
Towards Interactive Landscape Visualization

vorgelegt von
Diplom-Informatiker

Malte Clasen
aus Berlin

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

Dr. ing.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.
Berichter: Prof. Dr.
Berichter:

Tag der wissenschaftlichen Aussprache: 13.10.2011

Berlin 2011

D 83

Olaf Hellwich
Marc Alexa

Hans-Christian Hege

ii

Zusammenfassung

In dieser Dissertation stellen wir die Komponenten eines interaktiven Land-
schaftsvisualisierungssystems mit Schwerpunkt auf Gelände und Vegetation vor.
Zuerst beschreiben wir die Datenquellen eines typischen Landschaftsvisual-
isierungsszenarios, in dem Geländemodell und Luftbilder aus einem Geoinfor-
mationssystem (GIS) exportiert und um Pflanzenverteilungen ergänzt werden.
Dieser Teil setzt die Rahmenbedingungen für folgenden Methoden, vorgestellt
in Reihenfolge der Anwendung:

Level-of-Detail-Stufen (LoD) für Pflanzen müssen nur ein einziges mal pro
Modell erzeugt werden, unabhängig vom jeweiligen Visualisierungsprojekt.
Wir stellen eine Methode vor, die auf Linien und Ellipsoiden basiert. Mit Hilfe
des Expectation-Maximization-Algorithmus auf einem Gaussian-Mixture-Model
erstellen wir eine Hierarchie qualitativ hochwertiger Blatt-Cluster-Gruppen.
Die Aststrukturen vereinfachen wir mit einem agglomerativen Clustering be-
ginnend bei der höchsten Auflösung, um die Konnektivität zu erhalten. Die
Vereinfachung erfolgt in einem Vorverarbeitungsschritt und erfordert keinerlei
menschliche Eingriffe. Für einen Flug über und durch eine Szene aus 10 000
Bäumen erreichen wir mit unserem LoD eine Geschwindigkeit von durchschnit-
tlich 40 ms pro Bild, was ungefähr sechs mal schneller ist als Billboard Clouds
mit vergleichbaren Bildfehlern.

Als nächstes beschreiben wir, wie die räumlichen Daten eines Landschaftsvi-
sualisierungsprojekts geladen und organisiert werden können. Wir zeigen
eine konzeptionell einfache Verarbeitungskette, die Datendekompression und
-synthese zur Laufzeit in einem vereinheitlichten Prozess handhabt. Als
Geländedatenquellen kommen beispielsweise statische Satellitenbilder, texel-
weise Bildberarbeitungsschritte wie Überblendung oder auch leichtgewichtige
Simulationen und Synthesen wie Texturgeneratoren in Frage. Punktdaten wie
Pflanzeninstanzen und polygonale Formen wie Gebäudegrundrisse können in
denselben Datenstukturen verarbeitet werden. Die Datenquellen werden par-
allel in Abhängigkeitsketten ausgewertet.

Aufbauend auf den sich daraus ergebenden Geländetexturen stellen wir

iii

einen auf Clipmaps basierenden Rendering-Algorithmus für sphärische Gelände
vor. Wir nutzen den hohen Geometriedurchsatz aktueller Grafikkarten um
große Mengen statischer Dreiecke darzustellen. Die Vertices werden dabei über
Höhentexturen verschoben. Unser Hauptbeitrag ist die Abbildung der Texturko-
ordinaten ausgehend von den statischen Vertex-Positionen und der variablen
Ansicht auf die Höhentexturen.

Über das Gelände zeichnen wir als nächstes die vorbereiteten LoD-Stufen
der Pflanzenmodelle. Dazu nutzen wir einen Raycaster für die Linien und El-
lipsoide. Wir erweitern die Ellipsoide um Rauschtexturen für Alpha-Test und
Normalenvektoren. Das erhöht den Realismus, ohne Aliasing durch Subpixel-
Strukturen einzuführen. Weiterhin zeigen wir wie physikalisch basiertes Shad-
ing die Wahrnehmung der Tiefenkomplexität verbessert.

In einem letzten Schritt zeigen wir die Nachbearbeitung der erzeugten
Bilder über Deferred Shading. Hier berechnen wir auch Schatten und atmo-
sphärische Lichtstreuung.

Anschließend an die Methodenbeschreibungen beschreiben wir das sich
daraus ergebende Landschaftsvisualisierungssystem aus Benutzerperspektive.
Nach einem Überblick über die Funktionen stellen wir eien Evaluierung in einer
Fallstudie für Klippenerosion vor.

iv

Abstract

In this thesis we present the building blocks of an interactive landscape visual-
ization system focussed on terrain and vegetation. First, we describe the data
sources in a typical landscape visualization scenario, where terrain elevation
and aerial images are exported from a geographic information system (GIS)
and enriched with distributions of third-party plant models. This part sets the
constraints for the following methods, presented in order of application:

Level of Detail (LoD) generation for the plants has to be done only once
for each model, independent of the visualization project at hand. We present
a method based on lines and ellipsoids. We leverage the Expectation Maxi-
mization algorithm with a Gaussian Mixture Model to create a hierarchy of
high-quality leaf clusterings, while the branches are simplified using agglomer-
ative bottom-up clustering to preserve the connectivity. The simplification runs
in a preprocessing step and requires no human interaction. For a fly by over
and through a scene of 10k trees, the resulting LoD can be rendered on average
at 40 ms/frame, up to 6 times faster than billboard clouds with comparable
artifacts.

Next we describe how to load and organize the spatial data for a landscape
visualization project. We describe a conceptually simple pipeline that handles
on-the-fly data decompression and synthesis in a unified process. Possible ter-
rain data sources range from static satellite imagery over per-texel-processing
such as image blending routines to light-weight simulations and synthesizers
such as noise and filter based texture generators. Point data such as plant in-
stances and polygonal shapes such as building outlines can be handled in the
same data structures. The sources are evaluated in parallel based on depen-
dency chains.

Given the resulting terrain textures, we describe a terrain rendering algo-
rithm for spherical terrains based on clipmaps. It leverages the high geometry
throughput of current GPU to render large static triangle sets. The vertices are
displaced by a height map texture. Our main contribution is mapping of tex-
ture coordinates to calculate the height map sample position based on the static

v

vertex offset and the variable view position.

On top of the terrain, we render the preprocessed plant model LoD by ray-
casting the line and ellipsoid primitives. We extend the ellipsoids by noise
textures for alpha-test opacity and normal mapping. This yields a more realis-
tic image, while still avoiding the aliasing artifacts of subpixel-sized primitives.
We further show how physically based shading improves the perceived depth
complexity.

As a last step rendering step, we postprocess the rendered image to apply
deferred shading includig shadows and atmospheric scattering.

Following the methods, we describe the resulting landscape visualization
system from a user’s perspective. After an overview over the features, we
present an evaluation in a case study of cliff erosion for climate change re-
search.

vi

Acknowledments

This thesis would not have been possible without the invaluable input from
various sources. Initial inspiration came from the Lenné3D project, funded
by the Deutsche Bundesstiftung Umwelt (DBU, http://www.dbu.de/), where
Liviu Coconu, Philip Paar and Hans-Christian Hege developed the landscape
visualization tool Lenné3D Player. Liviu Coconu wrote the billboard cloud im-
plementation I use as a reference. Philip Paar was always available for a com-
ment on the user’s perspective, which I hope to reflect in the overall design.
Hans-Christian Hege had the clear vision that landscapes should definitely not
be limited by an artificial end-of-the-world abyss, which was my motivation
to write a spherical terrain renderer. The spin-off Lenné3D GmbH (http:
//www.lenne3d.com) and Jan Walter Schliep (http://www.wallis-eck.de/)
provided me with plant models to experiment with. The plant file format has
been developed by Carsten Colditz and Oliver Deussen.

Lenné3D was followed by the Silvisio project, funded by the Bundesminis-
terium für Bildung und Forschung (BMBF, http://bmbf.de/, FKZ 0330560B).
For this project, the Biosphere3D (http://www.biosphere3d.org) landscape
visualization tool (the implementation of this thesis) has been developed.
Wieland Röhricht (http://oik.de/) taught me quite a few things about vege-
tation, which resulted in the modular plant instance handling, and the general
idea that millions of plant instances are required for a truly realistic image of a
single view - from the ground. This motivated the development of the new level
of detail method for plants for the Pergamon project, also funded by the BMBF
(FKZ U809068). The Laubwerk GmbH (http://www.laubwerk.com) and Timm
Dapper (http://www.timmdapper.de/) provided me with skeleton-based plant
models and the accompanying loader and tesselator, which is the foundation of
the primitive-specific simplification method.

Publishing the intermediate results was helped by Hans-Christian Hege, who
co-authored [Clasen and Hege, 2005], [Clasen and Hege, 2006], and [Clasen
and Hege, 2007]; Steffen Prohaska, who co-authored [Clasen and Prohaska,
2010]; Philip Paar with whom I worked on [Paar and Clasen, 2007], [Paar
et al., 2008], and [Clasen and Paar, 2008]; Marc Alexa, who reminded me that

vii

there’s a bigger picture above the details of the current work at hand; and Irina
Itschert, who carefully suggested that a thesis should be finished in finite time
:)

While the core of Biosphere3D is described in this thesis, many features
that make the user’s and developer’s lifes easier (including mine) were added
by other people: Steffen Ernst is the lead developer of the user interface and
the one who cares for our users. Ronny Günther helped writing the linear
algebra code, Maria Gensel created the water surface. We use quite a few
open source libraries which deserve credits: AGG, Boost, Bzip2, Cairo, Cryp-
toPP, Curl, CurlPP, DevIL, Expat, Fontconfig, Freetype, GDAL, GLEW, FreeGlut,
gSOAP, ICU, ImageDB, Jasper, JPEG/IJG, JsonC, LibECW, LibMNG, LibPNG, Lit-
tleCMS, Loki, LZMA, OpenEXR, OpenMesh, OpenNurbs, OpenSSL, StlSoft, Tiff,
wxWidgets, Xerces, and Zlib.

The data we use for experiments includes the Landsat and Blue Marble tex-
ture sets and the Shuttle Radar Topography Mission data by NASA (http:
//earthobservatory.nasa.gov/) and the SRTM V3 by CGIAR-CSI (http:
//srtm.csi.cgiar.org/).

viii

Contents

Zusammenfassung iii

Abstract v

Contents ix

1 Introduction 1

2 Data Sources 7

2.1 Terrain . 7

2.2 Models . 10

2.2.1 Meshes . 10

2.2.2 Plants . 12

2.3 GIS Features . 13

2.3.1 Instances . 13

2.3.2 Building Outlines . 13

3 Level of Detail for Vegetation 15

3.1 Introduction . 15

3.2 Related Work . 17

3.3 Import . 18

3.3.1 Ellipsoids . 18

ix

3.3.2 Lines . 18

3.3.3 Calibration . 19

3.4 Building the LoD Hierarchy . 19

3.4.1 Ellipsoids . 19

3.4.2 Lines . 24

3.5 Image Error Metric . 27

3.6 Results . 28

3.7 Discussion . 33

3.8 Conclusion . 34

4 Tiling 35

4.1 Introduction . 35

4.2 Related Work . 36

4.3 Rendering Front-End . 37

4.3.1 Clipmap . 37

4.4 Tile Generation . 39

4.4.1 Image Sources . 39

4.4.2 Feature Sources . 41

4.4.3 Tile Cache . 41

4.5 Clipmap Update . 42

4.5.1 Quads . 43

4.5.2 Update Regions . 43

4.6 Multithreading . 44

4.7 Algorithm . 45

4.8 Results . 47

4.8.1 Visuals . 47

4.8.2 Resources . 47

x

4.9 Conclusion . 48

4.10 Future Work . 49

5 Terrain Rendering 51

5.1 Introduction . 51

5.2 Existing technology . 51

5.2.1 Planar terrain . 52

5.2.2 Spherical terrain . 52

5.3 Spherical clipmaps . 53

5.3.1 Clipmaps . 53

5.3.2 Map parametrisation . 54

5.3.3 Map transform . 55

5.3.4 Discretization . 57

5.4 Algorithmic details . 58

5.4.1 Texture sizes in map space 58

5.4.2 Aliasing . 59

5.4.3 Clipmap filtering . 60

5.4.4 Texture coordinates beyond poles 60

5.4.5 Level visibility . 62

5.5 Implementation . 63

5.5.1 Trigonometric function replacement 64

5.5.2 Speed . 65

5.6 Conclusions . 67

6 Vegetation Rendering 71

6.1 Introduction . 71

6.2 Generalized Sequential Primitive Tree 71

6.3 Level of Detail Selection . 72

xi

6.4 Primitive Raycaster . 73

6.4.1 Ellipsoids . 73

6.4.2 Lines . 74

6.5 Shading . 74

6.5.1 Triangles . 75

6.5.2 LoD Primitives . 75

6.5.3 Calibration . 76

6.6 Results . 76

7 Shading 79

7.1 Illumination . 79

7.2 Atmospheric Scattering . 80

8 Applications 85

8.1 Interactive Visualization with Biosphere3D 85

8.2 Interactive Visual Simulation of Coastal Landscape Change 89

9 Conclusions 91

9.1 Contributions . 91

9.2 Future Directions . 92

List of Tables 95

List of Figures 97

Index 100

Bibliography 103

xii

Chapter 1

Introduction

Landscape visualization is the transformation of a virtual model of a landscape
into an image. This can be illustrated best by example: When a landscape
planner works on a project, he usually uses a geographic information system
(GIS) to design the landscape. This involves importing and editing the terrain,
the vegetation and the man-made structures such as streets and buildings. The
primary user interface metaphor of a GIS is a map, where all items are displayed
as outlines or symbols. While this is an efficient concept for the landscape
planners to work and to communicate with peers, it becomes an obstacle when
laymens are involved, such as decision makers and interested citizens. They
are usually not trained in reading maps, and even while they might understand
the symbols, the map often does not transform into a mental image of the
landscape as envisioned by the planner. This is where landscape visualization
software excels: It allows to transform the map into an image, which minimizes
the room left for interpretation and therefore misunderstandings [Haaren and
Warren-Kretzschmar, 2006]. This has been pioneered as early as 200 years ago
by Repton [1803], who drew the alternative scenarios by hand (Fig. 1.1).

Many users in science and engineering profit from landscape visualization.
Landscape planners and landscape architects design modifications of existing
terrain, and there is always a trade-off between the design goals. A retaining
dam (Fig. 1.2) might be necessary to protect a village, but it also might re-
duce the recreational value of the valley. Whenever there is no obvious choice,
landscape visualization can help getting an impression of the consequences.
Climate researchers can calculate the movement of the shoreline due to ero-
sion and draw it into a map, but the real impact is much more apparent in the
comparison of images of now and then (Fig. 1.3). Archeologists, biologists, and
forest researches encounter similar problems.

Depending on the use case, different kinds of landscape visualization are

1

2 Chapter 1. Introduction

(a) (b)

Figure 1.1: Early landscape visualizations relied on drawn images to compare
different scenarios.

Figure 1.2: Visualization of a planned flood control reservoir (source: Lenné3D).

Figure 1.3: Visualization of a coastal landscape change (source: [Paar et al.,
2008]).

3

appropriate. On the one hand, there are different design styles (see [Ervin,
2001]). Photorealistic images are best suited for direct comparisons to actual
photographs of the current state of the landscape, for example to display the vi-
sual impact of a new powerplant. Non-photorealistic (NPR), sketchy styles con-
vey the idea of work-in-progress scenarios or missing knowledge, for example
due to archeological reconstructions based on few artifacts. On the other hand,
there are different time budgets. First, there are landscape visualizations gen-
erated as the end result of a purely GIS-based workflow, where the final maps
shall be displayed to decision makers. In this setting, offline renderers can take
a up to a few hours for a single image of very high quality. This is the domain of
many commercial solutions such as Eonsoftware Vue, Terragen, and vegetation
add-ons for general purpose renderes like VRay. Second, there are pure view-
ers such as flight training simulators, which display static scenes at framerates
matching the display system, usually 60 fps. They trade preprocessing time and
limited image quality for the framerate constraint, which is often a hard require-
ment for the certification of the application. Third, there are workflow-oriented
tools which are used by landscape planners while editing the project. They have
to balance preprocessing time (to quickly load updated scenarios), interactive
views (to set arbitrary view points at 15 fps or more), and image quality (to
yield a reasonable realistic image, [Appleton and Lovett, 2003]). Even though
the performance of commodity PCs steadily increased, this trade-off is still as
important as in [Appleton et al., 2002]. Workflow-oriented tools allow land-
scape planners to work in a what-you-see-is-what-you-get environment, which
reduces turn-around times for design decisions (see [Paar, 2006]).

In this thesis, we target workflow-oriented applications. In contrast to exist-
ing commercial solutions such as ESRI ArcGIS 3D Analyst (http://www.esri.
com/software/arcgis/extensions/3danalyst/index.html), the Realtime Vi-
sualization module of 3D Nature’s Visual Nature Studio (http://3dnature.
com/), and Google Earth (http://earth.google.com/), we target a higher im-
age quality, especially for vegetation as described by Paar [2006]. 3D Analyst
(Fig. 1.4), Visual Nature Studio (Fig. 1.5), and Google Earth (Fig. 1.6) use bill-
boards. In 3D Analyst and Visual Nature Studio, this is the only method to
display plants. While it provides a hint of the planned vegetation, realism is
quite limited. Google Earth employs a Level-of-Detail method which switches
to coarse textured meshes in the foreground (Fig. 1.7). This is a step forward,
but visual quality is way behind academic state-of-the-art methods such as used
by Werner et al. [2005], over which Boudon et al. [2006] give an extensive
overview.

In the following, we show how state-of-the-art methods can be improved
and leveraged to create landscape visualization system with the following de-
sign goals:

4 Chapter 1. Introduction

Figure 1.4: ESRI ArcGIS 3D Analyst provides only rudimentary vegetation in
form of few flat billboards (source: ESRI).

Figure 1.5: Visual Nature Studio uses only flat up-axis-aligned billboards to
display plants. While this works for horizontal perspectives (left), this approach
does not work for top views (right).

5

Figure 1.6: Google Earth is capable of displaying hundreds of trees (left). To
accomplish this, it relies on flat up-axis-aligned billboards for distant instances,
which breaks the immersion for top views (right).

Figure 1.7: Google Earth switches to a coarse textured mesh in the foreground.

6 Chapter 1. Introduction

• The image quality shall be reasonable high.

• The system shall enable interactive views.

• The system shall minimize the turn-around times for landscape planners.
To accomplish this, precomputation of edited artifacts such as plant distri-
butions shall be minimized, while it is allowed for rarely modified artifacts
such as the plant models. This includes compatibility to common data for-
mats such as terrain projections, where conversion is time consuming.

• The system shall run on commodity PCs.

Additionally we want a clean software architecture. This does not affect the
user, but it increases the value of this thesis to the reader. Entangled algorithms
and low-level optimizations can improve the performance, but at the end this
thesis is not about the resulting binaries, but about the algorithms in a human
readable form. We designed all methods to be used in a modular way. If you
only need a Level-of-Detail method for trees, you can apply chapters 3 and
probably 6. If you only need a terrain rendering front-end, read chapter 5. But
if you want to build a landscape rendering from scratch, you still profit from
the reuse of components, for example the unified tile handling for both terrain
textures and plant instances in section 4.4. Following this design, we present
the methods in closed form.

Chapter 2

Data Sources

Landscape visualizations consist of various elements with different properties.
In this chapter, we present a set of typical elements, including terrain, 3D mod-
els and GIS features. We discuss each element both from a user’s and from a
developer’s perspective. This is the foundation of the following chapters, where
we present methods to render these elements interactively.

2.1 Terrain

Terrain is part of every landscape visualization. It determines the overall shape
of the landscape, and most other elements are placed relative to the surface of
the terrain. There are no inherent boundaries of the terrain due to the spherical
topology of our planet. However, landscape planning is usually focussed on a
bounded region. This is often reflected in the usage of multiple terrain models:
A coarse model is used for the distant surroundings, while a high-resolution
model is used for the focus region. The surroundings are usually left untouched,
so precomputation time is not critical. Publicly available data such as the NASA
Blue Marble color texture (Fig. 2.1) and the NASA Shuttle Radar Topography
Mission (SRTM) digital elevation model (Fig. 2.2) is a common choice.

The focus region is usually not larger than a few dozen square kilometers.
For this region, high-resolution terrain models for color and elevation are cre-
ated or acquired (Fig. 2.3). These models are subject to change in the landscape
planning workflow, so precomputation times can become relevant.

When the overlay of the various terrain data sources is computed in world
space (in contrast to the view-dependent image space), a common coordinate
system has to be used. For global data, unprojected latitude/longitude co-

7

8 Chapter 2. Data Sources

Figure 2.1: The Blue Marble color texture covers the entire planet at a resolution
of 86400× 43200.

Figure 2.2: The SRTM digital elevation model covers the latitudes between 60◦

North and 60◦ South at a resolution of 432000× 144000 pixels.

2.1. Terrain 9

Figure 2.3: Detailed images of the focus region enhance the surrounding terrain,
up to 10 pixel per meter.

10 Chapter 2. Data Sources

ordinates based on the WGS84 reference ellipsoid are commonly used. Lo-
cal data, on the other hand, is often projected to the local geographic co-
ordinate system. In Germany, most official spatial data is available in the
Deutsches Hauptdreiecksnetz (DHDN), while in Switzerland the thereto incom-
patible Schweizer Landeskoordinaten is used. When the amount of focus region
data is small compared to the static surroundings, converting the focus region
to latitude/longitude is feasible.

Apart from the coordinate systems, the primitive type is the second source
of incompatibilities. On the one hand, there are raster formats, which organize
color or elevation samples as images. This is common for satellite data, aerial
photographies and laser scans. In this context, the term 2.5D denotes that
for each 2D position, there is exactly one elevation value. When manually
acquired data is used, it is often given as triangulated irregular network (TIN).
This is the native format for manual measurements, and also widely supported
in terrain editing tools. In contrast to 2.5D data, TINs can represent true 3D
data including overhangs. Combining raster data and TINs requires the same
decision as before, both have to be converted to a common format. Given that
the static data is often available as raster data and much larger than the focus
region data, a conversion to raster data is a common solution.

2.2 Models

Landscape visualization increasingly relies on 3D models of a multitude of ob-
jects [Ervin, 2001]. This includes man-made structures such as buildings and
vegetation, but also features the underlying terrain data cannot represent, for
example overhangs for 2.5D terrain models. We distinguish between models
represented as general triangle meshes and plants.

2.2.1 Meshes

Triangle meshes are the most common interchange format for 3D models.
All kinds of models relevant to landscape visualization can be represented as
meshes (Fig. 1.4), and most tools in this context can display them. In prac-
tice, most meshes are used for buildings which are either numerous and simple
(Fig. 2.5) or unique and complex (Fig. 2.4). The primary reason is that creating
a detailed building is a laborious process, so buildings are created only as de-
tailed as necessary. Stock models, where the overhead would be compensated
over the frequent reuse, are often deliberately kept simple to avoid a false im-
pression of accuracy for the project at hand. Triangle meshes have no inherent

2.2. Models 11

Figure 2.4: This palace complex is modelled as a triangle mesh with 64 000
triangles (model: Jochen Mülder, Lenné3D).

Figure 2.5: This house consists only of 260 triangles (model: Google 3D Ware-
house).

12 Chapter 2. Data Sources

Figure 2.6: In landscape visualization, the species of a plant can convey impor-
tant information. This requires detailed models like this young Acer platanoides.

level of detail mechanism. This is going to be a bottleneck when more efficient
modeling tools become widely spread, but for now, GPU rendering performance
is ahead of the modeling capacity of most landscape planners.

2.2.2 Plants

In contrast to buildings, plant models are effectively reused. Landscape
planners usually rely on third party plant model libraries, such as Green-
works XfrogPlants (http://www.xfrog.com/) and Bionatics natFX (http://
www.bionatics.com/natFX/). These libraries consist of ready-to-use 3D plant
models, organized by species. In most cases it is unobtrusive to show the same
model many times on screen, especially when rotated and slightly resized. Al-
though depending on the requirements for botanical accuracy, it is relatively
easy to create large amounts of plant instances when designing a landscape.
But while the appearance of an individual instance is often insignificant, the
chosen species shall be recognizable in sufficient detail by the interested viewer
(Fig. 2.6). This is particularly important for trained audiences such as farmers
and forest rangers. Large numbers of detailed plant models require a level of
detail method to be displayed efficiently.

2.3. GIS Features 13

Figure 2.7: Forests are created out of many instances of a few plant models.

2.3 GIS Features

In the terminology of the Geography Markup Language (GML), a file format for
geographic information systems (GIS), a feature represents a physical object,
for example a building or a bridge. Features have no shape by themselves,
they are associated with geometries. Points, lines, and polygons are common
geometry types. We support GIS features as follows:

2.3.1 Instances

As suggested in section 2.2.2, plant models are usually instantiated multiple
times, for example to create a forest (Fig. 2.7). A single tree instance can be
stored as a GIS feature with an associated point geometry for the location.
A link to the 3d model and transformations such as rotation and scaling can
be stored as additional, non-spatial attributes. This allows managing large
amounts of plants with common GIS applications, where point geometries are
rendered as simple map symbols.

2.3.2 Building Outlines

When the buildings in a landscape shall remain vaguely specified, they can be
represented as extruded outlines (Fig. 2.8). In this case, a house is given as
a feature with an associated polygon geometry. Additional properties such as

14 Chapter 2. Data Sources

Figure 2.8: When the details are not important, extruded shapes can be used to
outline the buildings.

height are optional. Using polygon shapes instead of point instances of unique
triangle meshes reduces the overhead, since a list of polygon shapes can be
batch processed in both the GIS application and the interactive viewer.

Chapter 3

Level of Detail for Vegetation

3.1 Introduction

Interactive plant visualization has many applications such as games, flight simu-
lators, real-time preview for architectural modeling tools, and geovirtual visual-
ization systems. The sheer numbers of plants of realistic densities of vegetation
cover still pose a problem for interactive landscape rendering. In mainstream
geographic information systems (GIS) used in landscape planning and in geo
browsers such as Google Earth, vegetation cover can so far only be represented
in a quite rudimentary way. In a survey by Paar [2006] on applications and
requirements of 3d visualization software, landscape planners and landscape
architects expressed their preoccupation with time-consuming rendering and
insufficient visual representation of plants and habitats. Several studies such
as [Lange, 2001] have demonstrated that the degree of detail, particularly for
foreground features like vegetation, soil surface, or water, is a key factor on
how people relate to such computer-generated visual simulations of landscape
scenery. Particular difficulties occur in densely vegetated areas such as fields
and forests, where specialized landscape rendering software such as E-on Soft-
ware Vue or Planetside Software Terragen excel at visual quality, but at the cost
of high turn-around times per image. Level of Detail (LoD) methods reduce
the complexity of 3d models to limit both the resource usage (memory, time)
and aliasing, enabling the rendering of visually rich scenes at interactive frame
rates.

In this chapter, we present a LoD method especially suited for trees. Trees
have a high geometric complexity with thousands of only loosely connected
leaves. Therefore many common LoD methods, which focus on a reduction
of surface complexity, cannot be applied. So while the simplification of build-
ings from sophisticated façades to flat rectangles is solved in numerous ways,

15

16 Chapter 3. Level of Detail for Vegetation

1362 10 32

404 1208 4121 28965

Figure 3.1: Number of primitives for the levels of detail for a mesh with 122 566
triangles.

rendering the vegetation surrounding the man-made structures is still a chal-
lenging task. There is still no method to render realistic (non-tiled) forests at
interactive frame rates on commodity PCs. Our goal is to increase the perfor-
mance of plant rendering as a step towards realistic vegetation density, without
compromising image quality.

The following method is based on fuzzy clustering of unconnected leaf prim-
itives, where each cluster is represented by a noise-textured ellipsoid. We im-
plemented it on top of the solution proposed by Clasen and Prohaska [2010].
First, by making the clustering step explicit and choosing a better algorithm,
we improve the accuracy of the lower LoD steps, which reduces the required
number of primitives (Fig. 3.1) and therefore the GPU time. This is the main
contribution of this chapter. Second, we apply a noise texture to the ellipsoids
for surface normal and alpha-test opacity. This yields a rougher, more natural
look than the perfect ellipsoids used by Clasen and Prohaska [2010]. Third, we
propose a primitive-size-based LoD selection to reduce aliasing.

We start with a discussion of related work in section 3.2. In section 3.4 we
present the clustering schemes for ellipsoids and lines, followed by the image
error metric used in the line clustering step in section 3.5. We compare perfor-
mance and image quality to previous methods in section 3.6 and discuss these
results in section 3.7. The conclusion follows in section 3.8.

Parts of the content of this chapter have been published in [Clasen and
Prohaska, 2010].

3.2. Related Work 17

3.2 Related Work

Many plants have a high geometric complexity, with leaves loosely connected
to a large number of twigs and branches. Boudon et al. [2006] classify a wide
range of LoD methods developed for this special kind of 3d models. In their
terms, our method is a multiscale approach (suitable for both near-field views
and large scenes) using structural information with line primitives for the trunk
and spatial information with ellipsoidal primitives for the leaves, similar to the
work by Deussen et al. [2002], Gilet et al. [2005], and Clasen and Prohaska
[2010].

The most popular techniques to render plants are based on the generic Bill-
board Cloud (BBC) method introduced by Décoret et al. [2003], such as the
work of Fuhrmann et al. [2005] and Behrendt et al. [2005]. They use a set
of textured impostors to transform the geometric complexity into planar im-
ages. Leveraging the GPU texture filtering capabilities results in low amounts
of spatial and temporal aliasing, but at the cost of spatial deviations from the
reference geometry. [Clasen and Prohaska, 2010], on the other hand, is opti-
mized for a low measured image error compared to a reference image using the
HDR-VDP metric introduced by Mantiuk et al. [2005]. Since this metric does
not discriminate different noise patterns with similar properties, the draw-back
is visible temporal aliasing (see Fig. 3.17 in the results section 3.6). While there
are effective techniques to reduce temporal noise in videos, for example by Kim
and Woods [1997], they usually introduce a lag of a few frames which lim-
its the applicability to interactive applications. Given this trade-off, we tuned
our method towards the behavior of billboard clouds, because measured image
errors are usually less important in interactive applications than perceived arti-
facts. This can be done enforcing a lower limit on the point size in screen space,
as proposed by Deussen et al. [2002] and Gilet et al. [2005].

Clustering has been used by various LoD methods in different ways. Gilet
et al. [2005] and Clasen and Prohaska [2010] rely on hierarchical bottom-up
clustering of point primitives. [Gilet et al., 2005] is driven solely by a spatial
data structure, whereas [Clasen and Prohaska, 2010] uses an image error met-
ric to merge the clusters. While the original billboard clouds in [Décoret et al.,
2003] and its optimization for trees in [Fuhrmann et al., 2005] use ad-hoc clus-
tering heuristics, [Behrendt et al., 2005] additionally maps the billboard cloud
generation to the partitioning (non-hierarchical) k-means algorithm. We carry
the idea of using a formalized clustering scheme over to point-based LoD and
use the Expectation-Maximization algorithm first presented by Dempster et al.
[1977] with a Gaussian Mixture Model for clustering.

18 Chapter 3. Level of Detail for Vegetation

1) mesh 2) points 3) ellipsoid

randomized

pca
sampling

Figure 3.2: We import ellipsoids by point-sampling the source triangles of a
sub-object (leaf, fruit) and fitting the samples by a PCA.

3.3 Import

Plant models for landscape visualization are usually acquired from third party
sources (see section 2.2.2). We import the plant model branches and leaves
separately for further processing.

3.3.1 Ellipsoids

We approximate the non-branch elements of plants with ellipsoids. Ellipsoids
enable a good approximation of both flat structures (leaves) and voluminous
structures (fruits). For coarse LoD, ellipsoids can approximate whole treetops
quite accurately. To import the elements, we sample the textured triangles of
the source model that belong to the respective element by uniformly distributed
points (Fig. 3.2). For each point, we store the 3D position and material prop-
erties. If the alpha value of the texture is below 0.5, the point is discarded. In
a second step, we run a principal component analysis (PCA) on the point posi-
tions and interpret the eigenvectors as coordinate frame for the ellipsoid. The
radii ri along the coordinate axes is given by the square root of the eigenvalues.
In contrast to the lines, there is no connectivity between ellipsoids.

3.3.2 Lines

We use lines to approximate plant branches. The branch structure is either
given by the modelling system as in Deussen and Lintermann [1997] or can

3.4. Building the LoD Hierarchy 19

source mesh imported primitives difference

Figure 3.3: Since the primitive import is not exact, we compare the coverage of
the primitives to the source mesh to adjust the primitive size accordingly.

be reconstructed from the source model. We interpret the branches as linear
segments with 3D coordinates, radius and surface materials for both start and
end points. We also retain the branch connectivity.

3.3.3 Calibration

Because the primitive import introduces approximation errors, we scale all
primitives of the same type by a constant factor. This factor is determined auto-
matically by comparing the coverage of the imported scaled primitives with the
source model and selecting the factor with the lowest image error (Fig. 3.3).

3.4 Building the LoD Hierarchy

To build the LoD hierarchy, we employ two different methods for leaves and
branches. Leaves are represented by sets of clusters of ellipsoids, while a suc-
cessively simplified line hierarchy is used for branches.

3.4.1 Ellipsoids

We build a LoD hierarchy on top of the single leaf primitives. We use a fuzzy
partitioning clustering algorithm for each level, subsequently reducing the tar-
get number of clusters until only a single cluster is generated for the coarsest

20 Chapter 3. Level of Detail for Vegetation

hierarchical bottom-up fuzzy partitioning

Figure 3.4: Hierarchical bottom-up clustering tends to result in unbalanced
clusters which depend on small variations in the input data, whereas fuzzy parti-
tioning can find robust global optima.

level. This yields more accurate representations for each level than the agglom-
erative bottom-up clustering used in previous methods such as Dachsbacher
et al. [2003] and Clasen and Prohaska [2010] (Fig. 3.4).

To improve the approximation, we use the Expectation-Maximization algo-
rithm first presented in Dempster et al. [1977] for clustering. It has a strong
theoretical background and yields ellipsoidal clusters when combined with a
Gaussian mixture model (GMM). Since the quality of the local optimum de-
pends on the initialization values, we run the clustering and the subsequent
primitive creation and error evaluation multiple times (Fig. 3.5, Alg. 1), where
four showed to be sufficient. To get a LoD hierarchy, we run this loop for several
steps, starting with a number of clusters of 1

4
the number of leaves and further

reducing this number by 1
4

until only a single cluster is generated.

For each iteration, first we generate a set of random points in the bounding
box of the leaves. The EM algorithm takes these as initial cluster center values.
It then iteratively approximates the center points of the leaf ellipsoids with 3D
normal distributions (Fig. 3.6). Once the EM loop has converged, we use the
resulting fuzzy cluster assignments wi,j (probability that point i is represented
by cluster j;

∑
j wi,j = 1) as weights for a PCA of the center points of the leaves

(Fig. 3.7). Although the EM algorithm internally generates ellipsoidal objects,
we rebuild the ellipsoids to create a cleaner software architecture. This allows
for varying implementations of the clustering method. Using the soft EM algo-
rithm with fuzzy cluster assignments results in a more accurate representation
of smaller details. Using EM as a hard clustering scheme by selecting the clus-
ter assignments with the largest probabilities hides small features next to large
clusters (Fig. 3.8), due to the impact of the cluster size on the probabilities.

3.4. Building the LoD Hierarchy 21

leaves

random
init

ellipsoids

assignment

ellipsoids

image
reference

EM sp
at

ia
liz

e

render

co
m

pa
re

se
le

ct

error

r.

Figure 3.5: To create a LoD, we first run the EM algorithm with a random
initialization, convert the cluster weights to ellipsoids and measure the difference
between the rendered ellipsoids and the source leaves. We repeat this several times
and select the ellipsoids with the lowest image error.

initializated running converged

Figure 3.6: The EM/GMM algorithm is initialized with random cluster positions
and iteratively approximates the samples with normal distributions of arbitrary
orientation.

22 Chapter 3. Level of Detail for Vegetation

Algorithm 1: Building the ellipsoid cluster hierarchy H.
input : A set L of leaf ellipsoids; a number of tries t
output: A list H of sets of ellipsoids
Iref ← RenderImage (L);
n← ‖L‖ · 1

4
;

H ← ∅;
while n ≥ 1 do

E ← ∅;
for i← 1 to t do

P ← CreateRandomPoints (n);
W ← FindEMClusterWeights (P , L);
Ei ← CreateEllipsoids (W , L);
I ← RenderImage (Ei);
e← ComputeImageError (I, Iref);
E ← E ∪ (Ei, e);

end
H ← H ∪ SelectOptimalEllipsoids (E);
n← n · 1

4
;

end

Once the ellipsoids are generated, we discard all those whose surface area is
less than 1% of the largest. This reduces both rendering time and aliasing due
to tiny primitives that hardly affect the resulting shape. The size of the remain-
ing ellipsoids is calibrated using the same method as for the initial import.

To avoid the artificial look of perfect ellipsoids, we add a noise texture.
We create two mip-mapped cube map textures filled with white noise: One
grey-scale texture as alpha channel and one RGB as normal map. These noise
textures can be re-used for all models. The alpha channel texture is used to
create alpha-test holes in the surface based on a threshold value t shared among
all clusters of a single level of detail, and a cluster specific mip-map lod level
lj (Fig. 3.9). The mip-map texture for level l has 2l × 2l texels. For t = 0.5,
half of the texels are discarded, so lj represents about 22lj−1 features. The
target number of features is given by the sum of leaf weights

∑
i wi,j, so lj =

0.5(1+log2
∑

i wi,j). The threshold t is determined using the calibration routine,
where the image error is computed for multiple values of t and corresponding
scaling coefficients for the ellipsoid area to compensate the area loss due to the
alpha test.

Mip-map lod level and blending coefficient of the normal map noise are
computed in the same way. The blending coefficient is used to blend between
the surface normal of the ellipsoid and a random unit vector from the normal

3.4. Building the LoD Hierarchy 23

EM clustering fuzzy assignment weighted PCA

Figure 3.7: The EM algorithm results in assignment probabilities for each sam-
ple. We use these as weights for a PCA to compute the cluster ellipsoids.

non-fuzzy fuzzyweights

Figure 3.8: Although the weights of the red cluster accumulate to 1.25, not a
single point is assigned to it when using non-fuzzy EM due to the rounding step,
while fuzzy EM preserves these details.

24 Chapter 3. Level of Detail for Vegetation

noise mip-map interpolate alpha-test target

Figure 3.9: We compute frequency and threshold for the ellipsoid noise texture
based on the number and area of clustered leaves.

map noise texture. To select the best clustering based on the multiple random
initializations, we then render the generated ellipsoids and compute the image
error relative to the rendered source leaves. While multiple runs of the EM
algorithm are usually evaluated based on the log-likelihood value, we prefer
the image-error-based comparison because it is a better estimate of the image
quality at run-time. Since most of the time is spent on the EM algorithm itself,
the additional image rendering and comparison steps are negligible.

3.4.2 Lines

Given the initially imported highest LoD, we successively merge two primitives
until only a single primitive is left (Alg. 2). The simplification hierarchy is stored
in a tree similar to Dachsbacher et al. [2003]. To choose the next two primitives
to be merged, we first randomly gather Nnew ·Nlocal mergeable primitive pairs,
called candidates. From these we select the Nnew with the lowest local error
estimate. We measure the image error resulting from the application of this
merge step (relative to the source model), and insert candidate into a candidate
heap based on Bischoff and Kobbelt [2002]. Then we choose the candidate
with the lowest measured error from the heap. If the measurement is from an
earlier simplification step, we measure it again, since the surrounding changes
can affect the image error. Updating only the top of the heap can result in
a suboptimal choice, but this is negligible compared to the cost of updating
the full heap. If the best candidate is found, the two primitives are merged
and the candidate is removed from the heap. In a last step, we limit the heap
to the best Ncache candidates to avoid storing bad and outdated choices while
retaining those that might be better than those gathered in the next iteration.

3.4. Building the LoD Hierarchy 25

We don’t use a pre-simplification step as proposed in Lindstrom [2000] due to
the negative effect on the accuracy of lower levels of detail in this hierarchical
scheme.

Algorithm 2: Successive merging
repeat

gather Nnew ·Nlocal new merge candidates;
select Nnew with lowest local error estimate;
foreach new candidate do

measure the resulting error e;
add to candidate heap;

end
repeat

select candidate with the lowest error;
if candidate error is outdated then

measure error e again;
add to candidate heap;

else
apply candidate;

end
until candidate is applied;
prune heap to Ncache candidates;

until no candidates are left;

Based on this information, we can define merge steps and successively con-
vert the geometric branch hierarchy to a LoD hierarchy (Fig. 3.10).

Two consecutive branches can only be straightened if the second branch
has no other siblings to avoid losing visual connectivity. The resulting line is
build from the start point of the first line and the end point of the second
line. Two sibling branches can be combined if both don’t have any following
branches. Here all properties of the lines are interpolated, weighted with the
weight attribute (Fig. 3.12). The weights of the lines of the source skeleton
are initialized by their volumes. On each following operation, the resulting line
gets the sum of the weights of the source lines. We estimate the local error
of these operations based on their basic properties (Fig. 3.11): Straightening
and combining have the least visual impact if the angle between the branches
is small.

26 Chapter 3. Level of Detail for Vegetation

e h i

a b

a b
a b

a b

1) combine 2) straighten 3) combine 4) straighten

a b

cd
e

f

cd d
e

g

e

h

e

i

a b c d e c d e f d e g

d gc f
c f d g

c f

e h

lo
d

no
de

s
br

an
ch

 n
od

es

Figure 3.10: The source line skeleton is given as a hierarchy of branch nodes
which represents the geometric connectivity. Two adjacent nodes can be replaced
by a parent LoD node, until only a single branch node is left. This is the root of
the LoD hierarchy.

1) straighten 2) combine

angle
angle

Figure 3.11: We estimate the error of the line combine and straighten operations
based on the angle between the branches.

3.5. Image Error Metric 27

6

4 4

4

2 3
2 3

h

r
weight = r²h

initialize weights propagate weights

merge:

straighten:

2/3

5

5
9

Figure 3.12: We initialize line weights by primitive volume. We use the weights
to interpolate in merge steps.

3.5 Image Error Metric

To measure the difference between two images, we use a root mean square
error (RMSE) metric. RMSE is only sensitive to differences in single pixels.
Since the perceived quality is also affected by large scale artifacts, we run the
RMSE metric for multiple image resolutions. While perception-based error met-
rics seem to be a natural choice for comparing image quality, we found RMSE
better suited in our case. Perception-based metrics such as HDR-VDP by Man-
tiuk et al. [2005] and MS-SSIM by Wang et al. [2003] are designed to ignore
global differences in contrast and brightness, and emphasize the difference be-
tween correlated and uncorrelated noise. These kinds of errors do not appear
in our controlled environment. On the contrary, it is a significant difference
in the calibration step whether the primitives are invisibly small or cover the
entire frame buffer, even though MS-SSIM could detect no structural difference
between these cases. Therefore we rely on RMSE, which is also an order of
magnitude faster (996 comparisons per second for 5122 images on a Radeon
HD4850, 88 cps for MS-SSIM in Clasen and Prohaska [2010]). Our GPU im-
plementation of multi-scale RMSE runs in a single pass on the GPU by scanning
the difference image (pixel-wise imgsample − imgreference) along a space-filling
z-curve (Fig. 3.13). This way we can accumulate the errors for each resolution
band with a single value per band, taking log2(n) values, where n is the width
of the image.

28 Chapter 3. Level of Detail for Vegetation

Figure 3.13: To compute the RMS in multiple resolutions in a single pass, we use
a space filling z-curve.

Figure 3.14: We measured the performance along a camera path through a scene
of 10,000 trees.

3.6 Results

To evaluate our new LoD method, we compared it to Clasen and Prohaska
[2010] and the billboard cloud (BBC) implementation used in Coconu [2008].
We calibrated the level of detail selection for Clasen and Prohaska [2010] and
BBC similar to the method described in section 6.3, so that the feature size is in
the order of a few pixels. Shading is limited to local illumination to avoid image
differences due to the varying lighting terms in the implementations. We target
interactive applications, so we built a scene of 10 000 plants in forest groups
that could be rendered at interactive frame-rates with all three candidates. We
measured the performance along a camera path of 1440 frames of 1536 × 864
pixels (Fig. 3.14) on an Intel Core 2 Duo at 3 GHz and an ATI Radeon HD5870.
It starts with an overview, followed by a descent down to human perspective
inside the main forest. Then it heads towards a smaller group of trees and turns
back to the main forest.

On each frame, we measured the time for the plant rendering only by taking
the difference to a run without trees. On average, our new method took 40 ms

3.6. Results 29

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

Fr
am

e
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

Cluster
BBC
CP10

Figure 3.15: Time per frame to render the plants at the default resolution for all
three methods.

per frame, BBC 260 ms, Clasen and Prohaska [2010] 207 ms, and the mesh
without LoD 925 ms. The exact frame times are shown in Fig. 3.15 (we omitted
the mesh for improved clarity).

Since most applications allow reducing the image quality in favor of perfor-
mance, we measured the same path with the LoD selection set to 1

2
and 1

4
of the

actual image resolution. We chose three distinct frame groups to illustrate the
performance behavior: In the first 200 frames, all trees cover only a few pixels
of the screen. From frame 250 to 450, the trees in the foreground are a few
dozen pixels tall. From frame 600 to 850, the camera is inside the forest and
trees cover the whole LoD range from mesh in the foreground to a few pixels
in the background. Fig. 3.16 illustrates the performance for the three methods
in the three frame groups for the three resolutions. Our new method shows
the best overall performance. At lower resolutions and for distant trees, the
billboard clouds marginally outperform it.

We initially configured the LoD selection based on the feature sizes. Based
on the captured frames, we also measured the actual RMS image errors com-
pared to a super-sampled reference rendering of the source mesh, and addition-
ally to the next frame in the sequence to evaluate temporal noise (Fig. 3.17).

30 Chapter 3. Level of Detail for Vegetation

frame 0-200 250-450 600-850

Cluster BBC CP10
full 1/2 1/4

method:
resolution:

33
33
34

42
33
30

66
51
42

209
27
25

262
116
50

144
100
66

234
123
109

198
106
64

136
89
63

numeric values: average time per frame in ms

Figure 3.16: Performance depends on the camera view and the target resolu-
tion for the LoD selection. The rendered image resolution remained constant at
1536× 864 pixels.

3.6. Results 31

image

difference to
next frame

difference to
reference

ref. BBC Cluster CP10

4,9 7,7 8,5 9,5

12,0 10,7 7,4

Figure 3.17: Our new clustering method has an artifact intensity between BBC
and Clasen and Prohaska [2010], where BBC is less accurate compared to the
reference image and Clasen and Prohaska [2010] exhibits more temporal noise.

Temporal noise increased from BBC over our new clustering method to Clasen
and Prohaska [2010], while the difference to the reference image decreased in
the same order.

We also measured the difference between a single tree model at the highest
LoD and the respective source mesh (Fig. 3.18). This difference causes popping
artifacts in the near field. Our new method uses the same high level repre-
sentation as Clasen and Prohaska [2010]. Both show only small deviations in
the order of single pixels, while BBC shows larger artifacts due to the plane
alignments.

To analyze the behavior at low resolutions, we first captured images of all
methods at 19 kb memory usage and second at about 130 primitives (Fig. 3.19).
19 kb corresponds to the lowest BBC resolution with three textured quads using
GPU texture compression. Ellipsoids take 140 bytes each, lines 48 bytes, so we
took a conservative assumption of 130 primitives for the LoD steps of the new
clustering method and Clasen and Prohaska [2010]. To have comparable vertex
shader load, we also added a BBC LoD step at 125 primitives, which uses 240
KB. The resulting image quality of the 19 KB clustering is comparable to the 240
KB BBC, while the 19 KB BBC shows considerable artifacts. The 19 KB Clasen
and Prohaska [2010] has hardly visible resemblance at the rendered resolution
and is only usable at the target resolution of a few pixels.

The precomputation times depend on the number of primitives. On average,
our implementation took 0.9 s per source leaf and 0.3 s per source branch to
generate the complete LoD hierarchy, resulting in the absolute times shown in

32 Chapter 3. Level of Detail for Vegetation

Billboad Clouds

Cluster / CP10

LoD

LoD

Mesh

Mesh

diff

diff

Figure 3.18: The difference between the highest LoD and the source mesh is
larger for BBC, where the texture planes change the leaf positions. For this LoD,
BBC uses the source mesh for the trunk.

BBC
19 kb

3 prim.

Cluster
19 kb

136 prim.

BBC
240 kb

125 prim.

CP10
19 kb

139 prim.

Figure 3.19: Comparison of the methods at 19 KB (equal memory usage) and
about 130 primitives (equal vertex shader load).

3.7. Discussion 33

#primitives 1 k 2.7 k 5 k 10 k 27 k
time[min] 7 12 23 91 396

Table 3.1: Precomputation times in minutes by number of source primitives

table 3.1. For our models, ellipsoid clustering accounted for 83% of the time.

3.7 Discussion

In most cases, our method is faster than the previous methods BBC and Clasen
and Prohaska [2010]. The single exception is rendering of distant trees at
reduced LoD resolution. In this case, BBC has the lower draw call overhead.
It uses only a single primitive type, textured quads, and requires only a single
draw call for a model, while our methods requires two for ellipsoids and lines.
The peak in the BBC results for the highest resolution in the first frame group
is caused by the relatively large gap between the lowest LoD used by the two
reduced resolutions (essentially a simple cross-billboard) and the next step. So
while the lowest BBC LoD is more efficient than the lowest LoD of our method,
the latter has a smoother transition, avoiding sudden peaks. This yields a more
predictable performance behavior.

The noise analysis shows that there is a trade-off between the difference to
the reference frame and the difference to the next frame. BBC has larger devi-
ations from the reference, but less temporal noise, while Clasen and Prohaska
[2010] shows the opposite behavior. We consider our method well balanced
in between. While contrast preservation as described in Cook et al. [2007]
happens automatically by averaging the properties of merged primitives, the
increased contrast in Fig. 3.17 visible for both our method and BBC is the result
of the lower limit on the primitive size to avoid aliasing. The only practical way
around this trade-off is supersampling, because per primitive filters would re-
sult in translucent pixels which require a costly depth-sort for proper blending.

We attained our goal of an increased performance over the state-of-the-art
billboard clouds at a comparable image quality, as measured in section 3.6.
However, as the accompanying video shows, 10 000 trees are still not enough
for larger forests. Distant views, where each instance takes only a few pixels on
screen, could profit from LoD schemes for groups. Taking a random subset of
primitives as proposed in Deussen et al. [2002] is fast and easy to implement
but prone to aliasing. Our method could be extended by interpreting coarse
LoDs of multiple models as a new model and running the simplification pro-
cess as described. Due to our self-contained primitives, this could be applied to

34 Chapter 3. Level of Detail for Vegetation

groups of different models. However, in many applications users want to mod-
ify scenes. Although the precomputation times are acceptable for static models,
this step would have to be accelerated at least by an order of magnitude.

3.8 Conclusion

We presented a novel LoD method for rendering trees. It combines the render-
ing efficiency of the ellipsoid and line primitives and the sequential point tree
data structure with the accuracy of approximation of fuzzy partitional cluster-
ing. As a result, it outperforms previous methods for interactive rendering of
forests (40 ms on average for a scene 10 000 trees).

We expect future work on the precomputation step to improve the clustering
performance, either by using parallelized EM implementations or by applying a
different clustering algorithm, which is relatively easy due to the clean interface
of this part. Additionally, given the achieved efficiency of rendering instances
at low LoD, transforming, culling, and LoD selection are probably becoming the
next bottlenecks in scenes with a larger amount of tree instances. Furthermore,
we consider extending the LoD hierarchy beyond single instances the most im-
portant next step towards realistic landscapes.

Chapter 4

Tiling

4.1 Introduction

Terrain rendering applications can be found in many different contexts from
cartography over landscape planning to virtual outdoor environments. Satellite
images at resolutions below 1m and aerial photography data exceed the reso-
lution of the display devices by many orders of magnitude for even moderate
sized terrain areas. Efficient level-of-detail algorithms are required to simplify
the data sets before rendering without introducing errors. Data should only
be processed or synthesized only if it contributes to the final image. Clipmaps
were first introduced by Tanner et al. [1998] to solve this for stored images.
They consist of a stack of images similar to a mipmap. However, whereas
each mipmap level covers the whole texture with images of increasing size,
the clipmap uses fixed size levels that cover a decreasing area around an arbir-
tary focus point. Therefore the memory usage is linear to the level of detail, not
exponential.

Since clipmap based rendering front-ends have recently become capable of
displaying data at display resolution on commodity PCs, the new bottleneck is
the preparation of the clipmap. We present an update strategy that feeds very
large terrain data to clipmap based rendering front-ends, thereby exploiting the
special properties of the rendering algorithm.

This data can be static satellite imagery, but since only small regions of
interest are processed, almost interactive manipulation of large terrain data
(height and color) becomes possible. You can for example adjust brightness and
contrast to match color maps of different sources, overlay the digital elevation
model (DEM) with modifications of different planning scenarios or add vector
data layers that are rasterized just in time. This enhances clipmap based terrain

35

36 Chapter 4. Tiling

rendering to a powerful interactive visualization technology.

We focus deliberately on well-known simple and robust techniques. Efficient
terrain rendering does actually not require complex algorithms and can be im-
plemented using a few building blocks such as clipmaps, acyclic filter graphs,
and manager/worker-multithreading.

The content of this chapter has been published in [Clasen and Hege, 2007].

4.2 Related Work

Losasso and Hoppe [2004] presented a terrain rendering algorithm based on
clipmaps. The clipmap focus follows the position of the viewer. Therefore the
area near the viewer can be rendered at high levels of detail while the regions
further away are displayed in a lower resolution. This matches the distortion of
the perspective projection, so each area is rendered at a resolution that roughly
results in a fixed primitive size in screen space. Asirvatham and Hoppe [2005]
improved the performance of this method by moving nearly all rendering op-
erations to the GPU, leaving only decompression and clipmap updating to the
CPU. Clasen and Hege [2006] then extended it to spherical domains, showing
that this rendering front-end is actually well capable of handling planet-sized
datasets at high resolutions.

Tanner et al. [1998] already described a multithreaded clipmap update sys-
tem. We tailored their general strategy to fit the needs of terrain rendering on
commodity PCs without specialized hard- or middleware support. In the follow-
ing we describe the complete system and explicitly emphasize the differences
to [Tanner et al., 1998]. The main difference for visualization applications is
the extension from static source images to an interactive framework.

Systems similar to [Tanner et al., 1998] have been developed in commercial
contexts, for example the MultiGen-Paradigm Virtual Texture. The technical
documentation by Ephanov [2006] describes this approach for the power user,
giving a general impression of the design of their implementation. It is also
focussed on static imagery and provides no information on the data processing
pipeline.

Several terrain rendering front-ends based on an explicit triangulation of
the height data have been developed, such as [Lindstrom and Pascucci, 2002],
[Cignoni et al., 2003a], [Bao et al., 2004], [Wahl et al., 2004], and [Gobbetti
et al., 2006]. Although these systems are highly optimized and provide high
quality output and interactive framerates, they are harder to implement since
height data and color textures cannot share the same algorithms. This results

4.3. Rendering Front-End 37

not only in two distinct level-of-detail systems but also imposes restrictions
on the the triangulation due to the texture tile boundaries (see [Wahl et al.,
2004]).

Geometry clipmap based systems can use a unified codepath for height maps
and color textures. They require no preprocessing such as triangulation, there-
fore enabling efficient real-time synthesis. By leveraging the high processing
power of current GPU, geometry clipmap systems can reach a relatively high
performance without obscuring the source code with special case handling and
elaborated optimizations. While view frustum culling for a single camera with
6 degrees of freedom is already non-trivial on any terrain rendering front-end,
doing so for a shadow mapped scene becomes quite involved. Brute force geom-
etry clipmap rendering might not outperform specialized triangulation based
systems, but it is much easier to get to an usable performance level even with-
out culling.

4.3 Rendering Front-End

The proposed method is designed to feed the rendering front-end described
in detail in chapter 5. It basically works as follows: The static mesh for each
level of detail is initialized once on program startup and stored on the GPU. For
each frame the current position of the camera (projected straight down to the
surface of the planet) is used to set the new clipmap focus. The clipmaps for
height map and color map are updated accordingly. The height clipmap is used
to displace the vertices of the mesh of the corresponding level of detail.

4.3.1 Clipmap

The original clipmap by Tanner et al. has been implemented as part of IRIS Per-
former, a visualization middleware. It provides an interface that hides modes of
the internal workings to be used as a direct mipmap replacement. Although this
greatly simplified the usage by application developers, terrain rendering front-
ends like [Asirvatham and Hoppe, 2005] can benefit from knowledge about the
underlying clipmap since the front-end can skip entire levels instead of ren-
dering them with an artificially limited texture resolution. This motivates an
interface that provides more control about the update process.

Current consumer GPU do not support clipmaps directly (e. g. through
the OpenGL extension GL_SGIX_clipmap), so we have to manage them explic-
itly using a stack of textures and the usual texture update functions such as

38 Chapter 4. Tiling

(a) (b)

Figure 4.1: (a) Since the clipmap contains only a subset of the corresponding
mipmap, it has to be updated when the focus (e. g. camera position) changes. (b)
Toroidal indexing results in relatively small update stripes instead of a full clipmap
rebuild.

glTexSubImage and the pixel buffer object extension.

The first initialization of a clipmap is straight forward: Each level is centered
around the focus point of the clipmap. The first texture covers the entire terrain
and each following level covers a fourth of the previous level (half length in
both dimensions). When the focus point moves (see Fig. 4.1(a), the following
cases exist:

1. The focus point moves less than one pixel, so no update is required.

2. The focus point moves less then the edge length of the covered area in
both dimensions. In this case some parts of the previous contents can be
reused.

3. The focus point moves further away, so the entire level has to be updated.

The second case is the most interesting one since clever reuse of existing
data can reduce the bandwidth requirements significantly. Tanner et al. solved
this by toroidal indexing: The focus point is not set to the center of the texture
but to its world position modulo the size of the current level. Therefore the
content has a fixed position in the texture and does not have to be moved (see
Fig. 4.1(b)).

4.4. Tile Generation 39

4.4 Tile Generation

When the camera moves smoothly through the scene, most clipmap updates
change only a few texels. Given an efficient rendering front-end, this can go
down to 1×N (for texture size N×N) texel small update stripes that have to be
calculated on every frame. This results in highly inefficient texture generation
for almost anything more complicated than a simple copy operation. If, for
example, a jpeg is used as image source, only full DCT blocks of 8 × 8 pixels
could be decoded. Many image synthesis algorithms also perform better on
larger blocks because higher code and data locality improves branch prediction
and cache usage.

Tanner et al. divide the map into tiles with a size in the same order of mag-
nitude as the clipmap texture. Smaller tiles improve the paging latency, but
larger tiles are processed more effiently. These tiles are generated by image
sources and stored in tile caches.

4.4.1 Image Sources

Image sources load and process the terrain raster data as presented in sec-
tion 2.1. An image source returns a section of a map when given the section
size and offset. Since we operate on a fixed tile grid, we pass the grid size and
the grid coordinates. We use a grid hierarchy that corresponds to the mipmap
levels: A grid subdivides the map into 2m · 2n tiles (see Fig. 4.2(a)), with m = n
for planar clipmaps and m > n for spherical clipmaps (see chapter 5).

Tanner et al. have a fixed source design: Since their approach tries to mimic
a conventional mipmap as close as possible, they have one large mipmap stored
on the disc that is paged into the clipmap transparently. However, this sim-
ple cache logic can be easily replaced by a texture synthesis framework: We
use a generalized image source system that generates the tiles on-the-fly (Fig.
4.2(b)). Similar to the usual clipmap usage, our main image source is a file
loader based on the ECW file format (see [Ueffing, 2001]). This wavelet for-
mat is optimized for streaming and region-of-interest decoding. We used it for
a Landsat texture with about 1.4 · 106 × 0.6 · 106 RGB pixels compressed to 26
GB in our tests (97 : 1). Losasso and Hoppe [2004] used likewise a hierarchical
file format with spatially localized bases to enable efficient region-of-interest
decoding.

One of the main advantages of this flexible clipmap back-end is the ability to
reuse sources in different clipmaps. For example normal maps are usually de-
rived from height maps. Many common operations can be implemented based

40 Chapter 4. Tiling

(a) (b)

Figure 4.2: (a) The map is subdivided into different grid resolutions that can be
anisotropic when using spherical clipmaps. (b) Image sources form a dependency
tree: In this example, the color clipmap receives the tiles from a contrast filter
which depends on a file loader. The height clipmap and the normal clipmap share
the height map file loader source as the normal map is generated on-the-fly.

on this image source framework:

1. Map Resampling
Most georeferenced maps do not cover the whole planet. A map loader
source can therefore realign and possibly resample the map on the fly to
hide this fact from the following rendering steps. Missing texels are filled
with an arbitrary value, e. g. transparent or black.

2. Vector Rasterizer
Apart from raster data, vector shapes are quite important in terrain ren-
dering applications. These should be rasterized in map space and ren-
dered together with the underlying height map to avoid visible accu-
racy errors as described by Kersting and Döllner [2002]. They use an
on-demand texture pyramid which fits conceptionally well to our clipmap
source system.

3. Overlay
Several maps can be overlaid on-the-fly. This is useful for example when
only parts of a map are available in high resolution or to implement the
thematic lens effect introduced by Döllner et al. [2000].

4. Detail Synthesizer
When a few representative high resolution sample textures are given for
a low resolution map, they can be used to give a visual impression of the

4.4. Tile Generation 41

missing details using the constrained texture synthesized by Wang and
Mueller [2004]. Although this method adds guessed information to an
otherwise reliable data set, it is a powerful tool when applied judiciously.
If only the general appearance of a terrain should be visualized, pure
synthesis algorithms can be used. For example Berger [2003] sketched
a real-time texture synthesis technique suitable for terrain rendering that
used spectral noise to generate the different levels of detail.

5. Normal Map
Normal maps are usually derived from height maps and not sampled di-
rectly. This requires only one fast additional filter in the source tree in-
stead of a whole precalculated map which would quadruple the required
disk space.

6. Filters
Adjusting texels without context is one of the fastest ways to modify the
image. Changing hue, brightness, contrast, saturation, gamma curves etc.
adds virtually no overhead (texture decompression or synthesis is noti-
cable slower). These operations are nonetheless invaluable because they
work without expensive precalculation or overhead in the rendering front-
end. Since only the visible tiles are processed, changing the parameters
of these sources is almost interactive.

4.4.2 Feature Sources

Feature sources load and process the GIS features as presented in section 2.3. A
feature tile contains all features where the intersection of the associated geome-
try and the tile is not empty. For point data, we evaluate the points directly, not
the shapes of the model instances they represent, for two reasons: It is faster,
and later in the pipeline, we can simply render all points as instances without
rendering a single instance near a border twice. Feature sources integrate into
the same processing pipeline as image source (Fig. 4.2(b)) and can be used as
source for the vector rasterizer proposed in section 4.4.1. In the following, we
describe the rest of the pipeline for image sources, but the same applies for
feature sources.

4.4.3 Tile Cache

The tile cache decouples the clipmap update algorithm from the image sources.
Image sources store their output in a source-specific tile cache and the clipmap
update routine gets it from there. Tanner et al. used a fixed cache size of n2

42 Chapter 4. Tiling

(a) (b)

Figure 4.3: (a) While tiles at the current clipmap position should be kept to avoid
regeneration on the next clipmap update, the tiles that are not directly adjacent to
these can usually be discarded to free memory. Keeping the adjacent ring avoids
cache thrashing when the camera moves back and forth over a tile border. (b) The
texture update depends on exactly four tiles. The two wrap-around positions split
the texture (displayed over tile 5) into nine update regions (red number: previous
tile index; green number: new tile index)

tiles that are accessed in the same toroidal way as the clipmap textures. We
implemented a more flexible solution based on an associative array: The tile
locator that identifies a tile unambigously is used to index the tiles. There is
no fixed limit on the size of the cache, instead it is regularly pruned according
to an arbitraty criterion. We currently use the distance to the focus point (see
Fig. 4.3(a)), although more intelligent strategies would model the basic idea
better: Those tiles that are least likely to be used again should be removed.
The distance correlates with this, but camera movement and view direction
could provide valuable hints.

4.5 Clipmap Update

We divide the clipmap updates into two steps: Gathering the necessary map
tiles and copying the data to the clipmap texture.

4.5. Clipmap Update 43

4.5.1 Quads

The number of tiles required for a clipmap update depends on the ratio between
tile size and clipmap texture size. Instead of the arbirary ratio of Tanner et. al,
we prefer using tiles of the same size as the clipmap texture. This reduces the
updating process to a small and efficient algorithm:

Using a size ratio of 1 : 1, a clipmap update requires exactly four map tiles
(ignoring the degenerate case when the clipmap contains exactly one map tile).
These map tiles form a so-called quad. By the time of the clipmap update, the
tile cache should already contain the necessary tiles. Therefore we can just
retrieve them and pass the quad to the following step.

Fig. 4.3(b) illustrates this with a simple example: The previous clipmap
location is represented by the red square, the new one is drawn in green. The
new clipmap intersects the map tiles 1, 2, 4 and 5 which are passed to the
update step.

4.5.2 Update Regions

If the focus point has been moved by more than one tile, the complete clipmap
texture has to be updated and no further optimizations can be applied. How-
ever, the common case in terrain rendering is a relatively slow moving camera,
so we can reuse parts of the clipmap texture.

We describe this process by means of the example in Fig. 4.3(b): Since the
clipmap texture content is placed modulo the tile size, we draw the clipmap
texture over map tile 5. As Fig. 4.1(b) illustrated, the toroidal indexing splits
the clipmap texture into four regions, each corresponding to a different map
tile. Splitting the clipmap texture by both the old and the new wrap-around po-
sition, we end up with nine regions. Now we can determine the corresponding
map tile for each part for both the old and the new focus point. These two tile
indices are compared for each region, and only those regions with a differing
tile index have to be updated.

The map tile indices are then used to get the correct tile from the quad. Now
the region can be copied directly from the tile to the clipmap texture without
translation.

44 Chapter 4. Tiling

4.6 Multithreading

Terrain rendering as presented by Asirvatham and Hoppe [2005] is almost com-
pletely done on the GPU which runs asynchronously to the CPU. The bottleneck
becomes visible at the clipmap update routine: At high framerates only small
stripes of the clipmap texture have to be replaced on every frame which can be
interleaved nicely with the rendering routines. But, depending on the camera
movement, every now and then a new map tile has to be generated. This rela-
tively large task stalls the update process and in turn the rendering, so passing
over the tile grid lines results in noticable stutter.

We move the tile generation task to separate threads to avoid this. Although
the total workload remains the same, the tile generation can be spread in time
over multiple frames on single CPU systems, avoiding the occasional stutter.
Multicore CPUs and systems with multiple CPUs can run the tile generation in
parallel with the rendering thread.

Tiles are enqueued according to their priority. It depends on the visibil-
ity (pre-fetched tiles are less important than visible ones) and level (lower
(coarser) levels are more important as they are rendered first). Tiles within
one priority class have no special order.

We employ the well-known manager-worker pattern (see [Freisleben and
Kielmann, 1997]) to handle the parallel generation. The list of required tiles
is determined by the render thread and sent to the manager thread. The ren-
der thread can now continue its main task while the manager distributes the
workload among the worker threads and deals with tile dependencies. Tile de-
pendencies can be resolved by a depth-first traversal of the source tree starting
at the final soures. This yields the correct order in a single pass.

Thread synchronisation is limited to three interfaces: The two tile queues
between renderer and manager, and manager and worker are common mes-
sage queues. The third synchronization is required inside the tile cache be-
cause multiple workers can write to the same cache simultaneously while the
render thread tries to read. We use one mutex per cache which appears to be
sufficiently fine grained. Since the tiles themselves are immutable, no further
synchronization is required there.

The render thread runs with the highest relative priority, the manager
thread below that and the worker threads at the lowest level. This way the
render thread is not blocked by the tile generation process and can continue
updating the display at a coarser resolution to improve interactivity.

4.7. Algorithm 45

4.7 Algorithm

When the application is initialized, a fixed number of worker threads is
spawned. They simply block inside the message queue when no tasks are avail-
able and take no CPU time. No further setup is required.

Clipmap updates and rendering are handled in a single loop over the visible
levels for each frame (Alg. 3). These are determined by the front-end (see
chapter 5). The other two input parameters are the current clipmap focus and
the time limit. The latter is used to target a fixed frame-rate.

Algorithm 3: Per frame update and rendering.
Input: minLevel, maxLevel, timeLimit, focus
begin

if focus changed then
foreach clipmap do // height, color, etc.

set focus;
gather new tile tasks→ taskList;

end
cancel previous tile tasks;
enqueue taskList;

end
for i← minLevel to maxLevel do

// prepare level

foreach clipmap do
get quad from tile cache; // can block

update clipmap texture;
end
// render level

nextLevel← i +1;
if nextLevel ≤ maxLevel
∧ IsReady(nextLevel)
∧ GetCurrentTime() < timeLimit then

render ring level;
else

render full level;
end

end
end

If the clipmap focus has changed since the previous frame, the required
tiles might have changed. Therefore we iterate over all clipmaps and gather

46 Chapter 4. Tiling

the new tile generation tasks. The worker threads are still running during this
step since the probability of generating usable tiles is quite high in the common
case of slow camera movements. When all tasks are known, the current tasks
are cancelled and the new ones are enqueued. Cancelling the tasks does not
interrupt the worker threads, it affects only the message queue of the manager.
This is also because of the high probability of generating usable tiles.

The following loop over the rendering levels starts with the level that has
the lowest resolution and proceeds with increasing resolution. This order en-
sures that we can interrupt the rendering process and still cover the whole
terrain, just with less detail than expected. Note that this order is different
from [Losasso and Hoppe, 2004]: Losasso renders from fine to coarse to ex-
ploit hardware occlusion culling. This results in higher framerates for a given
level of detail, but does not allow a fixed framerate.

At first the current level of each clipmap is prepared. This requires the tiles
that are generated asynchrously, so getting the quad can block if they are not
ready. The following update just copies the appropriate regions of the quad to
the texture. When all clipmaps are ready, we can actually render the terrain.
There are two alternatives: If further levels of detail follow, we render a ring,
otherwise we render a disk (see [Asirvatham and Hoppe, 2005]). It depends
on three conditions whether a finer level follows:

1. The level visibility calculation of the rendering front-end limits the maxi-
mum resolution. Since image quality is also limited by the output device,
increasing the terrain resolution to more than one primitive per screen
pixel is rarely useful.

2. If preparing one of the clipmaps of the next level would block, we stop
the rendering process at the current level. This keeps the framerate pre-
dictable, and there’s a good chance that this level can be rendered on one
of the next few frames due to the asynchronous worker threads.

3. If the time limit is reached, no further levels should follow. This is a rare
case since the operations in this loop usually do not take much CPU time.
It can actually happen due to a blocking update of the lowest level when
the camera altitude is increased rapidly. However, most of the time it’s just
a safety check against unfortunate thread scheduling and other external
influences.

Tanner et al. handle this differently because of they target full transparency
for the user: Instead of explicitly communicating the availability of clipmap
levels, they simply limit the MaxTextureLOD value, enforcing clipmap lookups

4.8. Results 47

(a) (b)

Figure 4.4: (a) The full area is rendered at a low level of detail if the more detailed
clipmap levels are missing. (b) The same scene rendered in full quality

in the lower levels only. Since our terrain rendering front-end also generates the
geometry based on the clipmap, there’s no benefit in rendering highly detailed
meshes of coarse raster data. Therefore we prefer using an application specific
method to deal with level availability.

4.8 Results

4.8.1 Visuals

The image quality depends primarily on the rendering front-end. The only
effect introduced by our method is the omission of higher levels of detail: Fig.
4.4(a) shows a view of the Alps where the rendering has been stopped a few
levels early because of delayed clipmap updates.

Fig. 4.4(b) shows the same scene a few frames later, when the required data
is available.

4.8.2 Resources

The following results were produced on a dual CPU Xeon (3.2GHz) with 2 GB
RAM and a NVidia Geforce 7900GTX (512 MB RAM), running Windows XP x64.
The color map is a Landsat satellite image with 1.4 · 106 × 0.6 · 106 8 Bit RGB
pixels (2 TB compressed to 26 GB). The height map is a SRTM data set with
432 · 103 × 216 · 103 16 Bit greyscale pixels (180 GB compressed to 5 GB). The

48 Chapter 4. Tiling

altitude levels velocity framerate
800 km 1-5 640 km/s 64 fps
80 km 3-9 64 km/s 60 fps
50 km 3-10 40 km/s 50 fps
20 km 4-11 16 km/s 38 fps
6000 m 5-13 4800 m/s 36 fps
2000 m 5-14 1600 m/s 36 fps
800 m 6-16 640 m/s 32 fps
200 m 7-17 160 m/s 32 fps
50 m 8-20 40 m/s 28 fps

Table 4.1: The maximum velocity at which the back-end can keep up and the
corresponding framerates

color clipmap uses a texture size of 2562, the height clipmap uses 642 texels.
The normal map is derived on the fly from the height map at full color texture
resolution. About 800 MB RAM were used.

Due to framework issues, the maximum framerate is limited to 64 frames
per second (independent of the vertical refresh rate). We chose front-end set-
tings that allow rendering at this speed for a static camera when all clipmap
data is ready. The framerate is therefore only limited by date processing and
clipmap updates. Table 4.1 shows the maximum velocity at which the back-
end could keep up with the front-end and the corresponding framerates. At
velocities higher than about altitude · 4

5s
, the highest levels of detail are occa-

sionally ommitted while the framerate stays quite constant. Moving slower also
does not affect the framerate significantly due to the overhead in the clipmap
update routines (more levels are considered visible at lower altitudes).

A second test using a height generator based on 3D simplex noise and a
derived color map showed basically the same behaviour, although it was about
5 times slower.

4.9 Conclusion

While terrain rendering using clipmaps depends on low latencies but requires
little CPU time, preparing the clipmaps takes high CPU bandwidth but is of
limited urgency. We presented a way to decouple these two tasks to enable
terrain rendering with a constant high framerate and an adaptive level of detail.
Most details are ommited when the camera moves fast, which is exactly the
situation in which the user would not perceive it anyway. As soon as the camera

4.10. Future Work 49

stops, the resolution converges to the maximum for the given terrain rendering
front-end. This allows terrain visualization applications with state of the art
rendering front-ends that do not have to rely on explicit coarse replacement
geometry or other placeholders to remain highly interactive in a professional
visualization setting, including on-the-fly data manipulation.

4.10 Future Work

Although the current solution already works fine, we found a few points that
could need further methological improvement:

1. Prefetch
The cache prefetch strategy currently only takes the clipmap focus into
account. However, prefetching the tiles lying on an extrapolated cam-
era path would be preferable as those behind the camera are less likely
needed for the following frames. It could also be desirable to allow ex-
plicit prefetching for non-interactive visualizations where the application
knows in advance which regions are visited next.

2. Clipmap Mipmaps
There’s a general problem with manual clipmaps as introduced by Asir-
vatham in Asirvatham and Hoppe [2005]: When only small portions of
a texture are updated, the cost of regenerating a mipmap for this texture
are relatively high. However, mipmaps with anisotropic filtering would
improve both rendering performance and quality significantly when the
camera aims at the horizon and not the geocenter. However, avoiding the
explicit clipmap texture and passing the quads to the GPU would circum-
vent this issue, but at a cost of four times more texture samplers and no
interpolation between tiles which is equivalently undesirable.

3. Scheduling
Currently we do not employ any clever scheduling strategy to feed the
worker threads. This might result in a bottleneck when using complex
source trees on systems with many CPUs, but we didn’t do any further
research in this direction, yet.

Chapter 5

Terrain Rendering

5.1 Introduction

Terrain rendering has a broad range of applications from science, e.g. cartogra-
phy and landscape planning, to entertainment, e.g. outdoor games and movies.
We focus on the serious applications that usually don’t allow artistic tricks to
hide technological deficiencies. The target is quite simple to state: We want to
visualize spherical terrains (whole planets) on many scales (from space flight
to sunday afternoon walk) on commodity hardware. This imposes two major
challenges: The size of the data exceeds the capabilities of current PCs by far
and numerical errors of 32 bit floating point numbers, the maximum accuracy
of current GPU, become relevant.

The content of this chapter has been published in [Clasen and Hege, 2006].

5.2 Existing technology

Previous publications and applications can be divided into two parts: Those
with planar terrain and those with sperical terrains. Both converge to the same
solution with increasing scale, and there are many cases where a planar terrain
is absolutely sufficient. But in the real world, you just cannot see from Lisbon
to New York.

51

52 Chapter 5. Terrain Rendering

5.2.1 Planar terrain

Many popular terrain rendering algorithms deal with planar terrain. Losasso
and Hoppe [2004] categorize them as follows:

• Irregular meshes (a.k.a. triangulated irregular networks)

• Bin-tree hierarchies (a.k.a. longest-edge bisection, restricted quadtree,
hierarchies of right triangles)

• Bin-tree regions (coarser than Bin-tree hierarchies)

• Tiled blocks (square patches that are tessellated at different resolutions)

The error for a given number of triangles increases with each category. Ir-
regular meshes result in the best possible approximation but requires a large
computational overhead. In practice, tiled block algorithms can take advantage
of the huge geometry bandwidth of current GPU most effectively and overcom-
pensate their deficiencies in accuracy. Losasso and Hoppe [2004] introduces
the Geometry Clipmaps algorithm which is especially designed for this band-
width. Asirvatham and Hoppe [2005] further improve it to handle most of the
computations on the GPU.

5.2.2 Spherical terrain

Although the same categorization is valid for spherical terrain, most research
seems to focus on planar terrain. O’Neil [2001] and Hill [20002] tried to extend
the ROAM algorithm by Duchaineau et al. [1997] (bin-tree hierarchy) to handle
spherical surfaces, but Hill dropped this approches in favor of a tiled block
solution in the same publication. Cignoni et al. [2003b] introduce a bin-tree
region type algorithm, they extend the BDAM algorithm to planets (P-BDAM)
in [Cignoni et al., 2003a]. All solutions have in common that they partition the
planet into square regions, using a cube as base geometry.

The popular terrain viewers Google Earth (http://earth.google.com/)
and NASA World Wind (http://worldwind.arc.nasa.gov/) apparently use
tiled block approaches, but these solutions are not published.

5.3. Spherical clipmaps 53

5.3 Spherical clipmaps

We chose to extend the GPU-based geometry clipmaps by Asirvatham to spher-
ical terrains because of the following reasons:

• The rendering speed depends on the screen resolution, not on the size of
the digital elevation model (DEM) and the corresponding surface color
texture. This basic feature of each LOD algorithm is handled exception-
ally well by the underlying clipmap. Image resampling is a thoroughly
researched domain and this knowledge can be applied directly in the con-
struction of the clip map.

• Different levels of detail can be blended smoothly even when they are
more than one level apart.

• Rendering can be limited on-the-fly to the coarsest n levels without over-
head in case streaming data is late or the framerate does not meet the
requirements.

• The implementation is simple because the geometry is static and the only
image operation is copying regions between buffers.

• The technique is quite fast and the current bottleneck, vertex texture look-
ups, is expected to disappear with unified shaders.

The following changes to the original algorithm enable spherical terrains:

5.3.1 Clipmaps

The original Clipmap by Tanner et al. [1998] is a texture representation that
can be used to display textures of virtually unlimited size with maximum detail
around a variable focus point. It resembles a mipmap pyramid where each level
is clipped to a fixed number of samples around the focus point (fig. 5.1). When
a level is sampled, it is first tested whether the sampling point lies in the clipped
region. If not, the next higher level is searched, which covers an area four times
as large. This results in a memory requirement of O(log n) for a base texture of
size n.

Losasso and Hoppe used this representation for height maps. This effec-
tively enables the usage of arbitrary height map sizes independent of run-time
memory requirements and provides an inherent level of detail representation
that reduces rendering time similar to memory. Each ring is rendered using the

54 Chapter 5. Terrain Rendering

Figure 5.1: The clipmap contains a fixed-size segment of each mipmap level
around an arbitrary focus point.

same number of vertices just as each ring contains the same number of image
samples.

Since the main feature of Geometry Clipmaps is the static geometry relative
to the viewer (plus some minor translation), this support geometry had to be
changed to accommodate our parametrisation: Any rectangular grid aligned to
the underlying parametrisation changes its shape with the distance to the poles
of the planet. The problems becomes inevitably visible when the viewer is close
to the pole: The support geometry becomes infinitely thin towards the pole and
stops there as spherical coordinates do not wrap around in θ direction.

In the following we replace the underlying geometry with one that maps
better to the sphere. No matter how far away the viewer is relative to the
planet, he cannot see more of it than one hemisphere. This led to the idea of
using concentric rings instead of rectangles. The resulting spherical Geometry
Clipmap is displayed in fig. 5.2.

5.3.2 Map parametrisation

The trivial parametrisation of the plane, (x, y), cannot be transfered directly
to the sphere. However, an equally simple parametrisation exists: Spherical
coordinates, denoted by (φ, θ) ∈ [0, 2π) × [0, π) (fig. 5.3). Given a coordinate
system with the axes (x, y, z), a point p on the unit sphere can be parametrized

5.3. Spherical clipmaps 55

Figure 5.2: We use circular instead of rectangular rings to cover the hemisphere.

by its angle theta to the z-axis, and the angle phi from p projected to the x, y-
plane to the x axis. (0, 0, 1) and (0, 0,−1) can be denoted as north and south
pole respectively. All points with the same phi belong to a meridian, the 0-
meridian intersects the positive x-axis.

5.3.3 Map transform

Since we want to focus the clipmap around the viewer, we have two different
spaces: The world space (x, y, z) that provides an absolute orientation of the
spherical terrain and the view space (x̃, ỹ, z̃) that locates the viewer at the north
pole. The introduction of the view space enables a static geometry (vertices plus
connectivity) that has to be calculated and transferred to the GPU only once.
The hemisphere around the viewer is parametrized by (φ̃, θ̃) whereas the terrain
is parametrized by (φ, θ). The mapping between both spaces (fig. 5.4) depends
on the position of the viewer (in world space), (φv, θv).

We can assume without loss of generality that the viewer v is located exactly
above the 0-meridian at (0, θv) since any deviation in φv translates directly to a
simple φ-offset in the height map. Thus we need a mapping

f(θv, φ̃, θ̃)→ (φ, θ). (5.1)

This mapping is a rotation around the y-axis as we chose the 0-meridian to
intersect the positive x-axis (fig. 5.5).

56 Chapter 5. Terrain Rendering

Figure 5.3: The sphere can be parametrized by (φ, θ) which map directly to a
planar rectangle.

A point p̃ on the hemisphere with the local spherical coordinates (φ̃, θ̃) has
the coordinates

p̃ =

⎛
⎝ cosφ̃ · sinθ̃

sinφ̃ · sinθ̃
cosθ̃

⎞
⎠ (5.2)

in view space. The rotation affects only the x and z coordinates, resulting in:

p =

⎛
⎝ cosθv · p̃x − sinθv · p̃z

py
−sinθv · p̃x + cosθv · p̃z

⎞
⎠ (5.3)

This point is converted back into spherical coordinates by:(
φ
θ

)
=

(
tan−1 py

px

cos−1(pz)− θv

)
(5.4)

Note that we subtract θv from θ to set the origin of the transformed coordinate
system to the position of the viewer. This offset and the previously fixed φv = 0
define the focus point of the clip map. tan−1 has to take into account the
quadrant in which (py, px) lies, similar to atan2() in C.

For a vertex on the hemisphere, we precalculate p̃ on the CPU and pass it as
vertex attribute to the vertex shader where the next two steps are performed.
The per-frame-constants cosθv and sinθv can also be calculated on the CPU and
passed as uniforms to the shader.

5.3. Spherical clipmaps 57

Figure 5.4: Points on the view hemisphere are transformed into world space to
sample the rectangular height map.

5.3.4 Discretization

The original Geometry Clipmaps use a rectangular support geometry that is
aligned to the grid of the underlying raster data. Since rectangular grids are
the native representation of textures on current GPU and also quite common
in cartography and artistic terrain generation, we continue to use it although
it does not allow a direct correspondence of vertices to height samples. We
use spherical coordinates to transform map the height texture (parametrized
by (s, t)) to the spherical surface: (s, t) = (φ, θ).

The hemisphere (φ̃, θ̃) is discretized into quads. φ̃ is simply divided into n
fixed steps. The discretization of θ̃ depends on the distance to the viewer: Low
levels of detail (far away) require less steps per distance than higher levels.
The first level of discretization divides the hemisphere into the concentric rings
that shrink exponentially: Level i covers θ̃ ∈ (2−iπ, 2−i−1π]. This sequence is
terminated by a fill level that covers θ̃ ∈ (2−i−1π, 0]. Each level is subdivided
into m rings by θ̃i,j = θi,0 ∗ 2−j/m. Each discrete element of the hemisphere is
then partitioned into two triangles. The resulting geometry ensures that the
triangles have about the same size in screen space (fig. 5.6).

The disadvantage of this solution compared to the original GPU-based Ge-
ometry Clipmaps is the 1:1 correspondence of vertices and height samples had
to be dropped. One advantage is that no special case handling is required to
circumvent the T-intersections at level boundaries: The constant discretization

58 Chapter 5. Terrain Rendering

Figure 5.5: For φv = 0, the hemisphere is rotated only around the y-axis.

of φ̃ implies the gapless geometry transition.

5.4 Algorithmic details

There are few more algorithmic differences to Asirvatham’s Geometry Clipmaps
that are caused by the new mapping:

5.4.1 Texture sizes in map space

The size of a support geometry level in map space is now dependent on the
position of the viewer: A circular ring with a diameter of 1m covers a φ range
of about 2π

40,000
if the viewer is located at the earth equator. The same ring

covers the whole 2π if the viewer is standing less than 1m away from the north
pole. Therefore the map space range of the clipmap texture has to be chosen
according to the current φv. There is no direct dependence on θv apart from
the fact that the texture can be clipped at θ < 0 and θ > π since map sampling
does not cross the poles.

This anisotropic range is shown in fig. 5.7. The level covers a map range of
φ = 2π if the level diameter θ̃ is less than the distance to the nearest pole:(θ̃ >
θv) ∨ (θ̃ > π − θv).

5.4. Algorithmic details 59

Figure 5.6: Triangles twice as far away are rendered twice as small, so our
expontially growing triangles have about the same size in screen space.

One of the advantages of the wrap-around clipmap updates is that small
movements of the viewer cause small texture updates. If we use the texture
completely for any given φ-range, a small movement of θv would require an
update of the whole texture. Therefore we change the texture range in power
of two steps and use only a subset of the texture. For instance φ-ranges of 0.3π
and 0.4π both result in a texture that covers 0.5π. This results in an ammortized
complexity that matches the original Geometry Clipmaps.

5.4.2 Aliasing

The missing direct correspondence of height map samples to vertices introduces
a possible source of aliasing: The base signal (height map) is resampled at a
different rate by the support geometry. The triangles equal a linear interpola-
tion which is a less than perfect reconstruction filter. Resampling at a frequency
that is at least as high as the sampling frequency of the source signal ensures
that the aliasing is minimized and no detail is lost (fig. 5.8) , but the lower the
source signal rate, the lower the visual details of the terrain. A good choice is a
resampling rate that roughly equals the source sampling rate: If you discetrize
φ̃ into n steps, then a texture width of n

4
is sufficient since this texture has about

n boundary texels. Any texture size between this upper bound and n
8

should be
fine, assuming that θ̃ is discretized at a similar resolution.

60 Chapter 5. Terrain Rendering

Figure 5.7: The world space size of the clipmap regions have to be chosen accord-
ing to θv to handle the anisotropy.

5.4.3 Clipmap filtering

The clipmap pyramid is based on successively downscaled images. This scaling
is performed in map space, but resampling by the support geometry vertices
is performed in 3D world space. This introduces another possible source of
aliasing since the source density in φ direction at the poles is far higher than at
the equator. Having the same number of φ samples is merely an artefact of the
chosen parametrisation, so the signal bandwidth has to be limited artificially.
This can be done by using a special filter kernel: Common image resampling
algorithms use circular kernels. They match the circular shape of the support
geometry, so the same strategy can be applied. The filter kernel should be de-
fined in 3D world space and transformed to map space as described in 5.3.3.
This way the bandwidth is limited so that the resampling by the support geom-
etry works as expected.

5.4.4 Texture coordinates beyond poles

The arcus tangent in the calculation of p′′ in 5.3.3 works based on the assump-
tion that the map wraps around in φ direction: The texture coordinates de-
crease towards φ = −π and increase towards φ = +π. They meet at the π-
meridian exactly beyond the pole. There’s no problem mathematically, but the
discretization causes an artefact at that point. The texture coordinates are in-

5.4. Algorithmic details 61

Figure 5.8: draw: texture=source, geometry=sampling

terpolated across the triangles, so the last triangle in one of the two directions
interpolates from ε to 1 instead to 0 (fig. 5.9, left).

Figure 5.9: Texture coordinate interpolation results in artefacts beyond the poles,
so one line of vertices has to be duplicated.

This can be fixed by duplicating the vertices on that meridian: Since the
support geometry is always oriented with φ̃ = 0 in north direction, only one
line of vertices requies special handling. One vertex of each pair gets a spe-
cial attribute that is used in the vertex shader to correct the texture coordinate.
We determine whether the pair lies beyond a pole (compare to θv) and sub-
tract 1 from the calculated texture φ coordinate, so the interpolation across the
triangles works as expected (fig. 5.9, right).

62 Chapter 5. Terrain Rendering

5.4.5 Level visibility

Not all circular rings of the hemisphere are visible from each position. The
lower bound (low detail, far away) is determined by the earth curvature, the
upper bound (high detail, near) by the height above the local surface. The
lower bound can be estimated as shown in fig. 5.10: The height h of the viewer
above the spherical planet surface (radius r) determines the tangent cone to
the planet. The terrain beyond this θ̃max is hidden by the earth curvature (note
that the minimum level of detail corresponds to the maximum θ̃):

Figure 5.10: Visibility of the lower levels of detail depends primarily on earth
curvature and the distance to the surface.

(r + h) · cosθ̃max = r (5.5)

⇔ θ̃max = cos−1 r

r + h
(5.6)

This calculation does not take the slope of the terrain into account (e.g. high
mountains might be clipped early), so you might want to add a safety factor to
this approximation.

The upper bound is calculated based on the requirement that triangles
should cover at least one pixel in screen space. The size s of one screen pixel
on the surface of the planet depends on the height h of the viewer, the field of
view angle fov and the number of pixels #p per scanline (fig. 5.11):

5.5. Implementation 63

Figure 5.11: Visibility of the higher levels of detail depends on the screen resolu-
tion and the distance to the surface.

s ≈ h · tanfov
#p

(5.7)

The upper bound θ̃min follows directly:

θ̃min =
s

2πr
· 2π =

s

r
(5.8)

5.5 Implementation

The following aspects deal with the implementation on current consumer GPUs.
Using vertex texture look-ups currently limits the technique to NVIDIA NV40
and G70 class GPU (Geforce 6600, 6800, 7800) since ATI does not support this
feature up to the R520 line (Radeon X1800). A possible work-around is the
render to vertex buffer support that allows using the pixel shader to calculate
the actual vertex positions in a pre-pass. We focussed on the NV40 and found
the following issues:

64 Chapter 5. Terrain Rendering

5.5.1 Trigonometric function replacement

Calling trigonometric functions in the vertex shader is a possible bottleneck.
Our map transform algorithm relies on tan−1 and cos−1 that cannot be precal-
culated efficiently. But there’s another way out: The distortion of the circular
ring in map space is quite low for higher levels of detail (small θ̃). Figure 5.12
illustrates this for θ̃ < π

128
and θv = 3

8
π. These inner rings can be transformed

using a simple approximation for p′′φ:

–1.5

–1

–0.5

0

0.5

1

1.5

–3 –2 –1 1 2 3

–0.02

–0.01

0

0.01

0.02

–0.03 –0.02 –0.01 0.01 0.02 0.03

Figure 5.12: φ̃- and θ̃-iso-lines in world space (φ, θ): Whereas the overall distor-
tion of the mapped hemisphere is quite large, the area around the viewer is only
stretched in φ-direction.

φ = tan−1 py
px

(5.9)

= tan−1 p̃y
cosθv · p̃x + sinθv · p̃z (5.10)

≈ p̃y ·
(
1 +

1
π

1
4
− (θv

π
− 1

2
)2
− (θv

π
− 1

2
)2

6
− 4

π

)
(5.11)

The distortion term depends only on θv and can thus be precomputed on the
CPU. This empirically derived approximation is tuned to the following setting:
θ̃ should be small, for instance < π

1024
, and θv should be not too near to the

poles, e.g. π 1
48

< θv < π 47
48

. These limits result in an relative approximation
error 1− approximated

exact
(fig. 5.13) less than 0.001 for φ̃ = π

2
. We consider this value

acceptable for interactive rendering.

Apart from the slow computation, tan−1 has another drawback: The accu-
racy of atan(y,x) on the NV40 is quite limited for small x, so higher levels of
detail show significant errors in the φ texture coordinate (fig. 5.14). The simple
solution is to use the approximation formula at least starting at the levels that
exhibit the incorrect behaviour.

5.5. Implementation 65

–0.0008

–0.0006

–0.0004

–0.0002

0
0.5 1 1.5 2 2.5 3

Figure 5.13: The relative error of the approximation stays below 0.001 for
π 1

48
< θv < π 47

48

As motivated above, the inner rings resemble a stretched circle. Therefore
the θ-direction requires no further calculations and can be approximated as
follows:

θ = cos−1(pz)− θv (5.12)
= cos−1(−sinθv · p̃x + cosθv · p̃z)− θv (5.13)
≈ θ̃ (5.14)

This approximation is also usable under the previously mentioned conditions.
If we take all possible view positions into account, θv is relatively large com-
pared θ̃ in the higher levels of detail in most cases (except close to the north
pole). Therefore the numerical error in the calculation of θ introduced by the
difference cos−1(pz)−θv dominates the error of this approximation, so this very
simple approximation suffices. Nevertheless the result is visually acceptable.

Note that you should blend from approximated to exact calculation to avoid
gaps in the terrain (fig. 5.15).

5.5.2 Speed

The main bottleneck is the vertex texture look-up: Since we had to drop the 1:1
correspondence, we have to use texture filtering to avoid the strong artefacts of
nearest neighbor sampling. The NV40 is not capable of filtering vertex textures,

66 Chapter 5. Terrain Rendering

Figure 5.14: The inaccuracy of the tan−1-implementation causes distortion in the
texture coordinate calculation: The central φ line should be straight, not jagged.

but bilinear filtering can be emulated using 4 samples. The blending region be-
tween two levels of detail requires trilinear filtering (8 samples). This overhead
hides any other possible bottlenecks, even the trigonometric functions do not
affect the framerate in this case. It would be a major limitation of the whole
technique, but we expect the vertex texture lookups to improve as soon as uni-
fied shader architectures become widespread: Common pixel shader units are
especially designed to deal with the latency of texture lookups. Implementing
this into vertex units in separated architectures would increase the chip com-
plexity disproportionately for a feature that is rarely used in current games.
With a unified shader architecture, vertex shaders could use the same technol-
ogy almost for free, so we believe that this bottleneck will disappear in the next
one or two years.

We benchmarked the algorithm on a Pentium 4 (2.4 GHz) system with
NVidia NV40 GPU (325 MHz, Geforce 6800). The screen resolution of
1280 × 960 was no bottleneck since our implementation is vertex shader lim-
ited. The test data set consisted of a height map with 43, 200 × 21, 600 pixels
(338 MB JPEG 2000 compressed) and a color map with 86, 400 × 43, 200 pix-
els (203 MB ECW compressed). The clipmap texture sizes for height map and
color map are 1282 and 5122 respectively. φ̃ and θ̃ are discretized into 512 steps
(20 θ̃-steps per level). The approximative transform was used for levels >= 10.
In this configuration, the following views were used: A overview over Lake
Garda (Italy) from the south east with the camera standing on the ground, see
fig. 5.16. Levels 6 to 21 were rendered (≈ 330, 000 triangles per frame) at 25

5.6. Conclusions 67

Figure 5.15: Missing blending between exact calculation and approximation can
lead to gaps.

frames per second.

The second view shows the same area from an aircraft perspective (fig.
5.17). Levels 3 to 9 were rendered (≈ 140, 000 triangles) at 40fps.

Increasing the altitude again resulted in the third test case, the space view
(fig. 5.18). Levels 1 to 4 were rendered (≈ 100, 000 triangles) at 65fps.

5.6 Conclusions

We presented an extension to the GPU-based Geometry Clipmaps by Asirvatham
et.al. that handles spherical terrains. It performs well for a large range of view
conditions from space (fig. 5.18) over aircraft heights (fig. 5.17) to a stroller’s
perspective (fig. 5.16). The implementation is simple and the special cases
(texture coordinates beyond poles, arcus tangent accuracy) can be handled in
a few lines of code. Additional textures such as color map and normal map can
be handled using the same implementation without additional effort.

68 Chapter 5. Terrain Rendering

Figure 5.16: Lake Garda, ground view

Figure 5.17: Lake Garda, aircraft view

5.6. Conclusions 69

Figure 5.18: Lake Garda, space view

Chapter 6

Vegetation Rendering

6.1 Introduction

In chapter 3, we created a LoD hierarchy with the purpose of minimizing time
and aliasing in the following renderer. In this chapter, we show how this hi-
erarchy can be rendered efficiently. First, we transform the hierarchy into a
sequential tree as proposed by Dachsbacher et al. [2003]. Then we show how
to select the appropriate LoD for a specific instance. This instance can then be
rendered using GPU raycasting. Depending on the source model, the shading
can be improved by precomputing the ambient occlusion term.

Parts of this chapter have been published in [Clasen and Hege, 2005] and
[Clasen and Prohaska, 2010].

6.2 Generalized Sequential Primitive Tree

For rendering, the LoD tree is transformed to a sequential generalized primitive
tree (from coarse to fine) and stored on the GPU as a whole. For each instance
a prefix of the tree is processed using the vertex shader to determine which
primitives don’t match the error criteria and should be omitted. Transforma-
tion and rendering follow directly from Dachsbacher et al. [2003], with the
only differences being rmin replaced by our node error e, and r replaced by an
error threshold emax. Since we don’t have an inherent parent-child relationship
between the ellipsoids, we compute the error thresholds for whole LoD steps
(Sec. 6.3), not for single primitives. For incremental updates during the sim-
plification step, we omit the sorting step and add or replace only the changed
nodes (parent and two children) for each merge candidate.

71

72 Chapter 6. Vegetation Rendering

6.3 Level of Detail Selection

The appropriate level of detail for a given model size in screen space is con-
strained by two soft limits: When the feature size falls below the limit of the
Nyquist frequency, aliasing occurs. In this method, the feature size is deter-
mined by the size of the lines and ellipsoids, because the noise texture is already
frequency capped. The hard edge of the primitives has a theoretically unlimited
frequency, so aliasing cannot be avoided. Without resorting to supersampling,
we can only reduce it by reducing the number of edges, which means lowering
the level of detail to increase the primitive size. This leads to the second soft
limit, the artifacts introduced by large primitives. Fig. 3.1 shows that a certain
number of primitives is required to faithfully represent a model for a given res-
olution. We use a default average ellipsoid size of 5 pixels in diameter and a
default average line width of 1 pixel. This sounds small, but given the uneven
distribution of line widths between trunk and twigs, the most visible lines are a
few pixels wide.

Based on these sizes, we set the error value of each primitive to the inverse
of the target resolution pixels per meter in screen space. This allows us to
merge primitives of different sources (lines and ellipsoids of a single model, or
multiple models to a group) without additional error normalization steps.

size error
s0
s1

e0
e1

s2 e2

look-up interpolate

transform

Figure 6.1: To estimate the maximal allowed error of an instance, we transform
its bounding box to screen space and look up the size in the error table.

At run-time, we compute the screen-space resolution of the bounding box
of an instance and use this size to interpolate the necessary LoD from the table
(Fig. 6.1). If the target resolution is higher than defined in the look-up table,
we switch to the source model for high-quality close-ups.

6.4. Primitive Raycaster 73

6.4 Primitive Raycaster

Our simplified plant models consists of lines and ellipsoids. Even though
OpenGL supports line primitives directly, we use a custom raycaster for both
types of primitives because the OpenGL lines are shaded in a single solid color.
Image space screen-door blending as described by Mulder et al. [1998] hides
the difference between the highest LoD and the original mesh without depth
sorting of the individual primitives.

6.4.1 Ellipsoids

We render the ellipsoids using the raycaster presented by Sigg et al. [2006]. It
computes the ray-ellipsoid intersection in the local coordinate system where the
ellipsoid is a sphere. This way we can use the coordinates of the intersection
as index to the noise cube map, and simply add the normal noise to the normal
vector before transforming it to eye space. To avoid aliasing due to the noise
texture, we limit the noise frequency based on the screen-space derivatives of
the texture coordinates, just like common mip-mapping. The OpenGL function
fwidth() provides a ready-to-use upper limit on the mip-map level.

The approach by Sigg et al. [2006] includes one premature optimization:
Omitting the third component in the equation for the center position,

vc = (rT1 Dr4, r
T
2 Dr4, 0, r

T
4 Dr4)

T , (6.1)

is correct in symbolic calculations and saves a few computations, but it is
numerically unstable for oblate ellipsoids. When the position on the image
plane (z = 0) is transformed into the local ellipsoid coordinate system, the
precision of 32 bit float values can become a bottleneck: If an ellipsoid is about
1 mm flat and 10 m away from the camera, we have a range of 104, which
leaves little room for calculations and sloppy model definitions like extremely
flat leaves. This results in artifacts similar to the common z-fighting of coplanar
triangles. When adding the third component,

vc = (rT1 Dr4, r
T
2 Dr4, r

T
3 Dr4, r

T
4 Dr4)

T , (6.2)

all distances are computed relative to the origin of the ellipsoid, which min-
imizes the artifacts. Apart from this change in the vertex shader, you also have
to add the z-coordinate of the center position to the z-coordinate of the inter-
section point in the fragment shader to yield the correct depth value.

74 Chapter 6. Vegetation Rendering

Figure 6.2: We use shadow mapping and precomputed ambient occlusion (top)
to improve the realism over local illumination only (bottom). Left to right: Mesh,
highest LoD, coarser LoD.

6.4.2 Lines

The line renderer is a simplified version of the raycaster proposed by Merhof
et al. [2006]. We use only the triangle-based method, not the hybrid version
including point sprites, since the resulting artifacts are negligible in our case.

6.5 Shading

We defer the shading of the raycasted primitives using G-Buffers as proposed
by Saito and Takahashi [1990] and implemented on the GPU by Hargreaves
[2004]. To do this, we have to store all information necessary for shading in
the geometry rendering pass. Actual evaluation of the G-Buffer is described in
chapter 7. Position (depth) and surface normal are the result of the raycaster
or the triangle rasterizer respecively, while material properties such as albedo
(the color) and glossiness are given as attributes of the source model.

There is not a single standard for models, but a set of more or less common
attributes. Some attributes have to be set manually by modellers. Apart from
the shape of the surface, this includes albedo and glossiness. We assume that
these are given. Other attributes can be derived. Surface normals simply are
the first derivative of the surface, yet they are so common that we rely on

6.5. Shading 75

the input models to specify these for triangle meshes. Ambient occlusion as
described by Landis [2002] on the other hand is less common. While there are
models including this information, we implemented a preprocessing step for
those who don’t. Combined with shadow mapping, this improved the visual
quality significantly (Fig. 6.2). The precomputation works as follows:

6.5.1 Triangles

For each vertex of the triangle mesh, we select a set of random directions in
the hemisphere around the surface normal. For each direction, we compute the
incoming light using a Monte Carlo Path Tracer (MCPT) in a white (radiance =
1) environment. The average over all direction is the incoming ambient light
term, which lies in the target range of [0, 1] by construction. Using a full MCPT
instead of evaluating only primary or secondary rays, or capping at a fixed
distance from the sample point, improves the accuracy for the inner leaves of a
tree top, where most of the light is indirect over several bounces.

6.5.2 LoD Primitives

For our LoD primitives, ellipsoids and lines, we use a slightly modified ambient
occlusion computation. Instead of the triangle vertices, we use random points
on the primitive surface and the associated surface normals. For each random
point, only a single random direction is evaluated. This follows the design prin-
ciples of MCPT: Using more random points with less directions per point yields
more accurate approximation of the overall ambient occlusion term than few
points with many directions. Random points which lie inside other primitives
are discarded, as they are not visible when rendering the model.

Since the primitives are part of a LoD hierarchy, the path tracer has to take
into account whether two primitives are visible at the same time. For the ellip-
soids, we could evaluate each LoD step separately, but for the lines we have a
quasi-continuous LoD. Therefore we chose a unified approach where the LoD
error is used as a fourth coordinate w in addition to the three spatial coordinates
x, y, z. The fourth coordinate of the bounding box of each primitive is deter-
mined by the minimal and maximal error for which the primitive is drawn. For
the path tracer, we set the origin ow to the error value of the currently evaluated
primitive and the direction dw = 0. This way we can use any spatial data struc-
ture such as a kd-tree to accelerate the rendering without additional changes.
To respect the blending between the levels of detail, we compute the translu-
cency of each intersection and decice by randomization whether a primitive is

76 Chapter 6. Vegetation Rendering

#primitives 1 k 5 k 10 k 27 k
time[min] 6 15 22 54

time[%] 85 65 24 14

Table 6.1: Precomputation times for the ambient occlusion term by number of
source primitives for 128 samples per primitive. Center row: Absolute time in
minutes. Bottom row: Relative to the LoD generation time.

hit. This integrates well into the MCPT design.

6.5.3 Calibration

The resulting ambient occlusion terms of the source mesh and the LoD prim-
itives usually do not match. The simplification process takes only the shape
into account, not the effect on illumination. Therefore we have to add another
calibration step. For each discrete level in the ellipsoid hierarchy, we shoot ran-
domized rays from outside into the model and gather the ambient occlusion
term at the intersection point. Then we compare the resulting average ambi-
ent occlusion to the average ambient occlusion of the source mesh and scale
the primitive terms accordingly. This way we ensure that the overall brightness
remains constant, which minimizes the visible artifacts.

6.6 Results

Precomputing the ambient occlusion term is typically done in a batch process
after the simplification. We found 128 samples per primitive sufficient, a further
increase had no visible effect. For this number, the timings were still lower than
the simplification timings (table 6.1), but in the same order of magnitude. Note
that the ambient occlusion computation scales better with an increasing num-
ber of primitives, probably due to the low algorithmic complexity of raytracing
spatial datastructures.

We compared the image quality of our precomputed ambient occlusion term
(Fig. 6.3(c)) to a rendering without ambient occlusion (Fig. 6.3(a)) and to
the Screen Space Ambient Occlusion (SSAO) method presented by Bavoil and
Sainz [2008] (Fig. 6.3(b)). While SSAO works fine for edges in architectural
models, it does not capture the complex interreflections inside tree models. All
three methods have the same rendering performance characteristic at run-time.
While SSAO requires an additional post-processing pass, it only depends on the
resolution of the rendered image, not on the scene complexity. For forest scenes,

6.6. Results 77

(a) (b) (c)

Figure 6.3: (a) Having no ambient occlusion term results in bright images with-
out depth cue. (b) Screen Space Ambient Occlusion generates blurry darkened
blobs. (c) Precomputed ambient occlusion yields a realistic impression.

the image space overhead is negligible. Applying the ambient occlusion term
in the fragment shader requires only a single multiplication. This overhead is
below the precision of measurement.

The run-time performance of the renderer is presented in section 3.6.

Chapter 7

Shading

In the rendering passes for terrain and vegetation, we gather all information
necessary for shading in the G-Buffer first presented by Saito and Takahashi
[1990] and implemented on the GPU by Hargreaves [2004]. This allows us
to apply relatively expensive shading operations which would be difficult using
forward shading, given the inherently high overdraw of vegetation scenes.

7.1 Illumination

We target photorealistic images. Kajiya [1986] introduced the rendering equa-
tion, which models the physical behavior of surface reflections. We use the
BRDF by Schlick [1993] for all surfaces, since it is physically plausible and can
be parametrized to model a wide range of materials. As usual in GPU-based
rendering, we model the incoming radiance by two terms: Direct lighting by a
directional sunlight, and indirect ambient light.

We compute the shadows for the direct lighting term using the Cascaded
Shadow Maps (CSM) method first introduced by Zhang et al. [2006]. CSM is
robust enough to be useful for outdoor scenes at any light and view direction,
so we ported the reference implementation by Dimitrov [2007] from Direct3D
to OpenGL without additional changes.

The ambient light term affects all surfaces, regardless of orientation or po-
sition. Landis [2002] suggest adding an Ambient Occlusion (AO) factor to at-
tenuate the ambient light. AO is a property of the rendered surface, similar to
albedo. It is usually specified per vertex or in a light map texture. For models
supporting AO, for example plant models with the preprocessing from section
6.5, we store this value in the rendering pass in the G-Buffer. For surfaces with-

79

80 Chapter 7. Shading

(a) (b)

Figure 7.1: Screen Space Ambient Occlusion effectively emphasizes edges in ar-
chitectural models.

(a) (b)

Figure 7.2: Atmospheric scattering is an important depth cue for distant moun-
tains.

out associated AO value, we compute it on-the-fly based on the G-Buffer using
the horizon-based Screen Space Ambient Occlusion (SSAO) by Bavoil and Sainz
[2008]. While SSAO does not capture complex interreflections (Fig. 6.3(b)), it
is quite effective at emphasizing edges in architecture models (Fig. 7.1).

7.2 Atmospheric Scattering

On the scale of typical landscape visualizations, the atmosphere cannot be
treated as transparent medium. Pale, foggy and slightly blue mountains are
an important depth cue (Fig. 7.2). The color of the sky not only indicates time
and weather, but also the current altitude (Fig. 7.3). While these effects can be
handled separately, for example using skybox textures and depth-based blend-

7.2. Atmospheric Scattering 81

(a) (b)

(c) (d)

(e) (f)

Figure 7.3: The color of the sky caused by atmospheric scattering indicates time
of day (a, b), weather conditions (c, d) and altitude (e, f).

82 Chapter 7. Shading

Li

L

1 1 1

12345
�

(a)

L

1
1

1

12
3

4

5
�

(b)

Figure 7.4: We sample the ray L from the viewer to (a) the nearest surface
(illuminated by Li), or (b) the boundary of the atmosphere, in discrete steps. For
each step, we compute in- and out-scattering into and from L. For in-scattering
and Li, we attenuate the sunlight in a single out-scattering step over the interval
from the boundary of the atmosphere to the in-scattering position. We use shadow
mapping to avoid in-scattering into shadowed positions.

ing to a constant color (depth fog), they are both visual effects of the same
physical principle, the scattering of light at the molecules in the air.

We model the atmosphere by using the Rayleigh and Mie scattering for a sin-
gle scattering step, similar to [O’Neil, 2005]. For each pixel in screen space, we
perform ray marching to the nearest surface and compute in- and out-scattering
(Fig. 7.4). Depending on the light and view directions, 12 to 36 steps are suf-
ficient for a realistic approximation (Fig. 7.5). Note that we do not distinguish
between terrain and sky shading: When shading the G-Buffer, we process all
pixels in a uniform way. When no surface is hit, we stop the ray marching at
a user-defined height, where the atmosphere is thin enough to be considered
transparent. On earth, 50 km is a practical value.

When computing the in-scattering, we have to sample the shadow map to
determine whether there is actually light that can be scattered into the view.
Ignoring this leads to distracting glowing regions at the position where the sun
would be if it was visible (Fig. 7.6). This requires a quite high number of
texture accesses to the shadow map, but it did not become a bottleneck in our
experiments.

7.2. Atmospheric Scattering 83

(a) (b) (c)

(d) (e) (f)

Figure 7.5: The required number of steps depends on the light and view direc-
tions: 4, 12 and 36 steps for dawn (top row) and noon (bottom row): While using
12 steps still yields small artifacts at dawn (note the curved line at the top of the
glow), there is no visual difference between 12 and 36 steps at noon.

(a) (b)

Figure 7.6: It is important to use shadowing when computing the inscattering to
avoid glowing regions around the hidden sun.

Chapter 8

Applications

The following chapter is based on the content already published in [Paar and
Clasen, 2007], [Clasen and Paar, 2008] and [Paar et al., 2008].

8.1 Interactive Visualization with Biosphere3D

The methods described in the previous chapters are implemented in the open-
source software Biosphere3D. Visualization projects with Biosphere3D start
with a coarse representation of the entire earth (Fig. 8.1). This ensures that
there are no end-of-the-world artifacts. The user then adds further data to re-
fine and adjust the visualization. No precalculations are required, all settings
can be changed interactively. This includes for example layer visibility, sce-
narios (content presets which can be blended), camera settings, atmosphere
properties and all rendering preferences such as shadow map resolution. This
enables quick development cycles and semi-interactive participation processes,
where scenes are modified according to stakeholder requests.

Biosphere3D supports various file formats for the different kinds of land-
scape data (Fig. 8.2):

Relief (digital elevation models)

• JPEG2000 (.jp2)

85

86 Chapter 8. Applications

Figure 8.1: Biosphere3D starts with a coarse globe.

8.1. Interactive Visualization with Biosphere3D 87

Figure 8.2: A Biosphere3D project consists of Relief data (digital elevation mod-
els), Maps (color surface textures), Vegetation (plant instances), Objects (build-
ings), and Overlays (screen-space images).

88 Chapter 8. Applications

Maps (color surface textures)

• JPEG2000 (.jp2)

• ERMapper Compressed Wavelet Raster (.ecw)

Vegetation (plant instances)

• ESRI Shapefile (.shp)

• KML (.kml, .kmz)

• Lenné3D ASCII Ecofile (.eco)

• Lenné3D Plant Meshes (.txf)

• Lenné3D Plant Billboard Clouds (.txfc)

• Lenné3D Interchange Plant Format (.lipf)

Objects (buildings)

• ESRI Shapefile (.shp)

• KML (.kml, .kmz)

• Collada (.dae)

Overlays (screen-space images)

• PNG (.png)

• JPEG (.jpg)

The Lenné3D formats .eco, .txf and .txfc have their origin in the prede-
cessor system Lenné3D Player, presented in Werner et al. [2005]. We support
these to allow a smooth transition to Biosphere3D. Most new content is created
using the standard formats.

8.2. Interactive Visual Simulation of Coastal Landscape Change 89

Figure 8.3: Screenshot created in Presagis Terra Vista of an interactive visu-
alisation developed by Brown et al. [2006] showing the coastal environment in
2001.

Biosphere3D is a pure visualization system. Users can only adjust the ren-
dering settings as mentioned above, not the data itself. This is a design deci-
sion: Different applications require different editing capabilities, and full GIS
editors such as ESRI ArcGIS are highly complex tools. Therefore we minimized
the loading times, so external editors can be used to modify the data with low
turn-around times to the updated visualization.

8.2 Interactive Visual Simulation of Coastal Land-
scape Change

In [Paar et al., 2008], we described and evaluated the application of Bio-
sphere3D in a case study of cliff erosion in Norfolk, on the eastern coast of
England. It is a typical case where communication between decision-makers
and members of the public is important: The cliffs between Sheringham and
Happisburgh, currently up to 40 m high, are subject to rapid erosion of 0.5 m
to 2 m per year. It is probably not possible to protect all parts of the coast, so
priorities have to be set. This involves thorough evaluation of scientific facts
and careful communication with all stakeholders, especially with the residents.

The Tyndall Centre for Climate Change Research previously worked on the
visualization of cliff erosion scenarios and policy options using Presagis Terra
Vista (Fig. 8.3, [Brown et al., 2006]). While this visualization showed the basic
effects of cliff erosion, realism was limited. The lack of a true horizon and

90 Chapter 8. Applications

Figure 8.4: Biosphere3D enables the visualization of foreground vegetation.

proper illumination create the impression of an abstract model. Only coarse
models of selected buildings and trees are added, which has a negative impact
on views close to the ground.

For [Paar et al., 2008], we imported the data from [Brown et al., 2006] to
Biosphere3D. To enhance realism, we added a DEM based on the hole-filled
SRTM V3 data provided by the King’s College, London, and the Blue Marble
satellite image by NASA. This ensured that the scene does not end at the end of
the study area, but extends to the natural horizon. We further added more plant
models and developed a reflective water shader to create more realistic ground-
level views on land (Fig. 8.4) and sea (Fig. 1.3). This increased the usability for
decision making processes as described by Sheppard [2005], who analyzed the
potential role of realistic visualizations in climate change communication. It
also showed that true realism is yet to be achieved: Our terrain model does not
support true 3D surfaces with overhangs, a common property of cliffs. Further-
more, a visually appealing presentation could profit from animations. While we
currently only support image-space blending between scenarios, model morph-
ing could make the change itself more comprehensible. This would require
linking the simulation software closer to the visualization system, because a
transition based solely on the geometric properties of the final states could be
misleading. The tile generation framework presented in section 4.4.1 already
supports this kind of on-the-fly generation.

Chapter 9

Conclusions

9.1 Contributions

In this thesis, we presented the core components of a landscape visualization
system. Based on the observation of the requirements of landscape planners
and other landscape visualization users, we identified the aspects where exist-
ing solutions were insufficient: Terrain rendering, plant rendering, plant pre-
processing and data management. We presented the published solutions for
these tasks and additional shading improvements. Finally we presented the
application of Biosphere3D to a climate change visualiztion scenario.

Level of Detail for Vegetation describes a novel Level of Detail method for
plants based on ellipsoid and line primitives. Individual plant models are sim-
plified using a combination of fuzzy partitional clustering for the leaves and ag-
glomerative clustering for branches. The solution outperforms previous meth-
ods up to 6 times at run-time.

Tiling describes a unified framework to generate and manage scene tiles for
both terrain and vegetation. We show how a dependency graph can be used
to compose scenes on-the-fly. Only visible portions are generated and cached,
which enables composition of terabyte-scale source data.

Terrain Rendering shows how to render the generated digital elevation
model and surface texture. We map the clipmap data structure to the spherical
domain. This combines the advantages of minimal memory transfer overhead

91

92 Chapter 9. Conclusions

with the realism of true planetary surfaces. A unified texture handling is used
to process elevation, color and normal data.

Vegetation Rendering brings the previously simplified plant models to the
screen. We use a sequential tree data structure to handle the models on the
GPU, where they are rendered using raycasting. We achive a realistic look by
adding noise textures for alpha-test and surface normals, and a proper ambient
occlusion term.

Shading processes the G-Buffer filled by terrain and plant renderer to the final
image. We use deferred shading to enable otherwise expensive atmospheric
scattering effects. We use shadow mapping when computing the atmospheric
in-scattering to avoid leaking light artifacts.

9.2 Future Directions

In retrospect, we conclude that the work at hand is a major step towards in-
teractive landscape visualization, but only a step. The resulting open-source
software package is already widely used for both academic research and com-
mercial visualizations, yet there is room for improvements:

3D Terrain is necessary to model overhangs. In our cliff visualization, we
observed that this is a real-world demand which currently has to be worked
around by using 3D models in addition to the 2.5D terrain. This involves not
only an update to the visualization system, but also to the data source applica-
tions, where 2.5D terrains are still state-of-the-art.

Plant Groups could lower the burden of large numbers of plants. While we
can already simplify plants to single primitives, the overhead of the draw calls
becomes the next bottleneck. Instancing support on the GPU can alleviate this,
but only to the moment when a single primitive plant is smaller than neces-
sary. At this point, plant groups could be the base of a futher LoD hierarchy,
eventually converging to surface textures for very large distances.

Interactivity is currently enabled by employing fast rendering methods, but
there are no guaranteed frame-rates. Moving the LoD selection for both terrain

9.2. Future Directions 93

and vegetation to a time-budget based solution could improve the usability.
Currently users can already scale the desired LoD, but this is only an indirect
tool for the aim of steadily high frame-rates.

List of Tables

3.1 precomputation times . 33

4.1 maximum velocity . 48

6.1 precomputation times . 76

95

List of Figures

1.1 early landscape visualization . 2

1.2 flood control reservoir . 2

1.3 coastal landscape change . 2

1.4 ArcGIS 3D Analyst . 4

1.5 Visual Nature Studio . 4

1.6 Google Earth . 5

1.7 Google Earth foreground . 5

2.1 Blue Marble . 8

2.2 SRTM . 8

2.3 focus region image . 9

2.4 palace triangle mesh . 11

2.5 simple building . 11

2.6 detailed plant . 12

2.7 forest . 13

2.8 buildings from extruded shapes 14

3.1 levels of detail . 16

3.2 ellipsoid import . 18

3.3 primitive calibration . 19

3.4 clustering schemes . 20

97

98 LIST OF FIGURES

3.5 clustering loop . 21

3.6 EM/GMM . 21

3.7 primitive creation . 23

3.8 fuzzy vc. non-fuzzy . 23

3.9 noise density and frequency . 24

3.10 line nodes . 26

3.11 line error estimate . 26

3.12 line weights . 27

3.13 multi-level RMS . 28

3.14 camera path . 28

3.15 performance, full resolution . 29

3.16 performance by resolution . 30

3.17 aliasing artifacts . 31

3.18 blending artifacts . 32

3.19 low-res artifacts . 32

4.1 clipmap update . 38

4.2 clipmap generation . 40

4.3 clipmap caching . 42

4.4 image quality . 47

5.1 rectangular clipmap . 54

5.2 circular clipmap . 55

5.3 map parametrization . 56

5.4 parametrization transform . 57

5.5 map rotation . 58

5.6 triangle size . 59

5.7 anisotropic clipmap levels . 60

LIST OF FIGURES 99

5.8 aliasing . 61

5.9 pole artifacts . 61

5.10 level visibility, lower limit . 62

5.11 level visibility, upper limit . 63

5.12 map distortion . 64

5.13 relative error . 65

5.14 arctan accuracy . 66

5.15 level blending . 67

5.16 ground view . 68

5.17 aircraft view . 68

5.18 space view . 69

6.1 LoD selection . 72

6.2 image quality . 74

6.3 ambient occlusion . 77

7.1 SSAO on architecture . 80

7.2 atmospheric depth cue . 80

7.3 atmospheric hints . 81

7.4 ray marching . 82

7.5 number of steps . 83

7.6 shadowed in-scattering . 83

8.1 Biosphere3D, initial screen . 86

8.2 Biosphere3D project . 87

8.3 Presagis Terra Vista . 89

8.4 Biosphere3D foreground vegetation 90

Index

2.5D, 10

aliasing, 17, 22, 29, 33, 59, 72
alpha channel, 22
alpha test, 22
ambient occlusion, 75, 79
atmospheric scattering, 82

BBC, 17, 28
billboard cloud, 17, 28
Biosphere3D, 85
branch structure, 18
BRDF, 79
buildings, 10

cache, 24, 41, 49
Cascaded Shadow Maps, 79
clipmap, 36, 37, 53
combine, 25
connectivity, 19
contrast preservation, 33
coordinate system, 7

deferred shading, 74, 79
detail synthesis, 40
draw call overhead, 33

ellipsoids, 18
EM, 20
Expectation-Maximization, 20

feature, 13
filter, 41
fruits, 18
fuzzy clustering, 19

Gaussian mixture model, 20
Geographic Information System, 1
GIS, 1
GIS feature, 13, 41
GMM, 20

hemisphere, 54

image error, 17, 22, 24, 27, 29
instance group, 33
instantiation, 13

landscape planning, 1
landscape visualization, 1
leaves, 18
line weights, 25
lines, 18

manager-worker pattern, 44
map, 1
Mie scattering, 82
monte carlo path tracing, 75
multi-threading, 44

noise, 22, 33
non-photorealistic rendering, 3
normal map, 22, 41
NPR, 3

overlay, 40

parametrisation, 54
partitioning clustering, 19
PCA, 18, 20
perception, 27
photorealism, 3

100

INDEX 101

plant model, 12
point shape, 13
polygon shape, 13
popping, 31
principal component analysis, 18, 20
priority, 44
projection, 7

quad, 43

raster data, 10
rasterization, 40
raycasting, 73
Rayleigh scattering, 82
resampling, 40
RMSE, 27
root mean square error, 27

screen space ambient occlusion, 76
shadow mapping, 75, 79, 82
space-filling curve, 27
spherical coordinates, 54
spherical terrain, 52
SSAO, 76
straighten, 25
supersampling, 33
synchronisation, 44

temporal noise, 29
terrain, 7
TIN, 10
triangle mesh, 10
triangulated irregular network, 10

view space, 55

workflow, 3
world space, 55

z-curve, 27
z-fighting, 73

Bibliography

K. Appleton and A. Lovett. Gis-based visualisation of rural landscapes: defin-
ing ”‘sufficient”’ realism for environmental decision-making. Landscape and
Urban Planning, 65:117–131, 2003. 3

K. Appleton, A. Lovett, G. Sünnenberg, and T. Dockerty. Rural landscape vi-
sualisation from gis databases: a comparison of approaches, options and
problems. Computers, Environment and Urban Systems, 26:141–162, 2002.
3

Arul Asirvatham and Hugues Hoppe. GPU Gems 2, chapter Terrain Rendering
Using GPU-Based Geometry Clipmaps, pages 27–46. Addison-Wesley, 2005.
36, 37, 44, 46, 49, 52

Xiaohong Bao, Renato Pajarola, and Michael Shafae. SMART: An efficient tech-
nique for massive terrain visualization from out-of-core. In Proceedings Vision,
Modeling and Visualization (VMV), pages 413–420, 2004. 36

Louis Bavoil and Miguel Sainz. Image-space horizon-based ambient occlusion.
ACM SIGGRAPH 2008 talks, 2008. URL http://developer.nvidia.com/

object/siggraph-2008-HBAO.html. 76, 80

Stephan Behrendt, Carsten Colditz, Oliver Franzke, Johannes Kopf, and Oliver
Deussen. Realistic real-time rendering of landscapes using billboard clouds.
Comp. Graph. Forum, 24(3):507–516, 2005. 17

Daniel R. Berger. Spectral texturing for real-time applications. Siggraph 2003,
Sketches and Applications, July 2003. 41

Stefan Bischoff and Leif Kobbelt. Ellipsoid decomposition of 3d-models. In 3D
Data Processing Visualization and Transmission, pages 480– 488, 2002. 24

Eric Bodden, Malte Clasen, and Joachim Kneis. Arithmetic coding revealed - a
guided tour from theory to praxis. Technical Report SABLE-TR-2007-5, Sable
Research Group, School of Computer Science, McGill University, 2007. 112,
114

103

104 BIBLIOGRAPHY

Frederic Boudon, Alexandre Meyer, and Christophe Godin. Survey on Computer
Representations of Trees for Realistic and Efficient Rendering. Technical Re-
port RR-LIRIS-2006-003, LIRIS Lab Lyon, 2006. 3, 17

I. Brown, S. Jude, S. Koukoulas, R. Nocholls, M. Dickson, and M. Walkden.
Dynamic simulation and visualisation of coastal erosion. Computers, Environ-
ment and Urban Systems, 30:840–860, 2006. 89, 90

Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Federico Pon-
chio, and Roberto Scopigno. Planet-sized batched dynamic adaptive meshes
(p-bdam). In VIS ’03: Proceedings of the 14th IEEE Visualization 2003
(VIS’03), page 20, Washington, DC, USA, 2003a. IEEE Computer Soci-
ety. ISBN 0-7695-2030-8. doi: http://dx.doi.org/10.1109/VISUAL.2003.
1250366. 36, 52

Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Federico Pon-
chio, and Roberto Scopigno. Bdam – batched dynamic adaptive meshes for
high performance terrain visualization. Computer Graphics Forum, 22 (3),
2003b. 52

Malte Clasen and Hans-Christian Hege. Realistic illumination of vegetation
in realtime environments. In Trends in Real-time Visualization and Participa-
tion, New Technologies for Landscape Architecture and Environmental Planning.
Wichmann Verlag, 2005. vii, 71, 112, 114

Malte Clasen and Hans-Christian Hege. Terrain rendering using spherical
clipmaps. In EuroVis Proceedings, 2006. vii, 36, 51, 112, 114

Malte Clasen and Hans-Christian Hege. Clipmap-based terrain data synthesis.
In Thomas Schulze, Bernhard Preim, and Heidrun Schumann, editors, Proc.
SimVis 2007, pages 385–398. SCS Publishing House e.V., 2007. vii, 36, 112,
114

Malte Clasen and Philip Paar. Globalisierung der landschaftsvisualisierung. In
Proceedings of AGIT 2008 Symposium und Fachmesse für Angewandte Geoin-
formatik. Zentrum für Geoinformatik der Universität Salzburg, 2008. vii, 85,
112, 114

Malte Clasen and Steffen Prohaska. Image-error-based level of detail for land-
scape visualization. In Proceedings of VMV - Vision, Modeling & Visualization,
2010. vii, 16, 17, 20, 27, 28, 29, 31, 33, 71, 112, 114

Liviu Coconu. Enhanced Visualization of Landscapes and Environmental Data
with Three-Dimensional Sketches. PhD thesis, University of Konstanz, July
2008. 28

BIBLIOGRAPHY 105

Robert L. Cook, John Halstead, Maxwell Planck, and David Ryu. Stochastic
simplification of aggregate detail. ACM Trans. Graph., 26(3):79, 2007. ISSN
0730-0301. doi: http://doi.acm.org/10.1145/1276377.1276476. 33

Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. Sequential
point trees. ACM Trans. Graph., 22(3):657–662, 2003. 20, 24, 71

X. Décoret, F. Durand, F. X. Sillion, and J. Dorsey. Billboard clouds for extreme
model simplification. In ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2003), 2003. 17

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Metholodigical), 39(1):1–38, 1977. 17, 20

Oliver Deussen and Bernd Lintermann. A modelling method and user interface
for creating plants. In In Proceedings of Graphics Interface 97, pages 189–197.
Morgan Kaufmann Publishers, 1997. 18

Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Drettakis. In-
teractive visualization of complex plant ecosystems. In IEEE Visualization,
2002. 17, 33

Rouslan Dimitrov. Cascaded shadow maps. NVIDIA white paper,
2007. URL http://developer.download.nvidia.com/SDK/10.5/opengl/

src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf. 79

Jürgen Döllner, Konstantin Baumman, and Klaus Hinrichs. Texturing techniques
for terrain visualization. In VIS ’00: Proceedings of the conference on Visual-
ization ’00, pages 227–234, Los Alamitos, CA, USA, 2000. IEEE Computer
Society Press. ISBN 1-58113-309-X. 40

Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles
Aldrich, and Mark B. Mineev-Weinstein. Roaming terrain: real-time optimally
adapting meshes. In VIS ’97: Proceedings of the 8th conference on Visualization
’97, pages 81–88, Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.
ISBN 1-58113-011-2. 52

Anton Ephanov. Understanding virtual texture. MultiGen-Paradigm Support,
March 2006. 36

S. M. Ervin. Digital landscape modeling and visualization: a research agenda.
Landscape and Urban Planning, 54:49–62, 2001. 3, 10

Bernd Freisleben and Thilo Kielmann. Coordination languages and models,
second international conference coordination 97 berlin, germany, september

106 BIBLIOGRAPHY

1–3, 1997 proceedings. Lecture Notes in Computer Science, 1282:414 – 417,
1997. 44

Anton L. Fuhrmann, Eike Umlauf, and Stephan Mantler. Extreme model simpli-
fication for forest rendering. In EG Workshop on Natural Phenomena, 2005.
17

Guillaume Gilet, Alexandre Meyer, and Fabrice Neyret. Point-based rendering
of trees. In EG Workshop on Natural Phenomena, 2005. 17

Enrico Gobbetti, Fabio Marton, Paolo Cignoni, Marco Di Benedetto, and Fabio
Ganovelli. C-bdam - compressed batched dynamic adaptive meshes for ter-
rain rendering. Computer Graphics Forum, 25(3), sep 2006. To appear in
Eurographics 2006 conference proceedings. 36

C. V. Haaren and B. Warren-Kretzschmar. The interactive landscape plan - use
and benefits of new technologies in landscape planning, including initial re-
sults of the interactive landscape plan koenigslutter am elm, germany. Land-
scape Research, 31(1):83–105, 2006. 1

Shawn Hargreaves. Deferred shading. GameDevelopers Conference (GDC)
talks, 2004. URL http://www.talula.demon.co.uk/DeferredShading.pdf.
74, 79

David Hill. An efficient, hardware-accelerated, level-of-detail rendering tech-
nique for large terrains. Master’s thesis, Graduate Department of Computer
Science, University of Toronto, 20002. 52

James T. Kajiya. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’86,
pages 143–150, New York, NY, USA, 1986. ACM. ISBN 0-89791-196-2. doi:
http://doi.acm.org/10.1145/15922.15902. URL http://doi.acm.org/10.

1145/15922.15902. 79

Oliver Kersting and Jürgen Döllner. Interactive 3d visualization of vector data
in gis. In Proceedings of the 10th ACM International Symposium on Advances in
Geographic Information Systems (ACMGIS 2002), pages 107–112, Washington
D.C., November 2002. 40

J . Kim and J.W. Woods. Spatio-temporal adaptive 3-d kalman filter for video.
IEEE Transactions on Image Processing, Volume 6 Issue 3:414–424, 1997. 17

Hayden Landis. Production-ready global illumination. Siggraph 2002 Course
16: RenderMan in Production, 2002. URL http://www.siggraph.org/

s2002/conference/courses/crs16.html. 75, 79

BIBLIOGRAPHY 107

E. Lange. The limits of realism: perceptions of virtual landscapes. Landscape
and Urban Planning, 54:163–182, 2001. 15

Peter Lindstrom. Model simplification using image and geometry-based metrics.
PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2000. Adviser-
Turk,, Greg. 25

Peter Lindstrom and Valerio Pascucci. Terrain simplification simplified: A gen-
eral framework for view-dependent out-of-core visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 8(3):239–254, 2002. ISSN
1077-2626. doi: http://dx.doi.org/10.1109/TVCG.2002.1021577. 36

Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using
nested regular grids. In Siggraph 2004, volume 23 (3), pages 769–776, New
York, NY, USA, 2004. ACM Press. doi: http://doi.acm.org/10.1145/1015706.
1015799. 36, 39, 46, 52

Rafał Mantiuk, Scott Daly, Karol Myszkowski, and Hans-Peter Seidel. Predicting
visible differences in high dynamic range images - model and its calibration.
In IS&T/SPIE’s 17th Annual Symp. Electronic Imaging, volume 5666, pages
204–214, 2005. ISBN 0277-786X. 17, 27

Dorit Merhof, Markus Sonntag, Frank Enders, Christopher Nimsky, Peter Has-
treiter, and Guenther Greiner. Hybrid visualization for white matter tracts
using triangle strips and point sprites. IEEE TVCG, 12(5):1181–1188, 2006.
ISSN 1077-2626. doi: http://dx.doi.org/10.1109/TVCG.2006.151. 74

Jurriaan D. Mulder, Frans C. A. Groen, and Jarke J. van Wijk. Pixel masks for
screen-door transparency. In Proc. of VIS ’98, pages 351–358. IEEE CS Press,
1998. ISBN 1-58113-106-2. 73

Sean O’Neil. Rendering planetary bodies. Gamasutra, August 10, 2001, 2001.
52

Sean O’Neil. GPUGems 2 : Programming Techniques for High-Performance Graph-
ics and General-Purpose Computation, chapter Accurate Atmospheric Scatter-
ing. Addison-Wesley, 2005. 82

Philip Paar. Landscape visualizations: Applications and requirements of 3d
visualization software for environmental planning. Computers, Environment
and Urban Systems, 30:815–839, 2006. 3, 15

Philip Paar and Malte Clasen. Earth, landscape, biotope, plant. interactive vi-
sualisation with biosphere3d. Proceedings of CORP - 12th International Con-
ference on Urban Planning and Spatial Development in the Information Society,
May 20th - 23rd, pages 207 – 214, 2007. vii, 85, 112, 114

108 BIBLIOGRAPHY

Philip Paar, Katy Appleton, Malte Clasen, Maria Gensel, Simon Jude, and An-
drew Lovett. Interactive visual simulation of coastal landscape change. In
Proceedings of the Digital Earth Summit on Geoinformatics 2008, International
Society for Digital Earth, 2008. vii, 2, 85, 89, 90, 112, 114

H. Repton. Observations on the theory and practice of landscape gardening.
Taylor, London; Phaidon, Oxfort (facs.), 1803. 1

Wieland Röhricht and Malte Clasen. Multum, non multi. hierarchische bittrees
bei der pflanzenverteilung mit oik. In Simulation in Umwelt- und Geowis-
senschaften, Workshop Dresden 2005, 2005. 112, 114

Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d
shapes. In Proceedings of the 17th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’90, pages 197–206, New York, NY,
USA, 1990. ACM. ISBN 0-89791-344-2. doi: http://doi.acm.org/10.1145/
97879.97901. URL http://doi.acm.org/10.1145/97879.97901. 74, 79

Christophe Schlick. A customizable reflectance model for everyday rendering.
In In Fourth Eurographics Workshop on Rendering, pages 73–83, 1993. 79

S. R. J. Sheppard. Landscape visualisation and climate change: the potential
for influencing perceptions and behaviour. Environmental Science & Policy, 8:
637–654, 2005. 90

Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross. Gpu-based ray
casting of quadratic surfaces. In Proceedings of Eurographics Symposium on
Point-Based Graphics, 2006. 73

Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The
clipmap: a virtual mipmap. In SIGGRAPH ’98: Proceedings of the 25th an-
nual conference on Computer graphics and interactive techniques, pages 151–
158, New York, NY, USA, 1998. ACM Press. ISBN 0-89791-999-8. doi:
http://doi.acm.org/10.1145/280814.280855. 35, 36, 53

Christoph Ueffing. Wavelet based ecw image compression. Photogrammetric
Week 01, Wichmann Verlag, Heidelberg, pages 299–306, 2001. 39

Roland Wahl, Manuel Massing, Patrick Degener, Michael Guthe, and Reinhard
Klein. Scalable compression and rendering of textured terrain data. In Jour-
nal of WSCG, volume 12, 2004. 36, 37

Lujin Wang and Klaus Mueller. Generating sub-resolution detail in images and
volumes using constrained texture synthesis. In VIS ’04: Proceedings of the
conference on Visualization ’04, pages 75–82, Washington, DC, USA, 2004.
IEEE Computer Society. ISBN 0-7803-8788-0. 41

BIBLIOGRAPHY 109

Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multi-scale structural similarity for
image quality assessment. In IEEE Asilomar Conference on Signals, Systems
and Computers, 2003. 27

A. Werner, O. Deussen, J. D”ollner, H.-C. Hege, P. Paar, and J. Rekittke. Lenn’e3d
- walking through landscape plans. In Trends in Real-time Visualization and
Participation, Proc. at AnhaltUniversity of Applied Sciences, pages 48–59, 2005.
3, 88

Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split shadow
maps for large-scale virtual environments. In Proceedings of the 2006 ACM
international conference on Virtual reality continuum and its applications,
VRCIA ’06, pages 311–318, New York, NY, USA, 2006. ACM. ISBN 1-
59593-324-7. doi: http://doi.acm.org/10.1145/1128923.1128975. URL
http://doi.acm.org/10.1145/1128923.1128975. 79

Lebenslauf

Persönliche Daten

Malte Clasen
Schillerstr. 83
10627 Berlin
Deutschland

Tel.: +49 (0)30 22 43 88 71
Email: info@malteclasen.de
WWW: http://www.malteclasen.de/

geb. am 05.06.1980 in Köln

Bildung

08/1990–05/1999 Albert-Schweitzer-Gymnasium, Hürth

10/2000–09/2003 Informatik an der RWTH Aachen

10/2003–04/2005 Informatik an der TU Berlin

seit 10/2005 Informatik (Promotion) an der TU Berlin

Berufserfahrung

11/1999–07/2001 Softwareentwickler bei Globalpark GmbH (Hürth)

07/2004–05/2005 Studentischer Mitarbeiter am Zuse-Institut Berlin

06/2005–05/2011 Wissenschaftlicher Mitarbeiter am Zuse-Institut Berlin

seit 11/2006 Gesellschafter der Lenné3D GmbH

seit 05/2007 Gründer und Softwareentwickler von Rezeptefuchs.de

seit 06/2011 Softwareentwickler, adesso AG (Dortmund)

111

Publikationen

Forschung [Röhricht and Clasen, 2005], [Clasen and Hege, 2005],
[Clasen and Hege, 2006], [Clasen and Hege, 2007],
[Clasen and Prohaska, 2010]

Anwendung [Bodden et al., 2007], [Paar and Clasen, 2007], [Paar
et al., 2008], [Clasen and Paar, 2008]

July 2, 2011

Curriculum Vitae

Personal Data Malte Clasen
Schillerstr. 83
10627 Berlin
Germany

Phone: +49 (0)30 22 43 88 71
Email: info@malteclasen.de
WWW: http://www.malteclasen.de/

born on 05.06.1980 in Cologne, Germany

Education

08/1990–05/1999 Albert-Schweitzer-Gymnasium, Hürth

10/2000–09/2003 Computer Science, RWTH Aachen

10/2003–04/2005 Computer Science, TU Berlin

since 10/2005 Computer Science (PhD), TU Berlin

Professional Experience

11/1999–07/2001 software engineer, Globalpark GmbH (Hürth)

07/2004–05/2005 student assistant, Zuse-Institut Berlin

06/2005–05/2011 research assistant, Zuse-Institut Berlin

since 11/2006 partner, Lenné3D GmbH

since 05/2007 founder and software engineer, Rezeptefuchs.de

since 06/2011 software engineer, adesso AG (Dortmund)

113

Publications

Research [Röhricht and Clasen, 2005], [Clasen and Hege, 2005],
[Clasen and Hege, 2006], [Clasen and Hege, 2007],
[Clasen and Prohaska, 2010]

Application [Bodden et al., 2007], [Paar and Clasen, 2007], [Paar
et al., 2008], [Clasen and Paar, 2008]

July 2, 2011

