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Abstract –Studying the stability of synchronization of coupled oscillators is one of the prominent
topics in network science. However, in most cases, the computational cost of complex network
analysis is challenging because they consist of a large number of nodes. This study includes
overcoming this obstacle by presenting a method for reducing the dimension of a large-scale
network, while keeping the complete region of stable synchronization unchanged. To this aim,
the first and last non-zero eigenvalues of the Laplacian matrix of a large network are preserved
using the eigen-decomposition method and, Gram-Schmidt orthogonalization. The method is
only applicable to undirected networks and the result is a weighted undirected network with
smaller size. The reduction method is studied in a large-scale a small-world network of Sprott-B
oscillators. The results show that the trend of the synchronization error is well maintained after
node reduction for different coupling schemes.

Introduction. – The study of structural and dynami-1

cal features of real-world networks is facilitated using com-2

plex networks in different fields such as biology [1,2], neu-3

roscience [3,4], ecology [5,6], and social science [7,8]. Syn-4

chronization is an important topic in complex networks5

[9–11]. Different types of synchronization have been found6

there, including complete [12], phase [13], cluster [14–16],7

explosive [17], and lag synchronization [18]. These syn-8

chronized states can emerge as the effect of the static or9

time-varying interactions in either attractive or repulsive10

couplings [19]. Moreover, enormous effort has been de-11

voted to the controllability and observability of synchro-12

nized complex networks [20], improving the synchroniz-13

ability [21,22] and robustness of synchronization [23].14

Most real-world systems can be better modeled by com-15

plex networks or even wih considering higher-order inter-16

actions [24]. These models may contain many nodes, mak-17

ing their analysis difficult and costly. Therefore, any effi-18

cient reduction of the size is of interest. One of the basic19

methods to decrease network size is graph partitioning.20

Various criteria exist whose persistence has been consid- 21

ered in reducing the network nodes. For instance, authors 22

in [25] seek to keep some physical properties of the net- 23

work after node reduction. Graph partitioning methods 24

are mostly considered as non-deterministic polynomial- 25

time problems [26], which cannot be solved in polynomial 26

time. Therefore, researchers have tried to find other meth- 27

ods to reduce the network size. For example, Bona et al. 28

[27] proposed a reduced model for the public transporta- 29

tion complex network with a long sequence of 2-degree 30

nodes and some hubs. Despite removing 2-degree nodes, 31

the reduced network has the same topological characteris- 32

tics and skeleton as the original one. Besides, it was shown 33

that this reduction increases the network cluster coefficient 34

and the average degree while decreasing the path length. 35

Recently, different methods such as Spectral Coarse- 36

Graining [28] and a Search Algorithm to Dimension Re- 37

duction [29] have been proposed. These algorithms de- 38

crease the dimension of the Laplacian matrix of the graph, 39

while preserving some specific features of the parent net- 40
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work to keep synchronization. Whereas Spectral Coarse-41

Graining [28] iteratively reduces the dimension by merging42

the nodes, the Search Algorithm [29] can effectively reduce43

the number of nodes through a fast search. Another sys-44

tematic approach for size reduction has been taken into45

account recently. In 2020, Thibeault et al. developed46

the Dynamics Approximate Reduction Technique to sim-47

plify a complex network [30]. Their method, which was48

based on spectral graph theory, enabled the prediction of49

the synchronization regimes of phase oscillators in large-50

scale networks by using dominant eigenvectors features.51

In this method, the reduced network size is not arbitrary52

and depends on the number of the network’s communi-53

ties. In [31], the authors have reduced the dimension of a54

non-locally coupled network by projecting the network dy-55

namics onto the subspace that corresponds to the unstable56

eigenvalues of the linear part of the network.57

In this paper, we introduce a novel approach to reduce58

the size of a complex undirected network with preserv-59

ing its synchronization pattern. The key point for main-60

taining the synchronization stability of a network is to61

keep the eigenvalues of the Laplacian matrix that affect62

the synchronization within the master stability function63

approach. To this end, the eigen-decomposition and the64

Gram-Schmidt methods are utilized, and a smaller adja-65

cency matrix which is weighted, is obtained.66

The paper is organized as follows: First, the dimen-67

sion reduction method is described in Section 2 in detail.68

Then, a large-scale network of chaotic Sprott-B systems is69

analyzed, and the preservation of synchronization pattern70

after reduction is checked. The results are presented in71

Section 3. Finally, the conclusions of the paper are given72

in Section 4.73

Dimension reduction method. – This section de-74

scribes the method used to reduce the dimension of a large75

undirected network to a smaller one. The aim is to pre-76

serve the synchronization pattern of the large-scale net-77

work after dimension reduction. It has been shown that78

the stability of synchronization in networks relies on the79

coupling topology [32]. According to the master stability80

function method [33], the region of stable synchronization81

depends on the eigenvalues of the connectivity matrix of82

the graph. Here, the reduction method is based on obtain-83

ing a reduced connectivity matrix with desired eigenvalues84

which are those involved in determining the synchroniza-85

tion stability region. The eigen-decomposition factoriza-86

tion is used for finding this reduced connectivity matrix.87

Master stability function. The master stability func-
tion (MSF) [33] is a method for finding the local stability
of synchronization. The description of this approach is
given in the following.
It is supposed that N identical oscillators with the indi-
vidual dynamics of F (.) are linearly coupled by the overall
coupling strength d through a Laplacian connection ma-

trix G. For the oscillator i, one can write

Ẋi = F (Xi)− d

N∑
j=1

GijH (Xj), i = 1, 2, . . . , N (1)

where H indicates the coupling function. When all os-
cillators lie in the synchronization manifold, i.e., X1 =
X2 = . . . = XN = Xs, the linearization of Eq. (1) around
the synchronized solution Xs is defined as the variational
equation and can be written as

η̇l = [DF (Xs)− αlDH (Xs)] ηl, l = 1, 2, . . . , N (2)

in which αl = dλl, where λl is the l
th eigenvalue of the ma- 88

trix G. Also, DH and DF are the Jacobian matrixes of 89

H and F , respectively. The variational equation (Eq. (2)) 90

determines the stability of synchronization, which can be 91

found by calculating its maximum Lyapunov exponent. 92

The maximum Lyapunov exponent (Λ) of Eq. (2) as a 93

function of α = dλ is known as the master stability func- 94

tion (MSF). Considering a connected and undirected net- 95

work, the first eigenvalue of G is zero (λ1 = 0), which is 96

along the synchronization manifold. The other eigenval- 97

ues are sorted assendingly λ2 ≤ λ3 ≤ . . . ≤ λN . When 98

Λ < 0 for all eigenvalues λi, i = 2, . . . , N of the Laplacian 99

matrix, all the nodes of the network oscillate in complete 100

synchrony. 101

Huang et al. [34] proposed a general scheme for catego-
rizing the MSFs and introduced four classes. The classi-
fication is based on the number of zero-crossing points of
the master stability function curve versus α, such that Γk

represents a class in which Λ (α) crosses the zero k times.
In case the synchronization cannot be reached for any α
value, the master stability function has no zero-crossing
point and is classified as Γ0 (Fig. 1a). The master sta-
bility function with only one zero-crossing point, αmin, is
known as class Γ1, which is shown in Fig. 1b. Sorting
the eigenvalues of the Laplacian matrix (G) in ascending
order (i.e., λ1 = 0), the synchronization manifold of this
class is stable if

αmin < dλ2 ≤ dλ3 ≤ . . . ≤ dλN (3)

holds. Hence, choosing the coupling strength as d > αmin

λ2

ensures the stability of the synchronization manifold. In
other words, the synchronization region, which is un-
bounded depends only on λ2. In class Γ2 (Fig. 1c), the
master stability function versus α has two zero-crossing
points, αmin and αmax, where the region αmin < α < αmax

is the stability region (Λ < 0). Therefore, an upper bound
of the eigenvalues is also required for the stability region.
In this case, the synchronization is stable if

αmin < dλ2 ≤ dλ3 ≤ . . . ≤ dλN < αmax (4)

Consequently, synchronization can be achieved for αmin

λ2
< 102

d < αmax

λN
. By taking R ≡ λN

λ2
as an eigenratio, the syn- 103

chronization can occur if R < αmax

αmin
. Thus, in this class, 104
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Fig. 1: Different classes of master stability function. a) Class
Γ0 with no zero-crossing point, b) class Γ1 with only one zero-
crossing point, c) class Γ2 with two zero-crossing points, and
d) class Γ3 with three zero-crossing.

the stability region of synchronization depends only on105

the value of R. Barahona and Pecora [35] investigated106

the stability of synchronization in small-world networks107

by using the concept of the first-non-zero and maximum108

eigenvalues of the Laplacian matrix.109

Finally, the fourth class belongs to the master stability110

function with more than two zero-crossing points; as an111

example, class Γ3 with three zero-crossing is illustrated in112

Fig. 1d. For these systems, the synchronization can be113

achieved if all dλi reside in the Λ < 0 regions. Since this114

class is more complex and case-dependent, we ignore it in115

this study.116

According to the above definitions of the master stabil-117

ity function classifications, the synchronization region is118

only affected by λ2 and λN . In fact, two networks have119

the same synchronization region if they have the same120

λ2 and λN . Based on this concept, a reduced network121

can have the same synchronization pattern as the original122

network by choosing its λ2 and λmax the same as the123

original network. To find the connectivity matrix with de-124

fined eigenvalues, the eigen-decomposition approach can125

be used which is explained in the next subsection.126

Eigen-decomposition and Gram-Schmidt orthogonaliza-
tion of Laplacian matrix. Consider λi , i = 1, 2, . . . , N
and λ′

i, i = 1, 2, . . . , n as the ith eigenvalue of the original
and reduced Laplacian matrix, respectively, and R and R′

as their eigenratio as well. To have the same synchroniza-
tion pattern, we must keep λ2

∼= λ′
2 and also R ∼= R′,

leading to λN
∼= λ′

n. To determine Laplacian matrix of
the reduced network with desired eigenvalues, the eigen-
decomposition factorization can be utilized. According to
this factorization, any positive semidefinite matrix, e.g.,
A, can be factorized as

A = QDQ−1 (5)

in which D is a diagonal matrix whose diagonal elements
are the eigenvalues of A, and the corresponding eigenvec-
tors lie in the columns of Q. Therefore, by considering D
as the matrix of eigenvalues of the reduced matrix (n×n)
and finding an appropriate eigenvector matrix (Q), the
Laplacian matrix An×n can be computed using Eq. (5).
Since the matrix A is assumed symmetric, we can write,

A = AT =
(
QDQ−1

)T
=

(
Q−1

)T
DQT (6)

leading to Q−1 = QT , where T denotes the transposed 127

matrix. Therefore, Q must be an orthogonal matrix. To 128

form an orthogonal basis, the Gram-Schmidt process can 129

be used [see Appendix for more details]. Since the first 130

eigenvalue of A is zero, its corresponding eigenvector must 131

be chosen as v1 = [1, 1, . . . , 1]1×n
T
for the Gram-Schmidt 132

process. Selecting the other independent basis vectors is 133

arbitrary. Then, using the orthogonal basis vectors, Qn×n 134

can be obtained. 135

In order to determine Dn×n, n eigenvalues in the as- 136

cending order are needed, where three of them are known: 137

λ′
1 = 0, λ′

2 = λ2, and λ′
n = λN . The rest of the needed 138

eigenvalues (n − 3 eigenvalues) are found by partitioning 139

the N − 3 eigenvalues of the Laplacian matrix of the orig- 140

inal network. Here, we use the k-means clustering algo- 141

rithm. K-means is the most popular clustering method 142

due to its simplicity (for more detail, see [36]). After ob- 143

taining an orthogonal matrix Q, and a diagonal matrix 144

D, a Laplacian matrix A with the desired dimension and 145

eigenvalues can be found by using Eq. (5). It should be 146

noted that the obtained matrix is weighted. The described 147

method for obtaining the reduced connectivity matrix A 148

is presented in Fig. 2. 149

Simulation results. – In this section, we apply the
proposed method to reduce a high-dimensional Watts-
Strogatz small-world network with N = 500 nodes and
105 links. It is assumed that the individual dynamics of
the node obey the chaotic Sprott-B equations [37]: ẋ = yz

ẏ = x− y
ż = 1− xy

(7)

The size of the reduced network is assumed as n = 100 150

here. We consider different coupling functions to inves- 151

tigate different synchronization patterns. For the orig- 152

inal network, we have λ2 = 339.47 and λN = 449.80. 153

Thus, we keep these eigenvalues and obtain the other 154

n − 3 eigenvalues by classifying N − 3 eigenvalues of the 155

original network. So, the matrix D is found. Next, the 156

eigen-decomposition factorization and Gram-Schmidt or- 157

thogonalization are employed, and an orthogonal matrix 158

of eigenvectors is obtained (Q). Finally, a zero-row sum, 159

symmetry Laplacian matrix of size n = 100 with desired 160

eigenvalues is found using Eq. (5). The values of the 161

two most essential eigenvalues and eigenratio used in this 162

example are represented in Table 1. It can be seen that 163
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Fig. 2: The schematic of the proposed method to reduce an N -dimensional network to n-dimensional one (N > n) using
eigen-decomposition factorization and Gram-Schmidt orthogonalization.

Table 1: Two eigenvalues and eigenratios of the reduced net-
work and its parent.

Original network Reduced network
λ2 339.47 339.50
λmax 449.80 449.80
R 1.32 1.32

the eigenvalues of the reduced and original networks are164

approximately equal.165

For more investigation, three couplings with different166

MSF classes are considered. In Fig. 3, the master stability167

functions versus α are plotted. Three different couplings168

y → x, x → y , and x → z are considered. The notation,169

e.g., x → z, means that the coupling which is defined on x170

state variables is added to z state variables. According to171

the eigenvalues presented in Table 1, the stability regions172

in y → x coupling are d > 0.003069 and d > 0.003081 for173

the original and reduced networks, respectively. For x → y174

coupling, the stability regions of the original and reduced175

networks are 0.002957 < d < 0.0031030 and 0.002962 <176

d < 0.0031023, respectively.177

Next, the networks are solved numerically, and the syn-
chronization error is calculated using Eq. 8.

Err = 1
T (N−1) limT→∞

∫ T

0∑N
k=2

√
(x1 − xk)

2
+ (y1 − yk)

2
+ (z1 − zk)

2
dt

(8)

The synchronization errors for both networks and each178

coupling scheme are illustrated in Fig. 4. The upper and179

lower panels represent the errors of the parent and reduced180

networks, respectively. It can be observed that the syn-181

chronization regions, i.e., the region of coupling strength182

(d) with zero error, are the same for both networks. More-183

over, the synchronization errors have similar trends in the 184

original and reduced networks. 185

To better compare the synchronization behavior of both 186

networks, time series, spatiotemporal patterns, and time 187

snapshots are presented in Figs. 5-8 for synchronous and 188

asynchronous states for master stability function of class 189

Γ1 and class Γ2. Figure 5 illustrates the patterns of both 190

networks for d = 3.7 × 10−3 which is in the synchroniza- 191

tion regime under y → x coupling. Also, the results 192

for d = 2.7 × 10−3 in which the oscillators of networks 193

under y → x coupling are asynchronous, are shown in 194

Fig. 6. Moreover, the networks have the same behavior 195

for class Γ2 (x → y coupling). In Fig. 7 and Fig. 8, 196

the synchronous and asynchronous behavior of both net- 197

works is represented by considering d = 3.0 × 10−3 and 198

d = 3.2 × 10−3, respectively. It can be observed that the 199

networks have similar synchronous and asynchronous pat- 200

terns. 201

Conclusion. – Large-scale complex networks are im- 202

portant models for describing various real-world networks. 203

However, their high dimensionality often gives rise to 204

high computational costs for analysis, leading to be time- 205

consuming. Hence, reducing the dimension of these net- 206

works is essential. On the other hand, synchronization is a 207

significant phenomenon in complex networks. Therefore, 208

it is desired not to disturb the synchronization pattern 209

during dimension reduction. This study addressed this 210

issue by decreasing the size of the Laplacian matrix of a 211

large-scale network using the eigen-decomposition method 212

and the Gram-Schmidt orthogonalization process. The 213

original network is considered to be undirected; there- 214

fore, the eigenvalues of the Laplacian matrix are real. To 215

construct a network with eigen-decomposition approach, 216

firstly, the eigenvalues of the reduced Laplacian matrix 217
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Fig. 3: The master stability function versus α for Sprott-B chaotic system (Eq. (7)) under three different couplings: a) y → x
(class Γ1), b) x → y (class Γ2), and c) x → z (class Γ0). Coupled Sprott-B systems represent different synchronization patterns
according to the coupling scheme.

Fig. 4: The synchronization errors of coupled Sprott-B systems for the original (upper plots) and reduced (lower plots) networks
as a function of coupling strength d. The coupling is on a) class Γ1 (y → x), b) class Γ2 (x → y), and c) class Γ0 (x → z). The
synchronization region and the trend of error are similar for both networks in each class.
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Fig. 5: a) Time series, b) spatiotemporal pattern, and c) time
snapshot at t = 4000 for y → x coupling which is class Γ1.
The left and right panels are the results of the original network
(N = 500) and the reduced one (n = 100), respectively. The
coupling strength is d = 3.7× 10−3 , in which all oscillators lie
in the synchronous manifold. The oscillations of both original
and reduced networks are synchronous in this case.

must be defined. According to the master stability func-218

tion, the region of stable synchronization depends on the219

minimum and maximum non-zero eigenvalues. Thus, we220

kept them the same as the original network and selected221

the other eigenvalues by classifying the original eigenval-222

ues. Then, the matrix of eigenvectors was obtained by223

the Gram-Schmidt orthogonalization process. Finally, us-224

ing the eigenvalues and eigenvectors, a weighted reduced225

Laplacian matrix was obtained. The method was applied226

on a 500-node small-world network of Sprott-B systems.227

The results were validated via synchronization error, time228

series, spatiotemporal patterns, and snapshots of both net-229

works for different coupling functions in the synchronous230

and asynchronous states. Our findings indicate that the231

number of nodes of any complex network can be decreased232

regardless of network topology and node dynamics with233

preserving the synchronization stability region.234

Conflict of interest. – The authors declare that they235

have no conflict of interest.236

APPENDIX: the Gram-Schmidt process. –237

Suppose the arbitrary set {−→v 1,
−→v 2, . . . ,

−→v k} as the ba-238

sis for a given set V , whose vectors are linearly inde-239

pendent. The Gram-Schmidt process can generate an or-240

thogonal basis for V . The vectors {−→u 1,
−→u 2, . . . ,

−→u k} are241

said to be orthogonal if and only if the inner product of242

any two different vectors of them is equal to zero, i.e.,243

⟨−→u i,
−→u j⟩ = 0 ∀ i ̸= j. This set of new vectors can be244

constructed as follows:245

Fig. 6: a) Time series, b) spatiotemporal pattern, and c) time
snapshot at t = 4000 for y → x coupling which is class Γ1. The
coupling strength is d = 2.7×10−3 , that leads to asynchronous
oscillations in the original (left panel) and the reduced networks
(right panel). This case exhibits asynchronous oscillations in
both networks.



−→u 1 = −→v 1
−→u 2 = −→v 2 − ⟨−→v 2,

−→u 1⟩
⟨−→u 1,

−→u 1⟩
−→u 1

−→u 3 = −→v 3 − ⟨−→v 3,
−→u 1⟩

⟨−→u 1,
−→u 1⟩

−→u 1 − ⟨−→v 3,
−→u 2⟩

⟨−→u 2,
−→u 2⟩

−→u 2

...
−→u k = −→v k −

∑k−1
p=1

⟨−→v k,
−→u p⟩

⟨−→u p,
−→u p⟩

−→u p

where ⟨.⟩ denotes the inner product. 246
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