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Abstract

Partitioning a permutation into a minimum number of monotone subsequences is NP-
hard. We extend this complexity result to minimum partitioning into k-modal subse-
quences; here unimodal is the special case k = 1. Based on a network flow interpretation
we formulate both, the monotone and the k-modal version, as mixed integer programs.
This is the first proposal to obtain provably optimal partitions of permutations. LP round-
ing gives a 2-approximation for minimum monotone partitions and a (k+1)-approximation
for minimum (upper) k-modal partitions. For the online problem, in which the permuta-
tion becomes known to an algorithm sequentially, we derive a logarithmic lower bound on
the competitive ratio for minimum monotone partitions, and we analyze two (bin packing)
online algorithms. These immediately apply to online cocoloring of permutation graphs.
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1 Introduction

Given a sequence S of distinct integers, we seek a partition into a minimum number of sub-
sequences with particular monotonicity properties. Research in this direction dates back to
the famous Erdős/Szekeres theorem of 1935 stating that every sequence of n distinct reals
contains a monotone subsequence of length ⌈√n⌉, see the review [15]. Iteratively extracting
longest monotone subsequences yields a partition of size 2⌊√n⌋ in O(n1.5) [1]. However, find-
ing a minimum size partition into monotone subsequences, or shortly a minimum monotone
partition, is NP-hard [17]. For fixed ℓ and m, a partition into exactly ℓ increasing and m
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decreasing subsequences can be computed in O(nℓ+m), if one exists [4]. A minimum monotone
partition can be approximated within a factor of 1.71 in O(n2.5) [9].

A natural generalization asks for partitions into k-modal subsequences which have at most k
internal local extrema. In particular for 1-modal, or unimodal, subsequences Chung [5] proves
that any permutation of length n contains such a subsequence of length ⌈

√

3(n − 1/4)−1/2⌉,
and this is best possible. She also mentions the guaranteed length of ⌈

√

2n + 1/4 − 1/2⌉ for
contained upper unimodal subsequences, i.e., subsequences with no internal minimum. One
cannot guarantee contained k-modal subsequences longer than

√

(2k + 1)n [5]. Steele [14]
proves that the average length of k-modal subsequences of a permutation of size n asymptot-
ically grows as 2

√

(k + 1)n. Based on these bounds, one can derive results on the size of the
partitions generated by recursively extracting a respective longest subsequence. In particular,
this greedy approach yields an upper unimodal partition of size O(

√
n) in O(n2.5) time [7].

Our Contribution. We show that partitioning a permutation into a minimum number
of k-modal (in particular unimodal) subsequences is NP-hard for any fixed k ≥ 1. On the
positive side, we propose a linear programming (LP) rounding algorithm which is the first
approximation algorithm for this problem: Its approximation factor is k+1 for upper k-modal
partitions. An easy observation allows us to derive a combinatorial 1.71(k+1)-approximation
first. In contrast to prior more structural investigations, we are also interested in actually
computing optimum partitions. To this end we introduce mixed integer programming (MIP)
formulations. We further give the first negative and (weakly) positive results concerning
online algorithms for minimum monotone partitions. These immediately apply to cocoloring
of permutation graphs, for which no online algorithms were known either.

Motivation. In railroad shunting yards incoming freight trains are split up and re-arranged
according to their destinations. In stations and depots passenger trains and trams are parked
overnight or during low traffic hours. In either case we are given an ordering of arriving units,
and we have to decide for each unit on which track it will be stored [2, 7, 18]. Our choice
is limited by the fixed number of available tracks and by the way tracks may be accessed:
Entrance and exit may be on one or on both ends. The parked units have to leave each track
one by one without additional reordering. The goal is to use as few tracks as possible.

Units on each track represent a subsequence of the incoming sequence of units. The different
entry/exit combinations lead to increasing, monotone, unimodal, and what we call unimodec
subsequences. Such sorting with stacks (queues, deques) is well-studied in computer sci-
ence [3], e.g., one characterizes which permutations are (not) stack-sortable. Knuth [11]
already speaks of re-arranging railroad cars. Our work has been originally motivated by the
more algorithmic question for the smallest number of stacks needed for sorting.

2 Preliminaries

Let S = [s1, s2, . . . , sn] be a permutation of {1, . . . , n}. A subsequence σ of S is a sequence
σ = [si1 , si2 , . . . , sim ] with 1 ≤ ij < ih ≤ n for all j < h. A sequence is called increasing
if si < sj for i < j. It is called decreasing if si > sj for i < j. These two cases are also
subsumed under monotone. An internal extremum of S is an index i with 2 ≤ i ≤ n − 1 and
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si−1 < si, si+1 < si or si−1 > si, si+1 > si. A sequence S is k-modal if it has at most k
internal extrema; the first can be of either type. If the first extremum is a maximum, i.e., the
first part of the sequence is increasing, S is called upper k-modal, otherwise lower k-modal.
These notions stem from the 1-modal case, well-known as unimodal. Some authors specify
upper or lower unimodal.

We use an intuitive set notation and language to work with sequences; e.g., when referring
to the sequence consisting of all the elements contained in two sequences we speak of their
union. A unimodec sequence is the union of a decreasing and an upper unimodal sequence,
the two of which have identical first element. Figure 1 sketches the sequences we introduced.
A partition of S of size m is a collection P of m disjoint subsequences of S, the union of
which is precisely S. For a given S we are interested in finding a partition P of minimum
size. We name the resulting minimization problem after the type of subsequence into which
we partition, that is, we have problems monotone, unimodal, k-modal, etc. Obviously,
any statement for an upper problem analogously holds for its lower counterpart. A cover of
S is a collection of not necessarily disjoint subsequences, the union of which is S. Eliminating
multiply covered elements from all but one subsequence, one can turn a cover into a partition
without increasing the number of subsequences. This is why our problems are also known as
covering a permutation [17].

Figure 1: We identify elements si, i = 1, . . . , n with points (i, si) in the plane; that is, we use
points and elements interchangeably. Feasible subsequences are represented as polygonal lines
connecting the contained points: Depicted are decreasing and increasing, lower unimodal and
upper unimodal, unimodec, and (upper and lower) 6-modal subsequences.

Relations to Coloring Problems. Increasing and monotone partitions are well studied
in graph coloring. The permutation graph G = (S,E) associated with a permutation S has
an edge (si, sj) ∈ E if and only if si > sj and i < j. An increasing subsequence in S
corresponds to an independent set in G, and a decreasing subsequence in S corresponds to
a clique. The complement Ḡ of G is again a permutation graph; it is associated with the
reverse permutation of S = [s1, . . . , sn], that is, the permutation [sn, . . . , s1].

A partition of the vertices of a graph into independent sets is called a coloring. A minimum
partition of a permutation graph into either independent sets or cliques, that is, a solution
to problem decreasing or increasing, can be given in O(n log n), see e.g., [13]. Cocoloring
a graph asks for partitioning its vertex set into a minimum number of parts in which each
part is either an independent set or a clique (so the partition may contain a mixture of both).
Thus, in monotone we compute an optimal cocoloring of a permutation graph, which is
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NP-hard [17]. In general, any statement about partitioning permutations corresponds to a
graph theoretical statement about partitioning the vertex set of permutation graphs.

Di Stefano and Koči [7] formulate upper unimodal and unimodec as coloring problems
for particular 3- and 4-uniform hypergraphs. In their approach, hyperedges correspond to
forbidden subsequences. For example, [si, sj , sk] is a forbidden subsequence within an upper
unimodal sequence if i < j < k, si > sj and sj < sk. If we interpret these forbidden triples as
hyperedges of a hypergraph with vertex set S, then a hypergraph coloring corresponds to an
upper unimodal partition. In general, uniform hypergraph coloring problems are known to be
NP-hard. Our complexity results imply that even these restricted problems are NP-hard.

3 Complexity results

Theorem 1 Problems k-modal, upper k-modal, and unimodec are NP-hard for any
fixed k, in particular for k = 1.

Proof. We use a reduction from the NP-hard problem monotone [17]. Finding a partition
of S into at most p monotone subsequences can be reduced to finding a partition of S into at
most ℓ increasing and at most m = p − ℓ decreasing subsequences, where m and ℓ are part
of the input. This requires solving a series of p + 1 restricted problems. We reduce from this
restricted version.

We identify elements and points (and subsequences and lines) as in Figure 1 above. Having
arranged the points of a given permutation S, we construct an extended arrangement of points
which can be covered by p subsequences of the requested monotonicity type if and only if the
original set S of points can be covered by ℓ increasing and m decreasing lines.

A basic component of our construction is given below, it is denoted by Ah for some 1 ≤ h ≤ n.
It consists of h(k +1) quadratic blocks arranged in a sequence going rightwards and upwards.
Each block contains h points located on a line going rightwards and downwards, see Figure 2.
Since we may assume that k ≤ n , the number of points in Ah is polynomial in n.

Figure 2: Components A3 and B2 for k = 2 used in the proof of Theorem 1.

We first prove the following property.

Claim. The component Ah can be covered by h increasing lines and it cannot be
covered by h − 1 k-modal lines. If Ah is covered by h k-modal lines then each of
them has to be increasing somewhere inside Ah.
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Evidently, Ah can be covered by h parallel increasing lines where the ith line covers the ith
point in each block. For the remaining assertions the proof is by induction. For h = 1 the
claim is trivially true. So consider h ≥ 2. A k-modal line can cover more than one point in
at most k + 1 blocks since for any two consecutive blocks the left one contains a minimum
and the right one contains a maximum. Consequently, there are at least (h− 1)(k +1) blocks
where just one point is covered. Now consider a decreasing line. It can cover points of at
most one block of Ah. So in this case h(k + 1) − 1 ≥ (h − 1)(k + 1) blocks without covered
points remain. By the induction hypothesis, in both cases at least h − 1 lines are necessary
to cover these blocks.

We define components Bh which actually are Ah flipped vertically. For Bh the above claim
analogously holds with increasing replaced by decreasing.

For the reduction we arrange several of such Ah and Bh components around a given instance
S of monotone. Starting at S and going leftwards we add a component Bm and then
alternatingly components Ap and Bp where the Ap components are below S, and Bm and the
Bp components are above S. The total number of these additional components is k + 1. By
a suitable placement of blocks we ensure that no two points have the same vertical position
(and thus we obtain a permutation), see Figure 3 for a suggestive arrangement. Finally, to
the right of S we add Bℓ located above all other components.

S

Bℓ

Bp

Ap Ap Ap

Bp Bm

Figure 3: Arrangement of A and B blocks for k = 5 (ℓ = 2, m = 3). The relative vertical
position of blocks in one row is of no significance to our construction since A and B blocks
are vertically separated.

We prove that there is a solution with p = ℓ+m lines to this instance of k-modal if and only
if there is a partition of S into m decreasing and ℓ increasing lines. So let a k-modal cover for
the constructed instance be given. By the claim all p lines cover points in all Ap’s and Bp’s.
At least m of these lines also cover points in Bm. These lines must have at least k internal
extrema to the left of S. Therefore only the remaining decreasing part can cover points in S.
None of these lines can be extended to cover points in Bℓ. Consequently, Bℓ must be covered
by ℓ lines not covering points in Bm and these lines are increasing in S. Altogether there are
m lines with decreasing part in S and ℓ lines with increasing parts in S.

On the other hand a given solution of the instance S of monotone with m decreasing and ℓ
increasing lines can be extended to a solution of k-modal in the obvious way where additional
increasing and decreasing parts of the lines cover components Ap, Bp, Bm, and Bℓ as described
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in the proof of the claim.

The constructed instance of k-modal has the property that in any cover with p lines these
lines are upper k-modal, when k is odd, and lower k-modal, when k is even. Therefore, this
instance can be interpreted as an instance of upper k-modal, possibly after vertical flipping.

Finally, upper unimodal reduces to unimodec by adding a component Bp to the left and
below a given instance S of the latter problem, see Figure 4. To cover Bp at least p decreasing
parts are necessary as was shown before. Therefore a solution of unimodec with p lines exists
if and only if a solution of upper unimodal with p lines exists. �

S

Bp

Figure 4: Arrangement of blocks Bp and S used to prove NP-hardness of unimodec.

4 Optimal Partitions: Mixed Integer Programs

4.1 Set Partitioning Formulation

A most natural formulation of our problems is as a set partitioning program. We use a binary
variable λσ for each feasible (monotone, k-modal, . . . ) subsequence σ ⊆ S. Every element of
S has to appear exactly once in some selected subsequence:

min
∑

σ

λσ (1)

s.t.
∑

σ:i∈σ

λσ = 1 for all i (2)

λσ ∈ {0, 1} for all feasible σ (3)

This concise integer program may contain an exponential number of variables and one would
solve it by branch-and-price [12]. We postpone this discussion and present first its compact
counterpart from which the set partitioning model follows by a Dantzig-Wolfe decomposition.

4.2 Network Flow and Network Design Models

We will see that a minimum cost flow computation solves problem decreasing. By means
of additional binary variables, the flow model extends to a network design problem which
solves k-modal in general. We describe the respective directed graphs from which our mixed
integer programs (MIPs) immediately follow.

Given a sequence S we start with its associated (directed) permutation graph G = (S,E).
We split all vertices si ∈ S, and obtain a new arc ei for each element si. Arcs previously
entering and leaving si now enter and leave the tail and the head of ei, respectively. We add
to a source s and a sink t, arcs from s to the tail of ei, and arcs from the head of ei to t.
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Arcs leaving the source have unit cost, all other arc have cost zero. We introduce arc flow
variables x(e) ≥ 0 for arc e and add lower bounds x(ei) ≥ y(ei) := 1 on all arcs ei. Since
this augmented network component is acyclic, every s-t-flow decomposes into a collection of
s-t-paths, each of which represents a decreasing subsequence in S. The cost structure and
the lower bounds y(ei) ensure that a minimum cost s-t-flow represents a minimum cover with
the flow value equal to the cover size. This is the basis for our mixed integer programs.

Starting from Ḡ rather than from G we obtain an augmented network component for repre-
senting increasing subsequences, see Figure 5.

ts

e1 e2 e3 e4 e5

3 1 5 2 4

Figure 5: Acyclic augmented network component on the left: An s-t-path represents an
increasing subsequence in S = [3, 1, 5, 2, 4]. Depicted on the right is our symbolic shorthand
notation for decreasing and increasing network components, repectively.

If we concatenate several copies N1,N2, . . . of the above two network components, we can
represent more general sequences. Two consecutive network components N j and N j+1 are
connected with directed arcs from the head of ej

i to the head of ej+1

i , where ej
i denotes the arc

representing element si in N j. The lower bounds y(ej
i ) on arcs ej

i are now binary variables
satisfying

∑

j

y(ej
i ) = 1, for all i. (4)

Again, this chain of network components is augmented by a source s and a sink t. Only the
first and the last network component are connected to s and t, respectively. Figure 6 shows the
construction for upper unimodal. If necessary, the arcs connecting two network components
can be modified in such a way that every s-t-path has exactly one internal extremum.

One can interpret a unimodec sequence as first traversing a decreasing subsequence in reverse
order followed by an upper unimodal subsequence. Therefore, it is convenient to have one more
network component which is the decreasing component with all arcs reversed, see Figure 7.

3 1 5 2 4

e1 e2 e3 e4 e5

e′1 e′2 e′3 e′5

ts

e′4

Figure 6: Augmented network with two acyclic network components and its shorthand nota-
tion. An s-t-path represents an upper unimodular subsequence in S = [3, 1, 5, 2, 4].
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Figure 7: Augmented network with three acyclic network components in shorthand notation.
An s-t-path represents a unimodec subsequence.

Figure 8: Augmented networks in shorthand notation. An s-t-path represents a monotone,
unimodal, and k-modal subsequence, respectively.

In the general case we use two parallel chains of network components, again augmented by
a single source and a single sink. These are connected to both chains, cf. Figure 8. Then,
a minimum cost s-t-flow (in fact, a collection of disjoint s-t-paths) corresponds to minimum
monotone, unimodal, and k-modal partitions of S, respectively. In the latter case each chain
has k + 1 network components.

4.3 Comparison of the Linear Relaxations

For solving the linear relaxation of (1)–(3) by column generation [12] one starts with a re-
stricted set of feasible subsequences and dynamically generates more as needed. Associated
to every constraint (2), i.e., to every element si ∈ S is a dual variable π(si) ∈ R. From an
optimal dual solution we check the reduced cost 1 − ∑

i∈σ π(si) of variables λσ which should
be all non-negative. This is done via the following pricing subproblem

min{1 −
∑

i∈σ

π(si) | σ is a feasible subsequence}. (5)

This problem can be solved efficiently by a shortest s-t-path computation in a modified version
of the acyclic networks as described in Section 4.2: Capacities are removed, and we introduce
costs −π(ei) on arcs ej

i . A consequence of this is the following.

Lemma 2 The LP relaxations of the network design model and the LP relaxation of the
corresponding set partitioning model have the same optimal objective function value.

Proof. The set partitioning model is a Dantzig-Wolfe decomposition of the network design
model; an optimal solution to the pricing problem (5) is always integer. Under these circum-
stances the bound of the linear relaxations are known to coincide [10]. �

In principle the set partitioning model surpasses the network design models in terms of mod-
eling flexibility. This advantage comes at the cost of extra implementation efforts.

Remark. The interpretation as hypergraph coloring mentioned at the end of Section 2 leads
to a MIP with partitioning and packing constraints. However, we found that its LP relaxation
gives very weak bounds, and we omit a further discussion.
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5 Approximation Algorithms

Fomin, Kratsch, and Novelli [9] develop a 1.71-approximation algorithm for finding a minimum
partition of a partially ordered set into chains and antichains. In particular, this algorithm
gives a 1.71-approximation for monotone. From this we easily derive a 1.71(k + 1)-approx-
imation algorithm for k-modal as follows.

Lemma 3 An α-approximate solution for monotone is a (k+1)α-approximate solution for
k-modal. An α-approximate solution for k-modal can be converted to a (k + 1)α-approxi-
mate solution for monotone.

Proof. Denote by zα
mon and by zα

k the size of an α-approximate partition for monotone

and for k-modal, respectively. Since any k-modal sequence can be split into at most k + 1
monotone subsequences, the optimal partition sizes zmon and zk relate as zmon ≤ (k + 1) · zk.
This gives

zα
mon ≤ α · zmon ≤ (k + 1) · α · zk,

which proves the first part. Any monotone sequence is k-modal, and therefore zk ≤ zmon.
Together with the above mentioned splitting of a k-modal sequence we immediately obtain

(k + 1) · zα
k ≤ (k + 1) · α · zk ≤ (k + 1) · α · zmon,

which proves the second part. �

It is an open question whether there exists a polynomial time approximation scheme (PTAS)
for monotone, let alone k-modal. We see no way of obtaining stronger approximation
results from the elegant algorithm in [9] since its analysis is tight for monotone, and the
combinatorial argument used for its correctness does not generalize to k-modal. However,
we will describe an LP rounding approach which applies to our network design model and
yields improved approximation factors.

We consider a particular integer programming problem

z∗ := cT x∗ := min{cT x | x ∈ P, y ∈ Y, x ≥ y, x integer, y binary} (IP)

with optimal solution x∗, y∗. Let Y ⊆ [0, 1]p be defined by a set of generalized bound
constraints: The variables yj, j ∈ Iq, appear in the q-th generalized bound constraint

∑

j∈Iq

yj = 1 ,

all other yj variables are fixed with L := {j | yj = 0}, U := {j | yj = 1}. The sets L, U , and
the union I =

⋃

q Iq are pairwise disjoint. Let ρ denote the maximum number of variables
in a generalized bound constraint, i.e., ρ = maxq |Iq|, We require ρ ≥ 2. The polyhedral set
P ⊆ R

p has the important property ρ · P ⊆ P .

In particular, our network design models are of this form since any multiple (larger than one)
of a feasible flow in a network without upper bounds is again a feasible flow. Formally, the
network design models only use y-variables on a subset of the arcs, but we can easily add zero
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valued variables for all other arcs. The model contains n generalized bound constraints (4),
one for each element of the permutation, and ρ is the number of its network components.

Algorithm: LP Rounding for IP

• Compute an optimal solution xLP , yLP of the linear relaxation LP of IP.

• Choose a set of representatives R ⊆ {j ∈ I | yLP
j ≥ 1

ρ
} with |R ∩ Iq| = 1 for all q.

Rounding up according to R defines the binary vector ŷ with ŷj = 1 ⇐⇒ j ∈ R ∪ U .

• Compute an optimal solution x̄ of the linear programming relaxation LP2 of the integer
program IP2 cT x̂ := min{cT x | x ∈ P, x ≥ ŷ, x integer}.

The choice of ρ implies the existence of a suitable set R of representatives. Moreover, ρ·xLP ≥
ŷ ∈ Y and ρ · xLP ∈ P , i.e., ρ · xLP is feasible for LP2. In particular, the algorithm can be
applied to our network design model. Since for fixed lower bound vector ŷ the network design
model reduces to a network flow problem, the corresponding LP relaxation has an integer
optimum.

Theorem 4 Let ŷ denote the rounded vector obtained from LP Rounding and let ρ be the
maximum number of variables in a generalized bound constraint (4). If the LP relaxation
LP2 has an integer optimum x̄, then x̄, ŷ is a ρ-approximation of IP.

Proof. If x̄ is integer, then x̄, ŷ are feasible for IP. As remarked above, ρ · xLP is feasible for
LP2 and ŷ ∈ Y . Therefore,

cT xLP ≤ cT x∗ ≤ cT x̄ ≤ cT (ρ · xLP ),

proving that x̄, ŷ is a ρ-approximation of IP. �

Corollary 5 LP rounding yields

a 2-approximation for monotone, upper unimodal, and lower unimodal,

a 3-approximation for unimodec,

a (k + 1)-approximation for upper k-modal and lower k-modal, and

a 2(k + 1)-approximation for k-modal.

In general, the approximation factor is determined by the number of monotone pieces in the
considered subsequences, with an additional factor of 2 if we do not fix the monotonicity of
the first part. It would be interesting to see whether one can eliminate this factor 2.

We note that the integrality gap of our MIP model for monotone and upper unimodal is
at least 3

2
as is shown e.g., by the sequence [6, 2, 1, 4, 3, 5]. For both problems, the optimal

LP value is 2.0; the optimal integer objective is 3.0.
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6 Online Algorithms

Not least in view of our practical motivation it is natural to ask for the online version of our
problems in which the permutation becomes known sequentially. We have to assign elements
to subsequences without looking at the remaining elements of the permutation, see e.g., [8]
for background on online algorithms. For increasing and decreasing the (optimal) greedy
algorithm is in fact an online algorithm [7]. For monotone the situation is much worse.

Theorem 6 There is no o(log n) competitive online algorithm for monotone.

Proof. Consider any online algorithm A for monotone. Depending on the decisions made
by A we construct a sequence S = [1, . . . , n] with n = 2h − 1 elements, for some integer
h. Initially, we have the range of numbers a = 1 to b = n. The first element of S is
(a + b)/2 = 2h−1, and A has to open a subsequence. We arbitrarily set a = 2h−1 + 1 or
b = 2h−1−1, and serve (a+ b)/2 as second element. In general, A has three options (of which
in fact only two are actually possible). We describe this for the second iteration. First note
that a decision to append to an existing subsequence decides upon whether that sequence is
increasing or decreasing.

If A decides to append in an increasing way we set b = 2h−1 − 1. If A decides to append in
a decreasing way we set a = 2h−1 + 1. In either case we have a connected range of 2h−1 − 1
numbers none of which can be appended to an already existing subsequence of at least two
elements. If a new subsequence is opened we adapt either a or b arbitrarily as above. We
iterate with the new values of a and b, and it follows by induction that A generates at least
h/2 subsequences for the first h elements of S (since each subsequence contains at most two
elements).

Let a1, . . . , ah and b1, . . . , bh be the values of a and b throughout the first h iterations described
above. The ith element of S is either ai+1 − 1 or bi+1 + 1. Since the sequences a1, . . . , ah

and b1, . . . , bh are increasing and decreasing, respectively, the first h elements of S can be
covered by an increasing subsequence of a1 − 1, . . . , ah − 1 and by a decreasing subsequence
of b1 + 1, . . . , bh + 1.

If the remaining elements of S are arranged in an increasing way the optimal solution contains
3 subsequences. However, the solution determined by A contains at least h/2 subsequences.
Therefore, A is log2(n + 1)/6-competitive at best. �

Restatement of Theorem 6 The problem of cocoloring a permutation graph with n vertices
does not allow an online algorithm with competitive ratio better than Ω(log n).

Since the publication of the conference version [16] of this paper, Demange and Leroy-Beau-
lieu [6] adapted our proof to the situation where the range of numbers in the permutation is
not known in advance. For this case, they strengthen the lower bound to n/4 + 1/2.

We next discuss the performance of two online algorithms for monotone, upper unimodal,
and lower unimodal, both of which are reminiscent of simple bin packing online algorithms.
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Online Algorithm Next Fit

Open an empty subsequence.

Add arriving elements s to one and the same open subsequence as long as feasibility
of the generated subsequence is not violated. Otherwise close the currently open
subsequence and open a new subsequence with s.

Lemma 7 Next Fit is exactly n/4-competitive for monotone and upper unimodal.

Proof. Any two elements of the input sequence S form a monotone (unimodal) subsequence.
Thus, we have n/2 as a trivial upper bound for the number of subsequences determined
by Next Fit. If S itself is monotone (unimodal) the algorithm finds the optimal solution.
Otherwise, the optimal solution consists of at least two subsequences giving a competitive
ratio of n/4. To see that this bound is tight consider the sequence S = [n, 1, n − 1, 2, . . . ].
For monotone and upper unimodal Next Fit will determine a solution consisting of n/2
subsequences with two elements each. The optimal solution consists of two sequences in both
cases. Therefore, Next Fit is exactly n/4-competitive. �

Next we make use of the fact that we know the set of pending elements, which are the numbers
in 1, . . . , n we have not yet seen in the input sequence.

Online Algorithm Best Fit

Start with two subsequences containing only one dummy element 0 and n + 1,
respectively.

Add arriving elements s to one subsequence P of the current solution for which
P∪s stays feasible and for which the number of pending elements between s and the
last element of P is minimal. If P is a dummy subsequence then P is redefined by
P := {s} and a new subsequence having the same dummy element as P is added
to the solution unless it consists of n/2 subsequences. Resolve ties arbitrarily,
preferring subsequences without dummy elements.

Note that in each iteration at least one of the at most n/2 subsequences contains one (dummy)
element only. Therefore in each iteration an appropriate P exists. Unfortunately, for mono-

tone the extra effort made in Best Fit in comparison to Next Fit does not improve the
competitive ratio.

Lemma 8 Best Fit is exactly n/4-competitive for monotone.

Proof. If the input permutation is itself feasible, Best Fit is optimal. Otherwise, by defi-
nition, it generates at most n/2 feasible subsequences and is at least n/4-competitive. To see
that the upper bound is tight, we consider the permutation S = [2, 1, 4, 3, . . . , 2k, 2k − 1, . . .].
The algorithm generates decreasing two-element subsequences [2k, 2k − 1] for all k, but the
optimal partition contains only the two increasing subsequences [2, 4, . . .], [1, 3, . . .]. �

The sequence defined in the last proof also gives a tight example for the n/4-competitiveness
of the analogue of the bin packing algorithm First Fit.
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7 Computational Results

We generated random permutations (with the standard shuffling algorithm as described by
Knuth) with 30, 60, 90, and 120 elements; 90–120 elements appear to be a reasonable size for
rail car shunting. For each size we generated 100 instances. All experiments were conducted
on a Linux PC (AMD Athlon MP 2800+) with 2.1 GHz and 3.5 GByte main memory. For
solving linear and mixed integer programs we use the standard solver CPLEX 9.0 with default
parameter settings. On every computation we impose a time limit of 900 CPU seconds.

Table 1 summarizes our results. Allowing ourselves a conservative judgment only, we see that
we can optimally solve instances of the given size with the network design model within an
acceptable time frame. For the set cover formulation we generated the entire integer program.
It shows an exceptionally bad performance due to the fact that the lower bound only very
slowly improves during the branch-and-bound process. To be fair at this point we remark
that a true branch-and-price algorithm would probably outmatch the network design MIP in
terms of computation time on larger instances.

The greedy algorithm, which iteratively extracts longest feasible subsequences, runs in a split
second and yields very good solutions on the average as well as in the (empirically) worst
case. The quality of solutions obtained with the LP Rounding is significantly better than
the theoretically guaranteed approximation factors suggest. Next Fit empirically performs
as poorly as predicted by competitive analysis, whereas Best Fit gives fair results on average.

8 Conclusions

We studied minimum partitioning of permutations into subsequences with certain mono-
tonicity properties. Particularly interesting subsequences are increasing, monotone, upper
unimodal, k-modal, and unimodec. Problems of this kind arise as subproblems in railroad
logistics, see e.g., [2, 7, 18]. Theoretical hardness legitimates studying and applying compu-
tationally expensive approaches like solving (probably large scale) mixed integer programs.
These also yield (small) constant factor approximation algorithms via LP rounding.

Several extensions can be incorporated in our models, e.g., a bounded track length, i.e., the
length of a subsequence must not exceed a given number of elements. Then, solutions of our
network flow based models become resource constrained shortest paths, which are NP-hard
to compute. The set partitioning model is most flexible in terms of extendibility. It is able
to capture more “dirty” side constraints which do not fit into the context of this paper.

Among the remaining interesting open questions are:

• What is the exact approximability status of monotone and k-modal, in particular,
does there exist a PTAS? Can our LP techniques lead to an improvement of the 1.71
approximation for monotone? Such a result would be quite fascinating since the
algorithm in [9] already elegantly exploits the combinatorial structure of the problem.

• Considering the lower bound on the competitive ratio given in Theorem 6 one would
be interested in an online algorithm matching this bound. Which competitive ratio is
possible when look-ahead is allowed? In [6] some preliminary results are obtained.
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n Greedy LP Rnd. LP Flow (1)–(3) Next Best

monotone

30 avg 1.066 1.060 .810 .092 .123 2.259 1.350
worst 1.200 1.400 .726 .240 1.120 2.800 2.000

60 avg 1.127 1.111 .827 1.841 139.335 3.214 1.484
worst 1.285 1.625 .742 35.340 900.060 3.857 1.875

90 avg 1.123 1.116 .821 19.953 869.234 3.853 1.581
worst 1.222 1.333 .770 158.450 900.630 4.444 2.111

120 avg 1.151 1.133 .824 218.340 † 4.468 1.653
worst 1.300 1.454 .769 900.040 † 5.000 2.100

upper unimodal
30 avg 1.098 1.051 .804 .033 .386

worst 1.250 1.500 .678 .100 5.330
60 avg 1.142 1.076 .803 .560 455.885

worst 1.400 1.333 .714 14.600 900.350
90 avg 1.161 1.081 .812 19.009 †

worst 1.285 1.428 .717 407.680 †
120 avg 1.193 1.090 .811 255.213 †

worst 1.375 1.250 .727 900.080 †

Table 1: Average and worst case results for monotone and upper unimodal. The columns
list (in that order): |S| = n; the quality (as a factor as compared to optimal = 1.000) for the
greedy algorithm, LP Rounding, and the LP relaxation; CPU seconds for optimally solving
the network design MIP and the set partitioning model; and the quality (as a factor) of the
online algorithms Next Fit and Best Fit. The † sign indicates that the time limit of 900
CPU seconds was almost always exceeded.

• The crucial property we use in the construction of the graphs underlying our MIP mod-
els, and which ensures that paths correspond to increasing or decreasing subsequences,
is the transitivity of the ordering of elements. We would have liked to generalize our
positive results for permutations to partially ordered sets (corresponding to compara-
bility graphs). However, in general, the transitivity is lost for the complement of a
comparability graph. Is there a network flow based model similar to ours which allows
LP rounding, thus yielding a constant factor approximation?
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[4] A. Brandstädt and D. Kratsch. On partitions of permutations into increasing and de-
creasing subsequences. Elektron. Informationsverarb. Kybernet., 22(5/6):263–273, 1986.

[5] F.R.K. Chung. On unimodal subsequences. J. Combin. Theory Ser. A, 29:267–279, 1980.

[6] M. Demange and B. Leroy-Beaulieu. Online coloring of comparability graphs: Some
results. ORWP 07/01, Institut de Mathématiques, EPFL Lausanne, 2007.
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