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Abstract

Tree spanner problems have important applications in n&tdesign, e.g. in the telecom-
munications industry. Mathematically, there have beersictaned quite a number of max-
stretch tree spanner problems and of average stretch meeeapproblems.

We propose a unified notation f@o tree spanner problems, which we investigate for
graphs with general positive weights, with metric weigtgad with unit weights. This
covers several prominent problems of combinatorial ogétion. Having this notation at
hand, we can clearly identify which problems coincide. la tdase of unweighted graphs,
the formally20 problems collapse to only five different problems.

Moreover, our systematic notation for tree spanner problenables us to identify a tree
spanner problem whose complexity status has not been sedvied. We are able to provide
an NP-hardness proof. Furthermore, due to our new notafidree spanner problems,
we are able to detect that an inapproximability result teatie to Galbiati (2001, 2003)
in fact applies to the classical max-stretch tree spannabl@m. We conclude that the
inapproximability factor for this problem thus i — ¢, instead of onlylg—ﬁ ~ 1.618
according to Peleg and Reshef (1999).

1 Introduction

We consider a weighted connected undirected g(@phv), whereG = (V, E). We assume
the edge weights to be positive integers, occasionally aftaling. LetT" be a spanning tree
of G. Depending on the context, we think @feither as a subset of the edgestafor as a

subgraph of7. For a spanning subgragt of G andu,v € V we denote by

dg (u,v)

the length of a shortegt:, v)-path inH.
In [5] the t-tree spanner problerhas been introduced as follows: Decide whether there
exists at-tree spanner, i.e. a spanning tileef G such that

Mgt, V(u,0) e VoV =V xV\{(v,v)|veV} 1)

de(u,v)
The corresponding optimization problem of constructingansing tree that realizes the min-
imum valuet among all spanning trees is called theNVMuUM MAX-STRETCH SPANNING
TREE (MMST) problem ([10]). Applications of the MMST problem &€ in the area of net-
work design, e.g. in the telecommunications industry. €hé&ees are of particular interest,
because they allow to “keep the routing protocols simpl&8]].

*Supported by the DFG Research CentextMEON in Berlin and by the DFG Research Training Group GK-621
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In [24] the related problem of finding a MIMUM AVERAGE-STRETCH SPANNING TREE
(MAST) has been considered: Let= 1, i.e.G is an unweighted graph, find a spanning tféee

that minimizes
Z dr(u,v) . B

d
{u,v}eE\T

Since for unweighted graphs there hottis(u, v) = 1 for all {u,v} € E, itis a simple obser-
vation ([1]) that this MAST problem turns out to be nothing bispecial case of the MiMum
STRICTLY FUNDAMENTAL CYCLE BAsIs (MSFCB) problem as it has been considered for
instance in [8]: Find a spanning tr&éthat minimizes

Z dr(u,v) +w(e). (3)

e={u,v}€E\T

The MAST finds increasing attention in preconditioning, ertular for solving symmetric
diagonally dominant linear systems ([9]).

There is another related problem for which one can detectamlarger variety in notation.
Inthe SHORTESTTOTAL PATH LENGTH SPANNING TREE(STPLST, [8, 25]) problem we seek
for a spanning tree that minimizes

Z dr(u,v). 4

(u,)EVRV

The very same problem has also been referred to as tiheMdm ROUTING COST SPAN-
NING TREE (MRCST) problem ([26, 14]). In the special case of an unwikdtgraph, John-
son et al. ([20]) call it the 8aPLE NETWORK DESIGN problem. Alternatively, when con-
sidering complete graphs, Hu ([19]) introduced it as theT™uM DISTANCE SPANNING
TREE problem. In [7], the MNIMUM AVERAGE DISTANCE (MAD) spanning tree problem
is considered—nbut setting the vertex weights in that modeirte, this is another variant of
the STPLST problem.

Notice that also additive tree spanner problems attracte® @ number of researchers
(e.g. [22]). However, to keep the presentation focused ws#ice ourselves to max-stretch
and average stretch tree spanners.

Outline. We propose a unified notation for the large variety of treenepaproblems in Sec-
tion 2. Subject to this notation we identify which problenwncide. More specifically, we
consider two problem#& and(@ to coincide, if every spanning trég- that is optimum forP
constitutes an optimum solution f@J, and vice-versa. We use the notatiBn~ @ as a short-
hand. Notice that we have to choose this very discriminatygivalence relation. Otherwise,
if we allowed for general polynomial transformations, oweld no more distinguish between
any two NP-complete problemgVe provide coincidences for both maximum stretch tree span-
ners (Section 3.1) and average stretch tree spannersi$dcti), for the cases of graphs with
general weights, with metric weights, and with unit weighté¢e complement our analysis by
providing example graphs showing that there are no furtberctdences. All the examples
consist of fairly small simpl@-vertex connected planar graphs.

Consider the very rich world of (in-) approximability resuffor tree spanner problems,
occasionally for special classes of graphs. We expect @ndhd at hand a clear map of the
relationships between the various tree spanner problemsitain cross-fertilization between
the different perspectives on much similar structuresadtiur. In Section 6.2 we make the first
step into this direction. In the context of tree spannerseasntly as 2004 the best known in-

approximability factor of the MMST problem has been citetﬁﬁ ([10]), being due to [23].



In this paper we observe that in the case of unweighted grdgghsIMST problem coincides
with the MIN-MAX STRICTLY FUNDAMENTAL CYCLE BAsIs (MMSFCB) problem, as it has
been stated in [12, 13]. There, an inapproximability facb? — ¢ has been achieved already
in 2001 ([12]). Hence, this applies immediately to the MMS®Blgem as well. Moreover, in
the family of tree spanner problems we identify the only peabwhose complexity status has
not been identified before. We provide an NP-hardness rissuitt

2 A Unified Notation for Tree Spanners (UNTS)

There are three major criteria in which tree spanner probleray differ: First, either the maxi-
mum stretch or the average stretch is to be determined. 8ettios objective may be computed
with respect to different sets of pairs of vertices, e.g(fow) € V@V oronly for{u,v} € E\
T. Third, there have been considered various terms for trectig, e.g.fZEZ:Zg ordr(u,v) +

w(e).

In the remainder, we refer to a tree spanner prohbfethrough a triple

(goal ,donmi n,term).
We consider the following family of tree spanner problems:

e goal
The goal is either the maximum stretch or the average stretch

e domain
The domain is eithefu,v} € E\ T, {u,v} € E,or (u,v) € Va V.

eterm
The term may be one @fr(u, v) + w(e), dr(u, v), dfu(g‘e’)”), or jg

(u,v)
(u7v) '

dr (u,v)

Notice first that we do not considéx, V @ V, dr(u,v) + w(e)) and (*, Vev, e )

becausev(e) is not properly defined fofu, v) € V@ V' \ E. Second, it could appear somehow
strange to count the weight of tree edges twice in the twecsppaener problems:, E, dr(u,v)+
w(e)). However, this is consistent with the UNTS. Moreover, thiesl not cause any degen-
eracies, because in the next two sections we exhibit theg ikealways some other tree span-
ner problem, which coincides wittx, E, dr(u,v) + w(e)). Third, observe that for a given
graph,|E| and|V @ V| are constant, andz \ T'| is independent of the tréB. Hence, we prefer
to represent the goal “average” with thé symbol.

We provide a first idea of the wide range of these tree spanobitgms by locating several
well-known problems of combinatorial optimization withime UNTS:

da (u,v)

. (max, Vev, dTW)) is the MMST problem ([5]),

e (max, V®V,dr(u,v))is the MINIMUM DIAMETER SPANNING TREE (MDST) prob-
lem ([16]),

o (3, V&V, dr(u,v))is the STPLST problem (or MRCST problem, [20]), and
o (3>, E\T, dr(u,v) +w(e)) is the MSFCB problem ([8]).

We will establish that among the remainih@problems there is only one single problem which
does not coincide with one of these four prominent problemike case of unweighted graphs.
Since its complexity status has not been identified befoeepravide an NP-hardness proof



for it. However, in the case of weighted graphs there is a maider variety of problems, in
particular in the context of average stretch tree spanrfess.instance, in [9] the same tech-
niques are applied to botéz, E, dfv(g;’)”)) and (Z, E, 3283) Nevertheless, in general
these problems do not coincide.

In Figure 1 we summarize all the coincidences that exist eiwtree spanner problems,
and which we are going to develop in the remainder of this pape

Namely, in Sect. 3 we deal with max-stretch problems where8gction 4 average-stretch
problems are considered. We organize the sections by sdidjthem into three parts where
we distinguish general, metric, and unit weights. Howewes, show that there is a bridge
between unweighted and integer-weighted tree spannelepnsb Here, we aim at identifying
a weighted instancéG, w) immediately with the unweighted instancg that results from
replacing every edge = {u,v} with weight w(e) with a uv-path P, havingw(e) edges.
Observe that every spanning tree®f has to contain at least(e) — 1 edges ofP.. Now,
consider the termir(u, v) + w(e). LetT be some spanning tree 6f We construct a spanning
treeT”’ of G’ such that ife € T thenP, C T". This yields

dr(u,v) +w(e) = dp (v, 0') +1, Ve={u,v} € E\T,{v,v'} =P \T". (5)

Hence, for the domai’' \ T" in conjunction with the terrd (u, v) +w(e) an optimum solution
to aweighted tree spanner problem is obtained by a kind gégtion from an optimum solution
to the corresponding unweighted problem, and vice-versa.

Proposition 1.Let goal be a fixed optimization goal. Then, the weighted version doed t
unweighted version ofgoal , E\ T, dr(u,v) + w(e)) coincide.

3 MAXIMUM STRETCH PROBLEMS

We start our tour through the zoo of tree spanner problentswiximum stretch tree spanner
problems. We first collect the pairs of problems which cale¢cwhere we distinguish between
general weights, metric weights, and unit weights. Thenexaamine example graphs showing
that there are no further coincidences.

3.1 Coincidences

It is an elementary observation that if two tree spanner Iprob coincide even for general
weights, in particular they also coincide for metric wegyhH¥loreover, if two problems coincide
for metric weights, they immediately coincide for unweigghtgraphs, too. Hence, to present
the coincidences between maximum stretch tree spannelepispwe proceed from the most
general weight functions to the most specialized weighttion.

General Weights. In the case of general weights, there are five families ofadent maximum
stretch tree spanner problems.

Proposition 2. The following two maximum stretch problems coincideiax, E\T, dr(u,v)+
w(e)) and(max, F, dr(u,v) + w(e)).

Proof. Assume for contradiction there was a weighted gr@@hw) such that a spanning trée
that is optimum with respect tanax, E, dr(u, v) +w(e)) attains its maximum exclusively on
atree edge € T. Then,

Vf={u,v} € E\T: dp(u,v) +w(f) < 2w(e). (6)
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Figure 1: A guide to the zoo of tree spanner problems



Consider any edg¢ € E \ T whose fundamental circuit’ contains the edge Such an edge
exists becausé' is 2-vertex connected. The total weight of the ciratiitis preciselyw(C) =
dr(u,v) +w(f), and the weight o€ \ {e} is dr(u,v) +w(f) —w(e). By (6) there holds

dr(u,v) + w(f) —w(e) < w(e). (7

Now, consider the spanning tr@¢ = T' U {f} \ {e}. Any fundamental circuit (different
from C) with respect tol" that contained the edgeis replaced with a subpath @f \ {e}.
As we only consider positive edge weights, by (7) the new &mental circuit is strictly
shorter than the initial one. Hence, the spanning frelegas not been optimum with respect
to (max, E, dr(u,v) +w(e)). O

Proposition 3. The two problem§max, E \ T, dr(u,v)) and(max, E, dr(u,v)) coincide.

Proof. Let T be an arbitrary spanning tree @, w). These two problems could only differ,
if the maximum in(max, E, dr(u,v)) is attained exclusively by a tree-edge= {u,v} € T.
But in this casedr(u,v) = w(e). As we only conside2-vertex connected graphs, there exists
a circuit C throughe. The treel’ cannot contain all the edges 6f. Hence, as we assume
the weight functionw to be positive, there exists a non-tree edgje- {u’,v'} € C'\ T such
thatdr(u,v) < dr(u',v"). O

In the sequel we establish that the following five—recalt t(max, Vev, %) is not

properly defined—tree spanner problems coincigeax, *, dfu((’g)”) and (max, *, jzgzz;)

In fact, most of the work has been done by Cai and Corneil:([5])

Theorem 4 ([5]). Consider the following five tree spanner problen(smax, *, M) and

w(e)
(max, *, 32&3) If for a given weighted graphG, w) all of them attain an optimum stretch

value oft > 1, then these five problems coincide @, w).

However, subject to our definition of coincidence, we arenesile to relax the assertion
of t being greater or equal than one. To that end, we start wittagy @servation.
dr (u,v)

Lemma 5. Consider one of the four problem(Snax, E, W) and (max, *, gggzzg) for

some weighted grap{z, w). For the optimum stretch factothat can be obtained with respect
to this problem, there holds> 1.

jggm , dg(u,v) is the length of a shortest-path inG.
dr(u,v)

Thus% > 1 for all (uv,v) € V ® V. When considering theer m =T~ over the

domai n FE, for every tree edge < T this edge constitutes the unique-path inT. In
particular, ‘(%) — 1 for all ¢ = {u,v} € T C E. O

w(e)

Proof. In the definition of tha er m

Proposition 6. If a weighted graph G, w) admits a tree spannér such thatt < 1 subject
to (max, E\T, dT(“’”)), thenT is unique optimum for all five problerr(anax, *, dT(“’v))

w(e) w(e)

and (Inax * dT(u’”)).

> dg (u,v)

Proof. So, let(G, w) be a weighted graph that admits a tree spafihsuch that < 1 subject

to (max, E\T, dﬁu((*;’)”)). Then, in order to prove the proposition it suffices to shoat th

dr(u,v) dr (u,v) 1.
1. ;‘or r:he four problems(max, E, fﬂ(e) ) and <max,>k, dg(w)) there holdst = 1;
urther,



2. forevery spanning tré€’ # T of G the five problems<max, *, dfu((“e’)“)) and(max, *, ZZEZ%
have stretch factar' > 1.

First, we prove 1. Therefore notice that for each {u,v} € T it holdsdy(u, v) = w(e).
Hence, for(rnax, E, dT(“’”)) one immediately observes= 1. Now, consider the prob-

w(e)

lem (max, VeV, jggzz%) Letw andv be two vertices of7 and letP,, be the uniquesv-

path inT. Assume for contradiction tha?,, is not a shortestv-path. So, letP’ be a short-
estuv-path inG. Then, P’ contains at least one edge= {u’, v’} that is not contained iff,
since otherwiseP,, and P’ contain a cycle irl". However, because of the proposition’s as-
sumption we know thady (v/,v') < w(f). Let P be theu'v’-path inT". Then this pathP can

be used to construct arv-path with length strictly smaller than the length®f. From this con-
tradiction we conclude that for an arbitrary pair of verieceandv the uv-path inT is a short-

estuv-path. Hencedr(u,v) = dg(u,v) and the claim follows fOf(maX, VeV, Zggzzg)

and hereby fOI(maX, *, M) with the two remaining domains as well.
a(u,v)

Now, we prove 2. Therefore, |&F andT’ be defined as in 2. Frof” # T we con-
clude that there exists some edge= {u,v} € 7"\ T. In particular,t < 1 provides us
with - p w(f) <w(e), whereP,,, C T is the uniquesv-path inT".

Consider the fundamental circuity(e) = {e} U P, that the edge induces with respect
toT. AsT' is a tree, the set of edgds = Cr(e) \ T” is nonempty, and in particular¢ F,
because € T".

Because ofv(e) > w(f) for all edgesf € P, and since we are only considering positive
weight functionsw, it remains to detect some edgiec F, such that € Cr/(f). Since the
fundamental circuits with respect f form a basis of the cycle spac¥G), andCr(e) €
C(G), there exists a sgt’ C E \ T” such that

CT(e) = Z CT/(f)a

feF’

where we consider the symmetric difference. Due to the apstiiucture of cycle bases that
are associated with spanning trees, we know fifat Cr(e) \ 77, in fact F/ = F ([2]). In
particular, as by definition the edgeis contained inCr(e), e has to appear in at least one
fundamental circuiCr (f) that is induced by an edgé= {u/,v'} € F. O

Corollary 7. The following five problems coincideémax, %, dT(“’”)) and (max * dT(“’”)).

w(e) » 7 da (u,v)

Proof. Consider an optimum solutidh with respect to(max, E\T, %) In the case

of a stretch factot > 1 we are done immediately by applying Theorem 4. Otherwige, i.
if t < 1, Proposition 6 ensures optimality and uniquenesg sfibject toall five optimization
problems that we consider here. O

In particular, all the maximum stretch tree spanner proBl#mat involve fractions coincide.

Metric Weights. For maximum stretch tree spanner problems, there are noidences in the
case of metric weights, which do not apply already to the goase.

Unit Weights. For an arbitrary tre& of an unweighted connected gragh(or having weights

)



w = 1) with n vertices andn edges, there holds

pax  Adr(wv)twle)} = max  A{dr(u,v) +w(e), 2} (8)
= e:gg§eE{dT(u, v) +1} )
= e:{ﬁz}uéE\T {dr(u,v)+1,2}. (10)
Moreover, byw(e) = 1 we obtain immediatelyl;(u,v) = %. Finally, in the case of

an unweighted graph, for every edge= {u,v} there holdsdr(u,v) = %. Together
with (8)—(10) and Corollary 7 we conclude

Proposition 8.Let G be an unweighted graph. Except fanax, V ® V, dr(u,v)), all max-
stretch tree spanner problems coincide.

3.2 Anticoincidences

In order to prove for two problems that they do not coincide,profit from the following tran-
sitive relation: If the problems do not coincide for unweigghgraphs, then they do not coincide
for graphs with metric weights. Furthermore, if there is apr with metric weights for which
the sets of optimum solutions for two tree spanner problesme Bmpty intersection, then these
problems cannot coincide for general weights either. Ttuesprovide the relevant anticoinci-
dences by moving from the most specialized weight functiogeneral weight functions.

Unit Weights. As by Proposition 8 there are only two different maximunetth tree spanner
problems in the case of unweighted graphs, we only have &bkstt one single anticoinci-
dence.

Example 9 (MMST vs. MDST) Consider the unweighted simple graghin Figure 2(a).
Recall from Proposition 8 and from Theorem 4 that in the ugiviesd case we may think of the
MMST problem agmax, E \ T, dr(u,v)). Hence, we are looking for a spanning tree whose
non-tree edges are linked by pathg/invhose maximum length is minimal. The spanning tree
that we highlight in Figure 2(b) attains an objective valdéven. Moreover, every spanning
tree that attains an objective value of two has to inducewltfiangles of~ as its fundamental
circuits. Thus, such a spanning tree must contain the fogegthat are not incident with the
infinite face. So it must not contain the edge

(& e [

@ (b) ©

Figure 2: An unweighted graph and example trees which shat\iMST and MDST do not
coincide

In contrast, for that in the MDST problem a diameter of thrae lbe achieved, the leftmost
vertex and the rightmost vertex have to be connected viatagfahree edges. Observe that
there is only one such path. But this includes the edggee Figure 2(c) for one of the two
optimum trees. O



Metric Weights. In order to complement the results of Section 3.1, we hawhtw that the
following three problems do not coincide:

e (max, E\T, dr(u,v) + w(e)),
e (max, E\ T, dr(u,v)), and

° (max, E\T, diu((z’)v)).

Fortunately, there exists a fairly small graph with metrigights such that the unique optimal
solutions for these three problems are disjoint.

Example 10((max, E\ T, dr(u,v) + w(e)) vs. (max, B\ T, dr(u,v))
VS. (max, E\T, %)). Consider the graph in Figure 3(a). In Table 1 the objectilees

of the three spanning trees in Figures 3(b)—3(d) with redpetbe three objective functions are
collected.

(@) (b) (c) (d)

Figure 3: A graph with metric weights and its different opdirwith respect to the objective
functions(max, E \ T, goal ), wheregoal € {dz(u,v) + w(e), dr(u,v), 2021

w(e)

Table 1: The values with respect to the different objectiuections for the spanning trees in
Figures 3(b) to 3(d)

Tree dr(u,v) +w(e) dr(u,v) di((“e’)“)
Figure 3(b) 10 7 z
Figure 3(c) 11 6 6
Figure 3(d) 12 7 3

There are precisely seven circuitgih One can easily check that the valu®sand6 are the
best values with respect to the objective functidns$u, v) + w(e) anddr(u,v), respectively,
even when considering arbitrary sets of three circuitsalinperforming a simple inspection
of the few relevant cases one can further check that no oplagrgng tree achieves better values
with respect to the three objective functions. O

General Weights. As there are no coincidences between maximum stretch paamer prob-
lems which do only apply to metric weights but not to generaights, this paragraph has to
remain void.

4 AVERAGE STRETCH PROBLEMS

Our tour through the average stretch tree spanner problaifos/$ the trace of our expedition
through the maximum stretch tree spanner problems. But Wdimd many more different
problems in the average stretch case.



4.1 Coincidences

Comparing the maximum stretch case to the average streseharageneral weights, metric
weights, or unit weights, the number of different problem$y up to four larger for average
stretch tree spanners.

General Weights. There are only two pairs of average stretch tree spannétems that coin-
cide for general weights.

Proposition 11.1t holds that the two average stretch problefhs, E, dr(u,v) + w(e)) and
(>, E, dr(u,v)) coincide.

Proof. For every spanning tre€, the objective values of these two problems differ pregisel
by > .. w(e), being independent &f. O

Proposition 12. The two average stretch probIer@E E\T, dfﬂ(“e)”)) and (Z E, dTw((“;)”))
coincide.

Proof. For every spanning tre€, the objective values of these two problems differ pregisel
by > dr(uv) A for every edge = {u,v} € T the unique path ifi" between its endpoints

e€T w(e)
is just the edge, there holdsiy (u,v) = w(e). Thus,Y" . % = n — 1, which again is
independent of". O

Metric Weights. Much similar to the case of maximum stretch tree spannersnétric weight
functions four problems whose objective functions invdhaetions coincide.

Proposition 13.Let (G, w) be an undirected graph with a metric weight functioron the
edges. Letlomai n be eitherE \ T or E, and lett er mbe one ode((“)” and ZT(Z 1”3 Then,
the four problemg> ", domai n, t er m) coincide.

Proof. In the case of a metric weight functienon the edges, for every edge= {u,v} € E
there holdsis(u,v) = w(e). Hence, for each of the two domains that we consider here, the
two problemg >, donmi n, *) coincide.

Moreover, for every tree edge= {u,v} € T there holdsL)”) = 1. Thus, for every
spanning tree its objective value with respect to the donkais preciselyn — 1 greater than
the objective value with respect to the domain 7. O

Unit Weights. With the exception of the average stretch tree spannetgrabthat are defined
for V@ V, all other average stretch tree spanner problems coincidenaeighted graphs.
Similarly to (8)—(10) we find,

Z dr(u,v) +wle) = Z dr(u,v) +w(e) | +2(n—-1) (11)
e={u,v}€E e={u,v}eE\T
= Z dr(u,v) | +m (12)
e={u,v}€FE
= Z dr(u,v) | +m+n—1. (13)
e={u,v}eE\T

Again, we profit from the fact that for every edge= {u, v} there holdsir (u, v) = dr(uv)

w(e)
32523 . Together with (11)—(13) we conclude

10



Proposition 14.Let G be an unweighted graph. Then the following eight unweigtied
spanner problems coincid€y ", E\ T, x) and(>_, E, *).

4.2 Anticoincidences

In the case of average stretch tree spanner problems, tuwilbut that even for the unweighted
case, both problems witthormai n V' ® V' do not coincide with any other problem.

Unit Weights. In the case of the most special weights, the following EXamp shows that we
remain with3 problems.

Example 15(MSFCB vs. STPLST VS(Z, VeV, ) )). Consider the unweighted pla-

dg (u,v)
nar graphG in Figure 4. Observe that the graph from Figure 2 can be obddiomG simply
by contracting one single edge. Again, the unique minimuniechasis ofG consists of the
five circuits which are the boundary of the finite facegfHence, the optimum solution value
of the MSFCB problem oid7 is 16 and it can be obtained by the fundamental circuits that are
induced by eight spanning trees, one of which we display guife 4(b). These eight spanning
trees all contain the four edges@fwhich are not incident with the infinite face 6f, and yield

objective values of at lea66 and 222 for the STPLST problem and fc(rz, Vv, %),
respectively.

@ (b) © (d)

Figure 4: An unweighted graph and example trees which shatnitne of MSFCB, STPLST,
and (Z, VeV, dT(“’”)) coincide

da (u,v)

In contrast, the spanning tree in Figure 4(c) is one of the épiimum solutions for the
STPLST problem. Their objective valuedg. On the contrary, for the MSFCB problem and

for (Z, VeV, 32253) they only achieve objective values t§ and%, respectively.

Finally, the four spanning trees which are optimum with extfio (Z, Vev, dr (u,0) )

da (u,v)
see Figure 4(d) for an example, achieve an objective funetidue of%. But for the objective
functions of MSFCB and STPLST these trees are suboptimausecof objective values of
only 17 and63, respectively. O

Metric Weights. To discover more anticoincidences we take a look at graptis avmetric
weight function.

Example 16 (MSFCB vs. (>, E,dr(u,v)) vs. (., E \ T,dr(u,v))). We investigate the
graphG with a metric weight functiom that is displayed in Figure 5(a). There are precisely two
circuits in(G, w) which have weight8, and another two circuits which have weidiot There
are indeed four spanning trees which achieve an objectivifun value ofl8 + 18 + 19 = 55
with respect to MSFCB (see e.g. Figure 5(b)). But since allheim include two edges of
weight seven, they only achieve objective value§and40 with respect tq> ", E, dr(u, v))
and(>., E\ T,dr(u,v)), respectively.
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Figure 5: A graph with metric weights and example trees wisicbw that none of MSFCB,
2, EN\T,dr(u,v)),and(>, E, dr(u,v)) coincide

Table 2: The objective values to the four considered problémn the trees of Figures 6(b)

and 6(c).
Tree (>, E\T, (2, E\T, (2, E\T, (> B,
) dr(uv) +w(e)  dp(uv)  de(uo)
Figure 6(b) 4 + ; ~ 4.57 46 32 55
Figure 6(c) 4+ 5 ~4.55 51 35 56

In contrast to the optima with respect to MSFCB, there emistépanning trees which only
contain one single edge of weight seven each, but admit ttendesmallest set of fundamental
circuits: 18 + 19 + 19 = 56. Hence, these are precisely the trees which admit an olgecti
function value of38, being optimum with respect t® , E \ T, dr(u,v)). One of them is
depicted in Figure 5(c). Their objective value with resgedt , £, dr(u,v)) is 57.

Since we identified all the optima with respect to MSFCB &hd, E \ T, dr(u,v)), it
suffices to provide some spanning trEehat attains a smaller objective function value with
respect to(>, E, dr(u,v)) than the former trees did. Indeed, the spanning Trethat we
display in Figure 5(d) yields an objective function valueonily 56. One can easily observe
thatT is the uniqgue minimum spanning tree(df, w). Actually, it is even the unique optimum

solution with respect t6> ", E, dr(u, v)). O
Example 17((2, E\T, dfu((“e“)vs {3, E\T, dp(u,v) +w(e)), (3, E\T, dr(u,v))

, (>, E, dr(u,v))}). Consider the grap& of Figure 6(a). Because of the very regularly struc-
tured weights we need only to consider two families of spagiees: those that include the
edge of weigh®, and those which do not. Within both families then all treeadtitute in-
distinguishable solutions for all the considered probleRspresentatives for the families are
depicted in Figures 6(b) and 6(c), respectively. The follmntable now proves the desired
claim: whereas for the fractional probler@Z E\T, ‘M%) it does not pay off to include
the “expensive” edge of weigh, it does for the other three problems. It rather turns out to
be good to include this particular edge such that it can bd asea shortcut when consider-
ing dr(u,v) for (u,v) =ec E\T.

O

General Weights. At last we need to consider graphs with non-metric weightfions to prove
the remaining anticoincidences.

Example 18((2 E\T, dfu((i”)) vs. {(Z E\T, §& Z)) (Z B, Z))}) Consider

the graph with non-metric weights in Figure 7. A first obséiosais that the edge with weiglst
is not metric. More important, the edge with weighis included in every optimal tree for all

12
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Figure 6: A graph with metric weights and example trees wisicbw that none of MSFCB,
(32, B\ T, dr(u,v)), and(¥, B, dr(u,v)) coincide with(32, B\ T, ()

the three problems. Otherwise we immediately have a catiitb of 14—which is the length
of a shortest circuit through this edge—whereay other tree induces shorter circuits w.r.t.
both gT(z Z) and dT((“ )”) even when considering the sum over all edges.

So, we remain witty different trees. Among these, due to symmetry reasonsfitesfto
consider only three trees, cf. 7(b)-7(d).

The following table provides the values for the three tredth wespect to the different
problems showing that the tree in 7(b) is the unique optirahlt®n to (Z E\T, dfu “e)”))

whereas the tree indicated in Figure 7(c) is optimum for theictwo problems(E, E\T, Zggzzg)

dr (u,v)
and (Z, E, dz(w)).

Table 3: The objective values of the spanning trees in Figuver.t. the three problems of
Example 18. A term of; is factored out for clarity reasons.

dr(u,v) dr(u,v) dr(u,v)
Tree (Z E\T 7;1)(6’) > (Z’ E\T’ dz(um)) (E E dg('u u))

Figure 7(b) 2555 2720 5240
Figure 7(c) 2583 2688 5208
Figure 7(d) 3612 3612 6252

t
ot

@ (b) © (d

Figure 7: A weighted graph and example trees. Figures (b) #&d show
that (Z E\T, di‘u““)) does neither coincide wnh(Z E\T dT““)> nor with

(e) ? dg(u,v)
dr(u,v)
(Z’ E’ d£(11,,’1))>'
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Example 19((2 E\T, 4 “)) vs. (Z, B, 4l Z))) We will show the anticoincidence

’ dg(u,v) ’ da(u,

of the two tree-spanner problems with the help of the weiylgiaph (G, w) in Figure 8(a).
The dots in the figure shall indicate that we assume a sufflgiéarge number otlips, i.e.
4-circuits that share one common edger f, respectively. Lef\/ denote this number. Further,
we will refer to the edges with weight equal101 asclip-edges

Recall from Proposition 13 that the two problems coincidéhie case of metric weights.
Hence, we chose the weight functiansuch that precisely one edge is not metric: the egdge
To show the anticoincidence we will argue as follows: in tlegibning we show that each
spanning tred" that is optimal for any of the two problems must have a cestincture. First,
all edges having weight one are includedlinsecond;l" does not contain any clip-edge, and
third, the edges and f are inT. See Figure 8(b), where we highlight edges that have to be
in T'. Edges that are not i are depicted by dotted lines in this figure.

Observe that as we obtain this structure for parts of thelgvelgere all edges are metric,
the structural properties apply to the optimum solutiorigext to both objective functions that
we are investigating in this example. Thereafter, having ¢bmmon structure, optimal trees

to L EN\T, <)) and (S, B, 4olev)) hecome distinguishable on the remaining part
(Z \ 9 gp

’ da(u,v) ' da(u,v)
of the graph, where the only non-metric edgis going to play a key role.

So, we start motivating the mentioned structure of an ogtinea 7". We first show that
w(a) = 1 impliesa € T. Notice first that for any of the M clips at least one edge of the clip
with weight one has to be i because otherwise the tréewould not be connected. Hence,
assume that for a clip exactly one edge of weight one andijiseclge are contained in.

In that case, however, we get immediately a contradictiothéooptimality of 7: A simple
exchange of the clip-edge by the non-tree edge with weightrthin this clip instantly effects
a better tree. To see this, observe that for no other pairrtites inG the corresponding path

in T can traverse one of these two edges and compare the accuadiueng(” yg

101

101
1\ § 101 P 1

100

100

(@) (b)

Figure 8: A weighted graph on which the optimum solutions 6@ E\T, dT(“’”) and

da(u,v)

(Z E dT(“ Y ) do not coincide. Whereas for the first objective it pays offrtdude the

' dg(u,v)
dr (u,v)
»da(u,v)

non-metric edgegy into an optimal tree an optimal solution @Z, E
without the edge.

) is attained

Now, we knoww(a) = 1 = a € T. Next, we establish that(a) > 100 impliesa ¢ T
in any tree that is optimal with respect to one of the two ofjjes that we are investigating in
this example. To this end, consider one bundle of clips, Bayohe that contains the edge
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and assume an optimal trde contains a clip-edge. Since we already know that the edges
having weight one are iff", the tree can contain at most one clip-edge, because oethg
tree T would include a cycle. Similarly, we conclude thatZ 7. Again, such a structure
contradicts the optimality of’, because another local change Brimproves the tree: This
time we exchange the clip-edgethat we assume to be containedZinwith the edgee and
obtain a different tre§” = T'U {e} \ {c}. This exchange shortens the length of the path in
between the vertices incident ¢ hereby shortening the distances of all paths withithat
contain these two vertices. In addition, even when compdhie value% of the non-tree

edgee w.r.t. T with the corresponding value of the non-tree edger.t. 7’ an improvement is
obtained. Notice that here we only define the particularire® contain the edge. But so far
nothing is said whetheris contained in any optimum tree.

The last structural property, that we are about to develogrimptimal tred” with respect to
any of the two objective functions, {&, f} C T. We already know thaf' contains all edges of
weight one and no clip-edge. Hence, at least one of the edgasf is in T, because otherwise
the tre€l’ was disconnected. So we assume for contradiction withestddgenerality that €
T but f ¢ T. Then, consider the unique path between the vertices andv in T where
obviously f ¢ T impliese ¢ P. Now, an exchange of any of the edgegbby the edgef will
lead to a contradiction to the choiceBf which was an optimal tree. One can see this as follows:
before the exchange, eagkclip-edge induces a path ifi of lengthd at leastl26. Therefore,
in both objectives eacfi-clip-edges contributes at leasf - 125, After the exchange—i.e. now

101"
with f € T—this amount decreasesid - 222, It is clear that we may choose the paraméter

so large that this gain compensates thlénpossibly appearamgases of contributions of the
remaining part of the graph that is independendbf

This way we forcele, f} € T, and in a sense decouple the clip-edges from the remainder
of the tree.

At this point we developed all of the structural propertiédsan optimal treel’. Let us
emphasize that the properties hold for optimaoth objectives, because up to this point we
only argued for parts of the graph on which the two objecti&ei®s differ by a constant term,
because the edges within the clips are all metric.

For the remainder of the graph we discuss the effect of addiagnore edges to our trée
Observe that there are exactly two spanning trees thatiodi@ edgey and three which do
not.

We start by computing the objective valliethat the three non-tree edges that are distinct
from clip-edges contribute. lj € T, thenK = %1 € [14.87,14.88]. Otherwise, ifg ¢ T,
there are two trees for whick = 527 ¢ [14.94,14.95], and one for whichK > 16. Hence,
for the domainE \ T, the two trees that contain the expensive non-metric gdgen out to be
optimal. In contrast, for the domaifi it does not pay off to include the non-metric edgmto
the tree: it costslg—0 instead of only one for any other tree edge, which is in paldicmetric,
and this extra cost of more thénl gets not compensated by a reduction of less tha®in K.

Hence, on(G, w) the average stretch tree spanner prob(eE, E, 322523) is optimized by
two of the three trees with ¢ T O

5 MAX-STRETCH And AVERAGE -STRETCH Problems Never
Coincide

In this section we aim at detecting anticoincidences beatweax-stretch and average-stretch
problems. Therefore we consider unweighted versions gbtblelems.
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Example 20(MMST vs. MSFCB) Consider the unweighted simpevertex connected undi-
rected planar grapty in Figure 9. We will argue that an optimum solution for the MZB~
problem contains the edgewhereas an optimum solution for the MMST does not.

Figure 9: An unweighted graph with representatives of ogksnlutions to MMST and MSFCB

Consider the MMST problem. We construct a spanning #resl of whose fundamental
circuits have at most four edges, cf. Figure 9(b). First.eobs that there has to holtl € T,
because the only-circuits through the south-east most and through the seetit most vertices
share the edgg. But then, in order to preventm®acircuit, the two edges that are incident wjth
must be contained iff", too. In turn,e ¢ T'. The five fundamental circuits of such a spanning
treeT thus have lengthg3, 4,4, 4,4).

In contrast, every optimum spanning tree for the MSFCB mwbinduces fundamental
circuits of lengthg(3, 3, 3,4, 5), see Figure 9(c) for an example. But this can only be achieved
by including the edge in the spanning tree, because the only three trianglésaii share this
edge. O
Example 21(MDST vs. {STPLST, (Y, V ® V, 4z(“")1) Consider the unweighted undi-

’ dg(u,v)
rected grapltz in Figure 10. We will argue that the set of spanning trees whire optimum for

MDST is disjoint from the set of spanning trees optimal foPEET or(z, Vev, dr (u.) )

da (u,v)

(@ (b) ©

Figure 10: An unweighted graph and parts of example treestwbihow that MDST does
neither coincide with STPLST nor Wit(lz, VeV, dT(“"”))

dg (u,v)

We start by detecting a necessary condition for a spannaggttr be optimum for MDST.
To that end, first observe that an optimum spanning Tesith respect to MDST achieves
a diameter of four. Consider the vertex The unique shortest circuff’ throughu has five
edges, whereas the second-shortest circuit thraupls six edges. Hence, in a minimum
diameter spanning trég in G, the circuitC' is the only fundamental circuit with respectTo
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that contains the vertex. But sinceG \ {u} is 2-vertex connected, this implies the three bold
edges in Figure 10(b) to be containedlinin particulare € T'.
In contrast, one can check that each of the twelve spanneag tvhich are optimum for

STPLST (having objective valus$) is also optimum for(z, VeV dT(“’”)) (having objec-

' dg(u,v)
tive value54), and vice-versa. Moreover, in each of these trees theosho{v}) C T, where
6({v}) is the cut induced by. In particulare ¢ T. O

Finally, the next example covers the remaining anticoiecats.

da (u,v)

ference between MMST and MSFCB on the one side, and MDST, STP&nd(Z, VeV, gzgzzg)
on the other side, is that the former problems may be regasiamhave only the set of non-tree
edgesF \ T asdomai n, whereas the latter ha¥é® V asdonai n. But only the latter ensures

a kind of global perspective for every spanning tree. With 7" asdon®i n, an accordion-

like tree as the one that we already displayed in Figure 2{bjiizs a much more local way of
counting.

Consider again the unweighted graph in Figure 2. By the vamgesarguments which
showed that € T for every spanning tre& which is optimum for MMST, this edge is also
contained in every spanning tree which is optimum for MSFIBre precisely, the four span-
ning trees which are optimum for MMST are precisely the optimsolutions for MSFCB—
these four spanning trees only differ in how the left- andrihtmost vertex is connected to
the tree.

Similarly, the two spanning trees of minimum diameter aecjgely the optimum solutions

for STPLST (having objective valug) and even for(z, Vev, ZZEZ;@) (having objective

value28). These two trees only differ in which endpoint of the eddegecomes the vertex of
degree four iril". O

Example 22({MMST, MSFCB} vs. {MDST, STPLST (27 Vav, ‘iT(“=”>)}). A key dif-

To summarize this section, there is not one single bridgsdet MaX -STRETCHand A/E-
RAGE STRETCH tree spanner problems. In contrast, there exists a relatiedfproblems for
which such a bridge between the maximum objective and theohjective was established. In
[6] it has been shown that any solution to the generaliMum CycCLE BASIS (MCB) problem
is also a solution to the problem of computing a cycle basissgHongest circuit is minimum.
Here, it is well-known that the MCB problem can be solved itypomial time ([18]), more
precisely inO(m?n + mn?logn) ([21]).

6 First Benefit of the UNTS

Recall that whenever a spanner probl@oal ,domai n,t er m) is NP-hard in the unweighted
case, itisin particular NP-hard in its weighted versioas, We are aware of three such negative
complexity results for unweighted tree spanner problems.

Theorem 23([20]). The STPLST problem is NP-hard.
Theorem 24([8]). The MSFCB problem is NP-hard.
Theorem 25([5]). The MMST problem is NP-hard.

There have even been identified special classes of graphshimh wWhese problems are
still NP-hard. For instance, think of the MMST problem onndagraphs ([11]), on chordal
graphs ([3]), and on chordal bipartite graphs ([4]).

But there is also one positive complexity result that hasmb@#ained for a tree spanner
problem.
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Theorem 26([17]). The weighted MDST problem can be solvedMmn + n? log n) time.

Now, the UNTS provides us with a clear perspective26riree spanner problems. In par-
ticular, Examples 15, 22, and 21 establish that none of tlheeabomplexity results apply to

the problem(z, Vv, ZZEZZ;) Fortunately, we are able to settle its complexity status in
Section 6.1 by establishing NP-hardness.

Moreover, by Proposition 8 we know that in the case of unweidtyraphs the classical
maximum stretch tree spanner problémax, Vev, dT(“’“’) coincides withmax, F'\ T, dr(u,v) + w(e)).

da (u,v)
In Section 6.2 we compare two inapproximability resultd treve been obtained for these prob-

lems. Interestingly enough, the result which had never b&grd before in the language of tree
spanners turns out to be stronger.

? da uvv)

6.1 NP-hardness 01<Z, VeV M)

Theorem 27.The average stretch tree spanner prob(@, VeV, %) is NP-hard.

Proof. As our proof is similar to the proof for Theorem 23 as it hasrbgeren by John-
son et al. ([20]), we adopt the notation of [20]. We consider following problem, which
is known to be NP-hard (Problem SP2 in [15]):

ExXACT COVERBY 3-SETS(X3C): Given afamilyS = (o4, ..., 0,) of 3-element
subsets of a séf = (7,...,73:). Does there exist a subfamily C S of sets
with pairwise empty intersection, such thdf . g0 = T"?

Given an instancg of X3C, we define an unweighted simple undirected gréph (V, E) as
follows, see Figure 11 for an example:

o R={po,p1,...,pr}, wherer := [T|> +2-|S| - |T|+ 1, Ry = {po}, R* = R\ Ry,
e V=RUSUT,

e E={{pi,po}:i=1,....7}U{{po,0}: c € StU{{o,7}: T€E T €S},

Figure 11: The instance of(Z,V@V, ZZEZZ;) that we associate with the in-

stance{(1,2,3),(3,4,5),(4,5,7),(6,8,9),(7,8,9)} of X3C

Denote byX the number of pairs of elements’bfthat arenot contained together in any of the
sets ofS, i.e.

X =|{(n,m)eVeV:VoeS:ndoorrn&a}| (14)
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We will prove that(z, VeV, ZZEZB) has a solution of value at most

V=Vl + |TP+6-|S|-5-|T| - X, (15)

if and only if the answer to the instangeis YES.
We denote a spanning tree @fthat contains the edde, o} for all o € S astar tree

Claim. Every optimum solution o(Z, VeV, dTE“ ”g) is a star tree.

Claim. In Table 4, we investigate the distances between any pain@éinG, in an arbitrary
star treeF™, and in an arbitrary non-star trée
In the case of a non-star trde, there exists one vertex € S such thatdg(p;,s’) > 4

foralli = 1,....r. In particular, §£{2=2 q; > 2, whereas% = 1, cf. the (x)-entry in
Table 4. Hence when considerifitf ® S, by the choice of- the objective value of’ is by at
least|T'|> +2-|S| - |T| + 1 larger than the one of*.

Table 4: Distances between pafrs v) of nodes within the graph. The first column denotes the
cardinality of the considered subsetiofz V.

set ofu setofv number of node pairs de(u,v)  dp<(u,v)  dp(u,v)
Ry R* IT>+2[S|-|T|+ 1 1 1 1
Ry S |S] 1 1 >1
Ry T |T| 2 2 >2
R* R* (T +2|S| - |T| + 1)

(1T + 218 - |T)) 2 2 2
R s (IT)* +2|S| - |T| 4+ 1) - |S] 2 2 (%)
R* T (T +2|S|-|T|+ 1) - |T) 3 3 >3
S S IS]- (S| —1) 2 2 >2
S T |S]- T {1,3} <3 >1
T T IT|- (T —1) - X 2 <4 > 2
T T X 4 4 >4

According to Table 4 this can only be compensatedSor 7' and onT ® T'. But there,
for (u,v) € S ® T there holds

dp-(u,v) _ dp(u,v)
dg(u,v) = de(u,v)

and for(u,v) € T ® T there holds

dp-(u,v) _ dp(u,v)
do(w,0) = da(u0)

Hence, any non-star trefé can only gainT|?> + 2 - |S| - |T| on S ® T andT ® T, which is
strictly smaller than its loss oR* ® S. O

Now that we know that an optimum solution ((z, Vev, dTE“ “;) is always a star tree,

we will compute the objective value of an arbitrary star tfée According to Table 4, it remains
to investigate in detail pairs of vertices from the sgt® 7" and7T" ® T'. We first examine the
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setS @ 1" and compute for an arbitrary star tré&

dp+(u,v dp+(u,v dps(u,v
Y o) g del), 5 de),
(u,0)eS®T G\, v (u,0)ES®T G\, v (u,0)ESRT G\u, v
d s (u,0)=1 dg (u,v)=3
2 : dF*(uav)
(u,0)€58T dg (u,v)
dg (u,v)=1, dpx (u,v)=3
dp«(u,v)
= |T S|-(|T) -3 _
TS n s > T

(u,v)ESRT
dg (u,v)=1, dpx (u,v)=3

= [TI+S]-(T]=3)+3- BIS| = |T])

= |S]- [T =2 |7] +6-]|s].

As this value is independent &f*, we conclude that any two star trees differ in their objextiv
value only for pairdu,v) € T ® T.

Recall the definition ofX in (14). Among the pair§u,v) € T ® T, there are pre-
cisely X for which dg(u,v) = 4—and thusdp-(u,v) = 4—and preciselyT|?> — |T| — X
for which dg(u,v) = 2. As F* is a star tree, we know thatp(u,v) € {2,4} for ev-
ery (u,v) € T ® T. Recall that the quantityX only depends on the instan@eof X3C.

Hence, a spanning tréé* is optimum for(z, Vev, 32235;) if and only if it is a star tree

that maximizes the numbéf of pairs(u,v) € T ® T for which dp-(u,v) = 2. How large
canY get?

We prefer to account for the quantity from an alternative perspective. To that end, con-
sider the edgess, := F* N (S x T). Note that| F§,| = |T|, becausé™ is a star tree. Now,
we define a functiop(e) for the edges = (0, 7) € Fi ,

{ 2a if ‘6F*(U)| = 45

1, if |0p«(0)| =3, and
0, otherwise.

ple) =

HerebyY = EengT p(e). Then the following statements are equivalent:
o Y =2/T|.
o Foralle € Fé , p(e) =2.
e Forallo € S, [0p-(0)| € {1,4}.

Finally, we provide a bijection between star trée'sof G with |0« ()| € {1,4}, forallo € S,
and ExacT 3-CovERs S’ as follows:

S'(F*):={oc€S: |dp:(0)] =4} and Fip(S"):=95" xT.

A direct computation reveals that the total objective valfithe optimum solution for a graph
corresponding to ¥ES-instances of X3C is right as given in Equation (15). O

6.2 Inapproximability of the MMST problem
Peleg and Reshef (1999, [23]) prove that the MMST problem

“cannot be approximated within a factor better tijan- v/5)/2, unlessP = N'P.”
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Even recently, this result is usually cited when illustigtthe complexity of the MMST prob-
lem ([9]).

In Section 3, using the UNTS to classify the large varietyiofilar tree spanner problems,
we were able to establish that in the case of unweighted grighfollowing four problems
coincide:

e the MMST problem(max, VeV, %)

e the problem(max, E\T, ZZEZZ;)

e the problem(max, F \ T, dr(u,v)), and
e the problemmax, E\ T, dr(u,v) + w(e)).

Itis a simple observation that in the case of unweightedhigafor every fixed tree the objective
values of the first three tree spanner problems coincide dfedl by one from the fourth one.
In particular, any constant inapproximability factor tligbbtained for one of these problems
carries over to the other problems.

Now, Galbiati (2001, 2003 [12, 13]) investigated the problenax, F \ T, dr(u,v) + w(e)),
which she denotes theIM-MAX STRICTLY FUNDAMENTAL CyCLE BASIS(MMSFCB) prob-
lem. This culminates in the following theorem for unweightgaphs.

Theorem 28([12, 13]). The problem of finding in a uniform grapfi a spanning tree that is
optimal for (max, £\ T, dr(u,v) + w(e)) cannot be approximated withix — ¢, Ve > 0,
unlessP = N P.

The above considerations enable us to identify the constapproximability factor of The-
orem 28 as a stronger inapproximability factor for thenMium MAX-STRETCH SPANNING

TREE (MMST) problem, or(max, VeV, ZZEZZ;) in UNTS.

Corollary 29. The MINIMUM MAX-STRETCH SPANNING TREE problem cannot be approxi-
mated within a factor better thanh— ¢, Ve > 0, unlessP = N P.

Note that another factdr-— ¢ inapproximability result has been obtained for a problem
which appears much similar {enax, E, dr(u,v)). Although one could be tempted to use it
immediately for the MMST/MMSFCB problem, there is still agsit difference. In [16], there
are two different sets of edges involved: one are the catelitdges for choosing the spanning
tree, the others indicate for which sets of pditsv) of vertices the termi (v, v) shall be
evaluated for the objective function—a requirement graph.the one hand, the proof in [16]
exploits this fact. On the other hand, such additional stines are beyond the scope of the tree
spanner problems that we consider in this paper.

7 Conclusions

We presented a unified notation for tree spanner (UNTS) prodl This allowed us to detect
that several tree spanner problems coincide. This is congaiéed by a number of example
graphs showing that no further coincidences exist. We adentified a tree spanner problem,
whose complexity status has been open beféE‘, VeV, %). For this problem, we
present an NP-hardness proof.

Moreover, the UNTS enabled us to build the bridge betweercyiote bases perspective
and the tree spanner perspective on the very same problengarticular, we establish that
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the inapproximability result due to Galbiati ([12, 13])—ially obtained for the MN-MAX
STRICTLY FUNDAMENTAL CYCLE BAsis (MMSFCB) problem—applies to the MiMuMm
MAX-STRETCH SPANNING TREE (MMST) problem, too, and outperforms the best inapprox-
imability result that was known in this context:— e compared t01+2_\/3 ~ 1.618.

Yet, it is by far beyond the scope of this paper to draw the detepmap of (in-) approx-
imability results for tree spanner problems—occasionallgn for several classes of graphs.
Nevertheless, when exploring this wide area of discretéhematics, we hope the UNTS to
provide an accurate common language in order to preventieowdk.
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