSIM dataset
at 0 %, 15 %, and 30 % bursty packet loss.

Figure 5.4 shows that the lower speaker alternation rate is mainly caused by an increase
in silence. This indicates that the high interactivity scenario (i.e., the rapid exchange
of numbers) has an influence on how much packet loss impacts the conversation. One
reason for the difference in the two scenarios might be the density of information in each
utterance. While the sentences in SCT conversations tend to be longer, with relatively
few words important for the understanding of the conversation, the utterances in RNV
conversations mostly consist of only the information that needs to be transmitted in
order to advance the conversation.

5.2 Disruptions in Conversations with Packet Loss

Longer bursts of packet loss result in the omission of information that might be impor-
tant for continuing the conversation. Depending on the importance of the utterance that
has been affected, the listener might need to ask for a retransmission of information.
A participant in a conversation with packet loss intuitively considers the impact on the
understandability and either continues with the dialogue with incomplete or interpolated
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knowledge about the previous utterance or actively asks for retransmission of the in-
formation with repairing dialogue like “I didn’t understand that.” or “Could you repeat
that?”. This decision is based on the context of the conversation, as well as the listener’s
own ability to reconstruct the meaning of the packet loss-affected utterance.

As a third party, however, the reason behind such a disruption of the conversation
cannot be reconstructed from the dialogue alone. Assessing the decision process behind
each packet loss burst is unpractical, as it would itself disrupt the conversation. That
is why understandability in a conversation cannot be assessed without the informa-
tion about the context available in that specific scenario. Thus, in the analysis for the
conversation simulation, only conversation disruptions are considered.

The term conversation disruption is defined here as every turn in which a conversation
partner has to ask for the retransmission of information. These information requests
might be of general nature (e.g., “Could you please repeat that?”) or might refer to a
specific concept (e.g., “Which pizza was that?”), but always relates to the turn directly
preceding it. A conversation disruption is not necessarily rooted in a misunderstanding
due to packet loss but may also occur due to other circumstances. Also, not every part
of an utterance that is misunderstood has to cause a conversation disruption. When the
meaning of a turn can be extracted from the remaining speech, the interlocutors often
continue with the dialogue without acknowledging the packet loss.

With the help of the transcriptions, each conversation disruption was annotated, and
for each turn, the percentage of lost speech was calculated. The packet loss information,
together with the transcriptions, were used to determine which words were affected by
packet loss. For the analysis, a word with at least 50 % of lost phonemes was considered
“lost” (i.e., not understandable). Figure 5.5 shows an exemplary part of a conversation
with all available annotations.

Speaker A

Packet Loss

Lost Word

Speaker B

Lost Word

= Conversation Disruption

Fig. 5.5 Exemplary overview of an annotated conversation. The speech is recorded in separate
channels, the packet loss pattern is shown in red, the conversation is transcribed and force aligned.
Conversation Disruptions are marked in blue and words where more than 50 % of phonemes
were affected by packet loss are annotated in red.

Figure 5.6 shows the total number of conversation disruptions for SCT and RNV
conversations at the three packet loss levels. While there are almost no disruptions in
conversations without packet loss for both SCT and RNV conversations, the average
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number of disruptions increases to 1.5 at 15 % packet loss and to 5.28 at 30 % packet
loss. This increase shows that, as expected, the higher packet loss probabilities incite
more conversation disruptions. However, even though the average length and number
of turns of SCT and RNV conversations are different, the number of conversation
disruptions shows no significant difference.
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Fig. 5.6 Number of conversation disruptions for SCT and RNV conversations of the CONVSIM
dataset with 0 %, 15 %, and 30 % bursty packet loss.

0 15 30
packet loss (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

di
sr

up
tio

ns
 p

er
 m

in
ut

e

type
SCT
RNV

Fig. 5.7 Conversation disruption rate for con-
versations of the CONVSIM dataset with 0 %,
15 %, and 30 % bursty packet loss.
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Fig. 5.8 Average disruptions per turn for con-
versations of the CONVSIM dataset with 0 %,
15 %, and 30 % bursty packet loss.

The Conversation Disruption Rate (CDR), defined as the number of conversation
disruptions per minute, is shown in Figure 5.7. Here, a clear distinction between SCT and
RNV conversations at the 15 % and 30 % packet loss level is visible. RNV conversations
have more than twice the CDR than SCT conversations, which can be explained by
the much shorter turns. The number of conversation disruptions per turn (shown in
Figure 5.8) shows no significant difference between the conversation types, which is to
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be expected, as the number of conversation disruptions as well as the number of turns in
both SCT and RNV scenarios are similar. While the experience of the participants might
focus on the number of disruptions relative to the amount of information transmitted
(i.e., number of turns), the conversation structure and interactivity are dependent on the
CDR.

10 20 30 40 50
speaker alternations per minute

0

1

2

3

4

5
di

sr
up

tio
ns

 p
er

 m
in

ut
e

type
SCT
RNV

Fig. 5.9 Correlation between the Conversation Disruption Rate and the Speaker Alternation
Rate for conversations of the CONVSIM dataset with 15 % and 30 % bursty packet loss, split by
SCT and RNV conversations.

Figure 5.9 shows the moderate positive linear correlation of the SAR and the CDR
with 𝑟 = 0.53 and 𝑝 < 0.01. For this correlation only conversations with 15 % and
30 % packet loss were considered. This indicates that a higher speaker alternation rate
generally leads to more conversation disruptions when bursty packet loss is present.

5.3 Simulating Conversations with Bursty Packet Loss

The analysis of conversation with bursty packet loss has shown that this degradation
affects a conversation in two ways. First, the bursts of lost speech lead to misunderstand-
ings that require repairing dialogue for the conversation to continue. These conversation
disruptions increase the length of the conversation and add additional repairing turns.
Secondly, the impaired transmission of speech leads to a change in the turn-transition
behavior of the interlocutors. The transition between speakers is performed with more
silence in between the utterances (i.e., gaps). This behavioral change leads to more and
longer stretches of mutual silence. The analysis has also shown that the difference in
conversational interactivity cannot be explained by only one of these effects.

Thus, to simulate the effects of bursty packet loss on the conversation, both conver-
sation disruptions and the change in turn-taking behavior have to be modeled. For this,
the conversation disruptions need to be analyzed and reproduced on a turn level and the
turn-continuation mechanism of the simulation has to be adapted.
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5.3.1 Modeling Conversation Disruptions in a Simulation

While conversation disruptions affect the overall structure and interactivity of the con-
versation, they are rooted in a misunderstanding of parts of the utterance due to packet
loss. Thus, to model these conversation disruptions and the utterances that caused them,
the phenomenon has to be analyzed on the turn-level. That is why the relationship be-
tween the amount of lost speech (due to packet loss) in each utterance and the following
occurrence of a conversation disruption is investigated.
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Fig. 5.10 Logarithmic histogram of lost speech
for each utterance in the CONVSIM dataset, di-
vided by whether they resulted in a conversation
disruption or not.
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Fig. 5.11 Zoomed linear histogram of lost
speech for each utterance in the CONVSIM
dataset, divided by whether they resulted in a
conversation disruption or not.

Figure 5.10 shows the logarithmic distribution and kernel density estimation of the
utterances based on what percentage of speech was lost and separated by whether
these utterances resulted in a conversation disruption in the next turn (i.e., repairing
dialogue) or not. This analysis only considers the amount of lost speech in each utterance
and is done independently of the packet loss probability of the transmission. Thus,
utterances of conversations with 0 % 15 % and 30 % packet loss were combined in the
analysis. As utterances without any lost speech make up the vast majority of data points,
Figure 5.11 shows the same distribution in linear scale but zoomed in on the y-axis.
Here the relative scale between the two categories of utterances is visualized. While the
distribution decreases for both categories at over 50 % of speech lost, the relative amount
of conversation disruption causing utterances increases for lost speech between 0 and
90 %. For utterances with over 90 % of speech lost, the relative percentage of utterances
that caused a disruption decreases again. From the transcriptions and recorded audio
of the conversations, it can be hypothesized that the amount of lost speech results in
the listener not noticing that the interlocutor was speaking at all. Thus, relatively fewer
conversation disruptions are observed after utterances with such high percentage of lost
speech.

In order to model the occurrences of conversation disruptions based on the percentage
of lost speech in the preceding utterance, the relative amount of understood utterances
have to be estimated from the two distributions in Figure 5.11. For this, the samples of
utterances that produced a conversation disruption and those that did not were sampled
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Fig. 5.12 Average of utterances that lead to a conversation disruption at levels of percent lost
speech, as well as a polynomial fit for the resulting curve.

with a delta of 0.1 at every percentage of lost speech to determine the percentage of
utterances that caused a conversation disruption at that level. This percentage is shown
in Figure 5.12, where the relative occurrences of conversation disruption increase with
higher amounts of lost speech. The resulting conversation disruption probability is then
modeled based on the percentage of lost speech as a polynomial function with a least-
squares fit. The resulting function has a Root-Mean-Square Error (RMSE) of 1.9 % and
is used together to predict the probability of a disruption in the following turn:

ˆ︃𝑃𝐶𝐷 = 0.1394 · 𝑃2
𝐿𝑆 + 0.1652 · 𝑃𝐿𝑆 + 0.0035 (5.1)

where 𝑃𝐿𝑆 is the ratio of lost speech in the utterance and ˆ︃𝑃𝐶𝐷 is the estimated
probability of a conversation disruption in the following turn.

To integrate this model into the simulation, the information about the lost speech of
each utterance has to be available to the agents. Thus, the simulated telephone network
introduces the status of the packet loss into the side channel. Then, the turn-taking
dialogue manager of each agent calculates from the relative amount of lost packets of
each utterance the percentage of lost speech. With Equation 5.1 and a random number
generator, it is decided whether the agent misunderstands the previous utterance. If this
is the case, the dialogue manager inserts a misunderstanding dialogue act with the
appropriate concepts on top of the stack. As with all other dialogue, the dialogue act
guiding system distributes misunderstandings based on the occurrences in the training
data. As the SMISS dataset does not contain bursty packet loss and thus, only a few
conversation disruptions, 10 SCT and RNV conversations with 15 % packet loss and
10 SCT and RNV conversations with 30 % packet loss of the CONVSIM dataset are
transcribed, annotated and added to the training set of the simulation.
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5.3.2 Modeling Turn-Taking in a Simulation with Packet Loss

While the conversation disruptions change the structure of the conversation, they alone
cannot explain the reduction in interactivity in conversations with bursty packet loss. To
quantify and later model the changes in turn-taking on the level of turn-transitions and
turn-continuations, the gaps, overlaps, and pauses of the conversations of the CONVSIM
dataset at 0 %, 15 %, and 30 % bursty packet loss are extracted and analyzed.
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Fig. 5.13 Distribution and kernel density esti-
mations of gaps and overlaps (turn-transitions)
for the conversations of the CONVSIM dataset
at 0 %, 15 %, and 30 % bursty packet loss.
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Fig. 5.14 Distribution and kernel density esti-
mations of pauses (turn-continuations) for the
conversations of the CONVSIM dataset at 0 %,
15 %, and 30 % bursty packet loss.

Figure 5.13 shows the timing of the turn-transitions in the form of gaps and overlaps in
the conversations of the CONVSIM dataset at the three packet loss levels (RNV and SCT
conversations are combined). A one-way ANOVA shows a significant difference between
the turn-transition distributions. This indicates that the conversation partner waits longer
when taking over the turn from their interlocutor. Thus interruptions become more
sparse, and there is more silence between turns. The distribution of turn-continuations
as shown in Figure 5.14 shows no discernible difference between the three packet loss
levels, and the one-way ANOVA is not significant.

The cumulative probabilities of these distributions show the differences in turn-
transition and turn-continuation probabilities. Figure 5.15 shows the cumulative distri-
bution of the turn-transitions, which shows the significant difference in the probability
relative to the seconds since the end of the previous utterance. Figure 5.16 shows the
cumulative probability for turn-continuations, which shows no significant difference.
One explanation for this behavior might be that participants are under more cognitive
load when listening to the highly degraded speech of their interlocutor and thus, take
more time taking the turn. For turn-continuations, this increase in load is not present,
and turn-continuation times stay consistent between the levels of packet loss.

In order to model these changes in turn-transitioning behavior, the turn-transition
behavior of the simulated agents has to be adapted. In degraded conversations, the par-
ticipants do not know the exact amount of packet loss that is present in the conversation
but only hear the amount of lost packet in the current turn of their interlocutor. Thus,
modeling the changes in turn-transitions based on the packet loss probability alone
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Fig. 5.15 Cumulative probability of gaps and
overlaps (turn-transitions) for the conversations
of the CONVSIM dataset at 0 %, 15 %, and
30 % bursty packet loss.
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Fig. 5.16 Cumulative probability of pauses
(turn-continuations) for the conversations of
the CONVSIM dataset at 0 %, 15 %, and 30 %
bursty packet loss.

would not be sufficient. In order to achieve a dampening effect of turn-transitions that is
consistent throughout the conversation, the changes in the model are based on the num-
ber of conversation disruptions that have occurred (and thus implicitly on the amount
of lost speech in incoming turns). Based on the number of conversation disruptions,
the turn-transitioning is dampened by a constant factor of 0.055 seconds, determined
by the median difference of cumulative distributions divided by the average number of
conversation disruptions. This results in the packet-loss-adapted turn-transition model
for SCT and RNV conversations:

̂︆𝑇𝑃𝐿𝑆𝐶𝑇 = −0.3226 · log(0.433 · (−1 + 1
𝑥
) + (𝐶𝐶𝐷 · 0.055) (5.2)

̂︆𝑇𝑃𝐿𝑅𝑁𝑉 = −0.1598 · log(0.17 · (−1 + 1
𝑥
) + (𝐶𝐶𝐷 · 0.055) (5.3)

where ̂︄𝑇𝑃𝐿 is the new turn-transition model adapted for packet loss and 𝐶𝐶𝐷 is
the number of conversation disruptions the agents have experienced. Each simulated
agent counts only the numbers of their own conversation disruptions, and thus, these
counts might be different between the agents. With an increase in bursty packet loss,
conversation disruptions also increase, resulting in slower turn-transitioning time.

The resulting delay- and packet-loss-adapted turn-taking model uses Equations 5.2
and 5.3 for the determination of turn-transitions and the Equations 4.5 and 4.6 for the
determination of turn-continuations for the dialogue acts dominant in the SCT and RNV
conversation, respectively.

5.4 Evaluation of Simulations with Disruptions and Packet Loss

In order to evaluate the performance of the two modifications of the simulation regarding
bursty packet loss, 30 SCT and 30 RNV conversations from 0 % packet-loss up to 30 %
packet-loss in 5 percent point increases and a burst ratio of 4.0 were simulated, resulting
in 420 simulated conversations. They are compared to the conversations with 0 %,
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15 %, and 30 % packet loss with a burst ratio of 4.0 of the CONVSIM dataset. First, the
occurrences of conversation disruptions in the simulation are compared to the empirical
data. Then, the changes in interactivity parameters of the conversation are analyzed
by performing a P-CA on both the simulated and empirical conversations. Finally, the
packet-loss-adapted turn-taking model is evaluated by comparing the gaps, overlaps,
and pauses of the simulations with the distributions of turn-taking in the CONVSIM
dataset.

Figure 5.17 shows the number of conversation disruptions per minute for simulated
and empirical RNV conversations and Figure 5.18 for SCT conversations. For both
simulated and empirical conversations, the number of disruptions per minute increases
with higher packet loss probabilities. However, while the CDR increases to 3.25 at 30 %
packet loss for the empirical RNV conversations, the empirical SCT conversations only
has 1.49 conversation disruptions per minute at the same packet loss probability. This
difference is replicated by the simulation for both conversation types, with SCT con-
versations having a slightly too high CDR at 30 % packet loss, and RNV conversations
having a slightly too high CDR at 15 % packet loss. In order to assess the conversation
disruptions not only on a time basis but also on a turn basis, the disruptions per turn
have to be analyzed.
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Fig. 5.17 Conversation Disruption Rate in
RNV conversations of the CONVSIM dataset
(experiment) and simulations at various packet
loss probabilities with a burst ratio of 4.0.
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Fig. 5.18 CDR in SCT conversations of the
CONVSIM dataset (experiment) and simula-
tions at various packet loss probabilities with a
burst ratio of 4.0.

Figure 5.19 shows the conversation disruptions per turn for empirical and simulated
RNV conversations and Figure 5.20 for SCT conversations. Here, the empirical SCT
and RNV conversations show no significant differences. Again, the simulation is able
to replicate the disruptions per turn for both SCT and RNV conversations sufficiently
while being slightly too high for both conversation types at both 15 % and 30 % packet
loss. The different behavior of the conversation types in CDR and the absence of a
difference in disruptions per turn are modeled by the simulated conversational data and
confirm the conversation disruption model implemented to be suitable to replicate this
phenomenon.
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Fig. 5.19 Disruptions per turn in RNV conver-
sations of the CONVSIM dataset (experiment)
and simulations at various packet loss proba-
bilities with a burst ratio of 4.0.
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Fig. 5.20 Disruptions per turn in SCT conver-
sations of the CONVSIM dataset (experiment)
and simulations at various packet loss proba-
bilities with a burst ratio of 4.0.
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Fig. 5.21 Distribution and kernel density esti-
mations of gaps and overlaps (turn-transitions)
for the simulated conversations at 0 %, 15 %,
and 30 % bursty packet loss.
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Fig. 5.22 Distribution and kernel density esti-
mations of pauses (turn-continuations) for the
simulated conversations at 0 %, 15 %, and 30 %
bursty packet loss.

Figure 5.21 shows the distribution of turn-transitions in the form of gaps and overlaps
of the simulated conversations. The modeled difference in behavior due to the bursty
packet loss results in the slower turn-transitioning at higher packet loss levels. However,
the distribution of gaps over 0.6 seconds shows a slight bias toward the longer turn-
transition times (compared to Figure 5.13). The distribution of turn-continuations in
Figure 5.22 shows a similar distribution as the empirical conversation. Differences in
the distributions of the packet loss levels can be seen, even though the turn-continuation
algorithms were not adapted, and the empirical data shows no significant effect of packet
loss on the pauses. Especially the distribution of pauses at 0 % packet loss is flatter than
the distributions at 15 % and 30 % packet loss and the empirical turn-continuation
distributions. However, the effect of packet loss on the simulated turn-continuation is
small.
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With the changes in the turn-taking mechanism and the simulation of conversation
disruptions evaluated separately, the overall impact of packet loss on the interactivity of
the simulated conversations is evaluated. For this, the changes in the number of speaker
alternations per minute are evaluated at each level of bursty packet loss and compared
to the empirical data.
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Fig. 5.23 Speaker Alternation Rate for simulated and empirical RNV (left) and SCT (right)
conversations at various packet loss probabilities with a burst ratio of 4.0.

Figure 5.23 shows the SAR in speaker alternations per minute for the RNV and
SCT conversations. For the RNV conversations, the simulation matches the SAR of the
empirical data and is able to replicate the drop in alternations per minute at higher packet
loss rates. For SCT conversations, the simulation is able to model the consistency of
SAR over the different packet loss levels. However, overall the SAR is modeled slightly
too high, with the average SAR of the simulations being 20.5 while the average SAR of
the empirical SCT conversations is 18.

Overall the packet-loss-adapted simulation is able to sufficiently replicate the occur-
rences of conversation disruptions and the changes in turn-continuations at high packet
loss levels. While especially the modeling of conversation disruptions relies on informa-
tion transmitted by the simulated telephone network through a side channel, the agents
themselves have no knowledge about the packet loss and burstiness levels. The changes
in behavior are modeled only based on the amount of lost speech of each utterance
and the probability. These models enable the simulated conversations to replicate the
changes in interactivity due to bursty packet loss.

5.5 Summary

In this chapter, the simulation was extended with a conversation disruption model that
adds dialogue to repair misunderstandings, as well as a turn-taking model that reflects the
changes in interactivity due to bursty packet loss. An analysis of empirical conversation
with high amounts of bursty packet loss revealed that the interactivity of a conversation,
measured by lengths of silences (state probability MS) and speaker alternation rate,
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decreases with increasing packet loss probability. In order to assess the effects of
packet-loss-caused misunderstandings on the conversation, the concept of conversation
disruption was defined, and it was shown that conversation disruptions significantly
correlate with bursty packet loss. A model was created that simulates these conversation
disruptions based on the amount of lost speech within one utterance. However, as
then changes in conversational interactivity cannot be explained by the conversation
disruptions alone, the turn-taking of conversations with packet loss was analyzed. This
analysis revealed that the timing of turn-transitions changes with increasing packet
loss levels, as the conversation partners do not take turns as quickly. This change
was implemented into the turn-taking mechanism by dampening the turn-transitioning
timing for every conversation disruption experienced by the simulated agent.

The final analysis showed that the packet-loss-adapted turn-taking model, in combi-
nation with the implemented conversation disruption mechanism, is able to reproduce
the changes in the conversation structure due to bursty packet loss.



Chapter 6
Conversational Quality Predictions

In the last chapters, a conversation simulation architecture was described and extended
for delayed transmission and bursty packet loss. The simulation is able to capture the
differences in conversational parameters of two conversation scenarios with distinct
interactivity levels and is extended to adapt turn-taking of the simulated agents when
a delayed transmission is detected. The resulting conversations capture the differences
in interactivity inherent in the conversation scenarios as well as in the changes in
interactivity due to delay. The simulation is also extended to simulate conversation
disruptions that occur due to misunderstanding of packet-loss-affected speech as well
as differences in turn-taking due to the degraded speech signal.

In this chapter, the simulated conversations are used to predict the conversational
quality based on the parameters of the conversation, as well based on the fullband E-
model, with a focus on transmission delay and bursty packet loss. In order to test the
suitability of simulated conversations for the prediction, a parameter-based model for
the prediction of the impact of delay on a conversation is created and evaluated based
on empirical data. Then, the E-model is extended towards interactivity parameters used
to predict the effects of transmission delay, as well as towards burstiness parameters to
predict the impact of bursty packet loss on a conversation. The adaptions to the E-model
are evaluated on empirical data as well as on predictions from the POLQA model.
Finally, the created parameter-based model and the extended E-model are utilized to
predict the conversational quality based on the simulated conversations, and the results
are compared to the empirical data and prediction of the extended E-Model based on
general transmission parameters.

The modeling of the impact of transmission delay based on interactivity parameters
has been partially published in Michael and Möller (2020b). The delay and packet-loss
extension to the fullband E-model have been published in Michael et al. (2020) and
Michael et al. (2021). Parts of the evaluation of the simulation by predicting speech
quality with the extended E-model has been published in Michael and Möller (2021).

6.1 Predicting Quality of Conversations with Delay

Echo-free delay of speech transmission in a conversational scenario is not audible,
but it affects how the interlocutors interact. It slows down the pace with which the
two speakers can alternate and causes them to interrupt each other unintentionally

91
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and more frequently. The amount of impact on the interactivity (and thus, on the
perceived conversational quality) worsens with increasing overall transmission delay
time. However, the degree to which the conversational quality is affected also depends
on the interactivity of the conversation that is being held. Thus, to accurately predict the
impact of echo-free transmission delay on the conversational quality, the transmission
delay, as well as the interactivity of the specific conversation scenario, have to be
taken into account. The fullband E-model, which is the most recent ITU-T-standardized
parametric model for the prediction of conversational quality, does not include the
interactivity of conversations in its calculation of the delay impairment factor. Also, the
parametric approach of the E-model requires interactivity parameters to be available for
each type of conversation that is studied, as differences in the interactivity of specific
conversations are abstracted by generally applicable parameters.

Thus, the impact of transmission delay on the conversational quality of RNV and
SCT conversations is predicted with two different approaches. First, based on the delay
impairment factor formula of the narrowband E-model, an extension of the fullband
E-model adds parameters to the delay formula that reflect the interactivity of the con-
versation scenario. In a second approach, the conversational quality of conversations
impaired with transmission delay is predicted with a linear model that uses interactivity
parameters extracted by a P-CA of the conversations under study. Because the model
predicts the quality directly from recorded conversations, it predicts the conversational
quality of particular conversations and not a MOS averaged over multiple conversa-
tions with the same condition. The extended E-model and the interactivity model are
evaluated with data from the CONVSIM and UWS datasets.

6.1.1 E-model Extension for Interactivity and Delay

The E-model calculates impairments due to delayed transmission of the speech sig-
nal with the impairment factor 𝐼𝑑. This includes impairments due to pure, echo-free
transmission delay (𝐼𝑑𝑑), impairments due to talker echo (𝐼𝑑𝑡𝑒), and impairments due
to listener echo (𝐼𝑑𝑙𝑒). For the wideband and fullband versions of the E-model, the
impairment factor 𝐼𝑑𝑑 is calculated only based on the overall one-way delay 𝑇𝑎 (see
Equations 2.18 and 2.19 for the wideband E-model and Equations 2.22 and 2.23 for the
fullband E-model).

Figure 6.1 shows the 𝐼𝑑𝑑, 𝐹𝐵 values for the conversations of the CONVSIM and UWS
dataset (assuming delay is the only impairment present in the recorded conversations),
split by SCT and RNV conversations. To calculate the 𝐼𝑑𝑑, 𝐹𝐵 impairment factor from
the MOS recorded in the experiments, the Equation 2.9 was used and, assuming no other
degradation, the resulting transmission rating was converted using Equation 2.21. A
significant difference between the impact of transmission delay on the highly interactive
RNV conversations and the SCT conversations with low interactivity is present, which
shows that the impact of transmission delay on the conversational quality is higher for
RNV conversations. The fullband E-model predicts an overall higher 𝐼𝑑𝑑, 𝐹𝐵 than the
data points of the CONVSIM and UWS datasets suggest, resulting in an overall more
pessimistic prediction.
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Fig. 6.1 𝐼𝑑𝑑, 𝐹𝐵 of the UWS SCT, CONVSIM SCT and CONVSIM RNV conversations, as
well as predicted by the fullband E-model at different levels of transmission delay.

To extend the fullband E-model to model these differences that stem from the in-
teractivity of the conversations, the parameters 𝑠𝑇 and 𝑚𝑇 defined in the narrowband
E-model (Equation 2.11 and 2.12) are introduced to the 𝐼𝑑𝑑 formula of the fullband
E-model:

For 𝑇𝑎 ≤ 𝑚𝑇 :
𝐼𝑑𝑑 = 0

For 𝑇𝑎 > 𝑚𝑇 :

𝐼𝑑𝑑 = 1.48 · 25{(1 + 𝑋6·𝑠𝑇 ) 1
6·𝑠𝑇 − 3(1 + [ 𝑋

3
]6·𝑠𝑇 ) 1

6·𝑠𝑇 + 2}

(6.1)

with:

𝑋 =
log ( 𝑇𝑎

𝑚𝑇
)

log 2
(6.2)

Using the 𝑠𝑇 and 𝑚𝑇 class “Low” for RNV conversations and “Very low” for SCT
conversations as described in Table 2.5, the predictions for the two different conversation
types are adapted. Figure 6.2 shows the predictions of the current fullband E-model and
the extension using “Low” interactive parameters for delay levels up to 1.6 𝑠 and com-
pares them to the RNV conversations of the CONVSIM dataset. The extended version
of the E-model predicts the conversational quality better than the current fullband E-
model, with the predictions being inside the 95 % confidence interval of the CONVSIM
RNV MOS at 0 𝑠, 0.8 𝑠, and 1.6 𝑠 delay.

Figure 6.3 shows the predictions of the two E-model versions for SCT conversations,
as well as the MOS of SCT conversations of the CONVSIM and UWS datasets. The
notably higher MOS for this scenario with low interactivity is reflected in the extended
version of the E-model. The predictions of the extension lie within the 95 % confidence
interval of the SCT dataset while being outside of the confidence interval of the UWS



94 6 Conversational Quality Predictions

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
delay

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

M
O
S R
N
V

E-model
E-model ext.

CONVSIM RNV

Fig. 6.2 MOS predictions of the current and
extended fullband E-model, as well as the MOS
of the CONVSIM dataset with 95 % confidence
interval at delay levels up to 1.6 𝑠 for RNV
conversations.
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Fig. 6.3 MOS predictions of the current and
extended fullband E-model, as well as the MOS
of the CONVSIM and UWS datasets with 95 %
confidence interval at delay levels up to 1.6 𝑠
for SCT conversations.

dataset at 800𝑚𝑠 delay. Especially for this type of conversation, the current E-model
formula is overly pessimistic, while the extended 𝐼𝑑𝑑 formula is able to capture the
difference in MOS.

The results show that the extension of the E-model by the 𝑚𝑇 and 𝑠𝑇 parameters of
the narrowband 𝐼𝑑𝑑 formula is suited to predict the differences in MOS between SCT
and RNV conversations.

6.1.2 Quality Prediction from Interactivity Parameters

In order to create a model for the prediction of conversational quality from a single
conversation based on its interactivity parameters and the transmission delay, suitable
features need to be selected. To aid this selection, 16 different interactivity parameters
are analyzed: the four state probabilities (ms, dt, sa, and sb), the respective sojourn
times (st_ms, st_dt, st_sa, and st_sb), the speaker alternation rate, and its corrected
version (sar and sarc), the interruption rate, intended interruption rate and unintended
interruption rate (ir, iir, and uir), the double talk rate (dtr), pause rate (pr) and the
conversational temperature (temp). A correlation matrix of these parameters based on
all conversations of the CONVSIM dataset with 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 of delay
are shown in Figure 6.4. The heatmap shows a positive correlation between the state
probabilities and their sojourn times. The sojourn time of mutual silence is inversely
correlated with the other three states. Both SAR and SARc correlate positively with each
other and the conversational temperature. Also, the pause rate correlates positively with
the SAR, as conversations with more speaker alternations tend to have more pauses.

Figure 6.5 shows the correlation of these 16 interactivity parameters with the average
conversational quality rating of that conversation. Due to the strong variations in the
quality ratings of the participants, the maximum positive and negative correlations are
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low, with 0.44 for the intended interruption rate and −0.47 for the sojourn time of the
state mutual silence. The pause rate, conversational temperature, the state probability of
double talk, and the corrected speaker alternation rate do not correlate significantly with
the conversational quality. This lack of correlation is intended for the corrected speaker
alternation rate, which should reflect the number of speaker alternations independent of
the transmission delay.

Based on the correlation between the interactivity parameters and the correlation with
the conversational quality, the following linear model was fitted with the least-squares
method:

ˆ︃𝐶𝑄 = 4.4824 − 1.4055 · 𝑚𝑠 − 0.5665 · 𝑑𝑒𝑙𝑎𝑦 + 0.113 · (𝑠𝑎𝑟 · 𝑑𝑒𝑙𝑎𝑦) (6.3)

This model uses the overall one-way delay in seconds, the speaker alternation rate
(𝑠𝑎𝑟), and the state probability of mutual silence (𝑚𝑠) as input parameters to predict
the conversational quality of the conversation. It is fitted on the conversations of the
CONVSIM dataset and has an adjusted 𝑅2 of 0.44.

Figure 6.6 compares the predictions of the interactivity model in Equation 6.3 with the
per conversation MOS of the CONVSIM dataset and Figure 6.7 shows the comparison
with the unseen UWS dataset. On the training data, it has an RMSE of 0.55 and a slightly
higher RMSE on the UWS test dataset with 0.58. This high RMSE is to be expected
because the labels the models were trained on are noisy due to the high interpersonal
variance in the subjective ratings. The evaluation shows that the linear model is able
to capture the variances in conversational quality rating on the basis of interactivity
parameters of individual conversations. It also shows that the participants’ handling of
the added transmission delay changes how much the delay degrades the interactivity
and, thus, how the overall quality of the conversation is perceived.



96 6 Conversational Quality Predictions

2 3 4 5
Quality Rating

2

3

4

5
P

re
di

ct
io

n
RMSE: 0.55

Fig. 6.6 Predictions of the linear interactivity
model and conversational quality of conversa-
tions in the CONVSIM dataset used for train-
ing.
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Fig. 6.7 Predictions of the linear interactivity
model and conversational quality of conversa-
tions in the previously unseen UWS test dataset.

Table 6.1 RMSE for the interactivity-based model (“ˆ︃𝐶𝑄”), the fullband E-model (“E-model”),
and the fullband E-model extended by the 𝐼𝑑𝑑-formula of the narrowband E-model (“E-model
extension”) on the training (CONVSIM) and test dataset (UWS).

SD RMSE

dataset delay (s) scenario data ˆ︃𝐶𝑄 E-Model E-Model
extension

CONVSIM

0 RNV 0.5079 0.5089 0.5079 0.5079
SCT 0.4927 0.5049 0.4927 0.4927

0.8 RNV 0.6886 0.6866 0.9917 0.7159
SCT 0.6517 0.6544 1.2507 0.6780

1.6 RNV 0.7548 0.7408 0.8209 0.7669
SCT 0.8042 0.7947 1.2425 0.8068

UWS
0 SCT 0.3886 0.3625 0.3886 0.3886

0.8 SCT 0.5697 0.6522 1.3495 0.6649
1.6 SCT 0.6835 0.7072 1.1245 0.6835

In order to apply the model on a per-condition basis, the predictions of the
interactivity-based model were averaged over the levels of transmission delay and the
conversation scenarios. Table 6.1 shows the MOS RMSE of the per condition evaluation
of the model and compares it to the standard deviation in the data, as well as to the full-
band E-model and its delay extension. To accurately compare the models, the RMSE of
the E-model were also calculated compared to the MOS of the individual conversations
and not to the per-condition MOS. The performance of the three models in terms of
their RMSE is comparable, with the current fullband E-model having a slightly worse
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performance with an RMSE of over 1 in some conditions. The RMSE of the models is
very similar to the Standard Deviation (SD) of the data, indicating that the variance in
the data is roughly as high as the uncertainty of the model.

Overall, both the interactivity model and the extended fullband E-model are capable
of reflecting the interactivity of the conversation in their prediction and, thus, are
suitable to be used to predict the quality of simulated conversations that are impacted
by transmission delay.

6.2 Predicting Quality of Conversations with Packet Loss

Packet loss may occur whenever a packet containing coded speech is lost during trans-
mission (e.g., when a routing problem occurs), when a packet arrives too late in order
to be included in the decoding process, or when an arriving packet is corrupted, and
the retransmission of the same packet would take too long. A speech packet usually
contains 20𝑚𝑠 of speech, and thus, a single lost packet either causes the speech to drop
out momentarily or, when a codec with PLC is used, the missing part of the signal is
estimated, and the lost packet might not even be noticed by the user. This type of packet
loss and the resulting audible effects are being taken into account by current quality
models like the fullband E-model. However, when packets get lost by the transmission
network or a large increase in transmission time occurs, usually multiple consecutive
packets are affected. This burstiness of the packet loss results in vastly different audible
and conversational effects. When multiple packets are being dropped, a PLC algorithm
is no longer able to extrapolate the speech signal, and the speech drops out. Depending
on the duration of the burst, the understandability of the transmitted speech might be
affected. This shifts the impact of a packet loss occurrence on the conversation from an
audible annoyance to an event that changes the flow of the conversation.

Thus, in this section, the codec-related impairment factor of the current fullband E-
model is extended to account for bursts in packet loss and evaluated on the CONVSIM
dataset. Then, the effects of conversation disruptions caused by highly bursty packet loss
on the conversational quality are analyzed, and resulting interactions with transmission
delay are discussed.

6.2.1 Bursty Packet Loss E-model Extension

In order to analyze the performance of the current fullband E-model with respect to
random packet loss and to extend it towards bursty packet loss, fullband speech data is
coded with 16-bit linear PCM at 44.1 kHz (which is used in the CONVSIM dataset) as
well as with the commonly used EVS codec in super-wideband mode at 13.2 kbit/s. The
coded speech was degraded with bursty packet loss and finally assessed with the well-
validated signal-based model POLQA (ITU-T Recommendation P.863, 2014). Based on
these predictions, the current codec-related impairment factor of the fullband E-model is
evaluated, and an extension is proposed. Finally, this new burstiness extension, together
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with the delay and interactivity extension, are evaluated with the CONVSIM dataset
by predicting the conditions with bursty packet loss, transmission delay, as well as the
combination of the two.

In order to analyze and extend the fullband E-model with respect to bursty packet
loss, a set of 18 clean mono speech files with 16-bit linear PCM at 44.1 kHz sampling
rate was used. These speech files were then degraded with every combination of 6 packet
loss rates (2.5, 5.0, 7.5, 10.0, 20.0, and 30.0 %) and 7 burst ratios (1.0, 1.5, 2.0, 2.5, 3.0,
3.5, and 4.0), resulting in 756 samples for each PCM and EVS. The packet loss in the
PCM-coded speech was created by inserting zeros for every lost packet (zero-insertion
packet loss), while for the EVS-codec, the native PLC functionality was used. In order
to generate the packet loss patterns, a two-state Markov chain was used. Only patterns
were allowed that deviate from the targeted 𝑃𝑝𝑙 by no more than one percentage point.

For the instrumental assessment with POLQA, the SQuadAnalyzer software in its
super-wideband mode and POLQA version 3 was used. Because the range of predicted
MOS differs between POLQA and the E-model, the predictions of POLQA were linearly
scaled to the range of the E-model (1.0 to 4.5). Additionally, Equation 2.9 with 𝑅𝑥 =

𝑅 ÷ 1.48 was used to transform the POLQA predictions into a transmission rating 𝑅.
Assuming that the only degradations present in the speech files are codec-related, the
effective equipment impairment factor is calculated with 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 = 𝑅𝑜, 𝐹𝐵 − 𝑅.
Furthermore, the equipment impairment factor 𝐼𝑒, 𝐹𝐵 is set to 0 for PCM (as by
definition, there is no impairment in this case) and to 24.8 for EVS based on the analysis
in Mittag et al. (2018).
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Fig. 6.8 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 values as predicted by POLQA and the fullband E-model for EVS at
13.2 kbit/s and linear PCM for random packet loss (BurstR = 1.0).

Figure 6.8 shows that the prediction of the E-model and POLQA for both EVS and
PCM agree at various packet loss levels when only considering randomly distributed
losses. PCM shows lower robustness against packet loss even for very low 𝑃𝑝𝑙 values.
Figures 6.9 and 6.10 compare the MOS of the current fullband E-model to the predictions
of EVS and POLQA respectively, with burst rates visualized in different colors. The
E-model in its current form does not include the burst ratio 𝐵𝑢𝑟𝑠𝑡𝑅 in the 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵
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calculation and thus, the six distinct levels of packet loss are visible in the clusters with
the same E-model prediction. However, both predictions have a high Pearson correlation
𝜌 of 0.9796 for EVS and 0.9655 for PCM.
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Fig. 6.9 Predicted MOS of POLQA versus the
predicted MOS of the fullband E-model for
EVS at 13.2 kbit/s.
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Fig. 6.10 Predicted MOS of POLQA versus
the predicted MOS of the fullband E-model for
PCM.

To accommodate for the burstiness of packet loss, the narrowband E-model introduces
the BurstR parameter defined in Equation 2.16. This approach penalizes the burstiness of
packet loss by dividing the 𝑃𝑝𝑙-term in the divisor by the burst ratio (see Equation 2.15).
However, as the narrowband E-model states, this penalization is too strong for 𝐵𝑢𝑟𝑠𝑡𝑅 >
2 when 𝑃𝑝𝑙 > 2. Thus, the proposed extension for bursty packet loss includes 𝐵𝑢𝑟𝑠𝑡𝑅
in the dividend of the equation and introduces a new “burstiness robustness factor” 𝐵𝑟 𝑓 :

𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 = 𝐼𝑒, 𝐹𝐵 + (132 − 𝐼𝑒, 𝐹𝐵)
𝑃𝑝𝑙 − 1−𝐵𝑢𝑟𝑠𝑡𝑅

𝐵𝑟 𝑓

𝑃𝑝𝑙 + 𝐵𝑝𝑙 (6.4)

For randomly distributed packet loss (𝐵𝑢𝑟𝑠𝑡𝑅 = 1.0), this extension results in the cur-
rent 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 as shown in Equation 2.24. With increasing burst ratio, the 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵
increases, but in contrast to the narrowband version of the formula (Equation 2.15), the
penalization of burstiness is independent of the packet loss probability. The amount
of penalization in Equation 6.4 can be regulated with the 𝐵𝑟 𝑓 parameter, with higher
values indicating higher robustness against burstiness. The introduced parameter 𝐵𝑟 𝑓
is fitted together with the 𝐵𝑝𝑙 value and may be different for every codec, packet size,
and packet loss concealment used.

Table 6.2 shows the 𝐵𝑝𝑙, 𝐵𝑟 𝑓 , and RMSE values for the EVS and PCM codecs. The
𝐵𝑝𝑙 value for EVS is similar to the value calculated in Mittag et al. (2018) and the
according 𝐵𝑟 𝑓 value suggests only slight robustness against burstiness. For PCM the
robustness factor is negative, indicating that the quality of bursty packet loss is rated
higher than the quality of randomly distributed packet loss. This is in line with the
predictions of POLQA seen in Figure 6.10, where samples with 𝐵𝑢𝑟𝑠𝑡𝑅 = 1.0 have a
lower predicted MOS than the samples with higher burstiness.

The improved accuracy of the modified E-model can be seen in Figure 6.11 for
the EVS codec. The Pearson correlation improves to 𝜌 = 0.9891 compared to the
current fullband E-model. The positive 𝐵𝑟 𝑓 -term decreases the MOS for increasing
burst ratios. While this effect is strong for low 𝑃𝑝𝑙 values, it gets weaker for higher
packet loss probabilities. In contrast, for the PCM codec with zero-insertion packet loss
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shown in Figure 6.12, the negative Brf value shows an increase in MOS for higher values
of 𝐵𝑢𝑟𝑠𝑡𝑅. While the extended E-model is able to describe this behavior, the overall
prediction quality is slightly lower with a Person correlation of 𝜌 = 0.9540.
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Fig. 6.11 Predicted MOS of POLQA versus
the predicted MOS of the extended E-model
for EVS at 13.2 kbit/s.
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Fig. 6.12 Predicted MOS of POLQA versus
the predicted MOS of the extended E-model
for PCM.

However, due to the fact that PCM coded speech is not used in common speech
transmission systems, the specific agreement of the E-model and POLQA should not
be over-interpreted.

To evaluate this burstiness extension, as well as the extension for interactivity and
delay described in Equation 6.1 and 6.2, the predictions of the extended E-model are
compared to the MOS of the CONVSIM dataset, where each combination of 0 %,
15 %, and 30 % packet loss at a burst ratio of 4.0 with 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 of
transmission delay was rated. The 𝐵𝑝𝑙 and 𝐵𝑟 𝑓 values for PCM with zero insertion
packet-loss were derived using – in addition to the CONVSIM dataset – the results of
a separate conversation experiment with 0 %, 5 %, 15 %, 25 %, and 35 % PCM-coded
zero-insertion packet loss and a burst ratio of 1.0. The resulting 𝐵𝑝𝑙 of 21.79 and 𝐵𝑟 𝑓
of −6.9 lead to a more optimistic prediction than the POLQA-fitted parameters shown
in Table 6.2. For the predictions with transmission delay, the dataset is split into SCT
and RNV conversations. As recommended by the narrowband E-model, the interactivity
parameters were set to 𝑠𝑇 = 0.4 and 𝑚𝑇 = 150 for SCT predictions and 𝑠𝑇 = 0.55
and 𝑚𝑇 = 120 for RNV predictions. The packet loss in the CONVSIM dataset has a
constant burst ratio of 4.0, so the 𝐵𝑢𝑟𝑠𝑡𝑅 parameter of Equation 6.4 is set to that value.

Figure 6.13 shows the extended E-model predictions and CONVSIM MOS values
for RNV conversations, and Figure 6.14 for SCT conversations, all at a burst ratio of
4.0. The predictions for conversations without transmission delay are modeled well by
the extensions. Also, the difference in the interactivity of SCT and RNV conversations

Table 6.2 𝐵𝑝𝑙, 𝐵𝑟 𝑓 , and according RMSE values as calculated with the extended equipment
impairment factor formular in Equation 6.4.

Codec Bpl Brf RMSE

EVS 8.96 2.03 7.45
linear PCM 5.01 −4.35 11.75
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Fig. 6.13 Predictions of the extended E-model
using Equation 6.4 for bursty packet loss and
Equations 6.1 and 6.2 for delay, compared to
RNV conversations of the CONVSIM dataset.
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Fig. 6.14 Predictions of the extended E-model
using Equation 6.4 for bursty packet loss and
Equations 6.1 and 6.2 for delay, compared to
SCT conversations of the CONVSIM dataset.

at 0 % packet loss is modeled accurately (shown in blue). However, the combination
of both degradations is predicted to be substantially lower than the subjective MOS.
The quality ratings in the CONVSIM dataset at 30 % packet loss are less affected by
delay than predicted by the extended E-model. Similarly, the ratings or conversations
at 1600𝑚𝑠 delay are also higher than the predictions. Slightly pessimistic worst-case
predictions are expected in the E-model, as too optimistic predictions would put the
planning process at risk.

Overall, the newly introduced formula for bursty packet loss is able to model the
differences in quality as seen in the CONVSIM dataset and in the POLQA predictions.
However, the combination of high transmission delay and highly bursty packet loss leads
to a very pessimistic prediction of the E-model.

6.2.2 Conversation Disruptions and Quality

In Chapter 5 it was shown that highly bursty packet loss causes misunderstandings that
the interlocutor needs to repair in order to continue the conversation. These conversation
disruptions increase with the packet loss probability and its burstiness. Because these
occurrences disrupt the flow of the conversation, the SAR of especially highly interactive
conversations, like the RNV task, decreases with higher packet loss rates. It has also
been shown that measured by the number of conversation disruptions per minute (CDR,
see Figure 5.7), the RNV is more affected than SCT conversations. However, the average
number of disruptions per turn (see Figure 5.8) does not significantly differ between the
two conversational scenarios.

Figure 6.15 shows the MOS of the conversations of the CONVSIM dataset at 0 %,
15 %, and 30 % packet loss, split by SCT and RNV scenarios. No differences between
the two scenarios are visible at the different packet loss levels. Thus, while a difference
in CDR between SCT and RNV conversations is present, it is not reflected in the mean
overall quality rating of the participants. Figure 6.16 shows the number of conversation
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Fig. 6.15 Mean Opinion Score of SCT and
RNV conversations at 0 %, 15 %, and 30 %
packet loss. Error bars indicate the 95 % confi-
dence interval.
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Fig. 6.16 Scatter plot of MOS versus conver-
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30 % packet loss.

disruptions per minute against the MOS per conversation (excluding all conversations
where no disruption was present). The per conversation MOS correlates significantly
with the disruptions per minute with 𝜌 = −0.61. This indicates that the number of
conversation disruptions can be a strong indicator of conversational quality. Because
these disruptions occur mostly when the packet loss is highly bursty, it cannot be used
as the only indicator of the degradation of conversational quality due to packet loss.

Due to the fact that the interactivity of the conversation has a negligible influence
on the quality rating of the packet loss degradation, an extension of the E-model to
include interactivity parameters seems unpromising. A parameter-based model that
predicts the quality per conversation from the number of conversation disruptions is
also not performed here due to the lack of an annotated evaluation dataset. However,
the presented E-model extension towards burstiness of packet loss is able to capture the
changes in quality described here.

6.2.3 Interaction between Delay and Packet Loss

Even though the interactivity of a conversation does not directly impact the quality
rating of conversations affected by bursty packet loss, it has been shown in Chapter 5
that an increase in conversation disruptions leads to a higher state probability of mutual
silence (Figure 5.4) and to a decrease of SAR in RNV conversations (Figure 5.3). As
the interactivity of a conversational scenario directly affects the degree to which delay
impacts the turn-taking and thus the conversational quality, this change in conversational
structure due to packet loss influences the quality indirectly.

As dialogue that repairs misunderstood utterances is significantly slower than the
highly interactive dialogue of the RNV conversations, the packet loss leads to a slower
interaction between the two interlocutors and more pauses. Thus, the focus shifts away
from the delay of speech signal transmission. Especially in the predictions of the ex-
tended E-model of conversations with both delay and packet loss (see Figure 6.13 and
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6.14), the combination of the two degradations was too pessimistic compared to the
actual quality ratings of the CONVSIM dataset. This behavior of the E-model can be
partly attributed to the strictly additive nature of the impairment factors and its use in
transmission planning, where a too pessimistic prediction is favored over a too optimistic
one. However, the effects of packet loss on the interactivity of the conversation may
reduce the effects of transmission delay, which may also play its part in the less severe
quality ratings.
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Fig. 6.17 SARc of SCT and RNV conversations in the CONVSIM dataset, calculated over
conversations with 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠 delay and split by levels of 0 %, 15 %, and 30 %
bursty packet loss.

In the narrowband E-model and the fullband delay extension, the interactivity param-
eters for the minimal perceivable delay (𝑚𝑇) and delay sensitivity (𝑠𝑇) are calculated
with the Corrected Speaker Alternation Rate (SARc) as shown in Equations 2.13 and
2.14. Figure 6.17 shows the SARc of conversations with 0𝑚𝑠, 800𝑚𝑠, and 1600𝑚𝑠
transmission delay at the three levels of packet loss only decreases slightly for the SCT
conversations, with 19.3 alternations per minute at 0 % packet loss and 17.9 at 30 %.
However, for RNV conversation, the SAR reduces from 48.9 alternations per minute at
0 % packet loss down to 44.5 alternations per minute at 15 % and 34.8 alternations per
minute at 30 % packet loss. This translates into a reduction of delay sensitivity and an
increase of minimal perceivable delay.

As the simulation of conversation disruptions in conversations with bursty packet
loss replicates the changes in interactivity, the simulated conversations can be utilized
to predict the interaction effects of delay and packet loss with the extensions of the
fullband E-model.
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6.3 Predicting Quality from Simulations with Delay

In Chapter 4, the simulation was adapted to reflect the turn-taking and interaction
parameters of conversations with different interactivity (namely, SCT and RNV conver-
sations) and later on extended to reflect the changes in turn-taking due to transmission
delay. These simulated conversations can now be used to predict the conversational
quality with the interactivity model or with the extended E-model. The linear interac-
tivity model directly utilizes the interactivity parameters of the simulation, while the
extended E-model calculates the minimal perceivable delay and delay sensitivity from
the simulated conversations.

For the evaluation with both quality models, 30 SCT and 30 RNV conversations from
0𝑚𝑠 transmission delay up to 2000𝑚𝑠 transmission delay in 100𝑚𝑠 time steps were
simulated, resulting in 1260 simulated conversations.

6.3.1 Prediction from Interactivity Parameters of Simulations

In order to apply the interactivity model in Equation 6.3, a P-CA is used to extract the
interactivity parameters 𝑚𝑠 (state probability of mutual silence) and 𝑠𝑎𝑟 (the Speaker
Alternation Rate) from the simulated conversations. Together with the one-way overall
delay in seconds, the quality is predicted for each simulated conversation.
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Fig. 6.18 MOS predictions of the current and
extended fullband E-model, as well as the
MOS of the CONVSIM dataset (CONVSIM
RNV) and the prediction from the simulated
RNV conversations with the linear interactiv-
ity model (Simulation RNV) at delay levels up
to 1.6 𝑠.
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Fig. 6.19 MOS predictions of the current and
extended fullband E-model, as well as the MOS
of the CONVSIM and UWS dataset, as well as
the prediction from the simulated SCT con-
versations with the linear interactivity model
(Simulation SCT) at delay levels up to 1.6 𝑠.

Figure 6.18 and 6.19 show the quality prediction from the simulated RNV and SCT
conversation, respectively, as estimated by the interactivity model. For RNV conversa-
tions, the interactivity model becomes too optimistic for high delay levels but mostly
stays inside the 95 % confidence interval of the empirical MOS. A slightly too low state
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probability MS might have a large impact on the prediction quality of the interactivity
model, as this parameter is correlated negatively with the overall conversational quality.
For SCT conversations, the prediction stays inside the 95 % confidence interval of the
CONVSIM dataset, but between 500𝑚𝑠 and 1000𝑚𝑠, it is slightly below the CI of the
UWS dataset. Generally, the difference in the degradation of SCT and RNV conversation
is replicated well by the simulation approach.

Overall, the simulated conversations yield a good prediction quality when used with
the interactivity model in Equation 6.3. In contrast to the prediction based on parameters
of the transmission alone, the simulations provide variance in the underlying conversa-
tions. This results in the possibility of reporting the standard deviation and confidence
intervals of the predictions. However, the validity of these results needs to be investi-
gated further, as both the interactivity model and the simulation are partly based on the
very limited CONVSIM dataset.

6.3.2 Prediction from Extended E-Model

The delay-extended 𝐼𝑑𝑑 formula of the E-model shown in Equation 6.1 and 6.2 utilize
the minimal perceivable delay𝑚𝑇 and the delay sensitivity 𝑠𝑇 of a conversation in order
to predict the impact of transmission delay on conversations with different interactivity.
While the narrowband E-model provides standardized 𝑚𝑇 and 𝑠𝑇 parameters (shown in
Table 2.5), they can also be calculated with Equations 2.13 and 2.14 using the Corrected
Speaker Alternation Rate (SARc).
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Fig. 6.20 Corrected speaker alternation rate for empirical and simulated RNV conversations
(left) and SCT conversations (right) at various delay levels.

The SARc is extracted from the simulated conversation based on the formula in Equa-
tion 2.3. Figure 6.20 shows the SARc for the simulated RNV and SCT conversations and
compares them to the SARc of the conversations in the CONVSIM dataset. The stability
of the corrected SAR is only reproduced for the SCT simulations. For the simulated
RNV conversations, the SARc overestimates the delay-adjusted Speaker Alternation
Rate for delay levels above 800𝑚𝑠. As the SAR of the simulated conversations match
the empirical data (as shown in Figure 4.23), the discrepancy of the SARc lies in the
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length of the simulated RNV conversations. While the empirical conversations tend
to increase in length with higher levels of delay, the simulated conversations’ increase
in length is much lower. This results in an overestimation of the interactivity by the
SARc formula. From these SARc values, the 𝑚𝑇 and 𝑠𝑇 parameters of each simulated
conversation is calculated with the Equations 2.13 and 2.14 respectively. Finally, the
MOS for each simulated conversation is predicted using the extended 𝐼𝑑𝑑 formula given
in Equations 6.1 and 6.2.
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Fig. 6.21 Conversational Quality MOS from the conversation experiment, as well as the pre-
dictions from the current fullband E-model (red) and the predictions based on the extended
E-model and simulations (light colors). For the experiment and the simulation, the MOS is split
by RNV (purple) and SCT conversations (green).

Figure 6.21 shows the predicted 𝑀𝑂𝑆 from the simulation and compares them to
the MOS of the CONVSIM dataset, both split by conversation type and the prediction
of the fullband E-model. As expected, due to the overestimation of the SARc of RNV
conversations, the extended E-model assumes that the RNV conversations are more
interactive than they are, which results in a pessimistic quality prediction. The prediction
of the quality of SCT conversations is slightly too optimistic. However, both SCT and
RNV predictions are inside the 95 % confidence intervals of the empirical MOS.

Overall, the approach of combining the simulations with the extended E-model is
able to reproduce the behavior of SCT and RNV conversations and results in acceptable
quality estimations. Again the variance in the simulated data produces standard devia-
tions and confidence intervals of the quality predictions, which may be used to qualify
the accuracy of the prediction further.
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6.4 Predicting Quality from Simulations with Packet Loss and Delay

In Chapters 4 and 5, the simulation was adapted to model the changes in the interactivity
of SCT and RNV conversations due to delay and bursty packet loss, as well as the changes
in the conversation due to packet-loss-induced conversation disruptions. Because the
effects of delay and packet loss are modeled independently of each other and are based
on the incoming speech alone, the potential interaction between the added turn-taking
due to conversation disruptions and the impact of transmission delay can be simulated.

For a final evaluation of the simulation approach, the two extensions of the full-
band E-model are utilized to predict the quality of simulated conversations with both
transmission delay and bursty packet loss. With the impact of packet-loss-induced con-
versation disruptions on the interactivity of conversations, the delay impairment factor
of the extended E-model will take into account the impact of the packet loss. For this
evaluation, 30 SCT and 30 RNV conversations with each combination of 0 %, 5 %,
10 %, 15 %, 20 %, 25 % and 30 % of packet loss with a burst ratio of 𝐵𝑢𝑟𝑠𝑡𝑅 = 4.0,
as well as 0𝑚𝑠, 400𝑚𝑠, 800𝑚𝑠, 1200𝑚𝑠, and 1600𝑚𝑠 of transmission delay were
simulated, resulting in 2100 simulated conversations.
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Fig. 6.22 MOS of RNV conversations of the
CONVSIM dataset (circles) and as predicted
by the extended E-model with general param-
eters (dashed lines) and with parameters from
the simulation (solid lines) at 0 % (blue), 15 %
(orange), and 30 % (green) bursty packet loss
and various levels of overall one-way delay.
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Figures 6.22 shows the performance of this approach when simulating RNV conver-
sations and compares the results to the MOS obtained from the CONVSIM dataset and
the predictions of the extended E-model, but using the general parameters provided in
Table 2.5 together with the parameters of the transmission system. At 0𝑚𝑠 delay, the
predictions of the three packet loss levels are independent of the parameters extracted
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from the simulations, as the 𝐼𝑑𝑑 impairment factors amount to 0.0. With increasing
overall one-way delay, the prediction at 0 % packet loss drops below the empirical MOS
and the predictions of the extended E-model. This behavior is in line with the evalu-
ation shown in Figure 6.21 and is due to the overestimation of the Corrected Speaker
Alternation Rate. For 15 % and 30 % packet loss, the reduction in interactivity dampens
the degradation due to the transmission delay, which results in a more optimistic quality
prediction than with just the extended E-model. While at 15 % packet loss, the prediction
is still too pessimistic compared to the MOS of the CONVSIM dataset, at 30 % packet
loss, the prediction matches the empirical data.

Figure 6.23 shows the predictions of the model for SCT conversations. Again, at 0𝑚𝑠
delay, the model just uses the parameters of the transmission, and at 0 % packet loss, the
simulation performs similar to the delay-only evaluation shown in Figure 6.21. At 15 %
and 30 % bursty packet loss, the prediction through the simulated conversations is also
more optimistic than the extended E-model with the general transmission parameters.
However, due to the fact that the SCT conversations are not as strongly impacted by the
transmission delay, the effect is much less pronounced than for RNV conversations. This
results in the simulation predictions being too pessimistic for 15 % and 30 % packet loss
at higher delay levels.

The evaluation of quality predictions of simulations with delay and packet loss has
shown that the estimation of interactions between both degradations can be simulated
and that the resulting conversations can be used for the prediction of conversational
quality. Here, the advantage of simulations over the purely transmission-parameter-
based E-model is visible, as effects of degradations on the conversation itself can be
modeled, and the resulting changes can be used to improve the quality estimation.

6.5 Summary

In this chapter, the simulation was evaluated by predicting conversational quality from
simulated conversations. To be able to predict changes in conversational quality due
to delay from simulated conversations, a new interactivity model was presented, and
the fullband E-model was extended to include interactivity parameters. The interactivity
model utilizes parameters extracted from a P-CA to predict the average overall quality of
a specific conversation (as opposed to the MOS from a set of transmission parameters).
The E-model extension is based on the delay formula of the narrowband E-model and
uses two interactivity parameters to change the impact of transmission delay on the
impairment factor. Both models are evaluated on empirical data.

In order to predict the changes in overall conversational quality in conversations
affected by bursty packet loss, the formula of the effective equipment impairment factor
of the E-model was extended. Here, an addition of the burst ratio and a burstiness
robustness factor specific to each codec is used to model the changes in quality ratings.
The extension is validated with predictions of the POLQA model, as well as with
empirical conversations from a conversation test.

Finally, the simulation approach was validated by predicting the conversational quality
with the interactivity model, as well as the extended E-model, based on simulated
conversations. An evaluation of simulated conversations with a delay has shown that
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both the interactivity model as well as the delay-extended E-model are able to replicate
good prediction accuracy based on simulations. In a final evaluation of the simulation,
the quality of conversations impaired with overall delay and bursty packet loss was
predicted with the extended E-model. It was shown that the simulation is able to
replicate the interaction of the changes in interactivity from bursty packet loss with the
impaired turn-taking due to delay. Thus, the resulting prediction based on the simulation
outperforms the classical prediction based solely on the parameters of the transmission.





Chapter 7
Conclusions and Future Work

The quality of conversations in remote VoIP contexts is – now more than ever – an
important research topic. In such real-time communication scenarios, degradations like
delay and bursty packet loss impact the way we interact with each other and thus degrade
the interactivity of the conversation. Current models that predict speech quality either
do not consider the interactivity or include them as abstract parameters that require
extensive subjective testing before they can be applied. Thus, in this thesis, the concept
of simulating conversations for the prediction of transmission quality is explored. The
simulation of conversations allows for modeling the impact of degradations on the
conversation level itself, which is beneficial for non-audible impairments like pure
delay.

This approach to speech quality prediction is completely novel, and thus, the work
presented in this thesis was split into two separate research objectives: the general
feasibility and architecture of simulating a conversation between two humans and the
application of the simulation approach to the prediction of conversational quality. As
part of these two objectives, five research questions were answered, each of which is a
substantial extension of current research in the domain of speech quality, but also useful
in the field of spoken dialogue systems. In the following, the answers to these research
questions will be summed up and discussed.

Question 1: How can the models and methods of dialogue and user simulation
from the area of Spoken Dialogue Systems be applied to the simulation of
conversations between two humans?

In order to simulate the content of a conversation, as well as the interac-
tions between interlocutors, a simulation needs to be performed on the signal,
text, and dialogue act level. In order to model the turn-taking in conversations,
the simulation needs to implement the incremental nature of human speech and
dialogue processing.

In Chapter 3, a simulation architecture was presented that utilizes an incremental
dialogue processing framework specially developed for the simulation. The architecture
uses training data from previously recorded conversations to model the dialogue based
on a goal-oriented agenda dialogue manager. The agents in the simulation communicate
through a simulated VoIP network that is able to insert impairments like delay and
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packet loss. An evaluation of the simulation framework has shown that the ITU-T
standardized SCT and RNV conversations, which exhibit distinct levels of interactivity,
can be modeled on the semantic level. An evaluation of the interaction parameter
has shown that a simulation in turn-steps, while showing some difference in the two
conversation scenarios, is insufficient to accurately model the differences in turn-taking
interactivity of everyday remote conversations.

Question 2: How can the smooth taking of turns in natural VoIP conversations of
different levels of interactivity be replicated in a simulation?

Modeling turn-transitions and turn-continuations as two competing pro-
cesses can implement turn-taking in a conversation simulation. The currently
speaking agent is determining when to continue talking based on a probabilistic
distribution, and the listening agent is determining when to start talking relative
to the end of the current utterance. The distribution that both agents decide their
turn-taking behavior on is selected based on the dialogue act that is currently
uttered.

As a simulation in turn steps is not able to replicate the interactivity of a conversation,
Chapter 4 introduces a turn-taking mechanism that can be independently employed in
the two agents of the simulated conversation. The underlying model of the turn-taking
mechanism is based on the distribution of turn-transitions, as modeled by gaps and over-
laps between speaker turns, and turn-continuations, as modeled by pauses in between
the turns of the same speaker. For this, the turn-taking behavior of real SCT and RNV
conversations are analyzed, and, based on the resulting distributions, multiple transi-
tioning and continuation models are defined. In the simulation, the agents then decide
which distribution to use, as determined by the type of dialogue act the active agent is
producing. Finally, to determine the beginning of their next turn relative to the current
turn’s end, the agents randomly select values from the appropriate cumulative distribu-
tion function. The evaluation of the turn-taking mechanism showed that it enables the
simulation to reproduce the differences in turn-taking between conversations of different
conversational interactivities in terms of pauses, double talk, speaker alternation rate,
and length of the conversation. The turn-taking and conversation structure of the two
conversation scenarios arise naturally from the implemented turn-taking mechanism
and do not need to be modeled explicitly.

Question 3: How is turn-taking affected by transmission delay, and what rules
and models can be employed to replicate these changes in a simulation?

An analysis of conversations through transmissions with transmission delay
has shown that humans mostly change their turn-continuation behavior when they
detect that transmission delay is present. In order to model this, the turn-taking
mechanism is extended by dampening the turn-continuation probability by a
constant factor every time an agent is interrupted unintendedly.
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When introducing transmission delay into the simulation, the resulting conversations
show degradations in the interaction due to the naturally slower arrival of speech sig-
nals. However, when comparing these simulations with empirical data, not all changes
can be modeled by applying the turn-taking mechanism modeled without transmis-
sion delay in a delayed conversation. An analysis of the previously recorded SCT and
RNV conversation degraded by transmission delay showed that in conversations with
high delay levels, the participants changed the behavior of their turn-continuations.
Specifically, with increased delay levels, the currently active speaker made significantly
longer pauses, assumably for the delayed speech signal of their interlocutor to arrive.
Because the participants of a conversation with transmission delay do not have knowl-
edge about the exact amount of transmission delay, the changes in turn-taking behavior
were modeled by dampening the turn-continuation model by a constant factor each
time an unwanted interruption was detected. A final evaluation of the turn-taking with
transmission delay showed that the simulation is able to model the different reactions
to transmission delay of the SCT and RNV conversation scenarios in terms of speaker
alternation rate and unintended interruptions.

Question 4: What impact has bursty packet loss on the understandability of
speech in a conversation, and how can it be modeled in a simulation?

The occurrences of misunderstandings due to packet loss were made mea-
surable by formalizing conversation disruptions and measuring them in
conversations affected by bursts of lost packets. It was shown that the conversation
disruption rate is different for the two conversational scenarios SCT and RNV.
Furthermore, it was shown that the conversation disruptions as a result of bursty
packet loss have an impact on the interactivity of RNV conversation, as measured
by the speaker alternation rate. Finally, the conversation disruptions were modeled
on an utterance level, and changes in turn-taking were implemented to reflect the
changes in interactivity.

In Chapter 5, the interactivity of conversations with highly bursty packet loss was an-
alyzed. It was shown that conversations with high interactivity (i.e., RNV conversations)
reduce interactivity with increasing levels of bursty packet loss. The term conversation
disruption was defined, which makes misunderstandings in a conversation, as an effect
of the loss of speech signal, measurable. It was shown that the rate of conversation dis-
ruptions is higher for RNV conversations than for SCT conversations, but also that the
number of disruptions per turn is consistent between the two conversation types. It was
also shown that in conversations with high packet loss, the turn-taking behavior of the
participants changed. Specifically, the turn-transitions happen more slowly, with fewer
overlaps between the speaking turns. Finally, the occurrences of conversation disrup-
tions were implemented into the simulation that models conversation disruption based
on the percentage of lost speech in an utterance. With the new behavior implemented,
the turn-transitioning model was dampened by a constant factor for every conversation
disruption that occurred. The evaluation of the new simulation behavior showed that
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the resulting conversation model simulated the number of disruptions, the frequency of
disruptions, as well as the changes in turn-taking and conversational interactivity quite
well.

Question 5: How well can conversational parameters and the overall quality be
predicted with this new approach?

For the prediction of conversational quality based on the simulated conver-
sations, the parametric E-model was extended to incorporate interactivity
parameters in the delay calculation and burstiness in the packet loss formula. A
new model to predict the quality of individual conversations based on interactivity
parameters has been presented. Both the extended E-model and the interactivity
model are trained and evaluated on empirical conversation data. An evaluation
of the models with simulated conversations revealed that this new approach
is able to replicate the changes due to delay and packet loss and thus, can be
used to predict the overall quality. Especially with both delay and packet loss
present, the prediction based on the simulation is significantly better than a
transmission-parameter-based approach.

In Chapter 6, a model that predicts the conversational quality based on interactivity
parameters of the conversation was presented and evaluated. Also, two extensions of
the fullband E-model were proposed. First, the extension of the 𝐼𝑑𝑑 delay formula
is based on the equation of the narrowband E-model and adds the two interactivity
parameters for the minimal perceivable delay and delay sensitivity. These parameters
can be adjusted depending on the expected interactivity of the conversations carried
out with the transmission system under study. The second extension of the E-model
concerns the 𝐼𝑒, 𝑒 𝑓 𝑓 , 𝐹𝐵 formula, which captures impairments related to coding. Here,
the burst ratio 𝐵𝑢𝑟𝑠𝑡𝑅 is added to the equation, together with a burstiness robustness
factor. The interactivity model, as well as the E-model extensions, are validated with
conversations recorded in laboratory experiments. Finally, the two models are used on
simulated conversations with delay and a combination of delay and packet loss. The
evaluation shows that the simulated conversations with transmission delay improve
the parametric prediction of the E-model by providing more accurate interactivity
parameters. When bursty packet loss is added in the simulation, the effects on the
interactivity can be extracted, and the E-model predictions further improve over a
prediction without simulations.

One major drawback of the current approach to simulating a conversation is the limited
variance compared to empirical conversations. This smaller range of characteristics
of the simulation is the result of the small amount of training data that is used for
the simulation but is also influenced by the way an interlocutor is simulated. While
the overall 30 annotated conversations of each scenario are enough to replicate the
interactivity parameters of the conversations, it is not enough to replicate the variance
of interactions and resulting quality predictions. The simulation approach described
here models the interlocutors of each conversation with the same set of behavioral
characteristics. Properties of different speakers like variations in turn-taking behavior,
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speech speeds and styles, and even accents and choice of vocabulary can influence
the resulting conversation. As the agents of the simulation replicate the distribution of
behaviors seen in the datasets, the resulting behavior reflects an average interlocutor
that might not exist in the training data. Increasing the training data alone might not be
sufficient for resolving this issue and modeling of distinct speaker behavior is needed.
Generally, the amount of data and type of modeling presented in this thesis results in
simulated conversations that are able to reproduce the main parameters of impairments
of current speech communication systems.

In conclusion, the simulation of conversations described in this thesis has proven
to model key features of VoIP communication and is able to replicate changes in the
conversation due to the common impairments delay and packet loss. It is a universal
scientific tool that can be used especially for the prediction of conversational quality.

7.1 Future Work

The simulation of human-to-human conversations presented in this thesis is the first
of its kind and a step towards a universally applicable model for the prediction of
speech quality, as well as a possible tool for other areas of research. Nevertheless, the
presented approach leaves room for future work, which can be separated into three
different directions. First, the presented simulation framework should be improved and
validated. Second, the simulation can be extended for additional impairments and for
use in quality monitoring. Finally, the new approach can be extended for use in other
scientific fields.

The primary validation of the system and its architecture has been provided in this
thesis. For this first modeling step, the underlying data and the chosen levels of delay and
packet loss impairments have been very strong. Additional validation of the simulation
with more moderate levels is thus advised. While in over-the-top VoIP communication
platforms, the transmission delay is generally higher than in classical telephone systems,
delay levels as high as 1800𝑚𝑠 are not to be expected in everyday scenarios. However,
especially for services that require large jitter buffers, the modeling of higher levels
of overall delay is a useful scenario. Also, packet loss levels of 15 % and above are
uncommon in everyday speech communication. Still, packet loss with strong bursts
tends to be realistic, as network problems often affect more than one packet. Especially
for the trade-off between the size of the jitter buffer (thus, implicitly, the overall delay)
and the probability of packet loss can be evaluated with this approach. Especially the
effect of burstiness on the likelihood of conversation disruptions needs to be investigated
further.

A possible extension for the simulation approach is the modeling of additional impair-
ments. For example, the system could be used to simulate the behavior of the listener
and talker echo on the conversation. Here, phenomena like slower speaking rates or
Lombard speech can be simulated and used for the prediction of perceived quality.
Another speech quality-related extension may be to utilize other quality models than
the E-model. For example, the double-ended speech quality prediction model POLQA
might be used on the degraded and clean signal of the simulated conversation to esti-
mate the listening quality. The current simulation architecture allows for the prediction
of conversational quality for planning purposes. By extending the simulation to transmit
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the conversational speech over a real transmission network, it could also be used for
quality monitoring purposes. To better replicate the variance of parameters and quality
ratings of real conversations, the simulation needs to model the difference in individual
conversations rather than trying to simulate an average interlocutor. For the simulation
of different speaking styles, choice of dialogue acts and selection of vocabulary-specific
communication profiles may be created. The difference in communication and the in-
teraction between the communication profiles could then replicate the greater range of
variances seen in the empirical data.

The third area of future work might be the use of the simulation approach in other areas
of research. As the simulation tries to replicate the behavior of humans in conversational
scenarios, it can be used as a tool to model and validate spoken dialogue systems. Single
incremental modules of the simulation may be replaced with models under study, or a
simulation agent may be replaced with a dialogue system. This would allow for fast and
cost-effective training and evaluation of dialogue systems and their parts. Also, for use
in phonetics and linguistics, the simulation approach may be a useful foundation. For
example, different conversational phenomena like Lombard speech during conversations
with background noise, hesitations, changes in articulation, or prosody can be modeled,
and interactions between these characteristics can be examined.

Finally, the work presented here is discussed in the Study Group 12 of the Inter-
national Telecommunications Union ITU-T. There, a working item P.CONVSIM has
been established that focuses on standardizing the architecture and models used in this
simulation approach.



Appendix A
Short Conversation Test (SCT)

Scenario 3: Information on flights 
Your name: Matthew Parker 

 
   

 

 Intended journey: Sydney à Abu Dhabi 

 

 

   

 

 Date: June 23rd 

Morning flight 

Direct flight preferred 

    

 

 Departure 

Arrival 

Flight number 

: 

: 

: 

_______________ h 

_______________ h 

_______________ 

   

 

 Reservation 

 

Address 

: 

 

: 

 

One seat 

Economy Class 

47 Rawson Street, Sydney 

( 02955 0833 

   

 

 What are some tourist attractions in Abu Dhabi?  

 

______________________________________________________________________ 
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Scenario 3: Information on flights 
Your name: Sydney flight information 

 

 

 Flight schedule: Sydney à Abu Dhabi 

 

    Etihad British Airways Qantas Airways 

  Flight number  E 615 BA 381 QF 413 

       

  Sydney Dep. 6:30 h 6:35 h 8:20 h 

       

  Perth Arr.  10:35 h  

  Perth Dep.  11:15 h  

       

       

  Abu Dhabi Arr. 21:35 h 21:55 h 23:25 h 

    (daily) (daily) (daily) 

       

 

 Reservation: Name 

Address 

 

Telephone number 

Number of seats 

: 

: 

: 

: 

: 

______________________________ 

______________________________ 

______________________________ 

______________________________ 

______________________________ 

   Class  o Business o Economy 

       

 

  

 

______________________________________________________________________ 
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Scenario 11: Pizza service 
Your name: Jeremy Clemence 

 
   

 

 One large pizza 

 

 

   

 

 For 2 people 

Vegetarian pizza preferred 

    

 

 Topping 

 

Price 

: 

 

: 

_______________________________________________ 

_______________________________________________ 

______________ A$ 

   

 

 Delivery to : 

 

109 George Street 

Adelaide 

(: 08212 7320 

   

 

 How long will we have to wait for the pizza to be delivered? 

 

______________________________________________________________________ 
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Scenario 11: Pizza service 
Your name: Pizzeria Roma 

 

 

 Pizza 

 

  Pizzas 1 person 2 persons 4 persons 

  Toscana 
(ham, mushrooms, tomatoes, cheese) 

A$ 12.20 A$ 14.95 A$ 19.50 

  Tonno 
(tuna, onions, tomatoes, cheese) 

A$ 12.95 A$ 15.50 A$ 22.95 

  Fabrizio 
(salami, ham, tomatoes, cheese) 

A$ 13.20 A$ 15.95 A$ 23.95 

  Vegetarian 
(spinach, mushrooms, tomatoes, 
cheese) 

A$ 13.50 A$ 16.50 A$ 24.95 

      

 

 Delivery to: Name 

Address 

 

 

Telephone number 

: 

: 

 

 

: 

______________________________ 

______________________________ 

______________________________ 

 

______________________________ 

       

 

  

 

______________________________________________________________________ 

 

 
 

 



Appendix B
Random Number Verification (RNV) Task

Example scenarios for random number verification tasks 

 

 
Instructions: "Your conversation partner is also provided with such a list. Some of the numbers in 
your list do not correspond with those of your conversation partner. Find the wrong numbers as 
quickly as possible by taking turns reading them line by line. Acknowledge by saying "yes" or 
"no", and cross out the wrong numbers. You will read the bold red numbers and your conversation 
partner will read the non-bold blue ones". 

 
You are the "caller". 

 
 

18 88 80 74 55 7 

15 29 14 37 17 82 

20 95 36 77 34 83 

46 84 30 67 25 99 

28 27 36 96 60 97 

55 10 87 53 43 98 
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Instructions: "Your conversation partner is also provided with such a list. Some of the numbers in 
your list do not correspond with those of your conversation partner. Find the wrong numbers as 
quickly as possible by taking turns reading them line by line. Acknowledge by saying "yes" or 
"no", and cross out the wrong numbers. You will read the bold blue numbers and your conversation 
partner will read the non-bold red ones". 

 
Please wait to be called. 

 

18 84 80 74 55 7 

15 29 14 67 17 82 

36 95 36 77 53 83 

46 88 30 37 25 99 

28 27 20 96 60 97 

55 10 87 34 43 98 
 

 



Appendix C
Agenda of Simulated Agents

Shown here are the .ini-files used as the agenda for the simulation of the SCT scenario
11 and the RNV scenario 1. The information provided in these agenda files correspond
to the information given in the short conversation test scenarios shown in Appendix A.
The information is split into categories denoted by square brackets (e.g., [General]).
For each category, information has to be either requested from the interlocutor (when
only the name of the information variable is given) or information has to be given to the
interlocutor (when the information variable is set to a specific value). If an information
is split over multiple lines (e.g., the telephone number), it may (but does not have to) be
split over multiple turns.
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1 [General]
2 callee_name=Pizzeria Roma
3
4 [Reason]
5 reason
6
7 [Additional]
8 num_of_persons
9 pizza_type

10
11 [Offer]
12 pizza_name=Pizza Vegetaria
13
14 [CalleeInformation]
15 toppings=spinach
16 mushrooms
17 tomatoes
18 cheese
19 price=17 Euro
20
21 [CallerInformation]
22 caller_name
23 address
24 telephone
25
26 [Improv]
27 delivery_duration=<improvised>

Listing C.1 Configuration file of the agenda of the callee in the SCT 11 scenario (Pizzeria
Roma).
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1 [General]
2 callee_name
3
4 [Reason]
5 reason=1 large pizza
6
7 [Additional]
8 num_of_persons=2
9 pizza_type=vegetarian

10
11 [Offer]
12 pizza_name
13
14 [CalleeInformation]
15 toppings
16 price
17
18 [CallerInformation]
19 caller_name=Jeremy Clemens
20 address=Gluecksburger Str.
21 41
22 Bochum
23 telephone=0
24 8
25 1
26 1
27 7
28 3
29 4
30 2
31 0
32
33 [Improv]
34 delivery_duration

Listing C.2 Configuration file of the agenda of the caller in the SCT 11 scenario (Jeremy
Clemens).
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1 [Numbers]
2 string0
3 string1=41
4 7
5 86
6 24
7 56
8 38
9 string2

10 string3=17
11 56
12 76
13 20
14 77
15 34

Listing C.3 Configuration file of the agenda of the callee in the RNV 1 scenario.

1 [Numbers]
2 string0=31
3 85
4 17
5 73
6 44
7 59
8 string1
9 string2=11

10 81
11 85
12 36
13 37
14 78
15 string3

Listing C.4 Configuration file of the agenda of the caller in the RNV 1 scenario.
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