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Abstract

This thesis investigates risk-sensitive sequential decision-making problems in an
uncertain environment.

We �rst introduce the axiomatic concept of valuation functions that generalize
known concepts of risk measures in mathematical �nance to cover most of the
existing risk related models in various �elds, in particular, behavioral economics
and cognitive neuroscience.

By applying this concept to Markov processes, we construct valuation maps
and develop thereby a uni�ed framework for incorporating risk into Markov de-
cision processes on general spaces. Within the framework, we study mainly two
types of in�nite-horizon risk-sensitive criteria, discounted and average valua-
tions, and solve the associated optimization problems by value iteration. For the
discounted case, we propose a new discount scheme, which is di�erent from the
conventional form but consistent with existing literature, while for the average
criterion, we state Lyapunov-type stability conditions that generalize known con-
ditions for Markov chains to ensure the existence of solutions to the optimality
equation and a geometric convergence rate for the value iteration.

Applying a set of valuation functions, called utility-based shortfall, we de-
rive a family of model-free risk-sensitive reinforcement learning algorithms for
solving the optimization problems corresponding to risk-sensitive valuations. In
addition, we �nd that when appropriate utility functions are chosen, agents’ be-
haviors express key features of human behavior as predicted by prospect theory,
for example, di�erent risk preferences for gains and losses, as well as the shape
of subjective probability curves.

As a proof of principle for the applicability of the new algorithms, we apply
them to two tasks, 1) to quantify human behavior in a sequential investment task
and 2) to perform risk control in simulated algorithmic trading of stocks. In the
�rst task, the risk-sensitive variant provides a signi�cantly better �t to the be-
havioral data and it leads to an interpretation of the subject’s responses which is
indeed consistent with prospect theory. The analysis of simultaneously measured
fMRI signals show a signi�cant correlation of the risk-sensitive temporal di�er-
ence error with BOLD signal change in the ventral striatum. In the second task,
our algorithm outperforms the risk-neutral reinforcement learning algorithm by
keeping the trading cost at a substantially low level at the spot when the 2010
Flash Crash happened, and signi�cantly reducing the risk over the whole test
period.



Zusammenfassung

Diese Dissertation untersucht risikosensitive sequenzielle Entscheidungsproble-
me in stochastischen Umgebungen.

Wir führen zunächst axiomatisch das Konzept von Valuation Function ein,
welches Risikomaße aus der Finanzmathematik verallgemeinert. Dieses umfa-
ssende Modell deckt ebenfalls risikobezogene Modelle aus einer Vielfalt von an-
deren Disziplinen ab, insbesondere der Verhaltensökonomie und der kognitiven
Neurowissenschaft.

Durch eine Erweiterung mit Markov-Prozessen konstruieren wir sogenannte
Valuation Maps, welche einen einheitlichen Rahmen für die Berücksichtigung von
Risiken inMarkov-Entscheidungsprozessen auf allgemeinenRäume erlauben. Hi-
erbei untersuchen wir hauptsächlich zwei Arten von unbegrenzten risikosensi-
tiven Bewertungen: Eine zeitlich diskontiertes und eine zeitlich gemitteltes Kri-
terium. Die damit verbundenen Optimierungsprobleme werden durch Bewer-
tungsiteration gelöst. Für den diskontierten Fall schlagen wir einen neuen Ansatz
vor, welcher von etablierten Paradigmen abweicht, aber dadurch im Einklang mit
allgemein akzeptierter Literatur aus der Psychologie und Verhaltensökonomie ist.
Um eine geometrische Konvergenzrate der Bewertungsiteration für das zeitlich
gemittelte Kriterium zu gewährleisten, gebenwir Lyapunov-Typ-Stabilitätsbedin-
gungen an, welche etablierte Bedingungen für Markov-Ketten verallgemeinern.

Unter Annahme einer bestimmten Klasse von Bewertungsfunktionen, des so-
genannten Utility based Shortfall, leiten wir eine Familie von modellfreien risiko-
sensitiven Reinforcement Learning Algorithmen ab, welche unsere Methode auf
praktische Probleme anwendbar macht. Mit geeigneten Risikofunktionen können
diese Algorithmen wichtige Eigenschaften des menschlichen Verhaltens aus der
Prospect Theory replizieren, z.B. unterschiedliche Risikopräferenzen für Gewinne
und Verluste, sowie die Form der subjektiven Wahrscheinlichkeitskurven.

ZurDemonstration des Prinzips und der neuenAlgorithmenwendenwir diese
auf zwei Aufgaben an: 1) die Quanti�zierung von menschliche Verhalten in einer
sequentiellen Investitionsaufgabe und 2) die Simulation von algorithmischenHan-
del mit Aktien. In der ersten Aufgabe zeigt unsere risikosensitive Variante eine
bessere Erklährung der Verhaltensdaten, und erlaubt erstmals eine Interpreta-
tion, welche konsistent mit der Prospect Theory ist. Die Analyse der gleichzeitig
gemessenen fMRI Signale zeigt eine signi�kante Korrelation einiger Modellvari-
ablen mit BOLD Signaländerungen im ventralen Striatum. Auch in der zweiten
Aufgabe zeigt unser Algorithmus eine starke Performance. Sowohl das Riskio
über den gesamten Testzeitraum, als auch in besonderen Kriesensituationen wie
dem 2010 Flash Crash, ist deutlich niedriger als bei gewöhnlichen, risikoneutralen
Reinforcement Learning Algorithmen.
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1

Introduction

Plans based on average assumptions are wrong on average.

— Sam L. Savage (2009)

Motivation

Risk arises from the uncertainties associated with future events, and is inevitable
since the consequences of actions are uncertain at the time when a decision is
made. Hence, risk has to be taken into account by the decisionmaker, consciously
or unconsciously.

An economically rational decision-making rule, which is risk-neutral, is to se-
lect the alternative with the highest expected reward. In the context of sequential
or multistage decision-making problems, the objective is then to �nd the best pol-
icy that maximizes the expected cumulative rewards in an environment typically
described by aMarkov decision process (MDP, see e.g. Puterman, 1994; White, 1993
and Hernández-Lerma and Lasserre, 1996, 1999 under the name Markov control

processes). A computational approach called reinforcement learning (RL, see e.g.
Sutton and Barto, 1998) is widely applied to optimize this risk-neutral objective by
interactingwith the environment. RL is a well-developedmodel not only for guid-
ing agents to learn how to select actions, but also for explaining why humans or
nonhuman animals take those actions, because similar computational structures,
such as dopaminergicallymediated reward prediction errors, have been identi�ed
across species (Schultz et al., 1997; Schultz, 2002).

Besides risk-neutral policies, risk-averse policies, which accept a choice with
a more certain but possibly lower expected reward, are also considered econom-
ically rational (Gollier, 2004). For example, a risk-averse investor might choose
to put money into a bank account with a low but guaranteed interest rate, rather
than into a stock with possibly high expected returns but also a chance of high
losses. Conversely, risk-seeking policies, which prefer a choice with less certain
but possibly high reward, are considered economically irrational. Human agents
are, however, not always economically rational (Gilboa, 2009). Behavioral stud-
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2 1. Introduction

ies show that human can be risk-seeking in one situation while risk-averse in
another situation (Kahneman and Tversky, 1979). RL algorithms, along with the
underlying MDP, developed so far cannot e�ectively model these complicated
risk-preferences.

The aim of this thesis is, therefore, twofold: �rst, to develop a general theoret-
ical framework for incorporating risk into MDPs; and second, to derive RL-type
algorithms for solving the optimization problem induced by the framework. The
derived algorithms can be applied to two types of problems. One is methodolog-
ical, i.e., for instance, the algorithms ought to tell an agent how to avoid risk,
if risk-averse behavior is expected. Furthermore, the algorithms should also be
able to control the degree of risk-averseness. The other is epistemological, that
is, given observations of one agent’s behavior (especially human agents), the al-
gorithms can judge the agent’s risk preference, and quantify its degree as well.

Related literature

Risk-sensitive decision-making problems, in the context of MDPs, have been in-
vestigated in various �elds, e.g., in machine learning (Heger, 1994; Mihatsch and
Neuneier, 2002), optimal control (Hernández-Hernández and Marcus, 1996), �-
nance (Ruszczyński, 2010), operations research (Howard and Matheson, 1972 and
Borkar, 2002), as well as cognitive neuroscience (Nagengast et al., 2010; Braun
et al., 2011; Niv et al., 2012).

The core of MDPs consists of two sets of objective quantities describing the en-
vironment: immediate rewards obtained at states by executing actions, and tran-

sition probabilities for switching states when performing actions. Facing the same
environment, however, di�erent agents might have di�erent policies, which in-
dicates that risk is taken into account di�erently by di�erent agents. Hence, to
incorporate risk, which is derived from both quantities, all existing literature ap-
plies a nonlinear transformation to either the experienced reward values or to
the transition probabilities, or to both. The former is the canonical approach in
classical economics, as in expected utility theory (Gollier, 2004), while the latter
originates from behavioral economics, as in subjective probability (Savage, 1972),
but is also derived from a rather recent development inmathematical �nance, con-
vex/coherent risk measures (CRMs, Artzner et al., 1999; Föllmer and Schied, 2002).
For modeling human behaviors, prospect theory (Kahneman and Tversky, 1979)
suggests that we should combine both approaches, i.e., human beings have dif-
ferent perceptions not only for the same objective amount of rewards but also
the same value of the true probability. Recently, Niv et al. (2012) combined both
approaches by applying piecewise linear functions (an approximation of a non-
linear transformation) to reward prediction errors that contain the information
of rewards directly and the information of transition probabilities indirectly. Im-
portantly, the reward prediction errors that incorporated experienced risk were
strongly coupled to activity in the nucleus accumbens of the ventral striatum, pro-
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viding a biologically based plausibility to this combined approach. We will show
(see Section 2.4.5) that this algorithm proposed by Niv et al. (2012) is a special case
of our general risk-sensitive framework.

Most of the literature in economics or engineering �elds focuses on econom-
ically rational risk-averse/-neutral strategies, which are not always adopted by
humans. The models proposed in behavioral economics, despite allowing eco-
nomic irrationality, require knowledge of the true probability, which usually is
not available at the outset of a learning task. In neuroscience, on the one hand,
several works (e.g., Wu et al., 2009; Preuscho� et al., 2008) follow the same line
as in behavioral economics and require knowledge of the true probability. On the
other hand, though di�erent modi�ed RL algorithms (e.g., Glimcher et al., 2008;
Symmonds et al., 2011) are applied to model human behaviors in learning tasks,
the algorithms often fail to generalize across di�erent tasks.

Road map

To overcome the limitations mentioned above, we develop a novel general frame-
work of risk-sensitive Markov decision processes by introducing nonlinear trans-
formations to both rewards and transition probabilities. Risk-sensitive objectives,
including the discounted and average criteria, are derived and optimized by value
iteration or dynamic programming. This framework covers sequential decision
making problems in various �elds, e.g., optimal control, operations research, �-
nance, behavioral economics and cognitive neuroscience. Based on this general
framework,we derive a set of RL algorithms, which aremodel-free, i.e., the knowl-
edge of the transition and reward model is not needed. Finally, as applications,
we apply the RL algorithms 1) to quantify human behavior in terms of risk sensi-
tivity and 2) to reduce risk in algorithmic trading. Note that the �rst application is
epistemological, while the second one is methodological. They represent exactly
the two types of problems, to which we hope to apply the derived algorithms.

This thesis is organized as follows.
In Chapter 2, we focus on the fundamental problem of measuring risk of

choices with multiple (possibly) random outcomes. By extending the de�nition
of CRMs, we introduce the concept of valuation functions in Section 2.3. We show
in Section 2.4 that this concept can cover most of the existing models in various
�elds, e.g., optimal control, operations research, �nance, behavioral economics
and cognitive neuroscience. In particular, it is shown in Section 2.4.5 that the key
features predicted by prospect theory (Kahneman and Tversky, 1979), e.g., di�er-
ent risk-preferences for gains and losses as well as the shape of subjective proba-
bility curves, can be replicated by applying a special family of valuation functions,
called utility-based shortfall with appropriately chosen utility functions.

In Chapter 3, we apply a constructive approach that maintains the Markov
property that is necessary for the existence of stationary optimal policies for two
in�nite-horizon objectives. To this end, we introduce the concept of valuation
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maps, which extend valuation functions to a temporal setting. We show also in
this chapter that our constructive approach coincides with the idea of applying
dynamic time-consistent risk measures (see e.g. Cheridito et al., 2006; Ruszczyński,
2010).

Chapter 4 is devoted to the Poisson equation with nonlinear valuation maps.
This sets a theoretical foundation for solving the optimization problem induced
by average risk-sensitive MDPs to be studied in Chapter 5. We generalized the
Lyapunov approach that was applied by Hairer and Mattingly (2011) to ensure
the geometric ergodicity for Markov chains. Our assumptions and their variants
for di�erent types of valuations maps are composed of two conditions, a) the
existence of a Lyapunov function to control the growth of iterations, and b) a
Doeblin-like condition for local contraction. In particular, for the same problem
on �nite state spaces, the above two conditions can be reduced to one condition:
a multistep Doeblin-like condition for global contraction.

Chapter 5 introduces a uni�ed framework for measuring risk in the context
of Markov decision processes with risk maps on general Borel spaces. Within
the framework, applying weighted norm spaces to incorporate also unbounded
costs, we study two types of in�nite-horizon risk-sensitive criteria, discounted
and average valuation, and solve the associated optimization problems by value
iteration. For the discounted case, we propose a new discount scheme, which is
di�erent from the conventional form but consistent with the existing literature,
while for the average criterion, we state Lyapunov-type stability conditions that
generalize known conditions for Markov chains to ensure not only the existence
of solutions to the optimality equation, but also the a geometric convergence rate
for the value iteration.

In Chapter 6, restricting to MDPs on �nite state-action spaces, we derive a
risk-sensitive Q-learning algorithm, which does not require the knowledge of the
underlying MDP, by applying a rich family of valuation maps, called utility-based
shortfall. We prove its convergence with a stochastic approximation technique
developed by Bertsekas and Tsitsiklis (1996).

In Chapter 7, as a proof of principle for the applicability of the new algorithm,
we apply it to quantify human behavior in a sequential investment task. We �nd,
that the risk-sensitive variant provides a signi�cantly better �t to the behavioral
data and that it leads to an interpretation of the subject’s responses which is in-
deed consistent with prospect theory. The analysis of simultaneously measured
fMRI signals show a signi�cant correlation of the risk-sensitive TD error with
BOLD signal change in the ventral striatum. In addition we �nd a signi�cant
correlation of the risk-sensitive Q-values with neural activity in the striatum, cin-
gulate cortex and insula, which is not present if standard Q-values are used.

Finally, in Chapter 8, we apply the risk-sensitive RL algorithms to algorithmic
trading. Our approach is tested in an experiment based on 1.5 years of millisecond
time-scale limit order data fromNASDAQ,which contain the data around the 2010
�ash crash. The results show that our algorithm outperforms the risk-neutral
reinforcement learning algorithm by 1) keeping the trading cost at a substantially
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low level at the spot when the �ash crash happened, and 2) signi�cantly reducing
the risk over the whole test period.



6 1. Introduction
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Measure of Risk: an Indirect Approach

Risk is a choice rather than a fate.

— Peter L. Bernstein (1997)

Précis In this chapter we introduce an axiomatic framework of valuation func-
tions that generalizes the known concept of risk measures applied in mathemat-
ical �nance (Artzner et al., 1999; Föllmer and Schied, 2002). In fact, a valuation
function can be viewed as an indirect measure of risk in general decision-making
problems and its induced risk preference is determined by its mathematical prop-
erty. We will show that our framework covers several important families of ex-
amples that have been considered in literature of various related �elds including
mathematical �nance, behavioral economics and cognitive neuroscience. Proper-
ties of each family will be studied and compared.

Publications related to this chapter Section 2.3 and 2.4.5 have beenpublished
in Shen et al., 2014d, Section 2. Most of the examples in Section 2.4 have been
contained in Shen et al., 2013, Section 4.3.

A Motivating Example

In 1970s, Kahneman and Tversky (1979) conducted a series of laboratory studies
on human decision making. They asked human subjects, mainly their students,
to make decisions between several pairs of choices. One example of the paired
choices is as follows (Kahneman and Tversky, 1979, Problem 1).

Example 2.1. 72 subjects were asked to choose between Choice A and B:

A: 2,500 with probability .33 B: 2,400 with certainty.
2,400 with probability .66
0 with probability .01

The result turned out that 82% of the subjects chose B in the above problem.

7
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In real life, the decisionswe are facing are far more complicated than the above
oversimpli�ed example. Nevertheless, this example presents several important
features of choices and also features of risk associated to choices.

1. Risk arises from the uncertainties associated with future events. For instance,
in the above example, before choosing (and knowing the realization of) A,
how many points we will obtain is uncertain. Conversely, if there is no
uncertainty, like Choice B, there is no risk.

2. For a risky choice, like A, there are di�erent events associated with di�er-
ent outcomes and di�erent probabilities. Choice A has 3 events, with the
outcomes of obtaining i) 2500, ii) 2400 or iii) 0 points. Their corresponding
probabilities are 33%, 66% and 1% respectively. Risk arises, therefore, from
both uncertain elements: outcomes and probabilities.

3. Risk is subjective in the sense that it is evaluated di�erently by di�erent
individuals. In the example, we see that facing the same pair of choices, the
subjects make di�erent decisions: the majority chose B, while the minority
preferred A.

Hence, instead of asking how to measure risk, the more fundamental question
to ask is how tomake a decision between 2 or more choices that are possibly risky.
In other words, the core of the problem of measuring risk is to determine the pref-
erence of (possibly) risky choices. Furthermore, the preference can be individually
di�erent. To solve this problem, �rst of all, we need a general quantitative model
for choices.

2.1 Choices

We have seen in Example 2.1 that there are two essential elements of a choice, i)
outcomes and ii) probabilities, both of which are associated to events. A risk-free
choice like Choice B, where only one event exists, is a special case. For the sake of
generality, we employ the language of modern probability theory (Kolmogorov,
1933) and introduce the following (mathematically rigorous) de�nition.

Definition 2.2 (Choice). Let Ω be a state space and F be an event space, which is

a σ -algebra of subsets of Ω. Then a choice (v,µ) consists of i) an outcome function,

v : Ω → R, which is a real-valued F -measurable function, and ii) a probability

measure, µ on (Ω,F ). Denote by C the space of all choices on (Ω,F ).

Remark 2.3. In the terminology of probability theory, v is also called a random

variable.

This de�nition is general since it covers both discrete and continuous cases.
If Ω is a space with a �nite number of elements, e.g., N elements, as Choice A in
Example 2.1, then a conventional σ -algebra F is the power set of Ω, containing
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all subsets of Ω. The probability measure µ ({ωi ,i ∈ I }) =
∑

i∈I µ ({ωi }), where I is
any set of {1,2, . . . ,N }. If Ω is continuous, e.g., Ω = R, then one example of F is
the space containing all sets of the form (a,b), a < b ∈ R, which is an open subset
of R, and also all their unions and complimentary sets. The probability measure
µ is then de�ned on open subsets of R (as well as their complimentary sets).

States To apply De�nition 2.2 to a speci�c decision problem, one needs to �rst
determine the state space Ω, which “should be thought of as an exhaustive list of
all scenarios that might unfold.” (Gilboa, 2009, Chapter 10) In other words, a state
“should resolves all uncertainty.” (Savage, 1972) We should de�ne states such that
the outcome of each state, v (ω), is unique and deterministic. Otherwise, we can
always merge those states with the same outcome to be a new single state. For
instance, in Example 2.1, Choice A has three states, for there are three di�erent
outcomes, while Choice B has only one state, for only one outcome exists. Al-
though some paradoxes, e.g., Hempel’s paradox (Hempel, 1945) and Good’s vari-
ation (Good, 1986), indicate that in some decision problems, it is hard to de�ne
states properly (for more details, see also Gilboa, 2009, Chapter 11), we always
assume in this thesis that the state space is well de�ned.

Probabilities The probability measure µ in a choice C must satisfy that

(i) µ (E) ∈ [0,1], for each E ∈ F with µ (Ω) = 1;

(ii) for all countable collections of events {Ei }i∈I of pairwise disjoint sets:

µ (∪i∈IEi ) =
∑

i∈I
µ (Ei ).

Note that the key property required here is the σ -additivity implied by (ii). That
is, by letting Bn := ∪ni=1Ei and B := ∪∞i=1Ei , Bn ր B and (ii) implies

µ ( lim
n→∞

Bn) = µ (∪∞i=1Ei ) =
∞
∑

i=1

µ (Ei ) = lim
n→∞

µ (Bn ).(2.1)

It is also the reason why we need the notation of σ -algebra and the assumption of
measurability for outcome functions. In fact, (2.1) gives an additional constraint
of continuity, which allows to de�ne the Lebesgue integral properly. This su�-
ciently general setting is the most widely used framework in probability theory.
However, we will see in Section 2.4.4 that, in order to model human decision
preferences, some properties in the above framework ought to be generalized, by
which one can de�ne a more generalized version of integral than Lebesgue’s.

Outcome In Example 2.1, all outcomes are real-valued monetary payo�s. In
this case, these outcomes are objective, in the sense that all decision makers ob-
tain the same amount of (possibly random) payo� if they make the same decision.
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However, the same amount of payo�might have di�erent subjective values for dif-
ferent individuals. For instance, the same amount of money might have a higher
subjective value for the poor than for the rich. This subjective value is usually
called utility in neoclassical economics (Morgenstern and Neumann, 1944). In
other cases, the outcome might not be easily quanti�ed, e.g., happiness, satisfac-
tory, sadness, pain, etc. It requires, therefore, a subjective valuation function that
is individually di�erent. In such cases, we may assume that there exists a real-
valued F -measurable function that “calculates” the subjective outcome for each
state. In fact, for decision makers like human beings, we can reasonably assume
that there exists a neurobiological mechanism that calculates the subjective value
for each outcome represented as di�erent kinds of perceptual stimuli, though the
mechanism is still a “black box” that so far has not been fully understood. There-
fore, in (behavioral) economical experiments, to avoid this ambiguity and uncer-
tainty, outcomes are always represented as quanti�able monetary payo�s. In this
thesis, we follow the same discipline as well. Throughout this thesis, by outcome,
we mean objective payo�, whereas subjective outcome is meant by utility.

2.2 Preference and valuation

Given two choices, we de�ne the preference as follows.

Definition 2.4 (Preference). Let C be the space of all choices on (Ω,F ). Given

a real-valued function ρ : C → R, we say C1 is preferred to C2 if ρ (C1) ≥ ρ (C2),

C1,C2 ∈ C .

Note that the real set R is partially ordered (Simon and Barry, 1980, Section
1.1), i.e., for any a, b and c in R, it satis�es

(i) (re�exivity) a ≤ a;

(ii) (antisymmetry) if a ≤ b and b ≤ a, then a = b;

(iii) (transitivity) if a ≤ b and b ≤ c, then a ≤ c.

In principle, the set R can be replaced by any other partially ordered sets. How-
ever, for the sake of computation, R is the most convenient set to work with.

The transitivity implies that by De�nition 2.4 if C is preferred to B and B is
preferred to A, then C is preferred to A. Hence, we have already assumed some
degree of “rationality” in De�nition 2.4. Put into the framework of von Neumann
and Morgenstern axioms (Morgenstern and Neumann, 1944; see also the next
subsection), it means that we assume the axiom of weak order.

We brie�y introduce two evaluation functions that are widely used in (behav-
ioral) economics.
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2.2.1 Expected utility

The most widely used evaluation function in economic literature is the expected
utility:

ρu (C = (v,µ)) :=

∫

Ω

u (v (ω))µ (dω),C ∈ Cu(2.2)

Here, Cu := {C ∈ C |ρu (C) < ∞} and u : R → R is a utility function, which is
usually assumed to be an increasing function.

The idea of expected utility �rst appeared explicitly in Daniel Bernoulli’s St.
Petersburg paradox (Bernoulli, 1954) in 1738. However, it became prevailing in
economics only after von Neumann andMorgenstern published their cornerstone
book (Morgenstern and Neumann, 1944), where they proved that under 3 axioms,
weak order, continuity and independence, the expect utility is the unique form of
evaluation functions.

2.2.2 Prospect theory

Now we return to the motivating example at the beginning of this chapter by
Kahneman and Tversky. Their series of laboratory experiments (Kahneman and
Tversky, 1979) showed that homo sapiens is not so “rational” as von Neumann and
Morgenstern postulated. Instead, Kahneman and Tversky proposed a modi�ed
version of expect utility, called prospect theory, which �ts human behavior better
than expected utility. For a discrete state space, their model is

ρ (C = (v,µ)) =
∑

ω∈Ω
u (v (ω))w (µ ({ω})).(2.3)

Here, u is again a utility function andw : [0,1]→ [0,1] is a probability weighting

function. The key observation of Kahneman and Tversky is that w is not a linear
function for most of the human subjects who participated in the experiments.

The probability weighting function can be interpreted as a subjective percep-
tion of true probabilities. In other words, along with the subjective perception of
outcomes, di�erent people might also perceive the same probability di�erently.
Both subjective perceptions contribute together to the subjective evaluation of
choices and, therefore, lead to possibly di�erent decisions even when facing with
the same problem.

Let us look at the probability weighting function considered in prospect the-
ory inmore details. With a slight abuse of terminology, writew (µ ({ω})) as ν ({ω}).
Assume further that ν is a function on the σ -algebra F like the probability mea-
sure µ satisfying ν (Ω) = 1 and ν (∅) = 0. To de�ne ν ({ω}) properly, one should
�rst order states according to their outcomes as follows

v (ω1) < v (ω2) < . . . < v (ωn ).
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Here it is assumed that outcomes of di�erent states are di�erent, otherwisewe can
alwaysmerge those states with the same outcome to be a new single state. Finally,
the prospect theory employs the following de�nition of subjective probability for
each state

ν ({ωi }) := ν ({ωi ,ωi+1, . . . ,ωn}) − ν ({ωi+1,ωi+2, . . . ,ωn}).

The observation that ν is not necessarily linear leads to a violation of additivity,
which is the key assumption of classical probability measures. However, ν ({ω})
has to be nonnegative for each ω. The assumption of additivity is, therefore, re-
placed by a more generalized assumption:

ν (A) ≤ ν (B), whenever A ⊂ B ∈ F .(2.4)

This lies exactly in the mathematical framework of capacity theory by Choquet
(1953) and nonadditive measures by Denneberg (1994), which will be brie�y intro-
duced in Section 2.4.4.

Remark 2.5. There are also other (for psychologists or economists, probably even
more) important ingredients in prospect theory, e.g., framing e�ects, nonlinear
preferences, source dependence, gain-loss asymmetry. However, since we are
now focusing on the mathematical model used by prospect theory, those ingredi-
ents are not explained here and those readers who are interested in more details
are referred to Kahneman and Tversky (1979) and Tversky and Kahneman (1992)
or a recent book by Wakker (2010) and references therein.

2.3 Axioms for valuation functions

We now propose our normative axiomatic framework for evaluation functions
based on the theory of coherent/convex risk measures that has been widely applied
in �nancial mathematics since the seminal papers by Artzner et al. (1999) and
Föllmer and Schied (2002) were published one and half decades ago.

We �rst introduce some notations. Let L be a linear space of real-valued F -
measurable functions containing all constant functions, which implies that, with
a slight abuse of notations, R ⊂ L . For v,u ∈ L , we say v ≤ u if v (ω) ≤ u (ω)
for all ω ∈ Ω. Let P be the space of all probability measures on (Ω,F ).

Definition 2.6. A mapping ρ : L × P → R is called a valuation function, if it
satis�es for each µ ∈P ,

(I) (monotonicity) ρ (v,µ) ≤ ρ (u,µ), whenever v ≤ u ∈ L ;

(II) (translation invariance) ρ (v + y,µ) = ρ (v,µ) + y, for any y ∈ R.

(III) (centralization) ρ (0,µ) = 0.
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Note that v and u are outcomes of two choices. Monotonicity re�ects the
intuition that given the same distribution µ , if the outcome of one choice is always
(for all states) higher than the outcome of another choice, the valuation of the
choice must be also higher. Under the axiom of translation invariance, the sure
outcomey (equal outcome for every state) after executing decisions, is considered
as a sure outcome before making decision. This also re�ects the intuition that
there is no risk if there is no uncertainty. Finally, the axiom of centralization sets
the reference point being 0. In principle, the reference point can be variant for
di�erent agents or human subjects. This axiom is, however, not restrictive, since
for any non-centralized valuation function ϱ, one can always obtain its centralized
version ρ by ρ (v,µ) := ϱ (v,µ) − ϱ (0,µ).

2.3.1 Risk preference

We now link valuation functions to their induced risk preferences. First we de�ne
some concepts.

Definition 2.7. A valuation function ρ is said to be

• convex, if for all α ∈ [0,1], v,u ∈ L and µ ∈P ,

ρ (αv + (1 − α )u,µ) ≤ αρ (v) + (1 − α )ρ (u,µ);(2.5)

• concave, if ρ̃ (·,µ) := −ρ (−·,µ) is a convex valuation function;

• homogeneous, if ρ (λv,µ) = λρ (v,µ) for all λ ∈ R+, v ∈ L and µ ∈P ;

• coherent, if ρ is concave and homogeneous.

To judge the risk-preference induced by a certain type of valuation functions,
we follow the rule that diversi�cation should be preferred if the agent is risk-averse.
More speci�cally, suppose an agent has two possible choices, one of which leads
to the future reward (v,µ) while the other one leads to the future reward (u,ν ).
For simplicity we assume µ = ν . If the agent diversi�es, i.e., if one spends only a
fraction α of the resources on the �rst and the remaining amount on the second
alternative, the future reward is given by αv + (1 − α )u. If the applied valuation
function is concave, i.e.,

ρ (αv + (1 − α )u,µ) ≥ αρ (v,µ) + (1 − α )ρ (u,µ),

for all α ∈ [0,1] and v,u ∈ L , then the diversi�cation should increase the (sub-
jective) valuation. Thus, we call the agent’s behavior risk-averse. Conversely, if
the applied valuation function is convex, the induced risk-preference should be
risk-seeking. Concave valuation functions have the following property.

Proposition 2.8. Let ρ be a concave valuation function. Then

−ρ (− f ) ≥ ρ ( f ),∀f ∈ L .(2.6)
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Proof. By the de�nition of concavity in De�nition 2.7, we have for each f ∈ L

1

2
ρ ( f ) +

1

2
ρ (− f ) ≤ ρ (0) = 0

where the equality is due to the centralization axiom. Hence, we obtain (2.6). �

Homogeneous valuation functions satisfy:

Proposition 2.9. Let ρ be a concave homogeneous valuation function. Then

ρ ( f + д) ≥ ρ ( f ) + ρ (д),∀f ,д ∈ L .(2.7)

Conversely, if ρ is convex and homogeneous, then

ρ ( f + д) ≤ ρ ( f ) + ρ (д),∀f ,д ∈ L .(2.8)

Proof. We prove only the �rst case, where ρ is coherent. By concavity and homo-
geneity, we have

1

2
ρ ( f ) +

1

2
ρ (д) ≤ ρ (1

2
f +

1

2
д) =

1

2
ρ ( f + д),∀f ,д ∈ L ,

which implies the required inequality. �

Remark 2.10. Following the literature of coherent measures (Delbaen, 2000), we
call a valuation function

(a) subadditive, if it satis�es (2.8);

(b) superadditive, if it satis�es (2.7).

2.3.2 Comparison with risk measures

Comparing with risk measures de�ned in �nancial mathematics (Artzner et al.,
1999; Föllmer and Schied, 2002), we state some remarks.

1. It is also easy to see that for a �xed probability measure µ ∈ P , ϱ (·) :=
−ρ (·,µ) is then a valid risk measure.

2. The risk measures applied in �nancial mathematics are literally de�ned to
measure risk. The objective is, therefore, to minimize risk, rather than to
maximize value in our framework, and the correspondence between risk
preference and convexity/concavity in risk measure theory is reversed, i.e.,
convex (respectively concave) riskmeasures induce risk-averse (respectively
-seeking) behavior.

3. The valuation function de�ned in De�nition 2.6 needs not to be risk-averse,
which is required in the de�nition of risk measures. This is due to the fact
that humans are not always economically rational, as suggested by prospect
theory. In this sense, our de�nition is more general than the one employed
in risk measure theory.
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4. It is also remarkable that our de�nition of coherency is di�erent from the
usual de�nition applied in risk measure theory, where coherency equals
“convex + homogeneous”.

2.3.3 The linear space L

Bounded spaces In the seminal paper by Artzner et al. (1999), coherent risk
measures are de�ned on �nite state spaces. Therefore L = R

d . In a subsequent
paper by Delbaen (2000), the result is generalized to L = L∞ (Ω,F ,µ), i.e., the
space of all µ-almost surely bounded F -measurable real-valued functions, with
a �xed probability measure µ . Under the same setting, Föllmer and Schied (2002)
introduced the concept of convex risk measures. This setting has some nice prop-
erties.

Proposition 2.11. Let ρ be a valuation function. Fix a probability measure µ ∈
P and let L = L∞ (Ω,F ,µ). Assume further that the partial ordering on L is

understood in µ-almost sure (a.s.) sense. Then

µ-essinf v ≤ ρ (v,µ) ≤ µ-esssup v, ∀v ∈ L .

Proof. We show only the �rst inequality. The second one can be obtained simi-
larly. By de�nition, we have

v ≥ µ-essinf v =: v ,µ-a.s.

Hence, by Axiom (I) and (II) in De�nition 2.6, we have

ρ (v,µ) ≥ ρ (v ,µ) = ρ (0,µ) + v .

Finally, by Axiom (III), we obtain the required the inequality. �

If we take furthermore a even more restrictive set

L = L∞ (Ω,F ) :=

{

f : Ω → R is F measurable
�����
sup
ω∈Ω
| f (ω) | < ∞

}

,

which is apparently a subset of L∞ (Ω,F ,µ),∀µ ∈P , then we obtain immediately
the following corollary which is independent of the choice of µ .

Corollary 2.12. Let ρ be a valuation function and L = L∞ (Ω,F ). Then

inf
ω∈Ω

v (ω) ≤ ρ (v,µ) ≤ sup
ω∈Ω

v (ω),∀µ ∈P .

The above proposition and corollary show that two “rational” constraints are
automatically assumed upon the subjective evaluation, viz., it cannot be higher
than the largest possible outcome, nor be lower than the smallest possible out-
come.
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Another important property with the setting L = L∞ (Ω,F ,µ) is that under
some regularity conditions, one can obtain the following dual representation for
concave (in other words, risk-averse) evaluation function (see e.g., Schied et al.,
2009, Theorem 1.2): there exists a corresponding minimal penalty function γ :
P → R such that

ϕ (v,µ) = min
ν ∈P :ν≪µ

(Eν [v] + γ (ν )) ,

where Eν [v] =

∫

Ω

v (ω)ν (dω), and “ ≪ ” denotes the absolute continuity.

This representation in fact reveals how one can construct new evaluation func-
tions, which is not obvious at all by the original “abstract” axiomatic de�nition.

Lp spaces Several works, e.g., Delbaen (2000) for coherent riskmeasures, Svind-
land (2009b) and Ruszczynski and Shapiro (2006) for convex risk measures, extend
the setting to the space L = Lp (Ω,F ,µ),p ∈ [1,∞) and obtain similar dual rep-
resentations.

Orlicz spaces Another extension is to use Orlicz hearts and the dual representa-
tion is obtained on the corresponding Orlicz space. For more details see Cheridito
and Li (2009). This setting is useful, e.g., for entropic measures (see Subsection
2.4.2 below).

Remark 2.13. In all literature of convex/coherent risk measures mentioned above,
the dependence of risk measures on the probability measure µ is usually not ex-
plicitly stated in axioms. Instead, it is implicitly implicated by the dependence of
L on µ . In our case, however, we shall apply L = L∞ (Ω,F ) and its generaliza-
tion (see Subsection 4.2.1), which are independent of µ . Hence, we include µ in
the three axioms explicitly.

2.4 Counter- and examples

We start �rst with counterexamples (Section 2.4.1), followed by examples (Section
2.4.2–2.4.7).

2.4.1 Counterexamples

Expected utility

ρu de�ned in Subsection 2.2.1 is in general not a valuation function, since it does
not satisfy the axiom of translation invariance, except the trivial case u (x ) = x .
Due to the same reason, nor is the ρ de�ned in Subsection 2.2.2 for prospect theory
a valuation function. Nevertheless, if we apply directly the utilityu ◦v, instead of
its objective outcome function v, then it becomes the standard linear expectation
for the expected utility and the Choquet integral (Choquet, 1953) for prospect
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theory. Both of them become, therefore, a special case of valuation functions. We
will explain Choquet integral in more details in Subsection 2.4.4 below, for it is the
essential progress made by prospect theory, comparing with the expected utility
theory.

Mean-variance trade-o�

Since Markowitz’s pioneer paper (Markowitz, 1952) on portfolio selection, vari-
ance (or standard deviation) has been widely used to measure risk. Hence, the
objective is to maximize the trade-o� between mean and variance (or standard
deviation)

ρ (v,µ) := Eµ[v] − λVarµ (v)
or ρ (v,µ) := Eµ[v] − λ

√

Varµ (v),

where λ control the degree of risk-sensitivity. If λ > 0, then it induces risk-averse
behavior, since variance (risk) is minimized to certain degree. Conversely, λ < 0
induces risk-seeking behavior. It is easy to check that the axiom of translation
invariance is satis�ed, whereas the axiom of monotonicity may not be satis�ed.
Hence, the mean-variance trade-o� is, in general, not a valid valuation function.
To overcome this problem but meanwhile to keep the idea of measuring risk with
2nd order (or even higher order) statistics, the mean-semideviation trade-o� is
introduced by Ogryczak and Ruszczyński (1999). The details will be explained in
Subsection 2.4.7.

2.4.2 Entropic measure

Although its name is taken from a rather recent paper by Föllmer and Schied
(2002), as a measure of risk in the framework of Markov decision processes, the
entropic measure can be traced back to Howard and Matheson (1972) under the
name of exponential utility, and as a dual form of relative entropy (see (2.11) be-
low), it can even date back to Kullback and Leibler (1951). A more detailed review
of literature in MDPs and control theory will be presented in Chapter 5. The
entropic measure is de�ned as follows.

ρλ (v,µ) :=
1

λ
log

{∫

Ω

eλvdµ

}

,λ , 0 ∈ R.(2.9)

Here, we assume that
∫

eλvdµ < ∞. It is easy to check that ρ is a valid valuation
function satisfying the three axioms.

The risk sensitivity is controlled by λ. If λ > 0, then it is easy to check that
ρ is convex and therefore is risk-seeking. Conversely, negative λ yields concave
and risk-averse ρ.

The entropic measure has several nice properties.
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• Expanding ρ w.r.t. λ leads to

ρλ (v,µ) = Eµ[v] +
λ

2
Varµ[v] +O (λ2).

Hence, it can be also viewed as an approximation of mean-variance trade-
o�when λ is close to 0. If λ > 0, the riskmeasured by variance is “liked” and
therefore it induces risk-seeking behavior. Conversely, the risk is “disliked”,
i.e., risk-averse for negative λ. This judgment of risk-preference is consis-
tent with the risk-preference judged by convexity/concavity as mentioned
above.

• Assume further thatv ∈ L∞ (Ω,F ,µ). Then, one can show that (for a proof
see e.g. Coraluppi and Marcus, 2000)

lim
λ→0

ρλ (v,µ) =Eµ[v]

lim
λ→∞

ρλ (v,µ) =µ-esssup v =: v̄

lim
λ→−∞

ρλ (v,µ) =µ-essinf v =: v(2.10)

These limit results show that by controlling λ, we can arrive at any point in
thewhole range [v ,v̄], i.e., the largest range can be covered by any valuation
function on L∞ (Ω,F ,µ) (see Proposition 2.11).

• ρλ has the following dual representation (for a proof see Föllmer and Schied
(2002) on L∞ (Ω,F ,µ) and Cheridito and Li (2009) on Orlicz hearts)

ρλ (v,µ) =






max
ν ∈P :ν≪µ

(

E
ν [v] − 1

λ
H (ν |µ)

)

, λ > 0

min
ν ∈P :ν≪µ

(

E
ν [v] − 1

λ
H (ν |µ)

)

, λ < 0
,

with H (ν |µ) :=
{

∫

dν log dν
dµ if ν ≪ µ

+∞ otherwise
.(2.11)

It is also easy to check that the optimal ν for both positive and negative λ
is attained at ν∗ satisfying

dν∗ =
eλvdµ

∫

eλvdµ
.

2.4.3 Robust control

Iyengar (2005) introduced the framework of robust dynamic programming, by
which he argues that in some applications the probability measure µ cannot be
inferred exactly. Instead, he employs a set of probability measures, Q, which
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contains all possible “ambiguous” probability measures. In order to gain the “ro-
bustness”, the worst case is considered, adapted in our framework, i.e.,

ρ (v) := inf
ν ∈Q
E
ν [v].(2.12)

We can verify that ρ is everywhere concave and therefore risk-averse, which co-
incides the intuition that the worst scenario is considered. One special case of the
robust dynamic programming was the minimax control (see e.g. Coraluppi and
Marcus, 2000), which also considers the worst scenario with �nite state space,
ρ (v) := maxµ (y )>0v (y). By (2.10), this can also be viewed as an extreme of the
entropic measure by letting λ → −∞.

It is also notable that each concave and homogeneous valuation function has
one dual presentation of the form (2.12) under some regularity conditions for the
setQ, see e.g. Delbaen (2000) for essentially bounded spaces and Svindland (2009a)
for unbounded ones.

2.4.4 Choquet integral

We �rst introduce the concept of nonadditive measures (Denneberg, 1994) (also
called capacities in Choquet (1953)) that generalize standard probabilitymeasures.
A set function ν : F → [0,1] is called a nonadditive measure if

a) ν (A) ≤ ν (B), whenever A ⊂ B ∈ F

b) ν (∅) = 0 and ν (Ω) = 1.

Remark 2.14. Given a valuation function ρ, we can construct a nonadditive mea-
sure in the following way,

ν (B) := ρ (1B,µ),B ∈ F ,

where 1 : Ω → [0,1] denotes the indicator function, i.e.,

1B(ω) :=

{

1, ω ∈ B
0, otherwise

.(2.13)

Given an F -measurable function v : Ω → R and a nonadditive measure ν ,
the Choquet integral is de�ned as

ρ (v,ν ) =

∫ Ch

Ω

v (ω)ν (dω) :=

∫ 0

−∞
[ν (v > t ) − 1]dt +

∫ ∞

0
ν (v > t )dt .

Here, ν (v > t ) := ν ({ω |v (ω) > t }). It can be shown that (Denneberg, 1994, Propo-
sition 5.1) ρ (v,ν ) satis�es the three axioms of valuation functions, and further-
more ρ is homogeneous. However, ρ is not necessarily concave nor convex. It
means that the corresponding behavior is not always risk-averse nor risk-seeking,
which makes it quite suitable for modeling human behavior.
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This integral can be viewed as a continuous-state version of the model applied
in prospect theory (see Subsection 2.2.2), by replacing the objective outcome v
with its utility u ◦ v. The level set ν (v > t ) re�ects exactly the rank-dependent
probability applied in prospect theory. It is also remarkable that in ρ (v,ν ), the
objective probability measure µ is replaced by the subjective nonadditive measure
ν , though the dependence between these two measures are not speci�ed here.
In prospect theory, it is usually assumed (Tversky and Kahneman, 1992) that ν
is obtained by a nonlinear transformation of µ with some parameters that di�er
individually.

2.4.5 Utility-based shortfall

The entropic measure introduced in Section 2.4.2 belongs, in fact, to a large family
of valuation functions called utility-based shortfall (see Föllmer and Schied, 2004,
Section 4.6 and Schied et al., 2009, Section 2) de�ned as follows. Let u : R → R
be a continuous, increasing and non-constant utility function satisfying u (0) = 0.
Assume that there exists a constantm ∈ R such that

∫

Ω
u (v (ω) −m)µ (dω) < ∞.

Then,

ρu (v,µ) := sup

{

m ∈ R |
∫

Ω

u (v (ω) −m)µ (dω) ≥ 0

}

(2.14)

de�nes a utility-based shortfall. It is easy to check that ρu satis�es the three ax-
ioms and therefore is a valid valuation function. It is remarkable that comparing
with its original de�nition in Föllmer and Schied (2004), we �x here the refer-
ence level to be 0 on the right-hand side of (2.14), which is due to the axiom of
centralization.

Comparing with the expected utility theory, the utility function in (2.14) is
applied to the relative value v (ω) −m rather than to the absolute outcome v (ω).
For modeling human decisions, this re�ects the intuition that human beings judge
utilities usually by comparing those outcome with a reference value.

Optimality conditions

We show below in Proposition 2.15 that under some technical assumptions, the
optimalm∗ to the maximization problem in the de�nition of utility-based shortfall
(2.14) satis�es, in fact, the following stochastic equation

E
µ [u (v −m∗)] =

∫

Ω

u (v (ω) −m∗)µ (dω) = 0.

In other words, we have the following equation

E
µ [

u (v − ρu (v,µ))] = 0.

This property enables us to implement stochastic approximation Kushner and Yin
(2003) algorithms for approximating the shortfall ρu (v,µ) (see Dunkel and Weber
(2010) for one-dimensional cases and Chapter 6 for multidimensional cases).
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Proposition 2.15 (cf. Föllmer and Schied, 2004, Proposition 4.104). Let ρu be a

shortfall de�ned in (2.14) with a continuous and strictly increasing utility function

u which satis�es u (0) = 0. Then the following statements are equivalent:

(i) ρu (v,µ) =m∗ and

(ii) Eµ[u (X −m∗)] = 0.

Proof. (ii)⇒ (i). By de�nition, m∗ ≤ ρu (v,µ). For any ϵ > 0, since u is strictly
increasing, we have u (v (ω) −m∗ − ϵ ) < u (v (ω) −m∗),∀ω ∈ Ω, which implies
E
µ [u (v −m∗ − ϵ )] < Eµu (v −m∗) = 0. Hence,m∗ = ρu (v,µ).
(i)⇒ (ii). By de�nition we have Eµ [u (v −m∗)] ≥ 0. Assume that Eµ[u (v −

m∗)] > 0. By the continuity of u, there exists an ϵ > 0 such that

E
µ [u (v −m∗ − ϵ )] > 0,

which implies ρu (v,µ) ≥ m∗ + ϵ > m∗ and hence contradicts (i). Thus, (ii) holds.
�

Convexity and concavity

The following proposition shows that the property of u being convex or concave
determines the risk sensitivity of ρu .

Proposition 2.16. Given a concave function u, ρ is also concave (and hence risk-

averse). Vice versa, ρ is convex (hence risk-seeking) for convex u.

Proof. Weprove only the convex case. The concave case can be obtained similarly.
Letmf := ρu ( f ,µ) andmд := ρu (д,µ). Hence, by Proposition 2.15, we have

E
µ[u ( f −mf )] = 0 and Eµ[u (д −mд )] = 0.

On the one hand, due to the convexity of u, we have for each α ∈ [0,1]

0 =αEµ[u ( f −mf )] + (1 − α )Eµ[u (д −mд )]

≥Eµ[u (α f + (1 − α )д − αmf − (1 − α )mд )].

On the other hand,m∗ := ρu (α f + (1 − α )д,µ) satis�es

E
µ[u (α f + (1 − α )д −m∗)] ≥ 0.

Hence, combing above two inequalities and using the monotonicity of u yield the
required inequalitym∗ ≤ αmf + (1 − α )mд . �

Remark 2.17. The convex case of the proposition can be also implied by Proposi-
tion 4.61 in Föllmer and Schied (2004), which utilizes a dual representation of the
utility based shortfall. Above we provide, however, a more concise proof for both
convex and concave cases.
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Examples

Utility-based shortfalls cover a large family of valuation functions, which have
been proposed in literature of various �elds.

1) u (x ) = x yields the standard expectation ρu (v,µ) = Eµ[v].

2) u (x ) = eλx − 1 yields the entropic measure de�ned in (2.9).

3) Mihatsch and Neuneier proposed in Mihatsch and Neuneier (2002) the follow-
ing setting

u (x ) =

{

(1 − κ)x if x > 0
(1 + κ)x if x ≤ 0

,(2.15)

where κ ∈ (−1,1) controls the degree of risk sensitivity. Its sign determines
the property of the utility function u being convex vs. concave and, therefore,
the risk-preference of ρ.

When quantifying human behavior, combined convex/concave utility func-
tions, e.g.,

up (x ) =

{

k+x
l+ x ≥ 0

−k− (−x ) l− x < 0
,(2.16)

are of special interest, since people tend to treat gains and losses di�erently and,
therefore, have di�erent risk preferences on gain and loss sides. In fact, the poly-
nomial function in (2.16) was used in the prospect theory (Kahneman andTversky,
1979) to model human risk preferences and the results show that l+ is usually be-
low 1, i.e., up (x ) is concave and thus risk-averse on gains, while l− is also below
1 and up (x ) is therefore convex and risk-seeking on losses.

Relation to prospect theory

To illustrate the risk-preferences induced by di�erent utility functions, we con-
sider a simple example with two events. The �rst event has outcome v1 with
probability p, while the other event has smaller outcomev2 < v1 with 1−p. Note
that

p =
E[v] − v2
v1 − v2

, where E[v] = pv1 + (1 − p)v2

denotes the risk-neutral mean.
Replacing E[v] with the valuation function ρ (v,p), we can de�ne a subjective

probability (cf. Tversky and Kahneman, 1992) as

w (p) :=
ρ (v,p) − v2
v1 − v2

,(2.17)

which measures agents’ subjective perception of the true probability p.
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In risk-neutral cases, ρ (v,p) is simply the mean and w (p) = p. In risk-averse
cases, the balancemoves towards the worst scenario. Hence, the probability of the
�rst event (with larger outcome x1) is always underestimated. On the contrary, in
risk-seeking cases, the probability of the �rst event is always overestimated. Be-
havioral studies show that human subjects usually overestimate low probabilities
and underestimate high probabilities (Tversky and Kahneman, 1992). This can
be quanti�ed by applying mixed valuation functions ρ. If we apply utility-based
shortfalls, it can be quanti�ed by using mixed utility function u.

Figure 2.1: Shortfalls with di�erent utility functions and induced subjective prob-
abilities. (Left) utility functions de�ned as follows: lin : x ; RS : ex −1; RA : 1−e−x ;
mix1: up (x ) as de�ned in (2.16) with k+ = 0.5, l+ = 2, k− = 1 and l− = 2; mix2:
same as mix1 but with k+ = 1, l+ = 0.5, k− = 1.5 and l− = 0.5. (Right) subjective
probability functions calculated according to (2.17).

Let v1 = 1 and v2 = −1. Figure 2.1 (left) shows �ve di�erent utility func-
tions, one linear function “lin”, one convex function “RS”, one concave function
“RA”, and two mixed functions “mix1” and “mix2” (for details see caption). The
corresponding subjective probabilities are shown in Figure 2.1 (right). Since the
function “RA” is concave, the corresponding valuation function is risk-averse and
therefore the probability of high-reward event is always underestimated. For the
case of the convex function “RS”, the probability of high-reward event is always
overestimated. However, since the “mix1” function is convex on [0,∞) but con-
cave on (−∞,0], high probabilities are underestimated while low probabilities
are overestimated, which replicates very well the probability weighting function
applied in prospect theory for gains (cf. Tversky and Kahneman, 1992, Figure
1). Conversely, the “mix2” function, which is concave on [0,∞) and convex on
(−∞,0], corresponds to the overestimation of high probabilities and the under-
estimation of low probabilities. This corresponds to the weighting function used
for losses in prospect theory (cf. Tversky and Kahneman, 1992, Figure 2).

Wewill see in Section 6.3 that the advantage of using the utility-based shortfall
is thatwe can derive iterating learning algorithms for the estimation of the subjec-
tive valuations, whereas it is di�cult to derive such algorithms in the framework
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of prospect theory.

2.4.6 Optimized certainty equivalence

Let u : R→ R be a continuous non-decreasing function satisfying there exists an
m ∈ R such that

u (m) =m and u (x ) ≤ x ,∀x ∈ R.(2.18)

Then

ρ (v,µ) := sup
m∈R

{

E
µ [u (v −m)] +m

}

(2.19)

de�nes an optimized certainty equivalence, which was initially introduced by Ben-
Tal and Teboulle in Ben-Tal and Teboulle (1987) on �nite spaces and extended to
general spaces in Ben-Tal and Teboulle (2007); Schied (2007). It is easy to check
that ρ de�ned in the above equation satis�es the three axioms of valuation func-
tions.

If v is bounded and u is concave, then it has a nice dual representation (for a
proof see, e.g., Ben-Tal and Teboulle (2007), mainly due to Young’s inequality and
Legendre-Fenchel transformation)

ρ (v,µ) = inf
ν≪µ

(

E
ν [v] + Eµ

[

д

(

dν

dµ

)])

(2.20)

where д : [0,∞) → (−∞,∞] is de�ned as

д(z) := sup
x ∈R

(u (x ) − xz) .

The second item, Eµ
[

д
(

dν
dµ

)]

, on the right-hand side of (2.20) is also called д-
divergence in statistics literature Csiszar (1967).

Remark 2.18. The constraint we set in (2.18) is to ensure that ρ is centralized, i.e.,
ρ (0,µ) = 0, which is not required in the its original de�nition in Ben-Tal and
Teboulle (2007).

Examples

The optimized certainty equivalence covers several important examples.

1) u (x ) = x gives the standard expectation ρ (v,µ) = Eµ[v].

2) u (x ) = min( xλ ,0), λ ∈ (0,1), yields a coherent valuation function, called av-

erage value at risk, expected shortfall, conditional value at risk or tail value at

risk in �nance literature (see e.g. Rockafellar and Uryasev (2000); Schied et al.
(2009) and references therein):

−ρ (v,µ) = − sup
m∈R

{

E
µ [u (v −m)] +m

}

=

1

λ
inf
m∈R

(Eµ[(m − v)+] − λm) .
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Note that for any valuation function ρ, its associated risk measure is −ρ. See
remarks in Section 2.3.2.

3) u (x ) = − 1
λe
−λx + 1

λ , λ > 0, gives again the entropic measure de�ned in Section
2.4.2. To see this, �rst, it is easy to check that u satis�es (2.18). Since u is dif-
ferentiable, with the derivative u ′(x ) = e−λx , the optimalm∗ to (2.19) satis�es
E
µ[u ′(v −m∗)] = 1, viz.,

E
µ[e−λ(v−m

∗ )] = 1 ⇒ m∗ = − 1
λ
E
µ[e−λv ].

Hence, ρ (v,µ) = − 1
λE

µ[e−λ(v−m
∗ )] + 1

λ +m∗ = − 1
λE

µ[e−λv ].

Optimality conditions

Let us consider only concave u which induces risk-averse behaviors. Assume fur-
ther that u is di�erentiable and denote by u ′ its �rst derivative. Then the optimal
m∗ to the optimization problem in the de�nition of optimized certainty equiva-
lence (2.19) satis�es

E
µ [

u ′(v −m∗)] = 1,

which is an stochastic equation. Hence, similar to the utility-based shortfall intro-
duced in the last subsection, we can apply stochastic approximation algorithms
to solve the above equation and meanwhile calculate the original expectation

E
µ [u (v −m∗)] +m∗.

For more details see Hamm et al. (2013).

2.4.7 Mean-semideviation trade-o�

As we have discussed in Section 2.4.1, the mean-variance trade-o� is not a valid
valuation function, since it violates the axiom of monotonicity. To amend this
problem, Ogryczak and Ruszczyński (1999) (see also Ruszczynski and Shapiro,
2006) introduced the concept of mean-semideviation trade-o�:

ρ (v,µ) := Eµ[v] − λ [

E
µ (Eµ[v] − v)r+

]1/r
.(2.21)

Here r ≥ 1, (x )+ := max(x ,0), and λ ∈ [0,1] controls how risk-averse the agent is.
Comparing with the mean-variance trade-o�, the risk is measured by the semide-
viation

[

E
µ (Eµ[v] − v)r+

]1/r instead of the standard deviation [Eµ |Eµ[v] − v |r ]1/r .
It is called “semi”, because only those events whose outcomes below the mean
E
µ[v] are regarded as “risky”, whereas those events with outcomes higher than

the mean are viewed as “safe” events. Hence, using variance or standard devia-
tion as a risk measure punishes both positive and negative sides (taking the mean
as the reference point), while the semideviation punishes only the negative side.
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For more detailed comparison, we refer to Ogryczak and Ruszczyński (1999). In
addition, it is also easy to check that ρ (v,µ) is concave with respect to v and is
therefore risk-averse. This categorization (due to its concavity) is consistent with
the intuition that risk, which is measured by the semideviation, is punished.

Monotonicity

It is easy to check that ρ de�ned in (2.21) satis�es the axioms of translation in-
variance and centralization. Below we show that it satis�es also the axiom of
monotonicity. It is remarkable that our proof is based on the calculation of gra-
dients of ρ with respect to v, which will be used in Section 4.3.1 as well. For its
original proof, see Proposition 2 of Ogryczak and Ruszczyński (1999).

Fix a probability measure µ ∈ P and let Lr (µ) be the space of all real-valued
F -measurable functions with a �nite r th moment, i.e., Eµ[|v |r ] < ∞.

Proposition 2.19. Let ρ be de�ned in (2.21) with some λ ∈ [0,1] and r ≥ 1. Then,
for each probability measure µ ∈P and f ≥ д ∈ Lr (µ), ρ ( f ,µ) ≥ ρ (д,µ).

Proof. We consider v as a di�erentiable function of t ∈ [0,1], i.e., v : [0,1] →
Lr (µ), satisfying v (0) = f and v (1) = д. Then, it is su�cient to show that
d
dt ρ (v,µ) ≥ 0, provided v̇ (t ) ≥ 0 for each t ∈ [0,1].

Let u (x ) = (x )+ and therefore its right derivative is

u ′(x ) =

{

1 if x ≥ 0
0 otherwise

,

which implies that u (x )pu ′(x ) = u (x )p holds for all x ∈ R and p > 0.
If v (t ) is a constant function, then d

dt ρ (v,µ) = E
µ[v̇] ≥ 0 already holds.

Otherwise, we consider �rst the case (i) r > 1. Since v̇ ≥ 0 and λ ∈ [0,1], we have

d

dt
ρ (v,µ) =Eµ[v̇] − λ

E
µ
[

[u (Eµ[v] − v)]r−1 u ′(Eµ[v] − v) (E µ[v̇] − v̇)
]

(Eµ [u (Eµ[v] − v)]r )1−1/r

=E
µ[v̇] − λ

E
µ
[

[u (Eµ[v] − v)]r−1 (E µ[v̇] − v̇ )
]

(Eµ [u (Eµ[v] − v)]r )1−1/r
(2.22)

≥Eµ[v̇]


1 − λ

E
µ
[

[u (Eµ[v] − v)]r−1
]

(Eµ [u (Eµ[v] − v)]r )
r−1
r


 .

Finally, due to Hölder’s inequality, we have

(

E
µ
[

[u (Eµ[v] − v)]r−1
] )

1
r−1 ≤ (

E
µ [u (Eµ[v] − v)]r )

1
r ,

which implies that d
dt ρ (v,µ) ≥ Eµ[v̇](1 − λ) ≥ 0.
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(ii) We consider now the case r = 1. Then,

d

dt
ρ (v,µ) =Eµ[v̇] − λEµ [

u ′(Eµ[v] − v) (Eµ[v̇] − v̇ )]

≥Eµ[v̇] (1 − λEµ [

u ′(Eµ[v] − v)] ) ≥ 0.

Combining (i) and (ii), our claim follows. �

2.5 Summary

Risk is caused by the uncertainty of future events and their associated outcomes.
A risky choice consists of probabilities and outcomes of future events. Di�erent
ways of evaluating risky choices result in di�erent risk preferences. We therefore
propose in this chapter a normative axiomatic framework of valuation functions
as an indirect measure of risk, in the sense that given a valuation function, we can
quantify its induced risk preference. Here, the risk preference is not necessarily
uniform, i.e., one can be risk-averse in some situations while being risk-seeking
in other situations, as observed in studies of human behavior like the prospect
theory. We have also shown that most of the examples in risk-related literature
of various �elds can be covered by our framework. This framework makes, there-
fore, a broad and solid premise for our further development of models on risk-
sensitive sequential decision-making problems in the following chapters.

Mathematical properties of each example has been brie�y studied and com-
pared. In particular, we �nd that a rich family of valuation functions, called utility-
based shortfall, can replicate the key features predicted by prospect theory, if the
utility function is appropriately chosen. Furthermore, the derived optimization
problem reduces to solving a stochastic equation. These two features will play
essential roles when we develop risk-sensitive reinforcement learning algorithms
to quantify human behaviors (see Chapter 6 and 7).
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3

Valuation Maps

Life can only be understood backwards;

but it must be lived forwards.

— Søren A. Kierkegaard

Précis Fromnow onwe assume that the underlying stochastic process isMarko-
vian. For simplicity, we consider in this chapter only Markov chains without con-
trol variables. The extension to Markov decision/control problems will be investi-
gated in Chapter 5. Applying the theory developed in the last chapter to Markov
chains, we ought to answer the following two questions:

1. How to “customize” valuation functions in order to remain important prop-
erties, e.g., the Markov property?

2. Is our de�nition consistent with the originally more general de�nition in
the sense that convexity (respectively concavity) induces risk-seeking (re-
spectively risk-averse) behavior?

Our answer to these questions is to apply a constructive approach by introduc-
ing the concept of valuation maps (see Section 3.2 below). This approach admits
a backward induction (or dynamic programming) for calculating the subjective
valuation of additive rewards on Markov chains. In Section 3.3, we will also show
that our approach is compatible with the literature (see e.g. Cheridito et al., 2006;
Ruszczyński, 2010) where time-consistent dynamic risk measures are applied.

3.1 Markov property

Let {Xt ,t = 0,1, . . .} be a Markov chain on a measurable space (X,B). Given a
family of real-valued B-measurable functions {rt }Tt=0, we consider the following
sum

ST :=
T

∑

t=0

rt (Xt ),(3.1)

29
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and apply valuation functions de�ned in the last chapter to this sum.
To accomplish this task, the �rst step is to de�ne the Markov chain in Kol-

mogorov’s style (see, e.g., Section 2.2 of Hernández-Lerma and Lasserre, 2003).
That means, let (Ω,F ) be the (canonical) sample space with Ω := X

∞ and F be-
ing the associated product σ -algebra. An elementω ∈ Ω is a sequence (x0,x1, . . .)
with components xt ∈ X. Let ν be a probability measure on B, and for each
t = 0,1, . . ., let Xt : Ω → X be the projection ω 7→ Xt (ω) := xt . Then by the
well-known theorem of I. Ionescu Tulcea, there is a probability measure Pµ on F
such that Pµ (X0 ∈ B) = µ (B),∀B ∈ B, and, moreover, for every t = 0,1, . . . ,x ∈ X
and B ∈ B, Pµ (Xt+1 ∈ B|Xt = x ) =: P (t ) (x ,B). Note that if the Markov chain
is time-homogeneous, then P (t ) ≡ P is independent of time t . For t = 0,1, . . .,
P (t ) (x ,B) is a stochastic kernel on X, which is de�ned as follows

Definition 3.1. A mapping P : X × B → [0,1] is called a stochastic kernel if

(i) P (x , ·) is a probability measure on B for each �xed x ∈ X, and

(ii) P (·,B) is a measurable function on X for each �xed B ∈ B.

We also write P (x ,B) as Px (B) or P (B|x ) in di�erent contexts.

Note that since Px (·) is a probability measure, we can de�ne the following
conditional expectation for any real-valued B-measurable function f

E
Px [f ] = Px ( f ) :=

∫

f (y)P (dy |x ).

As a special example of valuation functions, we apply the standard expectation
to the sum ST de�ned in (3.1). By the Markov property, it can be expanded as
follows,

E
Pµ [ST ] =E

µ
[

r0 (X0) + E
P
(0)
X0

[

r1 (X1) + . . . + E
P
(T −1)
XT −1 [rT (XT )] . . .

] ]

=µ
[

r0 + P
(0)

[

r1 + . . . + P
(T −1)[rT ] . . .

] ]

.

Moreover, if applying the Dirac measure at x ∈ X, we denote Pµ by Px . Then the
expectation from each start point x becomes

E
Px [ST ] = r0 (x ) + P

(0)
x

[

r1 + . . . + P
(T )[rT ] . . .

]

(3.2)

Hence, one can further calculate the expectationEPx [ST ] iteratively with a family
of operators Tn : L → L , n = 0,1,2, . . . , de�ned as

Tn ( f ) := rn + P (n)[f ].(3.3)

We consider the following iteration,

fT := rT , fn := Tn ( fn+1),n = T − 1, . . . ,0.(3.4)

Then, it is easy to verify that EPx [ST ] = f0(x ).
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The special feature of additive rewards This iterative view reveals the most
important feature of the expectation of additive rewards with the Markov prop-
erty: although the sum ST depends on the whole history (X0,X1, . . . ,XT ) ∈ X

T ,
one needs merely to store the function f n on X and propagate information iter-
atively as in (3.4). Computationally, if the size of the state space X is N , then the
iterative approach reduces the complexity enormously from N T to N ×T . This is
the exact “Markov property” that we are going to to keep in our generalization.

3.2 De�nition

Hence, we de�ne the new objective function directly from the iterative represen-
tation (3.2)

ρ[ST |X0 = x] := r0 (x ) +U (0)
x

[

r1 + . . . +U (T )[rT ] . . .
]

,(3.5)

where the valuation map U that generalizes the conditional expectation is for-
mally de�ned as follows with two steps. First, we de�ne the valuation map in a
general setting and then restrict to the Markovian setting

Definition 3.2. AmappingU (x , (v,µ)) : X×L ×P → R is said to be a valuation
map, if

(i) for each x ∈ X,U (x , (·, ·)) is a valuation function; and

(ii) U (·, (v,µ)) is B (X)-measurable for each (v,µ) ∈ L × P .

Definition 3.3. A mapping U (x ,v) : X × L → R is said to be a valuation map
on a stochastic kernel P , if there exists a valuation map Ũ satisfying

U (x ,v) = Ũ (x , (v,Px )) ∀x ∈ X,v ∈ L .

Furthermore, we writeU (x ,v) also asUx (v) orU (v |x ) depending on di�erent con-
texts.

Examples Note that all examples valuation functions we have presented in
Section 2.4.2–2.4.7 can be easily extended to valuation maps correspondingly by
replacing µ with some transition kernel P . For instance, the entropic measure
ρλ (v,µ) = 1

λ
log

{∫

Ω
eλvdµ

}

de�ned in Section 2.4.2 can be extended to a valua-
tion map, which is said to be an entropic map, as follows,

Ux (v) :=
1

λ
log

{∫

X

eλv (y )Px (dy)

}

,λ , 0.
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Backward induction For a Markov chain with transition kernels {P (t ) ,t =

0,1, . . .}, we can de�ne correspondingly a series of valuation maps {U (t ) } and
generalize the family of operators {Tt } de�ned in (3.3) to be

Tt ( f ) := rt +U (t )[f ].(3.6)

TheT -stage valuation function in (3.5) has, therefore, the following iterative rep-
resentation

ρ[ST |X0 = x] = f0(x ), where fT := rT , ft := Tt ( ft+1),t = T − 1, . . . ,0.(3.7)

Figure 3.1: Illustration of the backward induction in (3.6).

The backward induction procedure (see also Figure 3.1) can be interpreted
as follows. Suppose at time t + 1, the subjective valuation of all positive future
rewards at time t + 2,t + 3, . . ., is ft+1 (Xt+1) which depends on the state at time
t +1. Taking one step backwards, i.e., at time t , given the current stateXt = x , the
successive state Xt+1 is uncertain, whose law is govern by the transition kernel

P
(t )
x . Facing this uncertainty or risk, agents recalculate their subjective valuation

based on the current Xt = x with ft (x ) = U (t )
x (r (Xt+1) + ft+1 (Xt+1)) .

3.3 Time consistency

This backward induction is closely related to the concept of time-consistency in the
literature of dynamic risk measures (see e.g. Riedel, 2004; Detlefsen and Scandolo,
2005; Ruszczyński, 2010 and references therein). In this section, we follow mostly
the notations from Ruszczyński (2010).

Let (Ω,F ) be a Borel space with a �ltration F0 ⊂ F1 ⊂ . . . ⊂ F . In other
words, Ft denotes the space of all possible sequences of states up to time t . LetLt

be the space of all real-valued functions which are Ft -measurable, t = 0,1,2, . . ..
LetLt,T := Lt ×Lt+1 × . . .×LT . For instance, by de�nition, eachRt := rt (Xt ) ∈
Lt . Hence, (Rt ,Rt+1, . . . ,RT ) ∈ Lt,T .

Definition 3.4. A dynamic valuation function is a family {ρt,T ,t = 0,1, . . . ,T }
such that for each µ ∈P , and each t = 0,1, . . . ,T , ρt,T : Lt,T ×P → Lt satis�es

(i) (monotonicity) ρt,T ( f ,µ) ≤ ρt,T (д,µ), ∀f ≤ д ∈ Lt,T

(ii) (translation invariance) ρt,T ( f + д,µ) = ρt,T ( f ,µ) + д, ∀f ∈ Lt,T , д ∈ Lt ,

and
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(iii) (centralization) ρt,T (0,µ) = 0.

Here, for each t = 0,1, . . . ,T , the conditional valuation function ρt,T can be
viewed as a subjective evaluation of future outcomes Rt :T := (Rt ,Rt+1, . . . ,RT ) up
to time T . Now suppose there are two outcome functions R0:T and R′0:T such that
they have the same outcome at time t , Rt = R′t , and their subjective evaluation
at time t + 1 are also the same, ρt+1,T (Rt+1:T ,µ) = ρt+1,T (R′t+1:T ,µ). Then, taking
one step backwards, their subjective evaluations at time t should be also identical,
i.e., ρt,T (Rt :T ,µ) = ρt,T (R′t :T ,µ). This property is called time consistency, which is
formally de�ned as follows.

Definition 3.5. A dynamic valuation function {ρt,T ,t = 0,1, . . . ,T } is said to be

time-consistent if for each t = 0,1, . . . ,T − 1, µ ∈P and Rt ,R
′
t ∈ Lt ,

Rt = R
′
t and ρt+1,T (Rt+1:T ,µ) = ρt+1,T (R

′
t+1:T ,µ)

implies that ρt,T (Rt :T ,µ) = ρt,T (R
′
t :T ,µ).

Remark 3.6. Time consistency is the essential property that allows us to apply
dynamic programming to solve the optimization problem induced by valuation
maps (see Chapter 5). It has been studied in various contexts (see Artzner et al.,
2007; Detlefsen and Scandolo, 2005; Koopmans, 1960; Kreps and Porteus, 1978;
Ruszczyński, 2010).

For a dynamic valuation function {ρt,T ,t = 0,1, . . . ,T } we de�ne

ρs,t ((Rs , . . . ,Rt ),µ) := ρs,T ((Rs , . . . ,Rt ,0,0, . . . ,0),µ),0 ≤ s ≤ t ≤ T .

Now we restate Theorem 1 of Ruszczyński (2010) as follows

Theorem 3.7. Adynamic valuation function {ρt,T ,t = 0,1, . . . ,T } is time-consistent

if and only if for all 0 ≤ s < t ≤ T , µ ∈ P and {Rt ,t = 0,1, . . . ,T } ∈ L0,T the

following equality holds

ρs,T (Rs:T ,µ) = ρs,t ((Rs:t−1 ,ρt,T (Rt :T ,µ)),µ).

The above theorem implies immediately that for each t = 0,1, . . . ,T ,

ρt,T (

T
∑

s=t

Rs ) = Rt + ρt,t+1 (Rt+1 + ρt+1,t+2 (. . . + ρT −1,T (RT ) . . .)),

where we omit the �xed probability measure µ . Note that here ρt,t+1 : Lt+1 ×
P → Lt is the one-step conditional valuation function, which is coincident with
our de�nition of valuation maps, if the underlying stochastic process is Marko-
vian. In other words, given a time-consistent dynamic valuation function, {ρt,T },
when applying to the sum ST de�ned in (3.1), one can always obtain a backward
induction procedure as in (3.5). Hence, the ad hoc way that we apply valuation
functions to the sum is in fact of no loss of generality, as long as the time consis-
tency is required.
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3.4 Time consistency of risk preferences

Before introducing the implied risk preferences, we �rst state the following de�-
nition.

Definition 3.8 (cf. De�nition 2.7). A valuation map U is said to be convex (re-

spectively concave, homogeneous) ifUx is convex (respectively concave, homoge-
neous), for all x ∈ X.

Similar to the analysis done in Section 2.3.1, we show by the following propo-
sition that an agent with a convex (respectively concave) valuation map is risk-
seeking (respectively risk-averse).

Proposition 3.9. Let {rt } and {r ′t } be two sets of real-valued measurable functions

and de�ne

ST :=
T

∑

t=0

rt (Xt ) and S
′
T :=

T
∑

t=0

r ′t (Xt ),

where {Xt } is aMarkov chain with a family of transition kernels {P (t ) }. If a valuation
mapU is concave (resp. convex), then

ρ (αST + (1 − α )S ′T |X0 = x ) ≥ αρ (ST |X0 = x ) + (1 − α )ρ (S ′T |X0 = x )

resp. ρ (αST + (1 − α )S ′T |X0 = x ) ≤ αρ (ST |X0 = x ) + (1 − α )ρ (S ′T |X0 = x )

holds for all x ∈ X and α ∈ [0,1], where ρ is de�ned in (3.5).

Proof. We prove only the concave case. The convex case follows analogously.
De�ne r αt := αrt + (1 − α )r ′t . By (3.5),

ρ (αST + (1 − α )S ′T |X0 = x )

=r α0 (x ) +U
(0)
x [r α1 + . . . +U (T )[r αT ] . . .]].

By the concavity ofU (T ) , we have

r αT −1 +U
(T )[r αT ] ≥ αrT −1 + (1 − α )r ′T −1 + αU (T )[rT ] + (1 − α )U (T )[r ′T ].

By the monotonicity and again the concavity of U (T −1) , the above inequality
implies

U (T −1) [r αT −1 +U
(T )[r αT ]

]

≥αU (T −1) [rT −1 +U (T )[rT ]
]

+ (1 − α )U (T −1) [r ′T −1 +U (T )[r ′T ]
]

.

By induction, we obtain the required inequality. �

The above proposition shows that the convexity (respectively concavity) ofU
implies the convexity (respectively concavity) of the constructed valuation func-
tion ρ. This sheds light on how to chooseU if we want uniform risk-averse (or
risk-seeking) behaviors. If a mixed-preference is expected, one can applyU that
is neither convex nor concave, e.g., 1)Ux is convex for some states and is concave
for other states, or 2) Ux is neither convex nor concave for some states (for an
example see Section 2.4.5).
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Poisson Eqation

Die Beschäftigung mit der Mathematik, sage ich,

ist das beste Mittel gegen die Kupidität.

— Thomas Mann, Zauberberg

Précis Given a reward function r and a valuation map on a time-homogeneous
Markov chainU , we investigate in this chapter the related Poisson equation:

T (h) := r +U (h) = ρ + h,

where its solution (ρ,h) is composed of a constant and a function on the state
space X. We start with a review of the Lyapunov approach applied in literature
of Markov chains on general state spaces with possibly unbounded reward func-
tions. In the same general setting, we extend this approach to general valuation
maps. Two types of conditions, i.e., 1) existence of a Lyapunov function and 2)
Doeblin-like conditions, are stated to ensure not only the existence of a solution
to the Poisson equation but also a geometric convergence of iterations to the so-
lution. For the important type of valuation maps, the entropic map, we will show
that the above conditions are satis�ed, if 1) a Lyapunov function exists for the
entropic map, 2) the local Doeblin’s condition holds for the underlying Markov
chain, and 3) a growth condition for reward functions. Finally, we investigate the
same problem on �nite state spaces. In this restrict setting, we state su�cient
conditions for multistep contractions.

Publications related to this chapter Main results of Section 4.3 and 4.4 and
have been contained in Shen et al., 2013, Section 3 and Shen et al., 2014b, Section
3 and 4.

Notations Let X denote the state space, which is a Borel space, i.e., a Borel subset
of a complete separable metric space, and its Borel σ -algebra is denoted by B (X).
Denote byP the space of all probabilitymeasures on (X,B (X)), and byL a linear
space of real-valuedB (X)-measurable functions containing all constant functions.

35
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Hence, R ⊂ L . Finally, for arbitrary two functions f and д in L , we say f ≤ д,
if f (x ) ≤ д(x ) for each x ∈ X.

4.1 Motivation

In this chapter, we consider merely the time-homogeneous Markov chain with
a transition kernel P and a reward function r . Let U be a valuation map on P .
Hence, the operators de�ned in (3.3) is also time-homogeneous, i.e.,

Tn ( f ) ≡ T ( f ) = r +U ( f ),n = 1,2, . . .

and therefore, ρ[ST ] = T T ( f ), where the iteration is de�ned as

T 0( f ) := f , T n ( f ) := T (T n−1 ( f )),n = 1,2, . . . .(4.1)

We now investigate the limit behavior of the average valuation, i.e.,

lim
n→∞

1

n + 1
T n (r ).

Wewill show below that the the average valuation problem is strongly connected
to the following Poisson equation:

r (x ) +Ux (h) = ρ + h(x ),∀x ∈ X,(4.2)

where ρ ∈ R and h : X → R. If (4.2) holds, then (ρ,h) is said to be a solution to
the Poisson equation.

Indeed, if (ρ,h) is a solution to the Poisson equation (4.2), we obtainT n (h)(x ) =

nρ +h(x ),∀x ∈ X,which implies that for each x ∈ X, limn→∞
1

n+1T
n (h)(x ) = ρ. If

we can furthermore show

1

n + 1
(T n (h) − T n (r )) → 0,

under appropriately chosen norm, then the average valuation problem is solved:

lim
n→∞

1

n + 1
T n (r )(x ) = ρ,∀x ∈ X.

This average valuation problem is also related to the invariant valuation func-
tion to be de�ned below.

Definition 4.1. Avaluation functionν is said to be an invariant valuation function
of U on L if it satis�es ν (U ( f )) = ν ( f ),∀f ∈ L .

Hence, by its de�nition, if there exists a unique invariant valuation function ν ,
then the Poisson equation (4.2) implies also ν (r ) = ρ.

Note that ensuring a (unique) solution to the Poisson equation is not su�cient
for our purpose, since we would like, furthermore, to obtain the solution (ρ,h) by
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some iterative algorithm. In other words, we expect T n ( f ) → h under some
distance measure and ideally, we can even quantify the convergence speed as a
function of n. In the literature of Markov chains, the above requirements can be
satis�ed if the underlying Markov chain is geometrically ergodic (for details see
the next section). This result will be generalized to general valuation maps in
Section 4.3.

4.2 Lyapunov approach for Markov chains

In this section, we consider merely the special case where U = P . In this case,
the link between the Poisson equation (4.2) and the average valuation (reward) is
well known. See e.g. Glynn and Meyn (1996) and Makowski and Shwartz (2002).
Furthermore, in this case the invariant valuation function ν is called an invariant

measure (see e.g. Hernández-Lerma and Lasserre, 2003), if we consider L = B,
i.e., the space of all bounded real-valued B (X)-measurable functions. In addition,
ν is linear. This means also that P is ergodic with respect to ν . For the formal
de�nition of ergodicity in the context of probability theory, we refer to Walters
(2000).

A general condition dated back to Harris (1956) states that if a Markov chain
admits a “small” set, then it is uniquely ergodic and therefore a solution to the
Poisson equation is guaranteed. This is usually established by �nding a Lyapunov
function with “small” level sets (Meyn and Tweedie, 1993, Chapter 14). If the Lya-
punov function is strong enough, the transition probabilities converge exponen-
tially fast towards the unique invariant measure and the constant in front of the
exponential rate is controlled by the Lyapunov function (Meyn and Tweedie, 1993,
Chapter 15). There have been other variations which have made use of Poisson
equations or worked at getting explicit constants (Kontoyiannis and Meyn, 2005;
Douc et al., 2004; Del Moral et al., 2003). Hairer and Mattingly (2011) stated a sim-
pli�ed version of the conditions, which is the main approach that we will follow
and extend in this thesis. We state �rst the following notations mainly taken from
Hairer and Mattingly (2011).

4.2.1 Weighted norm

Let w : X → [1,∞) be a given real-valued B (X)-measurable function. Consider
thew-norm

‖u‖w := sup
x ∈X

|u (x ) |
w (x )

.

Let Bw be the space of real-valued B (X) measurable functions with boundedw-
norm. It is obvious that B ⊂ Bw , where B denotes the space of bounded B (X)-
measurable functions. Let µ be a signed measure on B (X). De�ne

‖µ ‖w := sup
‖u ‖w ≤1

|
∫

X

udµ | =
∫

X

wd|µ | ≥ ‖µ ‖TV ,
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where ‖·‖TV denotes the total variation norm of probability measures.
The w-seminorm is

‖v ‖s,w := sup
x,y

|v (x ) − v (y) |
dw (x ,y)

,where dw (x ,y) :=

{

0 x = y

w (x ) +w (y) x , y
.

This Lipschitz-type seminorm is originally used by Hairer and Mattingly (2011)
to study the ergodicity of Markov chains. In particular, when restricting to the
bounded space B, i.e., setting w ≡ 1, the seminorm is called span-norm in Her-
nández-Lerma (1989) or Hilbert seminorm in Gaubert and Gunawardena (2004).
In the following, we restate the Lemma 2.1 in Hairer and Mattingly (2011) and
incorporate its proof for readers’ convenience.

Lemma 4.2. ‖v ‖s,w = min
c∈R
‖v + c‖w ,∀v ∈ Bw .

Proof. It is obvious that ‖v ‖s,w ≤ ‖v ‖w and therefore

‖v ‖s,w ≤ inf
c∈R
‖v + c‖w .

It remains to prove the reverse inequality. Given any ‖v ‖s,w ≤ 1, set

c := inf
x
{w (x ) − v (x )}.

Note that for any x and y,

v (x ) ≤ |v (y) | + |v (x ) − v (y) | ≤ |v (y) | +w (x ) +w (y).

Hencew (x ) −v (x ) ≥ −w (y) − |v (y) |, which implies that c is bounded below and
hence |c | < ∞. Observe that

v (x ) + c ≤v (x ) +w (x ) − v (x ) ≤ w (x ) and

v (x ) + c = inf
y
{v (x ) +w (y) − v (y)}

≥ inf
y
{w (y) − dw (x ,y)‖v ‖s,w } ≥ −w (x ).

Hence, |v (x ) + c | ≤ w (x ) as required. �

4.2.2 Ergodicity conditions

Hairer and Mattingly (2011) state the following two conditions.

Assumption 4.3 (Assumption 1 and 2 in Hairer and Mattingly, 2011). (i) There ex-
ists a function w : X → [0,∞), which is B (X)-measurable, and constants
K ≥ 0 and γ ∈ (0,1) such that

Px (w ) ≤ γw (x ) + K ,∀x ∈ X
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(ii) There exists a constant α ∈ (0,1) and a probability measure ν so that

inf
x ∈B

P (x ,C) ≥ αν (C),C ∈ B (X)

with B := {x ∈ X : w (x ) ≤ R} for some R > 2K
1−γ .

The �rst condition guarantees that there exists a Lyapunov function that con-
trols the growth of iterations. More speci�cally, suppose that f ∈ B1+βw with
some β > 0. Then,

P ( f ) ≤ ‖ f ‖1+βwP (1 + βw ) ≤ ‖ f ‖1+w (1 + βγw + βK ).

By iteration and the linearity of P , we have

Pn ( f ) ≤ ‖ f ‖1+βw (1 + βγ nw + β
1 − γ n
1 − γ K ),

from which we can conclude that ‖Pn ( f )‖1+βw is globally upper bounded. Recall
that T ( f ) = r + U ( f ) = r + P ( f ). By the linearity of P and (4.3), the above
inequality implies that for all f ,д ∈ B1+βw ,

1

n
‖T n ( f ) − T n (д)‖1+βw =

1

n
‖Pn ( f ) − Pn (д)‖1+βw → 0,(4.3)

under the (1 + βw )-norm.
The second condition in Assumption 4.3 ensures that there exists an ergodic

“small” set B. This condition can be also viewed as a variant of the Doeblin’s
condition (see e.g. Doob, 1953).

We now state the contraction result obtained by Hairer and Mattingly (2011).
We will show in Section 4.3 that this contraction under an appropriately chosen
weighted seminorm is the most important property for proving the existence of
a solution to the Poisson equation .

Lemma 4.4 (Theorem 3.1 in Hairer and Mattingly, 2011). Suppose Assumption 4.3

holds. There exist constants ᾱ ∈ (0,1) and β > 0, both of which depend on γ ,K and

α , such that

‖P ( f )‖s,1+βw ≤ ᾱ ‖ f ‖s,1+βw ,∀f ∈ B1+βw .

Proof. See the proof of Theorem 3.1 in Hairer and Mattingly (2011). We refer to
also the proof of Lemma 4.9 in this chapter, which is in fact a generalized version
of this lemma. �

An example

We state one example of Markov chains which satis�es Assumption 4.3. Consider
a 1-dimensional simple autoregressive model

Xt+1 = δXt + σNt(4.4)
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with some δ ∈ (−1,1), σ > 0 and Nt being standard is i.i.d. white noise. The
transition kernel is then

P (dy |x ) = 1
√
2πσ 2

exp(− (y − δx )
2

2σ 2
)dy.

This model is a special case of autoregressive moving average (ARMA) time series
(see e.g. Hamilton, 1994), which are widely applied in econometrics. In fact, the
property to be introduced below can be applied to general ARMA models with
slight modi�cations.

Lyapunov function We consider w (x ) = eϵx
2
with a coe�cient ϵ > 0 to be

speci�ed later. We �rst assume 1 − 2ϵσ 2 > 0. Applyingw , we have

Px (w ) =
1
√
2πσ

∫

e
− (y−δx )2

2σ2 +ϵy2

dy

=

1
√
2πσ

∫

e
−( 1

2σ2 −ϵ )y2+ 2δyx

2σ2 − δ2

2σ2 x
2

dy

=

1
√
1 − 2ϵσ 2

e
δ2 ϵ

1−2ϵσ2 x
2

Let γ := δ 2

1−2ϵσ 2 and C := 1√
1−2ϵσ 2

. Note that since |δ | < 1, we can always select ϵ

such that γ ∈ [0,1). This yields Px (w ) ≤ Cwγ (x ). Finally, for each γ ∈ [0,1) and
C > 0, we can always select su�ciently large K such that γx + K ≥ Cxγ ,∀x ≥ 0,
which implies that

Px (w ) ≤ Cwγ (x ) ≤ γw (x ) + K ,∀x ∈ X.

Doeblin’s condition Given the Lyapunov function w (x ) = eϵx
2
, the level set

is then of the form {x ∈ R| |x | ≤ R̃} with some constant R̃. We show below for
any positive R̃, the required constant and probability measure exist. Indeed, by
(y − δx )2 ≤ 2y2 + δ 2x2, we can deduce

e
− (y−δx )2

2σ2 ≥ e−
y2

σ2 − δ2 x2

σ2 ≥ e−
δ2 R̃2

σ2 e
− y2

σ2 ,

which yields the required constant α = 1√
2πσ

e
− δ2 R̃2

σ2 (
∫

R
e
− y2

σ2 dy) and the required

probability measure µ (dy) = (
∫

R
e
− y2

σ2 dy)−1e−
y2

σ2 dy.

Remark 4.5. We can choose in fact Lyapunov functions which “grow slowly”,
while the Doeblin’s condition remains satis�ed. Examples are w (x ) = ϵx2, or
w (x ) = eϵ |x |

p
with p ∈ (0,2) and some appropriately chosen positive constant ϵ .

To see this, we refer to Section 4.4.1 below.
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4.3 General theory

Recall that under some Lyapunov assumptions (see Assumption 4.3), we obtain
the following two inequalities (see Lemma 4.4 and (4.3)) for Markov chains, i.e.,
U = P ,

‖T ( f ) − T (д)‖s,1+βw ≤ ᾱ ‖ f − д‖s,1+βw ,∀f ,д ∈ B1+βw .(4.5)

and

1

n
‖T n ( f ) − T n (д)‖1+βw → 0.(4.6)

Letw ′ := 1 + βw . Based on these two conditions, we state the following result for
arbitrary valuation maps.

Theorem 4.6. Suppose the operator T (·) = r +U (·) satis�es (4.5) and (4.6). Then
there exist

(i) a solution (ρ,h) ∈ R × Bw ′ to the Poisson equation (4.2), where ρ is unique

and

(ii) a valuation function ν satisfying

ν (r +U ( f )) = ν ( f ) + ρ,∀f ∈ Bw ′ .

Proof. (i) Let B̃w ′ = Bw ′/ ∼ be the quotient space, which is induced by the
equivalence relation ∼ on Bw ′ de�ned by f ∼ д if and only if there exists some
constantA ∈ R such that f (x )−д(x ) = A∀x ∈ X, endowedwith the quotient norm
induced by the weighted seminorm. Starting from anyv ∈ Bw ′ , {vn := T n (v)} is
a Cauchy sequence in B̃w ′ under thew ′-seminorm due to (4.5). Then by the �xed
point argument w.r.t. the w ′-seminorm as applied in p. 321 of Arapostathis et al.
(1993), there exists a �xed point h ∈ Bw ′ such that ‖T (h) − h‖s,w ′ = 0. Hence,
there exists a constant ρ ∈ R such that T (h) = r +U (h) = h + ρ.

Uniqueness of ρ. Suppose there are two solutions (ρ,h) and (ρ ′,h′) inR×Bw .
Then, T n (h) = h + nρ and T n (h′) = h′ + nρ ′. By (4.6),

1

n
‖T n (h) − T n (h′)‖w =

1

n
‖h − h′ + n(ρ − ρ ′)‖w → 0

as n → ∞ implies that ρ = ρ ′.
(ii) Let µ0 ∈Mw ′ be a probability measure and h be one solution in Bw ′ . We

show �rst that

lim
m→∞

sup
n≥m

��µ0 [T n (v) − T n (h)] − µ0 [T m (v) − T m (h)]�� = 0,∀v ∈ Bw ′ .(4.7)
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Indeed, de�ne vn := T n (v) and hn := T n
c (h),n = 1,2, . . . . and we have

sup
‖v−h ‖s,w ′ ≤A

��µ0 [vn − hn] − µ0 [vm − hm]��

≤ sup
‖v1−h1 ‖s,w ′≤ᾱ A

���µ0
[

T n−1 (v1) − T n−1 (h1)
]

− µ0
[

T m−1 (v1) − T m−1 (h1)
] ���

≤ sup
‖vm−hm ‖s,w ′≤ᾱmA

��µ0
[T n−m (vm ) − T n−m (hm )

] − µ0 [vm − hm]�� .

by which (4.7) follows immediately.
De�ne D (·) := T (·) − ρ and µn (·) := µ0 (Dn (·)). (4.7) is equivalent to

lim
m→∞

sup
n≥m
|µ0 [Dn (v) − Dm (v)] | = lim

m→∞
sup
n≥m
|µn (v) − µm (v) | = 0,∀v ∈ Bw ′ .

Hence, µn converges to a mapping µ∞ : Bw ′ → R satisfying

µ∞ (D (v)) = µ∞ (v),∀v ∈ Bw ′ .

On the other hand, for each n, µn satis�es the axioms of valuation functions ex-
cept the axiom of centralization. Hence, µ∞ preserves two axioms of valuation
functions and by setting ν (·) := µ∞ (·) − µ∞ (0) we obtain the required valuation
function. �

Extension I: uniformly bounded iterations For some valuation maps, for
instance the entropic map (see Section 4.4), the contraction parameter α in (4.5)
might depend on also the distance between f and д, ‖ f − д‖s,w ′ and α → 1 as
‖ f − д‖s,w ′ → ∞. Then 4.5 does not hold. Nevertheless, if we can show that
starting with any f satisfying ‖ f ‖s,w ′ ≤ C , the iteration {T n ( f ),n = 1,2, . . .}
remains bounded by C under the same seminorm, the results stated above still
holds by restricting to the bounded subset. More details are referred to Section
4.3.2.

Extension II:multistep contraction Comparingwith theDoeblin’s condition
stated in Assumption 4.3 (ii), a more general condition is to assume that there
exists some positive integer n0 such that Pn0 (·) ≥ αµ (·). This yields the multistep
contraction: ‖T n0 ( f ) − T n0 (д)‖s,w ′ ≤ ᾱ ‖ f − д‖s,w ′ for the linear case U ≡
P . One can check that replacing (4.5) with the above multistep contraction, the
statement of Theorem 4.6 still holds. More details about this extension will be
discussed in Section 4.5, where properties of valuation maps on �nite state spaces
are investigated under the assumption that the underlying Markov chain satis�es
the multistep Doeblin’s condition.

By Theorem 4.6, it is su�cient to investigate the conditions, under which
the contraction stated in (4.5) and the boundedness stated in (4.6) hold. We �rst
study in Section 4.3.1 a special case where the valuation map U is convex and
homogeneous and then investigate general cases in Section 4.3.2.
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4.3.1 Convex and homogeneous valuation maps

We state the following assumption that generalizes Assumption 4.3.

Assumption 4.7. LetU be a convex and homogeneous valuationmap. There exists
a functionw : X→ [0,∞) which is B (X)-measurable, constants K ≥ 0, γ ∈ (0,1),
α ∈ (0,1), and a probability measure ν such that (i)

Ux (w ) ≤ γw (x ) + K ,∀x ∈ X(4.8)

and (ii)

inf
x ∈B
{Ux (v) − αν (v) − Ux (u) + αν (u)} ≥ 0(4.9)

whenever v ≥ u ∈ B1+w , where B := {x ∈ X : w (x ) ≤ R} ∈ B (X) for some
R > 2K/(1 − γ ).

Comparing with Assumption 4.3, the Doeblin’s condition (ii) is generalized
here with every partially ordered pairs v ≥ u in B1+w which is in fact equivalent
to B1+βw with any constant β > 0.

In the following, we connect the generalized Doeblin’s condition in (4.9) with
the classical one stated in Assumption 4.3(ii) by subgradients of valuation maps
(see also e.g. Svindland, 2009b). De�ne the subgradient at state x ∈ X and function
u ∈ B1+w for a real-valued valuation mapU as follows,

δUx (u) :=

{

д
�����
д is B (X)-measurable and

∫

|д |(w + 1)dPx < ∞,
Ux (v) ≥ Ux (u) +

∫

д(v − u)dPx ,∀v ≥ u ∈ B1+w

}

.

Proposition 4.8. Suppose the transition kernel P satis�es Assumption 4.3(ii) with

some constant β > 0, set B ∈ B (X) and probability measure µ , i.e.

inf
x ∈B

{

Px (A) − βµ (A)
} ≥ 0,∀A ∈ B (X).

Assume further that there exists д(x ,u) ∈ δUx (u) and positive constant ϵ > 0 such
that д(x ,u) ≥ ϵ for all x ∈ B and u ∈ Bw . Then (4.9) holds for ν = µ and α = ϵβ .

Proof. By de�nition, we have for each x ∈ B and u ∈ Bw

Ux (v) ≥ Ux (u) +

∫

д(x ,u)(v − u)dPx ≥ Ux (u) + ϵβµ (v − u).

Then setting ν = µ and α = ϵβ , (4.9) holds. �

Now we state the contraction property under weighted seminorm.

Lemma 4.9. Suppose Assumption 4.7 holds. Then there exist constants ᾱ ∈ (0,1) and
β > 0 such that

‖U (v) − U (u)‖s,1+βw ≤ ᾱ ‖v − u‖s,1+βw ,

for all v and u in B1+βw .
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Proof. Let w ′ := 1 + βw with some constant β > 0 which will be speci�ed later.
Clearly, the assertion is equivalent to ‖U (v +u) −U (u)‖s,w ′ ≤ ᾱ ‖v ‖s,w ′ , ∀v,u ∈
Bw ′ . Suppose ‖v ‖s,w ′ = C . Lemma 4.2 suggests that we can always �nd a real
value c such that ‖v + c‖w ′ = C . Since adding any constant to v will not change
the values of both sides of the required inequality, without loss of generality, we
assume ‖v ‖w ′ = C . Hence, |v (x ) | ≤ ‖v ‖w ′w ′(x ) = Cw ′(x ), ∀x ∈ X. Note that
U is convex and homogeneous. Then by Proposition 2.9 and the monotonicity of
U , we have ∀x ∈ X,

Ux (v + u) − Ux (u) ≤ Ux (v) ≤ Ux ( |v |).

Switching v + u and u, we obtainUx (v) − Ux (v + u) ≤ Ux ( |v |). Hence,

|Ux (v + u) − Ux (u) | ≤ Ux ( |v |) = ‖v ‖w ′Ux (w
′) = C (1 + βUx (w )) ,(4.10)

where the equalities are due to the homogeneity ofU .

We �rst assume w (x ) +w (y) ≥ R and set γ0 := γ + 2K
R < 1 and γ1 :=

2+βRγ0
2+βR ∈

(γ0,1). (4.10) yields

|Ux (v + u) − Ux (u) − Uy (v + u) +Uy (u) |
≤|Ux (v + u) − Ux (u) | + |Uy (v + u) − Uy (u) |
≤C

(

2 + βUx (w ) + βUy (w )
)

≤ C (2 + βγw (x ) + βγw (y) + 2βK )

≤C (2 + βγ0w (x ) + βγ0w (y)) ≤ C (2γ1 + βγ1w (x ) + βγ1w (y))

=Cγ1dβ (x ,y),(4.11)

where the last inequality is due to fact that 2(1−γ1 )
β (γ1−γ0 ) = R ≤ w (x ) +w (y).

Now consider w (x ) +w (y) ≤ R. Thus x ,y ∈ B. De�ne a new valuation map
Ũx (v) :=

1
1−αUx (v) − α

1−α ν (v). It is easy to verify that Ũ is valid valuation map
on B. In fact, the monotonicity is guaranteed by Assumption 4.7 (ii). Furthermore,
Ũ is also convex and homogeneous. Hence, by replacingU with Ũ (4.10) holds
for all x ,y ∈ B, which yields

|Ux (v + u) − Ux (u) − Uy (v + u) +Uy (u) |
=(1 − α ) |Ũx (v + u) − Ũx (u) − Ũy (v + u) + Ũy (u) |
≤(1 − α )C

(

2 + βŨx (w ) + βŨy (w )
)

.

On the other hand Ũx (w ) ≤ (1 − α )−1Ux (w ), sincew ≥ 0. Hence,

(1 − α )C (2 + βŨx (w ) + βŨy (w )) ≤2(1 − α )C + βC
(

2 + βUx (w ) + βUy (w )
)

≤2(1 − α )C + βC (γw (x ) + γw (y) + 2K ).

Since β = α0/K for some α0 ∈ (0,α ), setting γ2 := (1 − α + α0) ∨ γ ∈ (0,1) yields,

|Ux (v + u) − Ux (u) − Uy (v + u) + Ry (u) |
≤2C (1 − α + α0) +Cγβ (w (x ) +w (y)) ≤ Cγ2dβ (x ,y).(4.12)
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Hence, setting ᾱ := γ1 ∨ γ2 < 1, (4.11) and (4.12) imply,

|Ux (v + u) − Ux (u) − Uy (v + u) +Uy (u) | ≤ ‖v ‖s,w ′ᾱdβ (x ,y),

by which our claim follows. �

Remark 4.10. If the valuation mapU is concave and homogeneous, then Ũ (·) :=
−U (−·) is convex and homogeneous. Hence, Lemma 4.9 holds if Ũ satis�es As-
sumption 4.7.

Proposition 4.11. Let U be convex and homogeneous valuation map. Suppose

Assumption 4.7(i) holds. Then (4.6) holds with any constant β > 0.

Proof. For any f ,д ∈ B1+βw , by the convexity and homogeneity ofU , we have

|U ( f ) − U (д) | ≤ U ( | f − д |) ≤ ‖ f − д‖w ′U (w ′) ≤ ‖ f − д‖w ′ (1 + βγw + βK ),

where the last inequality is due to Assumption 4.7 (i). Iterating the above inequal-
ity yields

|T n ( f ) − T n (д) | ≤ ‖ f − д‖w ′
(

1 + βγ nw + β
1 − γ n−1
1 − γ K

)

,

which implies (4.6). �

An example with the mean-semideviation trade-o�

We consider again the simple autoregressive process considered in (4.4), i.e.,

Xt+1 = δXt + σNt(4.13)

with some δ ∈ (−1,1), σ > 0 and Nt being standard is i.i.d. white noise. We apply
then the mean-semideviation introduced in Section 2.4.7, which is,

Ux ( f ) := Px ( f ) − λ
√

Px[Px ( f ) − f ]2+,

where λ ∈ [0,1) controls how risk-averse the agent is. We have shown in Section
2.4.7, this map is concave and homogeneous. As we have commented in Remark
4.10, to check the Lyapunov conditions, it is equivalent to considering its convex
counterpart,

Ũx ( f ) = −Ux (− f ) = Px ( f ) + λ
√

Px [f − Px ( f )]2+.
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Lyapunov function We considerw (x ) = x2. Note that given the current state
Xt = x , the successive state Xt+1 is drawn, in fact, from a Gaussian distribution
N (δx ,σ 2) with mean δx and variance σ 2. We have then

Px (w ) = δ 2x2 + σ 2,Px (w
2) = δ 4x4 + 6δ 2x2σ 2 + 3σ 4,

and Px (w − Px (w ))2 = Px (w
2) − (Px (w ))2 = 4δ 2x2σ 2 + 2σ 4,

which yield

Ũx (w ) =Px [w] + λ
√

Px[w − Px (w )]2+

≤Px [w] + λ
√

Px [w − Px (w )]2

=σ 2 + δ 2x2 + λ
√
4δ 2x2σ 2 + 2σ 4.

Note that since for any δ 2 ∈ (0,1), σ and λ, �xing one γ ∈ (δ 2,1), there always
exists one su�ciently large constant K > 0 such that

σ 2 + δ 2x2 + λ
√
4δ 2x2σ 2 + 2σ 4 ≤ γx2 + K ,

the �rst condition in 4.7 holds.

Doeblin’s condition Note that ifv ∈ B1+w , then Px [v2] ≤ ‖v ‖21+wPx [1+w]2 <
∞ for each k . Hence, L2(Px (·)) ⊃ B1+w . By (2.22) (see also Svindland, 2009b,
Section 6.3),

д(x ,u) =






1 if u is constant

1 − λPx (u − Px (u))+ − (u − Px (u))+
√

Px (u − Px (u))2+
otherwise

is one subgradient de�ned on L2 (Px (·)) for u ∈ L2(Px (·)) ⊃ B1+w . Note that

Px (u − Px (u))+ − (u − Px (u))+ ≤ Px (u − Px (u))+ ≤
√

Px (u − Px (u))2+,

implies

д(k ,u) ≥ 1 − λ > 0,λ ∈ (0,1).(4.14)

We now check that Px ( |д(k ,u) |(w + 1)) < ∞ as required in the de�nition of sub-
gradients on B1+w . Indeed, for each x and u ∈ B1+w , we have Px ( |д(k ,u) |) =
Px (д(k ,u)) = 1 and

Px ( |д(k ,u) |w ) =Px (д(k ,u)w )

≤Px (w ) + λPx




(u − Px (u))+
√

Px (u − Px (u))2+
w




≤Px (w ) + λ

√

√

√

Px




(u − Px (u))+
√

Px (u − Px (u))2+



2

Px (w2)

=Px (w ) + λ
√

Px (w2) < ∞,
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where the second inequality is due to theHölder’s inequality. Henceд(x ,u) ∈ δŨ ,
∀x ∈ X,u ∈ Bw . Finally, we have already shown in page 40 (see also Meyn and
Tweedie, 1993, Page 380) that for the Markov chain de�ned in (4.4), the classical
Doeblin’s condition holds for any closed level set

{

x ∈ X | |x | ≤ R̃
}

with R̃ > 0.
Hence, by Proposition 4.8, the generalized Doeblin’s condition required by As-
sumption 4.7(ii) holds.

4.3.2 General valuation maps

One essential property of homogeneous valuation maps is that onceU ( |r |) < ∞
with some reward function r , thenU (k |r |) = kU ( |r |) < ∞ holds for any positive
constant k . This property, however, does not hold for convex valuation maps, for
instant, the entropic map with λ = 1 de�ned as

U ( f ) := log
[

Px (e
f )

]

.

In fact, U ( |r |) < ∞ equals to Px (e |r | ) < ∞, but Px (e |r | ) < ∞ does not imply
Px (e

k |r | ) < ∞ for all k > 0. Hence, during the iteration T n (v), where T (·) =
r +U (·), both the reward function r and the initial function v being inside Bw

with some weight function w ≥ 1 does not guarantee that T n (v) ∈ Bw for
each n ∈ N. In other words, the iteration might explode. Hence, we need further
control on the growth of r for general valuation maps like the entropic map.

Bounded forward invariant subset

We state �rst a set of su�cient conditions that guarantee the existence of a bounded
(under w-seminorm) forward invariant subset covering the whole sequence of
{T n (v)}. More speci�cally, we consider subspaces of the following form

B
(C)
w :=

{

v ∈ Bw | ‖v ‖s,w ≤ C
}

.(4.15)

Here, we choose w-seminorm, since we shall prove the contraction property un-
der thew-seminorm as in (4.5).

Assumption 4.12. There exist a B (X)-measurable function w0 : X → [0,∞) and
constants γ0 ∈ (0,1), K0 > 0 and K̃0 > K0 such that

(i) for each x ∈ X

(r (x ) +Ux (w0)) ∨ (−r (x ) − Ux (−w0)) ≤ γ0w0(x ) + K0,(4.16)

(ii) and for all x ,y ∈ B := {x ∈ X|w0(x ) ≤ R0 := 2K0
1−γ0 }, the following inequality

Ux (v) − Uy (v) ≤ 2(K̃0 − K0) +Ux (w0) − Uy (−w0)(4.17)

holds for all v satisfying |v | ≤ w0 + K̃0.
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Remark 4.13. (a) If U is a concave, which induces risk-averse behavior, a su�-
cient condition to guarantee the assumption (i) is

|r | − U (−w0) ≤ γ0w0 + K0,(4.18)

since by Proposition 2.8, −U (−w0) ≥ U (w0).

(b) The assumption (i) can be replaced by two conditions for the reward function
r and valuation mapU separately,

1) w0 is a Lyapunov function satisfying

U (w0) ∨ (−U (−w0)) ≤ γ̂0w0 + K̂0,

2) and |r | ≤ γ̃0w0 +C0 with some constants γ̃0 ∈ (0,1 − γ̂0) and C0 > 0.

(c) The assumption (ii) is more general than the Doeblin’s condition in Assump-
tion 4.7(ii). Indeed, Assumption 4.7(ii) implies that for all K̃0 > 0, there exists
a constant α ∈ (0,1) such that

Ux (v) − Uy (v) ≤ 2(1 − α )K̃0 +Ux (w0) +Uy (w0),

which implies (4.17).

(d) Applying entropic maps, we will show in Section 4.4 some su�cient condi-
tions ensuring (ii) based on the properties of the underlying Markov chain.

Theorem 4.14. Suppose Assumption 4.12 holds. Then

‖r +U (v)‖s,1+β0w0 ≤ β −10 ,

whenever ‖v ‖s,1+β0w0 ≤ β −10 with β0 := K̃ −10 .

Proof. Note that adding a constant to v will not change the required inequal-
ity. Due to Lemma 4.2, we assume that |v | ≤ β −10 + w0. By the de�nition of
w-seminorm, the task is to prove

|r (x ) +Ux (v) − r (y) − Uy (v) | ≤ 2β −10 +w0(x ) +w0(y),∀x , y ∈ X.

Note that since switching x and y will not change the right side of the inequality,
it is su�cient to show

r (x ) +Ux (v) − r (y) − Uy (v) ≤ 2β −10 +w0(x ) +w0(y),∀x , y ∈ X.(4.19)

We consider the following two cases. Case I: w0(x ) + w0(y) ≥ R0. By (4.16),
we have for all β0 > 0,

r (x ) +Ux (v) ≤ r (x ) + β −10 +Ux (w0) ≤β −10 + γ0w0(x ) + K0, and

−r (y) − Ux (v) ≤ −r (y) + β −10 − Uy (w0) ≤β −10 + γ0w0(y) + K0.
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By the choice of R0,

2β −10 + γ0(w0(x ) +w0(y)) + 2K0 ≤ 2β −10 +w0(x ) +w0(y)

holds. Hence, (4.19) holds for this case.
Case II:w0(x ) +w0(y) ≤ R0. Then both x and y are in the subset B. By (4.17),

r (x ) +Ux (v) − r (y) − Uy (v)

≤r (x ) − r (y) + 2(K̃0 − K0) +Ux (w0) − Uy (−w0)

≤2(K̃0 − K0) + γ0w0(x ) + γ0w0(y) + 2K0

≤2β −10 +w0(x ) +w0(y).

Combining I and II, we obtain the required inequality. �

Geometric contraction

Given a valuation map satisfying Assumption 4.12, we can then restrict ourselves

to the invariant subset B
(C)
w (with C = K̃0) rather than the whole set Bw .

Definition 4.15. A convex homogeneous valuation function ν̄ (w,C) is said to be an

upper envelope of a valuation function ν given a bound C ∈ R+, if the following
inequality holds

ν (v) − ν (u) ≤ ν̄ (w,C) (v − u),∀v,u ∈ B
(C)
w .(4.20)

Analogously, a convex homogeneous valuation map Ū (w,C) is said to be an upper

envelope of a valuation mapU given a bound C ∈ R+, if for all v,u ∈ B
(C)
w ,

Ux (v) − Ux (u) ≤ Ū (w,C)
x (v − u),∀x ∈ X.

Remark 4.16. Apparently, if ν (resp.U ) is convex and homogeneous, then ν (resp.
U ) is an upper envelope of itself for all bounds C > 0, due to its sublinearity (see
Proposition 2.9).

We now prove the contraction property based on the following assumption.

Assumption 4.17. There exist two real-valued B (X)-measurable functions,

w0 : X→ [0,∞) andw : X→ [1,∞)

satisfying that

(i) B1+w0 = Bw ;

(ii) there exist constants γ ∈ (0,1), K > 0 and an upper envelope Ū (w,C) such
that

Ū (w,C) (w0) ≤ γw0 + K ;
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(iii) for all v ≥ u ∈ B1+w0 , there exist a constant α ∈ (0,1) and a probability
measure µ on (X,B (X)) such that

Ū (w,C)
x (v) − Ū (w,C)

x (u) ≥ α
∫

(v (x ) − u (x )) µ (dx ),∀x ∈ B,

where B := {x ∈ X|w0(x ) ≤ R} for some R > 2K
1−γ .

Lemma 4.18. Suppose Assumption 4.17 holds. Then there exists a constant ᾱ ∈ (0,1)
and β > 0 such that

‖U (v) − U (u)‖s,1+βw0 ≤ ᾱ ‖v − u‖s,1+βw0 ,∀v,u ∈ B
(C)
w .

Proof. De�ne w ′ := 1 + βw0 for some β ∈ R+, whose value will be speci�ed
later. Suppose ‖v − u‖s,w ′ = A ∈ R+. Due to Lemma 4.2 and the fact that adding
any constant to v and u will not change the values of both sides of the required
inequality, we may assume that ‖v − u‖w ′ = A.

By the de�nition of upper envelope, we have then

Ux (v) − Ux (u) ≤ Ū (w,C)
x (v − u) ≤ Ū (w,C)

x ( |v − u |),∀x ∈ X,

where the last inequality is due to Proposition 2.8. Switching v and u, we obtain

|Ux (v) − Ux (u) | ≤ Ū (w,C)
x ( |v − u |) ≤ ‖v − u‖w ′Ū (w,C)

x (w ′),∀x ∈ X.(4.21)

Case I: w0(x ) +w0(y) ≥ R and set γ0 := γ + 2K
R < 0 and γ1 :=

2+βRγ0
2+βR for some

β > 0. It is easy to verify that γ1 ∈ (0,1). Then (4.21) yields

|Ux (v) − Ux (u) − Uy (v) +Uy (u) |
≤|Ux (v) − Ux (u) | + |Uy (v) − Uy (u) |
≤A(2 + βŪ (w,C)

x (w0) + βŪ (w,C)
y (w0)) ≤ A(2 + βγw0(x ) + βγw0(y) + 2βK )

≤A(2 + βγ0w0(x ) + γ0w0(y)) ≤ Aγ1 (w ′(x ) +w ′(y)).
(4.22)

Case II:w0(x ) +w0(y) ≤ R. Hence both x and y are in the subset B. We de�ne
for all x ∈ B,

Ũx (v) :=
1

1 − αUx (v) −
α

1 − α µ (v), and

¯̃U (w,C)
x (v) :=

1

1 − α Ū
(w,C)
x (v) − α

1 − α µ (v).

It is easy to verify that ¯̃U (w,C)
x is a valid convex and homogeneous valuation func-

tion onB1+βw0 = B1+w0 = Bw for all x ∈ B. Indeed, the monotonicity is satis�ed
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due to Assumption 4.17(iii). Hence, Ũx (v) − Ũx (u) ≤ ¯̃U (w,C)
x (v − u) indicates

that ¯̃U (w,C)
x is an upper envelope of Ũx for all x ∈ B. Hence,

|Ux (v) − Ux (u) − Uy (v) +Uy (u) |
=(1 − α ) |Ũx (v) − Ũx (u) − Ũy (v) + Ũy (u) |
≤(1 − α ) |Ũx (v) − Ũx (u) | + (1 − α ) |Ũy (v) − Ũy (u) |

≤(1 − α ) ¯̃U (w,C)
x ( |v − u |) + (1 − α ) ¯̃U (w,C)

x ( |v − u |)

≤2A(1 − α ) +A(1 − α )β
(

¯̃U (w,C)
x (w0) +

¯̃U (w,C)
y (w0)

)

.

Note that since (1 − α ) ¯̃U (w,C)
x (w0) ≤ Ū (w,C)

x (w0) holds for all x ∈ B, we obtain

|Ux (v) − Ux (u) − Uy (v) +Uy (u) |
≤2A(1 − α ) +Aβ

(

Ū (w,C)
x (w0) + Ū (w,C)

y (w0)
)

(4.23)

≤2A(1 − α ) +Aβ (w0(x ) +w0(y) + 2K ).

We select β := α0
K for some α0 ∈ (0,α ). Setting γ2 := (1−α +α0) ∨γ ∈ (0,1) yields

for all x , y

|Ux (v) − Ux (u) − Uy (v) +Uy (u) |
≤2A(1 − α + α0) +Aγβ (w0(x ) +w0(y)) ≤ Aγ2(w ′(x ) +w ′(y)).(4.24)

Hence, setting ᾱ := γ1 ∨ γ2 < 1, (4.22) and (4.24) imply for all x , y

|Ux (v) − Ux (u) − Uy (v) +Uy (u) | ≤ ‖v − u‖s,w ′ᾱ (w ′(x ) +w ′(y)),

the required inequality. �

Poisson equation

We setw ′ = 1 + βw0 as in Lemma 4.18, w = 1 + K̃ −10 w0 andC = K̃0 as in Theorem
4.14. Hence, apparently Bw ′ = Bw .

Lemma 4.19. Suppose Assumption 4.12 and 4.17 hold. Then

lim
n→∞

1

n
‖T n (v) − T n (u)‖w = 0,∀v,u ∈ B

(C)
w .

Proof. It is su�cient to show that ‖T n (v)−T n (u)‖w is uniformly bounded, which
is equivalent to requiring that ‖T n (v) − T n (u)‖w ′ is uniformly bounded.

Indeed, by Assumption 4.17(ii), setting K ′ := βK + 1 − γ , we have

|T (v) − T (u) | ≤ Ū (w,C) ( |v − u |) ≤ ‖v − u‖w ′ (γw ′ + K ′)

where the �rst inequality is due to Proposition 2.8.
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In addition, by Theorem 4.14, ‖T n (v)‖s,w ≤ C holds for all n ∈ N+. Hence,
by induction w.r.t. n, we have for n = 2,3, . . .

|T n (v) − T n (u) | ≤Ū (w,C) ( |T n−1 (v) − T n−1 (u) |)

≤‖v − u‖wŪ (w,C)


γ n−1w ′ + K ′

n−2
∑

k=0

γ k




≤‖v − u‖w


γ nw ′ + K ′

n−1
∑

k=0

γ k


 ,

which implies that ‖T n (v) − T n (u)‖w ′ ≤ K ′

1−γ . �

Theorem 4.20. Suppose Assumption 4.12 and 4.17 hold. Then there exist

(i) a solution (ρ,h) ∈ R × Bw to the Poisson equation r +U (h) = r + h, where ρ
is unique and

(ii) a valuation function ν satisfying ν (r +U (v)) = ν (v) + ρ,∀v ∈ B
(C)
w .

Proof. Restricting to the bounded forward invariant subspaceB
(C)
w , (4.5) and (4.6)

are satis�ed due to Lemma 4.18 and Lemma 4.19. Then the proof follows the same

line as in the proof of Theorem 4.6 by restricting to B
(C)
w . �

Remark 4.21. IfU is convex and homogeneous, its upper envelope Ū (C)
w becomes

U itself. In this case, Assumption 4.12 is no longer needed to determine a priori

the size of the bounded forward invariant subset, C . Moreover, 1) Assumption
4.17(iii) implies Assumption 4.12(ii) due to (4.23), and 2) Theorem 4.20(ii) holds
for all v ∈ Bw .

An example with the utility-based shortfall

We consider the AR1 process de�ned in (4.4) and the utility based shortfall de�ned
in (2.14)

Ux (v) = sup

{

m ∈ R |
∫

X

u (v (y) −m)Px (dy) ≥ 0

}

,(4.25)

under the assumption that there exist constants l and R satisfying 0 < l ≤ 1 ≤
L < ∞ and

l ≤ u (x ) − u (y)
x − y ≤ L,∀x ,y ∈ R.(4.26)

In other words, for each x ,y ∈ R, we have u (x ) −u (y) = δ (x ,y)(x −y), with some
δ (x ,y) ∈ [l ,L].
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Remark 4.22. Note that u is not required to be convex, nor concave. Hence, the
induced risk preference can be mixed as we have shown in Section 2.4.5. One
example of u that satis�es the assumption we made above is a piecewise linear
function with slopes upper bounded by L and lower bounded by l .

By Proposition 2.15, if the utility function u is strictly increasing, then the
optimalm∗ is obtained when the equality holds, i.e., for each x ∈ X,

m∗ (x ) := Ux (v),

∫

u (v (y) −m∗ (x ))Px (dy) = 0,

Letm = U (v) andm′ = U (v ′). Hence, for each x ∈ X,
∫

u (v (y) −m(x ))Px (dy) =

∫

u (v ′(y) −m′(x ))Px (dy) = 0.

We have then

0 =

∫

u (v (y) −m(x ))Px (dy) −
∫

u (v ′(y) −m′(x ))Px (dy)

≤
∫

δ (v,v ′,x ,y)(v (y) − v ′(y) −m(x ) +m′(x ))Px (dy),

which implies that

(m(x ) −m′(x ))
∫

δ (v,v ′,x ,y)Px (dy) ≤
∫

δ (v,v ′,x ,y)(v (y) − v ′(y))Px (dy).

(4.27)

Veri�cation of Assumption 4.12 Let w (x ) = eϵx
2
be the Lyapunov function

de�ned in Page 40 and we have shown that it satis�es Px (w ) ≤ C (w (x ))γ , for
someC > 0 and γ ∈ (0,1). First, takingv = w andv ′ = 0 in (4.27), we havem′ = 0
andUx (w ) = m(x ) ≤ L

l Px (w ) ≤ L
l C (w (x ))γ . Second, taking v = 0 and v ′ = −w

in (4.27), we havem = 0 and

−Ux (−w ) = −m′(x ) ≤ L

l
Px (w ) ≤ L

l
C (w (x ))γ .

Hence, given r ∈ B1+wγ ′ with some γ ′ ∈ (0,1), we can always �nd a su�ciently
large K0 such that

(r (x ) +Ux (w )) ∨ (−r (x ) − Ux (−w )) ≤ γ0w (x ) + K0,∀x ∈ X.(4.28)

This ensures Assumption 4.12 (i).
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Taking v ′ = w + K̃0 in (4.27), where K̃0 will be speci�ed later, due to the
assumption v ≤ w + K̃0, we havem ≤m′ and

L(m(x ) −m(x ′)) ≤ (m(x ) −m′(x ))
∫

δ (v,v ′,x ,y)Px (dy)

≤
∫

δ (v,v ′,x ,y)(v (y) − v ′(y))Px (dy)

≤l
∫

(v (y) − v ′(y))Px (dy)

=l

∫

(v (y) −w (y) − K̃0)Px (dy)

⇒ Ux (v) − Ux (w + K̃0) ≤
l

L

∫

(v (y) −w (y) − K̃0)Px (dy).

Analogously we obtain

Uy (−w − K̃0) − Uy (v) ≤
l

L

∫

(−w − K̃0 − v (y′))Py (dy′).

On the other hand, we have Px (·) ≥ αµ (·) with some probability measure µ and
α ∈ (0,1) for x in any bounded level-set. Hence, we have

l

L

∫

(w (y) + K̃0 − v (y))Px (dy) +
l

L

∫

(w (y) + K̃0 +v (y))Px ′ (dy) ≥
l

L
2αK̃0,

which implies that

Ux (v) − Ux (w + K̃0) +Uy (−w − K̃0) − Uy (v) ≤ −2
αl

L
K̃0.

Therefore, taking K̃0 :=
L
αlK0, the Assumption 4.12 (ii) holds.

Veri�cation of Assumption 4.17 By (4.27), we have

Ux (v) − Ux (v
′) ≤

∫

δ (v,v ′,x ,y)Px (dy)(v (y) − v ′(y))
∫

δ (v,v ′,x ,y)Px (dy)

≤ sup
δ :l≤δ (x,y )≤L

∫

δ (x ,y)Px (dy)(v (y) − v ′(y))
∫

δ (x ,y)Px (dy)
=: Ūx (v − v ′)(4.29)

It is easy to see that Ū is a convex and homogeneous valuation map. Note that

Ūx (w ) = sup
δ :l≤δ (x,y )≤L

∫

δ (x ,y)Px (dy)(w (y))
∫

δ (x ,y)Px (dy)
≤ L

l
Px (w ),
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which implies thatw is a Lyapunov function satisfying Assumption 4.17(ii) satis-
fying with constants γ0 and K > 0. On the other hand, for any v ≥ v ′,

sup
δ :l≤δ (x,y )≤L

∫

δ (x ,y)Px (dy)(v (y))
∫

δ (x ,y)P (dy)
− sup

δ :l≤δ (x,y )≤L

∫

δ (x ,y)Px (dy)(v
′ (y))

∫

δ (x ,y)P (dy)

≥ inf
δ :l≤δ (x,y )≤L

∫

δ (x ,y)Px (dy)(v (y) − v ′(y))
∫

δ (x ,y)Px (dy)
≥ l

L
Px (v − v ′) ≥

αl

L
µ (v − v ′),

(4.30)

holds for all x in any bounded level-set. Hence, Assumption 4.17(iii) holds.

4.4 The entropic map

Recall that, given a Markov transition kernel P , the entropic map is de�ned as

Ux (v) :=
1

λ
log

(∫

eλvdPx

)

,λ > 0.(4.31)

Without loss of generality, in the remaining part of this paper, we set λ = 1.
This map has been widely used in the literature of risk-sensitive Markov con-
trol/decision processes, see e.g. Howard and Matheson, 1972; Chung and Sobel,
1987; Avila-Godoy and Fernández-Gaucherand, 1998; Borkar and Meyn, 2002; Di
Masi and Stettner, 2008; Coraluppi and Marcus, 2000; Fleming and Hernández-
Hernández, 1997; Hernández-Hernández and Marcus, 1996; Marcus et al., 1997;
Cavazos-Cadena, 2010.

Upper envelope

We now derive the upper envelope for entropic measures.

Proposition 4.23. Let ν (v) := log
(∫

evdµ
)

with a probability measure µ on

(X,B (X)). Suppose that for allv ∈ Bw ,
∫

e |v |dµ < ∞ holds. Then (i) ν (v) ≤ µ (evv )

µ (ev )
,

and (ii)

ν̄ (w,C) (u) := sup
v∈B (C )

w

∫

evudµ
∫

evdµ

is an upper envelope for ν given C .

Proof. Given any two u,v ∈ Bw , we obtain

ν (v) − ν (u) = log
µ (ev )

µ (eu )
= log

µ (euev−u )

µ (eu )
≥ µ (eu (v − u))

µ (eu )
,(4.32)

where the last inequality is due to Jensen’s inequality. Hence,

log(µev ) ≥ µ (euv)

µeu
− µ ( eu

µ (eu )
(u − log(µeu ))),∀u,v ∈ Bw .
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Restricting u and v to be in the subset B
(C)
w , the above inequality yields

log(µev ) ≥ sup
ξ= eu

µ (eu )
,u∈B (C )

w

µ (ξv) − µ (ξ log(ξ )).

Since the equality holds by taking ξ ∗ := ev

µ (ev ) , we obtain

log(µev ) = sup
ξ= eu

µ (eu )
,u∈B (C )

w

µ (ξv) − µ (ξ log(ξ )).(4.33)

The second term µ (ξ log(ξ )) on the right-hand side of the above equation is the
relative entropy and is always nonnegative (for proof see, e.g., (Ledoux, 2001, Sec-
tion 5.1)). Hence, we obtain (i). Finally, (ii) is followed by

log(µev ) − log(µeu ) ≤ sup
ξ= e f

µ (e f )
,f ∈B (C )

w

µ (ξ (v − u)) = sup
f ∈B (C )

w

∫

e f (v − u)dµ
∫

e f dµ
.

and it is easy to verify that ν̄ (w,C) (u) = sup
f ∈B (C )

w

∫

e f udµ
∫

e f dµ
is a valid convex and

homogeneous valuation function. �

Remark 4.24. The inequality in (4.33) is similar to the dual representation of con-
vex risk measures on L∞ (Föllmer and Schied, 2002, 2004) or on more general
spaces such asOrlicz hearts (Cheridito and Li, 2009). However, since we consider a
di�erent functional space, i.e., the weighted norm space, the existing result cannot
be directly applied here. On the other hand, for other types of convex valuation
functions, their dual representation provide us a generic approach to calculate
their upper envelopes, as shown in the above proposition.

By Proposition 4.23, we obtain one upper envelope for the entropic map:

Ū (C)
x (u) = sup

f ∈Bw :‖f ‖s,w ≤C

∫

e f udPx
∫

e f dPx
,(4.34)

provided that Px (e f ) < ∞ holds for all f ∈ Bw and x ∈ X.

4.4.1 Lyapunov functions

Now we investigate properties of Lyapunov functions w.r.t. the entropic map.

Definition 4.25. A functionw is said to be a Lyapunov function w.r.t. a valuation

mapU , if

(i) w : X→ [0,∞) is B (X)-measurable and unbounded from above, and

(ii) there exist constants γ ∈ (0,1) and K > 0 satisfyingUx (w ) ≤ γw (x )+K ,∀x ∈
X.
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We also introduce the following notation of level-sets. For any unbounded
nonnegative B (X)-measurable functionw and any real number R ∈ R, we de�ne

Bw (R) := {x ∈ X|w (x ) ≤ R}

and Bc
w (R) its complementary set. We then make the following assumption.

Assumption 4.26. There exists a Lyapunov functionw1 ≥ 1 w.r.t. the entropic map
U , with constants γ1 ∈ (0,1) and K1 > 0.

If the above assumption holds and setting w0 := w
p
1 with any p ∈ (0,1), then

for all f ∈ Bw0 , there exists a constant Kf (depending on p and ‖ f ‖w0 ) satisfying

| f (x ) | ≤ ‖ f ‖w0w0(x ) ≤ w1(x ) + Kf ,∀x ∈ X.

We immediately have

Px (e
f ) ≤ Px (ew1+K f ) ≤ eK f eγ1w1+K1 < ∞,∀x ∈ X

and therefore, the upper envelope for the entropic map in (4.34) is well de�ned. In
the following theorem, we show that if w1 is a Lyapunov function w.r.t.U , then
w0 = w

p
1 with any p ∈ (0,1) is a Lyapunov function w.r.t. the upper envelope of

U .

Theorem 4.27. Suppose that Assumption 4.26 holds. Let w0 := w
p
1 with p ∈ (0,1).

Then, for any constant C > 0, there exist constants γ2 ∈ (0,1) (depending only on p

and γ1) and K2 > 0 (depending on p, C , γ1 and K1) such that

sup
f :f ∈Bw0 , |f | ≤w0+C

Px (e
fw0)

Px (e f )
≤ γ2w0(x ) + K2,∀x ∈ X.

Proof. Due to Assumption 4.26, for any λ ∈ (γ1,1), we have

Ux (w1) ≤ λw1(x ),∀x ∈ Bc
w1
(A),A :=

K1

λ − γ1
.

It implies that for all x ∈ Bc
w1
(A),

∫

B
c
w1

(λw1 (x ))

Px (dy)
(

ew1 (y )−λw1 (x ) − 1
)

(4.35)

≤
∫

Bw1 (λw1 (x ))

Px (dy)
(

1 − ew1 (y )−λw1 (x )
)

.

Taking some γ2 ∈ (λp ,1), by the de�nition ofw0, we have then

B
c
w0
(γ2w0(x )) ⊂ B

c
w1
(λw1(x )),∀x ∈ X.(4.36)

Indeed, for anyy ∈ Bc
w0
(γ2w0(x )), it satis�esw0(y) > γ2w0(x ), which is equivalent

tow (y) > (γ2)
1/pw1(x ) > λw1(x ). Hence, y ∈ Bc

w1
(λw1(x )) as well.
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Lemma 4.28. For any η ∈ (0,1 − λ), p ∈ (0,1) and γ2 ∈ ((λ + η)p ,1), there exists a
constant R1 > 0 such that for all y ∈ Bc

w0
(γ2w0(x )), x ∈ Bc

w1
(R) and R ≥ R1,

ew0 (y )+C+ηw1(x ) (w0(y) − γ2w0(x )) ≤ ew1 (y )−λw1 (x ) − 1.

Proof. It is su�cient to show that there exists a constant R1 > 0 satisfying

w0(y) + logw0(y) +C + log 2 + ηw1(x ) ≤ w1(y) − λw1(x )(4.37)

for all y ∈ Bc
w0
(γ2w0(x )), x ∈ Bc

w1
(R) and R ≥ R1. Note that for any p ∈ (0,1) and

ϵ ∈ (0,1), there exists a constant D (depending on p and ϵ) satisfying

xp + p logx ≤ ϵx + D,∀x ≥ 1,

which implies that w0(x ) + logw0(x ) ≤ ϵw1(x ) + D,∀x ∈ X. Hence, for all y ∈
B
c
w0
(γ2w0(x )), we have

w1(y) −w0(y) − logw0(y) − (λ + η)w1(x )

≥(1 − ϵ )w1(y) − (λ + η)w1(x ) − D ≥
(

(1 − ϵ )γ 1/p2 − λ − η
)

w1(x ) − D.

Choosing γ2 ∈ ((λ + η)p ,1), ϵ < 1 − λ+η

γ
1/p
2

and R1 :=
D+C+log 2

(1−ϵ )γ 1/p
2 −λ−η

, (4.37) holds for

all y ∈ Bc
w0
(γ2w0(x )), x ∈ Bc

w (R) and R ≥ R1. �

Lemma 4.29. For any η > 0, p ∈ (0,1) and C ≥ 0, there exists a constant R2 such

that for all y ∈ Bw1 (λw1(x )), x ∈ Bc
w1
(R) and R ≥ R2,

e−w0 (y )+ηw1(x )−C (γ2w0(x ) −w0(y)) ≥ 1 − ew1 (y )−λw1 (x ) .(4.38)

Proof. It is su�cient to show that e−w0 (y )+ηw1(x )−C (γ2w0(x ) −w0(y)) ≥ 1 under
the same condition. Note that there exists a constant D > 0 such that

γ2

η
xp ≤ x + D,∀x ≥ 1,

which yields −w0(y) + ηw1(x ) −C ≥ −w0(y) + γ2w0(x ) − C − D and hence,

e−w0 (y )+ηw1(x )−C (γ2w0(x ) −w0(y)) ≥ eγ2w0 (x )−w0 (y )−C−D (γ2w0(x ) −w0(y)) .

For all y ∈ Bw1 (λw1(x )), we have γ2w0(x ) −w0(y) ≥ (γ2 − λp )w0(x ). Hence,

eγ2w0 (x )−w0 (y )−C−D (γ2w0(x ) −w0(y)) ≥ e (γ2−λ
p )w0 (x )−C−D (γ2 − λp )w0(x ).

Due to the fact that д(x ) = ex · x is an increasing function on R+, we can choose

R̃2 > 0 such that e R̃2 · R̃2 = eC+D . Hence, we have for all y ∈ Bw1 (λw1(x )),
x ∈ B

c
w0
(R̃) and R̃ ≥ R̃2, e−w0 (y )+ηw1(x )−C (γ2w0(x ) −w0(y)) ≥ 1 holds. Finally,

setting R2 = R̃
1/p
2 , the assertion is obtained. �
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Hence, by Lemma 4.28 and 4.29, for all x ∈ Bc
w1
(R1 ∨ R2 ∨A),

∫

Bw0 (γ2w0 (x ))

Px (dy)e
w0 (y )+C+ηw1(x ) (w0(y) − γ2w0(x ))

(Lemma 4.28) ≤
∫

Bw0 (γ2w0 (x ))

Px (dy)
(

ew1 (y )−λw1 (x ) − 1
)

(4.36) ≤
∫

Bw1 (λw1 (x ))

Px (dy)
(

ew1 (y )−λw1 (x ) − 1
)

(4.35) ≤
∫

B
c
w1

(λw1 (x ))

Px (dy)
(

1 − ew1 (y )−λw1 (x )
)

(Lemma 4.29) ≤
∫

B
c
w1 (λw1 (x ))

Px (dy)e
−w0 (y )+ηw1(x )−C (γ2w0(x ) −w0(y))

(4.36) ≤
∫

B
c
w0 (γ2w0 (x ))

Px (dy)e
−w0 (y )+ηw1(x )−C (γ2w0(x ) −w0(y)) ,

which implies that for all f ∈ Bw0 satisfying | f | ≤ w0 +C ,
∫

Px (dy)e
f (y ) (w0(y) − γ2w0(x )) ≤ 0,∀x ∈ Bc

w1
(R1 ∨ R2 ∨A).(4.39)

Finally, for all x ∈ Bw1 (R1 ∨ R2 ∨A) and f ∈ Bw0 satisfying | f | ≤ w0 +C ,

Px (e
fw0)

Px (e f )
≤ Px (e

w0+Cw0)

Px (e−w0−C )
≤ e2CPx (ew0w0) · Px (ew0 )

Using the fact that there exists some constant D > 0 satisfying

xp + p logx ≤ x + D,∀x ≥ 1,

we obtain that Px (ew0w0) ≤ eDPx (ew1 ) which is upper bounded on Bw1 (R1 ∨R2 ∨
A). Hence, there exists a K2 > 0 such that for all f ∈ Bw0 satisfying | f | ≤ w0 +C ,

Px (e
fw0)

Px (e f )
≤ K2,∀x ∈ Bw1 (R1 ∨ R2 ∨A),

which together with (4.39) implies the required inequality. �

Remark 4.30. The statement of Theorem 4.27 can be easily generalized to: for any
positive C and A, there exist constants γ2 ∈ (0,1) and K2 ∈ R+ such that

sup
f :f ∈Bw0 , |f | ≤Aw0+C

Px (e
fw0)

Px (e f )
≤ γ2w0(x ) + K2.

Corollary 4.31. Suppose that Assumption 4.26 holds. Then, for any p ∈ (0,1),
w0 := w

p
1 , there exist constants γ̂0 ∈ (0,1) (depending onp andγ1) and K̂0 (depending

on p, γ1 and K1) satisfyingUx (w0) ≤ γ̂0w0(x ) + K̂0,∀x ∈ X.
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Proof. By Proposition 4.23(i), Ux (w0) = logPx (ew0 ) ≤ Px (e
w0w0 )

Px (ew0 )
,∀x ∈ X. Then,

by Theorem 4.27, there exist constants γ̂0 ∈ (0,1) (depending on p and γ1) and
K̂0 > 0 (depending on p, γ1 and K1) such that

Px (e
w0w0)

Px (ew0 )
≤ sup

f ∈Bw0 : |f | ≤w0

Px (e
f )w0

Px (e f )
≤ γ̂0w0 + K̂0,

which yields the required inequality. �

In summary, if Assumption 4.26 holds, then

a) by Corollary 4.31,w0 is a Lyapunov function w.r.t. the entropic map with con-
stants γ̂0 and K̂0;

b) by Theorem 4.27, the same w0 is also a Lyapunov function with constants γ2
and K2, which satis�es satisfying Assumption 4.17(i) (see Remark 4.13(a) and
(b)) if the cost function c satis�es |c | ≤ γ̃0w0 +C0 with some γ̃0 ∈ (0,1−γ2) and
C0 > 0;

c) combining (a) and (b), Assumption 4.17(i) holds also.

4.4.2 Minorization properties

We investigate now the properties of the entropicmap restricted to bounded level-
sets. We introduce �rst the local Doeblin’s condition (see Douc et al. (2009) and
references therein) as follows.

Assumption 4.32. Let w0 : X → [0,∞) be a B (X)-measurable function. For any
level-set C := Bw0 (R), R > 0, there exist a measure µC and constants λ+

C
,λ−

C
> 0

such that µC (C) > 0 and

λ−
C
µC (A ∩ C) ≤ Px (A ∩ C) ≤ λ+

C
µC (A ∩ C),∀x ∈ C,A ∈ B (X).

The following proposition indicates the connection to the standard Doeblin’s
condition.

Proposition 4.33. The following two conditions are equivalent:

(i) there exist a measure µC and a constant λ−
C
> 0 such that µC(C) > 0 and

Px (A ∩ C) ≥ λ−CµC (A ∩ C),∀x ∈ C,A ∈ B (X).(4.40)

(ii) there exist a probability measure µ and a constant α > 0 such that

Px (A) ≥ αµ (A),∀x ∈ C,A ∈ B (X).(4.41)

Proof. First, it is clear that (4.41) implies (4.40). Second, assume that (4.40) holds.

Then, µ (·) := µC (C∩·)
µC (C)

, and α := λ−
C
µC (C) satisfy (4.41). �
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Theorem 4.34. Suppose Assumption 4.32 and Assumption 4.26 hold. Let w1 be the

Lyapunov function and B = Bw0 (R0) be a bounded levels-set with some R0 > 0,
where w0 := w

p
1 , p ∈ (0,1). Then for any positive constant K0 > 0, there exists a

positive constant K̃0 > 0 such that for all v ∈ Bw0 satisfying |v | ≤ w0 + K̃0, the

following inequality holds

Ux (v) − Uy (v) ≤ 2(K̃0 − K0) +Ux (w0) − Uy (−w0),∀x ,y ∈ B.

Proof. Let C := Bw0 (R) ⊃ B = Bw0 (R0) with R > R0. Then

Px (e
v )

Py (ev )
=

Px (e
v
1C) + Px (ev1Cc )

Py (ev1C) + Py (ev1Cc )
≤ Px (e

v
1C) + Px (ev1Cc )

Py (ev1C)
.(4.42)

We �rst consider the second quotient. By |v | ≤ K̃0 +w0, we obtain

Px (e
v
1Cc )

Py (ev1C)
≤ e2K̃0

Px (e
w01Cc )

Py (e−w01C)
= e2K̃0

θ (x ,C)Px (e
w0 )

θ ′(y,C)Py (e−w0 )

where we de�ne

θ (x ,C) :=
Px (e

w01Cc )

Px (ew0 )
and θ ′(y,C) :=

Py (e
−w01C)

Py (e−w0 )
.

By Theorem 4.27, there exist some constants γ2 ∈ (0,1) and K2 > 0 such that

θ (x ,C) ≤ ‖1Cc ‖w0

Px (e
w0w0)

Pxew0

≤‖1Cc ‖w0 sup
|v | ≤w0

Px (e
vw0)

Pxev
≤ ‖1Cc ‖w0 (γ2w0(x ) + K2).

Hence,

θ (x ,C) ≤ ‖1Cc ‖w0 sup
x ∈B

(γ2w0(x ) + K2) ≤
γ2R0 + K2

R
.

Similarly, we have

θ ′(y,C) = 1 −
Py (e

−w01Cc )

Py (e−w0 )
≥ 1 − γ2R0 + K2

R

Hence, supx,y∈B
θ (x,C)
θ ′(y,C) → 0 as R → ∞, which implies that for any K0 > 0, we can

select su�ciently large R such that

log
θ (x ,C)

θ ′(y,C)
≤ −2K0 − log 2,∀x ,y ∈ B.(4.43)

Thus for any positive K̃0 and K0, there exists a su�ciently large R (depending on
K0) such that

Px (e
v
1Cc )

Py (ev1C)
≤ e2(K̃0−K0 )+Ux (w0 )−Uy (−w0 )−log 2.(4.44)
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Now we consider the �rst quotient in (4.42). By Assumption 4.32, we imme-

diately have Px (e
v
1C)

Py (ev1C)
≤ λ+

C

λ−
C

. Hence, setting

K̃0 := K0 +
1

2
log 2 + log(

λ+
C

λ−
C

),(4.45)

we obtain
Px (e

v
1C)

Py (ev1C)
≤ e2(K̃0−K0 )+Ux (w0 )−Uy (−w0 )−log 2.

Together with (4.44), it yields the required inequality:

Px (e
v )

Py (ev )
≤ e2(K̃0−K0 )+Ux (w0 )−Uy (−w0 ),

where K̃0 is chosen according to (4.45), while R is determined by (4.43). �

We investigate now the minorization property of the upper envelope Ū (w,C)

of the entropic mapU , which is required by Assumption 4.17(iii).

Proposition 4.35. Let w : X → [1,∞) be a B (X)-measurable function and B :=
Bw (R) with some R > 0. Suppose Assumption 4.32 holds. Assume further that

Ū (w,C)
x (w0) < ∞ for all x ∈ B. Then there exist a constant α ∈ (0,1) and a proba-

bility measure on (X,B (X)) satisfying

Ū (w,C)
x (v) − Ū (w,C)

x (u) ≥ αµ (v − u),∀x ∈ B,v ≥ u ∈ B1+w0 .

Proof. Note that since Ū (w,C)
x (w0) < ∞, we have for all v ∈ B1+w0 and x ∈ B,

|Ū (w,C)
x (v) | ≤ Ū (w,C)

x ( |v |) ≤ ‖v ‖1+w0Ū
(w,C)
x (1 +w0) < ∞.

By (4.34), we have for all x ∈ B and v ≥ u ∈ B1+w0 ,

Ū (w,C)
x (v) − Ū (w,C)

x (u) = sup
h∈B (C )

w

Px (e
hv)

Px (eh )
− sup

h′∈B (C )
w

Px (e
h′u)

Px (eh
′
)

= inf
h′∈B (C )

w


 sup
h∈B (C )

w

Px (e
hv)

Px (eh )
− Px (e

h′u)

Px (eh
′
)


 ≥ inf

h′∈B (C )
w

Px
(

eh
′
(v − u)

)

Px (eh
′
)

.

By Proposition 4.33, Assumption 4.32 implies that there exist a probability mea-
sure µB andαB such thatPx (v) ≥ αBµB(v) for all nonnegativemeasurable function

v. Hence, for all x ∈ B and h′ ∈ B
(C)
w , we have

Px
(

eh
′
(v − u)

)

Px (eh
′
)

≥
αBµB

(

eh
′
(v − u)

)

Px (eCw )
≥
αBµB

(

e−Cw (v − u)
)

maxx ∈B Px (eCw )

=

αBµB (e
−Cw )

maxx ∈B Px (eCw )

µB
(

e−Cw (v − u)
)

µB
(

e−Cw
)

Hence, α := αB µB (e
−Cw )

maxx ∈B Px (eCw )
and the probability measure dµ := e−CwdµB

∫

e−CwdµB
are the

required constant and probability measure respectively. �
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The following theorem shows that applying the entropic map, together with
an additional growth condition for cost functions (see (4.46) below), Assumption
4.26 and 4.32 are su�cient for Assumption 4.12 and 4.17.

Theorem 4.36. Let U be the entropic map with λ = 1. Suppose Assumption 4.26

and 4.32 hold andw1 is the Lyapunov function. If the reward function r satis�es

r ∈ Bw
q
1
with some q ∈ (0,1),(4.46)

then Assumption 4.12 holds with w0 = w
p
1 for any p ∈ (q,1), and some K̃0 > 0, and

Assumption 4.17 holds withw0 and w = 1 + K̃ −10 w0.

Proof. Fix one p ∈ (q,1) and letw0 = w
p
1 . Then by Corollary 4.31, there exists γ̂0 ∈

(0,1) and K̂0 > 0 satisfyingUx (w0) ≤ γ̂0w0(x ) + K̂0. By assumption, there exists

some C > 0 and q ∈ (0,1) such that |c | ≤ Cwq
1 . Choosing one γ (c )

0 ∈ (0,1 − γ̂0),
there exists a constant K (c )

0 > 0 satisfying Cwq

1 (x ) ≤ γ
(c )
0 w0(x ) + K

(c )
0 . Hence,

Assumption 4.12(i) holds with γ0 := γ̂0 + γ
(c )
0 ∈ (0,1) and K0 := K̂0 + K

(c )
0 . Due to

Proposition 4.33, Assumption 4.12(ii) holds with some constant K̃0 > 0. Next, by
Theorem 4.14 and 4.27, Assumption 4.17(i) and (ii) hold withw := 1 + K̃ −10 w0 and
C := K̃ −10 . Assumption 4.17(iii) holds due to Proposition 4.35. �

Comparison with literature

Hence, for the entropicmap, the required su�cient conditions in Assumption 4.12
and 4.17 can replaced by the existence of Lyapunov function in Assumption 4.26,
the local Doeblin’s condition in Assumption 4.32 and the growth condition for the
cost function in (4.46). We compare our results with the mostly related literature
Kontoyiannis and Meyn (2005).

Among others, Kontoyiannis andMeyn (2005) developed (see also their earlier
work on the same topic: Kontoyiannis and Meyn, 2003) a spectral theory of mul-
tiplicative Markov processes, where the Poisson equation w.r.t. the entropic map
(calledmultiplicative Poisson equation in Kontoyiannis andMeyn, 2005) plays the
central role. Though our assumptions are less general than the assumptions stated
in Kontoyiannis and Meyn (2005, 2003), our proof that generalizes the Hairer-
Mattingly approach (Hairer and Mattingly, 2011) is conceptually simpler than the
one provided in Kontoyiannis and Meyn (2005, 2003), and can also be applied to
other types of valuation maps. Note again that, in our approach, the convergence
rate of iterations towards the solution to the Poisson equation is explicitly speci-
�ed by ᾱ in Lemma 4.18 under the chosen seminorm.

4.4.3 An example with AR1 processes

Consider again the 1-dimensional simple autoregressive model (cf. (4.4))

Xt+1 = δXt + σNt
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with some δ ∈ (−1,1), σ > 0 and Nt being standard is i.i.d. white noise. For one
entropy map

U (λ) (v) =
1

λ
log

(

Px (e
λv )

)

with λ , 0, it is su�cient to consider its convex counterpart, i.e., U ( |λ |) (v) for
checking conditions assumed in this section. Furthermore, without loss of gener-
ality, we assume λ = 1.

On the one hand, we have already shown in Page 40 that w1 = 1 + ϵx2 is a
Lyapunov function satisfying

log(Px (e
w1 )) ≤ γw1(x ) + K ,∀x ∈ X

with some constants γ ∈ (0,1) and K > 0. Hence, Assumption 4.26 holds.
One the other hand, the transition kernel of the underlying Markov chain is

P (dy |x ) = 1
√
2πσ 2

exp(− (y − δx )
2

2σ 2
)dy.

Hence, the density function (with respect to the Lebesgue measure) exists

p(y |x ) = 1
√
2πσ 2

exp(− (y − δx )
2

2σ 2
)

which is apparently upper bounded and lower bounded away from 0 on any
bounded level set (x ,y) ∈ C

2, where C := {x ∈ R| |x | ≤ R} with R > 0. Hence,
Assumption 4.32 holds.

Therefore, by Theorem 4.36, the existence of solutions to Poisson equation is
guaranteed, if the reward function r ∈ Bw

q
1
for any q ∈ (0,1).

4.5 Finite state spaces

In this section, we consider the case of �nite state spaces, which is themost widely
used setting in the �eld of machine learning. It implies immediately that rewards
are bounded, i.e., maxx ∈X |r (x ) | < ∞. Therefore, the weight function considered
in this section isw ≡ 1. For simplicity, the seminorm ‖·‖s,1 is written as ‖·‖s and
the norm ‖·‖1 as its conventional notation ‖·‖∞. Note that the case of �nite state
spaces can be considered as a special case of bounded rewards. Hence, for the
sake of generality, we consider still general state spaces with, however, bounded
rewards. We �rst show that each map U is nonexpansive under the norm and
also the seminorm.

Nonexpansiveness

Proposition 4.37 (cf. Proposition 1.1 in Gunawardena and Keane, 1995). For all
f ,д ∈ B,
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(i) ‖U ( f ) − U (д)‖s ≤ ‖ f − д‖s ,

(ii) ‖U ( f ) − U (д)‖∞ ≤ ‖ f − д‖∞.

Proof. It is su�cient to show that

sup
x ∈X

(Ux ( f ) − Ux (д)) ≤ sup
x ∈X

( f (x ) − д(x ))

and inf
x ∈X

(Ux ( f ) − Ux (д)) ≥ inf
x ∈X

( f (x ) − д(x ))

Below, we show only the �rst inequality. The second one can be obtained analo-
gously. By

f (x ) − д(x ) ≤ sup
x ∈X

( f (x ) − д(x )) ∀x ∈ X

and the monotonicity and the translation invariance of U , we obtain for each
x ∈ X

Ux ( f ) ≤ Ux (д + sup
x ∈X

( f (x ) − д(x )) ) = Ux (д) + sup
x ∈X

( f (x ) − д(x )) ,

which implies the required inequality. �

This proposition implies immediately the operator T ( f ) := r +U ( f ) is also
nonexpansive under both the norm and the seminorm for any r , f ∈ B. Hence,
we have for any f ,д ∈ B,

1

n
‖T n ( f ) − T n (д)‖∞ ≤

1

n
‖ f − д‖∞ → 0.

Therefore, to ensure the existence of solutions to the Poisson equation, it remains
the verify the contraction property.

Multistep contraction

For Markov chains with �nite state spaces, an equivalent condition to ensure the
ergodicity is (see e.g. Häggström, 2002, Corollary 4.1): there exist constants n0 ∈
N, α ∈ (0,1) such that P(Xn0 = y |X0 = x ) ≥ α ,∀x ,y ∈ X. In other words, for any
two states x and y, there always exists a non-zero chance such that y is visited
after n0 steps when starting from x . For general state spaces, this condition can
be reformulated as:

Assumption 4.38. There exist constants n0 ∈ N, α ∈ (0,1] and a probability mea-
sure µ on (X,B (X)) such that for each B ∈ B (X) and x ∈ X,

P(Xn0 ∈ B|X0 = x ) = P
n0
x (B) ≥ αµ (B).

This assumption can be viewed as a generalizedmultistep version of the Doe-
blin’s condition in Assumption 4.3(ii). Inspired by Assumption 4.38, we may gen-
eralize the conditions stated in Theorem 4.6 to the multistep setting.
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Theorem 4.39. Suppose the operator T (·) = r +U (·), r ∈ B, satis�es

‖T n0 ( f ) − T n0 (д)‖s≤ ᾱ ‖ f − д‖s ,∀f ,д ∈ B(4.47)

with some positive constants n0 ∈ N and ᾱ ∈ R. Then there exist

(i) a solution (ρ,h) ∈ R × B to the Poisson equation r +U (h) = ρ + h, where ρ
is unique and

(ii) a valuation function ν satisfying

ν (r +U ( f )) = ν ( f ) + ρ,∀f ∈ B.

Proof. Note that {T in0 ( f ),i = 1,2, . . .} is a Cauchy sequence in the quotient space
B̃ implies that {T i ( f ),i = 1,2, . . .} is also a Cauchy sequence. The rest of the
proof follows the same line of the proof of Theorem 4.6 and is therefore omitted.

�

For su�cient conditions, under which the multistep contraction (4.47) holds,
we consider �rst a special case, convex and homogeneousmaps and then followed
by a treatment with general maps.

Convex and homogeneous maps

Lemma 4.40. Suppose U is a convex homogeneous valuation map such that there

exist a positive constant α ∈ (0,1) and a probability measure ν ∈M satisfying

U n0
x (v) − αν (v) − U n0

x (u) + αν (u) ≥ 0,∀x ∈ X,∀v ≥ u ∈ B.(4.48)

Then

‖T n0 (v) − T n0 (u)‖s ≤ (1 − α )‖v − u‖s ,

for all v and u in B.

Proof. De�ne a new valuation map Ũx (v) :=
1

1−αU
n0
x (v) − α

1−α ν (v). It is easy to

verify that Ũ is valid valuation map. In fact, the monotonicity is guaranteed by
(4.48). Furthermore, it is also easy to check that Ũ is also convex and homoge-
neous.

Let F (·) := T n0 (·) − T n0 (0). Then the assertion is equivalent to ‖F (v) −
F (u)‖s ≤ (1 − α )‖v − u‖s . Suppose ‖v − u‖s = C . Lemma 4.2 suggests that we
can always �nd a real value c such that ‖v−u+c‖∞ = C . Since adding any constant
tov−u will not change the values of both sides of the required inequality, without
loss of generality, we assume ‖v − u‖∞ = C .

By Proposition 2.9(ii) and the monotonicity ofU , we have

Fx (v) − Fx (u) ≤ U n0
x (v − u),
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which implies that for all x ∈ X

1

1 − α (Fx (v) − Fx (u) − αν (v − u))

≤ 1

1 − αU
n0
x (v − u) − α

1 − α ν (v − u) = Ũx (v − u) ≤ Ũx ( |v − u |).

Switching v and u, we obtain immediately

1

1 − α |Fx (v) − Fx (u) − αν (v − u) | ≤ Ũx ( |v − u |) ≤ C .

Hence, we have

|Fx (v) − Fx (u) − Fy (v) + Fy (u) |
=|Fx (v) − αν (v) − Fx (u) + αν (u) − Fy (v) + αν (v) + Fy (u) − αν (u) |
≤|Fx (v) − Fx (u) − αν (v − u) | + |Fy (v) − Fy (u) − αν (v − u) |
≤2(1 − α )C,

by which the required inequality follows. �

Proposition 4.41. Suppose the transition kernel P satis�es Assumption 4.38 with

some positive constants n0 ∈ N, β ∈ R, and probability measure µ , i.e.

Pn0x (A) ≥ βµ (A),∀x ∈ X,∀A ∈ B (X).

Assume further that there exists д(x ,u) ∈ δUx (u) and positive constant ϵ > 0 such
thatд(x ,u) ≥ ϵ for all x ∈ B andu ∈ Bw . Then (4.48) holds for ν = µ and α = ϵn0β .

Proof. The proof is similar to the proof of Proposition 4.8 and is therefore ignored.
�

An example Let {Xt } be a time-homogeneous Markov chain satisfying As-
sumption 4.38. Then applying the semi-deviationmap introduced in Section 2.4.7,
which is,

Ux ( f ) := Px ( f ) − λ
√

Px[Px ( f ) − f ]2+,

where λ ∈ [0,1) controls how risk-averse the agent is. Following the same line
as in the similar example discussed in Section 4.3.1, it is easy to verify that the
assumption of Proposition 4.41 holds and therefore Lemma 4.40 holds, which, by
Theorem 4.39, ensures the existence of solutions to the Poisson equation and the
existence of invariant valuation functions as well.
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General maps

Recall that the subspace B
(C)
w of size C > 0 is de�ned as:

B
(C)
w :=

{

v ∈ Bw | ‖v ‖s,w ≤ C
}

.

and a convex homogeneous valuationmap Ū (w,C) is said to be an upper envelope

of a valuation mapU given a bound C > 0, if for all v,u ∈ B
(C)
w ,

Ux (v) − Ux (u) ≤ Ū (w,C)
x (v − u),∀x ∈ X.

For w ≡ 1, we write B
(C)
1 and Ū (1,C) simply as B (C) and Ū (C) respectively.

Assumption 4.42. (i) There exist positive constants n0 ∈ N and K̃0 ∈ R+ such

that ‖T n0 (v)‖s ≤ K̃0, for all v ∈ B (K̃0) .

(ii) There exist a constant α ∈ (0,1) and a probability measure µ on (X,B (X))
such that

(Ū (K̃ ′0 )
x )n0 (v) − (Ū (K̃ ′0 )

x )n0 (u) ≥ αµ (v − u),∀x ∈ X,

holds for all v ≥ u ∈ B (K̃ ′0) , where K̃ ′0 = K̃0 + (n0 − 1)‖r ‖s .

Lemma 4.43. Suppose Assumption 4.42 holds. Then

‖T n0 (v) − T n0 (u)‖s ≤ (1 − α )‖v − u‖s ,∀v,u ∈ B
(K̃0)
w .

Proof. ByAssumption 4.42(i), the iteration {T in0 (v),i = 1,2, . . .} remains inB
(K̃0)
w ,

provided that we start with an element in B
(K̃0)
w . For j = 1,2, . . . ,n0 − 1, we have

‖T j (v)‖s ≤‖T j (v) − T j (0)‖s + ‖T j (0)‖s
≤‖v ‖s + j ‖r ‖s ≤ K̃0 + (n0 − 1)K = K̃ ′0.

Hence, starting with v ∈ B (K̃0) , the iteration {T n (v),n = 1,2, . . .} remains in

B
(K̃ ′0)
w . Hence, we have for all v,u ∈ B

(K̃ ′0)
w

T n0
x (v) − T n0

x (u) ≤ Ū (K̃ ′0)
x (T n0−1

x (v) − T n0−1
x (u)) ≤ . . . ≤ (Ū (K̃ ′0 )

x )n0 (v − u).

The rest of the proof follows the same line as in the proof of Lemma 4.40 and is
therefore omitted. �

By Theorem 4.39, this lemma immediately ensures the existence of solutions
to the Poisson equation and invariant valuation functions (restricted to the sub-

space B
(K̃0)
w ).
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An example Let {Xt } be a time-homogeneous Markov chain satisfying As-
sumption 4.38. Consider the utility-based shortfall de�ned in (4.25) satisfying
(4.26). Let Ū be the upper envelope de�ned in (4.29). Then Ū n0 is apparently
an upper envelope of R (·) := T n0 (·) − T n0 (0). By (4.30), we obtain Ū n0 (v) −
Ū n0 (v ′) ≥ α

(

l
L

)n0
µ (v − v ′) whenever v ≥ v ′ ∈ B. This veri�es Assumption

4.42(ii). In addition, following the same line in the proof of Lemma 4.40, we obtain

‖R (v)‖s = ‖T n0 (v) −T n0 (0)‖s ≤ (1−α
(

l
L

)n0
)‖v ‖s . Hence, providedK0 = ‖r ‖s ,

K̃0 =
n0K0
α

(

L
l

)n0
veri�es Assumption 4.42(i).

Conditions for the entropic map

Assumption 4.44. There exists a measure µ and positive constants λ+ > λ− > 0,
n0 ∈ N such that

λ−µ (A) ≤ Pn0x (A) ≤ λ+µ (A),∀A ∈ B (X).

Proposition 4.45. Suppose Assumption 4.44 holds. Then Assumption 4.42 holds for

the entropic map with λ = 1.

Proof. First, we show that Assumption 4.42(i) holds. Assume ‖r ‖s = K . De-

�ne P̃x (dy) := er (x )Px (dy) and P̃x (v) :=
∫

v (y)P̃x (dy). We have then P̃x (e
v )

P̃y (ev )
≤

eK
Px (e

v )

Py (ev )
. Hence,

eT
n0
x (v )−T n0

y (v )
=

P̃
n0
x (ev )

P̃ny (e
v )
≤ e2n0K P

n0
x (ev )

Pn0y (ev )
≤ e2n0K λ

+

λ−
,

where the last inequality is due to Assumption 4.44. Taking

K̃0 := n0K +
1

2
log

λ+

λ−
,

we obtain the required inequality for Assumption 4.42(i).

Second, Assumption 4.42(ii) can be obtained by applying Proposition 4.35with
w0 ≡ 1. �

Example 4.46. Let {Xt } be a time-homogeneous ergodicMarkov chainwith a �nite
state space, i.e., it satis�es that Pn0 (y |x ) ≥ ϵ holds for some positive n0 ∈ N and
for all x ,y ∈ X. It yields also that Pn0 (y |x ) ≤ 1 − ϵ . Without loss of generality, we
may assume ϵ ∈ (0, 1

N
), where N denotes the cardinality of X. Then, Assumption

4.44 holds with λ− = Nϵ , λ+ = N (1 − ϵ ) and µ being the uniform distribution on
X.
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Comparingwith literature Cavazos-CadenaandHernández-Hernández (2009)
stated a set of necessary and su�cient conditions for a solution to the Poisson
equation with the entropic map on �nite state spaces: (a) the underlying Markov
chain is a unichain, i.e., it contains a unique recurrent class R ⊂ X and (b) there
exists a positive integer n0 such that P[TR ≤ n0 |X0 = x] = 1, ∀x ∈ X, where
TR := min{n ≥ 1 | Xn ∈ R} denotes the �rst hitting time. Our condition is obvi-
ously stronger than the above conditions. Nevertheless, under our assumptions,
a geometric convergence under the semi-norm can be obtained by Lemma 4.43,
whereas under the necessary and su�cient conditions, the convergence of such
iterations {T n,n = 1,2, . . .} is not guaranteed. For an example of a Markov chain
satisfying the above two conditions with, however, non-converged iterations, see
Example 8.5.1 of Puterman (1994).

4.6 Summary and discussion

In this chapter, we investigated the conditions under which

1) there exists a (unique) solution to the Poisson equation with arbitrary valua-
tion maps and

2) a convergence rate can be quanti�ed for the associated iterations.

To this end, we generalized the Lyapunov approach that was applied by Hairer
and Mattingly (2011) to ensure the geometric ergodicity for Markov chains. Our
assumptions and their variants for di�erent types of valuations maps are com-
posed of two conditions,

a) the existence of a Lyapunov function to control the growth of iterations, and

b) a Doeblin-like condition for local contraction.

In particular, for the same problem on �nite state spaces, the above two condi-
tions can be reduced to one condition, that is, a (possibly) multistep Doeblin-like
condition for global contraction.

Our motivation of studying the nonlinear Poisson equation is to understand
the limit behavior of average valuations, which plays a crucial role in the aver-
age Markov decision/control processes to be introduced in the next chapter. Due
to its generality, the nonlinear Poisson equation may have other applications in
mathematics. One example is that, as pointed out by Gaubert and Gunawardena
(2004), it is closely linked to the nonlinear Perron-Frobenius theory (for a compre-
hensive introduction see Lemmens and Nussbaum, 2012) with nonexpansive and
homogeneousmaps. Another example is that, the upper envelope for the entropic
map de�ned in (4.34) is closed related to the calculation of posterior distributions
in Bayesian statistics, especially in a hidden Markov model (HMM, see e.g. Cappé
et al., 2005). Its ergodicity property can be very useful for understanding the sta-
bility of the underlying HMM. For details see Douc et al. (2009).
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We end this theoretical chapter with a �nal remark. In several places of this
chapter, we started from the assumption that the underlying Markov chain is (ge-
ometrically) ergodic and then stated the su�cient conditions under which the
valuation maps with this Markov chain are ergodic as well (see e.g. Proposition
4.8 for homogeneous maps and Theorem 4.34 for the entropic map). This means,
the ergodicity of the underlying Markov chain does not necessarily imply the er-
godicity of valuation maps. It is now remarkable that the opposite direction does
not holds either: a non-ergodic objective transition kernel may allow an ergodic
valuation map. For instance, consider the following 1-dimensional autoregres-
sive model, Xt+1 = bXt + Nt , where Nt is standard white noise and assume that
1 < |b | ≤ C < ∞. Then, the transition kernel is

P (dy |x ) = 1
√
2π

exp

(

− (y − bx )
2

2

)

dy

By assumption, |b | > 1, this Markov chain is transient. Now, we let д(y) = −C
2 y

2

and de�ne Ux ( f ) := Px [eд f ]
Px [eд]

, which is a valid linear valuation map. Then it is
easy to check that

Ux ( f ) =

√
1 +C
√
2π

∫

f (y) exp


−(C + 1)

(y − b
1+Cx )

2

2


 dy

Or in other words, the corresponding new transition kernel is

P̃ (dy |x ) =
√
1 +C
√
2π

exp


−(C + 1)

(y − b
1+Cx )

2

2


 dy,

which is w-geometric ergodic (for a proof, see e.g. Section 16.5.1 in Meyn and
Tweedie, 1993). Hence, in summary, the valuation maps may e�ectively change
the dynamics of the underlying Markov chain.
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5

Risk-sensitive Markov Decision

Processes

Nature has placed mankind under the governance of two sovereign masters, pain

and pleasure. It is for them alone to point out what we ought to do, as well as to

determine what we shall do.

— Jeremy Bentham (1789)

Précis We introduce a uni�ed framework for measuring risk in the context of
Markov decision processes with valuation maps on general Borel spaces. Within
the framework, applying weighted norm spaces to incorporate also unbounded
rewards, we study two types of in�nite-horizon risk-sensitive criteria, discounted
and average valuation, and solve the associated optimization problems by value
iteration. For the discounted case, we propose a new discount scheme, which is
di�erent from the conventional form but consistent with existing literature, while
for the average criterion, we state Lyapunov-type stability conditions that gener-
alize known conditions for Markov chains to ensure the existence of solutions to
the optimality equation and a geometric convergence rate for the value iteration.

Publications related to this chapter Themain results of this chapter has been
published in Shen et al., 2013, Section 4, Shen et al., 2014b, Section 5 and 6 and
Shen et al., 2014c.

5.1 Introduction

Markov decision processes (MDPs, see e.g. Puterman, 1994; White, 1993 and Her-
nández-Lerma and Lasserre, 1996; 1999 under the nameMarkov control processes)
are widely applied to model sequential decision making problems of agents. The
induced optimal control problem is to �nd the best policy that maximizes the
expected total rewards. The core of the MDP-framework consists of two objec-

tive descriptions of some mechanism of the environment transition probabilities

73
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of switching states when performing actions, and immediate outcomes (rewards
or costs) obtained at states by executing actions. Facing the same environment,
however, di�erent agents might have di�erent policies. Therefore, in many appli-
cations, it is important to also incorporate the subjective perceptions of an agent
into the MDP-framework. The subjective outcomes are usually modeled by util-

ity functions (see e.g. Gollier, 2004), which can be easily incorporated by simply
replacing the immediate outcome with its utility, whereas the subjective transi-
tion probabilities require amore sophisticatedmathematical framework. They are
commonly incorporated in the risk, which is caused by an uncertain environment.

Coherent/convex riskmeasures (CRMs) (Artzner et al., 1999; Föllmer and Schied,
2002) have been widely employed to model subjective probabilities in mathemati-
cal �nance since the last one and half decades. Several works (see e.g. Roorda et al.,
2005; Föllmer and Penner, 2006; Cheridito et al., 2006; Ruszczyński and Shapiro,
2006; Cheridito and Kupper, 2011 and references therein) extend CRMs to tempo-
ral structures in various setups, where they consider mainly �nite-horizon prob-
lems. On the contrary, in the literature of MDPs, while the in�nite-horizon risk-
sensitive optimal decision-making or control problems are studied, they apply
merely the entropic map (Chung and Sobel, 1987; Hernández-Hernández andMar-
cus, 1996; Fleming and Hernández-Hernández, 1997; Marcus et al., 1997; Avila-
Godoy and Fernández-Gaucherand, 1998; Coraluppi and Marcus, 2000; Cavazos-
Cadena, 2010; Borkar andMeyn, 2002; DiMasi and Stettner, 2008), which is convex
and in fact a special type of CRM. All risk measures mentioned in the above liter-
ature are coherent/convex based on the assumption that the agent is supposed to
be economically rational and therefore risk-averse. This limits applications in the
�elds of decision-making under risk and behavioral economics, where more gen-
eral risk measures (see e.g. Savage, 1972; Chateauneuf and Cohen, 2008; Tversky
and Kahneman, 1992 and references therein) are applied, since human beings are
not always risk-averse. However, the models in these �elds can only be applied
to one-step decision making problems.

To overcome the limitations mentioned above, we have already extended the
de�nition of CRMs in Chapter 2 (see Section 2.3), to include valuation functions
considered also in behavioral economics. In this chapter, we will apply the con-
structive approach introduced Chapter 3 to theMDP framework. We have already
shown that this approach maintains the Markov property, which ensures, there-
fore, the existence of stationary optimal policies for two in�nite-horizon objec-
tives, namely, the discounted and average criteria. With the generalized valuation
functions and constructed valuation maps, we provide in this chapter a uni�ed
treatment in the context of MDPs to in�nite-horizon risk-sensitive optimal con-
trol problems considered in various �elds. Using weighted norm spaces, we can
incorporate unbounded rewards in risk-sensitive MDPs also. We prove that two
types of objectives, the discounted and the average valuations, can be optimized
with dynamic programming algorithms under proper assumptions. For the case
of discounted criterion, we apply a new discount scheme which is di�erent from
the conventional form but consistent with the one applied in Ruszczyński (2010)
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where coherent risk measures are considered. For the average case, we state su�-
cient conditions, which generalize Lyapunov-type conditions from the literature
of Markov chains (see e.g. Meyn and Tweedie, 1993), to ensure the existence of
solutions to the associated optimality equation.

5.2 Markov decision processes

Notations A Borel space is a Borel subset of a complete separable metric space.
If X is a Borel space, its Borel σ -algebra is denoted by B (X). Let X and Y be two
Borel spaces. A stochastic kernel on X given Y is a functionψ (B |y),B ∈ B (X),y ∈ Y
such that i) ψ (·|y) is a probability measure on B (X) for every �xed y ∈ Y, and ii)
ψ (B |·) is a measurable function on Y for every �xed B ∈ B (X).

De�nition A Markov decision process (MDP, see e.g., White, 1993; Puterman,
1994),

(X,A, {A(x ) |x ∈ X},P,r ),

consists of the following components:

• state space X and action space A, which are Borel spaces;

• the feasible action set A(x ), which is a nonempty Borel space of A, for a
given state x ∈ X;

• the transition model P (B|x ,a),B ∈ B (X), (x ,a) ∈ K: a stochastic kernel

on X given K, where K denotes the set of feasible state-action pairs K :=
{(x ,a) |x ∈ X,a ∈ A(x )}, which is a Borel subset of X × A; and

• the reward function r : K→ R, B (K)-measurable.

Random variables are denoted by capital letters, e.g. Xt and At , whereas realiza-
tions of the random variables are denoted by normal letters, e.g. xt and at .

Remark 5.1. The notations used in this chapter are mostly taken fromHernández-
Lerma and Lasserre (1999, 1996), except that we consider rewards rather than
costs. In the literature of optimal control, the similar framework with cost func-
tions is correspondingly calledMarkov control processes (MCPs). In fact, given an
MDP, setting c := −r , we immediately obtain the corresponding MCP.

Policy We consider here only Markov policies:

π = [π0,π1,π2, . . .],

where each single-step policy πt (·|xt ), which denotes the probability of choosing
action at at xt , (xt ,at ) ∈ K, is Markov (independent of the states and actions
before t) and, therefore, a stochastic kernel on A given X. We use the boldface
to represent a sequence of policies while using normal typeface for a single-step
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policy. Let ∆ denote the set of all stochastic kernels on A given X, µ , such that
µ (A(x ) |x ) = 1 and ΠM denotes the set of all Markov policies. Thus ΠM = ∆∞.
A policy f ∈ ∆ is deterministic if for each x ∈ X, there exists some a ∈ A(x )

such that f ({a}|x ) = 1. Let ∆D ⊂ ∆ denote the set of all deterministic single-step
policies. A policy π is said to be stationary, if π = π∞ for some π ∈ ∆. For each
x ∈ X and single-step policy π ∈ ∆, de�ne

r π (x ) :=

∫

A(x )

r (x ,a)π (da |x )(5.1)

P π (B|x ) :=
∫

A(x )

P (B|x ,a)π (da |x ),B ∈ B (X).(5.2)

Objective There are usually three types of objectives used in the literature of
MDPs: �nite-stage, discounted and average rewards, depicted as

(5.3) ST :=
T

∑

t=0

r (Xt ,At ), Sγ :=
∞
∑

t=0

γ tr (Xt ,At ), and SA := lim inf
T→∞

1

T
ST

whereγ ∈ [0,1) denotes the discount factor. Suppose we start from one given state
X0 = x . The optimization problem is then to maximize the expected objective

(5.4) sup
π ∈ΠM

E
π [S|X0 = x]

by selecting a policy π , where S is ST , Sγ or SA.

Technical considerations

In some applications of MDPs, the reward can be also “noisy”, i.e., the reward can
be decomposed into two parts: R = r +n, where r denotes the reward function as
in the framework applied in this chapter, and n denotes some additive noise (real-
valued random variable), whose distribution might be dependent on the state-
action pair (s,a). This more general setting is especially popular in reinforcement
learning (Sutton and Barto, 1998), which is a stochastic approximation (Kushner
and Yin, 2003) approach for solving the optimization induced MDPs. This topic
will be dealt with in details in Chapter 6.

Other two generalizations of the reward function are to

1. allow rewards to depend also on the successive state x ′ (Bertsekas and Tsit-
siklis, 1996), i.e., r (x ,a,x ′), and/or

2. allow rewards to be time-dependent.

For the �rst generalization, in the standard MDP theory (see e.g., Puterman, 1994,
Section 2.1.3), it is equivalent to using

r (x ,a) :=

∫

r (x ,a,x ′)P (dx ′ |x ,a)
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as in our framework. However, it is remarkable that in the risk-sensitive MDP
framework to be developed below this equivalence does not hold. Nevertheless,
for simplicity, we restrict ourselves in this thesis to reward functions depending
merely on the current state-action pair (x ,a), since this setup covers already nu-
merous applications (see e.g., Puterman, 1994, Chapter 1 andWhite, 1993, Chapter
8). For the second generalization, we can use time-dependent reward functions for
the �nite-stage problem. However, for the discounted and average valuation, the
time-dependent setting will make the problem computational infeasible. Hence,
we assume in our framework that the reward function is dependent of time.

In the classical MDP theory, one can show (see e.g., Puterman, 1994, Section
4.1.3 for the �nite case, Section 6.2 for the discounted valuation and Section 8.4.3
for the average valuation) that among the whole policy set containing those poli-
cies that depend on thewhole history, there exists always aMarkov policy that op-
timizes the objective (5.4). In the risk sensitive cases, this statement, however, no
longer holds, due to the added nonlinearity. Hence, we restrict ourselves merely
to the set of Markov policies.

Another objective that is not covered by our framework is the total reward,
S := limT→∞ ST . This objective is usually studied under the assumption that the
underlying MDP contains at least one 0-reward absorbing state (see e.g., Puter-
man, 1994, Chapter 5, Altman, 1999, Hernández-Lerma and Lasserre, 1999, Chap-
ter 9 and Bertsekas and Tsitsiklis, 1996). In fact, the discounted valuation can
be reformulated as an transient MDP with one additional “dummy” state. For a
nice treatment, see Altman, 1999, Chapter 10. In this thesis, however, we focus
on recurrent MDPs (for de�nition, see e.g., Hernández-Lerma and Lasserre, 1999,
Section 7.3), since the reinforcement learning (see Chapter 6), another important
topic of this thesis, requires that every state-action pair must be visited in�nitely
often, which is impossible for a transient MDP.

Finally, note that in the de�nition of average reward in (5.3), “lim inf”, instead
“lim”, is used, since the limit might not exist for some MDPs. For an example, see
Puterman, 1994, Section 8.1.1. On the other hand, the usage of “lim inf” means
that this objective function is already risk-averse, for we take a pessimistic or
conservative estimation of average rewards, comparing with “lim sup”.

5.3 Risk-sensitive MDPs

5.3.1 Setup

We notice that the �nite-stage objective function (while other two objectives can
be dealt with analogously) can be decomposed as follows,

E
π

X0
[ST ] = r

π0 (X0) + E
π0
X0

[

r π1 (X1) + E
π1
X1

[

r π2 (X2) + . . .(5.5)

+EπT −1
XT −1

[

r πT (XT )

]

. . .

] ]
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where

E
πt
X t

[v (Xt+1)] :=

∫

v (Xt+1)P
πt (dXt+1 |Xt )

denotes the conditional expectation of the function v of the successive state Xt+1

given current state Xt .
Analogous to the valuationmap de�ned in Section 3.1, we �rst de�ne the valu-

ationmap in a general setting. Given a Borel space Xwithσ -algebraB (X). Denote
by P (X) the space of all probability measures on X, and by L (X) a linear space
of real-valued B (X)-measurable functions containing all constant functions.

Definition 5.2. A mappingU (y, (v,µ)) : Y × L (X) ×P (X) → R is said to be a

valuation map on X given Y, if

(i) for each y ∈ Y,U (y, (·, ·)) is a valuation function; and

(ii) U (·, (v,µ)) is B (Y)-measurable for each (v,µ) ∈ L (X) ×P (X).

Note that by de�nition, for each (x ,a) ∈ K, P (·|x ,a) is a probability measure,
written as Px,a . Now we de�ne the valuation map in the framework of MDPs.

Definition 5.3. AmappingU ((x ,a),v) : K ×L (X) → R is said to be a valuation
map on an MDP (X,A, {A(x ) |x ∈ X},P,r ), if there exists a valuation map Ũ on X

given K such that

U ((x ,a),v) = Ũ ((x ,a),v,Px,a ).

Furthermore, U ((x ,a),v) is also written as U (v |x ,a) or Ux,a (v) in di�erent con-

texts and de�ne

U π
x (v) = U π (v |x ) :=

∫

A(x )

π (da |x )U (v |x ,a).

Remark 5.4. 1) We will explain the choice of L (X) in the next section.

2) In De�nition 5.3, U π is in fact assumed to be linear to the policy π , which
simpli�es the optimization problem and is one of the conditions that guarantee
the existence of one optimal deterministic policy, “optimal selector” (see the
next section).

We replace the conditional expectation in (5.5) with the valuationmap de�ned
above and therefore, obtain the following T -stage risk-sensitive objective

J πT = r
π0 (X0) +U π0

X0

[

r π1 (X1) +U π1
X1

[

r π2 (X2) + . . . +U πT −1
XT −1

[r πT (XT )] . . .
] ]

.

Its optimization problem can be solved by dynamic programming (see e.g. Rusz-
czyński, 2010), whereas the other two objectives will be de�ned analogously and
discussed in the next section.

In the mathematical �nance literature, there exist various ways to extend co-
herent/convex risk measures to a temporal structure (see Föllmer and Penner,
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2006; Cheridito and Kupper, 2011; Ruszczyński, 2010 and references therein). The
de�nition is usually selected based on applications. To compare their subtle dif-
ferences are out of the scope of this thesis. The evaluation maps de�ned here
are similar to the risk measure generators in Cheridito and Kupper (2011) and are
implicitly Markovian and time-homogeneous (see also Ruszczyński, 2010), since
U de�ned above depends merely on the most recent state and action but not the
whole history.

The valuation maps used in our risk-sensitive MDP-framework are assumed
to be Markovian (cf. the motivation explained in Section 3.1), since in the MDP-
framework the underlying stochastic process is Markovian, while the assumption
of time homogeneity is due to the fact that since we consider mainly the in�nite-
horizon criteria (see Section 5.3.2), as in the literature of MDPs, stationary optimal
policies are expected. Hence, to comply with the MDP-framework, it is su�cient
to construct an operator which replaces the conditional expectation determined
by the transition model P and policy π .

Risk preference

Definition 5.5. A valuation map U is said to be convex (respectively concave,
homogeneous) if U(x ,a) is convex (respectively concave, homogeneous), for all
(x ,a) ∈ K.

Applying Proposition 3.9, it is easy to see that concave valuation maps induce
risk-averse behavior.

Examples

Note that all examples valuation functions we have presented in Section 2.4.2–
2.4.7 can be easily extended to valuation maps correspondingly by replacing µ
with some transition kernel P. For instance, the entropic measure ρλ (v,µ) =
1
λ log

{∫

Ω
eλvdµ

}

de�ned in Section 2.4.2 can be extended to a valuation map,
which is said to be an entropic map, as follows,

U (v |x ,a) := 1

λ
log

{∫

X

eλv (y )P (dy |x ,a)
}

,λ , 0.(5.6)

Other types of valuation maps can be obtained analogously.

5.3.2 Objectives

LetU be a valuation map and γ ∈ [0,1] be a discount factor. Given π ∈ ΠM and
x ∈ X, de�ne

Jγ,T (x ,π ) := r
π0 (x ) + γU π0

x (r π1 + γU π1 (r π2 + . . . + γU πT −1 (r πT ) . . .)) .(5.7)

We consider the following risk-sensitive objectives:
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1) the T -stage valuation:
JT (x ,π ) := J1,T ,

2) the discounted valuation:

Jγ (x ,π ) := lim
T→∞

Jγ,T (x ,π ), and(5.8)

3) the average valuation:

J (x ,π ) := lim inf
T→∞

1

T
J1,T (x ,π ),π ∈ ΠM ,x ∈ X.(5.9)

Remark 5.6. For the proof of the existence of the limit in (5.8) (under some techni-
cal assumptions), see Lemma 5.16 in the next section. For an example where the
limit does not exist in (5.9), see (Puterman, 1994, Example 8.1.1). We, therefore,
use “lim inf” instead of “lim” in the de�nition of average valuation.

The optimal control problems for above three risk-sensitive objectives are to
maximize the subjective valuation among all Markov policies

J ∗T (x ) := sup
π ∈ΠM

JT (x ,π ),

J ∗γ (x ) := sup
π ∈ΠM

Jγ (x ,π ), and

J ∗(x ) := sup
π ∈ΠM

J (x ,π ).

Remarks on time consistency

Let γ = 1 and consider the T -stage valuation JT . Following the same line as in
Section 3.3 (see also Ruszczyński, 2010), it is easy to verify that given a time-
consistent dynamic valuation function, {ρt,T ,t = 0,1, . . . ,T }, when applying to
the sum ST de�ned in (5.3), one can always obtain a backward induction procedure
as in (5.7).

Remarks on the de�nition of discounted valuation

In economics, the time-discount is added to re�ect the “time-value” of outcomes:
the outcome to be gained in the future is less valuable than the same amount of
outcome obtained now. It has similar e�ects when cost is concerned. Due to its
good mathematical properties, exponential discounting scheme, where the cost
ct is multiplied with the time-discountγ t , is widely applied in economics, �nance
as well as in MDPs.

A natural extension of classical discounted MDPs, therefore, is

Dγ (π ) = r
π0 +U π0

(

γr π1 +U π1
(

γ 2r π2 + . . . +U πT −1 (γT r πT + . . .) . . .
))

.
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However, since the valuationmapU is not necessarily homogeneous, a stationary
policy that optimizesDγ need not exist. Indeed, it was proved in Chung and Sobel
(1987) that for the entropic map, which is not homogeneous, the optimal policy
might not be stationary if Dγ (π ) is optimized with respect to π , though Dγ is
well-de�ned for all γ ∈ [0,1). In our de�nition, discount factor γ is multiplied
withR , which has the same “time-discount” e�ect, where the subjective valuation
rather than the immediate reward is discounted. Moreover, it is easy to see that,
ifU is homogeneous, Dγ is equivalent to Jγ , the discounted valuation under our
de�nition. Therefore,Dγ de�ned for any homogeneous valuationmap is merely a
special case of our de�nition. Speci�cally, the classical discounted MDP is indeed
a special case of our de�ned discounted valuation, since it is homogeneous. Dγ

was used in Ruszczyński (2010) and the corresponding optimization problem was
solved by a value iteration algorithm, since merely the coherent (i.e. concave and
homogeneous) valuation maps were considered. Besides, in the proof of the value
iteration algorithm, the representation theorem was used, which is valid merely
for coherent (i.e. concave and homogeneous) valuationmaps. On the contrary, we
will see later that the objective Jγ allows a value iteration algorithm for general
valuation maps. Therefore, we apply Jγ rather than Dγ .

5.4 Optimization

We derive in this section value iteration algorithms to solve the optimization prob-
lems proposed in the last section. Among them, the optimalT -stage valuation J ∗T
can be easily obtained by dynamic programming and is therefore omitted here.
The value iteration algorithms for the discount valuation and average valuation
are presented in Section 5.4.2 and 5.4.3 respectively. We start �rst with some
preparatory assumptions.

5.4.1 Preparatory assumptions

Optimal selector

De�ne the following operators

F π
γ (v) := r π + γU π (v), Fγ (v) := sup

π ∈ΠM

F π
γ (v),

where v ∈ Bw and γ ∈ [0,1]. If γ = 1, we simply write them as F π and F re-
spectively. The operators (F π

γ )n , n ∈ N, are de�ned iteratively as (F π
γ )0(v) := v,

and (F π
γ )n (v) := F π

γ ((F π
γ )n−1 (v)), n = 1,2, . . ., while F t

γ is de�ned analogously.
The following assumption is made to ensure the existence of the “selector” in

the optimization problem.

Assumption 5.7. For each x ∈ X,

(i) the reward function r (x ,a) is upper semi-continuous on A(x ),
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(ii) the action space A(x ) is compact, and

(iii) the function u ′(x ,a) := Ux,a (u) is continuous on a ∈ A(x ) for any u ∈ Bw .

Remark 5.8. This assumption dates back to Schäl (1974) and was later applied to
MCPs by Bertsekas and Shreve (1978). Recently, a set of weaker assumptions has
been developed by Feinberg et al. (2013).

Proposition 5.9. Suppose U is a valuation map satisfying Assumption 5.7. Then,

for all v ∈ Bw and x ∈ X, there exists a deterministic policy f ∈ ∆D , such that for

any γ ∈ [0,1],

r f (x ) + γU f (v |x ) = Fγ (v |x ) = sup
π ∈∆

{

r π (x ) + γU π (v |x )} .(5.10)

Proof. Apparently, for each x ∈ X,

Fγ (v |x ) = sup
a∈A(x )

{

r (x ,a) + γU (v |x ,a)} .

By Assumption 5.7(i) and (iii), the function

u (x ,a) := r (x ,a) + γU (v |x ,a),γ ∈ [0,1],

is upper semi-continuous in a ∈ A(x ) for each x ∈ X. Hence, −u (x ,a) is lower
semi-continuous. Hence, by Assumption 5.7(ii) and Proposition 7.33 of Bertsekas
and Shreve (1978) or Lemma 8.3.8(a) of Hernández-Lerma and Lasserre (1999), an
optimal selector for infa∈A(x ) −u (x ,a) exists, which is equivalent to the existence
of an optimal selector for supa∈A(x ) u (x ,a). �

Upper envelope

We introduce below the concept of upper envelope (see also Section 4.3.2) to con-
trol the growth of iterations, {F n

γ }.

Definition 5.10. A convex and homogeneous valuation map Ū (w,C) is said to be

an upper envelope of a valuation map U given a constant C > 0, if for all v,u ∈
B

(C)
w :=

{

v ∈ Bw | ‖v ‖s,w ≤ C
}

,

Ux,a (v) − Ux,a (u) ≤ Ū (w,C)
x,a (v − u),∀(x ,a) ∈ X.

Remark 5.11. Apparently, ifU is convex and homogeneous, thenU is an upper
envelope of itself for any C > 0.

To ensure the existence of the upper bound C , we assume,

Assumption 5.12. There exist a B (X)-measurable function w0 : X → [0,∞), con-
stants α0 ∈ (0,1) and K̃0 > K0 > 0 such that
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(i) for each (x ,a) ∈ K,

[r (x ,a) +Ux,a (w0)] ∨ [−r (x ,a) − Ux,a (−w0)] ≤ α0w0(x ) + K0;

(ii) for all x ,x ′ ∈ B0 := {x ∈ X|w0(x ) ≤ R0 := 2K0
1−α0
}, a ∈ A(x ), a′ ∈ A(x ′), the

inequality

Ux,a (v) − Ux ′,a′ (v) ≤ 2(K̃0 − K0) +Ux,a (w0) − Ux ′,a′ (−w0)

holds for all v satisfying |v | ≤ w0 + K̃0.

and obtain the following theorem, which gives us a bounded forward invariant

subset.

Theorem 5.13. Suppose Assumption 5.12 holds. Let w := 1 + K̃ −10 w0. Then for all

π ∈ ∆ and γ ∈ [0,1],

‖F π
γ (v)‖s,w ≤ K̃0, whenever ‖v ‖s,w ≤ K̃0.

Proof. The proof is a simple repeat of the proof of Theorem 4.14 and is therefore
ignored. �

5.4.2 Discounted valuation

Under Assumption 5.12, we can restrict to the bounded forward invariant subset

B (K̃0 )
w . For the discounted valuation, we need further assumptions

Assumption 5.14. (a) Assumption 5.12 holds with some weight functionw0 and a
constant K̃ .

(b) Letw := 1 + K̃ −10 w0. There exists a constant w̄ ∈ [1,1/γ ) such that

sup
a∈A(x )

Ū (w,K̃0 )
x,a (w ) ≤ w̄w (x ).(5.11)

Proposition 5.15. Suppose Assumption 5.14 holds. Then for each π ∈ ∆ andv,u ∈
B

(K̃0)
w ,

‖F π
γ (v) − F π

γ (u)‖w ≤ w̄γ ‖v − u‖w .

Proof. For each v,u ∈ B
(K̃0)
w , we have ∀(x ,a) ∈ K

Ux,a (v) − Ux,a (u) ≤Ū (w,K̃0 )
x,a (v − u)

≤Ū (w,K̃0 )
x,a (‖v − u‖ww )

=‖v − u‖wŪ (w,K̃0 )
x,a (w )

≤‖v − u‖ww̄w (x )
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which yields for each π ∈ ∆ and x ∈ X,

F π
γ (v |x ) − F π

γ (u |x ) =γ (U π
x (v) − U π

x (u)
)

=γ

∫

A(x )

π (da |x ) (Ux,a (v) − Ux,a (u)
)

≤γ ‖v − u‖ww̄w (x ).

Switching v and u, we obtain for each x ∈ X,

|F π
γ (v |x ) − F π

γ (u |x ) | ≤ γ ‖v − u‖ww̄w (x ),(5.12)

which implies immediately the required inequality. �

We then show that the limit in the de�nition of discounted valuation is well
de�ned.

Lemma 5.16. Suppose Assumption 5.14 holds. Then for each π ∈ ΠM ,

(i) Jγ (π ) = limT→∞ Jγ,T (π ) de�ned in (5.8) exists in B
(K̃0)
w , and

(ii) for each π ∈ ΠM and v ∈ B
(K̃0 )
w ,

Jγ (π ) = lim
T→∞

F π0
γ (F π1

γ . . . F πT
γ (v) . . .).

Proof. By iterating Theorem 5.13, we have for each T > 0, Jγ,T (π ) ∈ B
(K̃0)
w . By

Assumption 5.14 (a), we have

|r (x ,a) | ≤ w0(x ) + K̃0 = K̃0w (x ),∀(x ,a) ∈ K,

which implies that ‖r π ‖w ≤ K̃0 holds for all π ∈ ∆. Hence, by iterating Proposi-
tion 5.15, we have

‖ Jγ,T+1 (π ) − Jγ,T (π )‖w
=‖F π0

γ (F π1
γ . . . F πT

γ (r πT+1 ) . . .) − F π0
γ (F π1

γ . . . F πT −1
γ (F πT

γ (0)) . . .)‖w(5.13)

≤(wγ )T ‖r πT+1 ‖w .(5.14)

Sincewγ ∈ [0,1), we have

lim
T→∞
‖ Jγ,T+1 (π ) − Jγ,T (π )‖w = 0.

This shows the exist exists in B
(K̃0)
w .

Statement (ii) is straightforward by replacing cπT+1 with v ∈ B
(K̃0)
w in (5.13).

�

Now, we show that Fγ is a contraction map.
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Lemma 5.17. Suppose Assumption 5.7 and 5.14 hold. Then for each v,u ∈ B
(K̃0)
w ,

‖Fγ (v) − Fγ (u)‖w ≤ w̄γ ‖v − u‖w ,w̄γ ∈ [0,1).

Proof. By Proposition 5.9, the optimal selector f ∗ always exists for all v ∈ Bw .
Let fv be the optimal selector for v and fu be the optimal selector for u. Thus

Fγ (v) − Fγ (u) ≤ F fv
γ (v) − F fv

γ (u) ≤ wγ ‖v − u‖ww ,

where the last inequality is due to (5.15). By switching v and u, we obtain On the
other hand,

|Fγ (u) − Fγ (v) | ≤ wγ ‖v − u‖ww .

Hence, ‖Fγ (v) − Fγ (u)‖w ≤ wγ ‖v − u‖w . �

Hence, by Banach’s �xed point theorem, starting from some v ∈ Bw satisfy-
ing ‖v ‖s,w ≤ K̃0, F n

γ (v) converges to a unique �xed point v∗ in Bw satisfying
the Bellman equation:

v∗ (x ) := Fγ (v∗ |x ) = sup
a∈A(x )

{

r (x ,a) + γU (v∗ |x ,a)} .(5.15)

Let f be an optimal selector in the right hand side of the above equation. The
following theorem indicates the link between the Bellman equation and the opti-
mization problem of discounted valuation.

Theorem 5.18. Suppose Assumption 5.7 and 5.14 hold. Then v∗ (x ) = J ∗γ (x ) =
Jγ (x , f

∞) for all x ∈ X.

Proof. First, we show v ≤ Fγv implies v ≤ J ∗γ . By Proposition 5.9, we assume
that the optimal selector for v is f . Hence, we obtain

v ≤ F f
γ (v) ≤ F f

γ F
f
γ (v) ≤ F f

γ F
f
γ F

f
γ (v) ≤ (F f

γ )∞ (v) = Jγ ( f
∞) ≤ J ∗γ

where the equality is due to Lemma 5.16(ii).
Second, we show that v ≥ Fγv implies v ≥ J ∗γ . Indeed, let π = [π0,π1, . . .] ∈

ΠM be an arbitrary Markov random policy. Then, for all π ∈ ∆, v ≥ Fγv ≥ F π
γ v.

Hence,

v ≥ F π0
γ (v) ≥ F π0

γ F π1
γ (v) ≥ F π0

γ F π1
γ F π2

γ (v) ≥ F π0
γ . . . F πT

γ (v) → Jγ (π ).

The limit is due to Lemma 5.16(ii). Since π can be arbitrarily chosen, it follows
v ≤ infπ ∈ΠM

Jγ (π ) = J
∗
γ .

Since v∗ = Fγv∗, combining above two steps yields v∗ = J ∗γ . �

By the above theorem, we immediately obtain the following corollary for ex-
istence of a stationary deterministic policy.

Corollary 5.19. Under Assumption 5.14 and 5.7, there exists a stationary deter-

ministic policy f ∗ ∈ ∆D such that J ∗γ = Jγ (( f
∗)∞).
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Remarks on convex and homogeneous valuation maps

Note that if the valuation map U is convex and homogeneous, then its upper
envelope becomes itself. Assumption 5.14 can therefore be relaxed to

Assumption 5.20. U is a convex and homogeneous valuation map. Assume

(a) r̄ (x ) := supa∈A(x ) |r (x ,a) | ∈ Bw , and

(b) there exists a nonnegativew , with 1 ≤ w < 1/γ such that ∀x ∈ X,

sup
a∈A(x )

U (w |x ,a) ≤ ww (x ).

and replacing Assumption 5.14 with the above assumption, all the results stated

in this subsection hold, where the bounded subspace B
K̃0
w can be relaxed to the

whole space Bw .

Remarks on �nite state-action spaces

In some real-world applications, the state and action spaces are assumed to be
�nite. Then, Assumption 5.7 automatically holds.

Due to the nonexpansiveness ofU under the sup-norm ‖·‖∞ (see Proposition
4.37(ii)), the statement of Proposition 5.15 holds without Assumption 5.14. It is
therefore easy to verify that Fγ is a contraction map under the sup-norm ‖·‖∞ (cf.
Lemma 5.17) and Theorem 5.18 holds without Assumptions 5.7 and 5.14.

Value iteration

Finally, according to Lemma 5.17 and Theorem 5.18 we state the following algo-
rithm:

Algorithm 5.1 Value iteration for discounted problems

select one v0 ∈ B
(K̃0)
w , t = 0;

repeat

vt+1 = Fγ (vt ) with selector

ft+1 (x ) := argmax
a∈A(x )

{r (x ,a) + γU (vt |x ,a)};

t = t + 1;
until ‖vt+1 − vt ‖w < ϵ

Theorem 5.18 guarantees vn → J ∗γ and ft → f ∗, the optimal policy.
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5.4.3 Average valuation

We now deal with the average valuation based on the following assumption.

Assumption 5.21 (cf. Assumption 4.17). Let w0 : X → [0,∞) and w : X → [1,∞)

be two real-valued nonnegative B (X)-measurable functions satisfying

(i) B1+w0 = Bw ;

(ii) there exist constants γ ∈ (0,1), K > 0 and an upper envelope Ū (w,K̃0 ) such
that

Ū (w,K̃0 )
x,a (w0) ≤ γw0(x ) + K ,∀(x ,a) ∈ K;

(iii) and furthermore, there exists a probability measure µ such that for all x ,x ′ ∈
B := {x ∈ X|w0(x ) ≤ R,R > 2K

1−γ }, a ∈ A(x ), a′ ∈ A(x ′), and v ≥ u ∈ B1+w0 ,

Ū (w,K̃0 )
x,a (v) − Ū (w,K̃0 )

x,a (u) ≥ γ
∫

(v (x ) − u (x )) µ (dx ).

The following lemma shows that F n → 0 under the (1 + βw0)-seminorm, as
n → ∞.

Lemma 5.22. Suppose Assumption 5.7 and 5.12 hold. Assume further that Assump-

tion 5.21 holds with the same w0 as in Assumption 5.12. Then there exists γ̄ ∈ (0,1)
and β > 0 such that

‖F (v) − F (u)‖s,1+βw0 ≤ γ̄ ‖v − u‖s,1+βw0 ,∀v,u ∈ B
(K̃0)
w .

Proof. By Proposition 5.9, there exist deterministic policies fv , fu ∈ ∆D such that
F (v) = F fv (v) and F (u) = F fu (u). Thus

F (v) − F (u) ≤ F fv (v) − F fv (u) = R fv (v) − R fv (u)

and F (u) − F (v) ≤ F fu (u) − F fu (v) = R fu (u) − R fu (v)

yield for all x ,y ∈ X,

Fx (v) − Fx (u) + Fy (u) − Fy (v) ≤ R fu
x (v) − R fu

x (u) + R fv
y (u) − R fv

y (v).

By Assumption 5.21 and repeating the proof in Theorem 4.18, we obtain the re-
quired inequality. �

Finally, we show the existence of a solution to the Poisson equation and its link
to the the optimization problem of average valuation.

Theorem 5.23. Under the same assumption as in Lemma 5.22. Then the following

Poisson equation

ρ∗ + h(x ) = Fx (h) = sup
a∈A(x )

{r (x ,a) +U (h |x ,a)}(5.16)

has a solution (ρ∗,h) ∈ R × Bw , where ρ
∗ is unique. Furthermore, ρ∗ = J ∗(x ) =

J (x , f ∞) for all x ∈ X, where f is an optimal selector in the right hand side of (5.16).
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Proof. The existence of a unique solution to the Poisson equation is simply due
to Lemma 5.22 and Theorem 4.20(i). By Proposition 5.9, the optimal selector f
exists. Thus we assume F (h) = F f (h). Iterating (5.16), we obtain

(F f )t (h) = (F f )t−1 (ρ + h) = tρ + h ⇒ lim
t→∞

1

t
‖ (F f )t (h) − ρ‖w = 0.

On the other hand, for any v ∈ B
(K̃0 )
w , by Lemma 4.19,

1

t
‖ (F f )t (v) − (F f )t (h)‖w → 0

implies that

J (x , f ∞) = lim
t→∞

1

t
(F f )tx (0) = ρ,∀x ∈ X.

Next we prove that ρ ≥ J (x ,π ) for all π ∈ ΠM and x ∈ X. In fact, let π =

[π0,π1, . . .] be an arbitraryMarkov policy. Then by Lemma 4.19, for allv ∈ B
(K̃0)
w ,

lim
t→∞

1

t
‖ (F π0 (F π1 . . . F πt (v)) − F π0 (F π1 . . . F πt (0))‖w = 0.(5.17)

By de�nition h ≥ F π (h) − ρ,∀π ∈ ∆. Iterating this inequality yields
h ≥ F π0 (F π1 (. . . F πt−1 (h))) − tρ(5.18)

⇒ lim inf
t→∞

1

t
F π0 (F π1 (. . . F πt−1 (h))) ≤ ρ.(5.19)

Note that by de�nition

J (π ) = lim inf
t→∞

1

t
F π0 (F π1 (. . . F πt−1 (0)))

and by setting v = h in (5.17), we obtain

J (π ) = lim inf
t→∞

1

t
F π0 (F π1 (. . . F πt−1 (h))).

Hence, (5.19) implies ρ ≥ J (π ). It follows that

ρ ≥ sup
π ∈ΠM

J (π ) = J ∗.

Since f ∞ is a valid Markov policy in ΠM , ρ = J ∗ = J ( f ∞). �

Remarks on convex and homogeneous valuation maps

IfU is convex and homogeneous, thenU itself is an upper envelope Ū (w,C) for
any C > 0. In this case, Assumption 5.12 is no longer needed in Lemma 5.22
and Theorem 5.23 to determine a priori the size of the bounded forward invariant

subset, C . For instance, applying the classical MCP, Ū (w,K̃0 )
x,a (v) = EPx,a (v), and

obviously Assumption 5.21 (iii) is equivalent to the classical Doeblin’s condition.
Hence, Assumption 5.21 becomes the classical condition that has beenwidely used
in the MDP/MCP literature (see Hernández-Lerma et al., 1991; Hernández-Lerma
and Lasserre, 1999; Vega-Amaya, 2003 and references therein) for studying the
average cost.
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Remarks on entropic maps

Similar to the analysis we made in Section 4.4, by Theorem 4.36, we obtain below
su�cient conditions for Assumption 5.12 and 5.21.

Proposition 5.24. LetU be the entropic map de�ned in (5.6) with λ = 1. Suppose
the following conditions hold: (i) there exist a function w1 : X ∈ [1,∞), constants

γ1 ∈ (0,1) and K1 > 0 such that

Ux,a (w1) ≤ γ1w1(x ) + K1,∀(x ,a) ∈ K,

(ii) for all p ∈ (0,1) and all level-sets C := Bw
p
1
(R), R > 0, there exist a measure

µC and constants λ+
C
> λ−

C
> 0 such that µC (C) > 0 and ∀x ∈ C,a ∈ A(x ) and

B ∈ B (X),
λ−
C
µC (B ∩ C) ≤ Qx,a (B ∩ C) ≤ λ+

C
µC(B ∩ C),

and (iii) the cost function c satis�es

c̄ (x ) := sup
a∈A(x )

|c (x ,a) | ∈ Bw
q
1
for some q ∈ (0,1).

Then Assumption 5.12 holds withw0 = w
p
1 for any p ∈ (q,1) and some constant K̃0,

and Assumption 5.21 holds with w = 1 + K̃ −10 w0.

We compare below our results with the most related literature Di Masi and
Stettner (2008).

(a) The assumption (A4) in Section 4 of Di Masi and Stettner (2008) requires a
positive continuous density, i.e., there exists a positive function q satisfying
Q (dy |x ,a) = q(x ,a,y)µ (dy) for some reference probability measure µ , which
implies the local Doeblin’s condition in Assumption 4.32. Hence, our assump-
tion is more general than its counterpart in Di Masi and Stettner (2008).

(b) The assumption (A3) set in Section 3 of Di Masi and Stettner (2008) for the
cost function c is implicit and di�cult to be veri�ed. On the contrary, the
su�cient growth condition for c, (4.46), is explicit in form of the Lyapunov
functionw1 w.r.t. the entropic map. Note that, in the example provided by Di
Masi and Stettner (2008), the assumption (A3) is also veri�ed with the help of
a Lyapunov function.

(c) As an advantage, in comparison with Di Masi and Stettner (2008), the con-
vergence rate of iterations towards the solution to the Poisson equation is
explicitly speci�ed by ᾱ in Lemma 4.18 under the chosen seminorm.

Remarks on �nite state-action spaces

For �nite state-action spaces, Assumption 5.7 automatically holds. Following
the same line as in Section 4.5, Assumptions 5.12 and 5.21 can be reduced to
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a set of two conditions similar to Assumption 4.42. In particular, when apply-
ing the entropic map, one su�cient condition is to assume that the underlying
MDP is ergodict, i.e., there exist positive constants n0 ∈ N and ϵ > 0 such that
(P f0P f1 . . . P fn0−1 )(y |x ) ≥ ϵ for any x ,y ∈ X and f0 × f1 × . . . × fn0−1 ∈ ∆n0 . The
proof follows the same line as in Example 4.46 and is therefore omitted here.

Value iteration

We state below one value iteration algorithm (see Algorithm 5.2) for the average
criterion. Lemma 5.22 and Theorem 5.23 guarantee that vt+1 → ρ∗, the optimal

Algorithm 5.2 Value iteration for average problems

select one v0 ∈ B
(K̃0)
w , t = 0;

repeat

calculate vt+1 = F (vt ) with selector

ft+1 (x ) := argmax
a∈A(x )

{r (x ,a) +U (vt |x ,a)};

t = t + 1;
until ‖vt+1 − vt ‖s,w < ϵ

average valuation, and ft → f ∗, the optimal policy, as t →∞.

5.5 One example for average valuations with the en-

tropic map

We have already presented in Section 4.4.3 an example of average valuation with
the entropic map based on 1-dimensional AR1 process. In the current section, we
extend the above example to ad-dimensional process equippedwith some control
variables.

Let X = Rd . Consider the following discretized ergodic di�usion {xn ∈ Rd }
(cf. the example in Di Masi and Stettner, 2008, Section 6):

xn+1 = Axn + b (xn ,an) + D (xn ,an)wn,

where {wn ∈ Rd } is a sequence of i.i.d. standard white noise, D : K → Rd ×d is a
continuous boundedmatrix-valued function which is uniformly elliptic, i.e., there
exists a constant L > 0 such that

L−1‖ξ ‖2 ≤ ξ⊤D (x ,a)D⊤ (x ,a)ξ ≤ L‖ξ ‖2,∀(x ,a) ∈ K,ξ ∈ Rd ,(5.20)

and b : K → Rd is a continuous bounded vector function, and A is a matrix
satisfying that there exists a constant γ̃ ∈ (0,1) such that ξ⊤A⊤Aξ ≤ γ̃ ‖ξ ‖2,
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∀ξ ∈ Rd . Then the transition kernel P (dy |x ,a) has the following density with
respect to the Lebesgue measure,

p(y |x ,a) = (2π )−d/2 |Σ|1/2e− 1
2 (y−Ax−b )⊤Σ(y−Ax−b ),(5.21)

where Σ = (DD⊤)−1. Take one γ ∈ (γ̃ ,1) and consider the following weight
function

ŵ1(x ) =
ϵ

2
‖x ‖2, with some positive ϵ ≤ γ − γ̃

γ
L−1 < L−1.(5.22)

Hence, Σ(x ,a) − ϵI is positive de�nite for all (x ,a) ∈ K.

Lyapunov function We show that ŵ1 is a Lyapunov function with respect to
the entropic map satisfying the condition (i) in Proposition 5.24 as follows. By
setting x̃ := Ax + b, we obtain

∫

P (dy |x ,a)eŵ1 (y )
=(2π )−d/2 |Σ|1/2

∫

e−
1
2 (y

⊤ (Σ−ϵI )y−2y⊤Σx̃+x̃⊤Σx̃ )dy

=

|Σ|1/2
|Σ − ϵI |1/2

e
1
2 x̃
⊤Σ( (Σ−ϵI )−1−Σ−1 )Σx̃

which yields

log
(

Px,a[eŵ1]
)

= log

(

|Σ|1/2
|Σ − ϵI |1/2

)

+

1

2
(Ax + b)⊤Σ

(

(Σ − ϵI )−1 − Σ−1
)

Σ(Ax + b).

By (5.20) and the choice of ϵ in (5.22), we have

1

2
x⊤A⊤Σ

(

(Σ − ϵI )−1 − Σ−1
)

ΣAx ≤ γϵ
2
‖x ‖2 = γŵ1(x ),∀(x ,a) ∈ K.

Finally, due to the uniform boundedness of b and log
(

|Σ |1/2
|Σ−ϵI |1/2

)

, we can always

select a γ1 ∈ (γ ,1) and K̂1 > 0 such that

log

∫

P (dy |x ,a)eŵ1 (y ) ≤ γ1ŵ1(x ) + K̂1,∀(x ,a) ∈ K,

which con�rms that ŵ1 ≥ 0 is a Lyapunov function with respect to the entropic
map. Hence, the condition (i) in Proposition 5.24 holds with w1 := ŵ1 + 1, γ1 and
K1 := K̂1 + 1 − γ1.

Deoblin’s condition Since by (5.21) the transition kernel P has a positive con-
tinuous density functionwith respect to the Lebesguemeasure, the localDoeblin’s
condition (ii) in Proposition 5.24 is obviously satis�ed.
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5.6 Discussion

We introduce brie�y one alternative way to incorporate risk into the MDP frame-
work. Risk is treated as a constraint, i.e., formally,

sup
π

E
π [S|X0 = x], subject to ϱ

π (S|X0 = x ) ≤ θ .

Here, S can be �nite-stage ST , discounted reward Sγ or average reward SA as
in (5.4), while ϱ is a type of risk measure with θ being an acceptable risk level.
Applying the Lagrange multiplier (see e.g. Bertsekas, 1999, Chapter 3), the above
optimization problem becomes

sup
π ,λ≥0

E
π [S|X0 = x] − λ

(

ϱπ (S|X0 = x ) − θ
)

.

One can furthermore �x λ and obtain the following equivalent problem

sup
π

E
π [S|X0 = x] − λϱπ (S|X0 = x ),(5.23)

which can be interpreted as a tradeo� between the mean Eπ [S|X0 = x] and the
risk ϱπ (S|X0 = x ) with λ controlling the degree of risk-preference. If λ > 0, then
the agent should be risk-averse, while λ < 0 induces risk-seeking behaviors.

Existing literature in this line includes

1) using variance as a measure of risk (see e.g. Sobel, 1982; Filar et al., 1989 and
recently rediscovered by Tamar et al. (2012) and Prashanth and Ghavamzadeh
(2013) in machine learning);

2) using mean cost as the constraint (see e.g. Altman, 1999; Geibel and Wysotzki,
2005; Dolgov and Durfee, 2003; Feinberg and Shwartz, 1996 and references
therein) and

3) a recent work by Borkar and Jain (2010) with conditional value-at-risk (cf. Sec-
tion 2.4.6) as a measure of risk.

Among them, the mean-variance tradeo� problem cannot be solved by value it-
erations, since it violates the axiom of monotonicity, as we have explained in
Section 2.4.1. In fact, the algorithms stated by Tamar et al. (2012) and Prashanth
and Ghavamzadeh (2013) can only ensure a local optimal solution.

All literaturementioned above considers only risk-averse behaviors. One way
to induce risk-seeking behaviors or even mixed risk preferences is to apply spe-
cially designed risk measures correspondingly. For instance, to induce mixed risk
preferences, we can apply the utility based shortfall with S-shaped utility func-
tions (for more details see Section 2.4.5).

Finally, note that under some technical assumptions, we may de�ne a valua-
tion function or map composed of the mean and risk, i.e.

ρ (S|X0 = x ) := E
π [S|X0 = x] − λϱπ (S|X0 = x ).
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Then the objective (5.23) has already been covered by our risk-sensitive frame-
work. In the future, we plan to specify these assumptions and makemore detailed
comparison of the objective (5.23) with the one considered in this chapter.
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6

Risk-sensitive Q-Learning

There are many arts among mankind which are experimental, and have their

origin in experience, for experience makes the days of men to proceed according to

art, and inexperience according to chance.

— Plato, Gorgias

Précis In this chapter, we will restate the framework of risk-sensitive Markov
decision processes (MDPs) on �nite spaces with, however, a slightly more gen-
eral setting for noisy rewards. The derived optimization problems are again to
be solved by value iteration. After applying a rich family of valuation maps, the
utility-based shortfall, to the general framework, we will develop a risk-sensitive
Q-learning algorithm, which is necessary for modeling human behavior when
transition probabilities are unknown. The derived algorithm applies the utility
function to the temporal di�erence (TD) error, which can be interpreted as apply-
ing nonlinear transformations to both rewards and true transition probabilities of
the underlyingMDP. Finally, wewill prove that the proposed algorithm converges
to the optimal policy corresponding to the risk-sensitive objective.

Publication related to this chapter This chapter is based on Shen et al., 2014d,
Section 3.

6.1 Introduction

We have shown in the last chapter that the objectives of risk-sensitive Markov
decision processes (MDPs) can be solved by value iteration algorithms. These al-
gorithms require the entire knowledge of the underlyingMDP, namely the reward
function and the transition probabilities. In many real-life situations, however, the
transition probabilities are unknown, as well as the outcome of an action before its
execution. To gather information of rewards and transition probabilities, a deci-
sion maker has to explore the whole environment su�ciently with some policies.

95
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Ideally, we may hope that the policy can be gradually improved in course of ex-
ploring the environment. Reinforcement learning (RL, see e.g. Sutton and Barto,
1998) is exactly the technique that tells decisionmakers how to improve their poli-
cies while exploring the environment. Standard RL algorithms are to maximize
cumulative discounted rewards (corresponding to discounted MDPs) or average
rewards (corresponding to average MDPs). In this chapter, we accordingly de-
velop RL algorithms for risk-sensitive MDPs developed in the last chapter. In
particular, we focus mainly on a special type of RL algorithm, called Q-learning

(Watkins, 1989), due to the following two reasons:

1) other types of RL algorithms can be derived easily in the same line, and more
importantly,

2) Q-learning is a well-developed model also for human decision making and
for free choice in nonhumans as well. Similar computational structures, such
as dopaminergically mediated reward prediction errors, have been identi�ed
across species (Schultz et al., 1997; Schultz, 2002).

In this chapter, the terms reinforcement learning (RL) and Q-learning will be used
in this chapter interchangeably, unless stated otherwise.

Most of the RL literature related to risk focuses on risk-averse control, where
the aim is to avoid risk within the framework of MDPs. Coraluppi and Marcus
(2000) and Heger (1994) applied the worst case control, which is equivalent to
applying the type of valuation function introduced in Section 2.4.3. Another ap-
proach is to apply the entropicmap, see e.g. Borkar (2002); Liu et al. (2003); Koenig
and Simmons (1994). Mihatsch andNeuneier (2002) utilized the valuation function
described in (2.15), which is a special case of utility-based shortfall introduced in
Section 2.4.5. By selecting proper risk parameters, their approach can also induce
risk-seeking behaviors.

All the approaches mentioned above can be viewed as applying special cases
of utility-based shortfall. In this chapter, we will show that under some technical
assumptions on the utility function, we may derive risk-sensitive Q-learning from
utility-based shortfall with arbitrary utility functions. As we have seen in Section
2.4.5, this family of valuation functions can induce all types of risk preferences
including mixed ones. For instance, by carefully choosing utility functions, we
can also replicate (see Section 2.4.5) key features of human behavior as predicted
by prospect theory (Kahneman and Tversky, 1979), e.g., di�erent risk-preferences
for gains and losses as well as the shape of subjective probability curves. Hence,
the risk-sensitive RL algorithm to be developed in this chapter provides a good
framework for quantifying the sequential decisionmaking procedures of humans.
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6.2 Risk-sensitive Markov decision processes on �nite

spaces

6.2.1 Markov decision processes on �nite spaces

In the last chapter, we have already introduced the framework of Markov decision
processes (MDPs). Here we restate the framework with a slightly more general
setting for rewards, that is, the reward can be also “noisy”: the reward can be
decomposed into two parts: R = r + n, where r denotes the reward function as in
the framework applied in this chapter, and n denotes some additive noise (real-
valued random variable), whose distribution might be dependent on the state-
action pair (x ,a). In addition, we restrict to �nite state-action spaces. The reason
of this limitation is two-fold. First, to our best knowledge, mathematically rigor-
ous convergence proofs for the Q-learning algorithm, which is the ultimate goal
of this chapter, exist merely for MDPs with �nite state-action spaces. Second,
the application of the derived risk-sensitive Q-learning, as well as other potential
applications in neuroeconomics, has also the same restrictive setting.

Setup

A Markov decision process (see e.g., Puterman, 1994)

M = {X, (A,A(x ),x ∈ X),P, (r ,Pr )},

consists of a �nite state space X, admissible �nite action spaces A(x ) ⊂ A at x ∈ X,
a transition kernel P (x ′ |x ,a), which denotes the transition probability moving
from one state x to another state x ′ by executing action a, and a reward function
r with its distribution Pr . In order to model random rewards, we assume that the
reward function has the form

r (x ,a,ε ) : X × A × E→ R.

E (with its Borel σ -algebra B (E)) denotes the noise space with distribution Pr ,
i.e., given (x ,a), r (x ,a,ε ) is a random variable with values drawn from Pr (·|x ,a).
Let R(x ,a) be the random reward gained at (x ,a), which follows the distribution
Pr (·|x ,a). The random state (respectively action) at time t is denoted by Xt (re-
spectivelyAt ).

Remark 6.1. In standard MDPs, it is su�cient (Puterman, 1994) to consider the
deterministic reward function

r̄ (x ,a) :=

∫

E

r (x ,a,ε )Pr (dε |x ,a),

i.e., the mean reward at each (x ,a)-pair. In risk-sensitive cases, random rewards
cause also risk and uncertainties. Hence, we keep the generality by using random
rewards.
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Policy and objectives

A Markov policy π = [π0,π1, . . .] consists of a sequence of single-step Markov
policies at times t = 0,1, . . ., where πt (At = a |Xt = x ) denotes the probability of
choosing action a at state x . Let ΠM be the set of all Markov policies. The optimal
policy within a time horizon T is obtained by maximizing the expectation of the
discounted cumulative rewards,

JT (π ,x ) := sup
π ∈ΠM

E
π


T
∑

t=0

γ tR(Xt ,At )

������
X0 = x


.(6.1)

where x ∈ X denotes the initial state and γ ∈ [0,1) the discount factor. Expanding
the sum leads to

JT (π ,x ) = E
π0
X0=x

[

R(X0,A0) + γE
π1
X1

[

R(X1,A1) + . . .(6.2)

+γEπT
XT

[R(XT ,AT )] . . .

] ]

.

6.2.2 Discounted risk-sensitive objectives

Valuation maps

Let L (X × E) be the space of all functions f : X × E→ R such that for each x ∈ X
f (x , ·) isB (E)-measurable. LetP (X× E) be the space of all distributions on X× E.
De�ne K := {(x ,a) | x ∈ X,a ∈ A(x )}. Then the valuation map considered in this
chapter is de�ned as

Definition 6.2. A mapping U (v,µ |x ,a) : L (X × E) × P (X × E) × K → R is

called a valuation map, if for each (x ,a) ∈ K,U (·|x ,a) is a valuation function (see

De�nition 2.6) on L (X × E) × P (X × E) .

LetUx,a (v,µ) be a short notation ofU (v,µ |x ,a) and let

U π
s (v,µ) :=

∑

a∈A(x )
π (a |x )U (v,µ |x ,a)

be the valuation map averaged over all actions. In the context of MDPs de�ned
in this chapter, we consider merely

µ (x ′,dε ) = P (x ′ |x ,a)Pr (dε |x ,a)

and therefore omit µ inU in the following.
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Risk-sensitive objectives

Replacing the conditional expectation Eπs withU π
s in (6.2), the risk-sensitive ob-

jective becomes

J̃γ,T (π ,x ) := U π0
X0=x

[

R(X0,A0) + γU π1
X1

[

R(X1,A1) + . . .(6.3)

+γU πT
XT

[R(XT ,AT )] . . .

] ]

.

The optimal policy is then given by sup
π ∈ΠM

J̃γ,T (π ,x ). For in�nite-horizonprob-
lem, we obtain

sup
π ∈ΠM

J̃γ (π ,x ) := lim
T→∞

J̃γ,T (π ,x ),(6.4)

using the same line of argument.
Finally, to ensure that J̃γ is �nite for all policies, we assume throughout this

chapter:

Assumption 6.3. R̄ := max(x,a)∈K |Ux,a (R(x ,a)) | < ∞.
Proposition 6.4. Under Assumption 6.3, for each x ∈ X and π ∈ ΠM ,

(i) | J̃γ,T (π ,x ) | ≤ R̄
1−γ holds for each T ∈ N.

(ii) Jγ (π ,x ) := limT→∞ J̃γ,T (π ,x ) exists and satis�es | J̃γ (π ,x ) | ≤ R̄
1−γ .

Proof. (i) De�ne vT (x ) := U πT
XT=x

[R(XT ,AT )] and

vt (x ) := U πt
X t=x

[

R(Xt ,At ) + γvt+1
]

,t = T − 1,T − 2, . . . ,0.

Then, it is easy to check that v0(x ) = J̃γ,T (π ,x ). By Assumption 6.3, vT (x ) ≤
R̄,∀x ∈ X implies that

vT −1 (x ) ≤ U πt
X t=x

[R(Xt ,At )] + γ max
x ∈X

vt+1 (x ) ≤ R̄ + γ R̄,∀x ∈ X.

By iteration, we obtain, therefore, for each ∀x ∈ X,

v0(x ) ≤


T

∑

i=0

γ i


 R̄ ≤

R̄

1 − γ .

Repeat the same iteration, we obtain analogously that for each ∀x ∈ X,

v0(x ) ≥ −



T
∑

i=0

γ i


 R̄ ≥ −

R̄

1 − γ .

We therefore obtain (i).
(ii) Using the same iterative procedure, it is easy to check for all x ∈ X and

π ∈ ΠM the following inequality holds

| Jγ,T+1(x ,π ) − Jγ,T (x ,π ) | ≤ γT+1R̄,

which implies the existence of the limit. Finally, the inequality | J̃γ (π ,x ) | ≤ R̄
1−γ

is an immediate result of (i). �
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6.2.3 Value iteration

Now we consider the optimization problem of discounted MDPs. Let |X| be the
cardinality of the state space X. Then a function v : X → R can be considered as
an |X|-dimensional vector in R |X |. De�ne an operator Fγ : R |X | → R |X | as

Fγ (v)(x ) := max
a∈A(x )

Ux,a (R(x ,a) + γv),v ∈ R |X |.

The norm ‖·‖∞ on R |X | is

‖v ‖∞ := max
x ∈X
|v (x ) |,v ∈ R |X |.

We �rst state the following contraction property for Fγ , which plays a crucial
role in deriving value iteration algorithms for discounted risk-sensitive MDPs.

Lemma 6.5. Suppose Assumption 6.3 holds. Then for all v,u ∈ R |X |,

‖Fγ (v) − Fγ (u)‖∞ ≤ γ ‖v − u‖∞.

Proof. It is su�cient to show that for each (x ,a) ∈ K,

|Ux,a (R(x ,a) + γv) − Ux,a (R(x ,a) + γu) | ≤ γ max
x ∈X
|v (x ) − u (x ) |.

In fact, for each x ∈ X, we have

d := min
x ∈X

(v (x ) − u (x )) ≤ v (x ) − u (x ) ≤ max
x ∈X

(v (x ) − u (x )) =: d̄ ,

which implies that for each (x ,a) ∈ K,

Ux,a (R(x ,a) + γv) ≤ Ux,a (R(x ,a) + γu + γd̄ ) = Ux,a (R(x ,a) + γu) + γd̄ .

Hence, for each (x ,a) ∈ K,

Ux,a (R(x ,a) + γv) − Ux,a (R(x ,a) + γu) ≤ γd̄ ≤ γ max
x ∈X
|v (x ) − u (x ) |.

Analogously, we obtain for each (x ,a) ∈ K

Ux,a (R(x ,a) + γv) − Ux,a (R(x ,a) + γu) ≥ γd ≥ −γ max
x ∈X
|v (x ) − u (x ) |.

Combining the above two inequalities yields the required inequality. �

Hence, starting with one vector v0 ∈ R |X |, we consider the iteration:

vt+1 := Fγ (vt ),t = 0,1, . . . .

The contraction property proved in the above lemma guarantees that the se-
quence of {vt } converges to the unique �xed point v∗ of Fγ in R |X | that satis�es
the following risk-sensitive Bellman equation:

v∗ (x ) = max
a∈A(x )

Ux,a (R(x ,a) + γv
∗ (x ′)),x ∈ X.(6.5)

Furthermore, this unique �xed point is “optimal” in the following sense.
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Theorem 6.6. Suppose Assumption 6.3 holds. Then

v∗ (x ) = max
π ∈ΠM

J̃ (π ,x )

holds for allx ∈ X, wheneverv∗ satis�es the equation (6.5). Furthermore, a stationary

deterministic policy π ∗ = (π ∗)∞ is optimal, if

π ∗(x ) = argmax
a∈A(x )

Ux,a (R(x ,a) + γv
∗ (x ′)).

Proof. The proof is similar to the proof of Theorem 5.18 and is, therefore, omitted
here. �

6.3 Risk-sensitive Q-learning

De�ne q∗(x ,a) := Ux,a (R(x ,a) + γv∗ (x ,a)). Then (6.5) becomes

q∗ (x ,a) = Ux,a

(

R(x ,a) + γ max
a∈A(x ′)

q∗ (x ′,a)

)

,∀(x ,a) ∈ K.(6.6)

To carry out value iteration algorithms, the MDPM must be known a priori.
In many real-life situations, however, the transition probabilities are unknown
as well as the outcome of an action before its execution. Therefore, an agent
has to explore the environment while gradually improving its policy. We now
derive reinforcement learning type algorithms for estimating Q-values of general
valuation maps based on the utility-based shortfall de�ned in Section 2.4.5.

6.3.1 Utility-based shortfall: revisited

Let u : R → R be a continuous, increasing and non-constant utility function
satisfying u (0) = 0. Recall that the utility-based shortfall ρu (see also Section
2.4.5) is then de�ned as

ρu (v,µ) := sup

{

m ∈ R
�����

∫

Ω

u (v (ω) −m)µ (dω) ≥ 0

}

.(6.7)

For regularity, we assume

Assumption 6.7. There exists a constantm ∈ R such that

∫

Ω

u (v (ω) −m)µ (dω) < ∞.

This type of valuation function is of particular interest due to the following
features.
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1. By Proposition 2.15, the optimalm∗ in (6.7) is attained when the inequality
holds, i.e., we have

E
µ[u (v −m∗)] = 0 wherem∗ := ρu (v,µ).

Hence, one can obtain ρu by solving the above stochastic equation.

2. As we have shown in Section 2.4.5, by selecting an appropriate utility func-
tion u, the agents’ behaviors express key features of human behavior as
predicted by prospect theory (Kahneman and Tversky, 1979), for example
di�erent risk-preferences for gains and losses as well as the shape of sub-
jective probability curves.

6.3.2 Algorithm for the �nite-stage criterion

Setting γ = 1 in (6.3), we have the following �nite-stage risk-sensitive objective

J̃T (π ,x ) := U π0
X0=x

[

R(X0,A0) +U π1
X1

[

R(X1,A1) + . . . +U πT
XT

[R(XT ,AT )] . . .
] ]

.

Starting withvT+1 (x ) := 0,∀x ∈ X, we consider the following backward induction
(called also dynamic programming)

vt (x ) := max
a∈A(x )

Ux,a (R(x ,a) + vt+1(x
′)),t = T ,T − 1, . . . ,0.

It is easy to verify thatv0(x ) = maxπ ∈ΠM
J̃T (π ,x ),∀x ∈ X. Let qT+1(x ,a) := 0 and

qt (x ,a) := Ux,a (R(x ,a) +vt+1), the above update step becomes

qt (x ) := Ux,a (R(x ,a) + max
a∈A(x ′)

qt+1(x
′)).(6.8)

We apply now the utility based shortfall

Ux,a (v) = sup{m ∈ R | Eµx,a [u (v −m)] ≥ 0},(6.9)

where µx,a (·, ·) := P (·|x ,a)Pr (·|x ,a) denotes the joint distribution of the succes-
sive state x ′ and the additive noise ε .

At time t , given qt+1, qt in (6.8) is obtained by solving the following stochastic
equation

∑

x ′∈X
P (x ′ |x ,a)

∫

E

Pr (dε |x ,a)u
(

r (x ,a,ε ) + max
a′∈A(x ′)

qt+1(x
′,a′) − qt (x ,a)

)

= 0,∀(x ,a) ∈ K.

Numerically, the above equation can be solved by stochastic approximation algo-
rithms (Kushner and Yin, 2003; Borkar, 2008). More specially, at time t , we repeat
trying action a at state x a large amount of times and observe N samples of imme-
diate rewards and successive states, {Ri ,x ′i }i=1,2, . . .,N . Then the q-value at (x ,a),
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which evaluates the quality of this state-action pair, can be estimated by the fol-
lowing iterative procedure

q
(i+1)
t (x ,a) =q

(i )
t (x ,a) +

1

i
u (δ ) ,

with δ =Ri + max
a

qt+1(x
′
i ,a) − q

(i )
t (x ,a).(6.10)

Note that qt+1 is already known at time t . This iterative procedure is summarized
in Algorithm 6.1.

Algorithm 6.1 Risk-sensitive Q learning for the �nite-stage criterion

initialize qT+1(x ,a) = 0 for all x ∈ X,a ∈ A;
for t = T to 0 do

initialize qt (s,a) = 0 for all x ∈ X,a ∈ A;
for each state x ∈ X and a ∈ A do

for i = 1 to N do

execute action a at x to obtain sampled
reward R and successive state x ′;
Update qt (x ,a) according to (6.10);

end for

end for

end for

It is shown in Dunkel and Weber (2010) that if the utility function u satis�es
some regularity conditions, then for each time point t = T ,T − 1, . . . ,1, the policy
π
(N )
t = maxa∈A q

(N )
t (s,a) converges to the optimal policy thatmaximizes the risk-

sensitive objective function de�ned in (6.3), as N → ∞.

6.3.3 Algorithm for the discounted criterion

We again apply the utility-based shortfall de�ned in (6.9). Suppose Ux,a (X ) =

m∗(x ,a), Proposition 2.15 assures thatm∗ (x ,a) is the unique solution to equation

E
µx,a [u (X −m∗(x ,a))] = 0.

Letv = R+γv∗. Thenm∗(x ,a) corresponds to the optimal Q-valueq∗ (x ,a) de�ned
in (6.6), which is equivalent to

∑

x ′∈X
P (x ′ |x ,a)

∫

E

Pr (dε |x ,a)u
(

r (x ,a,ε ) + γ max
a′∈A(x ′)

q∗ (x ′,a′) − q∗(x ,a)
)

= 0,∀(x ,a) ∈ K.(6.11)

Let {Xt ,At ,Xt+1,Rt } be the sequence of states, chosen actions, successive states
and received rewards, which are all random variables. Analogous to the standard
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Q-learning algorithm, we consider the following iterative procedure,

qt+1(Xt ,At ) = qt (Xt ,At ) + αt (Xt ,At )u

(

Rt + γ max
a

qt (Xt+1,a) − qt (Xt ,At )

)

,

(6.12)

where αt ≥ 0 denotes learning rate function that satis�es αt (x ,a) > 0 only if
(x ,a) is updated at time t , i.e., (x ,a) = (Xt ,At ). In other words, for all (x ,a) that
are not visited at time t , αt (x ,a) = 0 and their Q-values are not updated. Consider
utility functions u with the following properties.

Assumption 6.8. (i) The utility functionu is strictly increasing and satis�esu (0) =
0.

(ii) There exist positive constants ϵ,L such that 0 < ϵ ≤ u (x )−u (y )
x−y ≤ L, for all

x , y ∈ R.
In addition, we assume the random rewards R satis�es

Assumption 6.9. EPr
[

u2(R(x ,a))
]

< ∞ holds for each (x ,a) ∈ K.
Remark 6.10. It is easy to check that this assumption is a su�cient condition that
implies Assumption 6.7 and Assumption 6.3, and therefore Theorem 6.6 guaran-
tees a unique solution to the Bellman equation (6.5) and a unique solution to the
stochastic equation (6.11) as well. Furthermore, note that under Assumption 6.8,
a su�cient condition for Assumption 6.9 is

E
Pr

[

R2 (x ,a)
]

< ∞,∀(x ,a) ∈ K,

due to the fact that u is Lipschitz.

Then the following theorem holds (for proof see Section 6.3.4).

Theorem 6.11. Suppose Assumption 6.8 and 6.9 hold. Consider the generalized Q-

learning algorithm stated in (6.12). If the nonnegative learning rates αt (x ,a) satisfy

(6.13)
∞
∑

t=0

αt (x ,a) = ∞ and

∞
∑

t=0

α2
t (x ,a) < ∞, ∀(x ,a) ∈ K,

then qt (x ,a) converges to q
∗(x ,a) for all (x ,a) ∈ K with probability 1.

The assumption in (6.13) requires in fact that all possible state-action pairs
must be visited in�nitely often. Otherwise, the �rst sum in (6.13) would be bounded
by the setting of the learning rate function αt (x ,a). It means that, similar to the
standard Q-learning, the agent has to explore the whole state-action space for
gathering su�cient information about the environment. Hence, it can not take a
too greedy policy in the learning procedure before the state-action space is well
explored. We then introduced the concept of proper policies (see also (Bertsekas
and Tsitsiklis, 1996, De�nition 2.1)) as below.
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Definition 6.12. A policy is said to be proper, if under such policy every state is

visited in�nitely often.

A typical policy, which is widely applied in RL literature as well as in models
of human reward-based learning, is given by

At is drawn according to the distribution P (a |Xt ) :=
e βq(X t ,a)

∑

a e
βq(X t ,a)

,(6.14)

where β ∈ [0,∞) controls how greedy the policy should be. In Section 6.3.5, we
prove that under some technical assumptions upon the transition kernel of the
underlying MDP, this policy is always proper. A widely used setting satisfying
both conditions in (6.13) is to let αt (x ,a) := 1

Nt (x,a)
, where Nt (x ,a) counts the

number of times of visiting the state-action pair (x ,a) up to time t and is updated
trial-by-trial. This leads to the learning procedure shown in Algorithm 6.2 (see
also Figure 6.1).

Algorithm 6.2 Risk-sensitive Q-learning

initialize q(x ,a) = 0 and N (x ,a) = 0 for all (x ,a) ∈ X × A.
for t = 1 to T do

at state Xt choose actionAt randomly using a proper policy (e.g. (6.14));
observe date (Xt ,At ,Rt ,Xt+1);
N (Xt ,At ) ⇐ N (Xt ,At ) + 1 and set learning rate: αt := 1/N (Xt ,At );
update q as in (6.12);

end for

The expression

TDt := Rt + γ max
a

qt (Xt+1,At ) − qt (Xt ,At )

inside the utility function of (6.12) corresponds to the standard temporal di�erence

(TD) error. Comparing (6.12) with the standard Q-learning algorithm, we �nd
that the nonlinear utility function is applied to the TD error (cf. Figure 6.1). This
induces nonlinear transformation not only of the true rewards but also of the
true transition probabilities, as has been shown in Section 2.4.5. By applying S-
shape utility function, which is partially convex and partially concave, we can
therefore replicate key e�ects of prospect theorywithout the explicit introduction
of a probability-weighting function.

Assumption 6.8 (ii) seems to exclude several important types of utility func-
tions. The exponential functionu (x ) = ex and the polynomial functionu (x ) = xp ,
p > 0, for example, do not satisfy the global Lipschitz condition required in As-
sumption 6.8 (ii). This problem can be solved by a truncation when x is very large
and by an approximation when x is very close to 0. For more details see Section
6.3.5.
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Figure 6.1: Illustration of risk-sensitive Q-learning (cf. Algorithm 6.2). The value
function q(x ,a) quanti�es the current subjective evaluation of each state-action
pair (x ,a). The next action is then randomly chosen according to a proper policy
(e.g. (6.14)) which is based on the current values of q. After interacting with the
environment, the agent obtains the reward r and moves to the successor x ′. The
value function q(x ,a) is then updated by the rule given in (6.12). This procedure
continues until some stopping criterion is satis�ed.

6.3.4 Convergence proof

TheQ-learning algorithm (similar toAlgorithm 6.2)was �rst introducedbyWatkins
(1989) in his PhD thesis, where a sketched proof of its convergence is contained.
Due to its wide applications, Tsitsiklis (1994) and Jaakkola et al. (1994) presented
new proofs based on the martingale and ordinary di�erential equation (ODE)
methods separately. Q-learning can be in fact viewed as a special case of the asyn-
chronous stochastic approximation approach (see e.g., Borkar, 1998, Borkar, 2008,
Chapter 7 and references therein). Our proof below follows the line of a similar
proof in Mihatsch and Neuneier (2002), which is based on Tsitsiklis’ martingale
method (see also Bertsekas and Tsitsiklis, 1996, Chapter 4). In fact, the key result
(see Proposition 6.13 below) can be also proved using the ODE method developed
by Borkar. For detailed arguments, see Borkar, 2008, Section 7.4 and Section 10.3.

Before proving the risk-sensitive Q-learning, we consider a more general up-
date rule

qt+1(i) = (1 − αt (i))qt (i) + αt (i)
[

H (qt )(i) +wt (i)
]

.(6.15)

where qt ∈ Rd , H : Rd → Rd is an operator,wt denotes some random noise term
and αt is learning rate with the understanding that αt (i) = 0 if q(i) is not updated
at time t . Denote by Ft the history of the algorithm up to time t ,

Ft = {q0(i), . . . ,qt (i),w0 (i), . . . ,wt−1(i),α0 (i), . . . ,αt (i),i = 1, . . . ,t }.

We restate the following proposition.
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Proposition 6.13 (Proposition 4.4, Bertsekas and Tsitsiklis (1996)). Let qt be the
sequence generated by the iteration (6.15). We assume the following

(a) The learning rates αt (i) are nonnegative and satisfy

∞
∑

t=0

αt (i) = ∞,
∞
∑

t=0

α2
t (i) = ∞,∀i

(b) The noise terms wt (i) satisfy (i) for every i and t , E[wt (i) |Ft ] = 0; (ii) Given
some norm ‖·‖ on Rd , there exist constants A and B such that E[w2

t (i) |Ft ] ≤
A + B‖qt ‖2.

(c) The mapping H is a contraction under sup-norm.

Then qt converges to the unique solution q
∗ of the equation H (q∗) = q∗ with proba-

bility 1.

To apply Proposition 6.13, we �rst reformulate the Q-learning rule (6.12) in a
di�erent form

qt+1(x ,a) = (1 − αt (x ,a)
α

)qt (x ,a) +
αt (x ,a)

α

[

αu (dt ) + qt (x ,a)
]

where α denotes an arbitrary constant such that α ∈ (0,min(L−1,1)]. Recall that
L is de�ned in Assumption 6.8. For simplicity, we de�ne

Dt (x ,a) := R(x ,a) + γ max
a

qt (Xt+1,a) − qt (x ,a)

and set

H (qt )(x ,a) :=αEx,au (R(x ,a) + γ max
a

qt (Xt+1,a) − qt (x ,a)) + qt (x ,a)(6.16)

wt (x ,a) :=αu (Dt (x ,a)) − H (qt )(x ,a)(6.17)

More explicitly, H : Rd → Rd is de�ned as

H (q)(x ,a) =α
∑

x ′∈X

∫

E

P̃ (x ′,dϵ |x ,a)u
(

r (x ,a,ε ) + γ max
a′

q(x ′,a′) − q(x ,a)
)

+ q(x ,a), (x ,a) ∈ K,

where P̃ (x ′,dϵ |x ,a) := P (x ′ |x ,a)Pr (dε |x ,a). We assume the cardinality of the
space K is d .

Lemma 6.14. Suppose that Assumption 6.8 holds and 0 < α ≤ min(L−1,1). Then
there exists a real number ᾱ ∈ (0,1) such that for all q,q′ ∈ Rd ,

‖H (q) − H (q′)‖∞ ≤ ᾱ ‖q − q′‖∞.



108 6. Risk-sensitive Q-Learning

Proof. De�ne v (x ) := maxa q(x ,a) and v ′(x ) := maxa q′(x ,a). Thus,

|v (s) − v (s) |≤ max
(x,a)∈K

|q(x ,a) − q′(x ,a) |= ‖q − q′‖∞.

By Assumption 6.8 (ii) and the monotonicity ofu, there exists a ξ (x,y ) ∈ [ϵ,L] such
that u (x ) − u (y) = ξ (x,y ) (x − y). Analogously, we obtain

(Hq)(x ,a) − (Hq′)(x ,a)

=

∑

x ′

∫

E

P̃ (x ′,ϵ |x ,a){αξ (x,a,ε,x ′,q,q′ )[γv (x ′) − γv ′(x ′) − q(x ,a) + q′(x ,a)]

+ (q(x ,a) − q′(x ,a))}

=αγ
∑

x ′

∫

E

P̃ (x ′,ϵ |x ,a)ξ (x,a,ε,x ′,q,q′ )[v (x ′) − v ′(x ′)]

+ (1 − α
∑

x ′

∫

E

P̃ (x ′,ϵ |x ,a)ξ (x,a,ε,x ′,q,q′ ) )[q(x ,a) − q′(x ,a)]

≤

1 − α (1 − γ )

∑

x ′

∫

E

P̃ (x ′,ϵ |x ,a)ξ (x,a,ε,x ′,q,q′ )


 ‖q − q′‖∞

≤ (1 − α (1 − γ )ϵ ) ‖q − q′‖∞

Hence, ᾱ = 1 − α (1 − γ )ϵ is the required constant. �

Proof of Theorem 6.11. Obviously, Condition (a) in Proposition 6.13 is satis�ed and
Condition (c) holds also due to Lemma 6.14. It remains to check Condition (b). Let

D :=r (x ,a,ϵ ) + γ max
a′∈A(x ′)

q(x ′,a′) − q(x ,a)

R :=r (x ,a,ϵ ).

Since u is Lipschitz, there exist coe�cients kx,a,x ′,ε ∈ [ϵ,L] such that

u (D) − u (R) = kx,a,x ′,ε (γv (x ′) − q(x ,a)) = kx,a,x ′,ε (D − R)

Hence, by

|γ max
a′∈A(x ′)

q(x ′,a′) − q(x ,a) | ≤ (1 + γ )‖q‖∞,

we have

u2(D) =(u (R) + kx,a,x ′,ε (D − R))2

≤2
(

u2(R) + k2x,a,x ′,ε (D − R)
2
)

≤2u2 (R) + 2k2x,a,x ′,ε (1 + γ )
2‖q‖2∞.(6.18)
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We have then

E[w2
t |Ft ] =α

2
Ex,a

[

u2
(

r (x ,a,ε ) + γ max
a′∈A(x ′)

qt (x
′,a′) − qt (x ,a)

) ]

− α2

(

Ex,a

[

u

(

r (x ,a,ε ) + γ max
a′∈A(x ′)

qt (x
′,a′) − qt (x ,a)

) ])2

≤α2
Ex,a

[

u2
(

r (x ,a,ε ) + γ max
a′∈A(x ′)

qt (x
′,a′) − qt (x ,a)

) ]

(by (6.18)) ≤2α2
Ex,a

[

u2 (r (x ,a,ϵ ))
]

+ (1 + γ )2‖q‖2∞2α2
Ex,a

[

k2(x ,a,x ′,ϵ )
]

≤2α2
Ex,a

[

u2 (r (x ,a,ϵ ))
]

+ 2(1 + γ )2‖q‖2∞,

where the last inequality is due to the fact that k (x ,a,x ′,ϵ ) ≤ L and α ≤ L−1.
Hence, Condition (b) holds. �

6.3.5 Heuristics for utility functions and policies

In Assumption 6.8, the utility function u is required to be globally Lipschitz and
furthermore, the slope is lower bounded away from zero. This strict requirement
will restrict the application of several important types of utility functions. For
instance, u (x ) = xp , p ∈ (0,1),x ≥ 0, which is not Lipschitz at the area close to 0.
We suggest two types of approximation to avoid this problem.

1) (re-centralization) Approximateu byuφ (x ) = (x +φ)p −φp with some positive
φ.

2) (linearization) approximate u close to 0 by a linear function, i.e.

uφ (x ) =





u (x ) x ≥ φ
xu (φ)

φ
x ∈ [0,φ) .

In both cases, φ should be set very close to 0.
For u (x ) = xp , p > 1,x ≥ 0, it violates both bounds. At the area [0,φ], where

φ is very close to 0, we can again apply above two approximation schemes to
overcome the problem by selecting small φ. At the area [φ,∞) with signi�cantly
large φ ≫ 0, we consider the following linearization:

uφ (x ) = u (φ) + u ′(φ)(x − φ),x ∈ [φ,∞).

In Section 8.4, for both p > 1 and p ∈ (0,1), we apply the linearization scheme to
ensure Assumption 6.8.

Softmax policy

Recall that we call a policy is proper, if under such policy every state is visited
in�nitely often (see De�nition 6.12). In this subsection, we show that under some
technical assumptions the softmax policy (6.14) is proper.
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Note that a policy π = [π0,π1, . . .] is deterministic if for all state x and t , there
exists an action a ∈ A(x ) such that πt (a |x ) = 1. Under one policy π , the n-step
transition probability Pπ (Xn = x

′ |X0 = x ) for some x ,x ′ ∈ X can be calculated as
follows

Pπ (Xn = x
′ |X0 = x )

=

∑

X1,X2, . . .,Xn−1

P π0 (X1 |x )P π1 (X2 |X1) . . . P
πn−1 (x ′ |Xn−1)

where P π (y |x ) := ∑

a P (y |x ,a)π (a |x ) and P is the transition kernel of the under-
lying MDP.

Proposition 6.15. Assume that the state and action space are �nite and the as-

sumptions required by Theorem 6.11 hold. Assume further that for each x ,x ′ ∈ X,

there exist a deterministic policy π d , n ∈ N and a positive ϵ > 0 such that Pπ d (Xn =

x ′ |X0 = x ) > ϵ . Then the softmax policy stated in (6.14) is proper.

Proof. Due to the contraction property of q (see Lemma 6.14), {qt } is uniformly
bounded w.r.t. t . Let

π s = [π0,π1, . . .]

be a softmax policy associated with {qt }. Then, by the de�nition of softmax poli-
cies (see Eq. (6.14)), there exists a positive ϵ0 > 0 such that πt (a |x ) ≥ ϵ0 holds for
each (x ,a) ∈ K and t ∈ N. It implies that for each x ,x ′ ∈ X,

Pπ s (Xn = x
′ |X0 = x ) ≥ ϵn0 Pπ d (Xn = x

′ |X0 = x ),

for any deterministic policy π d . Then by the assumption of this proposition, we
obtain that for each x ,x ′ ∈ X, Pπ s (Xn = x

′ |X0 = x ) ≥ ϵn0 ϵ > 0. It implies that
each state will be visited in�nitely often. �

The MDP applied in the behavioral experiment in Section 8.4 satis�es above
assumptions, since for each x ,x ′ ∈ X, there exists a deterministic policy π d such
that Pπ d (Sn = x ′ |X0 = x ) = 1, n ≤ 4, no matter which initial state x we start
with.

6.4 Discussion

Some technical extensions are possible within our general risk-sensitive rein-
forcement learning (RL) framework:

• To derive the risk-sensitive Q-learning, we consider here only the utility-
based shortfall. Other types of valuation functions (maps), e.g., the op-
timized certainty equivalence introduced in Section 2.4.6 and the mean-
semideviation trade-o� in Section 2.4.7, can also derive Q-learning type
algorithms.
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• The Q-learning algorithm derived in this paper can be regarded a special
type of RL algorithms, TD(0). It can be extended to other types of RL algo-
rithms like SARSA (see e.g. Sutton and Barto, 1998, Chapter 6 for classical
MDPs) and TD(λ)(see e.g. Sutton and Barto, 1998, Chapter 7 and Bertsekas
and Tsitsiklis, 1996, Chapter 5 for classical MDPs) for λ , 0.

• In Chapter 5, we also provided a framework for the average case. Hence, RL
algorithms for the average case can also be derived similar to the discounted
case considered in this paper.

• The algorithm in its current form applies to MDPs with �nite state spaces
only. It can be extended for MDPs with continuous state spaces by applying
function approximation technique (see e.g. Böhmer et al., 2013, Bertsekas
and Tsitsiklis, 1996, Chapter 6 and Powell, 2007 for classical MDPs).
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7

Human Decision under Uncertainty

Truly man is a marvelously vain, diverse, and undulating subject.

It is hard to �nd any constant and uniform judgment on him.

— Michel de Montaigne, Essais, Book I

Précis In this chapter, as a proof of principle for the applicability of the risk-
sensitive Q-learning algorithms developed in the last chapter, we apply them to
quantify human behavior in a sequential investment task. We �nd, that the risk-
sensitive variant provides a signi�cantly better �t to the behavioral data and that
it leads to an interpretation of the subject’s responses which is indeed consistent
with prospect theory. The analysis of simultaneouslymeasured fMRI signals show
a signi�cant correlation of the risk-sensitive TD error with BOLD signal change
in the ventral striatum. In addition we �nd a signi�cant correlation of the risk-
sensitive Q-valueswith neural activity in the striatum, cingulate cortex and insula,
which is not present if standard Q-values are used.

Publication related to this chapter The main results have been published in
Shen et al., 2014d, Section 4. Among them, the analysis of fMRI results in Section
7.4, along with the supplementary material included at the end of this chapter,
was done by Michael J. Tobia.

7.1 Introduction

Reinforcement learning (RL) has been widely applied to quantify sequential hu-
man decision making procedures, because similar computational structures, such
as dopaminergically mediated reward prediction errors, have been identi�ed in
human brains (for a review see e.g. Dayan and Niv, 2008). As we have explained
in the last chapter, the objective of the standard RL algorithms is to maximize
expected cumulative rewards, which corresponds to risk-neutral behaviors only.
However, in our daily life, decisions are usually made in the face of uncertain
consequences. Hence, risk derived from these uncertainties has to be taken into

113
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account by human decision makers, consciously or unconsciously. Human agents
are not always economically rational. Apparently, some gamblers are risk seeking.
Moreover, behavioral studies show that human can even be risk-seeking in one
situation while risk-averse in another situation (Kahneman and Tversky, 1979).
RL algorithms developed so far cannot e�ectively model these complicated risk-
preferences.

In the literature of cognitive neuroscience, risk sensitive decisionmaking prob-
lems have been widely investigated, especially based on prospect theory (see e.g.
Berns et al., 2008; Hsu et al., 2005, 2009; Wu et al., 2009; Preuscho� et al., 2008 and
references therein). However, most of the studies focuses on one-step decision
making problemswith full information, i.e., the human subjects were told the out-
come and their associated probabilities. Recently, Nagengast et al. (2010), Braun
et al. (2011) and Niv et al. (2012) considered sequence decision making problems
in learning tasks. Among them, Nagengast et al. (2010); Braun et al. (2011) ap-
plied the entropic map, while Niv et al. (2012) applied the reinforcement learning
algorithms developed by Mihatsch and Neuneier (2002) which is in fact a special
case of utility-based shortfall (for details see Section 2.4.5). All of them can only
model uniform risk preferences.

In the last chapter, we have developed a set of risk-sensitive Q-learning algo-
rithms, by applying a family of valuation functions, the utility-based shortfall, to
the general framework of risk-sensitive Markov decision processes. We have also
shown in Section 2.4.5 that the key features predicted by prospect theory (Kahne-
man and Tversky, 1979) can be replicated by applying S-shape utility functions.
Hence, the new risk-sensitive Q-learning algorithm provides a good candidate
model for human risk-sensitive sequential decision-making procedures in learn-
ing tasks, where mixed risk-preferences are shown in behavioral studies. In this
chapter, we will apply the learning algorithms to quantify human behaviors in
a sequential investment task, accompanied with an analysis of simultaneously
measured fMRI signals.

7.2 Experiment

Subjects were told that they are in�uential stock brokers, whose task is to invest
into a �ctive stock market (see also Tobia et al., 2014). At every trial (see Figure
7.2) subjects had to decide howmuch (a = 0, 1, 2, or 3 EUR) to invest into a partic-
ular stock. After the investment, subjects �rst saw the change of the stock price
and then were informed how much money they earned or lost. The received re-
ward was proportional to the investment. The di�erent trials, however, were not
independent from each other (see Figure 7.2). The sequential investment game
consisted of 7 states, each one coming with a di�erent set of contingencies, and
subjects were transferred from one state to the next dependent of the amount of
money they invested. For high investments, transitions followed the path labeled
“risk seeking” (RS in Figure 7.2). For low investments, transitions followed the
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Figure 7.1: Phase transition. Every decision (trial) consists of a choice phase (3s),
during which an action (invest 0, 1, 2, or 3 EUR) must be taken by adjusting
the scale bar on the screen, an anticipation phase (.5s), an outcome phase (2–5s),
where the development of the stock price and the reward (wins and loses) are re-
vealed, an evaluation phase (2–5s), where it reveals the maximal possible reward
that could have been obtained for the (in hindsight) best possible action, and a
transition phase (2.7s), where subjects are informed about the possible successor
states and the speci�c transition, which will occur. The intervals of the outcome
and evaluation phase are jittered for improved fMRI analysis. State information
is provided by the colored patterns, the black �eld provides stock price informa-
tion during anticipation phase, and the white �eld provides the reward and the
maximal possible reward of this trial. After each round (3 trials), the total reward
of this round is shown to subjects.

path labeled “risk averse” (RA in Figure 7.2). After 3 decisions subjects were al-
ways transferred back to the initial state, and the reward, which was accumulated
during this round, was shown. State information was available to the subjects
throughout every trial (see Figure 7.2). Altogether, 30 subjects (young healthy
adults) experienced 80 rounds of the 3-decision sequence.

Formally, the sequential investment game can be considered as an MDP with
7 states and 4 actions (see Figure 7.2). Depending on the strategy of the sub-
jects, there are 4 possible paths, each of which is composed of 3 states. The total
expected return for each path, averaged over all policies consistent with it, are
shown in the right panels of Figure 7.2 (“EV”). On the hand, Path 1 provides the
largest expected return per round (EV = 90), while Path 4 leads to an average loss
of -9.75. Hence, to follow the on-average highest rewarded path 1, subjects have
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Figure 7.2: Structure of the underlying Markov decision process. The 7 states
are indicated by numbered circles; arrows denote the possible transitions. Lables
“RS” and “RA” indicate the transitions caused by the two “risk-seeking” (invest-
ment of 2 or 3 EUR) and the two “risk-averse” (investment of 0 or 1 EUR) actions.
Bi-Gaussian distributions with a standard deviation of 5 are used to generate the
random price changes of the stocks. Panels next to the states provide information
about the means (top row) and the probabilities (center row) of ever component.
M (bottom row) denotes the mean price change. The reward received equals the
price change multiplied by the amount of money the subject invests. The right-
most panels provide the total expected rewards (EV) and the standard deviations
(std) for all possible state sequences (Path 1 to Path 4) under the assumption that
every sequence of actions consistent with a particular sequence of states is chosen
with equal probability.

to take “risky” actions (investing 2 or 3 EUR at each state). Always taking con-
servative actions (investing 0 or 1 EUR) results in Path 4 and a high on-average
loss. On the other hand, since the standard deviation of the return R of each state
equals std(R) = a × C, where a denotes the action (investment) the subject takes
and C denotes the price change, the higher the investment, the higher the risk.
Path 1 has, therefore, the highest standard deviation (std = 14.9) of the total aver-
age reward, whereas the standard deviation of Path 4 is smallest (std = 6.9). Path 3
provides a trade-o� option: it has slightly lower expected value (EV = 52.25) than
Path 1 but comes with a lower risk (std = 12.3). Hence, the paradigm is suitable
for observing and quantifying the risk-sensitive behavior of subjects.

7.3 Risk-sensitive model of human behavior

Figure 7.3 summarizes the strategieswhichwere chosen by the 30 subjects. 17 sub-
jects mainly chose Path 1, which provided them high rewards. 6 subjects chose
Path 4, which gave very low rewards. The remaining 7 subjects show no signi�-
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Figure 7.3: Distribution of “strategies” chosen by the subjects in the sequential in-
vestment game and the corresponding cumulative rewards. Subjects are grouped
according to the sequence of states (Path 1 to Path 4, cf. Figure 7.2) they chose
during the last 60 trials of the game. If a path i is chosen in more than 60% of the
trials, the subject is assigned the group “Path i”. Otherwise, subjects are assigned
the group labeled “random”. The vertical axis denotes the cumulative reward ob-
tained during the last 60 trials.

cant preference among all 4 paths and the rewards they received are on average
between the rewards received by the other 2 groups. The optimal policy for max-
imizing expected reward is the policy that follows Path 1. The results shown in
Figure 7.3, however, indicate that the standard model fails to explain the behavior
of more than 40% of the subjects.

We now quantify subjects’ behavior by applying three classes of Q-learning
algorithm:

(1) standard Q-learning,

(2) the risk-sensitive Q-learning (RSQL) method described by Algorithm 6.2 in
Section 6.3.3, and

(3) an expected utility (EU) algorithm with the following update rule

(7.1) Q (st ,at ) ⇐ Q (st ,at ) + α
(

u (rt ) + γ max
a

Q (st+1,a) −Q (st ,at )
)

,

where the nonlinear transformation is applied to the reward rt directly. The
latter one is a straightforward extension of expected utility theory. Risk sen-
sitivity is implemented via the nonlinear transformation of the true reward
rt .

For both risk-sensitiveQ-learningmethods (RSQL and EU), we consider the family
of polynomial mixed utility functions

(7.2) u (x ) =

{

k+x
l+ x ≥ 0

−k− (−x ) l− x < 0
.
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branch x ≥ 0 shape risk pref.
0 < l+ < 1 concave risk-averse
l+ = 1 linear risk-neutral
l+ > 1 convex risk-seeking

branch x < 0 shape risk pref.
0 < l− < 1 convex risk-seeking
l− = 1 linear risk-neutral
l− > 1 concave risk-averse

Table 7.1: Parameters for the two branches x ≥ 0 (left) and x < 0 (right) of the
polynomial utility function u (x ) (7.2), its shape and the induced risk preference.

The parameters k± > 0 and l± > 0 quantify the risk-preferences separately for
wins and losses (see Table 7.1). Hence, there are 4 parameters for u which have to
be determined from the data. For all three classes, actions are generated according
to the “softmax” policy (6.14), which is a proper policy for the paradigm (for a
proof see Section 6.3.5), and the learning rate α is set constant across trials.

For RSQL, the learning rate is absorbed by the coe�cients k±. Hence, there
are 6 parameters

{β ,γ ,k±,l±} =: θ

which have to be determined. Standard Q-learning corresponds to the choice l± =
1 and k± = α . The risk-sensitive model applied by Niv et al. (2012) is also a special
case of the RSQL-framework and corresponds l± = 1. For the EU algorithm, there
are 7 parameters, {α ,β ,γ ,k±,l±}, which have to be �tted to the data. l± = 1 and
k± = 1 again corresponds to the standard Q-learning method.

Parameters were determined subject-wise by maximizing the log-likelihood
of the subjects’ action sequences,

(7.3) max
θ

L(θ ) :=
T

∑

t=1

logp(at |st ,θ ) =
T

∑

t=1

log
e βQ (st ,at |θ )

∑

a e
βQ (st ,a |θ )

whereQ (s,a |θ ) indicates the dependence of theQ-values on themodel parameters
θ . Since RSQL/EU and the standard Q-learning are nestedmodel classes, we apply
the Bayesian information criterion (BIC, see e.g., Ghosh et al., 2006)

B := −2L + k log(n)

for model selection. L denotes the log-likelihood (7.3). k and n are the number of
parameters and trials respectively.

To compare results, we report relative BIC scores, ∆B := B − BQ , where B
is the BIC score of the candidate model and BQ is the BIC score of the standard
Q-learning model. We obtain

∆B = −500.14 for RSQL, and
∆B = −23.10 for EU.

The more negative the relative BIC score is, the better the model �ts data. Hence,
the RSQL algorithm provides a signi�cantly better explanation for the behavioral
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Figure 7.4: Distribution of values for the shape parameters l+ (left) and l− (right)
for the RSQL model.

data than the EU algorithm and standard Q-learning. In the following, we only
discuss the results obtained with the RSQL model.

Figure 7.4 shows the distribution of best-�tting values for the two parameters
l± which quantify the risk-preferences of the individual subjects. We conclude (cf.
Table 7.1) that most of the subjects are risk-averse for positive and risk-seeking
for negative TD errors. The result is consistent with previous studies from the
economics literature (see Tversky and Kahneman, 1992 and references therein).

After determining the parameters {k±,l±} for the utility functions, we perform
an analysis similar to the analysis discussed in Section 2.4.5. Given an observed
reward sequence {ri }Ni=1, the empirical subjective meanmsub is obtained by solv-
ing the following equation

1

N

N
∑

i=1

u (ri −msub ) = 0.

If subjects are risk-neutral, then u (x ) = x , and msub = memp =
1
N

∑N
i=1 ri is

simply the empirical mean. Following the idea of prospect theory, we de�ne a
normalized subjective probability ∆p,

(7.4) ∆p :=
msub − mini ri
maxi ri − mini ri

−
memp − mini ri
maxi ri −mini ri

=

msub −memp

maxi ri −mini ri
.

If∆p is positive, the probability of rewards is overestimated and the induced policy
is, therefore, risk-seeking. If ∆p is negative, the probability of rewards is under-
estimated and the policy is risk-averse. Figure 7.5 summarizes the distribution of
normalized subjective probabilities for subjects from the “Path 1”, “Path 4” and
“random” groups of Figure 7.3. For subjects within group “Path 1”, |∆p | is small
and their behaviors are similar to those of risk-neutral agents. This is consistent
with their policy, because both risk-seeking and risk-neutral agents should prefer
Path 1. For subjects within groups “Path 4” and “random”, the normalized subjec-
tive probabilities are on average 10% lower than those of risk-neutral agents. This
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explains why subjects in these groups adopt the conservative policies and only
infrequently choose Path 1.

Figure 7.5: Distribution of normalized subjective probabilities,∆p, de�ned in (7.4),
for the di�erent subject groups de�ned in Figure 7.3.

7.4 fMRI results

Functionalmagnetic resonance imaging (fMRI) datawere simultaneously recorded
while subjects played the sequential investment game. The analysis of fMRI data
was conducted in SPM8 (Wellcome Department of Cognitive Neurology, London,
UK). Details of themagnetic resonance protocol and data processing are presented
at the end of this chapter. The sequence of Q-values for the action chosen at each
state were used as parametric modulators during the choice phase, and temporal
di�erence (TD) errors were used at the outcome phase (see Figure 7.2).

Figure 7.6 (left) shows that the sequence of TD errors for the RSQL model
(with best �tting parameters) positively modulated the BOLD signal in the sub-
callosal gyrus extending into the ventral striatum (-14 8 -16) (marked by the cross
in Figure 7.6 (left)), the anterior cingulate cortex (8 48 6), and the visual cortex (-8
-92 16; z = 7.9). The modulation of the BOLD signal in the ventral striatum is con-
sistent with previous experimental �ndings (cf. Schultz, 2002; O’Doherty, 2004),
and supports the primary assertion of computational models that reward-based
learning occurs when expectations (here, expectations of “subjective” quantities)
are violated (Sutton and Barto, 1998).

Figure 7.6 (right) shows the results for the sequence of Q-values for the RSQL
model (with best �tting parameters), which correspond to the subjective (risk sen-
sitive) expected value of the reward for each discrete choice. Several large clusters
of voxels in cortical and subcortical structureswere signi�cantlymodulated by the
Q-values at the moment of choice. The sign of this modulation was negative. The
peak of this negative modulation occurred in the left anterior insula (-36 12 -2,
z = 4.6 ), with strong modulation also in the bilateral ventral striatum (14 8 -4,
marked by the cross in Figure 7.6(right); -16 4 0) and the cingulate cortex (4 16 28).
The reward prediction error processed by the ventral striatum (and other regions
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Figure 7.6: Modulation of the fMRI BOLD signal by (left) TD errors and by (right)
Q-values generated by the RSQL model with best �tting parameters. The data
is shown whole-brain corrected to p < .05 (voxel-wise p < .001 and minimum
125 voxels). The color bar indicates the t-value ranging from 0 to the maximal
value. The cross indicates location of strongest modulation for TD errors (in the
left ventral striatum (-14 8 -16)) and for Q-values (in the right ventral striatum (14
8 -4)). However, it is remarkable that for both TD errors and Q-values, modula-
tions in the left and right ventral striatum are almost equally strong with a slight
di�erence.

noted above) would not be computable in the absence of an expectation, and as
such, this activation is important for substantiating the plausibility for the RSQL
model of learning and choice. Sequences of Q-values obtained with standard Q-
learning (with best �tting parameters), on the other hand, failed to predict any
changes in brain activity even at a liberal statistical threshold of p < .01 (uncor-
rected). This lack of neural activity for the standard Qmodel, in combinationwith
the signi�cant activation for our RSQL, supports the hypothesis that some assess-
ment of risk is induced and in�uences valuation. Whereas the areas modulated
by Q-values di�er from what has been reported in other studies (i.e., the ven-
tromedial prefrontal cortex as in Gläscher et al., 2009), it does overlap with the
representation of TD errors. Furthermore, the opposing signs of the correlated
neural activity suggests that a neural mismatch of signals in the ventral striatum
between Q-value and TD errors may underlie the mechanism by which values are
learned.

7.5 Discussion

We applied the risk-sensitive Q-learning (RSQL) method to quantify human be-
havior in a sequential investment game and investigated the correlation of the
predicted TD- and Q-values with the neural signals measured by fMRI.

We �rst showed that the standard Q-learning algorithm cannot explain the
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behavior of a large number of subjects in the task. Applying RSQL generated
a signi�cantly better �t and also outperformed the expected utility algorithm.
The risk sensitivity revealed by the best �tting parameters is consistent with the
studies in behavioral economics, that is, subjects are risk-averse for positive while
risk-seeking for negative TD errors. Finally, the relative subjective probabilities
provide a good explanation why some subjects take conservative policies: they
underestimate the true probabilities of gaining rewards.

The fMRI results showed that TD sequence generated by our model has a
signi�cant correlation with the activity in the subcallosal gyrus extending into
the ventral striatum. The sequence of Q-values has a signi�cant correlation with
the activities in the left anterior insula. Previous studies (see e.g., Glimcher et al.,
2008, Chapter 23 and Symmonds et al., 2011) suggest that higher order statistics of
outcomes, e.g., variance (the 2nd order) and skewness (the 3rd order), are encoded
in human brains separately and the individual integration of these risk metrics
induces the corresponding risk sensitivity. Our results indicate, however, that
the risk sensitivity can be simply induced (and therefore encoded) by a nonlinear
transformation of TD errors and no additional neural representation of higher
order statistics is needed.

Supplementary material: magnetic resonance protocol

and data processing

Magnetic resonance (MR) images were acquiredwith a 3Twhole-bodyMR system
(Magnetom TIM Trio, Siemens Healthcare) using a 32-channel receive-only head
coil. Structural MRI were acquired with a T1 weighted magnetization-prepared
rapid gradient-echo (MPRAGE) sequence with a voxel resolution of 1× 1× 1 mm3,
coronal orientation, phase-encoding in left-right direction, FoV = 192 × 256 mm,
240 slices, 1100 ms inversion time, TE = 2.98 ms, TR = 2300 ms, and 90 �ip angle.
Functional MRI time series were recorded using a T2* GRAPPA EPI sequence with
TR = 2380 ms, TE = 25 ms, anterior-posterior phase encode, 40 slices acquired in
descending (non- interleaved) axial plane with 2 × 2 × 2 mm3 voxels (204 × 204
mm FoV; skip factor = .5), with an acquisition time of approximately 8 minutes
per scanning run.

Structural and functional magnetic resonance image analyzes were conducted
in SPM8 (Wellcome Department of Cognitive Neurology, London, UK). Anatom-
ical images were segmented and transformed to Montreal Neurological Institute
(MNI) standard space, and a group average T1 custom anatomical template im-
age was generated using DARTEL. Functional images were corrected for slice-
timing acquisition o�sets, realigned and corrected for the interaction of motion
and distortion using unwarp toolbox, co-registered to anatomical images and
transformed to MNI space using DARTEL, and �nally smoothed with an 8 mm
FWHM isotropic Gaussian kernel.

Functional imageswere analyzed using the general linearmodel (GLM) imple-
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mented in SPM8. First level analyzes included onset regressors for each stimulus
event excluding the anticipation phase (see Figure 7.2), and a set of parametric
modulators corresponding to trial-speci�c task outcome variables and compu-
tational model parameters. Trial-speci�c task outcome variables (and their cor-
responding stimulus event) include the choice value of the investment (choice
phase) and the total value of rewards (gains/losses) over each round (correspond-
ing to multi-trial feedback event). Model derived parametric modulators included
the time series of Q values for the selected action (choice phase), TD (outcome
phase). Reward value was not modeled as a parametric modulator because the
TD error time series and trial-by-trial reward values were strongly correlated (all
rs > .7; ps < .001). The con�guration of the �rst-level GLM regressors for the
standard Q-learning model was identical to that employed in the risk-sensitive
Q-learning model. All regressors were convolved with a canonical hemodynamic
response function. Prior to model estimation, coincident parametric modulators
were serially orthogonalized as implemented in SPM (i.e., the Q-value regressor
was orthogonalized with respect to the choice value regressor). In addition, we
included a set of regressors for each participant to censor EPI images with large,
head movement related spikes in the global mean. These �rst level beta values
were averaged across participants and tested against zero with a t-test. Monte
Carlo simulations determined that a cluster of more than 125 contiguous voxels
with a single-voxel threshold of p < .001 achieved a corrected p-value of .05.
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Risk-averse Algorithmic Trading

I of dice possess the science

and in numbers thus am skilled.

— Mahābhārata

Précis In this chapter, we apply the risk-averse reinforcement learning algo-
rithms developed in Chapter 6 to algorithmic trading. Our approach is tested in
an experiment based on 1.5 years of millisecond time-scale limit order data from
NASDAQ, which contain the data around the 2010 �ash crash. The results show
that our algorithm outperforms the risk-neutral reinforcement learning algorithm
by 1) keeping the trading cost at a substantially low level at the spot when the �ash
crash happened, and 2) signi�cantly reducing the risk over the whole test period.

Publication related to this chapter This chapter is based on Shen et al. (2014a),
presenting work done in collaboration with Ruihong Huang.

8.1 Introduction

Algorithmic trading contributes a major part of trading volumes to modern elec-
tronic equity markets (Securities and Exchange Commission, 2010). Though de-
tails of trading algorithms in practice remain unrevealed, solid evidence (see, e.g.,
Menkveld and Yueshen, 2013, Kirilenko et al., 2011) found around the 2010 Flash
Crash

“On May 6, 2010, the prices of many U.S.-based equity products ex-

perienced an extraordinarily rapid decline and recovery. That after-

noon, major equity indices in both the futures and securities markets,

each already down over 4% from their prior-day close, suddenly plum-

meted a further 5-6% in amatter ofminutes before rebounding almost as

quickly.” – U.S. Commodity Futures Trading Commission and Securities

& Exchange Commission (2010)

125
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indicates that most of them failed to adapt their trading strategies to the extreme
market event. This failure harms not only performance of trading algorithms,
but also market’s stability. Hence, there is an increasing interest to incorporate a
robust risk control into trading strategies, especially into the algorithms used for
algorithmic trading.

In this chapter, we focus on a common high-frequency trade problem faced
by an institutional trader: the optimal trade execution (see e.g. Bertsimas and Lo,
1998; Almgren and Chriss, 2001; Nevmyvaka et al., 2006 and references therein),
i.e., to liquid a huge inventory over a short time horizon. We model this problem
by a Markov decision processes with �nite state and action spaces. In particu-
lar, in order to control the risk in trade, we apply a risk-averse valuation map
within the framework of risk-sensitive Markov decision processes developed in
Section 6.2. The corresponding optimization problem is then solved by a data-
driven technique, the risk-averse reinforcement learning (RL), or more speci�-
cally, risk-averse Q-learning, proposed in Section 6.3.

By employing a huge data set containing the high-frequency order books (one
and half years in millisecond time scale) of Amazon.com Inc. (AMZN) traded on
NASDAQ, we show that the risk-averse RL outperforms the standard RL (which
is risk-neutral) by a reduction of 10 to 15 basis points on the risk, at a price of
2 to 3 basis points on the average avenue, depending on the experimental cases.
More importantly, unlike the risk-neutral RL, which results in a huge cost on the
�ash-crash spot, the risk-averse RL is able to keep its corresponding cost at a
substantially low level.

Our contribution to the literature on algorithmic trading are twofold. First,
our risk-averse RL generalizes the risk-neutral RL (see e.g., Bertsimas and Lo,
1998; Nevmyvaka et al., 2006) by allowing traders to explicitly control the risk ac-
cording to their risk sensitivities. Second, we introduce the RS-MDP model into
algorithmic trading. Its basic idea on risk control can be valuable for traders to
improve the robustness of their trading algorithms under extreme market condi-
tions.

Our study is also related to the works by Almgren and Chriss (2001); Alfonsi
et al. (2010) and Obizhaeva and Wang (2012), where explicit structural models are
proposed to describe market dynamics. Based on these models, the risk in trade
execution is controlled by minimizing quadratic utility or value at risk. Our ap-
proach is distinguished from them by applying an RL-type algorithm to solve the
risk-averse optimization problem. Since RL is a data-driven technique, it requires
no explicit structural model on the market dynamics. Hence, our approach is
more practical in high-frequency markets where modeling the market dynamics
is a huge challenge.
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8.2 Trading on limit order markets

Institutional traders generally acquire their long-term (e.g. a day or longer) target
positions by assigning small tasks in a short time-frame, typically in minutes. In

Figure 8.1: Left: a snapshot of AMZN order book in NASDAQ (source: Yahoo!
Finance). Right: a graphical representation of the order bookwith two price levels.
The position and height of each bar represent the price and size of each order
respectively. Bids (buy orders) are drawn in green, while asks (sell orders) are in
red. The mid-quote price, i.e., the average of the highest bid and lowest ask, is
marked by a triangle. 1) – 4) label 4 admissible strategies for a seller (for details
see Section 8.2).

most electronic limit order markets, e.g., NASDAQ, traders compete for trading
by posting limit orders. A limit order is speci�ed by its trade direction (buy or
sell), limit price and quantity. During the continuous trading phase, a centralized
computer system collects all incoming limit orders and executes them according
to the following price-time procedure rule: the buy (respectively sell) order with
a higher (respectively lower) price is executed earlier and, among all orders with
the same price, the �rst coming order is executed �rst. In the case where a buy
(respectively sell) orderwith a price higher (respectively lower) than the best price
of all existing sell (respectively buy) orders, it becomes a so-called market(able)
order and is executed immediately. All unexecuted limit orders are aggregated as
a limit order book which is publicly visible to all market participants.

To illustrate how trade is executed, suppose a trader plans to sell 100 shares
of AMZN (Amazon.com Inc.). Figure 8.1 shows a snapshot of AMZN’s limit order
book in NASDAQ. Here are some feasible choices for her (for the sake of simplic-
ity, we do not consider hidden liquidity in this example. Nevertheless, the data of
hidden liquidity is considered and used in our trade simulation in Section 8.4.):

1. submit an order at price $346.17 and get an immediate full execution with
the average price $346.212 (80 shares at $346.17 and 20 at $346.38).

2. submit an order at price $346.38 and get a partial execution for 20 shares.
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The remaining 80 shares will wait in the order book until incoming buyers
take them.

3. submit an order at price $346.60. Since it is the �rst order at this price, it
will be executed (possible partially) when a buyer bids a price higher than
or equal to $346.60.

4. submit an order at price $346.82. It will be executed when an incoming
buyer’s bid is higher than or equal to this price, but only after the execution
of the existing order with 100 shares at the same price.

We see that a strategy pursuing a better selling price is always associated with a
longer (expected) time-to-execution. In practice, the trader typically has to liquid
a position inside a strict time-horizon. The long time-to-execution could be very
costly for her, since she probably has to trade at a substantially bad price at the
end of the time-horizon, especially when the market price moves downward.

To solve this problem, the trader can divide the whole time-horizon into sev-
eral time points and individual decisions are made at each time point according to
updates (or states, which will be speci�ed in the next section) of the order book,
in order to achieve the long-term goal. In the previous example, she can place her
order (with the remaining open quantity) at a lower (respectively higher) price
when observing a downward (respectively upward) movement of the price.

Since the market is usually unstable, the optimal strategy for the long-term
goal in one time period, e.g., several days, might not work in another time period.
A usual way to solve this problem is to de�ne the long-term goal in the sense
of average, i.e., we seek a strategy that maximizes the long-term goal averaged
over all time periods. But even so, the derived optimal strategy might still cause
huge losses in some extreme market conditions, e.g., the 2010 �ash crash, since
the extreme market conditions might be far away from the average.

In the high-frequency world, the averagely optimal strategy is usually ob-
tained by reinforcement learning (RL, see e.g., Nevmyvaka et al., 2006). Since it
does not require an explicit structural model for the underlying market dynam-
ics, RL has been proven to be a very �exible and powerful tool for maximizing
average rewards. In this chapter, we are going to avoid high losses at extreme
market events by adding risk control into RL algorithms.

8.3 Risk-averse Q-learning

We restate the main results of risk-sensitive Markov decision processes and Q-
learning developed in Chapter 6 in the context of optimal trade execution.

A Markov decision process (MDP, see e.g. Puterman, 1994)

(8.1) M := {X,A,P, (r ,Pr )}.

consists of
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• a state space X, where each state s ∈ X consists of a set of discretized vari-
ables representing the state of limit order book and the trade execution,

• an action space A composed of all admissible trading options (denoted by
a),

• a transition kernel P (x ′ |x ,a) specifying the transition probability moving
from state x ∈ X to x ′ ∈ X after taking action a,

• a random reward R with the form

R(x ,a) := r (x ,a) + ϵ (x ,a),

where the determinant function r : X×A→ R denotes the expected reward
at each (s,a) ∈ X × A. The stochastic function ϵ represents a reward noise
due to the uncertain future dynamics of the market. Let Pr (ϵ |s,a) denote
the distribution of the noise with the event space E. We assume that the
zero-mean condition

(8.2)

∫

E

ϵPr (ϵ |x ,a)dϵ = 0

holds for all (x ,a) ∈ X × A.

There are two sources of uncertainty in our model: (i) the successive state x ′ (due
to the stochastic dynamics of limit order book) and (ii) the immediate reward (due
to noise ϵ). They can be quanti�ed by the following joint distribution

µx,a (x
′,ϵ ) := P (x ′ |x ,a)Pr (ϵ |x ,a).(8.3)

Let t = 1, . . . ,T denote the tth time point in the discretized trading time-
horizon and πt : X → A be the corresponding decision rule. The optimal risk-
neutral trading strategy is then the multistage policy π = [π1,π2, . . . ,πT ] that
maximizes the following objective function (see e.g. Bertsimas and Lo, 1998):

J (π ,x ) :=E[
T

∑

t=1

R(Xt ,At ) |X1 = x ,π ]

=E
π1
X1=x

[R(X1,A1) + E
π2
X2
[R(X2,A2) + . . . + E

πT
XT

[R(XT ,AT )] . . .]].

Note that comparing with the setup in Section 6.2, we considered here merely
deterministic policies, due to the fact that one has to select a speci�c action at
each trading time point.

To incorporate risk into themultistage decision-makingprocedure, we replace
the risk-neutral expectation E by the utility-based shortfall,U ,

(8.4) Ux,a (X ) = sup{m ∈ R | Ex,a [u (X −m)] ≥ 0}.
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Here, u denotes a concave, continuous and strictly increasing utility function sat-
isfying u (0) = 0. It can be chosen freely according to how much risk the trader
is willing to take. We can, therefore, control the risk-sensitivity of our trading
strategies by properly adjusting its form. The risk-averse optimal trade strategy
is then obtained by maximizing the following risk-averse objective:

J̃ (π ,x ) := U π1
X1=x

[R(X1,A1) +U π2
X2
[R(X2,A2) + . . . +U πT

XT
[R(XT ,AT )] . . .]],

(8.5)

where U π
x is de�ned by U π

x (·) := Ux,π (x ) (·). In this chapter, we assume that u
takes the following form,

u (x ) =

{ 1
λ [(x + 1)λ − 1] x ≥ 0
x x < 0

,(8.6)

where λ ∈ (0,1]. For λ < 1, u is concave and the pro�ts (i.e., x > 0) are always
less valued, while the losses (x < 0) keep equal. Since u is a concave function, by
Proposition 2.16 and 3.9, its corresponding optimal trading strategy is therefore
risk-averse. Furthermore, the smaller λ is, the more punishment are applied to
large pro�ts, which leads to a more risk-averse trading strategy. If setting λ = 1, it
corresponds to the linear functionu (x ) = x implying that the evaluation function
coincides with the standard expectation, i.e., Us,a (·) = Ex,a (·). In this case, our
model reduces to the risk-neutral model.

As we have shown in Section 6.3.2, the optimization problem can be solved by
a reinforcement learning (RL) algorithm (see Algorithm 6.1). Suppose at tth time
point, we repeat trying action a at state x a large amount of times and observe
N samples of immediate rewards and successive states, {Ri ,x ′i }i=1,2, . . .,N . Then
the q-value at (x ,a), which evaluates the quality of this state-action pair, can be
estimated by the following iterative procedure

q
(i+1)
t (x ,a) = q

(i )
t (x ,a) +

1

i
u

(

Ri + max
a

qt+1(x
′
i ,a) − q

(i )
t (x ,a)

)

(8.7)

provided that we have already known the q-value at (t + 1)th time point at each
state-action. Since the utility function u of the form (8.6) is su�ciently regular (in
fact, it is easy to verify that u is Lipschitz for all λ ∈ (0,1]), by the standard result
in stochastic approximation (see e.g. Borkar, 2008, Theorem 2), for each t = T ,T −
1, . . . ,1, the policy π (N )

t (x ) = maxa∈A q
(N )
t (x ,a) converges to the optimal policy

that maximizes the risk-averse objective function de�ned in (8.5), as N → ∞.

8.4 Experiments

Data

We perform our experiment on selling AMZN stocks in NASDAQ. The order book
data are provided by LOBSTER (Huang and Polak, 2011)1 with two price levels,

1For more information see the website http://lobsterdata.com.

http://lobsterdata.com
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i.e., only the best two asks and bids (see Figure 8.1 (bottom) for an example) are
available at each time stamp. LOBSTER uses

1. historical NASDAQ TotalView streaming messages, which are provided by
NASDAQ as a standard data feed for real-time trading, and

2. an algorithm, which continuously updates order books by all order events,
including order submissions, cancellations and executions, as well as hid-
den order executions, recorded with millisecond time stamps.

Therefore, our experimental environment e�ectively represents the real algorith-
mic trading environment in NASDAQ.

In order to analyze our model’s performance during and after the �ash crash
on May 6, 2010, we use the one year data previous to the �ash crash, i.e., from
May 1, 2009 to April 30, 2010, to train the model and obtain the best strategy.
This strategy is then tested in the succeeding half-year period from May 1, 2010
to October 31, 2010, which contains the �ash crash.

MDP formulation

In our experiment, we analyze the performance of the risk-averse RL by com-
paring to the risk-neutral RL proposed by Nevmyvaka et al. (2006) who show
that it substantially outperforms the trading strategy, submit and leave, which
is commonly used in practice. For comparison, we specify the structure of the
underlying MDP de�ned in (8.1) by applying a setup similar to the one used in
Nevmyvaka et al. (2006).

Time resolution We discretize the total time horizon equally with di�erent
scales. Given the total time horizon H and a time resolution T , we assume that
limit orders will be submitted to the market at each time point t = n · H/T , n =
0,1, . . . ,T − 1, according to the trading policy determined by our algorithm. In
this study, for covering the “�ash crash” period, we set H = 10 minutes for all
experimental cases.

States We consider two variables: the seller’s inventory and the bid-ask spread
of the order book.LetV denote the target volume and I be the number of inventory
units, betweenwhich one strategy can distinguish. Then, ifv shares are remained,
the state of inventory is i := ⌊v · I/V ⌋. The spread is discretized to three states:
small, middle and big, according to the 33.3% to 66.7% empirical quantiles of the
spread in training data set.

Actions We use relative prices as actions. Speci�cally, action a corresponds to
submitting a sell order at price ask − a (unit: US cent) with all of the remaining
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shares2. Hence, a ≤ 0 represents a strategy of submitting a limit order at or behind
the market, e.g., strategy 4) in Sec. 8.2, while a > 0 corresponding to strategies
undercutting ask. In the case that a is greater than the spread, it is the strategy of
submitting market(able) order, e.g., strategy 1) in Section 8.2. The range of actions
are determined based on gaps between second best asks and second best bids in
historical data.

Rewards The immediate reward of an action a is the cash in�ow resulted from
a (partial) execution of the limit order placed at ask − a in the next H/T time
interval. Moreover, we assume that sellingV shares is mandatory. Any inventory
remaining at timeH must be cleaned up by using a market order, walking through
the lower prices on the bid side of the order book until all remaining volumes are
sold. Note that this execution is not a part of policy, but serves as a penalty for
the failure of ful�lling the trade target.

Performance evaluation

We evaluate performance of algorithms by calculating trading costs and their as-
sociated risk in the test period using the optimal strategies learned by algorithms.

In particular, the trading cost of each time horizonH is de�ned as the average
execution price achieved by the strategy relative to the mid-quote (average of bid
and ask) at the start time point of H , i.e.,

cost =
mid-quote at time 0 − average execution price

mid-quote at time 0
× 10000.

Risk is evaluated by two criteria:

1) the standard deviation and

2) 95% quantile of costs over the whole test period.

The latter one is in spirit of the concept of value at risk (see e.g. Jorion, 2007),
which is widely used in industry to measure risk. By the 95% quantile cost, we
measure in fact the upside risk of extremely large losses (costs).

The unit of both costs and their associated risk, including the standard devi-
ation and 95% quantile, is simply the basis point (= 1/100 of a percent).

8.5 Results

Tuning λ

The free parameter λ in (8.6) determines how conservative (risk-averse) the de-
rived optimal strategy is with regard to the uncertainty of rewards. How to choose

2Our model can be extended to include the order size as another dimension of the action space,
given an estimate for the market impact of limit order (see e.g., Hautsch and Huang, 2012), which
is left as future work.
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Figure 8.2: Performance of the risk-averse RL algorithm with the utility function
de�ned in (8.6) against the choice of risk parameter λ. The choice of λ = 1 corre-
sponds to the risk-neutral RL algorithm. The curve with “+” is obtained with total
inventoryV = 20000, time resolutionT = 5 and inventory resolution I = 5, while
the curve with “*” is with the setting V = 20000, T = 10 and I = 10.

its value is, therefore, of critical importance for the performance of the risk-averse
RL algorithm. To this end, we �rst conduct a series of experiments with 10 dif-
ferent modes of increasing λ from 0.1 to 1. Figure 8.2 depicts the corresponding
costs and risk for the two cases

1) V = 20000, T = 5 and I = 5, and

2) V = 20000, T = 10 and I = 10.

We observe that the average cost decreases while the standard deviation, 95%
quantile cost and the cost at �ash crash increase as λ increases. The underly-
ing reason is that the greater the value of λ is, the closer is the shape of function
in (8.6) to the linear function, and thus the less risk-averse is the algorithm. In-
deed, with λ = 1, the algorithm reduces to the risk-neutral one which results in
a slightly lower average of trading cost (approximately 2 basis points) during the
whole test period, but a signi�cantly higher risk (approximately 15 basis points,
in terms of both standard deviation and 95%-quantile cost) than the risk-averse
RL with λ = 0.6. Furthermore, during the �ash crash period, the risk-averse
algorithm outperform the risk-neutral one by 100 points for the case T = 5 or
by 200 points for T = 10 (see the next paragraph for more comparisons of per-
formances during the �ash crash). In Figure 8.2, we can observe a switch point
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around λ ∈ [0.6,0.7] indicating an optimal choice. We also identify the same pat-
tern over other experimental cases (the graph is available upon request), and thus
set λ = 0.6 in the following analysis.

Performance during the �ash crash

The �ash crash on May 6, 2010 provides a natural test case to examine the ro-
bustness of RL trading algorithms under extreme market conditions. Within ten-
minute period from 14:40 to 14:50, the price of AMZN �rst dropped sharply down
by approximately 4.23% followed by a quick recovery, ca. 2.94%, resulting a total
decline, ca. 1.45%, over the period.

Figure 8.3 shows the dynamics of mid-quote prices and the corresponding
trading costs for the case V=10000, T=10 and I, resulting from the risk-neutral
and risk-averse RL algorithms from 12:00 to 16:00. We see that the risk-averse RL
performs more stably than the risk-neutral RL over the period. Especially, during
10-minute period around the �ash crash, the risk-averse RL managed to keep its
trade cost at 41 basis points, while the risk-neutral RL led to a huge cost higher
than 300 basis points. It indicates that the risk-neutral RL does not adapt to the
extreme market event.

Besides the large jump of price, the �ash crash is also characterized by a dra-
matically large width of bid-ask spread. In order to see whether including the
spread as a state variable would remedy the risk-neutral RL’s de�ection, we com-
pare the trading costs for all experimental cases under these two setups in Figure
8.4. It shows that the risk-neutral RL’s performance during the �ash crash does
not signi�cantly change, despite of adding substantial information, due to its non-
sensitivity to spread state. We shall discuss the underlying reason in detail in the
following paragraphs.

Overview of the performance in the whole test period

Figure 8.5 shows the cost and risk of the risk-neutral and risk-averse RL algo-
rithms for all experimental cases under two setups, i.e. without and with the
spread as an additional state variable. Overall, we �nd that risk-averse RL sig-
ni�cantly reduces the risk by decreasing 10 to 15 basis points on the standard
deviation and 95% quantile of the resulting trading cost, at the price of a slight
increase of the average, ca. 2 to 3 basis points. It indicates that the proposed algo-
rithm can not only avoid black swan events like the �ash crash, but also reduce
the overall risk in the whole test period at a price of a slight increase of average
trading cost.

Furthermore, the results show that after introducing spreads as state variables,
the trading risk resulting from the optimal policy of the risk-averse RL decreases
remarkably, but hardly changes the risk of applying the risk-neutral RL. It is due
to the fact that the optimal policy of the risk-neutral RL is based on the maximiza-
tion of the expected reward (i.e., the expectation of shares executed in the next
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Figure 8.3: Top: mid quote price curve of AMZN on May 6, 2010. Each colored
time interval is the trade time-horizon H = 10 minutes. The time interval when
�ash crash happened is highlighted by a black rectangular. Bottom: trading costs
of the risk-neutral (labeled by “RN”) RL and risk-averse (labeled by “RA”) RL with
λ = .6.
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Figure 8.4: Trading costs on the �ash crash spot (14:40–14:50 onMay 6, 2010) with
di�erent combinations of algorithms (risk-neutral “RN” and risk-averse “RA”),
volumes (V = 10000,20000), time resolutions (T = 5,10) and volume resolu-
tions (I = 5,10) and whether spreads are included in the state space (“no spread”,
“spread”).

H/T time interval) among all admissible actions (i.e., decisions on the limit price
of the order). Since the change of spread a�ects the expected rewards with di�er-
ent prices comparably, the risk-neutral RL will not adjust its strategy signi�cantly
according to the spread. This non-sensitivity of risk-neutral RL to spread explains
why including the spread into simulation does not improve its performance dur-
ing the �ash crash.

Di�erent from the risk-neutral RL, the risk-averse RL optimizes its policy by
considering both reward and its uncertainty (i.e., the variance of the executed
shares in the next time interval). The latter could change distinguishably among
all admissible actions, when the spread changes. Therefore, the risk-averse RL
tends to adjust its strategies substantially according to the spread state.

8.6 Conclusion

We have proposed a risk-averse reinforcement learning (RL) algorithm for opti-
mal trade execution based on the risk-senstive MPD model for sequential trading
decision. Our method has been tested by using 1.5 year high-frequency limit or-
der book data in NASDAQ, which covers 2010 �ash crash. Comparing with the
risk-neutral RL, the risk-averse RL 1) signi�cantly reduces the trading cost on the
spot of �ash-crash, and 2) is associated with a remarkable lower risk in the whole
test period at the price of a slight increase of average trading cost.

We believe that incorporating risk control into trading algorithmswith a non-
linear utility function would be a valuable guideline for the practitioners to im-
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Figure 8.5: Performance of the risk-neutral (RN) and risk-averse (RA) RL with
di�erent combinations of volumes (V = 10000,20000), time resolutions (T = 5,10)
and volume resolutions (I = 5,10) and whether spreads are included in the state
space (“no spread”, “spread”).

prove the robustness of their existing algorithms at extreme market events.
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