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Zusammenfassung

In dieser Arbeit studieren wir drei fundamentale Computer Vision Probleme mit
Hilfe von Kernmethoden.

Zunächst untersuchen wir das Problem, Objekte in natürlichen Bildern zu lokalisieren,
welches wir als die Aufgabe formalisieren, die Bounding Box eines zu detektieren-
des Objekt vorherzusagen. In Kapitel II entwickeln wir hierfür ein Branch-and-
Bound Framework, das es erlaubt uns, effizient und optimal diejenige Bounding Box
zu finden, welche eine gegebene Qualitätsfunktion maximiert. Dabei kann es sich
sowohl um die Entscheidungsfunktion eines kernbasierten Klassifikators, als auch
um ein Nearest-Neighbor Abstandsmaß handeln kann. Wir zeigen, dass dieses Ver-
fahren bereits hervorragende Lokalisierungergebnisse erzielt, wenn es mit einer ein-
fachen lineare Qualitätsfunktion verwendet wird, die durch Trainieren einer Support-
Vektor-Maschine gefunden wurde.

In Kapitel III untersuchen wir, wie sich kernbasierte Qualitätsfunktionen lernen
lassen, die optimal für die Aufgabe der Objektlokalisierung geeignet sind. Insbeson-
dere zeigen wir, dass Structured Output Regression dies ermöglicht: im Gegensatz
zu Support-Vektor-Machinen kann Structured Output Regression nicht nur binäre
Entscheidungen treffen, sondern beliebige Elemente eines Ausgaberaumes vorher-
sagen. Im Fall der Objektlokalisierung besteht der Ausgaberaum dabei aus allen
möglichen Bounding Boxes innerhalb des Zielbildes. Structured Output Regres-
sion lernt eine Funktion, die die Kompatibilität zwischen Eingaben und Ausgaben
messen kann, und prädiziert anschließend dasjenige Element des Ausgaberaumes,
welches die maximale Kompatibilität zur Eingabe aufweist. Für diese Maximierung
läßt sich exakt die Branch-and-Bound Optimierung aus Kapitel II verwenden, die
zudem in einer Variante auch schon während des Training als Teil eines Constraint
Generation Prozesses einsetzbar ist.

Im Anschluß wenden wir uns in Kapitel IV dem Problem des Clusterns von
Bildern zu. Zunächst führen wir eine Evaluation verschiedener Clustering-Algorithmen
durch, wobei die Qualität der Clusterungen dadurch gemessen wird, wie gut diese
einer bekannten, semantisch korrekten Partitionierung der Daten entsprechen. Die
Studie zeigt hervorragende Ergebnisse insbesondere von Spectral Clustering Meth-
oden, welche die Eigenvektoren einer passend normalisierten Kernmatrix zur Clus-
terung der Daten verwenden. Motiviert durch diesen Erfolg, entwickeln wir im
folgenden eine Verallgemeinerung von Spectral Clustering für Eingabedaten, welche
in mehreren Modalitäten gleichzeitig vorliegen, zum Beispiel Bilder mit zugehörgen
Bildunterschriften. Analog zur Interpretation von Spectral Clustering als Kernel-
PCA Projektion mit anschließendem Nachclusterungsschritt, verwenden wir reg-
ularisierte Kernel-CCA als Verallgemeinerung und clustern die Daten in der sich
ergebenden projezierten Form nach. Der resultierende Algorithmus Correlational



Spectral Clustering findet signifikant bessere Partitionen als gewöhnliches Spectral
Clustering, und erlaubt dabei auch die Projektion von Daten, von denen nur eine
Datenmodalität bekannt ist, z. B. Bilder ohne Unterschrift.

In Kapitel V beschäftigen wir uns schließlich mit dem Problem, Taxonomien
in Daten zu finden. Für eine gegebene Datenmenge möchten wir zugleich eine
Partitionierung der Daten finden und eine Taxonomie ableiten, welche die sich
ergebenden Cluster miteinander in Beziehung setzt. Der hierfür entwickelte Al-
gorithmus Numerical Taxonomy Clustering basiert auf der Maximierung eines kern-
basierten Abhängigkeitsmaßes zwischen den Daten und einer abstrahierten Kern-
matrix. Letztere berechnet sich aus einer Partitionierungsmatrix und einer positiv
definiten Abstandsmatrix, welche die Beziehung zwischen den Datenclustern char-
acterisiert. Indem wir für die Abstandsmatrix nur Matrizen zulassen, die durch
additive Metriken induziert werden, können wir das Ergebnis ebenfalls als eine Tax-
onomie interpretieren. Um das entstehende Optimierungsproblem mit Nebenbedin-
gungen zu lösen, greifen wir auf etablierte Verfahren aus dem Feld der Numerischen
Taxonomie zurück, und wir können zeigen, dass Numerical Taxonomy Clustering
nicht nur besser interpretierbare Ergebnisse liefert, sondern auch, dass sich die
Qualität der entstehenden Clusterungen verbessert, falls die Daten tatsächlich eine
Taxonomiestruktur besitzen.



Abstract

In this thesis we address three fundamental problems in computer vision using kernel
methods. We first address the problem of object localization, which we frame as the
problem of predicting a bounding box around an object of interest. We develop a
framework in Chapter II for applying a branch and bound optimization strategy to
efficiently and optimally detect a bounding box that maximizes objective functions
including kernelized functions and proximity to a prototype. We demonstrate that
this optimization can achieve state of the art results when applied to a simple linear
objective function trained by a support vector machine. In Chapter III, we then
examine how to train a kernelized objective function that is optimized for the task
of object localization. In particular, this is achieved by the use of structured output
regression. In contrast to a support vector machine, structured output regression
does not simply predict binary outputs but rather predicts an element in some output
space. In the case of object localization the output space is the space of all possible
bounding boxes within an image. Structured output regression learns a function that
measures the compatibility of inputs and outputs, and the best output is predicted
by maximizing the compatibility over the space of outputs. This maximization
turns out to be exactly the same branch and bound optimization as developed in
Chapter II. Furthermore, a variant of this branch and bound optimization is also
utilized during training as part of a constraint generation step.

We then turn our focus to the problem of clustering images in Chapter IV. We
first report results from a large scale evaluation of clustering algorithms, for which
we measure how well the partition predicted by the clustering algorithm matches
a known semantically correct partition of the data. In this study, we see particu-
larly strong results from spectral clustering algorithms, which use the eigenvectors
of an appropriately normalized kernel matrix to cluster the data. Motivated by this
success, we develop a generalization of spectral clustering to data that appear in
more than one modality, the primary example being images with associated text.
As spectral clustering algorithms can be interpreted as the application of kernel
principal components analysis followed by a reclustering step, we use the general-
ization of regularized kernel canonical correlation analysis followed by a reclustering
step. The resulting algorithm, correlational spectral clustering, partitions the data
significantly better than spectral clustering, and allows for the projection of unseen
data that is only present in one modality (e.g. an image with no text caption).

Finally, in Chapter V, we address the problem of discovering taxonomies in data.
Given a sample of data, we wish to partition the data into clusters, and to find a
taxonomy that relates the clusters. Our algorithm, numerical taxonomy clustering,
works by maximizing a kernelized dependence measure between the data and an
abstracted kernel matrix that is constructed from a partition matrix that defines



the clusters and a positive definite matrix that represents the relationship between
clusters. By appropriately constraining the latter matrix to be generated by an
additive metric, we are able to interpret the result as a taxonomy. We make use of
the well studied field of numerical taxonomy to efficiently optimize this constrained
problem, and show that we not only achieve an interpretable result, but that the
quality of clustering is improved for datasets that have a taxonomic structure.
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Chapter I

Introduction

Computer vision is the process of automatically understanding visual information
and abstracting meaningful representations that can be used in subsequent data
processing and organization. It is a relatively immature field: the goal of enabling
computers to interact with visual information with similar sophistication to a human
is far from achieved. Furthermore, the tasks which have been approached by the
research community are fragmented and not always well defined. Nevertheless, there
has been significant progress in recent years, especially in the areas of object classifi-
cation and localization (the more classical tasks of three-dimensional reconstruction
and tracking have approached a relatively high level of sophistication, and have not
been addressed in this work). This work improves on the state of the art in several
important computer vision tasks, and does so by leveraging the power of statistical
learning theory and the flexibility of representing data with domain specific kernels,
positive definite functions that are equivalent to an inner product in some Hilbert
space Aizerman et al. (1964); Schölkopf and Smola (2002). Statistical learning the-
ory allows us to pose the problem of learning functions that map raw image data to
their meaningful representations as the problem of generalizing from observed exam-
ples. Rather than engineer the solution using hand tuning, we utilize observed data
directly in order to more quickly, flexibly, and accurately learn the function. While
the problem of supervised classification has been shown to be especially suited to
the computer vision setting, we attempt to move beyond this relatively well studied
area and propose additional solutions from statistical learning theory for problems
in the computer vision domain. Specifically, we have addressed three problems of
interest to the computer vision community, each of which has been the subject of
recent attention due to their importance in the automatic understanding of visual
scenes on a semantic level: object localization, clustering, and taxonomy discovery.

In this chapter, we introduce several basic concepts from statistical learning
theory and introduce the notation for kernels that we will use throughout this thesis
(Section I.1). In particular, we will see that the representer theorem allows us
to easily kernelize certain classes of optimization problems. We then review several
recent advances in machine learning that will be applicable to problems in computer
vision. Once we have finished our overview of machine learning, we will discuss in
Section I.2 the basic concepts from computer vision used throughout the thesis. We
will explore how the incorporation of invariances can be treated naturally within
the framework of kernel methods, discuss methods for learning task specific image
representations, and give an overview of the state of the art in the learning of
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semantic information from image data. Finally, in Section I.3, we introduce the
main contributions of this thesis, and place them within the context of the current
state of the art.

I.1 Kernel Methods in Machine Learning

Kernel methods have increased in popularity in the past two decades due to their
solid mathematical foundation, tendency toward easy geometric interpretation, and
strong empirical performance in a wide variety of domains Vapnik (1995, 1998);
Burges (1998); Müller et al. (2001); Schölkopf and Smola (2002); Shawe-Taylor and
Cristianini (2004); Hofmann et al. (2008). While traditional linear methods are
well founded mathematically, and existing algorithms tend to be optimized for per-
formance, real world data often have significant non-linearities. By adopting an
appropriate non-linear kernel, the mathematical foundations and often significant
portions of the algorithmic analysis of linear algorithms can be transferred to the
non-linear case. Though the feature space implicit in the kernel function can be
very high dimensional, by appropriately formulating the problem so that the (im-
plicit) feature vectors are only accessed through kernel evaluations, we can avoid
the computational cost imposed by the size of the space.

Given a sample1 of training points (x1, y1), . . . (xi, yi), . . . (xn, yn) ∈ X ×Y , where
X is some input space, and Y is an output space, we wish to learn a function
f : X → Y such that the expected loss, Epxy [l(x, f(x), y)], is minimized for some
loss function, l : X × Y × Y → R. Ignoring the computational issues of finding the
minimizing f ∈ F , for some class of functions, F , we are faced with the problem that
we do not know the underlying data distribution, pxy, of sample points in X × Y .
We can of course substitute the empirical loss on the training sample,

1

n

n∑
i=1

l(xi, f(xi), yi), (I.1)

but we may overfit the data by choosing f to be too complex. Rather than simply
restricting F , possibly to be too small to sufficiently represent the data, we can
instead choose a regularizer that penalizes complex f . This can be viewed as indi-
rectly encoding the belief that the unobserved p(y|x) will be unlikely to be highly
varying with x. A common choice is ‖f‖2 for some function norm. Put in terms of
an optimization problem, we trade off the function norm and the empirical estimate
of the expected loss

min
f

‖f‖2 + C
1

n

n∑
i=1

l(xi, f(xi), yi), (I.2)

where the parameter C controls the level of regularization.
Let F be a reproducing kernel Hilbert space (RKHS) of functions from X to R.

To each point x ∈ X there corresponds an element φ(x) ∈ F (we call φ : X → F
the feature map) such that 〈φ(x), φ(x′)〉F = k(x, x′), where k : X × X → R is
a unique positive definite kernel. For optimization problems of the form given in
Equation (I.2), the well known Representer Theorem (e.g. (Schölkopf and Smola,

1Samples are usually assumed to be i.i.d.
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2002, and references therein)) tells us that the optimal f ∈ F lies within the span
of the mapped training data, i.e. f =

∑n
i=1 αiφ(xi), for some α. An equivalent

formulation of the optimization problem is therefore

min
α

‖
n∑
i=1

αiφ(xi)‖2
F + C

1

n

n∑
i=1

l(xi, 〈
n∑
j=1

αjφ(xj), φ(xi)〉F , yi) (I.3)

=
n∑
i=1

n∑
j=1

αiαj〈φ(xi), φ(xj)〉F + C
1

n

n∑
i=1

l(xi,
n∑
j=1

αj〈φ(xj), φ(xi)〉F , yi) (I.4)

=
n∑
i=1

n∑
j=1

αiαjk(xi, xj) + C
1

n

n∑
i=1

l(xi,
n∑
j=1

αjk(xi, xj), yi) (I.5)

Any positive definite k can be used to add nonlinearity to a linear algorithm of the
form given in Equation (I.5). The advantages of using a kernel function not only
include the avoidance of having to compute the mapping, φ, for which an explicit
formulation may not be available, but also in that we gain the ability to define
kernels on non-vectorial data for which linear techniques could otherwise not be
applied.

Of additional importance is the fact that many problems of the form specified in
Equation (I.5) are easily optimized, often with guarantees of optimality. In partic-
ular, many of the resulting optimization problems turn out to be convex, indicating
that standard results from optimization theory can be applied Boser et al. (1992);
Schölkopf and Smola (2002); Bertsekas (1999); Boyd and Vandenberghe (2004).

I.1.1 Kernel Methods Utilized in this Work

We will make use of kernelized objective functions in each of the main problems that
this work addresses. First we will perform discriminative training of a map from X
to Y using a joint kernel, k : X ×Y×X ×Y → R for the task of object localization.2

Perhaps the most well known kernel method is the support vector machine Boser
et al. (1992); Cortes and Vapnik (1995); Schölkopf and Smola (2002) used in binary
classification. We will make use of a generalization of this algorithm that learns
functions that map not only to binary outputs, but also to more general output
spaces. It achieves this more general capability through the use of appropriately
designed joint kernels. We refer to this more general algorithm as structured output
regression and primarily focus on the variant described in Tsochantaridis et al.
(2004).

Second, we will use kernelized versions of principle components analysis (PCA)
and canonical correlation analysis (CCA) as the main components of clustering
algorithms. Spectral clustering algorithms Shi and Malik (2000); Meila and Shi
(2001); Ng et al. (2002); Ham et al. (2004); von Luxburg (2007) are closely related
to a non-linear generalization of PCA (kernel PCA Schölkopf et al. (1998)) in that
the solutions to the problems are the eigenvectors of appropriately normalized kernel
matrices. Kernel PCA is closely related to another generalized eigenproblem in
second order statistics, namely a non-linear generalization of canonical correlation
analysis (KCCA Hotelling (1936); Lai and Fyfe (2000)).

2This problem makes use of a different representer theorem that is closely related to that referred to
above Lafferty et al. (2004); Altun et al. (2006).
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Finally, we will use a kernelized empirical estimate of dependence between ran-
dom variables as the objective function for an algorithm that simultaneously parti-
tions the data into clusters, and discovers a taxonomy that describes the relationship
between clusters. This measure of dependence makes use of a kernelized empirical
estimate of the covariance operator between two function spaces to which data sam-
ples are mapped Baker (1973); Fukumizu et al. (2004, 2008); Blaschko and Gretton
(2008, 2009).

I.2 Computer Vision

The field of computer vision encompasses a diverse set of tasks that are unified pri-
marily by that they each take images or video sequences as input, and extract some
higher level (semantic) abstraction Marr (1982); Horn (1986); Forsyth and Ponce
(2002). While it is difficult to give a coherent definition that encompasses all that
has been done under the banner of computer vision, we have taken the approach of
trying to enable computers to process visual input in a way that gives them some
of the basic skills that the human visual system can employ with seemingly little to
no effort. The skills that we have focused on in this work are the ability to localize
instances of generic object classes within previously unseen images, the ability to
automatically organize images into meaningful categories with or without the pres-
ence of non-visual cues such as text captions, and the ability to extract information
about the relationship between visual categories in the form of a taxonomy. In
contrast to classical tasks of computer vision such as 3D reconstruction, edge and
corner detection, stereo reconstruction, segmentation, and tracking, we are primar-
ily interested in predicting properties of images that are closely related to high level
semantic concepts.

I.2.1 Natural Image Manifold

In order to learn such a mapping between images and concepts, it is important to
incorporate prior information about the space of images. Images vary for many rea-
sons beyond those that are semantically meaningful. Lighting changes, translation
of the scene, and other changes due to perspective geometry do not generally alter
what is considered to be semantically meaningful about a scene, but nevertheless
cause large changes in the values of a pixel representation of the image Marr (1982);
Horn (1986); Turk and Pentland (1991); Belhumeur et al. (1997). If we were to
simply learn based on a vectorization of an image (that is every pixel corresponds to
a dimension in a vector space), we would need very many samples to cover the high
dimensional space, and we would only be able to learn about images of the same
size. Just focusing on the issue of translation, it should be obvious that translat-
ing an image with high spacial frequencies by even one pixel can change the vector
representation of that image arbitrarily largely. One can augment the training set
by including translated versions of the training data, but the growth of data cannot
match the curse of dimensionality, and will only sample along a small number of
dimensions.

This sampling can be viewed in a geometric framework as better estimating the
data manifold from a small number of samples. An alternate approach is to explic-
itly approximate that manifold in some way. Approaches along these lines include
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the use of the tangent distance Simard et al. (1998), and manifold denoising Hein
and Maier (2007a,b). In the former, invariances are built in by approximating the
manifold by its local tangent and taking the distance between samples to be the
smallest distance between linear approximations. The linear approximation is com-
puted with respect to a finite set of invariances which are assumed to be irrelevant
to the modelling task. The tangent distance performs extremely well in handwritten
digit recognition, but this is a constrained domain in comparison to the space of all
natural images, and linear approximations are appropriate because the images have
a high degree of blurring which removes high frequency spatial variation. In natural
images with more pixels, high spatial frequencies, and a higher degree of variation
between images, linear approximations to local manifold variations tend not to be
appropriate.3 In manifold denoising the manifold is estimated non-parametrically,
but a small number of samples relative to the size of the space can influence the
quality of the estimate of the manifold, and this only removes directions of small
variance relative to the manifold, and not necessarily high-variance but semantically
meaningless directions. Current methods of modeling manifolds are unable to scale
to the dimensionality and complexity of the visual world given typically sized train-
ing sets in computer vision. It is therefore necessary to incorporate many sources of
knowledge in engineering practical image representations. Crafting image represen-
tations that facilitate the easy estimation of semantically meaningful submanifolds
of natural images is the essence of learning based vision.

I.2.2 Kernels in Computer Vision

The kernel framework is particularly favorable to computer vision problems because
it creates a natural separation between the learning framework and the domain
specific knowledge necessary to craft a meaningful image representation. Kernels
have been used in computer vision extensively in the past decade. An early approach
that was explicitly designed for kernel methods was to use the histogram intersection
kernel directly on the pixel values of images Barla et al. (2002). This rather rigid
approach was soon superseded by more flexible representations, often based on sets
of local features.

In the local feature framework, a set of keypoints is extracted in an image. This
is often achieved by running a filter over the image and selecting maxima of the
filter response Lowe (2004); Mikolajczyk and Schmid (2004); Matas et al. (2002);
Tuytelaars and Gool (2004); Kadir et al. (2004); Tuytelaars and Mikolajczyk (2008).
Other techniques involve random or regular sampling within the image, usually at
multiple scales Li and Perona (2005); Larlus and Jurie (2006); Maree et al. (2005);
Moosmann et al. (2007); Perronnin et al. (2006). Once the set of keypoints is
selected at multiple scales, a fixed size image patch (at the appropriate scale) is
extracted and the image is represented as a collection of image patches along with
their location and scale. The image patches can be compared directly, but the
comparison can be made more robust by first compiling statistics that are invariant
to typical sources of semantically meaningless variation, and then using a distance
based on these invariant statistics. A typical approach is to use histograms based

3It may, however, be appropriate to apply the tangent distance to appropriately preprocessed data, or
to reparameterize the image representation in a way that removes significant local nonlinearities in the
manifold.
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on image gradient orientations rather than absolute pixel values Lowe (2004); Bay
et al. (2006). The main advantage of this approach is that changes in lighting have
a much lower effect than they would using absolute pixel values. Additionally, it
is common to entirely throw away scale and location information and to treat the
local image descriptors as unordered sets of features.4 These sets can be compared
using any of a number of sets on bags of feature vectors Eichhorn and Chapelle
(2004); Gärtner et al. (2002); Grauman and Darrell (2007); Kondor and Jebara
(2003); Wallraven et al. (2003); Wolf and Shashua (2003), a prominent example of
which is done by vector quantizing the feature space, and calculating kernels based
on counts of features that fall into each region of the feature space Dance et al.
(2004); Leung and Malik (2001); Sivic and Zisserman (2003). A key advantage of
local feature methods is that not only are they robust to typical changes in lighting,
they are also robust to partial object occlusion and changes in object geometry. See
also Appendix A for additional details on local feature kernels used in this work.

Aside from local feature representations, a range of image descriptors are avail-
able including color histograms Swain and Ballard (1991), gradient and orienta-
tion histograms McConnell (1986); Freeman and Roth (1995), edge features Canny
(1987); Ferrari et al. (2008), and shape features Belongie et al. (2002). Typically,
combining multiple feature types leads to improved performance, and can be done
so in a principled way using, e.g. multiple kernel learning Lanckriet et al. (2004);
Bach et al. (2004); Sonnenburg et al. (2006). Additionally, there may be extra infor-
mation present from non-visual sources, e.g. text as is explored in Section IV.2. Of
key importance for expanding the capability of learning based vision will be to auto-
matically learn representations that are tailored to specific tasks, either by multiple
kernel learning or other techniques. While we have done some preliminary work
in this direction Lampert and Blaschko (2008), this issue is largely unaddressed in
this thesis. Rather, we focus on the learning algorithms assuming a given kernel to
describe visual similarities. It is important future work to extend the algorithms
developed here to add the capacity to simultaneously learn image descriptions.

I.3 Selected Problems in Computer Vision

Object recognition is in general an important problem in computer vision, but it is
important to see the context of its place in overall scene analysis. In order for com-
puters to interact with visual information in a more meaningful way, it is important
to not only be able to categorize images, but to also specify the relation between
objects in a scene, to specify the relationship between categories, and to do so using
as little humanly labeled data as possible. With this in mind, we have selected tasks
that move towards these goals, but retain a well defined problem formulation. They
are outlined in more detail in the following sections.

4Although intuition tells us it should be useful to incorporate the relative spatial layout of visual
features, it is often the case that ignoring this information gives better generalization performance on
generic object categories than methods that incorporate location. In contrast, geometric information
extracted from the location of feature points is very effective for matching a specific instance of an object
in multiple scenes Lowe (2004). However, we are generally interested in the case of generic object categories
where within class variation is large enough that (approximate) geometric matching techniques tend to fail
completely.
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I.3.1 Object Localization

Object localization is the task of finding instances of generic object classes in images.
While this task has been of interest to the vision community for many years Fis-
chler and Elschlager (1973); Rowley et al. (1996), etc., the standard “sliding window”
framework has not been improved. In Chapters II and III we discuss the shortcom-
ings of the approach and develop methods for improving both speed and accuracy
for a large class of image representations and classifiers.

I.3.2 Clustering

Clustering of images is also of renewed interest to the vision community. While
subsequent benchmark supervised datasets have steadily increased the number of
visual classes from one Agarwal and Roth (2002); Agarwal et al. (2004) to tens and
hundreds Everingham et al. (2006b,a, 2007); Griffin et al. (2007), it is clear that
supervision on this level will not scale to the approximately 30,000 object categories
that humans can distinguish Biederman (1987). While a significant amount of prior
knowledge about visual object categories and domain engineering are likely to be
necessary to achieve successful results beyond tens of categories, a thorough evalu-
ation of the capabilities of statistical clustering algorithms is a necessary step. In
Chapter IV we first evaluate a range of unsupervised algorithms from several fami-
lies to determine relative performances on a controlled clustering task. As a kernel
based approach, spectral clustering, gives consistently better performance in relation
to other methods, we further explore improvements to the basic algorithm. We do so
by developing a generalization of spectral clustering that additionally incorporates
cues from text captions and other modalities to improve clustering results without
increasing the burden of manual image labeling.

I.3.3 Taxonomy Discovery

Finally, the discovery of visual taxonomies has received much attention in the past
few years Autio (2006); Ahuja and Todorovic (2007); Marszalek and Schmid (2007);
Zweig and Weinshall (2007); Bart et al. (2008); Griffin and Perona (2008); Sivic
et al. (2008). Unsupervised methods have to deal with ambiguities related to the
level of detail at which categories should be defined: a cabrio is a type of car, which
is a type of ground transportation, which is a piece of machinery, which is a man-
made object. In Chapter V we present a method for simultaneously learning a data
partition, as well as a taxonomy that relates the discovered clusters. We have found
that this results in an easily interpretable data visualization as well as improved
clustering for datasets with a taxonomic structure.
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Beyond Sliding Windows

A major focus of the computer vision community in recent years has been object
category recognition, the prediction of whether of not an instance of an object
category is present in an image. This attention has resulted in improved accuracies
on major benchmark datasets, and a degree of convergence on which techniques
are most successfully employed. A common representation is to use a combination
of different quantized local features as described in Chapter I, and to then train a
support vector machine. However, a binary prediction of the presence or absence
of an object category is necessarily limited. It is desirable not only to categorize
images based on what objects are present, but also to say where those objects are.

Object localization is an important task above and beyond object category recog-
nition as it gives a greater understanding of the image contents and their relation
to each other. With such a system, one can begin to answer questions such as: how
are objects related in a scene? Does their relation tell us something about how they
interact? What is a good background model for natural images?

Sliding window approaches have become state of the art for object localization.
Most successful approaches at the recent PASCAL VOC challenges used this tech-
nique Everingham et al. (2006b,a, 2007). Sliding window approaches work by adding
localization functionality to already successful object category recognition systems.
The idea is that if backgrounds are sufficiently variable, a classifier trained to dis-
criminate images that have an object present or not will respond well to images
that contain the object, and will not respond to images that consist purely of back-
ground. If the background is not variable, dependencies between background and
object appearance may confuse the classifier. This can be mitigated by appropriate
training techniques, as described in Chapter III. The discriminant function that
was learned for classification is applied subsequently to many regions in an image
and the maximum response is taken to be an indication that an object is present at
that location.

By necessity, sliding window approaches must choose a restricted set of subimages
to test; the number of subimages grows quickly with the size of the image, and an
image of only 320 × 240 pixels has over one billion subimages. In general, the
number of subimages grows quadratically with the number of pixels in an image,
which makes it computationally infeasible to exhaustively evaluate the discriminant
function at all locations. Sampling is typically done to restrict the discriminant
to certain scales, aspect ratios, and spatial locations. This sampling, however, will
decrease the accuracy of localization, and risks missing detections entirely.
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A similar problem exists in the field of image retrieval: existing methods for
content-based image retrieval (CBIR) rely on global properties of images (e.g. color
distributions), or global statistics of local features (e.g. bag of words representations).
Such methods typically fail when it is only a subregion of the image is of interest,
such as a certain object or symbol as part of a larger scene.

In this chapter, we propose Efficient Subwindow Search (ESS), a method for
object localization that does not suffer from the drawbacks of sliding window ap-
proaches. It relies on a branch and bound scheme to find the global optimum of a
discriminant function over all possible subimages in a candidate image, returning
the same object locations that would be returned by an exhaustive sliding window
approach. At the same time it requires much fewer classifier evaluations than there
are candidate regions in the images—often even less than there are pixels— and typ-
ically runs in linear time or faster. Branch and bound optimization has been used
in computer vision for geometric matching objectives Breuel (1992); Huttenlocher
et al. (1993); Hagedoorn and Veltkamp (1999); Mount et al. (1999); Jurie (1999);
Olson (2001), but we rather use branch and bound to optimize more general object
localization objectives, including those based on quantized local features.

This chapter is based on Blaschko et al. (2007); Lampert et al. (2008a,b). Sec-
tions II.2–II.4 show how we formulate the problem of localization as a branch and
bound search, and gives a framework for the construction of bounding functions
including many specific examples for many commonly used functions including ker-
nelized discriminants. The efficiency of the branch and bound search not only leads
to faster runtime performance, but also to improved accuracy. This is due not only
to the finer granularity of the localization than that which is given by sliding window
approaches, but that we are able to also apply the technique to objective functions
for which sliding window sampling is not applicable: those with very spatially peaked
responses. We demonstrate these improvements empirically in Sections II.5–II.7. In
the next section, we give an overview of other approaches for object localization and
their relation to ESS.

II.1 Sliding Window Object Localization

Many different definitions of object localization exist in the scientific literature.
Typically, they differ in the form that the location of an object in the image is
represented, e.g. by its center point, its contour, a bounding box, or by a pixel-wise
segmentation. In the following we will only study localization where the target is
to determine a bounding box around the object. This is a reasonable compromise
between the simplicity of the parameterization and its expressive power for subse-
quent tasks like scene understanding. An additional advantage is that it is much
easier to provide ground truth annotation for bounding boxes than for contour or
pixel-wise segmentations.

In the field of object localization with bounding boxes, sliding window approaches
have been the method of choice for many years Rowley et al. (1996); Dalal and Triggs
(2005); Ferrari et al. (2008); Chum and Zisserman (2007). They rely on evaluating
a quality function, e.g. a classifier’s decision function, over many rectangular sub-
regions of the image and taking its maximum as the object’s location. Because the
number of rectangles in an n×m image is O(n2m2), one cannot check all possible
subregions exhaustively. Instead, several heuristics have been proposed to speed up
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the search. Typically, these consist of reducing the number of necessary function
evaluations by searching only with rectangles of certain fixed sizes and aspect ratios
as candidates and only over a coarse grid of possible locations Dalal and Triggs
(2005); Ferrari et al. (2008); Rowley et al. (1996). Additionally, local optimization
methods can be applied instead of global ones, by first identifying promising re-
gions in the image and then using discrete gradient ascent procedure to refine the
detection Chum and Zisserman (2007).

The reduced search techniques sacrifice localization robustness to achieve accept-
able speed. Their implicit assumption is that the quality function is smooth and
slowly varying. This can lead to false estimations or even complete misses of the
objects locations, in particular if the quality function’s maximum takes the form of
a sharp peak in the parameter space. Note, however, that such a sharply peaked
maximum is exactly what one would hope for to achieve accurate and reliable object
localization.

II.2 Efficient Subwindow Search (ESS)

This section introduces efficient subwindow search (ESS), a technique to find the
maximum response of a fixed discriminant function over all possible subwindows in
an image. We denote the space of images as X , the space of possible bounding boxes
as Y , and the discriminant function

f : X × Y → R. (II.1)

The discriminant can be a trained binary classifier, a prototype feature vector, etc.
It is only necessary that the discriminant have the interpretation that it indicates
the quality of predicting a specific box, y, in the image, x.

We first restrict ourselves to the case where we are interested in finding instances
of an object category in only one image, though we will consider more general cases
subsequently. For a given image, x, we wish to predict the best bounding box, y,
by maximizing the discriminant function

y∗ = argmax
y∈Y

f(x, y). (II.2)

Because Y has of the order O(n2m2) elements for an n×m image, we cannot perform
this maximization exhaustively, except for very small images. Search based object
detection methods such as sliding window approaches approximate the solution to
Equation (II.2) by searching only over a small subset of Y , which can result in
suboptimal performance. In the following, we show that efficient subwindow search
(ESS), which relies on a branch and bound scheme, can find the exact maximum of
Equation (II.2) in a very computationally efficient way.

II.2.1 Branch and Bound Search

As we have formulated the problem of object localization as an optimization prob-
lem in Equation (II.2), we can look for more intelligent methods of optimizing the
objective than simply relying on an exhaustive search, or sampling the output space
in some regular way and taking the maximum of the objective. This reasoning leads
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instead to a targeted search, in which we will spend more effort on promising re-
gions of the image, and less on regions that are not promising. As f may not be
differentiable with respect to y, and may have many local maxima, we do not rely
on local gradient techniques, but use a global branch and bound search.

The optimization works by hierarchically splitting the parameter space into dis-
joint subsets, while keeping bounds for the maximal quality for each of the subsets.
Promising parts of the parameter space are explored first, and large parts of the
parameter space do not have to be examined further if their upper bound indicates
that they cannot contain the maximum.

In the case of ESS, the parameter space is the set of all possible rectangles,
Y , in an image. We parameterize rectangles by their top, bottom, left and right
coordinates (t, b, l, r). The branch and bound search operates on sets of rectangles,
and we can extend the parameterization of a single rectangle by using intervals
instead of single integers for each coordinate. Using intervals is a compact way to
specify rectangle sets, and parameterizing sets in this way has benefits for computing
upper bounds as we will see later. In order to specify sets of rectangles of this form,
we need only to store tuples [T,B, L,R], where T = [tlow , thigh ] etc., see Figure II.1
for an illustration. The full n ×m image corresponds to the region y = [1,m, 1, n]
in this representation, and Y = [ [1,m], [1,m], [1, n], [1, n] ].

For each rectangle set, we calculate a bound for the highest score that the quality
function f could take on any of the rectangles in the set. ESS terminates when it
has identified a rectangle with a quality score that is at least as good as the upper
bound of all remaining candidate regions. This criterion guarantees that a global
maximum has been found.

ESS organizes the search over candidate sets in a best-first manner, always ex-
amining next the rectangle set that is most promising in terms of its quality bound.
The candidate set is split along its largest coordinate interval into halves, thus form-
ing two smaller disjoint candidate sets as illustrated in Figure II.2. The search is
stopped when the most promising set contains only a single rectangle with the guar-
antee that this is the rectangle of globally maximal score. This form of branch and
bound search has been shown to require the minimal possible amount of function
evaluations Fox et al. (1978) in this setup. Algorithm II.1 gives pseudo-code for ESS
using a priority queue to hold the search states.

II.3 Construction of Quality Bounding Functions

The branch and bound scheme that comprises the core of ESS is a very general
optimization technique. It can be applied to any quality function f , for which we
can construct a function that upper bounds the values of f over sets of rectangles
Y ⊂ Y . In order to ensure convergence to the optimum, however, the bounding
function, f̂ , must fulfill the following two properties:

f̂(Y ) ≥ max
y∈Y

f(y) (II.3)

f̂(Y ) = f(y), if y is the only element in Y . (II.4)

The condition in Equation (II.3) ensures that f̂ acts as an upper bound on f , while
that in Equation (II.4) indicates that the upper bound converges to the true value
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Figure II.1: Representation of rectangle sets by 4 integer intervals.

Figure II.2: Splitting rectangle sets is done by dividing one of the intervals in two. In
this case, [T,B,L,R]→ [T,B,L,R1] ∪̇ [T,B,L,R2], where R1 := [rlo, b rlo+rhi2 c] and R2 :=
[b rlo+rhi2 c+1, rhi].
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of the discriminant when the rectangle set contains one rectangle. While it would
be difficult to construct such bounds for arbitrary rectangle sets, we will show in
Section II.3.1 that our choice of parameterization makes specifying such bounds
feasible for a large variety of quality functions.

Note that for any f there is a spectrum of possible bounding functions f̂ . On
one hand, one could exhaustively evaluate the true objective, f , on every element
in Y and return the maximum value. This would give the tightest possible upper
bound, but would also be extremely computationally expensive, as it would näıvely
solve the original problem at each stage of the search. On the other hand, one could
set f̂ to a large constant for every rectangle set that contained more than just a
single rectangle. This would require little computational expense at each step, but
the branch and bound algorithm would have to exhaustively split every rectangle
set resulting in an overall computational expense that is the same as an exhaustive
sliding window evaluation. A good bound f̂ is located between these extremes:
fast to evaluate but also tight enough to ensure fast convergence. In the following
sections we show how such bounding functions f̂ can be constructed for different
choices of f .

Algorithm II.1 Efficient Subwindow Search
Require: image x
Require: quality bounding function f̂ (see Sect.II.3)
Ensure: (topt, bopt, lopt, ropt) = argmaxy∈Y f(y)

initialize P as empty priority queue
set [T,B,L,R] = [1,m]× [1,m]× [1, n]× [1, n]
repeat

split [T,B,L,R]→ [T1, B1, L1, R1] ∪̇ [T2, B2, L2, R2]
push ( [T1, B1, L1, R1]; f̂([T1, B1, L1, R1] ) into P
push ( [T2, B2, L2, R2]; f̂([T2, B2, L2, R2] ) into P
retrieve top state [T,B,L,R] from P

until [T,B,L,R] consists of only one rectangle
set (topt, bopt, lopt, ropt) = [T,B,L,R]

II.3.1 Linear Classifiers

In order to demonstrate how to construct a quality function bound for a realistic
quality function, we first use the example of a support vector machine with a linear
kernel applied to a bag of visual words histogram representation. Each image x is
represented by a set of feature points dj, j = 1, . . . , n, where for each feature point
we store its image coordinates and a bag of visual words cluster id cj. Given any
rectangular region y in x, we use x|y to denote the image x cropped to the region
y. x|y is itself an image in which a subset of the feature points lie. For any such
x|y, we can form the k-bin histogram h = h(x|y), where the ith entry, hi, indicates
the number of points with cluster id i that occur in x|y. Such bag of visual words
histograms will be the underlying representations for all quality functions that we
study in this section. We have chosen to use unnormalized histograms, which both
simplifies the exposition, and prevents degenerate behavior in the simple linear SVM
case. We introduce quality functions with normalized histograms in the sequel.
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In its canonical form, the corresponding SVM decision function is f(h) = β +∑
i αi〈h, hi〉. hi are the histograms of the training examples and αi and β are the

weights and bias term that are learned during SVM training, respectively. Because
of the linearity of the inner product, we can rewrite this expression as a sum over
per-point contributions with weights wj =

∑
i αih

i
j:

f(x, y) = β +
∑
dj∈x|y

wcj . (II.5)

where the sum runs over all feature points dj that lie in the region y, and wcj
represents the weight associated with cluster cj. Because we are only interested in
the argmax of f over all y ∈ Y (Equation (II.2)), we can drop the bias term, β.

We now have the necessary ingredients to construct a function f̂ that bounds f
over sets of rectangles Y ⊆ Y . First, we decompose f = f+ +f−, where f+ contains
only the positive summands of Equation (II.5) and f− only the negative ones. For
a set of regions Y , we denote by y∪ the union of all rectangles in Y and by y∩ their
intersection. Then

f̂(Y ) = f+(y∪) + f−(y∩) (II.6)

is a bound for f that fulfills the criteria in Equations (II.3) and (II.4). Equation (II.4)
holds because y∪ = y∩ = y if Y = {y}, and f+(y) + f−(y) = f(y) by construction.
To show that Equation (II.3) holds, we observe that for any y ∈ Y the feature points
that lie in y are a subset the points in y∪ and a superset of the points in y∩. Since
f+ contains only positive summands, we have f+(y∪) ≥ f+(y), and analogously
f−(y∩) ≥ f−(y) because f− contains only negative summands. In combination, we
obtain that

f̂(Y ) = f+(y∪) + f−(y∩) ≥ f(y) (II.7)

holds for any y ∈ Y and therefore also for the element maximizing the right hand
side.

To make f̂ a useful quality bounding function, we have to show that we can eval-
uate it efficiently for arbitrarily large Y ∈ Y . If Y was an arbitrary set of rectangles,
finding y∪ and y∩ could require iterating over all elements. However, rectangle sets
in the ESS algorithm are always given in their parameterization [T,B, L,R]. This
ensures that y∪ and y∩ are also rectangles, and can be efficiently represented. y∪
and y∩ can both be computed in constant time: y∪ = [tlow , bhigh , llow , rhigh ] and
y∩ = [thigh , blow , lhigh , rlow ]. If the latter is not a legal representation of a rectangle,
i.e. if rlow < lhigh or blow < thigh , then y∩ is empty and f−(y∩) = 0.

Using integral images we can make the evaluations of f+ and f− constant time
operations Viola and Jones (2004). As a result each evaluation of f̂ is an O(1)
operation. With the bound given in Equation (II.6), we have achieved a good balance
between computational efficiency and the tightness of the bound. The evaluation
time of f̂ is independent of the number of rectangles contained in Y , while the bound
still is informative about the quality of the rectangle set and converges to the true
maximum as the uncertainty in the intervals decreases.
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II.3.2 Spatial Pyramid Features

Raw bag of visual words models, as used in the previous section, have no notion of
the spatial arrangement of features within a subimage. They are therefore not the
best choice for the detection of object classes which have characteristic geometric
arrangements, e.g. cars or buildings. Spatial pyramid features are a straightforward
method of incorporating spatial information into a kernel. They work by dividing
every image into a grid of spatial bins and represent each grid cell by a separate
bag of words histogram. Typically, a pyramid of increasingly fine subdivisions is
used Lazebnik et al. (2006).

We consider an SVM classifier with a linear kernel on top of such an L-level
hierarchical spatial pyramid histogram representation. The decision function f for
a region y in an image x is calculated as

f(y) = β +
∑
i

αi

L∑
l=1

∑
p=1,... l
q=1,..., l

γl〈hyl,(p,q), h
i
l,(p,q)〉, (II.8)

where γl is a fixed weight accorded to level l, hyl,(p,q) is the histogram of all features

of the image x that fall into the spatial grid cell with index (p, q) of an l× l spatial
pyramid in the region y. αi are the coefficients learned by the SVM and β is the
bias term.

Using the linearity of the inner products, we can again transform this into a sum
of per-point contributions:

f(y) = β +
∑
dj∈x|y

L∑
l=1

∑
p=1,... l
q=1,..., l

wl,(p,q)cj
, (II.9)

where w
l,(p,q)
cj = γl

∑
i αih

i
l,(p,q);cj

, if the feature point dj has cluster label cj and falls

into the (p, q)-th cell of the l-th pyramid level of y. Otherwise, we set w
l,(p,q)
cj = 0.

As before, we can ignore the bias term β for the maximization over y ∈ Y .
A comparison with Equation (II.5) shows that Equation (II.9) is a sum of bag

of visual words contributions, one for each level and cell index (l, p, q). We bound
each of these as explained in the previous section: for a given rectangle set Y , we
calculate box regions containing the intersection and union of all grid cells yl,(p,q) that

can occur for any y ∈ Y . Calling these y
l,(p,q)
∪ and y

l,(p,q)
∩ , we obtain an upper bound

for a cell’s contribution by adding all weights of the feature points with positive

weights w
l,(p,q)
cj that fall into y

l,(p,q)
∪ and the weight of all feature points with negative

weights that fall into y
l,(p,q)
∩ . An upper bound f̂ for f is obtained by summing

the bounds for all levels and cells. If we make use of two integral images per triplet
(l, p, q), evaluating f̂(Y ) becomes an O(1) operation. This shows that for the spatial
pyramid representation, efficient localization using ESS is also possible.

II.3.3 Prototype Vectors

It is also possible to compute bounds for finding regions of an image that most
closely match a prototype vector, or one of a set of such vectors. Formally, we wish
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to maximize

f(h) = max
i
−‖h− hi‖2, (II.10)

where hi are the prototype vectors. If we can bound from below ‖h− hi‖2, we can
compute this for all prototype vectors and take the maximum of their negated lower
bounds. We note that we can upper bound and lower bound the number of features
that will fall into each bin of the histogram, hj, by counting the number of features
belonging to the jth cluster in y∪ and y∩, respectively. These upper and lower
bounds can in turn can be computed efficiently using integral histograms Porikli
(2005). We will denote the upper bound of the jth entry of h for a given rectangle

set Y as h
Y

j , and the lower bound hYj . We now can write the upper bound of the
quality function as

f̂(Y ) = max
i
−
∑
j


(
hij − h

Y

j

)2

for h
Y

j < hij

0 for hYj ≤ hij ≤ h
Y

j(
hYj − hij

)2
for hij < hYj .

(II.11)

We will see, however, in Section II.4.1 that we can even more efficiently maximize
this expression in the case that there is more than one prototype vector by searching
over different rectangle subsets for each prototype.

II.3.4 Nonlinear Additive Classifiers

In this section, we will first discuss general strategies for applying ESS to kernelized
objectives. Specifically, we will show that one can automatically apply ESS for any
kernel for which we can upper and lower bound a single kernel evaluation. We
will then show how to construct such upper and lower bounds for the histogram
intersection kernel and χ2-distance. The former is popular in the context of the
pyramid match kernel Grauman and Darrell (2007). The latter has been used e.g.
for nearest-neighbor based classifiers Schaffalitzky and Zisserman (2001), but by
setting k(h, h′) = −χ2(h, h′), it can also be used as the kernel of an SVM classifier.

Kernelized Objectives

Kernelized objectives are of the form

f(x, y) = β +
∑
i

αik(x|y, xi) (II.12)

and result from training any number of supervised, unsupervised, or semi-supervised
algorithms. By giving a template for which to apply ESS to the results of these
objectives, a large and powerful family of techniques can be employed in object
localization. We assume only that upper and lower bounds are computable for a
given kernel, k, that can be computed from x and Y . We will denote these k(x, Y, xi)
and k(x, Y, xi), respectively. We can break up the summation in Equation (II.12)
into terms for which αi is negative, and terms for which it is positive. A valid bound
that fulfills the requirements in Equations (II.3) and (II.4) is

f̂(Y ) =
∑
αi<0

αik(x, Y, xi) +
∑
αi>0

αik(x, Y, xi). (II.13)



32 Chapter II

It is therefore sufficient that bounds be computable for the individual kernel evalu-
ations in order for ESS to be applied. However, we may be able to obtain tighter
bounds, and compute them faster, by exploiting knowledge of the structure of the
kernel, as we have in Section II.3.1 in the case of the linear kernel. Had we not
exploited the linearity of the kernel in distributing the sum, we could have done the
following. Making use of the fact that histograms contain only positive entries, we

can upper bound a single inner product by 〈hY , hi〉, and lower bound the same inner
product by 〈hY , hi〉. These bounds can then be applied in the construction given in
Equation (II.13). Were we to do so, however, the bound would be looser, and we
would have to resort to integral histograms rather than a single integral image in
order to compute it relatively efficiently. We can see then that exploiting additional
known structure in the kernel can be advantageous for computing tight and compu-
tationally efficient bounds. It is nontrivial to do this in general and important future
work will involve the design of such bounds for families of kernels not explored here.

(Generalized) Histogram Intersection Kernel

The generalized histogram intersection kernel Boughorbel et al. (2005) is defined as

k(h, h′) =
∑
j

[min(hj, h
′
j)]

γ. (II.14)

where γ > 0 is a normalization parameter. For γ = 1 we obtain the ordinary
histogram intersection measure Swain and Ballard (1991); Barla et al. (2003). To
use this kernel for ESS localization, we need to construct bounds for

f(y) =
∑
i

αi
∑
j

[min(hij, h
y
j )]

γ, (II.15)

where hi are the training histograms, hy is the histogram of the cropped image x|y,
and y varies within a candidate set Y . As before, we have ignored the SVM’s bias
term.

Using the same upper and lower bounds on individual histogram bins as were
introduced in Section II.3.3, we obtain

min(hj, h
Y
j ) ≤ min(hj, h

y
j ) ≤ min(hj, h

Y

j ) (II.16)

with equality in the situation that Y = {y}. This implies that for any γ > 0, we
can now bound the summands in Equation (II.14) from above and from below by

[min(hj, h
Y
j )]γ ≤ [min(hj, h

y
j )]

γ ≤ [min(hj, h
Y

j )]γ. (II.17)

Using these upper and lower bounds on the single kernel evaluation, we can apply
the kernel bounding framework given in Equation (II.13).

χ2-distance and kernel

The χ2-distance between two histograms is calculated from the squared distance
between the bins, reweighted in a data dependent way. In contrast to the kernels
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used thus far, it is common to normalize the histograms before calculating their
distance, giving them the properties of empirical probability distributions:

χ2(h, h′) =
∑
j

(pj − p′j)2

pj + p′j
(II.18)

with pj = 1∑
j hj

hj and p′j ≡ 1∑
j h
′
j
h′j. To construct a bound over a set of boxes

Y , we use the unnormalized bounds on the bin entries, h
Y

j and hYj , to bound the
normalized entries:

pY
j

=
1

max{1, hYj +
∑

j′ 6=j h
Y

j′}
hYj , (II.19)

pYj =
1

max{1, hYj +
∑

j′ 6=j h
Y
j′}
h
Y

j . (II.20)

Each component of the χ2-distance is bounded from below by

min
y∈Y

(pj − pyj )2

pj + pyj
≥


(pj − pYj )2/(pj + pY

j
) for pj < pY

j
,

0 for pY
j
≤ pj ≤ pYj ,

(pj − pYj )2/(pj + pYj ) for pj > pYj ,

(II.21)

The negative sum of these expressions fulfills the properties in Equations (II.3)
and (II.4) for a quality function f(y) = −χ2(h, hy). As the negative of the χ2 dis-
tance is also a kernel Schölkopf and Smola (2002), we may compute an upper bound
in analogy to Equation (II.21) and apply the framework given in Equation (II.13)
for quality functions computed from a kernelized algorithm.

Although the bounds in this section require more computation than in the linear
cases, they can nevertheless be evaluated efficiently by using integral histograms
Porikli (2005). However, this comes at the expense of highly increased memory us-
age, which can become prohibitive for very large codebooks. A promising alternative
method has been suggested by Maji et al. (2008), who derived an efficient evaluation
of the quality function based on interchanging the order of summations in Equa-
tions (II.15). A similar construction should be possible for the bound calculation as
well.

II.3.5 Quality bounds by interval arithmetic

Another powerful approach to obtain quality bounding functions for nearly arbitrary
quality function is interval arithmetic, see e.g. Moore (1966); Hickey et al. (2001).
It allows computation with uncertain quantities, in our case the intervals used to
represent rectangle sets. Breuel (2003) applied this idea to a specific quality function
for the detection of geometric objects in line drawings.

An advantage of interval arithmetic is the reduced human effort in constructing
a bound and a reduced risk of error in implementing it. With existing class or tem-
plate libraries, interval computations can be performed transparently, with the same
routines that perform single evaluations of the quality function. This is achieved
by replacing scalar values with the interval data type, and redefining arithmetic
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operations appropriately such that the output of an operation on intervals is itself
an interval. A drawback of this approach is that interval arithmetic is sensitive to
the order of operations. An example of this is that, for intervals A, B, and C, the
intervals given by A(B + C) and AB + AC are not necessarily equivalent. In fact
A(B + C) ⊆ AB + AC, but in general the automatic optimization of the order of
operations in interval arithmetic is nontrivial Moore (1966); Hickey et al. (2001).

II.4 Extensions of ESS

Several extensions of the basic ESS search scheme are possible in order to provide
additional functionality and speed. One can add a term to the objective function
that depends only on the shape of the rectangle. This can be interpreted as a prior
on the size or aspect ratio of the box. Provided this term can also be efficiently
bounded, as is the case for a joint Gaussian prior over size and aspect ratio (or
monotonic functions thereof).

ESS as formulated in the previous sections is limited in that it selects only one
location for an object per image. In the case that multiple objects exist, it is de-
sirable to find all of them. Perhaps the simplest method is to apply Algorithm II.1
repeatedly. Once an object is found, the feature points that lie within the detected
rectangle can be removed and the search restarted. Alternately, a non-maximum
suppression step can be employed and the search continued after the first detection.
The bounding function would then need to appropriately decrease the score of re-
gions of the search space that are repeated detections of the same object. Sliding
window approaches typically use such a non-maximum suppression step to avoid
repeated detections by averaging overlapping detections or some other heuristic,
e.g. Viola and Jones (2004).

II.4.1 Simultaneous ESS for Multiple Images and Classes

In the cases of multi-class classification, or content based image retrieval from a
database of images, one does not need to maximize only one objective function in a
single image. Rather, multiple objectives and/or multiple images can be combined
into a single branch and bound search. Formally, this can be written as

(yopt, xopt, ωopt) = argmax
y∈Y, ω∈Ω

x∈{x1,...,xn}

fω(x, y), (II.22)

where each fω is a quality function for a class ω from a set of classes Ω that are to
be detected, and x ranges over all images in an image collection {x1, . . . , xN}. The
use of multiple prototype vectors in Section II.3.3 is a special case of this setting.

One could näıvely apply ESS to each combination of objective function and image
and maximize over the resulting scores, but this would result in an unnecessary
computational burden. By combining the maximizations into a single best first
branch and bound search, we do not have to explore objectives or images that
are less promising than others. To do so, each entry in the priority queue must
store the current rectangle set, the index to the objective function, as well as an
identifier of which image is represented. To initialize the queue, we insert a node
for each combination of image and priority function. We can keep a pointer to
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the relevant data structures that can be used for efficient bound computation, e.g.
integral images or histograms. As the search progresses unpromising combinations
of image and objective will languish at the end of the queue and will not be explored,
while promising images and objectives will be explored quickly.

In retrieval scenarios, one is interested not only in the single best result, but e.g.
the top N images containing an object. This is possible by continuing the search
after an object is found. When a maximum has been found, we can remove the
states corresponding to the detected image from the queue and continue the search
until N regions have been detected.

It may or may not be possible to compute bounds over subsets of Ω or {x1, . . . , xN}
in order to further speed up the search by avoiding entirely the evaluation of certain
quality functions or images. To do so, one must exploit the relationship between
elements of Ω, or between images. Since these in general are arbitrary sets, such a
relationship may not exist. However, there may be cases for which bounds can be
computed, e.g. in video sequences where subsequent frames are strongly correlated.

II.5 Application I: Localization of Arbitrary Object Cate-
gories

To demonstrate the speed and accuracy of ESS, we first look at its performance
on several benchmark datasets for object localization. The system we have em-
ployed uses a support vector machine classifier trained on a bag of visual words
representation with a linear kernel. This is the same setup that was presented in
Section II.3.1. A bag of visual words representation makes no assumptions about the
geometric layout of feature points within an image as all relative spatial information
between feature points is disregarded. As a result, the system can be applied to
object categories that have relatively high variability in object pose and orientation.
More geometrically rigid object classes could benefit from a kernel that incorporates
spatial information, while color and edge information is also not utilized. Despite
the relatively simple feature representation, we show in the subsequent sections that
ESS performs well when compared to both sliding window classifiers that use the
same representation, as well as the state of the art in the literature and competitions
that use arbitrary feature representations.

II.5.1 PASCAL VOC 2006 dataset

We first report bag of visual word based localization on the cat and dog categories
of the PASCAL VOC 2006 dataset Everingham et al. (2006a). Figure II.3 gives
several examples. The dataset contains realistic images mostly downloaded from
the Internet and taken from a wide variety of cameras, photographers, scenes, and
objects. Images containing at least one instance of any of ten categories are included
in the dataset. There are often multiple objects per scene, and often multiple cate-
gories. The dataset contains 5,304 natural images, which are split into training and
validation parts, on which all algorithm development is performed, and a test part
that is reserved for the final evaluation. 1,503 images in the set show at least one
cat or dog. In total, there are 1,739 object instances.

To represent the images we extract SURF features Bay et al. (2006) from keypoint
locations and from a regular grid and quantize them using a 1000 entry codebook
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Figure II.3: Example images of cat (top) and dog (bottom) categories of PASCAL VOC
2006 dataset. Objects occur in different sizes and poses, and multiple object instances are
possible within one images. Objects are also frequently occluded or truncated.

that was created by k-means clustering a random subset of 50,000 descriptors. As
positive training examples for the SVM we used the ground truth bounding boxes
that are provided with the dataset. As negative training examples we sampled
4,500 box regions from images with negative class label and from locations outside
of the object region within positively labeled images. From this we trained a support
vector machine with a linear kernel, using the validation part of the dataset to select
regularization parameter C ∈ {10−3, . . . , 103}. For simplicity we have only returned
one detection per image, both in the sliding window setup and in ESS.

ESS vs. Sliding Window Localization

In this section, we evaluate the relative performance of ESS as compared to stan-
dard sliding window localization. We compare the techniques for several variants
of sliding window sampling with regard to four criteria: (i) we measure the relative
number of evaluations between ESS and sliding windows, (ii) we measure the ratio
of the resulting scores of the quality function, (iii) we compare the degree of overlap
between the solutions found for ESS and sliding windows, and (iv) we measure the
relative accuracy of the detections based on the overlap between the detected regions
and ground truth.

While ESS does an exhaustive search over all possible bounding boxes, sliding
window techniques must inevitably sample from the space of possible boxes. This
results in a design decision that consists of selecting the scales, aspect ratios, and
locations of the bounding boxes to evaluate. Rather than selecting just one sliding
window setup, we have taken the approach of comparing five different variants that
have been designed to span a range of representative design choices. We denote
them SW1, . . . , SW5 and give full specifications in Table II.1. The setups were
chosen to lie within the range of parameter settings reported in the literature Dalal
and Triggs (2005); Laptev (2006); Viola and Jones (2004). As we will see, they
tend to have a slightly higher number of average classifier evaluations than ESS, but
remain computationally tractable.

In our first comparison, we plot the relative speed of ESS against the five sliding
window setups. In order to be independent of the hardware and implementation
choices, we measure runtime by the number of quality function evaluations per-
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maximal/minimum window size size-ratio
SW1 full image to 32 · (

√
AR× 1√

AR
)

√
2

SW2 full image to 32 · (
√
AR× 1√

AR
) 1.10

SW3 full image to 16 · (
√
AR× 1√

AR
) 1.05

SW4 full image to 20 · (
√
AR× 1√

AR
)

√√
2

SW5 full image to 24 · (
√
AR× 1√

AR
) 1.10

aspect ratios (AR) stepsize x/y
SW1 2l for l ∈ {−2,−1.5, . . . , 2} 1/16 of window width/height
SW2 2l for l ∈ {−2,−1.5, . . . , 2} 1/4 of window width/height
SW3 2l for l ∈ {−2,−1.5, . . . , 2} 1/2 of window width/height
SW4 2l for l ∈ {−2,−1.75, . . . , 2} 1/8 of window width/height
SW5 2l for l ∈ {−3,−2.75, . . . , 3} 1/8 of window width/height

Table II.1: Parameters of sliding window searches for Figures II.4, II.5, II.6, II.7, and
II.8. The parameters are chosen similar to typical methods from the literature Dalal and
Triggs (2005); Laptev (2006); Viola and Jones (2004) and adapted to achieve run times
comparable with ESS.

formed. As the bound used in ESS needs to evaluate a sum of positive weight
contributions and negative weight contributions, each of which has to be computed
separately, evaluations of the quality bound in Equation (II.6) are counted twice.
The total number of evaluations depends on the size of the image, and in the case of
ESS on the contents of the image as well. We have therefore used the scale free ratio
of function evaluations, nESS/nSWi , for each set of sliding window parameters. The
results of applying the detectors for the cat and dog categories to the test set of the
PASCAL VOC 2006 dataset are shown in Figure II.4. The first two setups require
an equal or smaller number of evaluations on average as compared with ESS, while
the other three setups require more evaluations on average. By comparison a näıve
approach based on an exhaustive evaluation of all possible bounding boxes would
require on average over 5 × 105 times as many evaluations as ESS. This indicates
that any sliding window detector will only be able to sample a very small fraction
of possible candidate windows in order to remain computationally feasible.

In the second comparison, we compare the value of the quality function at the
result found by both detection methods. The scores of the locations returned by
ESS are guaranteed to be at least as high as those returned by the sliding window
classifiers, and will be larger with high probability. We use the score of the location
found by ESS, f(yESS), as a reference and compare the score of the sliding window
by the ratio between the ESS score and the sliding window score, f(ySWi)/f(yESS).
The closer these values are to 1, the closer the score of the quality function at
the location returned by the sliding window approach is to the true maximum.
Figure II.5 plots histograms of the resulting ratios. In each case, a few images show
a marked difference between the objective found by ESS and that found by the
sliding window classifier, while the difference on average ranges between five and
seven percent.

The third comparison consists of measuring the overlap between the boxes re-



38 Chapter II

(a) SW1 (b) SW2

(c) SW3 (d) SW4

(e) SW5

Figure II.4: Comparison of ESS against sliding window search, detecting classes cat and
dog in all test images of PASCAL VOC 2006 (5372 images). From II.4(a) to II.4(e), slid-
ing window with five different parameter sets (SW1, . . . , SW5, see Table II.1) are shown.
Histogram of relative number of evaluations nESS

nSWi
(log scale). In the blue region, slid-

ing window required more evaluations than ESS. In the red region, ESS required more
evaluations. The green bar indicates the mean ratio.
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(a) SW1 (b) SW2

(c) SW3 (d) SW4

(e) SW5

Figure II.5: Comparison of ESS against sliding window search, detecting classes cat and
dog in all test images of PASCAL VOC 2006 (5372 images). From II.5(a) to II.5(e), sliding
window with five different parameter sets (SW1, . . . , SW5, see Table II.1) are shown. His-
togram of relative scores f(ySWi )

f(yESS)
, where yESS = argmaxy∈Y f(y). The green bar indicates

the mean ratio.
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turned by the sliding window approaches, and those returned by ESS. This gives
an indication of how similar or different the bounding boxes are that are returned
by the different approaches. We would expect that for images that have a clear
maximum of the discriminant function the overlap would be large despite the fact
that sliding window approaches will not explore the entire space. However, if, for
example, there are two locations within the space of bounding boxes with slightly
different scores, the bounding box predicted by the sliding window approach can be
located in a completely different part of the image from that predicted by ESS. In
Figure II.6, histograms of area overlaps between the detections returned by ESS,
and those returned by the sliding window approaches,

overlap
(
ySWi , yESS

)
=

Area
(
ySWi ∩ yESS

)
Area (ySWi ∪ yESS)

, (II.23)

are plotted. The majority of the regions returned by ESS and the sliding window
approaches have a significant degree of overlap, but there are a few images for which
the methods return regions that share no pixels at all, and a larger number for which
the overlap is less than 0.5. The average overlap ranged from 0.69 to 0.75.

Our comparison results thus far give an indication of the relative speed, the
relative objective value, and the degree of overlap of the bounding boxes returned
by ESS and the sliding window methods. We now look at the ultimate measure
of quality of the detections returned by ESS and the sliding window setups, the
degree of overlap between the detections, yESS and ySWi , and the ground truth
provided with the dataset, ygt. We show these results in two complimentary ways.
Figure II.7 shows a scatter plot of the overlaps, with the score of the ESS prediction
shown on the vertical axis, and the score of the sliding window prediction shown on
the horizontal. In these graphs, data points above the diagonal indicate that ESS
achieved a better overlap with ground truth than the sliding window techniques, and
data points below the diagonal indicate the opposite. In Figure II.8, we show the
distribution of the differences in the overlap scores. Negative values indicate that
ESS performed better than the sliding window result, and positive values indicate
that the sliding window approach did better. In both plots, the cases where ESS
achieves a higher overlap with the ground truth than the sliding window approach
are drawn in blue, and the opposite cases in red. Figures II.7 and II.8 show that
ESS consistently gives better average performance than any of the sliding window
setups.

Overall, the Figures II.4, II.5, II.6, II.7, and II.8 allow us to draw several con-
clusions. First, since ESS is globally optimal whereas sliding window methods only
approximate the bounding box of true maximum score, it is not surprising that
ESS achieves better quality scores. As expected, we additionally see that the more
boxes a given sliding window approach uses, the slower the runtime of that method.
We would expect that there would be a positive correlation between the number of
window evaluations and the overlap with the optimal rectangles that are returned
by ESS. If Figures II.5 and II.6 show such a trend at all, it is very weak. One
hypothesis for this is that any feasible sliding window technique can only sample a
very small fraction of the possible rectangles within an image. Even if the sliding
window sampling performs several times the number of evaluations required by ESS,
it still cannot sample enough locations to begin to converge to the results given by
ESS. This would indicate that for sliding window approaches to give similar per-
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(a) SW1 (b) SW2

(c) SW3 (d) SW4

(e) SW5

Figure II.6: Comparison of ESS against sliding window search, detecting classes cat
and dog in all test images of PASCAL VOC 2006 (5372 images). From II.6(a) to II.6(e),
sliding window with five different parameter sets (SW1, . . . , SW5, see Table II.1) are shown.
Histogram of box overlap between regions yESS maximizing the quality function and the
regions ySWi found by sliding window search: Area(yESS∩ySWi )

Area(yESS∪ySWi ) . The green bar indicates
the mean ratio.
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(a) SW1 (b) SW2

(c) SW3 (d) SW4

(e) SW5

Figure II.7: Comparison of ESS and sliding window search to ground truth, combined
for cat and dog test images of PASCAL VOC 2006 (758 detections). From II.7(a) to
II.7(e), sliding window with five different parameter sets (SW1, . . . , SW5, see Table II.1)
are shown. ESS overall achieves higher overlap with ground truth than any of the sliding
window methods. Scatter plot of overlaps between detected boxes for ESS yESS and sliding
window ySWi with ground truth ygt: Area(ySWi∩ ygt)

Area(ySWi∪ ygt) vs. Area(yESS∩ ygt)
Area(yESS∪ ygt) . Boxes that ESS

estimates better than SWi are drawn in blue, others in red. ρ is the resulting correlation
coefficient.
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(a) SW1 (b) SW2

(c) SW3 (d) SW4

(e) SW5

Figure II.8: Comparison of ESS and sliding window search to ground truth, combined
for cat and dog test images of PASCAL VOC 2006 (758 detections). From II.8(a) to
II.8(e), sliding window with five different parameter sets (SW1, . . . , SW5, see Table II.1)
are shown. ESS overall achieves higher overlap with ground truth than any of the sliding
window methods. Histogram of differences in overlap with ground truth: Area(ySWi∩ ygt)

Area(ySWi∪ ygt) −
Area(yESS∩ ygt)
Area(yESS∪ ygt) . The bins for which ESS provides a better estimate than SWi are drawn
in blue, the others in red. The green bar indicates the mean difference.



44 Chapter II

formance to ESS, they would have to expend a disproportionately high amount of
computation.

The results of the comparisons of the various sliding window techniques to ground
truth also do not show a clear trend. Sliding window methods with fewer evaluations
do not automatically achieve worse detection results than those with many evalua-
tions as shown in Figures II.7 and II.8. All of the sliding window methods return
boxes that on average have a significantly lower overlap with the ground truth than
the rectangles found by ESS. We conclude that ESS is not only significantly faster
than sliding window approaches, but also gives improved accuracy. We note, how-
ever, that the objective function is far from perfect for the given task. As we can see
in Figure II.7, a large proportion of the detections returned by ESS had less than a
50% overlap score with the ground truth bounding box. While a more sophisticated
kernel may improve results, the sampling of positive and negative image regions used
to train the support vector machine objective may not be the ideal way to create
a discriminant function. We have recently addressed this shortcoming in Blaschko
and Lampert (2008b) and discuss the problem in detail in the next chapter.

Numerical Evaluation of ESS with a Linear Bag of Words Kernel

To give a numerical indication of the overall performance of ESS, we use two vari-
ations on the evaluation criteria specified by the PASCAL VOC 2006 dataset Ev-
eringham et al. (2006a). We first evaluate the performance on a pure localization
task consisting of detecting instances of an object only in images known to contain
at least one instance of the object category of interest (either cats or dogs). We
then evaluate the performance of the system applied to all test images regardless of
whether they contain an instance of the object or not. In both cases, we evaluate
the location returned by ESS using the usual method of determining whether it is a
correct match: a detected bounding box is counted as correct if the area of overlap
with the corresponding ground truth box is at least 50% of the area of their union.
To order the detections, we employ a ranking function that indicates how likely they
are to contain an instance of the object. For these experiments, we have simply used
the value of the discriminant function applied to the entire image to rank detections,
though a more intelligent choice would likely improve the precision of the system.

Figure II.9 contains precision–recall plots of the results for the first case, in
which ESS is applied only to images that contain the class of interest. As one moves
from left to right along the curves, more images are included in the evaluation, with
points toward the left corresponding to only including high confidence results, which
tends towards higher precision. The rightmost points on the curves correspond to
returning a single detection for every image. When making a prediction for every
single image, approximately 55% of all cats bounding boxes returned are correct
and 47% of all dog boxes. At the same time, ESS correctly localizes 50% of all cats
in the dataset and 42% of all dogs. The precision and recall differ because images
can contain more than one instance of an object category.

The second evaluation scenario enables a direct comparison between the detec-
tions returned by ESS in this setup and the state of the art on this dataset. The
PASCAL VOC 2006 evaluation most commonly consists of a combined classification
and localization task in which the localization system is applied to all images in the
test set regardless of whether the object is present, and the resulting detections are
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(a) cat class

(b) dog class

Figure II.9: Recall–Precision curves of ESS bag of visual words localization for classes cat
(Figure II.9(a)) and dog (Figure II.9(b)) of the VOC 2006 dataset. Training was performed
either on VOC 2006 (solid line) or VOC 2007 (dashed).
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ranked as above. False detections should ideally be ranked below true detections, re-
sulting in a higher precision–recall curve. To measure performance, we have used the
evaluation software provided in the PASCAL VOC challenges: from the precision–
recall curves, the average precision (AP) measure is calculated, which is the average
of the maximal precision within different intervals of recall, see Everingham et al.
(2006a) for details. Table II.2 shows the results for ESS with a linear support vector
machine, along with results that have been achieved in the PASCAL VOC 2006
challenge, or in later publications. The average precision values in Table II.2 are not
comparable to those in Figure II.9 as the experiments use different test sets. ESS
with a relatively simple feature representation outperforms the best results, both
from the competition and in the post competition literature.

II.5.2 PASCAL VOC 2007 challenge

An even larger and more challenging dataset than PASCAL VOC 2006 is the recent
VOC 2007 dataset Everingham et al. (2007). It consists of 9,963 images with 24,640
object instances. We trained a system analogous to the one described above, now
using the 2007 training and validation set, and let the system participate in the
PASCAL VOC challenge 2007 on multi-view object localization. In this challenge,
the participants did not have access to the ground truth of the test data, but had to
submit their localization results, which were then evaluated by the organizers. This
form of evaluation allows the comparison different methods on a fair basis, making
it less likely that the algorithms are tuned to the specific dataset.

With AP scores of 0.240 for cats and 0.162 for dogs, ESS clearly outperformed
the other participants on these classes, with the runner-up scores being 0.132 for
cats and 0.126 for dogs. By adopting a better image-based ranking algorithm, we
were able improve the results to 0.331 and 0.177 respectively. Overall, the ESS
system won five out of twenty categories in the competition, placing the method
within the top three participants (two submissions won six categories each) despite
using a much simpler feature representation than its competitors.

As an additional experiment, we took the system that had been trained on the
2007 training and validation data, and evaluated its performance on the 2006 test
set. The results are included in Figure II.9. The combination achieves higher recall
and precision than the one trained on the 2006 data, showing that ESS with a
bag-of-visual-words kernel generalizes well even across datasets and is able to make
positive use of the larger number of training images available in the 2007 dataset.

method \ data set cat dog
ESS w/ bag-of-visual-words kernel 0.223 0.148
Viitaniemi/Laaksonen Viitaniemi and Laaksonen (2006) 0.179 0.131
Shotton/Winn Everingham et al. (2006a) 0.151 0.118

Table II.2: Average Precision (AP) scores on the PASCAL VOC 2006 dataset. ESS
outperforms the best previously published results.
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II.6 Application II: Localization of Rigid Objects Using a
Spatial Pyramid Kernel

For rigid and typically man-made object classes like cars or buildings, more infor-
mative representations have been developed than the bag of visual words used in
the previous section. In particular hierarchical spatial pyramids of features have
recently proven very successful Lazebnik et al. (2006); Chum and Zisserman (2007).
However, these previous approaches were usually limited to relatively few pyramid
levels (typically 2 or 3), and relied on a heuristic local search to optimize the lo-
calization objective Chum and Zisserman (2007). In this section, we will show that
ESS can efficiently perform localization with pyramids as fine-grained as 10 × 10
grid cells without the risk of missing promising object locations.

II.6.1 UIUC Car Dataset

For the evaluation of ESS using the hierarchical spatial pyramid kernel, we have
employed the UIUC Car database Agarwal and Roth (2002); Agarwal et al. (2004),
which consists of images containing instances of cars from a single (side) viewpoint.
The rigid structure of the cars in the data set indicates that the geometric layout of
local feature points will be very informative to the localization task. In total there
are 1050 training images of fixed size, 100× 40 pixels. 550 of these training images
show a car in side-view, while the others show other scenes or parts of objects. There
are two test sets of images with varying resolution. The first consists of 170 images
containing 200 cars from a side view, each instance being 100×40 pixels. The other
test set consists of 107 images containing 139 cars with sizes ranging between 89×36
pixels and 212 × 85 pixels. We use the dataset in its original setup Agarwal et al.
(2004) where the task is pure localization. Ground truth annotation and evaluation
software is provided as part of the dataset.

II.6.2 Experiments

From the UIUC Car training images, we extract SURF descriptors Bay et al. (2006)
at different scales on a dense pixel grid and quantize them using a 1000 entry code-
book that was generated from 50,000 randomly sampled descriptors. Since the
training images already either exactly show a car or not at all, we do not require
additional bounding box information and train the SVM with a hierarchical spatial
pyramid kernel on the full training images. We vary the number of pyramid levels
between L = 1 (i.e. a bag of visual words without pyramid structure) and L = 10.
The most fine-grain pyramid therefore uses all grids from 1× 1 to 10× 10, resulting
in a total of 385 local histograms. Figure II.10 shows an example image from the
training set and the learned classifier weights from different pyramid levels, visu-
alized by their total energy over the histogram bins. On the coarser levels, more
weight is assigned to the lower half of the car region than to the upper half. On
the finer pyramid levels, informative spatial regions are emphasized, e.g. the wheels
become very discriminative whereas the top row and the bottom corners are almost
ignored.

At test time, we search for the best three car subimages in every test image as
described in Section II.4. For each detection we use the corresponding quality score
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(a) Example of a training image with its pyramid sectors for levels 2, 4 and 6.

(b) The energy of corresponding pyramid sector weights as learned by the SVM (normalized per level).
Feature points in brighter regions in general have higher discriminative power.

Figure II.10: Spatial Pyramid Weights.

as a confidence value. We evaluate the system’s performance by a 1−precision vs.
recall curve, as is standard for the UIUC Car dataset. Figure II.11 shows the curves
for varying numbers of pyramid levels. Table II.3 contains error rates at the point
where precision equals recall, comparing the results of ESS with the currently best
published results. Note that the same dataset has also been used in many other
setups, e.g. using different training sets or evaluation methods. Since the results of
these are not comparable, we do not include them.

The table shows that localization with a flat bag of visual words kernel (corre-
sponding to the degenerate case of a single level hierarchical spatial pyramid) works
acceptably for the single scale test set but poorly for multi scale. Using ESS with
a finer spatial grid improves the error rates significantly, and using a 10 × 10 hier-
archical spatial pyramid clearly outperforms all previously published approaches on
the multi scale dataset and all but one on the single scale dataset.

Although a direct sliding window approach with fixed window size 100 × 40 is
computationally feasible for the single scale test set, there is no advantage over
ESS. The latter requires even fewer classifier evaluations on average, and is able to
additionally handle the multi-scale test set.

method \data set single scale multi scale
ESS w/ 10× 10 pyramid 1.5 % 1.4 %
ESS w/ 4× 4 pyramid 1.5 % 7.9 %
ESS w/ bag-of-visual-words 10.0 % 71.2 %
Agarwal et al. Agarwal et al. (2004) 23.5 % 60.4 %
Fergus et al. Fergus et al. (2003) 11.5 % —
Leibe et al. Leibe et al. (2008) 2.5 % 5.0%
Fritz et al. Fritz et al. (2005) 11.4 % 12.2%
Mutch/Lowe Mutch and Lowe (2006) 0.04 % 9.4%

Table II.3: Error rates on UIUC Cars dataset at the point of equal precision and recall.
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(a) Single-scale detection.

(b) Multi-scale detection.

Figure II.11: Results on UIUC Cars Dataset (best viewed in color): 1−precision vs recall
curves for bag-of-features and different size spatial pyramids. The curves for single-scale
detection (Figure II.11(a)) become nearly identical when the number of levels increases
to 4 × 4 or higher. For the multi scale detection the curves do not saturate even up to a
10× 10 grid (Figure II.11(b)).
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II.7 Application III: Image Part Retrieval Using a χ2-Distance
Measure

In this section, we explore the use of ESS for image part retrieval. In this setting,
we wish to retrieve images from a database for which a portion of the target image
matches a query. This allows searches not only for objects or persons, but also for
trademarked symbols in Internet image collections or in video archives.

II.7.1 χ2-distance for Content Based Image Retrieval

We adopt a query-by-example framework similar to Chang and Fu (1980); Sivic and
Zisserman (2003), where the query is a region in an image, and we are interested
in all frames or scenes in a video containing similar regions. For this, we use ESS
to do a complete nearest-neighbor comparison between the query and all boxes in
all database images. In contrast to previously proposed approaches, ESS allows
the system to rely on arbitrary similarity measures between regions, not just on
the number of co-occurring features. In our example, we choose the χ2-distance,
which has shown good performance for histogram-based retrieval and classification
tasks Schiele and Crowley (1996). Specifically, we use the unnormalized variant χ2

u,
as this takes into account the total number of features and therefore (indirectly) the
region size.1

We first formulate the retrieval problem in an optimization framework by defining
the localized similarity between a query region q with bag of visual words histogram
hq and an image x as

f(x) = max
y∈Y

−χ2
u(hq, hy), (II.24)

where hy is the histogram for the subimage y of x and χ2
u(hq, hy) is calculated as

χ2
u(hq, hy) =

∑
j

(hqj − h
y
j )

2

hqj + hyj
. (II.25)

The retrieval task is now to identify the N images with highest localized similarity
to q as well as the region within each of them that best matches the query.

Because Equation (II.24) consists of a maximization over all subregions in an
image, we can optimize over y ∈ Y using ESS. To construct the required bound, we
modify the construction for the χ2-distance in Section II.3.4 to not normalize the
histograms prior to computing the χ2 distance. In analogy to Equation (II.21), each
summand in Equation (II.25) is bounded from below by

(hqj − h
y
j )

2

hqj + hyj
≥


(hqj − h

y
j )

2/(hqj + hyj ) for hqj < hyj ,

0 for hyj ≤ hqj ≤ h
y

j ,

(hqj − h
y

j )
2/(hqj + h

y

j ) for hqj > h
y

j ,

(II.26)

and their negative sum bounds −χ2
u(h

q, hy) from above.

1This is in contrast to the normalized version where the histogram bins are normalized prior to com-
puting the χ2 distance (Equation (II.18)).
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II.7.2 Experiments

We demonstrate the performance of ESS for localized retrieval by applying it to
10242 keyframes of the full-length feature movie “Ferris Bueller’s Day Off.” Each
frame is 880×416 pixels large. We extract SURF descriptors Bay et al. (2006) from
keypoint locations, from a regular grid, and from random locations in the image
and quantize them using a 1000 entry codebook. As a result, each keyframe is
represented by 40,000–50,000 codebook entries.

For a given query region, ESS is used to return the 100 images containing the
most similar regions. Figure II.15 shows a query region and the search results.
Because keyframes within the same scene or for repeated shots tend to look very
similar, we show only one image per unique scene. ESS reliably identifies the Red
Wings logo in different scenes regardless of strong background variations. Within
the top 100 retrieval results there are no false positives.

In total, the search required 1.7 × 108 evaluations of the quality bound, which
corresponds to approximately 170,000 per detection and 16,521 per image in the
database. For images that were retrieved in the top 100, on average 57,000 eval-
uations per performed, while images that were not selected required only 16,100
evaluations on average. This shows that ESS successfully concentrated its effort on
the promising images while not wasting computational resources on images that did
not contain the query. In contrast, when running ESS on every keyframe separately,
a total 1.04×1011 evaluations were required. While for the top 100 images, the num-
ber of evaluations is identical to those for ESS, the images that were not selected on
average required 1.03 × 106 per image, that is more than 600 times as many as in
the case of joint branch and bound optimization. This number would have been even
higher had we not heuristically restricted the maximal number of quality function
evaluations to 2 million per image.

Figure II.12 shows the number of evaluations required to find the global maxi-
mum in each individual frame against the maximal score of the quality function in
Equation (II.24). The 100 images with largest scores are marked in red and the oth-
ers in blue. Images with high similarity to the query region require a markedly lower
number of evaluations of the quality bound than images with a low similarity. For
images with high similarity, the branch and bound search is able to quickly target
the region of the search space corresponding to a match with the query. For images
that do not fill the query well, the quality function is typically rather flat, and many
regions have quality scores similar to the optimum. Consequently, many regions
have to be checked before the algorithm can be sure that the global maximum has
been identified.

One can further conclude from the shape of the point cloud in Figure II.12 that,
as images with a score of −1750 or higher required few function evaluations, they
are likely to contain the logo used as the query. In fact, the first false positive
detection occurs at position 177 with a score of −1680. In the range between −1680
and −1750, 8 of 23 detections are false positives. In the range of −1750 and −1800,
37 out of 47 detections are from images not showing the query logo. For images
with scores below −1800, the logo occurs only sporadically, and is often strongly
distorted or truncated.

In Figure II.13, we plot the total number of evaluations required to find the top
20 image regions for varying database sizes. For these experiments, we reduce the
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database by sub-sampling it in regular intervals. Counter-intuitively, the runtime
decreases with more images in the database.2 The reason for this is that a larger
dataset is more likely to contain more clear matches to which the branch and bound
search quickly converges.

Figure II.14 shows the number of evaluation required by ESS with a joint priority
queue to return different number of images from the dataset of 10242 keyframes.
For the first 19 hits, the number of evaluations grows very slowly, indicating that the
search was relatively easy and that branch and bound optimization quickly focused
in on the true locations. A check of the results shows that these detections are in
fact near duplicates of the query region.

II.8 Summary

In this chapter, we have explored the computational problems of object localization
using a sliding window framework. By formulating the sliding window optimiza-
tion problem as a branch and bound search, we are able to achieve a five orders of
magnitude speedup in the time required for an exhaustive sliding window approach.
The resulting algorithm, ESS, performs fast object localization and localized re-
trieval with results equivalent to an exhaustive evaluation of a broad class of quality
functions over all rectangular regions in an image down to single pixel resolution.
In contrast sliding window approaches have to resort to sub-sampling techniques
to achieve a feasible runtime. ESS retains global optimality resulting in improved
localization in addition to increased computational efficiency.

The gain in speed and robustness allows the use of better local classifiers with a
more peaked objective function (e.g. support vector machines with spatial pyramid
kernels and prototype vectors using the χ2-distance). We have demonstrated excel-
lent results on the UIUC Cars dataset, the PASCAL VOC 2006 dataset, and in the
VOC 2007 challenge. We also showed how to search over large image collections in
sub-linear time for the task of content based image retrieval.

In future work, we plan to study the applicability of ESS to further kernel-based
classifiers. Although we could simply bound kernel evaluations using the framework
in Equation (II.13), we would like to incorporate additional knowledge about the
structure of the kernel in order to compute tighter and more computationally efficient
bounds. Additionally, ESS can also be parallelized to make better use of multi-
core CPUs, high performance computing clusters, or computation on the GPU. See
Gendron and Crainic (1994) for a survey of techniques to parallelize branch and
bound algorithms.

In the next chapter, we will continue with the topic of kernel methods for object
localization. We address a significant issue that arises when applying ESS to kernel-
ized objectives. Specifically, how does one train an objective function that is tuned
to the problem of object localization? For the experiments reported in Section II.5
we have heuristically sampled training regions from positive and negative regions of
the image. We will next show how to construct a training procedure that uses all
subwindows in an image, including those that partially overlap a detection.

2Since every image has to be inserted into the search queue, the method cannot be sub-linear in the
sense of computation complexity. However, the observed growth of run times is decreasing: the more
images the database contains, the fewer operations are necessary in total to find the top N .
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Figure II.13: Performance of multi-image ESS search for varying database sizes. With
a larger database, the number of evaluations required to identify the 20 best matching
images decreases.

Figure II.14: Performance of multi-image ESS search for varying number of images to
return. The first 19 results require very little computational effort. Subsequent retrievals
require an increasing amount of computational effort.
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(a) Red Wings logo used as query

(b) Results of local search with χ2-distance

Figure II.15: Image retrieval using a local χ2 distance: the Red Wings logo (Fig-
ure II.15(a)) is used as a query region. Figure II.15(b) shows the top results (one image
per scene). The logo is detected in 9 different scenes. There are no false positives amongst
the top 100 detected regions within 10242 keyframes.





Chapter III

Learning to Localize Objects with
Structured Output Regression

As we have discussed in the previous chapter, sliding window classifiers are among
the most successful and widely applied techniques for object localization. However,
training is typically done in a way that is not specific to the localization task. First
a binary classifier is trained using a sample of positive and negative examples, and
this classifier is subsequently applied to multiple regions within test images. In
this chapter, we propose instead to treat object localization in a principled way by
posing it as a problem of predicting structured data: we model the problem not as
binary classification, but as the prediction of the bounding box of objects located
in images. The use of a joint-kernel framework allows us to formulate the training
procedure as a generalization of an SVM, which can be solved efficiently. We further
improve computational efficiency by using variants of the branch-and-bound strategy
for localization presented in the previous chapter during both training and testing.
Experimental evaluation on the PASCAL VOC and TU Darmstadt datasets show
that the structured training procedure improves performance over binary training as
well as the best previously published scores, while a series of controlled experiments
show the robustness of structured output training to various kinds of noise, and to
little training data.

Sliding window classifiers train a discriminant function and then scan over loca-
tions in the image, often at multiple scales, and predict that the object is present in
subwindows with high score. This approach has been shown to be very effective in
many situations, but suffers from two main disadvantages: (i) it is computationally
inefficient to scan over the entire image and test every possible object location, and
(ii) it is not clear how to optimally train a discriminant function for localization. We
have addressed the first issue in the preceding chapter by using a branch-and-bound
optimization strategy to efficiently determine the bounding box with the maximum
score of the discriminant function. We address the second issue in this chapter
by proposing a training strategy that specifically optimizes localization accuracy,
resulting in much higher performance than systems that are trained, e.g., using a
support vector machine.

In particular, we utilize a machine learning approach called structured learning.
Structured learning is the problem of learning to predict outputs that are not sim-
ple binary labels, but instead have a more complex structure. By appropriately
modeling the relationships between the different outputs within the output space,
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we can learn a classifier that efficiently makes better use of the available training
data. In the context of object localization, the output space is the space of possible
bounding boxes, which can be parameterized, e.g., by four numbers indicating the
top, bottom, left, and right coordinates of the region as we have done in the previous
chapter. The coordinates can take values anywhere between 0 and the image size,
thus making the setup a problem of structured regression rather than classification.
Furthermore, the outputs are not independent of each other; the right and bottom
coordinates have to be larger than the top and bottom coordinates, and predict-
ing the top of the box independently of the left of the box will almost certainly
give worse results than predicting them together. Additionally, the score of one
possible bounding box is related to the scores of other bounding boxes; two highly
overlapping bounding boxes will have similar objectives. By modeling the problem
appropriately, we can use these dependencies to improve performance and efficiency
of both the training and testing procedures.

This chapter is largely based on Blaschko and Lampert (2008b) and includes
additional exposition and experiments. The rest of the chapter is organized as fol-
lows. In Section III.1 we discuss previous work in object localization and structured
learning and its relation to the proposed method. In Section III.2 we introduce the
optimization used to train our structured prediction model. The loss function is pre-
sented in Section III.2.1, while a joint kernel map for object localization is presented
in Section III.2.2. We discuss a key component of the optimization in Section III.3.
Experimental results are presented in Section III.4 and discussed in Section III.5.
Finally, we summarize the chapter contributions in Section III.6.

III.1 Related Work

Localization of arbitrary object classes has been approached in many ways in the
literature. Constellation models detect object parts and the relationship between
them. They have been trained with varying levels of supervision and with both
generative and discriminative approaches Fergus et al. (2007); Bouchard and Triggs
(2005); Felzenszwalb et al. (2008). A related approach has been to use object parts
to vote for the object center and then search for maxima in the voting process using
a generalized Hough transform Leibe et al. (2004). This approach has also been com-
bined with a discriminatively trained classifier to improve performance Fritz et al.
(2005). Alternatively, Viitaniemi and Laaksonen (2006) have taken the approach
of computing image segments in an unsupervised fashion and cast the localization
problem as determining whether each of the segments is an instance of the object.
Sliding window classifiers are among the most popular approaches to object local-
ization Bosch et al. (2007); Chum and Zisserman (2007); Dalal and Triggs (2005);
Ferrari et al. (2008); Rowley et al. (1996); Viola and Jones (2001); Lampert et al.
(2008a), and the work presented in this paper can broadly be seen to fall into this
category. The sliding window approach consists of training a classifier, e.g. using
neural networks Rowley et al. (1996), boosted cascades of features Viola and Jones
(2001), exemplar models Chum and Zisserman (2007); Lampert et al. (2008a), or
support vector machines Bosch et al. (2007); Dalal and Triggs (2005); Ferrari et al.
(2008); Lampert et al. (2008a), and then evaluating the trained classifier at various
locations in the image. Each of these techniques rely on finding modes of the classi-
fier function in the image, and then generally use a non-maximal suppression step to
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avoid multiple detections of the same object. This of course requires on a classifier
function that has modes at the location of objects and not elsewhere. However,
while discriminatively trained classifiers generally have high objectives at the ob-
ject location, they are not specifically trained for this property and the modes may
not be well localized. One approach to address this problem is to train a classifier
iteratively in a boosting fashion: after each step, localization mistakes are identi-
fied and added to the training data for the next iteration, e.g. Dalal and Triggs
(2005); Rowley et al. (1996). These techniques, however, cannot handle the case
when earlier iterations partially overlap with the true object because incorporating
these locations would require either an overlap threshold or fractional labels. In
contrast, we propose an approach that uses all bounding boxes as training examples
and that handles partial detections by appropriately scaling the classifier loss. As we
show in subsequent sections, we can efficiently take advantage of the structure of the
problem to significantly improve results by using this localization specific training.

III.2 Object Localization as Structured Learning

Given a set of input images {x1, . . . , xn} ⊂ X and their associated annotations
{y1, . . . , yn} ⊂ Y , we wish to learn a mapping g : X 7→ Y with which we can
automatically annotate unseen images. We consider the case where the output
space consists of a label indicating whether an object is present, and a vector in-
dicating the top, bottom, left, and right of the bounding box within the image:
Y ≡ {(ω, t, b, l, r) | ω ∈ {+1,−1}, (t, b, l, r) ∈ R4}. For ω = −1 the coordinate
vector (t, b, l, r) is ignored. We learn this mapping in the structured learning frame-
work Tsochantaridis et al. (2004); Bakır et al. (2007) as

g(x) = argmaxy f(x, y) (III.1)

where f(x, y) is a discriminant function that should give a large value to pairs (x, y)
that are well matched. The task is therefore to learn the function f , given that it
is in a form that the maximization in Equation (III.1) can be done feasibly. We
address the issue of maximization as in the previous chapter, and will give problem
specific details in Section III.3.

To train the discriminant function, f , we use the following generalization of the
support vector machine Tsochantaridis et al. (2004)

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi (III.2)

s.t. ξi ≥ 0, ∀i (III.3)

〈w, φ(xi, yi)〉 − 〈w, φ(xi, y)〉 ≥ ∆(yi, y)− ξi, ∀i,∀y ∈ Y \ yi (III.4)

where f(xi, y) = 〈w, φ(xi, y)〉, φ(xi, y) is a joint kernel map implicitly defined by the
kernel identity k ((x, y), (x′, y′)) = 〈φ(x, y), φ(x′, y′)〉,

w =
n∑
i=1

∑
y∈Y\yi

αiy (φ(xi, yi)− φ(xi, y)) , (III.5)

and ∆(yi, y) is a loss function that decreases as a possible output, y, approaches
the true output, yi. This optimization is convex and, given appropriate definitions
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of φ(xi, y) and ∆(yi, y), does not significantly differ from the usual SVM primal
formulation except that there are an infeasibly large number of constraints in Equa-
tion (III.4) (the number of training samples times the size of the output space, which
can even become infinite, e.g. in the case of continuous outputs). We note, how-
ever, that not all constraints will be active at any time, which can be seen by the
equivalence between Equation (III.4) and

ξi ≥ max
y∈Y\yi

∆(yi, y)− (〈w, φ(xi, yi)〉 − 〈w, φ(xi, y)〉) , ∀i (III.6)

which indicates that the αiy in Equation (III.5) will be sparse. At training time, we
can use constraint generation to solve the optimization in Equations (III.2)–(III.4).
Estimates of w are trained using fixed subsets of constraints, and new constraints are
added by finding the y that maximize the right hand side of Equation (III.6). This
alternation is repeated until convergence, generally with a small set of constraints
compared to the size of Y . We therefore can efficiently optimize the discriminant
function, f , given a choice of the loss ∆(yi, y) and the kernel k ((x, y), (x′, y′)), as
well as a method of performing the maximization in Equation (III.6). We discuss the
loss function in Section III.2.1, while we discuss the joint kernel in Section III.2.2. A
branch-and-bound procedure for the maximization step is explained in Section III.3.

III.2.1 Choice of Loss Function

The choice of loss function ∆(yi, y) should reflect the quantity that measures how
well the system performs. We have chosen the following loss, which is constructed
from the measure of area overlap used in the VOC challenges Everingham et al.
(2006b,a, 2007)

∆(yi, y) =

{
1− Area(yi

⋂
y)

Area(yi
⋃
y)

if yiω = yω = 1

1−
(

1
2
(yiωyω + 1)

)
otherwise

(III.7)

where yiω ∈ {−1,+1} indicates whether the object is present or absent in the im-
age. ∆(yi, y) has the desirable property that it is equal to zero in the case that
the bounding boxes given by yi and y are identical, and is 1 if they are disjoint. It
also has several favorable properties compared to other possible object localization
metrics Hemery et al. (2007), e.g. invariance to scale and translation. The formu-
lation in Equation (III.7) is attractive in that it scales smoothly with the degree
of overlap between the solutions, which is important to allow the learning process
to utilize partial detections for training. In the case that yi or y indicate that the
object is not present in the image, we have a loss of 0 if the labels agree, and 1
if they disagree, which yields the usual notion of margin for an SVM. This setup
automatically enforces by a maximum margin approach two conditions that are im-
portant for localization. First, in images that contain the object to be detected,
the localized region should have the highest score of all possible boxes. Second, in
images that do not contain the objects, no box should get a high score.

III.2.2 A Joint Kernel Map for Localization

To define the joint kernel map, φ(xi, y), we note that kernels between images gen-
erally are capable of comparing images of differing size Bosch et al. (2007); Ferrari
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et al. (2008); Eichhorn and Chapelle (2004); Lazebnik et al. (2006). Cropping a
region of an image and then applying an image kernel is a simple and elegant ap-
proach to comparing image regions. We use the notation φx(x |y) to denote the
representation of x|y in the Hilbert space implied by a kernel over images, kx(·, ·).
If y indicates that the object is not present in the image, we consider φx(x |y) to
be equal to the 0 element in the Hilbert space, i.e. for all x′, kx(x|y, x′) = 0. The
resulting joint kernel map for object localization is therefore

k((x, y), (x′, y′)) = kx(x|y, x′|y′). (III.8)

Image kernels generally compute statistics or features of the two images and then
compare them. This includes for example, bag of visual words methods Nowak
et al. (2006), groups of contours Ferrari et al. (2008), spatial pyramids Bosch et al.
(2007); Lazebnik et al. (2006), and histograms of oriented gradients Dalal and Triggs
(2005). An important property of the joint kernel defined in Equation (III.8) is that
overlapping image regions will have common features and related statistics. This
relationship can be exploited for computational efficiency, as we presented in the
previous chapter and outline in the subsequent section.

III.3 Maximization Step

Since the maximization in Equation (III.6) has to be repeated many times during
training, as well as a similar maximization at test time (Equation (III.1)), it is
important that we can compute this efficiently. Specifically, at training time we
need to compute

max
y∈Y\yi

∆(yi, y) + 〈w, φ(xi, y)〉

= max
y∈Y\yi

∆(yi, y) +
n∑
j=1

∑
ỹ∈Y

αjỹ
(
kx(xj|yj , xi|y)− kx(xj|ỹ, xi|y)

)
(III.9)

We therefore need an algorithm that efficiently maximizes

max
y∈Y\yi

yω=yiω=1

−Area(yi
⋂
y)

Area(yi
⋃
y)

+
n∑
j=1

∑
ỹ∈Y

αjỹ
(
kx(xj|yj , xi|y)− kx(xj|ỹ, xi|y)

)
(III.10)

and for testing, we need to maximize the reduced problem

max
y∈Y
yω=1

n∑
j=1

∑
ỹ∈Y

αjỹ
(
kx(xj|yj , xi|y)− kx(xj|ỹ, xi|y)

)
(III.11)

The maximizations in Equations (III.10) and (III.11) can both be solved using a
sliding window approach. In Equation (III.10), the maximization finds the location
in the image that has simultaneously a high score for the given estimate of w and
a high loss (i.e. low overlap with ground truth). This is a likely candidate for a
misdetection, and the system therefore considers it as a training constraint with the
margin scaled to indicate how far the estimate is from ground truth. Because of
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the infeasible computational costs involved in an exhaustive search, sliding window
approaches only evaluate the objective over a subset of possible bounding boxes and
therefore give only an approximate solution to Equation (III.9). This can be viewed

as searching for solutions in a strongly reduced set Ŷ ⊂ Y , where Ŷ includes only
the bounding boxes that are evaluated in the sliding window search. However, it is
more efficient to use a branch-and-bound optimization strategy as in the previous
chapter, which gives the maximum over the entire set, Y . We adapt this approach
here to the optimization problems in Equations (III.10) and (III.11).

The branch and bound strategy consists of keeping a priority queue of sets of
bounding boxes, which is ordered by an upper bound on the objective function. The
algorithm is guaranteed to converge to the globally optimal solution provided the
upper bound is equal to the true value of the quantity to be optimized when the
cardinality of the set of bounding boxes is equal to one. The sets of bounding boxes,
Ỹ , are represented compactly by minimum and maximum values of the top, bottom,
left, and right coordinates of a bounding box. This procedure is fully specified
given bounding functions, ĥ, for the objectives in Equations (III.10) and (III.11)
(Algorithm II.1). We note that Equation (III.11) is simply a linear combination of
kernel evaluations between xi|y and the support vectors, and therefore is in exactly
the form that was solved for in the previous chapter. Similarly, Equation (III.10)
can be bounded by the sum of the bound for Equation (III.11) and a bound for the
overlap term

∀ỹ ∈ Ỹ ,−Area(yi
⋂
ỹ)

Area(yi
⋃
ỹ)
≤ −

miny∈Ỹ Area(yi
⋂
y)

maxy∈Ỹ Area(yi
⋃
y)
. (III.12)

These bounds fulfill the conditions in Equations (II.3) and (II.4) and therefore the
solution given by the branch and bound optimization will be optimal.

III.4 Evaluation

For evaluation we performed experiments on two publicly available computer vi-
sion datasets for object localization: TU Darmstadt cows and PASCAL VOC 2006
(Figures III.1 and III.2).

III.4.1 Experimental Setup

For both datasets we represent images by sets of local SURF descriptors Bay et al.
(2006) that are extracted from feature point locations on a regular grid, on salient

Figure III.1: Example images from the TU Darmstadt cow dataset. There is always
exactly one cow in every image, but backgrounds vary.
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Figure III.2: Example images from the PASCAL VOC 2006 dataset. Images can contain
multiple object classes and multiple instances per class.

points and on randomly chosen locations. We sample 100,000 descriptors from
training images and cluster them using K-means into a 3,000-entry visual code-
book. Subsequently, all feature points in train and test images are represented by
their coordinates in the image and the ID of the corresponding codebook entry.
Similar representations have been used successfully in many scenarios for object
and scene classification Bosch et al. (2007); Chum and Zisserman (2007); Lampert
et al. (2008a); Lazebnik et al. (2006); Nowak et al. (2006).

To show the performance of the proposed structured training procedure, we
benchmark it against binary training, which is a commonly used method to ob-
tain a quality function for sliding window object localization Bosch et al. (2007);
Chum and Zisserman (2007); Dalal and Triggs (2005); Ferrari et al. (2008); Rowley
et al. (1996); Viola and Jones (2001); Lampert et al. (2008a). It relies on first train-
ing a binary classifier and then using the resulting real-valued classifier function as
quality function. As positive training data, one uses the ground truth object boxes.
Since localization datasets usually do not contain boxes with explicitly negative class
label, one samples boxes from background regions to use as the negative training set.
In our setup, we implement this sampling in a way that ensures that negative boxes
do not overlap with ground truth boxes or each other by more than 20%. The binary
training consists of training an SVM classifier with a kernel that is the linear scalar
product of the bag-of-visual-words histograms. The SVM’s regularization parameter
C and number of negative boxes to sample per image are free parameters.

Our implementation of the proposed structured training makes use of the SVMstruct
Tsochantaridis et al. (2004) package. It uses a constraint generation technique as
explained in Section III.2 to solve the optimization problem in Equation (III.2).
This requires iterative identification of example-label pairs that most violate the
constraints in Equation (III.6). We solve this by adapting the branch and bound
optimization used in ESS (Chapter II) to include the loss term ∆. As in the case
of binary training, we use a linear image kernel (Equation (III.8)) over the space of
bag-of-visual-word histograms. The C parameter in Equation (III.2) is the only free
parameter of the resulting training procedure.

III.4.2 Results: TU Darmstadt cows

The TU Darmstadt cow dataset consists of 111 training and 557 test images of side
views of cows in front of different backgrounds, see Figure III.1 Magee and Boyle
(2002). The dataset is useful to measure pure localization performance, because each
training and test image contains exactly one cow. For other datasets, performance
is often influenced by the decision whether an object is present at all or not, which is
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problem of classification, not of localization. We train the binary and the structured
learning procedure as described in the previous section. First we perform 5-fold
cross validation on the training set, obtaining the SVM’s regularization parameter
C between 10−4 and 104 for both training procedures, and the number of negative
boxes to sampled between 1 and 10 for the binary training.

Afterwards, the systems are retrained on all images in the training set. The
resulting systems are applied to the test set, which had not been used in any of
the previous steps. We predict three1 possible object locations per image and rank
them by their detection score (Equation (III.1)). Figure III.3 shows the resulting
distribution of weights for an example image in the test set.

The object localization step detect in each image the rectangular region that
maximizes the sum of scores, which is a 4-dimensional search space. We visualize the
quality function with contour lines of different two-dimensional intersections through
the parameter space (Figure III.4). The left block of plots shows the quality function
for the upper left corner when we fix the lower right corner of the detection box to
the ground truth location. The right block shows the quality for the box center
when fixing the box dimensions to their ground truth size. Structured training
achieves tighter contours, indicating a stronger maximum of the quality function at
the correct location.

This effect is also shown numerically: we calculate precision–recall curves using
the overlap between detected boxes and ground truth as the criterion for correct
detections (for details see Fritz et al. (2005)). Table III.1 contains the performance
at the point of equal-error rate. The structured detection framework achieves per-
formance superior to binary training and to the previously published methods.

III.4.3 Results: PASCAL VOC 2006

The PASCAL VOC 2006 dataset Everingham et al. (2006a) contains 5,304 images
of 10 object classes, evenly split into a train/validation and a test part. The images
were mostly downloaded from the Internet and then used for the PASCAL challenge
on Visual Object Categorization in 2006. The dataset contains ground truth in the
form of bounding boxes that were generated manually. Since the images contain
natural scenes, many contain more than one object class or several instances of
the same class. Evaluation is performed based on precision-recall curves for which
the system returns a set of candidate boxes and confidence scores for every object
category. Detected boxes are counted as correct if their area overlap with a ground

1This number was chosen based on the statistics of the number of instances of each class in the training
set.

ISM LK LK+ISM binary training structured training
EER 96.1% 95.3% 97.1% 97.3% 98.2%

Table III.1: Performance on TU Darmstadt cows dataset at equal error rate (EER). Binary
training achieves result on par with the best previously reported implicit shape model
(ISM), local kernels (LK) and their combination (LK+ISM) Fritz et al. (2005). Structured
training improves over the previous methods, though the standard test procedure for this
dataset does not allow us to evaluate statistical significance.
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Figure III.4: Contour plots of the learned quality function for a TU Darmstadt cow test
image (best viewed in color). The left images correspond to the quality function learned
by binary training, the right images show structured training. The top row shows the
quality of the upper left corner when fixing the bottom right corner at its ground truth
coordinates. The bottom row shows the quality of the center point when keeping the
box dimensions fixed at their ground truth values. Structured learning achieves tighter
contours, indicating less uncertainty in localization.
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truth box exceeds 50% Everingham et al. (2006a).
We use the binary and the structured procedures to train localization systems

for all 10 categories. Parameter selection is done separately for each class, choosing
the parameter C and number of boxes to sampled based on the performance when
trained on the train and evaluated on the val part of the data. The range of
parameters is identical to the TU Darmstadt cow dataset. The resulting system is
then retrained on the whole train/val portion, excluding those which are marked as
difficult in the ground truth annotation. For the structured training, we only train
on the training images that contained the object to be detected, while for the binary
training negative image regions were sampled from images with and without the
object present.

The VOC dataset is strongly unbalanced, and in per-class object detection, most
test images do not contain the objects to be detected at all. This causes the sliding
window detection scores to become an unreliable measure for ranking. Instead, we
calculate confidence scores for each detection from the output of a separate SVM
with χ2-kernel, based on the image and box cluster histograms. The relative weight
between box and image kernel is determined by cross-validation. The same resulting
classifier is used to rank the detection outputs of both training methods.

Figures III.5, III.6, and III.7 show the resulting precision–recall curves on the test
data for 3 example categories (results for all categories are shown in Table III.2).
For illustration, we also show some example detections of the detection system
based on structured learning. From the curves we can see that structured training
improves both precision and recall of the detection compared to the binary training.

Table III.2 summarizes the results in numerical form using the average precision
(AP) evaluation that was also used in the original VOC challenge. For reference,
we also give the results of the best results in the 2006 challenge and the best results
from later publications. Object localization with structured training achieves new
best scores for 5 of the 10 categories. In all but one category, it achieved better
results than the binary training, often by a large margin. In the remaining category,
binary training obtains a better score, but in fact both training methods improve
over the previous state-of-the-art.

III.4.4 Results: Robustness to Noise and Few Training Images

In this section, we explore the relative performance of training using sampled neg-
ative examples, and training by structured output regression. We have again used
the PASCAL VOC 2006 dataset, but have modified the data in three different ways
in order to measure the robustness of the localization systems to various kinds of
data degradation. The systems were trained on the motorbike category using mod-
ified versions of the training set. The resulting systems were then tested on the
test set, which had been modified in the same way. As we are simply interested in
relative performances of the resulting localization systems, we have not trained a
separate ranking function, and instead rank the detections by the resulting score of
the localization objective. Support vector machine training using sampled negative
examples was performed as in Section III.4.3 by sampling three negative regions
from the training images per positive training region. We have also used the same
feature representation as in the previous experiments.

In the first set of experiments, we have systematically reduced the size of the
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(a) Precision–recall curves for the PASCAL VOC bicycle cate-
gory.

(b) Example detections for the PASCAL VOC bicycle category.

Figure III.5: Precision–recall curves and example detections for the PASCAL VOC
bicycle category. Structured training improves both, precision and recall. The red box
is counted as a mistake by the VOC evaluation routine because it is too large.
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(a) Precision–recall curves for the PASCAL VOC bus category.

(b) Example detections for the PASCAL VOC bus category.

Figure III.6: Precision–recall curves and example detections for the PASCAL VOC bus
category. Structured training improves both, precision and recall.
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(a) Precision–recall curves for the PASCAL VOC cat category.

(b) Example detections for the PASCAL VOC cat category.

Figure III.7: Precision–recall curves and example detections for the PASCAL VOC cat
category. Structured training improves both, precision and recall. The red box is counted
as a mistake by the VOC evaluation routine because it contains more than one object.
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bike bus car cat cow

structured training .472 .342 .336 .300 .275
binary training .403 .224 .256 .228 .114

best in competition .440 .169 .444 .160 .252

post competition .498† .249‡ .458† .223∗ —

dog horse m.bike person sheep

structured training .150 .211 .397 .107 .204
binary training .173 .137 .308 .104 .099

best in competition .118 .140 .390 .164 .251
post competition .148∗ — — .340+ —

Table III.2: Average Precision (AP) scores on the 10 categories of PASCAL VOC 2006.
Structured training consistently improves over binary training, achieving 5 new best scores.
In one category binary training achieves better results than structured training, but both
methods improve the state-of-the-art. Results best in competition were reported in Evering-
ham et al. (2006a). Results post competition were published after the official competition:
†Crandall and Huttenlocher (2007), ‡Chum and Zisserman (2007), ∗Lampert et al. (2008a),
+Felzenszwalb et al. (2008). In competition and post competition results vary in perfor-
mance due to a combination of different algorithms and different feature representations,
while binary training and structured training results used the same representation.

training set. The number of positive training regions varies in the set {155, 75, 50, 30,
20, 10}. This should give an indication of the relative performance of structured
output regression on less and less data. The resulting precision-recall curves are
depicted in Figure III.8. We can see that not only is the average precision and the
maximum recall higher for structured output regression for every number of positive
training samples, but that the performance of structured output regression degrades
more elegantly as the number of training examples is reduced. One would expect
from these curves that both structured output regression and the support vector
machine trained with the sampling strategy would benefit from a larger number of
training examples.

The second set of experiments test the robustness of the systems to variations
in appearance. This is achieved by changing the codebook ID of randomly sampled
feature points. We do this for varying numbers of feature points per image for both
the training and testing data. The number of randomized features varies in the set
{0, 500, 1000, 1500, 2000, 2500, 3000}. For comparison, a histogram of the number of
features in each image is given in Figure III.9. The resulting precision-recall curves
are depicted in Figure III.10. We see that, though performance degrades in both
the structured output system and in the binary classifier system, structured output
regression always dominates the performance of the sampled training.

Finally, we have run experiments where random noise has been added to the
coordinates of the feature points. This tests the systems relative performance when
degradations in image geometry are added. We have added zero mean Gaussian
noise with varying standard deviations. Specifically, we report results for experi-
ments where the standard deviation ranged in the set σ ∈ {0, 1, 4, 7, 10, 13} pixels.
Figure III.11 shows the precision-recall curves given for varying σ. Interestingly, the
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(a) Precision–recall curves using structured output regression.

(b) Precision–recall curves using sampled negative image regions.

Figure III.8: Precision–recall curves for the PASCAL VOC motorbike category. Curves
are calculated for varying numbers of positive training instances. In Figure III.8(a), struc-
tured output regression is employed, while in Figure III.8(b) negative image regions are
sampled and a support vector machine is trained.
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Figure III.9: A histogram for the PASCAL VOC motorbike category of the number of
features found in images.

performance of structured output regression does not appear to be affected by these
amounts of spatial noise. If anything, performance increases slightly. This may in-
dicate that there is some slight overfitting with regard to the spatial configuration of
the features. The same trend can be noted for the support vector machine training.

III.5 Discussion

We have seen in the previous sections that the structured training approach can
improve the quality of object detection in a sliding window setup. Despite the simple
choice of a single feature set and a linear image kernel, we achieve results that often
exceed the state-of-the art. In the following we discuss several explanations for its
high performance.

First, structured learning can make more efficient use of the possible training
data, because it has access to all possible boxes in the input images. During the
training procedure, it automatically identifies the relevant boxes and incorporates
them into the training set, focusing the training on locations where mistakes would
otherwise be made. This is in contrast to binary training in which the ground truth
object boxes are used as positive examples and negative examples are sampled from
background regions. The number of negative boxes is by necessity limited in order
balance the training set and avoid degenerate classifiers. However, sampling negative
regions prior to training is done “blindly,” without knowing if the sampled boxes
are at all informative for training.

A second explanation is based on the observation that machine learning tech-
niques work best if the statistical sample distribution is the same during the training
phase as it is during the test phase. For the standard sliding window approach that
has been trained as a binary classifier, this is not the case. The training set only
contains examples that either completely show the object to be detected, or not at
all. At test time, however, many image regions have to be evaluated that contain
portions of the object. Since the system was not trained for such samples, one can
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(a) Precision–recall curves using structured output regression.

(b) Precision–recall curves using sampled negative image regions.

Figure III.10: Precision–recall curves for the PASCAL VOC motorbike category. Curves
are calculated for varying amounts of noise in the appearance of the local features. In Fig-
ure III.10(a), structured output regression is employed, while in Figure III.10(b) negative
image regions are sampled and a support vector machine is trained.
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(a) Precision–recall curves using structured output regression.

(b) Precision–recall curves using sampled negative image regions.

Figure III.11: Precision–recall curves for the PASCAL VOC motorbike category. Curves
are calculated for varying amounts of noise in the coordinates of the local features. Stan-
dard deviations are given in terms of pixels.
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only hope that the classifier function will not assign any modes to these regions. In
contrast, structured training is able to appropriately handle partial detections by
scaling the loss flexibly, depending on the degree of overlap to the true solution. Note
that a similar effect cannot easily be achieved for a binary iterative procedure: even
when iterating over the training set multiple times and identifying wrong detections,
only completely false positive detections can be reinserted as negative examples to
the training set and made use of in future iterations. Partial detections would re-
quire a training label that is neither +1 or −1, and binary classifiers are not easily
adapted to this case.

Our current implementation using the SVMstruct package spends the majority
of its computation time in the constraint generation step. As a result, training
times on a 2.1 GHz CPU are on the order of several hours per category. SVMstruct
performs constraint generation by iterating through training samples one by one
in order to find violated constraints. This is highly inefficient and use of a joint
branch and bound optimization to find maximally violated constraints across all
images is a promising approach for reducing the computational cost of the training
procedure (c.f. Section II.4.1). In contrast, the test procedure remains the same as
in Chapter II and is highly efficient.

III.6 Summary

In this chapter, we have proposed a new method for object localization in natural
images. Our approach relies on a structured-output learning framework that com-
bines the advantages of the well understood sliding window procedure with a novel
training step that avoids prediction mistakes by implicitly taking into account all
possible object locations in the input image.

The approach gives superior results compared with binary training because it
uses a training procedure that specifically optimizes for the task of localization,
rather than for classification accuracy on a training set. It achieves this in several
ways. First, it is statistically efficient; by implicitly using all possible bounding
boxes as training data, we can make better use of the available training images.
Second, it appropriately handles partial detections in order to tune the objective
function and ensure that the modes correspond exactly to object regions and is not
distracted by features that may be discriminative but are not representative for the
object as a whole.

The structured training procedure can be solved efficiently by constraint gen-
eration, and we further improve the computational efficiency of both training and
testing by employing a branch-and-bound strategy to detect regions within the image
that maximize the training and testing subproblems. The resulting system achieves
excellent performance, as demonstrated by new best results on the TU Darmstadt
cow and PASCAL VOC 2006 datasets. Furthermore, we have shown improved ro-
bustness as compared with a binary training strategy to various types of noise, and
to small numbers of training images.

In future work, we will explore strategies for speeding up the training procedure.
We have only explored a margin rescaling technique for incorporating the variable
loss, while a promising alternate formulation would rely on slack rescaling. We plan
an empirical evaluation of these alternatives, along with a comparison to related
adaptive training techniques, e.g. bootstrapping or boosted cascades. Additionally,
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it would be extremely valuable to extend this approach to include techniques for
learning appropriate feature representations that are tuned to the task of object
localization. Zien and Ong (2007) have formulated multiple kernel learning for mul-
ticlass problems, but this approach is also applicable to general structured learning
problems. Linear combinations of kernelized classifiers can be bounded by taking
the sum of their bounds, which in combination with multiple kernel learning could
lead to great improvements in localization accuracy. An interesting approach would
be to include kernels that capture spatial context. These kernels could be built on
recent work in spatial context modeling such as that described in Gupta and Davis
(2008) or Heitz and Koller (2008).

In the next chapter, we will address a different problem from object localization:
unsupervised image categorization. In this problem, we wish to categorize images
into clusters that have similar content. To do so, we first evaluate the problem in the
context of purely unsupervised clustering, comparing a large number of clustering
techniques. Taking lessons from this comparison, we develop a clustering algorithm
that is able to make use of noisy cues that indicate which kind of visual similarity
is semantically meaningful. In particular, we use collections of images that have
associated captions to learn a visual representation that improves cluster quality.
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Clustering

Image categorization is often approached in a supervised setting. The image cat-
egories are selected by hand a priori and typically involve tens to hundreds of
classes Everingham et al. (2007); Griffin et al. (2007). Other approaches involve
many human participants labeling objects in images Russell et al. (2005); von Ahn
and Dabbish (2004). Because participants are free to use any textual label, some
processing step e.g. with a language model is required to identify labels with the
same semantic meaning due to misspellings, polysemy, closely related topics, mul-
tiple languages, etc. Another strong limitation is that reliance on manually labeled
image sets forces algorithms to learn from a relatively small number of samples. To
truly scale with the range of semantic visual information experienced in a typical
collection of images, unsupervised or weakly supervised methods are required to
leverage information sources that do not require extra human effort to generate.

This chapter is based on parts of Tuytelaars et al. (2008) and on Blaschko and
Lampert (2008a). In this chapter, we tackle the problem of unsupervised and weakly
supervised image categorization through spectral methods. In Section IV.1 we look
at results from a large scale evaluation of unsupervised algorithms and see that spec-
tral clustering empirically dominates the performance of a wide variety of other tech-
niques including latent topic models for the task of image partitioning. Motivated
by this result, we generalize spectral clustering to data present in multiple modal-
ities, with the dominant example being images with text captions (Section IV.2).
The resulting algorithm, correlational spectral clustering, uses kernel canonical cor-
relation analysis (KCCA) in place of the usual maximum variance approach used in
traditional spectral clustering algorithms. We show significantly improved clustering
results when associated text data are available.

IV.1 A Comparison of Spectral Clustering and Other Un-
supervised Algorithms

In this section we report results from a comparison study of a wide range of unsu-
pervised algorithms Tuytelaars et al. (2008). A selection of baseline methods were
compared against spectral clustering algorithms and latent variable models. Baseline
methods include random assignment, k-means clustering and principal component
analysis. Latent variable models include non-negative matrix factorization and la-
tent Dirichlet allocation (see Section IV.1.3 for more details). We have chosen two
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variants of spectral clustering, which we describe in detail in Section IV.1.4. To
ensure a fair comparison, all of these algorithms use the same underlying image rep-
resentation: a simple bag-of-visual-words model that describes the image in terms
of a set of quantized local image patch descriptors. We present experiments with
several local feature detectors, various vocabulary sizes, as well as different normal-
ization schemes. The range of image representations was chosen in advance and
were held fixed for all the experiments. It is the aim that this comparison gives
information about the relative performance of various algorithms on realistic data,
and also about what feature types perform best for each of the algorithms. We focus
here on spectral clustering results and will emphasize results obtained using the best
performing set of features for each of the algorithms.

IV.1.1 Evaluation Metric

Following Sivic et al. (2005), we have chosen to evaluate the algorithms by clustering
datasets for which the presence of certain object classes is known. We can then
compare the data partition predicted by the algorithm to the true data partition
given by the presence or absence of visual objects. While it is possible that more
than one object category is present in a given image, we focus here on the simple
case where there is only one. The more general case is addressed in Tuytelaars et al.
(2008).

We therefore need a metric that measures the similarity of the predicted data
partition to the true one. Recent reviews of the literature on measures for clustering
can be found in Meila (2007); Rosenberg and Hirschberg (2007). Standard measures
for scoring clustering quality against a known data partition include purity, defined
as the mean of the maximum class probabilities for the ground truth category labels,
Q, and obtained cluster labels, C. Given variables (q, c) sampled from the finite
discrete joint space Q× C,1 this is

Purity(Q|C) =
∑
c∈C

p(c) max
q∈Q

p(q|c) (IV.1)

Because p(q, c) is unknown, we estimate it empirically from the observed frequencies.
Alternately, we can use conditional entropy, H(Q|C), between the true labels and
the predicted clusters, which is related to mutual information Cover and Thomas
(1991):

I(Q; C) = H(Q)−H(Q|C) (IV.2)

Because H(Q) is fixed for a given dataset,

argmax
C

I(Q; C) = argmin
C

H(Q|C) (IV.3)

and H(Q|C) ≥ 0 with equality only in the case that knowing the cluster id, c, allows
one to compute the label, q, with certainty, i.e. the clusters are pure. Thus, for a fixed
dataset and number of clusters, the clustering with the lowest conditional entropy
score gives the clusters most related to the true partition of the data. Note, however,
that conditional entropy scores are not comparable across different datasets because

1We have abused notation here to use Q and C to represent both the discrete space of labels over the
dataset, and also a specific instance of the labels.
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H(Q) is variable. Due to its interpretability as an information theoretic quantity,
we have chosen to report results in terms of conditional entropy rather than purity.
Note, however, that the two typically give similar results.

IV.1.2 Image Representation

We use a bag of visual words to represent images, where the visual words are given
by local features. Two scale-invariant feature detectors are used to determine the
keypoints at which the visual words are extracted, Hessian-Laplace and Harris-
Laplace Mikolajczyk and Schmid (2004), as well as dense sampling of image patches
using a regular grid over multiple scales. The dense sampling results in about 6000
features for a 640×480 image. The number of features extracted by Hessian-Laplace
or Harris-Laplace varies according to the image, but is usually much lower.

Each patch is described using non-rotation invariant SIFT Lowe (2004) and
vector-quantized using k-means. We experiments with codebooks of 1000, 5000,
and 20000 cluster centers (using the approximated k-means algorithm proposed
by Philbin et al. (2007) for the largest vocabularies). The resulting features are
collected in a histogram according to the nearest cluster center in the codebook.
Spatial information, such as the position of features in the image, or their relative
positions, is discarded.

IV.1.3 Unsupervised Methods

The literature on clustering is extensive and overviews can be found in Jain and
Dubes (1988); Jain et al. (1999); Duda et al. (2000); Xu and Wunsch (2005); von
Luxburg (2007). As is it not possible to compare against all the myriad techniques
that have been proposed, we restrict ourselves to a set of baseline algorithms, as
well as some recently developed latent variable techniques:

• Random assignment: Each image is randomly assigned to a category.

• k-means on bag of words: k-means is run 20 times and the partition of the
data with the lowest reconstruction error is used.

• k-means on L1 normalized bow: The histograms of visual word counts are first
normalized by their L1 norms and subsequently k-means is applied as above.
Normalizing by the L1 norm gives a probabilistic interpretation to the counts
in each bin.

• k-means on L2 normalized bow: As above only with the L2 norm in place of
the L1 norm.

• k-means on binarized bow: Histograms are first binarized by thresholding the
entries of each bin. Thresholds are set adaptively by using the mean of the
given feature dimension.

• k-means on tf-idf weighted bow: Histogram entries are weighted by the prod-
uct of term frequency and inverse document frequency. This is a standard
technique in bag of words information retrieval.
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• k-means on PCA of bow: We have also created additional baseline methods
by applying PCA to the above image representations. In doing so, we have
chosen to reduce the dimensionality to 20 in each case.

• Conditional Gamma-Poisson model: This is a latent variable model that corre-
sponds to a modified form of non-negative matrix factorization Canny (2004);
Lee and Seung (1999).

• Dirichlet-multinomial model: This is another latent variable model that is also
referred to as latent Dirichlet allocation Buntine (2002); Blei et al. (2003).

IV.1.4 Spectral Clustering Methods

Spectral clustering denotes a family of techniques that rely on the eigen-decomposition
of a modified similarity matrix to project the data prior to clustering. The variant
most commonly referred to as Spectral Clustering first projects the data using the
eigenvectors of an appropriately defined Laplacian followed by k-means clustering in
the projected space Shi and Malik (2000); Meila and Shi (2001); Ng et al. (2002); von
Luxburg (2007). The projection of the data based on the Laplacian can be viewed as
a variant of a well justified dimensionality-reduction technique called the Laplacian
eigenmap (LEM) Belkin and Niyogi (2003). There are similar methods based on
Kernel PCA (KPCA). In fact Laplacian eigenmaps and KPCA solve very closely
related learning problems Bengio et al. (2004). As the two variants have slightly
differing behavior depending on the employed feature representation (Tables IV.2
and IV.3, and Figure IV.1), we have included results for both. The techniques and
their relationship are discussed in the following sections.

Kernel PCA Clustering (KPCA)

KPCA performs PCA on data that are projected and centered in a Hilbert space
defined by a kernel function Schölkopf et al. (1998). In the case of a linear kernel this
is equivalent to PCA, but in the case of a RBF kernel – i.e. one that can be written in
the form k(x, x′) = f(d(x, x′)) where d is a metric – the projection enhances locality
in d and hence tends to decrease intracluster distances while increasing intercluster
ones. The linear case (PCA) is one of our baseline methods, and in order to extend
the technique to the non-linear case we have experimented with two exponential
kernels, the Gaussian kernel, which uses the standard L2 metric,

kGauss(x, x
′) = e−

1
2σ2

∑d
i=1(xi−x′i)2 (IV.4)

and the χ2-kernel, which relies on the χ2 distance:

kχ2(x, x′) = e
− 1

2σ2

∑d
i=1

(xi−x
′
i)

2

xi+x
′
i . (IV.5)

In both cases, the scale parameter σ2 is set to the mean of the unscaled exponent.
The Gaussian kernel with the standard L2 metric is commonly used in spectral
clustering algorithms Belkin and Niyogi (2003); Ng et al. (2002), while the kernel
using the χ2 distance has been shown to be particularly effective for histogram
data Chapelle et al. (1999).
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Our algorithm for clustering using kernel PCA is as follows:

Ki,j = k(xi, xj) (IV.6)

K̃ = K − 1

n
1n1TnK −

1

n
K1n1Tn +

1

n2
(1TnK1n)1n1Tn (IV.7)

(U,Σ) = eigs(K̃, dim) (IV.8)

X̃ = KUΣ−
1
2 (IV.9)

C = kmeans(X̃, dim) (IV.10)

where 1n represents an n-dimensional vector of all ones, U is a matrix whose columns
correspond to the dim largest eigenvectors of K̃, Σ is a diagonal matrix whose entries
correspond to the dim largest eigenvalues of K̃, and C is a vector containing the
cluster assignment of each image, Ci ∈ 1, . . . , dim. Equation (IV.7) is a centering
step. It ensures that the resulting kernel matrix K̃ corresponds to the dot products
of the vectors in a dataset that is centered at the origin of the Hilbert space implicitly
defined by the kernel Schölkopf et al. (1998).

Normalized Cuts Spectral Clustering (LEM)

Normalized cuts spectral clustering has the same form as KPCA clustering, but
employs an embedding based on a different interpretation of the similarity matrix.
Given a similarity matrix K, we define the unnormalized Laplacian L ≡ D − K
where D is a diagonal matrix that contains the row sums of K, and the symmet-
ric normalized Laplacian L ≡ D−

1
2LD−

1
2 . As described in Ng et al. (2002), the

normalized cuts algorithm consists of the following steps

Ki,j = k(x(i), x(j)) (IV.11)

L = D−
1
2KD−

1
2 (IV.12)

X = eigs(L, dim) (IV.13)

X̃i =
Xi

‖Xi‖
(IV.14)

C = kmeans(X̃, dim) (IV.15)

To see the relationship between this algorithm and the KPCA algorithm, we
consider also the random walks Laplacian Lrw ≡ D−1L. The eigenvectors of L and
Lrw are related in a straightforward way: λ is an eigenvalue of Lrw with eigenvector
u if and only if λ is an eigenvalue of L with eigenvector w = D

1
2u von Luxburg

(2007). The Laplacian eigenmap of Lrw is defined as the embedding of the data
that solves

min
α,αTDα=1

αTLα = min
α

αTLα

αTDα
= max

α

αTKα

αTDα
. (IV.16)

If D ≈ dI where d is some scalar, then the eigenvectors obtained from KPCA
using K will be the same as the generalized eigenvectors of Lrw as well as L. The
eigenvectors differ, however, in the case that D has a non-uniform spectrum.

Analysis of Spectral Clustering

A useful interpretation of the Laplacian Eigenmap is that if the data lie on a sub-
manifold and are uniformly and densely sampled on it, the matrix employed is a
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discrete approximation to the Laplace-Beltrami diffusion operator on the submani-
fold Belkin and Niyogi (2003). Performing k-means clustering in a linear projection
of this matrix then approximates clustering based on distances within the subman-
ifold.

Apart from the number of clusters, the only free parameter in these algorithms is
the dimensionality dim of the spectral feature space, i.e. the number of eigenvectors
kept in the dimensionality reduction. A good value for this can be estimated from
the spectrum of the kernel matrix, which is typically rapidly decreasing. Despite
the inverse square root weighting of the eigenvalues in equation (IV.9), the overall
influence of non-informative dimensions is still small (proportional to the square
root of their eigenvalue) as K itself contains a power +1 weighting of dimensions by
eigenvalues. This makes the KPCA clustering insensitive to overestimating the dim
parameter. In contrast, normalized cuts spectral clustering is more sensitive to the
right choice of dim, as all dimensions are scaled to unit length in equation (IV.14).
If dim is chosen too large, this will include directions that consists mainly of noise.

For our main experiments we set the number of dimensions equal to the number
of clusters. We also include in the subsequent section a discussion of the behavior
of the spectral clustering algorithms for varying numbers of dimensions.

IV.1.5 Experimental Evaluation on CalTech 256

We report results on 13 different test sets, each containing at 20 different object
categories selected from the CalTech 256 dataset Griffin et al. (2007). The data
set contains 256 object categories with over 80 images each, plus one category for
“image clutter.” In order to avoid overfitting to a particular test set, we present
results on several subsets of 20 categories each. First, we have manually selected 20
categories that should be reasonably well separable based on the employed feature
representation. These are listed in Table IV.1. Additionally, we report results on
12 disjoint subsets that have each been formed by grouping 20 categories together
that are consecutive by name in lexographic order. We give detailed results for the
20 selected classes, but provide also comparative results for all subsets in order to
show that the results generalize.

Detailed results for varying feature types, vocabulary size, kernel, and spectral
clustering algorithm are given in Tables IV.2 and IV.3. Because L2 normalization
dominated the performance of L1, we only include the former. The χ2 kernel seems
to consistently perform better than the Gaussian kernel. No significant differences in
performance were found between kernel PCA clustering and normalized cuts spectral
clustering.

The best overall results were obtained using all feature types and a χ2 kernel

american flag diamond ring dice fern
fire extinguisher fireworks french horn ketch 101

killer whale leopards 101 mandolin motorbikes 101
pci card rotary phone roulette wheel tombstone

tower pisa zebra airplanes 101 faces east 101

Table IV.1: 20 object categories selected manually for easy discrimination.
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features voc. size L2-KPCA-G L2-KPCA-χ2

Harris Laplace 1000 2.42± 0.02 2.32± 0.01
Hessian Laplace 1000 2.23± 0.02 2.26± 0.02
HarLap+HesLap 2000 2.06± 0.02 2.09± 0.01
Dense patches 1000 2.00± 0.01 1.81± 0.02
HarLap+dense 2000 1.79± 0.02 1.65± 0.01
HesLap+dense 2000 1.77± 0.01 1.65± 0.02
Har+Hes+dense 3000 1.73± 0.01 1.64± 0.02
Hessian Laplace 5000 2.22± 0.02 2.20± 0.02
Hessian Laplace 20.000 2.28± 0.03 2.35± 0.04

Table IV.2: Results of kernel PCA clustering using different image representations, for
the selected Caltech256 categories of Table IV.1, measured in conditional entropy (lower
is better).

features voc. size L2-LEM-G L2-LEM-χ2

Harris Laplace 1000 2.57± 0.02 2.54± 0.03
Hessian Laplace 1000 2.31± 0.01 2.25± 0.01
HarLap+HesLap 2000 2.21± 0.01 2.10± 0.02
Dense patches 1000 2.04± 0.02 1.83± 0.02
HarLap+dense 2000 1.85± 0.03 1.65± 0.05
HesLap+dense 2000 1.95± 0.03 1.62± 0.02
Har+Hes+dense 3000 1.86± 0.01 1.58± 0.02
Hessian Laplace 5000 2.33± 0.00 2.22± 0.02
Hessian Laplace 20.000 2.37± 0.03 2.29± 0.02

Table IV.3: Results of the normalized cuts spectral clustering method using different
image representations, for the selected Caltech256 categories of Table IV.1, measured in
conditional entropy (lower is better).
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with normalized cuts spectral clustering. This yielded a conditional entropy score
of 1.58 which corresponds to a remaining uncertainty on the true object category of
21.58 = 3.0 out of 20. This is the best performance of any algorithm on this test set.

Spectral clustering benefited from a large number of features. Including the dense
features especially increased performance. Larger vocabularies, however, resulted in
a slight decrease in performance.

Number of Dimensions

For the spectral clustering methods, there is a free parameter corresponding to the
number of dimensions to project in the latent space prior to the application of k-
means clustering. In the experiments presented in Tables IV.2 and IV.3, we have
fixed the number of dimensions to be the (known) number of object categories in
the data set, 20. In Figure IV.1, we explore the effect of changing this parameter.

For the Hessian Laplace features, we see that LEM saturates fairly early, and in
fact the performance gets worse with an increasing number of dimensions. This is
due to that the dimensions in the LEM embedding are not scaled by the eigenvalues
whereas in PCA and KPCA they are. It appears that the Hessian-Laplace features
do not contain very much information beyond the 15th dimension. However, the
other feature types seem to contain more information in the higher dimensions,
though the error bars on performance increase for the higher dimensions, indicating
that the process of extracting useful information from these dimensions is noisier.
In contrast PCA and KPCA saturate nicely and do not exhibit noisy behavior at
high dimensions as these dimensions are given a very low weight.

Comparison to Other Methods

Figure IV.2 shows the results across all 13 test sets for the best performing baseline,
the two spectral methods, the latent variable models, and for random assignment.
We can see that the results are fairly consistent across datasets. Spectral clustering
methods always give the best results, with LEM and KPCA giving very similar
results. The latent topic models cannot compete with spectral clustering or the best
baseline method, which consists of using all feature types and L2 normalization.
The difference between the two different topic models is not significant.

In order to give a qualitative evaluation of the clustering results, Figure IV.3
gives randomly sampled images from each of the 20 clusters determined by spectral
clustering. The partition was generated using the best performing set of features, as
indicated in Table IV.3. Each row of Figure IV.3 represents a given cluster, sorted
in increasing order of their conditional entropies. This means that the most pure
clusters are displayed first. To the right of each row is indicated the conditional
entropy and the number of images assigned to that cluster. It is interesting to note
that the algorithm has chosen to split up larger classes at the expense of merging
elements of smaller, less distinct classes. Motorcycles, aeroplanes, and faces seem to
be well separated, while other categories are less distinct and have been merged with
similar appearing categories. This behavior is expected given that the normalized
cuts objective seeks to find clusters of similar size. This assumption however is not
exactly borne out in the data as the number of images of each class varies.

Overall, spectral clustering has given the best results of the various families of
clustering algorithms that have been compared in this study. We expect that this
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(c) Harris-Laplace + Hessian-Laplace + Dense

Figure IV.1: Conditional entropy as a function of the dimensionality of the reduced space
for PCA, LEM, and KPCA, using Hessian-Laplace (top), dense patches (middle), and all
three feature types combined (bottom).
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Figure IV.2: Conditional entropies for the best performing combinations on all 13 test
sets of Caltech 256. Here LDA indicates the Dirichlet-multinomial model, while NMF
indicates the conditional Gamma-Poisson model.

is due to a combination of the flexibility of representing data with kernels, the
locality enhancing effect of a generalized Gaussian kernel, and the principled global
optimization that is made feasible by the spectral relaxation. Encouraged by this
result, we have developed several extensions to the family of spectral clustering
algorithms. We begin in the subsequent section with an extension to multi-modal
data, with an emphasis on clustering images for which text captions are present.

IV.2 Correlational Spectral Clustering

In this section, we propose to make use of correlations between the visual content of
images and other sources of paired information, such as image captions or associated
spatiotemporal cues from video sequences, in order to find clusters that are more
closely related to the underlying semantics of the content.

A paired dataset is one in which the data are simultaneously represented in two
(or more) different spaces. A common latent aspect relates the representations,
which can be thought of as embeddings of an underlying object into the respective
feature spaces (Figure IV.4). Paired datasets are common in practice due to different
methods of measurement, which may have different associated costs (e.g. infrared
and visual imagery), or the use of different media such as images, text, and video.
We assume here that one representation, images, are always available, but only
some portion of these images will have associated media. We will use the images
with associated media for training, and will learn representations that allow for the
projection of previously unobserved images without associated media.

Specifically, we propose a generalization of spectral clustering based on kernel
canonical correlation analysis that makes use of associated media at training time,
but allows for projection of images without the associated media at test time. This is
possible because kernel-CCA simultaneously learns linear projections from multiple
spaces into a common latent space. In the kernelization of the algorithm, solutions
are constrained to lie in the span of the projection of the image training data, and
projection is achieved by a linear combination of kernel evaluations between the
training and test data.
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Figure IV.3: 12 prototypical images for each of the 20 topics detected by spectral cluster-
ing, using the optimal settings, for the selected test set of table IV.1. For each topic, we
also indicate the conditional entropy (black) and the number of images assigned to this
topic (blue).
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Figure IV.4: A paired dataset. A latent aspect z relates the observed values φx(x) and
φy(y).

Kernel-CCA generalizes Fisher linear discriminant analysis (LDA), which uses
ground truth labels to find discriminant projections. Therefore, the additional
modalities can be thought of as a weak form of labels. Because many sources of
additional modalities are available, e.g. text surrounding images on web pages, cor-
relational spectral clustering allows for more accurate category learning without
requiring expensive manual labels.

IV.2.1 Related Work

A variety of methods have been proposed to model the relationship between images
and text. Much of this work has been done in the context of finding associations be-
tween image content and individual words, noun phrases, or named entities Barnard
et al. (2003); Berg et al. (2004); Jain et al. (2007); Jamieson et al. (2007). Blei and
Jordan proposed correspondence latent Dirichlet allocation to model the joint dis-
tribution of images and text, and the conditional distribution of text given the
image Blei and Jordan (2003). This has a natural application in automatic image
annotation. Bekkerman and Jeon have recently proposed an image clustering algo-
rithm based on a variation on combinatorial Markov random fields Bekkerman and
Jeon (2007). Additional modalities (e.g. text) are represented as nodes in the graph
that are attached to the target modality (images), which is clustered using a local
search to find an approximate solution to the combinatorial partitioning problem.
Quattoni et al. devise a semi-supervised learning algorithm that exploits text cap-
tions to linearly constrain the visual representation to one that predicts well the
presence or absence of individual words Quattoni et al. (2007).

Another important set of approaches for clustering images with additional modal-
ities belong to the family of spectral clustering algorithms Ng et al. (2002); Shi and
Malik (2000); von Luxburg (2007). Dhillon expressed the co-clustering problem in
the framework of spectral clustering by considering bipartite graph structures where
edge strengths are computed from co-occurrence matrices Dhillon (2001). More re-
cently, this has been extended from bipartite graphs to multipartite graphs in order
to include additional modalities and has been applied to image and text data Gao
et al. (2005); Rege et al. (2007). Alternatively, one can build a matrix that com-
bines similarities from both image and text representations Cai et al. (2004); Loeff
et al. (2006). It is straightforward to then apply a standard spectral clustering tech-
nique Ng et al. (2002); Shi and Malik (2000); von Luxburg (2007). Zhou and Burges
combine the spectral clustering objectives for each of the modalities in order to trade
off the costs of making a cut in each modality Zhou and Burges (2007). In contrast,
our technique generalizes the family of spectral clustering algorithms to data with
multiple modalities, but does not require any notion of co-occurrences between im-
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ages and individual words, or similarities for both images and text in order to assign
clusters to previously unseen data. Instead, correlational spectral clustering allows
for the assignment of labels to unseen images that do not have associated text, and
allows more flexibility in the representation used for the similarity matrices than is
afforded by techniques built on co-occurrence matrices.

The proposed technique relies on kernel canonical correlation analysis to find
projections of image representations that are correlated to the paired text. Kernel
canonical correlation analysis has previously been employed with images and text
in an image retrieval context Hardoon et al. (2004), but has not been explored
as a component of a clustering algorithm. Song et al. have considered the case
of clustering with structured labels (e.g. hierarchical labels, ring structured data)
by maximizing a norm of the cross-covariance operator between the projections
of the input and the structure of the labels Song et al. (2007). They have not,
however, considered the case of multiple modalities or made use of the advantages
of correlation rather than covariance.

IV.2.2 Correlational Spectral Clustering

The clustering algorithm proposed in this section, correlational spectral cluster-
ing, consists of kernel canonical correlation analysis computed with a training set
followed by k-means in the projected space (Algorithm IV.2). At test time, the data
are projected using linear combinations of kernel evaluations and assigned to the
nearest cluster center.

The rest of this section gives a brief introduction to kernel canonical correlation
analysis and introduces notation.

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) seeks to utilize paired datasets to simul-
taneously find projections from each feature space that maximize the correlation
between the projected representations Hotelling (1936). Given a sample from a
paired dataset2 {(x1, y1), . . . , (xn, yn)} we would like to simultaneously find direc-
tions wx and wy that maximize the correlation of the projections of x onto wx with
the projections of y onto wy. This is expressed as

max
wx,wy

Ê [〈x,wx〉〈y, wy〉]√
Ê [〈x,wx〉2] Ê [〈y, wy〉2]

, (IV.17)

where Ê denotes the empirical expectation. We denote the covariance matrix of
(x, y) by C and use the notation Cxy (Cxx) to denote the cross (auto) covariance
matrices between x and y. Equation (IV.17) is equivalent to

max
wx,wy

wTxCxywy√
wTxCxxwx w

T
y Cyywy

. (IV.18)

This Rayleigh quotient can be optimized as a generalized eigenvalue problem, or
by decomposing the problem using the Schur complement as described in Hardoon
et al. (2004).

2We assume the samples have zero mean for notational convenience.
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Algorithm IV.2 Correlational Spectral Clustering
Require: xtrain, ytrain, xtest, kx(·, ·), ky(·, ·)
Ensure: c are the cluster ids assigned to the test data

Training:
[Kx]i,j = kx(xtraini , xtrainj )
[Ky]i,j = ky(ytraini , ytrainj )
α, β computed using KCCA on Kx and Ky

centroids = k-means(Kxα)
Testing:
cj = the centroid nearest to

∑
i αikx(xtraini , xtestj )

There is a natural extension of CCA in the event where there are more than two
modalities. This can be written as a generalized eigenvector problem that subsumes
two-way CCA as a special caseC11 . . . C1k

...
. . .

...
Ck1 . . . Ckk

w1
...
wk

 = λ

C11 . . . 0
...

. . .
...

0 . . . Ckk

w1
...
wk

 . (IV.19)

Kernel Canonical Correlation Analysis

We can extend CCA, e.g. to non-vectorial domains by defining kernels over x and
y: kx(xi, xj) = 〈φx(xi), φx(xj)〉 and ky(yi, yj) = 〈φy(yi), φy(yj)〉, and searching for
solutions that lie in the span of φx(x) and φy(y): wx =

∑
i αiφx(xi) and wy =∑

i βiφy(yi) Lai and Fyfe (2000). In this setting we use an empirical estimator for
C:

Ĉxy =
1

n

n∑
i=1

φx(xi) · φy(yi)T , (IV.20)

where n is the sample size, and φx(xi) and φy(yi) are assumed to have 0 mean. Ĉxx
and Ĉyy are defined similarly. Denoting the kernel matrices defined by our sample
as Kx and Ky, the solution of Equation (IV.18) is equivalent to maximizing the
following with respect to coefficient vectors, α and β

αT 1
n
KxKyβ√

αT 1
n
K2
xαβ

T 1
n
K2
yβ

=
αTKxKyβ√
αTK2

xαβ
TK2

yβ
. (IV.21)

As discussed in Hardoon et al. (2004) this optimization leads to degenerate solutions
in the case that either Kx or Ky is invertible so we maximize the following regularized
expression

αTKxKyβ√
αT (K2

x + εxKx)αβT
(
K2
y + εyKy

)
β
, (IV.22)

which is equivalent to Tikhonov regularization of the norms of wx and wy in the
denominator of Equation (IV.18). In the limit case that εx →∞ and εy →∞, the
algorithm maximizes covariance instead of correlation.
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The formulation of CCA in Equation (IV.19) is also readily regularized and
kernelized, and allows one to take advantage of additional modalities such as spa-
tiotemporal features in video, higher resolution imagery, and other modalities that
indirectly contain label information but are not necessarily available at test time.

IV.2.3 Analysis of the Algorithm

Relation to Spectral Clustering

An introduction to spectral clustering algorithms was given in Section IV.1.4. The
relationship between correlational spectral clustering and normalized cuts spectral
clustering is shown through the relationship between maximization problems in sec-
ond order statistics. It is possible to recover the normalized cuts spectral clustering
algorithm using kernel-PCA rather than the generalized eigenvector problem given
in Section IV.1.4 by using a kernel defined to be the negative commute distance on
the graph defined by the similarity matrix, K Ham et al. (2004). Kernel-PCA can
be recovered with KCCA by setting Kx = Ky and by letting εx and εy go to ∞. If
Kx is set to the negative commute distance, we have recovered the above spectral
clustering method. Correlational spectral clustering therefore is a generalization of
spectral clustering to the case of arbitrary kernels and paired data.

A Latent Variable Interpretation

We can see why using paired data can be helpful in reducing the effects of noise by
considering the covariance matrix of paired data with independent additive noise
x̃ = x + ε and ỹ = y + η. Their empirical covariance and cross-covariance matrices
are

Cx̃x̃ = Cxx + 2Cxε + Cεε︸ ︷︷ ︸
=:Cnoise

xx

, Cỹỹ = Cyy + 2Cyη + Cηη︸ ︷︷ ︸
=:Cnoise

yy

,

Cx̃ỹ = Cxy + Cxη + Cεy + Cεη︸ ︷︷ ︸
=:Cnoise

xy

. (IV.23)

In contrast to Cnoise
xx and Cnoise

yy , which contain the noise auto-covariances, Cnoise
xy

contains only cross-covariances of independent terms and will therefore be quite
small. This shows that whenever there is paired data available, it makes sense to
rely on the cross-covariance matrix, because this reduces the influence of noise in
the data.

In the limit case of infinite data Cnoise
xy will tend to zero. However, when dealing

with finite sample sets, it can still have a spectrum that is large compared to that
of Cxy. This is in particular the case for image data, where the noise consists
not only of measurement errors, but also of varying lighting conditions, changes in
perspective etc. Text can contain irrelevant variances due to e.g., misspellings and
use of synonyms, or differences in morphology.

We can reduce this effect further by normalizing with the auto-covariance ma-
trices. Making the noise contribution explicit in Equation (IV.18), we obtain

wTx (Cxy + Cnoise
xy )wy√

wTx (Cxx + Cnoise
xx )wx wTy (Cxx + Cnoise

xx )wy
. (IV.24)
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For projection directions wx, wy that are correlated only to the noise, the quotient

will be dominated by wTxC
noise
xy wy/

√
wTxC

noise
xx wywTxC

noise
yy wy, which we know is close

to 0 because Cnoise
xy is much smaller than Cnoise

xx and Cnoise
yy . In contrast, in noise-

free directions, the quotient becomes wTxCxywy/
√
wTxCxxwyw

T
xCyywy which we can

expect to be large for correlated signals x, y. This argument shows that the directions
found by CCA are less influenced by noise than those found by maximizing cross-
covariance.

Bach and Jordan have proposed a probabilistic interpretation of CCA that is
analogous to a maximum likelihood interpretation of PCA Bach and Jordan (2005).
We denote the dimensionalities of the vectors φx(x) and φy(y) as dx and dy, respec-
tively, and interpret the diagram of a paired dataset in Figure IV.4 as a graphical
model with parameters distributed

z ∼ N (0, Id) (IV.25)

φx(x)|z ∼ N (uxz + µx,Ψx) (IV.26)

φy(y)|z ∼ N (uyz + µy,Ψy) (IV.27)

where min{dx, dy} ≥ d ≥ 1 is the dimensionality of the projected output, ux ∈ Rdx×d

and uy ∈ Rdy×d are parameters of the different modalities, and Ψx � 0 and Ψy � 0
are arbitrary noise covariance matrices. The maximum likelihood estimates of the
parameters ux and uy are closely related to the first d canonical directions. Specifi-

cally, ûx = Cxxwxρ
1
2R and ûy = Cyywyρ

1
2R where ρ is the diagonal matrix that con-

tains the first d canonical correlations, and R is an arbitrary orthogonal matrix Bach
and Jordan (2005). Because R is orthogonal, it does not affect the pairwise distances
of the projection, and can be ignored. We see that the main difference between the
canonical directions computed by CCA, wx and wy, and maximum likelihood esti-
mators ûx and ûy is that the latter include the auto-covariance matrices Cxx and
Cyy. We have argued above that the use of auto-covariance matrices is undesirable
due to the potential effects of high noise variance that is not related to the underly-
ing semantic problem. Canonical correlation analysis computes directions that relate
the two observations in a latent variable model that is derived from the generation of
paired data, and that remove the influence of potentially irrelevant auto-covariance
terms.

IV.2.4 Experimental Results

Evaluation Methodology

To evaluate the quality of the clustering, we have chosen paired datasets that contain
images with associated text, as well as a human defined category label. We use the
conditional entropy between the category labels and the cluster ids computed by
the algorithm as described in Section IV.1.1.

We have used the following experimental protocol in all of the results reported
here, unless explicitly indicated otherwise. The data are randomly split into equally
sized train and test portions. The train portion is used to compute the projection
and cluster-centroids using k-means, while the test portion is simply projected and
assigned the cluster id of the nearest centroid in the projected space. In each training
phase, k-means is trained 10 times with random initialization and the run with the



Clustering 95

smallest k-means objective is used. We compute the conditional entropy between the
labels of the test set and the predicted cluster ids. The labels are never observed by
the clustering algorithm, and the text annotations are only observed for the training
portion of the dataset. The resulting conditional entropy scores are computed for 20
random splits of the data into train and test and visualized using a box plot McGill
et al. (1978).

Data

In order to demonstrate the broad applicability of correlational spectral clustering,
we have done tests on a range of published datasets of images and text. We have used
the Israeli-Images dataset described in Bekkerman and Jeon (2007) which consists
of 1823 image-text pairs from 11 classes. We extracted SURF descriptors without
rotation invariance and with the keypoint threshold set to 0 Bay et al. (2006) and
constructed a codebook of 1000 visual words using k-means with 50000 sampled
descriptors. Images were represented by a normalized histogram of these visual
words. Additionally, we extracted HSV color histograms using 8 uniformly spaced
bins for hue, 4 for saturation, and 2 for value, and represented each image by the
normalized histogram. The histograms of visual words and of HSV colors were
appended and the χ2 kernel

k(x, x′) = e
− 1

2A

∑d
i=1

(xi−x
′
i)

2

xi+x
′
i (IV.28)

was used with normalization parameter A set to the mean of the χ2 distances in the
training set. Similarly, for text, we computed term frequency histograms, filtering
special characters and stop words using the list from van Rijsbergen (1975), and
also used a χ2 kernel.

Additionally, we have used the multimedia image-text web database used in Hardoon
et al. (2004); Kolenda et al. (2002) which consists of samples from three classes:
sports, aviation, and paintball, with 400 image-text pairs each. Images were repre-
sented using HSV color and Gabor textures as in Hardoon et al. (2004); Kolenda
et al. (2002). Text was represented using term frequencies. As in Hardoon et al.
(2004) we have used a Gaussian kernel for the image space, and a linear kernel for
text.

Finally, we have used the three datasets included in the UIUC-ISD collection Lo-
eff et al. (2006). These consist of images collected from search engines using ambigu-
ous search terms, “bass,” “crane,” and “squash,” the web pages in which the images
originally appeared, and an annotation of which sense of the word the image repre-
sents, e.g. fish vs. musical instrument. There are 2881 images in the Bass dataset
which have been grouped into 6 categories, 2650 in the Crane dataset grouped into
9 categories, and 1948 images in the Squash dataset grouped into 6 categories. For
all three datasets, we have represented images by 128 dimensional SURF features
that have been vector quantized into 1000 bins using k-means on 50000 sampled
features. For the text representation, we used word histograms extracted from the
web page title, removing special characters and stop words. Both image and text
similarities were computed using a χ2 kernel.
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Parameter Selection

In our experiments we have used the implementation of KCCA described in Hardoon
et al. (2004), which makes use of Partial Gram-Schmidt Orthogonalization. As
in Hardoon et al. (2004) we fix the Gram-Schmidt precision parameter to 0.5 and
have not optimized over this value. εx and εy are determined automatically by
maximizing the `2 norm of the difference between the spectrum of correlations for
randomized image and text associations, and the spectrum for the original unran-
domized database (see Hardoon et al. (2004) for details). The number of dimensions
to project in KCCA has been set to the number of clusters, and the number of clus-
ters has been set to the true number of classes. This last choice is chosen to avoid
the comparison of algorithms that select different numbers of clusters; conditional
entropy scores are not directly comparable in this case.

Results

As baseline methods, we have selected linear PCA on image descriptors, kernel-
PCA Schölkopf et al. (1998) on image descriptors, and CCA without kernelization.
This gives an indication of the improvements that are gained by kernelization and
by having text available at training time. Kernel-PCA can be viewed as a variant
of spectral clustering that allows for the projection of unseen data, which allows
us to compare in our experimental framework correlational spectral clustering to
spectral clustering with only one modality Bengio et al. (2004). Additionally, we
have included results for KCCA experiments using the true labels for training. As
discussed in Bach and Jordan (2005) this is equivalent to Fisher linear discriminant
analysis (LDA) in the case that εx = εy = 0. Using the labels at training time is
not comparable to our previous results, but gives a form of upper bound on the
improvement we could achieve using additional modalities. Figures IV.5(a)–IV.5(e)
give box plots of the conditional entropy scores for the five datasets described in
Section IV.2.4, while Table IV.4 gives mean conditional entropy for the same exper-
iments. We see that correlational spectral clustering (labeled KCCA) outperforms
or is statistically tied with the previous methods for all datasets.

IV.2.5 Discussion

Some clear patterns emerge from the plots in Figures IV.5(a)–IV.5(e). Both apply-
ing linear CCA before clustering and kernelization of PCA tend to improve results

PCA CCA KPCA KCCA
Israeli 3.132± 0.001 3.064± 0.002 2.972± 0.001 2.805± 0.001∗

S.A.P. 0.92± 0.02 1.47± 0.04 0.90± 0.15 0.86± 0.04
Bass 2.24± 0.05 2.19± 0.03 2.18± 0.02 2.11± 0.02∗

Crane 2.64± 0.02 2.63± 0.03 2.56± 0.02 2.51± 0.03∗

Squash 2.35± 0.03 2.35± 0.03 2.27± 0.02 2.25± 0.03

Table IV.4: Mean conditional entropy scores. Lower values indicate better clusters, and ∗

indicates statistical significance (bootstrap and box plot). The proposed method, labeled
KCCA, outperforms the other methods.
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(d) UIUC-ISD Crane

PCA CCA KPCA KCCA LDA

2.1

2.15

2.2

2.25

2.3

2.35

2.4

c
o

n
d

it
io

n
a

l 
e

n
tr

o
p

y

(e) UIUC-ISD Squash

Figure IV.5: Box plot results for each dataset. Conditional entropy scores are calculated
across 20 runs of the various clustering algorithms. A lower score indicates better clusters.
The proposed method, labeled KCCA, outperforms or is statistically tied with the previous
methods for all datasets. The LDA column is shown separately because, unlike the other
methods, it made use of the labels during training. See Section IV.2.4 for details.
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(d) UIUC-ISD Crane
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(e) UIUC-ISD Squash

Figure IV.6: Box plot results for the text experiments. Conditional entropy scores are
calculated for 20 runs of clustering using text data. The first column indicates projection
with PCA only on the text representations. The second and third columns are for kernel
PCA projections using the sum of the kernels for images and text, and the product of the
kernels, respectively.



Clustering 99

over linear PCA, with the exception of the Sports Aviation Paintball dataset. In all
datasets, correlational spectral clustering gave the best conditional entropy scores
on average, with statistical significance in a majority of datasets. The LDA column
of the figures indicates an upper bound of the improvement that is possible using
correlational spectral clustering, since the second modality contains perfect infor-
mation about the clustering task. We see that text provides a proxy for the labels;
it informs the relevant directions without having access to the labels directly. The
improvement gained by having access to the labels at training time is, as expected,
significantly better than that from text for the majority of datasets. This indi-
cates that additional paired data could improve results further by using additional
modalities as in Equation (IV.19).

In the two datasets that did not show statistical significance, Sports Aviation
Paintball and UIUC-ISD Squash, we also did not see an improvement with linear
CCA. For the Sports Aviation Paintball dataset, we also did not see a statistically
significant improvement of LDA over kernel PCA. It appears that for this dataset,
the noise is low enough that the maximum variance directions in the image repre-
sentation are already well suited to the clustering task, and there is no significant
improvement to be had by searching for different directions.

To further understand the causes of the differences in performance between the
different datasets, we have performed additional experiments to evaluate the amount
of information present in the text component of the datasets. We have run experi-
ments where the text was available not only at training time, but at test time as well.
We have computed conditional entropy results for clustering after linear projections
of the text using PCA, and for KPCA with kernels that combine the text and images
using the sum of the two kernels ksum(xi, yi, xj, yj) = kx(xi, xj) + ky(yi, yj), and the
product of the two kernels, kproduct(xi, yi, xj, yj) = kx(xi, xj) · ky(yi, yj). Figure IV.6
shows box plots for the conditional entropy in this modified setting. We see that
for the Israeli Images, UIUC-ISD Bass, and UIUC-ISD Crane datasets having text
available at test time significantly improves performance over the setting where text
is available only at training time (Figure IV.5). These are also the datasets where
we have significant improvements from using correlational spectral clustering. Both
the Sports Aviation Paintball and UIUC-ISD Squash datasets showed decreased per-
formance when using the text representations, which indicates the text is not in-
formative for the clustering task. Nevertheless, correlational spectral clustering was
not adversely affected by the text as it ensures that the directions in the text are
also correlated to a signal present in the images, which in these cases provided a
more reliable cue.

IV.3 Summary

In this chapter, we have explored unsupervised and weakly supervised methods for
image categorization. In Section IV.1, we have presented results from a large scale
comparison of various completely unsupervised methods. We have found that spec-
tral methods performed consistently better than baseline or latent variable models.
We have additionally shown in Section IV.2 that spectral methods can further be
improved by a generalization of spectral clustering that enables the use of additional
modalities such as text captions to better learn an embedding of images that can be
used for image categorization. This is achieved by finding non-linear projections of
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the images that are correlated with the associated data. Correlational spectral clus-
tering generalizes spectral clustering to data with an arbitrary number of modalities.
By examining the effect of using empirical covariance matrices on noise processes,
and by employing a probabilistic interpretation of CCA, we have shown why cor-
relational spectral clustering improves spectral clustering with one modality. We
have shown statistically significant empirical improvement over traditional spectral
clustering on a range of publicly available datasets. We continue with the topic
of clustering in the following chapter, where we will explore methods for not only
learning a data partition, but also learning the relationship between the discovered
categories in the form of a taxonomy.



Chapter V

Taxonomy Discovery

In this chapter, we address the problem of finding taxonomies in data: that is,
to cluster the data, and to specify in a systematic way how the clusters relate.
This problem is widely encountered in biology, when grouping different species;
and in computer science, when summarizing and searching over documents and
images. One of the simpler methods that has been used extensively is agglomerative
clustering Jain and Dubes (1988). One specifies a distance metric and a linkage
function that encodes the cost of merging two clusters, and the algorithm greedily
agglomerates clusters, forming a hierarchy until at last the final two clusters are
merged into the tree root. A related alternate approach is divisive clustering, in
which clusters are split at each level, beginning with a partition of all the data,
e.g. Macnaughton Smith et al. (1965). Unfortunately, this is also a greedy technique
and we generally have no approximation guarantees. More recently, hierarchical
topic models Blei et al. (2004); Teh et al. (2006) have been proposed to model the
hierarchical cluster structure of data. These models often rely on the data being
representable by multinomial distributions over bags of words, making them suitable
for many problems, but their application to arbitrarily structured data is in no way
straightforward. Inference in these models often relies on sampling techniques that
can affect their practical computational efficiency.

On the other hand, many kinds of data can be easily compared using a kernel
function, which encodes the measure of similarity between objects based on their
features. As discussed in the previous chapter, spectral clustering algorithms repre-
sent one important subset of clustering techniques based on kernels Shi and Malik
(2000); Meila and Shi (2001); Ng et al. (2002); Ham et al. (2004); von Luxburg
(2007): the spectrum of an appropriately normalized similarity matrix is used as
a relaxed solution to a partition problem. Spectral techniques have the advantage
of capturing global cluster structure of the data, but generally do not give a global
solution to the problem of discovering taxonomic structure.

In the present chapter, we propose a novel unsupervised clustering algorithm,
numerical taxonomy clustering, which both clusters the data and learns a taxonomy
relating the clusters. Our method works by maximizing a kernel measure of depen-
dence between the observed data, and a product of the partition matrix that defines
the clusters with a structure matrix that defines the relationship between individ-
ual clusters. This leads to a constrained maximization problem that is in general
NP hard, but that can be approximated very efficiently using results in spectral
clustering and numerical taxonomy (the latter field addresses the problem fitting
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taxonomies to pairwise distance data Agarwala et al. (1996); Ailon and Charikar
(2005); Baire (1905); Buneman (1971); Farach et al. (1993); Harb et al. (2005); Wa-
terman et al. (1977), and contains techniques that allow us to efficiently fit a tree
structure to our data with tight approximation guarantees). Aside from its simplic-
ity and computational efficiency, our method has two important advantages over
previous clustering approaches. First, it represents a more informative visualization
of the data than simple clustering, since the relationship between the clusters is also
represented. Second, we find the clustering performance is improved over methods
that do not take cluster structure into account, and over methods that impose a
cluster distance structure rather than learning it.

Several objectives that have been used for clustering are related to the objective
employed here. Bach and Jordan (2006) proposed a modified spectral clustering
objective that they then maximize either with respect to the kernel parameters or
the data partition. Cristianini et al. (2002) proposed a normalized inner product
between a kernel matrix and a matrix constructed from the labels, which can be
used to learn kernel parameters. The objective we use here is also a normalized
inner product between a similarity matrix and a matrix constructed from the parti-
tion, but importantly, we include a structure matrix that represents the relationship
between clusters. Our work is most closely related to that of Song et al. (2007),
who used an objective that includes a fixed structure matrix and an objective based
on the Hilbert-Schmidt Independence Criterion. Their objective is not normalized,
however, and they do not maximize with respect to the structure matrix.

This chapter is based on Blaschko and Gretton (2008, 2009) and is organized as
follows. In Section V.1, we introduce a family of dependence measures with which
one can interpret the objective function of the clustering approach. The dependence
maximization objective is presented in Section V.2, and its relation to classical
spectral clustering algorithms is explained in Section V.2.2. Important results for
the optimization of the objective are presented in Sections V.2.3 and V.2.4. The
problem of numerical taxonomy and its relation to the proposed objective function
is presented in Section V.3, as well as the numerical taxonomy clustering algorithm.
Experimental results are given in Section V.4.

V.1 Hilbert-Schmidt Independence Criterion

In this section, we give a brief introduction to the Hilbert-Schmidt Independence
Criterion (HSIC), which is a measure of the strength of dependence between two
variables (in our case, following Song et al. (2007), these are the data before and
after clustering). Let F be a reproducing kernel Hilbert space of functions from X
to R, where X is a separable metric space (our input domain), with kernel k. We
also define a second RKHS G with kernel l with respect to the separable metric space
Y . Let (X, Y ) be random variables on X × Y with joint distribution PrX,Y , and
associated marginals PrX and PrY . Then following Baker (1973); Fukumizu et al.
(2004), the covariance operator Cxy : G → F is defined such that for all f ∈ F and
g ∈ G,

〈f, Cxyg〉F = Ex,y ([f(x)− Ex(f(x))] [g(y)− Ey(g(y))]) .

A measure of dependence is then the Hilbert-Schmidt norm of this operator (the sum
of the squared singular values), ‖Cxy‖2

HS. For characteristic kernels Fukumizu et al.
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(2008), this is zero if and only if X and Y are independent. It is shown in Fukumizu
et al. (2008) that the Gaussian and Laplace kernels are characteristic on Rd. Given
a sample of size n from PrX,Y , the Hilbert-Schmidt Independence Criterion (HSIC)
is defined by Gretton et al. (2005) to be a (slightly biased) empirical estimate of
‖Cxy‖2

HS,

HSIC := Tr [HnKHnL] , where Hn = I − 1

n
1n1Tn ,

1n is the n × 1 vector of ones, K is the Gram matrix for samples from PrX with
(i, j)th entry k(xi, xj), and L is the Gram matrix with kernel l(yi, yj).

V.2 Dependence Maximization

We now specify how the dependence criteria introduced in the previous section can
be used in clustering. We represent our data via an n×n Gram matrix M � 0: in the
simplest case, this is the centered kernel matrix (M = HnKHn), but we also consider
a Gram matrix corresponding to normalized cuts clustering (see Section V.2.2).
Following Song et al. (2007), we define our output Gram matrix to be L = ΠYΠT ,
where Π is an n×k partition matrix, k is the number of clusters, and Y is a positive
definite matrix that encodes the relationship between clusters (e.g. a taxonomic
structure). Our clustering quality is measured according to

Tr
[
MHnΠYΠTHn

]√
Tr [ΠYΠTHnΠYΠTHn]

. (V.1)

In terms of the covariance operators introduced earlier, we are optimizing HSIC,
this being an empirical estimate of ‖Cxy‖2

HS, while normalizing by the empirical

estimate of ‖Cyy‖2
HS (we need not normalize by ‖Cxx‖2

HS, since it is constant). This
criterion is very similar to the criterion introduced for use in kernel target alignment
Cristianini et al. (2002), the difference being the addition of centering matrices, Hn,
as required by definition of the covariance. We remark that the normalizing term∥∥HnΠYΠTHn

∥∥
HS

was not needed in the structured clustering objective of Song et al.
(2007). This is because Song et al. were interested only in solving for the partition
matrix, Π, whereas we also wish to solve for Y : without normalization, the objective
can always be improved by scaling Y arbitrarily. In the remainder of this section, we
address the maximization of Equation (V.1) under various simplifying assumptions:
these results will then be used in our main algorithm in Section V.3.

V.2.1 The Approach of Song et al. (2007)

Song et al. (2007) optimized an unnormalized version of the objective in Equa-
tion (V.1) for a fixed structure matrix, Y :

Tr
[
MHnΠYΠTHn

]
. (V.2)

Their optimization consisted of initializing Π to be a random partition matrix and
iterating over the rows of Π. For each row, their approach holds all other rows
fixed and evaluates the objective function while changing the cluster assignment
of the sample corresponding to the current row. The algorithm stops when the
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objective cannot be increased by changing the cluster assignment of any one sample.
This procedure gives a local optimum to the objective function and can also be
applied to the normalized objective of Equation (V.1). Although the optimization
is combinatorial and relatively slow, application is straightforward for arbitrary Y .
We consider computational improvements in the subsequent section.

V.2.2 Relation to Spectral Clustering

Maximizing Equation (V.1) is quite difficult given that the entries of Π can only
take on values in {0, 1}, and that the row sums have to be equal to 1. In order to
more efficiently solve this difficult combinatorial problem, we make use of a spectral
relaxation. Consider the case that Π is a column vector and Y is the identity matrix.
Equation (V.1) becomes

max
Π

Tr
[
MHnΠΠTHn

]√
Tr [ΠΠTHnΠΠTHn]

= max
Π

ΠTHnMHnΠ

ΠTHnΠ
(V.3)

Setting the derivative with respect to Π to zero we obtain(
ΠTHnΠ

)
(2HnMHnΠ)−

(
ΠTHnMHnΠ

)
(2HnΠ)

(ΠTHnΠ)2 = 0. (V.4)

Thus the numerator must be 0. Rearranging,

HnMHnΠ =
ΠTHnMHnΠ

ΠTHnΠ
HnΠ. (V.5)

Using the normalization ΠTHnΠ = 1, we obtain the generalized eigenvalue problem

HnMHnΠi = ρiHnΠi, or equivalently HnMHnΠi = ρiΠi. (V.6)

For Π ∈ {0, 1}n×k where k > 1, we can recover Π by extracting the k eigenvectors
associated with the largest eigenvalues. As discussed in von Luxburg (2007); Ng
et al. (2002), the relaxed solution will contain an arbitrary rotation which can be
recovered using a reclustering step.

If we choose M = D−
1
2AD−

1
2 where A is a similarity matrix, and D is the

diagonal matrix such that Dii =
∑

j Aij, we can recover a centered version of the

spectral clustering of Ng et al. (2002). In fact, we wish to ignore the eigenvector
with constant entries von Luxburg (2007), so the centering matrix Hn does not alter
the clustering solution.

V.2.3 Solving for Optimal Y � 0 Given Π

We now address the subproblem of solving for the optimal structure matrix, Y ,
subject only to positive semi-definiteness, for any Π. We note that the maximization
of Equation (V.1) is equivalent to the constrained optimization problem

max
Y

Tr
[
MHnΠYΠTHn

]
, s.t. Tr

[
ΠYΠTHnΠYΠTHn

]
= 1 (V.7)

We write the Lagrangian

L(Y, ν) = Tr
[
MHnΠYΠTHn

]
+ ν

(
1− Tr

[
ΠYΠTHnΠYΠTHn

])
, (V.8)
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take the derivative with respect to Y , and set to zero, to obtain

∂L
∂Y

= ΠTHnMHnΠ− 2ν
(
ΠTHnΠYΠTHnΠ

)
= 0 (V.9)

which together with the constraint in Equation (V.7) yields

Y ∗ =

(
ΠTHnΠ

)†
ΠTHnMHnΠ

(
ΠTHnΠ

)†√
Tr
[
ΠTHnMHnΠ (ΠTHnΠ)†ΠTHnMHnΠ (ΠTHnΠ)†

] , (V.10)

where † indicates the Moore-Penrose generalized inverse (Horn and Johnson, 1985,
p. 421).

We first note that
(
ΠTHnΠ

)†
= Hk

(
ΠTΠ

)−1
Hk (see Meyer, Jr. (1973)). Also,

it is easy to prove that HkΠ
THn = ΠTHn:

HkΠ
THn =

(
Ik −

1

k
1k1

T
k

)
ΠT

(
In −

1

n
1n1Tn

)
(V.11)

=

(
ΠT − 1

k
1k1

T
kΠT

)(
In −

1

n
1n1Tn

)
(V.12)

= ΠT − 1

n
ΠT1n1Tn −

1

k
1k1

T
kΠT +

1

nk
1k1

T
kΠT1n1Tn , (V.13)

but 1
k
1k1

T
kΠT = 1

nk
1k1

T
kΠT1n1Tn for Π being a partition matrix. Therefore,(
ΠTHnΠ

)†
ΠTHn = Hk

(
ΠTΠ

)−1
ΠTHn, (V.14)

which allows us to see that Equation (V.10) computes a normalized set kernel be-
tween the elements in each cluster. Up to a constant normalization factor, Y ∗ is
equivalent to HkỸ

∗Hk where

Ỹ ∗ij =
1

NiNj

∑
ι∈Ci

∑
κ∈Cj

M̃ικ, (V.15)

Ni is the number of elements in cluster i, Ci is the set of indices of samples assigned
to cluster i, and M̃ = HnMHn. This is a standard set kernel as defined in Haussler
(1999).

V.2.4 Solving for Π with the Optimal Y � 0

As we have solved for Y ∗ in closed form in Equation (V.10), we can plug this
result into Equation (V.1) to obtain a formulation of the problem of optimizing Π∗

that does not require a simultaneous optimization over Y . Under these conditions,
Equation (V.1) is equivalent to

max
Π

√
Tr
[
ΠTHnMHnΠ (ΠTΠ)−1 ΠTHnMHnΠ (ΠTΠ)−1]. (V.16)
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By evaluating the first order conditions on Equation (V.16), we can see that the re-
laxed solution, Π∗, to Equation (V.16) must lie in the principal subspace of HnMHn:

0 =
∂

∂Π
Tr
[
ΠTHnMHnΠ

(
ΠTΠ

)−1
ΠTHnMHnΠ

(
ΠTΠ

)−1
]

(V.17)

=4HnMHnΠ
(
ΠTΠ

)−1
ΠTHnMHnΠ

(
ΠTΠ

)−1−

4Π
(
ΠTΠ

)−1
ΠTHnMHnΠ

(
ΠTΠ

)−1
ΠTHnMHnΠ

(
ΠTΠ

)−1
. (V.18)

Multiplying right by 1
4
ΠTΠ

(
ΠTHnMHnΠ

)†
ΠTHnΠ yields(

I − Π
(
ΠTΠ

)−1
ΠT
)
HnMHnΠ = 0. (V.19)(

I − Π
(
ΠTΠ

)−1
ΠT
)

is the matrix that projects orthogonal to Π, so the conditions

imposed by Equation (V.19) are fulfilled exactly when HnMHnΠ lies in the span
of Π. This is in turn fulfilled exactly when Π lies in the principal subspace of
HnMHn. Therefore, for the problem of simultaneously optimizing the structure
matrix, Y � 0, and the partition matrix, one can use the same spectral relaxation
as in Equation (V.6), and use the resulting partition matrix to solve for the optimal
assignment for Y using Equation (V.10). This indicates that the optimal partition
of the data is the same for Y given by Equation (V.10) and for Y = I. We show
in the next section how we can add additional constraints on Y to not only aid in
interpretation, but to actually improve the optimal clustering.

V.3 Numerical Taxonomy

In this section, we consolidate the results developed in Section V.2 and introduce
the numerical taxonomy clustering algorithm. The algorithm allows us to simulta-
neously cluster data and learn a tree structure that relates the clusters. The tree
structure imposes constraints on the solution, which in turn affect the data parti-
tion selected by the clustering algorithm. The data are only assumed to be well
represented by some taxonomy, but not any particular topology or structure.

In Section V.2 we introduced techniques for solving for Y and Π that depend only
on Y being constrained to be positive semi-definite. In the interests of interpretabil-
ity, as well as the ability to influence clustering solutions by prior knowledge, we
wish to explore the problem where additional constraints are imposed on the struc-
ture of Y . In particular, we consider the case that Y is constrained to be generated
by a tree metric. By this, we mean that the distance between any two clusters is
consistent with the path length along some fixed tree whose leaves are identified
with the clusters. For any positive semi-definite matrix Y , we can compute the
distance matrix, D, given by the norm implied by the inner product that computes
Y , by assigning Dij =

√
Yii + Yjj − 2Yij. It is sufficient, then, to reformulate the

optimization problem given in Equation (V.1) to add the following constraints that
characterize distances generated by a tree metric

Dab +Dcd ≤ max (Dac +Dbd, Dad +Dbc) ∀a, b, c, d, (V.20)

whereD is the distance matrix generated from Y . The constraints in Equation (V.20)
are known as the 4-point condition, and were proven in Buneman (1971) to be nec-
essary and sufficient for D to be a tree metric. Optimization problems incorporating
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these constraints are combinatorial and generally difficult to solve. The problem of
numerical taxonomy, or fitting additive trees, is as follows: given a fixed distance
matrix, D, that fulfills metric constraints, find the solution to

min
DT
‖D −DT‖2 (V.21)

with respect to some norm (e.g. L1, L2, or L∞), where DT is subject to the 4-point
condition. While numerical taxonomy is in general NP hard, a great variety of
approximation algorithms with feasible computational complexity have been devel-
oped Agarwala et al. (1996); Ailon and Charikar (2005); Farach et al. (1993); Harb
et al. (2005). Given a distance matrix that satisfies the 4-point condition, the asso-
ciated unrooted tree that generated the matrix can be found in O(k2) time, where
k is equal to the number of clusters Waterman et al. (1977).

We propose the following iterative algorithm to incorporate the 4-point condition
into the optimization of Equation (V.1):

Require: M � 0
Ensure: (Π, Y ) ≈ (Π∗, Y ∗) that solve Equation (V.1) with the constraints given in

Equation (V.20)
Initialize Y = I
Initialize Π using the relaxation in Section V.2.2
while Convergence has not been reached do

Solve for Y given Π using Equation (V.10)
Construct D such that Dij =

√
Yii + Yjj − 2Yij

Solve for minDT ‖D −DT‖2

Assign Y = −1
2
Hk(DT �DT )Hk, where � represents the Hadamard product

Update Π using the algorithm described in Section V.2.1
end while

One can view this optimization as solving the relaxed version of the problem such
that Y is only constrained to be positive definite, and then projecting the solution
onto the feasible set by requiring Y to be constructed from a tree metric. By iterating
the procedure, we can allow Π to reflect the fact that it should best fit the current
estimate of the tree metric.

V.4 Experimental Results

To illustrate the effectiveness of the proposed algorithm, we have performed clus-
tering on two benchmark datasets. The face dataset presented in Song et al. (2007)
consists of 185 images of three different people, each with three different facial ex-
pressions. The authors posited that this would be best represented by a ternary tree
structure, where the first level would decide which subject was represented, and the
second level would be based on facial expression. In fact, their clustering algorithm
roughly partitioned the data in this way when the appropriate structure matrix was
imposed. We will show that our algorithm is able to find a similar structure without
supervision, which better represents the empirical structure of the data.

We have also included results for the NIPS 1-12 dataset,1 which consists of
binarized histograms of the first 12 years of NIPS papers, with a vocabulary size of

1The NIPS 1-12 dataset is available at http://www.cs.toronto.edu/~roweis/data.html
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13649 and a corpus size of 1740. A Gaussian kernel was used with the normalization
parameter set to the median squared distance between points in input space.

V.4.1 Performance Evaluation on the Face Dataset

We first describe a numerical comparison on the face dataset Song et al. (2007)
of the approach presented in Section V.3 (where M = HnKHn is assigned as in
a HSIC objective). We considered two alternative approaches: a classic spectral
clustering algorithm Ng et al. (2002), and the dependence maximization approach
of Song et al. Song et al. (2007). Because the approach in Song et al. (2007) is
not able to learn the structure of Y from the data, we have optimized the partition
matrix for 8 different plausible hierarchical structures (Figure V.1). These have been
constructed by truncating n-ary trees to the appropriate number of leaf nodes. For
the evaluation, we have made use of the fact that the desired partition of the data is
known for the face dataset, which allows us to compare the predicted clusters to the
ground truth labels. For each partition matrix, we compute the conditional entropy
of the true labels given the cluster ids as described in Section IV.1.1. Table V.1 shows
the learned structure and proper normalization of our algorithm results in a partition
of the images that much more closely matches the true identities and expressions of
the faces, as evidenced by a much lower conditional entropy score than either the
spectral clustering approach of Ng et al. (2002) or the dependence maximization
approach of Song et al. (2007). Even with knowing the correct topology of the

taxonomy (structure h) we are able to achieve a 20.4970−20.2807

20.4970 = 14% reduction in class
uncertainty (c.f. Section IV.1.1) by employing the numerical taxonomy clustering
algorithm, which makes no a priori assumptions about the topology.

Figure V.2 shows the discovered taxonomy for the face dataset, where the length
of the edges is proportional to the distance in the tree metric (thus, in interpreting
the graph, it is important to take into account both the nodes at which particular
clusters are connected, and the distance between these nodes; this is by contrast
with Figure V.1, which only gives the hierarchical cluster structure and does not
represent distance). Our results show we have indeed recovered an appropriate tree
structure without having to pre-specify the cluster similarity relations.

a b c d spectral
0.7936 0.4970 0.6336 0.8652 0.5443

e f g h taxonomy
1.2246 1.1396 1.1325 0.5180 0.2807

Table V.1: Conditional entropy scores for spectral clustering Ng et al. (2002), the clustering
algorithm of Song et al. (2007), and the method presented here (labeled taxonomy). The
structures for columns a-h are shown in Figure V.1, while the learned structure is shown
in Figure V.2. The structure for spectral clustering is implicitly equivalent to that in
Figure V.1(h), as is apparent from the analysis in Section V.2.2. Our method exceeds the
performance of Ng et al. (2002) and Song et al. (2007) for all the structures.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure V.1: Structures used in the optimization of Song et al. (2007). The clusters are
identified with leaf nodes, and distances between the clusters are given by the minimum
path length from one leaf to another. Each edge in the graph has equal cost.

V.4.2 NIPS Paper Dataset

For the NIPS dataset, we partitioned the documents into k = 8 clusters using the
numerical taxonomy clustering algorithm. Results are given in Figure V.3. To
allow us to verify the clustering performance, we labeled each cluster using twenty
informative words, as listed in Table V.2. The most representative words were
selected for a given cluster according to a heuristic score γ

ν
− η

τ
, where γ is the

number of times the word occurs in the cluster, η is the number of times the word
occurs outside the cluster, ν is the number of documents in the cluster, and τ is
the number of documents outside the cluster. We observe that not only are the
clusters themselves well defined (e.g cluster a contains neuroscience papers, cluster
g covers discriminative learning, and cluster h Bayesian learning), but the similarity
structure is also reasonable: clusters d and e, which respectively cover training and
applications of neural networks, are considered close, but distant from g and h; these
are themselves distant from the neuroscience cluster at a and the hardware papers in
b; reinforcement learning gets a cluster at f distant from the remaining topics. Only
cluster c appears to be indistinct, and shows no clear theme. Given its placement,
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we anticipate that it would merge with the remaining clusters for smaller k.

Figure V.2: Face dataset and the resulting taxonomy that was discovered by the algorithm

V.4.3 Performance Evaluation on the CalTech Dataset

We report results here for a selection of 20 categories from the CalTech 256 dataset Grif-
fin et al. (2007). We have used the same selection of categories as indicated in
Table IV.1. In order to facilitate comparison with the clustering results of Fig-
ure IV.2, we have also used the same feature representation as the best performing
spectral clustering configuration. While the spectral clustering algorithm achieved
a conditional entropy score of 1.58±0.02, numerical taxonomy clustering performed
somewhat worse, with a score of 2.08 ± 0.02. We attribute this to that there is
not sufficient taxonomic structure in the categories indicated in Table IV.1. The
results are still within the range of those achieved by the latent variable models, but
the decrease in performance as compared to spectral clustering serves as a reminder
that we can only expect to achieve better results if the assumptions we employ are
fulfilled in the data.

V.5 Summary

We have introduced a new algorithm, numerical taxonomy clustering, for simultane-
ously clustering data and discovering a taxonomy that relates the clusters. The al-
gorithm is based on a dependence maximization approach, with the Hilbert-Schmidt
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f

g

h

d

e

c

b

a

Figure V.3: The taxonomy discovered for the NIPS dataset. Words that represent the
clusters are given in Table V.2.

Independence Criterion as our measure of dependence. We have shown several in-
teresting theoretical results regarding dependence maximization clustering. First,
we established the relationship between dependence maximization and spectral clus-
tering. Second, we showed the optimal positive definite structure matrix takes the
form of a set kernel, where sets are defined by cluster membership. This result ap-
plied to the original dependence maximization objective indicates that the inclusion
of an unconstrained structure matrix does not affect the optimal partition matrix.
In order to remedy this, we proposed to include constraints that guarantee Y to
be generated from an additive metric. Numerical taxonomy clustering allows us to
optimize the constrained problem efficiently.

In our experiments on grouping facial expressions, numerical taxonomy clustering
is more accurate than the existing approaches of spectral clustering and clustering
with a fixed predefined structure. Experiments on a selection of 20 categories from
the CalTech 256 dataset resulted in worse performance than spectral clustering,
indicating that data should have a taxonomic structure in order to gain performance
benefits from numerical taxonomy clustering. We were also able to fit a taxonomy
to NIPS papers that resulted in a reasonable and interpretable clustering by subject
matter. In both the facial expression and NIPS datasets, similar clusters are close
together on the resulting tree. We conclude that numerical taxonomy clustering
is a useful tool both for improving the accuracy of clusterings in data that have
taxonomic structure and for the visualization of complex data.

Our approach presently relies on the combinatorial optimization introduced in Song
et al. (2007) in order to optimize Π given a fixed estimate of Y . We believe that this
step may be improved by relaxing the problem similar to Section V.2.2. Likewise,
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a b c d e f g h
neurons chip memory network training state function data
cells circuit dynamics units recognition learning error model
model analog image learning network policy algorithm models
cell voltage neural hidden speech action functions distribution
visual current hopfield networks set reinforcement learning gaussian
neuron figure control input word optimal theorem likelihood
activity vlsi system training performance control class parameters
synaptic neuron inverse output neural function linear algorithm
response output energy unit networks time examples mixture
firing circuits capacity weights trained states case em
cortex synapse object error classification actions training bayesian
stimulus motion field weight layer agent vector posterior
spike pulse motor neural input algorithm bound probability
cortical neural computational layer system reward generalization density
frequency input network recurrent features sutton set variables
orientation digital images net test goal approximation prior
motion gate subjects time classifier dynamic bounds log
direction cmos model back classifiers step loss approach
spatial silicon associative propagation feature programming algorithms matrix
excitatory implementation attractor number image rl dimension estimation

Table V.2: Representative words for the NIPS dataset clusters.

automatic selection of the number of clusters is an interesting area of future work.
We cannot expect to use the criterion in Equation (V.1) to select the number of
clusters because increasing the size of Π and Y can never decrease the objective.
However, the elbow heuristic can be applied to the optimal value of Equation (V.1),
which is closely related to the eigengap approach. Another interesting line of work
is to consider optimizing a clustering objective derived from the Hilbert-Schmidt
Normalized Independence Criterion (HSNIC) Fukumizu et al. (2008).

This is the last of the four chapters that introduce new techniques for applying
kernel methods to problems in computer vision. In the subsequent chapter, we will
conclude our discussion of kernel methods in computer vision and point to promising
directions for future research.
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Conclusions

In this work, we have presented solutions based on kernel methods to three im-
portant computer vision problems: object localization, clustering, and taxonomy
discovery. In Chapter II we made use of a branch and bound optimization tech-
nique to more efficiently solve object localization for a fixed objective function. The
objective function can take many forms with the sole requirement that an upper
bound can be computed at each iteration of the algorithm. We have shown how to
compute such upper bounds for a variety of kernelized objectives, as well as several
distance measures for finding regions that most closely match prototype vectors.
This resulted in 5 orders of magnitude faster localization than an equivalent ex-
haustive sliding window approach, and also increased accuracy over sliding window
approaches that subsample locations at which to evaluate the objective. Better
accuracy was achieved by localizing detections with a finer granularity, and by en-
abling the use of objective functions such as pyramid kernels with a large number
of levels that are otherwise infeasible to apply using a sliding window approach. A
system based on the branch and bound search has shown state of the art localiza-
tion results on the PASCAL VOC 2006 dataset, and in the PASCAL VOC 2007
competition. We have further demonstrated the application of the strategy to an
image part retrieval task, and have shown that the vast majority of computation
can be avoided through the use of a combined priority queue for all images in the
branch and bound search.

In Chapter III we further improved object localization by developing a novel for-
mulation of the object localization problem as a structured output regression. This
formulation enabled the training of discriminant functions that are tuned to give
high performance on the object localization task. This was achieved primarily by
two factors: (i) the structured output regression formulation is able to use all possi-
ble bounding boxes in a training image during training, which maximally leverages
the available training data, and (ii) the loss function is specified to measure the
actual localization quality of an output. Training was done using a constraint gen-
eration approach in which a variant on the branch and bound optimization that was
developed in Chapter II was employed. Application of the kernelized objective to
unseen data also requires the same optimization as developed in Chapter II, which
allows the use of any number of kernelized objectives. Due to the more principled
training procedure of structured output regression, we were able to achieve state
of the art results on the PASCAL VOC 2006 dataset and to consistently improve
on the performance of a system trained with a support vector machine and sam-



114 Chapter VI

pled negative examples. New best results were reported for five categories against
a diverse field of competitors that used both different image representations and
learning algorithms.

We departed from the topic of object localization and addressed the problem of
unsupervised and weakly supervised image categorization in Chapter IV. We first
noted that spectral methods consistently gave the best performance compared to
other techniques including latent variable models on a large scale evaluation of var-
ious clustering methods. This result motivated us to develop a novel generalization
of spectral clustering methods that includes data from multiple modalities. The
resulting algorithm, correlational spectral clustering, utilizes kernel canonical cor-
relation analysis in place of the variance maximization principle used in traditional
spectral clustering algorithms. We argued that cross correlation reduces the effect
of noise when data are present in multiple modalities, giving insight into the causes
of empirical improvements. With the primary example of images with text captions,
we have shown how the additional modality can be viewed as a weak form of super-
vision that enables learning of an image embedding that leads to more semantically
oriented image categories. Experiments on five datasets indicated that correlational
spectral clustering consistently improved the clustering quality over clustering in a
single modality with statistical significance in a majority of cases.

Finally, in Chapter V we have used a dependence maximization approach to
develop a novel clustering algorithm that not only learns a partition of the data,
but a taxonomy that relates the clusters. This is achieved using a kernelized mea-
sure of independence between random variables. Dependence is maximized between
the original data and a kernel matrix that is constructed from a partition matrix
that identifies the clusters in the data as well as a positive definite matrix that
encodes the similarity between different clusters. We have shown that this opti-
mization problem is closely related to spectral clustering. Without any constraints
on the matrix that encodes similarity between clusters, the optimal data partition
is unaltered from that defined by the spectral clustering objective. In order to both
add interpretability to the similarity matrix as well as to modify the optimal data
partition, we add constraints to the similarity matrix to ensure that it encodes a
relationship determined by a taxonomy. Interestingly, this results not only in an
intuitive visualization of complex data, but also in better clustering performance for
a dataset of face images with taxonomic structure, as measured by the similarity
to a partition of the data selected by a human. The constraints that guarantee a
taxonomic interpretation of the result make the optimization problem NP complete.
However, the resulting algorithm remains efficient due to results from the numerical
taxonomy literature that allow us to use a tight approximation in a key step of the
optimization.

In each of the three main problems we have addressed in this work, we have been
able to achieve state of the art results by leveraging the primary strength of kernel
methods: the separation of algorithmic analysis from the domain specific task of
feature engineering. With standard image representations, we were often able to
improve on existing best performing methods by fully optimizing appropriate objec-
tive functions. The use of kernels eases the design of algorithms, enables their use
for a wide range of learning problems, and should result in increased performance
as the state of the art in domain specific kernels advances. This is particularly
true in the case of computer vision, where combinations of diverse image descrip-
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tors have been shown to generally achieve better results than bag of visual words
models Everingham et al. (2007).

In some ways it is surprising that this kind of modularity leads to good perfor-
mance, as a fundamental rule of machine learning is that end-to-end joint training
generally results in better systems than those that are optimized modularly. As dis-
cussed in Chapter I, however, the domain of natural images is generally too complex
to learn appropriate representations from typically sized datasets. Domain specific
image representations developed using a wide range of background knowledge are
necessary to augment the learning algorithm.

There is room, however, for the learning algorithm to influence the employed
feature representation. Multiple kernel learning and other kernel learning variants
are interesting methods for improving performance by selecting a task specific rep-
resentation Lanckriet et al. (2004); Bach et al. (2004); Sonnenburg et al. (2006);
Rakotomamonjy et al. (2007); Zien and Ong (2007); Gehler and Nowozin (2008).
Their application, especially to structured output learning, has great implications
for improving the performance of computer vision tasks and is an important area of
future work.
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Image Description

In this appendix, we describe local feature descriptors with an emphasis on speeded
up robust features (SURF) Bay et al. (2006), bag of visual words models Leung
and Malik (2001); Sivic and Zisserman (2003); Dance et al. (2004); Nowak et al.
(2006), and the spatial pyramid kernel Lazebnik et al. (2006). These components
are combined to create a family of image kernels used extensively in this thesis.

A Local Feature Descriptors

Local feature descriptors were originally developed in the context of image match-
ing Moravec (1981); Lowe (2004). In this framework, keypoints in an image are
selected using a keypoint detector (Figure A.1 and Section A.2) and then a descrip-
tor is computed based on local image statistics (Section A.3). This procedure is
repeated for an image containing a different view of the same object or scene and
the local descriptors are then matched, giving a transformation from one view to
another Lowe (2004); Bay et al. (2006).

In the context of object class recognition, keypoints are selected using a com-
bination of detectors and sampling strategies, and descriptors of the local regions
are computed. The set of descriptors is then used to represent the image. In our
context, a kernel between sets of descriptors is computed. This can be done using a
set kernel Eichhorn and Chapelle (2004); Gärtner et al. (2002); Grauman and Dar-
rell (2007); Kondor and Jebara (2003); Wallraven et al. (2003); Wolf and Shashua
(2003), or by explicitly computing a feature vector from the set of local features
(Section B).

A.1 Invariance

Both keypoint selection and description should in principle be invariant to certain
changes in the appearance of a scene. Changes in the pixel values recorded in the
camera will generally not be relevant to the task of discriminating object classes.
This can be due to changes in lighting, camera noise, intraclass variance, and pro-
jective geometry. Changes in lighting are typically approached by reliance on the
image gradient rather than the image itself Horn (1986); Lowe (2004); Bay et al.
(2006). Problems resulting from camera noise and intraclass variance are dimin-
ished by the use of statistics of the image gradient in the local region rather than a
vectorization of the values of the gradient at each pixel. Typically histograms are
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computed for several spatial regions of an image patch centered on the keypoint
(Section A.3). Projective geometry results in planar surfaces in the three dimen-
sional world being subject to affine transformations in an image plane Foley et al.
(1995); Forsyth and Ponce (2002). It is possible to compute keypoint locations and
descriptors in a way that is invariant to affine transformations Matas et al. (2002);
Mikolajczyk and Schmid (2004); Tuytelaars and Gool (2004); Kadir et al. (2004);
Tuytelaars and Mikolajczyk (2008). In practice, scale and rotation invariance gives
competitive performance to full affine invariance Lowe (2004); Bay et al. (2006),
and rotation invariance may not be desirable in typical imaging situations where
the camera rotates only about the vertical axis Bay et al. (2006).

A.2 Keypoint Detector

Because keypoint detectors were originally developed in the context of image match-
ing, the main criterion to be optimized was repeatability, that is that detected lo-
cations on two instances of the same object appear on roughly the same location
on the physical object. Detectors can be grouped into corner detectors Harris and
Stephens (1988); Shi and Tomasi (1994); Bretzner and Lindeberg (1998); Smith and
Brady (1997), blob detectors Marr and Hildreth (1980); Lindeberg (1998); Matas
et al. (2002); Lowe (2004); Bay et al. (2006), and affine invariant detectors Lin-
deberg and G̊arding (1994); Mikolajczyk and Schmid (2004). These detectors are
either intrinsically scale invariant, or the detector is rerun after the image has been
sub-sampled Lindeberg (1994); Lowe (2004); Bay et al. (2006). Figure A.1 shows an
image with example keypoints extracted.

In the case of object class recognition and scene categorization, it is often the
case that accuracy increases with the number of keypoints Eichhorn and Chapelle
(2004); Nowak et al. (2006). Furthermore, it may be that performance can be
further increased by uniformly or regularly sampling keypoint locations in the image
plane Maree et al. (2005); Winn et al. (2005); Nowak et al. (2006). By doing so, a
better estimate of the distribution of local appearances can be estimated, e.g. using
a bag of visual words representation (Section B).

A.3 Descriptors

Once keypoints with their associated scales and affine parameters have been ex-
tracted, the regions indicated by these locations must be described. In the simplest
case, one can take the raw pixels in a region around the interest point Eichhorn
and Chapelle (2004). More commonly, statistics of the image gradient are com-
puted for an image patch located at the point and scale of interest Lowe (2004);
Bay et al. (2006). In the case of affine invariant interest point detection, the lo-
cal image patch can be transformed to a canonical representation, with the affine
parameters a constant multiple of the identity matrix, prior to computation of the
local feature vector Mikolajczyk and Schmid (2004). Popular local feature descrip-
tors include SIFT Lowe (2004), GLOH Mikolajczyk and Schmid (2005), SURF Bay
et al. (2006), and LESH Sarfraz and Hellwich (2008).

SURF features are most commonly used in this work, so we describe them in
more detail here. SURF, like SIFT, is based on statistics of the image gradient,
but uses as an approximation first order Haar wavelet responses in the x and y
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Figure A.1: Keypoints extracted with a difference of Gaussians detector Lowe (2004).
Arrows indicate the location, scale, and dominant gradient orientation of the keypoint.
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directions, which allows the use of integral images for fast computation. An image
patch around the interest point is first divided into 4× 4 square subregions. These
subregions are further divided into 5 × 5 regularly spaced sample points. At each
sample point Haar wavelet responses are computed in the x and y directions, denoted
dx and dy, respectively. These responses are weighted with a Gaussian centered at
the center of the image patch to decrease the influence of gradient information in
the periphery of the patch. For each of the 4 × 4 subregions of the image patch a
vector of gradient statistics is computed (

∑
dx,
∑
|dx|,

∑
dy,
∑
|dy|). The gradient

statistics for each of the 4×4 subregions are concatenated to create a 64 dimensional
feature vector. The Haar wavelet responses are invariant to illumination, and can
be made invariant to changes in contrast by normalization Bay et al. (2006).

B Bag of Visual Words

Bag of visual words models treat local features as unordered sets of vectors, often
throwing out location, scale, orientation, and affine parameter information associ-
ated with the keypoints. The resulting bags of vectors can be compared using a
set kernel Eichhorn and Chapelle (2004) or quantized using a codebook Leung and
Malik (2001); Sivic and Zisserman (2003); Dance et al. (2004); Nowak et al. (2006).
In the latter case, a codebook is often generated using a sample of local feature
descriptors generated from a training set of images. Alternatively, a codebook may
be defined using a regular partitioning of the feature space Tuytelaars and Schmid
(2007). Vector quantization can be achieved using a number of strategies, e.g. k-
means clustering Leung and Malik (2001). Each cell resulting from the quantization
step is referred to as a visual word, in analogy with bag of word models from natural
language processing Hofmann (2001); Blei et al. (2003). A histogram is computed
for each image by counting the number of local feature vectors that fall within each
cell. This histogram can then be used as a feature vector in any supervised or un-
supervised algorithm, or it can be first binarized Nowak et al. (2006) or normalized,
e.g. by its L1 or L2 norm Moosmann et al. (2007).

C Spatial Pyramid Kernel

In their simplest form, bag of visual word models contain no information of key-
point locations. It is counterintuitive that disregarding information would result in
better performance, but this simple approach often performs better than geometric
matching techniques due to the high intraclass variance of generic object categories.
A middle ground is to loosely incorporate spatial information, as is done in the case
of a spatial pyramid kernel Lazebnik et al. (2006); Bosch et al. (2007). A spatial
pyramid works by subdividing the image plane into bins and employing a bag of
visual words representation for each bin. The spatial extent of the bins are defined
by a series of regular grids in the image plane with an increasing number of bins
at each level of the pyramid. One may vary the number of levels in the pyramid,
with a bag of visual words model as a special case of a pyramid with a depth of one.
The final kernel evaluation can be computed as a weighted combination of kernel
evaluations over the individual cells of the pyramid Lampert et al. (2008a) or by
using a pyramid match kernel Lazebnik et al. (2006). The relative weight of each
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cell in the pyramid can be set a priori or it can be learned using multiple kernel
learning Bosch et al. (2007).

D Other Visual Representations

In addition to bag of visual words models, and extensions such as spatial pyramids,
a number of other visual representations are present in the literature. These include
color histograms Swain and Ballard (1991), gradient and orientation histograms Mc-
Connell (1986); Freeman and Roth (1995), edge features Canny (1987); Ferrari et al.
(2008), and shape features Belongie et al. (2002). These representations are often
complimentary, and combinations of feature representations may perform better
than any single one.
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