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den Rücken frei. Sie bestärkte mich in meinem Unterfangen
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Abstract

In this thesis, we investigate the transport of colloids in one spatial dimension by numerical
computations and theoretical considerations. We consider the Brownian motion of the colloids
in the presence of spatially periodic strong external fields, which we model with a tilted
washboard potential. We are interested in the time-dependent evolution of non-equilibrium
processes in this potential. We focus on the time and length scales which span from the
motion inside one valley of the periodic potential to the motion among the valleys.

The theoretical description of the continuous stochastic thermal fluctuations in the par-
ticles’ positions is achieved via the overdamped Langevin equation and its Fokker-Planck
equation, the Smoluchowski equation (SE). Further, we employ the Dynamical density func-
tional theory (DDFT) to predict the motion of interacting colloids on large time and length
scales.

In the first two content chapters we consider the transport of a single Brownian particle
in a tilted washboard potential. We are interested in the short time diffusion, in particular
in the mean squared displacement (MSD). We propose a simple model which yields analytic
expressions for the time dependence of diffusional properties such as the MSD. Then we turn
to the question: How long does a stochastic process take? To answer this question for our
asymmetric continuous system, we propose a generalisation for the waiting time distribution
(WTD), which was previously available only for discrete systems. Our definition of the WTD
and our recipe to calculate the WTD via a SE facilitates a detailed characterisation of nearly
discrete stochastic processes.

In the middle of this thesis we present a time delayed feedback control protocol for the
motion of a single Brownian particle in an asymmetric periodic potential. Feedback control
means that the systems is steered towards a certain behaviour by using information from
the system itself. We show that an ensemble averaged modelling of feedback control via a
Fokker-Planck equation makes sense for a dilute colloidal suspension. We apply the modelling
to a ratchet system where the time delay in the feedback protocol creates the ratchet effect.
By varying the parameters of the control protocol we show that the generated current can be
higher than that of a corresponding standard ratchet system. Further, we address stochastic
thermodynamics and examine the entropy production entwined with this non-equilibrium
process.

In the last two chapters, we consider the effect of particle interactions on diffusion and
transport in a tilted washboard potential. We consider ultra-soft particle interaction and
attractive hard spheres. We find that ultra-soft repulsive interaction between particles results
in a much stronger diffusion compared to the single particle case. We calculate the MSD and
the diffusion coefficient and show the influence of particle interaction to the giant diffusion
effect. Finally, we propose a feedback control protocol for the collective transport of several
particles. We impose a trapping potential onto the colloids which mimics moving optical
tweezers. The particles agglomerate to clusters. We show that the combined influence of the
feedback controlled trap and the repulsive particle interactions leads to an enhancement of
the mobility of the particle cluster of several orders of magnitude.
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Zusammenfassung

In dieser Arbeit untersuchen wir den Transport von Kolloiden in einer räumlichen Dimension
mit theoretischen und numerischen Methoden. Wir betrachten die Brownsche Bewegung der
Kolloide unter dem Einfluss eines starken externen räumlich moduliertes Feldes. Wir model-
lieren den externen Einfluss mit einem periodischen Potential und einer konstanten treiben-
den Kraft. Wir interessieren uns für Prozesse außerhalb des thermischen Gleichgewichts.
Insbesondere studieren wir die Bewegung auf Längen- und Zeitskalen, die zwischen der Be-
wegung in den Tälern des Potentials und der Bewegung zwischen den Tälern liegen.

Für die theoretische Beschreibung der Brownschen Bewegung setzen wir die Langevin
Gleichung und die zugehörige Fokker-Planck Gleichung, die Smoluchowski Gleichung, ein.
Weiterhin benutzen wir die Dynamische Dichtefunktionaltheorie um die Teilchenwechsel-
wirkungen auf großen Längen- und Zeitskalen berechnen zu können.

In den ersten beiden Kapiteln betrachten wir die Bewegung eines einzelnen Brownschen
Teilchens im gekippten Waschbrettpotential. Wir betrachten die Kurzzeitdiffusion, die durch
die mittlere quadratische Verschiebung des Teilchens quantifiziert ist. Wir präsentieren ein
einfaches Modell, das analytische Voraussagen für die zeitabhängigen Diffusionseigenschaften
liefert. Weiterhin studieren wir die Zeit, die ein Brownsches Teilchen für die Überquerung
einer Energiebarriere benötigt. Dazu schlagen wir eine Verallgemeinerung der Wartezeit-
verteilung vor, die zuvor nur für diskrete System verfügbar war. Mit dieser Wartezeitver-
teilung können Systeme, die nahezu diskrete Dynamik besitzen, nun mit hoher Genauigkeit
charakterisiert werden.

Nach diesen Grundlagenuntersuchungen wenden wir uns einer Rückkoppelsteuerung zu.
Solch eine Steuerung optimiert das Verhalten eines System unter Verwendung von Informa-
tionen aus dem System selbst. Unsere Rückkoppelsteuerung steuert ein Brownsches Teilchen
in einem asymmetrischen periodischen Potential auf der Basis von zeitverzögerter Bereitstel-
lung der Information aus dem System. Wir zeigen, dass dadurch ein gerichteter Strom in dem
System entsteht. Der Vergleich mit dem zugehörigen System ohne rückgekoppelte Steuerung
zeigt, dass der Strom durch rückgekoppelte Steuerung verstärkt werden kann.

In den letzten beiden Kapiteln behandeln wir Diffusion und Transport von wechselwirk-
enden Teilchen. Wir konzentrieren uns wieder auf die mittlere quadratische Verschiebung
und zeigen, dass die Diffusion durch repulsive Teilchenwechselwirkung verstärkt wird. Danach
schlagen wir eine weitere Rückkoppelsteuerung für den kollektiven Transport vor. Die Steuerung
arbeitet wie eine optische Falle, die mit den Teilchen mitbewegt wird. Wir zeigen, dass
die Mobilität der Teilchengruppe durch das Zusammenspiel von Falle und Teilchenwechsel-
wirkung um mehrere Größenordnungen erhöht wird.
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1. INTRODUCTION

Various challenges in technology can be traced back to effects concerning the transport of
colloids in confinement [1–6]. Here, the transport of a single overdamped Brownian particle
in a one-dimensional periodic potential (so-called washboard potential) has developed to
a paradigm system [7, 8]. Much effort was devoted to the investigation of this stochastic
system [9–11] as it provides a lot of fundamental insight into colloidal transport. In this
thesis, we provide insight into the short time dynamics of an overdamped Brownian particle
driven through a washboard potential by proposing a model for the short time diffusion and
by generalising the waiting time distribution (WTD) in order to quantify the duration of
valley to valley motion. Building on decades of established research, we now can consider
this important paradigm system as well understood.

However, a single Brownian particle is only one step towards fully understanding colloidal
transport, where particle interactions are omnipresent. Diffusion and transport of interacting
particles in washboard potentials is far from understood. We investigate the short time
diffusion of an expanding particle cluster to get an impression of the influence of particle
interactions. A further question arises with modern experimental methods which are used
to influence colloidal systems based on the motion of the colloids themselves. This so-called
feedback control offers a whole new range of possible transport mechanisms. In this work,
we propose a feedback control scheme for a single Brownian particle based on the ratchet
effect where the generated current is larger than in a corresponding rocking ratchet. Finally,
we combine feedback control and collective transport by confining particles in a trap with
a feedback-controlled position. This construction, which we call ’dynamic freezing’, leads to
an enhancement of the mobility of the particle cluster by several orders of magnitude with
respect to both, the uncontrolled system and the single particle feedback-controlled system.

Model for short
time diffusion

Waiting time
distribution for
barrier crossing

force

How fast?How far?

Short time diffusion
of a particle cluster

Dynamic freezing

Feedback
controlled

rocking ratchet

Single Brownian particle

Fig. 1.1: Projects (titles in small capitals). In the field of transport in 1D washboard potentials
we combine short time analysis, particle interaction, and feedback control.
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The rest of the introduction is held very general. Therefore, every content chapter has
an introduction on its own to focus on the specific questions at hand. Colloidal suspensions
in general are addressed in section 1.1. Section 1.2 introduces colloids in interaction with
external fields. Then, in section 1.3, we introduce the meaning of ‘short’ and ‘long times’ and
the corresponding effects that we investigate. Our systems are out of thermal equilibrium.
Section 1.4 states consequences of non-equilibrium and introduces the standard character-
isation. In section 1.5 we review known phenomena concerning transport and diffusion in
one-dimensional periodic potentials. Further, our standard form of a sinusoidal washboard
potential is discussed. Section 1.6 introduces feedback control. Finally, section 1.7 gives an
overview about the contents of the thesis.

1.1 Colloidal suspensions

Many fluids in our everyday life are colloidal suspensions. Colloidal suspensions of natu-
ral origin include clay, blood, milk, and many dairy products [12–15]. Additionally, there
are numerous household applications which exploit properties of colloidal suspensions, e.g.,
paints, coatings, lotions, and creams [12,16–18]. Similarly, colloidal suspensions are relevant
for various foods, where their relevance continues to grow [19, 20], and even the production
of ceramics is closely interwoven with colloid science [21].

The term colloidal suspensions refers to colloids immersed in a solvent, which is mostly
a liquid such as water or oil. The colloids are defined through their size, which ranges from
10nm to 10µm [18, 22]. Their material is not restricted, so colloids consist of a variety of
materials. Colloids that consist of crystal or glass include SiO2 and other minerals in clay,
putty, and cement [12, 23–26]. Other colloidal suspensions consist of small droplets of a
liquid in a different liquid, e.g., oil-in-water suspensions like lotions, milk, and cream, where
the colloids themselves are fat droplets [12,13,15,19]. In butter, colloidal water droplets are
immersed in a fat solvent. Demixing of the droplets and solvent in liquid colloidal suspensions
is often hindered through surfactants – in dairy products, the protein casein acts as such a
surfactant [12–14,19]. A further class of colloids contains a variety of biomolecules where each
molecule forms a colloid. Examples for such biomolecules are collagen, the main protein of
mammal tissue [27], or mucines, the proteins which form mucus (together with water) [28,29].

We recognise colloidal suspensions through their mechanical behaviour. An external per-
turbation can deform a colloidal suspension more easily than a solid, which coined the term
soft matter for such suspensions [22, 30, 31]. However, the mechanical properties of colloidal
suspensions are more complex than those of liquids. One of their typical properties is the for-
mation of gels (in the meaning of shower gel, hair gel, etc.) [12,21,32–35]. Further, many col-
loidal suspensions are non-Newtonian fluids, which means that their shear viscosity changes
for increasing shearing. Shear-thinning fluids, such as saliva, ketchup, blood, or paint, show a
decreasing viscosity with increasing shear [16, 19, 36, 37]. The opposite behaviour, where the
viscosity increases with increasing shear, is called shear-thickening. Shear-thickening colloidal
suspensions include clays [25] which are used to enhance the resistance of armour [38–40].

The fundamental property of colloids is their Brownian motion [41]. In Brownian motion,
the position of a colloid is subject to continuous erratic fluctuations. These fluctuations allow
every imbalance in the positions of the particles to decay with time, i.e. Brownian motion
results in diffusion. The origin of these fluctuations lies in the vast number of collisions
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between the colloid and the solvent molecules, which move due to temperature. The colloid
is large enough to move only little with every collision, but small enough to still ‘feel’ the
solvent molecules. Dhont used this connection of the colloids’ size to the solvent particles’ in
his book [41] to estimate the range of colloid sizes.

The range of colloid sizes is not sharp. For smaller particles, there is an overlap with
the term ‘nanoparticles’, whose size range is approximately 1nm to 100nm [7, 42–44]. On
this very small colloidal length scale, systems, such as fullerenes (size ≈ 1nm), exist that
display some but not all colloidal properties. Fullerenes gelate, which is typical for colloidal
suspensions. However, fullerene gelation does not require a solvent [45]. The attractive
interaction, which is necessary for gelation, is provided by van-der-Waals forces, which are
important for molecules, but negligible for most colloids.

The upper limit of colloidal sizes is given through particles larger than ≈ 10µm, where
Brownian motion becomes irrelevant. Larger particles constitute granular materials, which
show complex rheological behaviour [17, 46–48] but sediment in suspension instead of per-
forming Brownian motion. An example at the upper-size limit is quicksand, which consists
of clay particles mixed with sand, where only the clay particles have colloidal size [49, 50].
An example of a dispersion with granular matter is the mixture of starch and water, where
the size of starch grains is between 20µm and 100µm [48]. This dispersion is very suit-
able to demonstrate shear-thickening. YouTube gives dozens of examples upon entering the
search-term ‘starch water’.

The physical investigation of colloidal suspensions needs both, experimental and theo-
retical understanding. Larger colloids are easier to measure, while smaller colloids require
more involved experimental set-ups. Colloids of µm size and larger can be observed with
microscopes operating with visible light [51]. Colloids of this size move rather slowly. The
time a colloid needs to move its own diameter due to Brownian motion, the Brownian time
τB, lies between 10−2s and 102s for µm-sized particles (see Table 2.1 on page 31). Exploiting
the particle size and their slowness, optical microscopes have been combined with video cam-
eras to create video microscopy [51,52]. Video microscopy enabled access to a large range of
experimental data for colloidal systems composed of µm-sized particles.

In theoretical modelling, the first major challenge is the treatment of the thermal molecu-
lar motion in the solvent, which causes the Brownian motion of the colloid. This microscopic
molecular motion can influence macroscopic properties such as the shear viscosity of the col-
loidal suspension. Despite a century of research, the understanding is not yet deep enough to
thoroughly predict the macroscopic behaviour from the microscopic ingredients [22,32,53–58].
This link is desirable, since it would enable us to create (soft) matter with customised me-
chanical, mixing, thermal, electric, magnetic, and optical properties. To establish this link,
theory would have to bridge many orders of magnitude in length and time which is a challeng-
ing task. In particular, the computational effort required to treat all effects on a microscopic
level is currently simply not feasible. Therefore, a hierarchy of models with different levels
of detail is used [41, 59]. The theory chapter, chapter 2, reviews the levels of detail we are
going to study.
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1.2 Colloidal motion in a structured environment

We are interested in the motion of colloids that are influenced by external forces. External
forces stronger than the Brownian motion lead to interesting dynamics, which explain some
phenomena in nature and enable the development of new technology. In the following I
discuss some examples that serve as inspiration for our work.

In biological cells, there is a group of proteins called ‘motor proteins’, which convert
chemical energy into mechanical energy. One of these proteins, kinesin, is responsible for
transport of cargo inside a cell, as depicted in Fig. 1.2(a). Inside the cell there is a network
of microtubules [60], where every microtubule has a regular surface structure. The kinesin
proteins can dock onto a microtubule, which changes the spatial conformation of the protein
and allows adenosine triphosphate (ATP) molecules to bind to it. Using the energy of the
chemical reaction of ATP into adenosine diphosphate (ADP), the protein deforms and moves
a distance of ≈ 8.2nm along the microtubule, pulling the attached cargo with it [2]. The
ADP is then released and the process repeats. Both, deformation and centre of mass motion
is Brownian during the whole process. The force fields that work here besides the Brownian
motion are the binding between microtubule and protein, and the binding between protein
and ATP [61]. Several models have been proposed, with different levels of detail. A very
simple one-dimensional model called ‘rocking ratchet’ is sufficient to explain the basic prin-
ciple of motion [2, 9, 62]. This model is introduced in section 1.5.2. The Brownian motion
does not disturb the motion of the motor, instead it provides (by thermal fluctuations) the
necessary energy to release the tubule-protein bound to ignite the process [2].

Similar thermally activated motion is found for colloids diffusing on structured surfaces,
see Fig. 1.2(b). If the surface is a crystalline layer of colloids, the places with more neighbours
are energetically favoured over places with fewer neighbours [63]. Major influence on the
dynamics originates from the ratio of the binding energy to the thermal energy kBT , where
T is the (absolute) temperature and kB is Boltzmann’s constant. In a basic model, the motion
of particles can be reduced to thermally activated transitions between binding sites [64] if
the binding energy is larger than kBT . Similar thermally activated processes also occur for
particles diffusing across stripes on surfaces with a striped energy landscape [65, 66], and in
more complex interface situations [67,68].

Particle sorting machines discriminate between particles concerning a particular property.
Often, particles are separated by size [69–71]. Figure 1.2(c) depicts an example of a size-
dependent sorting machine using a structured grid. If the sorted particles are colloids, the
process is also called microfiltration [4]. Some sorting machines rely on microfluidics [69,72–
74]. However, we are interested in machines which exploit thermally activated (or hindered)
processes [70,71,75–77]. Proof of principle experiments [71,76] were conducted with colloids
diffusing in asymmetrically shaped channels. Fig. 1.2(d) depicts a colloid in such a channel.

Intense light fields attract colloids [78]. A laser, focused to a spot in three-dimensional
space, constitutes a trap for the colloid [79, 80]. By varying the light intensity in space and
time, any potential energy landscape can be created [81–85]. Due to this enormous flexibility
the technique of creating a potential using focused lasers is called optical tweezers. Motion of
colloids in structured light fields is used excessively as a test bed to investigate the behaviour
of colloidal suspensions [78,82,83,86–92]. Further approaches to manipulate colloidal motion
involve magnetic [6, 65,77,80,93–98] and electric fields [22,70,99,100].
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(a) Illustration of kinesin proteins walking on a microtubule
carrying vesicles. Vale Lab [101], c⃝Graham Johnson.

(b) Schematic of diffusion processes of
particles on a structured surface. Drawn
by N. Kleppmann [102].

(c) Optical micrograph of a particle sorting device.
Reprinted from L. Bogunovic et al. [70].

(d) Micrograph of a colloid in an asymmetrically
shaped channel. Reprinted from C. Marquet et
al. [76].

Fig. 1.2: Examples for systems with a structured environment in which the motion of particles
is thermally activated.

Structured confinement, e.g. through solid walls, can have a pronounced influence on the
motion of a colloid. As the erratic motion is disturbed by the confinement, an asymmetry in
the wall configuration leads to an asymmetry of the motion. This can be used to transport
particles, or to create sorting machines or sieves [7,76,103]. Channels in cell membranes are
natural sieves [104]. It is the energetic and spatial structure of the channel which determines
the transport of water molecules [105] or small organic molecules [106] through channels in
cell membranes [105,107].

A porous material constitutes a structured confinement for particles diffusing through it.
To diffuse from one pore to another, the particle needs to find an opening that is only a
little larger than the particle. Again, the transitions of the particles between the pores can
be modelled as thermally activated transition [108–110]. Porous materials are important for
battery research, catalysts, and filtration [111–115].

In systems that are densely packed, the motion of every particle is restricted by the
neighbouring particles. Already one particle diameter is a large distance to move in these
systems. Essentially, the particles are trapped. Such particle trapping occurs in glasses and
supercooled liquids (liquids cooled below their melting temperature), where the particles en-
ergetically strive towards to a crystal structure. However, they cannot achieve the necessary
structural relaxation, but are trapped in cages formed by neighbouring particles [116–118].
The low temperature (with respect to the melting temperature) further decreases the prob-
ability of large positional deviations. One interesting aspect of glasses is the dynamics of a
particle leaving its cage, which can be studied as an thermally activated escape process. To
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this end, the escaping particle is considered to move in an effective energy landscape which
models the average influence of the neighbouring particles [119–121].

1.3 Between the time scales

The time scale that studied effects take place on determines the time resolution required
in both, theory and experiments. Much faster processes can usually be treated in a time-
averaged way, while processes that are much slower are often modelled as static.

The transport over high energy barriers via thermally activated processes is much slower
than diffusion without a barrier. We are interested in the transition of the dynamics from the
particle level to subsequent thermally activated hopping motion. Further, we are interested
in the influence of external time dependent forces on this transition.

First, I want to outline why the Brownian time is the fastest time scale we want to
consider here. Then, I discuss why Kramers’ rate sets the longest time scale of our interest.
The subsequent sections deal with effects that happen in between these time scales.

1.3.1 Overdamped Brownian motion

The relevant time scales for colloidal motion are well explained in the book of Dhont [41]. I
want to repeat the relevant ideas and conclusions here.

The relaxation time of the solvent is about 10−14s. On a time scale much larger than
the solvent time scale, the influence of the molecular motion on a colloid can be modelled as
Brownian motion. Hence, we model the solvent’s molecular motion through time-averaged
properties. The vast number of collisions between the molecules and the colloid create an
average friction on the motion of the colloid. The friction force acting on a colloid moving
with a velocity v is given by Stokes friction, i.e. Ffric = −γv, where

γ = 3πησ (1.1)

is called friction constant. The dynamic viscosity of the solvent is denoted by η, and σ is the
particle diameter.

Having averaged molecular motion out, the colloidal motion can be modelled through the
Langevin equation (LE)

M r̈(t) = −γṙ(t) + fdeter(r, t) + f stoch(t) . (1.2)

The position of the colloid is denoted with r and dots denote time derivatives. The Langevin
equation for colloidal motion is Newton’s equation of motion supplemented with a stochastic
force f stoch, modelling the Brownian motion. The force fdeter is a deterministic force which
results from external influences or colloid-colloid interaction. A derivation of the Langevin
equation and the following discussion can be found in Dhont’s book [41]. The acceleration
term contains the mass M of the colloid. Mass is proportional to volume (for all solid and
liquid colloids) which is proportional to σ3. The friction force, which is connected to the
colloid’s surface, is much stronger than the inertial force, which is connected to the volume.
The Reynolds number is the ratio of initial force to viscous force which is very small for
colloids in a solvent [122]. The time scale of the relaxation of accelerations is given by M/γ,
whereM is the mass of a colloid. For a SiO2 particle of 1µm diameter in water,M/γ ≈ 10−7s.
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We are not interested in these short times because the distance a colloid diffuses in this time
is around 10−3σ [41]. Hence, inertia are irrelevant for transport, where the colloids move
distances of 1σ to 103σ. The resulting motion is called overdamped Brownian motion.

Ensemble average: averaging Brownian motion out. The particular trajectory r(t)
of a colloid is unpredictable because of its stochastic nature. It does not matter whether
the trajectory was measured in an experiment or calculated as a solution of the Langevin
equation, any trajectory is different than all trajectories before and never will there be an
identical trajectory again. Therefore, predictions rely on probabilities. An experiment with
few colloids can pose a statement only if the experiment is repeated many times and a signif-
icant fraction of experiments supports that statement. The evaluation of an observable A is
realised by averaging over the values of the observable A(r, t) for many different realisations of
the stochastic force. The more realisations are taken into account the larger the significance
of the mean value. In the (theoretical) limit of averaging over all, infinitely many, possible
realisations of the random force contained in a given ensemble, the average is called ensemble
average. Whereas the average over finitely many realisations differs from one experiment to
the next, the ensemble average is not of statistical nature any more.

We will mainly work with the canonical ensemble, which contains realisations of the ran-
dom force with constant temperature and constant number of particles for all positions and
particle energies. As position, energy, and time are continuous there are infinitely many
realisations. Hence, experiments and numerical solutions of the Langevin equation, so called
Brownian dynamics simulations, can only give approximations to the ensemble average. To
calculate ensemble averages directly, statistical physics offers the tool of Fokker-Planck equa-
tions. The book of Risken [10] gives a comprehensive overview of Fokker-Planck equations.
In this thesis, Fokker-Planck equations and similar equations are the central method of in-
vestigation.

1.3.2 Diffusion: the Brownian time

With diffusion we denote the phenomenon of a system to have the tendency to equalise
every imbalance in the positions of the particles. In colloidal systems, diffusion is a direct
consequence of Brownian motion. It can be quantified with the mean squared displacement
(MSD) of a particle, which for a single particle without external forces, reads

⟨(∆r(t))2⟩ = 2dD0t . (1.3)

The angle bracket ⟨. . . ⟩ denotes an ensemble average. The quantity ∆r(t) denotes the dis-
tance the particle has travelled in the time t, i.e. ∆r(t) = r(t)− r(0). The mean distance is
zero in the absence of external forces, i.e. ⟨∆r⟩ = 0, because Brownian motion is unbiased.
The MSD quantifies the diffusion speed of a particle, given that its position was known for
sure at time t = 0. Note that a particle which moves with a constant velocity in one direc-
tion has a MSD proportional to t2. The linear growth of the MSD with time is connected
to continuous changes of the direction during Brownian motion. The proportionality con-
stant is composed of the number of spatial dimensions d and the diffusion coefficient of free
motion D0 (other names for D0 are short time diffusion coefficient [123, 124], free diffusion
coefficient [7,125], and self diffusion coefficient [92]). The free diffusion coefficient determines
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a characteristic time scale of the system, the Brownian time

τB = σ2/D0 . (1.4)

The Brownian time τB is the time a particle in average needs to diffuse the distance of its
own diameter.

Without an external potential, the diffusion coefficient is given by the Einstein relation

D0 =
kBT

γ
(1.5)

where γ is the friction coefficient [41,126]. Evaluating Eqs. (1.1) and (1.5) for a SiO2 sphere
of 1µm diameter in water yields a Brownian time of ≈ 2s at room temperature.

1.3.3 Kramers’ rate: thermally activated motion

All systems discussed in section 1.2 can be modelled by particles moving in a potential energy
landscape with local minima. Thermal fluctuations provide the energy required to overcome
energy barriers and to escape from local energy minima. If an energy barrier ∆V is larger that
the thermal energy kBT , then only the strongest fluctuations are sufficient to drive the particle
across the barrier. Of course, these fluctuations are rare. The rate rA at which they occur
was first examined in physical chemistry, where this rate is called Arrhenius rate [11]. The
important characteristic is its dependency on the temperature: rA = θ0 exp(−∆V/(kBT )).
Later, using methods from statistical physics, Kramers could base the rate on properties of
the noise in the system and could determine the prefactor θ0 from the energy landscape [127].
Kramers’ rate

rK =
D0

2πkBT

√
−V ′′(xmin)V ′′(xmax) e

−(V (xmax)−V (xmin))/(kBT ) (1.6)

depends on the potential landscape V (x) at the potential minimum xmin and maximum xmax.
I will sketch the necessary assumptions in section 2.2.1. Kramers’ rate defines a time scale
1/rK , which corresponds to the mean time that the particle needs to overcome the energy
barrier.

On the time scale 1/rK , the motion consists of subsequent thermally activated hopping
processes between potential minima. The motion can be modelled with a Master equation or
continuous time random walk [128, 129]. On this time scale, the only effect of the Brownian
motion is to set the hopping rates. As we are interested in the effects of noise in more detail,
we do not study times much larger than 1/rK .

Anomalous diffusion. If the hopping occurs between sites in a regular lattice and there are
only finitely many different processes, the resulting motion shows normal diffusive behaviour
[129]. Normal diffusion refers to motion where the MSD is linear in time for long times
t > 1/rK . Motion with a MSD with other temporal dependency for long times is called
anomalous diffusion. Many anomalous diffusion processes [130] approach a long time MSD
of the form

⟨(∆r(t))2⟩ = κEt
E . (1.7)



18 Introduction

If the exponent E = 1 the diffusion is called normal, otherwise anomalous. For E < 1 the
process is called subdiffusive, and superdiffusive for E > 1 [130–132].

Subdiffusive processes occur in systems where the potential energy landscape is not com-
pletely regular. Examples for such irregularities are random potential energy barriers be-
tween traps arranged in a lattice [129, 133], randomly arranged traps [134], or completely
random energy landscapes [83]. Anomalous diffusion is present in glasses and supercooled
liquids [116,135,136].

1.3.4 Short time diffusion

When studying short time diffusion we focus on the influence of Brownian motion for times
smaller than 1/rK , assuming that 1/rK ≫ τB. The main observable on this time scale
is the MSD. Further insight can be gained from higher order cumulants of the position of
the particles, e.g., the non-Gaussian parameter which is connected to the fourth power of
positional deviations [119].

The MSD was recently addressed in experimental and theoretical work for colloidal motion
in structured light fields [82, 83], sheared dense suspensions [137], gels [35, 138], and liquid
crystals [139]. Further, the investigation of nanoparticle motion on surfaces [66,140] relies on
the MSD. In glassy systems, the MSD is commonly used to describe the escape of a particle
from a cage formed by neighbouring particles [116,119,136,141].

In many cases the MSD shows a common three-region structure. A representative example
for this structure is the one-dimensional diffusion of a single particle in a periodic potential.
The MSD is depicted in Fig. 1.3. In the first regime of very small times the MSD grows
proportional with time, which is denoted with ‘free diffusion in one well’ in Fig. 1.3. From the
second regime on, beginning at intermediate times, the MSD grows very slowly. The second
regime is called “subdiffusive region”, “subdiffusive transient”, or “plateau” [82, 142, 143].
The MSD depends linearly on time in this regime which can be seen in the inset of Fig. 1.3.
In the last regime, denoted with ‘diffusion between potential wells’ in Fig. 1.3, the linear
time dependence of the MSD can be approximated by a proportional function ⟨∆r2⟩ = 2Dt
(dotted line in Fig. 1.3). For those long times, the type of motion is the thermally activated
hopping motion discussed in section 1.3.3. The factor D in the asymptote for the MSD is
called effective diffusion coefficient.

The occurrence of a plateau in the MSD is connected to a separation of time scales. The
short time scale is the time the particle needs to explore the local minimum of the potential,
we call it the inter-well relaxation time τiwr (marked with a squared in Fig. 1.3). It is defined
as the relaxation time of the exponential relaxation of the MSD in a parabola fitted to the
local potential minimum. The longer time scale is 1/rK . The duration and the height of the
plateau in the MSD quantify the decay of the influence of the local structure of the potential
on the motion. Studies show that the end of the plateau is accompanied by a peak in the
non-Gaussian parameter mentioned above [82, 144]. The fact that this behaviour is coupled
to the separation of time scales is well represented by our model for short diffusion, presented
in chapter 3. Our model correctly predicts the time dependence of the MSD and the non-
Gaussian parameter for a family of modulated potentials. Moreover, these time dependencies
are given analytically in this model.
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Fig. 1.3: (a) Short time diffusion: double-logarithmic plot of the MSD in dependence on time
for a one-dimensional diffusion process in a periodic external potential. The behaviour is
categorised into the three regions mentioned in section 1.3.4. The time 1/rK is marked by a
filled circle, the inter-well relaxation time τiwr by a square. The inset shows the MSD, 2D0t,
and 2Dt on linear axes.

Particle interactions. The interplay of Brownian motion, particle interaction, and an
external periodic potential is very complex. Additional to the impact of the periodic potential
and Brownian motion, the system is influenced by the type and the strength of the particle
interaction and the mean density of particles. Further, the behaviour of the system depends
on the initial condition and is highly connected to the dimensionality and the geometric
constraints of the external periodic potential.

These dependencies are not yet fully understood. One particular type of investigation
considers the motion of particles in densely packed systems. Even without an external po-
tential, an interesting motion called single file diffusion sets in if the motion is restricted to
one dimension and the particle interaction prevents that particles overtake each other. The
particles constitute a chain with fixed order. Each particle’s motion is restricted by the left
and right neighbour which results in a slow growth of the MSD with

√
t [145]. This means

that single file diffusion is subdiffusive with the exponent E = 1/2, in the sense of Eq. (1.7).
If the geometrical restriction is gradually loosened the growth behaviour of the MSD grad-
ually returns to normal [146]. Single file diffusion is a consequence of particle interaction
and geometrical restriction and similarly occurs in systems with an external periodic poten-
tial [147, 148]. However, if the particle interaction allows that particles overtake each other,
the diffusion is normal [124].

A different type of investigation considers spatial relaxational processes. The initial con-
dition is a cluster of particles in an otherwise empty system. Of interest is the motion of the
particles as they explore the available space. Experimentally this situation can be produced
by using a strong external trap potential to force the particles to form a dense cluster. Then,
the trap is switched off and the particles move in the periodic potential. For ultra-soft purely
repulsively interacting particles the MSD is the larger the stronger the repulsion [124]. Fur-
ther, the diffusion was found to be normal for these kind of particles [124] and the effective
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diffusion coefficient is the larger the stronger the repulsion. For attractive, spring-coupled
particles [149] the effective diffusion coefficient is the smaller the stronger the attraction.
However, the short time diffusion was not studied in [149].

Particle interactions have a strong impact on the MSD. For example, in conjunction with
gels, attractive particle interactions lead to a plateau in the MSD even if no external periodic
potential is applied [138]. Hence, the interpretation of the MSD in a system with periodic
external potential and particle interactions requires knowledge about the time and length
scales of the contributing processes. In the chapter 3 we investigate the plateau in the MSD
caused by an external periodic potential. In chapter 6 we study ultra-soft repulsive and
attractive particles in an external periodic potential and identify changes in the MSD caused
by particle interactions.

1.4 Non-equilibrium

In thermal equilibrium, all particles of a colloidal system, i.e. solvent particles and colloids,
move due to thermal motion. This movement is special as it fulfils detailed balance, which
makes a statement about the probability current j(r, t). The probability current, which is a
ensemble averaged quantity, denotes the probability |j|∆t that a particle located at position r
at time t will move in the direction in which the current vector j points within the time interval
[t, t + ∆t]. A system obeys detailed balance if the (ensemble averaged) probability current
j = 0 for all times, directions, and positions. Detailed balance expresses that, on average,
every motion of every particle is exactly balanced by the motion of the other particles. An
implication is that the probability p(r)∆V (r) to find a particle in a small volume ∆V (r)
around r does not depend on time. The quantity p(x) is called probability density.

We denote a situation where detailed balance is broken as non-equilibrium, i.e. ∃t∃r :
j(r, t) ̸= 0. This occurs e.g. through the application of external fields. In general, the
probability density and the probability current depend on time and space in non-equilibrium.
Probability is a conserved quantity and probability density p(r, t) and current j(r, t) fulfil the
continuity equation

∂tp(r, t) +∇ · j(r, t) = 0 , (1.8)

where ∇ denotes the vector of partial derivatives with respect to the space coordinates. The
equation of motion for the probability density p(r, t) corresponding to the overdamped LE is
the Smoluchowski equation (SE)

∂tp(r, t) = D0∇2p(r, t)− 1

γ
∇ · (p(r, t) fdeter(r, t)) . (1.9)

The SE is an extended diffusion equation and a particular Fokker-Planck equation (FPE).
A FPE is the equation of motion for the probability density corresponding to a general LE.
This correspondence is provided by the Kramers-Moyal expansion [10] which allows to derive
a FPE from a LE if the stochastic force in the LE is Gaussian white noise.

1.4.1 Stationary transport

If the ensemble-averaged properties of the systems, i.e. p and j, do not depend on time,
the system and the properties are called stationary. A stationary probability density fulfils
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∂tp = 0. From Eq. (1.8) we infer that j is constant in space, too. We note that equilibrium
is a special case of stationarity, as j = 0 = const.

A paradigmatic example for stationary transport is the overdamped Brownian particle
which is driven by a constant force. The combination of the Eqs. (1.9) and (1.8) yields
j = −D0∇p+pF/γ. We define the mean velocity as v(t) = ⟨ṙ⟩ which can be calculated from
the probability current by [9, 11]

v(t) =

∫
dr j(r, t) , (1.10)

where
∫
dr denotes a volume integral. If we, for simplicity, assume that the probability

density is constant, then v = F/γ. This result is consistent with result from LE (1.2).
The factor between velocity and force is called mobility µ. In the presence of a struc-

tured environment, the mobility is a function of the environment and the driving force. For
stationary transport in one dimension through a periodic potential, the mobility was found
analytically by Stratonovich in 1958 [150, 151]. In a two-dimensional periodic potential, the
velocity can have a different direction than the driving force [153]. To represent this direction
dependency, the mobility must be a tensor: v = µ · F.

1.4.2 Transients

We denote the influence of the initial condition to the system in the course of time as a
‘transient’. If the initial condition does not correspond to a stationary state the system will
relax to a stationary state because of the diffusion term in the SE (1.9). This relaxation
process is irreversible and produces entropy. If the force field is time-independent the system
relaxes to a stationary state. For external oscillatory forces the system relaxes to an oscillatory
state whose properties do not depend on the initial condition but only on the external driving
(and other external parameters e.g. temperature, friction coefficient, boundary condition).

All systems we consider have a constant temperature, a constant volume, and a constant
number of particles. If the system relaxes to equilibrium, a thermodynamic potential, the
Helmholtz free energy F = U − TS, can be defined, which is minimised during the time
evolution of the system. The potential energy of the system is denoted as U and the entropy
as S.

The diffusion processes discussed in section 1.3 are examples for transients. Here, a
sudden change of the environment, e.g. switching on a driving force, produces a transient
reaction of the system.

1.4.3 First passage problems / escape problems

A first passage problem is the task to find the time-dependent probability that an observable
of a stochastic system passes a certain threshold value for the first time [10, 11, 154]. First
passage problems are inherently transient because they investigate the lifetime of the initial
configuration. We consider an example in one dimension. Let a Brownian particle start
at x = 0 at time t = 0. We are interested in the probability P|x|<d(t) that the particle
travelled a distance smaller than d in the time t i.e. the probability that it has not escaped
the interval [−d, d]. The probability P|x|<d(t) is called survival probability S(t). In fact, the
survival probability is the cumulative distribution function of the stochastic process “the
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first passage of the threshold has not happened yet”. Usually, the first passage does not
happen instantaneously, i.e. S(0) = 1, and the threshold is definitely crossed sometime,
i.e. S(∞) = 0. The probability density f(t) corresponding to 1 − S(t) is called first passage
time distribution [10,154]. It is a probability density in time which determines the probability
f(t)∆t that a first passage happens in the time interval [t, t+∆t], where ∆t is very small. The
first moment of the first passage time distribution is the mean first passage time (MFPT)
which quantifies the mean time until the observable of the stochastic system crosses the
threshold for the first time [10,11,154,155].

First passage times are a common tool for the analysis of stochastic processes in many
fields [156,157]. Examples include chemical reactions, where the reaction rate depends on the
time the molecules diffuse until they find their reaction partner [11], search algorithms whose
applicability depends on the time needing for a finding [158], and information transport
through neurons where an emission of information occurs if the input from other neurons
follows a certain dynamics for a certain time [159, 160]. The motion of colloids in periodic
potentials is subject to a number of first passage investigations whose concern is the time
which the colloid needs to escape a local minimum [11,127,161–163]. These escape problems
are first passage problems where the escape is the first passage of a predefined boundary. The
first passage distributions of these escape problems represent the dynamics of the colloidal
systems on the time scale 1/rK . Diffusion of particles in periodic potentials for times larger
than 1/rK can be modelled with continuous time random walk, which models the motion
as hopping between binding sites (which are the local potential minima). To account for
asymmetries and inhomogeneities in the nature of the binding sites, continuous time random
walk uses several probability densities, called waiting time distributions (WTDs), for the time
between subsequent jumps between certain types of sites [128,129,164]. In most descriptions,
the WTDs split the first passage time distribution into direction-dependent contributions.
In general, the relation is more complicated, as the motion of colloids is continuous and the
hopping processes are discrete in space. We resolve this discrepancy by providing a definition
for a WTD in a continuous system in chapter 4.

1.5 Transport in one-dimensional periodic potentials

Many fundamental insights can be inferred from diffusion in one-dimensional periodic po-
tentials. These include the ratchet effect, a fundamental transport mechanism, or the giant
diffusion effect, which shows that a strong periodic potential not always hinders particle mo-
tion. Further, the influence of particle interactions on transport and diffusion in periodic
potentials is still not completely understood. The solutions of one-dimensional problems can
serve as guide for investigations in more spatial dimensions.

We are interested in situations where particles are transported through a one-dimensional
structured potential. For transport to occur, there must be some kind of imbalance in the
system, i.e. the system must be out of thermodynamic equilibrium. Common ways to drive
the system out of equilibrium include imposing external forces or introducing a concentra-
tion gradient. Transient phenomena are becoming increasingly relevant for experiments and
technology, because these can now measure and operate accurately on a time scale faster
than the natural time scale of colloidal motion.

The investigation of overdamped transport in one-dimensional periodic potentials has a
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long history [10, 11, 127, 150, 165]. During the years, standard models for transport in one-
dimensional periodic potentials have been developed, which we introduce in the following two
sections. The standard model to investigate stationary transport is the tilted washboard,
whereas ratchet systems serve as the paradigm for directed transport with oscillatory forces.

1.5.1 Tilted washboard

A washboard potential which is not tilted is a spatially periodic potential. Tilting the wash-
board means exerting a constant force F , i.e. adding a term −xF to the periodic potential.
The tilted washboard potential is not periodic, but its force is.

Tilted sinusoidal washboard potential The simplest washboard potential has sine form.
As a representative case for the tilted washboard potentials discussed in this section, we
introduce the potential

u(x) = u0 sin
2 πx

a
− xF. (1.11)

This tilted sinusoidal washboard is characterised by the wavelength a, the amplitude u0, and
the constant driving force F . Plots of u(x) for different values of F are shown in Fig. 1.4(a).
Due to the symmetry of the system, we consider forces F > 0. If F is smaller than Fc = u0π/a,
which is the critical driving force connected to giant diffusion, the potential has (infinitely
many) local extremes. In the domain x ∈ [0, a] the minimum xm and the maximum xM is
given by

xm =
a

2π
arcsin

Fa

πu0
and xM =

a

2
− xm . (1.12)

The difference in potential energy between maximum and minimum, in the direction of the
force, reads

∆u(F ) = u(xM )− u(xm) = u0

(√
1− (F/Fc)2 −

F

Fc
arccos

F

Fc

)
. (1.13)

The potential difference ∆u is the energy barrier height which must be overcome to thermally
activate a transport process in this washboard potential. The dependency of the barrier height
on the driving force is plotted in the inset of Fig. 1.4(a).

There is no energy barrier in the regime F > Fc, where u(x) is strictly monotonic. This
case is also shown in Fig. 1.4(a).

Usage General tilted washboard potentials can used to model numerous situations. One
example is the overdamped Brownian motion of a single particle in a corrugated channel,
see Fig. 1.2(d) for a micrograph of such a channel. By using the Fick-Jacobs approach
[166] the two or three dimensional motion of the particles is projected onto motion in one
dimension (along the channel), combined with an effective washboard potential to account for
the position dependent entropy of the particle. The accuracy of this approximation depends
on the type of particles, the size of the corrugation, and the flow of the solvent [167–173].

As mentioned in section 1.2, light fields are very versatile and can be used to create one-
dimensional modulated traps for colloids [91, 92], see also Fig. 1.4(b). Again, the motion of
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(a) Tilted washboard potential, defined in
Eq. (1.11), for different values for the driving force
F in units of the critical driving force Fc = u0π/a.
Inset: barrier height ∆u given by Eq. (1.13).

(b) Brightfield image of a structured light
field. For colloidal polystyrene spheres the in-
ner ring of the light field forms a corrugated
one-dimensional periodic trap. Reprinted from
[92].

Fig. 1.4: (a) Tilted one-dimensional sinusoidal washboard potential. (b) Experimental reali-
sation of a one-dimensional tilted washboard potential with laser light [92].

colloids across the stripes in striped light fields can be modelled with overdamped motion a
washboard potential [82].

Other systems that can be modelled using tilted washboard potentials include the (not
overdamped) motion of cold atoms in standing waves of light [174, 175], and the Frenkel-
Kontorova model, which is used to study friction on the nanoscale by examining particles
connected through springs that are dragged through a washboard potential [90, 176, 177].
Further, in sheared two-dimensional systems tilted washboard potentials may also be appli-
cable [178,179].

Finally, quantum systems such as the Thouless motor [180], and the Josephson junction
[181–183] can be modelled with a washboard potential.

Velocity. The stationary-state velocity of a single particle in a tilted washboard potential
was found analytically in 1958 by Stratonovich [150]. The velocity of interacting colloids in
a tilted washboard potential is still an active question [124, 149, 184], and we focus on it in
chapter 7.

Giant diffusion effect. The giant diffusion effect or the giant enhancement of diffusion
indicates that the motion on the long time scale 1/rK shows an effective diffusion coefficient D
which is larger than the diffusion coefficient of free diffusion D0. This is remarkable because it
contradicts the intuitive assumption that a periodic potential always slows down the motion.
The effective diffusion coefficient was introduced in section 1.3.4 as half the slope of the MSD
for long times, i.e. D = limt→∞⟨(∆x)2/(2t)⟩.

The motion of a single particle in a tilted washboard potential shows giant diffusion for
driving forces near the so-called critical driving force Fc at which the potential minima turn
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into saddle points [89,92,125,185–187]. In Fig. 1.4(a) the driving force F is normalised to Fc,
i.e., the curve for F/Fc = 1 shows the critical case. This enhanced diffusion is the working
principle of a group of particle mixing techniques [69, 188]. Further, a particle separation
device based on the giant diffusion effect was proposed [88].

Giant diffusion can be understood by considering thermal activated positional transitions
of the particle between the valleys of the tilted washboard potential. For small driving forces
(F ≪ Fc) the washboard potential has high energy barriers between neighbouring valleys.
Only a small fraction of random fluctuations can drive a colloid over the barrier. This implies
a low velocity and a low diffusion coefficient. For very high driving forces (F ≫ Fc) the tilted
washboard potential is merely a linear function with shallow modulations. The modulations
become negligible in the limit F → ∞ and the diffusion coefficient D approaches D0 in that
limit.

If the driving force F ≈ Fc, then the tilted washboard potential consists of alternating
regions of steep slope and shallow slope (lines with triangles in Fig. 1.4(a)). The steep
slope region is always rapidly traversed. In the shallow slope region, a random fluctuation
of the particle’s position may transport it to the steep region, which enhances the impact
of that particular fluctuation. If the fluctuation leads the particle to another position, no
enhancement takes place. Hence, in a short time different random fluctuations may result in
very different positions, which is reflected in a high diffusion coefficient.

We now turn to the influence of particle interactions. In a one-dimensional model where
particles are tied with springs to a rigid backbone [149] to form a flexible chain, the motion of
the backbone through a tilted washboard potential shows giant diffusion. In this model the
particles cannot diffuse themselves. We address the motion of ultra-soft repulsive particles
through a tilted washboard to investigate the motion of one particle in an interacting system.
In chapter 6 we find that the diffusion coefficient is even further enhanced with respect to
the single particle case. Note that the fact that ultra-soft particles can permeate each other
is crucial to have normal diffusion. Ultra-soft particle interaction is a model for the coarse-
grained interaction of fluctuating polymer chains. However, the interaction potential of most
types of colloid diverges for small distances. The motion of these non-permeating particles
shows single file diffusion, i.e. ⟨∆x2⟩ = 2κ0.5

√
t, as we mentioned in section 1.3.4. The so-

called mobility factor κ0.5 shows giant enhancement if the particles are transported through
a tilted washboard [147].

So far, we have discussed overdamped Brownian motion in static tilted washboard po-
tentials. Note that giant diffusion can also be achieved through oscillating force fields, as
theoretical [169,189–192] and recent experimental [88,193] works with single particles show.

1.5.2 Ratchet effect

The ratchet effect states that every combination of spatial asymmetry, noise, and non-
equilibrium creates a directed motion. The idea goes back to Smoluchowski [165], was refined
by Feynman and is also called the Smoluchowski-Feynman-ratchet [9]. The first application
was the thermoelectric effect, found in the 19th century by Seebeck [194], which can be
modelled as a ratchet effect [9].

In [9] a thorough review of the different ways of combining asymmetry, noise, and non-
equilibrium to obtain a ratchet system is given. Many operate with asymmetric periodic
potentials. In the biophysical area these potentials are used to model the above mentioned
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motor proteins, e.g., kinesin or myosin [2, 9, 62]. The ratchet model was adopted for various
artificial Brownian motors with physical, chemical, and biological background [7, 195, 196],
where the motion is often one-dimensional. Examples of ratchet systems connected to the
development of optical computing include the transport of cold atoms in optical lattices
[197, 198], and the transport of superconducting electron pairs through Josephson junctions
[199–201], where superconducting states are in contact via a grain boundary. For colloidal
transport various mechanisms exists [71, 76, 77, 99, 202–207]. Based on these mechanisms
sorting machines were build [70,71,75–77,208,209], some of them were already mentioned in
section 1.2.

From a theoretical point of view terminology exists that distinguishes between different
types of ratchets [9]. A periodic asymmetric potential, which is switched on and off, is called
a flashing ratchet [210]. A periodic asymmetric potential supplemented with a homogeneous
oscillating force, which averages to zero over one period, is called a rocking ratchet [211].
The direction and the strength of the current in these ratchets depends on the details of the
driving [211,212].

In chapter 5 we show that the oscillatory drive in the rocking ratchet can be replaced
with a time delayed feedback control. Feedback control uses information from the system to
steer the system. This information is retrieved by continuous measurements. Our feedback
controlled rocking ratchet yields a higher current than the standard rocking ratchet and does
not rely on external timing any more.

1.6 Feedback control

In order to realise fast and predictable transport of particles, we consider controlling the
particle transport using feedback mechanisms. Feedback control or closed-loop control means
that the system is steered towards a target behaviour by using information from the system
itself, which is retrieved e.g. by continuous measurements. This is different to external control
or open-loop control, where system parameters are set externally without reacting to changes
within the system.

Open loop control does not need measurements and is the preferred control for systems
with predictable dynamics. It is more common to refer to open-loop controlled systems as
systems with an external (time-dependent) influence. Examples include systems under the
influence of oscillating forces (forming e.g. mixing devices or ratchet systems). Open loop
control is present in many ordinary machines, e.g. watches controlled by a quartz crystal
or a fluorescent lamp which starts by using a fixed protocol. For complex dynamics or
unpredictable dynamics, like the stochastic systems considered in this thesis, feedback control
is the most reliable control mechanism.

Application Feedback control has been used in machines since ancient times [213,214]. It
has many applications in physics e.g. in reaction diffusion systems to shape moving fronts
[215, 216], in quantum transport to adjust the number of electrons or photons [217, 218], in
sheared liquid crystals to stabilise collective orientational states [219], and in laser dynamics
to work towards optical (rather than electrical) computing [220]. Further, feedback control
is used to investigate the dynamics of the brain on different scales ranging from studies on
single neurons [221], over networks of neurons [222], to artificial intelligence [223].
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Various feedback strategies exist for colloidal systems. The control mechanisms target
effects such as directed transport [91, 224–226], adjustment of structure and viscosity of
dense colloidal suspensions [227, 228], the sorting of colloids [97, 229], and their trapping
[100,230,231].

Experimental prerequisites Recent advances in experimental techniques fostered the
development of feedback control of colloids. They include video microscopy and confocal
microscopy. Video microscopy yields a fast imaging of a 2D colloidal layer [51,52,82,83,91,92].
Confocal microscopy allows for a three-dimensional time and space dependent measurement,
by making 2D measurements in the focal plane and rapidly changing the altitude of the
plane [232,233]. The recently demonstrated photothermal microscopy [234] promises a further
increase of spatial resolution.

Time delay Time delay is inherent in feedback control, as the measurement of observables
and the adjustment of control parameters needs a finite time. Time delay was included in
theoretical modelling only recently [226,235–238]. For some transport mechanisms, time delay
reduces the effectiveness [235]. However, other feedback controls benefit from time delay and
some feedback controls intrinsically rely on time delay, e.g. Pyragas control scheme which
stabilises unstable periodic solutions of non-linear systems [239]. In this thesis two feedback
protocols are proposed. While transport is generated through time delay in the feedback
controlled rocking ratchet in chapter 5, the time delay is found to reduce the effectiveness of
the control in chapter 7.

In modern experiments using video microscopy, the overall time delay of measurement
and implementation of feedback control of colloids is in the order of 5-50 ms [91, 236, 240].
The Brownian time for colloids of µm size, which is the relevant size for video microscopy, is
in the range of 100ms - 10s. This small quotient of time delay to Brownian time means that
the particle motion can be controlled very detailed.

Entropy and information In the case of stair-climbing colloids [224] the transport in a
tilted washboard potential corresponds to the motion against the ascent. This is achieved by
blocking the colloid from moving in the energetically favoured direction. Brownian motion
provides the colloid the energy to move to the next valley of the washboard potential against
its tilt. The feedback control scheme assures that as soon as the colloid arrives at the next
valley, the potential landscape is altered so it cannot go back. This is a prime example for
a group of control mechanisms called information ratchets [195]. The information ratchet
lets the Brownian particle transform heat into mechanical work. This is possible because the
restriction of the direction of motion creates a non-equilibrium situation. Entropy increases
while the colloids climbs the potential ascent. The amount of work which can be extracted
using a certain amount of information is limited and can be calculated using so-called “fluc-
tuation theorems”. Fluctuation theorems relate time-reversal and dissipation are the basis
of the generalisation of the second law of thermodynamics to non-equilibrium [55,241]. The
search for the correct definition of entropy in non-equilibrium stimulated many theoreti-
cal [225,242–246] and experimental [100,224,247] studies.
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1.7 Outline of the thesis

This thesis is set in the field of transport of colloids in one-dimensional periodic potentials.
We address fundamental questions on the motion of a single Brownian particle in a tilted
washboard potential. Based on that knowledge we investigate the role of colloid-colloid
interaction on diffusion and transport. Further, we propose two feedback control protocols
for colloidal transport.

This thesis is a kind of cumulative PhD thesis. The results of the publications I con-
tributed to are repeated in a cohesive and explanatory way.

In chapter 2, I give an overview of the theory which is important for the motion of colloids
for the time scales discussed in section 1.3. Here, I introduce the basic equations that describe
colloidal motion, i.e. the overdamped Langevin equation (LE) and the corresponding Fokker-
Planck equation (FPE), which is the Smoluchowski equation (SE). Furthermore, I introduce
the method that we use to study interacting colloidal systems on large length scales: the
dynamical density functional theory (DDFT).

The chapters 3 to 7 each cover a separate question on the frontier of research. However,
we focus on non-equilibrium diffusion and transport on the time scales discussed in section
1.3.

The first two content chapters 3 and 4 consider the paradigm of a single Brownian particle
in a tilted sinusoidal washboard potential. In chapter 3, we present a simple model for the
short time diffusion which emphasises the significant properties of the system much better
than the traditional SE-based description. In addition, the model yields analytic results
whereas the SE must be solved numerically. We show that the model applies to the regime of
“deep wells”, where the washboard potential has local minima deeper than kBT . We study
the plateau in the MSD and give approximations for duration and height of the plateau.

In chapter 4, we introduce a definition for the waiting time distribution (WTD) for
continuous driven systems, which previously was available only for discrete systems. At
the same time, we generalise the first passage time distribution (FPTD) by identifying the
contributions to the FPTD corresponding to different directions as our WTDs. We use our
WTD to characterise the motion of a Brownian particle in a tilted washboard potential which
consists of waiting and jumping. Our WTD yields a characterisation of the wide distribution
of waiting times in the presence of transport. Further, we find a new time scale which we
call “jump duration” which expresses that the crossing of the barrier is of finite duration in
a continuous system.

In chapter 5 we propose a time delayed feedback control for the driving of a single particle
in an asymmetric periodic potential. We show that the time delay induces a ratchet effect
which means that an external timing is not necessary to form a rocking ratchet. Further, we
find that our feedback controlled rocking ratchet can be adjusted to a yield a higher current
than a corresponding standard rocking ratchet. Our feedback control comprises switchings
of the direction of the driving force. These switching events and the following relaxation to
a stationary state are particularly visible in the time-dependent entropy production.

In chapter 6 we use theory to predict, for the first time in the literature, the influence
of particle interactions on the short time diffusion and the diffusion coefficient of ultra-soft
particles in a tilted washboard potential. We find that the plateau in the MSD, which is found
for single particles, becomes shorter and transforms to a superdiffusive region as the number
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of particles and the interaction strength is increased. Further, we propose a modification to
the method to study the motion of hard particles with attractive interactions more easily.
We find that chains of these particles dissolve in the presence of a tilted washboard potential.

In chapter 7 we propose a feedback control for the collective transport of repulsively
interacting particles through a tilted washboard potential. We focus on the “deep well”
case, i.e. the case where the local potential energy minima are deeper than kBT , and where
the mobility of uncontrolled transport is very low. The control comprises a strong trapping
potential which effectively freezes the particle cluster. This emphasises the role of particle
interaction for transport. Finally, this enhances the mobility of the collective transport by
several orders of magnitude.

Finally, in chapter 8, we summarise our findings and give a conclusion and an outlook.
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The equations in this chapter are formulated in three dimensions to give a versatile overview
for a general class of systems.

2.1 Langevin equation

The Langevin equation (LE) for a single particle was mentioned already in section 1.3.1.
However, the LE (1.2) is not completely defined because the stochastic force lacks a proper
definition. For most purposes this stochastic force can be modelled as a Gaussian white noise,
which obeys

⟨f stoch(t)⟩ = 0 (2.1a)

⟨f stochi (t)f stochj (t′)⟩ = Gδijδ(t− t′) , (2.1b)

where ⟨. . . ⟩ denotes an ensemble average. The δ-distribution is denoted by δ(t), and G
denotes the so-called noise strength or noise intensity [10, 41, 190]. An differential equation
with a noisy ingredient, like Eq. (2.2), is called a stochastic differential equation [154,248].

For N , possibly interacting, particles the LE reads

M r̈i(t) = −γṙi + fi(r1, . . . , rN , t) + f stochi (t) , (2.2)

where each f stochi is a Gaussian white noise on its own, i.e. ⟨f stochi (t)⊗f stochj (t′)⟩ = Gδij1δ(t−t′)
where ⊗ is an outer product and 1 is the identity matrix.

2.1.1 Fluctuation-dissipation theorem

The order of magnitude of the noise strength G in Eq. (2.1) can be related to the temperature
of the solvent. In the case of colloids, this is desirable since it provides a physical background
the noise strength. However, the Langevin equation is used in other systems, too, such as
superconducting currents through a Josephson junction [201], neuron dynamics [249], popu-
lation dynamics [250], and for the momentum of cold atoms in optical lattices [251]. Among
these systems, the noise strength is related to temperature only for Josephson junctions.

Due to the separation of time scales we assume the solvent to be in equilibrium and having
a temperature T . Therefore, it makes sense to introduce a temperature even if Eq. (1.2) is
about non-equilibrium dynamics. The relation is established via the equipartition theorem
[41]

M

2
lim
t→∞

lim
t′→t

⟨ṙ(t)⊗ ṙ(t′)⟩ = 1
kBT

2
. (2.3)
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Source σ/µm τB/s D0 / (10
−12m2s−1)

[91] 0.9 1.8 0.44
[92] 1.48 11.5 0.19
[204] 1.53 7.1 0.33
[82] 1.7 0.88 3.3 (from Fig. 5A)
[82] 4 145 0.11 (from Fig. 5C)
[186] 2.8 87 0.09
[89] 3 56 0.16
[252] 1.67 100 0.028

Tab. 2.1: Brownian times and short time diffusion coefficient from experiments of colloids of
roughly micrometer size immersed in water [82,89,91,92,186,204] or apolar solvent [252].

Following standard textbooks [10, 41], the LE (1.2) is integrated with respect to time, and
inserted into Eq. (2.3). Using the noise properties Eq. (2.1) and taking the limits yields

G = 2kBTγ . (2.4)

Equation (2.4) is a fluctuation-dissipation theorem, where a quantity describing fluctuations,
the noise intensity G, is connected with a quantity describing dissipation, the friction coeffi-
cient γ.

2.1.2 Overdamped Brownian motion

For colloidal suspensions accelerations are irrelevant, which becomes clear by comparing the
order of magnitude of the inertial force and the friction force the particles experience in the
solvent. See the book of Dhont [41] for a rigorous discussion. In section 1.3.1 we introduced
the time scale of momentum relaxation τM =M/γ and the Brownian time τB = σ2/D0. The
diffusion coefficient of free motion, D0, is connected to the friction constant γ by Eq. (1.5)
which can be related to the viscosity of the solvent (cf. Eq. (1.1)). From these relations it can
be concluded that τB ≫ τM . However, we collected values for D0 from experiments and τB
from Eq. (1.4) in Table 2.1 to verify that conclusion. Indeed, for micrometre sized particles
in water, τM ≈ 10−7s and τB ≈ 1s. Because our studies target at times between 10−3τB and
105τB, we can treat the inertial degrees of freedom adiabatically.

Inertial degrees of freedom become relevant for cold atoms in optical lattices [253] and a
couple of other systems [254,255].

To express the irrelevance of the inertia in the LE we multiply the LE (2.2) by 1/(γτB)

M

γτB
r̈i =

1

τB

(
−ṙi + fi/γ + f stochi /γ

)
. (2.5)

The factor in front of r̈ is τM/τB, which is a small quantity. By neglecting this small deviation,
i.e. writing Eq. (2.5) in the order O((τM/τB)

0), we arrive at the overdamped LE

γṙi(t) = fi(r1, . . . , rN , t) + f stochi (t) . (2.6)

The rigorous mathematical characterisation of the solutions of stochastic differential equa-
tions, even for the overdamped Langevin equation, is far beyond the scope of the thesis. The
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book of Kloeden and Platen [248] discusses existence and uniqueness of solutions and reviews
a broad range of numerical methods.

For actual computations, in chapters 4 and 5, we use the one-dimensional reduction of
Eq. (2.6) for a single particle

γẋ(t) = f(x, t) +
√

2γkBTξ(t) , (2.7)

where ξ(t) is a Gaussian white noise with ⟨ξ(t)ξ(t′)⟩ = δ(t− t′).

2.2 Fokker-Planck equation

The individual trajectories x(t) are often of little interest. Ensemble-averaged quantities
like mean particle position, mean squared displacement, (long term) diffusion coefficient or
mobility matter. Due to the stochastic term in the LE (Eq. (2.6)) analytic results for those
quantities are difficult to obtain.

The Fokker-Planck equation (FPE) fills this gap by providing an equation of motion for
the probability density p(x, t) which defines the probability p(x, t)∆x to find the particle in a
interval ∆x around position x at time t. In terms of statistical mechanics [59], the probability
density can be expressed as an ensemble average

p(x, t) = ⟨δ(x− x(t))⟩ , (2.8)

where x denotes a position variable and x(t) denotes a trajectory.
By using the Kramers-Moyal expansion a FPE can be assigned to every LE with Gaussian

white noise [10]. The advantage is that the FPE is a deterministic partial differential equation
for the time evolution of p(x, t), which makes an analytic treatment possible. The drawback
is that the information about the actual particle positions is lost.

The corresponding FPE to the LE (2.6), the Smoluchowski equation (SE), reads [10]

∂tP (r1, . . . , rN , t) =
1

γ

N∑

i=1

∇i · (kBT∇iP − P fi) , (2.9)

The probability density P (r1, . . . , rN , t) quantifies the probability P (r1, . . . , rN , t)∆r1 . . .∆rN
to find each particle in its corresponding small cuboidal volume with the corners ri and ri+∆ri
all at time t. Correspondingly we have

P (r1, . . . , rN , t) =

⟨
N∏

i=1

δ(ri − ri(t))

⟩
. (2.10)

Note that the SE is linear in P , whereas the LE, in general, is not linear in r. The SE is a
continuity equation

∂tP (r1, . . . , rN , t) +
N∑

i=1

∇i · ji(r1, . . . , rN , t) = 0 , (2.11)

where

ji(r1, . . . , rN , t) = −D0∇iP +
1

γ
fi (2.12)
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is the probability current for the ith particle.
Without any external force, the SE (2.9) reduces to the diffusion equation (or heat equa-

tion) ∂tP = D0
∑

i∇2
iP .

In chapters 3, 4, and 5, we investigate one-particle systems in one dimension. The corre-
sponding reduction of Eq. (2.9) reads

∂tp(x, t) = D0∂xxp(x, t)−
1

γ
∂x(p(x, t) f(x, t)) . (2.13)

2.2.1 Kramers’ escape rate

As mentioned in section 1.3.3, Kramers’ escape rate is an important approximation to esti-
mate a time scale for thermally activated processes over a high barrier [11].

V

xxmax

A
xmin

Fig. 2.1: Illustrates a trapping poten-
tial (thick line) with a trapped parti-
cle (blurred circle) and the small out-
going flux to the right (dashed line).

The derivation in one dimension from [10] is re-
peated here to point out the necessary approxima-
tions and to distinguish between two forms. The trap
is formed by a potential with one local minimum and
one local maximum like in the sketch in Fig. 2.1. The
rate is defined as the ratio of the outgoing probability
current j to the probability P that the particle was in
the trap:

r := j/P . (2.14)

The equation of motion for the probability density of
one overdamped Brownian particle in one dimension
is the SE (2.13). The first approximation is that the
outgoing flux is small, so that the probability density
in the trap can be treated adiabatically. Hence, sta-
tionary is assumed, i.e. ∂tp(x, t) = 0. The SE can be
integrated once, yielding

j = −D0p
′(x)− p(x)V ′(x)/γ , (2.15)

where the probability current appears as an integration constant. We solve Eq. (2.15) with
variation of constants

p(x) = e−βV (x)(c− j

D0
I(x)) with I(x) =

∫ x

xmin

dy eβV (y) , (2.16)

where β = 1/(kBT ) and c is another integration constant. We are interested in the outgoing
flux. To rule out that the particle can reenter the trap, we assume that the particle disappears
at x = A. This is equivalent to saying, that we are interested in the probability that the
particle leaves the trap for the first time. We define that the particle leaves the trap at
arriving at x=A and, from then on, the probability to leave the trap for the first time is, of
course, zero. Either way, we obtain the boundary condition

p(A) = 0 . (2.17)
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One integration constant can be eliminated, yielding

j =
cD0

I(A)
, p(x) = c eβV (x)

(
1− I(x)

I(A)

)
. (2.18)

The probability to find the particle in the trap reads

P =

∫ xmax

−∞
dx p(x) . (2.19)

As the process is stationary, P must be constant. The stationarity approximation can hold
only for a certain time, as the trap is actually petering out. We investigate this in detail in
chap. 4. Equation (2.19) fixes c, yielding

1

r
=
I(A)

D0

∫ xmax

−∞
dx e−βV (x)

(
1− I(x)

I(A)

)
(2.20)

Further, we make approximations about the form of V (x). First, we assume that there is
a large energy barrier V (xmax) − V (xmin) ≫ kBT . It follows that the I(x)/I(A) term is
irrelevant because (a) near the minimum the integral I(x) = eβV (xmin)(x − xmin) + O((x −
xmin)

2) is much smaller than I(A) and (b) at the hill e−βV is very small while I(x) < I(A).
The result is

r∞K = D0

/(∫ xmax

−∞
dx e−βV (x)

∫ A

xmin

dy eβV (y)

)
. (2.21)

The integrals over x and y are measures of the broadness of the valley and the hill, respectively.
Usually, they are not elementary. The famous Kramers’ rate appears upon expanding the
potential V (x) around each extremum to a quadratic function, and expanding the integral
bounds to infinity. The resulting integrals can be carried out, yielding Kramers’ rate

rK =
D0

2πkBT

√
−V ′′(xmin)V ′′(xmax) e

−β(V (xmax)−V (xmin)) . (2.22)

If the potential is not well approximated by a quadratic curve at the extrema, a fourth
order approximation (chapter 5.10.1 in [10]) may be used to still have a rate with elementary
integrals.

2.3 Dynamical density functional theory

The applicability of the FPE is limited to a few particles or a few degrees of freedom. A
calculation of the motion of many interacting particles with the FPE is almost impossible
because the probability density P is a density is depending on every degree of freedom.
Hence, the FPE becomes a partial differential equation in many dimensions, which is very
difficult to treat. To reduce the number of dimensions, thereby neglecting some information,
the n-particle densities are introduced [59]

ϱ(n)(r1, . . . , rn, t) =
N !

(N − n)!

∫
drn+1 . . . drN P (r1, . . . , rN , t) , (2.23)
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where
∫
drj denotes a volume integral over the whole volume that rj can address. The

n-particle densities describe the expected density of n-tupels of particles at the positions
r1, . . . , rn at time t, irrespective of the other particles. Highly relevant are the one-particle
density ϱ(1)(r, t) and the two-particle density ϱ(2)(r, r′, t) because many thermodynamic prop-
erties of the many particle system can be derived from these two quantities [59].

With Eq. (2.10) we reformulate the one- and two-particle density as

ϱ(1)(r, t) =

⟨
N∑

i=1

δ(r− ri(t))

⟩
(2.24a)

ϱ(2)(r, r′, t) =

⟨
N∑

i=1

N∑

j=1,i ̸=j
δ(r− ri(t)) δ(r

′ − rj(t))

⟩
, (2.24b)

where the time dependent ri(t) are trajectories, i.e. solutions of the LE (2.6). To interpret
these densities we first look at the normalisation

N =

∫
dr ϱ(1)(r, t) (2.25a)

N(N − 1) =

∫
dr dr′ ϱ(2)(r, r′, t) . (2.25b)

Clearly, the densities are not strictly probability densities because they are not normalised
to one. Nevertheless, their statement is probabilistic. The one-particle density ϱ(1) is the
expected density of particles, and the two-particle density ϱ(2)(r, r′, t) is the expected density
of pairs of particles.

The dynamical density functional theory (DDFT) yields a closed equation for the time
evolution of the one-particle density ϱ(1)(r, t). The difficulty lies in the dependence of ϱ(1)(r, t)
on the force f in the SE (2.9), which can involve interactions between all particles.

The derivation of the DDFT can be done in three different ways. The first was presented
by Marconi and Tarazona in 1999 [257] and started with the Langevin equations and used
the density operator and Ito calculus. The second was proposed by Archer and Evans 2004
and started with the Smoluchowski equation (2.9). I will briefly present this derivation in the
following. Furthermore, an alternative derivation using the projector-operator method [258]
was presented by Rex and Löwen in 2008 [259].

In Archers and Evans’ approach [260], the Smoluchowski equation is assumed in a form
where the force in Eq. (2.9) is a gradient, i.e.

fi(r1, . . . , rN , t) = −∇iV (r1, . . . , rN , t) . (2.26)

It is convenient to assume that the particles only interact via pair interactions through a
pair potential vint. The derivation in [260] is not restricted in such a way. The potential in
Eq. (2.26) then reads

V (r1, . . . , rN , t) =
N∑

i=1

Vext(ri, t) +
1

2

N∑

i=1

∑

j ̸=i
vint(ri, rj) . (2.27)
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By integrating the SE (2.9) for a pairwise additive potential over N − 1 coordinates one
arrives (see appendix 9.1) at a time evolution equation for the one-particle density

γ∂tϱ
(1)(r, t) = kBT∆ϱ

(1)(r, t) +∇·(ϱ(1)∇Vext) +∇·
∫
dr′ ϱ(2)(r, r′, t)∇vint(r, r

′) . (2.28)

However, Eq. (2.28) is of no direct use because it contains the time dependent two-particle
density ϱ(2) which is unknown, too. An integration of Eq. (2.9) over fewer coordinates will
yield time evolution equations for the higher order particle densities. A hierarchy similar to
the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) [59] hierarchy develops. Therefore,
an approximative closure is needed.

2.3.1 Density functional theory

Classical static density functional theory is a very successful method for the description of
the equilibrium properties of inhomogeneous fluids [54,56,59,261,262]. It originates [59] from
the quantum density functional theory founded by Kohn, Hohenberg and Sham [263,264].

Classical density functional theory operates in the grand canonical ensemble. In equilib-
rium homogeneous thermodynamics, the independent variables in the grand canonical ensem-
ble are the chemical potential µ, the volume V and the temperature T . In the inhomogeneous
case the volume is replaced by an external potential Vext(r) which models the confinement.
The quantity determining the behaviour is the grand potential Ω and its derivatives. Analo-
gous to Hohenberg and Kohn [263], Hansen and McDonald [59] show that the grand potential
is a unique functional Ω[ϱ(1)] of the grand canonical version of the one-particle density ϱ(1).
It follows that the Helmholtz free energy

F [ϱ(1)] = Ω[ϱ(1)] + µ

∫
dr ϱ(1)(r) (2.29)

is a unique functional of the one-particle density, too. The functional F [ϱ] can be split
into three contributions, the parts concerning entropy, external potential, and the rest. The
entropic part (also called ideal gas part) reads

Fent[ϱ] = kBT

∫
dr ϱ(r)[ln(Λ3ϱ(r))− 1] . (2.30)

The quantity Λ is the thermal de-Broglie wavelength which is irrelevant in this study because
we are far from the quantum regime. Here, Λ just serves to give the logarithm a dimensionless
input. The influence of the external potential is expressed by the external part

Fext[ϱ] =

∫
dr ϱ(r)Vext(r) . (2.31)

Everything else belongs to the excess part. Here, the excess part consists of the contributions
of the particle interactions. Hence, we call it interaction part. We arrive at the decomposition

F [ϱ] = Fent[ϱ] + Fext[ϱ] + Fint[ϱ] . (2.32)
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The functional derivatives of the excess part of the Helmholtz free energy, which here is Fint,
with respect to ϱ are called direct correlation functions [59, 265]

c(1)[ϱ](r) = −β δFint[ϱ]

δϱ(r)
(2.33a)

c(2)[ϱ](r, r′) =
δc(1)(r)

δϱ(r′)
= −β δ2Fint[ϱ]

δϱ(r) δϱ(r′)
. (2.33b)

The notation c(2)[ϱ](r, r′) indicates that c(2) is an operator mapping a function ϱ(r) to a
function taking the two arguments r and r′. At equilibrium, where Ω is minimal,

0 =
δΩ

δϱ(1)(r)
= −µ+ kBT ln(Λ3ϱ(1)(r)) + Vext(r)− kBTc

(1)(r) . (2.34)

Equation (2.34) corresponds to an Euler-Lagrange equation. We dropped the functional
dependence because ϱ(1) is fixed at equilibrium. We see from Eq. (2.34) that c(1) corresponds
to that part of the energy landscape which is caused by the interactions. Knowledge about
the structure of the fluid is provided by the pair distribution function g(r, r′) which is defined
by

ϱ(2)(r, r′) = ϱ(1)(r)ϱ(1)(r′)g(r, r′) . (2.35)

A further important quantity is the pair correlation function h = g−1. These quantities can
be related to experimentally measurable quantities, such as the static structure factor [59]

S(k) = 1 + ϱ0h̃(k) (2.36)

where h̃(k) is the Fourier transform of the pair correlation function in the translational
invariant case h(r, r′) = h(r− r′). The mean density is denoted by ϱ0. The pair correlation
function is related to Fint via the Ornstein-Zernike equation [59]

h(r, r′) = c(2)(r, r′) +
∫

dr′′ c(2)(r, r′′)ϱ(1)(r′′)h(r′′, r′) . (2.37)

In principle, the structure of the fluid, i.e. the pair distribution function, could be determined
with the Helmholtz free energy functional, its derivatives, and the Ornstein-Zernike equation.
But an exact expression for Fint is known only for very special cases. In fact, approximations
for g and/or c(2) are used to integrate Eq. (2.33) to find approximative expressions for Fint

[59, 265]. The achieved approximations for the functional can be used to deal with more
complex cases, such as time dependent problems by using DDFT.

Equilibrium sum rule

The so-called “equilibrium sum rule” [260,265] relates the two-particle density in equilibrium
ϱ(2) with the first direct correlation function c(1). To obtain it, we study Eq. (2.28) in
equilibrium

0 = kBT∇ϱ(1)(r) + ϱ(1)(r)∇Vext(r) +

∫
dr′ ϱ(2)(r, r′)∇vint(r, r

′) . (2.38)
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We use the static DFT to calculate the one-particle density ϱ(1) by taking the gradient of
Eq. (2.34) and multiplying by ϱ(1). We arrive at a relation between ϱ(2)(r, r′) and c(1)[ϱ(1)](r)

∫
dr′ϱ(2)(r, r′)∇vint(r, r

′) = −kBTϱ(1)(r)∇c(1)(r)

= ϱ(1)(r)∇δFint[ϱ
(1)]

δϱ(1)(r)
. (2.39)

The key point of Eq. (2.39) is that the correlations between particle positions, described by
ϱ(2), can be expressed with the one-particle density via the functional Fint[ϱ].

2.3.2 DDFT equation

In the DDFT we close Eq. (2.28) in a way which incorporates the structure of the fluid. In
particular, we approximate the non-equilibrium pair distribution function

g(r, r′, t) =
ϱ(2)(r, r′, t)

ϱ(1)(r) ϱ(1)(r′, t)
. (2.40)

We use the decades of effort that have been invested to construct the approximative func-
tionals Fint for the static DFT. It is assumed that g(r, r′, t) approaches equilibrium faster
than ϱ(1)(r, t). This corresponds to an adiabatic approximation. Further, we assume that the
equilibrium functional Fint, evaluated at the non-equilibrium density, gives a reasonable ap-
proximation for the non-equilibrium correlations, so that we can use the sum rule Eq. (2.39)
in non-equilibrium

∫
dr′ϱ(1)(r′, t)g(r, r′, t)∇vint(r, r

′) ≈ ∇δFint[ϱ
(1)]

δϱ(1)(r, t)
. (2.41)

With the decomposition of F [ϱ] in Eq. (2.32) we arrive at a compact equation for the time
evolution of the one-particle density, the DDFT key equation

∂tϱ
(1)(r, t) =

D0

kBT
∇ ·

(
ϱ(1)(r, t)∇ δF [ϱ(1)]

δϱ(1)(r, t)

)
. (2.42)

The single-particle parts of the Helmholtz free energy functional are straightforward gener-
alisations of Eqs. (2.30) and (2.31)

Fent[ϱ] = kBT

∫
dr ϱ(r, t)[ln(Λ3ϱ(r, t))− 1] (2.43)

Fext[ϱ] =

∫
dr ϱ(r, t)Vext(r, t) . (2.44)

The only change is that the external potential is allowed to depend on time.
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Capabilities and limits: The DDFT equation (2.42) is a generalised diffusion equation for
the one-particle density ϱ(1)(r, t). It provides a framework based on microscopic interactions
for the theoretical description of many-particle systems. The focus lies on length scales of
the size of one colloid to thousandfold that size. For larger systems often coarse-grained is
employed to derive effective fluid dynamic continuum theories. An example is the Nernst-
Planck-equation for the motion of ions in a solvent under the influence of an electric field
[172]. In [266] a connection between static DFT and the macroscopic Frank-Oseen-theory is
established. In [267] a continuous line is drawn from Langevin equations over Fokker-Planck
equations and DDFT to known equations of fluid dynamics like the Euler equation and the
Navier-Stokes equation.

The adiabatic approximation is a severe approximation concerning correlations in the
fluid. If the change of positional correlations is dominating the behaviour, e.g. during single
file diffusion, the DDFT equation will not be able to predict the motion correctly. This
deviation was analysed quantitatively in [268]. However, time varying external fields can be
treated as long as the correlations are not affected [269–273].

Reduction to one dimension In chapter 7, we solve the DDFT equation, Eq. (2.42), in
one dimension

∂tϱ(x, t) =
D0

kBT
∂x

(
ϱ(x, t)∂x

δF [ϱ]

δϱ(x, t)

)
. (2.45)

The one-dimensional reduction of entropic and external part, Eqs. (2.30) and (2.31) respec-
tively, read

Fent[ϱ] = kBT

∫
dx ϱ(x, t)[ln(Λϱ(x, t))− 1] (2.46a)

Fext[ϱ] =

∫
dx ϱ(x, t)Vext(x, t) . (2.46b)

2.3.3 Extensions

In the last decade numerous extensions to the DDFT have been proposed. Principally every
shortcoming was addressed. We give a brief overview of the various methods. However, we
do not use any of these approaches.

Hydrodynamic interactions In multi-particle systems with high density and high ve-
locities the model of the solvent, which we employ here, i.e. isotropic friction and Gaussian
white noise, may be too simple. Hydrodynamics interactions are the interactions between
the colloids which are mediated by the solvent. Effects of hydrodynamic interactions on the
motion of colloids have been reported [171,271,274–277]. Many of them treat the solvent as
an incompressible liquid. There have been several proposals to incorporate hydrodynamic
interactions into DDFT [259, 271, 278, 279]. Their role is minor in the scope of this thesis,
because we discuss single particles in the chapters 3, 4, and 5 and soft particles in chapters
6 and 7. There might be an influence to the dynamics of chains of hard particles in chapters
6 and 7.
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Flow and shear In situations where the flow of the solvent is not negligible, i.e. in mi-
crofluidic applications [280], extensions of Eq. (2.42) are necessary. A DDFT can then be
formulated for a probability density in space and velocity [281]. By making the assumption
that the velocities are locally (in space) equilibrated around a mean velocity an equation of
motion for the probability density in space and a time and space dependent mean velocity
can be derived [267]. In [279] deviations from the mean velocity are studied.

The derivation in [282] addresses the fact that motion with inertia can show waves. A
DDFT with a second-order time derivative is developed which allows access to the speed of
sound waves.

An important application of flow are sheared systems. There are a lot of dynamical
phenomena which arise upon applying shear to a complex liquid, such as shear thinning
[137], shear banding [57], structure formation or change [219, 283], and friction in general
[284,285]. Understanding shear induced dynamical transitions opens the possibility to control
the rheological behaviour of non-Newtonian fluids [22,46,50,228,286], e.g. the friction of thin
colloidal films [90, 137, 287]. There are several proposals to incorporate shear into DDFT,
reaching from phenomenological approaches to consistent extensions to the above discussed
concepts [288–291].

Strongly correlated motion Systems whose dynamics is strongly correlated and where
the correlations change with time cannot predict with DDFT. This was one of the first tests
of DDFT [257]. Work in this direction [289,292] had to take the time evolution of higher order
correlations functions into account. However, correlations are still hard to incorporate into
a DDFT because of the lack of suitable non-equilibrium free energy functionals. There are
ideas [278,293] how to use such a functional to describe the motion but to my knowledge there
are no proposals for actual non-equilibrium free energy functionals. However, the deviations
from the adiabatic approximation could be quantified [268].

Canonical vs. grand canonical In all DDFTs mentioned in this thesis, the particle num-
ber is conserved, and volume and temperature are fixed. Thus, these DDFTs operate in a
canonical ensemble. On the contrary the Helmholtz free energy functionals which are devel-
oped in the static DFT are grand canonical functionals. A series expansion of a canonical
ensemble average in terms of grand canonical averages is given in [294]. Interestingly, the cor-
rection terms decay quite fast with ⟨N⟩−1, ⟨N⟩−2, . . . , such that the use of a grand canonical
functional is good approximation.

2.3.4 Interaction functionals

Apart from the adiabatic approximation, often additional approximations are needed because
the exact equilibrium interaction Helmholtz free energy functional Fint[ϱ] is known for very
special cases, only. Nevertheless, even simple approximations can yield fairly good predictions
in some situations.

Hard spheres in 1D If hard spheres are limited to move on a line, e.g. in a narrow
channel [295], every particle corresponds to a segment of the line. For this special case the
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equilibrium interaction functional is known [296]

Fhs1D
int [ϱ] = −1

2

∫
dx ln(1− n[ϱ](x))

(
ϱ(x+

σ

2
) + ϱ(x− σ

2
)
)

(2.47a)

n[ϱ](x) =

∫ x+σ/2

x−σ/2
dx′ ϱ(x′) . (2.47b)

The quantity n[ϱ](x) is called local packing fraction. To use Eq. (2.47) in the DDFT we need
to calculate

∂x
δFhs1D

int [ϱ]

δϱ(x)
=

ϱ(x+ σ)

1− n[ϱ](x+ σ/2)
− ϱ(x− σ)

1− n[ϱ](x− σ/2)
. (2.48)

See [297] for a derivation.

Fundamental measure theory Hard disks in 2D or hard spheres in 3D have a much more
complex behaviour. Its description via functionals can be approximated with high quality
with the fundamental measure theory [56, 298]. It is based on the fundamental geometric
measures of a sphere, which are volume, surface area, mean radius of curvature, and Euler
characteristic [56]. Considerable work was invested in the so called dimensional crossover:
the reduction of 3D fundamental measure theory to 2D confinement should recover the 2D
functional. Further reduction should yield Eq. (2.47) for 1D and a functional for the point
cavity (zero dimensions) [56].

Mean-field A common approximation for soft interaction potentials is the mean-field (or
random phase approximation) which approximates the direct pair correlation function, de-
fined in Eq. (2.33b), by [299]

c(2)(r, r′) = −βvint(r, r′) . (2.49)

However, colloidal interactions often are strongly repulsive at very short distances and have
less strong repulsive or attractive interaction at larger distances [142, 300, 301]. To model
the short ranged repulsion the colloids are usually considered as hard spheres, whereas the
other interactions are often modelled with a mean-field approach [260,284,300,302–304]. The
interaction function incorporating this modelling into the DDFT reads

FMF
int [ϱ, vint] =

1

2

∫
dr dr′ ϱ(r, t) vint(r, r′) ϱ(r′, t) . (2.50)

2.4 Correlations in space and time: The van Hove function

The van Hove correlation function [59,305]

G(d, t) =

⟨
1

N

N∑

i=1

N∑

j=1

δ(d− rj(t) + ri(0))

⟩
. (2.51)
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is the density of pairs of positions (ri(t = 0), rj(t)) which have the distance d = rj(t)− ri(0),
averaged over i, j, and the ensemble. The van Hove function is a generalisation of the pair
distribution function g(r) (defined by Eq. (2.35)) for time-dependent systems [305].

The sum over j in Eq. (2.51) can be decomposed into a diagonal part (i = j) which yields
the so-called self part of the van Hove function

Gs(r, t) =

⟨
1

N

N∑

i=1

δ(r− ri(t) + ri(0))

⟩
, (2.52a)

and the off-diagonal part (i ̸= j) which yields the distinct part of the van Hove function

Gd(r, t) =

⟨
1

N

N∑

i=1

∑

j ̸=i
δ(r− rj(t) + ri(0))

⟩
. (2.52b)

The self part of the van Hove function is the probability density for the distance a particle
travels on average during the time t. It can be used to calculate the mean squared displace-
ment (MSD) [123] which is a very important quantity to describe diffusion. The standard
definition of the MSD in transport is [10]

w(t) =

⟨
1

N

N∑

i=1

(∆ri(t))
2

⟩
(2.53a)

∆ri(t) = ri(t)− ri(0)− ⟨r⟩(t) + ⟨r⟩(0) , (2.53b)

where ∆ri(t) is the deviation of the distance that particle i travelled to the distance the
whole system travelled. The MSD in terms of Gs reads

w(t) =

∫
drGs(r, t)

(
r−

∫
dr′ r′Gs(r

′, t)
)2

, (2.54)

where the subtraction of the first moment of Gs,
∫
dr rGs(r, t) = ⟨r⟩(t)−⟨r⟩(0), accounts for

the mean displacement of the whole system in the time interval [0, t].
A further important derived quantity is the (second) non-Gaussian parameter

α(t) =
⟨∆ri(t)

4⟩
(1 + 2/D)⟨∆ri(t)2⟩2

− 1 =

∫
drGs(r, t) (r−

∫
dr′r′Gs(r

′, t))4

(1 + 2/D)w(t)2
− 1 , (2.55a)

where the number of spatial dimensions is denoted by D. Equation (2.55a) is an advection-
corrected version of previous definitions [119, 306]. Note that α is closely related to the
kurtosis κ = 3α of Gs(r, t).

Initial values The values of the parts of the van Hove function at t = 0 read [59,307]

Gs(r, 0) = δ(r) (2.56a)

Gd(r, 0) =
1

N

∫
dr′ ϱ(2)(r′, r′ + r) . (2.56b)

The connection to the pair distribution function becomes clear if the system is initially
homogeneous, and the correlations only depend on distance, i.e. ϱ(1)(r, t = 0) = const and
ϱ(2)(r, r′, t = 0) = (ϱ(1))2g(r′ − r). Then, it follows from Eq. (2.56b), that

Gd(r, 0) = ϱ(1) g(r) . (2.57)
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2.4.1 Test particle method

The static test particle limit in a homogeneous system means to place a fixed particle, a test
particle, at a certain position, say r0, and to calculate the one-particle density of the other
particles ϱ(1)(r|r0) [123,307]. The notation ϱ(1)(r|r0) means that we consider the one-particle
density under the condition that there is a particle at r0. The potential landscape of the other
particles then consists of interactions among them and the interaction with the test particle.
Because the interaction with the test particle is constant, the conditional density ϱ(1)(r|r0)
is equal to the non-conditioned density ϱ

(1)
eff (r) of N − 1 particles in an external potential

vint(r − r0) where vint is the pair interaction potential [307]. By expressing the conditional

density by the joint probability ϱ(2) a connection between ϱ
(1)
eff and the pair distribution

function g can be drawn

ϱ
(1)
eff (r) = ϱ(1)(r|r0) = ϱ(2)(r, r0)/ϱ

(1) = g(r, r0)/ϱ
(1) , (2.58)

where we used Eq. (2.35).
For the dynamic, inhomogeneous case the method was adapted [123]. A system of N

interacting particles is separated in one test particle and the rest. To make a connection with
a conditional density, we make a identical transformation of Eq. (2.51)

G(d, t) =

∫
dr′

1

N

⟨∑

ij

δ(r′ − ri(0)) δ(d+ r′ − rj(t))

⟩
, (2.59)

which clearly shows the property of the van Hove function to average over the initial con-
figurations. The quantity enclosed by angle brackets is a correlation function. Due to its
similarity to the two-particle density ϱ(2), Eq. (2.24b), we call it two-particle correlation
function

ν(r, t, r′, t′) =

⟨∑

ij

δ(r− rj(t))δ(r
′ − ri(t

′))

⟩
. (2.60)

With the test particle method we can calculate the conditional density ϱc to find a particle
at position r at time t given that there was a particle at position r′ at time t′

ϱc(r, t|r′, t′) =
⟨

N∑

i=1

δ(r− ri(t))

⟩

R(r′,t′)

. (2.61)

The subscript at the angle bracket denotes that this average uses a restricted ensemble.
The ensemble contains the configurations that fulfil the restriction R(r′, t′) that they had
a particle at r′ at time t′. By using pR(r1(t

′), . . . , rN (t′), r′) which denotes the probability
density to choose a valid configuration from all configurations, we can write Eq. (2.61) with
an unrestricted ensemble average

ϱc(r, t|r′, t′) = ⟨pR(r1(t′), . . . , rN (t′), r′)
N∑

i=1

δ(r− ri(t))⟩ . (2.62)
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The probability pR is zero for all r′ /∈ {r1(t), . . . , rN (t)}, which are almost all r′. Hence, pR
consists of δ-peaks

pR(r1(t
′), . . . , rN (t′), r′, t′) = c

N∑

i=1

δ(r′ − ri(t
′)) , (2.63)

where a, still unknown, normalisation constant c was inserted. To find the normalisation, we
recall that there are N particles in the system

N =

∫
dr ϱc(r, t|r′, t′) =

⟨∫
dr

N∑

i=1

δ(r− ri(t)) pR(r1(t
′), . . . , rN (t′), r′)

⟩

= N⟨pR(r1(t′), . . . , rN (t′), r′)⟩ . (2.64)

By comparing with Eq. (2.24a) we recognise the one-particle density in the structure of pR,
yielding c = 1/ϱ(1)(r′, t′) and

ϱc(r, t|r′, t′) =
⟨

N∑

i=1

δ(r− ri(t))
1

ϱ(1)(r′, t′)

N∑

j=1

δ(r′ − rj(t
′))

⟩
(2.65)

From Eq. (2.65) we can draw an analogy to the relation between conditional probabilities and
their corresponding joint probabilities, i.e. pcond(x|y) = pjoint(x, y)/p(y). The corresponding
joint density to ϱc is the two-particle correlation function (defined in Eq. (2.60))

ϱc(r, t|r′, t′) = ν(r, t, r′, t′)
ϱ(1)(r′, t′)

. (2.66)

The van Hove function can be related to the conditional density through Eq. (2.59)

G(d, t) =

∫
dr′

1

N
ϱc(r′ + d, t|r′, 0)ϱ(1)(r′, 0) . (2.67)

The same relation was given in [139]. The self and distinct part read

Gs/d(d, t) =

∫
dr′

1

N
ϱcs/d(r

′ + d, t|r′, 0) ϱ(1)(r′, 0) , (2.68)

where the conditional density ϱcs is the probability density to find the test particle and ϱcd is
the density of the other particles, i.e.

ϱcs(r, t|r′, t′) =
⟨

N∑

i=1

δ(r− ri(t))
1

ϱ(1)(r′, t′)
δ(r′ − ri(t

′))

⟩
(2.69a)

ϱcd(r, t|r′, t′) =
⟨

N∑

i=1

δ(r− ri(t))
1

ϱ(1)(r′, t′)

∑

j ̸=i
δ(r′ − rj(t

′))

⟩
. (2.69b)
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2.4.2 DDFT-based test particle method

We now concentrate on a equation of motion for the conditional densities ϱs/d(r, t|r′, t′). The
idea of [123] was to treat the time evolution of the N particles as a mixture of two species.
The species s (self) consists of the test particle and the species d (distinct) consists of the
other N − 1 particles. We write down an extended SE for every species

∂tϱα(r, t) = D0∇2ϱα +∇ · (ϱα∇(Vext + V α
int))/γ , (2.70)

where α ∈ {s, d}. The effective interaction potential experienced by species α is denoted by
V α
int. The modelling of the interactions (following [123]) is that the test particle interacts

with the other particles and the other particles interact with the test particle and with each
other. In the framework of DDFT the effective potentials are derived from a Helmholtz free
energy functional, i.e.

V α
int(r, t) =

δFTPM
int [ϱs, ϱd]

δϱα(r, t)
. (2.71)

Archer et al. [123] propose the functional

FTPM,2nd
int [ϱs, ϱd] =

1

2

∑

α,α′∈{s,d}

∫
dr dr′ ϱα(r, t)ϱα′(r′, t) (−kBT )c(2)αα′(r, r

′) . (2.72)

The direct correlation functions c
(2)
αα′(r, r′) are set to

c(2)ss = 0 (2.73a)

c
(2)
sd = c

(2)
dd = c

(2)
ds = c(2) , (2.73b)

where c(2)(r, r′) is the usual single species direct correlation function. Equation (2.73) means
that the test particle does not interact with itself and that all other interactions are identical.

The dynamic test particle method was demonstrated [123] using a mean-field approxima-
tion, i.e. c(2) = −βvint, whereas later uses [139,308] employ more elaborate direct correlation
functions.

2.4.3 Beyond second order

With Eq. (2.47) an exact free energy functional for hard particles in one dimension exists. It
seems crude to use a second order approximation for the test particle method while we use
the full functional for normal DDFT calculations. Moreover, the second derivative, in the
inhomogeneous case, is quite complex

c(2)(x, x′) = Θ(x′ − x+ σ)Θ(x− x′ + σ)
1

2

(
1

1− n[ϱ](x− σ/2)
+

1

1− n[ϱ](x+ σ/2)

)

−1

2

∫ min(x,x′)+σ/2

max(x,x′)−σ/2
dx̃

ϱ(x̃+ σ/2) + ϱ(x̃− σ/2)

(1− n[ϱ](x̃))2
. (2.74)

The Heaviside step function is denoted by Θ(x).
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Instead of the second order approach, Eq. (2.72), we make a generalising subtraction
approach

FTPM,sub
int [ϱs, ϱd] = Fint[ϱs + ϱd]−Fint[ϱs] , (2.75)

where Fint is the usual interaction functional, e.g. Eq. (2.47). Note that Eq. (2.75) automat-
ically reduces to the established second order approach if the functionals are expanded to
second order. A separate fixing like Eq. (2.73) is not necessary, because of the differentiation
property

δA[e+ f ]

δe(r)
=
δA[g]

δg(r)
, (2.76)

where A is a functional and e, f, and g = e+ f are functions. The derivatives of Fint[ϱs+ ϱd]
all yield the same correlation functions and the test particle self interaction δFint[ϱs]/δϱs
cancels out. In chapter 6 we use this approach with the functional for hard particles in one
dimension.

2.5 Stochastic thermodynamics

The Langevin equation (2.6) contains all information about the motion of the Brownian
particles but it does not quantify their interaction with the heat bath. Generalisations of
equilibrium thermodynamic relations were worked out in the last decades [53,55,244,310–312].
The first central question is how much work is applied to the Brownian particle and which
fraction is dissipated as heat. This is answered by the first law of stochastic thermodynamics.

There is a diversity of Brownian machines [7, 9, 195]. All these machines work in non-
equilibrium and hence produce entropy. The second central question is which machine works
most efficient. This is tied to the second law.

2.5.1 Trajectory based quantities

We adopt the formulation of stochastic thermodynamics from Seifert [55]. It is instructive
to start with the Langevin equation (2.7) for a single particle in one dimension. We stick to
the equilibrium thermodynamics rule

dw
work applied to particle

=
dE

change of internal energy
+

dq
dissipated heat

. (2.77)

In equilibrium no work is applied, i.e. dw = 0. Further, the deterministic force in Eq. (2.7)
must have a potential V (x). If the particle changes its position, the internal energy changes
by dE = ∂xV dx and a heat dq = −dE = −∂xV dx is dissipated (dq > 0) or absorbed
(dq < 0). Out of equilibrium there may be an additional external non-conservative force
fnc(x, t) or a time-dependent potential V (x, t) (or both). The internal energy changes if the
particle moves in the potential and if the potential itself changes

dE = ∂xV dx+ ∂tV dt . (2.78)
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Heat is dissipated if the particle moves, because friction is the dissipative element in our
system

dq = fdx . (2.79)

Solving Eq. (2.77) results in an expression for the exerted work

dw = (f + ∂xV )dx+ ∂tV dt = fncdx+ ∂tV dt . (2.80)

With the Langevin equation (2.7) the changes can be written time-dependent

dE = ∂xV ẋdt+ ∂tV dt (2.81)

dw = fncẋdt+ ∂tV dt (2.82)

dq = fẋdt . (2.83)

The changes involve products of noisy quantities. We follow [55] and use the Stratonovich
interpretation [154]. Integrating Eqs. (2.81)-(2.83) with respect to time yields

E[x(t)] =

∫ t

0
dt′(∂xV (x(t′), t′)ẋ(t′) + ∂t′V (x(t′), t′)) =

∫ t

0
dV (x(t′), t′)

= V (x(t), t)− V (x(0), 0) (2.84)

w[x(t)] =

∫ t

0
dt′(fnc(x(t′), t′)ẋ(t′) + ∂t′V (x(t′), t′)) (2.85)

q[x(t)] =

∫ t

0
dt′ f(x(t′), t′) ẋ(t′) . (2.86)

This corresponds to a very familiar first law on the level of trajectories

w[x(t)] = ∆V + q[x(t)] . (2.87)

The definition of entropy is similar. The entropy of the solvent is enlarged if heat is dissipated
in it. In Ref. [55], this entropy is called the entropy change of the medium

∆sm[x(t)] = q[x(t)]/T . (2.88)

The system entropy

ssys(t) = − ln p(x(t), t) . (2.89)

quantifies to which extent the particle position deviates from the average. This entropy
connects trajectory dependent information, the particle position x(t), with ensemble averaged
information, the probability density p(x, t).

The deep relation between dissipation and time manifests in the various fluctuation the-
orems involving time-reversed trajectories x†(t) = x(te − t) [55] where te is a chosen end
time.
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2.5.2 Ensemble averages

The equations for q̇(x(t)), ẇ(x(t)), and ṡm(x(t)) contain products of functions of x(t) and
the velocity ẋ(t). To calculate their ensemble averages, we first calculate the general average
involving an arbitrary function a(x, t)

⟨a(x(t), t)ẋ(t)⟩ =
∫

dx⟨δ(x(t)− x)a(x(t), t)ẋ(t) =

∫
dx a(x, t)⟨δ(x(t)− x)ẋ(t)⟩

=

∫
dx a(x, t) j(x, t) , (2.90)

where we used the common expression for the probability current [9, 59]

j(x, t) = ⟨ẋ(t) δ(x(t)− x)⟩ . (2.91)

In [55] Seifert insinuates that this reasoning is loose and that the relation (2.90) should be
derived via a path integral formulation explicitly evaluating the Stratonovich interpretation.
However, using Eq. (2.90) yields

W (t) = ⟨w[x(t)]⟩ =

∫
dt′
(∫

dxfnc(x, t
′)j(x, t) +

∫
dx p(x, t′)∂t′V (x, t′)

)
(2.92a)

Q(t) = ⟨q[x(t)]⟩ =

∫
dt′ dx f(x, t′) j(x, t′) (2.92b)

∆Sm(t) = ⟨sm[x(t)]⟩ = Q(t)/T (2.92c)

Ssys(t) = ⟨ssys(t)⟩ = −
∫

dx p(x, t) ln(p(x, t)) . (2.92d)

Of particular interest is the total entropy production

∂tS
tot = Ṡm + Ṡsys . (2.93)

The time derivatives ∂tp appearing in the term Ṡsys are replaced by the continuity equation
(2.11). Partial integration is performed where the boundary term vanishes either on natural
(p is zero at the boundary) or periodic boundary conditions. The second law then reads

Ṡtot =

∫
dx

(j(x, t))2

D0 p(x, t)
≥ 0 . (2.94)

In chapter 5 we compare the entropy production and the applied work for different ratchets.

2.6 Numerical methods

Four different one-dimensional equations are solved in this thesis. Three of them are partial
differential equations (PDE), the Smoluchowski equation (2.13), the DDFT equation (2.45),
and the test particle method, Eqs. (2.70) and (2.67). Further, the single-particle Langevin
equation (2.7) is solved with a Brownian dynamics simulation.

The PDEs are solved with forward-time-centred-space (FTCS), a finite difference method
explained in the following section. The DDFT equation and the test particle method are
non-local PDE because the interaction term yields an integral term. The efficient calculation
of this integrals is essential and described in Sec. 2.6.2.
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2.6.1 Finite difference method

All PDEs have the structure

∂tϱ(x, t) = ∂xxϱ(x, t)− ∂x(ϱ(x, t) f(ϱ, x, t)) , (2.95)

where a transformation to dimensionless quantities has already been performed.
Time and space are discretised with constant steps

tn = n∆t ; xi = xmin + i∆x . (2.96)

Simplest central finite difference derivative discretisation rules [313] lead to the calculation
scheme

ϱ(xi, tn+1) =ϱ(xi, tn) +
∆t

∆x2
(ϱ(xi+1, tn)− 2ϱ(xi, tn) + ϱ(xt−1, tn))

− ∆t

2∆x
(ϱ(xi+1, tn)f(xi+1, tn)− ϱ(xi−1, tn)f(xi−1, tn)) . (2.97)

Note that the force term is the discretised form of ∂x(ϱf) and not of f∂xϱ+ϱ∂xf . The latter
form contains an advective term 1 which cannot be treated with a central space scheme.

To set the discretisation, we employ the Courant criterion [313] ∆t∆x−2 ≤ 1 which yields
a neutrally stable FTCS scheme. For the non-linear equations the Courant criterion is not
exact. We adjust ∆t manually if ∆t = 0.25∆x−2 fails. The space discretisation must be
chosen small enough to sample the spatial variations of the force f(x, t).

Solving via scheme (2.97) was neither a time-critical nor an accuracy issue. Hence, implicit
schemes were not taken into account.

2.6.2 Efficient calculation of convolution integrals in Fourier space

The integrals appearing in the interaction parts of Eqs. (2.45) and (2.70) are convolutions.
We exploit this special feature by carrying them out in Fourier space to gain speed from
the fast Fourier transform. This technique was essential for acquiring numerical results.
This is applied to the integrals n[ϱ](x), Eq. (2.47b), and the mean force, −∂xδFMF[ϱ]/δϱ(x),
Eq. (2.50). The general form of convolution is

a(x, t) =

∫
dx′ b(x′, t) c(x− x′) , (2.98)

which in Fourier space reads

ã(k, t) =
√
2π b̃(k, t) c̃(k) (2.99)

ã(k, t) =
1√
2π

∫
dx a(x, t) e−ikx . (2.100)

The Fourier transform is defined by Eq. (2.100). By using the fast Fourier transform (in
particular the library FFTW [314, 315]), we reduce the computational effort from O(N2

x) to
O(Nx logNx) where Nx is the number of spatial discretisation points.

1 Thanks to Alexander Kraft for pointing this out.
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2.6.3 Moving frame

In chapters 3, 6, 7 we simulate transport. The distance the particles travel is in many cases
larger than the space they explore through diffusion. The numerical treatment of such a large
space was not possible. We therefore adjusted xmin (cf. Eq. (2.96)) to ⟨x⟩ − Nx∆x/2 every
tMF = 0.1τB keepingNx and ∆x constant. The density values ϱ(x < xmin(t)) are reinterpreted
as ϱ(x+Nx∆x−∆xmin) where ∆xmin = xmin(t+tMF)−xmin(t). This reinterpretation “moves”
a particle which is at x < xmin by a distance Nx∆x−∆xmin with the probability

mMF =

∫ xmin(t+tMF)

xmin(t)
dxϱ(x, t) . (2.101)

This spurious particle current must be made negligible whenever the current is the relevant
variable. This is assured by choosing Nx large.

2.6.4 Fourier-mode eigendecomposition of the Smoluchowski equation

The Smoluchowski equation (2.13) is linear in p(x, t). Via Fourier transform (2.100) the
differential time propagation operator of Eq. (2.13) can be transformed into an integral
propagator

∂tp̃(k, t) = −D0k
2p̃(k, t)−D0βik

∫
dk′√
2π

f̃(k − k′, t)p̃(k′, t) (2.102a)

=

∫
dk′ a(k, k′) p̃(k′, t) , (2.102b)

with the kernel a(k, k′). Discretisation into a finite number of modes approximates the
integral operator by a matrix-vector product

∂tp̃(t) = A · p̃(t) , (2.103)

where p̃ is the vector of the chosen Fourier components of p(k, t) and A is the matrix repre-
senting the integral in Eq. (2.102b). The solution of Eq. (2.103) can be formulated with the
matrix exponential

p̃(t) = eAtp̃(0) . (2.104)

If the matrix A can be diagonalised to A = S ·D ·S−1 the solution can be reduced to simple
matrix products

p̃(t) = S · eDt · S−1 · p̃ , (2.105)

where D is a diagonal matrix with the eigenvalues of A on the diagonal and S contains the
corresponding eigenvectors column by column. We use this method in chapter 4, where A is
diagonalisable.

2.6.5 Brownian dynamics simulation

In chapters 4 and 5, we solve a single-particle overdamped Langevin equation (2.7) with
the Euler-Maruyama scheme [248,316] using a Mersenne Twister random number generator
[317].



3. SHORT TIME DIFFUSION OF A SINGLE
PARTICLE

Apart from the presentation of the results of the model we worked out with Clive Emary,
published in Phys. Rev. E 86, 061135 (2012) [318], this chapter serves as a introduction
into the dynamics of a particle in a one-dimensional periodic potential. The following chap-
ter Waiting time distribution provides complementary insights. Together they compose a
knowledge base about a single Brownian particle in a washboard potential.

Transport in tilted washboard potentials was first addressed in the long time limit. The
mean particle velocity, the most important transport property in a system with constant
directed drive, was calculated analytically by Stratonovich [150, 152] already half a century
ago. Also for the diffusion coefficient an analytic expression was found a decade ago [125,185].
This completed the research on the long time behaviour for a normally diffusing particle. For a
particle which experiences anomalous diffusion where the mean squared displacement growths
slower or faster than linear with time (called subdiffusive or superdiffusive, respectively)
transport properties became in principle accessible in the past decade [132, 162, 251, 319].
However, the actual equations are much more complicated than for normal diffusion.

In recent years the short-time behaviour of overdamped Brownian particles in a modulated
potential became a topic of intense theoretical [119, 147, 254, 277, 320, 321] and experimental
[82, 83, 87, 322] investigation. This was driven from research on glasses [120, 323] and, more
generally, on systems where the dynamics is hindered by an energetic or entropic barrier.
The link between glasses and one-dimensional washboard potentials is drawn by the average
view the particle has on its cage formed by neighbouring particles [119]. These hindering,
also called kinetic arrest [117], is usually characterised by the mean squared displacement
(MSD) in dependence of time which shows a common feature throughout the applications
and for the single particle in a washboard potential. In the latter the MSD growths linearly
with time initially until the particle reaches a barrier. During the time in which the particle
overcomes the barrier the MSD grows slower. If this subdiffusive regime is pronounced it is
called plateau. Diffusive behaviour is recovered for long times. These MSD plateaus occur
in many-particle systems e.g. in glasses [5, 116, 119, 136, 141, 324], in optical traps [161] and
other structured light fields [82, 83], in the formation of a biochemical bond [325], in chains
of dipolar particles [138,142,326], and in colloidal gels [35].

The analytic accessibility for the long time transport properties had no counterpart for
the short time behaviour. This gap was known and phenomenological approaches were given
[82, 119]. Albeit the quality of the estimates of these approaches a comprehensive theory
which allows analytic results was missing. In [318] we filled this gap with a space discretised
model, described by a master equation. Discretisation of diffusion processes is very common
in the framework of continuous time random walk models [129, 164, 327]. Note that there is
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a deep relation between continuous time random walk and Master equations [328,329].
Our master equation model is based on assigning two discrete positions per well where

the particles may reside. The dynamics is given by prescribing probability rates between the
positions based on the knowledge on long time properties and a short time expansions of the
Smoluchowski equation. We use numeric solutions of the Smoluchowski equation to check
the accuracy of our proposed rate equation model.

The relevant quantities for the investigation of the short-time behaviour are introduced
in Sec. 3.1. In Sec. 3.2 the master equation model is introduced on an abstract level. We
connect the model to actual predictions in Sec. 3.3, where we specify rates, and in Sec. 3.4,
where we address relevant limit cases. The comparison of the predictions of the rate equation
model with the numerical solution of the Smoluchowski equation is shown in Sec. 3.5.

Clive Emary developed the Master equation model and carried out the corresponding
calculations. My contribution to the rates is the short time expansion of the SE. Further, I
carried out the solutions of the SE. Most of the text in our publication [318] was written by
Clive Emary. Much of the text in this chapter I literally copied from [318]. Hence, a couple
of paragraphs in this chapter are Clive Emary’s work. Based on [318], I review the model
definition and derivation and give intermediate steps not mentioned in the paper.

3.1 Characterisation of short-time diffusion

We consider the overdamped Brownian motion of a particle in the tilted sinusoidal washboard
potential u(x), Eq. (1.11), (see Sec. 1.5.1). We focus on the case where the potential has
deep wells which occurs at ∆u ≫ kBT and F < Fc (cf. Eq. (1.13)). The time evolution of
the probability density p(x, t) is given by the SE

∂tp(x, t) = D0∂xxp(x, t) +
D0

kBT
∂x(p(x, t)u

′(x)) , (3.1)

which is Eq. (2.13) with the force f(x, t) = −u′(x). We assume that the particle’s initial
position is known to be x0, yielding the initial condition

p(x, 0) = δ(x− x0) . (3.2)

To characterise the transport we use mean particle position ⟨x⟩ and mean squared displace-
ment

w(t) = ⟨(x− ⟨x⟩)2⟩ , (3.3)

which are the first two cumulants of position. Higher order cumulants are important for
glassy [116,119] and gel-forming [144,326] systems. The (second) non-Gaussian parameter α,
which is connected to the fourth cumulant, quantifies the deviation of p(x, t) from a Gaussian
distribution. We use the advection-corrected version, Eq. (2.55), because our system is driven.
For a single particle whose initial position is known it reads

α(t) =
⟨(x− ⟨x⟩)4⟩

3w(t)2
− 1 . (3.4)

In Eq. (3.4) no correlation function is involved and α is proportional to the kurtosis κ(t) =
3α(t) of the probability density.
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n=0 n=1n=-1

L R L RL RR L

(a)

(b)

a ∆u

γ-

γ+ Γ
+

Γ
-

Fig. 3.1: (a) Tilted washboard potential with numbered valleys. (b) Visualisation of the two
state per well (2S/W) model with transition rates γ±,Γ±. The (large) intra-well rates γ±

model transition between the internal states L and R. The (small) inter-well rates Γ± model
barrier crossing. Reprinted from [318].

3.2 Two-state-per-well model

Clive Emary’s idea was to model the SE for the probability density defined as a function of
continuous variable x with a simpler model involving probabilities for finding the particle in
one of a set of discrete states, defined by regions of the x axis. The most obvious approach
of this type would be to associate one state with each well of the potential and write down
a rate-equation for the probability p(n)(t) of finding the particle in well n at time t. This
one-state-per-well approach is discussed in the appendix of our paper [318]. All position
cumulants are linear in time for all times. Such a simple rate equation is therefore inadequate
to describe the short-time dynamics of interest here.

The model that we shall focus on is the next most simple model in this family. It possesses
two states per well (2S/W), which correspond to whether the particle is to be found in the left
or right side of the well, see Fig. 3.1. In this model, the location of the particle is described

by two discrete indices: the integer well index, n, and the internal index α = L,R and p
(n)
α is

the corresponding probability. For calculating the position cumulants, we take the particles

to be localised at positions x
(n)
α = na+ xL/R, where xL and xR are the offsets of the left and

right states respectively.
Let us assume that transitions between these states can be described by rates and define

rates γ+ and γ− to describe hopping within a single well, and rates Γ+ and Γ− to describe
hopping between the wells. In both cases, superscript + indicates movement to the right
and −, movement to the left. The rates are homogeneous due to the periodicity of the force
and, since we assume that the barriers are high (∆u ≫ kBT ), the intra-well rates γ± are
significantly larger than the inter-well rates Γ±. The system can then be described by the
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rate equation system

d

dt

(
p
(n)
L

p
(n)
R

)
=

(
−γ+ − Γ− γ−

γ+ −γ− − Γ+

)(
p
(n)
L

p
(n)
R

)
+

(
0 Γ+

0 0

)(
p
(n−1)
L

p
(n−1)
R

)
+

(
0 0
Γ− 0

)(
p
(n+1)
L

p
(n+1)
R

)
. (3.5)

Denoting the vector of probabilities with the notation p(n)(t), this master equation can be
written in matrix form as

ṗ(n) =W0p
(n) +W+p

(n−1) +W−p(n+1) (3.6)

where W0,± are two-dimensional matrices defined according to Eq. (3.5). We then define
the Fourier-transformed vector p̃(k, t) =

∑
n e

inakp(n)(t), such that, by Fourier-transforming
Eq. (3.6), we arrive at

∂tp̃ = W(k) · p̃ with W(k) =W0 + eikaW+ + e−ikaW− . (3.7)

Assuming that the particle starts off in the n = 0 well, the solution of this equation is

p̃(k, t) = etW(k)p̃(k, 0) = etW(k)p(0)(0). (3.8)

Based on this solution the cumulants of position κℓ(t) can be calculated via the cumulant
generating function g(k, t) [330]

κℓ(t) = ∂ℓkg(k, t)|k=0 (3.9)

g(k, t) = lnφ(−ik, t) (3.10)

φ(k, t) =

∫
dx eikxp(x, t) =

∑

nα

eikx
(n)
α p(n)α (t) , (3.11)

where φ(k, t) is the characteristic function of the position. We break the sum into the n-part
which yields p̃(k, t) and the α-part which can be written as scalar product involving the
internal position matrix ∆

φ(k, t) = (1, 1) · eik∆ · p̃(k, t) (3.12)

∆ =

(
xL 0
0 xR

)
. (3.13)

Inserting Eqs. (3.12), (3.8) into Eq. (3.10) yields

g(k, t) = ln
(
(1, 1) · ek∆etW(−ika) · p(0)(0)

)
. (3.14)

On applying the derivatives of Eq. (3.9) to Eq. (3.14) we see that the inner derivatives produce
the moments of the position and the outer derivatives of the logarithm combine the moments
to yield cumulants.

In the following we will always start the particle localised within a single well at either
position xL or xR.



3.3 Rates 55

3.3 Rates

The 2S/W model has six parameters: the four rates, γ± and Γ±; and the two positions xL/R.
The inter-well rates we choose as twice Kramers’ rates

Γ± = 2rK±, (3.15)

where rK± are Kramers’ rates for passage out of the well to the right (+) and left (−).
Explicit forms for rK± are given in Sec. 2.2.1 where the potential difference is ∆u, Eq. (1.13),
for rK+ and ∆u + aF for rK−. The factor two arises because, if the particle is localised in
the right half of the well, the average time it will take to hit the right edge will be half that
as if the particle was distributed over the whole well.

The remaining parameters we fix by comparing the initial behaviour with that of the SE,
Eq. (3.1). We expand first and second cumulant to linear order in time t using the SE. If we
assume that the particle is initially localised at xL or xR we arrive at

⟨x⟩(t) = xL/R − u′(xL/R)
D0

kBT
t , w(t) = 2D0t. (3.16)

To compute the initial behaviour of the 2S/W model we set Γ± = 0 which reduces W(k) to

Wintra = (−1, 1)T ⊗ (γ+,−γ−) (3.17)

where ⊗ denotes an outer product. Expanding Eq. (3.9) in linear order in time for the
starting position xα we arrive at

κ1(t) = xα + sαt(xR − xL)γ
sα (3.18a)

κ2(t) = t(xR − xL)
2γsα , (3.18b)

where sL = + and sR = −. Equating these results with Eq. (3.16) and rearranging gives

γ+ = γ− =
2D0

(xR − xL)2
(3.19a)

(xR − xL)u
′(xL) = −2kBT (3.19b)

(xR − xL)u
′(xR) = 2kBT. (3.19c)

Equations (3.19) have to be solved numerically for xL and xR, which then give the rates γ±.

3.4 Limits

We are interested in an approximation for the plateau regime. The intra- and inter-well
rates define time scales of different order of magnitude. We find the plateau between these
time scales where the intra-well dynamics has relaxed and the inter-well dynamics has hardly
begun. To approximate the plateau regime we use the approximation Γ± = 0, Eq. (3.17),
again and calculate the limit for t→ ∞. We obtain

⟨x⟩plat = 1

2
(xL + xR) ; wplat =

1

4
(xL − xR)

2 ; κplat4 = −1

8
(xL − xR)

4 . (3.20)
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For the full 2S/W model we are interested in the asymptotic t→ ∞ limit to compare with
the already known long time behaviour. We write the diagonalisation of W in ∂tg(k, t) as
∂tg(k, t) = ∂t ln((a, b) ·etD ·(y, z)T ) where D is the diagonal matrix with the eigenvalues d1, d2
on the diagonal. Carrying out the derivative yields ∂tg(k, t) = (ayd1e

d1t+bzd2e
d2t)/(ayed1t+

bzed2t) which, in the limit t→ ∞ reduces to the largest eigenvalue. We denote this eigenvalue
by

λ0(k) = −Γ

2

(
1−

√
1 +

4

Γ2

∑

±
γ±Γ±(e±ka − 1)

)
, (3.21)

with Γ = γ+ + Γ+ + γ− + Γ−. The complete cumulant generating function becomes

g(k, t) ∼ λ0(k)t , (3.22)

From this expression it is clear that the cumulants are then simply linear in time, as they
should be. The first two read

⟨x⟩∞(t) = a
γ+Γ+ − γ−Γ−

Γ
t; (3.23)

w∞(t) = a2
Γ2(γ+Γ+ + γ−Γ−)− 2(γ+Γ+ − γ−Γ−)2

Γ3
t , (3.24)

where Γ = Γ+ + γ+ + Γ− + γ−. The latter gives directly the long-time diffusion coefficient

D =
1

2t
w∞(t). (3.25)

3.5 Results

Before discussing the short-time behaviour of the system, we begin by demonstrating that
our 2S/W model recovers the known long-time behaviour. In Fig. 3.2(a) we compare the
diffusion coefficient D from the 2S/W model, Eq. (3.25), with the exact result of Reimann et
al. [125]. In accordance with expectations, our model works well provided that the valleys of
the potential are sufficiently deep, ∆u ≪ kBT . This condition can be satisfied by ensuring
that u0 ≪ kBT and that the applied force is less than the value of the force Fc= u0π/a at
which the minima of the potential disappear.

Turning now to the short-time dynamics, we consider first the MSD w(t) as a function of

time in Fig. 3.2(b), where time is measured in units of τ = a2

D0
. Three distinct behaviours are

seen. At the shortest times, the behaviour is essentially free diffusion with the MSD growing
linearly. This is the behaviour which was fitted in our 2S/W model to obtain Eqs. (3.19).
As the particle begins to feel the influence of the wells, a plateau develops in the MSD. By
comparing Figs. 3.3(a) and (b) we see that the MSD shows a well-defined plateau if and only
if the two 2S/W results in Fig. 3.3(a) agree.

The duration of this plateau increases the higher the potential barrier between wells. This
behaviour is well reproduced by the 2S/W model not just qualitatively, but quantitatively.
We note that this behaviour was not explicitly put into the model; rather, it emerges as a
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Fig. 3.2: (a) Comparison of diffusion coefficient D, Eq. (3.25), with the exact result of
Ref. [125]. The results of the 2S/W model agree well with the exact ones in the regime
of deep valleys, i.e. u0 ≪ kBT and F < Fc, with Fc the force for which potential valleys
disappear. (b) MSD w(t) = ⟨(x − ⟨x⟩)2⟩ for different amplitudes u0 with no applied force
(F = 0). The lines show the result from the 2S/W model, and the symbols those from nu-
merical integration of the SE. For the parameters shown here, the 2S/W model reproduces
the essential features of the short-time dynamics. The agreement increases with increasing
well-depth (increasing u0).
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different driving forces F for u0 = 15kBT . The plateau is the less distinctive the larger the
force.
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the cross-over time tco. As before, good agreement between 2S/W model and numerics is
obtained for u0 ≫ kBT . (b) The cross-over time tco defined as the time of the peak of the
non-Gaussian parameter α. Again, the agreement is good for deep valleys.

prediction of it. Figure 3.3(a) shows the height of the plateau as a function of the applied
force F . The 2S/W approach works better the more pronounced the potential barriers, but
even for u0 = 5kBT , the 2S/W theory and numerics agree quite well. Figure 3.3(a) shows
two different results for the plateau height extracted from the 2S/W model; one based on the
full solution and one given by the approximate value of Eq. (3.20). The coincidence of these
results is a good indication that the mean-square displacement undergoes a genuine plateau,
rather than something more like an inflexion point, see Fig. 3.3(b). Not shown here, but the
first cumulant ⟨x⟩ shows similar plateau behaviour, the height and duration of which is also
well reproduced by the 2S/W model.

At longer times, the particle breaks out of the confinement of its initial well, and starts
diffusing through the potential. The second cumulant then starts increasing linearly again,
this time with the diffusion constant of Eq. (3.25) and Fig. 3.2(a). The time at which the
plateau goes over into diffusive behaviour is the cross-over time tco. During the plateau
and through the cross-over, the probability density slowly reshapes. This can be seen in
Fig. 3.4(a), which shows the non-Gaussian parameter, Eq. (3.4), as a function of time. By
comparing Fig. 3.2(b) and Fig. 3.4(a) one can see that the time of the maximum deviation
from Gaussian e.g. the maximum of α(t) can be used as an approximation to the end of
the plateau, as proposed in Ref. [119]. It is remarkable that the 2S/W model predicts the
dependence of this crossover time on u0 and F , shown in Fig. 3.4(b), in quantitative agreement
with the SE.
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case, the height of the local minimum strongly depends on F .

3.5.1 Non-sinusoidal potential

We briefly consider the short-time diffusion in the potential

um(x) =
u0
2

(
1− tanh(m cos(2πx/a))

tanhm

)
− xF (3.26)

which is sketched in Fig. 3.5(a). Clive Emary proposed this functional form because it has
broader wells and hills than the sinusoidal potential and possesses the limit limm→0 um(x) =
u(x). The larger m the steeper the walls between well and hill. In the limit m → ∞ the
shape of um becomes rectangular. The mean squared displacement w(t) can become non-
monotonous for large m if a driving force is present. As Fig. 3.5(b) shows, this effect is
strongly dependent on the initial condition. In fact, also in the sinusoidal potential the effect
can be found with the initial condition p(x, 0) = δ(x + a/4), although it is very weak. We
find that the local extrema of w(t) are the more pronounced the sharper the minimum of the
potential, given that the potential is flat near the initial condition.

To describe the diffusion in the potential um(x) with the 2S/W model only modifications
for the rates would be necessary. For the inter-well rate for u(x) we used Kramers’ rate
with polynomial approximations of the potential around the extrema in Eq. (2.21). This will
be a rough approximation for um(x) since polynomial approximations are of poor accuracy.
However Eq. (2.21) may be used directly. Concerning the intra-well rates, the solution of
Eq. (3.19) shows that the position xL and xR reflect the strong asymmetry of um(x). We
expect that the 2S/W model can predict the non-monotonous behaviour qualitatively.
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3.6 Conclusions

In this chapter we have investigated the short-time dynamics of a particle driven through
a modulated potential. We introduced a Markovian master equation approach based on a
discretisation of the spatial axis into two states per well. The remaining input into this theory
are the transition rates, which we have chosen by using Kramers’ rates (inter-well transitions)
and by comparison with the true short-time dynamics from the continuous (SE) approach
(intra-well transitions).

A major advantage of our discretised two-state model is that relevant transport quanti-
ties, such as the mean-squared displacement, can be calculated analytically. In particular, we
presented explicit expressions for the heights of the plateaus in the mean-squared displace-
ment at intermediate times, i.e., within the subdiffusive regime, and for the non-Gaussian
parameter α, which signals the crossover to the diffusive long-time regime. The results from
the two-state model are in excellent agreement with those obtained from numerical solution
of the SE with and without external drive, provided that ∆u/kBT ≫ 1 and F < Fc. This
latter requirement is consistent with the expectation that (only) in this limit, the valleys in
our continuous model can be approximated by almost-isolated wells. In the same range of
parameters, the diffusion coefficient D, is found to be fully consistent with previous analyti-
cal results [125]. It is precisely the high-barrier case, which is relevant in many experimental
realisations of colloids in modulated potentials (see e.g. [82]), as well as in the more general
context of modeling systems exhibiting cage effects (such as undercooled liquids [233] and
dense colloidal suspensions [119]), see also section 1.5.1. For such systems our “minimal”
model for short-time dynamics could be particularly useful.

We close this chapter with some remarks on possible extensions of our approach and
its relation to other models. To start with, we have found that discrepancies between the
master equation and the SE approach arise as ∆u/kBT decreases. In this case, quantitative
agreement can be improved by modifying the manner in which the rates are calculated.
Firstly, expanding the full generating function to linear order in time yields

⟨x⟩(t) ∼ xL/R ± γ±(xR − xL)t∓ Γ∓(a+ xL − xR)t

w(t) ∼ γ±(xR − xL)
2t+ Γ∓(a+ xL − xR)

2t.

These values can be equated to Eq. (3.16) to match better with the SE. Secondly, the inter-
well rates, Eq. (3.15), can be improved by using higher-order corrections to Kramers’ rate
(Sec. 2.2.1). These latter corrections are particularly important when the periodic contribu-
tion to the potential becomes steeper than a sine function.

A further point concerns the performance of our master equation approach for the predic-
tion of higher-order cumulants. Whereas the complete behaviour of the first two cumulants
is well reproduced by our 2S/W model, the agreement for the higher-order cumulants is not
as good, and although the broad features of these are reproduced, some fine details at very
short times are not captured. To improve these higher cumulants it seems to be promis-
ing to augment the model with more states per well, an extension which is conceptually
straightforward.

Finally, we note that there is an connection between our model and other models describ-
ing subdiffusion. By tracing over the internal degrees of freedom, a non-Markovian master
equation for the well-index n alone can be derived, involving a memory kernel which differs
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from a delta function (characterizing the Markovian case). It is well established [129] that
such non-Markovian kernels are intimately related [328,329] to the waiting-time distribution
in continuous-time random walks [128], such that connexion can also be made with these
latter methods.



4. WAITING TIME DISTRIBUTION (WTD) FOR
BARRIER CROSSING

How long does a complex stochastic process take? The waiting time distribution (WTD) can
give the answer, as we presented in our collaboration with Clive Emary, i.e., Phys. Rev. E
90, 062115 (2014) (Ref. [331]). Parts of the chapter are copied from this publication.

Waiting time distributions (WTDs) are probability densities for the time between sub-
sequent hopping events (“jumps”) in a discrete stochastic process. Today’s use of WTDs
goes back to the beginning of continuous time random walk [128, 129, 332] and renewal the-
ory [157], half a century ago. The corresponding cumulative distribution function to the
WTD was used even earlier [333].

WTDs are used to describe transport in systems whose dynamics is discrete or at least
approximately discrete, which applies to a wide range of systems, classical as well as quantum.
Applications in biophysics include the kinetics of ion receptors [334], of the formation of bio-
chemical bonds [325], and of reaction events of enzyme molecules [335, 336]. In finance,
stock market fluctuations were analysed in the context of WTDs [337]. Further important
applications concern atoms, molecules, and colloids diffusing on corrugated surfaces [63,
67, 87, 338]. Despite the particles’ positions are actually continuous, the effective potential
landscape often is characterised by local energy minima whose depth is much larger than the
thermal energy. Further examples of approximately discrete stochastic processes are found
in protein folding [334, 339, 340] and in the field of glasses and supercooled liquids. In the
latter these processes are rearrangements of particle positions or orientations [233, 341, 342]
or, more generally, transitions in a coarse-grained configuration space [121,324,327]. Recent
applications in quantum systems are found in the area of transport in quantum dots [343–345].
The processes studied in the previous chapter are almost discrete, too. Rather than in the
cumulants of position we are now interested in time.

For truly discrete systems a WTD can be defined and calculated based on a Master
equation (ME). In such systems jumps are instantaneous. Simple MEs can even be solved
analytically [334, 343, 345, 346]. There is no straightforward route to define a WTD for
continuous systems since the definition of a jump is ambiguous for a continuous motion.
However, experience-based strategies are used to calculate WTDs from (particle) trajectories.
The trajectories can originate from experiments as well as from computer simulations. Recent
developments of experimental methods provide time- and particle-resolved measurements of
colloids on random and structured surfaces [82, 83, 87, 97, 234, 347], on solid-liquid interfaces
[67], or during growth of colloidal crystals [63, 227]. For examples for the calculation of
the WTD using trajectory analysis in glassy systems see [121, 341]. The trajectory analysis
in systems with quasi-discrete motion reveals that the system spends most time in distinct
places (or configurations), the traps, and shows fast motion in between. These traps can be
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used to discretise the space and to define jumps. This, naturally ambiguous, process can lead
to jumps having finite duration. The trajectory analysis procedure yields quite noisy WTDs
or requires extensive measurements or simulations. To address this shortcoming we construct
a WTD based on a continuous and noise-averaged description. The natural approach is a
probability density and a Fokker-Planck equation.

In this chapter we recall the recipe we proposed in our paper [331] to calculate the WTD
using a Smoluchowski equation. Our inspiration was the calculation of the first passage
time distribution (FPTD) [10]. In fact, our generalisation of the WTD is closely related
to FPTDs which themselves have encountered generalisations in the last decades. Both,
WTD and FPTD, are probability densities in time. The FPTD is commonly applied to
continuous systems, not necessarily quasi-discrete ones, whereas the WTD has its roots in
discrete systems. Asymmetric situations are rather common for WTDs [334,339,340,343–345,
348], whereas FPTDs usually are undirected. However, FPTDs with directional resolutions
were proposed in mathematics [349,350], although without a corrugated potential.

We validate our approach by comparing to trajectory analysis based on generated trajec-
tories from a Langevin equation. To this end we choose a specific model system, namely the
overdamped Brownian motion of a particle in a one-dimensional washboard potential, which
is a generic model with wide applicability (cf. section 1.5.1). As a third method to calculate
the WTD we apply the 2S/W model, introduced in the previous chapter. It precisely pre-
dicted the short time diffusion in this model in the deep well case and allowed for analytic
solutions.

The dynamics of barrier crossing for an overdamped Brownian particle in a washboard
potential is approximately determined by Kramers’ escape rate (cf. section 2.2.1). The rate-
based description of escape problems has a long history [11], and is still an important method
of modelling [44,351]. We will point out how the WTD incorporates the Kramers’ escape
rate.

In section 4.1 we characterise the quasi-discrete motion in our model system. The three
routes to define a WTD, trajectory analysis, Smoluchowski equation, and 2S/W model, and
presented in section 4.2 and compared in 4.3.

4.1 Trajectory based characterisation of single particle barrier crossing

We begin with an illustration of the nature of trajectories and jumps in the class of systems
we investigate here. We consider the overdamped Brownian motion of a particle in tilted
washboard potential u(x), introduced in section 1.5.1. The equation of motion in one di-
mension is the Langevin equation (2.7). As in chapter 3, we focus on cases where the form
of the potential is such that it can be meaningfully divided in a number of wells (defined
between subsequent maxima). This occurs if the difference between the potential minima
and maxima, ∆u(u0, F ), is large compared to the thermal energy, i.e., u0 ≫ kBT and F < Fc
(cf. Eq. (1.13)).

In order to illustrate the motion in such situations we consider representative particle
trajectories which we calculate numerically (for details see section 2.6.5).

Exemplary trajectories for two different values of u0/kBT and F = 0 are shown in
Fig. 4.1(a). The trajectories in Fig. 4.1(a) clearly reflect that the particle is “trapped”
for certain times in the regions around the potential minima x/a ∈ Z. To facilitate the com-
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Fig. 4.1: (a) Representative trajectories for F =0 for different values of u0/kBT . (b) To ease
the comparison of the jumps, the trajectories are plotted as functions of the relative time
t−tjump where tjump is the arithmetic mean between the times of leaving a potential minimum
and arriving at a neighbouring one. We use the time unit τ = a2/D0. (c) Comparison of
the jumps with the time axis being rescaled by Kramers’ rate rK(u0). With this rescaling,
the mean time that the particles spend trapped around a minimum is independent of barrier
height. Relative to this time scale, the jumps in the u0 = 15kBT case appear instantaneous,
whereas those for u0 = 5kBT maintain a continuous character. Parts (d), (e), and (f) are
sketches of the potential Eq. (1.11) corresponding to parts (a), (b), and (c), respectively.
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parison between the trajectories corresponding to different u0 they are plotted in Fig. 4.1(b)
as functions of the relative time. This latter is defined as the difference between the actual
time and the time tjump, which is the arithmetic mean of the times related to the beginning
and end of a jump. Here, “beginning” and “end” refer to leaving of a potential minimum
(without going back) and arriving at a different minimum (this definition of a jump will later
be called minimum-based definition). From Fig. 4.1(b) we see that even for the largest barrier
considered, the particle needs a finite time to cross the barrier. Thus, the motion is still not
perfectly discrete. However, as we may note already here, a different picture on the degree
of “discreteness” arises when we rescale the time axis with the corresponding Kramers’ rate
rK(u0), defined in Eq. (2.22), see Fig. 4.1(c). By multiplying the time with this well-known
quantity, we take into account that the increase of the potential height alone already leads
to an increase of the escape time [155]. As a consequence the intervals between jumps in the
rescaled time become independent of u0 in the long time limit. Indeed, after rescaling, the
data for u0 = 15kBT reflects an essentially discrete motion. However, at u0 = 5kBT we still
observe a finite duration of the jump. This clearly demonstrates that the case u0 = 5kBT is
at the boundary between discrete and continuous motion.

4.2 Routes to calculate the WTD

4.2.1 Direct evaluation via BD simulations

To define the WTD we first need to consider the possible types of jumps. To this end,
we note that the stochastic process x(t) (see Eq. (2.7)) is a Markov process. Thus, the
jump characteristics are independent of the history. Further, because the motion is one-
dimensional, there are only two directions in which the particle can jump. Finally, Eq. (2.7)
obeys the translational symmetry x→ x±a. Because of these three properties the jumps can
be grouped into only two types, namely “to the right” and “to the left”, independent of when
or where the jump began. We label these jump types by the index “J”. The WTD wJ(t) is
then the probability density for the time between an arbitrary jump and a subsequent jump
of type J .

In the context of BD simulations (i.e., direct evaluation of Eq. (2.7)), the WTD wJ(t)
is extracted from a histogram of waiting times extracted from the trajectories pertaining to
a given realisation of noise. We note that the WTDs wJ(t) must fulfil the normalisation
condition

1 =

∫ ∞

0
dt
∑

J

wJ(t), (4.1)

which expresses the fact that the particle leaves its minimum for certain. In terms of the
survival probability

S(t) =

∫ ∞

t
dt′
∑

J

wJ(t′) (4.2)

the normalisation is expressed as S(0) = 1 and S(∞) = 0. The sum runs over all jumps
types that leave a potential minimum, in our case “to the right” and “to the left”.
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Fig. 4.2: (a) Illustration of different “measurement-based jump” definitions using a typi-
cal trajectory. The thick arrow indicates the time at which an instantaneous jump occurs
according to the maximum-based definition, i.e. when the particle crosses the potential max-
imum between the wells. The thick curve indicates the motion during the jump according
to the minimum-based definition, where the jump (having a finite duration) begins with the
particle’s last departure from a potential minimum (in this example x= 0) and ends upon
arrival at a neighbouring minimum (here x=−a). (b) Comparison of the WTDs obtained
with the two jump definitions (circles and squares). Time is plotted logarithmically. The
maximum-based definition breaks down at short waiting times and we suppress these results
by introducing a minimal waiting time (“dead time”), here at t = τ (dashed vertical line).
In both plots is u0=5kBT and F =0.
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In our BD calculations of wJ(t) we consider two definitions of a jump which are illustrated
in Fig. 4.2(a). Within the first definition, a jump occurs if the particle crosses a potential
maximum (maximum-based definition). Note that this automatically defines the jump to be
instantaneous.

Within the second definition, a jump involves the entire motion between two neighbouring
minima of the potential (minimum-based definition). As a consequence, the jump has a finite
duration defined as the time between leaving a minimum and arriving at a neighbouring one.
We call the corresponding probability distribution the jump duration distribution. Further,
we define the waiting time as the time between the end times of two subsequent jumps.

Numerical details of the calculation are given in section 4.4.1.

Discussion of the jump definitions To investigate the role of the two jump definitions we
consider the resulting WTDs for the symmetric case F =0, u0=5kBT , plotted in Fig. 4.2(b).
Because of the symmetry of the potential at F =0, there is only one relevant WTD. Clearly,
the choice of the jump definition has a strong impact on the WTD. In particular, we find
that only the minimum-based definition yields a smooth shape of wJ(t).

On the contrary, the maximum-based jump definition poses several problems. First,
during the analysis of the trajectories we noticed that the particle crosses the maximum
many times subsequently which generates a lot of spurious (maximum-based) jumps. We
deal with this problem by introducing a “dead time” after recording a jump which must pass
until the next jump can be recorded. We set the “dead time” to 1τ (i.e., the time the particle
needs to diffuse the distance

√
τ/D0 = a) to ensure that it leaves the maximum during that

time. As a consequence of introducing the dead time, the corresponding WTD is defined to
be zero for t < 1τ .

Further, we see in Fig. 4.2(b) that by using the maximum-based jump definition, waiting
times in the range 1τ ≲ t ≲ 5τ are more likely than by using the minimum-based jump
definition. The reason is that the particle, once it has gone uphill, is counted to have made
a jump in the maximum-based jump definition. On the contrary, the same particle is only
counted in the minimum-based jump definition if it goes downhill in the same direction
(and not backwards). Thus, the maximum-based jump definition frequently records jumps
although the particle does not change the potential well. This contradicts our idea of a jump
to cross the potential barrier. In our paper [331] we claimed that this problem could be solved
by keeping track of the direction in which the particle crosses the maximum. We did not find
a corresponding algorithm in the meantime. Because of these two problems, we choose the
minimum-based jump definition for the further investigation.

4.2.2 Definition from the Smoluchowski equation

The Fokker-Planck equation corresponding to Eq. (2.7) is given by the Smoluchowski equation
(SE) we used in the previous chapter, i.e., Eq. (3.1), which is Eq. (2.13) with the force
f(x) = −u′(x).

Again, we are interested in the distribution of waiting times t. In Sec. 4.2.1 we defined
wJ(t) as the WTD for the jump J . Here we associate J with the jumps from an initial position
B to a target position C. Typically B and C are neighbouring minima of the potential. In
order to realise the requirement that the WTD describes the time between subsequent jumps
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we need to exclude processes that lead the particle towards the other neighbouring minimum,
which we call A. Correspondingly, we describe the WTD by the function wB→C

A (t) where
B → C stands for J and the subscript A indicates the excluded position. The definition is
as follows:

Definition: The quantity wB→C
A (t)∆t, where ∆t is a small time interval, is the proba-

bility that

• the particle was for certain at position B at t=0, (4.3a)

• the particle reaches position C in the interval [t, t+∆t], and (4.3b)

• the particle neither arrived at C nor A within the time interval [0, t]. (4.3c)

Note that we do not care about what happened at earlier times t < 0, that is, whether the
particle moved to B via a jump process or whether it was placed there “by hand”. This
crucial assumption reflects that we are working in a Markovian situation, where the motion
from B to C is independent of the history.

To formulate a recipe to calculate the WTD, we recall that the SE, Eq. (3.1), can also be
written as a continuity equation, that is, the reduction to one-dimension of Eq. (2.11),

∂tp(x, t) + ∂xj(x, t) = 0, (4.4)

where j(x, t) = −D0 (∂xp(x, t) + p(x, t)u′(x)/(kBT )) is the current density. Equation (4.4)
and the microscopic interpretations Eqs. (2.8) and (2.91) further show that j(x, t)∆t (or
−j(x, t)∆t, respectively) can be interpreted as the probability that the particle crosses posi-
tion x into positive (negative) x-direction during the time interval [t, t +∆t]. Consequently
|j(C, t)∆t| is the probability that the particle crosses position C in forward or backward
direction. This probability is similar in character to that mentioned in condition (4.3b).
However, |j(C, t)∆t| includes the probability that the particle went across C (or A), came
back, and crosses C again. Such a process violates condition (4.3c).

Based on these considerations, we propose the following recipe to calculate the WTD
wB→C
A (t): We initialise the probability density as

p(x, t = 0) = δ(x−B) (4.5)

according to condition (4.3a). Then, we let p(x, t) evolve in time according to Eq. (3.1).
However, during this time evolution we exclude processes from the ensemble of realisations
(i.e. possible trajectories) where the particle has already reached position C or A [see condi-
tion (4.3c)]. Therefore p(x, t), which is an average over this reduced set of realisations, fulfils
the boundary conditions

p(x, t) = 0, x ≥ max(A,C) ∀ t (4.6a)

p(x, t) = 0, x ≤ min(A,C) ∀ t . (4.6b)

Equation (4.6) expresses what is often called “absorbing wall boundary conditions”. Clearly,
there is some arbitrariness in defining a suitable position A (the boundary “on the other
side”) for a continuous system in general. However, given that we consider a continuous
potential with well-defined wells (as it is the case here) one can give a clear physical meaning
to the positions A, B, and C.
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To summarise, we calculate the WTD from the relation

wB→C
A (t) = |jBA,C(C, t)| , (4.7)

where the notation jBA,C expresses the dependency of the current density on the initial and
boundary conditions given in Eqs. (4.5) and (4.6), respectively. By using the absolute value
in Eq. (4.7) we take into account the fact that the sign of j depends on the direction of
motion. Indeed, motion into the positive (negative) x-direction implies a positive (negative)
sign of j. The numerical calculation of the WTD via the SE route is described in section
4.4.2.

Finally, we note that the WTDs defined according to Eq. (4.7) also fulfil the normalisation
condition Eq. (4.1), that is

∫ ∞

0
dt
(
wB→C
A (t) + wB→A

C (t)
)
= 1. (4.8)

Relation to the First passage time distribution By definition [10], the first passage
time distribution (FPTD) is the probability distribution for the time t the particle needs to
leave a given domain for the first time. In a Markovian situation like ours the FPTD depends
on the spatial probability distribution q(x) to find the particle at position x at a starting time
t′ ≤ t. We thus consider the FPTD FD(t; q(x)) where the domain D, in an one-dimensional
system, is given by an interval, e.g. D = [A,C]. Further, if the particle was for certain at a
position B at t = 0, we can specialise q(x) = q0B(x) := δ(x − B). The relation between the
FPTD and the WTDs defined before is then given by

F[A,C](t; q
0
B) = wB→C

A (t) + wB→A
C (t). (4.9)

Equation (4.9) reflects the fact that the FPTD does not contain information about the
direction in which the particle left the domain, whereas the WTD does.

4.2.3 Master equation

In chapter 3, we introduced a simple master equation model of this system. In addition to
the definitions of sections 3.2 and 3.3 we define the ‘expectation value’

⟨⟨A⟩⟩ = hT1 · A · h0 (4.10)

where h1 and h0 are defined by

hT1 · W(0) = 0T (4.11a)

W(0) · h0 = 0 . (4.11b)

The matrix W(0) is given by Eq. (3.7). Following [343], we then obtain the WTDs as

wss′(t) =
⟨⟨Wse

W0tWs′⟩⟩
⟨⟨Ws′⟩⟩

; s, s′ = ± , (4.12)

with the matrices W0,± defined by Eqs. (3.5) and (3.6). There are four different waiting
times defined here, corresponding to the four different combinations of jumps: s, s′ = ±. The
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parameter s′ indicates the position where the jump starts off by determining the jump that
led the particle to this well. Hence, for s′ = + the particle starts in the left position in the
well, and for s′ = − it starts in the right position. The parameter s indicates the direction
in which the particle leaves the well.

In comparing with the results from BD/SE, we will only consider the diagonal WTDs
wss(t) as these are found to be the closest analogues of the definitions used in the continuous
system. The reason for this is that in off-diagonal WTDs, the second jump can occur imme-
diately after the first, and thus limt→0wss′(t) for s

′ ̸= s is finite. Clearly, this is not the case
in the full dynamics and so we consider only the diagonal WTDs. This difference between
on- and off-diagonal WTDs only occurs at very short times and, as we will see in the next
section, the ME description is unreliable in this regime, anyway.

4.3 Numerical results

The main new finding obtained in [331] is our definition of the WTD via the continuous SE
route. In the following we compare results obtained numerically from this definition with
those from BD simulations (using the minimum-based jump definition), as well as with results
from the ME approach. Calculations regarding the ME approach were carried out by Clive
Emary.

To be specific, we choose the positions A, B, and C to be adjacent minima of the potential
u(x) (given explicitly in section 1.5.1). In the following section 4.3.1, we examine the case
of zero drive (F = 0) for two amplitudes of the periodic potential. Both symmetric and
asymmetric initial (and boundary) conditions are considered. In section 4.3.2 we fix u0 to
15kBT and study driven systems for three values F < Fc where Fc = u0π/a is the “critical”
driving force beyond which the minima in u(x) are eliminated.

4.3.1 Zero drive (F = 0)

We start by considering fully “symmetric” cases, where the potential is untilted (F = 0),
and the particle jumps from the centre of a minimum (say, x = 0) to the right (0 → a) or to
the left (0 → −a). Clearly, these jumps are characterised by the same WTD, i.e., w0→a

−a (t) =
w0→−a
a (t). Moreover, in such fully symmetric situations (with respect to the initial- and

boundary conditions, and to u(x)), the WTD is proportional to the first passage distribution,
i.e., w0→a

−a (t) = 1/2F[−a,a](t; q00) (see Eq. (4.9)). However, as we will demonstrate, the SE
approach is more versatile when we deviate from the symmetric case. We thus discuss the
symmetric case as a reference.

Results for the corresponding WTD at u0 = 5kBT and u0 = 15kBT are plotted in
Figs. 4.3(a) and (b), respectively. These values of u0 are representative since, as we re-
call from our earlier discussion of particle trajectories (see Fig. 4.1), the case u0 = 5kBT is
at the boundary between continuous and discrete motion while at u0 = 15kBT , the motion
is essentially discrete.

Figures 4.3(a) and (b) contain data from all three approaches (SE, BD, ME). All curves
share the same general structure in that the WTD is essentially (but not strictly) zero at very
short times (t ≪ τ) and then grows with time up to a value which remains nearly constant
over a range of intermediate times (note the logarithmic time axis). Finally, at very large
times the WTD decays rapidly to zero. The extension of the different regions and the actual



4.3 Numerical results 71

0

0.02

0.04

0.06

0.08

0.1

0.01 0.1 1 10

w
0
→

a
−
a
(t
)
τ

t/τ

(a) jump dur. distr.
BD
SE
ME

0

5×10
−6

10
−5

1.5×10
−5

10−410−3 10−210−1 100 101 102 103 104 105

w
0
→

a
−
a
(t
)
τ

t/τ

(b)

BD
SE
ME

jump dur. distr.

Fig. 4.3: Semilogarithmic plots of the WTD w0→a
−a (t) for the symmetric case F = 0 for (a)

u0=5kBT and (b) the deep well case u0=15kBT using all three methods BD, SE and ME
(in the latter case, we have plotted w++(t)=w−−(t)). The crosses show the jump duration
distribution (from BD) with arbitrary units.

values of the WTD depend on the potential height, as we will analyse in detail below. From
a methodological perspective we can state already here that the SE approach represents at
all times a very accurate, smooth “fit” of the (somewhat noisy) BD data. The ME approach
displays deviations at short times, to which we will come back at the end of this subsection.

The growth region of the WTD can be further analysed by inspection of the jump duration
distribution obtained from BD, which is included in Fig. 4.3. At both potential amplitudes
this distribution displays a peak located at the (finite) time where the WTD grows most
strongly. Moreover, the width of the peak corresponds approximately to that of the entire
growth region. We can interpret these findings as follows. First, the fact that the peak occurs
at a finite time already signals that we are looking at (more or less) continuous stochastic
processes where the particles needs a finite time to cross a barrier (see Fig. 4.1(b)). This is
also the reason that we find a growth region in the WTD at all. As we have seen from the
trajectories in Fig. 4.1, the jump duration tends to decrease with increasing u0. This explains
the shift of the peak of the corresponding distribution towards earlier times in Fig. 4.3(b) with
respect to 4.3(a). Second, regarding the width of the jump duration distribution, we note
that only realisations of the random force with a strong bias can push the particle against
the potential ascent. The larger u0, the smaller the fraction of appropriate noise realisations
and hence the sharper the distribution. This also has a direct influence on the width of the
growth region of the WTD: For very short times only very short jumps can contribute to the
WTD, hence the WTD rises simultaneously with the jump duration distribution.

Interestingly, it is also possible to calculate the jump duration distribution via the SE
approach. To this end we just need to adjust the boundary and initial conditions. During
a jump the particle leaves a minimum, say x=0, crosses the barrier and arrives at the next
minimum, x=a. The difference to the jump 0 → a we considered above is that the particle
actually leaves the minimum at t = 0, i.e., it does not return. The essential step to the
jump duration distribution is to consider an ensemble of realisations without processes where
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BD and SE (Eq. (4.13)). The starting position is set to ϵ=0.01a. Inset: Distributions wj(t)
with the time axis being rescaled by Kramers’ rate rK(u0). (b) Decay of the WTD w0→a

−a (t)
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using all three methods (BD, SE, and ME). In the ME case we have plotted w++(t)=w−−(t).
The decay constants are listed in Table 4.1.

the particle comes back. Following section 4.2.2 this condition corresponds to an absorbing
boundary at x=0. The second absorbing boundary must be located at the point of arrival,
x= a. This suggests the construction of the WTD wϵ→a

0 (t) where the starting position ϵ is
close to 0 because the particle just left the minimum. Through the normalisation Eq. (4.8)
wϵ→a
0 (t) is connected with wϵ→0

a (t), which states how likely the particle comes back to x=0.
We do not have any information about this quantity in the BD simulation, with which we
compare. Therefore we need to remove this information. The total probability that the
particle returns is given by

∫∞
0 dt wϵ→0

a (t). This leads us to the following definition of the
normalised jump duration distribution.

wj(t) =
wϵ→a
0 (t)

1−
∫∞
0 dt′wϵ→0

a (t′)
=

wϵ→a
0 (t)∫∞

0 dt′wϵ→a
0 (t′)

(4.13)

A comparison between the BD and SE results for the distribution is given in Fig. 4.4(a).
Clearly, the SE route yields very good results.

At intermediate times the WTD has a broad maximum which, for deep wells, takes the
form of a plateau (see Fig. 4.3(b)). Numerical values for the WTD maxima at the two
potential amplitudes are given in Table 4.1, where we have included values of Kramers’
escape rate rK in the most precise form defined in Eq. (2.21), i.e., without the Gaussian
approximation of the integrals, in the present case

(r∞K )−1 =
1

D0

∫ a/2

−a/2
dx e−βu(x)

∫ a

0
dy eβu(y) . (4.14)

This close relation can be understood on the basis of our SE approach where we have identified
the WTD as a current (i.e., a rate in one dimension). This current has been calculated with
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u0
kBT

global maximum Kramers’ rate r∞K decay constant

5 0.0916τ−1 0.0924τ−1 0.1867τ−1

15 1.39059×10−5τ−1 1.39062×10−5τ−1 2.7953×10−5τ−1

Tab. 4.1: SE results for the global maximum of the WTD w0→a
−a (t), Kramers’ escape rate,

given by Eq. (4.14), and the decay constant λ characterising the exponential tail.

absorbing boundary conditions. A very similar calculation, namely by using one absorbing
boundary and an infinite soft potential barrier on the other side together with the stationarity
approximation, leads to Kramers’ rate (cf. section. 2.2.1). Of course, for short and long times
the probability distribution is not stationary; therefore the connection between the values of
the WTD and Kramers’ rate only holds at intermediate times.

At times beyond the maximum (or plateau, respectively), the WTD rapidly decays to
zero. In Fig. 4.4(b) we replot the corresponding behaviour with a linear time axis and a
logarithmic y-axis. From that it is clearly seen that the decay can be described by a (single)
exponential, i.e., w0→a

−a (t) ∼ e−λt in this range of times. The corresponding decay constants
λ (as obtained from the SE approach) are listed in Table 4.1. We find that, for both values of
u0 considered, λ is approximately twice as large as Kramers’ escape rate (or plateau height,
respectively). Comparing our situation to the escape out of a similar metastable potential
discussed in Risken’s book [10], section 5.10, we see that the decay constant is expected to
be the sum of Kramers’ rates for every barrier, in the symmetric case λ ≈ 2rK.

We now turn to the ME approach. As described in section 4.2.3, this approach assumes
a discretised two-state-per-well model, that is, the particle can (only) take the positions xL
and xR within each well. Leaving, e.g., position xL, the particle performs either an intra-well
jump (to xR) or an inter-well jump to xR−a or to xL+a (via xR). Here we are only interested
in processes of the latter type, where the particle actually crosses a barrier. Further, because
of translational symmetry and F = 0 we only need to distinguish between the WTD for a
“long” jump wlong(t) = wxL→xL+a

xR−a (t) = wxR→xR−a
xL+a

(t), and the WTD for a “short” jump,

wshort(t) = wxR→xL+a
xR−a (t) = xxL→xR−a

xL+a
(t).

The ME results shown in Figs. 4.3(a,b), 4.4(b) pertain to a long jump. It is seen that the
ME data become indeed consistent with those from the SE and BD approach, if one considers
times beyond the growth region of the WTD.

Regarding the short-time behaviour, we find from Figs. 4.3(a,b) that the growth region
of the WTD occurs at smaller times in the ME approach as compared to the SE and BD
results. In other words, the WTD predicts non-zero waiting times already below the mean
jump duration predicted by BD. More precisely, the inflexion point of the WTD occurs at
(roughly) the inverse of the transition rate γ=γ+ + γ− for intra-well transitions. In a linear
approximation with respect to xR and xL of Eq. (3.19) one has 1/γ≈τ/(2u0π2), which yields
a good estimate of the inflexion point. We conclude that it is the intra-well relaxation (which,
in turn, is governed by the potential amplitude) which is the main ingredient determining
the short time behaviour of the WTD given by the ME. Indeed, because the ME is based on
a discrete model (and thus neglects travel times) we would not expect that the corresponding
WTD is connected to the mean jump duration (as it was the case within the continuous SE
approach).
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rithmic plot of the WTDs wshort, wlong and w0→a

−a calculated with the SE. Inset: Probability
density p(x, t) at t = 0.02τ for the long and short jump. The tiny plateaus at |x|/a ≈ 1 de-
termine the WTD. (b) Driven system: double-logarithmic plot of the WTD for the jump to
the right w+(t) and to the left w−(t) (SE and BD) or w++(t) and w−−(t) (ME), respectively.
A positive force F makes a jump to the left very unlikely which results in very small values
for w−(t). Only for the smallest force F = 0.2Fc the BD recorded such events. Every red
star is only a single jump.

We finally note that asymmetric initial conditions such as those used in ME (xL/R ̸= 0)
can also be incorporated into the SE approach. As described before, we can distinguish
between the WTD for a “long” jump, wlong(t), and the WTD for a “short” jump wshort(t).
In Fig. 4.5(a) we show these two WTDs together with our earlier SE result for w0→a

−a (t).
At short times, wshort(t) has a global maximum which exceeds the corresponding values of
wlong(t) and the maximum of w0→a

−a (t), that is, Kramers’ escape rate. At subsequent time
the two WTDs wlong/short then merge at a value slightly below w0→a

−a . This is because the
blip of wshort reduces the survival probability which in turn reduces the escape rate. The
inset of Fig. 4.5(a) shows the probability densities p(x, t) corresponding to wlong and wshort

at t = 0.02τ where the WTDs deviate from each other. At t = 0.02τ the asymmetrically
initialised densities have been broadened by diffusion to reach the boundaries, but yet not
strong enough to eliminate the asymmetry.

4.3.2 Driven system (F > 0)

We now consider driven systems. Again, minima of the potential occur every a, the first
being located at x = m := a/(2π) arcsin(F/Fc). Because of the tilt of the potential, we
have to distinguish between jumps to the left, w−(t) = wm→m−a

m+a (t), and jumps to the right,
w+(t) = wm→m+a

m−a (t). Clearly, these WTDs provide directional information, which cannot be
extracted from the first passage time distribution.

Results for the WTDs in the “deep well” case are shown in Fig. 4.5(b). It is seen that
the general structure of the WTD (consisting of a growth region, a plateau, and then a rapid
decay) is the same as that at F = 0 (see Fig. 4.3(b)). One main effect of increasing F from



4.4 Numerical solution 75

zero is that the global maximum of w+ increases, while the time range corresponding to
the plateau shortens. In other words, the average waiting time decreases and it occurs with
larger probability. This is plausible, since a non-zero driving force leads to a lower effective
barrier ∆u(u0, F ) (defined in Eq. (1.13)) in the driving direction. The opposite effects occurs
against the driven direction, as reflected by the decreasing maxima in w−(t). We also note
that, for each F , the effects in the two WTDs are coupled via the normalisation condition,
i.e., the maximum in one of the WTDs can only grow at the expense of the other one.

Comparing the different methods, we see from Fig. 4.5(b) that the WTDs calculated with
the SE agree with the BD results at all times. The WTDs given by the ME are consistent
with SE and BD results for intermediate and long times. Again we observe a deviation for
short times because, as discussed in the previous section, the short time scale in the two-
state-per-well model describes intra-well relaxation and there is no time scale connected to
the mean jump duration.

4.4 Numerical solution

4.4.1 WTD from BD simulations

To obtain a reliable WTD the recorded histograms must have a high statistical quality
at all times where the WTD is nonzero. Any deviation influences the normalisation and
therefore shifts the entire WTD. Typically, the domain of non-zero WTD spans several orders
of magnitude. Moreover, for large times the WTD decays exponentially (see Fig. 4.4(b))
which enhances the computational effort due to the need of many long simulations. These
considerations imply that the histogram bins must be sufficiently small to capture the time
variations of the WTD and sufficiently large to yield a good statistical average. Here we use
a piece-wise constant bin size distribution, which we adjust manually.

To achieve the necessary accuracy in the generated trajectories we choose a time step of
∆t = 10−5τ . This sets the mean size of a fluctuation to 4 ·10−3a which is necessary to sample
the potential sufficiently accurate.

The simulation starts with the particle at the first minimum m = a/(2π) arcsin(F/Fc).
During the simulation the trajectory is analysed to record leavings and arrivals of the particle
at other minima m±ka, k ∈ Z. Because one simulation alone cannot produce enough jumps
in a reasonable computation time, we run several simulations in parallel. The least amount
of jumps occur at u0=15kBT and F =0. In this case we run 832 simulations in parallel or
successively, each computing 500 jumps, to achieve a reasonable resolution for the long time
part of the WTD.

Short waiting times occur even less frequently than large ones. To calculate the WTD
at these short times a new set of simulations is started. Contrary to the regular trajectory
simulation, the new simulations stop if the jump does not happen in a given time interval
u (with log10(u/τ) ∈ {−1, . . . , 2}). Each histogram for the Figs. 4.3(a), 4.3(b) and 4.5(b) is
made of about 104 of those short and 105 long waiting times.

4.4.2 WTD from the SE

To calculate the WTD from the SE we mainly use the FTCS (forward-time-centred-space)
discretisation scheme (cf. section 2.6.1). Because the whole process is determined by a very
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small current j over the barrier and, correspondingly, small values for the probability density
(see inset in Fig. 4.5(a)) we need very small discretisation steps ∆x, a typical example being
∆x = 0.0016a. Nevertheless, the FTCS method works for all parameter sets except for
u0 =15kBT , F =0 where the solution of the SE just takes too long. To calculate the long-
time part of the WTD in this particular case we use a different method involving a Fourier
transform, described in section 2.6.4. We exploit the fact that for the special case F =0 with
A, B, C being successive minima of u(x) the set of basis functions of the Fourier transform
Eq. (2.100) can be reduced to

sn(x) = sin

(
πn

x+ a

2a

)
, (4.15)

which fulfil the absorbing boundary conditions. We can write the Fourier transformation of
the probability density as

p(x, t) =

N∑

n=1

pn(t) sn(x) (4.16a)

pn(t) =
1

a

∫ a

−a
dx sn(x) p(x, t) . (4.16b)

Applying the Fourier transform (4.16) to Eq. (3.1) yields

ṗn(t) =
π2

4a2

(
− n2pn + nu0(pn−4Θ(n−4)− pn+4 − p4−nΘ(4−n))

)
, (4.17)

where Θ(x) is the Heaviside-step function. The numerical solution of Eq. (4.17) takes even
longer than FTCS. Therefore we use the diagonalisation method, introduced in section 2.6.4,
to calculate the vector of Fourier components p(t). The computation of p(t) via Eq. (2.105)
is fast and reliable. Specifically, for the case u0=15kBT we find that 100 Fourier modes are
sufficient (computations finish in minutes even for 104 modes).

A further advantage of the diagonalisation is that it provides a simple access to the long
time dynamics. This is because the limit limt→∞ ∂t lnw(t) gives the largest eigenvalue d. To
see this we first calculate the WTD in terms of p(t)

w0→−a
a (t) = −j(−a, t) = ∂xp|x=−a =

N∑

i=1

pn(t)s
′
n(−a) , (4.18)

where

s′n(x) =
πn

2a
cos

(
πn

x+ a

2a

)
. (4.19)

We express Eq. (4.18) as a scalar product

w0→−a
a (t) =

π

2a
n · p(t) (4.20)
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where n is the vector of the natural numbers from 1 to N . We insert the diagonalisation
Eq. (2.105)

w0→−a
a (t) =

π

2a
n · S · eDt · S−1 · p(0) (4.21)

= bT · eDt · c (4.22)

=
N∑

i=1

bie
ditci , (4.23)

where we introduced the vectors b and c to group the time-independent parts together. We
now can calculate the limit

lim
t→∞

∂t lnw
0→−a
a (t) = lim

t→∞

∑N
i=1 bidie

tdici∑N
i=1 bie

tdici
(4.24)

= dmax = max
i
di . (4.25)

From this result we can verify our claim that the WTD decays exponentially

w0→−a
a (t) ∝ etdmax . (4.26)

Since dmax is negative and close to zero, the decay constant in Table 4.1 is −dmax.

4.5 Connection between jump duration distribution and WTD

We begin by analysing the Brownian motion in Fig. 4.1 again. We consider the trajectory
as a sequence of excursions which are separated by the times at which the trajectory crosses
a potential minimum. We have borrowed the term excursion from [352]. For high barriers,
most excursions end at the minimum they started. The others are the jumps we considered
earlier.

For simplicity we first consider the symmetric case where F = 0. The system then is
inversion-invariant. So an excursion either returns to its starting point or crosses a barrier.
The probability densities for the time that the excursion ends the returning or the cross-
ing way are wϵ→0

a (t) and wϵ→a
0 (t), respectively, where ϵ ≪ a. These densities were already

introduced in section 4.3.1 above Eq. (4.13) which defines the jump duration distribution.
Knowing the statistics of one excursion we begin to assemble the whole motion by concate-
nating excursions. We are interested in the WTD w0→a

−a (t) = w0→−a
a (t). Let one jump have

ended at t0. The probability density for the particle to cross a barrier in the first excursion,
ending at t1, is

c1(t1 − t0) = wϵ→a
0 (t1 − t0) . (4.27)

The probability density to return in the first excursion is

r1(t1 − t0) = wϵ→0
a (t1 − t0) . (4.28)

If the first excursion did not lead to a crossing of the barrier, the particle has subsequent
attempts. The probability density to have crossed the barrier at the end of the second
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excursion at t = t2 is connected to the joint probability of returning at the first attempt and
crossing at the second one. The subsequent excursions are uncorrelated, such that the joint
probability is r1(t1− t0)wϵ→a

0 (t2− t1) where t1 is the time of the end of the first excursion. To
include all possible paths we integrate over all possible times t1 which yields the probability
density to cross the barrier at t = t2 at the end of the second excursion

c2(t2 − t0) =

∫ t2

t0

dt1 r1(t1 − t0)w
ϵ→a
0 (t2 − t1) . (4.29)

The probability density to return at the second excursion, too, reads

r2(t2 − t0) =

∫ t2

t0

dt1 r1(t1 − t0)w
ϵ→0
a (t2 − t1) . (4.30)

Consequently, the probabilities to cross exactly after the nth excursion and to return n
excursions in a row are

cn(tn − t0) =

∫ tn

t0

dtn−1 rn−1(tn−1 − t0)w
ϵ→a
0 (tn − tn−1) (4.31)

rn(tn − t0) =

∫ tn

t0

dtn−1 rn−1(tn−1 − t0)w
ϵ→0
a (tn − tn−1) . (4.32)

The WTD is the probability density to cross at time t at any excursion. Because all excursions
are uncorrelated and the cn describe disjoint events, we can simply add all cn yielding

w0→a
−a (t) =

∞∑

n=1

cn(t) . (4.33)

The calculation of the WTD via Eq. (4.33) involves infinitely many nested integrals over
wϵ→0
a . A simplification is possible by using the convolution theorem of the Laplace transform.

We define the Laplace transform of a function a(t) by

L[a](s) =
∫ ∞

0
dt e−st a(t) . (4.34)

It can be shown that

L
[∫ t

0
dt′ b(t− t′) c(t′)

]
(s) = L[b](s)L[c](s) . (4.35)

The integrals in Eqs. (4.31), (4.32) are of this type. Hence,

L[cn](s) = L[rn−1](s)L[wϵ→a
0 ](s)

=
(
L[wϵ→0

a ](s)
)n−1 L[wϵ→a

0 ](s) . (4.36)

We can calculate the Laplace transform of the desired WTD by

L[w0→a
−a ](s) = L[wϵ→a

0 ](s)

∞∑

n=0

(
L[wϵ→0

a ](s)
)n

. (4.37)
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The Laplace transform can be inverted numerically by using the Gaver-Stehfest algorithm
[353].

We now turn to the asymmetric case, discussed in section 4.3.2. The discretisation points
are at the local minima. In section 4.3.2 we defined m as the position of the first min-
imum. There are two types of excursions beginning at m: to the left and to the right.
The probability densities to overcome or to return are wm−ϵ→m−a

m and wm−ϵ→m
m−a to the

left, respectively, or wm+ϵ→m+a
m and wm+ϵ→m

m+a to the right. We assume the normalisations
1 =

∫
dt(wm−ϵ→m−a

m (t)+wm−ϵ→m
m−a (t)) and 1 =

∫
dt(wm+ϵ→m+a

m (t)+wm+ϵ→m
m+a (t)). We assume

that a left excursion follows a right one and vice versa. For simplicity, we assume that the
choice of the direction of the first excursion has no bias, i.e. they occur with equal probability
1/2. Then, the probability densities to cross the left, c−1 , or right, c+1 , barrier in the first
excursion read

c+1 (t1 − t0) =
1

2
wm+ϵ→m+a
m (t1 − t0) (4.38a)

c−1 (t1 − t0) =
1

2
wm−ϵ→m−a
m (t1 − t0) . (4.38b)

The corresponding return densities read

r+1 (t1 − t0) =
1

2
wm+ϵ→m
m+a (t1 − t0) (4.39a)

r−1 (t1 − t0) =
1

2
wm−ϵ→m
m−a (t1 − t0) . (4.39b)

In the same manner as above we define the probability densities for the nth excursion recur-
sively, yielding

c±n (tn − t0) =

∫ tn

t0

dtn−1 r
∓
n−1(tn−1 − t0)w

m±ϵ→m±a
m (tn − tn−1) (4.40a)

r±n (tn − t0) =

∫ tn

t0

dtn−1 r
∓
n−1(tn−1 − t0)w

m±ϵ→m
m±a (tn − tn−1) . (4.40b)

We define the WTDs w+(t) and w−(t) discussed in section 4.3.2 by

w+(t) =

∞∑

n=1

c+n (t) , w−(t) =
∞∑

n=1

c−n (t) . (4.41)

Again, Laplace transforms can be used to circumvent the integrals

L[c±n ](s) = L[r∓n−1](s)L[wm±ϵ→m±a
m ](s) (4.42a)

L[r±n ](s) = L[r∓n−1](s)L[wm±ϵ→m
m±a ](s) . (4.42b)

4.6 Conclusion

In this chapter we have introduced and compared several routes to calculate the WTD in a
system with continuous, Markovian dynamics. Specifically, we have considered the example
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of a Brownian particle in an one-dimensional tilted washboard potential, and focused on cases
where the potential barriers are large against the thermal energy. The same example was
used in chapter 3 where we find complementary insights about the motion in terms of the
cumulants of position.

Traditionally, the WTD in such a situation is calculated by analysing trajectories, e.g. ob-
tained from BD simulations of the Langevin equation. Here we define the WTD on the basis
of the corresponding Smoluchowski equation (SE); i.e., we identify the WTD with one of the
outgoing currents calculated from the SE with absorbing boundaries. The resulting WTD is
closely related to the first passage time distribution; however, the WTD contains directional
information which is usually not present in the FPTD. This becomes particularly important
in spatially asymmetric situations. Moreover, our definition of the WTD is more versatile
than the FPTD in that the usage of WTDs naturally involves a dependence on special initial
and/or boundary conditions. Although our result can be formulated in terms of FPTDs, we
chose the term WTD due to its broader usage in the field of quasi-discrete and direction-
dependent stochastic processes.

Analysing a variety of systems with different initial conditions, as well as with and without
external drive, we find in all cases full quantitative agreement between the SE and BD
results for the WTD. We also stress that, due to our rather general definition of the WTD
in the SE approach, we are able to calculate additional quantities such as the jump duration
distribution. The latter is crucial for understanding the growth behaviour of the WTD at
short times.

In addition to the SE (and BD) method, we have also presented a fully analytic master
equation approach to the WTD. The ME approach is based on the discrete, two-state-per
well model introduced in chapter 3. Comparing the results with those from SE and BD it
turns out that the ME yields a very accurate WTD at intermediate times, where it exhibits
a plateau, as well as at long times, where it has an exponential tail. Only the short-time
behaviour differs due to the fact that the ME model’s (only) short time scale is the “intra-
well” relaxation time, which precisely determines the short-time behaviour of the cumulants
of position in chapter 3. In the continuous approaches a third time scale between intra-well
relaxation and inter-well relaxation can be identified, which is the mean jump duration.

From a computational point of view the BD route to the WTD seems, at first glance, to
be the most straightforward one. However, closer inspection shows that the results are quite
dependent on the definition of “jumps”. Furthermore, the results are often quite noisy. Here,
the SE approach where noise is averaged out a priori, is clearly superior. We stress, however,
the solution is computationally expensive and “fragile” when using a standard solver. In
section 4.4.2 we have therefore sketched an alternative route to obtain the WTD from the
SE based on a Fourier transform.

Finally, our SE approach to the WTD can be easily generalised to systems characterised by
a different potential, to interacting systems, and to systems with higher dimensionality. For
example, for processes involving more than one spatial dimension, one would simply replace
the absorbing boundary value by an absorbing surface and calculate the WTD as an integral
over the probability current over a part of the surface [339]. Another generalisation concerns
the character of the dynamics, which we here assumed to be Markovian. For a non-Markovian
SE (for examples see [132,354,355] or the system studied in chapter 5) which involves memory
kernels and thus has higher dimension in time, the FPTD can be applied straightforwardly
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[132, 356, 357]. Therefore, and due to the similarity between WTD and FPTD we expect
that the identification of the WTD with the probability current remains intact. Finally,
our generalisation of the WTD for continuous systems opens the route to calculate other
quantities typically reserved for discrete (Markovian or non-Markovian) systems, such as the
idle-time distribution [358].



5. TIME DELAYED FEEDBACK CONTROLLED
ROCKING RATCHET

In this chapter we present the results from our collaboration [359] with Sarah A. M. Loos,
Phys. Rev. E 89, 052136 (2014). We investigate the transport of a single colloidal particle
in a static asymmetric periodic potential supplemented by a homogeneous force which is
controlled by time delayed feedback. Feedback control (introduced in section 1.6) means
that the time-dependent evolution of the system is influenced based on information from the
system itself. For a nonzero delay time the feedback control force develops regular oscillations.
Due to the ratchet effect, introduced in section 1.5.2, a net transport of the particle emerges.

As already mentioned in section 1.6, feedback control is an established method to ma-
nipulate the dynamics of various sorts of systems, including colloidal transport. A prime
example for the generation of transport in ratchet systems by using feedback control is the
feedback controlled flashing ratchet demonstrated in [91]. The effectiveness of ratchet-like
feedback controls is measured against corresponding open-loop controls [360,361], which are
the Brownian ratchets introduced in section 1.5.2.

Time delay is inherent in the feedback process. In the feedback controlled flashing ratchets
time delay decreases the net current [226,235,236]. However, other systems benefit from time
delay. Pyragas’ control is a time delayed feedback control which can stabilise desired states
in a dynamical system [239,362]. It is applied to sheared liquid crystals [219] and in nonlin-
ear optics to study all-optical calculation [220, 363]. Time delay is an essential ingredient in
models for population dynamics [250, 364] and brain dynamics [221, 365]. Moreover, it gen-
erates new effects such as the reversal of the current in one-dimensional transport [124,366],
spatio-temporal oscillations in extended systems [355, 367], and, in general, oscillations in
numerous systems [368].

The development of non-equilibrium stochastic thermodynamics [55,242,312] is connected
to feedback control twofold. On the one hand, feedback control is more versatile than open-
loop control so that it enables the direct test of principles of non-equilibrium statistical
mechanics [100,195,224,245,247]. On the other hand, stochastic thermodynamics had to be
extended to incorporate feedback control and time delay [238,243,245].

Feedback controls optimise. Our control enhances the net current of a single Brownian
particle in a one-dimensional asymmetric potential under the influence of a time-dependent
homogeneous force. In contrast to the classical rocking ratchet [211, 369] where the homo-
geneous force is an externally given oscillating function, our force switches, i.e. reverses its
sign, if the mean particle displacement at a previous time t− τD, where τD is the time delay,
crosses a “switching position”. The control target in our model, the mean displacement, is an
ensemble averaged quantity. This is different from previous studies where the control target
itself is stochastic [91, 226, 243, 360]. From the point of view of these latter controls, our
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control represents the limit case of controlling infinitely many non-interacting particles. This
limit is a good approximation for dilute colloidal suspensions [70, 82]. We model the motion
with the SE (2.13) where the delayed feedback force enters directly. We note that the connec-
tion between LE and SE is not straightforward in the presence of time delay [354, 370, 371].
However, the usual connection, i.e. Eq. (2.9), holds for a control target which is an ensem-
ble average. We discuss this issue in section 5.5. Through numerical solution of a SE, we
show that it is the time delay which generates current in our system. Moreover, by varying
the switching position we achieve a net current which is higher than in the corresponding
open-loop control.

The model was developed by Sarah. A. M. Loos and Sabine H. L. Klapp. The numerical
solution is based on Sarah’s work during her Bachelor thesis which I supervised. I later
joined the project and made significant contributions to the interpretation of the findings, to
numerical calculations, figures, and writing.

5.1 Definition of the model

We consider the motion of a single particle (as in the previous chapters) in a one-dimensional,
“sawtooth” potential [76, 91,372], defined by uR(x+ a) = uR(x) and

uR(x) =

{
u0x
ψa , 0 < x ≤ ψa,
u0x

(ψ−1)a , (ψ − 1)a < x ≤ 0 ,
(5.1)

where u0 is the potential height, a is the period, and ψ ∈ [0, 1] is the asymmetry parameter.
In contrast to the tilted washboard used in the other chapters, uR is asymmetric already
without tilt. An illustration of uR(x) is given in Fig. 5.1(a). Here we choose a = 8σ, and
ψ = 0.8. The potential minimum is at x = xmin = 0.

We model the motion via the SE (2.13) for the probability density p(x, t) where we set
the force f(x, t) in Eq. (2.13) to f(x, t) = −u′R(x) + F (t) which yields the SE

∂tp(x, t) = −∂xj = D0∂xxp(x, t) +
D0

kBT
∂x
(
(u′R(x)− F (t))p(x, t)

)
. (5.2)

In the absence of any further force beyond that arising from uR(x), i.e. F (t) = 0, the system
approaches for t→ ∞ an equilibrium state and thus there is no transport (i.e., no net particle
current). It is well established, however, that by supplementing uR(x) by a time-dependent
oscillatory force (yielding a rocking ratchet), the system is permanently out of equilibrium and
macroscopic transport can be achieved [9,211,369]. This occurs even when the time-average
of the oscillatory force is zero, a characteristic feature of a true thermal ratchet.

Here we propose an alternative driving force, where the time dependency arises only
through the internal state of the system. Thus, the force applies feedback control onto the
system. As control target we consider the mean particle position

x̄(t) =

∫

S
dx p(x, t)x (5.3)

within the central interval S = [(ψ−1)a, ψa[ where p(x, t) is the probability density calculated
with periodic boundary conditions on Eq. (5.2), that is, p(x+ a, t) = p(x, t).
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Fig. 5.1: (a) Sketch of the static “sawtooth” potential, defined in Eq. (5.1). The central
interval S is defined by (ψ − 1)a ≤ x ≤ ψa. (b,c) Sketch of the static potential and the
direction of the force Ffc(t) (b) in the absence of time delay (τD = 0) and (c) with time delay.
The vertical lines indicate the switching position x0, as well as the non-delayed [i.e. x̄(t)] and
delayed control target [i.e. x̄(t− τD)].

Our reasoning behind choosing the mean rather than the true position as control target is
twofold: First, within the SE treatment we have no access to the particle’s position for a given
realisation of noise, because the latter has already been averaged out. This is in contrast to
previous studies using Langevin equations [91, 226, 235] where the dynamical variable is the
particle position itself. Second, the mean position is an experimentally accessible quantity,
which can be monitored, e.g., by video microscopy [77,226,252].

Our ansatz for the force reads

Ffc(t) = −F sign(x̄(t− τD)− x0) , (5.4)

where F is the amplitude (chosen to be positive), x0 is a fixed position within the range
[0, ψa] (where uR increases with x), and the sign function is defined by sign(y) = +1 (−1)
for y > 0 (y < 0). From Eq. (5.4) one sees that the feedback force changes its sign whenever
the delayed mean particle position x̄(t− τD) becomes smaller or larger than x0; we therefore
call x0 the “switching” position.

Our ansatz is partially motivated by an earlier (Langevin equation based) study of Craig
et al. [226] on feedback control of a flashing ratchet via the so-called “maximum-displacement
strategy”. In that study, the fixed position x0 was identified with the mean particle position
of the uncontrolled system (i.e., Ffc(t) = 0) at t → ∞, that is, the equilibrium position
x̄eq=

∫
dxxpeq(x), where peq(x) ∝ exp (−uR(x)/kBT ). Here we rather regard x0 as a free

parameter.
Another main feature of our driving mechanism is the presence of a time delay, τD. As

discussed in several studies [226, 235–238, 363, 368, 373], time delay is a rather natural phe-
nomenon which may arise, e.g., through the finite time required for measuring or processing
information from a measurement. In the present case, as we will demonstrate below, the time
delay is indeed crucial for generating particle transport.

5.2 Transport mechanism

To better understand the impact of the force, defined in Eq. (5.4), let us briefly consider
the case τD = 0. For simplicity, we set x0 = x̄eq ≈ 0.32σ. In Fig. 5.1(b) we illustrate a
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situation, where the mean particle position at time t is on the right hand side of x0. In this
case Ffc = −F , meaning that the force tends to push the particle towards x0. In analogous
manner we find that Ffc = +F if the particle is left from x0. As time is progressing the mean
particle position thus becomes “trapped” at x0. Clearly, this excludes any net transport.

However, transport can be generated in the presence of a non-zero time delay, τD > 0.
Figure 5.1(c) shows as an example a situation where the mean particle position at time t is
at the right side of x0, while it has been on the left side at time t− τD. In this situation the
force Ffc(t) points away from x0 (i.e., Ffc > 0), contrary to the case τD = 0 considered in
Fig. 5.1(b). Thus, the particle experiences a driving force towards the next potential valley,
which changes only when the delayed position becomes larger than x0. The force then points
to the left until the delayed position crosses x0 again. This oscillation of the force (see also
Sec. 5.3.1), together with the asymmetry of uR(x), creates a ratchet effect.

We note that the feedback-controlled ratchet introduced here strongly differs from previ-
ous models of such systems. In particular, Feito et al. [374] have considered a rocking ratchet
composed of a static potential similar to ours plus an oscillatory drive. Feedback-control
(based on the average particle force) is then introduced as a prefactor in front of the static
potential; i.e., the latter is switched on only if the force satisfies certain requirements. In
the present model, the control force acts in addition to the static potential, and there is no
additional oscillating force.

Another, somewhat subtle aspect of the present model is that we introduce feedback on
the level of the Fokker-Planck equation describing the evolution of the probability density.
This is different from earlier studies based on the Langevin equation (see, e.g., [91,226,235]),
where the feedback is applied directly to the position of one particle, χi(t), or to the average of
N particle positions N−1

∑N
i=1 χi(t). Introducing feedback control in such systems implies to

introduce effective interactions between the particles [360]. As a consequence, the transport
properties in these particle-based models depend explicitly on the number of particles, N .
Typically, it turns out that the current becomes small or even vanishes when the particle
number increases, the reason being that fluctuations (which are essential for the ratchet
effect) disappear [360]. From the perspective of these Langevin-based models, the present
model corresponds to the “mean-field” limit N → ∞. This connection to a Langevin model
is further discussed in section 5.5. Given that we are in the “mean-field” limit, it is even
more interesting that we do observe a non-vanishing current which can be even larger than
in an open-loop system [360]. This is because our model involves a time delay.

5.3 Numerical results

5.3.1 Dynamics of the control target

In this section we present numerical results for the feedback-controlled transport based on
numerical solution of the SE (5.2). The height of the static potential is set to u0 = 15kBT . In
fact, similar values are found in experiments of colloids in structured light fields [82, 89, 91].
Time is measured in units of the Brownian timescale, τB = σ2/D0, which is of the order of
100s to 102s for typical colloids [82,89,91,186,204] (see also Table 2.1 in section 2.1.2). In all
calculations, the initial condition for the probability density is a δ-function localised at the
minimum of uR(x), xmin = 0. Further, to initialise the control force, we set a history function,
i.e. x̄(t) = xmin = 0 for t ∈ [−τB, 0]. In fact, we have performed various test calculations
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Fig. 5.2: (a) Mean particle position and (b) control force as functions of time for τD = 2τB,
x0 = 2σ and F ∗ ∈ {3, 6}. In (c) and (d) the oscillation is divided into segments by the times
at which Ffc changes (left border of the shaded regions) and the times the mean particle
position crosses x0 (right border). (e) One cycle of the function x̄(t) at τD = 2τB and F ∗ = 6,
with the filled circles indicating specific times. The switching position is set to x0 = 2σ.
Also shown is the corresponding function x̄(t − τD). (f)-(j) Density distribution as function
of space at the times indicated in (e). The thick arrows show the direction of the control
force. The filled (red) circles indicate the values of x̄(t).

involving other (than delta-like) initial densities and other history functions. However, the
effect of the initial conditions was found to be only of transient character. The data presented
in the following correspond to time ranges after an initial (yet very short) “equilibration”
period, after which the dynamic quantities considered display a regular dynamical behaviour,
i.e. the system is not in a transient state.

We start by considering the time evolution of the mean particle position, x̄(t), which
determines the control force. Exemplary data for two amplitudes F ∗ = Fσ/kBT are shown
in Fig. 5.2(a), where the parameter x0 has been set to 2σ, and τD = 2τB. It is seen that x̄(t)
displays regular oscillations between values above and below x0 for both force amplitudes
considered. The period of these oscillations, T , is roughly twice the delay time. We will
come back to this point later in this section. We also note that the precise value of the
period as well as the shape of the oscillations depend on the values of F ∗ and x0 (see also
Sec. 5.3.2).

Due to the oscillatory behaviour of x̄(t), the delayed position x̄(t− τD) oscillates around
x0 as well. It follows from our definition of the feedback force [see Eq. (5.4)], that the latter
switches periodically between +F and −F with the same period as that observed in x̄(t).
This is clearly seen in Fig. 5.2(b) where we plotted Ffc(t).

A closer view on the dynamic behaviour within one cycle is given in Fig. 5.2(e-j), where
we focus on the case τD = 2τB and x0 = 2σ. Figure 5.2(e) depicts one cycle of the function
x̄(t) together with its time-delayed counterpart, x̄(t − τD). The parts (f-j) of Fig. 5.2 then
plot the probability density p as function of x for specific times indicated by filled circles in
Fig. 5.2(e).
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The mean particle position starts from x̄ = 0 (i.e., localisation in the potential minimum)
at t0 = 0. The value F ∗ = 6 of the amplitude F ∗ is that large that the total systematic force
−u′R(x) + Ffc at t = 0 is positive for every x. Hence, at t = 0.4τB [part (f)], the density
distribution has broadened by diffusion and x̄(t) has moved to the right. We also see from
Fig. 5.2(f) that the probability density is still very small at the boundary x = ψa. This
changes at t = 1.1τB when probability “flows” over the boundary, indicating transport [see
part (g)]. The function x̄(t) is now in its maximum. At t = 1.1τB the mean particle position
has already crossed x0; however, the time delayed mean particle position is still below x0,
and thus, Ffc(t) > 0. Note that due to the periodicity of the system an inward probability
flow occurs at the lower boundary x = (ψ−1)a. With progressing time this eventually leads
to a shift of the mean particle position towards smaller values, as seen in Fig. 5.2(h) for the
case t = 2.4τB. When x̄(t − τD) crosses x0 the feedback control force is reversed. The total
systematic force is now positive for x < 0 and negative for x > 0. The confining effect of this
force to the particle can be seen in Fig. 5.2(i) where a peak in the probability density evolves.
As a consequence, the mean particle position moves towards values around the potential
minimum. When the same happens to the delayed position x̄(t− τD), the cycle starts again.

From the above considerations it follows that [as illustrated in Figs. 5.2(c) and (d)], each
cycle consists of two intervals of duration τD which are separated by smaller time intervals r1
and r2. The latter correspond to the times which the control target needs to reach x0 after
the control force has switched. Thus the duration of the total period is T = 2τD + r1 + r2.
We note that this finding is independent of the chosen initial conditions.

We also remark that in order to see persistent oscillations of the control target and thus,
the control force, it is crucial that the function contained in Ffc is very sensitive to even tiny
differences between x̄(t − τD) and x0. Indeed, besides the sign-function we have also tested
continuous functions such as sin(y) [or cos(y)], which tend to zero when x̄(t− τD)− x0 → 0
[or π/2]. In these cases, the oscillations just dampen out and thus, there is no ratchet effect.

5.3.2 Effective current

So far we have focused on the mean particle position x̄(t) within one interval, defined in
Eq. (5.3), i.e., the quantity determining our feedback force. However, to visualise the particle
transport, it is more convenient to consider the distance x̃(t) the particle has actually travelled
at time t (in the ensemble average) relative to its value at t = t0. Contrary to x̄(t), the
travelled distance x̃(t) takes into account that the particle actually moves from one potential
valley to the next.

To this end we first introduce the particle current

j̄(t) =

∫

S
dx j(x, t) , (5.5)

with the probability current j(x, t) = −D0∂xp+D0(F (t)− u′R)p/kBT given by the SE (5.2).
As shown in Ref. [9], by using the periodic boundary conditions which p obeys, this current
can also be expressed as

j̄(t) =
d

dt

[∫ xref+a

xref

dxx p(x, t)

]
+ a j(xref , t)

=
d

dt
x̄(t) + a j(xref , t) , (5.6)
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where xref is an arbitrary reference position within the central interval. Here we choose xref
equal to (ψ−1)a, that is, the lower boundary of the central interval. Equation (5.6) expresses
the fact that the particle current is composed of the motion of the “centre of mass” plus a
times the probability current (evaluated for the periodic system) at the reference point. We
now define x̃(t) as the time integral of j̄(t), yielding

x̃(t) =

∫ t

t0

dt′ j̄(t′) = x̄(t) + a

∫ t

t0

dt′ j(xref , t
′) , (5.7)

where we have used that x̃(t0) = x̄(t0). Through relation (5.7) and interpreting x̃(t) as mean
travelled distance, we give j̄(t) the interpretation of the mean velocity of the particle.

Numerical results for x̃(t) and j̄(t) are plotted in Fig. 5.3(a-c) for different values of the
control force parameters F ∗ and x0. The delay time is kept fixed. In all cases considered, x̃(t)
displays a regular “back-forth” rocking motion, but with a net drift to the right – indicating
particle transport. Also shown in Fig. 5.3 is the mean velocity j̄ defined in Eq. (5.5). It is
seen that j̄(t) reflects the rocking-like behaviour of x̃(t) by oscillations around zero. The fact
that positive values dominate signals the presence of net transport.

Not surprisingly, both the current and the strength of the drift visible in x̃(t) depend on
the amplitude of the control force, as one can clearly see by comparing the dashed and solid
curves in Fig. 5.3(a-c). However, we also observe a significant influence of the position x0:
The larger x0, the longer are the times in which the travelled distance increases in each cycle
and in which the current is positive. We understand this behaviour such that, the larger x0,
the longer the time in which the mean particle position in the central interval S is below x0
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(yielding Ffc > 0). The period T of the oscillations of x̃(t) and j̄(t) slightly increases with
x0 as well. An overview of the dependence of T on x0 and F ∗ is given in Fig. 5.3(d). In all
cases, T is roughly given by twice the delay time, however, its actual value depends on the
precise choice of the control force parameters.

Having understood the time-dependence of the control target and the current density we
now turn to the overall (time-averaged) transport. The latter is measured by the net particle
current defined as

J = T −1

∫ t1+T

t1

dt′ j̄(t′) , (5.8)

where j̄(t) is defined in Eq. (5.5), and t1 is a time after the transients. Numerical results
for J in dependence of the delay time τD and force amplitude F ∗ are plotted in Fig. 5.4(a),
where we consider two switching positions.

We first discuss the behaviour at finite delay times in the range τD ≈ 5τB. In this
range the current generally increases with τD, with the values being the larger the larger the
force amplitude and the switching position are. This is consistent with our earlier findings
regarding the particle’s travelled distance and the time-dependent current (see Fig. 5.3).
We also see from Fig. 5.4(a) that all curves saturate in the limit of large τD at some finite
value of J . This limit value solely depends on F ∗ which we discuss later with the adiabatic
approximation Eq. (5.11), shows as dashed horizontal lines in Fig. 5.5(a) which shows J(T ).

At small delay times (τD < 5τB) the behaviour of the function J(τD) strongly depends
on both, F ∗ and x0. For x0 = 0.32σ, the net current vanishes at τD → 0 regardless of the
strength of the drive, consistent with our previous considerations that the ratchet effect in our
model is essentially driven by the time delay. Upon increasing τD the current then deviates
from zero. Interestingly, for large force amplitudes (F ∗ = 6, 8), J may even become negative
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before finally increasing towards positive values. Note that negative values imply transport
opposite to the direction supported by the asymmetric potential.

Considering now the larger switching position x0 = 2σ, we observe again a strong decrease
of the current when we decrease the time delay from large values. However, contrary to the
situation at x0 = 0.32σ, J(τD) stays finite in the limit τD → 0. We can understand this
behaviour, as well as the negative currents arising at x0 = 0.32σ and F ∗ = 8, by considering
the time average of the control force,

F̄fc = T −1

∫ t1+T

t1

dt′ Ffc(t
′) . (5.9)

Figure 5.4(b) plots the averaged control force as function of τD. Considering first the case
x0 = 0.32σ, we see that F̄fc(τD) approaches zero in the limit of vanishing delay time. In other
words, there is no average drive, which justifies to consider the present transport mechanism
as a true (delay-induced) ratchet effect. For small τD, however, there is a minimum in the
function, which becomes the more pronounced the larger F is. The negative values of F̄fc(τD)
are responsible for the negative net current J arising in the same range of delay times (see
Fig. 5.4(a)). Therefore, the appearance of negative J here has a different origin than in the
open-loop controlled case [211].

At x0 = 2σ the average force is non-zero and positive throughout the entire range of delay
times, becoming largest in the limit τD → 0. We note, however, that at any finite delay time
the absolute value of F̄fc is quite small. To check the influence of this remaining force we
have calculated the current j̄ defined in Eq. (5.5) for a system under the time-constant force
F (t)= F̄fc(τD), taking the case F ∗=6, x0=2σ as an example. It turns out that this current,
which is shown in Fig. 5.4(a) by the curve termed “stationary”, is indeed negligible except
at τD → 0. Thus, we can conclude that even with this larger switching position the ratchet
effect is essentially delay-induced. A more systematic view of the dependence of F̄fc on x0 is
given in Fig. 5.4(c), where we focus on specific, finite values of τD. It is seen that, outside the
range 0.32σ ≤ x0 ≤ 2σ (see vertical dotted lines in Fig. 5.4(c)), the average force deviates
significantly from zero. In these cases, it becomes questionable to which extent the current
is really induced by time delay. Therefore we have restricted x0 to values inside the interval
defined above.

At this point it is worth to compare the current generated by our feedback-controlled
ratchet with that of an ordinary, “open-loop” rocking ratchet. To this end we supplement
the static periodic potential given in Eq. (5.1) by a time-periodic drive characterised by a
fixed period Tol with vanishing time average. To be as close as possible to our feedback model
[see Eq. (5.4)], we choose a rectangular oscillatory drive

Fosc(t) = −F sign

[
cos

(
2π

Tol
t

)]
. (5.10)

For a discussion of the deterministic version of this model we refer to [375]. In the present,
noisy system we calculate the resulting net current via Eq. (5.8) after replacing T by Tol.
In Fig. 5.5(a) we show numerical results for J as function of the oscillation period, together
with the corresponding functions J(T ) for a feedback-controlled ratchet with two values of
x0.
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results based on BD simulations of the Langevin equation (see section 5.5).

While the general behaviour of the current (that is, small values of J for small periods,
saturation at large values for large periods) is similar for both, open-loop and closed-loop
systems, the actual values of J for a given period strongly depend on the type of control.
This is seen already at very small periods where, e.g., the current of the closed-loop system
with x0 = 0.32σ can become negative, while that of the open-loop system is still zero.
The most interesting differences, however, occur at finite periods which are still below those
corresponding to the saturation regime.

Comparing curves with the same value of F ∗ we find that the net current in the open-loop
system is larger than in the closed-loop system with small switching position (x0 = 0.32σ),
but smaller than in the closed-loop system with x0 = 2σ. In other words, the net current,
which is the measure for transport, can be larger in the feedback-controlled system than that
in the open-loop case, provided that the switching position is sufficiently large. At very large
periods, however, the currents corresponding to a given value of F approach the same values.
The latter correspond to the “adiabatic limit” (T → ∞), where the drive changes so slowly
so that the system can be assumed to be in a stationary state at every time t [9]. This allows
to calculate the current analytically, yielding

J =
D0a

T

∫ T

0
dt

(
1− e

−aF (t)
kBT

)
/N (t) (5.11)

N (t) =

∫

S
dx e

−uR(x)−xF (t)

kBT

∫ x+a

x
dx′ e

uR(x′)−x′F (t)

kBT ,

where F (t) = Fosc(t) and F (t) = Ffc(t) for the open- and closed-loop case, respectively.
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5.4 Entropy production and work

In view of our results for the net current in the feedback-controlled ratchet, on the one hand,
and the open-loop controlled rocking ratchet, on the other hand (see Fig. 5.5(a)), it is in-
teresting to further explore the impact of the control scheme in terms of (non-equilibrium)
thermodynamics introduced in section 2.5. In particular, we are interested in the total entropy
production, which measures how far the system is away from equilibrium, and in the work
that is performed on the particle. We calculate these quantities on the basis of stochastic
thermodynamics. For systems with instantaneous feedback control this is a well-established
field [55, 312]. This is generally not the case for systems with time delay, in which the
underlying (Langevin or Master) equations of motion become non-Markovian such that con-
cepts of standard stochastic thermodynamics (which assumes Markovian dynamics) are not
immediately applicable [238,243].

In the present case the situation is somewhat easier because we are working in a mean-field
limit. As discussed in section 5.5, this limit allows us to establish a connection between our
SE and an underlying Langevin equation; it also allows us to consider our delayed feedback
control force just as a special type of time-dependent force. In the following we stress this
argument further and use various SE-based standard formula for thermodynamic quantities.
To test the SE results we compare with those obtained from trajectory-based expressions via
Brownian Dynamics (BD) simulations.

We start by considering the ensemble-averaged total entropy production, Ṡtot. Within
stochastic thermodynamics, the total entropy stot(t), for a single trajectory χ(t), consists
of two contributions [55], i.e., stot(t) = s(t) + sm(t). Here, s(t) = −kB ln p(χ(t), t)σ is the
trajectory-dependent entropy of the “system” (i.e., the particle), and sm(t) = q[χ(t)]/T is
the medium entropy related to the heat q[χ(t)] dissipated into the medium. Upon averaging
over the ensemble of trajectories [55], one finds the following compact expression for the
time-derivative (production rate) of the total entropy

Ṡtot(t) = kB

∫

S
dx

j(x, t)2

D0 p(x, t)
, (5.12)

where j(x, t) is the probability current [see Eq. (5.2)].
Numerical results for Ṡtot are shown in Fig. 5.5(b) where we focus on a situation where

the net current in our closed-loop scheme is larger than in the open-loop system. Included are
results for the corresponding open-loop system (in which Tol := T ). For both the closed-loop
and the open-loop system, Ṡtot(t) displays periodic behaviour with similar features. First, the
beginning of a new cycle is indicated by a very large and narrow peak. After the peak, Ṡtot(t)
decreases to a small, yet non-zero value and then rises towards a second, broader maximum,
followed by a further sharp peak. The latter is related to the change of the feedback force
from positive to negative values. For the open-loop system this happens exactly in the middle
of the cycle [see Eq. (5.10)]. In the closed-loop system, the change is somewhat shifted. This
deviation is indeed the main difference between the closed-loop- and the open-loop-controlled
system.

We have also calculated the total entropy production by BD simulations based on the
LE (5.16). On that level, the rate of change of the system entropy is given as Ṡ(t) =
−kBd/dt⟨ln p(χ(t), t)σ⟩, with ⟨. . .⟩ being a noise average. In practice, we have evaluated



5.4 Entropy production and work 93

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20

W
(t
)/
(k

B
T
)

t/τB

(a)

open-loop control
closed-loop control x0=2σ

closed-loop control x0=0.32σ

SE BD

-1

0

1

2

3

4

5

6

0 10 20 30 40 50 60

x̄
/σ

,
m

N
/σ

t/τB

(b) F ∗ = 6, x0 = 2σ, τD = 2τB
BD N = 101

BD N = 104

SE

Fig. 5.6: (a) Work performed on the particle as function of time for F ∗ = 8, τD = 1.1τB,
and two switching positions x0. Included are results for the corresponding system under
open-loop control. (b) BD simulation results for the mean particle position as function of
time and particle number N . Indeed, the solution of the LE for many particles (N = 104)
coincides with the results from the SE.

Ṡ using the relation ⟨ln p(χ(t), t)σ⟩ =
∫
S dx p(x, t) ln p(x, t)σ where we use the microscopic

definition of the probability density Eq. (2.8), i.e. p(x, t) = ⟨δ(x−χ(t))⟩. Further, the medium
entropy [55] is given by

Ṡm(t) = ⟨(−u′R(χ(t)) + FNfc (t))χ̇(t)/T ⟩ . (5.13)

To evaluate this expression we have used the Stratonovich interpretation. It is seen in
Fig. 5.5(b) that the BD data (which have been obtained with N = 105) are fully consis-
tent with those from the SE approach.

To calculate the work performed on the particle we note that, contrary to the dissipated
heat, the work involves only changes of the total systematic force at fixed particle position [55]
which is, in our case, Ffc(t). On the level of a single trajectory χ(t) the work therefore reads

w[χ(t)] =

∫ t

0
dt′ Ffc(t

′) χ̇(t′) . (5.14)

To achieve a description in terms of the SE we make use Eq. (2.90) (implicitly assuming again
that the time delayed feedback control force enters the SE just like a special time-dependent
force). The noise-averaged work is then given by

W (t) =

∫ t

0
dt′ Ffc(t

′)
∫

S
dx j(x, t′) . (5.15)

In Fig. 5.6(a) we compare the time-dependence of the work for the closed-loop system with
two different switching positions with the corresponding open-loop system. It is seen that
the work increases in each cycle, with the strongest ascent taking place in those portions of
the cycle where the force is positive. Furthermore, comparing the two systems with feedback
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control, we find that the amount of work needed to transport the particle is larger for the
system with x0 = 2σ, than for the one at x0 = 0.32σ. We recall that the net current is
larger at x0 = 2σ, too (see Fig. 5.5(a)). Figure 5.6(a) also shows that the work pertaining
to the system under open-loop control has qualitatively a similar time dependence, with the
numerical values being in between those of the two feedback-control ratchets. In other words,
in our system feedback control does not necessarily imply that the energy input is smaller
than that in a comparable open-loop device.

5.5 Connection between Langevin and Smoluchowski equation in the presence
of delayed feedback

In this section we discuss the connection of the SE (5.2) and the Langevin equation

γχ̇i(t) = −u′R(χi) + FNfc (m
N (t− τD)) +

√
2γkBTξi(t) , (5.16)

where uR(χi) is given by Eq. (5.1), ξi(t) represents Gaussian white noise, i ∈ {1, . . . , N}, and

FNfc (t) = −F sign
[
mN (t− τD)− x0

]
(5.17)

with

mN (t) =
1

N

N∑

i=1

χi(t) . (5.18)

Thus, mN is the average of the positions of the N particles.
For the special case N = 1, one has obviously m1(t) = χ1(t) and thus, FN=1

fc (t) =
−F sign [χ1(t− τD)− x0]. Then, Eq. (5.16) has the form discussed in earlier studies on de-
layed Langevin equations [354, 370, 371]. For such systems, the problem in going from the
LE to the SE is that the feedback control force depends on the full microscopic (stochastic)
trajectory of the particle in phase space up to time t. Therefore, the resulting SE involves
the conditional probability that the particle was at position x′ at time t − τD given that it
is at position x at time t. An SE which is formally similar to the usual one [involving only
p(x, t)] can then be obtained by introducing a “delay-averaged force”, that is, the integral
over space of FN=1

fc (t) times the conditional probability [243,354].
Now we consider the “mean-field” limit N → ∞. For each time t, averaging over an

infinite number of particles is equivalent to averaging over the infinite number of realisations
of the stochastic force. Therefore, the quantity mN in Eq. (5.18) becomes identical to the
ensemble-averaged particle position, i.e., limN→∞mN (t) = x̄(t). As a consequence, the force
FNfc (t) does not depend any more on a stochastic quantity, in other words, the information
about the individual stochastic trajectories at time t−τB is no longer required. In the “mean-
field” limit, we can thus consider the feedback force as a conventional time-dependent force
entering the “mean-field” version of Eq. (5.16), that is,

γχ̇(t) = −u′R(χ) + Ffc(x̄(t− τD)) +
√
2γkBT ξ(t) . (5.19)

From Eq. (5.19), we can derive the SE in the standard way, i.e., by using the Kramers-
Moyal (KM) expansion [10]. The calculations are, in principle, straightforward; in particular,
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there is no problem with multiplicative noise in the mean-field limit. The only uncommon
issue arises through the fact that our feedback force changes its sign abruptly when x̄(t− τD)
crosses x0. We thus consider in more detail the first (“drift”) KM coefficient

D(1)(x, t) = lim
τ→0

1

τ
⟨(χ(t+ τ)− x)χ(t)=x⟩ . (5.20)

The expression in brackets is evaluated through

χ(t+ τ)− χ(t) =

∫ t+τ

t
dt′ χ̇(t′) (5.21)

which can be treated by inserting Eq. (5.19) for χ̇ into Eq. (5.21), iteratively (see [10]). Due
to the limit τ → 0 and the noise average incorporated in D(1) [see Eq. (5.20)] all terms O(τ2)
as well as terms involving ⟨ξ(t)⟩ vanish. The remaining task is to evaluate the term

I(t) = lim
τ→0

1

τ

∫ t+τ

t
dt′ Ffc(x̄(t

′ − τD)) . (5.22)

The problem with Eq. (5.22) is that, if Ffc(x̄(t
′−τD)) changes its sign in the interval [t, t+τ ],

the limit τ → 0 of I(t) does not exist. Therefore, we make the assumption that the time
between two switching events has a lower bound, t∗. Further, we define that at the switching
times ts (when x̄(ts − τD) = x0) the force Ffc(ts) is already set to the new value. For all
τ in the interval [0, t∗[ we then have Ffc(t + τfc(t). As a consequence, Eq. (5.22) yields
I(t) = Ffc(x̄(t− τD)) and the first KM coefficient becomes

D(1)(x, t) =
1

γ
(−u′R(x) + Ffc(x̄(t− τD))) . (5.23)

With this expression (and the usual result D(2) = kBT/γ), one arrives directly at the SE
(5.2).

In order to check our argumentation, we have performed Brownian Dynamics simulations
of Eq. (5.16) for different values of N . Representative results for the quantity mN (t) are
plotted in Fig. 5.6(b), where we have included corresponding results for x̄(t) from the SE.
We see that the results become fully consistent if N is sufficiently large.

5.6 Conclusion

In this chapter we have presented a novel type of a rocking ratchet system, where the particle
is subject to a space-dependent, asymmetric potential and a time-dependent, homogeneous
feedback control force. The control target is the time-delayed mean particle position relative
to a switching position, x0. The dynamical properties are mainly studied with a Fokker-
Planck equation, where the time-delayed feedback force is introduced ad hoc. We have
established a connection to a corresponding Langevin equation with mean-field coupling.

To explore the transport properties of our system we have investigated the net current
in dependence of the parameters of the control force, that is, delay time, amplitude and
switching position. Our results clearly show that the time delay involved in the feedback
protocol is essential for the creation of a ratchet effect and, thus, for a nonzero net current.
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A further important ingredient is the discontinuous dependence of the feedback force on the
control target.

An important question for every feedback-controlled system is its efficiency relative to a
comparable system under open-loop control. We have found, indeed, that for a certain range
of switching positions (and not too large delay times), the net current is enhanced relative
to the open-loop system. At the same time, however, the work performed on the particle
is larger in the feedback-controlled system. This finding is somehow in contrast to a recent
result for another ratchet system [312] where, at the same time, the current was enhanced and
the work was reduced by feedback control. Another interesting question is to which extent
the present feedback scheme, which relies on the (time-delayed) mean particle position as
a control target, could be improved, e.g., to realise an even larger net current. In fact, as
indicated in Fig. 5.5(a), the current J does not exceed its value pertaining to the adiabatic
limit, at least not for the range of switching positions considered here (recall that this range
has been chosen such that the time-averaged force is close to zero). Therefore, it would be
interesting to see whether larger values of J are achievable by choosing a different control
target or by an otherwise modified control protocol.

So far, there exists no direct experimental realisation of the system proposed here, but
the main ingredients are already well established. As mentioned in the introductory sec-
tions 1.5.2 and 1.6 ratchet potentials acting on colloids can be easily realised by using laser
beams [87,91,204] (creating an optical line trap), and the position of a colloidal particle (or the
mean position of many particles) is accessible, e.g., by video microscopy. Moreover, feedback
control based on the particle position (or mean position) has already been realised exper-
imentally, e.g. in the context of a feedback-controlled flashing ratchet [91] and a Maxwell
demon [224]. Another ingredient, which is indeed crucial in our system, is the presence of
a time delay. Experimentally, delay arises from various factors [236], including the time for
numerical determination of particle positions via the camera and the time for the decision
whether to switch the force. In section 1.6 we discussed the speed of modern experimental
feedback controls with the conclusion that the time delay can be made small with respect
to the Brownian time. This includes the regime of ratios τD/τB, where, according to the
results presented in Fig. 5.4(a), the current strongly deviates from the adiabatic limit and,
in particular, can be larger than in the open-loop protocol.

The mean-field limit we employed holds in the limit of a large number of particles in the
system, as we discussed in section 5.5. In is an open question whether a feedback control,
similar to ours, but operating with a finite number of particles can enhance the net current
further. An ensemble averaged modelling of this motion, maybe in the spirit of the DDFT,
would be very useful for further investigations.



6. SHORT TIME DIFFUSION OF SEVERAL
PARTICLES

The results presented in this chapter are not published, yet.
We focus on the short time diffusion of interacting colloids in a tilted washboard potential

in one dimension. Further, we address the long-time limit to discuss the diffusion coefficient.
This is a sequel to chapter 3 where we studied the diffusion of a single particle. Interactions
between particles have a pronounced influence on the diffusion, for short and long times.
A slowing down of diffusion by repulsive particle interactions appears in dense suspensions,
e.g. liquid crystals [139] or colloidal glasses [116, 141]. Attractive interactions slow diffusion
down, too, which can result in the formation of gels [138, 144, 233]. Further, the interplay
between attractive interactions and diffusion can create fractal structures [140].

Short time diffusion is actively studied for glasses [123,136], gels [35,326], liquid crystals
[139], for colloids in light fields [82, 83, 87, 92], and in the development of feedback controls
[376]. As we discussed in chapter 3, the MSD is an important quantity to describe short time
diffusion. We have seen that a slow down of the diffusion from short to long times manifests
as plateau in the MSD (cf. chapter 3 and section 1.3.4). If diffusion is enhanced we find a
superdiffusive transient regime instead of a plateau in the MSD.

The analysis of long-time diffusion in periodic potentials has a long history. Much effort
invested in the continuous time random walk models was targeted to diffusion coefficients
for diffusion in three dimensions [128, 129]. The diffusion coefficient of a single Brownian
particle in a tilted washboard potential is available analytically [125, 185]. Interestingly, the
driving force (i.e. the tilt) has a strong influence on the diffusion coefficient D. For small
driving forces D is several orders of magnitude smaller than D0, the diffusion coefficient
of free diffusion. In contrast, for driving forces F near the so-called critical driving force
Fc [125] the ratio D/D0 is much larger than 1. This effect is called giant enhancement
of diffusion or, short, giant diffusion. It it seen in many other systems including ratchet
systems [169, 186,189], single file diffusion in tilted washboard potentials [147], and periodic
potentials with oscillating components [190,377]. Giant diffusion is mainly studied with single
particles and the effects of particle interaction are still not entirely clear. Studies of the giant
diffusion effects considering particle interactions include a single particle with inner degrees
of deformational freedom [149] and single file diffusion [147].

We focus on short time diffusion and giant diffusion of ultra-soft particles modelled by
the Gaussian core model (GCM). These particles can overlap and do not show single file
diffusion. Ultra-soft particle interaction is a model for the interaction of fluctuating polymer
chains [299,378,379]. We find that the purely repulsive particle interaction enhances diffusion
which leads to a shorter plateau in the MSD and emphasises the giant diffusion effect. Further,
we study the short time diffusion of attractive hard particles.
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We employ the dynamic test particle method to calculate the MSD via the van Hove
correlation function [123] (see also section 2.4). We model the particle interactions with
DDFT, introduced in section 2.3.1. The DDFT provides an effective potential landscape for
the motion of the one-particle density by approximating the positional correlations by the
equilibrium correlations. For our second system, the attractive hard spheres, this equilibrium
assumption fails to predict single file diffusion [257,292,294]. However, the motion of a cluster
formed by those particles can be correctly modelled with DDFT [272, 380]. Therefore, we
restrict our analysis of the hard-sphere system to the dissociation of the cluster in dependence
on interaction strength and driving force.

In the next section 6.1 we define the models for the two interacting systems and specialise
the test particle method for our usage. In the results section 6.2 we first address the short
time diffusion of ultra-soft particles, then giant diffusion of ultra-soft particles, and attractive
hard spheres at the end. The chapter ends with the conclusion in 6.3.

6.1 Model

We consider the overdamped motion of N Brownian particles in one dimension under the
influence of the tilted washboard potential u(x), given by Eq. (1.11). On the particle level,
the motion can be described by the N coupled LE (2.6).

We consider two types of interacting systems, that is, ultra-soft particles described by the
GCM and attractive hard particles, where the attraction is modelled by a Yukawa potential.

The pair interaction potential according to the GCM reads

vGCM(d= |xi − xj |) = ε e−d
2/σ2

. (6.1)

This potential is a coarse-grained potential modelling the interaction of two fluctuating poly-
mer chains, where the particle diameter σ is proportional to the polymers’ radius of gyra-
tion [299,378,381].

The pair interaction potential of the hard-core-attractive-Yukawa (HCAY) system reads

vHCAY(d= |xi − xj |) =
{
∞ d < σ

−Y exp(Kσ(1−r/σ))
r/σ d ≥ σ

. (6.2)

This potential is used to model attractive depletion interactions for the investigation of phase
coexistence in colloidal suspensions [304,382–384], but it is also used to model the attraction
between oppositely charged colloids [385].

We are interested in the short time diffusion described by the MSD and the non-Gaussian
parameter α. Further, we consider the long time diffusion where we extract an effective
diffusion coefficient, if appropriate, from the MSD. Using the relations Eqs. (2.54) and (2.55)
we express the MSD and α through the van-Hove function, introduced in section 2.4.

We employ the test particle method (see section 2.4.1) to compute an approximation to
the van-Hove function by using conditional densities. The test particle method is a commonly
used method to calculate correlation functions from conditional (one-particle) densities [123,
124,139,308,386]. We employ the DDFT based test particle method (cf. section 2.4.2) in 1D,
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governed by the extended Smoluchowski equations

∂tϱs(x, t;x0) = D0∂xxϱs + ∂x(ϱs∂x(Vext + V s
int))/γ (6.3a)

∂tϱd(x, t;x0) = D0∂xxϱd + ∂x(ϱd∂x(Vext + V d
int))/γ . (6.3b)

In Eq. (6.3) ϱs(x, t;x0) is the one-particle density of the test particle which, according to
Eq. (2.68), yields the self part Gs of the van-Hove function by averaging over the initial
positions x0. Analogously, the distinct part Gd can be inferred from ϱd(x, t;x0). In Eq. (6.3),
the effective interaction potential that one particle exhibits due to particle interaction with

the other particles is denoted with V
s/d
int . The effective interaction potentials are modelled

with the DDFT, i.e.

V n
int(x, t) =

δFTPM,sub
int [ϱs, ϱd]

δϱn(x, t)
for n ∈ {s, d} . (6.4)

The functional FTPM,sub
int is given by Eq. (2.75) which depends on the interaction part of

Helmholtz free energy functional Fint[ϱ].
For the GCM interaction we employ the mean-field free energy functional, defined in

Eq. (2.50)

FGCM
int [ϱ] = FMF

int [ϱ, vGCM
int ] . (6.5)

The mean-field approximation is reliable for ultra-soft particles in and outside equilibrium at
intermediate and high density [54,270,387].

For the HCAY interaction we employ a common composition approach [260,272,284,380]

FHCAY
int [ϱ] = Fhs1D

int [ϱ] + FMF
int [ϱ, vHCAY

int ] , (6.6)

where Fhs1D
int , defined in Eq. (2.47), is the exact grand canonical equilibrium Helmholtz free

energy functional for the interaction of hard spheres in one dimension.

6.2 Results

We solve Eqs. (6.3) numerically (see section 2.6 for details) under periodic boundary condi-
tions in a system of size L = 100a. The initial condition for the test particle being located
at x=x0 reads

ϱs(x, 0;x0) = δ(x− x0) . (6.7)

For the other particles we compute the equilibrium density profile in a harmonic trap uQ(x) =
2u0π

2a−2x2 in the presence of the test particle being fixed at x0. The trap uQ(x) is the lowest
order approximation to u(x) for F = 0 around a minimum.

We set u0=15kBT and a=8σ. Due to symmetry, we only consider forces F > 0.
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Fig. 6.1: (a) Width of ϱs, given by Eq. (6.8), for various initial positions of the test particle
x0 and the MSD w(t), given by Eq. (2.54). The other parameters are F = 0.2Fc, N =
4, ε = 4kBT . All ws(t, x0) differ less than a factor 2 from w(t). We use ws(t, 0) for further
investigations. (b) One-particle density ϱ(1)(x) corresponding to the initial condition (the
particles are trapped in a harmonic potential). The vertical bars indicate the discretisation
of the integral Eq. (2.68). (c) Double-logarithmic plot of ws(t, 0) for different N and ε at F =
0.2Fc. Depending on the values of N and ε a subdiffusive region (a plateau) or a superdiffusive
region establishes. (d) Non-Gaussian parameter αs(t, 0) which shows a pronounced peak at
a time when the plateau (if any) ends.

6.2.1 Short time diffusion of ultra-soft particles

We first discuss the importance of Eq. (2.68) for our problem. In Fig. 6.1(a) we plot the
width of ϱs, i.e.

ws(t, x0) =

∫
dx (x−

∫
dy y ϱs(y, t;x0))

2ϱs(x, t;x0) , (6.8)

which is the second cumulant of the position of the test particle. Further, Fig. 6.1(a) shows
w(t) calculated from Eq. (2.54) with Gs(∆x, t) given by Eq. (2.68). The integral over x0 is
approximated by a sum over 7 intervals which are indicated in Fig. 6.1(b). Clearly, w(t) does
not coincide with any ws(t, x0). However, each ws(t, x0) displays roughly the same behaviour
than w(t). In particular, for times t > 101τB the ws(t, x0) and w(t) approach each other.
Therefore, and to reduce the computational effort, we use ws(t, 0) instead of w(t) to analyse
the particles’ behaviour.

In Fig. 6.1(c,d) and 6.2(a,b), we plot ws(t, 0) and

αs(t, x0) = 3κ(ϱs(x, t;x0)) , (6.9)

where κ(f(x)) denotes the kurtosis of the distribution f(x). We use αs(t, 0) as an approxi-
mation for the non-Gaussian parameter α = 3κ(Gs).

For small times ws(t, 0) growths proportionally with time. The slope is ws(t, 0)/t = 2D0

which corresponds to free diffusion.
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For F = 0.2Fc and N < 8 or ε/kBT < 4 in Fig. 6.1(b) and F < 0.4Fc, N = 4, ε = 4kBT in
Fig. 6.2(a) we observe a more or less pronounced plateau. For F ≥ 0.4Fc (Fig. 6.2) or N ≥ 8
and ε ≥ 4kBT (Fig. 6.1(c)) a superdiffusive region appears. Based on our investigations
in the single-particle case (chapter 3) we interpret the occurrence of a plateau as there is a
energy barrier in the effective potential energy landscape u(x)+V s

int the test particle exhibits.
Further, we interpret that the energy barrier becomes small and finally disappears for values
for F, ε, and N where we observe a weakly pronounced plateau and a superdiffusive region,
respectively.

An important characterisation of plateaus of MSDs is given by the height and the duration
of the plateau [119]. As suggested by [119,144] we define the end of the plateau as the time
at which α peaks. It is clearly seen in Figs. 6.1(d) and 6.2(b) that αs peaks at the time of the
end of the plateau. It should be noted, that the crossover from sub/superdiffusive behaviour
for intermediate times to diffusive behaviour for long times is the crossover from a linear
function, ws(t, 0), to a proportional function, 2Dt, where the offset is the less important the
larger t. This fact was sketched in Fig. 1.3 on page 19.

We analyse ws(t, 0) in more detail by plotting

D(t) =
1

2
∂tws(t, 0) (6.10)

in Figs. 6.2(c,d). For strong forces F/Fc ≥ 0.6, we see D(t) approaching a constant value for
long times, indicating diffusive long-time behaviour. For a weak force F/Fc = 0.2 we observe
a long lasting subdiffusive behaviour. Our interpretation is that the subdiffusive behaviour is
produced by the interaction between the particles by the following reasoning. The interaction
term in the equations of motion is quadratic in the densities. As time elapses the particles
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diffuse away from each other which reduces the density. With time interaction effects are
weakened and D(t) is reduced. However, the system is of finite size, so that the growth of
the MSD is limited. We observe that ws saturates at approximately 5 · 104σ2. Consequently,
D(t) approaches zero for very large times (see 6.2(c)). Further, we expect that MSD and
D(t) in the interacting system are always larger than in the single-particle system because
the particle interaction is purely repulsive.

6.2.2 Giant diffusion

For strong forces F ≥ 0.5Fc we observe that ws(t, 0) is linear with time for long times and,
hence, becomes proportional for even longer times. According to Eq. (1.7), this is normal
diffusive behaviour. The effective diffusion coefficient is defined by Eq. (3.25), i.e. D =
limt→∞w(t)/(2t). However, the approach of w(t) to 2Dt is slow and easily predictable
because the slope is constant. To ease the computation we use

D = D(tlin) , (6.11)

where tlin is a large time where D(t) is at least almost constant.
We plot D in dependence of F for two values of ε in Fig. 6.3. The function D(F ) for a

single particle is known analytically [125] (shown as solid line in Fig. 6.3(a)). The structure
of D(F ) is similar for all cases shown: For small F < Fc the diffusion coefficient is nearly
zero, for F ≈ Fc it has a global maximum, and for F ≫ Fc it is almost equal to D0, the
diffusion coefficient of free diffusion. The appearance of a global maximum Dmax > D0 is
called giant diffusion. It contrasts the intuitive assumption that a rough potential slows the
motion down.

We first explain the giant diffusion effect for a single particle in terms of the potential
landscape u(x) (u(x) is plotted in Fig. 1.4(a) on page 24). For small F , there are local
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minima in u(x). Thermal fluctuations can drive the particle out of a minimum at a small
rate (we discussed this in detail in chapter 4). The diffusion coefficient measures the spread
of the particle position under the influence of different realisations of the random force. In
the case of small F , where the rate of escape is small, D is small, i.e. D ≪ D0. For very
large F , the structure of u(x) is that of a linear function with shallow modulations. The
system is similar to the free motion of a single particle under the constant force F where the
diffusion coefficient is D0. Thus, we expect limF→∞D(F ) = D0. The interesting region is at
F ≈ Fc where the form of u(x) is similar to that of a staircase, i.e. a sequence of steep slope
and gentle slope intervals. The steep slope is quickly traversed downhill, whereas the particle
almost freely diffuses in the gentle slope interval. Most of the time the particle is located in
one of the gentle slope intervals. To explain the effect, we consider two realisations of the
random force. One pushes the particle to the right down the steep slope, the other to the
left where it continues to diffuse. In a short time, the two realisations have led the particle
to very different positions which is a fast spread in particle position and, thus, corresponds
to a large diffusion coefficient. From this picture we can also infer that D > D0. During the
traversal of the steep region the particle departs much faster from the mean position than it
would do without a force field.

With this picture in mind we investigate the influence of particle interactions to D(F ).
There are two main influences: a shift of the peak to lower F and higher values of D in
general. The relevant potential landscape is u(x) + V s

int, where V
s
int > 0 because the GCM

interaction is purely repulsive. In the proximity of x where ϱd(x, t) is large, V
s
int assumes large

values. For F < Fc the particles are mainly located in the valleys of u(x) which produces a
hill in V s

int which, in the end, leads to a shallower valley of u + V s
int. Therefore, the force at

which local minima in u+V s
int disappear is smaller than Fc. In analogy to the single-particle

case where the peak of D(F ) is located at Fc, we find it plausible to find the peaks in Fig.
6.3(a) shifted to lower F for larger ε. Concerning the second interaction effect, namely larger
values for D in general, we again consider the particle based viewpoint. Whenever a particle
finds itself being driven by the steep part of u it additionally is repelled by the other particles
which leads to an even faster transport of that particle. This implies a higher separation rate
of the particles from each other which corresponds to a higher diffusion coefficient.

6.2.3 Hard attractive particles

We set the screening length of the Yukawa part of the pair interaction potential, defined in
Eq. (6.2), to K−1 = σ/7. This value for the attraction range is commonly used to model
depletion interactions [382–384].

Particles which cannot pass each other show single file diffusion for long times [145,147].
The DDFT predicts normal diffusion for long times [294,388], which is a known shortcoming
and originates in the equilibrium approximation of the pair distribution function. However,
attractive hard spheres form a chain whose motion is correctly predicted by DDFT [272,380].

The numerical solution of Eq. (6.3) for the initial condition of ϱd comprises a numerical
difficulty. The test particle is fixed at x0 which assigns the value 1 to the local packing
fraction n[ϱs + ϱd](x) for x0 − σ ≤ x ≤ x0 + σ. At these x the force term of the hard sphere
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repulsion

−∂x
δFhs1D

int [ϱs + ϱd]

δϱd(x, t)
= − ϱd(x+ σ, t)

1− n[ϱs + ϱd](x+ σ/2)
+

ϱd(x− σ, t)

1− n[ϱs + ϱd](x− σ/2)
(6.12)

diverges. A usual approach to solve an diffusion equation in the presence of hard walls is
to set reflective boundary conditions, i.e. Neumann boundary conditions with zero flux. It
turns out that one needs a very high numerical accuracy to solve Eq. (6.3) with reflective
boundaries at x0 ± σ. Therefore, we employ a workaround. For the initial condition we
replace V d

int(x, t) by

∫
dx′(ϱd(x

′, t) + ϱs(x
′, t))vHCAY

int (x− x′) +
δFhs1D

int [ϱd]

δϱd(x, t)

+Θ(σ − |x− x0|) · 100kBT (2− (x− x0)
2σ−2) . (6.13)

Further, we replaced 1− n[. . . ] in Eq. (6.12) by max(ϵn, 1− n[. . . ]) where ϵn = 10−2. Exem-
plary density profiles obtained by this technique are shown in Figs. 6.3(b,c). We tested our
method successfully against Monte-Carlo simulations for the simpler case of u0 = 0, Y = 0
(not shown).

We solve Eqs. (6.3) numerically for two values of x0, i.e. x0 = 1.5σ and x0 = −1.5σ.
Figure 6.4(a) shows the MSD where the integration over the initial positions is replaced by
the sum over these two values for x0. Clearly, the MSD for the weaker attraction, i.e. Y = 1,
growths much faster than the MSD for the strong attraction, i.e. Y = 10. We further see
from Fig. 6.4(a) that the larger F the larger the MSD. Our interpretation of this finding is
that the particle cluster is destabilised by being driven through the washboard potential. It
should be noted that diffusive behaviour is established for Y = kBT , F = Fc. As mentioned
earlier, hard particles in 1D show single file diffusion. Hence, our results can be interpreted
only in a qualitative way.

In Fig. 6.4(b,c) we plot Gs for t = 3τB, where the MSDs in Fig. 6.4(a) differ. We see
that the cluster of strongly attractive particles (Y = 10kBT ) is transported almost without
distortion. Further, we see that the van Hove functions for the weakly attractive particles
(Y = kBT ) are spread over several particle diameters. Thus, the cluster dissociates where
the rate of dissociation depends on F .

6.3 Conclusion

We investigated the dynamics of interacting colloids in a one-dimensional washboard poten-
tial. We focused on the influence of particle interaction on the diffusion, particularly on the
MSD. We take two complementary interacting systems into account, ultra-soft particles, de-
scribed by the Gaussian core model, and attractive hard particles, where the attractive part
is modelled via a Yukawa potential. Our target quantities are the MSD and the non-Gaussian
parameter α which we extract from the van Hove correlation function.

For the short time diffusion of the purely repulsive ultra-soft particles we find that the
particle interaction enhances the diffusion in comparison to the single particle case, which
we investigated in chapter 3. For N ≤ 4 and ε ≤ kBT we find a plateau in the MSD in the
regime of small driving forces. For a larger number of particles and a stronger particle inter-
action, the plateau in the MSD gradually becomes shorter and is replaced by a superdiffusive



6.3 Conclusion 105

10−4

10−3

10−2

10−1

100

101

102

10−4 10−3 10−2 10−1 100 101 102

w
(t
)/
σ
2

t/τB

(a)

F = 0.2Fc
F = 0.5Fc

F = Fc

Y/kBT 1 10

0

0.5

G
s(
d
,3
τ B
)/

m
ax

d
G

s(
d
,3
τ B
)

0

0.5

-4 0 4 8 12 16 20

d/σ

(b)

(c)

F = 0.2Fc

F = Fc

Y/kBT 1 10

Fig. 6.4: (a) MSD w(t) with respect to time for N = 4 particles for different driving forces F
and attraction strengths Y . The circles show 2D0t. (b,c) Self part of the van Hove function,
Gs, at t = 3τB with respect to travelled distance d = x− x0. The y axis is normalised to the
maximum for each F and Y separately.

transient region. For times beyond the sub- or superdiffusive region we find normal diffusive
behaviour if the driving force is rather strong (F ≥ 0.5Fc). For these cases we compute
the diffusion coefficient and find that the giant diffusion effect is enhanced by the repulsive
particle interaction. For smaller values of F we find subdiffusive motion.

The giant diffusion effect is also observed for oscillating washboard potentials [190]. Ultra-
soft particle interaction enhances the diffusion coefficient in such systems, too. We presented
this result on the conference “Delayed complex systems” in 2012.

Our numerical investigation is based on the dynamic test particle method [123] which
uses conditional densities. Averaging the conditional densities over all initial conditions then
yields the van Hove correlation function. The procedure is numerically challenging because
the computation of the conditional densities comprises the solution of a nonlinear non-local
integro-differential equation in a large system. We use a large system of size L = 100a
to be able to study even the long-time diffusion in our interacting systems. To reduce the
computational effort we mainly restrict ourselves to the diffusion of the test particle starting
from only one position, i.e. not averaging over the initial conditions. We analyse the error of
this simplification and find that the short time diffusion is not affected qualitatively and the
long time diffusion is not affected at all.

We considered a chain of attractive hard particles moving in a tilted washboard poten-
tial. For strong attraction we found that the cluster moves undistorted whereas the cluster
dissociates for weak attraction. We observed that the dissociation is faster if the driving F
is near Fc, the force connected to giant diffusion. To cope with the system with attractive
hard particles we modified the DDFT approach for the test particle method from the sec-
ond direct correlation function approach [123, 308] to the subtraction approach (cf. 2.4.3).
This modification allows us to use the full Helmholtz free energy functional, which yields
a much easier formula than the second order approach. Nevertheless, we use the standard
equilibrium correlation approximation. It is known that this erroneously predicts diffusive
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motion instead of single file diffusion [294, 388]. However, our focus is more qualitatively. A
more detailed analysis must take dynamic correlations into account, for example by using an
equation of motion for the two-particle density ϱ(2) [292].

The short and long time diffusion of interacting colloids in washboard potentials was
not studied previously. Based on our findings we conclude that the influence of particle
interactions can be very strong and should not be neglected. We presented a technique
which makes the theoretical investigation of the dynamics of interacting colloids feasible.



7. DYNAMIC FREEZING: MOBILITY ENHANCING
FEEDBACK CONTROL

In this chapter we present our publication [389]. We propose a feedback control scheme to
enhance the collective transport of colloidal particles with repulsive interactions through a
one-dimensional tilted washboard potential. Large parts of this chapter are taken from [389].

As introduced in section 1.6, feedback control is an important concept for the modification
of the dynamic properties of all sorts of systems. We focus on colloidal transport which was
already our concern in chapter 5 where we improved the net current of a one-dimensional
ratchet system. Feedback controlled colloidal transport has more facets than ratchet systems.
Examples include the transport of interacting particles in a tilted washboard under Pyragas
control [124,355], the sorting of colloids in a micro-fluidic channel [229], and the adjustment
of viscosity of a sheared colloidal suspension [228]. Further, feedback control has become an
important concept in particle trapping [100,230,231,376,390,391], reaction-diffusion systems
[215], quantum transport [218,237,392], laser dynamics [220], and brain dynamics [221,222].
As outlined in section 1.6 new experimental methods foster the development of feedback
control strategies.

Within colloidal transport, most of the feedback studies so far involve single particles
[225, 246, 390] or dilute suspensions [91, 236], i.e., systems of non-interacting particles. That
includes our study in chapter 5. For many colloidal systems, especially in transport, particle
interactions are very important and should not be neglected. First studies of feedback control
in presence of colloidal interactions showed complex spatio-temporal dynamics [124, 355],
where a Pyragas-type control of colloidal transport in one dimension resulted in current
reversal and oscillatory states.

Here, we consider the transport of interacting (repulsive) colloids in presence of a feedback-
controlled harmonic “trap”. Indeed, trap-like devices appear as a standard tool to implement
feedback, both in experiments (see, e.g., [91, 97, 230, 231, 376, 391]) and in theory [225]. A
prominent example are optical laser tweezers acting on polarisable colloids. The correspond-
ing trap potential can be modelled as a quadratic function in space [80,391,393].

In conventional applications, the position of the centre of the trap acting on the colloids
is either constant in space, or it moves in an externally prescribed manner [84, 393, 394]. In
contrast to these open-loop controls, we here consider a feedback controlled harmonic trap
whose centre is set to the mean position of the particles. Our control target, the mean particle
position, is an ensemble averaged quantity. Based on our considerations in chapter 5, we do
not expect that our feedback induces effective particle interactions [360].

We demonstrate the principle of our feedback control by considering the model system
of interacting colloids in a one-dimensional tilted washboard potential with energy barriers
much larger than kBT . Already without feedback or any trap potential these systems show
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interesting effects such as absolute negative mobility [395] or various changes in the giant
enhancement of diffusion, see [147,149] or chapter 6. Further, recent numerical studies indi-
cate interesting interaction-induced transport phenomena, examples being coherent motion
of attractively interacting particles [149, 272, 395], density excitations in Frenkel-Kontorova
models [177], or single file diffusion [147]. Given this background, one may expect that the
interplay of external potentials, particle interactions, and feedback yields exciting additional
effects. Our study shows that this is indeed the case.

Specifically, we consider two interacting systems with repulsive particle interaction: hard
repulsion and ultra-soft (Gaussian) repulsion. The latter describes polymeric particles in a
coarse-grained fashion [299,378]. The feedback control is implemented on the level of the SE,
in which the particle interactions are treated via DDFT. Our numerical results demonstrate
that the feedback-controlled trap in conjunction with particle interactions can lead to a
drastic increase of the mobility by orders of magnitude. This phenomenon is related to the
fact that the particles, loosely speaking, “push each other over the energy barrier”. The same
mechanism resulted in an enhancement of diffusion in chapter 6. Here, diffusion is ‘frozen’
because the particles are trapped. The trap establishes an upper bound to the width of
the density distribution. Further, we observe time-periodic oscillations of the mean velocity,
which are not seen in the uncontrolled case.

In the major part of our study we assume instantaneous feedback. This is clearly an
idealisation because feedback control always entails a time delay due to measurement, in-
formation processing, and implementation of the forcing [226]. However, the time delay of
modern experimental feedback techniques for colloids [91,100,231,240] is much smaller than
the time scale of particle motion, justifying the approximation of instantaneous feedback.
Still, to estimate the effects we also consider briefly the impact of time delay.

In the following section 7.1 we introduce the model. To familiarise with the feedback
control, we discuss the effect of our feedback control on a single particle in section 7.2. The
full problem is discussed in section 7.3, where we present the main results. A conclusion is
given in section 7.4.

7.1 Model

We consider the motion of N interacting Brownian particles in one dimension under the
influence of the externally imposed, tilted washboard potential u(x), defined in Eq. (1.11).
We denote the periodic part of u(x) by

uper(x) = u0 sin
2 πx

a
. (7.1)

We describe the motion in terms of the one-particle density defined in Eq. (2.24a), which we
here call just ϱ(x, t). The time evolution is governed by the extended Smoluchowski equation

∂tϱ(x, t) =
kBT

γ
∂xxϱ(x, t) +

1

γ
∂x (ϱ(x, t)∂x(Vext(x) + VDF(x, ϱ) + Vint(x, ϱ))) , (7.2)

where the impact of particle interactions and of feedback control enters via the potentials Vint
and VDF, respectively. Specifically, to treat the particle interactions we employ the DDFT
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which was introduced in section 2.3.1. In this framework,

Vint(x, ϱ) =
δFint[ϱ]

δϱ(x, t)
, (7.3)

where Fint[ϱ] is the interaction part of an equilibrium free energy functional.
We consider two types of interacting systems, that is, ultra-soft particles described by the

Gaussian core model (GCM) and hard particles. The GCM is a model for the interaction of
polymer chains and we introduced it in chapter 6. The pair interaction potential is defined
by Eq. (6.1) and the interaction part of the Helmholtz free energy is well approximated in a
mean-field way, i.e. using Eq. (2.50). We obtain

V GCM
int (x, ϱ) =

∫
dx′ ϱ(x′, t) vGCM(x− x′) . (7.4)

Hard particles with diameter σ are described by the interaction potential

vhard(xi, xj) =

{
0 , for |xi − xj | ≥ σ

∞ , for |xi − xj | < σ
. (7.5)

For one-dimensional systems of hard spheres there exists an exact free energy functional [296],
given by Eq. (2.47a).

We now turn to the modelling of feedback control. To this end we use the potential

VDF(x, ϱ) = η(x− ⟨x⟩)2 , (7.6)

where

⟨x⟩(t) = 1

N

∫
dxx ϱ(x, t) (7.7)

is the time-dependent mean particle position. Thus, Eq. (7.6) describes a moving harmonic
trap centred around the mean position, resembling the potential seen by particles in moving
optical traps [391, 393]. The strength of the harmonic confinement, η, is set to constant.
Since VDF depends on ⟨x⟩(t) and, thus, on the dynamical state of the system, it corresponds
to a feedback control. This is different from an “open-loop controlled” moving trap, where
⟨x⟩ in Eq. (7.6) would be replaced by a position moving with fixed velocity v0.

We also note that the fact that our feedback control is coupled to an ensemble averaged
quantity is in contrast to other feedback mechanisms which are based on individual particle
positions [226]. On the particle level, the motion is described by the N coupled LEs (2.6) in
one dimension where the ith particle experiences the force

fi(xi, t) = −u′(xi) + f inti (x1, . . . , xN ) + fDF
i . (7.8)

The forces due to interaction and feedback control read f inti = −∑j ̸=i ∂ivint(xi, xj) and

fDF
i (xi, ⟨x⟩) = 2η(xi − ⟨x⟩(t)) . (7.9)

Thus, fDF
i only depends on a single coordinate, xi, and on ⟨x⟩. This differs from other

feedback control approaches where the feedback force itself depends on the number of particles
[226,236,360].
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7.2 Single-particle transport

To understand the basic properties of the effect of the feedback control Eq. (7.6) we first
discuss the single-particle case (N =1,Fint = 0) without the periodic potential (u0=0). In
this case Eq. (7.2) reduces to the one-dimensional SE

γ∂tϱ = kBT∂xxϱ+ ∂x(ϱ(V
′
DF − F )) . (7.10)

A main quantity characterising the transport is the mean particle position ⟨x⟩, defined in
Eq. (7.7), as function of time. Solving Eq. (7.10) analytically with the initial condition
ϱ(x, t=0) = δ(x− x0) yields

⟨x⟩(t) = F

γ
t + x0 . (7.11)

Equation (7.11) shows that the mean particle position does not depend on the confinement
strength η. This can also be seen by applying the coordinate transformation x′ = x − vt to
the SE (7.10), setting v = F/γ. With this transformation the term ∂x(ϱF ) vanishes. Further,
the force related to VDF is invariant with respect to this transformation. Hence, the influences
of F and η decouple. From Eq. (7.11) we calculate the mobility

µ := lim
t→∞

∂t⟨x⟩
F

(7.12)

=
1

γ
, (7.13)

which only depends on the friction constant γ. We will refer to this value of µ as the mobility
of free motion.

A further quantity of interest is the width of the density distribution (which is equal to
the MSD in the single-particle case)

W (t) = ⟨(x− ⟨x⟩)2⟩ . (7.14)

To calculate W (t) we use ⟨VDF⟩ = ηW (cf. Eqs. (7.6) and (7.10)) which yields

W (t) =
kBT

2η

(
1− e−4ηt/γ

)
. (7.15)

For short times W (t) growths linearly with time, corresponding to diffusive behaviour. For
long times diffusion is suppressed: W (t) approaches a limiting value determined by η. In-
terestingly, a similar behaviour of W (t) occurs in a model of feedback control of quantum
transport [218]. There, the fluctuations of the number of electrons tunnelling through a quan-
tum junction are suppressed with a feedback control force, which is linear in the fluctuation
of the number of electrons. This corresponds to our harmonic confinement of the density
fluctuation, and indeed, the two physically different situations are describable by a formally
identical SE [245].

We now turn to the system in presence of the potential u(x). In the single particle case
(N=1,Fint=0) Eq. (7.2) then reduces to the SE

γ∂tϱ = kBT∂xxϱ+ ∂x(ϱ(V
′
DF + u′(x))) . (7.16)
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Fig. 7.1: Single particle transport: (a-c) Density plots (black, left axis) and potential VDF +
uper (grey, right axis). (d) Width W (t), (e) mean particle position, and (f) velocity with
respect to time for different η. (g) Amplitude ∆v and period T of the velocity as function of
η. The dashed line indicates the time 1/rK where rK is Kramers’ rate. a = 2.5σ.

Without control (η = 0) Eq. (7.16) describes the thoroughly studied case of a Brownian
particle in a washboard potential which we considered in chapter 3. The mobility and the
long-time diffusion constant are accessible analytically [10, 150, 185]. The mobility is very
small in the “deep well” case, that is if the barrier height ∆u ≫ kBT (cf. Eq. (1.13)).
Otherwise the mobility is large, in particular it approaches 1/γ for u0/F → 0. The goal of
our study is to enhance the mobility in the regime of deep wells.

7.2.1 Numerical Results

To explore the single particle transport for finite η and u ̸= 0 we solve Eq. (7.16) numeri-
cally, choosing u0 = 15kBT and F = 0.2Fc. As initial condition we choose the equilibrium
(Boltzmann) distribution corresponding to the case F = 0

ϱ(x, 0) = exp
(
−(η x2 + uper(x))/kBT

)
/Z , (7.17)

where Z is a normalisation constant.
Figures 7.1(a-c) show plots of the one-particle density ϱ(x, t) for three values of η. As

expected for a trap, the width of the density distribution becomes the smaller the larger η.
Figure 7.1(e) shows additionally the mean particle position with respect to time. Interestingly,
we find that at large values of η, oscillatory solutions emerge. At the corresponding values
of η the confinement is so strong that the particle is confined to a single well of the periodic
potential, cf. Fig. 7.1(c).

We explain the occurrence of oscillations as follows. We take a view on the beginning
of one step of an oscillation at time t = 104τB for η = 1kBTσ

−2 (cf. Fig. 7.1(e)). The
potential VDF + uper at this time, shown in Fig. 7.1(c) as grey shade, shows that the particle
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is localised at a minimum of VDF+uper. As time progresses, the constant driving force causes
the diffusion of the particle to the next minimum. This leads to a slow increase of the mean
particle position ⟨x⟩. Then, the feedback control which moves with ⟨x⟩, lowers the energy
barrier, and steadily accelerates the diffusion through the barrier. This leads to a fast motion
until the particle arrives in the next well. The next oscillation then starts again with slow
diffusion over the next barrier. The repeated cycle of motion consisting of slow and fast
portions is particularly visible in the velocity

v(t) =
d

dt
⟨x⟩(t) , (7.18)

and the width W (t) which are plotted in Figs. 7.1(f) and (d), respectively. Notice that W (t)
oscillates around a constant value, reflecting that the width of the distribution stays finite
even at large times (“dynamic freezing”).

We analyse the occurrence of these oscillations numerically in terms of period T and
amplitude ∆v = (vmax − vmin)/2 of velocity, shown in Fig. 7.1(g). The values vmax and vmin

are the global maximum and minimum of v(t)|t>t1 , respectively, where t1 is a time after
the disappearance of transients. From Fig. 7.1(g) we find that oscillatory solutions occur
in a range of intermediate η. In that range the amplitude ∆v increases with η from nearly
zero to large values. Furthermore, the period T of oscillations roughly coincides with the
inverse Kramers rate, which is the relevant time scale for the slow barrier-crossing mentioned
before. As we see in Fig. 7.1(e), the regime of pronounced oscillations partly coincides with
a “speed up” of the motion. We quantify this “speed up” via an average mobility based on
the time-averaged velocity

v̄ =
1

T

∫ t1+T

t1

dt v(t) (7.19)

such that

µ =
v̄

F
. (7.20)

Figure 7.2(a) shows µ/µ0 depending on η, where µ0 ≈ 1.2 · 10−4/γ is the mobility of the
uncontrolled system (η=0) with the same external potential [10, 150]. For small η, we find
µ ≈ µ0. The remaining deviation is presumably a numerical issue because, by definition,
limη→0 µ = µ0. At intermediate values of η the mobility shows a global maximum which lies
above µ0. From comparison with Fig. 7.1(g) we see that the maximum of µ(η) lies in the
range of η where the oscillation periods of v(t) are about (in fact, somewhat smaller) than
the inverse Kramers rate [10, 331]. Quantitatively, the maximal enhancement of mobility of
≈ 20.4% is reached at η ≈ 0.96kBTσ

−2. For even larger values of η a sharp decrease of the
mobility to zero is observed – the motion comes to a halt. To investigate this phenomenon
we first note that the motion is always oscillatory (for these large η) as long as there is
transport at all (compare Figs. 7.2(a) and 7.1(g)). From the explanation of the oscillations
above, we recall that the oscillation period is determined by the slow diffusion process over
the energy barrier. Figure 7.2(b) shows the potential VDF(x, t=0) + uper(x) for three values
of η. To ignite transport the particle must diffuse from the central valley at x = 0 to the
next valley at x ≈ 2.5σ. The larger η the larger the energy barrier. Thus, the larger η the
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Fig. 7.2: Single particle transport: (a) Mobility µ in dependence on η for a = 2.5σ. The
mobility is scaled by the mobility µ0 of uncontrolled diffusion in a washboard potential.
The feedback control can enhance the mobility by up to ≈ 20%. (b) Potential VDF(x, t =
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and v0 = F/γ at t = 100τB and a = 2.5σ. Black line: one-particle density ϱ(x, t). Grey
shade: potential Vopenloop + uper.

smaller the probability that the particle diffuses to the next valley, the longer the period of
the oscillations, and the lower the mobility. For η = 3kBT/σ

2 there is no motion at all in the
time range of our calculations (t ≤ 105τB).

Finally, we note that for single-particle transport the actual value of a is essentially
arbitrary because a only determines the scales of time, density, and confinement strength,
not the qualitative behaviour.

7.2.2 Comparison with open-loop control

To estimate the benefit of the feedback control scheme over the more established open-loop
control, we briefly discuss the motion of a single particle under the potential

Vopenloop(x, t) = η (x− v0t)
2 , (7.21)

where v0 is a constant velocity of the trap. Choosing v0 equal to the mean velocity v̄ of the
feedback controlled system, one observes the same general behaviour, but slight variations
of oscillation frequency and amplitude. Large values v0 > v̄ lead, by construction, to a fast
transport, but the particle is no longer located in the centre of the trap. We can see this from
Fig. 7.2(c) which shows the one-particle density for the velocity v0 = F/γ [corresponding to
free motion, see Eq. (7.11)] and the effective trap generated by the potential Vopenloop+uper.
In a real optical trap a large distance of the particle position to the centre of the trap implies
a large probability to escape [230,391]. Hence, driving the particle too fast implies the risk of
losing the particle completely. On the other hand, being too cautious and driving the particle
too slowly is inefficient. Thus, the optimal velocity is difficult to predict in open-loop control.



114 Dynamic freezing: mobility enhancing feedback control

The feedback control automatically finds the optimal driving speed without taking the risk
of losing the particle. Furthermore, the feedback control does not influence the direction of
motion, it only enhances the absolute value of the mobility.

7.3 Many-particle transport

We now turn to interacting systems, as described by the SE (7.2) with Eq. (7.4) for ultra-soft
particles and Eq. (2.48) for hard particles. There are now two relevant length scales, the
wavelength of the periodic potential, a, and the particle diameter σ. Hence, the wavelength
a is not just a scaling factor, as it was the case in single-particle transport. In addition, the
number of particles N will play a role because the equations are now non-linear in ϱ. In
our numerical calculations, we set the ultra-soft particles’ interaction strength ε appearing
in Eq. (7.4) to ε = 4kBT . The hard-particle interaction has no parameter besides σ. The
initial condition is set to the equilibrium density resulting at F = 0.

In the following we study motion of clusters of interacting particles for various trap
strengths η, numbers of particles N , and dimensionless wavelengths a/σ.

7.3.1 General behaviour

The overall goal is to explore whether particle interactions enhance the efficiency of our
feedback control in terms of the mobility. Before we start with the analysis of the mobility
we want to give an impression of the general behaviour of our interacting systems.

We begin our study of the three-dimensional parameter space (N, η, a) with small N and
small η. In Fig. 7.3(c) we present a plot of the density profile and the potential VDF + uper
at η=0.01kBTσ

−2, N =4. In fact, the density profiles shown in Fig. 7.3(c) and Fig. 7.1(a)
are very similar. Similarities to the single-particle case vanish gradually if N or η (or both)
are increased (at constant a), yielding larger values of the density in the trap. To describe
the effect of these changes in density, we consider the effective potential Vint that one particle
experiences due to the interaction with the other particles. The value of Vint at a position x
increases with the corresponding densities ϱ(x′), x′ ≈ x. Particularly large values of both, ϱ(x)
and Vint(x), occur at the minima of VDF+uper. As a consequence, the potential VDF+uper+
Vint, which governs the motion (together with the constant driving force), is characterised by
smaller energy barriers than VDF + uper. Loosely speaking, Vint fills the valleys of VDF + uper
[see Fig. 7.3(b)]. For high densities, the hard particles form a “chain” and the ultra-soft
particles form a cluster which is characterised by mutual overlap. In this dense situation the
contribution of Vint to VDF+uper+Vint can become so large that u becomes negligible. Thus,
there are no hindering energy barriers any more. For both interacting systems, ultra-soft
and hard particles, we actually find this case. Fig. 7.3(a) shows the hard particle case as
example. The potentials plotted in Fig. 7.3(a) show that u in fact is a minor contribution
to VDF + uper + Vint. We continue the discussion of parameter variations with focus on the
mobility in Sec. 7.3.2.

Similar to the single-particle case, we find oscillatory solutions in the range of intermediate
to large η. For a representative system (N =4 hard particles), Fig. 7.4 summarises different
characteristics of the oscillations in terms of width W (t), velocity v(t), and plots of the
density for four times during one oscillation period. The oscillation period is of the order
of τB which is much shorter than the oscillation periods of several 103τB we observed in



7.3 Many-particle transport 115
̺
(x
,t
)
σ

x/σ

(V
D
F
(̺
,x
,t
)
+
u
p
er
(x
)
+
V
in
t(
̺
,x
,t
))
/k

B
T

̺
(x
,t
)
σ

x/σ

̺
(x
,t
)
σ

x/σ

0

0.5

1

30 40 50 60 70 80 90
0

10

20

30

0

1

2

3

60 62 64 66 68 70 72
0

10

20

30

40

0
1
2
3
4
5

102 104 106 108 110 112 114
0

100

200

300
(a)

(b)

(c)
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the single-particle case (see Fig. 7.1(g)). From Fig. 7.4 we see that these oscillations are
intimately related to configurational changes while the particle chain moves over a distance
of about one wavelength a. Studying v(t) for different η, see Fig. 7.4(d), we find that a couple
of different oscillation patterns emerge. Moreover, the oscillations’ frequency rises with the
mean of the velocity itself. This can be explained with the observation that the particles
move one wavelength a during one period. Note that the maximal amplitude of oscillation
neither coincides with largest η nor largest mean velocity.

7.3.2 Mobility

We now turn to the mobility, as a measure of the efficiency of feedback control. We define
the mobility µ in the same way as in the single-particle case via Eq. (7.20). Figures 7.5(a)
and (b) show µ in dependence of η for ultra-soft and hard particles, respectively.

For a > σ we observe an extreme growth of µ with η and N over several orders of mag-
nitude for both particle species. We explain this behaviour with the corresponding decrease
of the height of the energy barriers in VDF + uper + Vint, which results in a larger diffusion
rate and a faster transport. The same effect was observed in a study of the transport of
super-paramagnetic colloids [396]. For certain η and N , µ increases even up to the maximal
possible value µ = 1/γ, the mobility of free motion. An example for this large mobility is
the case of N=10 hard particles at η = 10kBTσ

−2, shown in Fig. 7.3(a). In this case, there
are no hindering energy barriers (as we have analysed in Sec. 7.3.1) which then results in the
high mobility. To achieve this suppression of u the well created by the trap potential must be
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very deep, i.e. 300kBT for the exemplary case shown in Fig. 7.3(a). This value exceeds those
in typical experiments with light fields [81, 91]. However, the transport of N =40 ultra-soft
particles at the mobility µ = 1/γ at a = 8σ needs a trap which is only 40kBT deep.

Further, we see from Fig. 7.5 that our feedback control does not lead to a significant
speed up for a=σ. By analysing the potential landscape for a = σ for a series of η and N
(not shown) we find that the effective potential Vint develops peaks between the minima of
VDF + uper. This means that the effective potential barrier encountered by a moving particle
increases when η or N is enlarged. This is in contrast to the case a > σ where the peaks of
Vint are found at the minima of VDF + uper [see Fig. 7.3(b)]. Our interpretation for the case
a = σ therefore is that the particles “pin” each other to the potential minima of u(x).

We now consider the behaviour of µ(η) for large η (Fig. 7.5). For small N we observe a
breakdown of motion, similar to the one observed in the single-particle case (see Fig. 7.2(a)).
However, this breakdown is shifted towards larger values of η. We recall that an increase of
N at fixed η (Sec. 7.3.1) leads to a decrease of the barriers of the potential VDF + uper +Vint.
This enhances the mobility (relative to that at N = 1) in the first place. However, upon
increase of η (at fixed N) there can be a situation where the diffusion rate is not sufficient
any more to populate the next local minimum of the potential VDF + uper. This is where
transport breaks down. The combination of these two effects leads to the observed shift of
the breakdown of mobility. Upon further increase of N and η, there comes a point where the
large energy scales of VDF and Vint suppress any influence from u. Therefore, we expect that
the transport for high N exists for arbitrarily large η.

In Fig. 7.5(b) we see that the increase of a at constant η and N leads to an enhancement
of mobility (as long as there is transport at all). This can be explained with the potential
VDF + uper, whose valleys become broader the larger a. In a broader valley more particles
accumulate which strengthens the role of interaction for the barrier crossing. However, this
effect is limited by N : The particle number must be large enough to fill at least one valley
with particles, otherwise the transport breaks down.

7.3.3 Time delay

In a realistic set up with feedback control, a finite time is required to perform the measure-
ment required to define the control (In the present case, this measurement process concerns
the average particle position). Hence, there is a certain time delay τDelay. To explore the
sensitivity of our results towards τDelay we change the control potential given in Eq. (7.6)
into the expression

V delay
DF (x, ϱ) = η (x− ⟨x⟩(t− τDelay))

2 . (7.22)

We now consider two special cases involving hard particles, where the non-delayed feedback
control leads to a particularly high mobility (see Fig. 7.5(b)). Numerical results are shown in
Fig. 7.6. The delay causes a pronounced decrease of mobility which appears to be linear in
τDelay for small delay times. Realistically, feedback mechanisms can be implemented at the
time scale of 10ms [91,240,390] whereas τB, the timescale of Brownian motion, is for µm-sized
particles in the order of seconds (cf. table 2.1). Hence, we expect that the ratio τDelay/τB is
rather small, that is, of the order 10−1. For such situations, our results in Fig. 7.6 predict
only a small decrease of µ relative to the non-delayed case. However, even for large delays
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the mobility only decreases about one order of magnitude. This implies that even the time
delayed feedback control can enhance the mobility by more than two orders of magnitude
with respect to the uncontrolled case.

7.4 Conclusion

Inspired by feedback control mechanisms for the trapping of single colloids, we have pro-
posed a feedback control strategy for the collective transport of interacting colloids through
a corrugated potential landscape. Our main goal was the theoretical demonstration of the
working principle for a well-defined model system. To this end we have considered the one-
dimensional, overdamped motion of colloids with either hard or soft repulsive interactions in
a tilted washboard potential. The feedback control enters into the equation of motion, which
is a SE where the particle interactions are treated with DDFT, via a harmonic potential
centred at the mean particle position. Thus, contrary to other studies [225,246], the present
feedback control cannot induce motion on its own.

The main result of our study is that the interplay of the feedback control and particle
interactions can generate a drastic increase of the average mobility by several orders of
magnitude relative to the uncontrolled, single-particle reference case. The largest mobilities
occur for rather stiff traps and high densities (i.e., large N) inside the trap. Therein, the
particles arrange themselves into chain or clusters. Here, the mobility rises up to its limiting
value defined by the mobility of a freely moving, overdamped particle. Interestingly, this giant
increase does not occur for a single particle under the same feedback control. This shows
that the observed mobility enhancement is indeed an interaction effect. The enhancement can
be explained by the fact that, in presence of particle interactions, these dominate the force
acting on an individual particle, while the impact of the external potential barriers vanishes.
Thus, particles “help each other” to overcome the external barriers. The same effect led to
larger MSDs in chapter 6. Another new feature is the emergence of oscillatory behaviour of
the mean velocity (and the width of the density distribution) due to the feedback-controlled
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trap. Note that these oscillations are not induced by a time delay but are due to the directed
motion over a washboard potential. The latter effect occurs for both, single and interacting
particles, with the period of oscillations being close to the inverse of Kramers’ escape rate.

From an application point of view it is interesting that, due to its coupling to the mean
position, the feedback-controlled trap implies a small risk to “lose” particles. Indeed, the
width of the distribution stays constant on time-average, reflecting a “dynamical freezing”.
This is different from externally moved, “open-loop” traps, where an inappropriate choice of
the trap velocity easily lead to a broadening of the density distribution, and thus, a spreading
of particles out of the trap (see discussion in section 7.2.2). Another experimentally relevant
issue concerns the impact of time delay(s). Here we have shown that time delay does indeed
reduce the mobility, similar to what has been observed in ratchet systems [236]. However,
for realistic time delays the remaining mobility is still enhanced by two orders of magnitude.

Concerning the methodology, we note that the DDFT scheme employed here implies an
“adiabatic” approximation of the time-dependent two-particle correlations (cf. section 2.3.1).
It is well established [257,268,294] that this approximation may generate artefacts especially
for densely packed particles, e.g., during the expansion of a cluster (such as in section 6.2.3).
Since the transport in our systems is determined by the time the particles need to cross an
effective energy barrier we expect positional correlations to play a minor role and, hence, we
expect our results to be precise.

The control target ⟨x⟩ of our feedback control is an ensemble averaged and particle av-
eraged quantity. In an experimental realisation only the mean mN (t) =N−1

∑
i xi(t) of N

particle positions is available. It should be investigated which error is made by exchanging
⟨x⟩ and mN . In BD simulations of feedback controlled systems [236, 360] it was found that
the correlations between mN and the xi decay rapidly with rising N . Hence, we expect that
our ensemble averaged control target comprises the smaller errors the larger N . Still, it would
be very interesting and important to test our predictions against explicit BD simulations.

Finally, we would like to point out that the concept behind dynamical freezing is not
restricted to one-dimensional washboard potentials. Indeed, the present feedback control
can easily be formulated in two or three spatial dimensions. Further, the external potential
hindering the motion does not have to be static or even periodic which enriches possible
applications. An interesting question is how well the present control strategy works for other
types of colloidal interactions, particularly attractive ones.
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8.1 Summary and Conclusion

In this thesis we developed new understanding in the field of transport and diffusion of
colloids in one-dimensional periodic potentials. We analysed the short time behaviour of
a single Brownian particle in a tilted washboard potential, which is a paradigm model for
colloidal transport. We took two complementary points of view. We address cumulants of
position with a model which is based on a few characteristic properties of the system and
which yields analytic results. We address the time the particle needs to cross an energy
barrier with our generalisation of the waiting time distribution. With these approaches we
achieved an understanding of the short time behaviour. We turned to more applied research
by considering feedback control and particle interaction. We proposed a time delayed feedback
protocol for a single Brownian particle in an asymmetric periodic potential which operates
like a rocking ratchet but can generate a higher current than a standard rocking ratchet.
We implement the feedback control on the level of the Fokker-Planck equation which allows
ensemble-averaged results and is well applicable to systems with many particles. Coming
back to short time diffusion, we identified the influence of particle interaction, namely ultra-
soft particle interaction and hard sphere repulsion, to the cumulants of position. Finally, we
combined feedback control and particle interaction and presented a feedback control protocol
which establishes collective localised transport in a moving trap. We show that particle
interactions are essential for fast transport.

8.1.1 A single Brownian particle in a tilted washboard

In chapters 3 and 4 we considered the motion of a single Brownian particle in a tilted wash-
board potential, which is a model with numerous applications in theory and experiment
(cf. section 1.5). In chapter 3, we analysed the cumulants of positions, such as the MSD and
the non-Gaussian parameter. We focused on the “deep well” case where the local minima of
the washboard potential are deeper than kBT . In experiments it is often the deep well case
which is relevant [161,397–399]. Using our new 2S/W model we could drastically simplify the
prediction of the cumulants of position while maintaining high accuracy. Further, the 2S/W
model yields analytic expressions. This is possible because the parameters of the model rep-
resent important physical properties of the system. Therefore, our 2S/W model constitutes
a formalism for the understanding of the dynamics of the single Brownian particle in a tilted
washboard potential. This deeper understanding can directly be applied to systems which
employ the single Brownian particle as a model. Examples include dilute suspensions of
colloids in laser fields [82], the current through Josephson junctions [183], and the escape of
particles from optical traps [391] or transient cages [116].
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In chapter 4, we introduced a definition for the WTD for this continuous system, by gener-
alising the established WTDs for discrete stochastic systems. We present a recipe to calculate
the WTDs from a SE. By comparing to the established FPTD, we find that the WTDs we
obtain via our SE constitute a splitting of the FPTD into direction-dependent parts. We
verify our approaches by numerically evaluating the WTDs for the single Brownian particle
in a tilted washboard potential. The results from the SE-approach and the BD-approach
fully agree with each other. Further, the 2S/W model yields analytic results for intermedi-
ate and long times. The motion is characterised by waiting and jumping. Additionally to
measuring the waiting times with a WTD, we characterise the duration of the jumping with
a “jump duration distribution”. We show the versatility of our definition of the WTD by
calculating the jump duration distribution. Our generalisation of the WTD to continuous
systems provides a systematic method to estimate the error one makes by discretising the
dynamics of a system. Further, we enable a microscopically based input for coarse-grained
models such as continuous time random walk [128, 129, 348, 400] which has high relevance
for the relaxation in supercooled liquids and glasses [164, 327, 401, 402] and the diffusion of
particles on interfaces [67].

8.1.2 Feedback controlled rocking ratchet

In chapter 5 we proposed a time delayed feedback control for the driving of a single particle
in a periodic system with an asymmetric potential. With this time delayed feedback control
we could generate a ratchet effect that allows us to induce larger currents than with corre-
sponding open-loop ratchets. The particle current in ratchet systems is important for various
systems and experiments, as discussed in section 1.5.2.

On a fundamental level, we gain new insight into stochastic thermodynamics of this
feedback controlled rocking ratchet by studying the entropy production in this system. We
find peaks in the total entropy production that clearly correspond to the switching events
that occur in our system. These peaks indicate that the system is further away from the
stationary state after switching than otherwise.

Further, our feedback control implementation presents an expansion of the current method-
ology, because our feedback control is included directly into the SE. Previous feedback control
mechanisms are based on individual particles, whereas our feedback control is based on an en-
semble averaged control target which constitutes a new approach to feedback control. Using
BD simulations, we have shown that our ensemble averaged approach is a good approxima-
tion for particle-based controls with many particles. The SE based approach allows us to
study much larger systems and longer times than would be feasible with BD simulations.

8.1.3 Effects of particle interaction

In chapter 6 we investigate the transformation of a dense cluster of ultra-soft particles into a
dilute suspension by diffusion in tilted washboard potential. We focus on the influence of the
particle interaction and the constant driving force on the short time diffusion, in particular
the MSD. We extend the results of [124] for this system by considering longer times and by
varying the driving force and the number of particles. We find new effects such as a long
subdiffusive regime for driving forces F smaller than the critical driving force Fc. Further, for
F ≈ Fc and F > Fc we observe a giant enhancement of the diffusion coefficient D where D is



8.2 Outlook 123

even larger than in the single particle giant diffusion effect [185]. We show that this method
is particularly useful for the computational investigation of the motion of interacting colloids,
because the computation time does not depend on the number of particles (in contrast to
BD).

In chapter 7 we propose a feedback control for the collective transport of repulsively
interacting particles through a tilted washboard potential. Previously proposed feedback
controls mainly consider single particles and dilute colloidal suspensions. Our control yields
a collective transport where the particle interaction plays a crucial role. The feedback control
consists of a harmonic trap which is centred around the mean particle position. We achieve
an enhancement of the mobility of the particle cluster about several orders of magnitude. The
more particles are in the trap the larger is the mobility. For a certain regime of stiffnesses
of the trap the feedback control completely suppresses the hindering effect of the washboard
potential. We model the motion with an extended SE, employing the DDFT for the particle
interactions. Modern experiments with feedback controls show that the inevitable time delay
in feedback controls can be made short in comparison to the time scale at which colloids
move. We assume instantaneous feedback for our main results and additionally show that our
feedback control is robust against small and intermediate time delays. The mechanism of our
control is very simple because it consists of a single optical trap (optical tweezers) and imposes
low requirements on the speed of the feedback loop. Further, it does not need single particle
resolution in the measurement step because it relies only on the mean particle position.
This control could improve transport in various applications involving optical tweezers [403],
magnetic traps [96,394], or other confinements [231].

8.2 Outlook

8.2.1 Dimensionality

A straightforward generalisation of the effects studied in this thesis is the consideration of
two degrees of freedom for the motion e.g. in two spatial dimensions. We expect similar
observations in two-dimensional motion systems compared to our one-dimensional systems.

The simplest periodic two-dimensional potential has a striped geometry. Due to the
symmetry of the potential, two-dimensional generalisations of our single particles systems
(chapters 3, 4, and 5) can be effectively reduced to one-dimensional systems. We base this
expectation on the relation derived in appendix 9.2. For the diffusion of several interacting
particles (generalising chapter 6), we expect a quantitative and qualitative change of the
behaviour, already for the striped potential.

More interesting effects we expect in more complicated periodic two-dimensional poten-
tials, such as a quadratic lattice. The direction of transport induced by a constant force
in that lattice is in general neither parallel to the force nor to the directions of the lat-
tice [153, 209]. Further, the matrix of diffusion coefficients in a time-periodic driven lattice
possesses a non-trivial dependence on the system directions [404]. The exploitation of these
observations yields a much larger freedom to transport particles. For example, varying the
amplitude of the driving force alone changes the mean direction of transport. Under a time-
dependent protocol the particle could be navigated along an arbitrary path. Our techniques,
such as the 2S/W model and the analysis using WTDs (chapters 3, 4) would lead to a
fundamental understanding of these phenomenons. Based on this understanding one could
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develop fast and efficient calculation methods and make general predictions for the transport
in two-dimensional periodic potentials.

8.2.2 Particle interactions and positional correlations

The analysis of the transport of (several) interacting particles using WTDs can lead to better
understanding of collective transport in periodic potentials. This understanding could be used
to set up effective models which use the WTDs as input, such as in continuous time random
walk [67] or kinetic Monte Carlo [405]. Thus, a rigorous microscopic base could be provided
for the modelling of single particles or single clusters on large scales of time and space.

In the chapters 6 and 7 we modelled the effects of particle interaction with classical DDFT
which involves an adiabatic approximation for the positional correlations. In section 6.2.3 this
led to qualitative results, only. We expect that the time dependence of positional correlations
are more precisely given by the non-equilibrium Ornstein-Zernike equation [406]. This has
a strong impact on the short and long time diffusion of particles with strongly repulsive
interaction potentials, such as charged colloids, magnetic colloids, or hard spheres. This is
relevant for mixing and demixing in colloidal systems [407,408] and gelation [138,144]. In such
systems a reliable ensemble averaged description is still missing for short time observables
and transport in general.

8.2.3 Feedback control

The feedback control protocol we presented in chapter 7 works for two (or more) spatial
dimensions after a straightforward generalisation. Further, it is not restricted to periodic
potentials. This techniques enables the collective transport of a cluster of particles along an
arbitrary prescribed path through any potential. This is particularly interesting for medical
and biological applications [403], the assembly of complex structures [409, 410], and particle
sorting.

A further interesting question would arise from the generalisation of the feedback control
we proposed for ratchet systems towards several particles. Our approach could be used
to optimise transport. For dimer particles in a periodic potential the particle interaction
produces a giant diffusion effect and an absolute negative mobility [395]. Based on that
finding, we expect that a feedback control can exploit the properties of the particle interaction
specifically to optimise the transport.

Feedback control of non-interacting particles can induce effective particle interactions
[360]. This effect is not yet fully understood but could be connected to fundamental physical
understanding about correlations. The methods we used to study many-particle dynamics
(chapters 6 and 7) could provide a basis for the investigations of this effect. These effective
interactions are observed with feedback controls of finitely many particles. As we are inter-
ested in ensemble averaged properties, an extension of our methods is necessary because we
expect a sensitive dependence on the number of particles.



9. APPENDIX

9.1 Integration of the SE

We calculate the integration of the N -particle SE (2.9) over N − 1 particle coordinates
assuming the pairwise structure of the potential energy given in Eq. (2.27). By making a
couple of assumptions we arrive at Eq. (2.28).

We apply ∂t to Eq. (2.23) for n = 1. The integration over the positions and ∂t can be
exchanged and we insert the SE (2.9) for ∂tP :

∂tϱ
(1)(r1, t) = N

∫
dr2 . . . drN

1

γ

N∑

i=1

∇i · (kBT∇iP + P ∇iV ) , (9.1)

where P = P (r1, . . . , rN , t). First, we calculate the gradient of the potential

∇iV (r1, . . . , rN , t) = ∇iVext(ri, t) +
1

2

∑

j,k,k ̸=j
(δij∇jvint(rj , rk) + δik∇kvint(rj , rk))

= ∇iVext(ri, t) +
1

2

∑

k ̸=i
∇ivint(ri, rk) +

1

2

∑

j ̸=i
∇ivint(rj , ri) . (9.2)

We assume that vint(ri, rj) = vint(rj , ri) which yields

∇iV = ∇iVext(ri, t) +
∑

j ̸=i
∇ivint(ri, rj) . (9.3)

We split Eq. (9.1) into three terms

∂tϱ
(1)(r1, t) = T diff + T ext + T int , (9.4)

where each term is further decomposed to the terms of the sum in Eq. (9.1) for i = 1 and
i > 1. We begin with the diffusive terms

T diff
i=1 = N

kBT

γ
∇1 ·∇1

∫
dr2 . . . drN P

= D0∇2
1ϱ

(1)(r1, t) (9.5)

T diff
i>1 = ND0

N∑

i=2

∫
dr2 . . . drN∇i ·∇iP

= ND0

N∑

i=2

∫
dr2 . . . dri−1dri+1 . . . drN

∮
dA(ri) ·∇iP . (9.6)
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In the last equation Gauss’ theorem was used. The integration with the surface element dA
runs over the boundary of the domain on which P is defined, which was not specified yet.
However, it makes sense to assume that the boundary integrals vanish for every i:∮

dA(ri) ·∇iP = 0 and

∮
dA(ri) · P∇iV = 0 . (9.7)

Periodic boundary conditions fulfil Eq. (9.7) and natural boundary conditions (P = 0 and
∇iP = 0 at the boundary) fulfil Eq. (9.7), too. Using the boundary conditions Eq. (9.7) in
Eq. (9.6) yields

T diff
i>1 = 0 . (9.8)

We now consider the external terms

T ext
i=1 =

N

γ
∇1 ·

∫
dr2 . . . drN P ∇1Vext(r1, t)

=
1

γ
∇1 ·

(
ϱ(1)(r1, t)∇1Vext(r1, t)

)
(9.9)

T ext
i>1 =

N

γ

∫
dr2 . . . drN

N∑

i=2

∇i · (P∇iVext(ri, t))

= ND0

N∑

i=2

∫
dr2 . . . dri−1dri+1 . . . drN

∮
dA(ri) · P∇iVext(ri, t)

= 0 . (9.10)

We now turn to the interaction terms

T int
i=1 =

N

γ
∇1 ·

∫
dr2 . . . drN

N∑

j=2

P ∇1vint(r1, rj) (9.11)

T int
i>1 =

N

γ

∫
dr2 . . . drN

N∑

i=2

∇i ·

⎛
⎝P

∑

j ̸=i
∇ivint(ri, rj)

⎞
⎠

=
N

γ

N∑

i=2

∫
dr2 . . . dri−1dri+1 . . . drN

∮
dA(ri) ·

⎛
⎝P

∑

j ̸=i
∇ivint(ri, rj)

⎞
⎠

= 0 . (9.12)

In Eq. (9.11) we swap sum and integration and rename the integration variables such that
r2 and rj are swapped. Under the assumption that ri and rj can be swapped in P , i.e.

P (r1, . . . , ri−1, ri, ri+1, . . . , rj−1, rj , rj+1, . . . , rN , t)

=P (r1, . . . , ri−1, rj , ri+1, . . . , rj−1, ri, rj+1, . . . , rN , t) , (9.13)

we arrive at

T int
i=1 =

N

γ
∇1 ·

N∑

j=2

∫
dr2∇1vint(r1, r2)

∫
dr3 . . . drN P (r1, r2, r3, . . . , rN , t)

=
1

γ
∇1 ·

∫
dr2∇1vint(r1, r2) ϱ

(2)(r1, r2, t) . (9.14)
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Gathering the terms together, we see that all i > 1 terms are zero and that the i = 1
contributions to Eq. (9.4) yield Eq. (2.28).

9.2 Separation of the 2D Smoluchowski equation

We consider the SE (2.9) in two dimensions where the force is a gradient of a potential of
the form

V (x, y) = u(x) + w(y) , (9.15)

where u and w are arbitrary potentials. The SE reads

∂tP (x, y, t) = D0∂xxP +D0∂yyP + ∂x(Pu
′)/γ + ∂y(Pw

′)/γ . (9.16)

We introduce the operators Lx and Ly which operate on a 1D probability density

Lαp(α) = D0∂ααp− ∂α(pfα)/γ . (9.17)

The force fα is set to fx(x) = −u′(x) and fy(y) = −w′(y). Using the operator notation, the
SE reads

∂tP (x, y, t) = LxP + LyP . (9.18)

The solution of Eq. (9.18) is given by

P (x, y, t) = exp(t(Lx + Ly))P (x, y, 0) , (9.19)

where the exponential function of an operator is defined as the series

exp(A) =

∞∑

i=0

An

n!
. (9.20)

The solution can be verified by inserting Eq. (9.19) into Eq. (9.18). By applying the Baker-
Campbell-Hausdorff formula we can transform Eq. (9.19) into

P (x, y, t) = exp(tLx) exp(tLy)P (x, y, 0) , (9.21)

because Lx and Ly commute. We now assume that the probability density is separable at
t = 0, i.e. functions ξ(x, 0) and ψ(y, 0) exist such that

P (x, y, 0) = ξ(x, 0)ψ(y, 0) . (9.22)

It follows that the probability density is separable at all times:

P (x, y, t) = exp(tLx) exp(tLy)ξ(x, 0)ψ(y, 0) = exp(tLx)ξ(x, 0) exp(tLy)ψ(y, 0)
= ξ(x, t)ψ(y, t) , (9.23)

where ξ(x, t) = exp(tLx)ξ(x, 0) and ψ(y, t) = exp(tLy)ψ(y, 0) are solutions of 1D SEs.
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[223] E. Schöll: “Neural control: Chaos control sets the pace” Nature Physics 6, 161 (2010).

[224] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano: “Experimental
demonstration of information-to-energy conversion and validation of the generalized
Jarzynski equality” Nature Physics 6, 988 (2010); arxiv:1009.5287
[cond-mat.stat-mech] (2010).

[225] D. Abreu and U. Seifert: “Extracting work from a single heat bath through feedback”
EPL 94, 10001 (2011).

[226] E. M. Craig, N. J. Kuwada, B. J. Lopez, and H. Linke: “Feedback control in flashing
ratchets” Ann. Phys. (Berlin) 17, 115 (2008).

[227] J. J. Juarez and M. A. Bevan: “Feedback Controlled Colloidal Self-Assembly” Adv.
Func. Mater. 22, 3833 (2012).

[228] T. A. Vezirov, S. Gerloff, and S. H. L. Klapp: “Manipulating shear-induced
non-equilibrium transitions by feedback control” Soft Matter 11, 406 (2015);
arxiv:1403.6994v2 [cond-mat.soft] (2014).



140 Bibliography

[229] C. Prohm and H. Stark: “Feedback control of inertial microfluidics using axial control
forces” Lab Chip 14, 2115 (2014).

[230] A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. Lebrun: “Significantly Improved
Trapping Lifetime of Nanoparticles in an Optical Trap using Feedback Control” Nano
Lett. 12, 2347 (2012).

[231] B. Qian, D. Montiel, A. Bregulla, F. Cichos, and H. Yang: “Harnessing thermal
fluctuations for purposeful activities: the manipulation of single micro-swimmers by
adaptive photon nudging” Chem. Sci. 4, 1420 (2013).

[232] P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz:
“Gelation of particles with short-range attraction” Nature 453, 499 (2008).

[233] P. Chaudhuri, Y. Gao, L. Berthier, M. Kilfoil, and W. Kob: “A random walk
description of the heterogeneous glassy dynamics of attracting colloids” J. Phys.:
Cond. Mat. 20, 244126 (2008).

[234] M. Selmke, A. Heber, M. Braun, and F. Cichos: “Photothermal single particle
microscopy using a single laser beam” Appl. Phys. Lett. 105, 013511 (2014).

[235] M. Feito and F. J. Cao: “Time-delayed feedback control of a flashing ratchet” Phys.
Rev. E 76, 061113 (2007).

[236] E. M. Craig, B. R. Long, J. M. R. Parrondo, and H. Linke: “Effect of time delay on
feedback control of a flashing ratchet” EPL 81, 10002 (2008).

[237] C. Emary: “Delayed feedback control in quantum transport” Phil. Trans. R. Soc. A
371, 20120468 (2013).

[238] T. Munakata and M. L. Rosinberg: “Entropy production and fluctuation theorems for
Langevin processes under continuous non-Markovian feedback control” Phys. Rev.
Lett. 112, 180601 (2014); arxiv:1401.0771v1 [cond-mat.stat-mech] (2014).

[239] K. Pyragas: “Continuous control of chaos by self-controlling feedback” Phys. Lett. A
170, 421 (1992).

[240] A. E. Cohen and W. E. Moerner: “Suppressing Brownian motion of individual
biomolecules in solution” PNAS 103, 4362 (2006).

[241] C. Jarzynski: “Nonequilibrium Equality for Free Energy Differences” Phys. Rev. Lett.
78, 2690 (1997).

[242] T. Sagawa and M. Ueda: “Role of mutual information in entropy production under
information exchanges” New J. Phys. 15, 125012 (2013).

[243] H. Jiang, T. Xiao, and Z. Hou: “Stochastic thermodynamics for delayed Langevin
systems” Phys. Rev. E 83, 061144 (2011).

[244] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito: “Thermodynamics of
quantum-jump-conditioned feedback control” Phys. Rev. E 88, 062107 (2013).

[245] P. Strasberg, G. Schaller, T. Brandes, and C. Jarzynski: “Second laws for an
information driven current through a spin valve” Phys. Rev. E 90, 062107 (2014).

[246] M. Bauer, D. Abreu, and U. Seifert: “Efficiency of a Brownian information machine”
J. Phys. A: Math. Theor. 45, 162001 (2012).

[247] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin: “Experimental realization of
a Szilard engine with a single electron” PNAS 111, 13786 (2014).

[248] P. E. Kloeden and E. Platen: “Numerical solution of stochastic differential equations”
Springer, Berlin (1992).



141

[249] T. Verechtchaguina, L. Schimansky-Geier, and I. M. Sokolov: “Spectra and
waiting-time densities in firing resonant and nonresonant neurons” Phys. Rev. E 70,
031916 (2004).

[250] L. R. Nie and D. C. Mei: “Noise and time delay: Suppressed population explosion of
the mutualism system” EPL 79, 20005 (2007).

[251] D. A. Kessler and E. Barkai: “Theory of Fractional Levy Kinetics for Cold Atoms
Diffusing in Optical Lattices” Phys. Rev. Lett. 108, 230602 (2012).

[252] D. Derks, Y. L. Wu, A. van Blaaderen, and A. Imhof: “Dynamics of colloidal crystals
in shear flow” Soft Matter 5, 1060 (2009).

[253] R. Gommers, V. Lebedev, M. Brown, and F. Renzoni: “Gating Ratchet for Cold
Atoms” Phys. Rev. Lett. 100, 040603 (2008).

[254] K. Lindenberg, J. M. Sancho, A. M. Lacasta, and I. M. Sokolov: “Dispersionless
Transport in a Washboard Potential” Phys. Rev. Lett. 98, 020602 (2007).

[255] G. Costantini and F. Marchesoni: “Threshold diffusion in a tilted washboard
potential” Europhys. Lett. 48, 491 (1999).

[256] E. Pollak: “Theory of activated rate processes: A new derivation of Kramers’
expression” J. Chem. Phys. 85, 865 (1986).

[257] U. M. B. Marconi and P. Tarazona: “Dynamic density functional theory of fluids” J.
Chem. Phys. 110, 8032 (1999).

[258] R. Zwanzig: “Memory effects in irreversible thermodynamics” Phys. Rev. 124, 983
(1961).
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[276] H. Löwen: “Particle-resolved instabilities in colloidal dispersions” Soft Matter 6, 3133
(2010).

[277] E. C. Euan-Diaz, V. R. Misko, F. M. Peeters, S. Herrera-Velarde, and R.
Castaneda-Priego: “Single-file diffusion in periodic energy landscapes: The role of
hydrodynamic interactions” Phys. Rev. E 86, 031123 (2012).

[278] G. K.-L. Chan and R. Finken: “Time-Dependent Density Functional Theory of
Classical Fluids” Phys. Rev. Lett. 94, 183001 (2005).

[279] B. D. Goddard, A. Nold, N. Savva, P. Yatsyshin, and S. Kalliadasis: “Unification of
dynamic density functional theory for colloidal fluids to include inertia and
hydrodynamic interactions: derivation and numerical experiments” J Phys Condens
Matter 25, 035101 (2013).

[280] U. M. B. Marconi and S. Melchionna: “Charge Transport in Nanochannels: A
Molecular Theory” Langmuir 28, 13727 (2012).

[281] U. M. B. Marconi, P. Tarazona, F. Cecconi, and S. Melchionna: “Beyond dynamic
density functional theory: the role of inertia” J Phys Condens Matter 20, 494233
(2008).

[282] A. J. Archer: “Dynamical density functional theory for dense atomic liquids” J Phys:
Condens Matter 18, 5617 (2006).

[283] S. Heidenreich, S. Hess, and S. H. L. Klapp: “Shear-Induced Dynamic Polarization
and Mesoscopic Structure in Suspensions of Polar Nanorods” Phys. Rev. Lett. 102,
028301 (2009).

[284] J. Reinhardt, A. Scacchi, and J. M. Brader: “Microrheology close to an equilibrium
phase transition” J. Chem. Phys. 140, 144901 (2014).

[285] F. Goujon, A. Ghoufi, P. Malfreyt, and D. J. Tildesley: “The kinetic friction
coefficient of neutral and charged polymer brushes” Soft Matter 9, 2966 (2013).
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[302] A. J. Archer and A. Malijevsḱı: “On the interplay between sedimentation and phase
separation phenomena in two-dimensional colloidal fluids” Mol. Phys. 109, 1087
(2011).

[303] J. Bergenholtz, W. C. K. Poon, and M. Fuchs: “Gelation in Model Colloid-Polymer
Mixtures” Langmuir 19, 4493 (2003).

[304] C. Caccamo: “Integral equation theory description of phase equilibria in classical
fluids” Phys. Rep. 274, 1 (1996).

[305] L. van Hove: “Correlations in Space and Time and Born Approximation Scattering in
Systems of Interacting Particles” Phys. Rev. 95, 249 (1954).

[306] A. Rahman: “Correlations in the motion of atoms in liquid argon” Phys. Rev. 136,
A405 (1964).

[307] K. Lichtner: “Colloids in non-equilibrium : from one-dimensional transport to pattern
formation at surfaces” PhD thesis, urn:nbn:de:kobv:83-opus4-60668 (2014).



144 Bibliography

[308] P. Hopkins, A. Fortini, A. J. Archer, and M. Schmidt: “The van Hove distribution
function for Brownian hard spheres: Dynamical test particle theory and computer
simulations for bulk dynamics” J. Chem. Phys. 133, 224505 (2010).

[309] A. J. Archer: “Dynamical density functional theory: binary phase-separating colloidal
fluid in a cavity” J. Phys.: Cond. Mat. 17, 1405 (2005).

[310] K. Sekimoto: “Langevin Equation and Thermodynamics” Prog Theor Phys Suppl
130, 17 (1998).

[311] U. Seifert: “Entropy Production along a Stochastic Trajectory and an Integral
Fluctuation Theorem” Phys. Rev. Lett. 95, 040602 (2005).

[312] T. Sagawa and M. Ueda: “Nonequilibrium thermodynamics of feedback control”
Phys. Rev. E 85, 021104 (2012).

[313] C. A. J. Fletcher: “Computational techniques for Fluid Dynamics, Volume 1” 2nd
edition, Springer (1991).

[314] M. Frigo and S. G. Johnson: “The website of FFTW” http://www.fftw.org/ (last
access 6th Feb 2004).

[315] M. Frigo and S. G. Johnson: “The Design and Implementation of FFTW3” Proc. Ieee
93, 216 (2005).

[316] D. L. Ermak: “A computer simulation of charged particles in solution. I. Technique
and equilibrium properties” J. Chem. Phys. 62, 4189 (1975).

[317] M. Matsumoto and T. Nishimura: “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator; C++ port by Jasper
Bedaux: http://www.bedaux.net/mtrand/ (2003)” Acm Tran. Mod. Comp. Sim. 8, 3
(1998).

[318] C. Emary, R. Gernert, and S. H. L. Klapp: “A minimal model for short-time diffusion
in periodic potentials” Phys. Rev. E 86, 061135 (2012).

[319] E. Heinsalu, M. Patriarca, I. Goychuk, and P. Hänggi: “Fractional diffusion in
periodic potentials” J. Phys.: Cond. Mat. 19, 065114 (2007).

[320] X.-T. Zheng, J.-C. Wu, B.-Q. Ai, and F.-G. Li: “Brownian pump induced by the
phase difference between the potential and the entropic barrier” Eur. Phys. J. B 86,
479 (2013).

[321] D. Speer, R. Eichhorn, and P. Reimann: “Directing Brownian Motion on a Periodic
Surface” Phys. Rev. Lett. 102, 124101 (2009).

[322] B. Wang, J. Kuo, S. C. Bae, and S. Granick: “When Brownian diffusion is not
Gaussian” Nat. Mater. 11, 481 (2012).

[323] T. Odagaki and Y. Hiwatari: “Stochastic model for the glass transition of simple
classical liquids” Phys. Rev. A 41, 929 (1990).

[324] B. Doliwa and A. Heuer: “Hopping in a supercooled Lennard-Jones liquid:
Metabasins, waiting time distribution, and diffusion” Phys. Rev. E 67, 030501R
(2003).

[325] J. Qian, Y. Lin, H. Jiang, and H. Yao: “Bond formation of surface-tethered
receptor-ligand pairs in relative separation” Appl. Phys. Lett. 103, 223702 (2013).

[326] H. Schmidle, C. K. Hall, O. D. Velev, and S. H. L. Klapp: “Phase diagram of
two-dimensional systems of dipole-like colloids” Soft Matter 8, 1521 (2012).

http://www.fftw.org/


145

[327] O. Rubner and A. Heuer: “From elementary steps to structural relaxation: A
continuous-time random-walk analysis of a supercooled liquid” Phys. Rev. E 78,
011504 (2008).

[328] D. Bedeaux, K. Lakatos-Lindenberg, and K. E. Shuler: “On the Relation between
Master Equations and Random Walks and Their Solutions” J. Math. Phys. 12, 2116
(1971).

[329] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger: “Generalized master equations
for continuous-time random walks” J. Stat. Phys. 9, 45 (1973).

[330] B. R. Martin: “Statistics for Physicists” Academic Press, London, New York (1971).

[331] R. Gernert, C. Emary, and S. H. L. Klapp: “Waiting time distribution for continuous
stochastic systems” Phys. Rev. E 90, 062115 (2014); arxiv:1407.1675
[cond-mat.stat-mech] (2014).

[332] H. Scher and M. Lax: “Stochastic Transport in a Disordered Solid. I. Theory” Phys
Rev B 7, 4491 (1973).

[333] A. K. Erlang: “Calculus of probability applied to the design of antomatic telephone
exchanges” Elektrotechnische Zeitschrift Etz 39, 504 (1918).

[334] E. R. Higgins, H. Schmidle, and M. Falcke: “Waiting time distributions for clusters of
IP3 receptors” J. Theo. Bio. 259, 338 (2009).

[335] S. Saha, A. Sinha, and A. Dua: “Single-molecule enzyme kinetics in the presence of
inhibitors” J. Chem. Phys. 137, 045102 (2012).

[336] B. P. English, W. Min, A. M. van Oijen, K. T. Lee, G. Luo, H. Sun, B. J. Cherayil, S.
C. Kou, and X. S. Xie: “Ever-fluctuating single enzyme molecules: Michaelis-Menten
equation revisited” Nature Chemical Biology 2, 87 (2006).

[337] F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas: “Fractional calculus and
continuous-time finance II: the waiting-time distribution” Physica A 287, 468 (2000).

[338] T. Prager and L. Schimansky-Geier: “Drift and Diffusion in Periodically Driven
Renewal Processes” J. Stat. Phys. 123, 391 (2006).

[339] C. Hartmann, R. Banisch, M. Sarich, T. Badowski, and C. Schütte: “Characterization
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[392] C. Pöltl, C. Emary, and T. Brandes: “Feedback stabilization of pure states in
quantum transport” Phys. Rev. B 84, 085302 (2011).

[393] E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber: “Photonic force
microscope calibration by thermal noise analysis” Appl. Phys. A 66, 75 (1998).

[394] H. Lee, A. M. Purdon, and R. M. Westervelt: “Manipulation of biological cells using
a microelectromagnet matrix” Appl. Phys. Lett. 85, 1063 (2004).

[395] D. Speer, R. Eichhorn, M. Evstigneev, and P. Reimann: “Dimer motion on a periodic
substrate: Spontaneous symmetry breaking and absolute negative mobility” Phys.
Rev. E 85, 061132 (2012).

[396] C. Kreuter, U. Siems, P. Nielaba, P. Leiderer, and A. Erbe: “Transport phenomena
and dynamics of externally and self-propelled colloids in confined geometry” Eur.
Phys. J. Spec. Top. 222, 2923 (2013).

[397] A. V. Straube and P. Tierno: “Tunable interactions between paramagnetic colloidal
particles driven in a modulated ratchet potential” Soft Matter 10, 3915 (2014).

[398] Y. Makoudi, E. Arras, N. Kepcija, W. Krenner, S. Klyatskaya, F. Klappenberger, M.
Ruben, A. P. Seitsonen, and J. V. Barth: “Hierarchically Organized Bimolecular
Ladder Network Exhibiting Guided One-Dimensional Diffusion” Acsnano 6, 549
(2012).

[399] U. Siems and P. Nielaba: “Transport and diffusion properties of interacting colloidal
particles in two-dimensional microchannels with a periodic potential” Phys. Rev. E
91, 022313 (2015).

[400] A. Kaminska and T. Srokowski: “Mean first passage time for a Markovian jumping
process” Acta Physica Polonica B 38, 3119 (2007).

[401] C. F. E. Schroer and A. Heuer: “Anomalous Diffusion of Driven Particles in
Supercooled Liquids” Phys. Rev. Lett. 110, 067801 (2013).

[402] O. Bénichou and R. Voituriez: “From first-passage times of random walks in
confinement to geometry-controlled kinetics” Phys. Rep. 539, 225 (2014).



149

[403] M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz: “Advanced optical trapping
by complex beam shaping” Laser Photon Rev 7, 839 (2013).

[404] M. Khoury, J. P. Gleeson, J. M. Sancho, A. M. Lacasta, and K. Lindenberg:
“Diffusion coefficient in periodic and random potentials” Phys. Rev. E 80, 021123
(2009).

[405] N. Kleppmann and S. H. L. Klapp: “A scale-bridging modeling approach for
anisotropic organic molecules at patterned semiconductor surfaces” J. Chem. Phys.
142, 064701 (2015); arxiv:1407.6265 [cond-mat.mtrl-sci] (2015).

[406] J. M. Brader and M. Schmidt: “Nonequilibrium Ornstein-Zernike relation for
Brownian dynamics” J. Chem. Phys. 139, 104108 (2013).

[407] G. M. Range and S. H. L. Klapp: “Demixing in simple dipolar mixtures: Integral
equation versus density functional results” Phys. Rev. E 70, 031201 (2004).

[408] D. de las Heras and M. Schmidt: “Bulk fluid phase behaviour of colloidal
platelet-sphere and platelet-polymer mixtures” Phil. Trans. R. Soc. A 371, 20120259
(2012); arxiv:1210.2551v1 [cond-mat.soft] (2012).

[409] S. C. Glotzer and M. J. Solomon: “Anisotropy of building blocks and their assembly
into complex structures” Nature Materials 6, 557 (2007).

[410] D. L. J. Vossen, J. P. Hoogenboom, K. Overgaag, and A. van Blaaderen: “Building
Two and Three-dimensional Structures of Colloidal Particles on Surfaces using Optical
Tweezers and Critical Point Drying” Mat. Res. Soc. Symp. Proc. 705, Y6.8.1 (2002).


	Titlepage
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Colloidal suspensions
	Colloidal motion in a structured environment
	Between the time scales
	Overdamped Brownian motion
	Diffusion: the Brownian time
	Kramers' rate: thermally activated motion
	Short time diffusion

	Non-equilibrium
	Stationary transport
	Transients
	First passage problems / escape problems

	Transport in one-dimensional periodic potentials
	Tilted washboard
	Ratchet effect

	Feedback control
	Outline of the thesis

	Theory
	Langevin equation
	Fluctuation-dissipation theorem
	Overdamped Brownian motion

	Fokker-Planck equation
	Kramers' escape rate

	Dynamical density functional theory
	Density functional theory
	DDFT equation
	Extensions
	Interaction functionals

	Correlations in space and time: The van Hove function
	Test particle method
	DDFT-based test particle method
	Beyond second order

	Stochastic thermodynamics
	Trajectory based quantities
	Ensemble averages

	Numerical methods
	Finite difference method
	Efficient calculation of convolution integrals in Fourier space
	Moving frame
	Fourier-mode eigendecomposition of the Smoluchowski equation
	Brownian dynamics simulation


	Short time diffusion of a single particle
	Characterisation of short-time diffusion
	Two-state-per-well model
	Rates
	Limits
	Results
	Non-sinusoidal potential

	Conclusions 

	Waiting time distribution (WTD) for barrier crossing
	Trajectory based characterisation of single particle barrier crossing
	Routes to calculate the WTD
	Direct evaluation via BD simulations
	Definition from the Smoluchowski equation
	Master equation

	Numerical results
	Zero drive (F=0)
	Driven system (F>0)

	Numerical solution
	WTD from BD simulations
	WTD from the SE

	Connection between jump duration distribution and WTD
	Conclusion

	Time delayed feedback controlled rocking ratchet
	Definition of the model
	Transport mechanism
	Numerical results
	Dynamics of the control target
	Effective current

	Entropy production and work
	Connection between Langevin and Smoluchowski equation in the presence of delayed feedback
	Conclusion

	Short time diffusion of several particles
	Model
	Results
	Short time diffusion of ultra-soft particles
	Giant diffusion
	Hard attractive particles

	Conclusion

	Dynamic freezing: mobility enhancing feedback control
	Model
	Single-particle transport
	Numerical Results
	Comparison with open-loop control

	Many-particle transport
	General behaviour
	Mobility
	Time delay

	Conclusion

	Conclusion and outlook
	Summary and Conclusion
	A single Brownian particle in a tilted washboard
	Feedback controlled rocking ratchet
	Effects of particle interaction

	Outlook
	Dimensionality
	Particle interactions and positional correlations
	Feedback control


	Appendix
	Integration of the SE
	Separation of the 2D Smoluchowski equation


