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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Musterbildung in Reaktions-Diffusions-

Systemen. Ein typisches Muster ist das Kreiswellenmuster, welches aus konzentrischen Wel-

len besteht, die von einer Wellenquelle ausgesendet werden. In dieser Arbeit werden derar-

tige Wellenquellen und durch sie entstehende Kreiswellenmuster mit analytischen und nu-

merischen Methoden studiert. Bei der Modellierung wird zum einen berücksichtigt, dass das

System oszillatorisch oder anregbar sein kann, und zum anderen, dass Wellenquellen aus

Heterogeniẗaten des Mediums oder selbstorganisiert entstehen können.

Bei der Untersuchung heterogener Wellenquellen in oszillatorischen Systemen in der

Nähe einer Hopf-Bifurkation werden zwei Schwerpunkte gesetzt. Erstens werden die Bedin-

gungen zur Erzeugung von Wellenquellen und ausgedehnten Kreiswellenmustern sowie von

Wellensenken und lokalisierten Wellenmustern systematisch abgeleitet. Insbesondere wird

gekl̈art, unter welchen Umständen rein- bzw. rauslaufende Kreiswellen auftreten und welche

Auswirkungen große Heterogenitäten haben. Zweitens werden hochfrequente Wellenquel-

len betrachtet. In diesem Fall treten Eckhaus-instabile Wellen auf, die ringförmige Ampli-

tudendefekte und weiteres komplexes Verhalten hervorrufen. Für besonders hochfrequen-

te Wellenquellen entstehen die Amplitudendefekte bereits an der Grenze der Wellenquelle,

was als lokales Desynchronisationsphänomen erkl̈art wird. Auch Wellensenken können die

raum-zeitliche Dynamik des ausgedehnten Systems entscheidend beeinflussen indem sie die

Wellen anderer Muster unterbrechen.

Motiviert dadurch, dass ein oszillatorisches System in der Nähe einer Hopf-Bifurkation

nicht in der Lage ist, stabile, selbstorganisierte Wellenquellen hervorzubringen, wird zur

Modellierung selbstorganisierter Wellenquellen ein System vorgeschlagen, das sich in der

Nähe einer Heugabel-Hopf-Bifurkation befindet. Dazu wird zunächst mit Hilfe der Normal-

formtheorie die Amplitudengleichungen für ein solches Medium hergeleitet und diskutiert.

Ein wesentliches Merkmal des Systems ist, dass es birhythmisch ist, d.h., dass zwei ver-

schiedene Grenzzyklen gleichzeitig stabil sein können. Es wird analytisch und numerisch

gezeigt, dass das Modell stabile selbstorganisierte Wellenquellen hervorbringen kann und

dass derartige Wellenquellen driften können, wenn Parameter einem räumlichen Gradien-

ten unterliegen. Die Wechselwirkung von Wellenquellen wird numerisch untersucht. Neben

koexistierenden Wellenquellen wird auch globale Inhibierung anderer Wellenquellen nach-
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gewiesen. Wenn sich die Frequenzen der Grenzzyklen stark unterscheiden, sind Eckhaus-

instabile Wellen m̈oglich, die die Wellenquellen destabilisieren können. Weiterhin sind ki-

netische Instabiliẗaten der Wellenquellen m̈oglich, bei denen die Begrenzungen der Wellen-

quellen oszillieren.

Selbstorganisierte Wellenquellen können auch in anregbaren Medien entstehen, sind je-

doch in der Regel instabil. In dieser Arbeit wird auf der Basis des FitzHugh-Nagumo-

Modells ein dreikomponentiges Aktivator-Inhibitor-System vorgestellt, in dessen anregbaren

Regime stabile selbstorganisierte Wellenquellen entstehen können. Die Bildung von stabilen

selbstorganisierten Wellenquellen ist möglich, wenn sich das System in der Nähe relaxatio-

naler Oszillationen befindet, die zusätzliche Komponente stark diffundiert und wenn diese

den Inhibitor ausreichend inhibiert. Für ein solches System gibt es auch die Möglichkeit

der Bistabiliẗat von Pulsl̈osungen. Durch die Wechselwirkung verschiedener Pulslösungen

miteinander k̈onnen Wellenquellen entstehen und auch zu anderen Szenarien komplexer

raum-zeitlicher Dynamik f̈uhren. F̈ur den Fall verschwindender Aktivatordiffusion werden

die Wellen, die von einer Wellenquelle ausgesendet werden, instabil und raum-zeitliches

Chaos entsteht.

Diese Arbeit pr̈asentiert somit neue Ergebnisse zur Dynamik großer und hochfrequenter

heterogener Wellenquellen und weist erstmalig nach, dass selbstorganisierte Wellenquellen

in birhythmischen und anregbaren Systemen stabil existieren können.
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Abstract

Pattern formation in systems far from thermal equilibrium is a fascinating phenomenon.

Reaction-diffusion systems are an important type of system where pattern formation is ob-

served. The target pattern and the associated wave source called pacemaker are typical pat-

terns in such systems. This thesis studies pacemakers and target patterns systematically by

analytical and numerical means. The underlying dynamics of the system may be oscillatory

or excitable and the pacemakers may either consist of spatial heterogeneities of the medium

or be self-organized, i.e. result of intrinsic processes.

The investigation of heterogeneous pacemakers in oscillatory systems in the framework

of the complex Ginzburg-Landau equation focuses on two aspects. First, the conditions of

the creation of pacemakers and extended target patterns versus the creation of wave sinks

and localized target patterns are derived systematically. In particular, inward traveling target

patterns and large heterogeneities are discussed. Then, pacemakers which emit target waves

with high frequencies are considered. In this case, the waves become Eckhaus unstable, caus-

ing ring-shaped amplitude defects or other complex patterns. For even larger frequencies, the

amplitude defects already take place at the boundary of the heterogeneity, giving rise to a lo-

calized desynchronization phenomenon. Moreover, wave sinks can have a significant impact

on the spatio-temporal dynamics of the system by breaking the waves arriving from other

wave sources.

It is well known that oscillatory media close to a Hopf bifurcation are not able to give rise

to stable self-organized pacemakers. Therefore, to model such pacemakers, a system close to

a pitchfork-Hopf bifurcation is proposed. The normal form and amplitude equations of the

pitchfork-Hopf bifurcation are derived. Such a system displays birhythmicity, i.e. bistabil-

ity of limit cycles, and it is demonstrated analytically that stable self-organized pacemakers

are possible. Simulations confirm the existence of stable self-organized pacemakers. In the

presence of a parameter gradient, such patterns drift, as shown analytically and numerically.

The interaction between pacemakers is studied numerically, giving rise either to coexisting

pacemakers or to a new phenomenon called global inhibition: Established pacemakers sup-

press new cores or merge with them. When the frequencies of the limit cycles differ strongly,

the waves may become Eckhaus unstable and the pacemaker may destabilize. Furthermore,
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kinetic instabilities of the pacemakers are possible, creating breathing and swinging pace-

makers.

Self-organized pacemakers in excitable media are usually unstable. In this thesis, a three-

component activator-inhibitor system on the basis of the FitzHugh-Nagumo model is pro-

posed that gives rise to stable self-organized pacemakers in the excitable regime. The forma-

tion of such patterns is demonstrated if several conditions are fulfilled: The system is close

to relaxational oscillations, the additional component is strongly diffusive, and the additional

component inhibits the inhibitor. Moreover, bistability of pulse solutions is observed in such

a system. Different pulses can interact and may create pacemakers. Alternatively, other com-

plex spatio-temporal dynamics is observed. If the diffusion of the activator vanishes, the

waves emitted by the wave source are unstable and spatio-temporal chaos appears.

Thus, this thesis presents new results on the dynamics of pacemakers with large frequen-

cies and demonstrates for the first time the possibility of stable self-organized pacemakers in

birhythmic and excitable systems.
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Chapter 1

Introduction

The spontaneous emergence of patterns is a fascinating phenomenon observed in many phys-

ical, chemical, and biological systems far from thermal equilibrium. Such patterns may show

complex temporal or spatio-temporal dynamics, including chaotic behavior. Since these

patterns are created by the internal dynamics of the system, this process is calledspatio-

temporal self-organizationand is referred to aspattern formationin the following [1–3].

Typical examples are the patterns found in chemical reaction-diffusion systems [2,3], hydro-

dynamic and liquid crystal systems [3,4], electrochemical systems [5], semiconductors [6,7],

gas-discharge systems [7], optical systems [8], granular matter [9], the heart [10,11], the cen-

tral nervous system [12,13], and many other biological and ecological systems [14–19]. The

complexity and diversity of self-organizing systems is mathematically reflected by nonlinear

equations, which arise in a natural way when systems with many interacting elements, bio-

logical systems, or chemical reactions are considered. The framework to describe all these

phenomena is provided by the research field callednonlinear dynamics[20].

This work is focused on pattern formation inreaction-diffusion systems, where the cou-

pling of nonlinear reaction kinetics with a diffusive transport process leads to complex

dynamical behavior. The most prominent example of a chemical pattern-forming reaction-

diffusion system is the Belousov-Zhabotinsky reaction. It consists of the oxidation of mal-

onic acid by bromate ions in an acidic medium, catalyzed by metal ions. Boris Belousov

discovered self-sustained oscillations of this reaction under stirring conditions [21] and Ana-

tol Zhabotinsky and Art Winfree later reported target, spiral, and scroll waves in the un-

stirred system [22–26]. Recently, major advances have been achieved with a modification

of the Belousov-Zhabotinsky reaction using microemulsions, which shows inward traveling

spiral and target waves, Turing structures, standing waves, oscillatory clusters, and other pat-

terns [27, 28]. Another example of a well-studied chemical reaction giving rise to complex
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temporal and spatio-temporal behavior is the oxidation of carbon monoxide on platinum

single crystal surfaces under low pressure conditions [29, 30]. A special feature of this re-

action is the occurrence of spatio-temporal chaos and its control, which has been achieved

recently [31].

The concept and mathematical structure of reaction-diffusion models are quite general,

and therefore such models may also be applied to pattern-forming physical and biological

systems. In the context of physical systems, reaction-diffusion models are for instance used

to describe the dynamics of current filaments in semiconductor devices [6]. Other exam-

ples are the localized patterns found in gas-discharge systems [32, 33]. In the field of living

systems which show oscillations or wave phenomena, reaction-diffusion models are suc-

cessfully applied to explain excitation waves (and their breakdown) in the heart [10], the

propagation of action potentials in neural tissue [12, 13], and aggregation patterns in slime

mold colonies [34].

Every pattern-forming process is accompanied by the appearance of characteristic length

and time scales. Typically, the extension of the pattern is much larger than the size of an

individual element of the system. Therefore, to describe the dynamics of the pattern, it is

often not necessary to take into account the individual dynamics of every single element

together with their mutual interactions. Instead, it is possible to interpret the pattern dynamics

as a collective phenomenon and describe it by a macroscopic mean-field variable or order

parameter. Another important feature of self-organization is that, although there are often

different time scales involved in the dynamics of a given system, its long-term behavior is

typically governed by the slow processes. In this case, it is possible to strongly reduce the

number of effective degrees of freedom by adiabatically eliminating the fast variables. These

important properties of self-organizing processes have been stressed by Hermann Haken who

establishedsynergeticsas a new field of research emphasizing the universal character of self-

organization [35]. Thereafter, pattern formation essentially is a cooperative, synergetic effect

of a distributed system which shows dynamic behavior on selected space and time scales.

A necessary condition for self-organization is that the system is far from thermal equilib-

rium. Therefore, the system should beopen, i.e. continuously interchange matter and energy

with its environment. If energy is constantly supplied to the open system, it is driven away

from thermal equilibrium through the dissipation of energy into the environment. Then, the

entropy may decrease inside the system and enable the spontaneous creation ofdissipative

structures. A characteristic feature of dissipative systems is the existence ofattractors, stable

states toward which the system evolves. The most fundamental attractors in dissipative sys-
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tems represent stationary and time-periodic, i.e. oscillatory states. Important contributions in

the study of dissipative systems and structures were made by Ilya Prigogine and co-workers

in the 1960s and 1970s [36,37].

From this point of view, the abundant examples for pattern formation in biological sys-

tems are not surprising. Biological systems continuously consume energy and use it to

maintain the highly-ordered, complex state of life. This was already stressed by Erwin

Schr̈odinger in 1944 when he explored the physical basis of biological processes [38]. In

a seminal paper published in 1952, Alan Turing investigated the chemical basis of morpho-

genesis and showed that the coupling of nonlinear kinetics with diffusion may lead to spatial

differentiation, i.e. to structures denoted later as Turing patterns [39]. Although such pat-

terns have been found in chemical systems [40], there is no clearcut evidence for them in

biological systems yet. Nevertheless, the relevance of basic physical and chemical processes

for biological pattern formation is unquestionable and much progress in the understanding

of living systems is expected from the studies on pattern formation in physical and chemical

systems.

The investigation of pattern formation is an interdisciplinary task and important contri-

butions were made by studyingdynamical systemsanddeterministic chaos[41, 42]. These

branches of applied mathematics can be traced back to Henri Poincaré, who first described

complex dynamics in a system with three degrees of freedom [43]. Since then, the dynamics

of such low-dimensional systems has been intensively investigated, in particular chaotic be-

havior and instabilities due to parameter changes, calledbifurcations[44]. Two bifurcations

of stationary states that become important in this thesis are thepitchfork bifurcation, which

creates two stable stationary states, and theHopf bifurcation, that gives rise to oscillatory

behavior.

The large variety of systems and observed patterns demand an appropriate classifica-

tion. For reaction-diffusion systems, it is possible and convenient to establish a connection

between the observed patterns and the temporal dynamics of the system without diffusion.

There are three main types of pattern-forming, or so-calledactive media: bistable, excitable,

and oscillatory systems [45,46].

Bistable media are characterized by two stable stationary states and the existence of front

solutions. The fronts travel through the system and separate domains of different states from

each other. Bistability is found in many reaction-diffusion systems and may appear via a

pitchfork bifurcation of a stationary state. Excitable media have just one stable stationary
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state, but a sufficiently strong perturbation of this state may lead to a large excitation which

decays back to the initial state later. A neural system, for instance, may show excitable be-

havior. The neurons are quiescent until a super-threshold excitation, e.g. from a sensory cell,

provokes its firing. The excitation moves along the ensemble of coupled neurons at a con-

stant speed and without changing its shape. Such a wave is called a pulse and is the typical

pattern of an excitable system although other patterns like wave trains or spiral waves may

also occur. Often, excitable media are modeled by the FitzHugh-Nagumo equations. Oscil-

latory media show temporally periodic behavior and may give rise to wave trains, spirals,

or concentric wave patterns. The simplest bifurcation which creates oscillations is the Hopf

bifurcation. It is possible to derive a general model which holds for all systems undergoing

such a bifurcation, regardless of their specific nature. This universal equation is the complex

Ginzburg-Landau equation [47].

This thesis is focused ontarget patternsandpacemakersin reaction-diffusion systems.

The target pattern is the first wave pattern that was found in the Belousov-Zhabotinsky reac-

tion [22]. It consists of concentric waves that are periodically emitted from a small central

region called the pacemaker. Since the work of Albert Zaikin and Anatol Zhabotinsky in

1970 [22], target patterns have been observed in many other chemical, physical, and biologi-

cal systems (e.g. Refs. [19,29,48–52]) and are hence one of the generic patterns for nonequi-

librium systems. So far, target waves have received much less attention than, for example,

rotating spiral waves. This is to some extent explained by the fact that many target patterns

are produced by local heterogeneities, which locally modify the properties of the medium,

while stable spiral waves may exist in the uniform system and are therefore self-organized.

Although heterogeneous pacemakers and their target wave patterns have been analyzed in a

number of theoretical studies (e.g. Refs. [53–59]), aspects such as inward traveling or unsta-

ble wave patterns have not been systematically addressed.

Pacemakers are not necessarily formed by local impurities in the system. There is ev-

idence that target patterns and pacemakers may also be found in uniform systems without

heterogeneities [48,60]. Such self-organized target patterns may be stable and have been de-

scribed in several models for oscillatory systems (e.g. Refs. [61–63]), although analytical so-

lutions for self-organized pacemakers are rare (for an exception see e.g. Ref. [61]). Not much

attention is usually paid to self-organized target patterns and pacemakers in uniform excitable

media since at the moment there is no experimental evidence for the spontaneous appearance

of target patterns in an excitable medium. However, there are studies which show that target

patterns may be created in excitable media by noise [64] or by periodic forcing [65] even in
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the absence of impurities.

Consequently, there is strong interest in the systematic study of heterogeneous and self-

organized pacemakers in oscillatory and excitable media. This thesis presents new results

obtained for such patterns: inward traveling waves, large cores, and desynchronization phe-

nomena are investigated for heterogeneous pacemakers in oscillatory media, and stable self-

organized pacemakers are shown to exist for the first time in birhythmic and excitable media.

This thesis is organized as follows. In Chapter 2, reaction-diffusion systems are intro-

duced and the main mathematical tools to describe pattern formation in such systems are

provided. The complex Ginzburg-Landau equation and the FitzHugh-Nagumo equations,

which are the building blocks of the models discussed later, are of particular interest. A short

overview of three-component models and both, target waves and pacemakers is given.

In Chapter 3, heterogeneous pacemakers in oscillatory media are investigated. The model

is based on the complex Ginzburg-Landau equation where pacemakers are formed by a lo-

cally fixed frequency shift. Instabilities of the generated wave pattern, large cores, and inward

traveling target patterns are of particular interest there.

Self-organized pacemakers in oscillatory media are investigated in Chapter 4. Since a

system close to the Hopf bifurcation is not able to display stable self-organized pacemakers,

a system where a Hopf and a pitchfork bifurcation occur simultaneously for the same set of

parameters is considered. In this case, the uniform medium displays birhythmicity, i.e. bista-

bility of two limit cycles, a regime described for many dynamical systems (e.g. Ref. [15]).

For the present model, it is not only possible to investigate the system numerically and to

systematically study self-organized pacemakers, but also to construct an analytic solution

for such patterns.

Chapter 5 focuses on the results obtained for self-organized pacemakers in excitable

media. As a model, a simple extension of the FitzHugh-Nagumo equations is proposed.

There, it is possible to show that stable self-organized pacemakers may also exist in excitable

media. Finally, this thesis is closes in Chapter 6 presenting conclusions and perspectives.



6 Introduction



7

Chapter 2

Basic concepts of spatio-temporal pattern formation

This thesis focuses on target patterns and pacemakers in reaction-diffusion systems.

Reaction-diffusion systems are spatially extended systems far from thermal equilibrium

where the interplay of nonlinear reaction kinetics and diffusive coupling may give rise to

the creation of spatio-temporal patterns. Although target patterns are typical for chemical

systems, they are actually generic for pattern-forming media and are therefore also observed

in physical and biological systems.

In this chapter, the reader is first acquainted with reaction-diffusion systems (Sec. 2.1)

and with nonlinear dynamics, which is a powerful theoretical framework to describe pattern-

forming processes (Sec. 2.2). It is convenient to classify such systems as bistable, oscil-

latory, and excitable. Since target patterns are found in oscillatory and excitable media, two

paradigmatic models for such systems are discussed, the complex Ginzburg-Landau equation

(Sec. 2.3) and the FitzHugh-Nagumo model (Sec. 2.4). The chapter closes with a discussion

of the basic properties of three-component systems (Sec. 2.5) as well as target patterns and

pacemakers (Sec. 2.6).

2.1 Reaction-diffusion systems

Typically, chemical reaction-diffusion systems consist of several species which react with

each other and diffuse within the medium. The temporal behavior of a continuously stirred

reaction system is governed by the rate equations for the chemical concentrations. There-

fore, the spatio-temporal dynamics of a reaction-diffusion system is adequately described by

adding diffusion terms to the rate equations. Although this section is devoted to chemical sys-

tems, similar mechanisms are present in physical and biological systems as well, justifying

the general use of reaction-diffusion models.
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Reaction kinetics

To introduce some basic concepts, a simple hypothetical chemical system in liquid phase is

considered, consisting of three speciesU, V, andP. Two irreversible reactions

U + V
k1→ 2U + P, (2.1a)

3U
k2→ P. (2.1b)

take place in the reactor, wherek1 andk2 are the rate constants. First, the purely temporal

dynamics of the system is discussed, i.e. the species are constantly stirred in the reactor to

prevent diffusive transport processes. Even though any realistic system is spatially extended,

no effective spatial degrees of freedom are present here. The impact of diffusion will be

discussed later.

If the reactions (2.1) take place in anopen flow reactor, the concentrations ofV andP

may be kept constant by a continuous influx of reactantV and by removing productP. A

constant supply of free energy to the system which drives the system far from equilibrium is

associated with the steady flow of chemical species. This energy is used in the reactions be-

fore it finally dissipates into the environment. As a result, the open system may continuously

sustain irreversible processes, export entropy, and create dissipative structures.

According to the reaction scheme (2.1), the kinetics of speciesU is determined by the

rate equation for its concentrationu,

u̇ = f(u) = k1vu− k2u
3, (2.2)

where the dot denotes the time derivative andv is the constant concentration of reactantV.

Note that all rate constants and concentrations are positive. Although three chemical species

are present, the dynamics of the system is described by only one variable and represents

therefore aone-component system.

While the reaction scheme (2.1) is very simple and does not lead to complex dynam-

ics, it already contains some typical features of the pattern-forming systems discussed later.

For example, there is an autocatalytic reaction (2.1a) which is controlled by the decay reac-

tion (2.1b): If the concentrationu of U is low, the reaction withV leads to an increase ofu

and thus to an autocatalytic acceleration of reaction (2.1a), while for large concentrations of

U, the reaction (2.1b) dominates andu decreases. As a result of the interplay between these

processes, the concentrationu approaches a constant positive value, representing the stable

stationary state of the system. This state depends only on the constantsk1, k2, andv, and not

on the initial concentration ofU.
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Since stationary states fulfill the conditionu̇ = 0, another stationary state, characterized

by the trivial solution with vanishingu, is found for Eq. (2.2). This state, however, is unstable

and therefore not realized. Hence, the medium is called monostable and its temporal behav-

ior is characterized by relaxation into that state. A third solution off(u) = 0, representing a

state with a negative value ofu, has no chemical significance. However, it is easy to imagine

a different reaction scheme where all roots off(u) are positive. Then, two of the three sta-

tionary states are stable. Such a system is called bistable and exhibits temporal relaxation in

one of the two stable states, depending on the initial condition.

Here, a two-component model is introduced that is already capable of exhibiting oscilla-

tory behavior, the Gray-Scott model [66,67]

A→ U, (2.3a)

U→ V, (2.3b)

U + 2V→ 3V, (2.3c)

V→ P. (2.3d)

Like the above example, it contains only one non-trivial reaction step (2.3c), corresponding

to the autocatalytic production ofv in the presence ofu. The concentration ofA is kept

constant and the productP is not involved in the kinetics as the reactions are assumed to be

irreversible. Thus, the rate equations forU andV are

u̇ = p1 − p2u− uv2, (2.4a)

v̇ = −v + p2u+ uv2, (2.4b)

where the concentrations and time are rescaled such that the system dynamics depends only

on two parameters,p1 andp2. Both reaction schemes (2.1) and (2.3) lead to nonlinear rate

equations. According to mass action kinetics, any reaction among two or more species leads

to nonlinear coupling terms. Hence, nonlinear rate equations are imminent for many realis-

tic systems. For pattern-forming systems, autocatalytic reactions like (2.1a) or (2.3c) are a

typical source for nonlinear terms in rate equations.

The analysis of the Gray-Scott model shows that it has one stationary state which be-

comes unstable at a so-called supercritical Hopf bifurcation [67]. In this case the concentra-

tions start to exhibit time-periodic behavior. At onset, such oscillations are characterized by

vanishing amplitude and nonvanishing frequency.

The simple examples of nonlinear rate equations like Eqs. (2.2) and (2.4) which have

been discussed, just serve as illustrations of chemical reaction kinetics and the concepts of
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monostable, bistable, or oscillatory behavior, which are the building blocks of the complex

dynamics encountered later in spatially extended reaction-diffusion systems.

A general system of reaction rate equations is given by

u̇ = f(u; p), (2.5)

whereu denotes the vector ofn componentsui, p denotes the set ofm parameterspj, andf

represents the vector containing the terms corresponding to the kinetics.

Diffusion

Now, a spatially extended chemical system is discussed where diffusion enables the transport

of matter and represents the only kind of spatial coupling. This means that the medium is not

stirred.

Any inhomogeneous distribution of concentration of a speciesU leads to a fluxJ which

tries to balance the concentration differences. According to Fick’s first law, the fluxJ is

proportional to the concentration gradient,

J = −D∇u, (2.6)

whereD denotes the diffusion constant ofU and∇ is the vector of first spatial partial deriva-

tives. Since diffusion leaves the total amount of substanceU constant, the continuity equation

∂tu = −∇J (2.7)

is valid, where∂t denotes the partial temporal derivative. Equations (2.6) and (2.7) give

Fick’s second law∂tu = ∇(D∇u). Assuming thatD is not space-dependent, Fick’s second

law simplifies to the diffusion equation

∂tu = D∇2u. (2.8)

For a system withn species the general form of the diffusion equation is therefore

∂tu = D∇2u, (2.9)

whereD is the diffusion matrix.

Diffusion may alternatively be described by a microscopic hopping process. In the mean-

field limit of that approach, the deterministic equations displayed above are recovered (for

a good discussion, see Ref. [68]). In addition to chemical diffusion, diffusion-like terms in

dynamical equations may correspond to heat conduction or optical diffraction.
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Reaction and diffusion

The equations for reaction (2.5) and diffusion (2.9) can be combined to form a generaln-

component reaction-diffusion system

∂tu = f(u; p) + D∇2u, (2.10)

wheref denotes the reaction term andD∇2u the diffusion term.

Of course, Eq. (2.10) should be completed by appropriate initial and boundary condi-

tions. Since in typical experimental systems, initial conditions may be varied to some degree,

there are no restrictions on them at this general level. The appropriate boundary conditions to

model the borders of a chemical reactor are no-flux boundary conditions. These are a special

case of the Neumann boundary conditions, where the flux of the variable through the bound-

ary is set to a constant, here to zero. In some simulations shown later, periodic boundary

conditions are used. Periodic boundary conditions connect one point at the boundary of the

medium with its opposite point and create a situation where moving patterns stay persistently

in the medium.

The appearance of nonlinear terms in the evolution equations, or – more precisely – the

fact that reaction-diffusion systems are described by a set of coupled nonlinear partial differ-

ential equations, has been explained in terms of chemical kinetics. However, such models are

more general. For example, some models for pattern formation in semiconductor devices are

also of reaction-diffusion type. The variables in this case may represent the electric current

and field densities, and the nonlinearity responsible for the pattern formation may be caused

by a negative differential conductivity [6]. Other examples where reaction-diffusion models

are applied (at least as an approximation) are gas-discharge systems [7, 32, 33] or optical

systems [8] where spot, hexagonal, and traveling wave patterns are found.

2.2 Mathematical modeling of pattern formation

In this section, some basic mathematical tools to describe and to analyze pattern formation

in reaction-diffusion systems are introduced. First, diffusion is neglected and the temporal

dynamics of uniform systems is studied. Such systems have been investigated in detail in the

context of dynamical systems theory. The stationary states of the system are determined and

linear stability analysis is applied to check their stability. The appearance of periodic solu-

tions is often associated with stationary states that become unstable. The investigation of sys-
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tems close to points in parameter space where the stability of states changes or new solutions

appear is called bifurcation analysis. Close to bifurcations, the mathematical description of

the system is simplified considerably with the help of normal form theory. With that back-

ground, it is then possible to consider the complete reaction-diffusion system including the

diffusion effects. Additional information to this section can be found in Refs. [42,44,45,69]

for example.

Attractors and linear stability

The first step in the analysis of the system dynamics is to investigate its temporal behavior,

neglecting the spatial degrees of freedom. That is, ann-component reaction system of the

kind (2.5)

u̇ = f(u; p),

which is matched by appropriate initial conditions has to be studied. Often, a reaction-

diffusion system is interpreted as an ensemble of diffusively coupled active elements. From

this point of view, the set of ordinary differential equations (2.5) describes the dynamics of

an individual element of the system, sometimes also calledlocal dynamics. The numbern

of components determines the dimension of the phase space in which the vector fieldf is

defined. In this thesis, this dimensionn is typically two or three. Atrajectoryof the system

is given by the set of points in phase space that are visited by the system starting from the

initial condition. Equation (2.5) is autonomous and therefore any solution of it is unique and

the trajectories do not intersect in phase space.

Since the system is dissipative, conservation laws for quantities such as the energy do

not exist. This means that trajectories coming from different initial conditions may asymp-

totically reach the same region in phase space. Mathematically, this is formulated with the

help of thelimit sets, denoting those regions in phase space to where almost all trajecto-

ries converge as timet → ±∞. Of particular importance are the limit sets fort → +∞,

which are calledattractors. A system may have various attractors, each having its basin of

attraction. All the initial conditions lying in a given basin of attraction will finally lead to the

corresponding attractor. These basins of attraction are separated from each other by so-called

separatrices. Limit sets fort→ −∞ are called repellers.

Attractors may represent stationary, periodic, quasi-periodic, or chaotic states of the sys-

tem. In the context of this work, stationary and periodic attractors are important. The station-
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ary states orfixed pointsof system (2.5) are denoted asus and are found with the condition

u̇ = 0.

The next important step is to study the stability of such fixed points. Obviously, any

asymptotic state of a dynamical system, i.e. any attractor, is stable because unstable states are

never approached in a real or numerical experiment. A fixed pointus is calledasymptotically

stableif small perturbationsδu(t) := u(t)−us of that state are damped. Stability is checked

by means of alinear stability analysis. The difference vectorδu(t) is inserted into Eq. (2.5)

andf is expanded aroundus in a Taylor series, where only the linear term is kept, yielding

˙δu = J(us)δu, with Jij =
∂fi
∂uj

. (2.11)

The eigenvaluesλi of the JacobianJ evaluated at the fixed pointus determine the stability

of the stationary state.

For ann-component system, the Jacobian possessesn complex eigenvaluesλ1, ..., λn. To

each eigenvalueλi there exists an eigenvectorei. Then, the criterion of asymptotic stability

reads

For all i = 1, 2, ..., n Reλi < 0 ⇔ us asymptotically stable, (2.12)

there exists ani ∈ {1, 2, ..., n} Reλi > 0 ⇔ us asymptotically unstable. (2.13)

Hence, for asymptotic instability it is sufficient that one eigenvalue is positive, even if there

aren − 1 negative eigenvalues. If a fixed point has both positive and negative eigenvalues,

it is said to be of saddle-type. The application of the linear stability analysis assumes that

higher-order termsO(|δu|2) have no influence on the topology of the trajectories close to

the fixed point. However, if at least one eigenvalue of the Jacobian is zero while the others are

negative, a linear analysis is not sufficient. Later we shall see that this happens at bifurcations,

requiring the use of the normal form theory to describe the dynamics there. The present

discussion is restricted tohyperbolicfixed points, i.e. fixed points where no eigenvalue has a

vanishing real part.

General linear stability analysis of fixed points in a two-dimensional phase space yields

a quadratic equation for the eigenvaluesλ1,2,

λ1,2 =
1

2

(
TrJ±

√
(TrJ)2 − 4(DetJ)

)
, (2.14)

whereTrJ denotes the trace, andDetJ the determinant of the JacobianJ. It is convenient

to classify the fixed points that can occur in such a system as either stable and unstable foci,
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stable and unstable nodes, and saddles. A node possesses two real eigenvalues, a focus a pair

of complex conjugated eigenvalues. Saddles have real eigenvalues with different signs. In

Figure 2.1, an overview over the possible hyperbolic fixed points in a two-dimensional phase

space is given.

TrJ

DetJ

Imλ

Imλ Imλ

Imλ

Reλ

Reλ Reλ

Reλ

Reλ

Imλ Imλ

Reλ

Figure 2.1:Hyperbolic fixed points for a two-dimensional vector field.The trajectories
are qualitatively shown for the five types of fixed points. The curve DetJ = (TrJ/2)2 sep-
arates the foci from the nodes, the curve DetJ = 0 the nodes from the saddles. The insets
schematically display the corresponding eigenvalues in the complex plane.

While fixed points are the only possible attractor in one-dimensional phase spaces, an-

other important type of attractor is possible in two-dimensional phase spaces, namely the

limit cycle. The limit cycle is a closed trajectory in phase space that represents time-periodic

behavior, i.e. oscillations. It is also possible to perform a linear stability analysis for limit

cycles. This so-calledFloquet analysisuses the Poincaré section, an(n − 1)-dimensional

plane in phase space which is transversally intersected by the limit cycle.

Bifurcations and normal forms

Up to now, the different stationary and periodic solutions of Eq. (2.5),

u̇ = f(u; p),
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and their stability have been discussed. However, it is obvious that the dynamics also de-

pends on the set of parametersp. Indeed, both quantitative and qualitative changes of the

vector field are possible as the parameters are varied. Qualitative changes may consist of the

appearance of a new attractor, or the conversion of an attractor into a repeller. If the topology

of the vector field is modified as the result of a parameter change, abifurcationor instability

has taken place.

Bifurcations are usually classified according to the dimensionalityn of the phase space

which is required for the bifurcation to take place and to theircodimension. In the mathe-

matical literature there are rather technical definitions of this concept, but in this context it is

sufficient to describe the codimension as the number of parameters that are necessary to be

tuned in order to find the bifurcation point.

For simplicity, a stationary stateus is considered which lies in the two-dimensional phase

space and which depend on one parameterp only. Two cases are of interest here. Either one

real eigenvalue of the JacobianJ changes sign from negative to positive or a pair of complex

conjugate eigenvalues ofJ crosses the imaginary axis.

In the first case, the matrixJ becomes singular (DetJ = 0) at the parameter valuep = pc

and, according to the implicit function theorem (see, e.g. Ref. [42, 44]), the solutionus(p)

is no longer a smooth function ofp. This implies a change of stability of the fixed point

and the existence of new stationary solutions. The generic bifurcation for this situation is

thesaddle-nodeor fold bifurcationshown in Fig. 2.2(a). There, a stable node and a saddle

appear at the bifurcation point. Therefore, a fold bifurcation creates a new stable stationary

solution. Another bifurcation which may appear as one real eigenvalue becomes positive is

thepitchfork bifurcation[Fig. 2.2(b)]. Here, a stable fixed point loses its stability and at the

same time gives rise to two new stable fixed points. The system is then bistable.

In the second case, the matrixJ is invertible at the parameter valuep = pc and the

stationary solutionus(p) remains a smooth function atp = pc. However, the traceTrJ

of the Jacobian vanishes at the parameter valuep = pc, and a so-calledHopf bifurcation

occurs [Fig. 2.2(c)]. This is one of the most important and interesting bifurcations because

it is the simplest bifurcation that leads to time-periodic behavior. As the bifurcation point is

crossed, a focus loses its stability and gives rise to a harmonic limit cycle, whose amplitude

is small and follows a square root dependence close to the bifurcation point. Far from the

Hopf bifurcation, the amplitude may become large and the oscillations anharmonic. Already

at onset, the oscillations have a nonvanishing frequency.
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pp

Figure 2.2:Codimension-one bifurcations for one- and two-dimensional vector fields.
(a) saddle-node or fold bifurcation, (b) pitchfork bifurcation, and (c) Hopf bifurcation. The
variables are denoted by u and v, the control parameter by p, and the bifurcation point is
located at the coordinate origin. Solid (dashed) lines denote stable (unstable) states.

Some bifurcations like the Hopf or pitchfork bifurcation may appear in a super- or sub-

critical fashion. At asupercriticalbifurcation, the new solution is stable while the old one

becomes unstable. At asubcritical bifurcation, the new solution is unstable while the old

one becomes stable. In Fig. 2.3(a-b), these different types of Hopf bifurcations are displayed.

Figure 2.3(c) illustrates the situation when an unstable limit cycle born in a subcritical Hopf

bifurcation is stabilized in a saddle-node bifurcation of limit cycles. Then, a phenomenon

calledhysteresismay be observed. The parameter valuepH, where the large-amplitude oscil-

lations set in asp is decreased from large values, does not coincide with the parameter value

pF where they disappear asp is increased from small values. As a result, there is a region in

p

|A|
(a) (b)

p

|A|
(c)

p

|A|

p ppp
H FH H

Figure 2.3:Hopf bifurcations. The amplitude |A| of the limit cycle is shown as a function of
the control parameter p in a supercritical Hopf bifurcation (a), subcritical Hopf bifurcation
(b), subcritical Hopf bifurcation with stabilized limit cycle (c). Solid (dashed) lines denote
stable (unstable) states.



2.2 Mathematical modeling of pattern formation 17

parameter space where a stable limit cycle coexists with a stable fixed point.

The stable and unstable eigenvectors of a fixed point have been discussed above. The

set of stable (unstable) eigenvectors spans the stable (unstable) subspaceEs (Eu) of a fixed

point. Since a bifurcation is associated with at least one vanishing real part of an eigenvalue

of the Jacobian, a center subspaceEc exists which is spanned by the eigenvectors associated

with the bifurcating eigenvalues. By construction, the subspaces characterize the time evo-

lution of the system only close to a given fixed point. The nonlinear generalizations of these

subspaces are the stable, center, and unstable manifoldsW s,W c, andW u, which are defined

in the whole phase space. Close to the fixed points, the manifolds are approximated by the

linear subspaces.

Thecenter manifold theoremplays an important role in the study of the dynamics close

to bifurcations (see, e.g. Ref. [42]). It states that sufficiently close to the bifurcation and after

a possible short transient, the dynamics of the system (2.5) takes place on the center man-

ifold. Therefore, close to a bifurcation, it is sufficient to study the dynamics of the center

manifold instead of the complete dynamics. Since the dimensionality of the center manifold

is typically lower than the phase space dimensionn, the reduced system usually is easier to

solve. The specific differential equation that describes the dynamics on the center manifold

is called anormal form. The normal form is universal in the sense that all dynamical systems

undergoing the same bifurcation are described by the same normal form close to the bifurca-

tion point. The validity of the center manifold theorem can be illustrated for a system where

one real eigenvalue crosses the imaginary axis while all other eigenvalues remain negative.

Close to the bifurcation point, the bifurcating eigenvalue has a real part close to zero. There-

fore, its modulus is much smaller than the modulus of any other eigenvalue. This means that

the eigenmode of the bifurcating eigenvalue has a much slower dynamics than any other

eigenmode. As a result, after the decay of the transient, the temporal behavior of the system

is characterized by the bifurcating eigenmode. In other words, the dynamics becomes very

slow close to the bifurcation and the nonbifurcating eigenmodes may beadiabatically elim-

inated. The normal forms of the fold and the supercritical pitchfork bifurcation are given

by

u̇ = p− u2, fold bifurcation, (2.15a)

u̇ = pu− u3, pitchfork bifurcation. (2.15b)

Since the normal form contains one variable only, such bifurcations can already be found

in one-component systems. Furthermore, for anyn-component system which exhibits a fold
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or pitchfork bifurcation, the dynamics is restricted to a one-dimensional subspace of the

n-dimensional phase space. The normal form of the Hopf bifurcation is given by

u̇ = pu− v − u(u2 + v2),

v̇ = u+ pv − v(u2 + v2).
(2.16)

The method to adiabatically eliminate the fast modes can be applied not only close to bi-

furcations but also in more general situations when, for example, a system displays dynamics

on very different time scales. Later, it will be shown that a field of weakly coupled oscillators

described by an amplitude and a phase variable exhibits dynamics on different time scales,

enabling an adiabatic elimination of the amplitude variable.

Distributed active media

The theory discussed so far has only been concerned with systems of ordinary differential

equations (2.5). However, a reaction-diffusion system (2.10)

∂tu = f(u; p) + D∇2u

models a spatially extended (ordistributed) medium and is represented by a set of partial

differential equations. The phase space of such a system is effectively infinite-dimensional.

At this point it is convenient to translate some concepts of attractors and stability to

spatially extended systems. Of course, the uniform solutions of Eq. (2.10) coincide with

the solutions of the ordinary differential equation (2.5) studied above. In this way, uniform

stationary states or homogeneous oscillations may be investigated. However, the asymptotic

solution of Eq. (2.10) is, in general, space-dependent, representing, for example, spiral and

target waves, Turing structures, or localized structures. In order to find an analytical solution

of such patterns, a strong separation of length and time scales or the presence of very small

terms in the equations often have to be assumed [14,70].

The next concept that shall be extended to the dynamics of distributed systems is the

concept of bifurcations. It is necessary to incorporate the spatial degrees of freedom into the

description. While for a system (2.5) there is a discrete band ofn eigenvalues, the spectrum

of eigenvalues is continuous for a spatially extended system (2.10). For simplicity, a uniform

system is considered which is situated in a stationary state denoted asus and which resides

in a one-dimensional infinitely-extended physical space. Then, it is possible to write near the

bifurcation the unknown solutionu(x, t) as an expansion of Fourier modesuq(x, t) in the
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following way

u(x, t) = us +

∫ ∞
0

uq(x, t) dq, (2.17a)

uq(x, t) = vq(x)Aqe
λ(q)t+iqx + vq(x)Bqe

λ(q)t+iqx + h.o.t., (2.17b)

where “h.o.t.” denotes terms of higher order. The Fourier modes with a wavenumberq de-

pend on the eigenvectorvq, which is determined from the linearized problem, and on the

complex amplitudesAq(x, t) andBq(x, t), which are discussed later. The superposition of

the latter characterizes the pattern which is associated with the wavenumberq. The complex

eigenvalueλ of the linearized problem can be decomposed into its real partσ and imaginary

partω in the following way

λ(q, p) = σ(q, p) + iω(q, p), (2.18)

where it is assumed for simplicity that the bifurcation only depends on one parameterp. For

p < pc all perturbations decay, i.e.σ < 0 for all q. The critical parameter valuepc is given

by σ(qc, pc) = 0 for a criticalqc, while all other modes relax fort→∞, i.e.σ(q, pc) < 0 for

all q 6= qc. Then, the critical Fourier modeuqc(x, t) is given, after a short transient, by

uqc(x, t) = vqc(x)Aqce
i(qcx+ωct) + vqc(x)Bqce

i(qcx−ωct), (2.19)

whereωc = ω(qc, pc). Therefore, the systems may be classified according to the mode

with the eigenvalue that first crosses the imaginary axis. At the bifurcation point, the crit-

ical wavenumberqc and critical frequencyωc may be zero or nonzero, yielding three cases

which are of interest here [1]. The caseqc = 0, ωc 6= 0 corresponds to the distributed Hopf

bifurcation, the caseqc 6= 0, ωc = 0 to the Turing bifurcation, and the caseqc 6= 0, ωc 6= 0 to

the wave bifurcation. The equations for the complex amplitudesA andB are determined by a

multiple-scale or normal form analysis and are calledamplitude equations. Such a derivation

is performed in Appendix A.2 for the system investigated in Chapter 4.

2.3 The complex Ginzburg-Landau equation

Reaction-diffusion systems can display different types of oscillatory dynamics. However,

in the vicinity of a supercritical Hopf bifurcation, where oscillations have small amplitude

and are approximately harmonic, all such systems are described by the same model – the

complex Ginzburg-Landau equation (CGLE). In this section, some general considerations
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about this equation are presented before special features are discussed: uniform oscillations,

plane waves, the Eckhaus instability of plane waves, spiral and target wave solutions, and

the phase dynamics approximation.

General properties

The complex Ginzburg-Landau equation is given by

∂tA = (λ1µ− iωH)A+ g1|A|2A+ dA∇2A, (2.20)

whereA is the complex oscillation amplitude,µ the distance to the Hopf bifurcation point,

ωH the frequency of the system at the Hopf bifurcation, andλ1, g1, anddA complex pa-

rameters which are determined by the underlying specific reaction-diffusion system. If the

following rescalings for the amplitudeA→
√

(−gr1)/(µλr1)A, time t→ (µλr1)t, and spatial

coordinatesx → x
√

(µλr1)/drA are performed (the superscriptsr andi denote the real and

imaginary parts of the parameters respectively), the CGLE transforms to

∂tA = (1− iω)A− (1 + iα)|A|2A+ (1 + iβ)∇2A, (2.21)

whereω = (ωH/µ− λi1)/λr1, α = gi1/g
r
1, andβ = diA/d

r
A. By going into a coordinate frame

that rotates with the frequencyω, i.e. by performing the transformationA → A exp(−iωt),

it is possible to scale out the frequencyω and the distanceµ from the Hopf bifurcation point.

Therefore, the dynamics of the CGLE effectively depends only on two parametersα and

β, which are the nonlinear frequency and linear dispersion coefficients respectively. In this

work, the parameterω is kept to facilitate a qualitative comparison of the CGLE with an

underlying reaction-diffusion system. In the context of the model considered in Chapter 3,

this topic is discussed in Appendix A.1.

The CGLE exhibits a vast range of phenomena, ranging from plane and spiral waves to

localized coherent structures and spatio-temporal chaos. The CGLE is not only the paradig-

matic equation for oscillatory systems but also one of the most studied models in nonlinear

science in general. It was derived by Newell and Whitehead in 1969 in the context of hydro-

dynamic systems [71,72] and by Kuramoto and Tsuzuki in 1974 for chemical systems [73].

Furthermore, both the real Ginzburg-Landau equation describing phase transitions and the

nonlinear Schr̈odinger equation displaying soliton solutions can be viewed as limit cases of

the CGLE. For a recent review of the CGLE see Ref. [47]. The derivation of the CGLE

from a specific reaction-diffusion model is explained in Refs. [53,74]. The predictions based

on this universal amplitude equation often remain qualitatively correct even further away
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from the bifurcation point, where oscillation amplitudes are moderate and deviations from

harmonicity are significant.

Uniform oscillations

Starting the discussion with the temporal dynamics of the uniform system, the diffusion term

is dropped and the Stuart-Landau equation

Ȧ = (1− iω)A− (1 + iα)|A|2A, (2.22)

describing a limit cycle oscillator is obtained. Introducing the phaseφ and the real amplitude

ρ as

A = ρ exp(−iφ), (2.23)

and substituting this ansatz into Eq. (2.22), the two equations

ρ̇ = (1− ρ2)ρ, (2.24a)

φ̇ = ω + αρ2, (2.24b)

are obtained. These illustrate a typical property of a nonlinear oscillator, namely, that a

change in the phase, i.e. the frequency, depends on the amplitude. The stable limit cycle

solution

A(t) = ρSL exp(−iωSLt), (2.25)

with constant frequency

ωSL = ω + α (2.26)

and amplitude

ρSL = 1, (2.27)

is the only attractor of the Stuart-Landau equation.

In the spatially extended system, the limit cycle solution (2.25) corresponds to uniform

oscillations. A linear stability analysis for that state reveals that uniform oscillations are

stable with respect to small phase perturbations if the Benjamin-Feir-Newell condition

1 + αβ > 0, (2.28)

is satisfied. If this condition is violated, a chaotic spatio-temporal behavior denoted as phase

turbulence sets in. This and other regimes displaying spatio-temporal chaos like amplitude

and intermittent turbulence are not of interest in the context of this work and therefore not

discussed further.
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Plane waves

An important family of solutions of the CGLE are plane waves

A(x, t) = ρk exp(ikx− iωkt), (2.29)

with frequency

ωk = ωSL + (β − α)k2, (2.30)

and amplitude

ρk =
√

1− k2, (2.31)

wherek denotes the constant wavenumber of the waves which according to Eq. (2.23) is

equal to the phase gradientk = −∇φ. The dependence of the wave frequencyωk on the

wavenumberk constitutes the dispersion relation. Whenβ − α > 0, the frequency increases

with the wavenumber and the waves havepositivedispersion. In the opposite case, the dis-

persion isnegative. Thephase velocityis defined asvp = ωk/k and given by

vp = ωSL/k + (β − α)k. (2.32)

It characterizes the speed at which the positions of wave maxima move. Thegroup velocity

is defined asvg = ∂ωk/∂k, so that

vg = 2(β − α)k. (2.33)

It determines the velocity at which small perturbations (wave packets) propagate through the

medium. It is the group velocity that determines the transport of matter and information in

the system. Note that forα = β the group velocity is zero and the frequency of waves with

arbitraryk is equal to that of uniform oscillations. This case, however, is not generic and not

considered further.

Strictly speaking, the wavenumberk and the group and phase velocities are vector quan-

tities, i.e. point into the direction of the propagating waves. In the context of this work, they

may be treated as scalar quantities since their magnitude is of principal interest here. When-

ever the direction of waves matters, it will be mentioned explicitly.

Uniform oscillations correspond to plane waves withk = 0. In the long-wavelength

limit k → 0, the phase velocity diverges, while the group velocity vanishes. In the long-

wavelength limit, the amplitude of plane waves approaches that of uniform oscillations. On

the other hand, the amplitude of plane waves vanishes ask → 1, thus not admitting waves

with wavelengths smaller than2π (in renormalized units). At the same time, the frequency

of the waves approachesωk → ω + β.
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Eckhaus instability

We have seen that plane waves exist only for wavenumbersk < 1. Actually, plane waves

will become unstable before they reach this propagation failure boundary. It is possible to

perform a stability analysis for the plane waves (see, e.g. Ref. [47]) which shows that waves

with a wavenumber larger than

kEI =

√
1 + αβ

2(1 + α2) + 1 + αβ
, (2.34)

are unstable with respect to long-wavelength modulations. This instability is calledEckhaus

instability. It can appear in two flavors and two different types of spatio-temporal behavior

are possible. The Eckhaus instability can be supercritical and modulated amplitude waves are

stable solutions [75]. Alternatively, this instability may be subcritical and the perturbation

does not saturate. Then, the wave is compressed until the amplitude locally drops down to

zero at some time moments corresponding to phase singularities. Such events are associated

with a phase slip of2π, the disappearance of a wave and a subsequent readjustment of the

wavenumber on both sides of the defect [76].

In two spatial dimensions, spiral breakup into turbulence is then possible [77–80]. In

this context, the distinction between convective and absolute Eckhaus instability is impor-

tant [81]. If an infinitesimal perturbation of an unstable traveling wave state is advected away

with the wave and asymptotically decays at any fixed position, the system is in the regime

of convective Eckhaus instability. If this perturbation grows even at fixed positions, then

the instability is called absolute. It has been demonstrated that wave breakup in a bounded

domain reflects an absolute Eckhaus instability [77]. Recently, it has been shown that the

eigenvalue spectrum of a reaction-diffusion system depends strongly on whether a bounded

or an unbounded domain is considered, and that it is the so-called absolute spectrum which

determines the breakup of spirals [79]. Furthermore, the boundary conditions and the size of

the perturbation influence the onset of the instability.

Spiral and target waves

Spiral and target waves are typical two-dimensional wave patterns found in reaction-

diffusion systems. Spiral waves are particularly well studied in the CGLE. The general form

of a spiral wave is

A(r, t) = ρsp(r) exp(−iφsp(r, θ, t)), (2.35)
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wherer andθ are the radial and angular coordinates of the two-dimensional spatial domain,

ρsp the amplitude, andφsp the phase of the target waves. The phase can be written as

φsp(r, θ, t) = ωspt−mθ − ψsp(r), (2.36)

whereωsp is the frequency of the spiral,m the topological charge, andψsp(r) the radial

contribution to the phase. For single-armed spirals,m = ±1 is fulfilled, where the sign ofm

determines the direction of rotation. A spiral wave of this kind has a phase singularity in its

center where the amplitudeρsp(r) drops down to zero.

The general form of a target wave solution in the CGLE is given by

A(r, t) = ρtp(r) exp(−iφtp(r, t)), (2.37)

whereρtp is the amplitude and

φtp(r, t) = ωtpt− ψtp(r), (2.38)

the phase of the target waves. In contrast to spiral waves, target waves do not have an angular

dependence in the plane of the two-dimensional pattern and do not have a phase singularity

in the center of the spiral.

Far from the center of the pattern, i.e. forr → ∞, both the spiral and the target wave

solutions approach the plane wave solutionφ → ωkt − kr with wavenumberk, amplitude

ρ →
√

1− k2, and frequencyωk = ω + α + (β − α)k2. However, while the spiral wave

solution is stable and its frequency is determined by the parameters, the target wave solution

is unstable and its frequency depends on the initial condition.

Phase dynamics approximation

Wave patterns can be described by phase dynamics equations if the wavelength is large and,

more generally, phase perturbations are smooth [53]. Using the description in terms of phase

φ and real amplitudeρ as introduced above asA = ρ exp(−iφ), the CGLE is equivalent to

the equations

∂tρ = (1− ρ2)ρ+∇2ρ− ρ(∇φ)2 + βρ∇2φ+ 2β∇φ∇ρ, (2.39a)

∂tφ = ω + αρ2 + (2/ρ)∇ρ∇φ+∇2φ− (β/ρ)∇2ρ+ β(∇φ)2. (2.39b)

Now it is assumed that smooth phase perturbations with a large characteristic lengthLp are

present. Hence, it is expected that the amplitudes are close toρSL = 1. From the definition
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of the amplitude deviationδρ,

δρ = ρ− 1, (2.40)

follows

ρ2 = 1 + 2δρ+ (δρ)2. (2.41)

If the term(1− ρ2) in Eq. (2.39a) is replaced by the expression for the amplitude deviation,

the equation

∂tρ = ρ
[
−2δρ− (δρ)2 − (∇φ)2 + β∇2φ

]
+∇2ρ+ 2β∇ρ∇φ (2.42)

is obtained. Using the definition (2.40) and the abbreviationsf = ∇2ρ + 2β∇ρ∇φ and

g = −(∇φ)2 + β∇2φ, it follows

∂tρ = ∂t(δρ) = g − (2− g)δρ− 3(δρ)2 − (δρ)3 + f. (2.43)

Now it is used that the amplitude deviations are small|δρ| � 1 and the amplitude is constant,

i.e.∂t(δρ) = 0. Then, the amplitude deviation is given by

δρ ≈ g + f

2− g
. (2.44)

For |f | � |g| � 1, which reflects the fact that amplitude gradients are much smaller than

phase gradients for the considered long-wavelength perturbation, the amplitude deviationδρ

is given by

δρ ≈ g

2
=

1

2

(
−(∇φ)2 + β∇2φ

)
, (2.45)

which includes all terms which are proportional toL−2
p and neglects all higher-order terms.

With the help of Eq. (2.41), the following equation forρ2 is obtained

ρ2 = 1− (∇φ)2 + β∇2φ. (2.46)

Since it has been required that|δρ| � 1, this means that|∇φ| � 1 is necessary. Above, a

constant phase gradient has been associated with a plane wave with a constant wavenumber

k and it follows

k � 1. (2.47)

With help of Eq. (2.46), Eqs. (2.39) are finally reduced to a single dynamical equation for

the local oscillation phase (see, e.g. Ref. [53]),

∂tφ = ω + α + (β − α)(∇φ)2 + (1 + αβ)∇2φ. (2.48)
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Note that the Benjamin-Feir-Newell condition for unstable uniform oscillations corresponds

to a negative phase diffusion coefficient in the phase dynamics equation. In this thesis, it is

assumed that1 +αβ > 0 is satisfied and uniform oscillations are modulationally stable. The

phase equations (2.39b) and (2.48) do not depend explicitly on the phaseφ. This reflects

the fact that the complex Ginzburg-Landau equation is invariant with respect to global phase

shiftsA→ A exp(iφ0), whereφ0 is a constant.

Quintic complex Ginzburg-Landau equation

The CGLE discussed above, is sometimes also called cubic Ginzburg-Landau equation be-

cause of the cubic term. The cubic CGLE describes a stable limit cycle coexisting with an

unstable fixed point. This is reflected by the fact that the sign of the real coefficient of the

linear term is positive and the sign of the real coefficient of the cubic term is negative.

If the Hopf bifurcation is subcritical, a stable fixed point coexists with an unstable limit

cycle solution. If that limit cycle solution is stabilized in a saddle-node bifurcation of limit

cycles [Fig. 2.3(c)], a stable fixed point coexists with a stable limit cycle. Such a situation

can be modeled by the quintic complex Ginzburg-Landau equation given by

∂tA = µA+ a|A|2A− g|A|4A+ b∇2A, (2.49)

whereµ is the real bifurcation parameter anda, g, andb are complex coefficients [47]. The

real parts ofa andg are positive. This equation displays interesting dynamics, in particular

moving fronts and stable localized pulse solutions.

2.4 The FitzHugh-Nagumo model

This section is devoted to the FitzHugh-Nagumo model which is a paradigmatic model for

active media, in particular for the important class of activator-inhibitor systems. Such media

may exhibit bistable, excitable, or oscillatory behavior.

In the year 1952, Hodgkin and Huxley published an article on the membrane potential and

current of giant squid axons [82]. Their work quantitatively explained the excitability of neu-

ral cells and subsequently the propagation of action potentials. The Hodgkin-Huxley model

contained 4 variables and more than 10 constants which made a qualitative understanding of

the phenomena quite difficult. Later, FitzHugh [83] and Nagumoet al.[84] derived a simpler

model which preserved the main findings qualitatively. The resulting equations nowadays are
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called the FitzHugh-Nagumo model, which reads

τu∂tu = u− u3 − v + l2u∇2u, (2.50a)

τv∂tv = αu + β − v + l2v∇2v. (2.50b)

This model describes the evolution of two diffusive variablesu andv in a spatially extended

medium. The parameterslu andlv represent the diffusion lengths, andτu andτv the charac-

teristic time constants of the system variables. It will be assumed thatu has fast dynamics

compared tov, i.e.τu � τv. The parametersα andβ determine the local kinetics of the vari-

ablev. In particular, ifα > 0, the variableu is called activator, since it leads to an increase

of u (at least for smallu) andv. On the other hand,v is called inhibitor because it decreases

u andv. Therefore, the FitzHugh-Nagumo model is an example of anactivator-inhibitor

system. It has already been pointed out in Sec. 2.1 that the presence of nonlinear terms (in

this case the cubic term foru in Eq. (2.50a)) is necessary to observe pattern formation.

With the help of such a two-component activator-inhibitor system, it is possible to dis-

cuss many features of general pattern-forming active media. For each ordinary differential

equationu̇i = fi(u1, u2, ..., un) there exists a curve in phase space callednullcline (or null-

isocline) which obeyṡui = 0. Consequently, the intersections of the nullclines determine

the stationary states of the system. By means of the nullclines and the ratios of time and

length scales, active media may be classified asbistable, excitable, or oscillatory (see, e.g.

Ref. [45]). In Fig. 2.4, the nullclines of typical bistable, excitable, and oscillatory media, as

present in the FitzHugh-Nagumo model (2.50), are shown.

u

v
(a) (b)

u

v
(c)

u

v

u=0 v=0

Figure 2.4:Active media. Schematic drawings of a phase space with (a) bistable, (b) ex-
citable, and (c) oscillatory dynamics. Solid lines denote the nullclines, black (white) dots
denote stable (unstable) fixed points. The dotted line illustrates in (b) a typical excitable
trajectory and in (c) the limit cycle.

The nullclines of a typical bistable system [Fig. 2.4(a)] intersect three times, giving rise
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to two stable and one unstable fixed points. The course of the separatrix between the basins

of attraction of the two attractors depends on the characteristic timesτu andτv. Therefore,

the initial condition and the two time scales determine which stable state is chosen by the

system.

In the spatially extended system, the typical pattern of a bistable medium is afront, i.e.

an interface that separates two domains where the system resides in the two stable stationary

states. The front velocity depends on the parameters and on the front curvature and generally

does not vanish. Therefore, the domain where the metastable state is present shrinks and

finally disappears. The diffusion lengths determine the width of the front. As seen in Sec. 2.1,

one-component systems may already display bistability.

The local dynamics of an excitable medium [Fig. 2.4(b)] is characterized by a stable fixed

point and the presence of a relatively fast activator. This indicates that an excitable element

has to be described by at least two components. Since the characteristic time of the activa-

tor is much smaller than that of the inhibitor, the system quickly relaxes to the nullcline of

u, starting from any initial condition. However, this nullcline is a non-monotonous curve in

phase space and consists of two attracting branches for small and large values ofu respec-

tively, and one repelling branch for intermediate values ofu. Since in the example shown

in Fig. 2.4(b), the fixed point is located at the left part of the nullcline, small perturbations

of that state decay immediately, while perturbations which overcome a certain threshold in-

crease and decay only after the system has performed a large loop in phase space. In this

case, the system first goes to the right branch of the nullcline ofu, then moves along this

nullcline, drops for largev from large to small values ofu, and then relaxes to the fixed point

on the left branch of the nullcline ofu.

In the spatially extended system such a medium supportspulsesif the diffusive coupling

of the excitable elements is strong enough, in particular when the diffusion length of the

activator is smaller than that of the inhibitor. Note that excitable behavior of a single ele-

ment is not sufficient for the observation of pulses in the spatially extended system. In the

leading part of the pulse, the activator increases strongly while the profile of the inhibitor

concentration increases only very smoothly. In the center part of the pulse, the activator con-

centration reaches its maximum and starts to decrease slightly. In the tail of the pulse, the

inhibitor reaches its maximum which is associated with a strong decrease in the activator

concentration. While the inhibitor concentration returns slowly to its stationary value, the

activator may relax quickly and with a non-monotonous profile. The shape and velocity of a

pulse depend only on the parameters and not on the initial conditions. Roughly speaking, the
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diffusion length of the activator determines the width of the leading part of the pulse, while

the diffusion length of the inhibitor sets the overall width of the pulse. In two or three spatial

dimensions, more complex patterns such as spirals or scroll waves are possible in excitable

media.

Oscillatory media are characterized by a closed trajectory in phase space and are there-

fore necessarily described by at least two variables. In Fig. 2.4(c), an unstable fixed point

surrounded by a limit cycle is present. The fixed point is unstable because it is assumed that

u has much faster dynamics thanv.1 As a result, the oscillations are anharmonic and have

large amplitudes. In a spatially extended medium governed by suchrelaxationaloscillations,

wave trains with an anharmonic profile are observed. If a limit cycle appears via a supercrit-

ical Hopf bifurcation, the oscillations are harmonic and have small amplitudes. In this case,

the dynamics of the system is effectively described by the complex Ginzburg-Landau equa-

tion, which has been described in Sec. 2.3. The typical possible regular patterns in oscillatory

systems are spiral waves and target patterns. The latter are discussed in Sec. 2.6.

Many variants of the FitzHugh-Nagumo model and closely related models exist like, for

example, the Bonhoeffer-van der Pol model which goes back to fundamental work of van

der Pol [85,86] and Bonhoeffer [87]. The FitzHugh-Nagumo model has been investigated in

detail in the recent decades and exhibits a rich variety of temporal [88] and spatio-temporal

dynamics (for a review on excitable behavior, see Ref. [46]). Although not a normal form, the

FitzHugh-Nagumo equations represent a fundamental model for pattern-forming systems.

2.5 Three- and four-component models

The complex Ginzburg-Landau equation and the FitzHugh-Nagumo model represent two-

component systems. Such models are capable of displaying a wealth of phenomena, as ex-

plained in Sec. 2.3 and Sec. 2.4. In this section, a brief introduction into three- and four-

component systems is given by presenting several typical examples.

Reaction-diffusion systems may consist of many reactants. For example, according to the

Field-Körös-Noyes mechanism [89], the BZ reaction involves 14 species and 10 reactions

(for a discussion see, e.g. Ref. [67]). In a mathematical analysis, the scheme can be reduced

1If the timescales ofu andv are comparable, but the diffusion lengths very different, the appearance of
Turing patterns is possible.
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until the so-called three-component Oregonator model

τu∂tu = qv − uv + u(1− u) +Du∇2u, (2.51a)

τv∂tv = −qv − uv + fw +Dv∇2v, (2.51b)

∂tw = u− w +Dw∇2w (2.51c)

is obtained, whereu, v, andw stand for the concentrations of HBrO2, Br−, and the metal

catalyst respectively [90]. The Oregonator model is the basic model for the BZ reaction

which, however, is often modified to account for the multitude of variants of the BZ reaction.

Since the parameterτv typically is two orders of magnitude smaller thanτu, the variablev is

often adiabatically eliminated, yielding a two-component model.

Another example of a three-component model is the Krischer-Eiswirth-Ertl

model [91–94] for the CO oxidation reaction on platinum single crystal surfaces. In the dis-

tributed system it is given by the equations

∂tu = k1 pCO sCO (1− u3)− k2 u− k3 uv +D∇2u, (2.52a)

∂tv = k4 pO2 [s1×1w + s1×2(1− w)](1− u− v)2 − k3 uv, (2.52b)

∂tw = k5

([
1 + exp((u0 − u)δu−1)

]−1 − w
)
. (2.52c)

The componentsu andv denote the surface coverage of carbon monoxide and oxygen re-

spectively. The variablew is related to the adsorbate driven phase transition in the top surface

layer and represents the local fraction of the surface area found in the1× 1 surface structure

(while the rest is in the1× 2 structure). Note that only carbon monoxide is able to diffuse on

the platinum surface. For details, the reader is referred to Ref. [94]. The model can be further

reduced by eliminating the oxygen variable. In this way, the Krischer-Eiswirth-Ertl model

can be mapped [95] to the Barkley model [96] which itself can be viewed as a variant of

the FitzHugh-Nagumo model. On the other hand, to explain experimental observations such

as standing waves or the reflective collision of pulses, an additional variable representing

subsurface oxygen must be taken into account [97], yielding a four-variable model.

It has already been mentioned that pattern formation in gas-discharge systems may be

described by reaction-diffusion models. A striking experimental finding in such systems are

spots that persistently move in a two-dimensional spatial domain. On collision, such objects

may reflect, which is unknown behavior for two-component models. In the following, the

extension of a two-component model to a three-component model for this system is sketched
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according to Ref. [33]. The two-component model

∂tu = λu− u3 − v + κ1 +Du∇2u, (2.53a)

τ∂tv = u− v +Dv∇2v (2.53b)

of an activatoru and inhibitorv is able to produce moving spots in two-dimensional spatial

domains which, however, are unstable. To stabilize the motion, a global feedback term can

be added to Eq. (2.53a) in the following way

κ1 = κnew
1 − κ2

1

SΩ

∫
Ω

u dx, (2.54)

whereκnew
1 andκ2 are new parameters, andΩ the two-dimensional spatial domain with size

SΩ. The bifurcation to moving spots in nonlocally coupled media in a general context has

been investigated by Krischer and Mikhailov [98]. As an alternative to global coupling, a

three-component system

∂tu = λu− u3 − v − κ3w + κ1 +Du∇2u, (2.55a)

τ∂tv = u− v +Dv∇2v, (2.55b)

θ∂tw = u− w +Dw∇2w, (2.55c)

can be used which gives rise to stable moving spots just by means of diffusion. The new

variablew plays the role of an additional inhibitor and should have fast kinetics and strong

diffusion. Forθ → 0 andDw →∞, the case of global coupling is recovered.

In Sections 2.2 and 2.3, it has been shown that a two-component model is not only nec-

essary but also sufficient to describe the onset of oscillations at a Hopf bifurcation. Another

important type of bifurcation, however, can only been found in a system with at least three

species, namely the wave bifurcation (see, e.g. Refs. [1]).There, the uniform state becomes

unstable and a pattern of traveling waves develops. Note the difference to the distributed

Hopf bifurcation where uniform oscillations are the basic solution at threshold and traveling

waves propagate on the background of uniform oscillations. The amplitude equations that

govern a system undergoing a wave bifurcation in the one-dimensional spatial domain are

given by

∂tA+ v∂xA = µA− a|A|2A− b|B|2A+ d∂xxA, (2.56a)

∂tB − v∂xB = µA− a|B|2B − b|A|2B + d∂xxB, (2.56b)

whereA andB are complex amplitudes of counter-propagating waves,µ is the distance to

the bifurcation point,v is the group velocity of the waves (and therefore a real number), and
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a, b, andd are complex coefficients. The termsv∂xA andv∂xB are characteristic for systems

where traveling patterns are found at the instability. The wave bifurcation has been observed

in fluid systems but has also been investigated in the context of target patterns in reaction-

diffusion systems by Zhabotinskyet al. [99] and Rovinskyet al. [63]. While Zhabotinskyet

al. investigated a three-variable reaction-diffusion system, Rovinskyet al.worked with am-

plitude equations. Recently, Nicola studied the appearance of wave (and Turing) bifurcations

in systems with nonlocal coupling, focusing on the dynamics of interfaces between Turing

and wave domains [100].

It can be summarized that many relevant realistic models for reaction-diffusion systems

have (at least) three components, while two-component models are usually reduced models

which qualitatively explain many results (although not all) and which are typically easier to

discuss mathematically. For patterns like stable moving spots or for bifurcations such as the

wave instability, three-component models are essential. In the next section, it is shown that

the description of self-organized target patterns also leads to three-component models.

2.6 Target patterns and pacemakers

Target patterns are one of the classical wave patterns observed in reaction-diffusion systems.

The wave sources of these concentric waves are called pacemakers, which may be either

created by heterogeneities of the medium or may arise as a direct consequence of the non-

linearity of the system, i.e. are self-organized. Pacemakers may give rise to target patterns

in oscillatory or excitable media. An overview of different theoretical approaches that have

been put forward in the study of pacemakers is provided.

Target patterns

The first wave pattern described in the Belousov-Zhabotinsky (BZ) reaction consisted of

concentric waves that were periodically emitted from a small central region [22]. First, these

patterns were calledleading centers, but nowadaystarget (wave) patternsseems to be the

established term. The central region of the target patterns is called apacemakerbecause it en-

trains the medium through the emission of waves. Note that some authors refer to the whole

pattern as pacemaker or reserve this term for the heterogeneous pacemakers described be-

low. Target patterns have also been observed in many other chemical, physical, and biological

systems such as CO oxidation on platinum [29], liquid crystals [48,101], semiconductor-gas
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discharge systems [51], Rayleigh-Bénard convection [49, 102],Dictyostelium discoideum

colonies [18, 50, 103–105], electrochemical systems [52, 106], combustion systems [107],

and even ecological systems [19].

Target patterns for two typical chemical reaction-diffusion systems are presented here.

Figure 2.5 displays an image of a part of a BZ medium containing four target patterns. Note

that the pacemakers emit waves with different wavelengths. Figure 2.6 shows a time series

Figure 2.5:Target patterns in the BZ reaction. Bright (dark) zones are blue (red) in reality
and correspond to high (low) concentrations of Fe3+ in the ferroin-catalyzed version of the
BZ reaction (from Ref. [108]).

of images of the CO oxidation on a platinum single crystal surface during a single cycle

of the background oscillations. Approximately ten target patterns can be identified. The fre-

quencies of the pacemakers are higher than the background frequency, thus leading to slowly

expanding wave patterns. Also in this case, the pacemakers exhibit a range of operating fre-

quencies. Whenever pacemakers with different frequencies are present in a given medium,

Figure 2.6:Target patterns in the oscillatory CO oxidation on Pt(110).The target pat-
terns have an elliptic shape due to diffusion anisotropy. Dark (bright) areas are oxygen (CO)
covered. Time runs from top left to bottom right with an interval of 1s. For details, see
Ref. [109].
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they compete with each other, i.e. the pacemaker with the highest frequency will finally sup-

press all other pacemakers (at least in a medium with positive dispersion, as will be discussed

in Sec. 3.1.2).

Although target patterns as observed in chemical reaction-diffusion systems motivate to

large extent the studies presented in this thesis, it is instructive to keep in mind also other

target pattern-forming media. In this context it is helpful to characterize the target patterns

according to their dimensionality, their extension, the direction of waves, their stability, and

the type of spatial coupling.

Target wave pattern are usually considered as two-dimensional patterns. However, suffi-

ciently far from the wave source, target patterns are well approximated by one-dimensional

plane waves (cf. Sec. 2.3). One-dimensional target patterns are also observed in experiments,

for example in electrochemical experiments, where pattern formation takes place on a ring

electrode [52,106].

The classical target pattern consists of waves that emanate from its center. However, also

inward traveling target waves are observed, e.g. in the modified BZ medium [27], the CO

oxidation system, where the waves are induced by a laser [110], or in optical systems [111].

There, the interaction of a laser beam with sodium vapor via a so-called single mirror feed-

back scheme gives rise to inward traveling target and spiral waves (for details of the system,

see the recent review Ref. [8]).

While typically target waves entrain the medium and therefore constituteextendedpat-

terns,localizedtarget patterns are also possible. Then, the waves disappear in a certain dis-

tance from the core, giving rise to a pattern with an extension of at most a few wavelengths.

Such localized target patterns are, for example, observed in nematic liquid crystals [48] or

in the CO oxidation reaction under non-isothermal conditions, where they have been called

raindrop patterns [30].

In many reaction-diffusion systems like the BZ reaction or the CO oxidation reaction,

target patterns are asymptotically stable. However, target waves may be transient or undergo

instabilities. For example, target patterns may develop and decay periodically as in nematic

liquid crystals [48], or may be replaced by spiral waves like inDictyostelium Discoideum

colonies [105]. Target patterns in vibrated layers of granular matter are unstable and arise as

a transient to stripe solutions [112]. Numerically, target patterns and their instabilities have

been studied in a disc-shaped medium with global coupling [113] and long-range interac-

tion [114]. Transient and localized target patterns have been found for a model for poly-
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mers [115].

It should be mentioned that target patterns have also been discussed in the mathematical

literature. In 1978, Greenberg demonstrated the existence of target pattern solutions for the

λ−ω model, which can be viewed as a generalization of a CGLE [116]. In 1981 it was rigor-

ously shown by Kopell [117] and by Hagan [118] that oscillatory reaction-diffusion systems

give rise to stable target patterns in the presence of impurities. While the analysis of Kopell

was also based on theλ− ω model, Hagan worked with a general reaction-diffusion model.

Recently, Golubitskyet al.pointed out that boundary conditions may play an important role

for the existence and stability of the target (and spiral) patterns (cf. Sec. 2.3) [80].

Within the field of chemical reaction-diffusion systems, and in particular in the context

of the BZ reaction, a controversy on the nature of the pacemakers arose. While it was clearly

demonstrated that the presence of impurities gives rise to target patterns in the excitable and

oscillatory regime of the BZ reaction, the microscopic origin of spontaneous target patterns

observed in well-filtered, oscillatory BZ solutions remains unclear. If it is assumed that the

medium is uniform, pacemakers may form through the interplay of nonlinear kinetics and

diffusion. Such self-organized pacemakers are indeed possible and are discussed further be-

low. But actually, beside heterogeneities and deterministic self-organization, there are also

other ways to explain target pattern formation media which are discussed in the following.

A mechanism based on thermal fluctuations has been proposed by Walgraefet al. in the

context of the BZ reaction [119]: Thermal fluctuations should lead to spatial differences in

the distribution of chemical concentrations and subsequently to the nucleation of pacemak-

ers. However, according to Zhanget al., fluctuations cannot explain the spontaneous emis-

sion of waves in oscillatory chemical systems [120]. Recently, Hastings argued that fluctu-

ations should be able to trigger target patterns close enough to a Hopf bifurcation [121], as

the system moves slowly from the excitable into the oscillatory regime.

For target patterns in the excitable regime of the BZ reaction, a fluctuation-nucleation

mechanism is completely discarded [122]. However, if noise is applied to an excitable light-

sensitive BZ medium, target patterns may be created and sustained, as shown experimentally

and numerically by Alonsoet al. [64]. It has been shown by Parmanandaet al. [65] that

subthreshold periodic forcing of a parameter in the excitable regime of the Oregonator model

may also give rise to expanding target patterns.

In the completely different context of neural systems and with a different coupling

scheme, qualitatively similar results were obtained by Lewis and Rinzel [123, 124]: If ex-
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citable cells of a neural network were coupled in an appropriate way, the network started

to show global oscillations which were triggered by target patterns that appeared at random

locations.

Since stable self-organized spirals may exist in the BZ reaction, target patterns may be

created by annihilating a pair of counterrotating spirals. The first target pattern created in

this way was reported by Agladzeet al. [125] who focused on the spiral dynamics prior to

annihilation. Later, M̈uller et al.confirmed these findings and discussed the dynamics of the

formed target pattern [126]. The main result is that the target pattern is unstable and decays

to uniform oscillations.

Several target pattern solutions have been reported for the one-dimensional quintic com-

plex Ginzburg-Landau equation. Here, a few are presented. Analytically, the formation of

extended target patterns has been explained by Dewel and Borckmans [127, 128]. There, a

bound state of two motionless localized structures called antipulses emits waves and gives

rise to plane waves in the far field. This solution does not have axial symmetry, as usu-

ally assumed as pacemakers are modeled. Later, Deissler and Brand [129] found localized

target patterns in the quintic CGLE, triggering much research for such solutions. Recently,

Akhmedievet al. discussed stable breathing and moving oscillating localized structures in

that equation [130].

Target patterns in semiconductor-gas discharge systems, fluid systems and granular me-

dia have, in general, other dynamic properties and arise in a different way than target patterns

in chemical reaction-diffusion systems. Astrovet al. showed the existence of zigzag desta-

bilized target patterns for a semiconductor-gas discharge system [51]. There, target patterns

and spirals are observed after the system has undergone a sequence of hexagons, stripes and

stripes with defects. Target patterns continuously evolve into spirals and back via the nu-

cleation of defects. Target patterns in vibrated layers of granular matter are created at the

boundary of the system, as reported by Umbanhowaret al. [112]. The target waves form

at the metal container, proceed into the center, and finally form a stationary pattern. The

experiments on smectic liquid crystals by Cladiset al. [101] also show target patterns that

are initiated at the boundary. In experiments performed for the Rayleigh-Bénard convection

by Assenheimer and Steinberg [49, 102], target patterns are stable or convert to spirals (and

back) via the creation of defects. Boundary-induced stable target patterns in the CGLE have

been described by Eguiluzet al. [131].



2.6 Target patterns and pacemakers 37

Heterogeneous pacemakers

Target waves have received much less attention than, for example, rotating spiral waves. This

is partially explained by the fact that for years it was believed that pacemakers in chemical

reaction-diffusion systems necessarily consist ofheterogeneitieswhich locally modify the

properties of the medium [22]. Indeed, the majority of target patterns observed in the BZ

reaction are associated with the presence of a local impurity like a dust particle or gas bubble

which plays the role of a catalytic particle [54]. By carefully filtering the BZ solution, the

number of evolving target patterns can be significantly reduced. The developing patterns have

a range of operation frequencies, indicating that the frequency is not uniquely determined by

the parameters of the system [132]. Furthermore, in the experiment described in Ref. [133],

the activity of a pacemaker generating a target pattern in the BZ reaction was suppressed by

application of another, high-frequency wave source. When this other source, however, was

removed, the initial pacemaker reappeared at the same location with the same frequency.

Target patterns often appear on the background of oscillations and therefore general mod-

els for oscillatory systems like the complex Ginzburg-Landau equation or phase equations

have been investigated in this context. A typical approach to model heterogeneous pacemak-

ers in oscillatory systems is to modify the properties of the medium in such a way that the

oscillation frequency is increased locally [22,54]. The properties of heterogeneous pacemak-

ers in oscillatory systems and their target wave patterns have been analyzed in a number of

theoretical studies (e.g. Refs. [53–59]). Chapter 3 presents new results for heterogeneous

pacemakers.

Remarkably, it is not necessary for the medium to be oscillatory since an excitable

medium also supports propagating waves. Heterogeneities may drive the system locally from

the excitable into the oscillatory regime and hence may be able to trigger the emission of

waves in an excitable medium.

Self-organized pacemakers

Stable target patterns and pacemakers may also be found in systems without external hetero-

geneities as a result of nonlinear kinetics and diffusion. Then, the frequency of the pacemaker

is entirely determined by the medium. There are different kinds of models and systems which

belong to this class.

For example, target pattern formation in liquid crystals [48] is due to the internal dynam-
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ics of the system. Also for the BZ reaction, there are experimental observations by Vidalet

al. where pacemakers could not be related to any impurities [60] (see also Ref. [134] on this

topic). Such pacemakers have also been called intrinsic or homogeneous pacemakers.

It is striking, however, that stable self-organized pacemakers have not been found in

basic models of oscillatory media such as the complex Ginzburg-Landau equation or phase

dynamics equations. There, target patterns may be created by a suitable initial condition.

However, such patterns are not stable and uniform oscillations are recovered by the system.

In another approach, Ohtaet al. [135–137] investigated a two-component activator-inhibitor

model with coexistence of excitable kinetics and stable uniform oscillations, and reported

several kinds of self-organized wave sources. These wave sources also turn out to be unstable.

Motivated by the examples mentioned above, models for self-organized pacemakers

and target patterns have been developed for several specific systems. Target pattern for-

mation in electro-hydrodynamic convection has been explained by a model introduced by

Sakaguchi [62] and refined later [138]. This model is based on a Hopf bifurcation of a cellu-

lar spatial structure.

In the 1970s and 1980s Vasilev [139, 140], Kawczynski [141–143], Ortoleva [144, 145],

Walgraef [119] and Mikhailov [146] proposed models for self-organized pacemakers. These

pacemakers, however, were not always stable. An approximate analytical solution for stable

self-organized pacemakers in a system where uniform oscillations were unstable, has been

constructed [61]. Self-organized target patterns have been found near a Hopf bifurcation with

a finite wavenumber where uniform oscillations of the medium are absolutely unstable [63].

Self-organized target patterns have also been reported for an Oregonator model displaying

such a bifurcation [99].

Stable wave patterns resembling localized target patterns may also be found as a re-

sult of self-organization. Such a behavior, for example, is exhibited by the quintic complex

Ginzburg-Landau equation [129], where stable breathing and moving oscillating localized

structures have also been observed recently [130].

In the last decades, there has been a lot of effort to find a two-component reaction-

diffusion model that gives rise to stable self-organized target patterns. However, all mod-

els known up to now, which are able to display stable self-organized pacemakers and ex-

tended target patterns, consist of at least three independent variables or alternatively provide

other spatial coupling mechanisms than diffusion, such as global coupling. Although there

is no proof that stable self-organized pacemakers are impossible in two-component reaction-
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diffusion systems, there seem to be enough reasons to believe that such pacemakers are at

least not generic for two-component models.

Chapter 4 demonstrates with analytical and numerical means that stable self-organized

pacemakers are possible in birhythmic systems which are oscillatory media where two stable

limit cycles coexist. Chapter 5 shows for the first time that stable self-organized pacemakers

may also be found in excitable media.
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Chapter 3

Heterogeneous pacemakers in oscillatory media

This chapter investigates heterogeneous pacemakers in oscillatory media. Such pacemakers

have been studied since the discovery of target patterns in the Belousov-Zhabotinsky reac-

tion [22]: Zaikin and Zhabotinsky already assumed the presence of several frequencies in

the medium. On the one hand there is the background frequency of the oscillatory medium,

which is determined by the system parameters, and on the other hand there are the frequen-

cies which are introduced by the impurities present in the medium and which depend on the

microscopic nature of each heterogeneity.

The complex Ginzburg-Landau equation is chosen as a theoretical model to study the

effects that are possible in oscillatory systems where inhomogeneities are present. Though

this equation is strictly applicable only close to a soft onset of oscillations where oscilla-

tions have small amplitudes and are approximately harmonic, its predictions are known to be

qualitatively valid in a broader neighborhood of the supercritical Hopf bifurcation in many

cases. Due to its general applicability, it is considered as a standard model for an oscillatory

system.

To create a pacemaker in the complex Ginzburg-Landau equation, the medium should be

nonuniform, i.e. it should possess a small localized region with modified parameters. Then,

the local oscillation frequency inside this region is different from outside and this region may

form a pacemaker which generates a spatially extended wave pattern. Such pacemakers and

their wave patterns are focused on in this chapter. Additionally, localized patterns represent-

ing wave sink patterns will be considered. Some of the results presented in this chapter have

been published in Ref. [147].

This chapter is organized as follows. First, the model is presented and the phase dy-

namics approximation for heterogeneous pacemakers is discussed (Sec. 3.1.1). Then, basic
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properties of weak pacemakers and sinks and their wave patterns in the one-dimensional

complex Ginzburg-Landau Equation are explored, including results on large heterogeneities

(Sec. 3.1.2). In Sec. 3.2, the properties of strong pacemakers and sinks are investigated,

which give rise to phase slips through Eckhaus unstable wave trains or localized desynchro-

nization phenomena. Section 3.2.2 reports results of two-dimensional simulations carried out

for heterogeneous pacemakers. The chapter is concluded with a discussion of the results in

Sec. 3.3.

3.1 The model

This section describes the formation of target patterns in oscillatory systems with a hetero-

geneity in a systematic way. First, the pacemakers are distinguished from wave sinks. Then,

the formation of target patterns in media with different dispersion is studied analytically and

numerically. The derivation proceeds along the arguments presented by Kuramoto [53].

3.1.1 Pacemakers and wave sinks

This section discusses the phase dynamics approximation for oscillatory systems where a

heterogeneity is present. The asymptotic phase distribution is subsequently derived and the

condition for pacemakers is given. If the heterogeneity does not fulfill the pacemaker condi-

tion, it represents a wave sink.

Phase dynamics approximation

As introduced in Sec. 2.3, the complex Ginzburg-Landau equation (CGLE) is given by

∂tA = (1− iω)A− (1 + iα)|A|2A+ (1 + iβ)∇2A. (3.1)

Suppose now that the oscillation frequencyω is changed by∆ω within a small region of

radiusR, so that

ω(x) =

ω for |x| > R,

ω + ∆ω for |x| ≤ R.
(3.2)

Then, the region with the modified local oscillation frequency, the so-calledcore, becomes

either a source or a sink of traveling waves depending on the parametersα, β, and∆ω. To

keep the notation simple, the origin is located at the center of the medium, which in this
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section may have any spatial dimension. In the following discussion, an unbounded medium

is considered, which is a good approximation for a sufficiently large realistic system.

Introducing the phaseφ and the real amplitudeρ asA = ρ exp(−iφ) and substituting this

into Eq. (3.1), the two equations

∂tρ = (1− ρ2)ρ+∇2ρ− ρ(∇φ)2 + βρ∇2φ+ 2β∇φ∇ρ, (3.3a)

∂tφ = ω(x) + αρ2 + (2/ρ)∇ρ∇φ+∇2φ− (β/ρ)∇2ρ+ β(∇φ)2 (3.3b)

are obtained. Like in the standard CGLE without heterogeneity, it is possible to reduce

Eqs. (3.3) for smooth phase perturbations to the phase dynamics equation

∂tφ = ω(x) + α + (β − α)(∇φ)2 + (1 + αβ)∇2φ. (3.4)

It is assumed that the Benjamin-Feir-Newell condition,1 + αβ > 0, is satisfied and the case

of vanishing dispersionα = β is excluded.

After applying the nonlinear Cole-Hopf transformation

φ =
1 + αβ

β − α
lnQ (3.5)

to the phase equation (3.4), the new variableQ obeys the linear equation

∂tQ =
β − α
1 + αβ

(ω(x) + α)Q+ (1 + αβ)∇2Q, (3.6)

which is formally equivalent to a Schrödinger equation for a quantum particle in a potential

well. This well has a width2R and a depthκ2
max given by

κ2
max =

β − α
(1 + αβ)2

∆ω. (3.7)

Note that the potential outside the well is not zero but has a constant value

(β − α)(ω + α)/(1 + αβ). This term corresponds to the frequency of uniform oscillations

ω+α. The aim of the following analysis is to derive expressions for the frequencyΩ and the

wavenumberk of the wave pattern. In terms of the variableQ, these quantities correspond to

the largest eigenvalue of Eq. (3.6) denoted asλ0 and toκ which characterizes the associated

eigenfunction. Although Eq. (3.6) has been considered before in the context of target pattern

formation [45, 53, 61, 148], it is presented here to explain both pacemakers and wave sinks,

which are not discussed usually. For a detailed discussion of the analogy to the Schrödinger

equation, see Refs. [45,53].
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A general solution of Eq. (3.6) is

Q(x, t) =
∑
n

Cn exp (λnt)Qn(x), (3.8)

whereλn andQn(x) are the eigenvalues and eigenfunctions of the linear differential operator

L̂ = (1 + αβ)∇2 +
β − α
1 + αβ

(ω(x) + α). (3.9)

All eigenvalues of this operator are real. Generally, the operator has both a discrete and a con-

tinuous spectrum. For long times, the solution with the largest eigenvalueλ0 will dominate

the expansion. In this case, we haveQ(x, t) ' C0 exp(λ0t)Q0(x) and therefore

φ(x, t) ' 1 + αβ

β − α
(λ0t+ lnQ0(x)). (3.10)

It is convenient to discuss two special solutions for this equation. On one hand, forR = 0, the

heterogeneity is absent and uniform oscillations with the frequencyωSL = ω+α are present

[Eq. (2.26)]. On the other hand, as the heterogeneity becomes very large,R → ∞, uniform

oscillations withωSL + ∆ω take place. Obviously, for any finite radiusR, the frequencyΩ

of the waves lies between these two values. These frequencies correspond to the valuesλSL

andλmax respectively,

λSL =
β − α
1 + αβ

ωSL, (3.11a)

λmax =
β − α
1 + αβ

(ωSL + ∆ω). (3.11b)

Note thatλmax may be larger or smaller thanλSL. The largest eigenvalueλ0 of Eq. (3.6) is

either identical toλSL or larger. This is discussed in detail below.

Pacemakers

Equation (3.10) represents the asymptotic phase distribution for large times which depends

on the eigenvalueλ0 and the corresponding eigenfunction.

If the largest eigenvalueλ0 is larger than the eigenvalue of uniform oscillationsλSL, it

belongs to the discrete spectrum of the operatorL̂. The corresponding eigenfunctionQ0(x)

is localized andQ0(x) ∝ exp(−κ|x|) for |x| → ∞, whereκ =
√

(λ0 − λSL)/(1 + αβ).

Therefore, far from the center, the distribution of the phase is given by

φ(x, t) ' 1 + αβ

β − α
(λ0t− κ|x|). (3.12)
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This means that far from the central region where the local oscillation frequency is modified,

propagation of approximately plane waves takes place and an extended target wave pattern

is formed. Note thatκ is related to the wavenumberk throughk = κ(1 + αβ)/(β − α). The

frequencyΩ and the wavenumberk of the waves can be expressed in terms of the largest

eigenvalueλ0 in the following way:

Ω =
1 + αβ

β − α
λ0, (3.13a)

k =

√
1 + αβ

(β − α)2
(λ0 − λSL). (3.13b)

In the next section, the eigenvalueλ0 is determined for a one-dimensional system.

A heterogeneity acts as a wave source orpacemakerif the condition

λ0 > λSL (3.14)

is fulfilled. This can also be written as

(β − α)(Ω− ωSL) > 0. (3.15)

A necessary condition for this to hold is

(β − α)∆ω > 0, (3.16)

which constitutes the basic criterion used later. In one- and two-dimensional systems, this

condition is not only necessary but also sufficient to create a pacemaker. However, in three

spatial dimensions, small and weak heterogeneities may have a ground state which belongs

to the continuous spectrum and do not give rise to target patterns [53].

Wave sinks

If the largest eigenvalueλ0 is equal to the eigenvalueλSL corresponding to uniform oscilla-

tions, it belongs to the continuous spectrum of the operatorL̂. The respective eigenfunction

Q0(x) has the asymptoticsQ0(x) → const as |x| → ∞. Therefore, far from the central

region, the phase is approximately given by

φ(x, t) ' 1 + αβ

β − α
(λSLt+ const), (3.17)

which means that uniform oscillations with frequencyωSL are taking place there. Hence, a

heterogeneity cannot lead to an extended wave pattern and is thus called awave sink. Note

that close to the heterogeneity, localized wave patterns are possible.
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To yield a condition for wave sinks, it is sufficient to require that the maximal eigenvalue

λmax is smaller than the eigenvalue for uniform oscillations, i.e. if the condition

(β − α)∆ω < 0 (3.18)

is met.

In terms of the interpretation as a Schrödinger equation, a pacemaker corresponds to a

potential well, while a wave sink corresponds to a potential barrier. Below, properties of

pacemakers and wave sinks in media with positive and negative wave dispersion are dis-

cussed.

3.1.2 Target patterns and wave dispersion

Target patterns are typically formed by outgoing concentric waves. However, general mod-

els like the CGLE and the phase dynamics equation also admit solutions representing in-

ward traveling target waves. Recently, wave patterns with such a behavior have been found

experimentally in a modified version of the BZ reaction [27] and in the CO oxidation reac-

tion [110]. In this section, the conditions for the appearance of inward and outward traveling

target waves are formulated. Wave sinks are included into the discussion, rendering a broad

view on the possible effects of heterogeneities in oscillatory media. Large heterogeneities

are also considered.

It is convenient to discuss the different cases in terms of the wave dispersion and the

sign of the frequency shift. The dispersion relation for plane waves in the CGLE has been

discussed in Sec. 2.3: forβ − α > 0, the waves have positive dispersion, and forβ − α < 0,

they have negative dispersion.

Positive wave dispersion

If β − α > 0 and when the local oscillation frequency isincreased(∆ω > 0) inside a

core region of radiusR, this region becomes a source of waves and a classical target pattern

of outward propagating waves is formed. In one-dimensional media, the wavenumberk of

generated waves is determined by the equation

R =
1 + αβ

(β − α)
√
k2

max − k2
tan−1

(
k√

k2
max − k2

)
, (3.19)
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where

kmax =
1 + αβ

β − α
κmax =

√
∆ω

β − α
(3.20)

is the maximum wavenumber reached for very large cores. This equation is found by match-

ing the solution valid far from the core whereQ0(x) ∝ exp(−κ|x|) with the solution inside

the core whereQ0(x) ∝ cos(
√
κ2

max − κ2|x|). This derivation is described in standard text-

books for the case of a quantum particle in a potential well. The pacemaker frequency is

given by

Ω = ωSL + (β − α)k2. (3.21)

In Fig. 3.1, the wavenumber and frequency of a pacemaker are shown as a function of the

radius of the heterogeneity. Note that the wavenumber is bounded by the maximal wavenum-

0 30R
0

k
�

max

k

0 30R
ωSL

ωSL+∆ω

Ω

ba

Figure 3.1:Wavenumber (a) and frequency (b) of a pacemaker.The parameters are
α = 0.5, β = 1.0, ∆ω = 0.2. The maximum wavenumber is kmax =

√
0.4. Note that the

value of ω can be chosen arbitrarily.

berkmax and the frequency byωSL + ∆ω. As a result of the wave propagation, the medium

becomesentrainedby the wave source and the effective oscillation frequency approaches

the same value everywhere in the system.

To investigate the CGLE with a heterogeneity, Eqs. (3.1) and (3.2) are integrated with an

explicit Euler scheme where the Laplacian is discretized with a nearest-neighbor approx-

imation (see Appendix A.4). No-flux boundary conditions are applied in all simulations
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displayed in this chapter. Typically, initial conditions consist of uniform oscillations. The

heterogeneity is usually located in the center of the medium but is not directly seen in the

figures since the frequency is not displayed.

An example of a one-dimensional target wave pattern is shown in Fig. 3.2(a). The het-

erogeneity corresponds to a frequencyincrease(∆ω > 0). For the chosen set of parameters,

waves leave the core region and propagate outward. Since the waves are able to entrain the

whole system, the core region indeed represents a pacemaker.

When the local oscillation frequency isdecreased(∆ω < 0) inside the core region, a

localized wave sink pattern is produced [Fig. 3.2(b)]. Waves initiate near the core boundary

and propagate inward. As a result, the frequency of the core oscillations is increased to

the value of uniform oscillationsωSL, giving rise to a pattern where a constant phase shift

a

c

b

d

Figure 3.2:Wave patterns for small heterogeneities.The heterogeneity with radius R = 4
is placed in the center of the medium with length L = 80. Space-time diagrams of ReA are
shown in gray scale and the displayed time intervals are always ∆t = 200. A linear gray scale
color map is chosen where the minimum refers to black and the maximum to white. For ReA
black approximately corresponds to −1.1, and white to +1.1. In all space-time diagrams
in this thesis, space is displayed along the vertical axis and time along the horizontal axis.
(a) Pacemaker in a medium with positive dispersion (outward propagating target pattern);
∆ω = 0.2, ω = 0, α = 0.5, β = 1.0. (b) Wave sink in a medium with positive dispersion;
∆ω = −0.2, ω = 0, α = 0.5, β = 1.0. (c) Wave sink in a medium with negative dispersion;
∆ω = 0.2, ω = 1, α = −0.5, β = −1.0. (d) Pacemaker in a medium with negative dispersion
(inward propagating target pattern); ∆ω = −0.2, ω = 1, α = −0.5, β = −1.0. The initial
conditions consist of uniform oscillations.
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between the center of the wave sink and the rest of the medium is established. The oscillation

frequency is constant throughout the system. Hence, the heterogeneity is entrained by the

uniform oscillations.

Negative wave dispersion

If the dispersion is negative, i.e.β−α < 0, and if the local oscillation frequency isincreased

(∆ω > 0) inside a core of radiusR, such a heterogeneity leads to a localized wave pattern

with frequencyωSL. An example of this pattern is shown in Fig. 3.2(c). Waves are initiated

inside the core and propagate outward, but then die at the core boundary. Hence, the hetero-

geneity actually represents a wave sink. For the chosen set of parameters, this case is similar

to the wave sink for positive dispersion and negative frequency shift [Fig. 3.2(b)], because

the asymptotic frequencies are the same and the sign of the phase shift is just inverted.

If the local oscillation frequency isdecreased(∆ω < 0) inside the core region, an ex-

tended wave pattern is formed. Outside the core of radiusR, the medium is filled with prop-

agating waves. The wavenumberk of these waves is given by Eq. (3.19) where, however,

(β−α) is replaced by(α− β).1 The frequencyΩ of generated waves is given by Eq. (3.21).

Note thatΩ is smaller than the frequencyωSL of uniform oscillations. The waves in this pat-

tern propagate inward [Fig. 3.2(d)] since the frequency inside the heterogeneity is decreased.

Despite the fact that waves are moving inward, the impurity entrains the medium and thus

represents a pacemaker.

Note that to simplify the visualization in the above examples, relatively low values ofω

are chosen to yield a common frequencyωSL = 0.5 of uniform oscillations for all simulations

in Fig. 3.2. For a discussion of the choice ofω in the simulations, see Appendix A.1.

Distributions of the local wavenumber

Figure 3.3 displays the spatial distributions of the local wavenumber, defined ask = −∇φ
and evaluated numerically, for the four different wave patterns shown in Fig. 3.2. For pace-

makers [Figs. 3.3(a,d)], the wavenumber is constant outside the core (except at the no-flux

boundary, where it approaches zero). In the cases of wave sinks, the local wavenumber

rapidly falls down to zero [Figs. 3.3(b,c)], showing that no plane waves are present.

1In the calculations presented in this thesis, the wavenumberk is assumed to be positive. However, if the
vector character ofk was taken into account, Eq. (3.19) for the one-dimensional system would remain valid
also for the case of negative dispersion, sincek would become negative for waves propagating toward the core.
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Figure 3.3:Spatial distributions of the local wavenumber.The asymptotic distributions of
k for the patterns displayed in Fig. 3.2(a,b,c,d) are shown. The local frequency shift ∆ω is
displayed as a dotted line.

Since the value ofk is determined numerically, it has different signs on both sides of the

heterogeneity, and different signs for the different waves on a fixed side of the core: In one

case the waves travel outward, in the other case they travel inward.

Group and phase velocities

The fact that a localized heterogeneity may produce a spatially extended pattern ofincoming

waves should be explained. The concepts of phase and group velocities are useful to charac-

terize the four different patterns (see Sec. 2.3). The role of these velocities, and of sources

and sinks have been discussed by van Hecke, van Saarloos, and co-authors [149, 150] in a

different context.

The phase velocity describes the movement of the position of a certain phase value of a

wave. Typically, the experimentally observed wave speed corresponds to the phase velocity.
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If the frequency of a medium is locally increased, the phase changes faster there compared

to the rest of the system. Therefore, a heterogeneity which increases the frequency is always

associated with a phase velocity directed outward [Figs. 3.2(a,c)]. This can be formulated as

∆ω > 0 ⇔ vp is directed outward. (3.22)

This definition not only applies for plane waves [Fig. 3.2(a)], but also for localized waves

[Fig. 3.2(c)]. Accordingly, a local frequency decrease is always associated with a phase ve-

locity pointing inward [Fig. 3.2(b,d)].

In this context, the group velocity determines whether the heterogeneity is able to give

rise to a spatially extended pattern or not, i.e. whether this localized object constitutes a

pacemaker or a wave sink. If the impurity entrains the system, then the group velocity is

directed outward. The condition for a pacemaker in one- or two-dimensional spatial domains

is given by Eq. (3.16), which can be written as

(β − α)∆ω > 0 ⇔ vg is directed outward. (3.23)

Consequently, the waves inside a wave sink have a group velocity pointing toward the center.

Expressed in terms of wave dispersion, the group and phase velocities are directed into

the same direction for positive dispersion while the group velocity has the opposite sign with

respect to the phase velocity in the case of negative dispersion.

Large cores

It has been stated above that for a wave sink a constant phase shift is present between the

wave pattern in the center of the sink and the uniform oscillations outside. As the spatial

extension of the heterogeneity increases, the phase shift becomes larger, and the propagation

of wavesinside the coreshould be possible for a large wave sink. This effect can be easily

understood if the frequency of the wave sink is considered to be the reference frequency of

the system. Then, the region around the wave sink has anincreasedfrequency (in a medium

with positive dispersion) and therefore acts as a pacemaker.

In Fig. 3.4, simulations for the four different wave patterns distinguished in context

with Fig. 3.2 are displayed. While uniform oscillations take place in the cores of the pace-

makers [Figs. 3.4(a,d)], wave propagation is observed inside the cores of the wave sinks

[Figs. 3.4(b,c)]. In particular, this means that inward traveling target patterns may also be

observed in systems with positive dispersion if large heterogeneities are present [Fig. 3.4(b)].
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a
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b

d

Figure 3.4:Wave patterns inside large heterogeneities.The heterogeneity with radius
R = 20 is placed in the center of the medium of length L = 80. Space-time diagrams of
ReA are shown where the displayed time intervals are always ∆t = 100. (a) Uniform os-
cillations inside the heterogeneity in a medium with positive dispersion; ∆ω = 0.2, ω = 2,
α = −1, β = 0. (b) Inward traveling waves inside the heterogeneity in a medium with
positive dispersion; ∆ω = −0.2, ω = 2, α = −1, β = 0. (c) Outward traveling waves
inside the heterogeneity in a medium with negative dispersion; ∆ω = 0.2, ω = 0, α = 1,
β = 0. (d) Uniform oscillations inside the heterogeneity in a medium with negative disper-
sion; ∆ω = −0.2, ω = 0, α = 1, β = 0.

Accordingly, outward traveling waves may also be seen in systems with negative dispersion

[Fig. 3.4(c)] if the impurities are sufficiently large. Another consequence is that while a pace-

maker entrains its surrounding area, the dynamics inside the core is dominated by uniform

oscillations.

3.2 Phase slips

Pacemakers may not only emit waves which propagate in a stable way through the medium.

If the wavenumber of the waves becomes sufficiently large, the waves become Eckhaus un-

stable and phase slips occur in a certain distance from the core. Such patterns generally

appear if the local frequency shift induced by the heterogeneity is very large. For very large

frequency shifts phase slips take place at the border of the heterogeneity. Such desynchro-

nization phenomena are studied in this section.
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3.2.1 One-dimensional systems

The phase dynamics approximation is valid only when phase gradients (i.e. local wavenum-

bers) remain sufficiently small. Since the maximal possible wavenumberkmax is given by

kmax =
√

∆ω/(β − α), the analytical results presented in the previous section hold only for

weak pacemakers and sinks, which are found when the frequency difference∆ω in the core

region is not too large, i.e.|∆ω| � |β−α|. If it is assumed that|β−α| is of order unity, the

condition for the validity of the phase dynamics approximation is

|∆ω| � 1. (3.24)

The properties of strong pacemakers and sinks with large frequency difference∆ω are con-

sidered below.

As the frequency difference∆ω inside the core region is increased continuously in the

simulation of the CGLE, the wavenumber of generated waves increases and pattern instabil-

ities develop. These instabilities consist of the appearance of phase slips, i.e. changes of the

phase of2π, and the formation of amplitude defects. Therefore, these phenomena cannot be

described in the framework of the phase dynamics approximation given by Eq. (3.4). Phase

slips in the present context accompany desynchronization phenomena and are closely related

to the Eckhaus instability of plane waves (see Sec. 2.3).

Eckhaus instability

An example for the formation of the phase slips as a result of the Eckhaus instability is shown

in Fig. 3.5. There, an oscillatory medium with positive dispersion is considered. The initial

condition consists of a target pattern emitting stable waves which have a wavenumber close

to the Eckhaus instability given by Eq. (2.34),

kEI =

√
1 + αβ

2(1 + α2) + 1 + αβ
. (3.25)

Then, the frequency difference∆ω in the core region (which is displayed in the bottom

part of Fig. 3.5) is increased from∆ω = 0.2069 to ∆ω = 0.2070. The traveling wave is

now unstable and the perturbation grows and modulates the traveling waves until the am-

plitude drops down to zero (seen as the first black dot in Fig. 3.5(b)). At this moment, a

wave collapses and a phase slip occurs. Subsequently, a sequence of four phase slips occurs,

with their respective locations moving with an approximately constant velocity toward the
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a b

Figure 3.5:Formation of phase slips through the Eckhaus instability.Space-time dia-
grams of (a) ReA and (b) |A| are shown. A linear gray scale color map is chosen where the
minimum refers to black and the maximum to white. For |A|, black corresponds to zero, and
white to |A| ≈ 1.1. The parameters are ∆ω = 0.207, ω = 0, α = 0.55, β = 1.0, R = 14.8,
∆t = 500, and L = 160 (only half of the system is displayed, with the core located in the
lower part of the figure).

core. This motion is terminated at a certain distance from the core boundary. Eventually, a

steady wave pattern with periodically generated phase slips is established. The wavenumber

in the far region is reduced and lies below the Eckhaus threshold. Thus, the waves emitted

by a pacemaker periodically undergo phase slips and a wave pattern characterized by a short

wavelength near the core and a long wavelength in the far region is established. Simula-

tions with larger systems (not shown here) do not reveal any significant dependence of the

asymptotic pattern on the distance to the system boundary, as long as the system is not much

smaller than the one shown in Fig. 3.5.

For each pacemaker with radiusR and frequency shift∆ω, it is possible to check whether

a wave generated by a pacemaker is Eckhaus-unstable or not by comparingk as determined

by Eq. (3.19) with the Eckhaus threshold (3.25). For a more general view, however, the Eck-

haus threshold (3.25) is contrasted with the maximal wavenumberkmax given by Eq. (3.20)

kmax =

√
∆ω

β − α
,

that a core with fixed∆ω may emit. The results are displayed in Figs. 3.6(A,B).

Figure 3.6(A) shows for the case∆ω > 0 in which part of the parameter plane spanned

by α andβ outgoing target patterns (a) and in which part outgoing localized waves (c) are

present. The regions (a) and (c) are separated by the solid line of vanishing dispersionβ = α.

Recall that a frequency increase always gives rise to outgoing waves. The regions are labeled

in correspondence to the patterns displayed in Figs. 3.2(a-d) and 3.3(a-d). The Benjamin-

Feir-Newell (BFN) linesβ = −1/α are drawn dashed and indicate where uniform oscilla-

tions become unstable. Hence, target waves exist in the region above the line of vanishing
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Figure 3.6:Parameter space(α, β) for ∆ω > 0 (A,C) and ∆ω < 0 (B,D). The pa-
rameter regions where the four cases (a-d) from Fig. 3.2 are found, are denoted with (a-d)
respectively. In (A) and (B), ω � 1 is assumed. In (C) and (D), ω is scaled out (equivalent
to ω = 0). The following lines are plotted: dispersion line (β = α, solid line), BFN line
(β = −1/α, dashed line), the lines where kEI = kmax (plotted for ∆ω = 0.2, dotted lines),
and the line of vanishing phase velocity (β = α(1 − k−2), plotted for k = 0.5, dot-dashed
line). In the regions denoted by (ad) [(da)] pacemakers with ingoing (outgoing) plane waves
for media with positive (negative) dispersion are found. In the regions denoted by (cb) [(bc)],
sinks with ingoing (outgoing) localized waves for media with positive (negative) dispersion
are found. The subscript EI indicates parameter regions where the waves may become unsta-
ble with respect to the Eckhaus instability.

dispersion line and below the upper BFN line. However, the Eckhaus instability restricts the

parameter region, where target waves are stable, to the area between the dotted lines. These

lines embrace the region where the maximum wavenumber of a wave emitted by a pacemaker

of arbitrary radius is still smaller than the Eckhaus wavenumber, i.e.kEI > kmax. There, any

wave emitted by a core with a fixed frequency shift (here∆ω = 0.2) and arbitrary radius is

stable with respect to the Eckhaus instability.
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There are two parameter regions where Eckhaus unstable waves are possible. These re-

gions are marked by (a)EI. First, between the upper BFN line and the upper dotted line,

kEI < kmax is fulfilled because the Eckhaus wavenumber decreases strongly. At the BFN

line kEI = 0 and any wave is unstable. Second, below the lower dotted line and the line of

vanishing dispersion, the inequalitykmax > kEI holds becausekmax increases strongly as

β − α becomes small. Recall that the phase dynamics approximation loses its validity for

large wavenumbers.

For frequency shifts which are smaller than the frequency shift∆ω chosen here, the area

within the two lines expands sincekmax decreases. Then, the upper dotted line approaches the

upper BFN line and the lower dotted line moves toward the line of vanishing dispersion. As

the frequency shift increases, the parameter region where waves are stable for all pacemaker

radii contracts and actually splits into two areas (at∆ω = 0.203).

Note that in region (c), no extended waves are present, so that the Eckhaus instability

criterion, which was derived for plane waves, is not applicable. However, other desynchro-

nization phenomena are possible and actually observed, as discussed below.

In Fig. 3.6(B), the respective cases are displayed for∆ω < 0, i.e. ingoing target patterns

correspond to (d), ingoing localized waves to (b), and between the two dotted lines, target

waves are stable with respect to the Eckhaus instability.

The main conclusion from Figs. 3.6(A,B) is that due to the Eckhaus instability, stable tar-

get patterns cannot be expected for arbitrary combinations ofα andβ, even if the pacemaker

condition and the BFN condition are fulfilled. The parameter region where target patterns

are stable with respect to the Eckhaus instability has been determined numerically. Further-

more, the figure displays a special symmetry of the system. If the signs of∆ω, α, andβ

are inverted, the pacemaker condition and the BFN and EI criteria are invariant. The only

difference is the frequency parameterω, which is assumed to be much larger than unity in

both, Fig. 3.6(A) and Fig. 3.6(B). Moreover, the results show that Eckhaus unstable target

patterns are not only possible as the BFN line is reached but also as the line of vanishing

dispersion is approached. There, however, the use of the phase dynamics approximation may

be not justified since the phase gradients become large.

Figures 3.6(C,D) show how the appearance of target patterns and wave sinks takes place

if the parameterω is scaled out of the CGLE (cf. Appendix A.1). In this coordinate frame,

inward traveling target waves are possible even for positive dispersion and positive frequency

shift. This effect is not observed in reaction-diffusion systems close to the Hopf bifurcation
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whereω is large. Nevertheless, since much work is devoted to the rescaled CGLE in general,

this case is presented here.

Figure 3.6(C) shows for the case∆ω > 0 in which part of the parameter space target

patterns (a,ad) and in which part wave sinks (c,cb) are expected. The label (a) denotes the

usual outgoing target patterns for positive dispersion, and the label (ad) ingoing target waves

for positive dispersion. The subscript stands for the pattern that is actually resembled, i.e. in

this case ingoing target waves for negative dispersion, which are denoted as (d). The regions

(a) and (ad) are separated by the line of vanishing phase velocity, here drawn for waves with

wavenumberk = 0.5. As this line is crossed, the direction of waves is changed. Fork → 1,

this line approachesβ = 0, for k → 0, its asymptotics isα = 0. Although the line of

vanishing phase velocity has been derived for plane waves, it also describes well the change

of wave direction for a wave sink. Corresponding simulations are not shown here.

Phase slip patterns in a medium with positive dispersion

If the frequency shift∆ω in the core is further increased, the location where phase slips occur

moves closer to the core boundary and complex wave patterns become possible (Fig. 3.7).

For example, phase slips may appear in a period-2 fashion, as shown in Figs. 3.7(a,b).

The frequencies of phase slips and waves need not to be commensurable. It is also possible

that the phase slips on the two sides of the core do not occur simultaneously, giving rise to

an asymmetric breakdown of waves [Figs. 3.7(c,d)]. At very large values of the frequency

difference∆ω [Figs. 3.7(e,f)], phase slips typically occur symmetrically, but very close to

the core boundary. Note that since the local wavenumber strongly changes already near the

core boundary, the formation of phase slips in this case cannot be interpreted as a result of

an Eckhaus instability for plane waves, but rather as a local desynchronization phenomenon.

Generally, for increasing∆ω, the location where phase slips occur moves closer to the core

until the core boundary is reached. A further increase of the frequency shift leads to an

increase in frequency of the phase slips.

The simulations displayed in Fig. 3.7 are examples where phase slips occur for a pace-

maker. When the local oscillation frequency is decreased inside the core in a medium with

positive dispersion, a wave sink is present instead [see Fig. 3.2(b)]. If the local decrease∆ω

of the oscillation frequency is strong, phase slips can develop at the boundary of the hetero-

geneity. This is shown in Fig. 3.8. The effective oscillation frequency of the pattern inside the

core is different from the frequency of uniform oscillation outside the core. Some oscillations
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a b

e f
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Figure 3.7:Phase slip patterns in a medium with positive dispersion.Space-time diagrams
of different asymptotic wave patterns exhibiting phase slips. The left row displays ReA, the
right row shows |A|. The parameters are ω = 0, ∆ω = 0.6, α = 0.5 (a,b); ω = 0.3,
∆ω = 0.7, α = 0.8 (c,d); ω = 0, ∆ω = 0.8, α = 0.5 (e,f). The other parameters are
β = 1.0, R = 2.0, ∆t = 250, and L = 80.

a b

Figure 3.8:Phase slips at a wave sink in a medium with positive dispersion.Shown are
the space-time diagrams for the asymptotic behavior of ReA (a) and |A| (b). The parameters
are ∆ω = 0.3, ω = 0, α = 0.5, β = 1.0, R = 5.2, ∆t = 250, and L = 80.
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in the outside region are unable to induce waves propagating inside the core. It is clearly seen

that the modulations that finally lead to the phase slips are bound to the border of the core.

In this case, the phase slips clearly represent a local desynchronization phenomenon.

Phase slip patterns in a medium with negative dispersion

Phase slips are also possible in media with negative dispersion. In Fig. 3.9, a target pattern

with inward propagating, Eckhaus-unstable waves (∆ω < 0) is shown. Also for negative dis-

persion, phase slips occur at a finite distance from the core boundary. While the wavenumber

k is smaller in the far field than near the pacemaker, the frequencyΩ is smaller close to the

pacemaker than in the far field. This reflects the fact that in a medium with negative disper-

sion, the frequency decreases for increasing wavenumbers. Since group and phase veloci-

ties have different directions for negative dispersion (ifω is sufficiently large, as discussed

above), the difference of these two velocities can be nicely illustrated: The waves move in-

ward [Fig. 3.9(a)], while the modulations of the amplitude, which finally lead to the phase

slips, are directed outward [Fig. 3.9(b)]. The waves seen in the diagram for ReA correspond

to the phase velocity, while the amplitude modulations reflect the group velocity.

a b

Figure 3.9:Eckhaus instability in a medium with negative dispersion.Shown are the
space-time diagrams for the asymptotic behavior of ReA (a) and |A| (b). The parameters are
∆ω = −0.2072, R = 14.8, ω = 1, α = −0.55, β = −1.0, ∆t = 250, and L = 160.

Figure 3.10 displays other examples of inward propagating target patterns where the

decrease∆ω of the local frequency inside the core is stronger and the phase slips already

appear closer to the core boundary. The simulation shown in Figs. 3.10(a,b) corresponds to

the simulation of Figs. 3.7(a,b), where the signs of∆ω, α, andβ are simply inverted. Due

to this symmetric change, the space-time diagrams for the amplitude|A| display the same

behavior (but not the diagrams of ReA, of course). In the simulation shown in Figs. 3.10(c,d),

the phase slips occur with a period-1 behavior close to the core and resemble the simulation

shown in Fig. 3.7(e,f). Finally, Fig. 3.11 shows phase slips in the wave pattern of a wave sink
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a b

c d

Figure 3.10:Phase slips in a medium with negative dispersion.Shown are the space-
time diagrams for the asymptotic behavior of ReA (a,c) and |A| (b,d). The parameters are
∆ω = −0.6, α = −0.5 (a,b); ∆ω = −0.65, α = −0.55 (c,d). The other parameters are
ω = 1, R = 2.0, β = −1.0, ∆t = 250, and L = 80.

a b

Figure 3.11:Phase slips at a wave sink in a medium with negative dispersion.Shown are
the space-time diagrams for the asymptotic behavior of ReA (a) and |A| (b). The parameters
are ∆ω = 0.3, R = 4, ω = 1, α = −0.55, β = −1.0, ∆t = 250, and L = 80.

with ∆ω > 0. Outside the core region, uniform low frequency oscillations are present. The

heterogeneity with its large frequency cannot entrain the system with negative dispersion, but

the uniform oscillations are also unable to entrain the wave sink. Instead, periodic phase slips

appear at the boundary of the core, similar to the case of positive dispersion (Fig. 3.8). Again,

the phase slips and the amplitude defects result from a local desynchronization process.
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3.2.2 Two-dimensional systems

In two spatial dimensions, simulations have been carried out to confirm the existence of

stable pacemakers and wave sinks, and to investigate the behavior of unstable target patterns.

Since the basic effects are present in both one- and two-dimensional systems, only selected

examples are shown for two-dimensional media. The initial conditions always correspond to

uniform oscillations.

In Figure 3.12, a two-dimensional target pattern in a medium with negative dispersion

is shown. For such parameters, the target waves run toward the pacemaker. To simultane-

ously study the effects of a pacemaker and a wave sink in two spatial dimensions, two small

heterogeneities are present in this system, one corresponding to a pacemaker and the other

to a wave sink. The pacemaker is located in the center of the target pattern (clearly seen in

Fig. 3.12(a)), while the sink is close to the right lower corner. The wave sink locally com-

presses the waves and the amplitude decreases which can be seen in Fig. 3.12(b) as a dark

spot. Note that the wave field remains continuous, i.e. no phase slips occur here.

a b

Figure 3.12:Stable two-dimensional pacemaker with a wave sink.(a) shows an image of
ReA, (b) an image of the |A| at t = 500. The dark spot in (b) denotes the wave sink, where
|A| is decreased to its minimum value where |A| = 0.67. Note that here, black does not
denote zero. The parameters are: ω = 0, α = 1, and β = 0. The two-dimensional domain
has an extension given by Lx = Ly = 100. The pacemaker is characterized by ∆ω = −0.6
and R = 1.6, and the sink by ∆ω = 0.7 and R = 1.6.

In the next simulation, the extension of the wave sink is greatly enlarged to find out how

a strong wave sink behaves in two spatial dimensions. The results are displayed in Fig. 3.13.
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a b

Figure 3.13:Two-dimensional pacemaker generating open wave ends.(a) shows an image
of ReA, (b) an image of |A| at t = 500. The pacemaker is located close to the lower right
corner while the sink is located in the center of the system. The dark spots in (b) denote
open wave ends where the amplitude is vanishing. There, amplitude defects are present. The
parameters are ω = 0, α = −1, β = 0, Lx = Ly = 100. The pacemaker is characterized by
R = 3.2 and ∆ω = 0.6, and the wave sink by R = 7.2 and ∆ω = −0.6.

It turns out that sufficiently deep and large wave sinks are able to break the waves that

are emitted by a pacemaker (here in a system with positive dispersion). These broken waves

have open ends which, in the absence of a pacemaker, would actually curl in and form a spiral

(corresponding simulations are not shown here). The open ends constitute phase singularities

which are associated with amplitude defects that can be easily detected in Fig. 3.13(b) as dark

spots. Since the pacemaker periodically emits waves, the broken waves are pushed outward

until they are annihilated at the no-flux boundary.

As the magnitude of the frequency shift∆ω of a pacemaker increases, phase slips are

expected to develop in the expanding wave pattern. A simulation confirming this conjecture

is shown in Fig. 3.14. There, a strongly negative frequency shift in a medium with negative

dispersion leads to the emission of unstable target waves. In complete analogy with the one-

dimensional simulations, phase slips are observed at a certain distance from the wave source.

A phase slip is associated with an amplitude defect which has a circular geometry (ring-

shaped defect). This is clearly seen in the image of the amplitude|A| for such a time moment

[Fig. 3.14(b)]. In addition, phase slips also occur at the boundary of the pacemaker, which

may be due to the strong curvature of the waves in the center of the pattern. This shows that

the appearance of phase slips is possible in different distances to the core. Both types of phase
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a b

c

Figure 3.14:Two-dimensional pacemaker with unstable target waves in a medium with
negative dispersion.(a) shows an image of ReA, (b) an image of |A| at t = 131. The black
line in (b) denotes a circular defect line. A strong decrease of |A| is also present close to the
core. (c) shows a space-time diagram of ReA for a cross section through the center of the
system parallel to the x-axis for a time interval ∆t = 250. The parameters are ω = 0, α = 1,
β = 0, ∆ω = −0.7, R = 1.6, and Lx = Ly = 150.

slips can also be seen in the space-time diagram for a cross section through the center of the

system [Fig. 3.14(c)]. Since the dispersion is negative, the target waves propagate toward the

center. The phase slips periodically occurring far from the core and at the core boundary can

be clearly identified.

The defect lines in the simulation presented in Fig. 3.14 show perfect circular symmetry.

Next, a simulation is shown for the case that this symmetry is broken due to an interaction

of the waves with the no-flux boundary. Figure 3.15 shows several time moments of the

evolution of a wave pattern consisting of unstable target waves where the defect line appears

close to the boundary of the system. As a result of the collision of the target wave with

the border, the phase slip occurs first for the section of the wave which is directed toward
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Figure 3.15:Two-dimensional pacemaker generating line defects.(a,b) t = 537.5; (c,d)
t = 546.5; (e,f) t = 586.0. The left column displays ReA, the right row shows |A|. The
dark lines in the right column corresponds to line defects where phase slips occur (a,f), and
the isolated dark dots to point defects (phase singularities) (d). The parameters are ω = 0,
α = 1, β = 0, ∆ω = −0.7, R = 1.6, and Lx = Ly = 100.
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the center of the medium. Although this open defect line disappears after the phase slip, its

open ends persist and form two point defects. At these point defects, a phase singularity is

present, resembling the core of a spiral. Indeed, if the pacemaker is removed from the system,

the point defects persist and form the cores of two spiral waves. However, if the pacemaker

is kept within the system, the part of the target wave pattern which is interacting with the

boundary also undergoes a phase slip process. This behavior is repeated periodically, leading

to alternating phase slips occur in the center and at the border. The delay time between the

two events is asymptotically constant.

3.3 Discussion

This chapter provides evidence that complex wave patterns with a rich variety of spatio-

temporal behavior can be produced in oscillatory media by introducing a heterogeneity, i.e. a

core region where the local oscillation frequency is modified. Depending on the parameters

of the medium, which determine the dispersion of waves, and on the frequency shift of the

heterogeneity, target patterns with outward and inward propagating waves can be observed.

In particular, inward traveling target patterns are possible for a medium with negative disper-

sion. Whenever a heterogeneity is able to entrain the medium with propagating waves, i.e.

form a target pattern, the heterogeneity represents a pacemaker, regardless of the direction

of waves. If a heterogeneity is not capable of producing an extended target pattern but just

a localized wave pattern, the heterogeneity represents a wave sink. The corresponding local-

ized wave patterns may also consist of inward or outward traveling waves. When the radius

of the heterogeneity is large compared to the wavelength of the generated waves, new effects

may be observed, such as inward traveling waves inside the heterogeneity for a medium with

positive dispersion.

Though some theoretical studies of inward traveling wave patterns in oscillatory (and

excitable) media have been performed previously [113,151,152], this kinetic regime has re-

mained less explored compared to outward traveling waves until recently, because no exper-

imental evidence of inward traveling wave patterns in chemical reaction-diffusion systems

was known. However, in 2001, Vanag and Epstein showed inward traveling target waves in

a modified BZ reaction [27], triggering a growing interest in such patterns. Even more re-

cently, inward traveling target patterns have also been found by Wolff in the CO oxidation

reaction [110].

When the local frequency shift in the core region is increased, wave regimes with a
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periodic formation of phase slips are observed. In these regimes, the effective oscillation fre-

quency inside the core becomes different from the frequency of oscillations in the far region.

The phase slips occur because the medium is no longer able to compensate the frequency

shift by the propagation of waves. Hence, desynchronization takes place and oscillations

in the core region become decoupled from the rest of the medium. While desynchroniza-

tion is interpreted as an Eckhaus instability for intermediate values of the frequency shift

(or equivalently for relatively small radii), a local desynchronization process is observed for

large frequency shifts (or radii). Such effects have also been studied by Sakaguchi, who used

mode truncation to analyze the onset of desynchronization in the CGLE [153].

Note that a specific form of the heterogeneity [Eq. (3.2)] has been assumed in order to

derive the equationk = k(R), which determines the wavenumber as a function of the spatial

extension of the pacemaker. The analytical derivation of the properties of the pacemaker is

general for all spatial dimensions and all possible frequency distributions until Eq. (3.19),

which is valid for one spatial dimension only. The respective solutions for two and three

spatial dimensions are considered in the book of Kuramoto [53]. Recently, Maharaet al.[58]

investigated pacemakers in two spatial dimensions which have the shape of a ring.

For another modified version of the CGLE, properties of heterogeneous pacemakers have

been studied by Hendrey and co-authors [59]. They assume that the heterogeneity not only

changes the frequency, but also the amplitude of oscillations. Another major difference is

that they have studied a heterogeneity with an exponentially decaying size. In spite of these

differences, some of the numerical results found in their model are similar to the results

presented here. For example, they also encounter periodically appearing phase slips if the

frequency shift is large enough, a pattern they callbreathing target. However, they do not

provide an explanation for the appearance of phase slips in terms of the Eckhaus instability

or a local desynchronization mechanism. A hysteresis between normal and breathing target

patterns is observed. A substantial part of their work is devoted to spirals and the selection

mechanism between spiral waves and target patterns, which are topics that have not been ad-

dressed in the present work. It may well be possible that hysteresis and a complex interaction

of spirals and target patterns can also be found for the model studied in this chapter.

Though the analysis of pacemakers and wave sinks has been performed for a model sys-

tem described by the CGLE, the results would probably remain qualitatively correct for other

oscillatory media with anharmonic oscillations. In this context, experiments have recently

been performed by Wolff for the CO oxidation reaction on platinum [110]. By pointing a

laser beam on the surface, the temperature is locally increased and the desorption of CO
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is enhanced. The temperature shift of the “heterogeneity” is controlled by the laser power.

In this way, the kinetics of the system is changed locally by external means, as assumed in

this chapter. The experiments in the oscillatory regime of the CO oxidation show outgoing

and ingoing target patterns and localized outgoing waves. To date, no definite explanation of

these observations is given, however it seems probable that at least the outgoing target pat-

terns may be explained by the theory discussed in this chapter, since there, the frequency is

locally increased and the dispersion is positive. An observation made in the excitable regime

of this reaction deserves further attention. While a wave train consisting of nearly plane

waves propagated along the surface, the laser spot was focused on a single point. The laser

point was able to break the waves, whose open ends curled in. Qualitatively similar effects

have been presented in Fig. 3.13.

Also in experiments with the light-sensitive Belousov-Zhabotinsky reaction, the oscil-

lation frequency can easily be controlled by changing the local light intensity. In this way,

heterogeneities with different shapes, sizes and strengths can be created. Experiments in this

direction have been done by Petrovet al. [154] (see also Ref. [58]). By varying these pa-

rameters and the reaction conditions, it would be possible to create different pacemakers and

maybe also observe the onset of desynchronization in this system.

It is well known that pacemakers which emit waves with different frequencies compete

with each other. For a medium with positive dispersion, the pacemaker with the largest fre-

quency suppresses all other pacemakers. However, this is only true as long as the waves

are Eckhaus stable. If phase slips develop, the frequency and wavenumber of the waves de-

crease in the far field of the pacemaker, which is therefore not able to entrain the medium.

Far from the heterogeneity, it effectively appears as a pacemaker with a lower frequency.

For a medium with negative dispersion, the argument is modified. Then, the pacemaker with

the lowest frequency would suppress all others. If phase slips appear in the wave pattern of

such a pacemaker, it appears as having a higher frequency. Consequently, strong pacemakers

which locally create large frequency differences may possibly not suppress the activity of

other pacemakers which are located far enough. Of course, competition of target patterns

and spirals may also be possible and proceeds according to the same arguments.

This chapter has been devoted to heterogeneous pacemakers and has presented in detail

how a localized frequency increase yields the emission and propagation of waves. These

results represent a useful basis for the systems where self-organized pacemakers are possible.

Such systems are discussed in the following chapter.
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Chapter 4

Self-organized pacemakers in oscillatory media

In this chapter, self-organized pacemakers in oscillatory media are discussed. Since simple

oscillatory systems described by the complex Ginzburg-Landau equation are not capable of

creating stable self-organized pacemakers, alternative models should be considered and an-

alyzed. In Chapter 3, it has been shown that pacemakers and target patterns may be formed

if two oscillation frequencies are present in the system. Therefore, a special type of oscil-

latory systems is investigated in this chapter, where two stable limit cycles corresponding

to uniform oscillations with different frequencies coexist. Such systems are called birhyth-

mic. The phenomenon of birhythmicity has been discussed in chemical and biochemical

systems [15, 155–158], including important examples such as glycolytic oscillations [15],

calcium oscillations [159], and the photo-sensitive BZ reaction [160]. One possible bifur-

cation which can give rise to birhythmicity is the supercritical pitchfork-Hopf bifurcation.

Close to such a bifurcation, a general description of the spatio-temporal behavior in terms

of amplitude equations is possible. In a system governed by such equations, self-organized

pacemakers with extended wave patterns are generic and can be stable. Moreover, it is possi-

ble to construct an approximate analytical solution for self-organized pacemakers. It should

be emphasized that such pacemakers are not formed by spatial inhomogeneities like the pace-

makers considered in the previous chapter, but are entirely due to the intrinsic dynamics of

the system.

After deriving the model and discussing its basic features in Sec. 4.1, the analytical so-

lution for self-organized pacemakers in one-dimensional systems is presented in Sec. 4.2.

Also, the drift of pacemakers caused by spatial parameter gradients is described. Results of

numerical simulations are presented in Sec. 4.3. The existence and stability of self-organized

pacemakers in one and two spatial dimensions are confirmed. The interaction between differ-

ent pacemakers is subsequently analyzed and it will be demonstrated that stable pacemakers
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globally inhibit the formation of other pacemakers in the system. Furthermore, kinetic in-

stabilities leading to breathing and swinging pacemakers as well as instabilities induced by

phase slips are numerically investigated. The chapter closes with a discussion of the obtained

results (Sec. 4.4).

The derivation of the normal form and amplitude equations (Appendix A.2) is due to the

close collaboration with Mads Ipsen. Some of the results presented in this chapter have been

published in Refs. [161,162].

4.1 The model

The model discussed in this chapter consists of two coupled amplitude equations valid in the

vicinity of a supercritical pitchfork-Hopf bifurcation. These equations describe an oscillatory

medium close to the soft onset of birhythmicity. In this section, the model is derived and a

qualitative discussion of self-organized pacemakers based on the phase dynamics approxi-

mation is given.

4.1.1 The distributed pitchfork-Hopf bifurcation

The derivation of normal forms for reaction-diffusion systems close to certain bifurcations

has recently been discussed by Ipsenet al. [163, 164]. Here, a system is considered which

is close to a bifurcation where a stationary uniform state becomes unstable due to the si-

multaneous growth of a real uniform eigenmode and a pair of complex conjugate uniform

eigenmodes. The generic bifurcation for this case is the fold-Hopf bifurcation. If pitchfork

symmetry is additionally assumed, the dynamics of the system is governed by a pitchfork-

Hopf bifurcation. Furthermore, if this bifurcation is supercritical, two stable limit cycles with

different frequencies coexist in the vicinity of this bifurcation, which means that the medium

is birhythmic.

Figure 4.1 illustrates how the combination of a supercritical pitchfork and a supercritical

Hopf bifurcation yields birhythmicity. If one starts from the stable fixed point (shown in

the upper left part of the figure) and increases the control parameter corresponding to the

Hopf bifurcation, the stable fixed point is transformed into a stable limit cycle. On the other

hand, if the parameter responsible for the pitchfork bifurcation is varied, the stable fixed

point becomes unstable and two new stable fixed points are created. If both parameters are

changed simultaneously, two stable limit cycles are obtained which generally have different
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Figure 4.1:Schematic view of the pitchfork-Hopf bifurcation. The black (white) dots
represent stable (unstable) fixed points and the solid (dashed) lines indicate stable (unstable)
limit cycles. Unstable fixed points are not displayed when limit cycles are present.

frequencies and amplitudes.

The derivation of the normal form of the distributed pitchfork-Hopf bifurcation is pre-

sented in Appendix A.2. The normal form is given by

Ȧ = η1A+ g0Az + g1|A|2A+ g2Az
2, (4.1a)

ż = η2 + η3z + c0|A|2 + c2|A|2z + c3z
3, (4.1b)

whereA is the complex oscillation amplitude andz is the amplitude of the real mode. The

coefficients in the equation for the complex amplitude are complex, the coefficients in the

equation for the real amplitude are real. The real and imaginary parts of a parameter are de-

noted by the superscriptsr andi. The real partηr1 of the parameterη1 is the Hopf bifurcation

parameter andη3 is the pitchfork bifurcation parameter. The parameterη2 accounts for the

imperfection of the pitchfork bifurcation, leading to a cusp scenario [44, 165]. For positive

ηr1, η2, andη3, there is a region in parameter space where birhythmicity is realized. Figure 4.2

shows a part of this region in the parameter subspace spanned byη2 andη3.
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Figure 4.2:The cusp in parameter space.The area between the curves denotes the region
where birhythmicity is found in the parameter subspace spanned by η2 and η3.

Under certain conditions, which are discussed in Appendix A.3, the terms proportional

toAz2 and|A|2z can be dropped. Then, Eqs. (4.1) transform into

Ȧ = η1A+ g0Az + g1|A|2A, (4.2a)

ż = η2 + η3z + c0|A|2 + c3z
3, (4.2b)

which is the reduced normal form of a pitchfork-Hopf bifurcation. In order to obtain a set of

amplitude equations describing the dynamics of a distributed system close to this bifurcation,

the diffusion of all components must be taken into account. Appendix A.2 also shows the

derivation of the diffusion terms. As a result, the amplitude equations read

∂tA = η1A+ g0Az + g1|A|2A+ dA∇2A, (4.3a)

∂tz = η2 + η3z + c0|A|2 + c3z
3 + dz∇2z, (4.3b)

wheredA is the complex diffusion coefficient for the modeA anddz is the real diffusion

coefficient for the modez. Assuming that the pitchfork and Hopf bifurcations are crossed,

i.e. ηr1 > 0 andη3 > 0, and that these bifurcations appear in a supercritical way, i.e.gr1 < 0

andc3 < 0, it is convenient to transform spatial coordinates, time, and amplitude variables

in the following way

A =

√
ηr1
−gr1

Ã, z =
ηr1
gr0
z̃, x =

√
drA
ηr1
x̃, t =

1

ηr1
t̃ (4.4)

to obtain a rescaled version of the amplitude equations given by

∂tA = (1− iω)A+ (1− iε)Az − (1 + iα)|A|2A+ (1 + iβ)∇2A, (4.5a)

τ∂tz = σ − γ|A|2 + z − νz3 + l2∇2z. (4.5b)
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The tildes have been dropped here, andA andz are the rescaled amplitudes. The new pa-

rameters are given by

ω = −η
i
1

ηr1
, α =

gi1
gr1
, ε = −g

i
0

gr0
, β =

diA
drA
,

σ =
gr0η2

ηr1η3

, γ =
gr0c0

gr1η3

, ν = − (ηr1)2c3

(gr0)2η3

, τ =
ηr1
η3

, l =

√
ηr1dz
η3drA

.

(4.6)

The parametersω, α, andβ denote the linear and nonlinear frequency parameters, and the

linear wave dispersion respectively. The parameterε specifies the frequency shift of the os-

cillations due to the coupling ofA to the real modez, γ characterizes the strength of the

feedback from the oscillatory to the real mode, and the positive parameterν determines

the nonlinear saturation of the amplitude of the real mode. The coefficientsτ andl respec-

tively describe the ratios of time and length scales of the real and oscillatory modes. The

termσ − γ|A|2 in Eq. (4.5b) is responsible for the imperfection of the pitchfork bifurcation.

While the parameterσ is constant,γ|A|2 is space- and time-dependent. This contribution

represents the coupling to the oscillatory mode. As shown later, this term is important for the

formation of stable self-organized pacemakers.

The system described by Eqs. (4.5) represents the model investigated in this chapter.

It can be viewed as consisting of the usual complex Ginzburg-Landau equation (CGLE)

coupled to an equation for a variable exhibiting bistable dynamics. Like the CGLE, Eq. (4.5a)

is invariant with respect to a global phase shiftA→ A exp(iφ0).

4.1.2 Birhythmicity

The system described by Eqs. (4.5) has two coexisting solutions corresponding to stable uni-

form oscillations. For further investigations, it is convenient to write the complex oscillation

amplitudeA in terms of the oscillation phaseφ and the real oscillation amplitudeρ defined by

A = ρ exp(−iφ). Using∇2A = ∇2z = 0 for uniform solutions, Eqs. (4.5) are transformed

into

ρ̇ = (z + 1− ρ2)ρ, (4.7a)

φ̇ = ω + αρ2 + εz, (4.7b)

τ ż = σ − γρ2 + z − νz3. (4.7c)



74 Self-organized pacemakers in oscillatory media

For harmonic limit cycle oscillations, the amplitudesρ andz are constant in time and related

through

ρ =
√
z + 1, (4.8)

as follows from Eq. (4.7a). Substituting this into Eq. (4.7c), the cubic equation

νz3 − (1− γ)z = σ − γ (4.9)

is obtained. Since the amplitudes of the limit cycles are completely determined by the sta-

tionary solutions ofz, birhythmicity occurs ifz exhibits bistability. For this case, the three

roots of Eq. (4.9) must be real, as fulfilled when4(γ − 1)3 + 27ν(γ − σ)2 < 0. Sinceν is

positive, this means that the conditionγ < 1 is necessary. The rootsz1 < z2 < z3 are found

using the Cardan formula and are given by

z1 = 2ρ
1/3
C cos [(φC + 2π)/3] , (4.10a)

z2 = 2ρ
1/3
C cos [(φC + 4π)/3] , (4.10b)

z3 = 2ρ
1/3
C cos [φC/3] , (4.10c)

whereρ2/3
C = (1− γ)/(3ν) andcosφC = (σ − γ)/(2νρC). The rootsz1 andz3 represent the

stable stationary solutions ofz while z2 describes the unstable stationary solution.

The frequencies of uniform oscillations can be obtained directly from Eq. (4.7b) and

Eq. (4.8) as

ω1,2,3 = ω + α + (α + ε)z1,2,3. (4.11)

The limit cycle oscillations corresponding toω1 andω3 (ω2) are stable (unstable) since the

stability of the limit cycles is inherited from the stability of the bifurcating branches describ-

ing stationary solutions ofz. Whenα+ε > 0, the smallest rootz1 corresponds to the slowest

oscillations, i.e.ω1 < ω2 < ω3. In the opposite caseα+ ε < 0, the fastest oscillations are as-

sociated with the smallest rootz1. If ν � 1, the three roots (4.10) are small, i.e.|z| � 1, and

the respective amplitudes (4.8) and frequencies (4.11) differ only slightly from the respective

values for uniform oscillations in the CGLE.
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4.1.3 Phase dynamics approximation

Allowing for nonuniform distributions of the system variables, the system described by

Eqs. (4.5) reads in terms of phase and amplitude

∂tρ = (z + 1− ρ2)ρ+∇2ρ− ρ(∇φ)2 + βρ∇2φ+ 2β∇φ∇ρ, (4.12a)

∂tφ = ω + αρ2 + εz + (2/ρ)∇ρ∇φ+∇2φ− (β/ρ)∇2ρ+ β(∇φ)2, (4.12b)

τ∂tz = σ − γρ2 + z − νz3 + l2∇2z. (4.12c)

If phase perturbations are sufficiently smooth, i.e. if|∇φ| � 1, small amplitude perturbations

of a stable limit cycle decay much faster than phase perturbations (see Ref. [53] and Sec. 2.3).

As a result, the amplitudeρ is approximately given by

ρ2 = 1 + z − (∇φ)2 + β∇2φ, (4.13)

and can be eliminated adiabatically from Eqs. (4.12), which then become

∂tφ = ω + α + (α + ε)z + (β − α)(∇φ)2 + (1 + αβ)∇2φ, (4.14a)

τ∂tz = [σ − γ + γ(∇φ)2 − βγ∇2φ] + (1− γ)z − νz3 + l2∇2z. (4.14b)

In Eq. (4.14a), two terms proportional to∇2z and∇z are neglected. The conditions under

which this approximation is justified are discussed in Sec. 4.2.3.

The phase dynamics equations (4.14) constitute the basis of the analytical derivation in

Sec. 4.2. Equation (4.14b) can be interpreted as describing the reaction and diffusion of a

bistable componentz. The typical solutions of such an equation are fronts connecting two

stable uniform states. The presence of waves with nonvanishing phase gradients modifies the

motion of these fronts. If the variablez is fixed, Eq. (4.14a) reduces to a phase dynamics

equation of the type studied in Chapter 3. According to the Benjamin-Feir-Newell criterion,

uniform oscillations in this system are modulationally stable if the phase diffusion coefficient

1 + αβ is positive, which is assumed throughout this chapter.

4.1.4 Self-organized pacemakers

Though a large variety of spatio-temporal patterns is described by Eqs. (4.14), the focus of

the work presented here lies on solutions representing self-organized pacemakers. Figure 4.3

shows a schematic illustration of the pacemaker solution. The variablez is increased inside

the central region of the target pattern, i.e. the pacemaker, which may be also called the core.
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Figure 4.3:Schematic view of a self-organized pacemaker.The figure shows typical dis-
tributions of z and ReA for a self-organized pacemaker.

Suppose that this spatial distribution ofz(x) is fixed, i.e. constant in time, and approximated

by the following expression

z(x) =

zout for |x| > R,

zcenter for |x| ≤ R.
(4.15)

The valueszcenter andzout of the variablez inside and outside the core and the radiusR of

the stationary core are determined later. According to Eq. (4.14a), the wave pattern generated

by such a distribution ofz is described within the phase dynamics approximation by

∂tφ = ω(x) + α + (β − α)(∇φ)2 + (1 + αβ)∇2φ, (4.16)

whereω(x) = ω + (α+ ε)z(x) is defined in such a way that Eq. (4.16) becomes identical to

Eq. (3.4), describing the phase equation for a medium with a heterogeneity. This means that,

with respect to the oscillatory subsystem, a local heterogeneity is created, which approxi-
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mately obeys

ω(x) =

ωout for |x| > R,

ωout + ∆ω for |x| ≤ R,
(4.17)

whereωout = ω + (α + ε)zout and

∆ω = (α + ε)(zcenter − zout) (4.18)

corresponds to the frequency shift present inside the core region of width2R. Note that

the nonlinear frequency coefficientα enters in Eq. (4.16) and is therefore not present in

Eq. (4.17). Since the phase dynamics equation (4.16) has been studied as Eq. (3.4) in detail

in Chapter 3, it is only briefly discussed here.

A necessary condition for the existence of pacemakers in such systems is given by

(β − α)∆ω > 0 [Eq. (3.16)] or, using Eq. (4.18),

(β − α)(α + ε)(zcenter − zout) > 0. (4.19)

In the case of positive dispersion (β − α > 0), there are two possible ways of fulfilling

the condition (4.19). Ifz is increased inside the core (as assumed above), this implies that

α+ ε must be positive. Obviously, ifα+ ε < 0, the variablez should instead exhibit a local

decrease inside the core. On the other hand, if the dispersion is negative (β − α < 0) and

the parametersα andε fulfill the conditionα + ε < 0, the variablez should be increased

inside the core. Accordingly, ifα + ε > 0 in a system with negative dispersion, the variable

z should be decreased inside the core. As explained in Chapter 3, the waves which form the

target pattern are traveling toward the core in a medium with negative dispersion.

Although the analytical solution for self-organized pacemakers is presented in detail in

the next section, the formation of pacemakers is already illustrated here for the specific case

wherez increases inside the core region (as shown in Fig. 4.3) and the parameters obey the

conditionsβ − α > 0 andα + ε > 0. To create a self-organized pacemaker, a sufficiently

strong perturbation, leading to a local increase of the variablez, must be applied. Inside the

core, the medium is then found in the state with a higher natural frequency. In this region,

waves are initiated which propagate out of the core, giving rise to the formation of a target

pattern. The core grows, accompanied by a simultaneous increase of the wavenumberk. The

left and right boundaries of the core represent front solutions. If their velocityV is positive,

the core expands, otherwise it contracts. A steady pacemaker is realized whenV = 0. The

front velocityV depends on the wavenumberk of the emitted waves and decreases for higher
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wavenumbers. A feedback loop is therefore present: When a critical wavenumber is reached,

the front velocity vanishes and a stationary pacemaker is formed.

4.2 Analytical solution

The analytical solution of a self-organized pacemaker in a one-dimensional system is con-

structed in this section. The approach is similar to a derivation for a different model system

where, however, the background state corresponding to uniform oscillations was unstable

and birhythmicity was absent [61]. First, the wave pattern corresponding to a fixed core is

determined and the wavenumber of emitted waves is found. Then, the equation that deter-

mines the core front velocity as a function of the wavenumber is derived. Both results are

then combined to obtain the properties of the stationary pacemaker and the conditions that

ensure the existence and stability of the pacemaker solution. To be specific, the solution is

constructed assuming that the conditionsβ−α > 0 andα+ε > 0 are satisfied. Then, the vari-

ablez is increased inside the core, i.e.zcenter > zout. Also the other parameter regimes where

self-organized pacemakers are possible are discussed. Finally, the motion of pacemakers in

a spatial parameter gradient is considered and the resulting drift velocity is estimated.

4.2.1 Wave emission

Inside the core of a self-organized pacemaker, the variablez is increased under the above

made conditions (see Fig. 4.3) and its distribution is approximately given by Eq. (4.15). If

this distribution is fixed, the properties of the wave pattern can be calculated as in Chapter 3.

By applying the Cole-Hopf transformation

φ =
1 + αβ

β − α
lnQ (4.20)

to the phase equation (4.14a), the following equation for the new variableQ(x, t),

∂tQ =
β − α
1 + αβ

[ω + α + (α + ε)z(x)]Q+ (1 + αβ)∇2Q, (4.21)

is obtained. This equation can be solved exactly like Eq. (3.6) in Chapter 3. Therefore, the

derivation is omitted and only the final results are given. The asymptotic solution ofQ outside

the core is

Q0(x, t) ∝ exp(λ0t− κ|x|), (4.22)
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whereλ0 = (β − α)Ω/(1 + αβ) andκ = (β − α)k/(1 + αβ). The phase distribution in the

limit of large times outside of the core is

φ(x, t) = [ω + α + (α + ε)zout]t+ (β − α)k2t− k|x|+ const, (4.23)

which corresponds to a pattern of propagating plane waves with the frequencyΩ given by

Ω = ω + α + (α + ε)zout + (β − α)k2. (4.24)

The wavenumberk of the emitted waves is determined as a root of the equation√
k2

max − k2 tan

[
β − α
1 + αβ

R
√
k2

max − k2

]
= k, (4.25)

where

k2
max =

α + ε

β − α
(zcenter − zout) . (4.26)

In Fig. 4.4(a), the dependence of the wavenumber on the core radius is shown. The

wavenumberk increases monotonously and approacheskmax as the radius diverges.
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Figure 4.4:Wavenumber and front velocity of a pacemaker.(a) Dependence of k on the
core radius R. The maximum possible wavenumber kmax = 0.57 is denoted by the dashed
line. (b) Dependence of the front velocity V (in units of l/τ ) on the wavenumber k of emitted
waves. The dashed line indicates V = 0. The parameters are α = 0.5, β = 1.5, ε = 0.5,
ν = 40, γ = −0.075, and σ = −0.06. The parameter ω can be chosen arbitrarily.

4.2.2 Core dynamics

The core represents a region where the variablez is increased with respect to its valuezout

in the outside region (Fig. 4.3). The boundaries of the core are formed by two interfaces,
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or fronts, connecting the two states. For a steady pacemaker, the fronts should not move.

The dynamics of the variablez is described by Eq. (4.14b). If the terms(∇φ)2 and∇2φ are

dropped in this equation, it takes the form of a standard equation describing front propagation

in bistable media [45]. These terms, however, cannot be neglected because they lead to a

significant renormalization of the front solutions. In the vicinity of a front, these terms can

be determined as follows.

Assuming that the core is close to its stationary solution, the front velocities are very

small. Therefore, the wave pattern adjusts to the instantaneous size of the core. The Cole-

Hopf transformation (4.20) implies that the phase gradient∇φ and its derivative∇2φ are

given by

∇φ =
1 + αβ

(β − α)Q
∇Q, (4.27a)

∇2φ =
1 + αβ

(β − α)Q2
[Q∇2Q− (∇Q)2]. (4.27b)

As shown above, the distribution ofQ0 that corresponds to the asymptotic wave pattern

[Eq. (4.22)] satisfies the equation

λ0Q0 =
β − α
1 + αβ

[ω + α + (α + ε)z(x)]Q0 + (1 + αβ)∇2Q0. (4.28)

This equation can be used to express∇2Q0 as a function ofQ0 andz, namely

∇2Q0 = κ2Q0 −
(α + ε)(β − α)

(1 + αβ)2
[z(x)− zout]Q0. (4.29)

On the other hand, the eigenfunctionQ0 of the rectangular potential well (4.15) and its

derivative∇Q0 should be continuous at the well boundary, i.e. at|x| = R. Therefore,

∇Q0 = −κQ0 holds there. Thus, in the vicinity of the core boundary the phase gradient

∇φ and its derivative∇2φ are given by

∇φ|F = −k, (4.30a)

∇2φ|F = − α + ε

1 + αβ
[zF(x)− zout]. (4.30b)

Note that the second derivative of the phase varies strongly within the core boundary. The

subscript F indicates thatzF(x) refers to the actual distribution ofz close to the front and not

to the approximative expression (4.15). Substituting Eqs. (4.30) into Eq. (4.14b), a closed

equation is obtained that describes the slow motion of the fronts, namely

τ∂tzF = (σ − γ + γk2 − γazout) + (1− γ + γa)zF − νz3
F + l2∇2zF, (4.31)
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wherea = β(α + ε)(1 + αβ)−1. Equation (4.31) has the form of an equation for a bistable

medium, but the coefficients are renormalized and depend on the wavenumberk of the emit-

ted waves. The states of the medium on both sides of a front are given by the roots of the

cubic equation

νz3
F − (1− γ + γa)zF = σ − γ(1 + azout − k2). (4.32)

The smallest root of this equation corresponds to the valuezout of the variablez outside of

the pacemaker core which depends on the wavenumberk.

The motion of the front that connects both stable states (cf. Ref. [45]) is determined by

the roots of the cubic equation (4.32). Since there is no quadratic term forz in this equation,

the sum of all three roots is zero and the front velocityV is determined by the middle root

zmiddle(k) of Eq. (4.32)

V (k) = −3
l

τ

√
ν

2
zmiddle(k). (4.33)

The velocityV is a function of the wavenumberk and may vanish at a certain critical

wavenumberk0. In Fig. 4.4(b) a typical functional dependence is shown. It can be clearly

seen that the velocity is positive for small values ofk, corresponding to an expanding core,

while the velocity is negative for large values ofk, corresponding to a contracting core.

A necessary condition for this behavior is that ifzmiddle(k < k0) < 0 (like the case studied

here),dzmiddle(k)/dk > 0 should hold, which is fulfilled whenγ < 0. This suggests that such

self-organized pacemakers may have a stable stationary core. While expansion is present for

small cores, large cores contract. This is indeed found and discussed further below.

On the other hand, the value of the variablez in the center of the core can be determined

from the following arguments: Since the phase gradient∇φ vanishes atx = 0, Eq. (4.27b)

there reduces to

∇2φ |x=0 =
(1 + αβ)∇2Q

(β − α)Q
. (4.34)

Using Eq. (4.29), the phase curvature atx = 0 is obtained as

∇2φ |x=0 =
β − α
1 + αβ

k2 − α + ε

1 + αβ
(zcenter − zout), (4.35)

wherek is the wavenumber of the pattern outside the core. Substituting this expression into

Eq. (4.14b) and using that∇φ = 0 in the center of the core, it is found that the following

equation holds atx = 0,

τ∂tz = σ− γ− γ
[
β(β − α)

1 + αβ
k2 − a(zcenter − zout)

]
+ (1− γ)z− νz3 + l2∇2z. (4.36)
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Hence, the valuezcenter of the variablez in the center of the pacemaker is given by the largest

root of the cubic equation

νz3 − (1− γ)z = σ − γ − γ
[
β(β − α)

1 + αβ
k2 − a (zcenter − zout)

]
. (4.37)

4.2.3 Stationary self-organized pacemakers

The results of the analysis in the two previous sections are now combined and the prop-

erties of self-organized pacemakers with stationary cores in a one-dimensional system are

determined. The core boundaries of such pacemakers represent fronts whose velocityV is

vanishing. According to Eq. (4.33), this implies that the middle root of Eq. (4.32) must be

zero. Consequently, the wavenumberk0 of the waves emitted by a stationary pacemaker must

satisfy the equation

σ − γ + γk2
0 − γazout = 0. (4.38)

If k = k0, the other two roots of the cubic equation (4.32) can easily be found as

zout = −
√

1− γ(1− a)

ν
, (4.39a)

zin = +

√
1− γ(1− a)

ν
, (4.39b)

with a = β(α + ε)(1 + αβ)−1. Sincezout is now known, the wavenumberk0 of the emitted

waves can be determined from Eq. (4.38) as

k0 =

√
1− σ

γ
− a
√

1− γ(1− a)

ν
. (4.40)

Using Eq. (4.24), the frequencyΩ0 of generated waves is found as

Ω0 = ω + α− (α + ε)

√
1− γ(1− a)

ν
+ (β − α) k2

0. (4.41)

Finally, the core radiusR0 of a stationary pacemaker is determined by Eq. (4.25) as

R0 =
1 + αβ

(β − α)
√
k2

max − k2
0

tan−1

(
k0√

k2
max − k2

0

)
, (4.42)

wherek2
max = (α + ε)(β − α)−1(zcenter − zout) andzcenter is given by the largest root of the

cubic equation (4.37).
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Analyzing the above results, it can be seen that the conditionγ(1 − a) < 1 must be

satisfied for a stationary pacemaker. Moreover, the wavenumberk0 must not exceedkmax,

imposing additional restrictions on the model parameters, which are discussed further below.

In Fig. 4.5, the wavenumberk0 of emitted waves, the radiusR0 of the pacemaker, and

the pacemaker frequencyΩ0 are displayed as functions of the parametersγ, ε, andσ. These

dependences are only shown within the intervals of the respective parameters where the

pacemaker actually exists. It can be seen that large wavenumbers are always associated with

high frequencies and large radii.

First, the dependences ofk0, R0, andΩ0 on σ are discussed in detail [Figs. 4.5(g-i)].

Then, the functional dependences ofk0,R0, andΩ0 onγ andε are briefly considered.
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Figure 4.5:Properties of self-organized pacemakers.The wavenumber k0, the radius R0,
and the frequency ω0 of a stationary pacemaker are shown as functions of the parameters γ,
ε, and σ. The fixed parameters are ω = 0, α = 0.5, β = 1.5, and ν = 40. If not varied, the
other parameters are γ = −0.075, ε = 0.5, and σ = −0.06.
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The wavenumberk0 of the emitted waves can be written as

k0 =

√
σc − σ
γ

, (4.43)

where

σc = γ − γa
√

1− γ(1− a)

ν
. (4.44)

Note that pacemakers are found forσ < σc if γ > 0 and forσ > σc if γ < 0. In Figs. 4.5(g-i)

the latter case is shown. Nearσ = σc, i.e. for smallσ, the valuezcenter in the center of the

pacemaker is approximately given by

zcenter ≈
√

1− γ(1− a)

ν
. (4.45)

In the limit σ → σc, self-organized pacemakers have small cores [Fig. 4.5(h)], with a radius

R0 given by

R0 ≈
(1 + αβ) k0

(β − α)k2
max

. (4.46)

The frequencyΩ0 of emitted waves is

Ω0 ≈ ω1 + (β − α) k2
0, (4.47)

whereω1 is the frequency of the slow uniform oscillations,ω1 = ω + α+ (α+ ε)z1. This is

seen in Fig. 4.5(i) for small values ofσ.

On the left border of the existence interval (atσ = σc), the radiusR0 of the core goes to

zero, whereas the core size diverges on the right border (wherek0 → kmax).

As σ departs fromσc, the radiusR0 increases [Fig. 4.5(h)]. As seen from Eq. (4.42), the

width of the pacemaker diverges whenk0 → kmax. Rewriting Eq. (4.37) as

νz3 − (1− γ)z = σ − γ − γβ(β − α)

1 + αβ
(k2

0 − k2
max), (4.48)

it is evident that fork0 → kmax, Eq. (4.37) reduces to Eq. (4.9), which determines the values

of z in the uniform oscillatory states. Consequently, whenk0 → kmax, the valuezcenter of the

variablez in the center of the pacemaker is close toz3, and the frequencyΩ0 of the emitted

waves satisfies

Ω0 ≈ ω3 − (β − α)(k2
max − k2

0), (4.49)
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whereω3 = ω + α + (α + ε)z3.

Therefore, it follows thatω1 < Ω0 < ω3. When the radiusR0 becomes very large, i.e.

R0 → ∞ andk0 → kmax, the frequencyΩ0 approaches the frequencyω3 of rapid uniform

oscillations. On the other hand, when the core is small,k0 is also small and the frequencyΩ0

is close toω1.

Equation (4.43) shows that the coupling parameterγ and the imperfection parameter

σ must be of the same order of magnitude and have opposite effects on the dynamics: As

σ is increased,k0 and the other quantities also increase, while asγ increases,k0 and the

other quantities decrease. The larger the modulus|γ| of the coupling parameter, the larger

the stationary values of the wavenumber, radius, and frequency [Figs. 4.5(a-c)]. Obviously,

the limits of large and small cores could also be discussed in terms of a critical valueγc.

However, this is omitted here because no fundamental new information is obtained by such

an analysis.

The effect of an increased frequency shiftε is displayed in Figs. 4.5(d-f). The larger the

frequency shift, the smaller the stationary values of the wavenumber, radius, and frequency.

However, the wavenumber decreases slowly, i.e. for large values ofε small cores already

emit waves with a relatively large wavenumber.

Now, the necessary assumptions which had to be made to derive the analytical solution

of self-organized pacemakers [Eqs. (4.40), (4.41), and (4.42)] are examined.

As already pointed out, the amplitude equations (4.5) did not include the two terms pro-

portional toAz2 and|A|2z in the normal form (4.1), which is justified ifν � 1. In addition,

the phase gradients must be small (|∇φ| � 1) in order to use the phase dynamics approxima-

tion (4.13). Since∇φ = −k, this implies that the wavenumberk0 of the emitted waves should

be small,|k0| � 1. As follows from the above analysis,|k0| < |kmax| andkmax ∝ ν−1/4.

Hence,ν1/4 � 1 should hold.

In Eq. (4.14a) of the phase dynamics approximation, two terms proportional to∇2z

and ∇z have been neglected, which is justified if|(β/2)∇2z| � |(α + ε)z| and

|∇z∇φ| � |(β − α)(∇φ)2|. If the parametersα, β, and ε are of order unity (as assumed

always), this implies that|∇2z| � |z| and|∇z| � |∇φ|. The gradients of the variablez are

significant only within the boundaries of the core which represent standing fronts of widthl.

Hence, the condition|∇2z| � |z| implies thatl � 1. The other condition|∇z| � |∇φ| is
then satisfied automatically (provided thatν1/4 is large).

On the other hand, the approximate analysis is valid only when the radiusR0 and the
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wavelength2π/k0 are much larger than the front widthl. If the estimate (4.46) of the core

size for small cores is used, it follows thatR0 ≈ ν1/4. Therefore,R0 � l implies that

l � ν1/4, which also follows from the requirement thatk0l � 1. Combining all separate

requirements, finally the condition

ν1/4 � l� 1 (4.50)

is obtained.

According to Eq. (4.46), pacemakers with vanishingly small core sizesR0 are expected

in the limit σ → σc. However, it must be recalled that the approximate analysis is only

applicable if the radiusR0 is larger than the front widthl. This means thatσ should not be

too close toσc. In other words,
√

(σc − σ)/γ � lν−1/2 must hold.

The distribution ofz inside the core was assumed to be flat, i.e.z = zcenter for |x| ≤ R

and not only in the center (x = 0). To check this approximation, the value ofzcenter, given

by the largest root of the cubic equation (4.48), is compared with the valuezin given by

Eq. (4.39b), which describes the variablez at the inner side of the front. This flat distribution

is justified if |zcenter − zin| � |zin|. As follows from Eq. (4.45), this condition is indeed

valid for pacemakers with small cores (k0 � kmax). It becomes less accurate for pacemakers

with larger cores, wherek0 approacheskmax. In this case, the results of the above analytical

derivation provide only a qualitative description.

In Sec. 4.2.1, the wavenumber of waves emitted by a pacemaker has been calculated

assuming a quasi-stationary core. This is justified when the relaxation time for radial pertur-

bations of the core is large compared to the characteristic time needed for the wave pattern

to adjust to the core size. It can be expected that this is true when the dynamics of the vari-

ablez is slow compared to the characteristic time scale for the evolution of the wave pattern,

i.e. whenτ � 1. The stability of self-organized pacemakers is investigated by means of

numerical simulations in the next section.

The derivation of the pacemaker solution has been performed above assuming that the

conditionsβ − α > 0 andα + ε > 0 are fulfilled, implying that the variablez is increased

inside the core. Now, it shall be discussed how the solution is modified in the other possible

cases.

If β − α > 0 andα + ε < 0, the variablez is decreased inside the core. Then, the

right-hand sides of the expressions (4.39) forzout andzin are interchanged and Eqs. (4.40)

and (4.41) for the wavenumber and the frequency must be modified accordingly. In this case,

the valuezcenter is negative and given by the smallest root of Eq. (4.37).
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When the dispersion is negative (β − α < 0), the expression (4.42) forR0 must be

modified by replacingβ − α by α − β. If α + ε > 0, the variablez is decreased inside

the core. To obtain final results in this case, the expressions (4.39) forzout andzin must be

interchanged and the equations for the wavenumber and frequency [Eqs. (4.40,4.41)] must

be modified respectively. Note thatzcenter is then given by the smallest root of Eq. (4.37).

Finally, whenα + ε < 0, the variable is increased inside the core. Aside from the already

mentioned replacement ofβ−α byα−β, no other modifications of the results are necessary.

Recall that in the case of negative dispersion the waves which form the target pattern are

traveling toward the core (cf. Chapter 3).

4.2.4 Drift induced by a parameter gradient

Self-organized pacemakers are not pinned and their positions are determined by the ini-

tial conditions only. Such self-organized structures are therefore able to move through the

medium if its properties are not uniform. Suppose that one of the parameters of the model,

for exampleγ, is not constant, but varies in space asγ = γ(x). The variation of this parame-

ter shall be so smooth that its change on a distance equal to the radiusR0 of the core is small.

In this case, the velocity of the drift induced by the parameter gradient can be estimated by

applying linear perturbation theory.

A stationary pacemaker forms in the zeroth-order approximation with respect to the pa-

rameter gradient. For convenience, its spatial position is chosen as the origin of the coordinate

x, so that it isγ(x) ≈ γ0 + χx in the vicinity of the center. As already noted, the boundaries

of the core represent two fronts whose motion is described by Eq. (4.31). The velocityV of

a front is determined by the middle rootzmiddle of the cubic polynomial (4.32), that is

V = −3
l

τ

√
ν

2
zmiddle(k). (4.51)

The front velocityV and middle rootzmiddle are functions of the parameters and the

wavenumberk of the emitted waves. For a stationary pacemaker, the core neither expands nor

shrinks, and its boundaries must therefore represent standing fronts (V = 0). This condition

fixes the wavenumberk0 of the waves emitted by a stationary pacemaker. If the parameters

are allowed to vary a little in space, the velocities of the two fronts, representing the left

and right boundaries of the core, will be slightly different and do not vanish. As a result, the

pacemaker slowly drifts in space.
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For sufficiently small gradients, the front velocity is given by

V (γ(x)) ≈ ∂V

∂γ

∣∣∣∣
γ0

∂γ

∂x
x = V ′(γ0)χx, (4.52)

where it must be taken into account thatV (γ0) = 0 for a stationary pacemaker with

wavenumberk0. Hence, the velocities of the left and right fronts are

V (γ(x = ±R0)) ≈ ±χR0V
′(γ0). (4.53)

Therefore, these two fronts move with the same small absolute velocity, but in opposite

directions with respect to the center of the pattern: One of them moves toward the center,

whereas the other moves away from it. This means that the core is then drifting rigidly with

the velocity

VD = −3
l

τ

√
ν

2
χR0z

′
middle(γ0). (4.54)

When the middle rootzmiddle of Eq. (4.32) is small, it can be estimated as

zmiddle =
γ(1 + azout − k2)− σ

1− γ + γa
. (4.55)

To determine the derivative ofzmiddle with respect toγ at γ = γ0, it must be taken into

account that the coefficienta is independent ofγ and that to zeroth-order approximation,

the values ofzout andk are given by Eqs. (4.39a) and (4.40) withγ = γ0. The derivative

z′middle(γ0) is then determined as

z′middle(γ0) =
1 + azout − k2

0 + σ(a− 1)

(1− γ0 + γ0a)2 . (4.56)

Using Eqs. (4.40), (4.51), and (4.54), the drift velocity finally is given by

VD = −3
l

τ

√
ν

2

σχR0

γ0(1− γ0 + γ0a)
. (4.57)

Thus, the drift velocity is proportional to the gradientχ of the parameterγ.

The above analysis refers to the case when the variablez is increased inside the core.

Obviously, the drift direction is reversed if the variablez is decreased inside the core region.
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4.3 Numerical investigations

To check the existence of self-organized pacemakers, numerical simulations are performed

in one- and two-dimensional systems. The instabilities of these patterns and the effects of

global inhibition are also numerically investigated.

Equations (4.5) are integrated with an explicit Euler scheme where the Laplacian oper-

ator is discretized with a nearest-neighbor (Five-point Laplacian) approximation (see Ap-

pendix A.4). The numerical accuracy has been tested by repeating several simulations using

a fourth-order explicit Runge-Kutta scheme and a stiff implicit Gear method. No significant

differences are detected. No-flux boundary conditions are used. In the simulations, it is not

possible to strictly satisfy the conditions (4.50) for the parameters of the model. Therefore,

only the existence of stable self-organized pacemakers in one- and two-dimensional systems

is confirmed, but without verifying the constructed analytical solutions quantitatively.

4.3.1 Stable pacemakers and their drift

In a distributed system with birhythmic dynamics, the two states associated with uniform os-

cillations with different frequencies represent two attractors. Moreover, stable self-organized

pacemakers should also correspond to a certain attractor in the distributed dynamical system

described by Eqs. (4.5). The coexistence of several attractors implies that the final state of

the system may strongly depend on the initial conditions. When the conditionsβ − α > 0

andα + ε > 0 are satisfied, a pacemaker can be created by starting from the uniform low-

frequency oscillatory state and applying a sufficiently strong local perturbation of the vari-

ablez (increasing the variablez from z1 close toz3 inside a region of a certain radiusR).

Note that the basin of attraction for the pacemakers with small cores can be small, and only

perturbations with a radius close to the stationary valueR0 of the core will therefore converge

to the pacemaker solution.

Figure 4.6 shows the development of a pacemaker from a sufficiently large initial pertur-

bation (a,b) and its asymptotic profile (c) in the one-dimensional system. It can be seen that

the perturbation starts to expand and emit waves. The expansion speed decreases until the

expansion finally terminates and a stationary core, emitting waves with a constant wavenum-

ber, is formed. Snapshots of the spatial distributions of the real part ReA of the complex

oscillatory amplitudeA, the modulus|A|, andz for a stable stationary pacemaker are shown

in Fig. 4.6(c).
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Figure 4.6:Development of a stable stationary pacemaker (a,b) and its asymptotic pro-
file (c). Frame (a) shows the evolution of the amplitude of the real mode z after an initial
perturbation, whereas frame (b) displays the corresponding evolution of ReA. The system
size is L = 100 and the displayed time interval is ∆t = 2000 for z and ∆t = 200 for
ReA. In the space-time diagrams (a,b), time runs along the horizontal axis. In the gray scale
representation used in this space-time diagram, dark regions correspond to large values of
the displayed variables. In frame (c), the spatial distributions of the variables z (solid line),
ReA (dotted line) and |A| (dashed line) are presented. The parameters are α = 0.5, β = 1.5,
ε = 0.5, l = 1, τ = 1, ν = 40, γ = −0.075, and σ = −0.06.

If the conditionsβ−α > 0 andα+ε < 0 are satisfied instead, the variablez is decreased

inside the core and the initial perturbation must therefore be modified accordingly. This case

is realized in the simulation for the two-dimensional medium shown in Fig. 4.7. The gray

scale representation for the variablez is inverted, so that smaller values ofz correspond to

the darker areas here.

It has been shown in Sec. 4.2.4 that drifting pacemakers are expected when spatial pa-

rameter gradients are present. Figure 4.8 displays a simulation confirming this effect. The

simulation is initiated with a stable stationary pacemaker. A constant gradient in the parame-

terγ is then introduced and the pacemaker starts to drift through the medium in the direction

of increasingγ. When the gradient is removed, the motion of the pacemaker is terminated

and a stationary pacemaker is recovered at a new position, as seen in Fig. 4.8(a). Emission

and propagation of waves persist during the drift [Fig. 4.8(b)]. Note that the drift velocity is

much smaller than the phase velocity of the waves.
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a b

Figure 4.7:Two-dimensional stable stationary pacemaker.The spatial distributions of
variables z (a) and ReA (b) are displayed. The system size is Lx = Ly = 120; the pa-
rameters are α = −1.0, β = −0.5, ε = 0.5, l = 1, τ = 3, ν = 40, γ = 0.20, and σ = 0.16.
The gray scale representation for the variable z is inverted here for esthetic reasons (small
values of z correspond to the dark regions).

ba

Figure 4.8:Drift of a pacemaker. The spatial gradient of the parameter γ is applied inside
the time interval indicated by the vertical dashed lines in frame (a), which shows the evolu-
tion of z in the time interval ∆t = 200000. The pacemaker drifts in the direction of increasing
γ. Frame (b) displays the drifting wave pattern within a narrow time interval ∆t = 500 dur-
ing the drift, marked by the dotted vertical line in frame (a). Small values of z correspond to
the dark regions. The parameters are α = 1.38, β = 2.3, ε = −3.18, l = 0.8, τ = 2, ν = 83,
γ0 = 5.59 · 10−4, χ = 1.68 · 10−6, and σ = 3.4 · 10−4.

4.3.2 Global inhibition

In oscillatory media with positive dispersion, wave sources with a higher frequency suppress

all less rapid sources. Therefore, the competition between usual pacemakers in heteroge-

neous media is always won by the most rapid pacemaker which suppresses all others (except

the cases where phase slips take place, see Section 3.2). If two pacemakers have exactly the

same frequency, they should coexist indefinitely. Since the frequencies of all self-organized
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pacemakers in the same birhythmic medium are equal (they are uniquely determined by the

parameters of the system), this suggests that such pacemakers must always coexist. The nu-

merical simulations reveal, however, that the actual behavior is more complex.

To investigate interactions between pacemakers, a series of two-dimensional simulations

is performed. In these simulations, a single pacemaker is created first. After its wave pattern

has spread over the entire medium and the core has reached its stationary radius, another core

is initiated by applying a strong local perturbation ofz at some distance from the center of

the pacemaker. Without the presence of the pacemaker, the new perturbation would evolve

into a stationary pacemaker. A typical evolution, observed for a sufficiently large separation

between the pacemaker and the new perturbation, is shown in Fig. 4.9. The perturbation

creates a core (a) which starts to grow (b). However, at the same time, the core slowly drifts

toward the pacemaker that remains immobile (c,d). Eventually, the two cores meet and fuse.

Immediately after the fusion, the resulting pacemaker has a core which is larger than that

of a stationary pacemaker and which does not have a circular shape. Subsequently, the core

shrinks back to the size corresponding to a stable stationary pacemaker (d). A space-time

diagram showing the evolution of the spatial distribution ofz along the central vertical cross

section of the medium is presented in Fig. 4.9(i). In Figs. 4.9(e-h) four snapshots of the wave

patterns during this process are displayed. Note that the second core is not able to emit its

own waves, but only modifies the wave pattern generated by the pacemaker. Therefore, that

core effectively represents a suppressed pacemaker.

The development of the system is different for smaller spatial separations or weaker

perturbations. Although the second perturbation would still be large enough to create a pace-

maker in the absence of another core, it is immediately suppressed and does not give rise to

a growing core. In Fig. 4.10, it is shown how the size of a small perturbation and the distance

from a stationary pacemaker determine whether fusion (Fig. 4.9) or immediate suppression

takes place. Note that for very small initial separations, the cores interact directly without

mediation of the wave pattern, and fusion is observed.

This behavior can be characterized asglobal inhibition: If a pacemaker has developed

and its wave pattern has covered the whole medium, the formation of further pacemakers

becomes impossible in the entire medium. Perturbations which otherwise would be sufficient

to create a pacemaker are either damped immediately or give rise to localized perturbations

which then drift toward the dominant pacemaker and finally fuse with it.

The situation is different if the second perturbation is applied to a region which has not
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Figure 4.9:Interaction of cores.A stationary pacemaker interacts with another perturbation,
leading to the fusion of the respective cores and global inhibition of other pacemakers. Snap-
shots of z are shown in frames (a-d), snapshots of ReA in frames (e-h). The displayed time
moments are t = 100 (a,e), t = 500 (b,f), t = 700 (c,g), and t = 1500 (d,h). In frame (i) a
space-time diagram of z for a cross section through the centers of the two cores is shown for
the time interval ∆t = 2000. The parameters are Lx = 60, Ly = 120, α = −1, β = −0.5,
ε = 0.5, l = 1, τ = 9, ν = 40, γ = 0.2, and σ = 0.16. Small values of z correspond to the
dark regions.

yet been reached by the spreading wave pattern of the first pacemaker. In this case, the second

pacemaker stabilizes and develops its own pattern of emitted waves, which eventually leads

to the formation of a state of coexistence between the two pacemakers. In general, this occurs

when the time interval between two subsequent perturbations (which are well separated in

space) is relatively short.
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Figure 4.10:Global inhibition. Regions of different behavior for two interacting cores in
the two-dimensional system. The initial condition consists of a perturbation of a specified
size located at a given distance from a stable self-organized pacemaker already present in the
system. The parameters are the same as in Fig. 4.9.

4.3.3 Instabilities of self-organized pacemakers

The stability of pacemakers is significantly affected by the ratioτ of the two characteristic

times in the model equations (4.5). It has been shown in Sec. 4.3.1 that the cores are stable

with respect to radial perturbations if the variablez is slow compared to the complex ampli-

tudeA of the oscillatory mode, i.e. if the ratioτ is relatively large. Whenτ = 1 (Fig. 4.6),

the transient leading to the stable pacemaker is monotonous. However, whenτ is decreased,

the transient ceases to be monotonous. The radiusR of the core does not grow until its sta-

tionary valueR0 is reached, but first increases and then finally decreases toR0. Whenτ

is decreased further, damped oscillations of the core are observed. At still smallerτ , these

oscillations become sustained and pacemakers with breathing cores are found, as shown in

Figs. 4.11(a,b). This breathing behavior resembles breathing known for localized spot pat-

terns in activator-inhibitor systems [166]. Swinging pacemakers are also observed in the

simulations [Figs. 4.11(c,d)]. In this case, the radius of the core remains approximately con-

stant whereas the position of the pacemaker oscillates in space. A decrease ofτ for breathing

pacemakers results in an increasing amplitude of core oscillations which become strongly an-

harmonic. For even lower values ofτ , the core oscillations are so large that they either lead



4.3 Numerical investigations 95

a b

c d

Figure 4.11:Breathing (a-b) and swinging (c-d) pacemakers.Frames (a,c) show the evo-
lution of z and frames (b,d) the corresponding evolution of ReA. The displayed coordinate
and time intervals are ∆L = 100, ∆t = 250. In frames (a-b) β = 3.0 and in frames (c-d)
β = 2.65. The other parameters are L = 200, α = 1.38, ε = −3.18, l = 0.8, τ = 0.001,
ν = 83, γ = 5.59 · 10−4, σ = 3.4 · 10−4. Small values of z correspond to the dark regions.

to a collapse and disappearance of the pacemaker, or result in a rapid expansion of the core

until the whole medium is transformed into the other uniform oscillatory state. Which of the

two possibilities is realized strongly depends on the initial conditions. Breathing pacemak-

ers are also found in two-dimensional simulations. Figure 4.12 shows space-time diagrams

along a cross section through the center of the medium. Breathing motion is clearly seen in

a b

Figure 4.12:Breathing pacemaker in two spatial dimensions.Space-time diagrams for a
cross section through the center of the core are shown. The evolution of z is shown in (a),
the one of ReA in (b). The system size is Lx = Ly = 80; the parameters are α = −1.0,
β = −0.4, ε = 0.5, l = 1, τ = 0.075, ν = 40, γ = 0.20, and σ = 0.16. The displayed time
interval is ∆t = 50. Small values of z correspond to the dark regions.



96 Self-organized pacemakers in oscillatory media

the diagram forz. Note that the simulation has been performed for a completely different set

of parameters, indicating that the phenomenon is not restricted to a single small parameter

regime.

Another mechanism leading to the destabilization of a pacemaker and the expansion of

its core involves phase slips. Phase slips have been discussed in detail in Sec. 3.2. There,

they appear as a result of a heterogeneous pacemaker close to the Hopf bifurcation. A sim-

ilar effect can be expected for self-organized pacemakers in birhythmic media. The change

of the oscillation frequency inside the core, however, is no longer determined by a fixed in-

homogeneity, but by a local increase of the variablez. When phase slips are generated, this

may have an effect onz and on the dynamics of the core itself. Numerical simulations show

that the generation of phase slips may cause the core to destabilize. An example of this in-

stability is displayed in Fig. 4.13. The oscillations inside the core are more rapid than in the

ba

Figure 4.13:Destabilization of a pacemaker by phase slips.The evolution of z is shown
in (a), the one of ReA in (b). The displayed space and time intervals are ∆L = 100 and
∆t = 625. The parameters are L = 100, α = 1.38, β = 2.1, ε = −3.18, λ = 0.8, τ = 0.025,
ν = 83, γ = 5.59 ·10−4, and σ = 3.4 ·10−4. Small values of z correspond to the dark regions.

periphery and the zone where phase slips occur is located very close to the core boundary.

Only some of these internal oscillations are able to emit waves [Fig. 4.13(b)]. Just like for

the phase slips discussed in Sec. 3.2, the appearance of phase slips is associated with am-

plitude defects where|A| = 0, and therefore not shown here. Here, the phase slips occur

so close to the core that the feedback loop that controls the front velocity is interrupted. The

front effectively experiences a smaller wavenumber than that which corresponds to its radius.

Therefore, the generation of phase slips is accompanied by the gradual growth of the core

[Fig. 4.13(a)], which proceeds until the whole medium is dominated by the uniform state

with the largest oscillation frequency.

Note that the width of the expanding core is weakly modulated: Just before the occur-

rence of a phase slip, the local wavenumber strongly increases, leading to a slight retreat of
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the two core fronts. After the appearance of the phase slip, the local wavenumber decreases,

implying that the core fronts move outward, giving rise to a core expansion. The expansion

prevails over the contraction, and the net effect is a slow growth of the core.

4.4 Discussion

The principal result of this chapter is that self-organized pacemakers represent a generic

wave pattern in oscillatory media near the soft onset of birhythmicity described by a super-

critical pitchfork-Hopf bifurcation. The physical mechanism responsible for the stabilization

of pacemakers in the considered system involves a long-range negative feedback, similar to

the one necessary for the formation of stable localized spots in reaction-diffusion models

with fast inhibitor diffusion [33]. An infinite-range inhibition, however, is caused here not

by diffusion, but by the undamped propagation of waves emitted from the core region.

A solution for self-organized pacemakers in the vicinity of a pitchfork-Hopf bifurca-

tion has been constructed analytically. Furthermore, the frequency and wavenumber of the

waves emitted by a stationary self-organized pacemaker, and the size of its core, have been

estimated. The analysis invokes arguments of the singular perturbation theory as strong sep-

aration of time and length scales have been assumed. The drift of self-organized pacemak-

ers due to spatial parameter gradients has been predicted and the drift velocity has been

estimated. The effect of the pacemaker drift in systems with spatial parameter gradients

provides a convenient experimental method to identify self-organized pacemakers and dis-

tinguish them from target patterns caused by localized fixed heterogeneities in the medium.

The numerical investigations have confirmed the existence of self-organized pacemakers and

have shown that they are stable for a range of model parameters. Interactions between the

pacemakers have been considered. Instabilities of pacemakers, leading to to their breath-

ing, swinging, and expansion, have been numerically found. Breathing localized patterns

were described long ago by Koga and Kuramoto [166] and have been found experimentally

(e.g. [167]). Breathing and swinging behavior of spot patterns was investigated in detail for

a three-component reaction-diffusion model by Suzukiet al. [168] and for two- and three-

component models by Woesleret al. [169]. No analytical investigations have been done here

for the pitchfork-Hopf model but it is expected that at the onset of breathing or swinging be-

havior the front solution undergoes a Hopf bifurcation. Note that swinging behavior is also

denoted aswigglingor rocking in the literature.
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Formally, the pitchfork-Hopf bifurcation as discussed here is a codimension-three bifur-

cation since three bifurcation parametersηr1, η2, andη3 have been discussed. In the litera-

ture, bifurcations of high codimension are often considered as being difficult to observe in

real systems. However, in complex chemical reaction-diffusion systems a codimension-one

pitchfork bifurcation is less likely than a codimension-two imperfect pitchfork (or cusp) bi-

furcation. A perfect pitchfork bifurcation requires the presence of a special symmetry of the

system. Furthermore, in a three-component system it seems not very probable that two stable

limit cycles which have bifurcated from a fixed point are actually lying in a two-dimensional

subspace of the phase space. These arguments lead to the conclusion that the bifurcation

scenario discussed here may be actually found in reaction-diffusion systems.

Since the analysis is based on general amplitude equations, it is valid for any reaction-

diffusion system near the soft onset of birhythmicity with small-amplitude limit cycles. As

in the case of Hopf and Turing-Hopf bifurcations, it can be expected that the results of such

an analysis based on amplitude equations would remain (at least, qualitatively) applicable

even at larger distances from the bifurcation point, where amplitude equations are no longer

strictly valid.

The model and the constructed solution of stable self-organized pacemakers is similar to

a derivation performed for a different model [61]. However, that system has been introduced

phenomenologically and does not represent a normal form. Moreover, uniform oscillations

were unstable in that system and birhythmicity was absent. Nevertheless, extensive simu-

lations performed for that model also display many of the patterns discussed here, such as

stable self-organized pacemakers, drifting pacemakers, fusion, the suppression of cores, and

phase slip patterns [170].

Aside from stable self-organized pacemakers, the amplitude equations for an oscillatory

medium close to the onset of birhythmicity also give rise to other novel solutions, for example

bistability of spirals: If the system is in one of its stable uniform states, with the distribution of

z being approximately uniform, a spiral solution may exist and be stable. Since the amplitude

of the oscillations drops down to zero in the core of the spiral and approaches a constant

non-zero value far fromn the core, the distribution ofz will not be strictly uniform. It is

therefore possible that the core triggers transitions from one (metastable) state to the stable

state mediated by fronts ofz. If two spiral solutions associated with different values ofz are

present, the spirals have different frequencies and may compete. Future work may investigate

such patterns in detail.
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Not much seems to be known about the specific spatio-temporal dynamics of birhythmic

media. To the author’s knowledge, there is a publication on wave propagation in a model

that displays birhythmicity [158]. However, the results presented in that paper were found

for a parameter regime where birhythmicity was actually absent. The present work seems to

report the first specific results on pattern formation in birhythmic systems.
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Chapter 5

Self-organized pacemakers in excitable media

In this chapter, a three-component reaction-diffusion system is considered which shows self-

organized pacemakers as stable solutions in the excitable regime. The model is an extension

of the FitzHugh-Nagumo model presented in Sec. 2.4.

The chapter is organized as follows: After introducing the model in Sec. 5.1, the forma-

tion of stable self-organized pacemakers in the excitable regime is explained and demon-

strated by simulations (Sec. 5.2). Unstable pacemakers are subsequently considered in

Sec. 5.3. The chapter ends with a discussion of the obtained results (Sec. 5.4).

The results of the simulations have been discussed with Tsyoshi Mizuguchi and Yoshiki

Kuramoto, who triggered the investigation of this model.

5.1 The model

This section introduces the model and discusses its basic properties. The model considered

in this chapter is given by three coupled partial differential equations

τu∂tu = u− u3 − v + κu(s− u) + l2u∇2u, (5.1a)

τv∂tv = αu + β − v − κv(s− u) + l2v∇2v, (5.1b)

τs∂ts = u− s+ l2s∇2s, (5.1c)

which describe the evolution of three variablesu, v, ands in a spatially extended system. The

parameterslu, lv, andls represent the diffusion lengths, andτu, τv, andτs are the characteris-

tic time scales of the system variables. The parametersα andβ describe the local kinetics of

the variablev which, together with the times scales, determine whether the local system is
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in a monostable, Turing, excitable, or oscillatory regime. The variables obeys simple linear

kinetics and is coupled linearly to the variablesu andv via the parametersκu andκv. For

s = u or κu = κv = 0, the coupling terms vanish and Eqs. (5.1a) and (5.1b) transform into

the standard FitzHugh-Nagumo model, consisting of the variablesu andv only. Therefore,

the set of Eqs. (5.1) can be interpreted as a simple extension of the FitzHugh-Nagumo model.

In the following, the caseα > 0 is considered, i.e. that the subsystem (5.1a, 5.1b) represents

an activator-inhibitor system consisting of an activatoru and an inhibitorv.

In the full system, the dynamics of the additional variables only depends on itself and

the activatoru. The inhibitorv does not appear in Eq. (5.1c). The additional variables plays

the role of either an activator or an inhibitor, depending on the sign and magnitude of the

coupling coefficientsκu andκv. If κu > 0, the variables activates the activatoru; if κv > 0,

it inhibits the inhibitorv. Since the coupling terms are proportional to the differences − u,

they also modify the activatory role ofu. However, as long as the conditionsκu < 1 and

κv > −α are fulfilled, the variableu still behaves as an activator.

Local Dynamics

The model (5.1) without diffusive coupling reads

τuu̇ = u− u3 − v + κu(s− u), (5.2a)

τvv̇ = αu + β − v − κv(s− u), (5.2b)

τsṡ = u− s. (5.2c)

The stationary states of system (5.2) are found with the conditionu̇ = v̇ = ṡ = 0. From

Eq. (5.2c) it follows that the variables becomes equal tou as the system approaches a

stationary uniform state. Then, the coupling terms vanish and the fixed points are identical

to those of the standard FitzHugh-Nagumo model. Thus, the fixed points of the full model

are given by the equations

0 = u3
s + (α− 1)us + β, (5.3a)

vs = αus + β, (5.3b)

ss = us, (5.3c)

which do not depend on the coupling parametersκu andκv. Therefore, only the parameters

α andβ determine the number and position of stationary states. It has already been pointed

out in Sec. 2.4 that excitable behavior of an activator-inhibitor system requires the presence
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of a stable fixed point and a fast activator. Such a situation is realized for instance forα = 1,

β = 0.2, τu = 0.1, andτv = 1.

Nonlocality

It is an important feature of a reaction-diffusion system that the adiabatic elimination of a

diffusing species may lead to nonlocal coupling terms in the remaining equations. This can

be seen by the following analysis based on Ref. [171]. A similar discussion of these topics is

also found, for instance, in Ref. [100].

For simplicity, it is assumed that only the variables is diffusing, i.e.lu = lv = 0, ands is

not coupled tov, i.e.κv = 0. Then, Eqs. (5.1) read

τu∂tu = u− u3 − v + κu(s− u), (5.4a)

τv∂tv = αu + β − v, (5.4b)

τs∂ts = u− s+ l2s∇2s. (5.4c)

If the variables is changing on a much smaller time scale thanu andv, it can be adiabatically

eliminated. This means that Eq. (5.4c) becomes

0 = u− s+ l2s∇2s. (5.5)

The solution to this linear equation can be found with Green’s function method and is given

by

s = u+
1

2ls

∫ +∞

−∞
dx′ exp

(
−|x− x

′|
ls

)
[u(x′)− u(x)], (5.6)

where the simple case of a one-dimensional, infinitely extended system has been considered.

Equation (5.6) can be inserted into Eq. (5.4a) to replace the coupling termκu(s−u). Finally,

the following system is obtained

τu∂tu = u− u3 − v + F (u), (5.7a)

τv∂tv = αu + β − v, (5.7b)

where

F (u) =
κu
2ls

∫ +∞

−∞
dx′ exp

(
−|x− x

′|
ls

)
[u(x′)− u(x)] (5.8)

is the coupling function which describes the range and magnitude of the internal coupling

of field u. The coupling is decaying exponentially. Its range is given by the diffusion length
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ls and its strength is proportional toκu. For a large coupling rangels, the coupling becomes

global, whereas for smallls, the coupling is local and therefore of diffusive nature.

If diffusive coupling is present, the characteristic wavelengthλP of observed patterns is

much larger than the diffusion length, i.e.λP � ls. Since in the diffusive limit of Eq. (5.8)

the wavelengthλP is given byλP ∝
√
κuls, this case is observed if the coupling strengthκu

is large. On the other hand, ifκu ≈ 1 (or smaller), the characteristic wavelength may be of

the same order as the coupling range. Then, the approximation of diffusive coupling breaks

down and the coupling is effectively nonlocal.

A similar analysis can be performed forκv 6= 0. Then, the coupling termκv(s − u) in

Eq. (5.4b) is replaced by a nonlocal coupling term. Ifκv � 1, this term corresponds to cross

diffusion.

5.2 Stable pacemakers

This section studies the mechanism which enables the formation of stable self-organized

pacemakers in the excitable regime. Since pulses are typical patterns for excitable systems,

such solutions are compared to pacemakers. First, qualitative considerations are made before

the results of one- and two-dimensional simulations are shown. Pulses are subsequently in-

vestigated in more detail. It turns out that two different pulse solutions may be stable at the

same time and that the interaction of such pulses may also lead to stable pacemakers and

target patterns.

5.2.1 Formation of pacemakers

The typical pattern for a one-dimensional excitable medium is the pulse solution, as dis-

cussed in Sec. 2.4. There, a sufficiently large perturbation of the fixed point leads to a pair

of spreading pulses. The asymptotic pulse solution does not depend on the specific details

of the perturbation once the threshold is crossed. If a perturbation does not reach the critical

magnitude and the critical width, the perturbation directly decays to the steady state.

In the following, it is assumed that the subsystem (5.1a, 5.1b) is in the excitable regime

close to relaxational oscillations. For simplicity, it is assumed that the inhibitorv does not

diffuse (lv = 0) and thats is only coupled tov and not tou (κu = 0). The coupling con-

stantκv is assumed to be positive, i.e. the variables inhibits the inhibitorv. Details of the

numerical integration scheme are reported in Appendix A.4.
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In such a system, self-organized pacemakers may occur if the diffusion length of the

components is much larger than the one ofu, i.e. if ls � lu. Then, the width of a super-

threshold perturbation determines whether this perturbation gives rise to a pulse pair or a

pacemaker. On the one hand, a pair of pulses is created if the perturbation has a very large

spatial extension. On the other hand, if the width of the perturbation is comparable to the

diffusion length of the components, a pacemaker is created. This is shown in Fig. 5.1 where

the formation of a pair of pulses [Figs. 5.1(a,c)] is compared to the formation of a pacemaker

[Figs. 5.1(b,d)]. The stable fixed point for these simulations is given byus = ss = −0.58 and

vs = −0.38. The thin solid lines in Figs. 5.1(a,b) indicate the initial condition ofu, where

the perturbation consists of a constant shift tou = 0 within a region of width2R.
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Figure 5.1:Formation of pulse pairs and pacemakers.Characteristic stages in the devel-
opment of a pulse pair (a) and a pacemaker (b) are displayed. The initial conditions for u
are shown as thin solid lines. Space-time diagrams for the formation of a pulse pair and a
pacemaker are displayed in (c) and (d) respectively. There, the variable u is shown in gray
scale, where the black denotes large values. The color map is nonlinear to emphasize the
increased values of u in the tail of the waves. The parameters are α = 1, β = 0.2, κv = 1,
τu = 0.1, τv = 1, τs = 0.1, lu = 0.001, and ls = 0.017. The displayed system size is L = 0.3
and the shown time interval in (c,d) is ∆t = 5.

If the perturbation is wide [Figs. 5.1(a,c)], a pair of pulses is emitted. The thick lines in
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Fig. 5.1(a) denote the distributions ofu, v, ands shortly after the emission of the pair of

pulses. The subsequent evolution in the central region is characterized by a decay to the sta-

tionary state and the two pulses remain the only excited regions in the system. Note that the

distribution of the activatoru possesses two local maxima at positions where the boundaries

of the initial perturbation were located before. These maxima are associated with the non-

monotonous, oscillatory tail of each pulse and are typical for a pulse in an excitable regime

close to the onset of oscillations. In the space-time diagram that shows the formation of a

pulse pair [Fig. 5.1(c)], the local maxima ofu can be clearly identified as dark lines in the

middle of the displayed time interval. For later time moments, these maxima correspond to

the first maxima in the tails of the pulses. The inhibitorv also shows two maxima at these

positions which, however, are less pronounced. The components, on the other hand, shows a

broad profile and has its maximum in the center of the pattern. This is not surprising because

the diffusion lengthls is relatively large.

In Figs. 5.1(b,d), the same system is shown where the width of the initial perturbation of

u is smaller, but still large enough to trigger the formation of waves. After the emission of the

first waves, the distribution ofu first shows the same two maxima like Figs. 5.1(a,c). Then,

the maxima merge in the central part of the pattern because they are located sufficiently close

to each other. This local increase in the activatoru in the center constitutes a super-threshold

perturbation which creates a new pair of waves. This scenario is repeated and a pacemaker

is established. Comparing Fig. 5.1(c) with Fig. 5.1(d), it can be seen that the location of the

pacemaker approximately coincides with the location where the first maxima of the tails of

the emitted waves merge. The width of the wave source is approximately given by the size

of the initial perturbation. It should be noted that the profile of the first wave emitted by a

pacemaker [Fig. 5.1(b)] strongly resembles the profile of the pulse solution [Fig. 5.1(a)].

Figure 5.2 displays the evolution of a system, where a pacemaker is formed, for a longer

time interval. Since periodic boundary conditions have been applied, not only the pacemaker

is observed (which can be seen in the upper part of the figure), but also the location where

the waves collide (in the lower part of the figure). The first waves emitted by the pacemaker

strongly resemble pulses. Later, and in particular in the asymptotic regime, the waves have

other properties, i.e. different wavelength, frequency, and amplitude of the variables. It can

be seen that the wavenumber and the frequency of the waves increase with time. However,

the pulse-like waves emitted first are faster than the subsequent ones, i.e. the wave speed de-

creases with time. As indicated by the different gray levels fors in Fig. 5.2(a), the maximum

value ofs within a pulse-like wave is significantly larger than in those waves which form
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a b

Figure 5.2:Stable self-organized pacemaker in one spatial dimension.Space-time dia-
grams for s (a) and u (b) are shown. The parameters are α = 1, β = 0.2, κv = 1, τu = 0.05,
τv = 1, τs = 0.1, lu = 0.00071, and ls = 0.017. The displayed time interval is ∆t = 50 and
the system size is L = 1. Periodic boundary conditions are used.

the asymptotic wave train. Furthermore, the amplitude ofs within the collision zone of the

waves is also much larger than within the wave train. The difference in amplitude between

the first (pulse-like) waves and the asymptotic wave train are restricted to the variables. The

values ofu in a pulse and in the asymptotic wave train are very similar [Fig. 5.2(b)].

In the asymptotic regime, the wavenumber of the propagating waves is constant. Within

the range of perturbations that lead to pacemakers, no dependence of the asymptotic

wavenumber on the specific width of perturbation is detected.

Simulations of two-dimensional systems have also been performed. Figure 5.3 shows

an example of a target wave pattern present in a system with no-flux boundary conditions.

The perturbation has been applied in a corner of the system to show as many waves as

possible. In Fig. 5.3(a), the variables is shown. As with the one-dimensional system, the

variables has an intermediate amplitude within the wave train and a large amplitude where

the waves collide (here with the no-flux boundary). Figure 5.3(b) shows that the amplitude

of the activatoru does not undergo any significant changes at the boundary. The evolution of

that pattern is qualitatively similar to the one-dimensional case, i.e. a pacemaker arises only

for appropriate perturbations and the amplitude ofs in the asymptotic pattern is smaller than

in the beginning.
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a b

Figure 5.3:Stable self-organized pacemaker in two spatial dimensions.Snapshots of the
distributions of s (a) and u (b) are displayed. The parameters are α = 1, β = 0.2, κv = 1,
τu = 0.1, τv = 1, τs = 0.1, lu = 0.05, ls = 1, Lx = Ly = 15, and t = 500. No-flux boundary
conditions are used. Black denotes large values.

5.2.2 Bistability of pulse solutions

In the previous section, it has been shown that pacemakers are not the only type of pattern that

can occur in system (5.1). In this section, it is shown that the system admits two stable types

of pulse solutions. The pulse solutions are compared and their relationship to the pacemakers

is studied in more detail.

Figure 5.4 shows the profiles of three different patterns found in one-dimensional sys-

tems: a target pattern with pacemaker (a), a small pulse (b, left), and a large pulse (b, right).

All these patterns are stable with respect to small perturbations. In particular, both the small

and the large pulse may propagate indefinitely in a medium with periodic boundary condi-

tions. These patterns are characterized in more detail in the following.

The large pulse corresponds to the pulse already seen in Fig. 5.1. It is created by applying

a sufficiently large perturbation ofu to the uniform steady state. Its velocityVlp is the largest

among the velocities of the three solutions and the pattern is characterized by the largest

amplitudeSlp within the pulse, whereSlp is defined as the difference between the maximum

of s and its value in the fixed point. If this pulse solution is slightly perturbed, the pertur-

bation is damped out quickly. Simulations indicate that this also holds for relatively strong

perturbations, showing that this pulse solution is quite robust.
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Figure 5.4:Pacemaker and pulse solutions.The profiles of the variables are shown for a
pacemaker (a) and the two pulse solutions (b). The parameters are α = 1, β = 0.2, κv = 1,
τu = 0.1, τv = 1, τs = 0.1, lu = 0.05, ls = 1, and L = 30. The velocities V of the waves,
the amplitude S of the variable s, and the characteristic width λ of the waves are displayed.
The solid, dotted, and dashed lines correspond to u, v, and s respectively. No-flux boundary
conditions are present in (a), being responsible for the increase of s at the boundary. Further
explanations are found in the text.
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The small pulse is closely related to the pulse solution known for the standard FitzHugh-

Nagumo model. It can be obtained by performing a simulation where the FitzHugh-Nagumo

system is decoupled from the variables, i.e. for κv = 0. Then, the coupling parameterκv

may be increased slowly without destroying the pulse (here, toκv = 1). This pulse solution

is not only short but also slow compared to the large pulse. Remarkably, the distribution ofs

within the pulse only shows a small deviation from the stationary value, i.e.Ssp is relatively

small. This pulse solution is also stable with respect to small perturbations. However, it can

easily be destabilized with moderate perturbations. A transition into the large pulse solution

is typically observed in such cases.

The target pattern is formed by a wave train with a wave speedVt, which lies between

the velocities of the two pulse solutions. The amplitudeSt of s within the wave train, i.e.

the difference between the maximum and minimum values ofs, also lies between the large

amplitude for the large pulse and the small amplitude for the small pulse, for which the

amplitude is defined as the difference between the maximum and the value of the rest state. In

order to compare the widths of the pulses with the width of a single wave in the target pattern,

it is convenient to define the half-widthλ of a wave as the distance between the maximum and

minimum of the profile of the activatoru, i.e. the half-widthλ is measured in the decreasing

part of the profile. In the case of the wave train, the half-width is approximately half of one

wavelength. In summary, it is found that

Vsp < Vt < Vlp, (5.9a)

Ssp < St < Slp, (5.9b)

λsp < λt < λlp, (5.9c)

where the subscripts refer to small (sp) and large (lp) pulses, and to target waves (t) respec-

tively. All pacemakers and pulses that have been observed in the simulations fulfill Eqs. (5.9).

For the set of parametersα = 1, β = 0.2, τu = τs = 0.1, τv = 1, lu = 0.05, andls = 1,

bistability of pulses is observed for0.73 < κv < 1.09. Forκv < 0.73, only the small pulse

is stable, while forκv > 1.09 only the large pulse is stable (larger values thanκv = 1.2 have

not been considered in the simulations).
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5.2.3 Interaction of pulses and pacemakers

The two different kinds of pulse solutions are stable with respect to small perturbations and

travel persistently on the background of the steady state in a one-dimensional medium with

periodic boundary conditions. However, when pulses of both types are present in such a

medium, they necessarily interact because they travel with different velocities. Furthermore,

pulses of the same kind may collide and give rise to complex spatio-temporal patterns. Fol-

lowing interactions are discussed in this section for a fixed set of parameters: Two large

pulses, a large pulse and waves from a pacemaker, two small pulses, a large and a small

pulse, and a small pulse with waves from a pacemaker.

When two large pulses meet, they annihilate in the collision and the system returns to the

stationary state. This corresponds to the typical behavior of pulses in excitable media and

is therefore not further discussed here. If a large pulse collides with the waves emitted by a

pacemaker, the large pulse is annihilated and the pacemaker entrains the medium.

At the location where two small pulses collide [Fig. 5.5], the amplitude ofs increases

strongly, as displayed in Fig. 5.5(a). Subsequently, slightly apart from the collision zone,

ba

Figure 5.5:Two colliding small pulses lead to a bound state of two pacemakers and a
wave sink.Space-time diagrams for s (a) and u (b). The parameters are α = 1, β = 0.2,
κv = 1, τu = 0.1, τv = 1, τs = 0.1, lu = 0.05, and ls = 1. Black denotes large values.
The displayed time interval is ∆t = 40 and the system size is L = 20. No-flux boundary
conditions are used.

two symmetrically shifted pacemakers are formed. As a result, a bound state of two pace-

makers is created. Between the two wave sources, there is a small region where the waves

collide. There, the components performs large amplitude oscillations. The frequency and
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wavenumber of the waves emitted by such a bound state of two pacemakers are larger than

the corresponding values of the waves emitted by only one pacemaker. The bound state of

two pacemakers emits hundreds of waves, but it is actually found to be unstable for the

studied sets of parameters and the system finally returns to the rest state. This is shown for a

different simulation in Fig. 5.6. The instability develops as an increasing asymmetry between

the two wave sources. Finally, one destroys the other and subsequently decays itself.

ba

Figure 5.6:Unstable bound state of pacemakers.Space-time diagrams for s (a) and u (b)
are shown. The parameters are like in Fig. 5.5. Black denotes large values. The displayed
time interval is ∆t = 50 and the system size is L = 25. No-flux boundary conditions are
imposed.

If a large and a small pulse interact, as displayed in Fig. 5.7, the waves first seem to

annihilate. However, the large pulse actually reappears and proceeds into its initial direction.

Also the small pulse reappears and first seems to proceed as before. Yet it becomes unstable

and transforms into a large pulse. Moreover, in the tail of this pulse, a pacemaker appears.

In the wave pattern subsequently formed, the impact of the small pulse is still seen as a

local decrease of the amplitude of the components of the target waves. This modulation is

advected toward the border and finally decays there. The asymptotic state consists of a stable

pacemaker located close to the collision zone of the pulses.

If the different pulses do not meet in a head-on collision, but if the fast (large) pulse runs

into the tail of the slow (short) one, the asymptotic state also consists of a pacemaker that is

created at the location of the collision. Corresponding simulations are not shown here.

The next interaction scenario is the case of a small pulse colliding with the waves emitted

by a pacemaker. The result of such interaction is shown in Fig. 5.8. Within the collision zone,
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ba

Figure 5.7:Interaction of a small pulse with a large pulse.A stable pacemaker is formed.
Space-time diagrams for s (a) and u (b) for the initial evolution of the system are shown. The
parameters of the system are as in Fig. 5.5.

large amplitude oscillations ofs appear, forming a localized pattern which can be clearly

identified. This localized pattern can be interpreted as a bound state of a pacemaker and a

collision zone of waves. However, this pattern is not stationary. It travels at very low speed

toward the original pacemaker. Finally, the bound state of pacemaker and collision zone

reaches the initial pacemaker and form the type of bound state of two pacemakers already

discussed in Fig. 5.5. This pattern is unstable, the pacemaker is finally destroyed, and the

stationary state is recovered (cf. Fig. 5.6). The transient, however, is long and comprises

hundreds of wave emissions.

ba

Figure 5.8:Interaction of a small pulse with a pacemaker.Space-time diagrams for the
initial evolution of s (a) and u (b) are displayed. The parameters of the system are as in
Fig. 5.5, except the system size, which is L = 50.
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The bound state of the pacemaker and the collision zone can be studied without the

initial pacemaker. In a one-dimensional system with periodic boundary conditions, the waves

emitted by the pacemaker may be identical to the waves which are received in the collision

zone. This is shown in Fig. 5.9. This pattern may be interpreted as a pacemaker that emits

waves only in one direction. The localized pattern drifts at a low constant speed through

the medium. The width of the localized pattern can be defined as the distance between the

centers of the pacemaker and the collision zone. Then, an interesting phenomenon can be

reported: This width is half of the wavelength of the waves and a wave needs half the period

to cross such a distance. This means that the pacemaker emits a wave exactly at that moment

that a wave would have needed to cross the localized pattern. However, the phase difference

between these two waves is2π. This is illustrated by the white dotted lines in Figs. 5.9(a,b).

ba

Figure 5.9:Stable bound state of a pacemaker with a collision zone.Space-time diagrams
for s (a) and u (b) are shown. The parameters of the system are as in Fig. 5.5, except the
system size which is L = 22.625 and the displayed time interval, which is ∆t = 50. Periodic
boundary conditions are used.

The last interaction scenario that is discussed consists of waves emitted by a pacemaker

which run into the tail of the small pulse. Simulations not displayed here show that the

waves from the pacemaker overtake the pulse and entrain the rest of the system. This means

that the asymptotic state consists of the initial pacemaker. The small pulse produces a local

perturbation which is advected to the no-flux boundary and decays there.
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5.3 Unstable pacemakers

In the previous section, stable self-organized pacemakers and several other structures like

pulses and localized states have been discussed. However, even single pacemakers are not

stable under all conditions. Unstable pacemakers are considered in this section.

Up to now, two diffusing componentsu and s have been considered wherelu � ls.

Now, the case of vanishing activator diffusion (lu = 0) is discussed, i.e.s is the only dif-

fusing component. Then, the simulations show a qualitatively different behavior compared

to the previous section. An example is displayed in Fig. 5.10. First, a pacemaker is formed

since the width of a perturbation is comparable to the diffusion length of the components

[Figs. 5.10(a,e)]. The pacemaker starts to emit waves. Then, as time proceeds, the wave-

a b c d

e f g� h

Figure 5.10:Unstable pacemaker.Space-time diagrams for s (a-d) and u (e-h) are shown.
The displayed time intervals are ∆t = 25, starting at t = 0 (a,e), t = 350 (b,f), t = 443 (c,g),
and t = 1513 (d,h). The parameters are α = 1, β = 0.2, κv = 1, τu = 0.05, τv = 1, τs = 0.1,
lu = 0, and ls = 0.017. The system size is L = 1 and periodic boundary conditions are used.
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length of the emitted waves decreases. In parallel, also the amplitude ofs within the wave

train decreases, as seen in Fig. 5.10(b). There, almost no waves can be identified and the

value ofs hardly deviates from its mean value. However, waves are still present and can be

clearly identified in the space-time diagrams foru, since the activator always displays waves

with large amplitudes [Fig. 5.10(f)]. The simulation show that the wave pattern subsequently

decomposes into small wave fragments which are separated by phase jumps. These phase

discontinuities are seen for example in Fig. 5.10(f) in the center of the collision zone or in

Fig. 5.10(g) fort = 443 almost everywhere.

This irregular wave pattern resembles spatio-temporal chaos, as seen in Fig. 5.10(g) for

t = 443 to t = 455. The behavior is intermittent since waves are occasionally formed that

have a large amplitude in the variables, propagate with a high velocity, and are able to

destroy the small amplitude wave patches [Figs. 5.10(c,g),t = 455 to t = 468]. In this way,

the regular pacemaker can be clearly seen again, also in the diagram fors [Fig. 5.10(c)]. The

state of large amplitude target waves is unstable and the whole scenario is repeated.

The wave source which creates the irregular wave pattern is denoted as unstable pace-

maker, emphasizing that the regular wave source has become unstable. Therefore, an un-

stable pacemaker still produces target waves, although regular, large-amplitude waves as

considered in the previous sections are absent.

If the medium has periodic boundary conditions, a large amplitude wave may reach the

pacemaker and destroy it [Fig. 5.10(d,h)]. Then, a periodic train of pulses is formed which

travels along the one-dimensional medium. A pulse train formed in this way does not de-

compose into small wave patches. Several simulations have been carried out for periodic

boundary conditions, showing always the formation of pulse trains. However, the number

of pulses present in such a system may vary. The traveling waves do not have an intrinsic

wavelength. Furthermore, if no-flux boundary conditions are applied to such a pulse train,

the pulses decay at the boundary. This demonstrates that the observed wave train should in-

deed be interpreted as a train of pulses in an excitable medium and that the system is not

close to a wave bifurcation.

Simulations performed for a system with no-flux boundary conditions show different dy-

namics for long integration times. Although large-amplitude wave trains may also be created,

such patterns decay at the border and give rise to irregular dynamics. Then, either the unsta-

ble pacemaker may persist or it may decay and give way to spatio-temporal chaos without

any pacemaker. Such regimes are not in the focus of this thesis and hence not discussed here.
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It seems obvious that the absence of diffusion ofu leads to the instability of the regular

pacemaker solution. To check this hypothesis, the variableu is allowed to diffuse weakly in a

moment where the pattern consists of small-amplitude, irregular wave patches. As Fig. 5.11

demonstrates, a pacemaker that emits regular target waves is established. Therefore, activa-

tor diffusion seems indeed to be crucial for the stability of the regular pacemaker solution.

However, a stable pacemaker does not always appear in such a situation. For another simu-

lation (not shown here), a bound state of two pacemakers is created instead, which becomes

unstable and decays to the rest state after a long transient, as discussed above.

a b

Figure 5.11:Stabilized pacemaker.Space-time diagrams for s (a) and u (b) are shown. The
displayed time interval is ∆t = 50. The system is as in Fig. 5.10 but with lu = 0.00071.

Above, the pulse solutions have been considered for the case of small activator diffusion.

Here, their behavior is discussed for vanishing diffusion ofu. Numerical simulations have

been performed where stable pulses are present and the parameterlu is set to zero. The result

is that the large pulses remain stable in this case while the small pulses become unstable

and quickly decay to the stationary state. Since the small pulse corresponds to the pulse that

exists in the standard FitzHugh-Nagumo model, it is not surprising that this pulse solution is

not observed in the case wherelu = lv = 0. If the diffusion lengthls of the components is

set to zero, the small pulse remains stable while the large pulse becomes unstable. Therefore,

the stability of the small pulse solution strongly depends on activator diffusion, while the

stability of the large pulse depends mainly on diffusion of the third variables.
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5.4 Discussion

The main result of this chapter is the observation of stable self-organized pacemakers in an

excitable medium. The system consists of a FitzHugh-Nagumo model which is extended

by an additional diffusing variables. This component obeys linear kinetics and has been

introduced to extend the standard two-component FitzHugh-Nagumo model in a minimal

way. The following conditions are sufficient to create a stable self-organized pacemaker:

strong diffusion of the variables, proximity to the regime of relaxational oscillations, and

sufficiently strong coupling ofs to the inhibitorv. Then, whether a pacemaker or a pair of

pulses develops, depends on the initial condition. The principal mechanism is identified as

the width of a critical perturbation, which should be of the order of the diffusion length of

the components. Simulations not shown here demonstrate that if the parameters are chosen

such that the system is in the regime of relaxational oscillations but still close to the regime

discussed here, the formation of pacemakers is also observed. Thus, the mechanism leading

to these structures is more general and not restricted to the excitable regime.

Beside the solution corresponding to a pacemaker, other solutions in the excitable regime

of the extended FitzHugh-Nagumo model have also been discussed. Here, pulse solutions

are of particular interest. For the studied sets of parameters, two stable types of pulses have

been found, namely a pulse resembling the pulse solution for the standard FitzHugh-Nagumo

model, and a novel pulse solution that has considerably larger velocity, amplitude, and width.

If the waves emitted by a pacemaker are characterized in terms of these quantities, the result

is that such waves have intermediate values compared to the two pulse solutions.

The model studied here consists of three independent variables. Several years ago, Ohta

et al. [135–137] reported self-organized pacemakers in a two-component activator-inhibitor

model with a coexistence of excitable kinetics and stable uniform oscillations. In their sys-

tem, pacemakers were also created by appropriate initial conditions. The wave sources, how-

ever, were unstable and uniform oscillations were approached asymptotically. Two main

differences between their system and the system studied here can be pointed out. First, the

local dynamics of their system is characterized by the presence of a limit cycle while here,

the only local attractor consists of the stationary state. Second, the pacemakers studied here

do not decay to uniform oscillations, but remain stable, at least as long as activator diffusion

is present.

The three-component model studied here is not designed to explain the behavior of a

specific reaction-diffusion system. However, it represents a simple extension of a general
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two-component model that is often used to describe the behavior of systems of various ori-

gins. Similar three-component models based on the FitzHugh-Nagumo model have been pro-

posed to describe spiral formation in aggregatingDictyostelium Discoideumcolonies [172]

or traveling spots in gas-discharge systems [33]. In such systems, the additional component

is always assumed to be strongly diffusive. Applications of the results of the present model

to those or other systems may be possible.

The role of activator diffusion has been identified to be crucial for the stability of the

pacemaker and the corresponding wave train. If the diffusion ofu is absent, the only stable

pattern is the large pulse solution. The pacemaker solution remains present, but a transition

to irregular dynamics with wave patches at a small length scale is observed. Dislocations de-

velop and a transition to spatio-temporal chaos is observed. The small scale patterns indicate

that according to the argument presented in Sec. 5.1, the effective coupling is nonlocal. The

coupling terms introduce nonlocal coupling which has no obvious impact on the dynamics as

long as diffusion ofu is present. Even very small diffusion is sufficient to stabilize the pace-

maker solution and give rise to large-scale patterns. Further simulations for the present model

may clarify the question whether unstable (irregular) pacemakers are also possible for very

small activator diffusion. The influence of nonlocal coupling on pattern formation in one-

dimensional and disc-shaped media has been intensively investigated by Middya, Sheintuch,

and others in a series of papers [113, 114, 173, 174]. They describe many patterns, among

them stable target patterns, for global coupling and long-range interaction. However, they do

not report such unstable pacemakers giving rise to irregular wave patterns.

As a result of the different types of interaction between the pulses and pacemakers, not

only stable pacemakers may appear, but also localized patterns representing bound states

of pacemakers, or bound states of a pacemaker with a collision zone. This demonstrates

that the class of initial conditions giving rise to pacemakers is not small, and also provides

an opportunity to characterize the wave train emitted by a pacemaker as an intermediate

structure between the two different pulse solutions. Although the localized states are unstable

in the simulations, their transients are very long. Therefore, these patterns may be stable for

other sets of parameters and may also have long-lasting counterparts in experiments. Future

work may search for stable bound state of two pacemakers. Since the bound state of two

pacemakers emits waves with a larger frequency than one pacemaker only, competition and

interaction of pacemakers may be studied. Finding a stable bound state of pacemakers would

mean that this pattern could be interpreted as a self-organized wave source. This means that

bistability of different pacemaker solutions could be possible.
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The bistability of pulse solutions is a rare phenomenon in reaction-diffusion systems.

Winfree showed that multiple spiral wave solutions are possible in an excitable sys-

tem [175, 176]. There, the dispersion relation of the waves, i.e. the dependence of the ve-

locity on the wavelength, shows an oscillatory behavior. The local minima of the dispersion

relation determine the stable spiral solutions. Consequently, several spirals with different

wavelengths and speeds may coexist in such a system. Another type of bistability of pulse

solutions was recently presented by Bordiougov [177]. There, pulse trains with identical

wavelengths and different velocities may coexist. In this work, the pulse solutions are very

different in wavelengths and speed. While one pulse corresponds to the pulse solution known

for the FitzHugh-Nagumo system, the other is genuine for the whole, coupled system and

exists only for sufficiently large coupling strengthsκv. This chapter has been focused on the

formation of pacemakers, but further investigation of pulses in the three-component exten-

sion of the FitzHugh-Nagumo model seem to be an interesting topic in its own right.

The localized pattern which corresponds to a bound state of a pacemaker and a collision

zone of waves closely resembles drifting patterns found by Nicola [100]. He investigated

systems near a Turing-wave bifurcation described by a two-component model with nonlocal

coupling or the respective amplitude equations. However, Nicola’s results are not directly

applicable since the simulations for the system studied here are not carried out close to a

Turing or wave bifurcation. Nevertheless, the approaches used by Nicola may be useful to

characterize the drifting bound state pattern in terms of interfaces that connect different states

of traveling waves.
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Chapter 6

Conclusions and perspectives

The aim of this thesis has been to investigate target patterns and pacemakers in oscillatory

and excitable reaction-diffusion systems. Heterogeneous and self-organized pacemakers and

the corresponding target patterns have been studied analytically and numerically. While het-

erogeneous pacemakers have been discussed for a medium close to a Hopf bifurcation, self-

organized pacemakers have been discussed for a birhythmic medium close to a pitchfork-

Hopf bifurcation and for an excitable system described by an extended FitzHugh-Nagumo

model.

The investigation of heterogeneous pacemakers in oscillatory systems has focused on

two aspects. First, the conditions for creating pacemakers and extended target patterns ver-

sus the creation of wave sinks and localized wave patterns have been derived systematically.

Systems with both positive and negative dispersion have been considered. Inward traveling

target patterns and large heterogeneities have been discussed. Second, heterogeneities with

large frequency shifts have been investigated. In this case, the waves become Eckhaus un-

stable and amplitude defects appear with either ring-shaped or more complex topologies.

For pacemakers with very large frequency shifts, the amplitude defects already occur at the

boundaries of the heterogeneities, giving rise to the local desynchronization of oscillations.

Wave sinks can also have a significant impact on the spatio-temporal dynamics of the system

by breaking the waves arriving from other wave sources.

It has been shown in this thesis that a system close to a pitchfork-Hopf bifurcation is able

to create stable self-organized pacemakers. The normal form and amplitude equations of

the pitchfork-Hopf bifurcation have been derived. Such a system displays birhythmicity, i.e.

bistability of limit cycles, and it has been demonstrated analytically that stable self-organized

pacemakers are possible. Simulations have confirmed the existence of stable self-organized
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pacemakers. In the presence of a parameter gradient, such patterns drift, as has been shown

analytically and numerically. The interaction between pacemakers has been studied numer-

ically, giving rise either to coexisting pacemakers or to a new phenomenon called global

inhibition: Established pacemakers suppress new cores or merge with them. When the fre-

quencies of the limit cycles differ strongly, the waves may become Eckhaus unstable and the

pacemaker may destabilize. Furthermore, kinetic instabilities of pacemakers are possible,

creating breathing and swinging pacemakers.

A pacemaker in an excitable medium consists of a small localized region where the sys-

tem is effectively oscillatory. No stable self-organized pacemakers for excitable media have

previously been reported. In this thesis, a three-component model has been proposed on

the basis of the FitzHugh-Nagumo equations, consisting of an activator, an inhibitor, and

an additional variable. The formation of stable self-organized pacemakers in the excitable

regime of that model has been demonstrated if several conditions are fulfilled: The system

is close to relaxational oscillations, the additional component is strongly diffusive, and the

additional component inhibits the inhibitor. Moreover, bistability of pulse solutions has been

observed in such a system. Different pulses can interact and may create pacemakers or local-

ized patterns. If the diffusion of the activator vanishes, the waves emitted by the wave source

are unstable and spatio-temporal chaos appears, which is interpreted as a result of nonlocal

coupling.

If amplitude equations are derived for a specific bifurcation, they are applicable to all sys-

tems which are close to this bifurcation. Therefore, the phenomena reported in this thesis for

heterogeneous pacemakers in oscillatory media and self-organized pacemakers in birhyth-

mic media may be found in many reaction-diffusion systems. The analytical derivations in

Chapters 3 and 4 are based on the phase dynamics approximations of the respective ampli-

tude equations. Since phase equations may be derived independently from bifurcations for

systems displaying harmonic oscillations, the results found here may hold for general sys-

tems displaying harmonic oscillations. As known for Hopf or Turing bifurcations, it can be

expected that the results based on amplitude equations remain (at least, qualitatively) ap-

plicable even at larger distances from the bifurcation point, where the oscillations become

anharmonic. From these arguments the conclusion may be drawn that the results for hetero-

geneous and self-organized pacemakers as described in this thesis may be generally found

for oscillatory and birhythmic media.

Since the FitzHugh-Nagumo model is a paradigmatic model for excitable systems, the

simple extension of the FitzHugh-Nagumo equations discussed in this thesis may also be
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applicable to many excitable media. The fact that stable self-organized pacemakers have not

only been found in the excitable regime of that model, but also in the regime of relaxational

oscillations strongly suggest that the appearance of such patterns is not restricted to a small

parameter regime.

Summarizing the results from this point of view, it seems possible that stable self-

organized pacemakers are generic for three-component reaction-diffusion systems in both

oscillatory and excitable media.

This thesis opens perspectives for experimental investigations. The findings for excitable

pacemakers may stimulate the search for such patterns in the excitable, close to oscilla-

tory regimes of various reaction-diffusion systems. Some experiments, where heterogeneous

pacemakers have been created in the light-sensitive BZ reaction and the CO oxidation re-

action, have already been performed. Further studies could try to explore large or high-

frequency pacemakers. Since the Oregonator model of the BZ reaction is known to have

a birhythmic regime, it may be of interest to search for birhythmicity and the formation of

self-organized pacemakers in this reaction.
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Chapter A

Appendix

A.1 Remarks on the parameterω in the CGLE

It is useful to make a remark on the choice of the frequency parameterω in the simulations.

In principle,ω can be determined from the underlying reaction-diffusion system. However, it

has been made clear in Sec. 2.3 thatω can be scaled out of the CGLE. This means that if this

parameter is present in the equation, it can be chosen freely. Then, of course, the parameter

ω does not correspond to a frequency of the original reaction-diffusion system but to the

frequency at which an arbitrarily chosen coordinate frame is rotating. Four possible cases

are of interest here:

• ω � 1

This choice ofω would closely resemble a reaction-diffusion system close to a Hopf

bifurcation (see Sec. 2.3). However, the numerical time integration step becomes very

small in this case, and simulations become inefficient. The numerical advantage to use

a rescaled amplitude equation instead of a full reaction-diffusion model vanishes in

this limit since the simulation time for a reaction-diffusion model may be20 − 50

times larger than for a corresponding amplitude equation [178].

• ω = −α

The frequency of uniform oscillations isωSL = ω + α. If ω = −α, then a coordinate

frame is chosen that rotates with the frequency of uniform oscillations. This means that

in such a system the waves propagate in different directions depending on whether

their frequency is increased or decreased with respect to the frequency of uniform

oscillations.
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• ω = 0

This possibility corresponds to a complete rescaling of CGLE (and not to a vanishing

Hopf frequency) and is the typical case which is discussed in large part of the literature

on the CGLE. Then, the waves may also propagate in different directions depending on

the parameters and the wavenumber of the waves. It should be emphasized that these

effects do not reflect the real behavior of a reaction-diffusion system.

• ω > max(−α,−β)

If this condition is fulfilled, all plane waves propagate into the same direction, indepen-

dent of their wavenumber and the specific parameters. The artificial effects described

in the previous two cases are avoided. Ifω is still of the same order asα andβ, the

numerical simulation is not slowed down as in the caseω � 1. Furthermore, space-

time diagrams obtained for such a parameter choice correspond qualitatively to real

reaction-diffusion systems and nevertheless display the interesting effects in a conve-

nient way.

In the simulations of Chapter 3, the parameterω usually is chosen such that the last

criterion is fulfilled. In the simulations of Chapter 4, usuallyω = 0 is chosen.
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A.2 Derivation of the normal form and the amplitude

equations

The derivation of the normal form and the amplitude equations for the pitchfork-Hopf bi-

furcation is spilt into two parts. First, systems without diffusion are discussed, which are

described by sets of ordinary differential equations. Subsequently, the terms corresponding

to the effects of diffusion are calculated. This derivation is due to the collaboration with Mads

Ipsen who recently discussed the derivation of the normal form coefficients for bifurcations

of stationary points in the context of reaction-diffusion systems [74]. The notations in this

part of the appendix are chosen in accordance with these works.

The normal form of the pitchfork-Hopf bifurcation

Consider a dynamical system, described by a vectorx ∈ Rn, and depending on a set of

parametersµ ∈ Rs. The system is supposed to have a stationary pointxs(µ) at which a local

bifurcation occurs atµ = 0. This stationary point shall be chosen as the origin of the phase

space. The system evolves with time according to the equation

ẋ = F(x;µ) = J·x + f(x,µ). (A.1)

It is assumed that the Jacobian matrix at the stationary point at the bifurcation,

J = DF(0,0), hasr semisimple critical eigenvaluesλi whose real parts are zero. These

eigenvalues are associated withr linearly independent pairs of right and left eigenvectorsui

andu∗i , normalized according to

u∗i ·uj = δij, for i, j = 1, . . . , r. (A.2)

The r-dimensional center manifoldW c at µ = 0 is tangent to the center subspaceEc at

x = 0, which is spanned by ther right eigenvectorsui.

Forµ 6= 0, the expression for the unfolded center manifoldW c(µ) in terms of coordi-

natesyi of y ∈ Ec in a basis of critical eigenvectorsui is given by

x = y + h(y,µ) =
r∑
i=1

yiui +
∑
pq

hpqypµq, (A.3)

with integer setsp = (p1, . . . , pr), q = (q1, . . . , qs), andyp =
∏

i y
pi
i , µq =

∏
j µ

qj
j .
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The normal form, determining the dynamics on the unfolded center manifold, is given by

a system of coupled equations

ẏi = λiyi +
∑i

pq

u∗i ·fpqypµq∆(p·λ− λi), (A.4)

where∆(s) = 1 for s = 0, and∆(s) = 0 otherwise. Thus, the sum in Eq. (A.4) is effectively

taken over all possible setsp for which the resonance condition for thisi’th component is

satisfied, i.e.

p·λ =
r∑
j=1

pjλj = λi. (A.5)

In the following, a setp is calledresonant, if the condition (A.5) is satisfied for at least one

componenti = 1, . . . , r. In Eq. (A.4), the vectorsfpq are coefficients in the expansion of the

vector fieldf(x,µ) on the unfolded center manifoldW c(µ) defined as

f(y + h(y,µ),µ) =
∑
pq

fpqypµq. (A.6)

The procedure that should be used to determine the coefficient vectorshpq in Eq. (A.3) is

systematically presented in Ref. [74].

For any nonresonant setp, these vectors are solutions of the system linear equations

Ap ·hpq = −Φpq, (A.7)

where the matrixAp is given by

Ap = J−
r∑
j=1

pjλjI, (A.8)

andI is the unity matrix. Here, the “source term”Φpq is a complicated function of the lower-

order solutionshp′q′ for which a general closed expression is given in Ref. [74]. The orderp

of any given setp is defined asp =
∑r

i=1 pi. The order of a setq is defined similarly.

For a resonant setp, the matrixJ −
∑r

j=1 pjλjI is singular. In this case, operatorsRp

andQp are introduced such thatRp projects onto the null-space ofAp andQp = I −Rp,

namely

Rp ·x = (I−Qp)·x =
r∑
i=1

(u∗i ·x)ui∆(p·λ− λi). (A.9)

Under resonance conditions, the vectorshpq are given by solutions of the equations

Ap ·hpq = −Qp ·Φpq, (A.10)
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with the additional constraint thathpq should be orthogonal to the null-space ofAp, i.e.

Rp ·hpq = 0. (A.11)

SinceΦpq depends on lower order solutionshp′q′, the system of equations (A.7) and

(A.10) should be solved iteratively starting from the lowest order.

Now, the specific bifurcation is considered at which the spectrum of critical eigenvalues

consists of one pair of complex conjugate, imaginary eigenvalues and one real eigenvalue

equal to zero. First, the generic case is discussed, which is a fold-Hopf bifurcation, and

then the additional requirements necessary for a pitchfork-Hopf bifurcation to take place are

described.

Only terms up to linear order in the bifurcation parametersµ (i.e. |q| = 0, 1) are kept.

In this case, contributions of different componentsµi of µ are additive, and for simplicity a

single parameterµ corresponding to the case whereq is a simple scalarq is considered: The

generalization to several parameters is straightforward. In addition, the notation is simplified

by assigning

λ1,2 = ±iω0 and λ3 = 0 (A.12)

for the eigenvalues at the bifurcation point. The notationu1 = u, u2 = u, andu3 = v is

used for the corresponding right eigenvectors. In this case, only the amplitudes fory1 andy3

need to be considered, because complex conjugation givesy2 = y1 (to simplify the notation,

A = y1e−iω0t andz = y3 is defined). Generically, this situation corresponds to a fold-Hopf

bifurcation, for which the general structure of the normal form can be found immediately

using Eq. (A.4) and Eq. (A.5)

Ȧ = σ1µA+ g0Az + g1|A|2A+ g2Az
2, (A.13a)

ż = σ2µ+ σ3µz + c0|A|2 + c1z
2 + c2|A|2z + c3z

3, (A.13b)

where all terms up to third order inA andz are included forq = 0 and only terms essential

to the unfolding forq = 1. The coefficients in the equation forA are complex (although the

imaginary part ofσ1µ can always be scaled out), the coefficients appearing in the equation

for z are real.

To find the coefficients in Eq. (A.13) explicitly, first the expressions for the coefficient

vectorsfpq given by Eq. (A.6) are determined. To third order, the expansion of the center
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manifold given by Eq. (A.3) becomes

x =uA+ uA+ vz + (h2000A
2 + c.c.) + h1100|A|2 + h0020z

2 + (h1010Az + c.c.)+

(h3000A
3 + h2100|A|2A+ c.c.) + (h2010A

2z + h1020Az
2 + c.c.)+

h1110|A|2z + h0030z
3 + (h0001 + h1001A+ h0101A+ h0011z)µ,

(A.14)

where “c.c.” denotes the complex conjugate of all preceding terms within a given bracket.

Substituting Eq. (A.14) into the Taylor expansion of the expression on the right-hand

side of Eq. (A.1), and collecting terms of the same order inA, A, z, andµ, the following

contributions to the coefficient vectorsfpq are found:

f1010 = Fxx(u,v),

f2100 = Fxx(u,h1100) + Fxx(u,h2000) + 1
2
Fxxx(u,u,u),

f1020 = Fxx(u,h0020) + Fxx(v,h1010) + 1
2
Fxxx(u,v,v),

f1010 = Fxx(u,u),

f0020 = 1
2
Fxx(v,v),

f1110 = Fxx(u,h0110) + Fxx(u,h1010) + Fxx(v,h1100) + Fxxx(u,u,v),

f0030 = Fxx(v,h0020) + 1
6
Fxxx(v,v,v),

f0001 = Fµ,

f1001 = Fxµ ·u + Fxx(u,h0001),

f0011 = Fxµ ·v + Fxx(v,h0001),

(A.15)

where the following notations are used

Fxx(x,x) =
n∑

i,j=1

∂2F

∂xi∂xj
xixj, Fxxx(x,x,x) =

n∑
i,j,k=1

∂3F

∂xi∂xj∂xk
xixjxk,

Fµ =
∂F

∂µ
, Fxµ ·x =

n∑
i=1

∂2F

∂xi∂µ
xi, etc.

(A.16)

The coefficient vectorshijkl are determined by solving the corresponding system of linear

equations (A.7) and (A.10). Using Eq. (A.4), the expressions for the coefficients in Eq. (A.13)

can be written as

g0 = u∗ ·f1010, g1 = u∗ ·f2100, g2 = u∗ ·f1020,

c0 = v∗ ·f1100, c1 = v∗ ·f0020, c2 = v∗ ·f1110, c3 = v∗ ·f0030, (A.17)

σ1 = u∗ ·f1001, σ2 = v∗ ·f0001, σ3 = v∗ ·f0011.



A.2 Derivation of the normal form and the amplitude equations 131

The case of a pitchfork-Hopf bifurcation is a special case of the fold-Hopf bifurcation,

which satisfies

c1 = 1
2
v∗ ·Fxx(v,v) = 0. (A.18)

Definingηi = σiµ for i = 1, 2, 3, system (A.13) transforms into

Ȧ = η1A+ g0Az + g1|A|2A+ g2Az
2, (A.19a)

ż = η2 + η3z + c0|A|2 + c2|A|2z + c3z
3, (A.19b)

which is the complete unrescaled normal form of the pitchfork-Hopf bifurcation.

The amplitude equations of the pitchfork-Hopf bifurcation

When the system described by Eq. (A.1) is modified by introducing diffusion of the involved

species, the time evolution of the system is governed by a reaction-diffusion equation

∂tx = F(x;µ) + D·∇2x, (A.20)

wherex = x(r, t) andD is a diagonal diffusion matrix.

In reaction-diffusion systems, diffusion may take the local concentrations away from the

center manifoldW c even if they initially were onW c everywhere. However, close to the

bifurcation, the motion on the unfolded center manifold due to local interactions typically is

much slower than the motion transverse to it. Consequently, diffusion never takes the system

far away from that “slow manifold”, so the evolution of the spatially extended system may

be approximately described by Eq. (A.20) withx restrained to move on the slow manifold

W c(µ) given by Ref. (A.3).

Therefore, to get a differential equation iny, the right-hand side of Eq. (A.3) may be

substituted in Eq. (A.20). The appropriate solution to the resulting equation is then trans-

formed by Eq. (A.3) to the motion in the center manifold, the approximate solution to the

reaction-diffusion equation (A.20).

Just as in the derivation of the normal form (A.13), the discussion is restricted to a bi-

furcation with a single pair of complex conjugate imaginary eigenvalues±iω0 together with

any number of semisimple eigenvalues. There arer such critical eigenvalues (counting mul-

tiplicity) and r linearly independent right eigenvectors and corresponding left eigenvectors

satisfying the biorthonormality relations (A.2). The period of the oscillations nearx = 0 at

µ = 0 is T = 2π/ω0.
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The solutiony(r, t) may be expressed as the modulation of harmonic oscillations of fre-

quencyω0 for the oscillatory mode. To find an equation for the modulation, it is convenient

to viewy as a function of two independent time variables,τ andθ, with θ accounting for the

(fast) harmonic oscillation andτ describing the (slow) modulation of the dynamics. Specifi-

cally, it is possible to define

y(r, τ, θ) = eJθ ·z(r, τ) =
r∑
i=1

eλiθzi(r, τ)ui, (A.21)

wherezi are newly introduced amplitudes that should not be confounded with the ampli-

tudez of the real mode introduced above. At the end of the calculation,τ = θ = t shall be

chosen. Through Eq. (A.1) and in terms of the new time variables, the reaction-diffusion

equation (A.20) may be written as

∂τx = (J·x− ∂θx) + f(x,µ) + D·∇2x. (A.22)

The linear operatorsPi are now defined as

Pi[g(θ)] =
1

T

∫ T

0

e−λiθu∗i ·g(θ)dθ. (A.23)

Since

∂τy = eJθ ·∂τz =
r∑
i=1

∂τzie
λiθui, (A.24)

it is Pi[∂τy] = ∂τzi, and therefore it is possible to extract an equation for∂τzi by applying

Pi to both sides of Eq. (A.22). As shown in Ref. [163], the following identities hold forPi

Pi[∂τh] = 0 and Pi[J·x− ∂θx] = 0, (A.25)

and application ofPi to Eq. (A.22) therefore gives

∂τzi =
1

T

∫ T

0

e−λiθu∗i ·f(y+h(y,µ))dθ+
1

T

∫ T

0

e−λiθu∗i ·D·∇2(y+h(y,µ))dθ. (A.26)

By observing

yp =
∏
i

ypii = exp

(∑
i

piλiθ

)∏
i

zpii = ep·λθzp, (A.27)

the first integral term in Eq. (A.26) involvingf(x,µ) can be determined as

1

T

∫ T

0

e−λiθu∗i ·f(y + h(y,µ))dθ =
1

T

∑
pq

u∗i ·fpqzpµq

∫ T

0

e(p·λ−λi)θdθ

=
∑i

pq

u∗i ·fpqzpµq, (A.28)
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where the last sum is taken over all sets(p,q) for which the resonance condition (A.5) for the

i’th component is satisfied. All other terms vanish because of the integral of the exponential

in Eq. (A.28).

For the diffusion part of Eq. (A.26), a nonlinear term arises because the motion is re-

strained to the slow manifold. Diffusion is linear inx but since the dynamics is described in

terms of pointsy ∈ Ec, diffusion is not linear iny. However, it can be expected that the lin-

ear diffusion terms will dominate over the nonlinear diffusion, and these higher order terms

may therefore be neglected in first approximation. For the diffusion term of Eq. (A.22), it

follows

1

T

∫ T

0

e−λiθu∗i ·D·∇2(y + h(y,µ))dθ =
1

T

∫ T

0

e−λiθu∗i ·D·∇2ydθ

=
∑
j

u∗i ·D·uj∇2zj
1

T

∫ T

0

e(λj−λi)θdθ

= u∗i ·D·ui. (A.29)

By using Eqs. (A.28) and (A.29), an amplitude equation for the modulation is obtained as a

set of coupled equations for the set of all coefficientszi(r, τ) defined in Eq. (A.21),

∂tzi =
∑i

pq

u∗i ·fpqzpµq + di∇2zj, wheredi = u∗i ·D·ui, (A.30)

where the sum is taken over all sets(p,q) for which the resonance condition (A.5) for the

i’th component is satisfied. Here,τ is identified with the “real” timet, since there is no

longer a need to distinguish between the two formal time variablest andτ . An equivalent

rescaled normal form, similar to Eq. (A.30), may also be expressed for the uniform system

given by Eq. (A.1). This is obtained by insertion of the rescaling (A.21) in Eq. (A.4), which

then yields an expression for the normal form in terms of the amplitudeszi, namely

żi =
∑i

pq

u∗i ·fpqzpµq. (A.31)

From a solutionzi(r, t) (i = 1, . . . , r) to Eq. (A.30), an approximate solution to the

reaction-diffusion equation (A.20) is obtained as

x(r, t) = y(r, t) + h(y(r, t),µ), (A.32a)

y(r, t) =
r∑
i=1

zi(r, t)e
λitui. (A.32b)
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Note that the transformationh produces higher-order harmonics of the formeikω0t (|k| 6= 1)

in the plane of oscillations and also generates components off the center subspaceEc. Of

course, these terms are also modulated (by products of powers of the amplitudeszi) and are

therefore not periodic int.

The only difference between the amplitude equation (A.30) derived for a reaction-diffu-

sion system and the normal form (A.31) for the ODE system is the presence of the additional

diffusion term. The derivation of the particular amplitude equation for a distributed system

undergoing a pitchfork-Hopf bifurcation is therefore a relatively simple task, since the re-

sult (A.19) for the ODE system only needs to be modified by addition of the diffusion terms

di = u∗i ·D·ui. In accordance with the notation used in Sec. 4.1.1, the amplitude equation

for the distributed pitchfork-Hopf bifurcation is given by

∂tA = η1A+ g0Az + g1|A|2A+ g2Az
2 + dA∇2A, dA = u∗ ·D·u, (A.33a)

∂tz = η2 + η3z + c0|A|2 + c2|A|2z + c3z
3 + dz∇2z, dz = v∗ ·D·v. (A.33b)
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A.3 Simplification of the amplitude equations

Here, the conditions are discussed under which the normal form Eq. (4.1) (or Eq. (A.19)) for

the pitchfork-Hopf bifurcation can be reduced to the simpler case given by Eq. (4.2).

The normal form of a uniform reaction-diffusion system close to the pitchfork-Hopf bi-

furcation is given by Eq. (A.19),

Ȧ = η1A+ g0Az + g1|A|2A+ g2Az
2, (A.34a)

ż = η2 + η3z + c0|A|2 + c2|A|2z + c3z
3, (A.34b)

whereη1, g0, g1 andg2 are complex,η2, η3, c0, c2, andc3 real coefficients. Real and imaginary

parts are denoted asη1 = ηr1 + iηi1; no confusion with the indexi and the numberr of

eigenvalues (both used above), or the amplitude of oscillationsr (used below) should occur.

A simple rescalingA = exp(iηi1t)Ã and subsequent dropping of tildes and suppressing of

the superscriptr for η1 then lead to Eqs. (A.34), whereη1 is now a real-valued parameter.

In the following, the parametersη1, η2 andη3 are regarded as the independent bifurcation

parameters of the system, which are assumed to be small.

The usual transformationA = r exp(−iφ) to phaseφ and amplituder yields

ṙ = η1r + gr0rz + gr1r
3 + gr2rz

2, (A.35a)

ż = η2 + η3z + c0r
2 + c2r

2z + c3z
3, (A.35b)

where the equation of the phase is omitted. In the following it is assumed that the Hopf and

pitchfork bifurcations are supercritical, i.e.gr1 < 0 andc3 < 0.

Rescaling amplituder =
√
−1/gr1r̃ and real modez = (1/gr0)z̃, Eqs. (A.35) transform

into

ṙ = η1r + rz − r3 + κ1rz
2, (A.36a)

ż = η̃2 + η3z − γ̃r2 + κ2r
2z − ν̃z3, (A.36b)

where the tildes of the amplitudes are dropped andκ1 = gr2/(g
r
0)2, κ2 = −c2/g

r
1, η̃2 = η2g

r
0,

γ̃ = gr0c0/g
r
1, andν̃ = −c3/(g

r
0)2. The parameters that could be confounded with the param-

eters defined in Sec. 4.1.1 have tildes now. In the following, the effect of the termsκ1 andκ2

on the solutions obeyinġr = 0 and ż = 0 is investigated. In particular, is must be ensured

that the terms containingκ1 andκ2 do not contribute in a significant way to the solution in

the birhythmic regime near the bifurcation point, i.e. for|η1,2,3| � 1.
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Limit cycles with a constant amplitude requireṙ = 0 and fulfill therefore

r2 = η1 + z + κ1z
2. (A.37)

Note that the right-hand side of this equation must be positive. Inserting Eq. (A.37) into

Eq. (A.36b), the following equation is yielded

η̃2 − γ̃η1 + (η3 − γ̃ + κ2η1)z + (κ2 − γ̃κ1)z2 − (ν̃ − κ1κ2)z3 = 0, (A.38)

which is equivalent to

z3 − κ2 − γ̃κ1

ν̃ − κ1κ2

z2 − η3 − γ̃ + κ2η1

ν̃ − κ1κ2

z − η̃2 − γ̃η1

ν̃ − κ1κ2

= 0. (A.39)

The main argument is that in the appropriate limit forη1,2,3, the three roots of Eq. (A.39) and

the associated amplitudes of the limit cycles vanish simultaneously.

Reduced system

The argument is outlined first for the simple reduced system, whereκ1 = κ2 = 0. In this

case, Eq. (A.39) becomes

z3 − η3 − γ̃
ν̃

z − η̃2 − γ̃η1

ν̃
= 0. (A.40)

A sufficient (not necessary) condition for bistability ofz is that in Eq. (A.40) the constant

term is zero and the coefficient of the linear term negative. This means

η̃2 = γ̃η1, (A.41a)

η3 − γ̃
ν̃

> 0. (A.41b)

In general, the roots ofz are calculated with the Cardan formula (cf. Sec. 4.1.2). Here, how-

ever, the constant term of Eq. (A.40) and one of its roots,z2, are zero, and the rootsz1,3 are

determined easily as

z1,3 = ∓
√
η3 − γ̃
ν̃

. (A.42)

Assuming that|z| � 1 for |η3| � 1, i.e. the coupling of the amplitude to the real mode

should not be too strong (the cusp points of the fixed point and the limit cycle shall not be

separated too far from each other), means

|γ̃|
ν̃
� 1. (A.43)



A.3 Simplification of the amplitude equations 137

Also, since only small values ofη1,2,3 should be allowed, it has to be required thatη3 and|γ̃|
are of the same order because otherwise the rootsz1,3 cannot become zero, i.e.

|γ̃| � 1. (A.44)

The condition of having a limit cycle with amplituder associated with the rootsz1,3 is

η1 ≥
√
η3 − γ̃
ν̃

. (A.45)

Therefore, ifη3 → γ̃, thenz → 0 andr → η1. To everyη1 there exists añη2 that fulfills

Eq. (A.41a). Furthermore, forη1 → 0, the amplituder → 0 andη̃2 → 0 simultaneously.

Full system

Now, the coefficientsκ1 andκ2 are nonvanishing. Equation (A.39) is rewritten as

z3 − p2z
2 − p1z − p0 = 0, (A.46)

where

p2 =
κ2 − γ̃κ1

ν̃ − κ1κ2

, (A.47a)

p1 =
η3 − γ̃ + κ2η1

ν̃ − κ1κ2

, (A.47b)

p0 =
η̃2 − γ̃η1

ν̃ − κ1κ2

. (A.47c)

The main difference to the reduced model is the termp2 which is nonvanishing and indepen-

dent from the bifurcation parameters. In particular, it is not possible to have all three roots of

z being exactly zero at the same time.

The bifurcation parameter̃η2 can be chosen such that

η̃2 = γ̃η1, (A.48)

is fulfilled and thereforep0 = 0. In this case, one of the roots of Eq. (A.46),z2, is zero. Then,

the equationz2 − p2z − p1 = 0 gives two rootsz1,3 = ±c + p2/2 (wherec =
√
p1 + p2

2/4)

which cannot be exactly zero at the same time. However, it is possible to tunec to zero by

choosing

η3 = γ̃ − κ2η1 − (κ2 − γ̃κ1)2/4. (A.49)
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In this case, the rootsz1,3 approach the common valuez1,3 → p2/2. The rootsz1,3 become

arbitrarily small for|p2| � 1. This condition means that∣∣∣∣κ2 − γ̃κ1

ν̃ − κ1κ2

∣∣∣∣� 1. (A.50)

For all coefficientsκ1 andκ2 there is a value of̃ν that fulfills this condition. If the coefficients

κ1 andκ2 are not larger than of order unity, the condition (A.50) becomesν̃ � 1, which is

assumed in this work. To summarize, the conditions

|γ̃| � 1 and ν̃ � 1 (A.51)

should be fulfilled in order that the reduction of Eq. (4.1) to Eq. (4.2) holds.
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A.4 Details of the numerical integration

The simulations presented in this thesis were obtained using a variety of software. In partic-

ular, following applications have been used:

• The Virtual Laboratory.This simulation platform was developed by Alexander von

Oertzen in the Fritz Haber Institute of the Max Planck Society for the interactive sim-

ulation and graphical representation of reaction-diffusion systems in one and two spa-

tial dimensions. The author of this thesis has maintained this software during the last

two years. The software is based on PV-WAVE, a product of VISUAL NUMERICS.

The specific integration kernels must be written by the respective user of the platform,

in this case by the author of this thesis. More details on the Virtual Laboratory can be

found in Ref. [179].

• Simulations of the amplitude equations.The models discussed in Chapters 3 and 4 have

been integrated with an explicit Euler method. The Laplacian operator is discretized

with a nearest-neighbor (Five-point Laplacian) approximation and the Virtual Labora-

tory is used throughout. For the amplitude equations of the pitchfork-Hopf bifurcation,

the numerical accuracy has been tested by repeating several simulations using a fourth-

order explicit Runge-Kutta scheme and a stiff implicit Gear method.

• Simulations of the extended FitzHugh-Nagumo model.The model of Chapter 5 has

been integrated with an explicit Euler method in the one-dimensional domain, using

the Virtual Laboratory. Two-dimensional simulations have been performed using the

DVODE solver of ODEPACK, a collection of FORTRAN solvers. The Laplacian op-

erator is again discretized with a nearest-neighbor approximation.
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