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Abstract

Room acoustical simulations are usually evaluated by
comparing them to measurements in corresponding
physical environments as a benchmark. However, it
proved to be challenging to provide a precise repre-
sentation of the room geometry, the source and re-
ceiver characteristics, and the absorption and scat-
tering coefficients to be re-modeled in the simulation.
We aim to overcome these shortcomings by provid-
ing a database that can serve as a Benchmark for
Room Acoustical Simulations (BRAS) and which is
expandable and permanently available to researchers
and developers of simulation software. The database
includes a selection of reference scenes such as “single
reflection”, or “diffraction around an infinite wedge”
which isolate specific acoustic phenomena. This arti-
cle introduces the concept of the BRAS along with the
description of the currently contained acoustic scenes
and discusses the implication of measurement errors.
The acquisition of impulse responses for omnidirec-
tional and binaural receivers, the identification of the
boundary conditions, and the data structure is de-
tailed in the database itself. The BRAS is publicly
available1. The free license under which it is provided
allows for future extensions such as additional scenes
or improved data due to advanced measurement tech-
niques.
Keywords: room acoustic simulation, benchmark,
diffraction, scattering

1 Introduction

Room acoustical simulation enables the numerical cal-
culation of sound propagation in enclosed and open
spaces. Corresponding algorithms are either based on
the assumptions of geometrical acoustics (GA), con-
sidering sound to propagate as rays, or on numerical

1https://dx.doi.org/10.14279/depositonce-6726.3

solution of the wave equation, applying different tech-
niques such as finite-difference methods (FDM), the
finite element method (FEM), or the boundary ele-
ment method (BEM) [1]. Due to the high computa-
tional effort, the latter are, however, mainly applied
for low frequencies and relatively small rooms so far.

Room acoustical simulations have a broad field
of application including the acoustical reconstruction
of historic venues [2, 3], the design of new concert
halls [4], classrooms, open offices or train stations
and stadiums [5], the planning of urban areas [6],
the creation of complex game audio scenarios [7], the
investigation of particular room acoustic phenomena
[8, 9] or the experimental study of the impact of room
acoustics on speech perception [10] and musical per-
formance [11], to name just a few recent examples.
Many of these applications make use of the possibil-
ity of listening through the virtual ears of a dummy
head or head-and-torso simulator – a process which
was coined auralization [12]. At the same time, there
is no undivided confidence in the accuracy of room
acoustical simulations, when it comes, for example,
to the design of new performance venues for music
and speech, where acoustic scale models are still an
important alternative with specific advantages [13].
The multitude of applications and the importance of
acoustical simulation thus necessitates a comprehen-
sive evaluation of the corresponding algorithms, espe-
cially if considering that all of them have underlying
simplifying assumptions or a limited frequency range
of operation (for an overview see [14]).

This technical note illuminates different evaluation
strategies for room acoustical simulation along with
their specific advantages, disadvantages and chal-
lenges (Section 2). It is followed by an introduction
of the acoustic scenes (Section 3.1), the acquisition
of the database (Section 3.2), and a brief overview of
the database organization (Section 3.3). Section 3.4
details how the BRAS can be extended by third par-
ties, while the implication of measurement uncertain-

https://dx.doi.org/10.14279/depositonce-6726.3
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ties are discussed in the concluding Section 4. More
details, such as the exact source and receiver posi-
tions, details about the related measurements, the
data formats/structure, and pictures of the scenes and
the included acoustic materials are contained in the
database itself [dataset][15].

2 Background

Evaluations of room acoustical simulation algorithms
were carried out in the three international Round
Robins on room acoustical computer simulation,
termed RR-I to RR-III in the following [16, 17, 18, 19].
In these Round Robins, different information was pro-
vided to the participants at different phases. In phase
I of RR-I and RR-II, the participants had to estimate
the geometry and the boundary conditions themselves
from architectural plans and written information (”3
mm carpet”); in phase II the data was harmonized
based on a common 3D model and boundary condi-
tions estimated by room acoustical measurements. In
RR-III, absorption and scattering coefficients for one
wall and the ceiling of the room were measured in the
reverberation room, and taken from tabulated data
otherwise.
In an approach to establish a more controlled

environment, the Bell Labs Box was created as a
small, empty, shoebox room with a single diffracting
wedge [20]. A more complex scene was realized more
recently by furnishing an empty small room to enable
laboratory impedance measurements of all involved
objects and materials [21].
Another Round Robin used a simplified analyti-

cal reference scene to assess the simulation of double
sloped energy decay in coupled rooms at 1 kHz [22].
As a reference, a statistical model for the energy decay
in coupled rooms was parameterized based on scale
model measurements. To focus solely on the simu-
lation of the energy decay, the participants were in-
structed to adjust the simulated reverberation times
of the two rooms in an uncoupled configuration.
Moreover, two databases with analytically defined

test scenarios were established that are intended for
cross-validation of wave based simulation algorithms,
and provide mathematical scene descriptions without
measured or analytical references [23, 24]2[25]3.

The examples demonstrate that any evaluation of
room acoustical simulation software has to define a
strategy how to provide a suitable reference for the
simulation, and how to control the uncertainties re-
lated to this reference.
A first source of uncertainty is the geometric model

of the acoustic scene. In most geometric room acous-
tical simulation software it turned out to be favorable

2http://news-sv.aij.or.jp/kankyo/s26/AIJ-BPCA/

A0-1F/index.html (Accessed: Mar. 2020)
3https://eaa-bench.mec.tuwien.ac.at/main/ (Accessed:

Mar. 2020)

to dispense with the representation of small surface
structures below 0.5 m [1, p. 176]. For wave-based
simulations, on the other hand, a precise model is de-
sirable, and even for algorithms based on ray tracing,
the exact threshold of resolution may depend on the
way scattering and diffraction is treated. For both ap-
proaches, the desired resolution may also depend on
the considered frequency band. Therefore, the way
a primary acoustic structure is modified and possibly
simplified for simulations should, according to the au-
thors, be considered as part of the simulation itself.
This is true for the meshing methods for finite element
simulations as well as for the geometric simplification
for ray simulations. It should not be anticipated by
manipulating the reference data in a way that would
necessarily favour certain algorithms and certain fre-
quencies over others. Therefore, the BRAS provides
exact scene geometries for the reference scenes.

A second source of uncertainty are the boundary
conditions. In RR-I to RR-III and in similar inves-
tigations [26, 27], the lack of valid boundary condi-
tions data was identified as one of the most impor-
tant factors why room acoustical simulations differ
from measured results. Complex large rooms such as
concert venues or lecture halls are important use cases
for room acoustical simulations. However, a compre-
hensive specification of absorption and scattering for
all boundaries is practically impossible in these cases,
because neither can all different surfaces with their
different types of installation be measured in the labo-
ratory, nor are any (standardized) full-range measure-
ment techniques available to determine them in situ.
Fitting the input parameters according to measure-
ments of the reverberation time, on the other hand,
may be a pragmatic solution for many problems in
room acoustics planning. As a procedure for the eval-
uation of room acoustical simulation algorithms, how-
ever, it would contain an element of circular reason-
ing. If both the premises (the boundary conditions)
and the success of the simulation are determined by
the same measurement (of room acoustical parame-
ters), the test will always tend to confirm the quality
of the simulation algorithm. For these reasons, the
boundary conditions provided within the BRAS were
directly measured in situ for the reference scenes.

A third source of uncertainty is the behavior of the
sources and receivers which are an integral part of
the acoustic transfer function. In RR-I to RR-III,
the reference measurements were done with industry-
standard dodecahedron loudspeakers, whereas for the
simulations, perfect omnidirectional sources were as-
sumed. It was shown, however, that the non-ideal
directivity of standard dodecahedron loudspeakers,
even if they are compatible with the requirements ac-
cording to ISO 3382, can be observed even at late
parts of measured RIRs [28], and causes a mea-
surement uncertainty above the JND for different
room acoustical parameters and frequencies above

http://news-sv.aij.or.jp/kankyo/s26/AIJ-BPCA/A0-1F/index.html
http://news-sv.aij.or.jp/kankyo/s26/AIJ-BPCA/A0-1F/index.html
https://eaa-bench.mec.tuwien.ac.at/main/
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# Name RIR BRIR

RS1 single reflection
(infinite plate)

3/3 1/1

RS2 single reflection &
diffraction (finite plate)

6/5 –

RS3 multiple reflection
(parallel finite plates)

1/1 1/1

RS4 single reflection
(reflector array)

6/6 –

RS5 diffraction
(infinite wedge)

4/4 1/1

RS6 diffraction
(finite body)

3/3 –

RS7 multiple diffraction
(seat dip effect)

2/4 –

Table 1: Scenes contained in the BRAS. Columns RIR
and BRIR give the number of source/receiver posi-
tions used for measuring impulse responses with om-
nidirectional (RIR) and binaural (BRIR) receivers.

500 Hz [29]. To allow for an accurate analysis, mea-
sured directivities are provided in high spatial reso-
lution for all sound sources and the binaural receiver
used in the BRAS.

3 Database

In its initial form, the BRAS contains a collection of
7 acoustical reference scenes, each of which highlights
certain acoustical phenomena and certain spatial con-
figurations. This allows the evaluation of numerical
simulations for specific acoustic phenomena such as
specular or scattering reflection and diffraction in con-
figurations relevant to room acoustics (scenes RS1–
7). For these scenes, the required input data (geom-
etry, boundary conditions) is given with an accuracy
of state-of-the-art data acquisition methods.

The database contain impulse responses for omnidi-
rectional and binaural receivers, so that the quality of
the corresponding simulations can later be evaluated
against the measurements.

3.1 Acoustic Scenes

An overview of the scenes contained in the BRAS
along with the number of contained source and re-
ceiver positions is given in Tab. 1 and Fig. 1. A
more detailed description is given in the documen-
tation [dataset][15]. Scenes RS1 and 5 – 7 were set up
at the hemi anechoic chamber and the reverberation
chamber at RWTH Aachen University. Scenes RS2 – 4
were set up in the anechoic chamber at TU Berlin.

The BRAS contains seven reference scenes.
Scene RS1 features a single reflection on a quasi in-
finite rigid (1a), absorbing (1b), and scattering (1c)
surface for different angles of sound incidence. A re-

Figure 1: The seven reference scenes included in the
BRAS. Numbers refer to Table 1.

flection and diffraction on rigid and absorbing finite
plates of two sizes was measured in RS2. Impulse re-
sponses were acquired for different angles of sound in-
cidence, and receiver positions in front of and behind
the plate. Despite its geometric simplicity, this scene
is challenging due to diffraction and sound transmis-
sion around and through the plate, which has to be
modeled either with extended geometrical or wave
based methods. Scenes RS3 – 7 aim at recreating sim-
plified versions of relevant room acoustical scenarios:
The reflection between parallel plates (RS3) evokes a
flutter echo that is often problematic in larger venues.
Reflector arrays (RS4) are frequently used in concert
halls to direct early reflections to the audience area.
Diffraction around wedges and bodies (RS5 & 6) is
relevant in noise mapping and urban acoustics, and
diffraction on a repeated structure caused by grazing
sound incidence (RS7) occurs in audience areas and
is well known for causing the seat-dip effect.

3.2 Acquisition

All measurements and scene setups were supervised
and processed by the three primary authors. To as-
sure consistency across the data of different scenes,
a standardized protocol, identical equipment, as well
as identical measurement and post-processing scripts
were used that only differed with respect to the length
of the sine sweeps and final impulse responses, which
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were both adjusted to the level of reverberation and
background noise. All acoustic measurements were
conducted with a sampling rate of 44.1 kHz, and all
impulse responses were obtained by swept sine mea-
surements and spectral deconvolution [30]. A detailed
description of the measurements is beyond the scope
of this article and is contained in the documentation
of the database itself [dataset][15]. In the following, a
brief overview that outlines the content of the BRAS
along with the accuracy of the measurements is given.

Scene geometries. The objects of the reference
scenes were constructed using medium density fibre
board. Sources, receivers and objects were positioned
in the scenes using cross-line lasers, a laser distance
meter, and a laser angle measurer. The positioning
accuracy was cross-checked by means of an acoustic
time of flight analysis between pairs of sources and
receivers. This analysis showed an accuracy of 2.3
cm (1.6 cm on averavge) for scenes RS1, RS5–7, and
CR1–4 and an accuracy of 5.5 cm (3.4 cm on average)
for the remaining scenes. The increased uncertainty
in these case stems from the wire-woven floor of the
fully anechoic chamber where the measurements were
conducted.

Boundary conditions. Boundary conditions for
28 materials are contained in the BRAS by means of
3rd octave absorption and scattering values. For the
reference scenes RS1–7, normal incidence absorption
was determined between 100 Hz and 4 kHz according
to ISO 10534-2 [31] and angle dependent values were
measured between 300 Hz and 15 kHz according to
Mommertz [32] using the setup of RS1.

Directivities. Full-spherical directivities of the
loudspeaker used in the BRAS were measured in a
hemi anechoic chamber with a resolution of 2◦×2◦ in
azimuth and elevation. For this purpose the speaker
was placed on a turntable that controled the azimuth
at a height of 2 m above the ground. The elevation
was controlled by an arm that was equipped with a
G.R.A.S. 40AF free-field microphone at a distance of
2 m. Repeated measurements showed a good repro-
ducibility with mean absolute deviations of 0.5 dB.
The measurements were interpolated to a 1◦×1◦ sam-
pling grid using spherical harmonics. An analysis of
the data before and after the spherical harmonics pro-
cessing showed absolute deviations below 0.4 dB for
frequencies below and and 1 dB for frequencies above
10 kHz. While the used half inch microphones are
supposed to be modeled as omnidirectional in the sim-
ulations, the directivity for multiple head-above-torso
orientations of the binaural receiver was taken from
the FABIAN HRTF database [33].

Impulse responses. Impulse responses were mea-
sured for selected positions of a small active two way
speaker, a half inch class I measurement microphone,
and a binaural receiver. For the binaural receiver,
binaural impulse responses were obtained for head-
above-torso orientations between ±44◦.

3.3 Availability

The BRAS is available under a Creative Commons
share alike license (CC-BY-SA 4.0)4. For a detailed
description of the structure and data format please
refer to the documentation [dataset][15]. To assure
accessibility, the content is provided in open, or wide
spread file formats wherever possible: The scene ge-
ometries are given in SketchUp files, accompanied by
overview and detail photos of the scenes. The source
and receiver directivities, as well as the scattering and
absorption coefficients (initial and fitted estimates)
are provided in text files. The measured IRs are given
as wav files and SOFA containers [34].
For convenience, additional data that serves the

evaluation of simulated IRs is also provided. This in-
cludes an excerpt of the anechoic recording of W. A.
Mozart’s string quartet No. 1 (bars 1 – 6, second move-
ment, Reinhold Quartett5) for the perceptual evalu-
ation of the binaural impulse responses, as well as
compensation filters for common headphone models
and FABIAN’s inverted diffuse field transfer function
provided as part of the FABIAN database [35], which
can be used for headphone equalization. The compen-
sation filters were obtained by regulated least mean
squares inversion of the headphone impulse responses
(HpIRs), averaged after re-positioning between mea-
surements [33].

3.4 Third party extensions

The BRAS will be maintained and extended by the
Institute for Technical Acoustics at RWTH Aachen
University and the Audio Communication Group at
TU Berlin for the foreseeable future. Third party con-
tributions are welcome and should contain the follow-
ing data:

A scene description provided as a SketchUp 3D
model that includes the geometry, positions, and
orientations of all objects, sources and receivers
in the scene and the names of the acoustic mate-
rials.

Photographs of the scene showing the overall
setup and details.

Measured impulse responses according to the
scene description provided as wav and SOFA files.
The unit of the impulse responses shall be Pascal.

High resolution directivity measurements of the
sources and receivers (if not omnidirectional) pro-
vided in csv files. Full-spherical directivities shall
be measured with a resolution of 2◦×2◦ or better.

Descriptions of the acoustic materials provided as
3rd octave absorption and scattering coefficients
or complex impedance measurements (csv files).

4https://dx.doi.org/10.14279/depositonce-6726.3
5www.reinholdquartett.de, checked Nov. 2019
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A written documentation of the measurements
including

– a description the scene setup and the posi-
tioning accuracy. The positioning accuracy
shall be comparable or better than the ac-
curacy of already existing scenes.

– a detailed list of the used equipment

– a description of the directivity measure-
ments and the achieved accuracy.

– a description of the material property mea-
surements and achieved accuracy.

Third party contributions with new scenes can be
acquired with equipment previously used in the cre-
ation of the BRAS. In this case, the required acoustic
sources and receivers will be made available to third
parties, which has the advantage that the correspond-
ing directivities are already contained in the database.
Alternatively, different equipment could be used in
which case directivity data of the used acoustic trans-
ducers has to be provided in a resolution and for-
mat that is comparable to the data already contained
in the BRAS. After submission, the data will be re-
viewed by the maintainers of the BRAS according to
the criteria listed above. If accepted for inclusion, the
new data will be added to the BRAS, the third party
contributors will be included in the list of authors and
will be invited to join the board of reviewers for future
contributions.

4 Discussion and Outlook

The Benchmark for Room Acoustical Simulation
(BRAS) provides a collection of acoustic reference
scenes such as a single reflection on a quasi infinite
plate. With information about the primary structure,
the boundary conditions, the source and receiver char-
acteristics, and measured transfer functions for differ-
ent source-to-receiver configurations, it is meant to
provide data for evaluating acoustic simulations.
The scenes contain simple structures, for which ge-

ometry and boundary conditions can be given with
high accuracy, based on laser distance and angle mea-
surements and laboratory measurements of absorp-
tion and scattering coefficients. With a precision in
the range of millimeters for positioning the objects,
average accuracies of 1.6 cm and 3.4 cm for posi-
tioning the sources and receivers (depending on the
scene), and a valid frequency range from 100-300 Hz
to 4-15 kHz (depending on the scene and the mate-
rials used) these scenes highlight different acoustical
phenomena such as single and multiple, specular and
scattering reflection and diffraction, which are rele-
vant for sound propagation in closed spaces, so that
room acoustical simulation software can be evaluated
with regard to its performance in these phenomena.

Measuring or predicting the surface absorption and
scattering properties will remain a challenging task in
the practice of room acoustic planning, and it is very
likely that measured acoustic references cannot be
provided for complex rooms for years to come. While
in situ measurement methods are able to provide re-
liable results for the simple scenes used in the BRAS
database [36, 37, 38], the uncertainties increase and
the valid low-frequency range decreases when they
are used in complex environments [39, 40]. Gener-
ating highly controlled benchmark scenes for com-
plex small rooms seems promising [21], but consid-
erable differences between measurements and simula-
tions still remain at least for low frequencies despite
great efforts in acquiring complex impedance data. A
simplified room representation with partly estimated
boundary conditions is thus currently unavoidable for
larger complex rooms. Neglecting the phase informa-
tion alone, however, is unlikely to cause perceivable
artifacts with GA simulations under ecological condi-
tions and non-uniform absorption [41].

However, recent tests have also shown that GA-
based room acoustic simulation programs reach their
limits even in simple scenes where the boundary con-
ditions can be reliably determined, especially when
it comes to the treatment of scattering and diffrac-
tion [42]. Here, the BRAS database shall provide a
basis for evaluation and further development of the
underlying algorithms.

The BRAS will be maintained by the related groups
at RWTH Aachen and TU Berlin, and is meant to
serve the community as a resource to be expanded in
the future, for example by adding new scenes or by
applying advanced measurement methods for acous-
tical boundary conditions. These extensions, both by
the original authors or other groups, can then be pub-
lished as new versions of the current database.
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