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Chimera states in networks of Van der Pol oscillators with hierarchical
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Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent

and incoherent dynamics. We analyse chimera states in ring networks of Van der Pol oscillators

with hierarchical coupling topology. We investigate the stepwise transition from a nonlocal to a

hierarchical topology and propose the network clustering coefficient as a measure to establish a

link between the existence of chimera states and the compactness of the initial base pattern of a

hierarchical topology; we show that a large clustering coefficient promotes the occurrence of chi-

meras. Depending on the level of hierarchy and base pattern, we obtain chimera states with differ-

ent numbers of incoherent domains. We investigate the chimera regimes as a function of coupling

strength and nonlinearity parameter of the individual oscillators. The analysis of a network with

larger base pattern resulting in larger clustering coefficient reveals two different types of chimera

states and highlights the increasing role of amplitude dynamics. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962913]

Chimera states are an example of intriguing partial syn-

chronization patterns appearing in networks of identical

oscillators. They exhibit a hybrid structure combining

coexisting spatial domains of coherent (synchronized)

and incoherent (desynchronized) dynamics.
1,2

Recent

studies have demonstrated the emergence of chimera

states in a variety of topologies and for different types of

individual dynamics. In this paper, we analyze chimera

states in networks with complex coupling topologies aris-

ing in neuroscience. We provide a systematic analysis of

the transition from nonlocal to hierarchical (quasi-frac-

tal) connectivities in ring networks of identical Van der

Pol oscillators and use the clustering coefficient and the

symmetry properties to classify different topologies with

respect to the occurrence of chimera states. We show that

symmetric connectivities with large clustering coefficients

promote the emergence of chimera states, while they are

suppressed by slight topological asymmetries or small

clustering coefficient.

I. INTRODUCTION

The analysis of coupled oscillatory systems is an impor-

tant research field bridging between nonlinear dynamics, net-

work science, and statistical physics, with a variety of

applications in physics, biology, and technology.3,4 The

study of large networks with complex coupling schemes con-

tinues to open up new unexpected dynamical scenarios. One

of them is chimera states, which have been intensively stud-

ied in the networks of phase oscillators5–14 and in a variety

of different systems including neural systems,15–17 popula-

tion dynamics,18 nonlinear oscillators,19–21 and quantum

oscillator systems.22 The intriguing chimera states have been

observed in higher spatial dimensions,8,12,23–27 and recent

studies uncover new types of chimeras having multiple inco-

herent regions,15,21,28–30 as well as amplitude-mediated,31,32

and pure amplitude chimera and chimera death states.33

While pioneering studies have focused mostly on the

nonlocally coupled and two-subpopulations topologies, also

global all-to-all coupling,32,34–36 and even more complex

coupling topologies allow for the existence of chimera

states.17,18,37–42 Furthermore, a new type of alternating chi-

mera states has been observed.43,44 Chimera states have also

been shown to be robust against inhomogeneities of the local

dynamics and coupling topology,42,45–47 as well as against

noise,48 or they might even be induced by noise.49,50

The study of chimera states can be useful in natural and

technological systems, focusing, for instance, on the phe-

nomenon of unihemispheric sleep,51 bump states in neural

systems,52,53 epileptic seizures,54 power grids,55 or social

systems.56 While many works considering chimera states

have mostly been based on the numerical results, deeper ana-

lytical studies were provided for the case of continuum limit

(N ! 1).5,12,25,26,30,57 Possibilities to control chimera

states58–60 have been addressed recently.

Experimentally chimera states have been verified in

optical,61 chemical,62,63 mechanical,64,65 electronic,66,67

optoelectronic delayed-feedback,68 electrochemical69–71

oscillator systems, and optical combs.72

Recent results in the area of neuroscience increased the

interest in irregular coupling topologies. Diffusion Tensor

Magnetic Resonance Imaging (DT-MRI) studies revealed an

intricate architecture in the neuron interconnectivity of the

human and mammalian brain: the connectivity of the neuron

axons network represents a hierarchical (quasi-fractal)

geometry.73–77

Motivated by these studies, the goal of the present man-

uscript is to analyze different networks with a hierarchical

connectivity and systematically explore the mechanisms of
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formation of chimera states in such networks. Note that these

quasi-fractal coupling topologies have hierarchical structure,

although they differ from the hierarchical tree-like models

widely studied in the network science. The latter network

model is a part of the scale-free model family, having many

hubs among the nodes, and displaying power-law distributed

degrees and clustering coefficients.78 In contrast, our cou-

pling topologies have the form of a ring with hierarchical

structures of connectivity gaps, and the degree and clustering

coefficient are the same for all nodes.

We aim to uncover characteristic measures of the hierar-

chical connectivities which determine the emergence of chi-

meras. As a key measure, we identify the clustering

coefficient. We focus on the stepwise transition of network

topology from nonlocal to hierarchical and analyze different

types of chimera states that can arise in systems with differ-

ent numbers of hierarchical steps.

The dynamics of individual units in the network is gov-

erned by the Van der Pol oscillator,79 which has a long his-

tory of being used in both the physical and biological

sciences, and allows for a continuous transition between

sinusoidal and strongly nonlinear relaxation oscillations by

tuning a single parameter.

II. THE MODEL

In our study, we consider a ring of N identical Van der

Pol oscillators with different coupling topologies, which are

given by the respective adjacency matrix G. While keeping

the periodicity of the ring, and the circulant structure of the

adjacency matrix, we vary the connectivity pattern of each

element. The dynamical equations for the 2-dimensional

phase space variable xk ¼ ðuk; _ukÞT ¼ ðuk; vkÞT 2 R2 are

_xi tð Þ ¼ F xi tð Þð Þ þ r
g

XN

j¼1

GijH xj � xið Þ; (1)

with i 2 {1, …, N}. The dynamics of each individual oscilla-

tor is governed by

FðxÞ ¼ v
eð1� u2Þv� u

� �
; (2)

where e denotes the bifurcation parameter. The uncoupled

Van der Pol oscillator has a stable fixed point at x ¼ 0 for

e < 0 and undergoes an Andronov-Hopf bifurcation at e ¼ 0.

Here, only e > 0 is considered. The parameter r denotes the

coupling strength, and g ¼
PN

j¼1 Gij is the number of links

for each node (corresponding to the row sum of G). The

interaction is realized as diffusive coupling with coupling

matrix H ¼ ð 0 0

b1 b2
Þ and real interaction parameters b1 and

b2. In accordance with Omelchenko et al.,21 throughout the

manuscript, we fix parameters b1¼ 1.0 and b2¼ 0.1.

A. An algorithm to construct hierarchical
connectivities

Hierarchical topologies can be generated using a classi-

cal Cantor construction algorithm for a fractal set.80,81 This

iterative hierarchical procedure starts from a base pattern or

initiation string binit of length b, where each element repre-

sents either a link (“1”) or a gap (“0”). The number of links

contained in binit is referred to as c1. In each iterative step,

each link is replaced by the initial base pattern, while each

gap is replaced by b gaps. Thus, each iteration increases the

size of the final bit pattern, such that after n iterations the

total length is N¼ bn. Since the hierarchy is truncated at a

finite n, we call the resulting pattern hierarchical rather than

fractal. Using the resulting string as the first row of the adja-

cency matrix G and constructing a circulant adjacency

matrix G by applying this string to each element of the ring,

a ring network of N¼ bn nodes with hierarchical connectivity

is generated.17,18,42 Here, we will slightly modify this proce-

dure by adding an additional zero in the first instance of the

sequence, which corresponds to the self-coupling. Note that

the diffusive coupling scheme in Eq. (1) cancels out any

instantaneous self-coupling. Therefore, there is no net effect

of the diagonal elements of the adjacency matrix Gii on the

network dynamics, and hence, the first link in the clockwise

sense from the reference node is effectively removed from

the link pattern. Without our modification, this would lead to

a breaking of the base pattern symmetry, i.e., if the base pat-

tern is symmetric, the resulting coupling topology would not

be so, since the first link to the right is missing from the final

link pattern. Our procedure, in contrast, ensures the preserva-

tion of an initial symmetry of binit in the final link pattern,

which is crucial for the observation of chimera states, since

asymmetric coupling leads to a drift of the chimera.59,60

Thus, a ring network of N¼ bnþ 1 nodes is generated.

While fully hierarchical topologies can be generated

using this classical construction algorithm, a further modifi-

cation allows us to study systematically the transition

between nonlocal and hierarchical topologies via a stepwise

iteration process. Nonlocal coupling schemes have widely

been used in the context of chimera state research and do

therefore provide a good reference point to compare hierar-

chical networks with.

A nonlocal topology can be generated from a base pattern

binit of length b, which contains an equal number of links only

at its beginning and end (for instance, (101) or (110011)). The

link pattern is then expanded to a predetermined system size

N ¼ bn þ 1, corresponding to the final size of a fully hierar-

chical connectivity, by replacing each element with N�1
b cop-

ies of itself and again adding the additional zero in the first

instance of the final pattern. Thus, a suitable base pattern binit

can be used to either construct a fully hierarchical or a nonlo-

cal topology. The stepwise transition between these two types

of topologies is realized as follows: First, binit is iterated m
times, according to the Cantor construction process, generat-

ing a pattern of size bm. Afterwards, this pattern is expanded

to the final size N by replacing each element with N�1
bm copies

of itself. The initial base pattern binit ¼ ð101Þ and a predeter-

mined system size of N¼ 27þ 1 (b¼ 3, n¼ 3) provide a sim-

ple example. The resulting coupling topologies are illustrated

in Fig. 1. The number of Cantor iterations of b before the

expansion is defined as the mth hierarchical step, with m 2
f1; 2;…; ng such that

094825-2 Ulonska et al. Chaos 26, 094825 (2016)



m¼ 1: b1
init ¼ ð101Þ, the initial base pattern is expanded

to a 1-step hierarchical connectivity by replacing each element

with 27
3
¼ 9 copies of itself. This corresponds to nonlocal cou-

pling with coupling radius r ¼ R
N ¼ 9

27
¼ 0:333. See Fig. 1(a).

m¼ 2: b2
init ¼ ð101000101Þ, the once iterated initial base

pattern is expanded to a 2-step hierarchical connectivity by

replacing each element with 27
9
¼ 3 copies of itself. This

marks the first step in the transition from a nonlocal (m¼ 1)

to a fully hierarchical ðm ¼ n ¼ 3Þ topology. See Fig. 1(b).

m ¼ n ¼ 3: b3
init ¼ ð101000101000000000101000101Þ,

this link pattern is of size N for m ¼ n ¼ 3 and corresponds

to the fully hierarchical or n-step hierarchical connectivity.

See Fig. 1(c).

Thus, taking up to m¼ n steps in the hierarchical expan-

sion, it is possible to tune a suitable initial base pattern between

a nonlocal and a fully hierarchical connectivity. In the follow-

ing, an m-step hierarchical connectivity is denoted as ðbinitÞm,

where binit is the underlying base pattern, n is the level of hier-

archy, and m is the hierarchical step in a transition topology.

B. Clustering coefficients

Besides the bifurcation parameter e and the coupling

strength r, the topological quantities binit, c1, n, the resulting

link density q ¼ cn
1

N (for m¼ n) or q ¼ cm
1

bðn�mÞ

N (for m 6¼ n), and

the fractal dimension df ¼ lnc1=lnb are important parameters

in the study of chimera states in hierarchical systems.

However, since there are several distributions of links for a

given set of b and c1 that result in unique topological struc-

tures, the arrangement of links in binit has to be accounted

for. Therefore, we propose to consider the local clustering

coefficient introduced by Watts and Strogatz,82 which, for a

network containing a set of nodes V and edges E, describes

the number of links in the neighbourhood Ni ¼ fvj : eij 2
E�eji 2 Eg relative to the maximum number of links possi-

ble. If ki is the number of neighbours for a node vi, then max-

imum number of links is given by ki � ðki � 1Þ and the

clustering coefficient Ci for a node vi is defined as

Ci ¼
jfejk : vj; vk 2 Ni; ejk 2 Egj

ki ki � 1ð Þ : (3)

While common nonlocal coupling schemes can rely on

the coupling range (or variations thereof42) as a definite mea-

sure, this is not the case in hierarchically coupled networks.

Different arrangements of links change the compactness of

the base pattern, and the final compactness of the system

strongly depends on the distribution properties of the c1 links

in a base pattern binit. The clustering coefficient is such a

suitable measure since it directly expresses the compactness

of links in the final system. In the following, Cðbinit; n;mÞ
denotes the clustering coefficient of an m-step hierarchical

connectivity with the base pattern binit. In the transition sce-

nario from nonlocal to hierarchical topologies, the system

size and the symmetry properties stay the same throughout.

However, each hierarchical step modifies the compactness

and total number of links of the final topology which changes

the clustering coefficient C as well as the link density q.

Since hierarchical coupling introduces irregular and long-

ranging links and gaps, the clustering coefficient will

decrease when transiting towards a hierarchical connectivity.

Out of all the 2b possible base patterns for a given length

b, only a fraction is relevant for discussion in the context of

hierarchical networks. For example, mirror symmetric base

patterns (such as (110101) and (101011)) result in topologies

with identical clustering coefficients, while patterns contain-

ing only one link would result in a network with only a sin-

gle link to each node. In the case of b¼ 6, out of 64 possible

patterns, only 31 will yield unique hierarchical topologies.

Fig. 2 demonstrates clustering coefficients Cðbinit; n;mÞ as a

function of the hierarchical step m for a selected number of

representative base patterns.

These results provide an instructive overview over the

dependence of C upon m. As expected, the clustering coeffi-

cients decrease across-the-board when introducing hierarchi-

cal components. With each step m, the number of gaps

increases disproportionally compared to the number of links,

FIG. 1. Transition from nonlocal to hierarchical connectivity via hierarchical steps m. The reference node is coloured in black, linked nodes in red, and uncon-

nected nodes (gaps) in gray. The initial base pattern of all panels is binit ¼ ð101Þ, and the level of hierarchy is n¼ 3, N ¼ bn þ 1 ¼ 28 nodes. (a) m¼ 1, each

element in the initial base pattern is expanded by 27
3
¼ 9 elements and the final 1-step hierarchical system corresponds to nonlocal coupling where each element

is coupled to its R¼ 9 nearest neighbors in both directions. Clustering coefficient Cð101; 3; 1Þ ¼ 0:705882 and link density q ¼ 0:64; (b) m¼ 2, expansion by
27
9
¼ 3 elements to a 2-step hierarchical system. Cð101; 3; 2Þ ¼ 0:409091 and q ¼ 0:428; (c) m ¼ n ¼ 3, fully hierarchical or n-step hierarchical system without

further expansion of the base pattern. Cð101; 3; 3Þ ¼ 0 and q ¼ 0:286. With each m-step, the total number of links for each node and the clustering coefficient

decrease.
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since each gap in binit introduces b new gaps with each itera-

tion, while each link only leads to c1 new links and adds

b – c1 further gaps. Thus, the link density decreases with

each iteration of m and the remaining links are distributed in

a more irregular, hierarchical manner. A close analysis of C
with respect to the underlying base pattern shows that base

patterns with gaps at either the end or the beginning of binit

(such as (011011), Fig. 2, red dots) result in low clustering

coefficients, compared to systems of equal link density but

different distributions (such as (110011), orange squares).

Furthermore, isolated links in binit (such as (100111), yellow

squares) further decrease Cðbinit; n ¼ mÞ compared to the

topologies constructed from more compact base patterns

(such as (110011), orange squares). However, more compact

base patterns binit that have isolated links (such as (011101),

blue circles) can have larger Cðbinit; n ¼ mÞ, as compared to

topologies with same number of links but without isolated

links (such as (011011), red dots). This can be explained by

the fact that isolated links lead to far-ranging links rather

than coupling to those nodes in their close neighbourhood.

Considering the choice of suitable base patterns binit for the

construction of hierarchical topologies which exhibit chime-

ras, it should be noted that base patterns with larger cluster-

ing coefficients are preferable. Therefore, base patterns

should be chosen by avoiding isolated links, gaps at the

beginning or end, and with compact intervals, if possible.

This highlights the basic trade-off when studying hierarchi-

cal topologies. Compactness is an important requirement for

the existence of chimera states, and at the same time, net-

works are less compact if they are more hierarchically struc-

tured. If one wants to study dynamic phenomena and

maintain a hierarchical connectivity, this has to be balanced

in a careful manner, since low n decreases the actual degree

of hierarchy of the system, while large n produces highly

hierarchical connectivities (fractal, in the case of n!1)

but with very low compactness. Our observations show that

hierarchical topologies resulting from base patterns that con-

tain only isolated links for given b and c1 have the lowest

clustering coefficient, and chimera states are rarely observed

in such networks.

III. CHIMERA STATES WITH HIERARCHICAL
CONNECTIVITIES

The simplest illustrative example of a hierarchical con-

nectivity is constructed from the base pattern (101). We con-

sider this pattern in order to demonstrate the step-by-step

transition from nonlocal to hierarchical network topology with

n¼ 6. At the initial step m¼ 1, the system is a nonlocally cou-

pled ring with N¼ 730 and coupling radius r ¼ 243
730
¼ 0:333.

The clustering coefficient for this topology is C(101, 6, 1)

¼ 0.748451. This system has been studied in Ref. 21, where it

was shown that depending on the coupling radius and

strength, chimera states with different numbers of incoherent

domains can be observed. Indeed, Fig. 3(a) shows a 2-chimera

state. Snapshots of the variable uk (upper panels) demonstrate

a clear distinction between coherent and incoherent domains,

and snapshots in the phase space (uk, vk) (bottom panels) show

that the oscillators are scattered around the limit cycle of the

uncoupled element which is shown in black. The middle pan-

els demonstrate the mean phase velocities for each oscillator

calculated as xk ¼ 2pMk=DT; k ¼ 1;…;N, where Mk is the

number of complete rotations around the origin performed by

the k–th node during the time interval DT. Throughout the

paper, we use DT¼ 50 000, which corresponds to several

thousand periods. Mean phase velocity profiles are widely

used as a criterion to distinguish chimera states: constant xk

corresponds to coherent domains, where neighbouring ele-

ments are phase-locked. Arc-like parts of the profiles corre-

spond to incoherent domains.

Usually, chimera states with different numbers of inco-

herent domains exhibit high multistability,21 and the choice

of initial condition is crucial. We use randomly distributed

phases on the circle u2 þ v2 ¼ 4 as initial conditions, as in

Ref. 21 (Fig. 1(b)).

The 2–step hierarchical network (Fig. 3(b)) is charac-

terized by a smaller clustering coefficient C(101, 6, 2)

¼ 0.557279, and we observe an 8-chimera state. This fact

can be explained by drawing the analogy to nonlocally cou-

pled systems, where a decrease of the coupling radius (the

number of neighbours coupled to each element) results in

an increase of the number of incoherent domains,21 i.e., the

chimera multiplicity.

Already for the 3-step hierarchical network shown in

Fig. 3(c), the chimera state vanishes and is not observed for

any further iterations up to m ¼ n ¼ 6. This goes along with

a decrease of the clustering coefficient to C(101, 6, 3)

¼ 0.408141 and further down to C(101, 6, 6)¼ 0 for the fully

hierarchical network (see Fig. 2). Transiting the system from

a nonlocal to a hierarchical connectivity decreases the cluster-

ing coefficient as well as the total number of links to such an

extent that chimera states do not occur after only 3 out of 6

possible hierarchical steps.

FIG. 2. Clustering coefficients C for networks with topologies varied step-

wise from nonlocal to hierarchical for different base patterns (see legend).

The hierarchical step m 2 f1;…; n ¼ 4g is used to tune between nonlocal

coupling and fully hierarchical coupling. At higher hierarchical step m, the

clustering coefficients decrease due to the disproportional increase of gaps

versus links in the base pattern. Non-compact base patterns lead to vanishing

clustering coefficients C. This suppresses chimera states in hierarchical net-

works generated from these base patterns. System sizes (n¼ 4): N¼ 82 for

b¼ 3, N¼ 1297 for b¼ 6, and N¼ 2402 for b¼ 7.
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Figure 4 depicts a similar stepwise transition from non-

local to hierarchical coupling for the symmetric base pattern

(110011) with n¼ 4, which has the same fractal dimension

and link density but larger clustering coefficients. The total

system size is N¼ 1297, and the clustering coefficients are

shown in Fig. 2 (orange squares). For m¼ 1, we again

observe a 2-chimera, like in Fig. 3(a). At m¼ 2, the multi-

plicity of the chimera increases to a 7-chimera which

remains stable for further hierarchical steps and is character-

ized by a more pronounced xk profile at the fully hierarchi-

cal level m ¼ n ¼ 4.

The importance of the clustering coefficient as a measure

for hierarchical systems with respect to chimera states is fur-

ther highlighted by considering several permutations of this

base pattern of length b¼ 6 and n¼ 4. We have performed a

multitude of scans over wide ranges in (e; r)-space, for various

less symmetric base patterns and varying initial conditions

(specially prepared chimera-like as well as random), but none

of them resulted in a chimera state. Among them are topolo-

gies with the same c1¼ 4 but different link distributions and

lower clustering coefficients, such as ð100111Þ4; ð011101Þ4;
ð110101Þ4; ð011110Þ4, and (110110)4, but also systems with

larger link densities and clustering coefficients

ð011111Þ4; ð110111Þ4. Each base pattern at fixed hierarchical

step has a fixed relative coupling radius, i.e., ratio between

number of links for each element and size N of the system.

Usually, intermediate values of the relative coupling radius

promote chimera states, whereas at the same time for small

and large relative coupling radius chimeras are rarely observ-

able. The subtle interplay of symmetry and compactness of the

FIG. 3. Chimera states in transiting

topology with binit ¼ ð101Þ, n¼ 6, N
¼ 730, r ¼ 0:09; e ¼ 0:2. Snapshots of

variables uk (upper panels), mean phase

velocities xk (middle panels), and snap-

shots in the phase space (uk, vk) (bottom

panels, limit cycle of the uncoupled unit

shown in black). (a) Hierarchical step

m¼ 1, corresponding to nonlocal cou-

pling with r¼ 0.333, 2-chimera state,

clustering coefficient Cð101; 6; 1Þ
¼ 0:748451, and link density q ¼ 0:667;

(b) m¼ 2, 8-chimera state, Cð101; 6; 2Þ
¼ 0:55727, and q ¼ 0:444; and (c) m
¼ 3, completely incoherent state, Cð101;
6;3Þ¼0:408141, and q¼0:296. No chi-

meras are observed for further steps in

hierarchical connectivity. Initial condi-

tions as in Ref. 21, Fig. 1(b).

FIG. 4. Chimera states in transiting topology with binit ¼ ð110011Þ, n¼ 4, N¼ 1297, r ¼ 0:09; e ¼ 0:2, random initial conditions. Snapshots of variables uk

(upper panels), mean phase velocities xk (middle panels), and snapshots in the phase space (uk, vk) (bottom panels, limit cycle of the uncoupled element shown

in black). (a) m¼ 1, corresponding to nonlocal coupling with r¼ 0.333, Cð110011; 4; 1Þ ¼ 0:749142; q ¼ 0:667; 2–chimera state; (b) m¼ 2,

Cð110011; 4; 2Þ ¼ 0:559569; q ¼ 0:444; 7–chimera; (c) m¼ 3, Cð110011; 4; 3Þ ¼ 0:414161; q ¼ 0:298; 7–chimera remains; and (d) m ¼ n ¼ 4, fully hierar-

chical network with 7–chimera and more pronounced xk profile, Cð110011; 4; 4Þ ¼ 0:297791 and q ¼ 0:197.
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network topology with the number of links crucially affects

the network dynamics. While it is impossible to draw a definite

conclusion from purely empirical studies, this strongly sug-

gests that generally the combination of a symmetric base pat-

tern with large clustering coefficient promotes the existence of

chimera states in hierarchical topologies.

IV. STABILITY REGIMES OF CHIMERAS

To elaborate the role of the system parameters, we con-

struct the maps of stability regimes in the plane of the non-

linearity parameter e of the individual oscillators and the

coupling strength r. For this purpose, we choose a system

with base pattern (110011) and n¼ 4 and consider its 3-step

and 4-step hierarchical connectivity. We start from specially

prepared chimera-like initial conditions for a fixed parameter

set and then use the obtained final state as an initial condition

for the subsequent set of parameters, and so forth with a step

size De ¼ 0:02 and Dr ¼ 0:02. This procedure represents a

kind of continuation method for mapping the chimera

regime.

Figure. 5(a) depicts the stability regimes for the base

pattern b¼ (110011) with n¼ 4 in a 3-step hierarchical con-

nectivity (N¼ 1297). For small values of the nonlinearity

parameter e, a completely coherent state with wave-like pro-

file is observed (yellow triangles, and snapshot A in Fig.

5(b)). Conversely, for larger e, when the limit cycle of each

individual oscillator starts to transform from sinusoidal to

relaxation oscillations, we observe completely incoherent

states (red circles, and snapshot C in Fig. 5(b)). Between

these two regimes, there is a region where chimera states

emerge (green squares, and snapshot B in Fig. 5(b)). Thus,

the transition from coherence to incoherence occurs through

chimera states. Furthermore, the boundaries between the

coherent regime and the chimera state as well as between the

chimera state and the completely incoherent regime shift to

larger e with increasing r. Equation (1) shows that an upscal-

ing of the local parameter e has to be counterbalanced by the

coupling strength term which is controlled by r in order to

lead to a similar force for each oscillator. Notably, the

boundaries for chimera emergence in the (e,r) plane are

approximately given by straight lines. In the right panel of

Figure 5(b), the mean phase velocity profiles are shown for

the three selected points A, B, and C in the (e,r) plane. The

chimera state in B shows chimera dynamics where the min-

ima of the profile correspond to the coherent regions.

In contrast, Fig. 6(a) shows the same dynamic regimes

in (e, r) space for the fully hierarchical system (110011)

with n¼ 4. The same qualitative shift and the increase of the

stable e range with increasing r are observed. However, the

overall area of stability significantly decreases for the fully

hierarchical system, while the character of the chimera state

(multiplicity and coherent regions) remains unchanged. The

system undergoes the same qualitative change of its dynamic

behavior, a transition from a completely coherent state (yel-

low triangles) to a completely desynchronized state (red

circles) via a 7-chimera (green squares) with increasing e.
The only difference between both systems is the decrease in

the clustering coefficient C and the link density q with

increasing hierarchical step m. This indicates that a high

clustering coefficients and an increased number of links pro-

mote the existence as well as the stability of chimera states

in hierarchical connectivities. Stable chimera states are diffi-

cult to observe in hierarchical systems that have a very low

clustering coefficient.

In this exemplary system, as discussed in Section III, we

have observed only chimera states with 7 incoherent

domains. For systems with nonlocal coupling topology, we

FIG. 5. Stability regimes for the system binit ¼ ð110011Þ, n¼ 4 in an m¼ 3–step hierarchical connectivity, N¼ 1297, Cð110011; 4; 3Þ ¼ 0:414161; q ¼ 0:296.

(a) Diagram in the parameter space ðe;rÞ: coherent state (yellow triangles), 7–chimera state (green squares), and incoherent state (red circles). (b) Exemplary

snapshots of variables uk (left column) and mean phase velocities xk (right column) for r ¼ 0:38 and e ¼ 0:1 (A), e ¼ 0:36 (B), and e ¼ 0:68 (C).
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have shown recently that an appropriate choice of the cou-

pling radius determines the multiplicity of the incoherent

regions in chimera states, but there may be multistability

between different multi-chimera states.21 The issue of multi-

stability in networks with hierarchical connectivities still has

to be explored systematically. As this requires tremendous

computational costs, this task is beyond the scope of the pre-

sent investigation.

It is remarkable that the regime of chimera states in net-

works with hierarchical connectivity (Figs. 5 and 6) extends

to much larger values of the coupling strength r than has

been found for nonlocal coupling.21 This indicates that

quasi-fractal connectivities promote chimeras at large cou-

pling strength wherein more compact topologies completely

coherent states prevail.

V. LARGER BASE PATTERN

Changing the size, symmetry, and number of links in the

base pattern binit can lead to various completely different

hierarchical connectivities. This strongly influences the

resulting clustering coefficient and the link density of the

final system. As previous studies of chimera bifurcation sce-

narios21 have shown, a change in the effective coupling

radius of a nonlocal topology leads to different regimes of

chimera states with various multiplicities. The same is true

when the link density is increased. Since for the systems

with b¼ 6, n¼ 4, and c1¼ 4, we have only found chimera

states in some symmetric configurations; we will now con-

sider larger base patterns. This, consequently, allows for

more links in the base pattern and generates networks with

FIG. 6. Stability regimes for the sys-

tem binit ¼ ð110011Þ in an m ¼ n ¼ 4

fully hierarchical connectivity,

N¼ 1297, Cð110011;4;4Þ¼0:297791;
q¼0:1974. (a) Diagram in the parame-

ter space ðe;rÞ: coherent state (yellow

triangles), 7–chimera state (green

squares), and incoherent state (red

circles). (b) Exemplary snapshots of

variables uk (left column) and mean

phase velocities xk (right column) for

r¼0:38 and e¼0:1 (A), e¼0:36 (B),

and e¼0:68 (C).

FIG. 7. Snapshots of variables uk (upper panels), mean phase velocities xk (middle panels), and snapshots in the phase space (uk, vk) (bottom panels, limit cycle

of the uncoupled unit shown in black) for fully hierarchical system binit ¼ ð1110111Þ, n¼ 4 with N¼ 2402, Cð1110111; 4; 4Þ ¼ 0:548829; q ¼ 0:54, and

e ¼ 0:1, random initial conditions. (a) r¼ 0.25, 14-chimera; (b) r¼ 0.35, 2-chimera; and (c) r¼ 0.45, irregular 4-chimera with nested regions of coherence.

Note strong amplitude dynamics in all bottom panels.
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higher clustering coefficients in the fully hierarchical system

m¼ n. However, this dramatically increases the network

size, making numerical simulations more expensive.

As an example, we use the base pattern binit¼ (1110111)

with n¼ 4 to generate a hierarchical connectivity of size

N¼ 2402 after full Cantor iteration. The link density is

q ¼ g
N ¼ 0:54, which is considerably larger than for the pre-

viously considered examples with the base pattern of length

b¼ 6. Furthermore, the clustering coefficient of the fully

hierarchical network C(1110111, 4, 4)¼ 0.548829 is larger

than in all the previous examples. To emphasize the aspect

of self-organized chimeras, we here use random initial condi-

tions. Of course, then only a small portion of realizations

leads to chimera states, because the completely synchronized

state is always stable.

We fix the nonlinearity parameter e¼ 0.1 and observe

the system dynamics for three increasing values of coupling

strength r¼ 0.25, 0.35, and 0.45, starting from random ini-

tial conditions. Fig. 7 depicts the corresponding snapshots,

mean phase velocity profiles, and phase portraits. For small

coupling strength (Fig. 7(a)), a chimera state with high multi-

plicity (14-chimera) is obtained. With increasing coupling

strength, we move towards chimera states with two incoher-

ent domains, but this chimera performs much stronger ampli-

tude dynamics (bottom panel in Fig. 7(b)). Such two

different types of chimera states with strong and weak ampli-

tude dynamics, respectively, were recently observed also in

nonlocally coupled networks of Van der Pol oscillators.21

Further increase in the coupling strength results in a complex

4-chimera state (Fig. 7(c)). Here, the amplitude dynamics is

even stronger, and the coherent regions exhibit an additional

substructure. In hierarchical systems of FitzHugh-Nagumo

oscillators,42 nesting effects that appear somewhat similar to

the observed structure in the amplitude have been observed

in the mean phase velocity xk. In Fig. 7(c), however, the

substructure is observed in the amplitude (top panel) and not

in the mean phase velocity profile (middle panel). A closer

look at the phase portrait (bottom panel) shows strong ampli-

tude dynamics of a peculiar vortex-like structure, caused by

the clustering of oscillators in the different coherent regions.

Here, clusters of coherent nodes oscillate on smaller cycles

in phase space, while incoherent nodes roughly follow the

limit cycle of the uncoupled system.

Thus, large networks with hierarchical connectivity

allow us to observe a variety of chimera states with either

weak or strong amplitude dynamics.

VI. CONCLUSION

In the current study, we have analyzed chimera states in

ring networks with hierarchical connectivities. Using a modi-

fied iterative Cantor construction algorithm, the network

topology is tuned stepwise between nonlocal and hierarchi-

cal. We have identified the clustering coefficient and symme-

try properties of the base pattern as crucial factors in

classifying different topologies with respect to the occur-

rence of chimera states. We show that symmetric topologies

with large clustering coefficients promote the emergence of

chimera states, while they are suppressed by slight

topological asymmetries or small clustering coefficients. We

have determined stability regimes in the plane of coupling

strength and nonlinearity parameter of the individual oscilla-

tor, which show that chimera states indeed appear in the

transition scenario between complete coherence and incoher-

ence. The analysis of an exemplary network with larger base

pattern, resulting in larger clustering coefficient and more

complex network structure, has revealed two different types

of chimera states highlighting the increasing role of ampli-

tude dynamics.
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