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We analyze a microscopically based rate equation model for quantum dot lasers. The model

separately treats the dynamics of electrons and holes, and the carrier-carrier scattering rates depend

nonlinearly on the wetting layer carrier densities. Our objective is to determine analytical

expressions for the relaxation oscillation frequency and damping rate. To this end, we consider the

Class B limit of the five rate equations and apply asymptotic techniques. We consider two cases

corresponding to either equivalent or drastically different decay rates for the electrons and holes.

We show how they contribute to increase the relaxation oscillation damping rate compared to the

damping rate of the conventional laser and that there exist optimal conditions on the control

parameters in order to observe maximum damping. VC 2011 American Institute of Physics.

[doi:10.1063/1.3587244]

I. INTRODUCTION

A quantum dot (QD) laser is a semiconductor laser (SL)

that uses quantum dots as the active laser medium in its

light-emitting region. Due to the tight confinement of charge

carriers in QDs, they exhibit an electronic structure similar

to atoms. Lasers fabricated from such an active medium

exhibit higher device performances compared to traditional

semiconductor lasers based on bulk or quantum well active

medium. Improvements in modulation bandwidth, lasing

threshold, relative intensity noise, linewidth enhancement

factor, and temperature insensitivity have all been

reported.1,2 Although QD lasers have raised an enormous in-

terest in the physical community, their modeling in terms of

rate equations remains a delicate task. In contrast to quantum

well lasers, for which two rate equations are successfully

used to describe a variety of setups,3–7 the dynamical

response of current QD lasers seem to strongly depend on

the way they are fabricated and on the operating wavelength.

Both excitonic and electron-hole models have been devel-

oped to describe turn-on experiments,8,9 gain recovery dy-

namics,10–14 optical injection,15,16 and optical feedback.17–19

Excitonic rate equation models assume the same scatter-

ing rates for electrons and holes. They allow the derivation

of simple analytical expressions, which are useful when

examining experimental data. However, they are not capable

of connecting the QD structure and its material composition

with the device performance. Electron-hole rate equation

models take into account that the thermal redistribution

occurs on different time scales for holes and electrons. These

models aim to bridge the gap between a full microscopic

description and the simple excitonic models.

The electron-hole rate equation model that we consider

here involves five independent variables for the charge car-

rier densities in the QD; the carrier densities in the carrier

reservoir, which is given by a quantum well structure or wet-

ting layer (WL); and the photon density. The model was

introduced in Ref. 20, and studied in detail since then in

Refs. 8 and 9. The scattering rates are calculated microscopi-

cally within the Boltzmann equation and orthogonalized

plane wave approach. The computed scattering rates are

found to be strongly nonlinear functions of the WL carrier

densities, and all dynamical experiments (turn-on, modula-

tion response, optical feedback) need to be simulated

numerically.

Our laser problem depends on several parameters that

admit large ranges of values. Moreover, the solution of the

laser equations exhibits different time scales, which require

accurate simulations. In this paper, we show that there exists

an alternative to computationally expensive studies by using

analytical approximations. Because our analysis is not a rou-

tine application of asymptotic techniques, we explain each

step in detail. We obtain analytical expressions for the relax-

ation properties of the laser and show how a deeper under-

standing of the effect of key parameters can be found. We

evaluate the validity of all our results by comparing analyti-

cal and numerical data.

In order to simplify our five rate equations, we recall

that semiconductor lasers are class B lasers and apply

approximation techniques appropriate for this class of

lasers.21 Class B lasers include most practical lasers used in

applications and in laboratories (semiconductor lasers, CO2

lasers, and solid state lasers). When a Class B laser is dis-

turbed during operation, e.g., by fluctuations of the pump

power, its output power does not immediately return to its

steady state. This slow decay results from the fact that the

upper-state material lifetime is longer than the cavity life-

time. Changes in pump power typically lead to damped

relaxation oscillations (RO). Because of the different life-

times of the carriers and the photons in the cavity, asymp-

totic techniques can be applied.21 The main objective of this

paper is to determine expressions for the RO frequency in

QD lasers and for its damping rate. We consider two cases
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corresponding to either equivalent or drastically different

decay rates for the electrons and holes. As we shall demon-

strate, distinct asymptotic limits appear for these two cases.

All our analytical expressions are compared to data obtained

numerically by solving the complete laser rate equations.

The plan of the paper is as follows. Section II introduces

the original laser equations and determines properties of the

nonzero intensity steady state. In Sec. III, we reformulate

the five laser equations in dimensionless form and apply the

Class B limit. The structure of the resulting equations then

shows that the dynamical problem can be reduced to three

rate equations, in first approximation. We study these equa-

tions in the case of similar and different decay rates of the

electrons and holes. The analysis is described in detail in

Secs. III A and III B, respectively. Section IV contains our

comparison between analytical and numerical data in the

case of different decay rates of electrons and holes. Finally,

Sec. V summarizes our main results.

II. LASER MODEL

In this paper, we consider the electron-hole rate equation

model previously studied in Refs. 8 and 9. In the QD laser,

the carriers are first injected into the two-dimensional carrier

reservoir (WL) before being captured by the QDs. The model

considers a system for electrons and holes in the QD ground

state (GS) which typically applies for the self-organized QDs

in the InAs/InGaAs material system. The nonlinear rate

equations describe the dynamics of the charge carrier den-

sities in the QD, ne and nh; the carrier densities in the WL,

we and wh (e and h stand for electrons and holes, respec-

tively); and the photon density, nph. They are of the form

_ne ¼ Sin
e NQD � 1

se
ne � Rindðne; nh; nphÞ � Rspðne; nhÞ; (1)

_nh ¼ Sin
h NQD � 1

sh
nh � Rindðne; nh; nphÞ � Rspðne; nhÞ; (2)

_we ¼ g
j

e0

þ neNsum

seNQD
� Sin

e Nsum � ~Rspðwe;whÞ; (3)

_wh ¼ g
j

e0

þ nhNsum

shNQD
� Sin

h Nsum � ~Rspðwe;whÞ; (4)

_nph ¼ �2jnph þ CRindðne; nh; nphÞ þ bRspðne; nhÞ: (5)

In these equations, the nonlinear Coulomb scattering rates

are denoted by Sin
e and Sin

h for electron and hole capture into

the QD levels and by Sout
e and Sout

h for carrier escape to the

WL, respectively. Sout
e and Sout

h appear in the scattering times

se � ðSin
e þ Sout

e Þ
�1

and sh � ðSin
h þ Sout

h Þ
�1; and they depend

on we and wh. The induced processes of absorption and emis-

sion are modeled by a linear gain Rind � WAðne þ nh

�NQDÞnph; where NQD denotes twice the QD density of the

lasing subgroup (twice accounts for spin degeneracy), W is

the Einstein coefficient, and A is the WL normalization area.

The density Nsum is twice the total QD density, as given by

experimental surface imaging. The spontaneous emission in

the QD is approximated by Rsp � ðW=NQDÞnenh: The WL

spontaneous recombination rate is described by ~Rsp

� BSwewh where BS is the band-band recombination coeffi-

cient in the WL. b is the spontaneous emission factor. C is

the optical confinement factor, the coefficient 2j denotes the

total cavity loss, j is the injection current density, and e0 is

the elementary charge. The factor g � 1� we=NWL accounts

for the fact that we cannot inject any more carriers if the WL

is already filled (we ¼ NWLÞ. Details and values of the pa-

rameters are documented in Ref. 8. The band structure con-

sidered for the active medium of the QD laser is depicted in

Fig. 1(a). The microscopically obtained scattering times se

and sh are shown in Fig. 1(b) in the steady state as a function

of the normalized pump current j=jth where jth is the thresh-

old current density. We consider two specific problems cor-

responding to different QD structures, namely the case of

similar scattering times (case S) and the cases of drastically

different scattering times (case D).

We wish to simplify Eqs. (1)–(5) by taking advantage of

the natural values of the parameters. To this end, we first

need to reformulate these equations in dimensionless form.

Specifically, we introduce the new dimensionless variables

Nph; Ne=h; We=h, and t0 defined by:

nph ¼ A�1Nph; ne=h ¼ NQDNe=h;

we=h ¼ NsumWe=h; t0 � 2jt:
(6)

Inserting (6) into Eqs. (1)–(5), and neglecting spontaneous

emission in the photon equation, we obtain

N0e ¼ c FeðNe;We;WhÞ � ðNe þ Nh � 1ÞNph � NeNh

� �
; (7)

N0h ¼ c FhðNh;We;WhÞ � ðNe þ Nh � 1ÞNph � NeNh

� �
; (8)

W0e ¼ c gJ � FeðNe;We;WhÞ � cWeWh½ �; (9)

W0h ¼ c gJ � FhðNh;We;WhÞ � cWeWh½ �; (10)

N0ph ¼ Nph �1þ gðNe þ Nh � 1Þ½ � (11)

where prime means differentiation with respect to dimen-

sionless time t0. The dimensionless functions Fe; Fh; and g,

and parameters g, c; J; and c are defined by

FIG. 1. (Color online) (a) Scheme of the band structure across the active

medium of the QD laser. (b) Steady state electron and hole scattering times

se (circles) and sh (squares), respectively, for Coulomb scattering between

WL and QD states. Blue solid and black dashed lines correspond to carrier

lifetimes of different QD structures: The confinement energies between QD

ground state and QW band edge are DEe ¼ 140 meV, DEh ¼ 120 meV for

case S (blue solid), and DEe ¼ 210 meV, DEh ¼ 50 meV for case D (black

dashed).
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Fe=h � �Ne=hðsin
e=h þ sout

e=hÞ þ sin
e=h; (12)

g � 1� Nsum

NWL
We; s

in=out
e=h �

S
in=out
e=h

W
; (13)

g � CWANQD

2j
; c � BSNsum

W
; (14)

J � j

e0NsumW
; c � W

2j
: (15)

With the values of the original parameters specified in Ref. 8,

we find c ¼ 7� 10�3; g ’ 3:78; c ¼ 0:14; and Nsum=NWL

¼ 10�2: We neglect the small correction term for g in (13)

and use g ¼ 1. Next, we investigate the asymptotic limit

c! 0, keeping all remaining parameters fixed. This limit is

singular because setting c ¼ 0 into the rate equations implies

that all population variables are constant and that Nph is either

decreasing or increasing exponentially. This conclusion is

physically invalid because we numerically observe decaying

RO for Nph. Before we describe how this singularity can be

removed, it is worth stressing that simple relations can be

obtained for the nonzero intensity steady state.

The carrier populations are not independent but satisfy

the conservation relation N0e � N0h þW0e �W0h ¼ 0, which

then leads to

Ne � Nh þWe �Wh ¼ 0 (16)

in the undoped case. The steady states satisfy Eqs. (7)–(11)

with the left hand sides equal to zero. From Eq. (11) with

N0ph ¼ 0 and Nph 6¼ 0; we note that

Ne þ Nh ¼
1þ g

g
: (17)

We shall use Eq. (17) several times in our stability analysis

to simplify Ne þ Nh: Together with Eq. (16), we may express

Ne and Nh as functions of the WL populations

Ne ¼
1

2

1þ g

g
þWh �We

� �
; (18)

Nh ¼
1

2

1þ g

g
�Wh þWe

� �
: (19)

Finally, using Eq. (7) and Eq. (9) with N0e ¼ W0e ¼ 0 and Eq.

(17), we obtain an expression for Nph of the form

Nph ¼ gðJ � NeNh � cWeWhÞ: (20)

With Ne and Nh given by Eq. (18) and Eq. (19), respectively,

we note that Nph is a function of only the WL population var-

iables. Consequently, the steady state problem is reduced to

the determination of the WL population steady states, which

needs to be done numerically because the scattering rates are

computed numerically.

In the next section, we assume that the nonzero intensity

steady state is known and investigate the time-dependent

problem in terms of deviations from it. Figure 2(a) shows the

numerical solution of the laser turn-on dynamics for the two

cases introduced in Fig. 1(b). We note that in both cases

(“case S” and “case D” shown by blue solid and black

dashed lines, respectively, in Fig. 2(a)) the laser reaches its

steady state via relaxation oscillations (RO). They can be

strongly damped (case D) or show pronounced oscillations

(case S).

III. CLASS B LIMIT

As we have previously emphasized, the limit c! 0 is

singular, because the reduced equations if c ¼ 0 admit no

physical solutions. We may remove the singularity by a

change of variables, which has been successfully used for

the conventional rate equations.21 The key observation from

FIG. 2. (Color online) (a) Turn-on dy-

namics of the QD laser for case S (blue

solid) and case D (black dashed) intro-

duced in Fig. 1(b) (j ¼ 3:7jthÞ: (b), (c)

Comparison between numerically fitted

(symbols) and analytically obtained

(lines) data for the RO frequency (b) and

RO damping rate (c) The equations used

for the analytic results are indicated in the

legend. For the fitting, we use the expres-

sion Nph ’ C sinðxROtþ uÞ expð�CROtÞ
to extract the linear RO frequency and

damping rate from the numerical

simulations.
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the linear stability analysis that suggests this change of vari-

able is the fact that the RO frequency is proportional to
ffiffiffi
c
p

as c! 0: This motivates a change of the basic time variable

(s ¼ ffiffiffi
c
p

t0Þ, which then requires that the deviations of Ne=h

from their steady state values are proportional to
ffiffiffi
c
p

in order

to balance both sides of the equation for Nph:
Specifically, we introduce the new time s and the devia-

tions from the steady state y, ue=h; and ve=h, defined as

s ¼ ffiffiffi
c
p

xt0; Nph ¼ N0
phð1þ yÞ; (21)

Ne=h ¼ N0
e=h þ

ffiffiffi
c
p

xg�1ue=h; (22)

We=h ¼ W0
e=h þ cxg�1ve=h (23)

where the superscript 0 denotes the steady state, and the

coefficient x has been introduced in order to simplify the

leading order evolution equations. This coefficient x will be

defined later. Note that the scaling factor
ffiffiffi
c
p

for Ne=h is dif-

ferent from the factor c for We=h: This difference results from

the fact that only Ne and Nh appear in the equation for Nph.

After simplifying and reorganizing the right-hand sides in

powers of
ffiffiffi
c
p
; we obtain

y0 ¼ ð1þ yÞðue þ uhÞ (24)

x2u0e ¼ �ðsin
e þ sout

e Þ
ffiffiffi
c
p

xue � Nphy

� ffiffiffi
c
p

xðue þ uhÞNph

� ffiffiffi
c
p

xðueNh þ NeuhÞ þ OðcÞ;
(25)

x2u0h ¼� ðsin
h þ sout

h Þ
ffiffiffi
c
p

xuh � Nphy

� ffiffiffi
c
p

xðue þ uhÞNph

� ffiffiffi
c
p

xðueNh þ NeuhÞ þ OðcÞ;
(26)

xv0e ¼ ðsin
e þ sout

e Þue þ Oð ffiffifficp Þ; (27)

xv0h ¼ ðsin
h þ sout

h Þuh þ Oð ffiffifficp Þ (28)

where superscript prime now means differentiation with

respect to time s. The small parameter c is no longer multi-

plying the right-hand sides of the population equations. It

appears through
ffiffiffi
c
p

and c in the right-hand sides of the equa-

tions. Setting c ¼ 0 leads to five equations which, as we shall

later demonstrate, admit physical solutions.

Note that Eqs. (24)–(26) are three coupled equations for

y, ue; and uh including Oð ffiffifficp Þ corrections. The scattering

rates s
in=out
e=h depend upon ve=h only in OðcÞ. On the other

hand, Eqs. (27) and (28) indicate that ve=h (defined as the

deviations from the steady state value of the WL carrier den-

sities) passively follows ue=h (defined as the deviations from

the steady state value of the QD carrier densities). Therefore,

we only need to examine Eqs. (24)–(26).

A. Similar carrier lifetimes se and sh (case S)

For large scattering times that ensure sin
e þ sout

e and

sin
h þ sout

h to be O(1) quantities compared with
ffiffiffi
c
p

, we may

formulate the leading order problem by setting c ¼ 0 in Eqs.

(24)–(26). We obtain the following three equations for y, ue,

and uh:

y0 ¼ ð1þ yÞðue þ uhÞ (29)

x2u0e ¼ �Nphy; (30)

x2u0h ¼ �Nphy: (31)

Adding the two last equations, we obtain the following equa-

tions for y and uþ � ue þ uh

u0þ ¼ �y; (32)

y0 ¼ ð1þ yÞuþ (33)

provided x is defined as x2 � 2Nph (x was introduced as a

free parameter in the definition of the time variable s in Eq.

(21) and is now chosen such that Eqs. (29)–(31) appear in

the simplest possible way). Eqs. (32) and (33) are conserva-

tive and admit a one-parameter family of periodic solu-

tions.21 Near its steady state uþ ¼ y ¼ 0; the oscillations

exhibit a frequency close to 1, which is defined as the RO

frequency in units of time s. Using the definition of t0 in Eq.

(6) and then the definition of s in Eq. (21), the RO frequency

in units of the original time t is given by

xS
RO � 2ðNphWjÞ1=2

(34)

where the subscript S means case S and we have used the

definition of c given in Eq. (15). Eqs. (32) and (33) are con-

servative and do not describe how the RO oscillations are

damped. We need to explore the equations for the first-order

correction of the leading solution. However, we are first

interested to find the linear RO damping rate because it is

this quantity that we determine from the numerical simula-

tions of the original laser equations. To this end, it is mathe-

matically more convenient to investigate the linearized

problem including both O(1) and Oð ffiffifficp Þ terms.

After linearizing Eqs. (24)–(26) at the steady state

y ¼ ue ¼ uh ¼ 0; we formulate the Jacobian matrix and

determine the following characteristic equation for the

growth rate k,

k3 � k2T1 þ kT2 � T3 ¼ 0 (35)

where

T1 ¼
ffiffiffi
c
p

x�1½�ðsin
e þ sout

e Þ � Nph � Nh

� ðsin
h þ sout

h Þ � Nph � Ne�;
(36)

T2 ¼ 1þ OðcÞ; (37)

T3 ¼
1

2

ffiffiffi
c
p

x�1 �ðsin
h þ sout

h Þ � ðsin
e þ sout

e Þ
� �

: (38)

We solve Eq. (35) by seeking a solution of the form

k ¼ k0 þ
ffiffiffi
c
p

x�1k1 þ ::: (39)

After introducing (39) into Eq. (35), we equate to zero the

coefficients of each power of
ffiffiffi
c
p
: We obtain a sequence of

problems for k0; k1; :: After simplification, the solutions of

the first two problems with k0 6¼ 0 are

k0 ¼ 6i; (40)

and

103112-4 Lüdge et al. J. Appl. Phys. 109, 103112 (2011)



k1 ¼ �
1

2
½2Nph þ 1þ g�1 þ 1

2
ðsin

e þ sout
e Þ þ

1

2
ðsin

h þ sout
h Þ�:

(41)

Eq. (40) gives the leading approximation of the RO fre-

quency in units of time s (jImðk0Þj ¼ 1), or equivalently, the

frequency Eq. (34) in units of time t. Eq. (41) shows that k1

is real. The leading approximation of the RO damping rate in

units of time s is thus CRO ¼
ffiffiffi
c
p

x�1k1: In units of the origi-

nal time t, we obtain

CS
RO ¼

W

2
½2Nph þ 1þ g�1 þ 1

2
ðsin

e þ sout
e Þ þ

1

2
ðsin

h þ sout
h Þ�:

(42)

The expression of the RO frequency is the same as the one for

the conventional semiconductor laser.21 The expression of the

damping rate is, however, different. It contains the familiar

W 1þ 2Nph

� �
=2 term but there are some extra terms. The

term g�1 comes from the fact that the spontaneous emission is

modeled by a quadratic nonlinearity instead of the linear term

used in the excitonic theory (for the chosen parameters it is a

very small correction to the damping rate). The other terms

are contributions from the Coulomb scattering rates.

If we compare Eqs. (34) and (42) with the values pro-

vided numerically, we find a quantitative agreement over a

large range of increasing pump currents, as can be seen in

Fig. 2(b) and 2(c) for the case S (blue circles and dashed

lines). If we use the same expressions now with the parame-

ters of case D (see next section), the agreement is poor. The

RO frequency is overestimated by the analytical expression

(see dotted gray line in Fig. 2(b)). Moreover, the damping

rate is overestimated by a factor of 10 and is not shown in

Fig. 2(c). The reason for the mismatch is that for case D the

scattering lifetime of electrons sh � 5 ps is very small and,

thus, the quantity
ffiffiffi
c
p
=ðWshÞ ’ 23 must be now considered

as an O(1) quantity. We examine this case in detail in the

next subsection.

B. Different carrier lifetimes se and sh (case D)

In this case, se and sh differ by 2 orders of magnitude and

are close to sh � 5 ps and se � 100 ps, respectively, which

implies that

sin
e þ sout

e ¼
1

Wse
¼ 14:29; (43)

sin
h þ sout

h ¼
1

Wsh
¼ 285:71: (44)

We note that sin
h þ sout

h is much larger than sin
e þ sout

e : Becauseffiffiffi
c
p ¼ 0:08; it will be more accurate to assume that

ðsin
h þ sout

h Þ
ffiffiffi
c
p

is an O(1) quantity. From Eqs. (24)–(28), the

leading order problem is obtained by setting c ¼ 0, and is

given by

y0 ¼ ð1þ yÞðue þ uhÞ; (45)

u0e ¼ �
1

2
y; (46)

u0h ¼ �
1

2
y� auh; (47)

where

a � ðsin
h þ sout

h Þ
ffiffiffi
c
p

x�1

¼
ffiffiffiffiffiffiffiffiffiffi

c
2Nph

r
ðsin

h þ sout
h Þ ¼

1

xS
ROsh

(48)

is a material damping term proportional to the ratio between

the RO period TS
RO ¼ 2p=xS

RO and the hole scattering time

sh.

Compared with Eqs. (29)–(31) corresponding to case S,

Eqs. (45)–(47) contain the extra term �auh. From the linear-

ized equations for the zero solution, we obtain the following

characteristic equation for k ¼ k0,

k3
0 þ ak2

0 þ k0 þ
a

2
¼ 0: (49)

We analyze the roots of Eq. (49) using a as a parameter. We

assume that there is one real root and a pair of complex-

conjugate roots.

The expressions for the roots are given in the Appendix.

We find that the real root is always negative. The RO fre-

quency is obtained from the imaginary part of the complex

conjugate roots. The RO frequency xROðaÞ given in Eq.

(A7) is decreasing from xRO ¼ 1 ða! 0Þ to xRO ¼ 1=
ffiffiffi
2
p

ða!1Þ (full circles in Fig. 3(a)). The RO damping rate is

obtained from the real part of the complex conjugate roots

and given in Eq. (A8). The RO damping rate CROðaÞ is first

increasing like CRO ¼ a=4 ða! 0Þ, then reaches a maxi-

mum at a ’ 1; and finally decreases like CRO ¼ 1=ð4aÞ
(a!1Þ (full circles in Fig. 3(b)). For a maximum damping

rate, a needs to be close to 1.

In units of the original time t, the RO frequency and

damping rate are

FIG. 3. (Color online) (a) RO frequency and (b) RO damping rate derived

in Eqs. (A7) and (A8), respectively, in units of time s as a function of the

parameter a introduced in Eq. (48). Gray stars and blue open circles in (a)

mark the values of a for different pump currents obtained numerically for

case D and case S, respectively, for different pump currents. Dashed red

lines indicate analytic approximations for large a.
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xD
RO ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NphWj

p
xROðaÞ (50)

CD
RO ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NphWj

p
CROðaÞ: (51)

We note that these expressions match the results obtained for

case S in the limit of small values of a. From the roots of the

characteristic equation (49) given in Eqs. (A5) and (A6), we

find that k01 ¼ �a=2 and k02;3 ¼ �a=46i as a! 0. Conse-

quently, xRO ’ 1 and CRO ’ a=4; and the expressions (50)

and (51) simplify to

xD
ROða! 0Þ ’ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NphWj

p
; (52)

CD
ROða! 0Þ ’ 1=ð4shÞ: (53)

The expression (52) is identical to xS
RO given by Eq. (34).

Moreover, we have verified mathematically that the expres-

sions (53) and (42) have a domain of overlap. The limit of

small a physically means that the hole capture time sh is

much larger than the RO period TS
RO ¼ 2p=xS

RO. The relaxa-

tion oscillation properties are then identical to those for

quantum well lasers.

If we now consider the case of large a, meaning that the

hole capture time is smaller than the RO period, we obtain a

different behavior for xD
RO and CD

RO. From Eqs. (A5) and

(A6), we now find that k01 ¼ �a and k02;3 ¼ �1=ð4aÞ6i=
ffiffiffi
2
p

as a !1: Consequently, xRO ’ 1=
ffiffiffi
2
p

is a constant and

CRO ’ 1=ð4aÞ displays a hyperbolic law (red dashed lines in

Fig. 3(a) and (b)). The expressions (50) and (51) now simplify as

xD
ROða!1Þ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NphWj

p
; (54)

CD
ROða!1Þ ’ shNphWj (55)

where we have used Eq. (48) for parameter a: The expression

for the RO frequency is similar to that in Eq. (34) (except for

the factor
ffiffiffi
2
p

). However, the expression of the RO damping

rate is clearly dominated by the hole capture time sh: In the

next section, we concentrate on the large a case and obtain

new asymptotic expressions for the RO frequency and RO

damping rate. As for the overlap of case S and case D, we

will later verify that these new expressions have a domain of

overlap with Eqs. (54) and (55).

IV. LARGE SCATTERING RATES FOR HOLES

The RO frequency obtained by Eq. (50) nicely matches

the numerically obtained data (black stars and red line in

Fig. 2(b)). The gray stars and blue open circles in Fig. 3(a)

mark the values of a that we have considered in our numeri-

cal simulations of the original laser equations. If we compare

the RO damping rate given by Eq. (51) (dash-dotted curve in

Fig. 2(c)) with the numerically obtained data (black stars in

Fig. 2(c)), a large discrepancy can still be noted. The reason

is that the numerically obtained data correspond to relatively

large values of a (6 < a < 15). In order to improve our as-

ymptotic approximation, we need to consider a as a large pa-

rameter and compare it to c�1=2.

Our starting point is the analysis of the characteristic

Eq. (35) in the limit c! 0. If

a ¼ c�1=2xa1 (56)

where a1 ¼ Oð1Þ, we note that a distinct asymptotic limit

can be obtained. Inserting Eqs. (39) and (56) into Eq. (35)

with
ffiffiffi
c
p

x�1ðsin
h þ sout

h Þ ¼ a; we find from the first two prob-

lems for k0 and k1 that

k0 ¼ 6i
1ffiffiffi
2
p ;

k1 ¼ �
1

2a1

1

2
þ a1ðsin

e þ sout
e þ Nph þ NhÞ

� �
:

(57)

In units of the original time variable t, the RO frequency and

damping rate are given by

xDa
RO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NphWj

p
; (58)

CDa
RO ¼ jNphWsh þ

1

2
s�1

e þ
W

2
ðNph þ NhÞ

¼ jNphWðsh þ ð2jÞ�1Þ þ 1

2
s�1

e þ
W

2
Nh

(59)

where the superscript Da means case D with large a. The

analytic solutions in Eqs. (58) and (59) have been compared

to the numerically obtained values in Fig. 2 and we note their

good agreement. We have verified that Eqs. (58) and (59)

and Eqs. (54) and (55) have a domain of overlap. To illus-

trate the magnitude of the different terms contributing to Eq.

(59), they are plotted in Fig. 4(a). It can be seen that the pho-

ton lifetime 1=ð2jÞ and the inverse electron lifetime s�1
e

dominate the damping rate.

Let us now discuss the analytic solutions for the RO

frequency and damping rate and derive the K-factor which

estimates the maximum intrinsic modulation bandwidth. The

K-factor is defined by the relation CDa
RO ¼ KðxDa

ROÞ
2=ð2pÞ2

given in Refs. 22 and 23. We first notice that sh and se con-

tribute differently to the damping rate in Eq. (59) (see

Fig. 4(a)), and either the hole capture time sh or the electron

capture time se may play a dominant role in the K-factor

depending on the RO frequency. For low values of the RO fre-

quency the contribution of the electron capture is sufficiently

larger and the K-factor is nearly completely determined by

FIG. 4. (Color online) (a) Different contributions to the damping rate as

derived in Eq. (59). (b) Total K-factor of the QD laser discussed with case

Da (black solid line) and contributions to the K-factor according to Eq. (59)

resulting from the electron lifetime (red dashed line), the photon lifetime

(gray dash-dotted line), and the hole lifetime (blue dash-dot-dotted line).
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2p2s�1
e ðxDa

ROÞ
�2 ¼ p2 seNphWj

� ��1
, as can be seen in Fig.

4(b), which shows the K-factor (solid line) and the contribu-

tion resulting from the electrons (red dashed line). The elec-

tron capture time is weakly sensitive to the temperature

change,24 and experimentally reported modulation efficiency

and K-factors are nearly constant up to 70oC.28

For larger values of the RO frequency (obtained if the

laser is pumped with currents far above threshold), the term

2p2s�1
e ðxDa

ROÞ
�2

(red dashed line in Fig. 4(b)) becomes small,

as can be seen by extrapolating Fig. 4(b) to much higher cur-

rents. Thus, in this case, we find that K is given by

K ¼ 4p2

2
ðsh þ ð2jÞ�1Þ: (60)

The K-factor in Eq. (60) linearly depends on the cavity life-

time ð2jÞ�1
and the fast hole hole capture time sh. The de-

pendence on the cavity lifetime was investigated and fully

confirmed experimentally.25 The holes are thermally distrib-

uted and sh possesses a temperature dependence based on

Fermi statistics. Because the K-factor linearly scales with sh,

this explains its change with temperature. The linear depend-

ence of the K-factor on the capture time sh has previously

been attributed to gain compression23,26 to explain experi-

mental observations of temperature dependent modulation

characteristics of a QD laser. Our analysis shows that the K-

factor is proportional to sh as an intrinsic property of a QD

laser without the need of additional assumptions.

V. DISCUSSION

We have determined analytical expressions for the RO

frequency and RO damping rate for three different ranges of

parameters, which can be classified in terms of the product

shxS
RO. They are given by case S (shxS

RO � 1Þ; case D

(shxS
RO ¼ Oð1ÞÞ; and case Da (shxS

RO � 1Þ. Our results

show that the RO frequency does not explicitly depend on

the details of the carrier-carrier scattering between WL and

QD. It strongly depends on the cavity lifetime ð2jÞ�1
and

the radiative recombination lifetime W�1.

The damping rate CRO, in contrast, is crucially affected

by the carrier-carrier scattering rates. For equal lifetimes of

electrons and holes the damping decreases with increasing

lifetimes of se and sh (see Eq. (42) and recall that sin
e þ sout

e

and sin
h þ sout

h are proportional to s�1
e and sh

�1; respectivelyÞ.
If both carrier types have different lifetimes, the damping

rate increases as the fastest species lifetime increases (in our

case D, sh; see Eq. (53) or Eq. (59)). Figure 3 is representa-

tive of the nonlinear behavior of the RO frequency and

damping rate. In particular, the damping rate first increases

and then decreases, suggesting that there is an optimal value

of parameter a for maximum damping. This result of practi-

cal engineering interest could not be anticipated without the

help of the analytic analysis.

Our analytical approximations are in very good agree-

ment with numerical simulations of the original laser equa-

tions for different doping densities.9 In Ref. 9, it was shown

that increasing n-doping concentration in a case D QD laser

leads to a decrease of the electron lifetime, which was at the

same time accompanied by increased damping. With the an-

alytical formula given in Eq. (59) the increased damping can

be explained by the decreased lifetime (the term with

sin
e þ sout

e � s�1
e increases). On the other hand, p-doping of

the same device did not yield a higher RO damping. The rea-

son for this counterintuitive result is the separation of time-

scales of electron and hole lifetimes (which is, for example,

the case for materials with large differences in the effective

masses of electrons and holes). The slowest species deter-

mines the dynamics and, thus, manipulating its lifetime has a

drastic effect on the laser dynamics (see Eq. (59)). Instead,

manipulating the lifetime of the fast species has only a minor

effect. The reduced damping for p-doping concentration is

based on a reduction of the electron lifetimes which has its

physical origin in the increased rate for mixed electron-hole

Coulomb scattering processes due to the excess holes in the

reservoir. It confirms that p-doping is beneficial for the mod-

ulation response of QD lasers.27 If a high RO damping rate is

a desired property of QD lasers, n-doping should be helpful.
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APPENDIX: ROOTS OF THE CHARACTERISTIC
EQUATION

We determine the roots of Eq. (49). From Abramowitz

and Stegun,29 we first determine q and r as

q ¼ 1

3
� a2

9
;

r ¼ 1

6
ða� 3

2
aÞ � a3

27
¼ � a

12
� a3

27
:

(A1)

Assuming q3 þ r2 > 0; we have one real root and a pair of

complex conjugate roots. From

s1 � r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ r2

ph i1=3

;

s2 � r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ r2

ph i1=3

;

(A2)

we obtain

s1 ¼ � a

12
� a3

27
þ 1

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 3� 117

144
a2 þ 3

2
a4

r" #1=3

; (A3)

s2 ¼ � a

12
� a3

27
� 1

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 3� 117

144
a2 þ 3

2
a4

r" #1=3

: (A4)

The three roots are then given by

k01 ¼ s1 þ s2 �
a

3
(A5)

k02;3 ¼ �
1

2
ðs1 þ s2Þ �

a

3
6

i
ffiffiffi
3
p

2
ðs1 � s2Þ: (A6)
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The expression for the RO frequency is the imaginary part of

Eq. (A6). The expression for the RO damping rate is pro-

vided by the absolute value of the real part of Eq. (A6). They

are given by

xROðaÞ ¼
i
ffiffiffi
3
p

2
ðs1 � s2Þ (A7)

CROðaÞ ¼
1

2
ðs1 þ s2Þ þ

a

3
: (A8)
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