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Abstract

Tree spanner problems have important applications in network design, e.g. in the telecom-
munications industry. Mathematically, there have been considered quite a number of max-
stretch tree spanner problems and of average stretch tree spanner problems.

We propose a unified notation for20 tree spanner problems, which we investigate for
graphs with general positive weights, with metric weights,and with unit weights. This
covers several prominent problems of combinatorial optimization. Having this notation at
hand, we can clearly identify which problems coincide. In the case of unweighted graphs,
the formally20 problems collapse to only five different problems.

Moreover, our systematic notation for tree spanner problems enables us to identify a tree
spanner problem whose complexity status has not been solvedso far. We are able to provide
an NP-hardness proof. Furthermore, due to our new notation of tree spanner problems,
we are able to detect that an inapproximability result that is due to Galbiati (2001, 2003)
in fact applies to the classical max-stretch tree spanner problem. We conclude that the
inapproximability factor for this problem thus is2 − ε, instead of only1+

√
5

2
≈ 1.618

according to Peleg and Reshef (1999).

1 Introduction

We consider a weighted connected undirected graph(G, w), whereG = (V, E). We assume
the edge weights to be positive integers, occasionally after scaling. LetT be a spanning tree
of G. Depending on the context, we think ofT either as a subset of the edges ofG, or as a
subgraph ofG. For a spanning subgraphH of G andu, v ∈ V we denote by

dH(u, v)

the length of a shortest(u, v)-path inH.
In [5] the t-tree spanner problemhas been introduced as follows: Decide whether there

exists at-tree spanner, i.e. a spanning treeT of G such that

dT (u, v)

dG(u, v)
≤ t, ∀(u, v) ∈ V ⊗ V := V × V \ {(v, v) | v ∈ V }. (1)

The corresponding optimization problem of constructing a spanning tree that realizes the min-
imum valuet among all spanning trees is called the MINIMUM MAX -STRETCH SPANNING

TREE (MMST) problem ([10]). Applications of the MMST problem arise in the area of net-
work design, e.g. in the telecommunications industry. There, trees are of particular interest,
because they allow to “keep the routing protocols simple” ([16]).

∗Supported by the DFG Research Center MATHEON in Berlin and by the DFG Research Training Group GK-621
“Stochastic Modelling and Quantitative Analysis of Complex Systems in Engineering” (MAGSI).
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In [24] the related problem of finding a MINIMUM AVERAGE-STRETCH SPANNING TREE

(MAST) has been considered: Letw = 1, i.e.G is an unweighted graph, find a spanning treeT
that minimizes

∑

{u,v}∈E\T

dT (u, v)

dG(u, v)
. (2)

Since for unweighted graphs there holdsdG(u, v) = 1 for all {u, v} ∈ E, it is a simple obser-
vation ([1]) that this MAST problem turns out to be nothing but a special case of the MINIMUM

STRICTLY FUNDAMENTAL CYCLE BASIS (MSFCB) problem as it has been considered for
instance in [8]: Find a spanning treeT that minimizes

∑

e={u,v}∈E\T

dT (u, v) + w(e). (3)

The MAST finds increasing attention in preconditioning, in particular for solving symmetric
diagonally dominant linear systems ([9]).

There is another related problem for which one can detect an even larger variety in notation.
In the SHORTESTTOTAL PATH LENGTH SPANNING TREE (STPLST, [8, 25]) problem we seek
for a spanning tree that minimizes

∑

(u,v)∈V ⊗V

dT (u, v). (4)

The very same problem has also been referred to as the MINIMUM ROUTING COST SPAN-
NING TREE (MRCST) problem ([26, 14]). In the special case of an unweighted graph, John-
son et al. ([20]) call it the SIMPLE NETWORK DESIGN problem. Alternatively, when con-
sidering complete graphs, Hu ([19]) introduced it as the OPTIMUM DISTANCE SPANNING

TREE problem. In [7], the MINIMUM AVERAGE DISTANCE (MAD) spanning tree problem
is considered—but setting the vertex weights in that model to one, this is another variant of
the STPLST problem.

Notice that also additive tree spanner problems attracted quite a number of researchers
(e.g. [22]). However, to keep the presentation focused we restrict ourselves to max-stretch
and average stretch tree spanners.

Outline. We propose a unified notation for the large variety of tree spanner problems in Sec-
tion 2. Subject to this notation we identify which problems coincide. More specifically, we
consider two problemsP andQ to coincide, if every spanning treeTP that is optimum forP
constitutes an optimum solution forQ, and vice-versa. We use the notationP ∼ Q as a short-
hand. Notice that we have to choose this very discriminativeequivalence relation. Otherwise,
if we allowed for general polynomial transformations, one could no more distinguish between
any two NP-complete problems.We provide coincidences for both maximum stretch tree span-
ners (Section 3.1) and average stretch tree spanners (Section 4.1), for the cases of graphs with
general weights, with metric weights, and with unit weights. We complement our analysis by
providing example graphs showing that there are no further coincidences. All the examples
consist of fairly small simple2-vertex connected planar graphs.

Consider the very rich world of (in-) approximability results for tree spanner problems,
occasionally for special classes of graphs. We expect that having at hand a clear map of the
relationships between the various tree spanner problems, acertain cross-fertilization between
the different perspectives on much similar structures willoccur. In Section 6.2 we make the first
step into this direction. In the context of tree spanners, asrecently as 2004 the best known in-
approximability factor of the MMST problem has been cited as1+

√
5

2 ([10]), being due to [23].
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In this paper we observe that in the case of unweighted graphsthe MMST problem coincides
with the MIN-MAX STRICTLY FUNDAMENTAL CYCLE BASIS (MMSFCB) problem, as it has
been stated in [12, 13]. There, an inapproximability factorof 2 − ε has been achieved already
in 2001 ([12]). Hence, this applies immediately to the MMST problem as well. Moreover, in
the family of tree spanner problems we identify the only problem whose complexity status has
not been identified before. We provide an NP-hardness resultfor it.

2 A Unified Notation for Tree Spanners (UNTS)

There are three major criteria in which tree spanner problems may differ: First, either the maxi-
mum stretch or the average stretch is to be determined. Second, this objective may be computed
with respect to different sets of pairs of vertices, e.g. for(u, v) ∈ V ⊗V or only for{u, v} ∈ E\
T . Third, there have been considered various terms for the objective, e.g.dT (u,v)

dG(u,v) or dT (u, v)+

w(e).
In the remainder, we refer to a tree spanner problemP through a triple

(goal,domain,term) .

We consider the following family of tree spanner problems:

• goal
The goal is either the maximum stretch or the average stretch.

• domain
The domain is either{u, v} ∈ E \ T , {u, v} ∈ E, or (u, v) ∈ V ⊗ V .

• term
The term may be one ofdT (u, v) + w(e), dT (u, v), dT (u,v)

w(e) , or dT (u,v)
dG(u,v) .

Notice first that we do not consider(∗, V ⊗ V, dT (u, v) + w(e)) and
(

∗, V ⊗ V, dT (u,v)
w(e)

)

,

becausew(e) is not properly defined for(u, v) ∈ V ⊗V \E. Second, it could appear somehow
strange to count the weight of tree edges twice in the two treespanner problems(∗, E, dT (u, v)+
w(e)). However, this is consistent with the UNTS. Moreover, this does not cause any degen-
eracies, because in the next two sections we exhibit that there is always some other tree span-
ner problem, which coincides with(∗, E, dT (u, v) + w(e)). Third, observe that for a given
graph,|E| and|V ⊗V | are constant, and|E \T | is independent of the treeT . Hence, we prefer
to represent the goal “average” with the

∑

symbol.
We provide a first idea of the wide range of these tree spanner problems by locating several

well-known problems of combinatorial optimization withinthe UNTS:

•
(

max, V ⊗ V, dT (u,v)
dG(u,v)

)

is the MMST problem ([5]),

• (max, V ⊗ V, dT (u, v)) is the MINIMUM DIAMETER SPANNING TREE (MDST) prob-
lem ([16]),

• (
∑

, V ⊗ V, dT (u, v)) is the STPLST problem (or MRCST problem, [20]), and

• (
∑

, E \ T, dT (u, v) + w(e)) is the MSFCB problem ([8]).

We will establish that among the remaining16 problems there is only one single problem which
does not coincide with one of these four prominent problems in the case of unweighted graphs.
Since its complexity status has not been identified before, we provide an NP-hardness proof
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for it. However, in the case of weighted graphs there is a muchlarger variety of problems, in
particular in the context of average stretch tree spanners.For instance, in [9] the same tech-

niques are applied to both
(

∑

, E, dT (u,v)
w(e)

)

and
(

∑

, E, dT (u,v)
dG(u,v)

)

. Nevertheless, in general

these problems do not coincide.
In Figure 1 we summarize all the coincidences that exist between tree spanner problems,

and which we are going to develop in the remainder of this paper.
Namely, in Sect. 3 we deal with max-stretch problems whereasin Section 4 average-stretch

problems are considered. We organize the sections by subdividing them into three parts where
we distinguish general, metric, and unit weights. However,we show that there is a bridge
between unweighted and integer-weighted tree spanner problems. Here, we aim at identifying
a weighted instance(G, w) immediately with the unweighted instanceG′ that results from
replacing every edgee = {u, v} with weight w(e) with a uv-path P ′

e having w(e) edges.
Observe that every spanning tree ofG′ has to contain at leastw(e) − 1 edges ofP ′

e. Now,
consider the termdT (u, v)+w(e). LetT be some spanning tree ofG. We construct a spanning
treeT ′ of G′ such that ife ∈ T thenP ′

e ⊆ T ′. This yields

dT (u, v) + w(e) = dT ′(u′, v′) + 1, ∀e = {u, v} ∈ E \ T, {u′, v′} = P ′
e \ T ′. (5)

Hence, for the domainE \T in conjunction with the termdT (u, v)+w(e) an optimum solution
to a weighted tree spanner problem is obtained by a kind of projection from an optimum solution
to the corresponding unweighted problem, and vice-versa.

Proposition 1.Let goal be a fixed optimization goal. Then, the weighted version and the
unweighted version of(goal, E \ T, dT (u, v) + w(e)) coincide.

3 MAXIMUM STRETCH PROBLEMS

We start our tour through the zoo of tree spanner problems with maximum stretch tree spanner
problems. We first collect the pairs of problems which coincide, where we distinguish between
general weights, metric weights, and unit weights. Then, weexamine example graphs showing
that there are no further coincidences.

3.1 Coincidences

It is an elementary observation that if two tree spanner problems coincide even for general
weights, in particular they also coincide for metric weights. Moreover, if two problems coincide
for metric weights, they immediately coincide for unweighted graphs, too. Hence, to present
the coincidences between maximum stretch tree spanner problems, we proceed from the most
general weight functions to the most specialized weight function.

General Weights. In the case of general weights, there are five families of coincident maximum
stretch tree spanner problems.

Proposition 2.The following two maximum stretch problems coincide:(max, E\T, dT (u, v)+
w(e)) and(max, E, dT (u, v) + w(e)).

Proof. Assume for contradiction there was a weighted graph(G, w) such that a spanning treeT
that is optimum with respect to(max, E, dT (u, v)+w(e)) attains its maximum exclusively on
a tree edgee ∈ T . Then,

∀f = {u, v} ∈ E \ T : dT (u, v) + w(f) < 2w(e). (6)

4
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Maximum Stretch Tree Spanner

Average Stretch Tree Spanner

MMST MDST

STPLST

MSFCB

dT (u,v)+w(e)

dT (u,v)+w(e)

dT (u,v)+w(e)dT (u,v)

dT (u,v)

dT (u,v)
dT (u,v)

w(e)

dT (u,v)

w(e)

dT (u,v)

w(e)

dT (u,v)

dG(u,v)

dT (u,v)

dG(u,v)

dT (u,v)

dG(u,v)

E\T

E\T

E\T

E\T

E\T

E

E

E

E

E

V ⊗V

V ⊗V

V ⊗V

V ⊗V

V ⊗V

unweighted

weighted

metric

max

max

max

∑

∑

∑

Figure 1: A guide to the zoo of tree spanner problems
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Consider any edgef ∈ E \ T whose fundamental circuitC contains the edgee. Such an edge
exists becauseG is 2-vertex connected. The total weight of the circuitC is preciselyw(C) =
dT (u, v) + w(f), and the weight ofC \ {e} is dT (u, v) + w(f) − w(e). By (6) there holds

dT (u, v) + w(f) − w(e) < w(e). (7)

Now, consider the spanning treeT ′ = T ∪ {f} \ {e}. Any fundamental circuit (different
from C) with respect toT that contained the edgee is replaced with a subpath ofC \ {e}.
As we only consider positive edge weights, by (7) the new fundamental circuit is strictly
shorter than the initial one. Hence, the spanning treeT has not been optimum with respect
to (max, E, dT (u, v) + w(e)).

Proposition 3.The two problems(max, E \ T, dT (u, v)) and(max, E, dT (u, v)) coincide.

Proof. Let T be an arbitrary spanning tree of(G, w). These two problems could only differ,
if the maximum in(max, E, dT (u, v)) is attained exclusively by a tree-edgee = {u, v} ∈ T .
But in this case,dT (u, v) = w(e). As we only consider2-vertex connected graphs, there exists
a circuit C throughe. The treeT cannot contain all the edges ofC. Hence, as we assume
the weight functionw to be positive, there exists a non-tree edgee′ = {u′, v′} ∈ C \ T such
thatdT (u, v) ≤ dT (u′, v′).

In the sequel we establish that the following five—recall that
(

max, V ⊗ V, dT (u,v)
w(e)

)

is not

properly defined—tree spanner problems coincide:
(

max, ∗, dT (u,v)
w(e)

)

and
(

max, ∗, dT (u,v)
dG(u,v)

)

.

In fact, most of the work has been done by Cai and Corneil ([5]):

Theorem 4 ([5]). Consider the following five tree spanner problems:
(

max, ∗, dT (u,v)
w(e)

)

and
(

max, ∗, dT (u,v)
dG(u,v)

)

. If for a given weighted graph(G, w) all of them attain an optimum stretch

value oft ≥ 1, then these five problems coincide on(G, w).

However, subject to our definition of coincidence, we are even able to relax the assertion
of t being greater or equal than one. To that end, we start with an easy observation.

Lemma 5.Consider one of the four problems
(

max, E, dT (u,v)
w(e)

)

and
(

max, ∗, dT (u,v)
dG(u,v)

)

for

some weighted graph(G, w). For the optimum stretch factort that can be obtained with respect
to this problem, there holdst ≥ 1.

Proof. In the definition of theterm dT (u,v)
dG(u,v) , dG(u, v) is the length of a shortestuv-path inG.

Thus dT (u,v)
dG(u,v) ≥ 1 for all (u, v) ∈ V ⊗ V . When considering theterm dT (u,v)

w(e) over the
domain E, for every tree edgee ∈ T this edge constitutes the uniqueuv-path in T . In
particular,dT (u,v)

w(e) = 1 for all e = {u, v} ∈ T ⊂ E.

Proposition 6. If a weighted graph(G, w) admits a tree spannerT such thatt < 1 subject

to
(

max, E \ T, dT (u,v)
w(e)

)

, thenT is unique optimum for all five problems
(

max, ∗, dT (u,v)
w(e)

)

and
(

max, ∗, dT (u,v)
dG(u,v)

)

.

Proof. So, let(G, w) be a weighted graph that admits a tree spannerT such thatt < 1 subject

to
(

max, E \ T, dT (u,v)
w(e)

)

. Then, in order to prove the proposition it suffices to show that

1. for the four problems
(

max, E, dT (u,v)
w(e)

)

and
(

max, ∗, dT (u,v)
dG(u,v)

)

there holdst = 1;

further,
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2. for every spanning treeT ′ 6= T of G the five problems
(

max, ∗, dT (u,v)
w(e)

)

and
(

max, ∗, dT (u,v)
dG(u,v)

)

have stretch factort′ > 1.

First, we prove 1. Therefore notice that for eache = {u, v} ∈ T it holdsdT (u, v) = w(e).

Hence, for
(

max, E, dT (u,v)
w(e)

)

one immediately observest = 1. Now, consider the prob-

lem
(

max, V ⊗ V, dT (u,v)
dG(u,v)

)

. Let u andv be two vertices ofG and letPuv be the uniqueuv-

path inT . Assume for contradiction thatPuv is not a shortestuv-path. So, letP ′ be a short-
estuv-path inG. Then,P ′ contains at least one edgef = {u′, v′} that is not contained inT ,
since otherwisePuv andP ′ contain a cycle inT . However, because of the proposition’s as-
sumption we know thatdT (u′, v′) < w(f). Let P̃ be theu′v′-path inT . Then this path̃P can
be used to construct anuv-path with length strictly smaller than the length ofP ′. From this con-
tradiction we conclude that for an arbitrary pair of verticesu andv theuv-path inT is a short-

estuv-path. Hence,dT (u, v) = dG(u, v) and the claim follows for
(

max, V ⊗ V, dT (u,v)
dG(u,v)

)

and hereby for
(

max, ∗, dT (u,v)
dG(u,v)

)

with the two remaining domains as well.

Now, we prove 2. Therefore, letT andT ′ be defined as in 2. FromT ′ 6= T we con-
clude that there exists some edgee = {u, v} ∈ T ′ \ T . In particular,t < 1 provides us
with

∑

f∈Puv
w(f) < w(e), wherePuv ⊆ T is the uniqueuv-path inT .

Consider the fundamental circuitCT (e) = {e} ∪ Puv that the edgee induces with respect
to T . As T ′ is a tree, the set of edgesF = CT (e) \ T ′ is nonempty, and in particulare 6∈ F ,
becausee ∈ T ′.

Because ofw(e) > w(f) for all edgesf ∈ Puv and since we are only considering positive
weight functionsw, it remains to detect some edgef ∈ F , such thate ∈ CT ′(f). Since the
fundamental circuits with respect toT ′ form a basis of the cycle spaceC(G), andCT (e) ∈
C(G), there exists a setF ′ ⊆ E \ T ′ such that

CT (e) =
∑

f∈F ′

CT ′(f),

where we consider the symmetric difference. Due to the special structure of cycle bases that
are associated with spanning trees, we know thatF ′ ⊂ CT (e) \ T ′, in fact F ′ = F ([2]). In
particular, as by definition the edgee is contained inCT (e), e has to appear in at least one
fundamental circuitCT ′(f) that is induced by an edgef = {u′, v′} ∈ F .

Corollary 7. The following five problems coincide:
(

max, ∗, dT (u,v)
w(e)

)

and
(

max, ∗, dT (u,v)
dG(u,v)

)

.

Proof. Consider an optimum solutionT with respect to
(

max, E \ T, dT (u,v)
w(e)

)

. In the case

of a stretch factort ≥ 1 we are done immediately by applying Theorem 4. Otherwise, i.e.,
if t < 1, Proposition 6 ensures optimality and uniqueness ofT subject toall five optimization
problems that we consider here.

In particular, all the maximum stretch tree spanner problems that involve fractions coincide.

Metric Weights. For maximum stretch tree spanner problems, there are no coincidences in the
case of metric weights, which do not apply already to the general case.

Unit Weights. For an arbitrary treeT of an unweighted connected graphG (or having weights

7



w = 1) with n vertices andm edges, there holds

max
e={u,v}∈E

{dT (u, v) + w(e)} = max
e={u,v}∈E\T

{dT (u, v) + w(e), 2} (8)

= max
e={u,v}∈E

{dT (u, v) + 1} (9)

= max
e={u,v}∈E\T

{dT (u, v) + 1, 2} . (10)

Moreover, byw(e) = 1 we obtain immediatelydT (u, v) = dT (u,v)
w(e) . Finally, in the case of

an unweighted graph, for every edgee = {u, v} there holdsdT (u, v) = dT (u,v)
dG(u,v) . Together

with (8)–(10) and Corollary 7 we conclude

Proposition 8.Let G be an unweighted graph. Except for(max, V ⊗ V, dT (u, v)), all max-
stretch tree spanner problems coincide.

3.2 Anticoincidences

In order to prove for two problems that they do not coincide, we profit from the following tran-
sitive relation: If the problems do not coincide for unweighted graphs, then they do not coincide
for graphs with metric weights. Furthermore, if there is a graph with metric weights for which
the sets of optimum solutions for two tree spanner problems have empty intersection, then these
problems cannot coincide for general weights either. Thus,we provide the relevant anticoinci-
dences by moving from the most specialized weight function to general weight functions.

Unit Weights. As by Proposition 8 there are only two different maximum stretch tree spanner
problems in the case of unweighted graphs, we only have to establish one single anticoinci-
dence.

Example 9 (MMST vs. MDST). Consider the unweighted simple graphG in Figure 2(a).
Recall from Proposition 8 and from Theorem 4 that in the unweighted case we may think of the
MMST problem as(max, E \ T, dT (u, v)). Hence, we are looking for a spanning tree whose
non-tree edges are linked by paths inT whose maximum length is minimal. The spanning tree
that we highlight in Figure 2(b) attains an objective value of two. Moreover, every spanning
tree that attains an objective value of two has to induce all five triangles ofG as its fundamental
circuits. Thus, such a spanning tree must contain the four edges that are not incident with the
infinite face. So it must not contain the edgee.

e

(a)

e

(b)

e

(c)

Figure 2: An unweighted graph and example trees which show that MMST and MDST do not
coincide

In contrast, for that in the MDST problem a diameter of three can be achieved, the leftmost
vertex and the rightmost vertex have to be connected via a path of three edges. Observe that
there is only one such path. But this includes the edgee, see Figure 2(c) for one of the two
optimum trees.
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Metric Weights. In order to complement the results of Section 3.1, we have toshow that the
following three problems do not coincide:

• (max, E \ T, dT (u, v) + w(e)),

• (max, E \ T, dT (u, v)), and

•
(

max, E \ T, dT (u,v)
w(e)

)

.

Fortunately, there exists a fairly small graph with metric weights such that the unique optimal
solutions for these three problems are disjoint.

Example 10((max, E \ T, dT (u, v) + w(e)) vs. (max, E \ T, dT (u, v))

vs.
(

max, E \ T, dT (u,v)
w(e)

)

). Consider the graph in Figure 3(a). In Table 1 the objective values

of the three spanning trees in Figures 3(b)–3(d) with respect to the three objective functions are
collected.

5 1
4

3
3

3

(a)

5 1
4

3
3

3

(b)

5 1
4

3
3

3

(c)

5 1
4

3
3

3

(d)

Figure 3: A graph with metric weights and its different optima with respect to the objective
functions(max, E \ T, goal), wheregoal ∈ {dT (u, v) + w(e), dT (u, v), dT (u,v)

w(e) }

Table 1: The values with respect to the different objective functions for the spanning trees in
Figures 3(b) to 3(d)

Tree dT (u, v) + w(e) dT (u, v) dT (u,v)
w(e)

Figure 3(b) 10 7 7
3

Figure 3(c) 11 6 6
Figure 3(d) 12 7 3

2

There are precisely seven circuits inG. One can easily check that the values10 and6 are the
best values with respect to the objective functionsdT (u, v) + w(e) anddT (u, v), respectively,
even when considering arbitrary sets of three circuits. Finally, performing a simple inspection
of the few relevant cases one can further check that no other spanning tree achieves better values
with respect to the three objective functions.

General Weights. As there are no coincidences between maximum stretch tree spanner prob-
lems which do only apply to metric weights but not to general weights, this paragraph has to
remain void.

4 AVERAGE STRETCH PROBLEMS

Our tour through the average stretch tree spanner problems follows the trace of our expedition
through the maximum stretch tree spanner problems. But we will find many more different
problems in the average stretch case.

9



4.1 Coincidences

Comparing the maximum stretch case to the average stretch case on general weights, metric
weights, or unit weights, the number of different problems is by up to four larger for average
stretch tree spanners.

General Weights. There are only two pairs of average stretch tree spanner problems that coin-
cide for general weights.

Proposition 11.It holds that the two average stretch problems(
∑

, E, dT (u, v) + w(e)) and
(
∑

, E, dT (u, v)) coincide.

Proof. For every spanning treeT , the objective values of these two problems differ precisely
by

∑

e∈E w(e), being independent ofT .

Proposition 12.The two average stretch problems
(

∑

, E \ T, dT (u,v)
w(e)

)

and
(

∑

, E, dT (u,v)
w(e)

)

coincide.

Proof. For every spanning treeT , the objective values of these two problems differ precisely
by

∑

e∈T
dT (u,v)

w(e) . As for every edgee = {u, v} ∈ T the unique path inT between its endpoints

is just the edgee, there holdsdT (u, v) = w(e). Thus,
∑

e∈T
dT (u,v)

w(e) = n − 1, which again is
independent ofT .

Metric Weights. Much similar to the case of maximum stretch tree spanners, for metric weight
functions four problems whose objective functions involvefractions coincide.

Proposition 13.Let (G, w) be an undirected graph with a metric weight functionw on the
edges. Letdomain be eitherE \ T or E, and letterm be one ofdT (u,v)

w(e) and dT (u,v)
dG(u,v) . Then,

the four problems(
∑

, domain, term) coincide.

Proof. In the case of a metric weight functionw on the edges, for every edgee = {u, v} ∈ E
there holdsdG(u, v) = w(e). Hence, for each of the two domains that we consider here, the
two problems(

∑

, domain, ∗) coincide.
Moreover, for every tree edgee = {u, v} ∈ T there holdsdT (u,v)

w(e) = 1. Thus, for every
spanning tree its objective value with respect to the domainE is preciselyn − 1 greater than
the objective value with respect to the domainE \ T .

Unit Weights. With the exception of the average stretch tree spanner problems that are defined
for V ⊗ V , all other average stretch tree spanner problems coincide on unweighted graphs.
Similarly to (8)–(10) we find,

∑

e={u,v}∈E

dT (u, v) + w(e) =





∑

e={u,v}∈E\T

dT (u, v) + w(e)



 + 2(n − 1) (11)

=





∑

e={u,v}∈E

dT (u, v)



 + m (12)

=





∑

e={u,v}∈E\T

dT (u, v)



 + m + n − 1. (13)

Again, we profit from the fact that for every edgee = {u, v} there holdsdT (u, v) = dT (u,v)
w(e) =

dT (u,v)
dG(u,v) . Together with (11)–(13) we conclude

10



Proposition 14.Let G be an unweighted graph. Then the following eight unweightedtree
spanner problems coincide:(

∑

, E \ T, ∗) and(
∑

, E, ∗).

4.2 Anticoincidences

In the case of average stretch tree spanner problems, it willturn out that even for the unweighted
case, both problems withdomain V ⊗ V do not coincide with any other problem.

Unit Weights. In the case of the most special weights, the following Example 15 shows that we
remain with3 problems.

Example 15(MSFCB vs. STPLST vs.
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

). Consider the unweighted pla-

nar graphG in Figure 4. Observe that the graph from Figure 2 can be obtained fromG simply
by contracting one single edge. Again, the unique minimum cycle basis ofG consists of the
five circuits which are the boundary of the finite faces ofG. Hence, the optimum solution value
of the MSFCB problem onG is 16 and it can be obtained by the fundamental circuits that are
induced by eight spanning trees, one of which we display in Figure 4(b). These eight spanning
trees all contain the four edges ofG which are not incident with the infinite face ofG, and yield

objective values of at least66 and 230
6 for the STPLST problem and for

(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

,

respectively.

(a) (b) (c) (d)

Figure 4: An unweighted graph and example trees which show that none of MSFCB, STPLST,

and
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

coincide

In contrast, the spanning tree in Figure 4(c) is one of the four optimum solutions for the
STPLST problem. Their objective value is62. On the contrary, for the MSFCB problem and

for
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

they only achieve objective values of18 and 228
6 , respectively.

Finally, the four spanning trees which are optimum with respect to
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

,

see Figure 4(d) for an example, achieve an objective function value of2276 . But for the objective
functions of MSFCB and STPLST these trees are suboptimal because of objective values of
only 17 and63, respectively.

Metric Weights. To discover more anticoincidences we take a look at graphs with a metric
weight function.

Example 16 (MSFCB vs. (
∑

, E, dT (u, v)) vs. (
∑

, E \ T, dT (u, v))). We investigate the
graphG with a metric weight functionw that is displayed in Figure 5(a). There are precisely two
circuits in(G, w) which have weight18, and another two circuits which have weight19. There
are indeed four spanning trees which achieve an objective function value of18 + 18 + 19 = 55
with respect to MSFCB (see e.g. Figure 5(b)). But since all ofthem include two edges of
weight seven, they only achieve objective values of62 and40 with respect to(

∑

, E, dT (u, v))
and(

∑

, E \ T, dT (u, v)), respectively.

11



4

4

4 4

7

7 7

(a)

4

4

4 4

7

7 7

(b)

4

4

4 4

7

7 7

(c)

4

4

4 4

7

7 7

(d)

Figure 5: A graph with metric weights and example trees whichshow that none of MSFCB,
(
∑

, E \ T, dT (u, v)), and(
∑

, E, dT (u, v)) coincide

Table 2: The objective values to the four considered problems for the trees of Figures 6(b)
and 6(c).

Tree (
∑

, E \ T, (
∑

, E \ T, (
∑

, E \ T, (
∑

, E,
dT (u,v)

w(e) ) dT (u, v) + w(e)) dT (u, v)) dT (u, v))

Figure 6(b) 4 + 4
7 ≈ 4.57 46 32 55

Figure 6(c) 4 + 5
9 ≈ 4.55 51 35 56

In contrast to the optima with respect to MSFCB, there exist two spanning trees which only
contain one single edge of weight seven each, but admit the second smallest set of fundamental
circuits: 18 + 19 + 19 = 56. Hence, these are precisely the trees which admit an objective
function value of38, being optimum with respect to(

∑

, E \ T, dT (u, v)). One of them is
depicted in Figure 5(c). Their objective value with respectto (

∑

, E, dT (u, v)) is 57.
Since we identified all the optima with respect to MSFCB and(

∑

, E \ T, dT (u, v)), it
suffices to provide some spanning treeT that attains a smaller objective function value with
respect to(

∑

, E, dT (u, v)) than the former trees did. Indeed, the spanning treeT that we
display in Figure 5(d) yields an objective function value ofonly 56. One can easily observe
thatT is the unique minimum spanning tree of(G, w). Actually, it is even the unique optimum
solution with respect to(

∑

, E, dT (u, v)).

Example 17(
(

∑

, E \ T, dT (u,v)
w(e)

)

vs.{(∑, E \ T, dT (u, v) + w(e)), (
∑

, E \ T, dT (u, v))

, (
∑

, E, dT (u, v))}). Consider the graphG of Figure 6(a). Because of the very regularly struc-
tured weights we need only to consider two families of spanning trees: those that include the
edge of weight9, and those which do not. Within both families then all trees constitute in-
distinguishable solutions for all the considered problems. Representatives for the families are
depicted in Figures 6(b) and 6(c), respectively. The following table now proves the desired

claim: whereas for the fractional problem,
(

∑

, E \ T, dT (u,v)
w(e)

)

it does not pay off to include

the “expensive” edge of weight9, it does for the other three problems. It rather turns out to
be good to include this particular edge such that it can be used as a shortcut when consider-
ing dT (u, v) for (u, v) = e ∈ E \ T .

General Weights. At last we need to consider graphs with non-metric weight functions to prove
the remaining anticoincidences.

Example 18(
(

∑

, E \ T, dT (u,v)
w(e)

)

vs.{
(

∑

, E \ T, dT (u,v)
dG(u,v)

)

,
(

∑

, E, dT (u,v)
dG(u,v)

)

}). Consider

the graph with non-metric weights in Figure 7. A first observation is that the edge with weight8
is not metric. More important, the edge with weight1 is included in every optimal tree for all

12



9

7

7 7

7

(a)

9

7

7 7

7

(b)

9

7

7 7

7

(c)

Figure 6: A graph with metric weights and example trees whichshow that none of MSFCB,

(
∑

, E \ T, dT (u, v)), and(
∑

, E, dT (u, v)) coincide with
(

∑

, E \ T, dT (u,v)
w(e)

)

the three problems. Otherwise we immediately have a contribution of 14—which is the length
of a shortest circuit through this edge—whereasany other tree induces shorter circuits w.r.t.
both dT (u,v)

dG(u,v) and dT (u,v)
w(e) even when considering the sum over all edges.

So, we remain with5 different trees. Among these, due to symmetry reasons it suffices to
consider only three trees, cf. 7(b)-7(d).

The following table provides the values for the three trees with respect to the different

problems showing that the tree in 7(b) is the unique optimal solution to
(

∑

, E \ T, dT (u,v)
w(e)

)

whereas the tree indicated in Figure 7(c) is optimum for the other two problems,
(

∑

, E \ T, dT (u,v)
dG(u,v)

)

and
(

∑

, E, dT (u,v)
dG(u,v)

)

.

Table 3: The objective values of the spanning trees in Figure7 w.r.t. the three problems of
Example 18. A term of 1

840 is factored out for clarity reasons.

Tree
(

∑

, E \ T, dT (u,v)
w(e)

) (

∑

, E \ T, dT (u,v)
dG(u,v)

) (

∑

, E, dT (u,v)
dG(u,v)

)

Figure 7(b) 2555 2720 5240
Figure 7(c) 2583 2688 5208

Figure 7(d) 3612 3612 6252

5 5

6

8 1

(a)

5 5

6

8 1

(b)

5 5

6

8 1

(c)

5 5

6

8 1

(d)

Figure 7: A weighted graph and example trees. Figures (b) and(c) show

that
(

∑

, E \ T, dT (u,v)
w(e)

)

does neither coincide with
(

∑

, E \ T, dT (u,v)
dG(u,v)

)

nor with
(

∑

, E, dT (u,v)
dG(u,v)

)

.
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Example 19(
(

∑

, E \ T, dT (u,v)
dG(u,v)

)

vs.
(

∑

, E, dT (u,v)
dG(u,v)

)

). We will show the anticoincidence

of the two tree-spanner problems with the help of the weighted graph(G, w) in Figure 8(a).
The dots in the figure shall indicate that we assume a sufficiently large number ofclips, i.e.
4-circuits that share one common edgee or f , respectively. LetM denote this number. Further,
we will refer to the edges with weight equal to101 asclip-edges.

Recall from Proposition 13 that the two problems coincide inthe case of metric weights.
Hence, we chose the weight functionw such that precisely one edge is not metric: the edgeg.
To show the anticoincidence we will argue as follows: in the beginning we show that each
spanning treeT that is optimal for any of the two problems must have a certainstructure. First,
all edges having weight one are included inT , second,T does not contain any clip-edge, and
third, the edgese andf are inT . See Figure 8(b), where we highlight edges that have to be
in T . Edges that are not inT are depicted by dotted lines in this figure.

Observe that as we obtain this structure for parts of the graph where all edges are metric,
the structural properties apply to the optimum solutions subject to both objective functions that
we are investigating in this example. Thereafter, having this common structure, optimal trees

to
(

∑

, E \ T, dT (u,v)
dG(u,v)

)

and
(

∑

, E, dT (u,v)
dG(u,v)

)

become distinguishable on the remaining part

of the graph, where the only non-metric edgeg is going to play a key role.
So, we start motivating the mentioned structure of an optimal tree T . We first show that

w(a) = 1 impliesa ∈ T . Notice first that for any of the2M clips at least one edge of the clip
with weight one has to be inT because otherwise the treeT would not be connected. Hence,
assume that for a clip exactly one edge of weight one and its clip-edge are contained inT .
In that case, however, we get immediately a contradiction tothe optimality ofT : A simple
exchange of the clip-edge by the non-tree edge with weight one within this clip instantly effects
a better tree. To see this, observe that for no other pair of vertices inG the corresponding path
in T can traverse one of these two edges and compare the accordingvaluesdT (x,y)

dG(x,y) .

1

1
1

1

1

1

1

1

1
1

1
1

1
1

1
1

...

. . .24

66

100100

100

100
100

101
101
101

101

101
101
101

101

(a)

u

v

e

fg

...

. . .

(b)

Figure 8: A weighted graph on which the optimum solutions for
(

∑

, E \ T, dT (u,v)
dG(u,v)

)

and
(

∑

, E, dT (u,v)
dG(u,v)

)

do not coincide. Whereas for the first objective it pays off toinclude the

non-metric edgeg into an optimal tree an optimal solution to
(

∑

, E, dT (u,v)
dG(u,v)

)

is attained

without the edgeg.

Now, we knoww(a) = 1 ⇒ a ∈ T . Next, we establish thatw(a) > 100 impliesa 6∈ T
in any tree that is optimal with respect to one of the two objectives that we are investigating in
this example. To this end, consider one bundle of clips, say the one that contains the edgee,

14



and assume an optimal treeT contains a clip-edge. Since we already know that the edges
having weight one are inT , the tree can contain at most one clip-edge, because otherwise the
treeT would include a cycle. Similarly, we conclude thate 6∈ T . Again, such a structure
contradicts the optimality ofT , because another local change onT improves the tree: This
time we exchange the clip-edgec that we assume to be contained inT with the edgee and
obtain a different treeT ′ = T ∪ {e} \ {c}. This exchange shortens the length of the path inT
between the vertices incident toe, hereby shortening the distances of all paths withinT that
contain these two vertices. In addition, even when comparing the valuedT (x,y)

dG(x,y) of the non-tree
edgee w.r.t. T with the corresponding value of the non-tree edgec w.r.t. T ′ an improvement is
obtained. Notice that here we only define the particular treeT ′ to contain the edgee. But so far
nothing is said whethere is contained in any optimum tree.

The last structural property, that we are about to develop for an optimal treeT with respect to
any of the two objective functions, is{e, f} ⊂ T . We already know thatT contains all edges of
weight one and no clip-edge. Hence, at least one of the edgese andf is in T , because otherwise
the treeT was disconnected. So we assume for contradiction without loss of generality thate ∈
T but f /∈ T . Then, consider the unique pathP between the verticesu andv in T where
obviouslyf 6∈ T impliese 6∈ P . Now, an exchange of any of the edges ofP by the edgef will
lead to a contradiction to the choice ofT , which was an optimal tree. One can see this as follows:
before the exchange, eachf -clip-edge induces a path inT of lengthdT at least126. Therefore,
in both objectives eachf -clip-edges contributes at leastM · 126

101 . After the exchange—i.e. now
with f ∈ T—this amount decreases toM · 102

101 . It is clear that we may choose the parameterM
so large that this gain compensates the possibly appearing increases of contributions of the
remaining part of the graph that is independent ofM .

This way we force{e, f} ⊂ T , and in a sense decouple the clip-edges from the remainder
of the tree.

At this point we developed all of the structural properties of an optimal treeT . Let us
emphasize that the properties hold for optima ofboth objectives, because up to this point we
only argued for parts of the graph on which the two objective values differ by a constant term,
because the edges within the clips are all metric.

For the remainder of the graph we discuss the effect of addingtwo more edges to our treeT .
Observe that there are exactly two spanning trees that contain the edgeg and three which do
not.

We start by computing the objective valueK that the three non-tree edges that are distinct
from clip-edges contribute. Ifg ∈ T , thenK = 491

33 ∈ [14.87, 14.88]. Otherwise, ifg 6∈ T ,
there are two trees for whichK = 6727

450 ∈ [14.94, 14.95], and one for whichK > 16. Hence,
for the domainE \ T , the two trees that contain the expensive non-metric edgeg turn out to be
optimal. In contrast, for the domainE it does not pay off to include the non-metric edgeg into
the tree: it costs109 instead of only one for any other tree edge, which is in particular metric,
and this extra cost of more than0.1 gets not compensated by a reduction of less than0.08 in K.

Hence, on(G, w) the average stretch tree spanner problem
(

∑

, E, dT (u,v)
dG(u,v)

)

is optimized by

two of the three trees withg 6∈ T .

5 MAX -STRETCH And AVERAGE -STRETCH Problems Never
Coincide

In this section we aim at detecting anticoincidences between max-stretch and average-stretch
problems. Therefore we consider unweighted versions of theproblems.
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Example 20(MMST vs. MSFCB). Consider the unweighted simple2-vertex connected undi-
rected planar graphG in Figure 9. We will argue that an optimum solution for the MSFCB
problem contains the edgee, whereas an optimum solution for the MMST does not.

e

f

(a)

e

f

(b)

e

f

(c)

Figure 9: An unweighted graph with representatives of optimal solutions to MMST and MSFCB

Consider the MMST problem. We construct a spanning treeT all of whose fundamental
circuits have at most four edges, cf. Figure 9(b). First, observe that there has to holdf ∈ T ,
because the only4-circuits through the south-east most and through the south-west most vertices
share the edgef . But then, in order to prevent a5-circuit, the two edges that are incident withf
must be contained inT , too. In turn,e 6∈ T . The five fundamental circuits of such a spanning
treeT thus have lengths(3, 4, 4, 4, 4).

In contrast, every optimum spanning tree for the MSFCB problem induces fundamental
circuits of lengths(3, 3, 3, 4, 5), see Figure 9(c) for an example. But this can only be achieved
by including the edgee in the spanning tree, because the only three triangles inG all share this
edge.

Example 21 (MDST vs. {STPLST, (
∑

, V ⊗ V, dT (u,v)
dG(u,v) )}). Consider the unweighted undi-

rected graphG in Figure 10. We will argue that the set of spanning trees which are optimum for

MDST is disjoint from the set of spanning trees optimal for STPLST or
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

.

e
u

v

(a)

e
u

v

(b)

e
u

v

(c)

Figure 10: An unweighted graph and parts of example trees which show that MDST does

neither coincide with STPLST nor with
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

We start by detecting a necessary condition for a spanning tree to be optimum for MDST.
To that end, first observe that an optimum spanning treeT with respect to MDST achieves
a diameter of four. Consider the vertexu. The unique shortest circuitC throughu has five
edges, whereas the second-shortest circuit throughu has six edges. Hence, in a minimum
diameter spanning treeT in G, the circuitC is the only fundamental circuit with respect toT
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that contains the vertexu. But sinceG \ {u} is 2-vertex connected, this implies the three bold
edges in Figure 10(b) to be contained inT , in particulare ∈ T .

In contrast, one can check that each of the twelve spanning trees which are optimum for

STPLST (having objective value86) is also optimum for
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

(having objec-

tive value54), and vice-versa. Moreover, in each of these trees there holdsδ({v}) ⊂ T , where
δ({v}) is the cut induced byv. In particular,e 6∈ T .

Finally, the next example covers the remaining anticoincidences.

Example 22 ({MMST, MSFCB} vs. {MDST, STPLST,
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

}). A key dif-

ference between MMST and MSFCB on the one side, and MDST, STPLST, and
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

on the other side, is that the former problems may be regardedas to have only the set of non-tree
edgesE \T asdomain, whereas the latter haveV ⊗V asdomain. But only the latter ensures
a kind of global perspective for every spanning tree. WithE \ T asdomain, an accordion-
like tree as the one that we already displayed in Figure 2(b) admits a much more local way of
counting.

Consider again the unweighted graph in Figure 2. By the very same arguments which
showed thate ∈ T for every spanning treeT which is optimum for MMST, this edge is also
contained in every spanning tree which is optimum for MSFCB.More precisely, the four span-
ning trees which are optimum for MMST are precisely the optimum solutions for MSFCB—
these four spanning trees only differ in how the left- and therightmost vertex is connected to
the tree.

Similarly, the two spanning trees of minimum diameter are precisely the optimum solutions

for STPLST (having objective value42) and even for
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

(having objective

value28). These two trees only differ in which endpoint of the edgee becomes the vertex of
degree four inT .

To summarize this section, there is not one single bridge between MAX -STRETCHand AVE-
RAGE STRETCH tree spanner problems. In contrast, there exists a related pair of problems for
which such a bridge between the maximum objective and the sumobjective was established. In
[6] it has been shown that any solution to the general MINIMUM CYCLE BASIS (MCB) problem
is also a solution to the problem of computing a cycle basis whose longest circuit is minimum.
Here, it is well-known that the MCB problem can be solved in polynomial time ([18]), more
precisely inO(m2n + mn2 log n) ([21]).

6 First Benefit of the UNTS

Recall that whenever a spanner problem(goal,domain,term) is NP-hard in the unweighted
case, it is in particular NP-hard in its weighted versions, too. We are aware of three such negative
complexity results for unweighted tree spanner problems.

Theorem 23([20]). The STPLST problem is NP-hard.

Theorem 24([8]). The MSFCB problem is NP-hard.

Theorem 25([5]). The MMST problem is NP-hard.

There have even been identified special classes of graphs on which these problems are
still NP-hard. For instance, think of the MMST problem on planar graphs ([11]), on chordal
graphs ([3]), and on chordal bipartite graphs ([4]).

But there is also one positive complexity result that has been obtained for a tree spanner
problem.
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Theorem 26([17]). The weighted MDST problem can be solved inO(mn + n2 log n) time.

Now, the UNTS provides us with a clear perspective on20 tree spanner problems. In par-
ticular, Examples 15, 22, and 21 establish that none of the above complexity results apply to

the problem
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

. Fortunately, we are able to settle its complexity status in

Section 6.1 by establishing NP-hardness.
Moreover, by Proposition 8 we know that in the case of unweighted graphs the classical

maximum stretch tree spanner problem
(

max, V ⊗ V, dT (u,v)
dG(u,v)

)

coincides with(max, E \ T, dT (u, v) + w(e)).

In Section 6.2 we compare two inapproximability results that have been obtained for these prob-
lems. Interestingly enough, the result which had never beenstated before in the language of tree
spanners turns out to be stronger.

6.1 NP-hardness of
(

∑

, V ⊗ V,
dT (u,v)
dG(u,v)

)

Theorem 27.The average stretch tree spanner problem
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

is NP-hard.

Proof. As our proof is similar to the proof for Theorem 23 as it has been given by John-
son et al. ([20]), we adopt the notation of [20]. We consider the following problem, which
is known to be NP-hard (Problem SP2 in [15]):

EXACT COVER BY 3-SETS (X3C): Given a familyS = (σ1, . . . , σs) of 3-element
subsets of a setT = (τ1, . . . , τ3t). Does there exist a subfamilyS′ ⊆ S of sets
with pairwise empty intersection, such that˙⋃

σ∈S′σ = T?

Given an instanceI of X3C, we define an unweighted simple undirected graphG = (V, E) as
follows, see Figure 11 for an example:

• R = {ρ0, ρ1, . . . , ρr}, wherer := |T |2 + 2 · |S| · |T | + 1, R0 = {ρ0}, R∗ = R \ R0,

• V = R ∪ S ∪ T ,

• E = {{ρi, ρ0} : i = 1, . . . , r} ∪ {{ρ0, σ} : σ ∈ S} ∪ {{σ, τ} : τ ∈ σ ∈ S},

ρ1, . . . , ρr

ρ0

S

T

. . .

1 2 3 4 5 6 7 8 9

Figure 11: The instance of
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

that we associate with the in-

stance{(1, 2, 3), (3, 4, 5), (4, 5, 7), (6, 8, 9), (7, 8, 9)} of X3C

Denote byX the number of pairs of elements ofT that arenot contained together in any of the
sets ofS, i.e.

X := | {(τ1, τ2) ∈ V ⊗ V : ∀σ ∈ S : τ1 6∈ σ or τ2 6∈ σ} |. (14)
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We will prove that
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

has a solution of value at most

|V |2 − |V | + |T |2 + 6 · |S| − 5 · |T | − X, (15)

if and only if the answer to the instanceI is YES.
We denote a spanning tree ofG that contains the edge{ρ0, σ} for all σ ∈ S a star tree.

Claim. Every optimum solution of
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

is a star tree.

Claim. In Table 4, we investigate the distances between any pair of nodes inG, in an arbitrary
star treeF ∗, and in an arbitrary non-star treeF .

In the case of a non-star treeF , there exists one vertexs′ ∈ S such thatdF (ρi, s
′) ≥ 4

for all i = 1, . . . , r. In particular,dF (ρi,s
′)

dG(ρi,s′) ≥ 2, whereasdF ⋆ (ρi,s
′)

dG(ρi,s′) = 1, cf. the(∗)-entry in
Table 4. Hence, when consideringR∗ ⊗ S, by the choice ofr the objective value ofF is by at
least|T |2 + 2 · |S| · |T | + 1 larger than the one ofF ∗.

Table 4: Distances between pairs(u, v) of nodes within the graph. The first column denotes the
cardinality of the considered subset ofV ⊗ V .

set ofu set ofv number of node pairs dG(u, v) dF∗(u, v) dF (u, v)
R0 R∗ |T |2 + 2|S| · |T | + 1 1 1 1
R0 S |S| 1 1 ≥ 1
R0 T |T | 2 2 ≥ 2
R∗ R∗ (|T |2 + 2|S| · |T | + 1)·

(|T |2 + 2|S| · |T |) 2 2 2
R∗ S (|T |2 + 2|S| · |T | + 1) · |S| 2 2 (∗)
R∗ T (|T |2 + 2|S| · |T | + 1) · |T | 3 3 ≥ 3
S S |S| · (|S| − 1) 2 2 ≥ 2
S T |S| · |T | {1, 3} ≤ 3 ≥ 1
T T |T | · (|T | − 1) − X 2 ≤ 4 ≥ 2
T T X 4 4 ≥ 4

According to Table 4 this can only be compensated onS ⊗ T and onT ⊗ T . But there,
for (u, v) ∈ S ⊗ T there holds

dF∗(u, v)

dG(u, v)
≤ dF (u, v)

dG(u, v)
+ 2,

and for(u, v) ∈ T ⊗ T there holds

dF∗(u, v)

dG(u, v)
≤ dF (u, v)

dG(u, v)
+ 1.

Hence, any non-star treeF can only gain|T |2 + 2 · |S| · |T | on S ⊗ T andT ⊗ T , which is
strictly smaller than its loss onR∗ ⊗ S.

Now that we know that an optimum solution to
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

is always a star tree,

we will compute the objective value of an arbitrary star treeF ∗. According to Table 4, it remains
to investigate in detail pairs of vertices from the setsS ⊗ T andT ⊗ T . We first examine the
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setS ⊗ T and compute for an arbitrary star treeF ∗

∑

(u,v)∈S⊗T

dF∗(u, v)

dG(u, v)
=

∑

(u,v)∈S⊗T

dF∗ (u,v)=1

dF∗(u, v)

dG(u, v)
+

∑

(u,v)∈S⊗T

dG(u,v)=3

dF∗(u, v)

dG(u, v)
+

∑

(u,v)∈S⊗T

dG(u,v)=1, dF∗ (u,v)=3

dF∗(u, v)

dG(u, v)

= |T | + |S| · (|T | − 3) +
∑

(u,v)∈S⊗T

dG(u,v)=1, dF∗ (u,v)=3

dF∗(u, v)

dG(u, v)

= |T | + |S| · (|T | − 3) + 3 · (3|S| − |T |))
= |S| · |T | − 2 · |T | + 6 · |S|.

As this value is independent ofF ∗, we conclude that any two star trees differ in their objective
value only for pairs(u, v) ∈ T ⊗ T .

Recall the definition ofX in (14). Among the pairs(u, v) ∈ T ⊗ T , there are pre-
cisely X for which dG(u, v) = 4—and thusdF∗(u, v) = 4—and precisely|T |2 − |T | − X
for which dG(u, v) = 2. As F ∗ is a star tree, we know thatdF∗(u, v) ∈ {2, 4} for ev-
ery (u, v) ∈ T ⊗ T . Recall that the quantityX only depends on the instanceI of X3C.

Hence, a spanning treeF ∗ is optimum for
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

, if and only if it is a star tree

that maximizes the numberY of pairs(u, v) ∈ T ⊗ T for which dF∗(u, v) = 2. How large
canY get?

We prefer to account for the quantityY from an alternative perspective. To that end, con-
sider the edgesF ∗

ST := F ∗ ∩ (S × T ). Note that|F ∗
ST | = |T |, becauseF ∗ is a star tree. Now,

we define a functionp(e) for the edgese = (σ, τ ) ∈ F ∗
ST ,

p(e) =







2, if |δF∗(σ)| = 4,
1, if |δF∗(σ)| = 3, and
0, otherwise.

Hereby,Y =
∑

e∈F∗
ST

p(e). Then the following statements are equivalent:

• Y = 2|T |.

• For alle ∈ F ∗
ST , p(e) = 2.

• For allσ ∈ S, |δF∗(σ)| ∈ {1, 4}.

Finally, we provide a bijection between star treesF ∗ of G with |δF∗(σ)| ∈ {1, 4}, for all σ ∈ S,
and EXACT 3-COVERSS′ as follows:

S′(F ∗) := {σ ∈ S : |δF∗(σ)| = 4} and F ∗
ST (S′) := S′ × T.

A direct computation reveals that the total objective valueof the optimum solution for a graph
corresponding to aYES-instances of X3C is right as given in Equation (15).

6.2 Inapproximability of the MMST problem

Peleg and Reshef (1999, [23]) prove that the MMST problem

“cannot be approximated within a factor better than(1 +
√

5)/2, unlessP = NP .”
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Even recently, this result is usually cited when illustrating the complexity of the MMST prob-
lem ([9]).

In Section 3, using the UNTS to classify the large variety of similar tree spanner problems,
we were able to establish that in the case of unweighted graphs the following four problems
coincide:

• the MMST problem
(

max, V ⊗ V, dT (u,v)
dG(u,v)

)

,

• the problem
(

max, E \ T, dT (u,v)
dG(u,v)

)

,

• the problem(max, E \ T, dT (u, v)), and

• the problem(max, E \ T, dT (u, v) + w(e)).

It is a simple observation that in the case of unweighted graphs, for every fixed tree the objective
values of the first three tree spanner problems coincide and differ by one from the fourth one.
In particular, any constant inapproximability factor thatis obtained for one of these problems
carries over to the other problems.

Now, Galbiati (2001, 2003 [12, 13]) investigated the problem (max, E \ T, dT (u, v) + w(e)),
which she denotes the MIN-MAX STRICTLY FUNDAMENTAL CYCLE BASIS (MMSFCB) prob-
lem. This culminates in the following theorem for unweighted graphs.

Theorem 28([12, 13]). The problem of finding in a uniform graphG a spanning tree that is
optimal for (max, E \ T, dT (u, v) + w(e)) cannot be approximated within2 − ǫ, ∀ǫ > 0,
unlessP = NP .

The above considerations enable us to identify the constantinapproximability factor of The-
orem 28 as a stronger inapproximability factor for the MINIMUM MAX -STRETCH SPANNING

TREE (MMST) problem, or
(

max, V ⊗ V, dT (u,v)
dG(u,v)

)

in UNTS.

Corollary 29. The MINIMUM MAX -STRETCH SPANNING TREE problem cannot be approxi-
mated within a factor better than2 − ε, ∀ǫ > 0, unlessP = NP .

Note that another factor-2 − ε inapproximability result has been obtained for a problem
which appears much similar to(max, E, dT (u, v)). Although one could be tempted to use it
immediately for the MMST/MMSFCB problem, there is still a slight difference. In [16], there
are two different sets of edges involved: one are the candidate edges for choosing the spanning
tree, the others indicate for which sets of pairs(u, v) of vertices the termdT (u, v) shall be
evaluated for the objective function—a requirement graph.On the one hand, the proof in [16]
exploits this fact. On the other hand, such additional structures are beyond the scope of the tree
spanner problems that we consider in this paper.

7 Conclusions

We presented a unified notation for tree spanner (UNTS) problems. This allowed us to detect
that several tree spanner problems coincide. This is complemented by a number of example
graphs showing that no further coincidences exist. We even identified a tree spanner problem,

whose complexity status has been open before:
(

∑

, V ⊗ V, dT (u,v)
dG(u,v)

)

. For this problem, we

present an NP-hardness proof.
Moreover, the UNTS enabled us to build the bridge between thecycle bases perspective

and the tree spanner perspective on the very same problems. In particular, we establish that
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the inapproximability result due to Galbiati ([12, 13])—initially obtained for the MIN-MAX

STRICTLY FUNDAMENTAL CYCLE BASIS (MMSFCB) problem—applies to the MINIMUM

MAX -STRETCH SPANNING TREE (MMST) problem, too, and outperforms the best inapprox-
imability result that was known in this context:2 − ε compared to1+

√
5

2 ≈ 1.618.
Yet, it is by far beyond the scope of this paper to draw the complete map of (in-) approx-

imability results for tree spanner problems—occasionallyeven for several classes of graphs.
Nevertheless, when exploring this wide area of discrete mathematics, we hope the UNTS to
provide an accurate common language in order to prevent double work.
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