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Abstract
Conducting neuroscience research in the real-world remains challenging because of 
movement- and environment-related artifacts as well as missing control over stimulus 
presentation. The present study overcame these restrictions by mobile electroenceph-
alography (EEG) and data-driven analysis approaches during a real-world navigation 
task. During assisted navigation through an unfamiliar city environment, participants 
received either standard or landmark-based auditory navigation instructions. EEG 
data were recorded continuously during navigation. Saccade- and blink-events as 
well as gait-related EEG activity were extracted from sensor level data. Brain activ-
ity associated with the navigation task was identified by subsequent source-based 
cleaning of non-brain activity and unfolding of overlapping event-related potentials. 
When navigators received landmark-based instructions compared to those receiving 
standard navigation instructions, the blink-related brain potentials during naviga-
tion revealed higher amplitudes at fronto-central leads in a time window starting at 
300  ms after blinks, which was accompanied by improved spatial knowledge ac-
quisition tested in follow-up spatial tasks. Replicating improved spatial knowledge 
acquisition from previous experiments, the present study revealed eye movement-
related brain potentials to point to the involvement of higher cognitive processes 
and increased processing of incoming information during periods of landmark-based 
instructions. The study revealed neuronal correlates underlying visuospatial informa-
tion processing during assisted navigation in the real-world providing a new analysis 
approach for neuroscientific research in freely moving participants in uncontrollable 
real-world environments.
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1  |   INTRODUCTION

1.1  |  Navigation assistance systems and 
spatial knowledge acquisition

Navigating and orienting in our environment are fundamen-
tal aspects of every-day activities. Common navigation tasks 
vary with regards to the distance traveled and familiarity with 
the environment. Accordingly, navigation tasks range from 
commuting to work, or grocery shopping to touristic trips, 
or long hikes to explore new areas. Increasingly, technol-
ogy, i.e., navigation assistance systems, facilitates or even 
take over parts of these spatial orienting tasks. The frequent 
use of navigation aids, however, was shown to be associ-
ated with decreased processing of the environment (Ishikawa 
et al., 2008; Münzer et al., 2006) and to be adverse to the abil-
ity to successfully use spatial strategies when no navigation 
aid is available (Dahmani & Bohbot, 2020).

In previous studies, we demonstrated that the use of com-
mercial navigation instructions that highlight an “intersection” 
(e.g., “Turn left at the next intersection!”) leads to a decrease 
of landmark knowledge. This was especially detrimental re-
garding knowledge of landmarks at decision points with 
route direction changes (Gramann et al., 2017; Wunderlich & 
Gramann,  2018, 2020). These studies further demonstrated 
the successful incidental acquisition of landmark and route 
knowledge when landmark-based rather than standard in-
structions were used. The experimental setups in these stud-
ies ranged from simulated driving through a virtual world 
(Wunderlich & Gramann, 2018) to interactive videos of walk-
ing or actually walking through the real-world (Wunderlich 
& Gramann,  2020). The results revealed higher amplitudes 
of the event-related late positive component (LPC) at parietal 
leads with the cued recall of landmark pictures. The increased 
LPC was interpreted as reflecting the recollection of more 
spatial information which corresponded to better cued recall 
performance observed for landmark-based navigation instruc-
tions (Wunderlich & Gramann,  2018). Even though these 
studies provided new insights into spatial knowledge acqui-
sition when assistance systems were used for navigation, they 
all addressed spatial knowledge acquisition after the assisted 
navigation phase providing no further insights into incidental 
spatial knowledge acquisition during navigation.

1.2  |  Investigating brain activity during 
navigation in real-world studies

Overcoming the restrictions of established brain imaging meth-
ods (Gramann et al., 2011; Makeig et al., 2009), new mobile brain 
imaging devices allow for recording human brain activity during 
active navigation and in the real-world providing high ecologi-
cal validity (Park et al., 2018). Real-world navigation includes 

natural interaction with a complex, dynamically changing en-
vironment and other social agents, as well as realistic visuals 
and soundscapes. However, mobile EEG recordings come with 
several problems. First, active movement through the real-world 
is associated with increasing noise in the recordings (Gramann 
et al., 2014). The EEG records data on the surface of the scalp 
that is the result of volume conducted brain and non-brain 
sources. The latter include biological sources (e.g., eye move-
ment and muscle activity) as well as mechanical and electrical ar-
tifacts (e.g., loose electrodes, cable sway, electrical sources in the 
environment). A second problem lies in a multitude of external 
and internal events that are impossible to control but are naturally 
present when the real-world is used as an experimental environ-
ment to investigate cognitive phenomena. Some of these events 
might provoke artifactual activity with respect to the phenomena 
of interest (e.g., a startle response to a car horn or suddenly ap-
pearing pedestrians). Finally, tests in the real-world do not allow 
for the control of the number and timing of the events of inter-
est that are usually presented in high numbers for the analysis of 
event-related brain activity (Luck et al., 2000).

The problem of inherently noisy data can be addressed by 
blind source separation methods such as independent component 
analyses (ICA, Bell & Sejnowski, 1995; Makeig et al., 1996). 
Removing non-brain sources from the decomposition allows 
for back-projecting only brain activity to the sensor level, using 
ICA as an extended artifact removal tool (Jung et  al., 2000). 
The second problem, the multitude of random events, might 
be overcome by an averaging approach of event-related poten-
tials (ERPs) to average out EEG activity that was not related to 
the processes of interest. However, to do so, the third problem 
has to be solved and a sufficiently high number of meaningful 
events has to be found for event-related analyses and the related 
activity extracted and separated from other or overlapping ac-
tivity (Ehinger & Dimigen, 2019).

1.3  |  Eye movement-related 
events and potentials

Physiological non-brain activity captured in the mobile EEG 
can be used as a source of meaningful events for the analyses of 
ERPs. Using such activity is non-intrusive to the ongoing task 
(Bentivoglio et al., 1997). and naturally occurring physiological 
events like eye blinks and saccades allow to parse the EEG signal 
into meaningful segments as they covary with visual informa-
tion intake (Berg & Davies, 1988; Kamienkowski et al., 2012; 
Stern et al., 1984). Saccades suppress visual information intake 
starting 50 ms preceding a saccade-onset as well as during the 
saccade. Thus, each fixation following a saccade represents the 
onset of visual information intake. Event-related potentials using 
saccades can be related to either saccade onset, peak velocity, or 
saccade offset, with the latter being equivalent to the fixation-re-
lated potentials (fERP). Saccade-related brain potentials (sERP) 
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were used in many previous studies (Gaarder et al., 1964; Rämä 
& Baccino,  2010), especially in research investigating read-
ing and text processing (Baccino, 2012; Dimigen et al., 2011; 
Marton & Szirtes,  1988) or visual search (Kamienkowski 
et al., 2018; Kaunitz et al., 2014; Ossandón et al., 2010).

The sERP starts with the parietal presaccadic spike po-
tential, which represents the execution of the saccade as well 
as its attentional/motivational value (Sailer et al., 2016). The 
posterior positive component 80 ms from the saccade offset 
is labeled lambda response (Kazai & Yagi, 2003) which was 
shown to be sensitive to properties of the visual stimulus 
like luminance or contrast (Dimigen et  al.,  2011; Gaarder 
et al., 1964; Kaunitz et al., 2014; Kazai & Yagi, 2003). The 
sensitivity of the lambda response to the properties of in-
coming visual information as well as its close cortical origin 
renders the lambda response comparable to the P1 in stim-
ulus-evoked ERPs (Kazai & Yagi, 2003). Thus, the P1 and 
lambda response seem to be elicited by the same perceptual 
process (Kaunitz et al., 2014). The subsequent P2 of the sERP 
at posterior leads was shown to be sensitive to the processing 
of context information (Marton & Szirtes, 1988) and seman-
tic meaning of text information (Simola et al., 2009). Simola 
et al.  (2009) showed a right hemispheric dominance of the 
P2 component when processing words versus non-words. 
In visual search, the parietal P2 demonstrated decreased 
amplitudes when fixating targets compared to distractors 
(Kamienkowski, Navajas, et al., 2012). In a later time win-
dow starting at 380 ms Kamienkowski et al. (2012) showed a 
positive component for targets only at frontal leads.

In contrast to saccades, blinks produce a longer interruption 
of the visual input stream (for a review see Stern et al., 1984). 
Despite startle, invasive external events or dry eyes, there 
are at least three different factors determining the timing of 
blink generation. First, in order to keep the efficiency of the 
visual input channel high, and to reduce interruptions in the 
visual information stream, blinks are combined with other 
eye movements (Evinger et al., 1994). Second, blinks likely 
occur after a period of blink suppression (e.g., during atten-
tion allocation) or when the processing mode changes. Thus, 
they can mark the end of an information processing chain 
(Stern et al., 1984). Third, in very structured tasks using for 
example stimulus-response pairs, blinks show a temporal re-
lationship to stimulus presentation (Stern et al., 1984). Like 
saccades and fixations, blinks have been used for extracting 
event-related potentials (bERP). The bERP was shown to be 
sensitive to the parameters of the experimental environment 
or characteristics of the current task (Berg & Davies, 1988; 
Wascher et al., 2014). The long preceding pause of incoming 
visual information might make bERPs more similar to ERPs. 
In addition, the increased likelihood for blinks at the end 
of information processing steps qualifies the bERPs during 
natural viewing as a valuable source of insight about visual 
information processing and underlying cognitive processes.

Berg and Davies (1988) stated that the time point zero in 
bERPs comparable to ERP research is when the eyelid un-
covers the pupils. This happens about 100 ms after the blink 
maximum and thus qualifies the occipital P200 and N250 
referenced to the blink maximum as candidates to represent 
comparable processes like the P1/N1 complex of the stimu-
lus-evoked potential. Based on the interpretation of the vi-
sual evoked activity in traditional ERP studies, the P200 in 
the bERP (P1 in ERP studies) would reflect an exogenous 
component related to the sensory processing of attended in-
coming visual information which is influenced by stimulus 
parameters like contrast. The N250 in the bERP (N1 in ERP 
studies) would be related to the allocation of attention to 
task-relevant stimuli and discrimination of stimulus features 
(Luck, 2005; Luck et al., 1990). A fronto-central P100 of the 
bERP was shown to be less pronounced and the following 
N200 to be more pronounced in a cognitive task when com-
pared to a physical task or rest (Wascher et al., 2014).

Regarding later evoked components of the bERP, Berg 
and Davies (1988) described the posterior P300 to be more 
pronounced when subjects blinked under light as compared 
to blinking in darkness. In the latter case, the bERP P300 was 
nearly absent, implying that this P300 reflects the process-
ing of incoming visual information. Accordingly, Wascher 
et al. (2014) found the posterior P300 to be most pronounced 
during rest, followed by the cognitive task and least pro-
nounced during the physical task reflecting amplitude mod-
ulation due to information processing. The waveform of the 
component reminds of the P300 at posterior leads in tra-
ditional ERP studies and seems to be composed of several 
sub-components underlying different cognitive processes.

1.4  |  Research goal and hypotheses

In this paper, we describe a means to deal with the previously 
specified issues arising from collecting mobile EEG during 
an ongoing task in the real-world. We show how both blink- 
and saccade-related potentials alongside gait-related activity 
in uncontrolled real-world environments can be extracted 
from IC source time series. These events can subsequently be 
analyzed to gain deeper insights into the ongoing brain activ-
ity accompanying information processing in the real-world.

In the present study, we used this approach to investigate 
human brain activity during assisted pedestrian navigation 
using standard or landmark-based auditory turn-by-turn in-
structions. We investigated how navigation instructions might 
change visual information processing and incidental spatial 
knowledge acquisition. We recorded and analyzed brain ac-
tivity in the real-world, while participants navigated through 
the city of Berlin and were subsequently tested on their ac-
quired spatial knowledge. Based on previously observed 
increased LPCs for landmarks presented in a cued-recall 



4  |      WUNDERLICH and GRAMANN

task after navigation with landmark-based instructions, we 
expected landmark-based navigation instructions to gener-
ally shift attention toward information in the environment 
relevant for navigation. The accompanying improved spatial 
knowledge acquisition was assumed to lead to a better perfor-
mance in the follow-up spatial tasks.

To investigate how navigators process the environment 
during assisted navigation, we used blink- and saccade-re-
lated potentials. These were extracted during the entire 
navigation task and analyzed separately for navigation peri-
ods at intersections where auditory navigation instructions 
were provided and periods were navigators walked straight 
segments of the route without navigation instructions. Eye 
movement-related potentials were expected to reveal differ-
ences between navigation instruction conditions, especially 
at intersections. Group differences during straight segments 
would indicate a general change in visual information pro-
cessing. While this was an explorative study investigating 
eye movement-related brain potentials in a real-world nav-
igation task, previous ERP studies and studies using eye 
movement-related brain activity in established laboratory 
settings allowed for some hypotheses about differences in 
evoked potentials. Based on earlier laboratory studies, we 
expected group differences in early visual components at 
posterior leads reflecting instruction-dependent visuo-at-
tentional processes. Furthermore, we expected more pro-
nounced later components over parietal leads representing 
information integration and memory encoding, while late 
potential differences over fronto-central leads were ex-
pected to reflect a different involvement of higher cognitive 
processes.

2  |   MATERIALS AND METHODS

2.1  |  Participants

The data of 22 participants (11 women) were analyzed with 
eleven participants in each navigation instruction condition. Their 
age ranged from 20 to 39 years (M = 27.4, SD = 4.63 years). 
Participants were recruited through an existing database or per-
sonal contact and received either 10 Euro per hour or course 
credit. All had normal or corrected to normal vision and gave 
informed consent prior to the study which was approved by the 
local research ethics committee of the Institute for Psychology 
and Ergonomics at the Technische Universität (TU) Berlin. 
Before the main experiment, participants filled out an online 
questionnaire to determine if they were familiar with the area 
where the navigation task would take place (Wunderlich & 
Gramann, 2020). After navigating the route, participants were 
again asked whether they had been familiar with the navigated 
route. In case participants stated familiarity with more than 
50% of the route, they were excluded from the second part of 

the experiment and data analysis. In the final sample of 22 par-
ticipants, familiarity ratings ranged from 0% to 40% (M = 9.52%, 
SD = 12.2%).

2.2  |  Study design and procedure

The experiment consisted of two parts and lasted approxi-
mately 3 hr in total. In the first part, participants walked a pre-
defined route through the district of Charlottenburg, Berlin 
in Germany, using an auditory navigation assistance system. 
In the second part, directly after the navigation task, partici-
pants were transported back to the Berlin Mobile Brain/Body 
Imaging Lab (BeMoBIL) at TU Berlin to run different spa-
tial tests. Participants had not been informed about the spatial 
tasks and that they would be tested on the environment after 
the navigation task.

During the navigation task, participants followed the audi-
tory navigation instructions to navigate along a 3.2 km long, 
predefined, unfamiliar route with twenty intersections. There 
were two groups of participants, either receiving standard 
or landmark-based navigation instructions prior to each in-
tersection. Based on previous results (Gramann et al., 2017; 
Wunderlich & Gramann,  2018, 2020), landmark-based in-
structions referenced a landmark at each intersection and pro-
vided more detailed information about this landmark. One 
example of navigation instruction for this landmark-based 
condition was “Turn left at the UdK. The UdK is the biggest 
University of Arts in Europe.” This contrasted with the stan-
dard navigation instruction condition that used instructions 
like “Turn left at the next intersection.” Previous to the nav-
igation task, it was pointed out to the participants that they 
should follow the auditory turn-by-turn instructions and be 
aware of other traffic participants, especially while crossing 
streets. Furthermore, in case they feel lost, they were asked 
to stop and turn to the experimenter who was shadowing the 
participant with two to three meters distance. The presence 
of the experimenter ensured the participant's safety as well as 
the correct course of the route. The experimenter manually 
triggered the auditory navigation instructions using a brows-
er-based application on a mobile phone. Participants received 
the auditory navigation instructions by Bluetooth in-Ear 
headphones at predefined trigger points in the environment. 
After walking for approximately 40  min, the participants 
arrived at the end of the route. There, they were instructed 
to rate their subjective task load during navigation using the 
National Aeronautics and Space Administration Task Load 
Index (NASA-TLX; Hart,  2006; Hart & Staveland,  1988). 
Additionally, they filled in three short questions regarding 
their prior knowledge of the route.

The second part of the experiment took place at the 
BeMoBIL. There, the first task was to draw a map of the 
route on an empty sheet of paper (DIN A3) and secondly to 
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solve a cued-recall task. In the latter task, sixty landmark 
pictures were given as cues and the required response in-
cluded the respective route direction. The randomly shown 
landmarks had been either located at intersections (and men-
tioned in the landmark-based navigation instructions) or at 
straight segments of the route (without navigation instruc-
tions), or they were similar in appearance but not part of the 
previously navigated route. In the end, demographic data as 
well as individual navigation habits, and subjective spatial 
ability ratings using the Santa Barbara Sense of Direction 
Scale (SBSOD; Hegarty et al., 2002) and the German ques-
tionnaire Fragebogen Räumliche Strategien (FRS; Münzer 
et al., 2016; Münzer & Hölscher, 2011) as well as perspective 
taking (PTSOT; Hegarty & Waller, 2004) were collected.

2.3  |  Electroencephalography

2.3.1  |  EEG data collection

The EEG was recorded continuously during the navigation 
task and the subsequent laboratory tests using an elastic 
cap with 65 electrodes (eego, ANT Neuro, Enschede, The 
Netherlands). Electrodes were placed according to the ex-
tended 10% system (Oostenveld & Praamstra,  2001). All 
electrodes were referenced to CPz and the data were col-
lected with a sampling rate of 500 Hz. One electrode below 
the left eye was used to record vertical eye movements. Time 
synchronization and disk recording of the EEG data stream 
and the event marker stream from the mobile application and 

F I G U R E  1   EEG data processing from 
raw data to ICA computation (left) and 
from raw task data to the use of the unfold 
toolbox (right). Additional analysis steps in 
the ICA preprocessing have white boxes to 
emphasize the otherwise parallel processing
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task paradigm was performed using Lab Streaming Layer 
(LSL, https://github.com/sccn/labst​reami​nglayer; Accessed 
on November 1, 2020).

2.3.2  |  EEG data processing

For EEG data processing, the MATLAB toolbox EEGLAB 
was used (Delorme & Makeig, 2004). The raw EEG data of 
both the navigation phase and the cued-recall task were high 
pass filtered at 1 Hz, low pass filtered at 100 Hz using the 
EEGLAB filter function eegfilter(), and subsequently resam-
pled to 250 Hz (see Figure 1, left column). The pre- and post-
task phases of the EEG data were removed. Afterward, the 
two separate datasets of each participant were merged into 
one dataset and channels that were subjectively judged as 
very noisy, flat, or drifting were manually rejected (M = 3.79, 
SD = 1.77, Min = 1, Max = 8). Continuous data cleaning was 
applied twice using the pop_rejcont() function for frequency 
limits from 1 to 100 Hz and default settings for all other pa-
rameters.1 Rejected channels were interpolated using a spher-
ical spline function and the data were re-referenced to the 
average reference. Time-domain cleaning before interpola-
tion and re-referencing targeted artifacts on a single channel 
level prohibiting the inflation of single noisy channels when 
re-referencing to average reference. A second-time-domain 
cleaning was applied to remove the remaining artifactual 
data.

Subsequently, the data were submitted to independent com-
ponent analysis (ICA, Makeig et al., 1996) using the Adaptive 
Mixture ICA (AMICA, Palmer et  al.,  2011). The resultant 
independent components (ICs) were localized to the source 
space using an equivalent dipole model as implemented in 
the dipfit routines (Oostenveld & Oostendorp, 2002). Finally, 
the resultant ICs were classified as being brain, muscle or 
other processes using the default classifier of IClabel (Pion-
Tonachini et al., 2019).

The original sensor data were preprocessed using identi-
cal processing steps as described above save different filter 
frequencies and no time-domain data cleaning (see Figure 1, 
right column). The respective weights and sphere matrices 
from the AMICA solution were applied to the preprocessed 
navigation dataset. In addition, the equivalent dipole models 
and IClabel classifications for each participant and IC were 

transferred to the respective task dataset allowing for the ex-
traction of events based on the complete duration of the task.

2.4  |  Event extraction from IC time course

The event extraction is summarized in Figure 2. Blinks were 
identified using one IC from the individual decompositions 
that reflected vertical eye movements as described in Lins 
et al. (Lins et al., 1993). In case of more than one candidate 
for the vertical eye IC, the component showing a better signal 
to noise ratio for blink deflections and/or less horizontal eye 
movement was chosen based on subjective inspection.

For detecting blinks, the associated component activation 
time course was filtered using a moving median approach 
(window size of twenty sample points equaling 80  ms). 
Moving median approaches smooth without changing the 
steepness of the slopes in the data (Bulling et  al.,  2010). 
To allow for automated blink peak detection, all individual 
IC time courses were standardized to a positive peak po-
larity. Peak detection was performed using the MATLAB 
function findpeaks() applied to the filtered IC activation. 
Parameters used were a minimal peak distance of 25 sam-
ple points (100 ms) to avoid directly following blinks to be 
selected. Further, peaks were restricted to a minimal peak 
width of 5 (20  ms) and maximal peak width of 80 sample 
points (320 ms) to suppress potential high-amplitude artifacts 
or slow oscillations from being counted as a blink. The fol-
lowing two parameters were automatically defined for each 
dataset individually to take care of interindividual differences 
in the shape of the electrical signal representing a blink: the 
90-percentile of the filtered activation data was applied to de-
fine a threshold of minimal peak prominence. This parame-
ter ensured the successful separation of detected peaks from 
the background IC activity. For the absolute minimal peak 
height, a threshold was defined using the 85-percentile of 
the filtered activation data. For each peak location, an event 
marker with the name blink was created in the EEG dataset at 
the time point of maximum blink deflection.

Saccades were identified using two ICs from the indi-
vidual decompositions that reflected vertical and horizontal 
eye movements, respectively (according to Lins et al., 1993). 
Vertical eye movement ICs were the same as used for blink 
detection. For the horizontal eye movement ICs, the IC with 
the most characteristic scalp map and rectangular activity in 
the activation time course reflecting horizontal eye move-
ments was chosen based on subjective inspection. The asso-
ciated component activation time courses were filtered using 
a moving median approach (window size of 20 sample points 
equaling 80 ms). The electrooculogram (EOG) activity was 
calculated using the root mean square of the smoothed time 
courses (Jia & Tyler,  2019). For saccade maximum veloc-
ity detection, the first derivative was taken and squared to 

 1Parameters used for the EEGLAB function pop_rejcont: cleaning based on 
all electrodes; epoch length of 0.5 s; epoch overlap of 0.25 s; frequency 
limits to consider for thresholding [10 50]; frequency upper threshold 
10 dB; four contiguous epochs necessary to label a region as artifactual; 
once a region of contiguous epochs has been labeled as an artifact, 
additional trailing neighboring regions of 0.25 s on each side were added; 
selected regions were removed from the data; spectrum was computed 
within the function; hamming was used as taper before fast Fourier 
transformation (FFT).

https://github.com/sccn/labstreaminglayer
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increase the signal-to-noise-ratio. The function findpeaks() 
was applied to the squared derivative of the EOG activa-
tion. Parameters used were a minimal peak distance of 25 
sample points (100 ms). Peaks were restricted to a minimal 
peak width of 1 (4 ms) and maximal peak width of 10 sample 
points (40 ms). The 90-percentile of the squared derivative of 
the EOG was applied for minimal peak prominence as well 
as for the minimal peak height threshold. In case identified 
peaks were closer than 30 sample points (120 ms) to a blink 
event, these peaks were not taken for saccade event extraction 
to avoid taking saccades into account that appeared during 
eyes closed periods. For each of the remaining peaks, an 
event marker called saccade was created in the EEG dataset 
at the time point of maximum saccade velocity (middle of 
the saccade).

Gait-related EEG activity was identified based on IC acti-
vation time course, scalp maps, and spectra from each individ-
ual decompositions. Up to two ICs were chosen manually that 
reflected gait cycle-related activity as described previously 

in studies comparing measures of kinematics and EEG ac-
tivity (Jacobsen et  al.,  2020; Kline et  al.,  2015; Knaepen 
et al., 2015; Oliveira et al., 2017; Snyder et al., 2015). No fil-
tering or smoothing was applied to the associated component 
activation time courses that showed a pronounced waveform 
at approximately 2  Hz. Inverting of time courses for some 
ICs was performed to align peak amplitudes on top of the 
slow-wave maxima. To extract single steps of the gait cycle, 
findpeaks() was applied to both IC activations consecutively. 
Peaks were restricted to a minimal peak width of 5 (20 ms) 
to take advantage of the high-frequency part and maximal 
peak width of 150 sample points (600 ms) to detect the slow-
wave peaks. Minimal peak distance was set to 100 sample 
points (400  ms) to avoid that the high-frequency part and 
the slow-wave peak were both used for event extraction. The 
80-percentile of the IC activation time course was applied 
for minimal peak prominence and as a threshold for mini-
mal peak height. In case of step events identified in the two 
ICs being closer than 50 sample points (200 ms) one of the 

F I G U R E  2   Analysis steps for the extraction of events from the respective IC activation(s): blink (left), saccade (middle), and step events 
(right). The respective parameters for the findpeaks() functions can be found in the text
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respective events was not taken into account for event gen-
eration. For each remaining detected peak, an event marker 
named step was created in the EEG dataset.

Afterward, every dataset was visually checked to validate 
blink, saccade, and gait events according to previous reports 
(Kline et al., 2015; Lins et al., 1993). To enable the comparison 
of blink- and saccade-related brain activity in different phases 
of the navigation task, we included different labels according to 
the task phases. The first event type was labeled baseline in case 
the event appeared before the first navigation instruction and 
thus was unaffected by the navigation instruction conditions. 
This baseline phase lasted on average six minutes (M = 352s, 
SD = 200 s). A second event type was labeled intersections in 
case the event took place within the 15 s following the onset of 
each of the twenty navigation instructions (in sum 300 s). The 
event type straight segments were used for all other remaining 
events in the navigation phase. On average, the time interval 
between two navigation instructions was 123 s. The number of 
events in each category can be seen in Table 1.

2.5  |  Source-based EEG data cleaning

Subsequently, all ICs with a classification probability 
lower than 30% in the category brain were removed from 
the dataset and the data were back-projected to the sen-
sor level. This way the number of ICs per participant was 
reduced to M  =  13.3 ICs (SD  =  4.50 ICs, Min  =  5 ICs, 
Max = 22 ICs). Considering the instruction conditions, this 
IC reduction did not lead to unbalanced numbers of ICs 
between the two instruction condition groups (standard: 
M = 13.1 ICs, SD = 5.12 ICs, Min = 5 ICs, Max = 22 ICs; 
landmark-based: M = 13.5 ICs, SD = 4.74 ICs, Min = 6 
ICs, Max = 18 ICs).

2.6  |  Unfolding of event-related activity

The last data processing step on the single-subject level was 
the application of the unfold toolbox to the continuous data 
(Ehinger & Dimigen,  2019). This toolbox allows for a re-
gression-based separation of overlapping event-related brain 
activity. As the extracted eye and body movement events 
in the navigation task overlapped with each other (Dimigen 
et al., 2011) and/or were temporally synchronized for some 
participants, it is a valuable tool to consider and control for 
overlapping ERPs and individual differences.

Following the published analysis pipeline of (Ehinger 
& Dimigen, 2019), we defined a design matrix with blink, 
saccade, and step events and 64 channels. We included the 
categorical factor navigation phase (baseline, intersections, 
straight segments) for the blink and saccade events into the 
regression formula: y = 1 + cat(navigation phase). For the 
step events, we only computed the intercept: y = 1. After ap-
plying the continuous artifact detection of the unfold pipe-
line and exclusion set to amplitude threshold of 80 µV, we 
time-expanded the design matrix according to the timelimits 
of −500 ms and 1,000 ms referring to the event timestamp. 
Afterward, we fitted the general linear model and extracted 
the intercept and beta values considering −500 ms to −200 ms 
for baseline correction (similar to Wascher et al., 2014).

While the blink and saccade-related potentials were con-
sidered as informative for the analysis of visual information 
processing during navigation, the step events were only used 
to control for their individual impact on the blink and sac-
cade-related potentials. The intercept and beta values of the 
general linear model built the basis for a comparison between 
participants. Unfolded event-related potentials for all event 
types were computed for all electrodes and used for statisti-
cal analysis of group differences. The ERPs of participants 

T A B L E  1   Number of blink, saccade, and step events for all participants and separated by navigation instruction condition and navigation 
phase

Number blink events Number saccade events Step

Baseline Intersections Straight segments Baseline Intersections Straight segments All

Standard instruction condition

M 214 213 1,385 652 666 4,386 4,216

SD 142 81 592 224 113 1,104 1,033

Min 80 99 693 294 430 3,184 3,131

Max 572 355 2,730 996 857 6,808 6,878

Landmark based instruction condition

M 183 193 1,236 559 794 4,307 3,994

SD 128 76 623 281 180 1,181 850

Min 68 89 384 184 366 1,893 1,762

Max 525 368 2,907 1,307 1,023 5,818 5,166

Abbreviations: M, mean; Max, Maximum; Min, Minimum; SD, standard deviation.
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within one navigation instruction condition and navigation 
phase were averaged and plotted alongside with twice the 
standard error of the mean (SEM) for FCz and as scalp map 
for five concatenated time windows.

2.7  |  Statistical analysis

We tested for group differences in individual and subjective 
measures using t tests of independent samples. The number 
of free-recalled landmarks in the sketch map and the sensi-
tivity d′ of the cued-recall task were tested using each time 
a 2 × 2 mixed measure ANOVA with the between-subject 
factor navigation instruction condition (standard versus land-
mark-based) and the within-subject measure landmark loca-
tion (intersections versus straight segments). The acquired 
route knowledge was compared between navigation instruc-
tion conditions for the landmarks at intersections using a t 
test of independent samples.

Statistical analysis on blink- and saccade-related brain 
potentials was performed for the interaction of navigation 
instruction condition (standard versus landmark-based) and 
baseline-corrected navigation phase (intersections versus 
straight segments). Group difference plots of the ERPs for 
both navigation phases were investigated to find time win-
dows revealing significant differences between the navigation 
instruction conditions after the single-trial baseline ending at 
−200 ms. To define statistical significance between the un-
paired values, the EEGLAB function statcondfieldtrip() was 
used. Due to this, a 10,000-fold permutation testing was ap-
plied followed by a cluster-based correction for family-wise 
error. If the returned probability corrected two-tailed p-value 
was below 0.05, the sample was marked as statistically 
significant.

3  |   RESULTS

3.1  |  Questionnaires

Using all questionnaire data, we checked for potential dif-
ferences between the two experimental groups. When ask-
ing about the navigation assistance use, groups differed 
with respect to the use of navigation support (Item: “I use 
a navigation aid because I cannot find my way otherwise.”) 
The control group demonstrated less use of navigation aids 
(M = 2.73, SD = 2.05) compared to the landmark-based navi-
gation instruction group (M = 4.45, SD = 2.11; t(20) = −1.94, 
p = 0.066, d = 0.83). No other items indicated differences 
between instruction groups (p's > 0.10). In addition, one item 
of the FRS targeting subjective orienting ability revealed 
a group difference. Navigators of the standard instruction 
group rated higher (M = 4.64, SD = 1.43) compared to the 

landmark-based navigation instruction group (M  =  3.00, 
SD = 1.67; t(20) = 2.46, p = 0.023, d = 1.05) in the item: 
“If I walk through an unfamiliar city, I know the direction 
of the start and goal location.” All other items and the three 
factors of the FRS showed no significant differences (all 
p's > 0.171). The results of the SBSOD, the PTSOT, and the 
route familiarity after navigation showed no differences be-
tween the groups (all p's > 0.261).

Participants stated their task-related load after assisted 
navigation on six subscales of the NASA-TLX ranging 
from 1 to 100. The data revealed a difference of the two 
navigation instruction groups in the physical load assess-
ment (standard: M  =  38.5, SD  =  23.5; landmark-based: 
M = 20.6, SD = 15.9; t(20) = 2.08, p = 0.050, d = 0.89) 
and a trend regarding the subjective mental load (stan-
dard M  =  22.6, SD  =  16.2; landmark-based: M  =  37.5, 
SD  =  18.4; t(20)  =  −2.01, p  =  0.058, d  =  0.86). All 
other subscales showed no difference between instruc-
tion groups (all p's  >  0.177). There were no differences 
in walking speed between the instruction groups (stan-
dard M  =  4.76  km/h, SD  =  0.35  km/h; landmark-based: 
M = 4.86 km/h, SD = 0.34 km/h; t(20) = −0.68, p = 0.506).

3.2  |  Spatial knowledge acquisition

Free-recall of landmark knowledge was compared using 
a 2  ×  2 ANOVA with the between-subject factor naviga-
tion instruction condition (standard versus landmark-based) 
and within-subject factor landmark type (intersections ver-
sus straight segments). The dependent variable analyzed 
was the number of correct landmarks marked in the sketch 
map. The main effect of navigation instruction condition 
(F(1,20) = 30.5, p < 0.001, η2

p = 0.604) as well as the main ef-
fect landmark type were significant (F(1,20) = 31.0, p < 0.001, 
η2

p = 0.608). The interaction effect also reached significance 
(F(1,20) = 25.9, p < 0.001, η2

p = 0.564). Post hoc contrasts of 
the interaction revealed that the number of correctly drawn 
landmarks at intersections was higher for the landmark-
based navigation instruction condition (M = 9.91, SE = 0.92, 
p < 0.001) when compared to the standard navigation instruc-
tion condition (M = 1.91, SE = 0.92). The number of cor-
rectly drawn landmarks at straight segments was comparably 
low across navigation instruction conditions (p = 0.721).

The performance of the cued-recall task was used to 
compute the dependent variable d’ representing the sensi-
tivity of landmark recognition using signal detection the-
ory. Its values were then tested in a 2  ×  2 ANOVA with 
the between-subject factor navigation instruction condition 
(standard versus landmark-based) and within-subject factor 
landmark type (intersections versus straight segments). The 
main effect navigation instruction condition (F(1,20) = 3.53, 
p = 0.075, η2

p = 0.150) and the main effect landmark type 
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showed a trend toward significance at the level of 0.05 
(F(1,20) = 4.22, p = 0.053, η2

p = 0.174). The interaction of 
both factors reached significance (F(1,20) = 6.51, p = 0.019, 
η2

p = 0.246). Post hoc contrasts testing navigation instruc-
tion conditions showed that the recognition sensitivity for 
landmarks at intersections was higher for the landmark-based 
navigation instruction condition (M  =  2.47, SE  =  0.25, 
p = 0.009) compared to the standard navigation instruction 
condition (M = 1.47, SE = 0.25). The detection sensitivity 
for landmarks at straight segments was comparable across 
navigation instruction conditions (p = 0.584).

The incidentally acquired route knowledge as reflected 
in the percentage of correct route responses to landmarks 
at intersections was tested using an ANOVA with the 

between-subject factor navigation instruction condition 
(standard versus landmark-based). The significant main ef-
fect (F(1,20) = 11.2, p = 0.003, η2

p = 0.358) revealed that 
the landmark-based navigation group showed better perfor-
mance (M = 69.1%, SE = 4.14%) than the control group 
(M = 49.5%, SE = 4.14%).

3.3  |  Saccade-related potentials

The order and polarity of sERP components were compara-
ble across navigation instruction conditions and navigation 
phases (see Figure 3). Amplitudes increased gradually from 
frontal to occipital leads as well as from lateral leads toward 

F I G U R E  3   Saccade-related potentials. Left panel displayes the topography of the activity averaged across time windows (100 ms duration for 
early and 200 ms duration for late components). Topography was plotted separately for each navigation instruction condition (light grey – standard, 
dark grey – landmark-based) and navigation phase (baseline, straight segments, intersections). Right panel shows the voltage over time plot of the 
respective saccade-related potential at FCz. The sERPs were baseline corrected by subtracting the average of -400 to -200 ms. Positivity is plotted 
upwards
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the central midline. We labeled each peak using the polar-
ity and the latency rounded to a multiple of 50 ms. In case, 
there were already established names to be found in sERP 
and fERP literature, we added the respective references when 
introducing these components.

The presaccadic spike potential or P0 was observed at the 
majority of electrodes about 10–20 ms preceding the saccade 
event.

At frontal leads, a first negative component (N100) fol-
lowing the saccade event became visible at around 80  ms 
and peaked around 120 ms with an amplitude maximum of 
−2 µV at Fz. After the N100, a positive component was ob-
served peaking around 160 ms. Subsequently, the potential 

slowly returned to the baseline without further dissociable 
components. The peak amplitude of the N100 decreased from 
frontal leads toward more central electrodes.

At parietal and occipital leads a pronounced P100 or 
lambda response was elicited peaking at 110 ms. The P100 
had the highest amplitude at POz with 6 µV. Following the 
P100, a negative component (N150) with a minimum at 
160 ms became visible. After this N150, a second positive 
component (P200) evolved peaking around 200  ms at Pz 
and POz and around 300 ms at Oz. Afterward, the potential 
slowly returned to its baseline. The parietal P100 was slightly 
more pronounced over the right hemisphere when compared 
to left hemispheric leads.

F I G U R E  4   Blink-related potentials. Left panel displayes the topography of the activity averaged across time windows (100 ms duration for 
early and 200 ms duration for late components). Topography was plotted separately for each navigation instruction condition (light grey – standard, 
dark grey – landmark-based) and navigation phase (baseline, straight segments, intersections). Right panel shows the voltage over time plot of the 
respective blink-related potential at FCz. The bERPs were baseline corrected by subtracting the average of -400 to -200 ms. The grey rectangular 
areas represent time windows where samplewise significant differences between the navigation instruction conditions were found in the beta values 
of the respective navigation phase. Positivity is plotted upwards
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3.4  |  Blink-related potentials

The bERP revealed a different pattern of peaks compared to 
the sERP (see Figure 4). The order and polarity of compo-
nents were the same across bERPs for different navigation in-
struction conditions and navigation phases. All components 
were more pronounced at the central midline as compared to 
right or left hemispheric electrodes.

From frontal to central sites, the bERP revealed a first neg-
ative component when the eyes were completely closed (N0). 
After this N0, the frontal bERP activity showed a first positive 
component (P150) reaching a maximum of about 2 µV around 
140  ms after the blink at frontal leads with decreasing ampli-
tudes toward lateralized leads. A second negative component was 
observed around 200  ms (N200) which was most pronounced 
at frontal leads. A second but relatively small positivity peaked 
around 50 ms later (P250), followed by a third negative compo-
nent around 300 ms (N300). This N300 was less pronounced than 
the previous N200 and formed a plateau for about 200 ms before 
returning to the baseline with an additional very small component 
at about 500 ms. This late negative component will be referred to 
as the late negative component (LNC).

Parietal to occipital leads revealed a small elevation peak-
ing at time point zero (P0) as a counterpart to the frontal N0. 
This was followed by negativity (N100) with increasing ampli-
tudes and latencies from parietal to occipital sites (Pz: 0.8 µV, 
110 ms; POz: −0.5 µV, 120 ms; Oz: −2.5 µV, 130 ms). The time 

shift between electrode sites of the latter component was also 
revealed in the following positive Peak (P150). The maximal 
amplitude was elicited at Pz with 4 µV and a latency of 160 ms. 
At Oz the latency of the remaining peak of the positivity was lo-
cated around 200 ms post-event (P200) and reached 0 µV in the 
standard as compared to 2 µV in the landmark-based navigation 
instruction condition. This instruction dependent variation was 
visible in all navigation phases. After the P150, a second neg-
ative component (N250) peaked at about 1.5 µV with a latency 
of 230 ms at electrodes Pz and POz. At Oz, the negativity was 
temporally aligned with the one at Pz and POz and the peak-to-
peak difference to the previous positivity constant for both ex-
perimental groups. Another positive component followed with a 
peak around 300 ms (P300) most pronounced at POz with about 
3 µV. Reaching P300 the difference between the navigation in-
struction conditions at Oz leveled out. Finally, also at parietal to 
occipital leads a small component at approximately 600 ms was 
noticeable combined with an increased flattening of the slope 
compared to before.

3.5  |  Differences between navigation 
instruction conditions

The results of the statistical analysis are displayed as grey bars 
in Figure 4. The ERPs were tested samplewise for significant 
differences between the navigation instruction conditions and 

T A B L E  2   Significant time windows in the blink- and saccade-related potentials

Event Phase

Electrode position
Time in 
ms

Peak in ERP
Instruction condition 
with higher valuesLeft Center Right Start–end

Blink Intersections F2 280–408 N300 Landmark-based

FT7 368–476 N300 Standard

FC1 552–772 LNC Landmark-based

FCz 336–532 N300 Landmark-based

FCz 548–780 LNC Landmark-based

CP5 208–408 P300 Standard

P5 188–376 P300 Qualified by BL diff

Straight segments FC3 656–804 LNC Qualified by BL diff

FC1 640–788 LNC Landmark-based

CP5 196–392 P300 Standard

P7 200–312 P300 Qualified by BL diff

P5 196–264 P300 Qualified by BL diff

P3 196–324 P300 Qualified by BL diff

P1 172–320 N250, P300 Standard

Saccade Straight segments F2 140–328 N300 Qualified by BL diff

FC1 188–320 N300 Qualified by BL diff

CP1 776–880 LNC Qualified by BL diff

Abbreviations: BL diff, difference between the instruction conditions in the baseline phase; ERP, event-related potential; LNC, late negative component.
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separately for events at straight segments and at intersections. 
To this end, the event-related activity of each participant was 
controlled for by the respective event-related activity before 
the first navigation instruction (baseline phase) using the beta 
values provided by the unfold toolbox.

Blink-related potentials differed in amplitude dependent 
on the navigation instruction conditions, irrespective of base-
line differences, at F2, FT7, FC1, CP5, P5, and FCz for the 
intersections and at FC3, FC1, CP5, P7, P5, P3, and P1 for 
the straight segments. In the saccade-related potentials, sig-
nificant differences were observed only for the straight seg-
ments at F2, FC1, and CP1.

The timing of the significant differences and their ac-
companying peaks in the event-related potentials are listed 
in Table  2. Additionally, the respective navigation instruc-
tion condition that showed higher absolute event-related 
amplitudes in this time window is listed in the last column. 
Saccade-related potentials differed between the two groups 
only during the baseline phase of the task.

4  |   DISCUSSION

This study investigated the neural basis of visuospatial infor-
mation processing of pedestrians navigating through a real 
city guided by an auditory navigation assistance system. The 
auditory navigation instructions were either standard naviga-
tion instructions providing turning instructions referring to 
the next intersection or landmark-based navigation instruc-
tions referring to a salient object at the upcoming intersection 
and providing explanatory information about this landmark 
object. The changes in visual information processing dur-
ing assisted navigation in the real-world were investigated 
by extracting saccade- and blink-related potentials from the 
recorded mobile EEG data, while controlling for gait-related 
activity. This way a sufficient number of events for analyz-
ing event-related brain activity in an otherwise uncontrolled 
real-world environment was attained. The resulting blink-
based ERPs proved to be sensitive to the experimental ma-
nipulations of auditory navigation instructions. We discuss 
these results alongside with group differences in individual 
measures, spatial task performance, and the data processing 
pipeline.

4.1  |  Subjective task load

The ratings of the NASA-RTLX showed that the task load 
during the assisted navigation was rather low and overall com-
parable across experimental groups. However, the individual 
ratings of the subscales physical and mental load did not sup-
port the assumption that the subjectively experienced load 
was comparable for both navigation instruction conditions. 

The trend toward higher mental load in the landmark-based 
instruction group contrasts with previous findings during 
simulated driving (Wunderlich & Gramann,  2018). Still, 
both group averages of pedestrian navigation were lower 
compared to the simulated driving experiment. A possible 
explanation is that walking is slower as well as more auto-
mated than simulated driving and in turn requires less effort. 
This lower effort in the primary locomotion task may have 
allowed participants to become more aware of the demands 
of the navigation task, especially since landmark-based in-
structions are novel and might have fostered attention to the 
navigation task. The group difference in the subjectively per-
ceived physical load is more difficult to explain as all partici-
pants had the same route length and were instructed to walk 
at their preferred speed. Objective measures also support 
the comparable physical demand as walking speed did not 
differ between groups. This difference might be a comple-
mentary effect on the subjectively experienced mental load. 
Participants in the control group were not attending to famil-
iar navigation instructions and might have concentrated on 
the physical aspects of the relatively long path perceiving the 
primary locomotion task more demanding.

4.2  |  Spatial knowledge acquisition

Incidentally acquired landmark knowledge was tested in a 
free- and a cued-recall task. When sketching the navigated 
route on an empty sheet of paper, participants in the land-
mark-based instruction condition were able to recall sig-
nificantly more landmarks at intersections compared to the 
control group. The number of landmarks at straight segments 
revealed similar performance for both groups. These results 
support that the auditory reference to the landmarks at inter-
sections helped to recollect landmark information later. As 
there was no effect for landmarks at straight segments that re-
ceived no reference in the instruction, it can be assumed that 
the processing of the environment was only increased when 
the landmark-based navigation instructions were provided. 
Alternative explanations could be that the verbalization of 
the landmarks increased the concreteness and thus helped to 
successfully encode information from the environment (Dan 
Yarmey & Paivio,  1965) or that the combination of visual 
input and auditory augmentation improved memory encod-
ing (Hsia, 1968). After navigating the route only once, the 
low quality of the sketch maps did not allow for an analysis 
of survey knowledge.

The cued-recall task performance was in accordance with 
the hypothesis that participants using landmark-based naviga-
tion instructions acquire more spatial knowledge. There was a 
significantly increased recognition sensitivity for landmarks 
at intersections representing incidentally acquired landmark 
knowledge. This is aligned with previous studies testing 
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landmark-based navigation instructions during simulated 
driving in virtual reality (Gramann et al., 2017; Wunderlich 
& Gramann, 2018). Like in free-recall, the recognition sensi-
tivity for landmarks at straight segments was not enhanced by 
the landmark-based navigation instructions.

The route knowledge, which was indicated by the route 
directions when landmarks at intersections were provided as 
cue, was more accurate when using landmark-based naviga-
tion instructions during navigation. Thus, landmark-based 
instructions enhance the incidental acquisition of route 
knowledge even after navigating an unfamiliar route only 
once.

The landmark-based navigation instructions used in the 
present experiment differed from the standard navigation in-
structions by naming the landmark as well as by adding more 
detailed information. Whether the landmark or the level of 
detail in the instructions enhanced the spatial knowledge ac-
quisition can not be disentangled solely based on the data in 
the reported experiment. However, in previous experiments, 
we focused on the impact of different kinds of additional in-
formation in landmark-based navigation instructions on spa-
tial knowledge acquisition (Wunderlich & Gramann, 2020). 
Based on the data from a series of experiments using dif-
ferent landmark-based instructions, it can be stated that 
landmark-based navigation instructions always enhanced 
spatial knowledge acquisition compared to standard instruc-
tions, whereas the impact of the level of detail in the land-
mark-based navigation instruction did not consistently add 
onto this effect. When spatial knowledge was tested directly 
after assisted navigation more detailed instruction conditions 
outperformed other conditions whereas when tested several 
weeks later this additional effect disappeared. Following 
those results, we can assume that the landmark reference 
contributed to the differences between navigation instruction 
conditions.

4.3  |  Saccade-related potentials

The analyses of saccade-related potentials revealed clear 
peaks that were reported previously, including the presac-
cadic spike potential, the lambda wave, and a clear posterior 
P2 component. The P100 was most pronounced at POz. This 
is in line with the lambda response recorded at posterior leads 
in sERPs and fERPs. Due to the dipolar activity pattern of 
this component, it is likely that the observed anterior N100 
is the negative counterpart of the same source conveyed by 
volume conduction (Kamienkowski et al., 2012).

sERPs during the straight segments revealed differences 
between instruction conditions at frontal leads that appeared 
earlier than the positive component observed with target 
onset in visual search paradigms (Kamienkowski, Ison, 
et  al.,  2012). However, there were no group differences in 

sERPs during intersections revealing no saccade-related ev-
idence for a visual search triggered by landmark references.

4.4  |  Blink-related potentials

More pronounced positive components in the bERP as 
compared to the sERP point to a difference in information 
processing after blinks. Blink-related potentials revealed 
stronger amplitudes at frontal as well as parietal leads with 
the latter most likely reflecting aspects of visuospatial infor-
mation processing. Compared to previous studies, the order 
and polarity of the observed components were roughly com-
parable to the results reported by Berg and Davies (1988) and 
Wascher et al. (2014) even though there were differences es-
pecially regarding negative components of the potential. The 
smoother appearance of the presented bERPs compared to 
Wascher et al. (2014) is likely due to the additional EEG data 
cleaning and processing steps in the present study.

4.5  |  Early blink-evoked components

Opposite polarities of the early ERP peaks at anterior and 
posterior electrode sites with most pronounced amplitudes 
over the occipital lobe at the time point of the blink likely 
reflect volume conducted activity of a radial source in or 
near the visual cortex. These early peaks evolve parallel 
with the blink and demonstrate inverse polarity compared 
to the maximum blink amplitude that served for event-ex-
traction. Since the EOG activity was removed from the EEG 
data by removing the related independent components, this 
component is unlikely related to eye or lid movement. It is 
more likely that the activation of the visual cortex associ-
ated with blinks underlies this evoked component. A func-
tional Magnet-Resonance-Tomography study of Tsubota 
et al. (1999) showed brain activity in the anterior areas of the 
occipital cortex when blinking in full darkness, which seems 
to be related to the control of the blink-movement.

Latency differences in the N100 at posterior leads and the 
P150 at anterior leads speak against the same cortical source 
underlying these two components. The maximal amplitude 
and peak width of the N100 at Oz indicate a component origi-
nating in the occipital cortex reflecting sensory processing of 
incoming visual information. In a very simple experiment of 
Berg and Davies (1988) light sensitivity was already shown 
in the early peaks of the bERPs at central and posterior elec-
trodes pointing toward a very basic role of these components 
in visual information processing.

In the present study, the experimental manipulation did 
not impact the amplitude of these early components. In 
contrast, the data of Wascher et al. (2014) revealed an early 
influence of cognitive effort on the P1 component in the 



      |  15WUNDERLICH and GRAMANN

bERP that became more pronounced in the subsequent N2. 
According to the topography and latency of the N2 as de-
scribed in Wascher et al. (2014), the comparable component 
in the present study would be the N250. The absence of a 
navigation instruction-dependent modulation of these com-
ponents could then be assumed to reflect comparable mental 
effort during navigation irrespective of the kind of navigation 
instruction given.

4.6  |  Fronto-central component

At FCz the bERP was sensitive to differences in the naviga-
tion instructions during the intersections as reflected in differ-
ences from 336 to 772 ms comprising the N300 and the LNC. 
Compared to the baseline phase, the bERP in the landmark-
based navigation instruction condition was increased about 
1 µV, while the standard navigation instruction condition re-
mained at the level of the respective baseline bERP. This pat-
tern was visible at several fronto-central leads with increased 
potentials for the landmark-based navigation instructions. At 
electrode F2, differences in amplitudes became statistically 
significant during the N300 and at FC1 during the LNC. This 
navigation instruction-dependent increase is likely due to 
fronto-central activity reflecting higher cognitive processes 
involved in top-down attention allocation in visual search 
(Li et  al., 2010). In the plots of the raw bERP of Wascher 
et al. (2014) a peak at 400 ms was visible at Fz and Cz only 
for the cognitive task but not in a rest condition or the physi-
cal task. While the authors did not further discuss this pattern, 
the present data support the assumption of higher cognitive 
processes underlying the amplitude modulation of the bERP 
around 300–400 ms. In fixation-related potential studies in-
vestigating visual search in complex real-world scenes, a late 
fronto-central component was revealed in the fERP starting at 
300 ms for fixations at a target compared to a distractor face 
(Kamienkowski et al., 2018; Kaunitz et al., 2014). It seems 
likely that the landmark-based navigation instructions initi-
ated a visual search for the highlighted landmark. Possibly, 
this visual search and/or information processing of the ad-
ditional information was more similar to the cognitive task in 
the Wascher study, while following standard navigation in-
structions was rather comparable to their physical task. This 
fronto-central component was less pronounced in the bERP 
of the straight segments but remained significant in the LNC 
at FC1. This general tendency points to a cognitive process 
(e.g., visual search) that is triggered by landmark-based navi-
gation instructions and takes place especially when instruc-
tions are given but remains to some extent active during the 
entire navigation task, even when walking straight segments 
of the route. This is in line with the results of the late positive 
component shown by Wunderlich and Gramann (2018) in the 
ERPs of the cued-recall task. The significant difference at 

FC3 seems more likely to be due to the attenuation of a base-
line difference between the navigation instruction conditions.

4.7  |  Left parietal component

In the bERP of intersections as well as straight segments, 
a left-lateralized difference in the N250 and P300 compo-
nents was observed over left centro-parietal and parietal 
leads (CP5, P7, P5, P3, P1). This modulation was sensitive 
to the navigation instruction conditions. The landmark-based 
navigation instruction condition showed lower values in 
the bERP, while the standard condition remained at a simi-
lar level or showed increased values compared to baseline 
bERPs. The bERP at parietal sites in the study of Wascher 
et  al.  (2014) revealed the highest values for rest, followed 
by the amplitudes in the physical task and most pronounced 
N2 amplitudes as well as most attenuated P3 amplitudes for 
the cognitive task. The authors did not discuss lateralized ac-
tivity but the general parietal focus of the effect is in line 
with the present results. The direction of the effects would 
complement the fronto-parietal attention network hypoth-
esis by showing higher amplitudes for standard compared to 
landmark-based navigation condition persisting in both navi-
gation phases. The observed left-hemispheric dominance at 
parietal leads was previously shown in the context of motor 
control and motor planning (Callaert et al., 2011). This could 
potentially explain why most parietal differences were ob-
served during the baseline phase of the task—right at the start 
of EEG data collection—and diminish during the following 
navigation phases.

4.8  |  Group differences in baseline

Table 2 and ERPs especially at occipital leads revealed differ-
ences between the navigation instruction conditions already 
during the baseline phase before any navigation instruction 
was provided to the participants. To understand these base-
line differences, we checked demographic and questionnaire 
data collected alongside with the navigation task. The analy-
sis revealed, that there were some group differences despite 
the random allocation of participants to the groups. T tests 
comparing the group means pointed to differences for an item 
relating to the regular use of navigation aids and an item re-
lating to directional knowledge during navigation. The rat-
ings showed that participants of the control group were more 
confident in their own spatial abilities despite their lower per-
formance in the spatial tasks.

Assuming that the impact of individual spatial abilities on 
the eye movement-related potentials was constant through-
out the assisted navigation task, we decided to control for the 
baseline differences by subtracting the individual baseline 
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potential from the respective straight segments- and intersec-
tions-potential. This way, the additional impact of the navi-
gation instruction conditions could be revealed despite group 
differences in the baseline potentials. In case the group differ-
ence was only in the baseline phase and not in the following 
navigation phases, we used the phrase “qualified by baseline 
difference” in Table 2 to show that the found significant clus-
ter of samples was driven by an effect that diminished with 
time on task.

However, the absence of a proper baseline is a critical as-
pect of the present study. The baseline was chosen in a post 
hoc fashion and was the only time window that was free of 
any influence from navigation instructions. The baseline 
phase started with the EEG data collection during prepara-
tion and equipping of the participant and its duration varied 
between participants. Thus, future experiments should in-
clude controlled and comparable baseline data collection.

4.9  |  Data processing pipeline

Achieving high ecological validity by recording EEG in mo-
bile participants in the real-world increases movement-related 
artifacts and variability in behavioral and cognitive strategies 
used to solve the task. As a consequence, the high ecological 
validity renders the interpretation of the results more difficult 
(Park et  al.,  2018). However, the reported data processing 
pipeline enabled us to successfully extract measures from eye 
movement-related potentials that were sensitive to changes in 
visual information processing during free movement in an un-
controlled, real-environment. Remarkably, this was possible 
based solely on mobile EEG with 64 channels and one EOG 
electrode. Blink-, saccade-, and gait-related activity could 
be extracted applying peak detection in the time-domain of  
respective independent components. Overlapping ERPs were 
deconvolved and controlled for baseline differences using the 
unfold toolbox.

An important step was the source-based cleaning that 
separated the brain from non-brain activity. It is questionable 
whether the IClabel classification is the best way to do this 
when investigating mobile EEG as the classifier was trained 
on stationary, laboratory EEG data. The inclusion of new 
classification criteria, evaluation, and training based on the 
data of moving participants would be necessary to refine the 
classification quality for mobile EEG. Otherwise, IClabel of-
fers a promising approach for automatic source-based data 
cleaning. We used the default instead of the lite classifier pro-
vided by IClabel because it kept a higher number of brain ICs. 
On average, two additional ICs reached a classification of at 
least 30% probability to represent a brain source compared to 
using the lite version of the classifier. We decided to include 
as many sources as possible for the sensor-based analysis 
to include all potential brain contributions. In a subjective 

comparison, the lite classifier seemed to be more conserva-
tive and more successful in detecting muscle sources and thus 
should be favored when aiming for the extraction of source-
based measures (see Klug & Gramann, 2020).

Processing the collected mobile EEG data, we realized a 
strong impact of body movement- and gait-related EEG ac-
tivity. This impact on the time course of EEG data and the 
AMICA solution varied between participants. During the 
automatic event extraction from the time courses of the re-
spective independent components, percentiles were used 
as values for thresholds that adapt to the individual signal 
to noise ratio. When applying this event extraction to other 
tasks those values might have to be adapted. However, es-
pecially the 2  Hz artifact elicited by the gait cycle clearly 
compromised the ERPs. A reduced signal-to-noise ratio of 
the ERP during walking outdoors compared to sitting inside 
had been shown when auditory stimuli were presented with a 
fixed inter-stimulus-interval (Debener et al., 2012). Another 
study controlling for a possible synchronization of gait and 
auditory stimulus presentation by adding a jitter reported a 
comparable signal-to-noise ratio (De Vos et al., 2014). Thus, 
synchronization of eye movements with the gait-cycle could 
explain why gait-related EEG activity was especially intru-
sive to eye movement-related potentials. Even though not as-
sessed in our current study, future studies could investigate 
individual differences in gait behavior and associated arti-
facts based on event synchronization with the gait-cycle as 
well as equipment and analyses approaches emphasizing the 
importance to control for these factors.

We focused on our processing and results only on ERP 
measures. Other research has shown that spectral mea-
sures related to blinks can add valuable insights (Wascher 
et al., 2014, 2016).

5  |   CONCLUSION

The present study demonstrated that eye movement-related 
brain potentials can be recorded and analyzed in a meaning-
ful fashion using the real-world as a laboratory. Using blind 
source separation approaches and subsequent deconvolution 
of sensor data allowed for extracting brain and non-brain 
activity that could then be further processed to investigate 
the impact of navigation instructions on spatial knowledge 
acquisition. Importantly, using this approach, events repre-
senting eye movements like blinks and saccades could be ex-
tracted. Those events provide a sufficient number of epochs 
for event-related potential analyses of the recorded EEG data. 
This enables new approaches to investigate natural cognition 
in the real-world.

The results of the blink-related potential analyses confirm 
that the use of landmark-based navigation instructions leads 
to variations in the accompanying brain activity. Differences 
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between auditory navigation instructions are reflected in vi-
sual information processing already during the navigation. 
This difference was mirrored by improved landmark recog-
nition performance of participants that navigated based on 
landmark instructions.

Future studies will have to replicate the present approach 
using eye tracking and scene cameras in combination with 
high-density EEG to establish the link between blinks, sac-
cades, and stimuli-related brain potentials. More importantly, 
eye tracking in combination with the scene camera will fur-
ther provide a valuable source to extract additional events 
from participants' gaze behavior. This will allow for further 
investigation of the ERP components, comparing eye move-
ment-related ERPs with environment-related events, like fix-
ations on landmarks versus fixations on aspects of the street 
or other agents like pedestrians or cars.

In conclusion, the present study demonstrates a new anal-
ysis approach to investigate human brain activity accompa-
nying complex cognitive tasks in the real-world requiring 
only mobile EEG recording. This opens up new avenues for 
a better understanding of the neural foundation of natural 
cognition.
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