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Introduction

Introduction

As an alternative to Teichmüller's own compacti�cation of Teichmüller space W.

P. Thurston elaborated a new compacti�cation by the space of projective measured
foliations, creating the operations of grafting/pruning and twisting along geodesics. In
the electronic version of march 2002 of [36] Thurston's example 8.7.3 `Mickey mouse'
visualizes in the Kleinian projective model the action of the quasi-Fuchsian group
obtained when grafting along a single closed geodesic around a handle of a surface of
genus two.

How would the picture look like in the conformal Poincaré model?
What would be the picture when using spiraling multiple leaved geodesics?

The visualizations we found do not go beyond showing multiple leaved geodesics on
the 1-punctured torus without grafting/pruning or twisting. This made us curious to
investigate further.

The realm we were entering covers Möbius geometry, Fuchsian groups and Cantor
sets materialized as fractals. With the emergence of computer science a tremendous
work has been achieved to visualize developments, where pioneers like Poincaré and
Klein were handcu�ed in their computations. In 2002 D. Mumford, C. Series and
D. Wright made the power of the `Vision of Felix Klein' (the subtitle of Indra's
Pearls) accessible to a public not familiar with Fuchsian groups. Mandelbrot with
his fractals o�ered the beauty of geometry to non-mathematicians. He also tackled
the visualization of Fuchsian groups. However we searched in vain for visualizations
of Thurston's new tools.

Nevertheless Mandelbrot or Indra's Pearls teach us that visualization is the best
way to extract the beauty of geometry from its con�nement in the heads of top�ight
mathematicians. Coxeter motivated Escher to make in�nity touchable. Maybe
would artists like Escher or Vasarely have found some inspiration in the exploding
picture of our frontispiece.

We were eager to �ll a visualization gap, not to scrutinize hyperbolic three-manifolds.
Two-dimensional hyperbolic and Möbius geometry applied on geodesics are enough to
unveil some of the beauty hidden behind complex mathematical constructs.

The �rst obstacle we stumbled on was �nding a widely available software. The proper
choice seemed to be Mathematica R©, but it o�ers no ready-made tools for hyperbolic
geometry. This led us to elaborate a speci�c package, which we present in the last
chapter.

In this paper accompanying the software we examine what happens when a surface of
genus two − commonly a `pretzel'− is cut along a simple closed geodesic in order to
insert a small cylinder (grafting), remove it (pruning) or let both rims glide along each
other (Dehn-twist or earthquake). The mathematical scissors are a Möbius transfor-
mation with variable a complex angle whose real part produces grafting/pruning and
imaginary part twisting.

There are treasures to be discovered varying the parameters of our programs. Our
paper can only show examples and present the software. Only self experimentation
will reveal the world of grafting and twisting along geodesics.

1



Introduction

The choice of the pretzel was motivated by the magic e�ects of its hyperelliptic in-
volution, i.e. the identity map obtained when rotating the pretzel about a half turn
around its axis of symmetry. The involution also operates on the 1-punctured torus,
but it is much richer on the pretzel. Surfaces of higher genus, i.e. with more holes,
miss these e�ects as they are in general not hyperelliptic.

The combination of hyperbolic and Möbius structures opens quite new �elds, unsus-
pected in Euclidean geometry. There are in�nitely many hyperbolic structures (ar-
ticulated in the 6-R- dimensional Teichmüller space). We wrote models visualizing a
range of hyperbolic structures.

Grafting/pruning and twisting act on tilings of the Riemann sphere, as these operations
are induced by pleating an hyperbolic plane in hyperbolic space. This leads to in�ating,
de�ating, cleaving tessellations.

As the interest in visualization does not imply in general a profound knowledge of
hyperbolic geometry we have grouped in chapter 1 the essentials on which the paper
is built.

Another goal are propositions suggested by visualization, we were eager to investigate.
So we �x the metrics across the grafted and pruned tile. We give a transverse measure
for geodesic laminations. We study in detail the peculiar behavior of simple closed
geodesics whose leaves rush swiftly against a 3-branched limit. A sequence of closed
geodesics tends towards an in�nite spiraling geodesic, the bending limit being a Cantor
set. This is our proposition 22 on page 110.

Last but not least we take in the last chapter together with the appendices the opportu-
nity of making available our Mathematica R© package `diskgeometry' for 2-dimensional
hyperbolic and Möbius geometry.
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Chapter 1.

Preliminaries

The object of this chapter is to gather statements and results we shall need across this
paper. We do not only recall basic information about hyperbolic geometry, Cantor
sets or fractals. We also prove propositions which not everybody might �nd trivial
and on which later proofs are based. The intention is to avoid interrupting the �ow of
future demonstrations.

1.1. From a surface to its cover

The common torus with a single hole is obtained by identifying the sides of a paralle-
logram, e.g. a square. Copies of this tile put together give a tessellation (or tiling)
of the Euclidean plane, which is the universal cover of the torus. This comes up to
unrolling it in�nitely often onto the plane. As the universal cover is simply connected
the map has both advantages of being �at and without hole. Several circuits around the
torus can easily be traced throughout the copies. The torus can be seen either as square
tiles tessellating the plane or as a fundamental domain (here the canonical square)
with identi�ed edges. Flat men wandering around could not make out any di�erence,
whether they creep along the torus or along its universal cover. This representation
of the �at torus helps us visualizing, although the torus of the standard space has not
constant zero curvature. In fact the �at torus lives in S3 ⊂ R4.

Figure 1.1.: Cutting a pretzel

The pretzel, more formally double torus, is a compact Riemann surface of genus
two. Like a decoupage starting and ending in one and the same point makes the
simple torus to a topologically �at square, the pretzel can be shaped from one point
into an octagon as in �gure 1.1 borrowed from [35, Stillwell]. This is the usual cutting,
but we shall show other models with more than a single vertex and other (even not
topological) polygons.

It is convenient, but not necessary as we shall see, to choose a regular hyperbolic
octagon to represent the pretzel. The regular octagon cannot tessellate the Euclidean
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Chapter 1: Preliminaries

plane and the pretzel can any way not be developed on the Euclidean but only on
the hyperbolic plane, where it can be endowed with a hyperbolic metric, i.e. a metric
of constant negative curvature. This means that the pretzel, as a visualization, is
homeomorphic but not isometric to a hyperbolic octagon. This inconvenience can be
overcome as we work with a conformal mapping distorting distances but not angles
(much like �at maps of the earth). Closed geodesics or simple geodesics will remain
closed or simple. This is what matters to us.

In Euclidean geometry one cannot tessellate the plane with octagons, as 135◦ is not a
submultiple of 360◦. Not much the same in hyperbolic geometry, where you can shrink
angles just by enlarging the polygon, until they �t nicely around a vertex.

This is, what we show in �gure 1.2, using the Poincaré-disc as a model for the
hyperbolic plane H2. The tessellated hyperbolic plane is the universal cover of the
pretzel, like the Euclidean plane is the universal cover of the torus. Like the torus
inherits the �at metric of its cover, the tori of genus ≥ 2 can be endowed with a
hyperbolic metric (not only one as we shall see).

a1
a1

-

b1 b2
-

b1

a1

b2
-

a2
- b2

a2

b1
-

M

L

Figure 1.2.: Moving the fundamental tile

Figure 1.2 shows an octagon following the cuts of the pretzel along the four generators
a1, b1, a2, b2 of the fundamental group. In the notation of the �gure a−i is the edge
ai with reversed orientation. Later on we shall write Ai := ai instead of this classical
notation. This proves to be much more convenient especially for programming.

The `smaller' octagon is hyperbolically congruent to the central one, even if it does not
seem so to our Euclidean eye. With a slight abuse of notation we also call a1, b1, a2, b2
and their inverses the deck transformations, which as automorphisms of the cover
(Decke in German) map the fundamental domain across its edges to isometric copies.

All octagons of a tessellation are obtained by composing deck transformations across
the edges. Using letters for the generators of the fundamental group we call word a
composition of letters mapping the canonical octagon to an isometric copy somewhere
in the disc.

Due to symmetry the small octagon seems to be obtained by mirroring the large
one against the edge a−1 . This does the job only visually, because re�ecting inverses
orientation. Our moves should not have an odd number of re�ections, as we want to
express them as Möbius transformations. Therefore we �rst mirror the large octagon
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1.1: From a surface to its cover

along its axis of symmetry L so as to exchange a−1 and a1. Two re�ections lead back
to the original orientation to be preserved in order to get a true moved copy.

Applying longer and longer words we would obtain a tessellation of the unit disc with
regular 45◦-angles octagons, i.e. eight octagons �t nicely around a vertex.

As we can choose the angles of the main hyperbolic octagon in the range 0◦-135◦, there
are other ways to pave the disc with regular octagons. But we have to care for the
proper match: due to the identi�cations the same edge has to be ai on one side and
Ai (this means now a−i ) on the other. We therefore need a cycle of period 8, which
can be achieved by no else tessellation than this one.

Figure 1.3.: Tessellation by octagons

Figure 1.3 shows the tessellation, which we now shall examine from a formal point of
view.

The generators ai, bi and their inverses Ai, Bi can be taken as matrices of SL(2,C).
This is the group of 2× 2 complex matrices with determinant = 1, so as to make the
matrix unique (up to multiplication with −1) when it encodes a Möbius move. We
also call these matrices ai and bi with a slight abuse of notation.

These mappings form a transformation group, the action of which on the canonical
octagon generates the tessellation of the disc.

To move from the central canonical octagon to any copy, one has to compose the map-
pings to a word : w = (xi1 , . . . , xik) with xi ∈ {a1, b1, a2, b2, A1B1, A2, B2} according
to orientation. Such a word is usually not commutative.

We call relation a constraint w = 1 for a word w. The neutral element, i.e. the
path shrunk to a point, is notated 1. The trivial relations aiAi = biBi = 1 are always
satis�ed. When there are no further relations the group is called a free group. For
instance the group of the punctured torus is free.

When a group is not free the commutator [a, b] := abAB gives a hint, how much ab
di�ers from ba, because [a, b]ba = abABba = ab ba = ab for [a, b] = 1. We shall see
that the group generating the tessellation for the pretzel is not a free group. But it is
a discrete (or discontinuous) group, which means that the orbits, i.e. the sequences
of images of a point of the octagon under the action of the group, form a discrete set.
In other words there is around every image of a point in the orbit a neighbourhood
containing no other point of the orbit. In the present case this is obvious as all the
octagons are congruent.

5
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Discrete groups which act on the sphere S2 by Möbius transformations, are called
Kleinian groups. The Möbius transformations lie in PSL(2,C), the projective sub-
group of SL(2,C). This action can be extended to all of H3. Poincaré proved that
this is the group of orientation preserving isometries of H3 identi�ed via the action on
the sphere at in�nity S2 ∼= CP 1.

Kleinian groups with a (round) circle S1 as limit set are called Fuchsian groups. The
unit circle being the limit set of the octagonal tiling this group is Fuchsian.

Brie�y again: the transformation group of Möbius transformations generated by the
ai and bi is a non-free discrete Fuchsian group acting on the points of the canonical
octagon.

1.2. Möbius transformations

AMöbius transformation is a bijective conformal mapping of theRiemann sphere

CP 1, i.e. the complex plane extended by a point ∞.

They have the form of linear fractional complex transformations z 7→ az+b
cz+d , where

a, b, c, d are complex numbers and ad− bc 6= 0.

They can be expressed as a composition of inversions and form then a group, the
Möbius group, acting on the Riemann sphere. The Möbius group is the automor-
phism group of CP 1.

Being conformal Möbius transformations preserve angles, i.e. shapes but for the de-
formations of length. They also preserve the cross ratio, but we shall not use explicitly
this property. They send extended circles to extended circles, an extended circle being
indi�erently a circle or a line.

CP 1 can be seen as the set of complex lines (1-dimensional complex subspaces) into
which the complex plane embeds naturally. The embedding maps a point z ∈ C to
the complex line, i.e. a point of CP 1, spanned by (z, 1). We can de�ne a point by its
inhomogeneous coordinates z as well as by its homogeneous coordinates (zt, t),
t being a non zero complex number. The subspace spanned by (1, 0) is the point ∞.

The idea behind this is to see the Möbius transformations as projective transformations
of CP 1, obtained from an invertible linear map of C2. Then Möbius transformations
are complex 2×2 matrices which can be composed by multiplication. Instead of using
fractions the matrices act on the homogeneous coordinates and the result is passed to
the quotient, so returning the complex number representing a point of the orbit.

Identifying scalar multiples and choosing determinant = 1 the matrices of Möbius
transformations form the group PSL(2,C), i.e. projective, complex, unit determinant,
we shall work with throughout this paper.

Poincaré proved that PGL(2,C) ⊃ PSL(2,C) is the group of orientation preserving
isometries of H3 identi�ed via their action on CP 1. This means that the tessellations
we shall construct on the Riemann sphere reveal the behavior of the transformations
of the underlying hyperbolic space. This will be the link between the lunes of grafting
and pruning on CP 1 and the pleating of hyperbolic planes in hyperbolic space.

We are much obliged to Charles Gunn of TU-Berlin for the views of �gure 1.14 on
page 18, a wonderful rendition of our 4-colored dodecagon model.
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1.3: Hyperbolic geometry

Four di�erent colors are given to the front and the back of the both pairs of pants of
the pretzel where three side lengths can be chosen. In this projective Kleinian ball
geodesics are straight lines and planes are �at (but angles are distorted). Thus a tiling
of the Kleinian disc on our sheet of paper is truly �at to the Euclidean eye. In the
Poincaré disc on CP 1 grafting produces lunes. The many lunes push away the unit
circle whose boundary appears as bubbles riding on bubbles like Mickey Mouse ears.
CP 1 is the sphere at in�nity of the hyperbolic ball. The lunes on CP 1 correspond
to the bends of the hyperbolic plane supporting the tessellation. Also the cleaving
earthquake along the geodesic is good to see thanks to the tile having been cut into
four colored parts.

1.3. Hyperbolic geometry

1.3.1. Hyperbolic metric of H2

Beltrami made hyperbolic geometry easier to grasp by presenting a surface locally
isometric to the hyperbolic plane: the pseudosphere. The isometry is only local
because the pseudophere (i) is a cylinder wrapped around an axis and (ii) ends abruptly
at its border. Nonetheless it has like the hyperbolic plane constant negative curvature,
i.e. one can cut out a patch and move it around. It will lie nicely on the surface without
stretching or shrinking.

1

1

2

Σ

dΣ

R

X

dX

R

1

1

Figure 1.4.: Beltrami's pseudosphere

The pseudosphere is generated by rotating a tractrix, around the y-axis. The tractrix,
or curve of pursuit, is the curve a toy describes, when a child drags it with a sti�
shank, turning orthogonally from his initial direction. An easy way to approximate
the tractrix is to take a family of circles of same radius all centered on the ordinate
axis and draw the curve orthogonal to the family of circles as in �gure 1.4. We can
understand �gure 1.4 as an orthogonal planar front projection of the pseudosphere or
as a vertical cut along a meridian and the axis.
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Without loss of generality we scale with unitary radius. We may also parametrize by
curve length and compute the distance from the x-axis along the curve. When moving
an in�nitesimal distance dx along the x-axis dσ is the linearization of the curved path
σ. Due to similarity of the gray triangles:

dx

dσ
= − x

R
 x = Re

−σ
R + const

For the choice R = 1 and const = 0 follows x = e−σ.

We now go over from the pseudosphere to the planar chart of the hyperbolic halfplane
model. The points (x, σ) lies on the latitude circle of radius x at the distance σ
measured along the tractrix from the boundary on the pseudosphere.

The points (x, σ) and (x + dx, σ) make an angle dx seen from the midpoint of the
latitude circle. Hence their distance on the pseudosphere is xdx. This is how hyperbolic
metric shrinks Euclidean objects when they move towards the unit circle at in�nity.

On the chart all points with the same latitude have the same ordinate. The chart being
conformal in�nitesimal lines in whatever direction are multiplied by the same factor
1
x = eσ. For some dŝ on the pseudosphere we get dŝ = xds on the chart. Consequently
the chart ordinate y of the point (x, σ) on the pseudosphere is given by

dy

dσ
=

1
x

= eσ  y = eσ + const

We are free to set const = 0.

This is the metric dŝ = ds
y =

√
dx2+dy2

y in the half plane model of the hyperbolic plane.
With this metric we get readily the h-distance between points on a vertical geodesic:

d(x+ iy1, x+ iy2) = |
∫ y1

y2

dy

y
| = | log

y1

y2
| (1.1)

1.3.2. Horocycles

Figure 1.5.: Horocyles and 1-punctured torus
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As we shall mostly use the Poincaré disc model, we now show why the open unit disc
is a covering space of the pseudosphere.

David Hilbert was �rst to prove that it is impossible to embed the entire hyperbolic
plane isometrically in Euclidean space, i.e. not only the pseudosphere has a boundary.

Recall an horocycle is a geometric object speci�c to hyperbolic geometry, a circle
with its centre at ∞. In the disc model it appears as an Euclidean circle tangent to
S1
∞ in its centre. In the half plane model H2 it is an Euclidean horizontal line.

We can map isometrically the pseudopshere into D2, if we open it along a meridian.
In the half plane model we take as horizontal coordinate the angle in [−π,+π] around
the axis of symmetry in order to make a full turn across the surface. The Möbius
transformation z 7→ iz+1

z+i maps the half plane onto D2. It sends the horocycle support-
ing {−π + i, i, π + i} to the horocycle through the origin and the cusp point i. Figure
1.5 shows the image of the pseudosphere in D2. We have added geodesics in steps of
π
10 for better visibility. When mirroring against the boundaries the entire horocycle
would be tiled by all layers of the pseudosphere. This makes clear how the Poincaré
model extends Beltrami's pseudosphere from the interior of the horocycle to the whole
interior of D2, i.e. beyond Hilbert's limit.

Figures 1.4 and 1.5 were made with the program Traktrix_etc.

On the right of �gure 1.5 we see a 1-punctured torus with a family of horocycles spi-
raling around the puncture within the horocycle through the origin. Each horocycle
corresponds to the in�nite sequence of neighbouring copies of latitude circles centered
on the axis of the pseudosphere. Geodesic meridians and horocycles of the pseudo-
sphere build a system of orthogonal circles. All the horocycles are orthogonal to all
geodesics aiming at the point at in�nity.

The image of the open end of the pseudosphere is called a cusp. The neighbourhood of
the puncture of the 1-punctured torus in Figure 1.5 is also a cusp. The family of horo-
cycles spirals around the puncture. This tessellation �lls in the whole unit disc. The
cusp is analogous to the in�nite end of the pseudosphere, or more generally to a cuspy
neighbourhood of a point at in�nity entered by disjoint geodesics. When examining a
transversal to a geodesic lamination, we shall meet again such a cuspy neighbourhood
of a point at in�nity entered by disjoint geodesics orthogonal to horocycles but in the
half plane model.

1.3.3. Geodesic laminations

We state some important results indicating the references of the sources.

A lamination of a surface S is a one dimensional foliation of a closed subset

of the interior of S.

The �ow lines of a nowhere vanishing vector �eld form a foliation. Figure 1.6 is
borrowed from Three-Dimensional Geometry and Topology [36, Thurston]. We see
the �ow lines of a constant vector �eld X(x, y) = (1, α) on the torus T 2 = R2/Z2, i.e.
the images of straight lines y = x+ y0 on T 2. The two fatter leaves are circles. There
are two other leaves spiralling around and accumulating onto the circles. A foliation
provides a visualization of the underlying surface.

A m-geodesic lamination for a hyperbolic metric m on S can be decomposed as the
union of a family of disjoint simple geodesics. The disjoint simple geodesics whose
union constitute the lamination λ are called the leaves of the lamination. A simple
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geodesic is a geodesic not intersecting itself. It is either closed or in�nite. Components
of the boundary ∂S are allowed but no geodesic transversal to ∂S. The decomposition
of a geodesic lamination as a union of disjoint simple geodesics is unique.

 

Figure 1.6.: Foliation of the torus by Thurston

A theorem in [10] states:

Theorem 1 (Canary, Epstein, Green). There exists on the hyperbolic plane a constant
C with following property. Let d(., .) be a distance function. If the geodesic g has unit
tangent vector v in a point x and the geodesic h a unit tangent vector w in the point
y, and g and h are disjoint, then d(v,±w) ≤ Cd(x, y).

x

y

v

w

g

h

Figure 1.7.: Converging vector �elds

Consequently when g and h are disjoint, the unit tangents to g and h induce a Lip-
schitz direction �eld. This notion of nearby parallelism allows to cover a surface
with a lamination, i.e. a system of simple geodesics. More precisely:

De�nition 1. A geodesic lamination λ on a surface S is a lamination whose leaves
are simple geodesics. If a closed subset λ of S is the disjoint union of simple (closed
or in�nite) geodesics, then λ is a geodesic lamination.

A lamination can eventually consist of sublaminations. The geodesic lamination is
called minimal when it does not contain any proper sublaminations.

[5, Bonahon] proves : A geodesic lamination is the disjoint union of �nitely

many sublaminations and of �nitely many isolated leaves.

Each end of an in�nite isolated leaf spirals along a unique minimal sublamination.The
existence of only a �nite number of sublaminations will prevent from pleating for ever.
Simple closed geodesics are uncomplicated laminations.

Contrary to what intuition might suggest simple geodesics on a surface are not com-
mon. F Bonahon proves in [5] : If the geodesic lamination λ has no isolated
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1.3: Hyperbolic geometry

leaves, then for every arc k transverse to λ the intersection k∩λ is a Cantor
set.

The proof uses a result of [Bi,Se2]: The union of all simple geodesics has Haus-

dor� dimension 1. In other words, it is countable. Consequently the union of all
geodesic laminations has Hausdor� dimension 1 as well.

Measuring laminations

Consider a lamination of the pretzel. We already stated a result of Bonahon: A
geodesic lamination is the disjoint union of �nitely many sublaminations and of �nitely
many isolated leaves. The simplest example of a transverse measure is counting the
number of intersections of a transversal τ with λ. We know that grafting/pruning
inserts a wedge which is the spur on CP 1 of bending the plane in H3 along a geodesic
lamination. As the lamination λ has �nitely many leaves there are �nitely many bends.

Consider a bend between two �at pieces (in the projective model of H3). When two
planes meet along a geodesic, the angle α they form is constant along that geodesic.
The angle α of meeting of two such planes is a transverse bending measure, say
B, for the lamination λ . Then B(τ), transverse to λ, is the total angle of turning of
the normal to the plane along τ . When three planes have pairwise intersections in H3

Figure 1.8.: Intersecting three planes

but no triple intersection the three dihedral bending angles are such that α + β ≤ γ,
because in hyperbolic geometry γ − α− β is the area of the triangle. Indeed let A be
the area of the triangle, then π−γ is the interior angle, thus A = π−α−β−(π−γ) 
A = γ − (α+ β).

As there is only one and the same bending angle when grafting or pruning, i.e. α = β,
it follows γ = A+ 2α. Thus taking smaller and smaller triangles A→ 0 and γ → 2α.

Letting the polyhedral approximation shrink to smoothness the angle sum correspon-
ding to τ is a monotone sequence converging to a value B(τ). For short paths B(τ) is
a close approximation to the angle of the tangent planes at the ends of the path.
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The bending measure B(τ) is supported by the whole lamination λ. Every isolated
leaf of λ must be a closed geodesic. Otherwise a transverse arc τ through any limit
point of the leaf would have in�nite measure. Consequently the transverse arc τ can
only intersect the geodesic either in a �nite set of points or in a Cantor set.

1.3.4. Space of hyperbolic structures

We want to describe the space H of all hyperbolic structures on the pretzel, using
a quotient space for factoring out uninteresting variations. We �x a pretzel M0 im-
mersed in R3 and use the so called Fenchel Nielsen parametrization based on the pant
decomposition.

We need an equivalence relation to get rid of the orientation preserving isometries
which are isotopic to the identity. An isotopy is a homotopy between two maps, that
is an homeophormism on the image at every stage. According to a theorem of Baer
isotopy is the same as homotopy on surfaces, except the open disc and the annulus, so
we can exchange the formulations, as we consider a pretzel.

1.3.5. Moduli space

We can take H and factor out the group Di�+M0 of orientation preserving di�eomor-
phisms on M0. This space H/Di�+M0 is called the moduli space, the moduli being
the 6 parameters. It was Riemann, who stated in 1859, that isomorphism classes of
closed Riemann surfaces of genus g ≥ 2 are parametrized by 3(g − 1) complex param-
eters. The moduli space MS := H/Di�+M0 has therefore real dimension 6(g − 1).
The moduli space is not as easy to handle with as the �ner topology of the so called
Teichmüller space.

1.3.6. Teichmüller space

The representation of tori with multiple holes by a 1-vertex regular 4-gon, i.e. an
octagon for the pretzel, is so widespread that one could think, this model might be the
only hyperbolic structure, so to say the only pretzel endowed with a hyperbolic struc-
ture, i.e. which can be shown in the Poincaré disc or any other model of the hyperbolic
plane. It is one of the intentions of this paper to visualize that there are many pretzels
that can be shown in the Poincaré disc. Of course all these pretzels are homeomorphic
to each other, but we want to study the variations inside an homeomorphy class. The
Teichmüller space is the space, where all the pretzel shapes live.

Let S be a surface admitting a hyperbolic structure, i.e. a metric of constant negative
curvature, and let SS be the space of such structures. Then the moduli (or Riemann)
space is the quotient of SS by the action of the group of di�eomorphism of S, Di� S.
Brie�y the moduli space is the set of equivalence classes of Riemann surfaces, whereby
two such surfaces are considered equivalent if there exists a holomorphic homeomor-
phism between them.

Simpler to study is the Teichmüller space T S, the universal cover of the moduli space
MS. It is the quotient of SS by Di�0 S, i.e. the group of di�eomorphisms homotopic
to the identity by a homotopy that takes the boundary into itself. So the Teichmüller
space T S is the space of conformal structures on the surface S whereby the uninteres-
ting conformal automorphisms which are isotopic to the identity are disregarded.
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1.3: Hyperbolic geometry

The fundamental group of the moduli space is called mapping class group. The
mapping class group of a surface S, mcgS, relates the moduli space to the Teichmüller
space through the relation MS = T S/mcg S, implying mcg S = Di� S/Di�0 S. The
mapping class group is a discrete group, the group of automorphisms up to isotopy. It
is an algebraic invariant, brie�y a discrete group of symmetries of the surface S.

The Teichmüller space has the structure of a manifold because it has a natural topology
in which it is homeomorphic to the open ball in R6g−6+2e, g being the genus and e
the number of punctures. This topology may be de�ned by the Teichmüller metric,
a complete metric with respect to which the mapping class group acts as a group
of isometries. This non Riemannian metric provides some of the geometry usually
associated to Riemannian metrics and behaves better in some respects.

The uniformization theorem states that every compact surface S admits a hyperbolic,
Euclidean or elliptic structure that makes S into a complete metric space. Since all
di�erentiable structures can be given a Riemannian metric (using eventually a partition
of the unity) every orientable surface has a complete metric of constant curvature. Thus
the Teichmüller space can be identi�ed with the space of isotopy classes of Riemannian
metrics of constant curvature and the study of complex structures on a surface can be
seen as the study of its hyperbolic structures.

Considering the pretzel, which is our main object of attention, we shall study several
tessellations obtained by cutting it into pairs of pants. Constructing these pairs of
pants and gluing them together de�nes points in Teichmüller space. Each Riemann
surface is a point in Teichmüller space given by at least one tessellation in hyperbolic
space. Thus there is a tessellation for each conformal structure on the surface. There
are many of them and always one is a hyperbolic structure, i.e. of constant negative
curvature = −1.

Noting the Teichmüller space Tg (g being the genus), the orientation preserving moduli
space µ+

g is the quotient:

µ+
gM0 = τgM0/mcg

+M0

mcg stands for mapping class group, or homeotopy group. It is the quotient of the
group of self-homeophormisms of M0 by the normal subgroup of isotopies (or here
homotopies due to Baers theorem). mcg+ is the orientation preserving component.
The connected component of the identity in Di� is a normal subgroup Di�0, the group
of di�eomorphisms homotopic to the identity by the homotopies which always take
the boundary to itself. Then the Teichmüller space can alternatively be de�ned as:

TgM0 = HM0/Di�0M0

Each structure in TgM0 is an ordered triplet of positive parameters, the lengths of
the boundary components. Note that the triplet would be unordered in the moduli
space, since there are elements of the mapping class group that permute the boundary
components. We can talk about the length of the shortest representative of a loop of
a homotopy class. The result, for measuring the lengths L(δi) of the boundaries of the
pant holes, will be a bijective length map L : TgM0 → R6(g−1), thus T2M0 → R6 for a
pretzel.

As stated in [36] two elements of µg are equivalent in moduli space if and only if they
have the same holonomy group, whereas they need to be equivalent in Teichmüller
space to have the same holonomy map.

The holonomy is the group homeomorphism between the fundamental group π1 (M)
of a (G,X)-manifold M and its action group G.

13



Chapter 1: Preliminaries

1.3.7. Inserting a Dehn-twist

Inserting a Dehn-twist along a geodesic is what Thurston calls an earthquake.

Thurston remarks that in order to determine a point in Teichmüller space we need
to consider how many times the leg of a pyjama suit is twisted before it �ts onto the
baby's foot.

The idea of the Dehn-twist is to cut out a narrow cylinder from the suit, twist it, then
sew it anew. This alters the pyjama suit but solves the problem of putting in the
baby's leg!

This twisting does not a�ect the perimeter of the suit's leg. We take a small cylindric
slice and twist both circular ends against each other before regluing. A short longi-
tudinal geodesic becomes a helix with any number of full turns. Inserting this slice
before regluing is the twisting of the pants hole! Only both points on the rims stay in
place, the rest of the short geodesic spirals now around.

To implement this, we have to extract the short cylinder. So we cut one pair of pants
open using a Möbius transformation.

Figure 1.9.: Inserting a Dehn-twist

This operation along a geodesic is quite di�erent from grafting or pruning. No cylinder
is inserted or removed, the same cylinder is cut away and twisted before reinserting.
The unit circle bordering the Poincaré disc still borders the new tessellation. It is just
a gliding within the disc along the geodesic. This creates di�erent hyperbolic metrics
when crossing the Dehn-twist, only the metric along the geodesic gets confused. When
grafting or pruning the Möbius transformation deforms the Poincaré disc, i.e. the
hyperbolic structure. When crossing a graft or a prune we enter into a new Poincaré
disc with a di�erent radius. We shall investigate in chapter 4 the incidence on the
metric.

1.4. Elliptic and hyperelliptic involution

Every punctured torus can be rotated to the identity by a half turn around an axis
passing through three �xed points called Weierstrass points. This is the elliptic invo-
lution. All the same a pretzel has an hyperelliptic involution with six Weierstrass
�xed points on the axis of rotation.

These involutions induce a speci�c behavior of simple closed geodesics on the punctured
torus and the pretzel. The automorphism group for surfaces of genus ≥ 3 has only
trivial involution. This is what motivates studying the speci�city of the 1-punctured
torus and the pretzel.
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1.5: Surfaces in hyperbolic space

1.5. Surfaces in hyperbolic space

A set of geodesics in the Poincaré disc have their endpoints on the unit circle. When
asking us whether a many leaved geodesic has self intersections, we only need to
examine whether their endpoints on the circle intertwine or not. Poincaré �rst
proved that something analogous happens one dimension higher:

Theorem 2 (Poincaré). The group of orientation preserving isometries of H3 is
PGL(2,C) via its action on the boundary S2 ∼= CP 1.

A consequence is that the Möbius structure we shall use for inserting or cutting o� a
small cylinder re�ects what happens in hyperbolic space: the plane gets pleated i.e.
crinkled. To better understand this we step down one dimension lower. First we need
the concept of orthogonality in projective geometry.

1.6. Orthogonality in the Kleinian disc

Constructions in the Poincaré disc use straightedge and compass (see f.i. [16]), hence
the importance of orthogonality. Due to conformality a right edge on the pseudosphere
or on H2 will always still be a right edge in Poincaré's disc, but not so in Klein's disc.
Contrary to what intuition suggests the notion of orthogonality gets thanks to a small
wonder even easier when geodesics are transfered from Poincaré's into Klein's model.

We �rst state an important theorem of projective geometry, very easy to prove when
the conic is a circle.

Theorem 3 (La Hire). If a point A lies on the polar b of a point B, so the polar a of
A goes through B.

0 C

D

A

B

b

a

Figure 1.10.: La Hire's theorem

Proof. Let C be the inverse of B with regard to a circle of radius R centered on the
origin and let A be a point on the polar b of B. Then AC⊥OB and OC OB = R2 by
construction.

15
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Let D be the foot of the perpendicular from B to OA. the triangles OAC and OBD
are similar as they are right and share the angle at the origin. Thus

OA

OB
=
OC

OD
 OA OD = OC OB = R2

It follows that D is the inverse of A and a is the polar of A.

In the degenerate case A = C, OA OD = OC OB = R2 still holds, as D = B.

Proposition 1. The family orthogonal to a geodesic RS in Klein's disc is a pencil of
lines through the pol P of the geodesic RS.

A B

C

D

R

Q

P

p

q

S

Figure 1.11.: Pencil of perpendiculars

Proof. We call P-geodesic a geodesic in Poincaré's model and K-geodesic the straight
line joining the endpoints, i.e. the same geodesic in Klein's model.

Let, without loss of generality, RS be a vertical P-geodesic and P be its pol with
regard to the unit circle.

Then the family of P-geodesics orthogonal to RS builds an Apollonian system with
point circles R and S.

An arc of circle DC of the family will have centre the intersection Q of the support
p of RS and the perpendicular bisector of DC. Thus Q is the pol of the K-geodesic
DC, which joins the intersections of orthogonal circles.

It follows with La Hire that P lies on the support of DC.

Geodesics being Euclidean lines in Klein's disc is often very convenient. To pass
from the arc of circle supporting a geodesic in the Poincaré model it su�ces to join
the endpoints on the unit circle. Not less useful is the property, that the family of
perpendiculars is most easily obtained using the pole of the geodesic.

Figure 1.12 shows the Apollonian array of the perpendiculars to an arc and the pencil
of lines through the pole in the Kleinian model.
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Figure 1.12.: Orthogonality in the Klein disc

All the geodesics of the Poincaré disc are supported by circles with centre on the polar.
The geodesics in Klein's disc join through straight lines the endpoints of Poincaré's
geodesics. As J. Stillwell remarks in [34] Klein's disc lets us understand that in a
certain sense hyperbolic moves all are rotations, because a limit rotation is a rotation
about a point at ∞ and a translation is a rotation about a point beyond ∞.

1.7. Pleatings in the Kleinian ball

Figure 1.13 is a planar cut through the centre of Klein's ball (a model of the projective
space H3). The broken fat line is the track of a pleated hyperbolic plane orthogonal
to the section.

Figure 1.13.: Pleating in H3

The angle between the �at pieces of the pleated plane is also the angle of the arrows,
i.e. the normals which intersect at the three poles.

17



Chapter 1: Preliminaries

Recall Beltrami obtained the hyperbolic half ball model through stereographic pro-
jection, from a pole into the opposite half ball, of the Poincaré disc bordered by the
equator. He then made an orthogonal projection of the half ball back into D2, which
is Klein's disc. Thus we can switch from one disc to the other using the half ball.

Imagine the arrows of �gure 1.13 would be light rays projecting orthogonally. The
image of the bended fat line would be made of three disjoint arcs on S1

∞. Inverse
stereographic projection from the south pole would transfer the disjoints arcs into
Poincaré's disc, which again can be transferred on the ball CP 1 ∼= S2 by adding a
point ∞.

This journey through the models makes plausible why the gaps between the disjoint
arcs on the S1

∞ (cut through CP 1) correspond to the lunes obtained when grafting in
the conformal model. Should we have send the arrows in the opposite direction, the
image of the bended fat line would have been made of overlapping arcs. This results
from the fact that grafting in the inner Poincaré disc has counterpart pruning in the
outer Poincaré disc on CP 1.

Grafting, pruning and twisting are not just a play along geodesics as this paper centered
on visualization might suggest. They are important tools created by Thurston for
studying hyperbolic three-manifolds. He developed the concept of uncrumpled (or
pleated) surface, which associates to a complete hyperbolic surface S of �nite area
in a three-manifold N an isometry f : S → N such that every point x ∈ S in the
interior of a straight line segment is mapped by f to a straight line segment. Basics to
this work far beyond the scope of our paper are given in the electronic version of [36].
Also [4, Bonahon] gives very precious insights.

Figure 1.14.: Möbius moves in the Kleinian ball

We shall not go any deeper into the pleatings of hyperbolic planes in hyperbolic
space. We only wanted to give a hint at what grafting, pruning and twisting are good
for. Beyond the moves in Teichmüller space, they inform about bends in H3. This
also makes plausible, why it is always possible to bend �nitely often, when the bending
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1.8: Cantor sets

angle is chosen small enough. For in�nitely many bends, the angle must be zero, i.e. no
bending any more. This is what will happen along in�nite geodesics on the punctured
torus or on the pretzel.

We are much indebted to Charles Gunn of TU-Berlin for �gure 1.14, a wonderful
rendition of our 4-colored dodecagon model. Our �at grafted tiling has been trans-
ported into the Kleinian ball as a crumpled tessellation. 4 di�erent colors are given to
the front and the back of the both pairs of pants of the pretzel where 3 side lengths
can be chosen.

In the projective Kleinian model the tiling before grafting is like a sheet of paper, i.e.
�at to the Euclidean eye. In our 2 dimensional Poincaré disc on CP 1 grafting produces
lunes. The many lunes push away the unit circle whose boundary appears as bubbles
riding on bubbles like Mickey Mouse ears. The lunes on CP 1 correspond to the bends
of the hyperbolic plane supporting the grafted tessellation. Also the cleaving of the
earthquake along the geodesic is good to see thanks to the tile having been cut into
four colored parts.

1.8. Cantor sets

1.8.1. De�nition

ACantor set is obtained by repeatedly removing from the interval [0, 1] open intervals
of length some �xed percentage 0% < q < 100% of [0, 1]. Any percentage may be
removed around the midpoints of the intervals in each stage. The removed percentage
must not be the same on the right and on the left. Figure 1.15 shows a Cantor set
where an interval of length 7

12 is removed around the middle but asymmetricly, 1
4 from

the left and 1
3 from the right.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Figure 1.15.: Asymmetric Cantor set

It is possible to construct Cantor sets removing less and less at each stage, so that not
only dust is left at the end. Really of interest are the sets with Lebesgue measure 0
like the classical middle third set.

Proposition 2. All Cantor sets with Lebesgue measure zero are homeomorphic.

Proof. The proof is immediate, as it is easy to �nd a bijection between any Cantor set
of measure zero and the classical middle third set.

Thus we can without loss of generality concentrate on the middle third Cantor set.
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Chapter 1: Preliminaries

1.8.2. The Cantor function

A good visualization of the Cantor set is given by the Cantor function or `devil's
staircase'.

This function considers not what is left, but maps the removed intervals in the suc-
cessive n stages. The height of the steps is uniformly 2−n. The gaps in the de�nition
domain correspond to the `dust' of not removed segments.

D. R. Chalice has proved that the Cantor function is the only monotone increasing
real-valued function satisfying

i) f(0) = 0,
ii) f(x/3) = f(x)/2
iii) f(1-x) = 1 - f(x).

Due to this property the function values can be computed recursively. This is how this
graph was constructed.

So far n is �nite, there are gaps in the de�nition domain of x, where f (x) is not
de�ned.

Figures 1.15 and 1.16 have been obtained from the program About_Cantor, which is
a compilation we made from Stan Wagon's Mathematica R© in Aktion [37].

1
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0.2

0.4

0.6

0.8

f HxL

Figure 1.16.: The Cantor function

1.8.3. How to measure a Cantor set

Proposition 3. The classical Cantor set has Lebesgue measure zero.
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1.8: Cantor sets

Proof. Let Rk denote the removed intervals and m their Lebesgue measure. Then

m(R1) =
2
3
− 1

3
=

1
3

=
20

31

m(R2) =
(

2
9
− 1

9

)
+
(

8
9
− 7

9

)
=

2
9

=
21

32

m(R3) =
(

2
27
− 1

27

)
+
(

8
27
− 7

27

)
+
(

20
27
− 19

27

)
+
(

26
27
− 25

27

)
=

4
27

=
22

33

It follows

m (Rn) =
2n−1

3n

The intervals being disjoint m

( ∞⋃
n=1

Rn

)
= 1. Consequently the Cantor set, which is

the set of what has not been removed, has by di�erence Lebesque-measure null.

The problem with the Cantor function are the gaps, i.e. the not removed intervals.
Instead of measuring intervals we would like now to associate a continuous measure
with each point of the interval [0, 1]. To get rid of the gaps we use the Dirac's

measure and the Dirac's delta function de�ned as follows.

Let X be a non empty set, P (X) its power set, then (X,P (X)) is a measurable space.
For x ∈ X and any E ⊂ X, the Dirac measure at x is δx : P (X) → {0, 1} de�ned
by x (X) = 1 if x ∈ E and x (X) = 0 otherwise.

This is a measure because δx (∅) = 0 (as x ∈ X) and further for a sequence {An}n∈N
of disjoint subsets of X :

• Either x /∈
⋃
nAn  δx (

⋃
nAn) = 0 hence δx (An) = 0 for all n ∈ N

• Or x ∈
⋃
nAn then there exists exactly one n0 ∈ N such that x ∈ An0 , with

δx (An0) = 1 and = 0 for all n 6= n0. It follows δx (
⋃
nAn) = 1

For any function f : X → R ∪ {∞} the integral
∫
x
fδx = f (x) evaluates f at x.

Let m be the Lebesgue measure, A ∈ R a measurable subset and δ (without subscript!)
the Dirac delta function, then for any measurable function f : R → R, x ∈ R �xed
and t ∈ R variable:∫

A

δ (t− x) f (t) dm (t) =
∫
A

fdδx = f (x) δx (A)

If f is de�ned so that f (t) = 1 for all t ∈ A, then∫
A

δ (t− x) dm (t) =
∫
A

dδx = δx (A)

Consider now on an interval [a, b] an in�nite sequence of functions fn (x) (n will then
be identi�ed with the number of stairs of the staircase) such that :

∫ b

a

fn =

{
1 if x ∈ [a, b]
0 if x /∈ [a, b]
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Recentering the removed intervals of the Cantor set around their midpoints it follows:

f1 (x) = δ

(
x− 1

2

)
f2 (x) =

(
δ

(
x− 1

6

)
+ δ

(
x− 5

6

))
· · ·

fn (x) =
1
n

n∑
i=1

δ (x− xi)

· · ·

Here the xi are the x-values of the midpoints of the intervals.

For n→∞ we have
∫ 1

0
fn (x) = 1

n

∑n
i=1 δ (x− xi) = 1 and we get the measure

µ (x) =
∫ 1

0

1
n

n∑
i=1

δ (ξ − xi) =
1
n
]{i|xi ≤ x}

As an example in the range of x-values from 0 to 1 in steps of 0.1 the measures will
be for n = 3{

0, 1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1
}

or for n = 10{
0, 205

1024 ,
1
4 ,

205
512 ,

1
2 ,

1
2 ,

1
2 ,

615
1024 ,

3
4 ,

205
256 , 1

}
As n increases fewer and fewer successive measure-values are equal.

1.8.4. Visualization of the delta measure
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Figure 1.17.: The delta-measure of a lamination

Plotting the measures against the interval [0, 1] looks very much like the Cantor func-
tion. The sole di�erence is that the stairs have been prolongated to the left so removing
the gaps at all intermediary stages. The measure is continuous.

Figure 1.17 was obtained with our program Lamination_measure.

We can identify each intermediary stage with the number of loops of a spiralling
geodesic.
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1.8: Cantor sets

Think now of somebody walking on a transversal across the Cantor set inferred by
the closed geodesic. The vertical segments arise when the walker crosses the geodesic.
They correspond to the bends of the pretzel in hyperbolic space. As the geodesic
makes more and more loops, the vertical jumps will steadily decrease in size (but they
still all have equal size).

1.8.5. Cantor sets and fractals

Cantor sets are deeply related to the world of fractals, where they can be visualized.

To start with consider the Koch curve, which is in some sense the contrary of the
middle third Cantor set, as it grows instead of getting scarce. The middle third of
a line is replaced by two segments of equal length placed as to form an equilateral
triangle. Repeating this operation ad libitum the length of the curve increases each
time by 4/3. It crinkles again and again being forced to live within a bounded area.

Note that the curve turns to the right and to the left, whereas in the pleating we shall
consider in hyperbolic space the angle does not change sign. However this example
enlightens the concept of Hausdor� dimension, which we note D.

Figure 1.18.: The Koch curve

On the Koch curve the number of segment at level n+ 1 is xn+1 = 4xn but the length
of each segment is divided by three: we have to magnify xn+1 by 3 to get the length
we had in xn. Thus with regard to the length and according to the de�nition of the
Hausdor� dimension, we get another equation

3Dxn = xn+1  4 = 3D  D =
log 4
log 3

= 1, 26186 . . .

This con�rms the visual impression of a curve getting denser rather than longer, ex-
ploding the restraints of one-dimensionality.

The Hausdor� dimension of the middle third Cantor set arises in an opposite but
analogous way.

The dust of each segment of level n fragments into the dust of 2 subsegments at level
n+1, so xn = 2xn+1. On the other hand the dust of xn+1 must be expanded by three
to recover the previous segment length:

xn = 3Dxn+1  3D = 2 D =
log 2
log 3

= 0, 63093 . . .
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Here the Cantor dust fails to be one dimensional but the accumulation remains far
from being zero dimensional.

We look now at the data of the middle third Cantor set from a slightly di�erent but
equivalent point of view.

Proposition 4. Let dn be a segment of dust not removed at stage n from the interval
[0, 1]. Then the limit set of the dn for n→∞ is a Cantor set if and only if

|log (length (dn))| ∝ log n

where an ∝ bn means that the ratio an
bn

is bounded between two positive constants for
n large enough.

Proof. Let ε = length (dn).

Let nε be the level under scrutiny when the segments have length ε. Let D be the
Hausdor� dimension then,

D =
log nε
log 1

ε

 D log
1
ε

= log nε

ε being in�nitesimal log ε < 0, thus

log
1
ε

= − log ε = |log ε|

 D log
1
ε

= D |log ε| = D |log (length (dn))| = log nε

This is the result which was found for the middle third set with nε = 2 and ε = 1
3 , i.e.

D = log 2
log 3 .

Consider now a Cantor set of Lebesgue measure zero, where the removed percentages
are not the same at every stage. Then di�erent limits will apply according to the
sequence of percentages. These limits will have a maximum and a maximum. Then

|log (length (dn))| ∝ log n (1.2)

1.9. Farey fractions

The homotopy classes of simple paths on the torus T 2 are represented by simple
geodesics turning m times around the core and n times around the hole. We shall
let m and n grow so that any irrational number corresponding to an in�nite geodesic
becomes the limit of a sequence of fractions. The Farey fractions produce such
sequences.

Figure 1.19 shows a tessellation of the Poincaré disc generated by the modular group.
The modular group is a subgroup of PSL (2,Z)) whose generators have integer
coe�cients.

This tessellation, discovered by Gauss in a context of number theory, has the inter-
esting property that the vertices of the ideal triangles hit the unit disc in rational
points.
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1.9: Farey fractions

Note that the tessellation can be moved so that one edge of the ideal triangle becomes
a diameter. Then the union of two adjacent triangles forms a 1-punctured torus.

Each fraction is obtained from its both neighbours by the peculiar Farey addition:

p+ r

q + s
=
p

q
⊕ r

s

for any p, q, r, s ∈ Z

Two neighbouring fractions ful�ll the relation: ps− rq = 1.

The de�nition of a Farey sequence is as follows:

De�nition 2. The Farey sequence of order n lists in order of increasing size all
completely reduced fractions between 0 and 1, which have denominator ≤ n.

0�1

1�4 1�3
2�5

1�2

3�5

2�3

3�4

1�1

Figure 1.19.: Tessellation by modular group

So far p, q, r, s ∈ N there is a well known very simple algorithm for computing the
sequence based on the property ps− rq = 1. It will return for example:

farey (5) = {0, 1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
, 1}

To complete this, we have written an enlarged algorithm Farey_play which gives the
neighbours of any Farey fraction without computing the whole sequence and returns
a sequence of fractions which approximates a given irrational number < 1.

Let us �nd as an exercise the sequence of Farey fractions for sin π
4 =

√
2

2 with precision
10−4. The return is the approximation 70

99 together with the sequence:

{0, 1
2
,

2
3
,

7
10
,

12
17
,

41
58
,

70
99
,

29
41
,

17
24
,

5
7
,

3
4
, 1}
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The Farey fractions can be visualized as Ford circles (also known as Farey circle

packing). These are tangent circles touching the real line at points ordered as Farey
fractions. For every fraction p

q , p and q coprime integers, the circle of diameter 1
q2

touches the real line at p
q . These circles can be converted into horocycles in the half

Figure 1.20.: Ford circles

plane hyperbolic model. Joining by geodesical half circles the rational points where
the horocycles hit the real axis at in�nity we get again the once punctured torus made
of two ideal triangles. The corresponding tessellation is what we already saw in the
disc model.

Let now the generators of the tessellation, say a, b, A = a− and B = b−, be identi�ed
to the edges of the 1-punctured torus. The Farey fractions show how longer and longer
words become aggregated into each other (�gure 1.21 is borrowed from [28, Indra's
Pearls].

Figure 1.21.: Modular tessellation

This motivates why a converging sequence of simple closed geodesics on the punctured
torus does not spread out on the surface. In the contrary the words are encased. Let
for instanceWa be a word ending in a, then the three other edges of the tile,Wab,WaB

and Waa are spanned in between and hit the real axis in neighbouring Farey fractions.

Looking back at the approximation of sin π
4 the fractions of the approximating sequence

induce simple closed geodesics with always more spirals in a narrow stripe.
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Chapter 2.

Grafting across a handle

2.1. Inserting a cylinder into the pretzel

We now endow a pretzel with aMöbius structure, i.e. a structure where generalized
circles (circles and lines) are mapped to generalized circles.

Consider a closed geodesic around a handle. The Möbius structure works as scissors
that enable us to cut the pretzel along the geodesic, so as to paste in a cylindrical
wedge. This wedge is a lune between equidistant curves in the Poincaré disc.

Figure 2.1.: Inserting a graft

This operation is called grafting, suggesting the insertion of a shoot in a branch of
a tree. The inverse operation is pruning, also with a reference to agriculture: a
cylinder is removed instead of inserted. The visualization of grafting is pleasant to the
eye because a blown up tessellation is easy to interpret, whereas pruning de�ates the
tessellation into a messy puzzle of intricate tiles.

This paper is mainly dedicated to both operations of grafting and pruning. The Möbius
matrices push stu� away (grafting) or into itself (pruning). From the point of view of
programming this just means reversing the sign of the angle of the lune, or. . . it only
seems to be so easy, because when pruning you have to get rid of the super�uous stu�,
which is tedious.

An alternative operation consists in using a matrix that lets the geodesic slide against
itself along the cut. This operation was known as a Dehn-twist. Thurston called it an
earthquake, in this particular case.

As grafting is the imaginary counterpart of twisting, it su�ces to extend the matrix in
the grafting resp. pruning program. No further modi�cations are required to visualize
earthquakes. However the tessellation of an earthquake is as messy a puzzle as the
pruned tessellation, because the unit circle S1

∞ is not altered.

Grafting resp. pruning can be combined with twisting into a complex earthquake, see
[22, Mc Mullen]. This is again easiest to program : replace a matrix by a multiplication
of two matrices.
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Chapter 2: Grafting across a handle

2.2. Cutting across a handle

Proceeding step by step with the target of in�nite simple geodesics running wildly
across the pretzel, we start with the simplest case of the geodesic crossing a handle.

Lifting up to the universal cover, the image of the path must be a line crossing a
generator, say the pair a1/A1, orthogonally and through all adjacent octagons.

We use the fact, that two ultraparallel lines in the disc have a unique common perpen-
dicular (we shall prove this soon). Figure 2.2 shows tiles with the geodesic across two
paired edges. For a better sight we have moved the tessellation, so that one geodesic
is a diameter.

Figure 2.2.: Closed geodesic around a handle

Due to the symmetry against the real axis the perpendicular through the three adjacent
octagons must be one and the same line. It follows by induction, that the perpendicular
crosses all octagons throughout the tessellation.

We now recenter the octagon around the origin and consider the perpendicular through
the pair a1/A1. On the pretzel the rims of the strip lie equidistant to the cut, as a
result of a Möbius transformation pushing away in one direction, so as to form what
we call a lune. Lifting this up, the side of the lune will be the equidistant curve to the
orthogonal geodesic. A curve equidistant to a line in the disc is an arc of an Euclidean
circle with the same endpoints as the line.

To �x this lune numerically we need the Möbius transformation mapping the border
of the lune. To de�ne the arc we then choose three points, the endpoints of the
perpendicular and their midpoint, which we want to map to an arc with the same
endpoints and a free to move midpoint, so as to open the lune at please.

We could of course take any point at a given hyperbolic distance of the cut, the
midpoint is only easier to handle with (for graphic purposes we sometimes use the
diskgeometry instruction giving the Euclidean midpoint).

To avoid a lot of computing between Euclidean an hyperbolic distances for any choice
of the distance, we shall measure distance by the opening angle α of the lune, an easy
to visualize parameter we can then vary at please. Due to conformality Euclidean and
hyperbolic angles are the same.
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2.2: Cutting across a handle

2.2.1. The opening angle of the lune

The hyperbolic distance between the rims of a lune is constant throughout the lune
but not the Euclidean distance that depends on where the lune lies in the disc and
where the distance is measured along the lune. We must therefore characterize the
opening length by its angle which determines alone the lune uniquely.

Proposition 5. The hyperbolic distance δ from a geodesic to an equidistant curve is
in one to one correspondence with the opening angle α of the lune.

Proof. M being the Möbius pushing map, let r be the Euclidean midpoint of the arc
joining p and q, M (r) its image.

-1 0 1

p

q

r

MHrL

a

b

MH0L

Α

Α

Α

Figure 2.3.: Angle of the lune as distance

The Möbius transformation

z 7→ (−z + r) (p− q)
(p+ q − 2r) z − 2pq + r (p+ q)

maps the arc (p, r, q) to (−1, 0, 1), preserving α and the hyperbolic distance δ :=
dH (r,M (r)) = dH (0,M (0)).

Let R be the radius of the arc (−1, 0, 1), then R = 1
sinα and |a| = R cosα = cotα.

Let d := |M (0)| be the Euclidean distance corresponding to the hyperbolic δ

d = R− |a| = 1
sinα

− cotα = tan
α

2

This gives the value of α for the hyperbolic distance δ

δ = 2 tanh−1 tan
α

2
 tan

α

2
= tanh

δ

2
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Chapter 2: Grafting across a handle

So α is related to δ through

α = 2 tan−1 tanh
δ

2
(2.1)

2.2.2. Construction of the common perpendicular

We stated that two ultra-parallels have a common perpendicular along which we make
a cut. We now give the construction of this perpendicular, which will also prove its
existence.

Theorem 4 (common perpendicular). Two geodesics have a common perpendicular,
if and only if they are ultra-parallel. This common perpendicular is then unique.

Proof. In the Poincaré disc two geodesics that are not ultra-parallel cannot have a
common perpendicular. Otherwise both geodesics would form with their perpendicular
a triangle with two right angles and a third angle of at least 0◦ (when they are parallel),
which is impossible.

Assuming now the existence of a common perpendicular for two non intersecting
geodesics, it must be unique. Otherwise both perpendiculars would form either a
rectangle if they do not intersect or two triangles with two right angles. This is im-
possible too.

In the special case, where the segments joining the endpoints of two geodesics are
parallel, the diameter orthogonal to them is the common perpendicular.

In all other cases we give the construction of the common perpendicular, therefore
proving its existence.

p1

q2
q1

p2

c

t

L L1
L2

Figure 2.4.: Construction of the common perpendicular

The lines p1q1 and p2q2 joining the endpoints intersect in c. The arc of circle centered
in c and orthogonal to the unit circle in t is the common perpendicular. Why?

L is an arc of the circle with center c and radius (c, t), so it is a geodesic. Inversion
in L exchanges p1 with q1 and p2 with q2, as the unit circle is orthogonal to L. The
intersections of L with L1 and L2 are invariant. As there is a unique circle through
three points, the geodesics L1 and L2 are mapped to themselves, which infers that L
is at right angles with them.
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2.3: How does grafting work?

2.3. How does grafting work?

Figure 2.5 shows the common perpendicular λ to the sides a1 and A1. With a graft-
ing angle of 70◦ λ gets moved to the equidistant curve λ̂, which is still a common
perpendicular of the edges but no geodesic any more.

a1

A1

Λ

Λ
`

Figure 2.5.: Edge sliding by grafting

In fact all Euclidean circles through two points form an elliptic pencil. The supports
of a1 and A1 are members of an Apollonian hyperbolic pencil orthogonal to the family
of equidistant curves. Therefore the transformed of the edges a1 and A1 only glide
along the supports.

This is rather analogous to an Euclidean orthogonal translation, but what looks like
a curvy quadrangle is not a rectangle, because the equidistant curve is no geodesic.
Apart from this, the process of translation is quite the same as when an Euclidean line
segment is moved orthogonally to get a rectangle.

2.3.1. The word problem

The construction of a tessellation makes clear that one can move from any octagon to
any other just by applying to its points the composition of the Möbius transformations
on any path joining both octagons, what we called a word. How can we select such
paths, so that each octagon is characterized by a unique word?

Null-homotopic paths, i.e. paths contractible to a point, correspond to words w = 1.
The problem of deciding whether a given word is equal to 1 is indeed tough. Dehn
called it 1910 the word problem. Novikov proved 1955 that the word problem is not
solvable for some speci�c groups with a �nite number of generators.

Let us try to start from the central octagon and move away with layers of concentric
octagons.

We call the central octagon I2 - meaning the 2 × 2 unit matrix - and call a1, · · · , B2

the eight octagons around it. We then take the neighbouring octagons around each of
the eight vertices and complete the wording.
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Chapter 2: Grafting across a handle

We can construct the next layer, taking care to always select the shortest path starting
from the center of the disc. This is done easily by comparing the lengths of the words.

One advantage of this wording is that we increase step by step the relevant tessellated
area in the disc with words of quite di�erent lengths.

However we get the problem that two paths may be of the same minimal length - see
the dark gray octagons in �gure 2.6.

Figure 2.6.: Redundant moves

This results from the fact that we can trace a path around a vertex, so as to get back
to I2 after eight steps.

Due to a1.B1.A1.b1.a2.B2.A2.b2 = 1 cyclic left shifts give at once 7 other words = 1 :

a1.B1.A1.b1.a2.B2.A2.b2 = 1
B1.A1.b1.a2.B2.A2.b2.a1 = 1
A1.b1.a2.B2.A2.b2.a1.B1 = 1
b1.a2.B2.A2.b2.a1.B1.A1 = 1
a2.B2.A2.b2.a1.B1.A1.b1 = 1
B2.A2.b2.a1.B1.A1.b1.a2 = 1
A2.b2.a1.B1.A1.b1.a2.B2 = 1
b2.a1.B1.A1.b1.a2.B2.A2 = 1

Obviously we should not waste time computing such words.

A further nasty implication is that for instance

a1.B1.A1.b1.a2.B2.A2.b2 = 1 a1.B1.A1.b1 = (a2.B2.A2.b2)−1 = B2.a2.b2.A2

or as well a1.B1.A1.b1.a2 = B2.a2.b2 and so on. Conclusion: a single word W = 1
generates a lot of duplications.

In free groups the only allowed words = 1 are the product of an element by its in-
verse, here ai.Ai or Ai.ai and bi.Bi or Bi.bi with i = {1, 2}. the octagon group is
unfortunately not free, hence we have to �ght with the word problem.

Before looking for ways to minimize the duplications, we �rst have to �x an algorithm,
so as to be able to write down all words. We construct such a tree, before considering
redundant branches.
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2.3: How does grafting work?

2.3.2. The tree of words

Before setting up the algorithm, we have to de�ne, when we step out of this merry-
go-round.

Of course we have in all models to eliminate at least the trivial pairing aiAi = biBi = 1.
However it is a speci�c problem of the octagon model that there are eight tiles around
each vertex. The group not being free this implies that too many long words loop
uselessly around vertices. Models with only four tiles around each vertex are much
better in this respect. So we had to �nd a speci�c solution for the octagon.

One way could be to choose words up to a maximal length. This is certainly a good idea
as the number of words of course grows tremendously with the number of letters. This
would however let the tree waste machine time with smallest invisible tiles close to the
border, whereas signi�cant tiles with long words would be missed. Alternatively we can
stop, when the Euclidean distance from the center of any octagon is su�ciently close
to the radius 1 of the disc. This again would require longer words for approaching the
border, but longer words for tiles far from the border means looping uselessly around
vertices.

We found it best to combine both escaping instructions. We got pretty satisfactory
drawings in a reasonable time by escaping when the distance between the origin and
its image is over 0.999 or the number of letters is over 7. So we come close enough to
the border but limit redundant copies around vertices.

Figure 2.7.: Walking up and down the tree

The idea is to put the 8 letters in cyclic order and create new branches until the break
condition is reached. The last letter under scrutiny being the inverse of the �rst one,
there is an automatic jump back, when the cycle is completed. We examine a word
W the identity at the very beginning and transform the coordinates of the octagon
by the matrix a1. We arrange the letters, so that a1 is opposite to A1, etc.

Turning anticlockwise we numerate the matrices, say a1 = i. Then A1 = i + 4. This
gives us a nice trick found in [28, Indra's Pearls]!

Using numeration modulo 8 we get:
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Chapter 2: Grafting across a handle

A1 = i+ 4 mod 8 = i− 4 mod 8
B1 = i− 3 mod 8
A2 = i− 2 mod 8
B2 = i− 1 mod 8
a1 = i mod 8
b1 = i+ 1 mod 8
a2 = i+ 2 mod 8
b2 = i+ 3 mod 8

We program a loop for k = i − 3 to k = i + 3 and get the words we are seeking for,
whereas a1A1 = 1 generates the escape out of the loop. Using recurrence we are in a
position to go up the tree until the escape instruction is reached and then climb down
to the previous node.

The words of 1 and 2 letters can be extracted and put at the beginning of the list.
All the words are reduced words (no trivial cancellations). All octagons can be drawn,
some of them are duplicates due to redundancy of the wording but reasonably few.

2.3.3. How to solve the word problem

Our ambition is not to solve the world problem, only to draw pictures �ne enough for
human eyes, this in a reasonable computing time. But a re�nement would possible.

[28, Indra's Pearls] states that all Kleinian groups are automatic groups and there
is a program KBMAG by Holt constructing a FSA (Finite State Automaton). An
automaton is a table stating for the relevant word endings what happens when mul-
tiplied from the right by each generator: either a break instruction or a link to a simpler
ending. Such a table is easy to insert in the program but unfortunately as the Indra's
Pearls authors write: even with 2 generators and the simple relation (abAB)2 = 1 it
is still a substantial task to work out a suitable automaton.
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Chapter 3.

Tessellating with the octagon

3.1. Constructing the octagon

The instruction RegPoly
[
8, π4

]
of our package diskgeometry returns immediately the

vertices of a regular octagon with angle π
4 . We have computed exactly the edges of the

octagon and the generators in order to save all data in a nutshell without rounding
errors. Of course this exact calculation has anecdotic character, we did it more for fun
than for practical use.

3.1.1. Computing the vertices of the octagon

Figure 3.1.: Measuring the octagon

A hyperbolic triangle is uniquely de�ned by its three angles (up to a hyperbolic move).
We turn the octagon so that both vertices of an edge are conjugated complex numbers.
The midpoint of the edge lies then on the real axis.

As sin π
4 = cos π4 =

√
2

2 the trigonometric functions can be entered exactly.

We use two well known hyperbolic cosine formulas:{
sinh a
sinα = sinh b

sin β = sinh c
sin γ

cosh c = cosα cos β+cos γ
sinα sin β

Rotating through π
8 the �rst edge has endpoints

(
1
4√2
, 0
)
and

(
1
4√8
, 1

4√8

)
and midpoint(

1
4√8
, 1

2
√
−4+3

√
2

)
.
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Chapter 3: Tessellation from the octagon

The other edges follow using the matrix 1
2

(√
2 +
√

2 −
√

2−
√

2√
2−
√

2
√

2 +
√

2

)
for rotating

through π
4 .

3.1.2. Computing the generators

We have obtained a new octagon, when �rst inverting the edges A1 along the line L
to get a1 and then inverting in A1. Three points (two vertices and the midpoint of the
edge) are related by a Möbius transformation, which we give determinant = 1.

With α := − (1 + i)
(

1 + 1√
2

)
and β := − 1

4√2

(
1 +
√

2− i
)
we obtain:

a1 =
(
ᾱ −β̄
−β α

)
b1 =

(
ᾱ −β
−β̄ α

)
a2 =

(
ᾱ β̄
β α

)
b2 =

(
ᾱ β
β̄ α

)

A1 =
(
α β̄
β ᾱ

)
B1 =

(
α β
β̄ ᾱ

)
A2 =

(
α −β̄
−β ᾱ

)
B2 =

(
α −β
−β̄ ᾱ

)
We �rst computed A1. Then B1, A2, B2 follow by conjugation, i.e. rotating the homo-
geneous coordinates to coincide with A1, applying the Möbius transformation A1 and
rotating back. We then used that ai is the inverse Matrix of Ai (and bi is inverse of
Bi) as it is the same edge, i.e. the transformations on both sides must be inverse of
each other.

All the generators are expressed in α and β (as de�ned above) and their complex
conjugates. They all have the same trace Re (α) = −2−

√
2 < −2.

Such moves are called hyperbolic and have two �xed points. They are conjugate to
z 7→ kz for a real k > 1, which means that they are scaling maps. Conjugation
corresponds to a coordinate change on the Riemann sphere, it gives a di�erent point
of view but the dynamic behavior is the same.

Poincaré established in 1882 that the automorphisms of his disc, i.e. the Möbius

transformation leaving the unit circle invariant, must be of the form

(
u v
v̄ ū

)
for

u, v ∈ C.

Proposition 6. The matrices
(
u v
v̄ ū

)
with u, v ∈ C form a subgroup of SU2 with

real trace.

Proof. : Let G =
{
M ∈ SU2 |M =

(
p q
q̄ p̄

)
, p, q,∈ C

}

• M,M ′ ∈ G  MM ′ ∈ G because

(
p q
q̄ p̄

)(
p′ q′

q̄′ p̄′

)
=
(
pp′ + qq̄′ pq′ + qp̄′

q̄p′ + pq′ q̄q′ + pp′

)
has real trace.

• M ∈ G M−1 ∈ G because M−1 = 1
detM

(
p̄ −q
−q̄ p

)
has real trace.

So this is a group. We can tessellate the disc by composing such matrices to words.
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3.2: Cutting along a geodesic

3.2. Cutting along a geodesic

Take an octagon mapping a pretzel and cut along the common perpendicular across
two identi�ed edges. This is a closed geodesic crossing the edge orthogonally.

Figure 3.2.: Earthquake on the tile

Figure 3.2 shows a rim of the cut gliding along the other rim. This is the insertion of
a Dehn twist which W.P. Thurston calls picturesquely an earthquake. The Möbius
transformation doing the job leaves both the unit circle S1

∞ and the closed geodesic
invariant. Here we used the Möbius transformation, which �xes −1 and 1 and sends
the origin along the real line to tanhϕ for some angle ϕ. The transformation was
applied only on the part of the octagon above the geodesic.

Figure 3.3.: Grafting on the tile

Figure 3.2 like �gure 3.3 was made with the program Bubble_Graft_octo. The latter
shows a cylinder inserted between the rims of the cut pushing away the region above
the geodesic, i.e not only the geodesic but the upper part of the Poincaré disc too. This
operation is called grafting. Its counterpart is pruning, when a cylinder is removed.
The question arises whether this new disc still has an hyperbolic structure and what
structure can be given to the lune. We shall study metric matters in the next chapter.
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Chapter 3: Tessellation from the octagon

3.2.1. Tessellating with the modi�ed tile

Figure 3.4.: Grafted tiling

Figure 3.4 was made with the program Bubble_Graft_octo.

Figure 3.5.: Pruned tiling

Figure 3.5 was made with the program Bubble_Prune_octo.

Having computed the generators the temptation arises to begin tessellating before new
tailoring the fundamental tile. This proves very soon to be a bad idea. The proper way
is to �rst construct the new fundamental tile, before computing anew the generators
according to what happened with the tile.

To tailor the new tile the �rst step is to cut the original one into domains bordered by
the octagon and the geodesic. In the present case there is one part of the octagon under
the geodesic which will remain una�ected and the other part above where something
will happen.
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3.2: Cutting along a geodesic

This domaining of the tile will also be used later on, when the closed geodesic will
have several leaves.

The �rst reason for this modus operandi is to take into account in which order the
pieces of the puzzle get moved. Once the decomposition of the puzzle has been de�ned
the moves are hierarchized : choose �rst the domain which is not a�ected by the moves
of the others, then the domain which is only a�ected by the move of the �rst one, etc.

The second reason is that the geodesic is a single line whereas the lune created by
pruning has two rims. With earthquakes or pruning there is no lune, but the segments
on the support are not the same. Pruning requires one more (tedious) operation : the
pruned o� stu� must be cut away at the very beginning.

After the tile has been retailored and the generators tuned in accordingly, tessellating
uses the same list of words, thus exactly the same instructions, as were used for the
original tile.

3.2.2. An earthquake on the octagon

From the point of view of visualization the earthquake is quite ungrateful an operation.
The problem, so to say, is that the boundary of the Poincaré disc shows no changes.
The best we could achieve was to �ll in the fundamental tile with color. Alternatively
the coloration could be extended to all tiles but the small improvement is not worth
the longer computing time.

The Poincaré disc remains round as ever, the metric is still everywhere the Poincaré
metric of Gaussian curvature -1. Only on the geodesic itself the metric is unde�ned.
In fact twice the same geodesic is translated along itself.

Figure 3.6.: An earthquake on the octagon

Figure 3.6 was made with Bubbles_Equake_octo.
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3.2.3. Grafting and pruning on the Riemann sphere

The same angle of π3 has been used for both �gures 3.4 and 3.5. A close look reveals
that the nooks and crannies seem to agree together. . . and they really do!

The reason for this becomes clear when we transport the Poincaré disc onto the Rie-
mann sphere CP 1. Then there are two discs. The interior disc is centered on the origin
and the exterior disc centered on the point ∞. Grafting pushes outwards the border
of the inner unit disc whereas pruning pushes inwards into the outer disc. The fractal
limit set is the limit curve of both tessellations.

Figure 3.7.: Grafting and pruning are complementary

Figure 3.7 - made with Bubble_Prune_octo - was obtained easily by inverting the
points of the grafting map against the unit circle. It reveals how the limit set gets
pinched in.

This idea was originated by Benoit Mandelbrot as he proved that the curve de-
picting the limit set of touching Schottky circles presented by Fricke and Klein [13,
�g. 156] is a misleading simpli�cation. He created the tool of sigma-discs revealing a
very intricated limit set. [28, Indra's Pearls] also use this idea.

The octagon model is not really appropriate for visualizing the limit set of grafting and
pruning. This is because the non free group with 8 octagons around a vertex infers
too many duplicates, thus a long computing time when approaching the limit set.
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3.2: Cutting along a geodesic

The program Pretzel_Pruning_tess using the dodecagon model returns �gure 3.9
which is a zoomed extract of the limit set of the tessellation of �gure 3.8.

Figure 3.8.: Grafting and pruning with the dodecagon

Figure 3.9.: Zooming in the limit set
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Chapter 3: Tessellation from the octagon

3.2.4. Bubbles on bubbles

Instead of the tessellation the pictures 3.10 and 3.11 show the surrounding Poincaré
circles which the tessellation �lls in. Bubbles swell out riding on bubbles (Thurston
speaks of Mickey Mouse ears) in the grafting picture which correspond with the erosion
acted by pruning. This might give a better idea of the limit set.

Figure 3.10.: Grafted discs

Figure 3.11.: Pruned discs

3.2.5. The maximal angle for pruning

Is is a general phenomenon that the angle of grafting or pruning is bounded. In the
end in�nite geodesics do not allow any pruning or grafting any more, as we shall see.
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3.2: Cutting along a geodesic

With the 1-leaf closed geodesic around the handle there is a lot of room for grafting
or pruning, but there is a limit in this case too.  

Figure 3.12.: Near the limit

Picture 3.12 shows that we can push down the edge b1, whose endpoints glide along
the identi�ed edges a1 and A1. The same happens when grafting, it is a consequence
of the Appolonian properties.

We can push until b1 will kiss the pair (a1, A1). Then the tile would become discon-
nected, i.e. it would be no tile any more.

The limit angle for pruning happens to be α ≈ 11
29π.
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Chapter 4.

The metric of grafting and pruning

As we remarked twisting preserves the hyperbolic metric but the lunes of grafting or
twisting are moves which a�ect the metric. We want to study the changes. First we
show that the Gaussian curvature is -1 for any radius of the Poincaré disc.

4.1. Hyperbolic metric in the disc

ds
R
Α

Α

a

p

Ρ

Figure 4.1.: Computing the metric

Let the smaller circle be the Poincaré disc of radius R. The arc inside the disc sup-
ported by the larger circle of radius ρ is an equidistant curve at a constant hyperbolic
in�nitesimal distance ds from the real line. Let a be the length of the segment under
the vertical line supporting ds.

As hyperbolic moves preserve distances, all geodesics are conjugated, so there is no
loss of generality to interpret the diameter as the image of any geodesic in the Poincaré
disc.

Consider a point p on the diameter. Let dŝ be the preimage of ds on the hyperbolic
plane measured through the angle α :

dŝ = α ≈ sinα =
R

ρ
 ρ =

R

dŝ

It follows with the secants theorem (R− p) (R+ p) = ds a.
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Chapter 4: The metric of grafting and pruning

It is easy to verify : a = 2
√
ρ2 −R2 + ds. Thus for ds→ 0, a→ 2ρ (as ρ→∞) :

R2 − p2 = (R− p) (R+ p) = 2ρ ds = 2
R

dŝ
ds dŝ =

2R
R2 − p2

ds

For a point z conjugated to p, i.e. which was sent to p by a hyperbolic move with
|z| = p :

dŝ =
2R

R2 − |z|2
(4.1)

is the metric of a Poincaré disc of radius R.

Consider on D2 an integration path γ : [0, 1]→ D2 ‖ γ (0) = 0, γ (1) = w.

The length of γ based on the metric is:

L (γ) =
∫ 1

0

2R |γ′|
R2 − |γ|2

dt (4.2)

Proposition 7. Changing to R the unit radius of the Poincaré disc infers a scaling
by 1

R of the argument of the arctan in the distance formula.

Proof. Let γ = r (t) eiφ  γ′ = r′iφ+ ireiφφ′  |γ′|2 = r2 + r2φ′2, then

L (γ) =
∫ 1

0

2R
R2 − r2

√
r′2 + r2φ′2dt ≥

∫ 1

0

2R
R2 − r2

r′dt = 2 arctan
|w|
R

The length from the origin to w is the minimum 2 arctan |w|R . The Möbius transfor-
mation back from the diameter gives the distance of any two points z1 and z2 of the
disc

d (z1, z2) = 2 arctan
1
R

∣∣∣∣ z1 − z2

z̄2z1 − 1

∣∣∣∣

For R = 1 this is the well known distance formula along a geodesic.

4.2. Gaussian curvature of the Poincaré disc

We can expect that when Möbius moves send circles to circles with a di�erent radius
the hyperbolic structure within the circle is preserved. We just check this.

Proposition 8. The Gaussian curvature is still K = −1 when the Poincaré disc has
radius R.

Proof. We consider a small disc around the origin.

For z = x+ iy in R2 apply the factor λ (x, y) := 2R
R2−(x2+y2) on the metric, then

dŝ = λds = λ
√
dx2 + dy2

At the origin λxx = λyy = 4
R and λxy = λyx = 0.
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4.3: Inserting a lune preserves geodesics

We know from di�erential geometry that the �rst fundamental form with E =
λxx, F = λxy = λyx = 0, G = λyy characterizes a conformal (i.e. isothermic)
surface due to E = G and F = 0.

The Brioschi formula for Gaussian curvature has for F = 0 the simpli�ed form:

K =
−1√
EG

(
∂

∂x

(
1√
E

∂
√
G

∂x

)
+

∂

∂y

(
1√
G

∂
√
R

∂y

))

Using this and E = G we get (∆ being the Laplacian):

K =
−1
λ2

(
∂

∂x

(
1
λ

∂λ

∂x

)
+

∂

∂y

(
1
λ

∂λ

∂y

))
=
−1
λ2

(
∂2

∂x2
log λ+

∂2

∂y2
log λ

)
=
−∆ log λ

λ2

For λ = 2R
R2−(x2+y2) follows K = −1 at the origin and everywhere as the curvature is

constant.

4.3. Inserting a lune preserves geodesics

What we want to do is to insert a cylinder into the pretzel, i.e. a lune into each of the
in�nitely many octagons of a tessellation. There is fortunately a less awkward method!

Proposition 9. Using an octagon blown up by a lune as fundamental tile is the same
as inserting a lune into each tile of a tessellation.

Proof. When we open a lune of angle α the part of the unit disc beyond the cut is
transformed to a part of a new disc of radius R bordered by an arc circle standing
orthogonally on the other lip of the cut.

Figure 4.2.: Geodesics are preserved

The geodesical arcs of the tessellation, which were orthogonal to the unit disc, are
transformed into new geodesical arcs, orthogonal to the border of the new disc of
radius R by conformality.

47



Chapter 4: The metric of grafting and pruning

Conformality also infers, that the tessellation of the new disc of radius R is made of
regular octagons. The sum of the angles of a triangle de�nes the octagon uniquely up to
a hyperbolic move. As the new octagon has the same angles, triangulating in octants
satis�es that the image is the same regular octagon in the new disc. Triangulating
leads to the analogous result for the displaced part of the octagon.

Due to the new disc radius R < 1 the Euclidean distance is scaled by the factor 1
R in

the arctan of the distance formula, up to the coordinate change of the origin having
been moved to the center of the new disc.

The Gaussian curvature is everywhere constant = −1. This respects also the state-
ment of theorema egregium, that curvature does not change, when distorting a surface
without stretching or shrinking.

4.4. Finding a metric for grafting

We have seen that the bubbling up Poincaré discs all have Gaussian curvatureK = −1.
The lune being some sort of no man's land, the question arises of what happens there
with the curvature. So we want to de�ne a metric for any two Poincaré discs paired
by a Möbius transformation.

We refer in the following to the methodology of R.S. Kulkarni and U. Pinkall in
[19] A Canonical Metric for Möbius Structures And Its Applications.

a

CHBpL

L1

L2

Bp

b

B

FHBL

p

p

0

r

Bp

B

Figure 4.3.: Round balls

Let F be the Möbius transformation opening a lune of angle α. Let B be a round ball,
i.e. an open disc (the unit ball around the octagon at the start).

Let L1 and L2 be the rims of the lune. L1 stands for the geodesic before grafting, L2

supported by B is the maximum grafting allowed (the rim cannot lie outside B). Let
a and b be the points where B,F (B) , L1, L2 intersect. Choose a point p inside the
lune, de�ning a stratum i.e. an arc (a, p, b) and the ball Bp on which (a, p, b) stands
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4.4: Finding a metric for grafting

orthogonally. Every p de�nes an arc (a, p, b) between L1 and L2 corresponding to a
grafting angle α.

The metric is to be de�ned on M := B ∪ F (B).

The part of B underneath L1 can be considered as a bounded half space in a Poincaré
disc, say HB . All the same L2 borders a half space HF (B) in F (B). In both half
spaces one can use the Poincaré disc metric for the ball of the corresponding radius.

Any point p on the lune de�nes a unique disc Bp orthogonal to the arc through a, p
and b.

Letting p wander transversely from L1 to L2, the ball Bp moves from B to F (B),
sweeping along through all of M .

The convex hull of a subset of the unit disc D2 is here de�ned as the intersection of the
complements D2\Bp, where Bp runs with p over all round balls which do not intersect
the subset and are orthogonal to the unit circle.

The arc (a, p, b) touches the boundary ∂M only in a and b (so far p /∈ L1, L2). So this
arc is the convex hull of Bp, noted C (Bp).

According to theorem 4.4 of [19] there is a unique maximal ball Bp such that p /∈
C (Bp). Consequently the arcs C (Bp) form a strati�cation of the lune.

So M is the disjoint union of HB , HF (B) and the family of arcs �lling the lune:

M = HB ∪
◦⋃

p∈lune

C (Bp) ∪HF (B)

We can use a and b as pivots in order to work on the sphere S2\ {0,∞} ∼= C\ {0}
which is the topological cylinder S1 × R.

On the right of �gure 4.3 a Möbius transformation sends a and b to 0 and ∞, so that
the transformed of Bp is an open half space in E2. The same applies to B. We take
B such that x1 > 0 and Bp is another line through the origin, their angle being α due
to conformality.

Due to conformality p lies on the perpendicular to Bp at a distance r of the origin.

Let z be the coordinate of the image of p. We identify the half space bounded by Bp
which contains p with C\ {0}.

Let gBp := gC\{0} be the metric of this half space and ĝBp := gC/z 7→z+2πi be the metric
on the cylinder.

Proposition 10.

gBp = |d log z|2 =
∣∣∣∣dzz

∣∣∣∣2 =
|dz|2

|z|2
=

1
r2
dz2

is a metric for the ball.

Proof. One can readily check that the axioms for metrics apply.

We claim that the mapping C/z 7→ z + 2πi→ C\ {0} is an isometry.

Let r be the distance of p from the origin in the mapping where the cusps a and b are
sent to 0 and ∞.
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Chapter 4: The metric of grafting and pruning

For a tangent vector X ∈ TpC\ {0} we have gBp (X,X) = |(dp log) (X)|2.

Due to dp log being the inverse function of dp exp, we get gBp (X,X) = ĝBp

(
X̂, X̂

)
for the vector X̂ ∈ C/z 7→ z + 2πi pulled back from X. This is an isometry.

We use now the exponential function exp : C/z 7→ z+ 2πi→ C\ {0} to pull back gBp
from the �at C\ {0}, so as to de�ne ĝBp on the cylinder C/z 7→ z + 2πi.

Consider w ∈ C/z 7→ z + 2πi. The di�erential map of the exponential function being
the exponential function itself we get:

ĝBp = exp∗ g = |(d log) (dew)|2 =
∣∣∣∣d (dew)
dew

∣∣∣∣ =
∣∣∣∣ewew dw

∣∣∣∣2 = dw2

So the pulled back ĝBp is an Euclidean metric, i.e. C/z 7→z+2πi with this metric is �at.

The isometry implies that gBp and ĝBp are �at metrics. So g = 1
r2 |dz|

2
is a �at metric

for all points p ∈ C (Bp).

p

r

L1

L2

Bp

B

FHBL

1

y2
Èdz 2

1

x2
Èdz 2

1

r2
Èdz 2

Figure 4.4.: Metric across a graft

The half space B bordered on the left by L1 can be given the classical hyperbolic
Poincaré metric 1

Im(z)2
|dz|2 of constant curvature K = −1, which is related to the

disc B by the inverse Möbius transformation sending 0 and ∞ back to a and b. All
the same the half space F (B) bordered by L2 gets this half space metric, which is
then pulled back to the disc. So both discs B and F (B) receive metrics of constant
curvature −1. Only the radii di�er, the curvature remains the same. Of course the
radius has to be taken into account to �x the metric in all the discs.

The rim L1 of the lune is as well a geodesic of the half plane as the line on the
lune joining p ∈ C (B) to the origin. So the transition in L1 is smooth. The same
consideration applies to the other rim of the lune L2. So the metric function is smooth
everywhere, although the curvature is �at on the lune but constant −1 elsewhere.

Thus sending the cusps a and b to 0 and ∞ gives a smooth metric function for all
p ∈ M which can be pulled back by the inverse Möbius transformation. This proves
the

Proposition 11. The metric function gBp = 1
r2 |dz|

2 is �at within the lune and of
constant curvature −1 outside. This metric function propagates to the whole grafted
cover, i.e. to the images generated by a tessellating Möbius transformation.
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4.5: Finding a metric for pruning

4.5. Finding a metric for pruning

Let us add a point∞ to C so as to obtain the Riemann Sphere CP 1. There the Poincaré
disc is bordered by a circle. The outside of the circle is another Poincaré disc, which
can also be tessellated with the analogous tessellation, this comes up to exchanging 0
and∞. When grafting the interior of the circle is blown up, pushing away the exterior
which gets crushed. This counterpart of grafting is pruning. Instead of inserting a
cylinder into the pretzel along a closed geodesic a cylinder is removed.

Α�2

L1

L2

Bp

B

FHBL

p

p

Α�2

Φ
r

r

R
mΡ

R
L1

L2

Bp

B

FHBL

Figure 4.5.: Pruning lunes

We exchange 0 and ∞ and examine what happens. The upper part is unmoved. The
cut L1 is pushed up to L2, the rest of the circle as well. B and F (B) form a large
lune containing the inner lune bordered by L1 and L2.

Any point p on a stratum of the small lune de�nes a unique circle orthogonal to all
the arcs through the cusps (= Apollonian pencil). This de�nes again the unique circle
Bp centered on the bisector of α and tangent to the lips of the small lune.

In picture 4.5 we send the cusps to 0 and ∞ (as for grafting the schematic picture at
in�nity does not reproduce the same stratum nor the same opening angle).

• Let ϕ be the angle �xed by p.

• Let m be the midpoint of the circle Bp, R its radius and ρ the distance from p
to m.

• Let r be the distance from p to the origin.

The circle Bp with radius R gets as a Poincaré disc the hyperbolic metric (4.1):

gBp =
4R2

(R2 − ρ2)2 |dz|
2

Consider alternatively the metric

gD(1) =
4 |dz|2(

1− |z|2
)2
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Chapter 4: The metric of grafting and pruning

for the disc of unit radius.

With the mapping z 7→ z/R we get for the disc D(R) of radius R:

gD(R) =
4
∣∣dz
R

∣∣2(
1−

∣∣ z
R

∣∣2)2 =
4R2(

r2 − |z|2
)2

We chose the bisector as the real axis, so that m ∈ R+. We write p = reiϕ.

By easy trigonometry R = r tan α
2 and m = r

cos α2
enable to compute:

ρ2 = |p−m|2

=
∣∣∣∣reiϕ − r

cos α2

∣∣∣∣
=
(
reiϕ − r

cos α2

)2

+ r2 sin2 ϕ

=
r2

cos2 α
2

(
cos2 α

2
− 2 cosϕ cos

α

2
+ 1
)

We put ρ2 in the formula for the metric:

gBp =

(
2r tan α

2

r2 tan2 α
2 −

r2

cos2 α
2

(
cos2 α

2 − 2 cosϕ cos α2 + 1
))2

|dz|2

=

(
1
r

sin α
2 cos α2

sin2 α
2 − cos2 α

2 + 2 cosϕ cos α2 − 1

)2

|dz|2

=
(

2
r

sin α
2 cos α2

−2 cos2 α
2 + 2 cosϕ cos α2

)2

|dz|2

=
1
r2

sin2 α
2(

cosϕ− cos α2
)2 |dz|2

gBp is positive and �nite so far ϕ 6= α
2 . The other metric axioms are also respected.

With the notation λ (α,ϕ) := sin α
2

cosϕ−cos α2
the metric becomes

gBp =
1
r2
λ2 |dz|2

Let g =
(
E F
F G

)
=
(
g11 g12

g21 g22

)
be the �rst fundamental form for a metric and ds be

the line element. Then

ds2 =
(
du dv

)(E F
F G

)(
du
dv

)
= E du2 + 2F dudv +Gdv2

For a real function µ and a conformal metric ds2 = µ2
(
du2 + dv2

)
the comparison

with E du2 + 2F dudv + Gdv2 implies E = G = µ2 and F = 0. But F = 0 simpli�es
the Brioschi formula for the Gaussian curvature:

K =
−1

2
√
EG

(
∂

∂u

(
Gu√
EG

)
+

∂

∂v

(
Ev√
EG

))
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4.5: Finding a metric for pruning

E = G = µ2 yields a further simpli�cation

K =
−1
µ2

(
∂

∂u

(
1
µ

∂µ

∂u

)
+

∂

∂v

(
1
µ

∂µ

∂v

))
=
−1
µ2

(
∂2

∂u
logµ+

∂2

∂v
logµ

)

Let ∆ be the Laplacian, then K = −∆ log µ
µ2 (alternatively: K = −∆u

e2u for µ = eu).

Here : µ = λ
r  K = −r2

λ2 ∆ log λ
r .

Choosing for p polar coordinates {r, ϕ} the formula for the Laplacian becomes:

∆ =
∂2

∂r2
+

1
r2

∂2

∂ϕ2
+

1
r

∂

∂r

Now we can compute:

∂

∂r
log

λ

r
= −1

r
 

∂2

∂r2
log

λ

r
=

∂

∂r

(
−1
r

)
=

1
r2

∂2

∂ϕ2
log

λ

r
=

∂

∂ϕ

(
sinϕ

− cos α2 + cosϕ

)
=

cosϕ
− cos α2 + cosϕ

+
sin2 ϕ(

− cos α2 + cosϕ
)2

Hence

∆ log
λ

r
=

1
r2

+
1
r2

(
cosϕ

− cos α2 + cosϕ
+

sin2 ϕ(
− cos α2 + cosϕ

)2
)
− 1
r

1
r

=
1
r2

(
cosϕ

− cos α2 + cosϕ
+

sin2 ϕ(
− cos α2 + cosϕ

)2
)

Hence K = −−r
2

λ2 ∆ log λ
r  

K = −
r2
(
− cos α2 + cosϕ

)2
sin2 α

2

1
r2

(
cosϕ

− cos α2 + cosϕ
+

sin2 ϕ(
− cos α2 + cosϕ

)2 +
1
r2

)

For ϕ 6= ±α2 this is:

K = − 1
sin2 α

2

(
cosϕ

(
− cos

α

2
+ cosϕ

)
+ sin2 ϕ

)
= − 1

sin2 α
2

(
1− cos

α

2
cosϕ

)

Near to both rims of the lune, i.e. for ϕ→ ±α2 , we get K → −1. For ϕ = ±α2 , we are
allowed by continuity to set K = −1 as the curvature is everywhere −1 outside the
lune.

We write this result as
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Chapter 4: The metric of grafting and pruning

Proposition 12. The curvature K (ϕ, α) crosses smoothly the rims of the lune, al-
though the metric

gBp =
1
r2

sin2 α
2(

cosϕ− cos α2
)2 |dz|2

becomes in�nite.

For a given α > 0 the gradient ∂K
∂ϕ = − sinϕ

tan α
2 sin α

2
vanishes for ϕ = 0. Then there is

for all α a maximum Kmax = cos α2−1

sin2 α
2

> −1. This Kmax is a monotonous decreasing

function of α with maximum of −0, 5 for α→ 0. This proves the

Proposition 13. The range of local curvature is

−1 ≤ K ≤
cos α2 − 1

sin2 α
2

< −0, 5

Gathering results

• Inside the lune the hyperbolic conformal metric gBp = 1
r2

sin2 α
2

(cosϕ−cos α2 )2 |dz|2 is a

function of the angle ϕ for any point with polar coordinates (r, ϕ). The curvature
is −1 ≤ K ≤ cos α2−1

sin2 α
2
< −0, 5.

• Outside the lune the Poincaré disc metric has constant curvature K = −1.

• The curvature −1 ≤ K ≤ cos α2−1

sin2 α
2

< −0, 5 of B ∪ F (B) remains smooth when

crossing the lune.

Summary of this chapter

Using a Möbius transformation as geometric scissors we cut a pretzel along a closed
geodesic and insert a stripe widening out the geodesic. The boundary of the universal
cover becomes a fractal due to the lunes created in each tile by the insertion of the
stripe.

This fractal cover was given a metric and the curvature was established.

When grafting on the Riemann sphere the blown up tessellation has constant negative
curvature −1 but for the lunes which are Euclidean.

The metric changes smoothly when crossing a lune, whereas the curvature jumps
abruptly from −1 to 0.

From the point of view of what happens in the exterior disc of the Riemann sphere,
exchanging 0 and ∞ describes pruning as a crushing. Outside the lens the curvature
is still constant = −1. Crossing into the lune the conformal metric has a singularity
whereas the curvature changes smoothly in the range −1 ≤ K < −0, 5.
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Chapter 5.

The harlequin model

The octagon model hides a secret jewel that enables us to visualize the inner life of
the pretzel.

Figure 5.1.: Checked octagon

The Euler characteristic χ discloses the area of an orientable closed surface S as
−2πχ (S). For genus g > 1 follows χ = 2 − 2g, thus the area of the pretzel is 4π.
For a triangle the area is the complement to π of the sum of angles. The triangle
2-3-8, say T , has area π−

(
π
2 + π

3 + π
8

)
. Consequently the pretzel has exactly 96 times

the area of the triangle T . It is marvelous that these 96 triangles can actually be
arranged to pave the octagon.

Take an octagon with angle 2π
3 and cut it into 8 quadrilaterals, each made of two

triangles T glued along their hypotenuses. These are 8 quadrilaterals. Glue then a
half octagon along each edge of the central octagon. These are 32 new quadrilaterals.
Complete with 8 quadrilaterals to get the vertices.

This is the decomposition of the octagon into 48 quadrilaterals, i.e. 96 times one and
the same triangle 2-3-8.

This nearly anecdotic property delivers when tessellating a quite impressive feeling for
the inner structure of the pretzel. Using undecorated pretzels failed to reveal what
happens inside the octagon.

5.1. Tessellating with the checked tile

The octagon tessellates the disc, thus the triangle 2-3-8 also tessellates the disc. This
seems to be an elegant way to construct the tiling with 2-3-8 triangles, but obviously
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Chapter 5: The harlequin model

it is still easier to use the small octagon! Just enter ShowXLTess[8,3] and our program
diskgeometry returns the same tessellation, as obtained with the larger octagon. The
tessellation using the 16 triangles of the 2π

3 -octagon is the same as with the 96 triangles
of the π

4 -octagon.

Both octagons have the same universal cover. This makes clear why the smaller oc-
tagon dominates so much the visual impression. Still worse: it is extremely di�cult
to locate the larger octagon!

The good reason, why we prefer using the more complicated polygon is that we do not
only want to show a tessellation but primarily to study the pretzel. The larger octagon
is the so called standard fundamental polygon. Using such a 4g-gon (presently genus
g = 2) has many advantages, for instance:

• All vertices are identi�ed to one and the same,

• The edges can be marked o� in pairs, with only one relation
a1b1A1B1 · · · agbgAgBg = 1,

• The edges are simple closed geodesics,

• The area is 4π (g − 1).

When looking at the tiling the observer gets the feeling of �oating in hyperbolic space
over the hyperbolic plane. Staring at the horizon lets sense how it slopes away towards
in�nity.

The idea of this harlequin pavement was initiated by H.S.M. Coxeter see [9]. This
tiling inspired M.C. Escher to his Circle limit I, where a hexagon is paved with black
and white �shes. This paves the hyperbolic plane with triangles 2-4-6.

5.2. Harlequin earthquake and grafting

Figure 5.2.: Mishandling the harlequin

We must confess that the visualization of an earthquake on �gure 5.2 is not impressive.
The disarranged triangles along the clefts are an improvement of our previous picture
but a sharp look is required.

56



5.3: Weierstrass points

Much more impressive is the visualization of grafting showed on the right and in the
frontispiece.

The program Earthquake_96_tri for twisting and grafting is strictly the same but for
putting in the appropriate matrix. One might be tempted to cut along the line joining
the midpoints of two identi�ed edges, but this is no simple closed geodesic. We used
again the common perpendicular to two identi�ed edges. This is a meticulous work,
as there are cuts transversal to the triangles, but the result is worth the pain. The
lunes are good visible and their e�ect on what is behind is instructive. The program
builds on the algorithm for the plain octagon. Machine time is much longer due to the
48 triangles of the tile that have to be discretized for coloring (the white triangles are
only lines marking the rims of the lunes).

We abstained from illustrating pruning as the result would be almost as messy as with
the earthquake.

5.3. Weierstrass points

We anticipate on a property of non separating simple geodesics : they go through
exactly two so called Weierstrass points. The common perpendiculars to the edges
a1/A1 and b1/B1 live in the same handle of the pretzel. Each must go through two
Weierstrass points. As there are only three points in the handle they must intersect
in one of the three Weierstrass points.

a1

b1 A1

B1

a2

b2A2

B2

Π
�8

Π�4

Figure 5.3.: Weierstrass points on the octagon

We have computed and checked in Weierstrass_octo that the above mentioned point
is a vertex of the triangle 2-4-8. It is also a vertex of one of the harlequin triangles.
The exact ordinate is √

1− 2

1 +
√

2 +
√

2
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Chapter 5: The harlequin model

It su�ces to rotate about π
4 and −π4 get the two other points of the handle. This

means multiplying with ei
π
4 = 1+i√

2
. Then the three points of the other handle follow

by conjugating. All six points lie on a circle, the axis of the hyperelliptic involution.

5.4. Evaluation of the octagon model

We have praised the advantages of this standard model. One weakness is related to
the position of the observer looking at the model.

a1

b1 A1

B1

a2

b2A2

B2

Figure 5.4.: Simple geodesic through two WP

Figure 5.4 shows a simple closed geodesic across the handles obtained from our pro-
gram Geo_Finder_octo. The cyclic word is a1a2b2b2b2. The program recognizes self
intersections and returns their coordinates if there are any.

In this example it is really hard to convince oneself, that the hyperelliptic involution
maps this geodesic to itself, although it must be so.

As Weierstrass points and hyperelliptic involution play an important role in our ana-
lysis of the simple closed geodesics, we shall privilege other models where the observer
is placed in a more favorable position.

Another weakness of the model is that all sides of the tile have the same length. This
could be cured using an irregular octagon, but the decomposition in pair of pants will
enable us varying lengths with more advantages.
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Models for the pretzel

We have used up to now the classical regular octagon for representing the pretzel.
The many symmetries were helpful when computing the tessellation. However these
symmetries allowed only one side length. Further we disliked that eight angles around
a vertex slow down the calculation, the acting group not being free. Bad enough the
rendering of pruning and earthquake were not enlightening.

6.1. Which polygons are suitable for the pretzel?

6.1.1. How to make pictures to tiles

Although it is well known that the fundamental polygon of the torus is either a square
or a hexagon, a compact surface is usually associated with a regular 4g-gon.

Figure 6.1.: A funny model

This must not be. Figure 6.1 shows cogwheels covering a pretzel with dotted lines
representing a 4-leaved closed geodesic. It looks crazy, but it is a model!

From Euclidean geometry we know that the polygonal tile is not inevitably geodesical.
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Chapter 6: Models for the pretzel

This is not speci�c to Euclidean geometry. The �shes of M.C. Escher, e.g. in his
Circle Limit I or Circle Limit I, are hyperbolic. We do not how he did that, presumably
H.M.S. Coxeter gave him a hand. How it might ever be, we give in our program
Hyperbolic_ghosts a recipe how to make a picture from a polygon, which recipe can
be used in the three geometries.

Figure 6.2.: Cut a ghost from a triangle

Take one of the eight triangles which are subtiles of the octagon. Fold it along its axis
of symmetry, so as to obtain two superposed halves. Take any point inside the half
triangle and join it to each of the three vertices. Any (non self intersecting) curves
can be chosen, but it is allowed to also run through the underlying triangle, as the
dots on �gure 6.2 indicate. Finally mirror the three curves against the sides of the half
triangle.

As mirroring preserves area, the developed picture has the same area as the trian-
gle taken from the octagon. The vertices are preserved and the curves �t perfectly
together. Of course the same procedure applies to any closed polygon.

Figure 6.3.: Here is the ghost tile

On �gure 6.3 we just added the mouth and the eyes.

It is intuitively clear and not di�cult to prove, that this ghostful tile can be used with
no change of the tessellating group, as �gure 6.4 con�rms.
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6.1: Which polygons are suitable for the pretzel?

Figure 6.4.: Tessellating ghosts

6.1.2. The side and angle conditions

We shall now of course only use geodesic polygons, as we want to graft, prune and
twist.

We have experienced that it is worth taking several models into consideration according
to what properties are to be visualized.

Thus it is important to �rst identify whether a polygon is suitable for tessellation.

The conditions for a polygon to be a fundamental region of a tiling have been de�ned
by Henri Poincaré and investigated by John Stillwell.

Theorem 5 (Stillwell - Side and Angle Conditions). If a compact polygon Π is a
fundamental region for a group Γ of orientation-preserving isometries of S2, R2, or
H2 (often referred to as side-pairing transformations) then

i) for each side s of Π there is exactly another side s′ = gs with g ∈ Γ,
ii) each set of vertices identi�ed when pairing sides corresponds to a set of corners of

Π with angle sum 2π
p for some p ∈ Z.

Theorem 6 (Poincaré 1882). A compact polygon Π satisfying the side and angle
conditions is a fundamental region for the group Γ generated by the side pairing trans-
formations of Π.

To represent speci�cally a pretzel, a polygon must ful�ll additional conditions.

First requirement: the area of the polygon must be 4π.

This states the global version of Gauÿ-Bonnet:
∫
M
KdA = 2πχ (M) for a variety M

of Riemannian curvature K with area element dA and χ = 2 − 2g being the Euler
characteristic of the genus g. [34, John Stillwell] gives an easy to follow proof not
referring directly to Gauÿ-Bonnet, but using instead the area of the hyperbolic triangle
computed from its angles.
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Chapter 6: Models for the pretzel

The polygon area is then A (Π) = −2πχ (Π) = 4π (g − 1), hence 4π for the pretzel
with g = 2.

Remark. The area being 4π the fundamental tile will be extensive in all models. How-
ever side length and the number of loops around a vertex allow to in�uence the look
of the tessellation.

An n-sided regular polygon Π with a unique angle α decomposes into n hyperbolic
triangles. Each triangle ∆ has area Π - angle sum of ∆. The angle sum of all triangles
centered on the origin is nα+2π, thus the area of the polygon is A (Π) = (n− 2)π−nα.
Now for the pretzel

4π = A (Π) = (n− 2)π − nα α =
n− 6
n

π

A further constraint is that the sum of angles around a vertex be 2π.

We know already that the 8-gon is suitable. What about the candidates among the
regular polygons?

Let #V = nα
2π be the number of vertices of Π and #α be the number of angles around

a vertex. We go through the candidates.

  # #V 

8-gon /4 8 1 

10-gon 2/5 5 2 

12-gon /2 4 3 

14-gon 4/7 7/2 4 

16-gon 5/8 16/5 5 

18-gon 2/3 3 6 

 

The usual 14-gon and the 16-gon fall out as #α is not an integer. We only quote
the 18-gon to show that the list does not end, but we do not intend to further test
polygons with too many sides, involving many generators, thus long computing time.

What about the candidates 10-gon, 12-gon and the pseudo 12-gon which will appear
to be a 14-gon? We have to check whether they ful�ll a further constraint.

6.1.3. The free parameters of the Teichmüller space

Riemann stated 1859 that the isomorphisms classes of compact Riemann surfaces of
genus g ≥ 2 have real dimension 6 (g − 1). This was then proved by Friecke and
Klein and extended by Teichmüller.

Hence we have to expect for the pretzel 6g− 6 = 6 real parameters. We identify these
6 parameters in the octagon-model.
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6.1: Which polygons are suitable for the pretzel?

Since each vertex has two degrees of freedom there is a 16-dimensional space of oc-
tagons. Isometric octagons must have the same structure, so we must deduct the 3
parameters of the Möbius transformation producing the isometry. The 4 pairs of op-
posite edges being glued together must have equal length, so we deduct those 4. All 8
angles around a vertex are equal and sum up to 2π (or equivalently the area must be
4π), so we deduct 1. All vertices are identi�ed to a single point on the pretzel posi-
tioned by 2 real coordinates. Finally we have deducted 3 + 4 + 1 + 2 = 10 parameters
from the 16 at the start. This indeed does leave 6 real parameters.

This result can be extended to surfaces of higher genus. These can be described as 4g-
gon fundamental standard tiles with 8g vertices. 2g paired edges are to be deducted, 3
parameters for the Möbius isometries, 1 for the sum of the angles and 2 for the position
of the identi�ed single vertex. So we deducted 2g + 3 + 1 + 2 from 8g, which leaves
6 (g − 1) degrees of freedom.

Using another polygon may not a�ect the dimension of Teichmüller space. This con-
straint has to be checked.

6.1.4. Checking the 10-, 12- and 14-gons

The usual 12-gon falls out. The 12 sides build a 24-dimensional space. We must deduct
6 parameters for pairing. We know #V = 3 from the table, so 2 × 3 = 6 come away
for the vertices. The Möbius transformation of the isometry takes 3 parameters. To
get 6, only the number of di�erent angles around the vertices is left. It would have to
be 9, which is too much. However we shall see how this can be healed.

The 10-gon seems to also fall out. The 20 sides build a 20-dimensional space. 5
must be deducted for the pairing. #V = 2 infers 2 × 2 = 4 for the vertices. The
obligatory Möbius transformation takes 3. To get 6 we would need 2 di�erent angle
sizes around a vertex. Hence the regular decagon with all sides and angles equal falls
out. However there exists a decagon with equal sides but 2 sizes of angles, which
matches the condition. This is even a very good model, that we shall use later on, as
it well shows the symmetry of the hyperelliptic involution, among other qualities.

There remains the 14-gon. The obvious regular 14-gon falls out. We would have to
deduct from the 28-dimensions 7 pairings, 2×4 = 8 for the vertices, 3 for the isometry.
We would be left with 4 di�erent angles. We need not to check whether this would be
possible, because we have a good replacement.

We take a dodecagon but add a supplementary vertex in the middle of two identi�ed
sides with a �at angle. Then we have a 28-dimensional space. As #V = 4 we deduct
2× 4 = 8. We still have 3 for the isometry. Having two di�erent angles we deduct 2.
This leaves 9 pairing alternatives. As we shall see in the following this really works!
This model happens to be very interesting for visualization. We can prescribe three
length parameters, which creates a great diversity. We shall also decompose the tile
into four colored hexagons, which reveals satisfactorily the e�ects of earthquakes and
pruning.

We found this model not by accident but after having decomposed the pretzel into
pairs of pants.
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Chapter 6: Models for the pretzel

6.2. Decomposition in pairs of pants

Figure 6.5.: Decomposition in pants

As �gure 6.5 suggests any oriented compact surface of genus > 1 can be decomposed
with 3(g - 1) cuts in 2(g -1) pairs of pants. There are several possibilities to position
the cuts but the number of pairs of pants is a topological invariant depending only on
the genus.

Topologically a pair of pants is a sphere minus 3 open holes.

The two pieces of fabric only need to be sewn along the three seams to get a pair of
pants. Each piece, one for the front the other for the back, has 6 edges. Each hexagon
can be again decomposed into two pentagons. Each seam will join two holes.

Figure 6.6.: Tailoring pants

As the pants inherit the hyperbolic structure of the pretzel, lengths can be measured.
So that they match together, the seams must have the same length in each hexagon.
The hexagons are right angled, the seams being orthogonal to the holes.

Hyperbolic geometry provides us with the hexagon suitable for our purpose.

6.3. Geometry of the hexagon

6.3.1. The right angled hexagon

Proposition 14. There is exactly one hyperbolic right angled hexagon with prescribed
alternated side lengths a, b, c.

Proof. Let the lengths a and b be given.
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6.3: Geometry of the hexagon

Trace any support of B, here a vertical h-line. Trace any h-line of given length a
orthogonal to the support of B. Then the support of C is the h-line orthogonal to the
support of a in its endpoint.

A
B

C

d

a

b

c

Figure 6.7.: Geometry of the right angled hexagon

This determines the Euclidean circle d equidistant to C through the given distance b.

Trace the h-line tangent to d, this is the support of A. The common perpendicular to
the supports of A and C determines the edge of length b and the length of C.

The supports of A and B intersect when C is shorter than some C0. Otherwise, i.e.
for C > C0, A and B are ultra parallel, so they have a common perpendicular, this is
the support of c.

This construction is not yet satisfactory, because we have not used c as prescribed! So
we have to examine how c and C are correlated.

When C > C0 gets longer the support of A gets squeezed between the dotted d and
the unit circle, so c moves upwards and gets longer, whereas B gets shorter.

Consider the hexagonal law of sines for all right angled hexagons

sinha

sinhA
=

sinhb

sinhB
=

sinhc

sinhC
 sinh c =

sinhC

sinhB
sinh b

Now b is given, the hyperbolic sine is a strictly monotonous increasing function, C
increases and B decreases, so c is a strictly monotonous function of C. For C = C0�
i.e. when the supports of A and B are parallel, c = 0. So c goes from 0 for C = C0 to
∞ for C →∞. Every value of c occurs exactly once.

Thus we can prescribe any length c, there exists a unique corresponding C. Finding
the construction was not our purpose, but we have proved the existence and unicity
of a right angled hexagon with alternated side lengths a, b, c.

Remark. The law of sines is not enough for computing A,B,C for given a, b, c. The
formula coshB sinh b sinh c = cosh a + cosh b cosh c does the rest. See [2, Alan F.
Beardon] for proofs.
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Chapter 6: Models for the pretzel

6.3.2. Constructing the hexagon

Trace any three ultraparallel geodesics. Completing with the three common perpen-
diculars gives a right angled hexagon.

A B

C

DE

F

t

s b1-s

a2

b3

b2

Figure 6.8.: Constructing a right angled hexagon

The common perpendicular to the edges AB and DE divides the hexagon into two
right angled pentagons.

The pentagons are uniquely de�ned when the length b1 of the hexagon is given. In the
left pentagon trace the perpendiculars to the real and the imaginary axis supporting
t and s. The common perpendicular de�nes the pentagon. Do the same on the right.

Generally this construction of the pentagon supposes that the supports of AF and ED
are ultraparallel. However the hexagon being given the pentagons of course exist and
uniquely.

By hypothesis the lengths b1, b2 and b3 are given. The length a2 in the hexagon as
well as the lengths t and s in the pentagon are computed using well known formulas
of the cosine laws.

Using b1, t and s we obtain the support of BC, ED and AF , hence the common
perpendiculars CD and EF .

A pair of pants being made of two hexagons we shift the hexagon along the real axis.
The Möbius transformation z 7→ eiθ z−az̄−1 exchanges a point a ∈ C with the origin. Here
θ = 0 and a = s. Using the same formula we rotate the half pant through 180◦ around
its midpoint to get the other half (move the midpoint to the origin, turn 180◦, move
the midpoint back). The other pair of pants of the pretzel is obtained by mirroring.

In our package diskgeometry the instruction RightangledHexagon gives directly the
vertices of the hexagon with the given three opposite side lengths.

6.4. Tailoring the pretzel

Figure 6.9 shows how to glue 2 pairs of pants to get a pretzel.
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6.5: Tessellation with the right angled hexagon

Figure 6.9.: Geodesic tailoring of a pretzel

Obviously the holes must have the perimeter on both sides. This gives us 3 of the 6
parameters we are looking for. We can further twist around each hole before gluing.
These are the three missing parameters, provided the seams behave correctly. We
check this.

According to well-known results (e.g. [1, Benedetti]) any loop α in the hyperbolic
structure of a pant can be straightened to the geodesic loop γ with the same endpoints
through a free homotopy. Further this geodesic must be orthogonal to the boundaries
δi. Indeed we can double the pant by gluing it to a copy of itself. This does not alter
the geodesic γ. Should γ not be orthogonal to the boundary, the union of γ and its
copy would be no geodesic, which may not be.

These geodesical loops are our seams. Taking the same lengths for the 3 pairs of edges
to be sewn together implies that the other 3 pairs of edges also have the same lengths
(both hexagons are congruent). This means that the seams separate the boundary of
the holes in equal parts of length δ

2 .

Before examining the e�ect of twisting the legs we �rst make a tessellation varying the
3 parameters of the boundary length.

6.5. Tessellation with the right angled hexagon

Figure 6.10.: Varying side length

There are three tiles in �gure 6.10. On the left the edges have equal length l1 = l2 =
l3 = 1. In the middle l1 = 1, 5, both l2 and l3 have still unit length. On the right
l2 = 1, 7, all three lengths are di�erent. The lengths of the edges in between vary
accordingly but out of our control.
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Chapter 6: Models for the pretzel

To obtain the fundamental tile we take the top left hexagon, rotate it about π around
the midpoint of the edge on the real axis and translate to the right. Then we conjugate
this pair of hexagons (we may not change orientation when tessellating, but we may
construct the polygon to our liking).

Figure 6.11.: Folding the dodecagon

With our notation Gi = g−1
i we see on picture 6.11 the tile with the generators, on

the right the gluing when the upper side is folded down onto the lower one.

This polygon is obviously a dodecagon, but we have numbered 7 generators and their
inverses. The folding shows why this hidden 7th generator is necessary.

Figure 6.12.: Skew tessellation

The 12-gon becomes a 14-gon, a tetradecagon, with two new vertices on the real line,
the vertical pair of edges are supported by the same line. As this 14-gon with a �at
angle is a 12-gon for the observer, we shall speak of the dodecagon model.

The handles have not the same girth at both ends. The edge g1 pairs itself with G1

to a half handle joined to the half handle of g5 paired with G5. The same applies to
the pair g3/G3 associated to g7/G7.
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6.6: Grafting & twisting  loxodromy

The points locate the 4 vertices which we had computed to be required.

With these 7 generators the tile tessellates to the universal cover of the pretzel in �gure
6.12.

The shading uses our instruction �lledPoly. This extension of the instruction Polygon
discretizes the arcs of circle of the polygon by taking the midpoint n times.

6.6. Grafting & twisting  loxodromy

An Euclidean move is the composition of a rotation in one or the other direction and a
translation. Likewise grafting (positive angle), pruning (negative angle) and twisting
in a Möbius structure are the components of what we shall call a Möbius move.

Proposition 15. Grafting, pruning and twisting compose to a Möbius move expressed
through a matrix of PSL (2,C).

Proof. We show the construction, so that tan α
2 be the width of the lune.

When grafting or pruning the opening of the lune is measured by its angle α. To
construct it we move the geodesic supporting the cut onto the real axis.

As �gure 6.13 suggests the distance between the real axis and the equidistant curve is
tan α

2 . We know that the points −1 and 1 are invariant and the image of the origin is
tan α

2 . The Möbius transformation doing this is:

M (α) =
(

cos α2 i sin α
2

i sin α
2 cos α2

)

Α

Α�2-1 10

Figure 6.13.: Loxodromy

When the cut is not supported by the real axis, a Möbius transformation, say T , will
be used to bring the geodesic to the real axis, then the cleaving M (α) is operated,
�nally the geodesic is moved back with T−1. The use of this so called conjugation
T−1M T is to revisit the generators gi, so that they act on the new grafted or pruned
fundamental tile. Computing the new generators may seem to be an easy exercise, but
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Chapter 6: Models for the pretzel

in practice it is often tedious to retrace the action of α on the generators, specially
when the geodesic has not a single leaf like in the present case.

No problem at all occurs with the insertion of a Dehn-twist. In this case tanh ϕ
2 will

be the distance of the slide along the cut. The matrix which leaves invariant i and −i
and moves the origin to tanh ϕ

2 is computed in an analogous way to be :

M (ϕ) =
(

cosh ϕ
2 sinh ϕ

2
sinh ϕ

2 cosh ϕ
2

)
It su�ces to use the product M (ϕ) M (α) to get a formula for all (suitable) α and
ϕ ∈ R.

Due to M (ϕ) ,M (α) ∈ PSL (2,C) follows M (ϕ) M (α) ∈ PSL (2,C). We now cal-
culate it whereby we drop the factor 1

2 , which we will reintegrate at the end. For
simplicity we do not change notations. Let P := M (ϕ) M (α).

P =
(

coshϕ sinhϕ
sinhϕ coshϕ

)(
cosα i sinα
i sinα cosα

)
=
(

cosα coshϕ+ i sinα sinhϕ i coshϕ sinα+ cosα sinhϕ
i coshϕ sinα+ cosα sinhϕ cosα coshϕ+ i sinα sinhϕ

)
=
(

cosh iα coshϕ+ sinh iα sinhϕ coshϕ sinh iα+ cosh iα sinhϕ
coshϕ sinh iα+ cosh iα sinhϕ cosh iα coshϕ+ sinh iα sinhϕ

)
=
(

cosh (iα+ ϕ) sinh (iα+ ϕ)
sinh (iα+ ϕ) cosh (iα+ ϕ)

)
We have used cosh ix = cosx and sinh ix = i sinx.

Reintegrating the factor 1/2 and setting ρ = 1/2 (iα+ ϕ):

M (ρ) = M (ϕ) M (α) =
(

cosh iα+ϕ
2 sinh iα+ϕ

2

sinh iα+ϕ
2 cosh iα+ϕ

2

)
(6.1)

This matrix with determinant = 1 has imaginery trace so far α 6= 0 and ϕ 6= 0. This
is a loxodromy. The e�ect of the loxodromy will be to curl the limit set of fractals
in the next chapter. More precisely:

On the Riemann sphere

i) α rotates about the axis of the poles,
ii) ϕ stretches along the meridians.

It is obvious that we can twist in both directions according to the sign of the angle
ϕ. Less evident is that grafting and pruning also only di�er in the sign of the angle
α. Our programs for grafting and pruning are basically the same, we only choose the
angle > 0 or < 0. On the Riemann sphere CP 1 grafting blows up the tessellation
beyond the unit disc. Pruning crushes down the tessellation into the outer unit disc.
Both tessellations kiss each other along their common fractal limit set.

Unfortunately the term Dehn surgery has already a precise meaning. Otherwise we
would have liked to call `geodesic surgery' the common operation from which grafting,
pruning and twisting arise. Thus we call it a Möbius move. The choice of one complex
number, using the angles as real and imaginary part, ρ = 1/2 (iα+ ϕ), determines the
matrix.
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6.7: The limit set is quasi Fuchsian

6.7. The limit set is quasi Fuchsian

Figure 6.14.: Gliding vertices

The pictures we obtained when grafting or pruning (one being the counterpart of the
other on the Riemann sphere) without twisting, show a limit set made of bubbles riding
on bubbles instead of the neat circular boundary of the Poincaré disc. The tessellation
has been blown up (down) and fractalized but not destroyed.

The reason why we can still glue the edges neatly is that the Möbius transformation
just pushes the vertices of the tile orthogonally to the geodesic supporting the cut.

We see in �gure 6.14 the crushing process (bursting would be analogous). The crushed
tile lies inside the original tile. Every vertex of the original tile lies on a vertical
geodesic. The Möbius transformation takes away from this geodesic a piece of constant
h-length the perimeter of the cut-o� cylinder.

Of course the vertices of the lower part do no lie on the same but on other geodesics as
there is no horizontal symmetry for the tile, the 4 hexagons composing the tile not being
regular. The loci of the vertices form an Apollonian bundle (coaxial system) centered
on the point circles (−1, 0) and (1, 0). The real line is orthogonal to this bundle as
well as the arc of circle bordering the cylinder. In terms of Möbius geometry the half
neighbourhoods of both boundary points corresponding to one and the same point
before inserting or removing the cylinder �t neatly again to a new neighborhood.
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Chapter 7.

Tetradecagon and �ying fractals

We now implement the 14-gon alias dodecagon model. The real axis supports a very
convenient simple closed geodesic, along which we graft or prune about an angle α
above the real line and β under it. We twist to the right about an angle ϕ, to the left
about ψ. Last but not least there is a choice of 9 side pairings.

The model is good not only for varying side lengths. As the tile is made of 4 hexagons
we color them di�erently (with gray tones as option). This is not as impressive as the
96 triangles of the octagon model but it shares the advantage of showing something
of the interior life of the tile. This begins with retracing the action of each generator.
Then the e�ect of pruning or twisting becomes observable.

7.1. Fundamental tile and pairings

Gluing 4 hexagons, where every second length can be chosen, implies that every 3rd
prescribed (as well as every 3rd not prescribed) length lies within the tile in such a
way that pairing matches.

Without loss of generality we can lay the 4 copies of the �rst prescribed length, say l1,
along the real axis, above and under the origin, to the right and to the left. Then the
neighbouring unprescribed length will lie analogously along the imaginary line. This
allows us to make the tile thinner or broader (higher or thinner if we lay l1 along the
imaginary axis). Of course the tile will always have area 4π due to the genus = 2.

The other lengths 4× l2 and 4× l3 will lie on the peripheral polygon. They alternate
or not with the unprescribed lengths, as lengths alternate in the hexagons, not in their
union.

Let us consider that the prescribed lengths stand for the holes of the pair of pants, i.e.
both pairs are glued along their belt l1. Each of the four l2 can be paired with the
three others, the same for l3, so there are 3× 3 pairing alternatives.

The fat edges are the prescribed lengths, the dotted ones are the seams, the pairing of
which results automatically. This means that each dotted edge is always paired with
its image against the imaginary line.

In �gure 7.1 the generators are hij = H−1
ij . The subscripts refer to the halves j ∈ {1, 2}

of the both handles l ∈ {1, 2} to suggest how the gluing works.

With these schemes it is easy to �x the Möbius transformation moving each hij onto
Hij , using our instruction Moeb3ptsC.

It is not immediate to �nd out how the angles α which grafts (prunes) above the real
line and β doing the same under the real line a�ect the generators. However as the
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Chapter 7: Tetradecagon and �ying fractals

combinations all are unique the exercise requires more patience than wits. The angles
ϕ and ψ twisting to the right and to the left modify the generators in the same way,
i.e. one is free to modify the generators for grafting or twisting, the other operation
has not to be taken care of.
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Figure 7.1.: The 9 pairings of the 14-gon

7.2. Feats of the program

The program is called Flying_fractals.

The high number of parameters is confusing at �rst, but rewarding in �ne. This
multiplicity discloses, that the operations along a geodesic proceed from a common
mechanism originating in Möbius geometry.

The break condition is important because 14 generators involve a lot of combinations
of words. Thus it requires much time to compute the limit set. Fortunately having only
4 tiles around a vertex limits the duplications due to the group not being free. Using
limitsetrad = .9 and nbofletters = 2 allows a quick computation combined with
a fair representation of the tiling.

One of the angles α or β (resp. ϕ or ψ) can be set = 0 in order to work on only one
side of the geodesic. The many possibilities of varying disclose so many other ba�ing
e�ects that we give up presenting examples. One should just play around with the
parameters.
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7.3: Fractals

7.3. Fractals

Figure 7.2.: Squeezing to a fractal

We make an exception and show a result which might not come across accidently.

Using a 1-leaf geodesic to cut along has the advantage to allow using large angles.
However there are still limits. One limit is reached, when α and β are made larger and
larger until the sides of the fundamental tile would intersect, there is no �esh more to
be pruned away!

Choose for instance l2 = l3 = 1.5, α = β = 45◦. This is a limit only for pruning, there
is still a lot of room for twisting. Of course the condition is only l2 = l3 and α = β
are chosen accordingly.

The enigmatic header is just to remind the choices for l1, l2, l3, a break condition at
95% of the unit radius and 3 letter-words, the paving 6 and �nally the angles α, β, ϕ, ψ.

It is worth allowing some longer computing time to render the delicate lace of the limit
set in order to better see the �ne curls the loxodromy produces. This winding around
demands a higher discretization of the tile, this is the job of the parameter �ne, that
should be set fine = 7.

The user should choose the coloring option. It is easy to select another choice of colors
by adapting the instruction RGBColor which de�nes colorpant1 up to colorpant4.
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Chapter 8.

Groping for the limits

The choice of the real line for cutting along followed our purpose to show how to graft,
prune and twist. Closed geodesics which do not close within the fundamental tile will
show us that grafting is still possible, but the grafted cylinder may not be too wide.
This will bring us close to in�nite geodesics as limit case of very long closed geodesics.
First it is to show that even 1-leaf closed geodesics set limits to grafting.

8.1. Grafting angle along a 1-leaf geodesic

We have stated that the pruning angle is bounded. Using a too large angle, i.e.
beyond the angle where the polygon sides kiss each other, the tile will be no more
simply connected and the program crashes. Which polygon sides intersect depends
on the choice of side lengths. When pinching the tiling in the middle for fractals, we
had chosen the lengths so that the accident occurs where the e�ect is more impressive.
Using our program Flying_fractals with side lengths (1,8, 1,2, 1,5) and ϕ = ψ = 0,
the collision happens when α = β are > 45 ◦.

Grafting meets hitherto no problems, until α = β become > 61◦. However if we set
β = 0, then α can be increased up to 107◦. Nothing could happen with the polygon
sides, like when pruning, as they move away from each other. Hence this must have
to do with the lunes. The accident occurring much later when β = 0, one side of the
lune will have intersected the opposite side of some other lune. The third accident by
α = 107◦ corresponds to a self intersection of the tessellation. Let us examine how the
lunes collide.

8.1.1. Lunes cross in�nitely many tiles

Figure 8.1.: Grafting into a pretzel

We took a closed geodesic, not belonging to the trivial homotopy class. We inserted
or removed a small cylinder. The Fuchsian group of generators was replaced by a
quasi-Fuchsian group of new updated generators, thus the tessellation with limit set
the unit circle became a fractal of bubbles piled upon each other.
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Chapter 8: Groping for the limits

Figure 8.2 recalls that the geodesic common perpendicular to an edge, say a1/A1, is
present in every tile on the way to S1

∞. This common perpendicular propagates into
the whole disc. Every tile carries a geodesic segment, which associates to the segment
of the neighbouring tiles until in�nity and there are in�nitely many of these in�nite
geodesics.

Figure 8.2.: Scattering across the tiles

When grafting the inserted cylinder is represented by a lune limited by the geodesic
and the (not geodesic) equidistant curve according to the width of the cylinder.

When increasing the width of the graft, the disjoint lunes will move closer and closer
to each other.

8.1.2. The injectivity radius

Figure 8.3.: The injectivity radius

Suppose we are in a point p of the tangential space to an euclidean tube M of radius
r rolled around a straight axis. With the exponential map the radial tangential rays
going out at p are mapped isometrically on geodesics on M .

The gray annulus on M will intersect itself when the outer circle gets radius > πr. A
point q in the intersection would be hit once by the short radial geodesic from p and
once again by the long opposite geodesic around M (the same e�ect as on the sphere
where two points can be joined by the short or the long path on the great circle). Then
the exponential function is no more injective for a too big ball of radius > πr.
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8.1: Grafting angle along a 1-leaf geodesic

Generally the injectivity radius i (p) for p ∈ TpM is de�ned as:

i (p) := sup
{
r > 0 | exp|Br(0)⊂TpM is injective

}
Standing on the cylinder in p we can send, in both directions orthogonal to the axis,
arcs of length ≤ πr. Both arcs of length πr will meet in the antipode of p. Thus the
meridian is the common limit for a simple connexion.

De�ning a geodesic as the shortest junction between two points, any point is �xed
uniquely by reference to its distance from p. The universal cover of the cylinder is
made of horizontal strips of width πr. Gluing to each other the rims of the strips gives
an isometry to the cylinder.

A tessellation results from the action of a discontinuous group on a space, H2 or D2

in the case of the pretzel. This implies injectivity. The action of the group copies
the fundamental polygon. Every point of a tile obtained by the group action must
belong to a di�erent orbit in the group of isometries. In other words a fundamental
polygon Π for a group G includes a representative from each G-orbit and each G-orbit
is represented at most once in the interior of Π.

8.1.3. How wide may the graft be?

Proposition 16. The injectivity radius i (α) is an upper bound for the size of a graft
into a tessellation of CP1.

Proof. We use the octagon model.

Λ

Α2

Α1

Β1
Β2

Figure 8.4.: Kissing limit

Let α1 and α2 be the common perpendiculars to the sides pair a1/A1 and to B1 and
a2. β1 and β2 are equidistant curves. There are lunes on both sides of α1 and α2,
otherwise the collision would take place much later. However we show only the sides
of the lunes heading to each other, to make the picture less confuse. We also ignore
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Chapter 8: Groping for the limits

the octagon side symmetric to a1/A1 where obviously the same things happens. We
choose two neighbouring sides, the other sides being farther away. The collision we
expect will occur throughout the tiling, as we can move any tile to center it around
the origin.

The h-distance between geodesic and equidistant curve is the same everywhere as we
have lifts of one and the same graft.

Draw now λ the common perpendicular to α1 and α2. This is a closed geodesic
starting and ending on an identi�ed point of α supported by a circle with center P .
We have a bundle of circles. β1 and β2 stand orthogonally on λ, so they will touch on
λ when the graft is wide enough. They would meet there anyway, even if the lunes
had not the same width.

The holonomy is a translation moving α to β, i.e. a vector �eld of constant length
orthogonal to the geodesic α (with opposite orientation in each half lune). As long as
β1 and β2 are disjoint we can widen out the lune.

Increasing the lune width beyond the radius of injectivity β1 would intersect β2, i.e.
there would be points in the lune along α1, which are closer to α2 than to α1 (the
distance being measured by the vector �eld foliating the lune and the width of both
lunes being the same). Hence the intersection of the lunes contains two images of the
same point of the pretzel. Due to this intertwining we cannot push away β1 and β2

anymore. The perpendicular λ would start in one leaf of the universal cover and get
back on another leaf, which would be contradictory to the tiles containing exactly an
unique point of each orbit.

Although grafting and pruning are counterpart of each other on the Riemann sphere,
the limit is there where the �rst accident occurs.

8.2. Grafting along in�nite geodesics

 

Figure 8.5.: Geodesic trefoil knot

We have grafted up to now along the geodesic orthogonal to an edge of the polygon.

An advantage of such a geodesic is that it is closed and lies entirely in the fundamental
polygon. But there was another reason for this choice.

If the geodesic were not orthogonal to an edge we would obtain a closed curve with a
pinch, a so-called geodesic monogon. Who attempts to travel geodesically around the
axis of Beltrami's pseudosphere will not move in a circle orthogonal to the axis, but
will describe such a monogon. The edges of the regular octagon picturing the pretzel
also are monogons closing on the unique vertex with an angle of π2 to themselves. A
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8.2: Grafting along in�nite geodesics

monogon in the disc model is homotopic to a unique closed geodesic, however not in
a homotopy with �xed base point but in a free homotopy.

There is no chance to graft into a monogon, because the graft would intersect itself
in a neighbourhood of the endpoints identi�ed in the pinch. The same applies to
any broken curve of geodesic segments. Therefore we concentrated on geodesics and
dropped geodesic segments.

Figure 8.5 shows a trefoil knot on the torus. The geodesic winds 3 times around the
core and 2 times around the hole.

This geodesic only closes after crossing several tiles. We could have chosen to wind q
times around the core and p times around the hole.

For �gure 8.5 we only need 3 parameters a, b, c, �xing the 3 dimensions of the torus
and apply the easy formula:

((a+ b cos qt) cos pt, (a+ b cos qt) , c sin qt)

If we cut a disc from the torus and join two copies along the cut we get a pretzel. Thus
the pretzel will also have such geodesics (plus others of course running from one half
to he other half). This torus is not hyperbolic but there is a conformal homeomorphy.
Specially a closed and simple (i.e. non self-intersecting) geodesic will be mapped to a
closed simple geodesic.

 

Figure 8.6.: Foliation through looping a vertex

A geodesic is either closed or in�nite. To construct an in�nite geodesic we let a winding
parameter p or q go to in�nity. In hyperbolic geometry we can choose any point on the
pretzel, construct a 1-vertex triangulation and move the vertex in�nitely often around
the loop. This results in a foliation of the pretzel made of ideal triangles (i.e. the
vertices are at in�nity) spiralling around the loop.

For constructing an in�nite geodesic we use the former geodesic, closed within the
polygon, as limit. Choose any point on it and construct a one-vertex triangulation of
the pretzel. Then move the vertex in�nitely often around the loop. We so obtain a
geodesic foliation of the pretzel made of ideal triangles spiralling around the loop, as
shown on �gure 8.6.

We can also use a pair of limiting geodesics and let an in�nite geodesic spiral between
them. With two geodesics the spirals may be on either side of the supports.

We now transport this picture into the Poincaré disc. We use again the geodesic α
and its conjugates, identifying the edges a1 and A1. As second limit we choose the
geodesic β identifying hereby the edges a2 and A2, see �gure 8.7.
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m n

Α

Β

Figure 8.7.: Inserting between two geodesics

The geodesics m and n touch α1 and β1 at in�nity, so they spiral around the images
of α and β in the quotient space, i.e. on the pretzel.

Clearly we cannot add any graft on n, not even on one side, as it would cut α or β.

Not possible either would be a graft against m although one side ob m seems to o�er
free room. To see this we would have to zoom into a region near the circle at in�nity.

As we used the common perpendicular, the cut lay somewhere in the octagon but
always at the same place in every tile (every tile is a hyperbolic moved copy of the
central tile). Now the case is di�erent. The geodesic is wandering across the tiles. In
a neighbourhood of the limit set lunes will intersect, how narrow they may be.

This may not be obvious from the representation in the disc, but when we look at the
spirals on the pretzel there is no free space for not intersecting neighbourhoods. The
spiraling loops lay dense in any neighbourhood of the endpoints of α or β.
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Chapter 9.

Laminations and Cantor set

9.1. Many leaved geodesics pleat in a Cantor set

Consider a geodesic lamination λ on a surface S. A proof of J. Birman and C.

Series quoted by F. Bonahon states that the union of all simple geodesics of S has
Hausdor� dimension 1. The union of all simple geodesic is also the union of all geodesic
laminations. Thus an individual lamination has Hausdor� dimension 1. Let k be a
di�erentiable arc transverse to the leaves of λ, then k ∩ λ has dimension 0, i.e. it is
totally disconnected. This leads to Bonahons'

Proposition 17. (Bonahon)

i) If a geodesic lamination has no isolated leaves, then for every arc k transverse to
λ, the intersection k ∩ λ is a Cantor set.

ii) If an arc k is transverse to the geodesic lamination λ and if the components of
k−λ are d1, d2, . . . , dn ordered in non increasing size, then |log (length (dn))| ∝ n.

These are propositions 7 and 8 in [4, F. Bonahon], on which we shall now comment.

We proved in chapter 1 that the classical Cantor set is characterized by the property

|log (length (dn))| ∝ log n

Writing n instead of log n on the right hand side is only a scaling. We shall concentrate
on the second statement of the proposition.

First we need following

Lemma 1. Consider in the half plane model a cusp between a geodesic and the ima-
ginary axis. Let {dn}n∈N be a sequence of in�nitesimal segments cut o� from two
horocycles with ordinates yn and yn+1. Let δ be the hyperbolic distance between yn and
yn+1. Let l (dn) and l (dn+1) be the hyperbolic lengths of dn and dn+1. Then

l (dn+1)
l (dn)

∝ e−δ

where an ∝ bn means that the ratio an
bn

is bounded between two positive constants for
n large enough.

Proof. We �rst prove the lemma.

We established in chapter 1 the metric (1.1) in the half plane model

δ = l (yn − yn+1) =
∣∣∣∣log

yn
yn+1

∣∣∣∣ yn
yn+1

= e−δ
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Chapter 9: Laminations and Cantor set

as yn+1 < yn � 1.

Applying this along the horocycles segments dn and dn+1 it follows

l (dn+1)
l (dn)

=
dn+1

dn
:
yn
yn+1

=
dn+1

dn
e−δ

 

Figure 9.1.: Hyperbolic contraction

As also stated in chapter 1 there is in a cusp a Lipschitz direction �eld, so that the
asymptotic leaves of a geodesic lamination are nearby parallel. Thus the in�nitesimal
Euclidean lengths dn and dn+1 become approximately equal, i.e. dn+1 → dn as we
progress towards the end of the cusp. The ratio of lengths is not equal to e−δ but
the margin of approximation dn+1

dn
→ 1 is a factor bounded by two positive constants.

This proves the claim.

Now we prove the proposition.

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9.2.: Contraction in the Cantor set

Proof. In the classical Cantor set the remaining segments dn are ordered in decreasing
length. A sequence of dn lies between the y-axis and a polygonal path.

Figure 9.2 only shows how the length of the not removed segments regresses in the
classical Cantor set. Being Euclidean there are no horocycles, but it corresponds to
the hyperbolic �gure 9.3.
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9.2: A graphic view of the Cantor set

The decreasing order is not given on a hyperbolic surface, when a geodesic lamination
is cut by a transversal. However, as we are only interested in segment length, we may
reorder the sequence of horocycle cuts according to segment length.

To this e�ect we note that all but �nitely many dn are in the spikes of the completion
of S − λ which we can go through one after the other.

d'5d'4d'3d'2d'1

∆ µ 1
∆ µ 1

∆ µ 1∆ µ 1

Figure 9.3.: Contraction in a spike

Select a spike and reorder the sequence d1, d2, . . . , dn, . . . into d
′
1, d
′
2, . . . , d

′
n, . . . in the

order of the progression towards the end of the spike.

k ∩ λ being compact the hyperbolic distance δ between neighbouring horocycles is
bounded between two positive constants. Thus we may write δ ∝ 1.

Let l (d′n) and l
(
d′n+1

)
be the hyperbolic lengths of d′n and d′n+1. Then it follows from

lemma (1)
l (dn+1)
l (dn)

∝ e−δ

where δ is the distance between d′n and d′n+1.

The lamination being compact δ is bounded between two constants, thus

l
(
d′n+1

)
∝ e−δl (d′n) |log l (d′n)| ∝ n

Since S − λ has only �nitely many spikes the estimate of the proposition follows.

9.2. A graphic view of the Cantor set

We give in chapter 1 a δ-Dirac-measure for the middle third Cantor set transferable
by isomorphy to all Cantor sets of Lebesque measure zero.

This lamination measure removes the gaps of the Cantor function, it is continuous.
The stairs in the staircase represent the jump from one stage to the other.

Think of somebody walking on a transversal across the Cantor set generated by the
pleating of a many leaved closed geodesic. In this representation the vertical jumps
would arise when the walker crosses a leaf of the geodesic. Then nothing happens
until a new leaf will be crossed. The steps correspond to the bends of the surface in
hyperbolic space. As the geodesic makes more and more loops, the vertical jumps will
steadily decrease in size (but they still all have equal size).

The Cantor set when crossing a lamination will not be the classical Cantor set. The
set will depend on the lamination, which might have one or more leaves. The length of
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Chapter 9: Laminations and Cantor set

the stairs will be di�erent due to the scaling and the �at regions between the leaves not
being ordered in decreasing size. However there will always exist a bijection between
the Cantor set of the lamination and the classical set we use here.

An adaptation is necessary.

Should we de�ne the stairs as a pleating about the constant angle α, the height of
the jumps would get very small when the number of leaves increases, the visualization
would get worst and worst. Anyway we have no jumps but bends in hyperbolic space.
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Figure 9.4.: Transverse measure of bending

We have constructed a turtle program using the same staircase principle but the jumps
are replaced by a turn about the angle of pleating. The length of the segments of the
polygon are in the same ratio as the distances between the geodesic leaves. Nothing
happens when walking between the leaves. When crossing a leaf, a new segment of
the polygon begins with a turn about the pleating angle.

The total length of the polygon is unchanged = 1, as we are only interested that the
distances are in the correct ratio. The interval [0, 1] has gone over to a spiralling convex
polygonal curve.

83 rd level , 6 °<

Figure 9.5.: Bending at level 3 of the Cantor set
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9.2: A graphic view of the Cantor set

Figure 9.5 is an example for n = 3 and a pleating angle π
30 .

For n = 6 and the same angle π
30 the polygon will curl stronger.

86 th level , 6 °<

Figure 9.6.: Bending at level 6 of the Cantor set

Using n = 7 the polygon would intersect itself with π
30 . This is easy to heal: the

pleating angle must be decreased when n increases. In other words the size of the
bends represented by the lunes on CP 1 have an upper bound depending on the number
of leaves of the geodesic. For any �nite number of loops grafts can be inserted but they
must be chosen smaller and smaller. Obviously the pleating angle along an in�nite
geodesic will be = 0, i.e. no pleating any more.

All graphics of this section are from the program Lamination_measure.
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Chapter 10.

Closed curves on the torus

We compare in this chapter the homotopy classes of the �at and the 1-punctured torus.
We use the results to put up an algorithm for �nding many-leaved geodesics.

10.1. (m, n) curves  

Figure 10.1.: (3,5) curve on the torus

Figure 10.1 uses the equation

((10 + 5 cosmt) cosnt, (10 + 5 cosmt) sinnt, 4 sinmt) (10.1)

10 is the radius of the equator, 5 and 4 are the axes of the elliptic core. We have
chosen m = 3 and n = 5 to get an (3, 5) torus curve. More generally an (m,n) torus
curve winds m times around the torus core and n times around the torus hole.

Increasingm or n by 1 is the same as inserting a 360◦-Dehn-twist around a meridian or
around the equator. As the windings are regularly spaced, they �nd exactly together
again. It su�ces to straighten the curve for getting the (m+ 1, n) or (m,n+ 1) curve.
Inserting the Dehn-twist means: cut out a narrow cylinder, rotate one end about 360◦

and reinsert the cylinder into the torus. This operation creates no new intersections
in the curve.

10.2. Homotopies

The pretzel is the topological sum of two tori. It can be obtained by removing an open
disc from a torus, taking a copy and regluing along the rims.
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Chapter 10: Closed curves on the torus

Removing an open disc, we obtain a perforated torus. The 1-punctured torus is the
perforated torus where only one point is missing. One missing point changes quite a
lot. Indeed the 1-punctured torus can be turned inside out. It is hyperbolic instead of
Euclidean. Its fundamental group is free.

The fundamental group of the usual torus is not free

π1

(
T 2
)

= π1

(
S1
)
× π1

(
S1
) ∼= Z× Z

It is even abelian, therefore isomorphic to the �rst homology group π1

(
T 2
) ∼= H1

(
T 2
)
.

Proposition 18. The fundamental group of the perforated torus is F2, the free group
of rank 2.

Proof. Choose any two orthogonal S1, which do not cross the perforation. Enlarge the
perforation until the rims touch the circles.

This deformation retract is a �gure eight, i.e. a bouquet of 2 circles. The fundamental
group is preserved. The generators in a bouquet of circles are free.

However we are only interested in homotopies of closed curves and these happen to be
analogous, whether the torus is perforated or not.

We quote a well-known

Theorem 7 (Poincaré). Each non-trivial homotopy class on the �at torus has a unique
geodesic representative, conversely each closed geodesic path is homotopically non triv-
ial.

Sketch of the proof : lift a closed path with base point to the universal cover H2.
The base point is mapped into two di�erent tiles. Joining these points gives a unique
geodesic on the universal cover, which is lifted back as unique representative of the
homotopy class.

There are as well simple as self intersecting geodesics on the torus, but equation (10.1)
delivers only simple geodesics :

Proposition 19. All closed (m-n) geodesics from (10.1) are simple for all m and n.

Proof. Every homotopy class is represented by an unique (m,n) geodesic, which is
obtained from its (m− 1, n) or (m,n− 1) predecessor by inserting a Dehn-twist and
spanning. As the Dehn-twist creates no new intersection and the (1, 1) geodesic is
simple, the claim follows by induction.

Poincaré's theorem is also valid for surfaces of genus ≥ 2. The proof is more delicate
as it uses free homotopy, i.e. a homotopy where the endpoints are not required to be
�xed (see [34, J. Stillwell] for the proof of the theorem).

Remark. What are simple curves good for?

Not all closed geodesics are simple. Geodesics obtained by straightening paths keep
the intersections that are no trivial loops. According to the Jordan Curve Theorem a
geodesic with essential intersections is not the boundary of a simply connected domain.
This motivates why the de�nition of laminations refers to simple geodesics. The use of
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laminations reminds in a certain sense of (also not intersecting) level lines. It would not
make sense to graft along a self intersecting geodesic, as the grafts would intertwine in
a neighbourhood of the crossing. Therefore we are looking for closed paths homotopic
to a simple geodesic.

The condition for a path to be homotopic to a simple curve is still the same whether
the torus is perforated or not. This was established by Poincaré in 1904.

Figure 10.2.: The puncture does not prevent homotopy

Figure 10.2 illustrates why a perforation or puncture does not bar the way to homotopy.

Grab the closed path at the point p and let p glide through the hole so that p is behind.
Then let q glide through the hole to the other side. The path lies now entirely behind.
Keep on dragging at q until it reaches again its original position. The result is the
same as had we let p jump over the perforation of the puncture at ∞.

Consequently we are allowed to study homotopies on the �at torus and use the results
on the 1-punctured and on its double, the pretzel. Of course the pretzel will have a
supplementary set of geodesics running from one handle to the other, the fundamental
group of the torus being a subgroup of the fundamental group of the pretzel.

It is Poincaré again who initiated the model of the unit disc and the characterization
of homotopy classes by limit points on the unit circle. This is the property we shall
use to draw multiple-leaved geodesics on the pretzel. We begin doing this on the �at
torus.

10.3. Constructing simple geodesics

The tessellation of the Euclidean plane for the torus is given by two generators a/A
and b/B arranged along a tessellation of squares.

Figure 10.3 shows again the (3, 5) geodesic. We have unrolled the torus (more exactly
a homeomorphic �at parent) onto the Euclidean plane. The slope of the geodesic is 3

5 .
The line joins the point marked with a 3 in the upper square to the identi�ed point
marked with 3 on the lower square. The line on the bottom indicates the jumps in the
numeration and the edges being crossed. This induces the word BABBABBA.

Any path with the same base point 3 on these upper and lower tiles is homotopic to
this geodesic. The path might be longer or have more crossings due to back steps.
These are homotopic variations which disappear when straightening. Thus neither a
nor b will appear in the geodesic word.
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Chapter 10: Closed curves on the torus

However we could have started from any other tile and drawn a line with the same
slope. This is why the picture shows all these parallel lines crossing the tessellation.
Thus the word BABBABBA is just a member of the family of all words obtained by

 

Figure 10.3.: (3,5) geodesic developped on R2

shifting the letters to the right or to the left :

1) BABBABBA
2) ABBABBAB
3) BBABBABA
4) BABBABAB
5) ABBABABB
6) BBABABBA
7) BABABBAB
8) ABABBABB

With a move of the plane we can choose any tile as fundamental tile with all the
stripes. This tile is shown as a large square. 16 points are numerated but there are in
fact only 3 + 5 = 8 points on the torus due to the identi�cation of the sides. When
leaving our start point 3 on B, the line hits A in 14 = 6 mod 8. As points 14 and 8
are identi�ed the next point is 9 = 1 mod 8. But 9 is 5, this leads to 12 = 4 mod 8,
etc. Finally the starting point 3 is hit again after eight steps. Thus computing the
word only requires to chase along the line within the fundamental tile and record the
crossings modulo 8. This gives the word, from which we shift the letters 8 times to
get all equally righted alternatives.

The algorithm works with any integers m and n, which have only to be prime to each
other. Our re�exions on homotopy show that we can also use the algorithm for the
1-punctured torus, actually also for surfaces of genus ≥ 2. The algorithm will correctly
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return the geodesics around one and the same handle. It will also return the geodesics
crossing the handles.

A small technical problem is that we must indicate the number of times the line crosses
each polygon side to get the proper word in return. As the corner points are on both
sides, the algorithm does not work. However there is only a �nite number of corners,
hence a �nite number of such geodesics.

10.4. The 1-punctured torus

10.4.1. Mapping the 1-punctured torus

One can easily imagine the 1-punctured torus as the usual torus minus one puncture
at ∞.

Figure 10.4.: 1-punctured torus

Why is the puncture at in�nity? The fundamental region of the �at torus was obtained
by using the intersection of the equator and a meridian and cutting along these. Take
now this intersection away. If this missing point were not at in�nity and the angle of
the square were 6= 0, adjacent copies of the square would rotate around the missing
vertex, until some tile is mapped on the fundamental domain. This is incompatible
with the fundamental group being free. Thus the angle must be = 0 and the missing
point at in�nity. Figure 10.4 sketches the corresponding cutting.

Figure 10.5 shows the mapping in the Poincaré disc. The fat points in both �gures
are the Weierstrass points. Due to identifying the sides there are three of them : both
midpoints of the sides and the origin.

These points are the �xed points of the elliptic involution. Pierce the torus with a
needle through the 3 points (and through the point at in�nity) and rotate it about
180◦ around this axis. The 3 points on the real line are invariant. This corresponds
with the elliptic involution of the �at torus, which has 4 �xed points, the 4th being
the missing point at ∞ on the 1-punctured torus.

Figure 10.5 also shows a 3-leaved geodesic. Obviously this geodesic runs trough two
Weierstrass points. This is a consequence of the elliptic involution, as we shall prove.
This is also a similar property of the pretzel, where it is called hyperelliptic involution.
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This constraint of running through invariant points de�nitely in�uences the behavior of
the geodesics. There is no obligatory involution on surfaces of genus ≥ 3. The pretzel
which is the double of a perforated torus inherits properties of the torus. Surfaces of
genus ≥ 3 are the topological sum of two 1-perforated tori and 2-perforated tori in
between. This remark of course does not prove the absence of involution but makes
at least plausible that surfaces of genus ≥ 3 must not behave the same way.

Figure 10.5.: Simple geodesic on 1-punctured torus

Due to the rapidly decreasing hyperbolic metric we shall prove that the leaves of a
geodesic of irrational slope accumulate in�nitely close to the three Weierstrass points.

a

b

A

B

83, 5<

Figure 10.6.: (3,5) geodesic on the punctured torus

We now look at the (3,5) geodesic in �gure 10.6. This is the next one when increasing
the number of loops of the (2,3) geodesic by 1, m and n have to be prime to each
other. Thus there is neither a (3,3) nor a (2,4) geodesic.

Our program Geo_Finder_torus visualizes simple geodesics on the 1-punctured torus.
There is a more complete version Simple_geos_torus used for �gure 10.6 with addi-
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10.4: The 1-punctured torus

tional features for testing any word, returning whether the geodesic is simple or where
are the intersections and which alternative words exist. The program Farey_torus
visualizes simple closed geodesics and can handle quickly pretty long words.

We shall now comment on this program, but let us �rst notice how close the leaves
come to each other. The geodesic does not run through the origin but only through
the both Weierstrass points on the sides. Two leaves look nearly like diameters. They
are not, they only run very close to the origin.

This observation illustrates why there is nearly no room between the leaves for grafting
and still less for pruning. The allowed bending angle is already close to zero.

10.4.2. Farey tessellation and 1-punctured torus

There is a wonderful connection between the 1-punctured torus and the tessellation
based on the modular group SL (2,Z). This is a subgroup of the Möbius group, whose
entries are integers. It happens to be the mapping class group of the torus (and of the
pretzel).

0�1

1�4
1�3

1�5

3�5

2�5
3�8

1�2

2�3
1�1

1�0

4�1
3�1

5�1

5�3

5�2
8�3

2�1

3�2

-1�4
-1�3

-1�5

-5�3

-5�2
-8�3

-1�2

-2�3
-1�1

-4�1
-3�1

-5�1

-3�5

-2�5
-3�8

-2�1

-3�2

Figure 10.7.: Farey tiling of the torus

Figure 10.7 was drawn with the instruction InfTess[4, 1] of the package diskgeometry.

This tessellation does not only cover the 1-punctured torus but also the 3-punctured
sphere. Opposite sides are identi�ed in the case of the torus, whereas the sphere
identi�es adjacent edges. Cutting along a diagonal gives the tessellation by ideal
triangles we showed in chapter 1. We also showed in this chapter the Farey tessellation
in the half plane model, where the fractions lie on the real line.
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Chapter 10: Closed curves on the torus

The ideal vertices of the tessellation hit the unit circle exactly in the rational numbers,
which are computed according to the naive rule of adding denominator and numerator
of the Farey fractions, the dream of all children learning mathematics.

We already gave some insight of the use of Farey fractions. They are an easy tool for
creating families looping around more and more p times in one direction and q times
in the other.

We choose any number, approximate it by a fraction, so far it is not already a rational
number and get a sequence of fractions, i.e. intermediary stages, around the selected
p/q. This leads to a converging family of rational laminations.

With the program Geo_Finder_torus a sequence of (m,n) geodesics is produced for
approximating an irrational slope, thus an in�nite geodesic.

A number < 1 is entered and the precision of the approximation is chosen. The
program returns a sequence of approximating fractions, which can be visualized.

A magnifying instruction allows to enlarge a region of the picture, e.g. around the
origin, where the leaves run or do not run through, when the number of loops is
increased.

On a hyperbolic surface simple closed geodesics of di�erent homotopy classes usually
intersect each other. Thus two points determine a unique geodesic only in the same
class. Otherwise a �nite number of Weierstrass points would not allow geodesics to
always run through two points.

10.4.3. Intersecting geodesics

Proposition 20. On compact surfaces of genus > 0 geodesics can only share two
points, when their homotopy classes di�er by more than only one Dehn-twist.

Figure 10.8.: Looping geodesic

Proof. Consider the geodesic µ making p loops in the cylinder section [w1, w2] between
the Weierstrass points w1 and w2 in one direction and q loops in the other direction,
with p+ q = the number of loops of the homotopy class. Cut along the closed 1-loop
geodesic E supporting the Weierstrass point w2 and insert a full Dehn-twist in the
section [w2, w1]. After tightening we obtain the new geodesic ν representative of the
homotopy class of (p+ 1, q) loops.

Would ν run through w2 on E, as pictured here, there would be a bifurcation in w2!
µ and ν would merge in the section [w1, w2] with p loops. Two closed geodesics which
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10.4: The 1-punctured torus

coincide between two distinct points cannot bifurcate, as a geodesic is the shortest and
straightest path.

Exchanging the roles of the sections [w1, w2] and [w2, w1] extends the proof.

The Dehn-twist could also sit astride both sections. Then the number of full loops
would be the same between w1 and w2. There would be in each section two homotopic
geodesics joining w1 and w2, which cannot be.

Consequently a (m,n) and a (m+ 1, n) or (m,n+ 1) geodesics cannot run through
the same both Weierstrass points. There are 3 Weierstrass points on the torus, thus
3 choices. On the pretzel there are 6 Weierstrass points, hence more choices. This
comforts the observation, that the leaves of a geodesic must not rush so quickly near to
each other. However the question is still open, why the leaves run close to Weierstrass
points through which they do not run.

10.4.4. In�nite geodesics accumulate on Weierstrass points

We give now a summary of the results [4, F. Bonahon] in the case of the 1-punctured
torus.

Figure 10.9.: Simple geo accumulating

Proof. Consider on a punctured torus T a sequence of simple closed geodesics looping
n times across the edge k and once around the hole. The idea of the proof is that the
distance between the leaves decreases exponentially inferring an accumulation against
the bordering geodesic γ.

Each member of the family is a lamination λn. For n→∞ the lamination λ∞ is the
union of the simple closed geodesic γ and an in�nite leaf going from one side of γ to
the other, spiraling in opposite directions against γ. Note that the in�nite leaf must
be mapped to itself by the elliptic involution, i.e. when the torus is turned about 180◦

around the axis of the Weierstrass points.

To prove this Bonahon uses the concept of transverse Hölder distribution.

A distribution is a continuous linear form on the space of C∞ functions ϕ : T → R
with compact support.

Bonahon remarks and proves that a homotopy of arcs transverse to λ admits no dif-
ferentiable structure. This can be overcome as it su�ces to choose the homotopy to
be Hölder continuous.
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Chapter 10: Closed curves on the torus

A function ϕ between metric spaces is called Hölder continuous if there is a ν ≤ 1 and
a positive constant C such that:

d (ϕ (x) , ϕ (y)) ≤ Cd (x, y)ν

for all x, y, whereby d is the distance function. When ν = 1 the function is said to be
Lipschitz continuous.

The metric used for the set of all closed subsets of a compact surface, here the punc-
tured torus T, de�nes the Hausdor� distance dH (C,C ′) between two closed subsets C
and C ′ quite naturally as the smallest ε such that C is contained in the ε-neighbourhood
of C ′ and reciprocally.

This allows to de�ne a Hölder distribution on a compact metric space, here T, as a
continuous linear functional on the space of all Hölder continuous functions ϕ : T → R
with compact support.

A transverse Hölder distribution α for a lamination λ is a Hölder distribution de�ned
on each arc k transverse to λ, invariant under every homotopy of arcs transverse to k.
The Hölder distribution induced by α on k has its support in k ∩ λ, namely α (ϕ) = 0
for every Hölder continuous function ϕ with support in k − λ.

From this follows k ∩ λ = {x∞, x1, x2, . . . , xn, . . .}, where x∞ is the intersection of the
transversal arc k and the lamination λ, against which the xi accumulate.

For every Hölder continuous function ϕ : k → R a Hölder distribution α is de�ned on
k by choosing two parameters a, b ∈ R such that:

α (ϕ) = aϕ (x∞) + b

∞∑
n=1

(ϕ (xn)− ϕ (x∞))

To see that the in�nite sum converges, index the xn so that the distance d (xn, x∞)
monotonically tends to 0. Then

d (xn, x∞) ∝
(
e−L

)n
where L is the length of γ.

Why is this so? We established in chapter 9 the formula:

|log l (d′n)| ∝ n

where the d′n were the complement of k ∩ λ, i.e. the ordered segments cut out by the
lamination λ on a transversal k. So l (d′n) is the same as d (xn, x∞).

It follows
|log l (d′n)| ∝ n d (xn, x∞) < e−Cn

for some constant C, which we can choose to be the length L of the geodesic. This
was the claim.

Using now the Hölder property d (ϕ (x) , ϕ (y)) ≤ Cd (x, y)ν we get:

|ϕ (xn)− ϕ (x∞)| ∝
(
e−νL

)n
The in�nite sum in α (ϕ) is absolutely bounded by a convergent geometric series, thus
it converges too.
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10.4: The 1-punctured torus

The distance between the geodesics decreases exponentially in the Cantor set.

Consider a sequence of geodesics with increasing number of leaves. They come expo-
nentially closer to each other, thus also closer to the Weierstrass points, two out of
three are alternately supported by each geodesic.

The proof does not use that the geodesic only runs only once around the hole, which
only makes presentation easier. It only uses the properties of the 1-punctured torus
being a hyperbolic surface. It therefore also applies to the pretzel with its six Weier-
strass points, but of course it does not apply to surfaces of genus > 2 which usually
have no involution, hence no Weierstrass points.
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Chapter 11.

Visualizing the torus

The 1-punctured torus is ideal for playing around. The tile is easy to handle. The
free group avoids redundancy when setting up the tree of words. The properties are
close to those of the pretzel but less complicated. The torus has only three Weierstrass
points, so that the leaves of a simple non-separating geodesic rush swiftly against each
other, thus leaving very little room for grafting and pruning.

11.1. Fractals

Figure 11.1.: Strangled torus

The poor torus on the left of �gure 11.1 has been ruthlessly strangled until its sides kiss
each other and, as were it not enough a twist has pushed the both halves in opposite
directions until they are only connected in the origin. In this harlequin rendering half
of the tile is black, the other white.

The rendering in the middle is exactly the same but for showing the fundamental tile
in gray. The grafting angle α = 45◦ makes the lateral edges kiss. The twisting angle
ϕ = 50◦ is the limit for the fundamental tile being still connected.
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Chapter 11: Visualizing the torus

The picture on the right shows what happens when the twisting angle ϕ = 51◦ dis-
connects the tile in the origin. Nothing spectacular indeed but for alien circles. Beads
of circles appear which do not look chaotic like when computing goes haywire. Still
increasing ϕ infers no new accident, although the vertical parts of the tile drift against
∞.

Figure 11.2.: Anatomy of the crash

Figure 11.2 shows the fundamental tile when the twisting angle jumps from 50◦ to
51◦. By 50◦ everything is still OK. By 51◦ the circle closes itself. A meticulous look
convinces that this may not happen, although everything looks plausible.

The treatment has been in�icted with the program Torus_fractal designed for Möbius
moves , i.e. compositions of grafting/pruning with twisting. The rendering in harlequin
is intended for aesthetics, the one in gray visualizes the torture in�icted to the funda-
mental tile. This program could be useful for educational purposes as the torus model
is less intricate than the pretzel.

11.2. Multiple leaved geodesics

8Α � 20 °, j � 10 °<

8Α � -20 °, j � 10 °<

Figure 11.3.: Torus surgery
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The program Torus_surgery is dedicated to Möbius moves on the torus, but it uses a
3-leaved geodesic.

Due to the rapid convergence leaves of (m,n) geodesics higher than (2, 3) only allow a
very small angle. We have shown in chapter 10 the geodesic (3, 5), which is the next
step after (2, 3). The program Torus_surgery grafts, prunes and twists in �gure 11.3
along the (1, 2) geodesic.

The elliptic involution is a great help when constructing the tile. It su�ces to work
on one half and multiply everything with -1 to get the other half.

The construction we apply is the same, whatever polygon is involved, i.e. also for the
pretzel. Thus some comments.

11.3. Programming recipes

The relatively easy to handle torus is a good paradigm of how to program a tessellation
after a Möbius move.

Step 1: Generate a list of words.

It is a good idea to enlist the words right at the start. It might seem wiser to integrate
this computation into the drawing instruction at the end. It is not, because once the
generators have been calculated, you would have an impracticable list of �gures. It is
better to have a list of letters picturing the content of the tree. This makes computing
time not signi�cantly higher.

As already stated we use an algorithm building up a tree of reduced words. It is not
related to the tile, it only needs to be tuned in according to the number of generators.
The break condition sees to it that words are not computed for which the origin would
be distant by more than `limitsetrad`' from its image. For instance limitsetrad =
0.995 disregards the tiles closer than 0, 5% to the unit circle. This is of course the
distance in the original tessellation before grafting (pruning).

When the fundamental group is not free, i.e. for the pretzel, the algorithm will of course
return redundant words. It would cost more time eliminating than tolerating these.
To limit this useless calculation a second break condition will be added: compute only
words up to some number of letters, in order not to loop too much around. Waste
cannot be totally avoided. The torus is the sympathetic case of a free group with no
redundancy, so that the second break condition is not required.

Step 2: Replace the fundamental tile.

The basic idea is to �rst of all revisit the fundamental tile, i.e. construct a new
fundamental tile blown up or shrunk down by the angle α. The twisting angle ϕ has
not to be taken care of. As ϕ only induces an automorphism of the Poincaré disc, it
has just to be included in the transformation matrix.

The old tile is carved in domains, whose union is the old tile, bordered by the leaves
of the geodesic. The transformation returns the ready to use blown up new tile or the
de�ated tile, which must be freed from its overlaps.

Even if the interaction of the moves along the di�erent leaves might seem trivial, it
requires some patience to solve the riddle. The matrices have all similar e�ects, so
that a wrong choice infers only a slight hardly visible imperfection in the picture.
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Chapter 11: Visualizing the torus

Here for the 1-punctured torus Mdiam is the Möbius matrix moving by α
2 along the

diametral cut, whereas Mlat moves by α
2 along the lateral cut. The diameter, i.e. the

axis of symmetry, remains unmoved as intended.

The productMlat ·Mdiam2 returns the move of the grey pentagon andMlat the move
of the gray triangle.

When pruning it is not enough to take a negative angle. Some stu� must be cut away
too, because it overlaps! Therefore one has to know where the supporting geodesic
leaf has been moved. Here it has been moved by the product Mlat ·Mdiam. When
knowing this, cutting away is tedious but of course not di�cult.

Step 3: Revisit the generators

The generators must be adapted to the new tile. Grafting, pruning or twisting follow
the same formula. An easy hoax is to compute the Möbius transformation bringing an
adjacent tile seamless along the fundamental tile. This means giving up to understand
which laws the generators must obey. It is more rewarding to decrypt the process.
Note that the solution is not unique, it depends on how one looks at the moves.

For the torus our solution is:

• newb = Mlat · oldb ·Mdiam−2 ·Mlat−1

• newa = Mlat ·Mdiam2 · olda ·Mlat

Then everything has been done. The instructions for tessellating apply without change
on the new tile with the new generators.

11.4. Two more programs

Like for the other models there is a program Geo_Finder_torus, for �nding closed sim-
ple geodesics in a Farey sequence approximating an in�nite geodesic. It is structured
to accept long words.

The program Simple_geos_torus does the same for shorter words, but it can also
analyze any word in order to satisfy where the geodesic has self intersections and
compute the e�ect of permuting letters. It gives the empiric con�rmation that our
algorithm for �nding simple closed geodesics really returns all (m,n) -geodesics.
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Chapter 12.

Weierstrass points and geodesics

We have de�ned the Weierstrass points as the �xed points of the involution of a
Riemann surface. We have located them on the 1-punctured torus with its elliptic
involution. This will now help us to �nd them on the pretzel with its hyperellip-
tic involution. The theory sustaining the hyperelliptic involution and the existence
of Weierstrass points on the pretzel has been mainly developed by [17, Haas and
Susskind]. We would like to give an idea of the proofs.

12.1. From the torus to the pretzel

Figure 12.1.: 1-holed torus

Figure 12.1 shows a 1-holed-torus T 2\D2 in the Poincaré disc. The 4th Weierstrass
point of a not perforated �at torus is missing, because the needle of the involution
pierces through the removed perforation. Like in the case of the Euclidean �at torus
it is easy to localize the three remaining Weierstrass points as the origin and both
midpoints of the identi�ed edges of the torus. The perforation is a closed geodesic
orthogonal to the sides of the torus, from which it inherits the side identi�cations.

In our program Weierstrass_pts it is possible to choose the distance between the
Weierstrass points and the origin.
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Chapter 12: Weierstrass points and geodesics

In �gure 12.2 a vertical translation upwards has moved the 1- holed torus, say T1, so
that the rim of a perforation is sent to the real axis with its (Euclidean) midpoint sent
to the origin. Then a double of T1, say T2, can be added in the lower half according
to �gure 12.3.

Figure 12.2.: Moved up 1-holed torus

The 3 Weierstrass points have been doubled to 6 points.

1

2

2

3

3

4

5

5

6

6

Figure 12.3.: The Weierstrass points of the pretzel

We look now at the hyperelliptic involution J and the 6 Weierstrass points of the
pretzel M.

Let δ be the cut separating T1 from T2. Then M = T1 ∪ T2 ∪ δ is a pretzel, whose 6
Weierstrass points are just the respective Weierstrass points of T1 and T2.

106



12.2: Hyperelliptic involution

Each torus T1 and T2 has an elliptic involution, say J1 and J2.

Following [17, Haas/Susskind] and [27, McShane] the hyperelliptic involution J is J1,
when restricted to T1, and J2, when restricted to T2. The construction using pairs of
pants makes this clear. Gluing de�nes a map on the whole of M = T1 ∪ T2 ∪ δ which
itself induces a map [v] 7→ − [v] on the homology J∗.

More formally, let v be a representative of the homology class [v] ∈ H1 (M,Z), then
the involution J infers a group homomorphism J∗ : H1 (M,Z) → H1 (M,Z) with
J ∗ ([v]) = − [v].

The fundamental domain we obtain is the union of two pairs of right angled hexagons,
i.e. two pairs of pants. The holes of the pants are the holes of the tori. They have
equal length. The edges, i.e. the seams of the pants, also have equal length. Note that
the vertical edges and the horizontal cuts merge when gluing, as they meet at right
angles. So the fundamental domain is an irregular right angled dodecagon. This is the
tessellation we already used.

Figure 12.4.: Pretzel as doubled pair of pants

The tessellation of �gure 12.4 was obtained from a doubled right angled hexagon with
3 di�erent side lengths. The gray and the white tiles correspond each to the half of a
pretzel. Up to side length this is the tiling obtained from the tiles we have constructed.
The program Double_Pants can also render half pants in colors.

The pretzel as double of the perforated torus will have geodesics inherited from the
torus, but also speci�c geodesics. On the 1-punctured torus each closed non-separating
geodesic passes through exactly 2 Weierstrass points (see [26, Greg McShane].

12.2. Hyperelliptic involution

Referring to Haas and Susskind [27, G. McShane] states following properties:
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Theorem 8 (Greg Mc Shane). Summary

i) The hyperelliptic involution J has 6 �xed Weierstrass points on the pretzel.
ii) Every separating simple geodesic does not meet any Weierstrass point.
iii) Every non-separating simple geodesic passes through exactly 2 Weierstrass points.
iv) Each unoriented closed simple geodesic is mapped to itself by J.

The latter point is developed in Haas and Susskind:

Theorem 9 (Haas and Susskind). Let J be the hyperelliptic involution of a genus 2
Riemann surface M.

i) Every simple closed geodesic α on M is mapped onto itself by J.
ii) Is α separating, then J preserves its orientation.
iii) Is α not separating then J reverses its orientation.

Figure 12.5 shows a pretzel cut into two `pairs of pants' along a separating geodesic.
Gluing two other pairs of pants, but along the legs instead of the belt, we obtain a
torus minus two discs, which we can insert into the pretzel in order to add a new hole.
Obviously we can get the standard form of a torus of any genus when inserting (g − 2)

 

Figure 12.5.: Hyperelliptic involution

such 2-perforated tori.

Thus the pretzel is di�erent from such surfaces of genus > 2. It is the unique case
where no 2-perforated torus is inserted. It is the topological sum of two 1-perforated
tori or up to homeomorphy the double of a 1-perforated torus, say T.

Let α be the separating geodesic along which the legs of the pants are glued together.
The elliptic involution will have two �xed points on the geodesic α, the 3rd one on
T\ {α}. To understand this we refer to Haas and Susskind.

[17, Haas and Susskind] de�nes the hyperelliptic involution of a genus g Riemann
surface as an order two conformal automorphism of the surface that �xes 2g + 2
points. Such an automorphism, so far it exists, is unique and the surface is said to be
hyperelliptic. Every surface of genus 2 is hyperelliptic. Surfaces of higher genus have
no involution: `The automorphism group of the generic surface of genus ≥ 3 is trivial'
[27, McShane].

12.3. Sketch of Haas and Susskind's proof

Proof. See [17, Haas and Susskind] for the complete proof sketched hereafter.

As a preliminary the authors consider a domain S in the Poincaré disc from which two
smaller discs are removed. According to Poincaré there exist precisely 3 simple closed
geodesics α, β, γ each homotopic to one of the bordering circles. This delimits what is
usually called a pair of pants with geodesic boundary.

Let l (c) be the length of a curve c in the hyperbolic metric, then
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Lemma 2. If l (α) = l (β) there is a conformal involution j : S → S that interchanges
α and β and keeps γ invariant.

After proving the lemma the authors remark that the involution j extends to a Möbius
transformation with a single �xed point on S. Indeed would the involution have more
than a single �xed point, it would have a �xed line, thus > 3 �xed points, and a Möbius
transformation with more than three �xed points is the identity.The geodesic γ being
mapped onto itself by j, if g is a primitive transformation covering γ in the generating
Fuchsian group Γ there must be a transformation h in Γ extended by the normalisator
of Γ such that h2 = g. Consequently the involution is induced by the square root of
a primitive boundary transformation and will be independent of choice of the simple
closed geodesic we will now de�ne.

Figure 12.6.: Proof of Haas & Susskind

Consider a 1-perforated torus T and cut it open along any simple closed not separating
geodesic α. The lemma infers the existence of an involution interchanging α1 and α2

which are the two copies of α. This induces an involution j of T regluing α1 and
α2. Thus α is mapped onto itself with orientation reversed. As a consequence of the
lemma j has a single �xed point on T\ {α}. Since the involution maps α to itself with
orientation reversed, j must also have two �xed points on α. Thus the involution j
has three �xed points the so called Weierstrass points.

Consider the pair of pants S immersed in T and bordered by γ, the unique closed
geodesic homotopic to the hole. γ is separating. Now glue to S its double S̃ along γ to
get a pretzel. The separating geodesic γ is made of the two copies γ1 and γ2. Since the
hyperelliptic involution maps γ onto itself with orientation preserved γ cannot have
�xed points.

12.4. Gathering results

Proposition 21. There are no separating geodesics on the 1-punctured torus.
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Proof. Suppose there was a simple separating geodesic. Cut along it to separate the
torus, say T , into two components T1 and T2, the cusp being in T2. Double T1 to get
a compact oriented surface S = 2 T1. Then this double S is certainly not a torus, as
T1 ∪ T2 was a torus. S must be a surface of higher genus with area A (S) = 2A (T1) ≥
4π  A (T1) ≥ 2π. But A (T ) = A (T1 ∪ T2) = 2π, thus A (T1) ≥ 2π is contradictory
to A (T1) < A (T1 ∪ T2) = 2π.

As there are no separating simple geodesics, all geodesics run through two Weierstrass
points due to the elliptic involution, and come nearer and nearer to the 3rd Weierstrass
point. As hyperbolic distance decreases exponentially the leaves of a geodesic generate
a Cantor set on a transversal.

Due to the hyperelliptic involution something similar happens on the pretzel with the
di�erence that there are six Weierstrass points and separating geodesics never running
through a Weierstrass point.

We formulate the results as:

Proposition 22. Using Farey-fractions approximate a geodesic of irrational slope with
simple closed geodesics.

Choose ε > 0.

i) On the 1-punctured torus almost all leaves run through the ε-neighbourhoods of the
three Weierstrass points, the origin and both Euclidean midpoints of the identi�ed
sides.

ii) On the pretzel almost all leaves run through the ε-neighbourhoods of three Weier-
strass points (out of six), so far the geodesic does not separate.

12.5. Visualization

We propose three programs for visualizing these results.

With Geo_Finder_torus, which we already presented, a Farey sequence is built up
for any rational number <1. The program can use long decimal numbers. However
convergence is so rapid that the increasing number of loops is not visually revealed in
the standard view, therefore the possibility of magnifying an extract.

The program Geo_Finder_deca uses the decagon model. The entry is a set of edges
the geodesic has to cross. When the geodesic is not simple, which is usually the case for
a random choice of set, the program shows the geodesic and computes the intersections
to sustain visualization. The advantage of this program is that the decagon model is
shown in the symmetry of the involution. The drawback is that the construction of
the tile is intricate and it is di�cult to locate visually where the sides of the polygon
are on the pretzel.

The program Geo_Finder_octo works in the same way. The point of view of the
octagon model does allow to recognize conveniently the symmetry of the involution.
However one handle is above the real line, the other underneath, so that it is very easy
to see where the edges of the polygon are on the pretzel.
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Chapter 13.

Simple geodesics on the pretzel

The feeling when hunting for simple closed geodesics may be the same Erastothenes
had before he invented his sieve for prime numbers. Almost every path you try is a
failure. When gathering up the little success you achieved, you do not know whether
there might exist more interesting cases. One thing we must live with, is that long
words stumble on machine precision because of too many multiplications of matrices.

Figure 13.1.: 6-leaved geodesic

Another boring fact is that simple closed not separating geodesics dash with tremen-
dous speed against their limit. Then the program cannot deal with arcs of circles of
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Chapter 13: Simple geodesics on the pretzel

very large diameter and intersections close to the unit disc. This makes a lot of trouble
specially with longer paths.

Figure 13.1 shows a geodesic we have selected for its leaves being far apart.

However these di�culties do not prevent from trying to visualize how grafting and
pruning work. Words longer than can be shown contain no hidden mysteries. They
will only have many slits densely packed against the limit. Grafting works fairly well
as the slits are so to say pumped up, but pruning often leads to a crash, as there is
not enough stu� to be taken away when the angle increases.

These limitations to short words and small angles do no much harm. The interesting
cases are those of short paths because we have only 5 generators (plus their inverses).
Longer words only repeat within this small alphabet, they only have more nearly
colliding loops based on the pattern of short words.

13.1. The decagon model

13.1.1. Constructing the tile

We use now a very comfortable model elaborated by Dr. Ekkehard-H. Tjaden of
TU Berlin which takes advantage of the beautiful roundness of S3 to emphasize the
symmetries.

Take two circles in S3, each from one copy of R2 so they live in R4 ∼= R2 × R2, put 6
equidistant points on the one circle and 4 points on the other.

Pairing two neighbouring points of the one circle with two neighbouring points of the
other produces a K4−6 graph whose edges can be taken as facettes of a surface in S3.

There are 6+4 = 10 vertices, 6·4 = 24 edges and 12 faces. Thus the Euler characteristic
is −2, i.e. the surface has genus 2. Note that the original construction works for every
genus.

Stereographic projection from S3 into R3 shows a pretzel from which we take the
universal cover in the Poincaré disc.

 

Figure 13.2.: Hyperbolic paraboloid
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13.1: The decagon model

The facette is an equal sided quadrilateral with opposite angles π/3 and π/2 cut
out of a hyperbolic paraboloid. We assemble in �gure 13.3 the 12 quadrilaterals to
the fundamental tile of the pretzel. Opposite edges are identi�ed. Thus there are 2
vertices each in 5 copies. The midpoints of the identi�ed edges plus the origin are the
6 Weierstrass points.

a
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c

A

d B

e

C

Figure 13.3.: The decagon tile as union of quadrilaterals

It is far from evident how the identi�cation of the edges and Weierstrass points works.
This is the weak point of this model.

One gets a fair idea by joining the tips of the thumb, the index and the middle �nger of
his right hand with those of his left hand. For a good understanding of the model load
Comp_Surf_Ekki written by Dr. Ekkehard-H. Tjaden, where you can rotate the
graphics sketched in �gure 13.5.

The technique has been developed originally by Bernd Oberknapp and Konrad

Polthier in a numerical algorithm for picturing the Lawson minimal surface (see An
Algorithm for Discrete Constant Mean Curvature Surfacesin [30]). Their tile is made
of 16 quadrilaterals with π

3 angles. We use instead only 12 quadrilaterals. To the blank
eye our pretzel looks exactly the same as their Lawson minimal surface.

Figure 13.4 gives a more exact view of the pretzel seen from the front, from the side
and from above. It looks like a torus with a half torus bridge. The both points used
for the cutting are at the left and at the right extremity.

Figure 13.4.: The decagon pretzel

Figure 13.5 locates the 12 hyperbolic paraboloids. The pretzel is the union of them.
We see on the left every second quadrilateral and the complement on the right.
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Chapter 13: Simple geodesics on the pretzel

Figure 13.5.: Separating along the quadrilaterals

13.1.2. Using the symmetry of the hyperelliptic involution

The hyperelliptic involution is axed on the circle joining the 6 coplanar Weierstrass
points. Simple closed geodesics will run symmetrically across the tile. When we take
such a geodesic under scrutiny in the Poincaré disc we just need to rotate its axis of
symmetry onto the real line and compute what happens in the upper half of the disc.
We get the lower half for nothing, indeed by a π-rotation, i.e. by reversing the signs
of all points.

The hyperelliptic involution produces a symmetry along a diameter, which is optimal
for visualization. Only one half of the fundamental tile must be constructed. Last but
not least the identi�cations of opposite sides are welcome.

13.2. Geodesic paths

A path, say {c,a,c,D}, is a sequence of letters, a cycle extracted from a biin�nite list.
We understand these letters as the edges across which a geodesic runs. Note that
{c,a,c,d} would be a di�erent path. Although D and d are identi�ed as one and the
same edge, it depends from which direction one approaches.

The path repeats along the geodesic, so {c,a,c,D,c,a,c,D} is the same geodesic as
{c,a,c,D} belonging to the same biin�nite support. Thus it is not possible to hit, say
4 times, the edge a in di�erent places, because {a,a,a,a} is the same as {a}. However
{a,a,a,a,D} containing the intruder D will actually hit 4 times the edge a (and once
the edge D).

We understand the letters also as the generators covering the geodesic. This assimi-
lation does no harm and simpli�es notation. The generators are matrices which get
multiplied, so c.a.c.D applied to a point gives its image on the geodesic.

The path {c,a,c,D} being the same as {. . . c,a,c,D,c,a,c,D,c,. . . } it must also be the
same as {. . . ,a,c,D,c,a,c,D,a,. . . } and the other cyclic shifts. It must also be the same
as the inverse path {d,C,A,C} and its shifts when walking on the geodesic in the
opposite direction.

Imagine Dr. Stickler of Indra's Pearls starting from anywhere in the fundamental tile
with a piece of thread in his hand to mark his way. He stalks outwards and follows
a not necessarily straight but cyclic path, until he becomes so small that he seems to
us to have nearly reached the boundary of the unit disc. Where the cycle begins is
arbitrary when walking from in�nity to in�nity. It only makes sense to consider all
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13.3: The algorithm of Birman/Series

shifted cycles. The walking direction will also be reversed in all cycles. Looking at
the both points on the unit circle from where Dr. Stickler seems to have started to
where he seems to aim at, it su�ces to span the thread to get the geodesical path he
should have followed to minimize his long walk (according to Poincaré's result, that
homotopic paths have a unique geodesical representative). It does not matter from
which point Dr. Stickler started in the fundamental tile because the image of this
point lies in a tile close (for the Euclidean eye) to the boundary of the disc, so small
a tile that it merges with the end point of the geodesic.

Consequently the �xed points of the 8 words c.a.c.D, a.cD.c, . . . , A.C.d.C., C.A.C.d.
are the endpoints of the leaves of the geodesic.

Before there is a proof that {c,a,c,D} generates a geodesic, it is not asserted that it will
run twice across c and once across a resp. D. The path could be a cyclically repeated
zickzack. But when considering the both endpoints of the path on the unit circle the
geodesic joining them is the tightening of the path. Practically it seldom happens,
that a path deviates so much that its tightening would cut di�erent edges. Looking at
the path nearly always indicates which edges are crossed over and how often.

Remark. As long as the leaves cross the fundamental tile they belong to one and
the same geodesic. Of course every word can be shifted and inversed in the previous
manner. The so obtained branches will run somewhere across the disc but not all
across the fundamental tile. We have to imagine the covering of the pretzel as would
a thin transparent �lm get unrolled from the pretzel onto the hyperbolic plane. A
geodesic will run successively through the layers but all leaves are on the pretzel.
When grafting (or pruning) a wedge gets inserted (removed) not only from one layer
but from all layers. The branches outside the fundamental tile are no leaves of one and
the same geodesic, so far they are not conjugated to leaves on the tile. We found many
such isolated arcs - intersecting or not - which just happen to be related by shifting
without belonging to one and the same geodesic.

Grafting or pruning is cutting along a geodesic in order to insert, resp. prune away,
a small ring. This makes no sense when the geodesic is not simple. Nothing can be
inserted where the geodesic intersects itself, because the cut along the geodesic runs
into a grafted area which does not belong to the pretzel. Therefore the only candidates
are simple geodesics. The profound reason for this was given in [32, Poincaré]: each free
homotopy class of closed loops contains a simple (i.e. non intersecting) representative
if and only if the unique smooth geodesic representative C is simple. Further C is
simple if and only if for each lift of C on the Poincaré disc the supporting curves in
the in�nite family of conjugates are pairwise disjoint. This motivates why we hunt for
simple closed geodesics along which grafting and pruning are possible. The last step
will be to examine what happens when a �nite simple closed geodesic with many loops
comes near to an in�nite geodesic.

13.3. The algorithm of Birman/Series

Having experienced great di�culties in practically �nding simple closed geodesic, the
question arose, whether these geodesics found by tapping around were representative
of the set of simple closed geodesics (often called the Birman Series set).

As a liminary remark, note that there are simple closed geodesics which do not cross
the interior of edges but run through vertices. They cannot be described with words.
As there is only a �nite number of them this does not limit too much the visualization.
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Chapter 13: Simple geodesics on the pretzel

A brutal searching method consists in computing all possible words of up to n letters.
With 10 letters, i.e. 5 plus 5 inverses, 10n words are to be computed. There is
unfortunately no way leading from a word of i letters to a word of i + 1 letters. We
set our target to �nd words up to six letters, i.e. we would have had to test more than
1 000 000 words!

Fortunately, due the symmetries of the polygon, is su�ces to examine the words be-
ginning with a, b, or c. If the �rst letter is not a, b, or c, but d, e, A, B, C, D, or E
then just give the polygon a turn. Unfortunately, except for this very �rst letter, all
10 possibilities must be tested for each letter beyond, so 300 000 candidates were left.

We luckily found a really �ne sorting tool in An Algorithm For Simple Curves On
Surfaces published by [3, Joan S. Birman and Caroline Series]. This algorithm sorts the
endpoints of a multiple leaved geodesic, so as to asset, whether the endpoints intertwine
or not. One wonderful feature of this algorithm is that it is strictly combinatorial, it
just combines letters with no need to compute the generating matrices. So there are
no limitations coming from machine precision or speed.

The bad news are that this algorithm was made for surfaces with not empty boundary.
The reason is that when working with a free group the conjugacy classes are unique,
whereas they are generally not when the boundary is empty.

Our pretzel does have an empty boundary. Nevertheless the algorithm was still a
bless to us as it tells something about whether the endpoints of the multiple geodesic
intertwine. Passing the algorithm is a not su�cient but at least often a useful hint to
take geodesics under scrutiny. A geodesic can pass the test but not be simple or the
other way around (examples will be given hereunder). Anyway such accidents seldom
arise with short words. So we had a sieve for sorting out candidates, an e�ective sieve
as only 2 616 candidates were left.

It quite often happens that the leaves are disjoint but do not form a simple geodesic.
These are only not intersecting geodesics, obtained from each other by permuting the
path cyclically, but nothing more. Not all the leaves will run on the fundamental tile,
there is no symmetry given by the hyperelliptic involution, they do not go trough any
Weierstrass point. Before we sort again such and other bad candidates let us sketch
the idea of the algorithm.

13.3.1. The idea of the Birman Series algorithm

Let us use again the example of the path {c,a,c,d}.

The �rst step is to shift along the cycle and its inverse. With a slight abuse of language
we shall say `words' for these paths.

w1 = {c, a, c,D}
w2 = {a, c,D, c}
w3 = {c,D, c, a}
w4 = {D, c, a, c}
W1 = {d,C,A,C}
W2 = {C,A,C, d}
W3 = {A,C, d, C}
W4 = {C,A,C, d}
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13.3: The algorithm of Birman/Series

In a second step, order the words according to the alphabetical rule `low case before
high case': a,b,c,d,e,A,B,C,D,E but taken as a cyclical alphabet.

The �rst word is w2 as it begins with a.

Then we have to choose between w1 and w3, both beginning with the letter c.

In the c-alphabet the second letter D precedes the letter c. so w3 ≺ w1.

In the c-alphabet w3 is followed by W1, etc.

Finally we get the chain:

w2 ≺ w3 ≺ w1 ≺W1 ≺W3 ≺W2 ≺W4 ≺ w4

In the third and last step multiply the words of the chain. It is immediate that the
product simpli�es here to the identity. This was the condition for {c,a,c,D} to pass
the Birman Series test. It is a candidate for a simple closed geodesic.

It nearly never occurs with short words that a self intersecting geodesic passes the
Birman Series test. Such a seldom counterexample is the word {b, C, b, E, c, E}:

w1 = {b, C, b, E, c, E}
w2 = {C, b,E, c, E, b}
w3 = {b, E, c, E, b, C}
w4 = {E, c, E, b, C, b}
w5 = {c, E, b, C, b, E}
w6 = {E, b, C, b, E, c}
W1 = {e, C, e,B, c,B}
W2 = {B, e, C, e,B, c}
W3 = {c,B, e, C, e,B}
W4 = {B, c,B, e, C, e}
W5 = {e,B, c, B, e, C}
W6 = {C, e,B, c, B, e}

It follows:

w1 ≺ w3 ≺W3 ≺ w5 ≺W5 ≺W1 ≺W4 ≺W2 ≺ w2 ≺W6 ≺ w6 ≺W4

This multiplies to the identity but is no simple closed geodesic. This weird geodesic
respects the symmetry of the hyperelliptic involution. Two leaves run through only
the Weierstrass point on the c-edge (not two Weierstrass points as a simple closed non
separating geodesic would meet) but it has 4 self intersections, two of them exactly in
the Weierstrass point on the c-edge.

Inversely the path {b,E,b} does not pass the Birman Series test, although the geodesic
is simple.

13.3.2. The inelegant job

After having sorted the candidates left by the Birman Series test it is necessary to sort
out the few intersecting geodesics having passed the test. By default of a clever tool
we used brachial force and programmed a procedure for computing the intersections of
a set of geodesics. By we way we also sorted out the pseudo not intersecting geodesics
with not all leaves on the pretzel. Doing that, we also checked whether the candidates
meet or not Weierstrass points.
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Chapter 13: Simple geodesics on the pretzel

13.3.3. The �nal run

Our target was to investigate all words up to six letters. From more than 300 000
candidates at the start only 2 616 passed the Birman Series test. The rest was made
of separating and o� the tile leaves and some cases failing on machine precision.

# letters 1 2 3 4 5 6 S

simple not separating 3 24 38 194 118 949 1.326

separating 0 0 20 1 53 321 395

off the tile 0 3 17 111 94 523 748

bad cases 0 0 0 9 44 94 147

S 3 27 75 315 309 1.887 2.616

We were left with 1 326 `good' words of 1 to 6 letters and a rubbish of 147 bad cases
stumbling on machine precision, or with leaves almost intersecting on the unit disc. In
a couple of cases our algorithm for building up the tile failed (because the cuts are not
above each other). Having 5 generators (and their inverses) this is a wide spectrum of
the set of simple geodesics up to 6 letters. Longer words would only have more cuts
with the edges of the fundamental polygon. Except for more densely packed loops,
they would not look really di�erent.

Gathering the results we wrote a program, Geo_Finder_deca , for examining and
visualizing any path. It submits a path to the Birman Series algorithm, tests if all
leaves are on the pretzel and if they run through a Weierstrass point. One can choose
one of the selected simple geodesics and visualize them, or enter any path and see why
it was not selected (so far machine precision was not the reason for not selecting).

13.4. Presentation of the Georama program

The program Big_Quake_Georama is made for grafting and pruning and twisting
along simple closed geodesics.

We have tested the geodesics, thus grafting will work properly so far the angle is not
so large that the leaves intersect. We got no problem with α = 3◦. Very often much
larger angles will do, i.e. the lunes are distant enough so that they do not intersect.

Pruning quite often does not work due to intersecting lunes. Grafting takes nothing
away, it pumps up a bubbly lune. When pruning, stu� is cut away, but there is little
stu� around the axis of symmetry. So the angle has to be very tiny and the optical
e�ect is as though nothing would happen. As we would not want to loose interesting
graftings, we did not sort away the bad prunings.

When a positive angle α is entered the program grafts. It prunes when α < 0. It of
course returns the hyperbolic tessellation for α = 0.

Once the angle has been selected, the program asks how many letters the word will
have. When entering `0' the program makes itself a random choice.

Then a word has to be selected in the list of the appropriate number of letters. Entering
`0' there is again a random choice.

The program returns always which choice is running, so that one knows what random
chose. Fixing only the angle α you get a diaporama, until you �nd something you
would like to examine more closely on the Geo_Finder_deca.
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13.5: The idea behind the program

A last choice is how �ne the fractal border should be.

Due to the symmetry of the tile we only had to tessellate the upper half of the disc
and multiply by -1. We have calculated all shortened words up to 6 letters. Then we
have calculated the distance from the origin to the image of the origin for all tiles.
The rough tessellation selects the tiles where the image of the origin is within a radius
< 0, 99 (the radius of the unit circle being 1). The program needs 5 seconds to run this.
The fractal border is very poor but one sees the geodesic. For the �nest tessellation
the distance to the origin is < 0.9995, the runtime is 20 seconds. The fractal border is
visually well approximated. The two other choices are in between as indicated.

13.5. The idea behind the program

When grafting or pruning we leave hyperbolic geometry, we have to deal with arcs
of circles instead of geodesics. Thus we loose the comfort of hyperbolic tools: among
many other annoyances one needs 3 points to de�ne an arc where only 2 de�ne a
geodesic.

The generators are deeply modi�ed due to the insertion of suppression of lunes. Of
course the revisited generators of the expanded or shrunk tessellation are related to the
edges of the fundamental polygon of the hyperbolic tessellation. However it requires
a lot of concentration to retrace what happens with a generator when it is altered by
the Möbius transformation. The fundamental tile gets thicker when grafted along the
leaves of the cut. The adjacent tiles have to move appropriately away but they also
become in�ated. The combination of all these moves is far from being unique.

It �rst seemed to us very di�cult to tell the program how to handle with each individual
tessellation. Fortunately brute force solves the problem. After computing some cases
by hand we observed that only a small number of patterns occur. Only the order of
the transformations is di�cult to determine. So we just let the program go through
all permutations until it �nds a convenient one. This scheme always works and this
very quickly.

What seemed to be di�cult proved to be easy. Oppositely even a child would easily
�nd the intersection of the fundamental tile with the leaves of the geodesic. The
computer does not. It is quite a bore to �nd a way for cutting up the fundamental
tile along all the types of leaves which may arise. This di�culty was overcome and
we also succeeded in �lling the fundamental tile with color, in order to visualize the
deformation which is di�cult to see when pruning.

Our program could deal with words of any length n. The �rst leaf 1 and the last leaf
n require a speci�c treatment as only one side is a�ected. All leaves from 2 up to n−1
are equally treated on both sides. Practically this universality if of no use. There is so
little room between the leaves of a geodesic that many words of six letters accept such
a small angle that the grafting is visually uninteresting and the pruning all the more.

The program cuts the fundamental tile into polygons bordered by the leaves of the
geodesic. The lunes are pushed between the domain when grafting, which works easily.
When pruning the domains are crushed through each other, so that the overlappings
are to be wiped out. This is a rather nasty extension of the grafting program.
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13.6. Presentation of the Geodesic Finder

The program Geo_Finder_deca is dedicated to the examination of any geodesic. Part
of it is the Birman Series test. Just enter any path of any length. If the return is `True'
this could be a simple geodesic. It is probably not a simple geodesic when `False' is
returned.

Then the program computes self intersections, if any, and shows the geodesic. In the
last test the program returns whether the geodesic runs through a Weierstrass point
(only computing the coordinates of was had already been visualized).

Here again a random choice is possible, but you can enter a path of your choice, the
risk being that it is too long for machine precision or leads to nearby intersections on
the unit circle. The �rst test is the Birman test. This test always works as it is purely
combinatorial. Here again a random choice is possible, but you can enter a path of
your choice.

13.7. The scarceness of simple geodesics

It is quite fascinating when drawing the leaves of a simple closed not separating geodesic
in our decagon model that they run through exactly two Weierstrass points. If the
number of leaves is augmented by more loops across some edge, the leaves will rearrange
automatically giving room to the new leaf but there is still a leaf going through the
same Weierstrass point. There is some sort of mysterious strength compelling the
geodesic to run through exactly two Weierstrass points.

13.8. Many-leaved laminations
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Figure 13.6.: Lamination through two geodesics

Our surgery operations were all performed along a unique geodesics. The program
Duelling_geos o�ers a lamination made of a sequence of paired closed simple geodesics.
The small �gure 13.6 is just a hint at the use of the program.

Two geodesics are paired, adding the same letter in a sequence:
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13.8: Many-leaved laminations

? {B,d} paired with {b,b,e}
? {B,B,d} paired with {b,b,b,e}
? {B,B,B,d} paired with {b,b,b,b,e}
? {B,B,B,B,d} paired with {b,b,b,b,b,e}
? {B,B,B,B,B,d} paired with {b,b,b,b,b,b,e}

We have stopped the sequence, because the error in longer matrix multiplications
creates problems. Obviously the sequence could be extended.

In �gure 13.6 there is a zoom centered on the origin to better see that the geodesics
do not intersect. This is only an example, there are many such sequences. The one
deviating letter compels the geodesic to loop and loop without end. The other geodesic
must use another Weierstrass point. Both geodesics run alternately through the origin.
They of course must stay close to it, therefore the zoom into the very dense array.

The sequence of �gure 13.7 shows how the leaves alternate through and close to their
respective Weierstrass points. The number of leaves increases in single steps. The
geodesic going through the origin in step i must leave the origin in step i + 1, but
the other geodesic that did not go through the origin in i does in i + 1. It is a
marvelous choreography, where an increasing number of leaves of a pair of geodesics
dance denser and denser against each other through two Weierstrass points out of only
three, exchanging places, but nether intersecting.

Figure 13.7.: Duelling Arrray
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The array was obtained with the program Duelling_geos an extended version of the
program Lam_2geos_deca.
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Chapter 14.

A software for hyperbolic and Möbius

geometry

Here we introduce the Mathematica R© package diskgeometry , which provides a wide
range of tools for who wants to visualize geometry in the Poincaré disc.

A geodesic in the Poincaré disc is an arc of an Euclidean circle. An arc is uniquely
de�ned by three points. Using Mathematica R© 4.0 the �rst problem we met was the
instruction Circle de�ning an arc by the extreme opening angles with regard to the
positive real axis. We have therefore written our own instruction de�ning the arc
by three points given as complex numbers. This was the germ around which we
constructed step after step the extensive program diskgeometry for hyperbolic and
Möbius geometry. We rounded up the tools beyond what we actually needed for
this paper. For a better oversight we wrote two further packages geodesichunt and
geodesichuntQuake for those instructions, which we required but are not of general
programming interest.

After some years of use and of add-ons diskgeometry covers not only the necessary
tools but also many comfortable shortcuts. It is for instance oft convenient to de�ne a
geodesic by its endpoints on the unit circle, or it is nice to �ll in a hyperbolic polygon
with color, or you need the Möbius matrix mapping 3 points on 3 other ones, etc. The
package, although primarily devoted to hyperbolic and Möbius geometry, also gives a
basic kit for Euclidean geometry using complex numbers, e.g. �nd the intersection of
two circles.

Practice showed that each of our programs makes largest use of diskgeometry. This
is certainly a drawback for somebody who would like to trace back what we have
programmed. On the other hand our programs became de�nitely shorter and thus
much easier to overlook.

Appendix A lists up the instructions of disgeometry as an orientation about what the
program can.

Appendix B gives the notebook manual diskgeometry with examples showing how the
main instructions work.

Appendix C Pinacotheca gathers typical pictures and a short − what the program
does in detail is reported in the program itself − summary of programs. We made
our selection from the viewpoint of visualization or in relation with the contents of
this paper. Three stars *** give a hint to those programs, which to our mind deserve
special interest. As nobody will recall the program names, a search should start in
Pinacotheca, the picture leads to the program name reported in the index, where the
page of the topic in the main paper is indicated.
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Appendix A.

diskgeometry

AngleC AngleC[p,q,r] returns in Degrees the angle of the geodesics through p,r and
q,r.

Arc Arc[p,q,r] is extension of Threeptcirc[p,q,r]. It draws the arc of circle or the line
segment with endpoints p=(_,_) and q=(_,_) and r(_,_) in between.

ArcC ArcC[p,q,r] is the same as Arc[p,q,r] but p, q, r are complex numbers instead
of vectors.

ArcgeoC ArcgeoC[z,w,color] returns the graphic instruction for the geodesic through
the points z and w in the Poincaré disk. Color uses the list of PolygonC, default
value is no coloring.

atomizeArc atomizeArc[z,w,r,n] takes an arc (z,w,r) (r between z and w), geodesical
or not, cuts it into 2∧n points (default value is n = 3) and returns the list of
these points, i.e. a discretisation of the arc.

Center3pts Center3pts[p,q,r] returns the center of the circle through the vectors p
=(_,_), q=(_,_) and r(_,_).

Center3ptsC Center3ptsC[p,q,r] returns the center of the circle through the points
p,q,r as complex number.

Choice Choice[x] is an internal instruction for choosing a color for a graphic instruc-
tion.

CleanList CleanList[x] eliminates most duplicates from a list of arcs.

Cut2Arcs Cut2Arcs[p1,p2,p3,q1,q2,q3] returns the intersection (empty, 1 point, 2
points) of the arcs (p1,p2,p3) and (q1,q2,q3).

Cut2circlesC Cut2circlesC[c1,R1,c2,R2] returns the crosspoints of the circles with
center c1, c2, and radi R1, R2.

Cut2linesC Cut2linesC[z,w,u,v] returns the crosspoint of Euclidean straight lines
through z,w and u,v.

Cut2geoC Cut2geoC[{a1,b1,m1},{a2,b2,m2}] returns the crosspoint of 2 geodesics
(arc or line). Hereby ai and bi are the endpoints on the unit circle and mi is the
middle. ai bi and mi are complex numbers. For internal use, common instruction
is CutGeosC.

CutGeosC CutGeosC[z,w,u,v]returns the crosspoint of 2 geodesics trough z,w and
u,v.
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CutLineCircC CutLineCircC[z_,w_,c_,R_] returns the intersection inside the unit
disk of the straight line through z and w with the circle of center p and radius
R. When the straight line is no geodesic both intersections are given eventuelly.

CutSegmArc CutSegmArc[p1,p2,q1,q2,q3] returns the intersection (empty, 1 point,
2 points) of the segment (p1,p2) and the arc (q1,q2,q3).

DiperpC DiperpC[a1,b1,a2,b2] graphic instruction for the common perpendicular to
the arcs through a1, b1 and a2, b2 in the disk.

drawHexagon drawHexagon[b1,b2,b3] draws the Hexagon[b1,b2,b3].

drawPentagon drawPentagon[a,b] draws Pentagon[a,b].

EdgetoArcC EdgetoArcC[{z1,z2,z3}] returns the graphic instruction for tracing the
arc through 3 points. This avoids to apply ArcC to the 3 pts separately.

EdgetocR EdgetocR[{p1,p2,p3}] returns the midpoint and the radius of the arc
(p1,p2,p3).

EndpointsC EndpointsC[a,b] returns both endpoints of the geodesic through a and
b in the disk.

EuclMidPt EuclMidPt[r,s,p1,p2,p3] returns the Euclidean midpoint of any points r
and s of the support of the arc (p1,p2,p3).

�lledPoly �lledPoly[poly,discr] returns the Polygon instruction for polygons bounded
by arcs. It discretises a list of arcs at level discr-power of 2 (default value discr
= 3).

FixptsC FixptsC[matrix] returns both �xpoints of a matrix of SL(2,C). Error message
when Det is more than 10∧-9 away from 1.

GeodesicC GeodesicC[z,w] returns center and radius of the geodesic through the
points a and b in the Poincaré disk or the endpoints of the line when a and b
are on a radial geodesic.

GraphPerpC GraphPerpC[z,w,p] returns the graphic instruction for the perpendic-
ular through the points z and w in the Poincaré disk from p on or outside the
geodesic.

GraphPolyC GraphPolyC[x,color] returns the graphic instruction for a closed polygon
given by the list x of its vertices. color = 0,1,...9 is optional, default value is black.

HalfRegPoly HalfRegPoly[n,phi,psi] returns the halfregular polygon with n edges and
alternating angles phi and psi.

hCenterC hCenterC[c,R] returns the hyperbolic center of the circle of Euclidean cen-
ter c and Euclidean radius R.

hCircleC hCircleC[c,Rh] returns the graphic instruction for the circle of hyperbolic
center c and hyperbolic radius Rh.

hDistC hDistC[z,w] returns the hyperbolic distance between the points z and w in
the Poincaré disk.

InfTess InfTess[n,m] returns the edges of the tessellation with the ideal polyon of n
edges turning m times around its vertices.

LineC LineC[z,w,color] returns the graphic instruction for the Euclidian line joining
z and w in R∧2. color = 0,1,...9 is optional, default value is black.
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HoroRotateC HoroRotateC[poly,p,phi] returns the rotation with angle phi along horo-
cycles touching the unit circle in p.

MakePolyC Makes out of the list x of points (vertices) with x1 = xn the list of edges,
i.e. arcs de�ned by startpoint, end point and the midpoint.

MatonEdgeC MatonEdgeC[M,list] moves the points of the list with the matrix M of
SL(2,C).

MatonPtC MatonPtC[M,z] moves the point z with the matrix M of SL(2,C).

Moeb3ptsC Moeb3ptsC[z1,z2,z3,w1,w2,w3] returns the Moebius matrix of SL(2,C)
moving 3 points z1,z2,z3 to the 3 points w1,w2,w3.

Midpoint Midpoint[v,w] is the same as midpointC, when v and w are given as vectors.

MidpointC MidpointC[p,q] returns midpoint of geodesic segment through points p
and q in the disk.

MilieuC MilieuC[p,q] returns the �ctive midpoint of the geodesic when p and q are
endpoints,so as to obtain the 3rd point for ArcC.

MirrorC MirrorC[z,p,q] inverses in the geodesic supporting segment [p,q].

MorePts MorePts[y] inserts the Euclidean midpoints between the points listed in y.

MTess MTess[n,m] returns the edges of the tessellation with the polyon of n edges
turning m times around the vertices. This medium tessellation covers the �rst
crown of tiles around the central tile.

OtherEndpointC Being given an endpoint and another point of a geodesic OtherEnd-
pointC[endpt,noendpt] returns the pair of endpoints.

PerpC PerpC[z,w,p] returns the endpoints of the geodesic through p orthogonal to
the geodesic through z and w. p is any point on or outside the geodesic.

PointC PointC[z,color,g] returns the graphic instruction for a point in R∧2 . color
= 0,1,...9 is optional, default value is black. PointSize g is optional too, default
value g = .02.

PolygonC PolygonC[x,color,lev] is the graphic instruction for a �lled hyperbolic poly-
gon discretised at level lev. color = 0,1,...9 is optional, default value is black. lev
is optional too, default value is lev = 3.

PtonArc PtonArc[q,p1,p2,p3] returns True when the point q lies on the arc joining
p1 and p2 through p3.

PtonSegm PtonSegm[q,p1,p2] returns True when the point q lies on the segment
joining p1 and p2.

PtstocR PtstocR[p1,p2,p3] returns the midpoint and the radius of the arc (p1,p2,p3).

Radius3pts Radius3pts[p,q,r] returns the radius of the circle through the vectors p
=(_,_), q=(_,_) and r(_,_).

Radius3ptsC Radius3ptsC[p,q,r] returns the radius of the circle through the points
p,q,r.

RegPoly RegPoly[n,phi] returns the regular polygon with n edges and angle phi.
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RightangledHexagon RightangledHexagon[b1,b2,b3] gives the vertices of the hexagon
with edges-lengths b1,b2,b3. Always de�ned.

RightangledPentagon RightangledPentagon[a,b] returns the vertices of the pentagon
with edge of Euclidean length a on imaginary axis, b on real axis. Not de�ned
for all pairs a,b.

RotateC RotateC[poly,alpha,n:1,centr:0] returns the rotation of the list of points
(poly) with the angle alpha, n-times (default value 1), around the point centr
(default value the origin).

RotateMTess RotateMTess[n,m,phi,p] returns the edges of the medium tessellation
MTess[n,m] rotated with the angle phi around the point p.

RotateSTess RotateSTess [n,m, phi, p] returns the edges of the small tessellation
STess[n,m] rotated with the angle phi around the point p.

RotateXLTess RotateXLTess[n,m,phi,p] returns the edges of the large tessellation
XLTess[n,m] rotated with the angle phi around the point p.

scalC scalC[p1,p2] returns the dot product of the vectors coresponding to the points
p1 and p2. If positive the angle α is α < π/2 or α > 3π/2, if negative π/2 < α
< 3π/2.

ShowInfPolyC ShowInfPolyC[x,n] visualises the list x of ideal polygons with n vertices
on the unit disc.

ShowInfTess ShowInfTess[n,m] displays the tessellation using the ideal regular poly-
gon with n edges and m turns around its vertices.

ShowMe ShowMe[graphics] displays a list of graphic instructions in the unit disk.

ShowPolyC ShowPolyC[x] visualises the polygon given by its list x of vertices.

ShowRotateMTess ShowRotateMTess[n,m,phi,p] visualises the medium tessellation
MTess[n,m] rotated with the angle phi around the point p.

ShowRotateSTess ShowRotateSTess[n,m,phi,p] visualises the small tiling STess[n,m]
rotated about the angle phi around the point p.

ShowRotateXLTess ShowRotateXLTess[n,m, phi, p] visualises the large tessellation
XLTess[n,m] rotated with the angle phi around the point p.

ShowMTess Graphic instruction visualising the medium tessellation MTess[n,m] with
the central tile and the �rst crown of tiles around it.

ShowSTess Graphic instruction visualising the small tessellation STess[n,m] with the
central tile and its adjoining tiles.

ShowXLTess Graphic instruction visualising the large tessellation XLTess[n,m] with
two crowns of tiles.

ShowTranslateMTess Visualises the medium tessellation MTess[n,m] translated along
the vector (p,q).

ShowTranslateSTess Visualises the small tessellation STess[n,m] translated along the
vector (p,q).

ShowTranslateXLTess Visualises the large tessellation XLTess[n,m] translated along
the vector (p,q).
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STess STess[n,m] returns the edges of the tessellation with the polyon of n edges
turning m times around the vertices. This small tessellation limits to the central
tile and its adjoining tiles.

Threeptcirc Threeptcirc[p,q,r] draws the circle through the points p =(_,_), q=(_,_)
and r(_,_).

ThreeptcircC ThreeptcircC[p,q,r] is the same as Threeptcirc[p,q,r] but p, q, r are
complex numbers instead of vectors.

ThreePtgeoC Obsolete instruction. ThreePtgeoC[c,R] returns endpoints and mid-
point of geodesic with center c and radius R in the disk.

TranslateLeftC TranslateLeftC[poly,p1,p2] translates the list of vertices poly with
the vector (p1,p2) to the left when p1 < p2 lie on the real axis. The e�ect is
equivalent to -TranslateRightC.

TranslateRightC TranslateRightC[poly,p1,p2] translates the list of vertices poly with
the vector (p1,p2) to the right when p1 < p2 lie on the real axis. The e�ect is
equivalent to -TranslateLeftC.

TranslateMTess TranslateMTess[n,m,p,q] returns the translated edges of the medium
tessellation MTess[n,m] along the vector (p,q).

TranslateSTess TranslateSTess[n,m,p,q] returns the translated edges of the small tes-
sellation STess[n,m] along the vector (p,q).

TranslateXLTess TranslateXLTess[n,m,p,q] returns the translated edges of the large
tessellation XLTess[n,m] along the vector (p,q).

TriangleC TriangleC[alpha,beta,gamma] returns the 3 vertices of the triangle de�ned
by its 3 angles.

TriIsoInf TriIsoInf[phi] returns the 3 vertices of the 2/3 ideal triangle de�ned by its
angle phi != 0.

TriOneInf TriOneInf[phi,psi] returns the 3 vertices of the 1/3 ideal triangle de�ned
by its angles phi,psi != 0.

TriRect TriRect[phi] returns the 3 vertices of the 1/3 ideal rightangled triangle de-
�ned by its angle phi != 0 and Pi/2.

VertextoArc VertextoArc[vlist] returns the graphic instruction for the arcs joining
the points of vlist.

XLTess XLTess[n,m] returns the edges of the tessellation with the polyon of n edges
turning m times around the vertices. This large tessellation covers two crowns
of tiles around the central tile.

WedgeC WedgeC[p1,p2,p3] returns the angle α between the extremities p1 and p2
of the arc (p1,p2,p3).
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Appendix B.

Manual diskgeometry

In the next instruction Own is to be corrected according to the path leading to the
package diskgeometry.

<< Owǹdiskgeometrỳ<< Owǹdiskgeometrỳ<< Owǹdiskgeometrỳ
O�[General::"spell1"]O�[General::"spell1"]O�[General::"spell1"]

The Package diskgeometry� uses the disk model of Poincaré for the hyperbolic plane.
Particular consideration has been given to the of endpoints of geodesics. Error mes-
sages provide a motivated warning when inputs are against hyperbolic rules, e.g. when
the sum of angles of a triangle would be ≥ π.
The instructions all contain at least one letter in high case, so that no con�icts may
arise when using low cases for programming. Instructions are wrapped in a module in
order to make all variables local. Postponing the letter C suggests that the instruc-
tion works on complex numbers and avoids con�icts with names the user might like
to choose. A few obsolete instructions were kept in this package so as not to rewrite
existing programs.

A few instructions apply to vectors in R2: Arc, Centrer3pts, Midpoint, Radius3pts,
Threeptcircle. They have no ending in C and use vectors instead of complex numbers.
They are almost super�uous but can sometimes be of help, as the graphic instructions
of Mathematica R© always use vectors. The word point always means the attached
complex number in C.

ThreeptcircC[p,q,r]ThreeptcircC[p,q,r]ThreeptcircC[p,q,r] returns the graphic instruction for the circle through the vectors
p,q,r. Center3ptsC[p,q,r]Center3ptsC[p,q,r]Center3ptsC[p,q,r] returns the center of this circle and Radius3ptsC[p,q,r]Radius3ptsC[p,q,r]Radius3ptsC[p,q,r] its
radius. Of course one can extract these data from the graphic instruction as well.

ArcgeoC[z,w,color]ArcgeoC[z,w,color]ArcgeoC[z,w,color] returns the graphic instruction for the unique geodesic through the
points z and w with a coloring option. GeodesicC[z,w]GeodesicC[z,w]GeodesicC[z,w] is only a shortcut returning
center and radius instead of having to extract them from ArcgeoC.

PointC[z, color, g]PointC[z, color, g]PointC[z, color, g]returnsthegraphicinstruction withcoloringoptionfor
thepointinR2.Thepointsizegisoptionaltoo,defaultvalueg = .02.

LineC[z,w,color]LineC[z,w,color]LineC[z,w,color] returns accordingly the instruction for the Euclidean line joining z
and w.

ArcC[z,w,r]ArcC[z,w,r]ArcC[z,w,r] returns the graphic instruction for the arc of circle joining z to w over
any r in between. Note that r is in the 3rd position. Which of z or w is in the �rst
or the second position is irrelevant. ArcC does not de�ne an hyperbolic line as such,
just an arc of circle through 3 points. EdgetoArcC[{z,w,r}]EdgetoArcC[{z,w,r}]EdgetoArcC[{z,w,r}] is basically the same
asArcC[z,w,r] but it accepts a bracket whithout having to extract the elements from
their list.
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ShowMe[obj]ShowMe[obj]ShowMe[obj] is just a shortcut displaying inside the Poincaré disk the hyperbolic
objects given by a list obj = {g1,g2,...} of graphic instructions.

MidpointC[p,q]MidpointC[p,q]MidpointC[p,q] returns the midpoint of the hyperbolic arc joining the points p and
q. It will be be used it frequently as 3rd point r in ArcC[p,q,r]. When drawing a
geodesic de�ned over one or both endpoints on the unit circle, there is no midpoint!
So we use MilieuC[p,q]MilieuC[p,q]MilieuC[p,q] instead, which returns the Euclidean midpoint of a geodesic
arc. Both instructions could have been merged, but this might have been confusing.

MorePts[list]MorePts[list]MorePts[list] inserts the Euclidean midpoints between the points on a geodesic listed
in list. Using the instruction Nest splits up the geodesic for discretising.

As an example we use now ArcCArcCArcC to draw an arc of circle through 3 points, which is
neither a geodesic nor an hyperbolic arc of circle but only the equidistant curve for
the geodesic with endpoints z and w. ArcCArcCArcC could be used as well for any 3 points
in R00b2. With MorePtsMorePtsMorePts we �x the feet of perpendiculars to the geodesic. The
geodesical segments within the lune have the same hyperbolic length.

z = ei3Pi/2;w = eiPi/5; r = .7eiPi/2;z = ei3Pi/2;w = eiPi/5; r = .7eiPi/2;z = ei3Pi/2;w = eiPi/5; r = .7eiPi/2;
�ner = Nest[MorePts, {z, w}, 5]//N ;�ner = Nest[MorePts, {z, w}, 5]//N ;�ner = Nest[MorePts, {z, w}, 5]//N ;
comb = Map[GraphPerpC[z, w,#]&, �ner];comb = Map[GraphPerpC[z, w,#]&, �ner];comb = Map[GraphPerpC[z, w,#]&, �ner];
obj = {ArcgeoC[z, w],obj = {ArcgeoC[z, w],obj = {ArcgeoC[z, w],
ArcC[z, w, r],ArcC[z, w, r],ArcC[z, w, r],
comb,comb,comb,
PointC[z, 0, .03],PointC[w, 0, .03],PointC[z, 0, .03],PointC[w, 0, .03],PointC[z, 0, .03],PointC[w, 0, .03],
PointC[r, 0, .03]};PointC[r, 0, .03]};PointC[r, 0, .03]};
ShowMe[obj]ShowMe[obj]ShowMe[obj]

An immediate application of MidpointC is hCenterC[c,R]hCenterC[c,R]hCenterC[c,R], which returns the hyper-
bolic center of a circle. A warning is issued when the circle cuts or touches the unit
circle. Similarly hCircleC[c,Rh]hCircleC[c,Rh]hCircleC[c,Rh] returns the graphic instruction for the circle of hy-
perbolic center c and hyperbolic radius Rh. It is immediate to recover the Euclidean
center and radius from the graphic instruction. Here are circles concentric to a given
circle.

a = .4; psi = Pi/3; c = aeipsi;R = 1− a− .1;a = .4; psi = Pi/3; c = aeipsi;R = 1− a− .1;a = .4; psi = Pi/3; c = aeipsi;R = 1− a− .1;
hypcent = hCenterC[c,R];hypcent = hCenterC[c,R];hypcent = hCenterC[c,R];
k = Table[{Hue[i/10],hCircleC[hypcent, iR]},k = Table[{Hue[i/10], hCircleC[hypcent, iR]},k = Table[{Hue[i/10], hCircleC[hypcent, iR]},
{i, 15}];{i, 15}];{i, 15}];
ShowMe[{k,PointC[hypcent]}]ShowMe[{k,PointC[hypcent]}]ShowMe[{k,PointC[hypcent]}]
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To show some structure of the inner life of a circle we picture a polygon inscribed in
a disk. The look is not far from the Euclidean.

greentri = TriangleC[Pi/6,−Pi/6,Pi/6];greentri = TriangleC[Pi/6,−Pi/6,Pi/6];greentri = TriangleC[Pi/6,−Pi/6,Pi/6];
rotgreentri =rotgreentri =rotgreentri =
Table[RotateC[greentri,Pi/6, i], {i, 12}]//Chop;Table[RotateC[greentri,Pi/6, i], {i, 12}]//Chop;Table[RotateC[greentri,Pi/6, i], {i, 12}]//Chop;
graphrotgreentri =graphrotgreentri =graphrotgreentri =
Table[PolygonC[rotgreentri[[i]], 2], {i, 1, 12, 2}];Table[PolygonC[rotgreentri[[i]], 2], {i, 1, 12, 2}];Table[PolygonC[rotgreentri[[i]], 2], {i, 1, 12, 2}];
redtri = TriangleC[Pi/6,Pi/6,Pi/6];redtri = TriangleC[Pi/6,Pi/6,Pi/6];redtri = TriangleC[Pi/6,Pi/6,Pi/6];
rotredtri =rotredtri =rotredtri =
Table[RotateC[redtri,Pi/6, i], {i, 12}]//Chop;Table[RotateC[redtri,Pi/6, i], {i, 12}]//Chop;Table[RotateC[redtri,Pi/6, i], {i, 12}]//Chop;
graphrotredtri = Table[PolygonC[rotredtri[[i]], 0],graphrotredtri = Table[PolygonC[rotredtri[[i]], 0],graphrotredtri = Table[PolygonC[rotredtri[[i]], 0],
{i, 1, 12, 2}];{i, 1, 12, 2}];{i, 1, 12, 2}];
rond = hCircleC[0, hDistC[0, rotgreentri[[1, 3]]]];rond = hCircleC[0,hDistC[0, rotgreentri[[1, 3]]]];rond = hCircleC[0, hDistC[0, rotgreentri[[1, 3]]]];
ShowMe[{Disk@@rond, graphrotgreentri, graphrotredtri,ShowMe[{Disk@@rond, graphrotgreentri, graphrotredtri,ShowMe[{Disk@@rond, graphrotgreentri, graphrotredtri,
PointC[0]}]PointC[0]}]PointC[0]}]

To show how the hyperbolic metric moves the midpoint and distorts the radii, we now
translate by the vector (0,d) along the real axis. The programm is the same but for
the added translation.

d = .5;d = .5;d = .5;
greentri = TriangleC[Pi/6,−Pi/6,Pi/6];greentri = TriangleC[Pi/6,−Pi/6,Pi/6];greentri = TriangleC[Pi/6,−Pi/6,Pi/6];
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rotgreentri =rotgreentri =rotgreentri =
Table[TranslateRightC[RotateC[greentri,Pi/6, i],Table[TranslateRightC[RotateC[greentri,Pi/6, i],Table[TranslateRightC[RotateC[greentri,Pi/6, i],
0, d], {i, 12}]//Chop;0, d], {i, 12}]//Chop;0, d], {i, 12}]//Chop;
graphrotgreentri =graphrotgreentri =graphrotgreentri =
Table[PolygonC[rotgreentri[[i]], 2], {i, 1, 12, 2}];Table[PolygonC[rotgreentri[[i]], 2], {i, 1, 12, 2}];Table[PolygonC[rotgreentri[[i]], 2], {i, 1, 12, 2}];
redtri = TriangleC[Pi/6,Pi/6,Pi/6];redtri = TriangleC[Pi/6,Pi/6,Pi/6];redtri = TriangleC[Pi/6,Pi/6,Pi/6];
rotredtri =rotredtri =rotredtri =
Table[TranslateRightC[RotateC[redtri,Pi/6, i],Table[TranslateRightC[RotateC[redtri,Pi/6, i],Table[TranslateRightC[RotateC[redtri,Pi/6, i],
0, d], {i, 12}]//Chop;0, d], {i, 12}]//Chop;0, d], {i, 12}]//Chop;
graphrotredtri = Table[PolygonC[rotredtri[[i]], 0],graphrotredtri = Table[PolygonC[rotredtri[[i]], 0],graphrotredtri = Table[PolygonC[rotredtri[[i]], 0],
{i, 1, 12, 2}];{i, 1, 12, 2}];{i, 1, 12, 2}];
rond = hCircleC[rotgreentri[[1, 4]],rond = hCircleC[rotgreentri[[1, 4]],rond = hCircleC[rotgreentri[[1, 4]],
hDistC[rotgreentri[[1, 3]], rotgreentri[[1, 4]]]];hDistC[rotgreentri[[1, 3]], rotgreentri[[1, 4]]]];hDistC[rotgreentri[[1, 3]], rotgreentri[[1, 4]]]];
ShowMe[{Disk@@rond, graphrotgreentri, graphrotredtri,ShowMe[{Disk@@rond, graphrotgreentri, graphrotredtri,ShowMe[{Disk@@rond, graphrotgreentri, graphrotredtri,
PointC[d]}]PointC[d]}]PointC[d]}]

GeodesicC[a,b]GeodesicC[a,b]GeodesicC[a,b] returns center and radius of the geodesic through the points a and b
in the Poincaré disk or the endpoints of the line when a and b are on a radial geodesic.
EndpointsC[a, b]EndpointsC[a, b]EndpointsC[a, b] returns both endpoints of the geodesic through a and b in the disk.
OtherEndpointCOtherEndpointCOtherEndpointC returns the second endpoint of a geodesic when entering an endpoint
and any other point.
MakePolyC[poly]MakePolyC[poly]MakePolyC[poly] returns the edges of a closed polygon. GraphPolyC[poly,color]GraphPolyC[poly,color]GraphPolyC[poly,color]
is the corresponding graphic instruction. GraphPolyC can use the color option like
PointC, LineC, ArcgeoC and PolygonC.

MirrorC[z,p,q]MirrorC[z,p,q]MirrorC[z,p,q] inverses a point or a list of points i.e. mirrors against a geodesic.

p = .5ei5Pi/4; q = .8eiPi/2;p = .5ei5Pi/4; q = .8eiPi/2;p = .5ei5Pi/4; q = .8eiPi/2;
penta = RightangledPentagon[.5, .6];penta = RightangledPentagon[.5, .6];penta = RightangledPentagon[.5, .6];
imagepenta = MirrorC[penta, p, q];imagepenta = MirrorC[penta, p, q];imagepenta = MirrorC[penta, p, q];
obj = {obj = {obj = {
GraphPolyC[penta, 0],GraphPolyC[penta, 0],GraphPolyC[penta, 0],
GraphPolyC[imagepenta, 0],GraphPolyC[imagepenta, 0],GraphPolyC[imagepenta, 0],
ArcgeoC[p, q, 2],ArcgeoC[p, q, 2],ArcgeoC[p, q, 2],
PointC[p, 2],PointC[p, 2],PointC[p, 2],
PointC[q, 2]};PointC[q, 2]};PointC[q, 2]};
ShowMe[obj];ShowMe[obj];ShowMe[obj];

PerpC[z,w,p]PerpC[z,w,p]PerpC[z,w,p] returns the pair of endpoints of the perpendicular through p orthog-
onal to the geodesic through z and w. p is any point on or outside the geodesic.
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GraphPerpC[z,w,p]GraphPerpC[z,w,p]GraphPerpC[z,w,p] is the graphic instruction. Choosing p as the midpoint of (z,w)
returns the mediatrixmediatrixmediatrix (for which therefore no speci�c instruction is needed).

z = −.7eiPi/2;w = .3eiPi/5; q = .5eiPi/3;z = −.7eiPi/2;w = .3eiPi/5; q = .5eiPi/3;z = −.7eiPi/2;w = .3eiPi/5; q = .5eiPi/3;
p = MidpointC[z, w];p = MidpointC[z, w];p = MidpointC[z, w];
obj = {obj = {obj = {
GraphPerpC[z, w, p],GraphPerpC[z, w, p],GraphPerpC[z, w, p],
ArcgeoC[z, w, 0],ArcgeoC[z, w, 0],ArcgeoC[z, w, 0],
GraphPerpC[z, w, q],GraphPerpC[z, w, q],GraphPerpC[z, w, q],
PointC[z, 0],PointC[z, 0],PointC[z, 0],
PointC[w, 0],PointC[w, 0],PointC[w, 0],
PointC[p],PointC[p],PointC[p],
PointC[q],PointC[q],PointC[q],
Text["z", {.05,−.7}],Text["z", {.05,−.7}],Text["z", {.05,−.7}],
Text["w", {.3, .15}],Text["w", {.3, .15}],Text["w", {.3, .15}],
Text["p", {.12,−.37}],Text["p", {.12,−.37}],Text["p", {.12,−.37}],
Text["q", {.3, .48}]Text["q", {.3, .48}]Text["q", {.3, .48}]
};};};
ShowMe[obj]ShowMe[obj]ShowMe[obj]

z

w

p

q

DiperpC[p,q,r,s]DiperpC[p,q,r,s]DiperpC[p,q,r,s] is the graphic instruction for drawing the common perpendicular to
the geodesics through p,q and r,s. There is a warning when the geodesics are not
ultraparallel. It is immediate to �nd the endpoints of the perpendicular by computing
with Cut2circlesC or CutLineCircC the intersection of the support of the geodesic with
the unit circle .

p = .4ei3Pi/4; q = .6eiPi; r = .75eiPi/4; s = .3e−iPi/5;p = .4ei3Pi/4; q = .6eiPi; r = .75eiPi/4; s = .3e−iPi/5;p = .4ei3Pi/4; q = .6eiPi; r = .75eiPi/4; s = .3e−iPi/5;
obj = {obj = {obj = {
DiperpC[p, q, r, s],DiperpC[p, q, r, s],DiperpC[p, q, r, s],
ArcgeoC[p, q, 0],ArcgeoC[p, q, 0],ArcgeoC[p, q, 0],
ArcgeoC[r, s, 0],ArcgeoC[r, s, 0],ArcgeoC[r, s, 0],
PointC[p, 0],PointC[p, 0],PointC[p, 0],
PointC[q, 0],PointC[q, 0],PointC[q, 0],
PointC[r, 0],PointC[r, 0],PointC[r, 0],
PointC[s, 0]};PointC[s, 0]};PointC[s, 0]};
ShowMe[obj];ShowMe[obj];ShowMe[obj];
With[{x = DiperpC[p, q, r, s]},With[{x = DiperpC[p, q, r, s]},With[{x = DiperpC[p, q, r, s]},
Cut2circlesC[x[[1, 1]] + Ix[[1, 2]], x[[2]], 0, 1]];Cut2circlesC[x[[1, 1]] + Ix[[1, 2]], x[[2]], 0, 1]];Cut2circlesC[x[[1, 1]] + Ix[[1, 2]], x[[2]], 0, 1]];
Print["endpoints of perpendicular = ",%]Print["endpoints of perpendicular = ",%]Print["endpoints of perpendicular = ",%]
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endpoints of perpendicular = {−0.693304 + 0.720645i, 0.999361− 0.0357397i}

TriangleC[alpha,beta,gamma]TriangleC[alpha,beta,gamma]TriangleC[alpha,beta,gamma] returns the vertices of the triangle with angles alpha,
beta, gamma. In the case of an ideal or semi ideal triangle 1, 2, or 3 of these angles are
= 0. The instruction still works but there is also a direct access over TriIsoInf[phi]TriIsoInf[phi]TriIsoInf[phi] for
a 2/3 ideal triangle, TriOneInf[phi,psi]TriOneInf[phi,psi]TriOneInf[phi,psi] for a 1/3 ideal triangle and TriRect[phi]TriRect[phi]TriRect[phi] for a
1/3 ideal rightangled triangle.
Using the TriangleC instruction we display the ten optional colors for ArcgeoC, Graph-
PolyC, LineC, PointC and PolygonC.

rho = Pi/3; phi = Pi/5; psi = Pi/6;rho = Pi/3; phi = Pi/5; psi = Pi/6;rho = Pi/3; phi = Pi/5; psi = Pi/6;
obj = {obj = {obj = {
PolygonC[TriangleC[0, phi,Pi/2], 0],PolygonC[TriangleC[0, phi,Pi/2], 0],PolygonC[TriangleC[0, phi,Pi/2], 0],
PolygonC[RotateC[TriangleC[0,phi, psi], phi],PolygonC[RotateC[TriangleC[0, phi, psi], phi],PolygonC[RotateC[TriangleC[0, phi, psi], phi],
1],1],1],
PolygonC[RotateC[TriangleC[0,phi, 0], 2phi], 2],PolygonC[RotateC[TriangleC[0, phi, 0], 2phi], 2],PolygonC[RotateC[TriangleC[0, phi, 0], 2phi], 2],
PolygonC[RotateC[TriangleC[rho, phi, psi], 3phi],PolygonC[RotateC[TriangleC[rho, phi, psi], 3phi],PolygonC[RotateC[TriangleC[rho, phi, psi], 3phi],
3],3],3],
PolygonC[RotateC[TriangleC[0, phi,Pi/2], 4phi],PolygonC[RotateC[TriangleC[0, phi,Pi/2], 4phi],PolygonC[RotateC[TriangleC[0,phi,Pi/2], 4phi],
4],4],4],
PolygonC[RotateC[TriangleC[0, phi, psi], 5phi],PolygonC[RotateC[TriangleC[0, phi,psi], 5phi],PolygonC[RotateC[TriangleC[0,phi, psi], 5phi],
5],5],5],
PolygonC[RotateC[TriangleC[0, phi, 0], 6phi], 6],PolygonC[RotateC[TriangleC[0, phi, 0], 6phi], 6],PolygonC[RotateC[TriangleC[0, phi, 0], 6phi], 6],
PolygonC[RotateC[TriangleC[0, phi,Pi/2], 7phi],PolygonC[RotateC[TriangleC[0, phi,Pi/2], 7phi],PolygonC[RotateC[TriangleC[0, phi,Pi/2], 7phi],
7],7],7],
PolygonC[RotateC[TriangleC[0, phi,psi], 8phi],PolygonC[RotateC[TriangleC[0, phi, psi], 8phi],PolygonC[RotateC[TriangleC[0, phi, psi], 8phi],
8],8],8],
PolygonC[RotateC[TriangleC[0, phi, 0], 9phi], 9],PolygonC[RotateC[TriangleC[0,phi, 0], 9phi], 9],PolygonC[RotateC[TriangleC[0, phi, 0], 9phi], 9],
Text["color 0", {.35, .1}],Text["color 0", {.35, .1}],Text["color 0", {.35, .1}],
Text["color 1", {.35, .4}],Text["color 1", {.35, .4}],Text["color 1", {.35, .4}],
Text["color 2", {0, .6}],Text["color 2", {0, .6}],Text["color 2", {0, .6}],
Text["color 3", {−.3, .4}],Text["color 3", {−.3, .4}],Text["color 3", {−.3, .4}],
Text["color 4", {−.4, .1}],Text["color 4", {−.4, .1}],Text["color 4", {−.4, .1}],
Text["color 5", {−.45,−.1}],Text["color 5", {−.45,−.1}],Text["color 5", {−.45,−.1}],
Text["color 6", {−.36,−.4}],Text["color 6", {−.36,−.4}],Text["color 6", {−.36,−.4}],
Text["color 7", {0,−.45}],Text["color 7", {0,−.45}],Text["color 7", {0,−.45}],
Text["color 8", {.35,−.4}],Text["color 8", {.35,−.4}],Text["color 8", {.35,−.4}],
Text["color 9", {.4,−.1}]Text["color 9", {.4,−.1}]Text["color 9", {.4,−.1}]
};};};
ShowMe[obj]ShowMe[obj]ShowMe[obj]

136



manual diskgeometry

color 0

color 1

color 2

color 3

color 4

color 5

color 6
color 7

color 8

color 9

RightangledPentagon[a,b]RightangledPentagon[a,b]RightangledPentagon[a,b] returns the vertices of the rightangled pentagon with edges
of length a on the imaginary axis and b on the real axis. There is a warning, when
a and b are not compatible (because the geodesics orthogonal to the axes intersect).
drawPentagon[a,b]drawPentagon[a,b]drawPentagon[a,b] shows the pentagon.

RightangledPentagon[.6, .5];RightangledPentagon[.6, .5];RightangledPentagon[.6, .5];
Print["vertices = ",%];Print["vertices = ",%];Print["vertices = ",%];
drawPentagon[.6, .5]drawPentagon[.6, .5]drawPentagon[.6, .5]

vertices = {0, 0.5, 0.555584 + 0.283348i, 0.20051 + 0.639127i, 0.6i, 0}

RightangledHexagonRightangledHexagonRightangledHexagon [b1,b2,b3][b1,b2,b3][b1,b2,b3] returns the vertices of the rightangled hexagon with
every second edge of prescribed hyperbolic length b1,b2,b3. All not exreme values are
accepted. drawHexagondrawHexagondrawHexagon [b1,b2,b3][b1,b2,b3][b1,b2,b3] shows the hexagon.

RightangledHexagon[1.2, .8, 1.];RightangledHexagon[1.2, .8, 1.];RightangledHexagon[1.2, .8, 1.];
Print["vertices = ",%];Print["vertices = ",%];Print["vertices = ",%];
drawHexagon[1.2, .8, 1.]drawHexagon[1.2, .8, 1.]drawHexagon[1.2, .8, 1.]

vertices = {0, 0.537, 0.702 + 0.437i, 0.639 + 0.545i, 0.255 + 0.706i, 0.631i, 0}
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RightangledHexagon uses exceptionnaly an hyperbolic measure. The programm knows
of course only points in R2. hDistC[z,w]hDistC[z,w]hDistC[z,w] computes the hyperbolic distance between
the Euclidean points z and w anywhere in the disk. It is easy to reverse the instruction,
but it usually does not make much sense, as one would have to assign the position of
one point and the direction to the other.

TranslateRightC[poly,p1,p2]TranslateRightC[poly,p1,p2]TranslateRightC[poly,p1,p2] translates the list of vertices poly with the vector (p1,p2)
to the right when p1 < p2 lie on the real axis. TranslateLefC[poly,p1,p2]TranslateLefC[poly,p1,p2]TranslateLefC[poly,p1,p2] translates
in the opposite direction. So -TranslateLeftC can be used instead of TranslateRightC.
Here an edge of the hexagon is translated along itself to the right in red and to the
left in blue.

hexa = RightangledHexagon[1., 1.2, .8];hexa = RightangledHexagon[1., 1.2, .8];hexa = RightangledHexagon[1., 1.2, .8];
p1 = hexa[[2]];p2 = hexa[[3]];p1 = hexa[[2]];p2 = hexa[[3]];p1 = hexa[[2]];p2 = hexa[[3]];
obj = {obj = {obj = {
GraphPolyC[hexa, 4],GraphPolyC[hexa, 4],GraphPolyC[hexa, 4],
GraphPolyC[TranslateRightC[hexa, p1,p2], 0],GraphPolyC[TranslateRightC[hexa, p1, p2], 0],GraphPolyC[TranslateRightC[hexa, p1, p2], 0],
GraphPolyC[TranslateLeftC[hexa, p1,p2], 2],GraphPolyC[TranslateLeftC[hexa,p1, p2], 2],GraphPolyC[TranslateLeftC[hexa, p1, p2], 2],
{RGBColor[0, 1, 1],{RGBColor[0, 1, 1],{RGBColor[0, 1, 1],
ArcC[p1, p2,MidpointC[p1, p2]],ArcC[p1, p2,MidpointC[p1, p2]],ArcC[p1,p2,MidpointC[p1, p2]],
PointC[p1],PointC[p2]}PointC[p1],PointC[p2]}PointC[p1],PointC[p2]}
};};};
ShowMe[obj];ShowMe[obj];ShowMe[obj];

RotateC[poly,alpha,n:1,centr:0]RotateC[poly,alpha,n:1,centr:0]RotateC[poly,alpha,n:1,centr:0] returns the rotation of the list of points (poly) with
the angle alpha, n-times (default value 1), around the point centr (default value the
origin). Here the hexagon is rotated 2 times with Pi/3 around a vertex. Of course this
is rotating by 2Pi/3, but "n" is �ne for loops when using instructions like Do, Table,
etc.

rotcent = .3ei5Pi/3;rotcent = .3ei5Pi/3;rotcent = .3ei5Pi/3;
hexa = RightangledHexagon[.8, .5, .9];hexa = RightangledHexagon[.8, .5, .9];hexa = RightangledHexagon[.8, .5, .9];
rothexa = RotateC[hexa,Pi/3, 1, rotcent];rothexa = RotateC[hexa,Pi/3, 1, rotcent];rothexa = RotateC[hexa,Pi/3, 1, rotcent];
circles = Prepend[circles = Prepend[circles = Prepend[
Table[hCircleC[rotcent, hDistC[hexa[[i]], rotcent]],Table[hCircleC[rotcent, hDistC[hexa[[i]], rotcent]],Table[hCircleC[rotcent, hDistC[hexa[[i]], rotcent]],
{i, 6}],Dashing[{0.01}]]//Chop;{i, 6}],Dashing[{0.01}]]//Chop;{i, 6}],Dashing[{0.01}]]//Chop;
obj = {obj = {obj = {
GraphPolyC[hexa, 0],GraphPolyC[hexa, 0],GraphPolyC[hexa, 0],
GraphPolyC[rothexa, 2],GraphPolyC[rothexa, 2],GraphPolyC[rothexa, 2],
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circles,circles,circles,
PointC[rotcent]};PointC[rotcent]};PointC[rotcent]};
ShowMe[obj];ShowMe[obj];ShowMe[obj];

HoroRotateC[poly,p,phi]HoroRotateC[poly,p,phi]HoroRotateC[poly,p,phi] returns the rotation with angle phi along horocycles touch-
ing the unit disk in p. This hyperbolic move without Euclidean equivalent is the link
between translation and rotation.

p = ei Pi/4;phi = Pi/3;p = ei Pi/4; phi = Pi/3;p = ei Pi/4; phi = Pi/3;
tri = TriangleC[Pi/5,Pi/7,Pi/2];tri = TriangleC[Pi/5,Pi/7,Pi/2];tri = TriangleC[Pi/5,Pi/7,Pi/2];
horotri = HoroRotateC[tri, p,phi];horotri = HoroRotateC[tri, p,phi];horotri = HoroRotateC[tri, p,phi];
circles =circles =circles =
Prepend[Table[ThreeptcircC[p, tri[[i]], horotri[[i]]],Prepend[Table[ThreeptcircC[p, tri[[i]],horotri[[i]]],Prepend[Table[ThreeptcircC[p, tri[[i]], horotri[[i]]],
{i, 3}],Dashing[{0.02}]];{i, 3}],Dashing[{0.02}]];{i, 3}],Dashing[{0.02}]];
obj = {obj = {obj = {
PolygonC[tri, 0],PolygonC[tri, 0],PolygonC[tri, 0],
PolygonC[horotri, 2],PolygonC[horotri, 2],PolygonC[horotri, 2],
circles,circles,circles,
PointC[p, 10, .03]};PointC[p, 10, .03]};PointC[p, 10, .03]};
ShowMe[obj]ShowMe[obj]ShowMe[obj]

STess[n,m]STess[n,m]STess[n,m] returns the edges of the tessellation with the polyon of n edges turning m
times around the vertices. This small tessellation limits to the central tile and its im-
mediate neighbours. MTess[n,m]MTess[n,m]MTess[n,m] extends to the �rst crown of tiles around the central
tile. XLTess[n,m]XLTess[n,m]XLTess[n,m] extends further to two crowns of tiles. All three tessellations are dis-
played by ShowSTessShowSTessShowSTess, ShowMTessShowMTessShowMTess, ShowXLTessShowXLTessShowXLTess. TranslateSTessTranslateSTessTranslateSTess and RotateSTessRotateSTessRotateSTess
allow to translate or rotate for getting another viewpoint. ShowTranslateSTessShowTranslateSTessShowTranslateSTess and
ShowRotateSTessShowRotateSTessShowRotateSTess display the moves. Corresponding instructions do the same for the
medium and the large tessellations.

CleanList[x]CleanList[x]CleanList[x] eliminates most duplicates from a list. Here is a tessellation of 5 pen-
tagons arranged 5 times around the vertices. The tessellation is translated along the
vector (p,q) and rotated by the angle phi around the point p. The gain of time when
cleaning the list is usually not signi�cant. The intention behind this example is to
show how to move a tessellation around the diskhow to move a tessellation around the diskhow to move a tessellation around the disk.

rough = XLTess[5, 5];rough = XLTess[5, 5];rough = XLTess[5, 5];
Print["length of original list = ",Length[rough]];Print["length of original list = ",Length[rough]];Print["length of original list = ",Length[rough]];
clean = CleanList[rough];clean = CleanList[rough];clean = CleanList[rough];
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Print["length of cleaned list = ",Length[clean]];Print["length of cleaned list = ",Length[clean]];Print["length of cleaned list = ",Length[clean]];
p = −.1eiPi/3; q = .2eiPi/8; r = .5eiPi/4; phi = Pi/3;p = −.1eiPi/3; q = .2eiPi/8; r = .5eiPi/4; phi = Pi/3;p = −.1eiPi/3; q = .2eiPi/8; r = .5eiPi/4; phi = Pi/3;
d1 = TranslateRightC[Flatten[clean], p, q];d1 = TranslateRightC[Flatten[clean], p, q];d1 = TranslateRightC[Flatten[clean], p, q];
d2 = RotateC[d1, phi, 1, r];d2 = RotateC[d1, phi, 1, r];d2 = RotateC[d1, phi, 1, r];
d2 = Partition[d2, 3];d2 = Partition[d2, 3];d2 = Partition[d2, 3];
movedtess = EdgetoArcC/@d2;movedtess = EdgetoArcC/@d2;movedtess = EdgetoArcC/@d2;
ShowMe[movedtess]ShowMe[movedtess]ShowMe[movedtess]

length of original list = 1875

length of cleaned list = 1874

VertextoArcVertextoArcVertextoArc [vlist][vlist][vlist] returns the graphic instruction for the arcs joining the points of
vlist.

Moeb3ptsC[z1,z2,z3,w1,w2,w3]Moeb3ptsC[z1,z2,z3,w1,w2,w3]Moeb3ptsC[z1,z2,z3,w1,w2,w3] returns the matrix of SL(2,C) mapping any 3 points
of R2onto any 3 other points of R2. So far the points de�ne two geodesic lines this
Moebius mapping will be an hyperbolic move.
FixptsC[matrix]FixptsC[matrix]FixptsC[matrix] returns the �xpoints of a matrix.
MatonPtC[mat,z]MatonPtC[mat,z]MatonPtC[mat,z] returns the image of the point z when applying the matrix mat of
SL(2,C). MatonEdgeC[mat,edge]MatonEdgeC[mat,edge]MatonEdgeC[mat,edge] does the same with edges i.e. a list of 3 points, so
de�ning specially an hyperbolic move.
As an example a copy of a triangle is made, so that the second edge is reversed and
glued on itself. Identifying the second edge after reversing returns the matrix form of
an hyperbolic move. Applying this matrix to the triangled returns the copy. FixptsC
con�rms that the midpoint of the edge is the �xpoint of the matrix.

tri = TriangleC[Pi/5,Pi/7,Pi/2];tri = TriangleC[Pi/5,Pi/7,Pi/2];tri = TriangleC[Pi/5,Pi/7,Pi/2];
mid = MidpointC[tri[[2]], tri[[3]]]mid = MidpointC[tri[[2]], tri[[3]]]mid = MidpointC[tri[[2]], tri[[3]]]
mat = Moeb3ptsC[mat = Moeb3ptsC[mat = Moeb3ptsC[
tri[[2]],mid, tri[[3]],tri[[2]],mid, tri[[3]],tri[[2]],mid, tri[[3]],
tri[[3]],mid, tri[[2]]];tri[[3]],mid, tri[[2]]];tri[[3]],mid, tri[[2]]];
MatrixForm[mat]MatrixForm[mat]MatrixForm[mat]
copy = MatonEdgeC[mat, tri]//Chop;copy = MatonEdgeC[mat, tri]//Chop;copy = MatonEdgeC[mat, tri]//Chop;
fp = FixptsC[mat][[1]]fp = FixptsC[mat][[1]]fp = FixptsC[mat][[1]]
obj = {obj = {obj = {
PolygonC[tri, 0],PolygonC[tri, 0],PolygonC[tri, 0],
PolygonC[copy, 2],PolygonC[copy, 2],PolygonC[copy, 2],
PointC[fp]};PointC[fp]};PointC[fp]};
ShowMe[obj]ShowMe[obj]ShowMe[obj]
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0.571609 + 0.16659i(
−2.09832− 1.3322676295501878̀*∧-15i 1.77103 + 0.516149i

−1.77103 + 0.516149i 2.09832 + 1.3322676295501878̀*∧-15i

)
1.24373− 0.202172i

LineC[z,w,color]LineC[z,w,color]LineC[z,w,color] does the tedious job of converting into the instruction for the Eu-
clidean line (z,w) in R2, PointC[z,color,g]PointC[z,color,g]PointC[z,color,g]. In the same spirit PointC[z,g] returns the
graqphic insruction for a point with PointSize[g], defaultvalue g=0.02. Like ArcGeoC,
GraphpolyC and PolygonC the color option o�ers 10 colors.

LineC
[
5.5eiPi/3, 1.8eiPi/8

]
LineC

[
5.5eiPi/3, 1.8eiPi/8

]
LineC

[
5.5eiPi/3, 1.8eiPi/8

]
PointC

[
.5eiPi/5

]
PointC

[
.5eiPi/5

]
PointC

[
.5eiPi/5

]
PointC

[
.5eiPi/5, .03

]
PointC

[
.5eiPi/5, .03

]
PointC

[
.5eiPi/5, .03

]
Line[{{2.75, 4.76314}, {1.66298, 0.68883}}]

{PointSize[0.02],Point[{0.404508, 0.293893}]}

{PointSize[0.02],Point[{0.404508, 0.293893}]}

CutLineCircC[z,w,c,R]CutLineCircC[z,w,c,R]CutLineCircC[z,w,c,R] computes in R2 the intersection of the line supporting z and
w with the circle with center c and radius R. Both points are returned, {Null,Null} if
the line does not cut the circle, the tangency point if the line touches.
Cut2circlesC[c1,R1,c2,R2]Cut2circlesC[c1,R1,c2,R2]Cut2circlesC[c1,R1,c2,R2] and Cut2linesC[z,w,u,v]Cut2linesC[z,w,u,v]Cut2linesC[z,w,u,v] are analogous instructions for Eu-
clidean constructions in R2.

z = .5eiPi/3;w = .3eiPi/4;z = .5eiPi/3;w = .3eiPi/4;z = .5eiPi/3;w = .3eiPi/4;
c = .2 + .3I;R = .1;c = .2 + .3I;R = .1;c = .2 + .3I;R = .1;
s = CutLineCircC[z, w, c, R];s = CutLineCircC[z, w, c, R];s = CutLineCircC[z, w, c, R];
Print["Intersection = ", s];Print["Intersection = ", s];Print["Intersection = ", s];
Show[Graphics[{Show[Graphics[{Show[Graphics[{
LineC[z, w],LineC[z, w],LineC[z, w],
Circle[{Re[c], Im[c]}, R],Circle[{Re[c], Im[c]}, R],Circle[{Re[c], Im[c]}, R],
PointC[s[[1]], 0, .03],PointC[s[[2]], 0, .03],PointC[s[[1]], 0, .03],PointC[s[[2]], 0, .03],PointC[s[[1]], 0, .03],PointC[s[[2]], 0, .03],
PointC[z],PointC[w]PointC[z],PointC[w]PointC[z],PointC[w]
000900090009},AspectRatio→ Automatic]]000900090009},AspectRatio→ Automatic]]000900090009},AspectRatio→ Automatic]]

Intersection = {0.242699 + 0.390426i, 0.21014 + 0.200515i}
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Cut2circlesC[z,w,c,R]Cut2circlesC[z,w,c,R]Cut2circlesC[z,w,c,R] computes in R2 the intersection of the circles with center c1,
resp. c2 and radius R1 resp. R2. Both points are returned, {Null,Null} if the circles
do not cut, the tangency point if the circles touch each other.

Cut2geoCCut2geoCCut2geoC has been replaced in this issue by the more confortable CutGeosC. Geocenter
C, GeoradiusC and ThreePtGeoC are also obsolete.

Here is an exercice using the instructions CutGeosC, AngleC, PointC,ArcgeoC, Graph-
PolyC, RegPoly and ShowMe. We turn the Mercedes star and turn it with Pi/3, so
as to get an hexagon as intersection. We compute the angle phi of the hexagon in the
point p and draw the regular hexagon in red for con�rmation.

p = CutGeosC
[
−(−1)5/6, i,−i, (−1)1/6

]
;p = CutGeosC

[
−(−1)5/6, i,−i, (−1)1/6

]
;p = CutGeosC

[
−(−1)5/6, i,−i, (−1)1/6

]
;

phi = AngleC[−i, i, p];phi = AngleC[−i, i, p];phi = AngleC[−i, i, p];
obj = {obj = {obj = {
PointC

[
−(−1)5/6

]
,PointC[i],PointC

[
−(−1)1/6

]
,PointC

[
−(−1)5/6

]
,PointC[i],PointC

[
−(−1)1/6

]
,PointC

[
−(−1)5/6

]
,PointC[i],PointC

[
−(−1)1/6

]
,

ArcgeoC
[
−(−1)5/6, i

]
,ArcgeoC

[
−(−1)5/6, i

]
,ArcgeoC

[
−(−1)5/6, i

]
,

ArcgeoC
[
−(−1)1/6, i

]
,ArcgeoC

[
−(−1)1/6, i

]
,ArcgeoC

[
−(−1)1/6, i

]
,

ArcgeoC
[
−(−1)1/6,−(−1)5/6

]
,ArcgeoC

[
−(−1)1/6,−(−1)5/6

]
,ArcgeoC

[
−(−1)1/6,−(−1)5/6

]
,

ArcgeoC
[
(−1)1/6, (−1)5/6

]
,ArcgeoC

[
(−1)1/6, (−1)5/6

]
,ArcgeoC

[
(−1)1/6, (−1)5/6

]
,

ArcgeoC
[
−i, (−1)5/6

]
,ArcgeoC

[
−i, (−1)5/6

]
,ArcgeoC

[
−i, (−1)5/6

]
,

ArcgeoC
[
−i, (−1)1/6

]
,ArcgeoC

[
−i, (−1)1/6

]
,ArcgeoC

[
−i, (−1)1/6

]
,

{RGBColor[1, 0, 0],AbsoluteThickness[3],{RGBColor[1, 0, 0],AbsoluteThickness[3],{RGBColor[1, 0, 0],AbsoluteThickness[3],
GraphPolyC[RegPoly[6,phi/180Pi]]},GraphPolyC[RegPoly[6, phi/180Pi]]},GraphPolyC[RegPoly[6, phi/180Pi]]},
PointC[p, 0, .03],PointC[p, 0, .03],PointC[p, 0, .03],
Text[{phi"◦"}, {.05, 0}]};Text[{phi"◦"}, {.05, 0}]};Text[{phi"◦"}, {.05, 0}]};
ShowMe[obj]ShowMe[obj]ShowMe[obj]
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manual diskgeometry

9109.471 ° =

HalfRegPoly[n,phi,psi]HalfRegPoly[n,phi,psi]HalfRegPoly[n,phi,psi] returns the halfregular polygon with n edges and alternating
angles phi and psi. Here a small tessellation with angles π/3 and 2π/3 and a free
number of edges n ≥ 6 .

n = 12;n = 12;n = 12;
poly = HalfRegPoly[n,Pi/3, 2Pi/3]HalfRegPoly[n,Pi/3, 2Pi/3]HalfRegPoly[n,Pi/3, 2Pi/3];poly = HalfRegPoly[n,Pi/3, 2Pi/3]HalfRegPoly[n,Pi/3, 2Pi/3]HalfRegPoly[n,Pi/3, 2Pi/3];poly = HalfRegPoly[n,Pi/3, 2Pi/3]HalfRegPoly[n,Pi/3, 2Pi/3]HalfRegPoly[n,Pi/3, 2Pi/3];
If[If[If[
EvenQ[n] == False‖n < 6,EvenQ[n] == False‖n < 6,EvenQ[n] == False‖n < 6,
Print["choose n even and ≥ 6"];Abort[],Print["choose n even and ≥ 6"];Abort[],Print["choose n even and ≥ 6"];Abort[],
copies = Table[RotateC[poly,Pi/3, i,poly[[j]]],copies = Table[RotateC[poly,Pi/3, i,poly[[j]]],copies = Table[RotateC[poly,Pi/3, i,poly[[j]]],
{i, 5}, {j, 2, n+ 1, 2}];{i, 5}, {j, 2, n+ 1, 2}];{i, 5}, {j, 2, n+ 1, 2}];
pavage = Map[GraphPolyC, copies, {2}];pavage = Map[GraphPolyC, copies, {2}];pavage = Map[GraphPolyC, copies, {2}];
ShowMe[pavage]]ShowMe[pavage]]ShowMe[pavage]]

The disk can also be tessellated with regular "ideal" polygons, whose vertices are at
in�nity on the unit disk, the angle is zero.
with ideal n-edged polygons turning m times around the vertices. For n = 4 the
surfaces is the 1-punctured torus.
InfTess[n,m]InfTess[n,m]InfTess[n,m] returns and ShowInfTess[n,m]ShowInfTess[n,m]ShowInfTess[n,m] displays the tessellation for n edges and
m copies around the vertices of the central tile. A widely used representative is the
1-punctured torus with n = 4 and any m.

ShowInfTess[4, 10]ShowInfTess[4, 10]ShowInfTess[4, 10]

143



manual diskgeometry

Using n = 3 returns a modular group tessellation, the vertices of each triangle are a
triple of rational neighbours p

q
p+q
r+s ,

r
s (Cayley fractions)

p = InfTess[3, 10];p = InfTess[3, 10];p = InfTess[3, 10];
obj = {obj = {obj = {
Apply[ArcC, p, 2],Apply[ArcC, p, 2],Apply[ArcC, p, 2],
Text["0/1", {−.5, .95}],Text["0/1", {−.5, .95}],Text["0/1", {−.5, .95}],
Text["1/4", {−.04, 1.05}],Text["1/4", {−.04, 1.05}],Text["1/4", {−.04, 1.05}],
Text["1/3", {.15, 1.05}],Text["1/3", {.15, 1.05}],Text["1/3", {.15, 1.05}],
Text["2/5", {.31, 1.01}],Text["2/5", {.31, 1.01}],Text["2/5", {.31, 1.01}],
Text["1/2", {.52, .92}],Text["1/2", {.52, .92}],Text["1/2", {.52, .92}],
Text["3/5", {.75, .76}],Text["3/5", {.75, .76}],Text["3/5", {.75, .76}],
Text["2/3", {.88, .65}],Text["2/3", {.88, .65}],Text["2/3", {.88, .65}],
Text["3/4", {.97, .5}],Text["3/4", {.97, .5}],Text["3/4", {.97, .5}],
Text["1/1", {1.03, .05}]Text["1/1", {1.03, .05}]Text["1/1", {1.03, .05}]
};};};
ShowMe[obj]ShowMe[obj]ShowMe[obj]

0�1

1�4 1�3
2�5

1�2

3�5

2�3

3�4

1�1

PolygonC[x,color,lev]PolygonC[x,color,lev]PolygonC[x,color,lev], the hyperbolic version of Polygon, is the graphic instruction
for a �lled closed polygon given by the list x of vertices. It uses Polygon over a dis-
cretisation taking lev-times the Euclidean midpoints. Default value is lev = 3.
Here is the description of the three hyperbolic moves as mirroring against two geodesics.
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manual diskgeometry

The regular quadrilateral is mirrored against the �rst geodesic to the dashed quadrilat-
eral. Mirroring anew against the blue geodesic returns the rotation around the cross-
point of the geodesics. The red parallel geodesic infers a horocycle rotation around
the common point at in�nity. The green ultra parallel geodesic generates a translation
along the common perpendicular as unique invariant line.

quadri = RotateC[RegPoly[4,Pi/3],Pi/3, 1,−.7];quadri = RotateC[RegPoly[4,Pi/3],Pi/3, 1,−.7];quadri = RotateC[RegPoly[4,Pi/3],Pi/3, 1,−.7];
z = ei2π/2.8//N ;w = ei3π/2.2//N ; y = eiπ/12//N ;z = ei2π/2.8//N ;w = ei3π/2.2//N ; y = eiπ/12//N ;z = ei2π/2.8//N ;w = ei3π/2.2//N ; y = eiπ/12//N ;
u = ei π/3//N ; v = e−i π/6//N ;u = ei π/3//N ; v = e−i π/6//N ;u = ei π/3//N ; v = e−i π/6//N ;
obj = {obj = {obj = {
GraphPolyC[quadri],GraphPolyC[quadri],GraphPolyC[quadri],
ArcgeoC[z, w],ArcgeoC[z, w],ArcgeoC[z, w],
ArcgeoC[y,−y, 0],ArcgeoC[y,−y, 0],ArcgeoC[y,−y, 0],
ArcgeoC[w,−w, 2],ArcgeoC[w,−w, 2],ArcgeoC[w,−w, 2],
ArcgeoC[u, v, 4],ArcgeoC[u, v, 4],ArcgeoC[u, v, 4],
{Dashing[{.01}],{Dashing[{.01}],{Dashing[{.01}],
GraphPolyC[MirrorC[quadri, z, w]]},GraphPolyC[MirrorC[quadri, z, w]]},GraphPolyC[MirrorC[quadri, z, w]]},
PolygonC[MirrorC[MirrorC[quadri, z, w], y,−y], 0],PolygonC[MirrorC[MirrorC[quadri, z, w], y,−y], 0],PolygonC[MirrorC[MirrorC[quadri, z, w], y,−y], 0],
PolygonC[MirrorC[MirrorC[quadri, z, w], w,−w],PolygonC[MirrorC[MirrorC[quadri, z, w], w,−w],PolygonC[MirrorC[MirrorC[quadri, z, w], w,−w],
2],2],2],
PolygonC[MirrorC[MirrorC[quadri, z, w], u, v], 4]PolygonC[MirrorC[MirrorC[quadri, z, w], u, v], 4]PolygonC[MirrorC[MirrorC[quadri, z, w], u, v], 4]
};};};
ShowMe[obj]ShowMe[obj]ShowMe[obj]
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Appendix C.

Pinacotheca

1

3

2

3

1

9

2

9

7

9

8

9

x

0.2

0.4

0.6

0.8

f HxL

About_Cantor Created by Stan Wagon. Cantor sets, Cantor function.

8a, d, E, d, a, b<

*** Big_Quake_Georama Hundreds of simple geodesics of one up to six letters.
Random or chosen selection. Choice of �neness of tiling. All Möbius moves.

Bubbles_Equake_octo Tessellation of an earthquake in the octagon model.
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Pinacotheca

Bubble_Graft_Inv_octo CP 1 Tessellation in the octagon model showing the grafted
inner and the pruned outer Poincaré disk.

Bubble_Graft_octo CP 1 Classical tessellation of grafting in the octagon model. Al-
ternatively tessellation with Poincaré disks `Mickey Mouse ears'.

Bubble_Prune_octo CP 1 Classical tessellation of pruning in the octagon model.
Alternatively tessellation with Poincaré disks `Mickey Mouse inside out ears'.
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Pinacotheca

 

Comp_Surf_Ekki Created by Dr. Ekkehard-H. Tjaden. Visualizes the tile of the
decagon model in S3.

Double_Pants Black & white or colored tessellation of a pretzel as doubled pair of
pants.

Duelling_geos An extension of Lamination with a view to shows a sequence of lami-
nations through two simple geodesics with an increasing number of leaves.
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Pinacotheca

*** Earthquake_96_tri All Möbius moves on the tessellation where the octagon is
made of 96 black and white triangles.

In[1]:= fareyAn_E := Module@8a, b, c, d, e, f, k, t<,
t = 1; a = 0; b = 1; c = 1; d = n;

pot = 80 �1<;
While@c < n, t = t + 1; k = IntegerPart@Hn + bL �dD; e = k c - a;

f = k d - b; a = c; b = d; c = e; d = f; AppendTo@pot, a � bDD;
pot

D
H******* check *******L
farey@8D

Out[2]= :0,
1

8
,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
3

8
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
5

8
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,
7

8
, 1>

Farey_play Several instructions for computing Farey sequences of given length, de-
nominator or �nding the neighbours of a fraction.

88, 13<

Farey_torus Visualizes simple geodesics on the 1-punctured torus. Choose a real
number. Choose a fraction in the proposed Farey-sequence. Can compute quickly
very long words.
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Pinacotheca

91.8, 1.2, 1.5, 0.9, 2, 9, 17 °, -20 °, 10 °, 10 °=

*** Flying_fractals Visualizes a Möbius move along the real axis. Uses the 14-gon
pretzel model. The tile is made of fronts and backs of two pairs of pants, each
four part in a di�erent color. Parameters to select: length of every second edge of
the hexagonal subtile, break condition for the �neness of the tiling,all 9 possible
side pairings, angles for grafting, pruning, twisting to the right or to the left,
rendering in 4-colors or in gray tones.

a

b

cd

e

A

B

C D

E

8a, c, E, c, E, c, E, c, E, c<

Geo_Finder_deca Visualises closed geodesics on the decagon model of the pretzel.
Zooming is possible. Enter any word as `choice' or load the database `Allchoice'
listing preselected simple geodesics. Returns a complete diagnostic of the word,
specially simple or intersecting, Birman Series test, separating or not.

a1

b1 A1

B1

a2

b2A2

B2

8b1, a1, b1, a1, b1<

Geo_Finder_octo Visualizes closed geodesics on the octagon model of the pretzel.
Returns simple or intersection points.
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Pinacotheca

88, 13<

Geo_Finder_torus Visualizes closed geodesics on the 1-punctured torus. Zooming
is possible. When entering a real number a Farey suite is returned. Very long
words can be tested.

Hyperbolic_ghosts Tessellates the octagon with non geodesic tiles. Choose a point
in the triangle and draw your irregular tile.

Lam_2geos_deca Tests a lamination with two simple geodesics in the decagon model
of the pretzel.
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Pinacotheca

86 th level , 6 °<

Lamination_measure Removes the gaps of a Cantor function for getting a Dirac-
measure. Implements this measure on transversals to a lamination from a simple
closed geodesic.

Pretzel: grafting on simple geodesic

Pretzel_Grafting_tess Tessellation of grafting along a 4-leaved geodesic in the 14-
gon model.

Squeezing in the limit set

Pretzel_Pruning_tess Tessellation of pruning along a 4-leaved geodesic in the 14-gon
model. Also inner and outer tessellation on CP 1.
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Pinacotheca

Pseudosphere_disk CP 1 Mapping of a layer of the pseudosphere onto the Poincaré
disk.

S3_comic_tess Tessellation from a not convex polygon in the decagon model of S3.
4-leaves simple closed geodesic.

a

b

A

B

8a, a, b, a<

Simple_geos_torus . Has additional features to Geo_Finder_torus. One can test
any (not too long) words. The self intersections are returned. All alternative
words obtained by permutation of the letters are reported simple or not.
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Pinacotheca

Tess_dodeca_skew Tessellation in the dodecagon model, where the hexagonal sub-
tile has three di�erent every alternate edge lengths.

8Α =, 25 °, j =, 50 °<

*** Torus_fractal Möbius moves along a vertical 1-leaved geodesic of the 1-punctured
torus. Rendering in harlequin for sake of beauty or in gray for observing the limit
happenings.

8Α =, 20 °, j =, 10 °<

Torus_surgery Möbius moves along a (1, 2) geodesic of the 1-punctured torus.
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Pinacotheca

Traktrix_etc Visualization of the tractrix and of horocycles in the tiling of the 1-
punctured torus.

a1

b1 A1

B1

a2

b2A2

B2

Π
�8

Π�4

Weierstrass points

Weierstrass_octo Exact localisation of the Weierstrass points on the octagon.

1

2

2

3

3

4

5

5

6

6

Weierstrass_pts Doubling of a perforated torus to locate Weierstrass points.
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homogeneous , 6
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cusp, 9

deck transformation, 4
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Dirac

delta function, 21
measure, 21

diskgeometry, 123, 125
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double torus, 3
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Farey
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foliation, 9
Ford circles, 26
Fuchsian group, 6
fundamental

domain, 3
form, 47, 52
group, 4
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in�nite, 81
monogon, 80
simple, 10

grafting, 27, 37
group

automatic, 34
discontinuous, 5
discrete, 5
free, 5
homology, 90
mapping class, 13
modular, 24, 95

Hölder distribution, 97
holonomy, 13
homotopy, 89

class, 96
horocycle, 9
hyperbolic

metric, 4
structure, 12

involution
elliptic, 14, 93
hyperelliptic, 14, 105

isotopy, 12

Kleinian
group, 6

Koch curve, 23

lamination
de�nition, 9
geodesic, 10
leaf of, 9
measure, 85

Laplacian, 47, 53
Lipschitz direction �eld, 10
loxodromy, 70
lune, 28

Möbius
group, 6
move, 69, 102
structure, 27
transformation, 6

manual diskgeometry, 123, 131
minimal geodesic lamination, 10
moduli space, 12
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pair of pants, 13
pleated surface, 18
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pretzel, 3
Programs

About_Cantor, 20, 147
Big_Quake_Georama, 118, 147
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Bubble_Graft_octo, 37, 38, 148
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