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Abstract

The study of matter interacting with external fields is important
to understand and design materials with desired (opto-) electronic
properties. Reliable methods for the accurate and efficient calculation
of the dynamic polarizability of molecules and solids are required for
modeling a multitude of spectroscopic techniques, including optical
absorption and refraction, Raman spectroscopy, and circular dichroism.
Efficient prediction of electronic response properties is also necessary
for the calculation of van der Waals (vdW) interactions, and coupling
between nuclear and electronic degrees of freedom in materials. In
principle, explicitly correlated wave function based first-principles
techniques could be utilized to determine electronic response properties.
However these methods can be only applied to rather small systems and
become prohibitively expensive to study complex materials containing
thousands of atoms. To address this problem, we developed an efficient
non-empirical method for calculating linear response properties of
non-metallic molecules and solids based on atomic response functions
that describe valence atomic excitations. This is achieved by the
synergistic coupling of the Tkatchenko-Scheffler (TS) method [1],
which accurately treats short-range hybridization effects with the
Dyson-like self-consistent screening (SCS) equation [2–6] from classical
electrodynamics. The present formulation builds upon and significantly
improves an earlier version of the TS+SCS approach [7], by preserving
QHO invariants, satisfying the free-atom dipole oscillator strength sum
rule, and using the correct spin-polarized electron densities for the
free atoms. Using only the ground state electron density obtained
from first-principle density functional theory calculation and accurate
free-atom reference data, we obtain a performance of 3.6% for static
polarizabilities and 7.6% for vdW coefficients for a large database of
gas-phase molecules (∼7500 systems). We further demonstrate the
potential of the developed method for the prediction of peculiar scaling
laws for vdW interactions in nanostructured materials and interfaces.





Zusammenfassung

Die Untersuchung von Wechselwirkungen zwischen Materie und
externen Feldern ist bedeutend für das Verständnis (opto-) elektronis-
cher Materialien und das Designen ihrer gewünschter Eigenschaften.
Zuverlässige Methoden, um die dynamische Polarisierbarkeit von
Molekülen und Festkörpern genau und effizient zu berechnen, werden
für die Modellierung verschiedenster spektroskopischer Techniken,
wie z.B. optische Absorption und Brechung , Raman-Spektroskopie
und Zirkulardichroismus, benötigt. Die effiziente Vorhersage der
elektronischen Antwort ist ebenso für die Berechnung von van-der-
Waals(vdW)-Wechselwirkungen und der Kopplung von Elektron- und
Kernfreiheitsgraden notwendig. Prinzipiell kann die elektronische
Antwort mit Hilfe von explizit korrelierten Wellenfunktionen aus ab-
initio Methoden bestimmt werden. Jedoch ist dies nur für sehr
kleine Systeme möglich und für das Studium komplexer Materialien
mit mehr als 1000 Atomen unerschwinglich. Um dem Problem
gerecht zu werden, berechnen wir mit einer effizienten und nicht-
empirischen Methode die lineare Antwort von nicht-metallischen
Molekülen und Festkörpern auf Grundlage atomarer Antwortfunktionen
von Valenzatomanregungnen. Dies wird durch die synergistische
Kopplung der Tkatchenko-Scheffler-(TS)-Methode [1] erreicht, die
akkurat die kurzreichweitige Hybridisierungseffekte mit der Dyson-
ähnlichen, selbkonsistenten Abschirmungs(SCS)-Gleichung [2–6] aus
der klassischen Elektrodynamik nähert. Die hier dargestellte Methode
baut auf einer früheren Version des TS+SCS-Ansatzes [7] auf und
verbessert sie signifikant durch die Erhaltung von QHO-Invarianten,
welche die Dipoloszillatorstärken-Summenregel für freie Atome erfüllt
und die korrekte spinpolarisierte Elektronendichte der freien Atome
verwendet. Wenn lediglich die Grundzustandselektronendichte
aus einer ab-initio Dichtefunktionaltheorie-Rechnung und genaue
Referenzdaten für die freien Atome verwendet werden, erhalten wir
schon eine Genauigkeit von 3.6% für die statische Polarisierbarkeit und
von 7.6% für die vdW-Koeffizienten in Bezug auf eine große Datenbank
für Moleküle in der Gasphase (∼7500 Systeme). Weiterhin zeigen wir
das Potential der von uns entwickelten Methode für die Vorhersage der
sehr verschiedenartigen Potenzgesetze der vdW-Wechselwirkungen in
nanostrukturierten Materialien und Grenzflächen.
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1
Polarization in complex systems

Understanding the interaction of light with matter and techniques
for studying such interactions provide an interface between physics,
chemistry, and biology. Electromagnetic radiation is one of the
important probes to study the structure and dynamics of matter. The
absorption of ultraviolet, visible, infrared, and microwave radiation
has provided detailed information about electronic, vibrational, and
rotational energy levels of molecules and condensed matter, and it
allows chemists and physicists to determine the structure of complex
systems [8, 9]. Spectroscopic techniques have a significant impact
on solid-state and molecular physics as well as inorganic and organic
chemistry. An important example of such technique is X-ray diffraction
experiments which have provided the details about structure of solids
and biological macromolecules. When light interacts with a molecular
material, photons can either lose or gain energy via transitions from the
translational, rotational, vibrational, and electronic degrees of freedom
of the molecular system. Moreover, the frequency spectrum of the
scattered light will exhibit resonances at the frequencies corresponding
to these transitions, and therefore, provides information about the
energy spectra of molecular materials. Many physical properties of
interest in condensed matter systems can be probed as a response
of a system under study to an external perturbation (For example,
the perturbation can correspond to the nuclear motion in the case of
nuclear gradients or an external electric field in the case of (electronic)
polarization). This is achieved experimentally for example by using
spectroscopic techniques. In such cases, the response of the system is
primarily of elebbctronic nature, meaning that the electrons in the
system change their quantum state(s). In such process electrons
can emit or absorb photons, which in turn are measured by the
experiment. From a theoretical point of view, it is possible to understand
the underlying physics of the (weakly perturbed) system within the
response theory [10]. The response theory allows us to calculate the
variations of a given observable up to certain order in perturbation
theory. Typically, the external perturbing force used in experiments is
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2 Polarization in complex systems

small with respect to the internal ones in a material, so that the system
is weakly perturbed. Thus, the dominant term is the linear response
function. The linear-response function provides information on the
ground state and the excitation spectrum, their symmetry properties,
and the strength of correlations in a system.

In the present work, we are mainly interested in the response of the
electronic charge densities of condensed matter systems to an arbitrary
external (electric) perturbation. The main quantity of interest in this
context is the linear density-density response function which directly
links an external perturbing potential to the electronic density response.
This quantity is crucial for prediction of the structural and electronic
properties of complex systems like surfaces, polymers, hybrid organic
or inorganic interfaces, nanostructures and biomolecules. The response
function obtained from linear response theory provides a powerful
framework to relate experiment and theory. A thorough understanding
of the electronic response of condensed matter systems is a necessary
first step for the design of nanoelectronics [11], chemical/bio-
sensors [12, 13], electrocatalysts [14], and nanoplasmonics [15],
or design materials with desired (opto)electronic properties using
materials such as graphene [16] and other complex systems [17]. Since
the beginning of the last century, extensive efforts have been dedicated
to technological as well as fundamental research at the atomic level. To
this end, the study of (linear) response functions is important because
they can be directly related to properties of quantum systems. For
example, dynamic polarizability is related to the optical absorption
spectrum of a system.

The polarization of a bulk material is a macroscopic quantity whose
relationship to the microscopic polarizabilities of the constituents
atoms or molecules is very complex. The polarization properties
of molecules or materials are useful especially in the description of
dielectric constants, refractive indices as well as van der Waals (vdW)
interaction. The macroscopic physical properties are derivatives of
the polarization with respect to suitably chosen perturbations. Such
properties are dielectric permittivity, piezoelectricity, effective charges,
and pyroelectricity, which are phenomenologically measured as bulk
material tensors [18, 19]. Moreover, ferroelectricity is a property of
certain materials that have a spontaneous electric polarization that can
be reversed by the application of an external electric field [18, 20].

The modeling of polarization in systems like surfaces, polymers,
hybrid (in)-organic interfaces, nanostructures, biomolecules can be very
complex due to a multitude of intra and inter-molecular interactions
which can act between neighboring atoms and molecules [21]. The
intramolecular interactions can be roughly imagined as forces that
keep a molecule together through different types of bonds. The
intermolecular forces are those which act between molecules [22, 23].
These forces cause the modification of electronic distribution within
any molecular system. In the case of a collection of molecules, the
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change in the charge distribution within a molecule will modify the
Coulomb forces exerted on neighboring molecules, leading to important
polarization effects, which can propagate to large distances. Such
forces are ubiquitous in nature, and their importance have been
identified in many phenomena such as protein folding [24] and
structure and properties of nanomaterials [25–27]. These forces also
play a fundamental role in diverse fields, ranging from the mechanisms
of anaesthesia [28], gecko [29, 30] or spider [31] adhesion and even
cohesive forces between regolith grains on asteroid surfaces [32].

1.1 Hierarchy of methods for modeling po-

larization in complex materials

From the previous considerations, it is evident that we need accurate
and efficient models for calculating response properties of bio or nano

systems of interest. Unfortunately, the macroscale models which
rely on bulk or continuum properties of materials are not often
transferable to the nanoscale or lower symmetry systems, where the
relevant physics can be very different. Indeed in microscopic systems,
classical mechanics is not valid anymore and the principles of quantum
mechanics need to be applied. Among existing models there is the

Figure 1.1: Schematic representation of the applicability of current theoretical
tools used to calculate electronic properties for matter ranging from atoms,
molecules to proteins, nanostructures, and other complex materials.

Lifshitz formulation [33], which allows calculation of the interaction
free energies, torques, forces, and Hamaker coefficients for a wide
range of geometries including isotropic and anisotropic plane-plane and
cylinder-cylinder interactions and other complex materials [34, 35], as
illustrated schematically in Figure (1.1). The Lifshitz approach is based
on macroscopic quantum electrodynamics [20, 36]. However, such
approach which uses the continuum approximation requires knowledge
of experimental optical properties of materials for the parameterization
of the model but lacks atomistic details. For simulation of materials
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(e.g. proteins) polarizable force fields such as CHARMM [37], AMOEBA
or AMBER [38] as well as discrete dipole approximation (DDA) [39] are
largely used, but they need to be optimized using known experimental
data or results from ab initio calculations on a particular system under
study. Unfortunately, these approaches are often limited and not
transferable to general materials.

Quantum-mechanical wavefunction based methods provide an
accurate way for predicting ground and excited state properties. These
methods rely on the Schrödinger equation [40] which is generally
impossible to solve accurately for realistic many-electron systems. The
Hartree-Fock (HF) method is one of the first and widely employed tools
for describing many-electron systems. Moreover, the methods such
as Møller-Plesset perturbation theory or configuration interaction (CI)
build upon the HF approximation, are able to account for many-electron
correlation effects. However, the application of these wavefunction
based methods for complex systems such as nano or biostructures is
still intractable due to the extremely large number of electronic degree
of freedom.

Among electronic structure methods, density-functional theory
(DFT) occupies an important place, as it replaces the complexity of
multi-dimensional many-electron wavefunction with three-dimensional
electron density. The foundation of DFT is based on the Hohenberg–
Kohn theorems [41]. The practical applications of DFT to condensed
matter systems is through the solution of the Kohn-Sham [42] equations.
The KS equations represent a fictitious system of non-interacting
electrons which generate the same density as a system of interacting
electrons. DFT allows calculations of ground state properties of a
large number of systems ranging from atoms and molecules to solids
and surfaces. However, there are still difficulties in using DFT to
properly describe intra and intermolecular interactions which are of
critical importance to understanding chemical reactions, especially
vdW forces, charge transfer excitations, transition states, and global
potential-energy surfaces.

In recent years, the time dependent density functional theory
(TDDFT) has emerged as a valuable tool for computing electronic
excited state properties by extending DFT to time-dependent problems.
TDDFT is based on the Runge-Gross theorem [43]. Its basic variable
is the time-dependent electron density which is obtained from the
solution of a fictitious system of non-interacting electrons in an
effective potential. It has the big advantage of computational
speed with respect to other methods that rely on wavefunctions and
on the many-body Schrödinger equation. TDDFT can be viewed
as a potentially exact reformulation of time-dependent quantum
mechanics. However, the limitations of TDDFT is that it needs
approximations for the unknown effective potential. In any case TDDFT
offers a suitable compromise between accuracy and computational
efficiency, allowing the description of excited electronic states. An
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important concept in case of TDDFT [43, 44] is the density-density
response function. This quantity is used in many methods such as
symmetry adapted perturbation theory [45, 46], fluctuation-dissipation
density functional theory [47–49], GW calculations [50–52], random
phase approximation (RPA) [53–60] as well as beyond-RPA [61–63]
methods via the adiabatic-connection fluctuation-dissipation theorem
(ACFDT) [64, 65].

Response functions in TDDFT can be calculated by a variety of
methods (e.g. real time-propagation, Dyson equation, Sternheimer as
well as Casida method [66–68]). The time-propagation method [66]
propagates a system under a given external field. The density response
is obtained directly as the difference between the time-dependent
density and the ground-state density. As the method is nonperturbative,
all orders of response are included in the calculation, and therefore,
specific orders must be numerically extracted. The Dyson equation
is used to obtain directly the response functions. The Sternheimer
method [67] solves for a specific order of the response for a specific
field in frequency space via the variation of the wavefunctions. The
Sternheimer equations form a hierarchic structure, where higher-order
responses can be calculated from lower-order responses. The Casida
method [68] instead of finding the response, finds the poles and
residues of the first-order response function, which corresponds to
finding the resonant transitions of a system via an expansion in an
electron-hole basis. Physically all these techniques are equivalent as
they are all based on KS-DFT [42] and are simply different ways to
obtain the same quantities.

The response function is in general nonlocal in space (i.e. it depends
on coordinates r and r

′
) and in time (or can be expressed in frequency

space, ω, by Fourier transform). The density-density response function,
χ(r, r

′
, ω), is often derived using single particle (KS) energies and

orbitals. The dimensions of χ(r, r
′
, ω) are continuous in a basis it spans.

Moreover, any real-space representation of the response function would
yield matrices with dimensions too large for explicit matrix algebra. In
particular, the linear density-density response tensor is a function of the
inverse of the (unperturbed) Hamiltonian which in principle requires
the knowledge of the entire manifold of its eigenvalues and eigenstates
(i.e. the Kohn-Sham energies and orbitals) [43–46, 58–60]. Therefore,
the evaluation of response function is a computationally demanding
task and consequently restricted to small or medium-sized systems.

For a more efficient treatment of the full electronic response function
χ(r, r

′
, ω), the (non-interacting) response function can be also derived

starting from spatially partitioned coarse-grained atomic local response
approximation [1, 7, 69], unlike obtained using entire set of the Kohn-
Sham energies and orbitals. The interacting response is then obtained
by solving a nonlocal screening equation. We initially assume that a
molecular material or condensed matter, has a finite electronic gap
and can be divided into effective ’atomic’ fragments (such that the
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response function χ(r, r
′
) is a sparse matrix and not dominated by

highly delocalized metal like excitations) [70–72]. More generally,
a system is partitioned in a electrically neutral atomic subsystems,
χ0

atomic(r, r
′
, ω), at separations larger than a few Ångström such that

electron transport between the atomic subsystems is negligible. Within
this assumption, we map the full nucleo–electronic system onto a set of
localized atomic response functions. Within the context of present work,
the nuclear degrees of freedom are kept fixed, while electronic degrees
of freedom are represented by isotropically polarizable dipoles. The
atomic response can be conveniently expressed in terms of multipole-
multipole electronic susceptibilities. In the next section, we will present
an atomic response function model for polarizability and van der
Waals interactions for molecular materials based on quantum harmonic
oscillators (QHOs). Moreover, such coarse-grained representation of
response function allows calculation of polarizability of a molecular
material having many thousands of atoms.

1.2 Efficient oscillator-based approach for

polarizability and van der Waals interac-

tions

The dominant contribution to the van der Waals force (fluctuating
dipole-dipole) arises due to the non-zero instantaneous dipole moments
of all atoms and molecules. A typical model system to illustrate the
vdW interaction is a complex of two fragments of matter with non-
overlapping electron densities or no permanent electrical multipoles.
For instance, it can be a dimer of noble-gas atoms or ’jellium’ spheres.
Every quantum system with electrons has charge fluctuations that result
in instantaneous polarization and hence are responsible for the vdW
attraction [18, 22, 23, 33].

The non-relativistic vdW interaction energy between two small
molecules or closed-shell atoms is predictable and has the asymptotic
form r−6, where r is the distance between two fragments of matter [73].
This is familiar long-range attraction term which describes the
interactions between atoms and molecules [33, 74–76]. Whenever
an atom acquires a spontaneous dipole moment µ1, the resulting dipole
electric field (E1 ∝ µ1/r3) polarizes the adjacent atom to produce an
induced dipole moment µ2, i.e. , µ2 = αE1 ∝ αµ1/r3, where α is the
polarizability for a given atom. The potential energy of the first dipole in
the field of the second dipole, i.e. , the interaction energy, Eint, between
the two dipoles, then reads Eint = −µ1E2 ∝ αµ2

1/r6. The magnitude of
the interaction depends on the polarizability α of the atoms. Basically,
the polarizability is the proportionality factor between the induced
electric dipole moment (of an atom) and the external polarizing field.
The r−6 interaction energy power law between two atoms makes two
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crucial approximations that are not always valid. First, the quasi-
static approximation, which ignores wave retardation effects, and also
possible multiple polarizing events in case of a polyatomic system. The
quasi-static approximation assumes that the dipole moment µ1 polarizes
the second atom instantaneously, which is valid if r is much smaller
than the typical wavelength of the fluctuating fields. However, the finite
wave propagation speed of light must be taken into account when r is
much larger than the typical wavelength, and this gives rise to Casimir
interaction [77] energy, which asymptotically scales as r−7. Generally,
the interaction energy is not a simple power law between these limits,
but depends instead on an integral of fluctuations at all frequencies
scaled by a frequency-dependent polarizability of the system [33].

In case of polyatomic systems the situation is more complex because
many-body polarization effects must be considered. For example, with
three atoms, the initial dipole µ1 will induce polarizations µ2 and µ3

in the other two atoms, but µ2 will create its own field that further
modifies µ3, and so on. Thus, the interaction in a many-body system is
generally non-additive and simple two-body force law can not account
for all interactions. These interactions can be negligible for sufficiently
dilute gasses or for weak polarizabilities [33, 78]. But they become
very significant for systems where many fluctuating multipoles interacts
in a (very) complicated way. In other words, each atom located inside
a molecule or material experiences a dynamic internal electric field
created by both the local and non-local fluctuations associated with
the surrounding atoms. Depending on the underlying topology of
the chemical environment, this fluctuating internal electric field can
give rise to either polarization or depolarization effects, and is largely
responsible for the anisotropy in the molecular polarizability tensor.
Therefore, it is essential to include the environmental screening effects
arising from both the short- and long-range in accurate first-principles
calculations of the response function. Therefore, considerable research
effort is being directed towards the development of density functional
approximations in DFT that are capable of predicting physical and
chemical properties of microscopic systems where vdW forces play
an important role. Recently, Tkatchenko and co-workers [7, 56, 57]
proposed a density functional method that accounts for many-body
interatomic dispersion energy using the ACFDT [64, 65, 79]. In this
approach, the many-body dispersion contribution is obtained from
the solution of a model Hamiltonian for an arbitrary collection of
localized atomic response functions (ARFs). The non-local screening
is included in ARFs via a Dyson like self-consistent screening (SCS)
equations [3, 5, 80]. ARFs can be constructed as functional of the
electron density, obtained with DFT, to accurately capture the valence
electronic response [1] in molecules and solids. These ARFs are
described by spherical quantum harmonic oscillators (QHOs) coupled
to each other via dipole-dipole interactions. The solution of the SCS
equation for a set of localized ARFs provides microscopic non-local
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polarizability for a system in the basis of ARF coordinates. Moreover,
such coarse-grained representation of the response function reduces the
computational cost by several orders of magnitude, unlike calculation
that uses the entire manifold of Kohn-Sham energies and states.

One of the major goal achieved in my research and presented in
this thesis is the construction of an efficient and accurate model for
the calculation of linear polarization in materials. The formulation
presented in this work builds upon and significantly improves an earlier
version of the ARF model [1, 7]. The QHO invariants are preserved, the
free-atom dipole oscillator strength sum rule is satisfied, and the correct
spin-polarized electron densities for the free atoms are employed. We
use the ground state electron density obtained from the first-principle
DFT calculation and accurate free-atom quantum-mechanical reference
data. The improved ARF model provides isotropic static polarizabilities
with an accuracy of 3.6% for ∼7500 systems and vdW coefficients with
accuracy 7.6% for a large database of gas-phase molecules (ranging
from simple diatomic to polyatomic systems with functional groups
including alcohol, ketone, amine and aromatic systems).

The outline of the thesis is as follows: Chapter (2) focuses on
explaining the theoretical methods used to develop an efficient and
accurate model for calculating linear polarization in materials. It
starts with the basic ideas and methods of quantum chemistry as
well as density functional theory. These methods solve the electronic
many-body problem based solely on the laws of quantum mechanics.
These methods give quantitative accuracy and predictive ability in
a wide range of problems. Moreover, Chapter (3) introduces a
hierarchy of state-of-the-art methods for computing electronic response
functions. The electronic response function is of central importance
for understanding many physical or chemical processes. Chapter (4)
presents a brief overview of the description of electronic polarizability
and asymptotic vdW coefficients of molecules using first-principles
techniques, and contrasting them with experimental measurements.
Chapter (5) presents an atomistic linear electrodynamics response
model of polarization for molecules and materials. This approach is
based on atomic response functions (ARFs). The method developed
in this work is a synergistic coupling of classical electrodynamics with
quantum mechanical input data and the electron density obtained
using DFT calculations [7, 81]. Chapter (6) presents the application
of electrodynamics response model to determine the microscopic
polarizability and asymptotic vdW coefficients of a wide range of
carbon-based nanomaterials, including fullerenes, carbon nanotubes,
and nanoribbons, graphite, diamond, as well as single-layer and
multi-layer graphene. We demonstrate that the vdW coefficients
depend on the dimensionality and the atomic arrangement of carbon
atoms and highlight the importance to treat vdW interactions beyond
simple pairwise additivity approximation. Chapter (7) illustrates the
importance of inclusion of the electrodynamic response in large-scale
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atomistic simulations and potential avenues for future work.





2
Theoretical background

This chapter focuses on explaining the theoretical methods used in
this thesis for calculating linear response function for molecules and
materials. It starts with the description of first-principles electronic
structure methods. These methods solve the electronic many-body
problem based solely on the laws of quantum mechanics, without
(empirical) parameters, but with certain approximations. Practically,
they have the advantage to give quantitative accuracy and predictive
ability in a wide range of problems. For the interested reader,
comprehensive details about the methods discussed here can be found
in references [19, 82, 83].

2.1 The quantum many-body problem

This section introduces the basic ideas and methods of quantum
chemistry. It starts with the structure of many-body Hamiltonian
operator and discusses the form of many-body wavefunction. Further,
we introduce the basic ideas of the Hartree-Fock approximation as well
as more sophisticated techniques.

2.1.1 Schrödinger equation

The single-particle time-dependent Schrödinger equation is the starting
point for any electronic structure problem [40]



− h̄2

2m
∇2 + V(r)



|ψ(r, t)⟩ = ih̄
d

dt
|ψ(r, t)⟩, (2.1)

where m is the mass of the particle, ψ(r, t) is the wavefunction of the
system and V(r) is the potential energy of the particle at the given
position. The operator (− h̄2

2m∇2 + V(r)) is called the Hamiltonian, Ĥ,
of the system. The physical interpretation of the wavefunction is given
through |ψ(r, t)|2, which is the probability density at position r and
time t. The probability of finding the particle in an infinitesimal volume

11



12 Theoretical background

δV around the position r at time t is then |ψ(r, t)|2δV . For time-
independent problems the Hamiltonian operator does not explicitly
depend on time, t. Assuming that the wavefunction can be written in a
separable form as ψ(r, t) = ψ(r)Ω(t), it can be shown by separation of
variables that the time-independent Schrödinger equation is

Ĥ|ψ(r)⟩ = E|ψ(r)⟩, (2.2)

where E is the separation constant and represents an energy eigenvalue,
while the time-dependent part of the equation satisfies equation

ih̄
d

dt
Ω(t) = EΩ(t). (2.3)

Moreover, Eq. (2.3) yields a trivial exponential solution. Therefore,
Eq. (2.2) has to be solved for the particular potential. The time-
independent Schrödinger equation is the one that we will be concerned
with here.

Determining the properties of a material ab initio, that is without any
empirical parameters characterising it other than its atomic structure,
involves solving the Schrödinger equation for a system of many
interacting particles. We start by extending Eq. (2.2) for a collection of
particles. For a given system having P electrons bound to Q nuclei, the
Hamiltonian in Eq. (2.2) can be written (in atomic units 1) as,

Ĥ = − 1

2

P

∑
i=1

∇2
ri

  

Electronic KE

− 1

2MI

Q

∑
I=1

∇2
RI

  

Nuclear KE

−
P

∑
i=1

Q

∑
I=1

ZI

|ri − RI |
  

Electron-Nuclear attraction energy

+
P

∑
i=1

P

∑
j>i

1

|ri − rj|
  

Electron-Electron repulsion energy

+
Q

∑
I=1

Q

∑
J>I

ZIZJ

|RI − RJ |
  

Nucleus-Nucleus repulsion energy

, (2.4)

where i, j are indices for the P electrons, I, J are indices for the Q
nuclei, MI are masses and ZI are the charges of the nuclei. In short,
this Hamiltonian can be re-written as

Ĥ = T̂e + T̂n + V̂n−e + V̂e−e + V̂n−n, (2.5)

where T̂n and T̂e are the kinetic-energy operators related to the
nuclei and the electrons, respectively, and the terms V̂n−e , V̂e−e ,
and V̂n−n are related to the electrostatic interaction between two
electrons, an electron and a nucleus, and two nuclei, respectively.
Solving this Hamiltonian in a (non-relativistic, time-independent)
quantum-mechanical framework means to solve the time-independent

1If one employs atomic units, then h̄ (Planck’s constant/2π ), me (mass of the
electron), and |e| (electronic charge) are set to unity.
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Schrödinger equation2

Ĥψ({ri}, {RI}) = Eψ({ri}, {RI}) (2.6)

where E is the total energy of the system and the many-body
wavefunction ψ is a function of all the spatial coordinates of electrons
(ri, i = 1, 2, · · · , P) and spatial coordinates of nuclei (RI , I =
1, 2, · · · , Q). Eq. (2.6) is simple in its form but enormously complex
to solve. Since each electron and each nucleus can move in the x, y
and z coordinates, solving this equation involves a problem of 3P + 3Q
degrees of freedom in which all particles in a system are coupled.
Therefore, in practice approximations need to be made. The first
important approximation is obtained by decoupling the dynamics of
the electrons and the nuclei, this is known as the Born-Oppenheimer
(or adiabatic) approximation [84], which will be discussed briefly in
the next section.

2.1.2 Born–Oppenheimer approximation

The basis of the Born-Oppenheimer (BO) approximation [84] comes
from the fact that the nuclei are much heavier than the electrons.
Even for the lightest hydrogen nucleus, a proton has a mass that is
approximately 2000 times larger than that of an electron. The ratio
between electron and nucleus mass (m/M) is very small. Therefore,
in many cases the timescale of the response of the electrons is
a few orders of magnitude faster than that of the nuclei, which
allows the dynamics of the electrons and nuclei to be decoupled.
Through this approximation, nuclei can be treated as classical particles
(or point charges) and can be considered as static with respect to
quantum-mechanical electrons. Mathematically, one can separate the
Hamiltonian of Eq. (2.4) into an electronic part Ĥe consisting of

Ĥe = T̂e + V̂n−e + V̂e−e, (2.7)

such that total Hamiltonian is given by

Ĥ = Ĥe + T̂n + V̂n−n. (2.8)

One can then solve the time-independent Schrödinger equation for Ĥe

in order to use its eigenvectors as a basis to expand the eigenstates of
the full Hamiltonian as

Ĥeϕν(r, R) = Ee
ν(R)ϕν(r, R), (2.9)

where Ee
ν(R) is the electronic energy for a given collection of the nuclei

and the ϕν are assumed to be orthonormalized. The wavefunction ψ of

2Here, the electron spin has been dropped for simplicity.
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the many-body Hamiltonian can then be expanded as

ψ = ∑
ν

λν(R)ϕν(r, R), (2.10)

where λν(R) is the nuclear wavefunction. If one writes ψ as Eq. (2.10)
in Eq. (2.6) and multiplies by ⟨ϕµ|, the expression becomes

⟨ϕµ|Ĥ|ϕν⟩ = Eλµ, (2.11)

such that



Ee
µ + T̂n + V̂n−n



λµ + ∑
ν

∑
I

h̄2

2MI



⟨ϕµ|∇2
I |ϕν⟩λν

+ 2⟨ϕµ|∇I |ϕν⟩∇Iλν



= Eλµ (2.12)

The off-diagonal elements of the two last terms appearing in Eq. (2.12)
are called non-adiabatic, referring to the fact that they involve the
interaction between two different electronic states. The ones lying on
the diagonal are called adiabatic (since ⟨ϕµ|∇I |ϕν⟩ is anti-symmetric,
its diagonal elements (µ = ν) are always zero). No approximations
were introduced so far. However, if one could neglect the last two terms
in Eq. (2.12), by defining Ĥ = T̂n + V̂n−n + Ee

µ, it would be possible to
write Ĥλµ = Eλµ. To achieve this condition, approximations need to
be introduced. One approximation is that it is necessary to assume an
adiabatic system that is the atomic motion does not induce electronic
excitations such that, ⟨ϕµ|∇I |ϕν⟩ = ⟨ϕµ|∇2

I |ϕν⟩ = 0 for µ ̸= ν. The
other approximation is that the diagonal elements ⟨ϕµ|∇2

I |ϕν⟩ are very
small if compared to their electronic counterpart, meaning that

⟨ϕµ|∇2
I |ϕν⟩ ≤ ⟨ϕµ|∇2

i |ϕν⟩. (2.13)

It is possible to show that this is an acceptable approximation by
multiplying by h̄2/2MI each side of Eq. (2.13) and the right side by
mµ/mµ = 1, arriving at

h̄2

2MI
⟨ϕµ|∇2

I |ϕν⟩ ≤
mµ

MI

h̄2

2mµ
⟨ϕµ|∇2

i |ϕν⟩, (2.14)

where, knowing that mµ/MI is at least of the order of 10−4 (electron
to proton mass ratio is 5 × 10−4), the term in Eq. (2.14) can also be
neglected. The total energy for some fixed configurations of the nuclei
will also include the constant nuclear repulsion term leading to

EBO
total = Ee

0 + V̂n−n, (2.15)
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where Ee
0 is given by Eq. (2.9). In general, under the BO approximation

the electronic structure problem reduces to solving Eq. (2.9). Therefore,
in general, total energies are obtained after solving Eq. (2.9) through
Eq. (2.15). However, one should note that the BO approximation is
not universally valid. It is well known that the BO approximation
will break down when there are multiple potential energy surfaces
crossing each other or close to each other in energy. Dissociative
adsorption of molecules on metal surfaces is one example. Similarly,
reactions involving hydrogen or proton transfer may be susceptible to
breakdowns in the BO approximation [85–88]. The major difficulty
in solving Eq. (2.9) is the interaction between electrons, where all the
many-body quantum effects are included.

Despite the almost intractable nature of these interactions, many
approximate methods have been developed to solve the Schrödinger
equation by mapping the N electron Schrödinger equation into effective
one-electron Schrödinger-like equations, which are easier to tackle.
Some of these approximate solutions used in this thesis will be
introduced in the following section. The different approximate schemes
employed here can be divided into two major categories: (i) the
wavefunction based methods, where the many-electron wavefunction
is the key; and (ii) density-functional theory (DFT), in which electron
density is the central quantity. Here, the wavefunction based methods
will be introduced first.

2.1.3 Hartree–Fock method

The Hartree-Fock (HF) approximation is regarded as the fundamental
step in quantum chemistry [89, 90]. Due to its conceptual importance,
the first method discussed here used to solve the electronic Hamiltonian,
defined in Eq. (2.9), is the HF method. The HF method is an
improvement upon Hartree theory [89]. In Hartree theory, the
wavefunction is expressed as a product of single particle orbitals
ΨH

0 (rN) = ϕ1(r1)ϕ2(r2) · · · ϕN(rN). The expectation value Ĥe satisfies
a variational principle, in the sense that it has to be bounded below by
the exact energy in the BO surface. In the Hartree theory, the ansatz
wavefunction ignores the Pauli principle. The Hartree wavefunction
does not satisfy the antisymmetric property of the total electronic
wavefunction which needs to be fulfilled since electrons are fermions.
In 1930, V. Fock [90] proposed to use a Slater determinant instead of
Hartree products to represent the total electronic wavefunction. It is
worth pointing out here that a Slater determinant is a determinant
constructed from spin orbitals. Being determinant, it obeys the
antisymmetry principle by default and thus, serves as a natural choice
of electronic wave function. For N-electron system, a generalized form
of Slater determinant describing N electrons occupying N spin orbitals
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(ϕ1, ϕ2, ϕ3, · · · , ϕN) with normalization constant can be written as

ΨHF =
1√
N!













ϕ1(r1) ϕ2(r1) ϕ3(r1) ... ϕN(r1)
ϕ1(r2) ϕ2(r2) ϕ3(r2) ... ϕN(r2)
ϕ1(r3) ϕ2(r3) ϕ3(r3) ... ϕN(r3)

...
...

... . . . ...
ϕ1(rN) ϕ2(rN) ϕ3(rN) ... ϕN(rN)













(2.16)

where ϕi(rj) is the single-particle wavefunction of electron j for state i.
The dependency on spin component has been dropped for simplicity.
The goal here is to find the best possible approximation to the ground
state ΨHF

0 of N-electron system described by an electronic Hamiltonian
Ĥe subject to the condition that ⟨ΨHF|ΨHF⟩ = 1. Thus, the electronic
energy corresponding to ΨHF

0 can be obtained as

E0 = ⟨ΨHF
0 |Ĥe|ΨHF

0 ⟩ = ⟨ΨHF
0 |T̂e + V̂n−e + V̂e−e|ΨHF

0 ⟩, (2.17)

E0 is minimized by varying the spin orbitals with a constraint that they
remain orthonormal. According to the variational principle, the best
spin orbitals are those which correspond to minimum electronic energy.
Now using the HF wave function the electronic energy can be written
as

⟨ΨHF
0 |Ĥe|ΨHF

0 ⟩ =
N

∑
i=1




ϕ∗
i (ri)



− 1

2
∇2

i + V̂n−e



ϕi(ri)d
3
ri



+
1

2

N

∑
i=1

N

∑
i ̸=j

 

ϕ∗
i (ri)ϕ

∗
j (rj)

1

|ri − rj|
ϕi(ri)ϕj(rj)d

3
rid

3
rj

  

EHartree

− 1

2

N

∑
i=1

N

∑
i ̸=j

 

ϕ∗
i (rj)ϕ

∗
j (ri)

1

|ri − rj|
ϕi(ri)ϕj(rj)d

3
rid

3
rj

  

Ex

(2.18)

The first two terms in braces are the kinetic energy of N independent
electrons and their interaction with the external potential, respectively.
The term EHartree is called the Hartree energy and the term Ex is called
the HF exchange energy. If i = j the exchange term cancels exactly
with the Hartree term such that the spurious interaction of the electron
with itself is automatically removed. This exchange term only acts on
electrons of the same spin3. This means that the motion of electrons of
same spin in the HF approximation is correlated. The Eq. (2.18) can be

3Here, the spin of the electrons is not explicitly written.
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written in a compact form as

F̂i = −1

2
∇2

i + V̂n−e(ri) + vH(ri)− vx(ri), (2.19)

where F̂i is known as the Fock operator. The expression of Eq. (2.18)
allows to define the exchange potential, vx, for the electron i as

vx(ri) =
 ϕ∗

i (rj)Pi,jϕi(rj)

|ri − rj|
, (2.20)

where Pi,j is an operator that acts on ϕi(rj) to change ri to rj. The
quantity vH(ri) is the Hartree potential, which is the Coulomb repulsion
between ith electron and the electron density produced by all electrons
and given by the following form

vH(ri) =


n(r)

|ri − r|d
3
r (2.21)

This can be considered as a classical mean-field approximation in the
sense that one electron can be considered as moving in an average
field given by all the other electrons present in the system. This greatly
simplifies the problem as the particles are now decoupled and the
problem reduces to solving a single particle Hamiltonian subject to
an effective potential. Furthermore, the Hartree-Fock single particle
equations can be written in the following form

F̂iϕi = ϵiϕi, (2.22)

where ϵi are the Lagrange multipliers used to constrain the
normalization of the orbitals and minimize Eq. (2.18). The eigenvalues
ϵi that correspond to the occupied orbitals are equivalent to negative
ionization potentials as shown by Koopmans’ theorem [91]. This is
valid within an approximation that there is no relaxation of the orbitals
upon removal of electrons. Commonly ϵi are just interpreted as orbital
energies. However, this interpretation would only be true if electrons
were really independent effective single particles.

The HF equations have to be solved self-consistently, a procedure
known as the self-consistent field (SCF). Therefore, starting from an
initial guess, one solves the Hamiltonian to get new orbitals, builds new
potentials and solves again the HF equations. This process is repeated
until the self-consistency is achieved. The exchange term appearing in
Eq. (2.18) that requires the explicit calculation of four center integral.
The formal scaling of HF method is of the order N4, where N is a
measure of the size of the system, e.g. electrons or basis functions.

The HF method is used extensively to study various problems, such
as molecules, adsorption [92], defects in solids [93], and electronic
structure of insulators [94]. A major limitation of the HF method lies in
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the effective mean field treatment of the Coulomb interaction between
electrons.

The difference between the ground state HF energy (in a basis
set limit) and the exact ground state energy is used as a standard
definition of the electron correlation energy in quantum chemistry [95].
The correlation energy is typically a small number compared to the
total energy. However, it is often a very important contribution to
many systems of physical and chemical interest, since the total energy
difference is what matters. In the following section, we will briefly
describe some of the methods which explicitly calculate the electron
correlation energy.

2.1.4 Methods beyond the HF approximation

There is a hierarchy of methods beyond the HF approximation that
aim to improve HF by including electron correlation. Most of these
methods require more flexible wavefunctions than that of a HF single
determinant. This is usually obtained by means of excitations of
electrons from occupied to virtual orbitals. The exchange term discussed
above is a form of correlation between electrons also called Pauli
correlation. Now, anything missing from the Hartree-Fock energy is
generally termed as correlation energy and can be expressed as

Ee
corr = Ee − Ee

HF (2.23)

where Ee was defined in Eq. (2.9) calculated with the true many-body
wavefunction and the term Ee

HF is calculated with the approximate HF
wavefunction. The exact solution to the many-body problem would be
the full configuration interaction (CI) [82] method.

CI is a post-Hartree–Fock linear variational method for solving
the electronic many-body problem within the BO approximation.
Mathematically, configurations (states) describe the linear combination
of Slater determinants used for expanding the wavefunction. In terms
of a specification of orbital occupation, interaction means the mixing
of different electronic configurations. Such formalism is extremely
computationally demanding and requires immense hardware, while
the method is limited to relatively small systems. Approximating CI
wavefunction by including excitations only up to a certain order causes
a size-extensive problem, i.e. the energy in this method does not scale
correctly with the number of electrons [96]. For example, let P and Q
be two non-interacting systems. If a given method for the evaluation
of the energy is size consistent, then the energy of the supersystem
P + Q, separated by a sufficiently large distance is equal to the sum of
individual fragments, i.e. E(P + Q) = E(P) + E(Q). This property of
size consistency is of particular importance to obtain correct dissociation
curves or entire potential energy surfaces [96]. In the following section,
we introduce a size-consistent method which includes correlation, so
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called Møller-Plesset perturbation theory.

2.1.5 Møller–Plesset (MP) perturbation theory

A natural way to include electronic correlations is by adding interelec-
tronic Coulomb interaction as a perturbation to the Hamiltonian4. A
method known as Møller-Plesset perturbation theory [97] is a particular
case of many-body perturbation theory where the unperturbed
Hamiltonian is taken to be the Hartree-Fock one

Ĥ0 =
N

∑
i

F̂i, (2.24)

and the perturbation is given by the difference of the true many-body
electronic Coulomb interaction and what is already included in Hartree-
Fock

Ĥ′
= Ĥe −

N

∑
i

F̂i = ∑
i,j;i<j

1

|ri − rj|
− ∑

i

[vH(ri)− vx(ri)]. (2.25)

For the Hartree-Fock Hamiltonian all single Slater-determinant
wavefunctions that satisfy Ĥ0|Ψ⟩ = Ee|Ψ⟩ can be calculated5. These
form a complete orthonormal set of functions that can be used as
a starting point for perturbation theory. The difference between
the ground-state determinant |Ψ0⟩ and other possible solutions are
interpreted as electronic excitations, since they differ by interchanging
one or more rows of the HF determinant. If the electrons could be seen
as effective single particles, this interchanging could be understood
as promoting one or more electrons from an occupied state to a
unoccupied one in the Hartree-Fock basis. Furthermore, the term
|Ψa

i ⟩ corresponds to a single excited electronic state, |Ψab
ij ⟩ to double

excited electronic states and so on, where i, j, k, ... denote occupied
states and a, b, c, ... unoccupied ones. The first order correction to the
energy in this basis, with the perturbation given by Eq. (2.25) yields
the HF energy itself. For the second-order perturbation term of the
energy there would be matrix elements involving the ground state
plus single excitations and double excitations, but not higher order
excitations. The lack of contribution from higher-order excitations is
due to the fact that the perturbation Ĥ′

is a two-particle operator and
the orbitals are orthonormal. The matrix elements of the Hamiltonian
between the ground state HF wavefunction |Ψ0⟩, and a single excited
determinant |Ψa

i ⟩ is zero i.e. ⟨Ψ0|Ĥ|Ψa
i ⟩ = 0, this is known as Brillouin’s

theorem [82]. This means that singly-excited states do not interact
directly with the HF ground state (but can interact indirectly through

4The derivation of the first and second order corrections for the energy by using
perturbation theory is can be found in the textbook of Szabo and Ostlund [82].
5Here, the HF label has been dropped for simplicity
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higher order perturbation terms), therefore, any matrix element
involving these two orbitals is zero. The second-order energy correction
in MP2 is thus given by

ζ2
k =

occ.

∑
i≤j

unocc.

∑
a≤b

⟨Ψ0|Ĥ′ |Ψab
ij ⟩⟨Ψab

ij |Ĥ
′ |Ψ0⟩

Ee
0 − Eab

ij

, (2.26)

where i, j are occupied orbitals, a, b are empty orbitals, Ee
0 is the HF

ground-state energy and Eab
ij the energy corresponding to a particular

doubly excited determinant [82]. The matrix elements appearing in the
numerator of Eq. (2.26) can be written as two-electron integrals over
molecular orbitals ϕ, and the energy difference in the denominator can
be written as a difference between molecular orbital energies, since the
wavefunction is a Slater determinant. The expression for the MP2 total
energy is written as

EMP2 = EHF +
1

4 ∑
ijab

|⟨ij||ab⟩|2
ϵi + ϵj − ϵa − ϵb

, (2.27)

where ϵi is the HF molecular orbital eigenvalue for state i and ⟨ij||ab⟩ =
⟨ij|ab⟩ − ⟨ij|ba⟩ with

⟨ij|ab⟩ =
  ϕ∗

i (r)ϕ
∗
j (r

′
)ϕ∗

a (r)ϕ
∗
b (r

′
)

|r − r
′ | d3

rd3
r
′
. (2.28)

MP2 shows improvements over HF in many respects in electronic
structure calculations [98, 99]. For example, MP2 can approximately
capture the weak non-covalent interactions like van der Waals
(dispersion) for which HF completely fails. Also the molecular
geometry obtained from MP2 shows much improvement over HF as
compared with experimental measurements [100]. However, MP2 is
not appropriate for metallic systems (Eq. (2.27) will be singular due
to the zero gap between states) and for some molecular properties
like spectroscopic constants which are not necessarily converged when
going to high orders, or the convergence is slow or oscillatory [101].
Another popular method in quantum chemistry is the coupled cluster
method in which the electron correlation is handled through the use of
a so-called cluster operator and will be briefly introduced in the next
section.

2.1.6 Coupled cluster theory

Coupled cluster theory was initially proposed in the context of nuclear
physics [102]. It is one of the most accurate and computationally
affordable methods to solve the many-body problem [103]. The
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wavefunction ansatz for CC theory in quantum-chemistry is written as 6

ΨCC = eT̂Ψ0 = (1 + T̂ +
T̂2

2!
+

T̂3

3!
+ · · · )Ψ0, (2.29)

where Ψ0 is the HF ground-state slater determinant and T̂ is a cluster
operator that can be expanded in terms of single, double, triple, etc.
excitations in the following way

T̂ = T̂1 + T̂2 + T̂3 + · · · (2.30)

T̂1Ψ0 =
occ.

∑
i

unocc.

∑
a

ta
i Ψa

i (2.31)

T̂2Ψ0 =
occ.

∑
ij

unocc.

∑
ab

tab
ij Ψab

ij (2.32)

T̂3Ψ0 =
occ.

∑
ijk

unocc.

∑
abc

tabc
ijk Ψabc

ijk (2.33)

...
(2.34)

where ta
i , tab

ij , tabc
ijk are the excitation amplitudes. Due to nonlinear terms

in the exponential expansion in Eq. (2.29), we have additional higher
order excitations terms like, T̂2, T̂1T̂2 etc. The exponential operator eT̂

(by grouping the expansion by excitation order) can be written as

eT̂ = 1 + T̂1 +


T̂2 +
T̂2

1

2



+


T̂3 + T̂1T̂2 +
T̂3

1

6



+



T̂4 + T̂3T̂1 +
T̂2

2

2
+

T̂2T̂2
1

2
+

T̂4
1

48



+ · · · , (2.35)

where the first term on the right corresponds to the Hartree-Fock
system, the second term produces all single excitations, the third all
double excitations, etc. The coupled-cluster energy is then obtained by
minimizing, as a function of the amplitudes, the following expression

ECC = ⟨Ψ0|e−T̂ĤeT̂|Ψ0⟩. (2.36)

Up to this step, everything is exact. The expansion of the cluster
operator T̂ up to T̂N would mean all possible excited determinants
are included and the coupled cluster results from Eq. (2.36) would
equal those obtained from full CI calculations. Therefore, in practice
a truncation of T̂ must be performed. The coupled cluster singles
and doubles (CCSD) theory is the one obtained when eT̂ is written as

6For detailed formulas of the energy and wavefunction of CCSD the reader is referred
to Refs. [82, 103].
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T̂1 + T̂2 yielding all possible single and double excitations and their
corresponding correlation (see Eq. (2.35)) as well as contributions
of higher orders (T̂1T̂2, T̂2

2 , etc.). The scaling of CCSD is already of
N6, where N is the size of the system, like number of electrons or
basis-functions). Coupled cluster singles, doubles and triples (CCSDT)
theory would consider T̂ = T̂1 + T̂2 + T̂3 , but that is already extremely
computationally expensive.

The sampling of correlated many electron wavefunction for
realistic systems, such as bio-molecules and complex nanostructures is
prohibitively expensive, so alternative approaches are required. Density
functional theory (DFT) [41] provides a successful approach. DFT is
an exact reformulation of the quantum many-body problem in terms
of the ground-state density, rather than the ground-state wavefunction.
Nowadays DFT is one of the most widely used quantum-mechanical
methods in condensed-matter physics and chemistry [104–108]. In the
next section the basic formulation of DFT will be discussed.
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2.2 Fundamentals of density-functional the-

ory

The term density-functional theory (DFT) refers to methods that express
the ground-state energy as a functional of the electronic density. A
functional is a mathematical construction that maps functions onto
numbers. In quantum chemistry, the orbital functional takes the
electron orbitals of a system and returns an energy value. DFT
reduces the complexity of the many-body problem by substituting the
3N dimensional many-electron wavefunction, Ψ(r1, r2, ..., rN), by its
ground-state electronic density, n0(r). It incorporates ideas from the
previous work of L. Thomas and E. Fermi in the 1920’s [109, 110],
including also the work of J. Slater [111]. DFT has been successful in
predicting molecular geometries, lattice constants and properties for a
wide range of materials.

2.3 Hohenberg–Kohn theorems

The foundation of DFT is based on the pioneering work by Hohenberg
and Kohn, who formulated two theorems [41].

1. The ground state electron density n0(r) of an N-electron system
determines uniquely the external potential vext(r). Therefore,
the Hamiltonian and consequently all other properties including
the energy of the system can be expressed as a functional of the
ground state electron density of that system.

2. For an N-electron system with external potential vext(r), the
energy corresponding to any N-electron trial density n(r) is
always greater than or equal to the exact ground state energy,
E0, of that system, i.e. E0 ≡ E[n0(r)] < E[n(r)]. Importantly, the
equality is achieved if and only if n(r) is the ground state electron
density of that system.

These theorems imply that the ground-state energy can be
variationally expressed as a functional of the ground-state electron
density of the N-electron system. In DFT, the electronic energy
functional is composed of contributions from the kinetic energy, the
Hartree energy, the external potential and the electronic exchange-
correlation term [83, 112]. The energy functional can be written as

E[n(r)] = FHK[n(r)] + Eext[n(r)] (2.37)

= FHK[n(r)] +


vext(r)n(r)dr. (2.38)

The term FHK[n(r)] is the universal (Hohenberg-Kohn) functional of
the electron density and it does not depend upon the physical system
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under investigation. Eext[n(r)] is the energy due to the external
potential. The HK functional is defined as the sum of the kinetic
energy functional, T[n(r)] and the electron-electron interaction energy
functional, Ee−e[n(r)],

FHK[n(r)] = T[n(r)] + Ee−e[n(r)]. (2.39)

HK theorems assure the existence of the energy functional E[n(r)]
which reaches its minimum when the true ground state electron density
is obtained. However, these theorems do not explicitly state how to
construct the crucial functional FHK[n(r)].

In addition, M. Levy in 1979 found an elegant proof for the
HK theorems which generalizes them also for degenerate ground-
state(s) [113–115]. This means that no matter how one gets the
electronic density, it is theoretically possible to use it to (re-)construct
the corresponding external potential, under specific constrains. In any
case this approach does not provide a practical numerical way to solve
the problem and therefore to obtain the electronic densities required
to reconstruct the external potential. In 1965, W. Kohn and L. Sham
proposed a method to practically perform DFT calculations which is
now called the Kohn-Sham method [42].

2.4 The Kohn–Sham method

In the Kohn-Sham (KS) approach [42], the interacting many-electron
system with electron density, n(r), is mapped onto a system of fictitious
non-interacting particles with density, nKS(r), which is constrained to
have exactly the same density n(r) of the interacting system

n(r) = nKS(r) =
N

∑
i

|ψi|2, (2.40)

where ψi are orthonormal orbitals or so-called single-particle KS orbitals.
Further, the kinetic-energy operator appearing in Eq. (2.39) is written
in two parts

T[n(r)] = Ts[n(r)] + Tc[n(r)]. (2.41)

Ts[n(r)] belongs to a system of non-interacting electrons and Tc[n(r)]
corresponds to the remaining part that accounts for the many-electron
correlation contributions to the kinetic energy. Then, the kinetic energy
operator of a non-interacting system can be calculated from the KS
orbitals as

Ts = −1

2

N

∑
i

⟨ψi|∇2|ψi⟩. (2.42)
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Also, the potential energy corresponding to the electron-electron
interaction (second term in Eq. (2.39)) is partitioned as follows,

Ee−e[n(r)] = EH[n(r)] + Exc[n(r)] (2.43)

where EH[n(r)] is the Hartree or classical electrostatic energy
corresponding to the Coulomb interaction. The term Exc[n(r)] is
exchange and correlation energy between the interacting electrons
which contains all the remaining contributions (quantum-mechanical
many-body effects) to the total electronic energy expression. This also
includes the residual part of the true kinetic energy Tc which is not
accounted for by Ts. The available approximations for the exchange-
correlation functional will be discussed in Section (2.5).

For a charge distribution n(r) the Hartree energy can be written as,

EH[n(r)] =


vH(r)n(r)dr, (2.44)

with the Hartree potential, vH, given by

vH(r) =


n(r
′
)

|r − r
′ |dr

′
. (2.45)

In this fashion the KS total energy functional is written as

EKS = Ts[n(r)] + EH[n(r)] + Exc[n(r)] + Eext[n(r)]. (2.46)

The ground-state energy is obtained by minimizing Eq. (2.46) with
respect to the density of a system, with constraints such that


n(r)dr =

N, one obtains,

δ

δn(r)



EKS[n(r)]− µ
 

n(r)dr − N


= 0 (2.47)

δEKS[n(r)]

δn(r)
= µ (2.48)

δTs[n(r)]

δn(r)
+ vH(r) + vext(r) +

δExc[n(r)]

δn(r)
= µ (2.49)

where µ is the Lagrange multiplier for the number of electrons and the
term, δExc[n(r)]

δn(r)
, is called the exchange-correlation vxc(r) potential.

Unfortunately, the dependence of vxc on the electron density
is unknown and must be approximated and will be discussed in
Section (2.5). The last three terms in Eq. (2.49) define the local
effective potential, veff(r), which describes the non-interacting fictitious
electronic system moving in an overall effective field given by

veff(r) = vH(r) + vext(r) + vxc(r). (2.50)
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From Eq. (2.49) and Eq. (2.50), we obtain

δTs[n(r)]

δn(r)
+ veff(r) = µ. (2.51)

Now, the initial interacting many-body problem reduces to a set of
coupled one-particle KS orbital equations. In this procedure it is
necessary to solve the following set of N one-electron Schrödinger-
like equations



− 1

2
∇2 + veff



ψi = ϵiψi, (2.52)

where ψi are the KS orbitals and ϵi are the corresponding eigenenergies.
The effective potential, veff, depends on the electron density evaluated
using KS orbitals via

nKS(r) =
N

∑
i=1

|ψi|2. (2.53)

In order to find the density of the interacting system, the Kohn-Sham
equations Eq. (2.50), Eq. (2.52), and Eq. (2.53) must be solved self-
consistently. The general procedure is to start with an initial guess
for the electron density n(r) (for example, the superposition of free
atom electron densities), construct the effective potential, veff, and
then solve Eq. (2.52) to obtain the Kohn-Sham orbitals. Now based on
these orbitals, a new density is obtained and the process continues until
convergence is achieved.

Finally, the total ground state energy is given by the following
expression

EKS[n] =
N

∑
i=1

ϵi −
1

2



vH(r)n(r)dr−


vext(r)n(r)dr+ Exc[n]. (2.54)

If each term in the Kohn-Sham energy functional was known, we would
be able to obtain the exact ground state electron density and the total
energy of a system. Unfortunately, the functional form of Exc[n] is
unknown in general. This includes the non-classical part of the electron-
electron interaction along with the component Tc[n] of the kinetic
energy of the real system. Therefore, it is necessary to approximate Exc

and this issue will be discussed in detail in the next section.

2.5 The exchange–correlation approximations

For practical use of the Kohn-Sham equations to study the electronic
structure of atoms, molecules or materials, we must know the functional
form of the exchange-correlation energy a priori. The performance
of DFT calculations clearly depends on the approximation for the
exchange-correlation functional. However, the exact form of Exc

is unknown and may never be known in a closed mathematical
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form. The most popular exchange-correlation functional forms are
categorized with varying levels of complexity often known as "Jacob’s
ladder", a classification proposed by John Perdew [116]. The "Jacob’s
ladder" starts with the Hartree approximation (where Exc[n] = 0) or
independent electron approximation to the exact non-local exchange-
correlation functional.

Numerous approximations to vxc[n] = δExc[n(r)]
δn(r)

were proposed
over the years (See Ref. [117] for an extensive list of available
approximations). In the local-density approximation (LDA) the
exchange-correlation functional is expressed in terms of the (local)
electron density [42, 118]. The next level is categorized by generalized
gradient approximations (GGAs). In GGA-type approximations, Exc is
expressed in terms of the density and gradients of the density [119].
Furthermore, meta-generalized gradient (meta-GGA) approximations
also introduce a dependence of the exchange-correlation functional on
the second derivatives of the density or the Laplacians [120]. A class of
functionals called hybrid functionals on the other hand, can be obtained
from any functional by replacing a fraction of (local) exchange with HF
exact exchange [121].

All (semi)-local functionals suffer from the so called self-interaction
error. The self-interaction corrected functionals aim to eliminate self-
interaction error by introducing non-local corrections [122]. Finally,
optimized effective potentials (OEP) based exchange correlation
potentials indicate a class of local potentials derived from non-local,
orbital-dependent terms for the exchange-correlation energy [123].

2.5.1 The local (spin) density approximation

The simplest approximation for Exc is called the local (spin) density
approximation (LSDA or LDA). Here, the functional for the exchange-
correlation potential vxc is derived from a homogeneous electron gas
(HEG) model [42]. The exchange-correlation energy functional has the
form 7

ELDA
xc =



n(r)ϵHEG
xc [n(r)]dr (2.55)

where ϵHEG
xc is the exchange-correlation energy per particle of an

electron gas with uniform (spin) density. The analytical expression
for the exchange energy of the HEG model is known and given by [104]

ELDA
x = −3

2

 3

4π

1/3 

n4/3(r)dr (2.56)

However, the exact expression for the correlation energy component
Ec of the HEG is not known in general, but only known for high or
low density limits [124]. Calculations for intermediate densities of

7If we introduce the spin densities n↑ and n↓, then the exchange-correlation energy
per particle can be written ϵxc[n↑(r), n↓(r)].
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ϵHEG
c have been performed using the Quantum Monte Carlo (QMC)

method [125]. There are several variants of fits to ϵHEG
c which

give similar results [118, 126, 127]. The LDA approximation is
homogeneous in nature and valid for systems with slowly varying
densities and can be inaccurate in situations with strong density
inhomogeneity, for example in atoms or molecules. In general, LDA
predicts too strong binding, large cohesive energies and underestimates
lattice constants in solids [128, 129]. To overcome these limitations,
generalized gradient approximations have been developed wherein the
exchange-correlation energy depends on the gradient of the electron
density.

2.5.2 Generalized gradient approximations

In GGAs, the exchange-correlation potential contains also the
contribution from the gradient ∇n(r) of the electron density. The
form of the xc energy functional for GGA is given by

EGGA
xc =



n(r)ϵGGA
xc [n(r),∇n(r)]dr. (2.57)

For GGA functionals ϵGGA
xc [n(r),∇n(r)] is often written in terms of an

enhancement factor Fxc multiplied by the exchange-energy density of
the homogeneous electron gas

EGGA
xc =



ϵHEG
x Fxc(n(r),∇n(r))dr. (2.58)

The GGA type functional approximations typically perform better when
compared to LDA, especially for geometries and ground-state energies
of molecules [130–132]. There is another class of GGA approximations
containing one or more fitting parameter which are obtained by fitting
parameters in Fx to reproduce the total energies from the data of
atoms and molecules, e.g. revPBE [133, 134] and PBEsol [135]. This
sometimes provides better description of the electronic structure of
solids and surfaces. Becke and coworkers proposed an exchange
functional that was based on fitting of two parameters to bond and
dissociation energies of a set of diatomic molecules [136, 137]. The
functionals including Becke exchange approximation are popular in the
chemistry community, due to their fairly good description of atoms and
molecules e.g. BLYP [138].

2.5.3 Meta–generalized gradient approximations

A meta-GGA (mGGA) DFT functional in its original form includes the
second derivative of the electron density (the Laplacian). This is a
natural development after the GGA , that includes only the density
and its first derivative in the exchange-correlation potential [139–
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141]. Nowadays a mGGA functional is referred more typically to one
that includes a dependence on the kinetic energy density, i.e. on the
Laplacian of the orbitals. The general form of a (τ-dependent) mGGA
functional is

EmGGA
xc =



n(r)ϵmGGA
xc [n(r),∇n(r),∇2n(r)]dr. (2.59)

Here the kinetic-energy density is obtained using Kohn-Sham orbitals
and indirectly depends on the density. The kinetic energy density in
mGGA can approximately include exact exchange non-locality, that it
partially cures electron self-interaction error in semi-local GGAs. The
kinetic energy density using KS orbitals is given by [142]

τ(r) =
1

2 ∑
i

|∇ψi|2 (2.60)

where ψi are the Kohn-Sham orbitals. Moreover the following relation
for τ(r) holds

τ(r) =
1

4
∇2n(r)− 1

2 ∑
i

ψ∗
i ∇2ψi. (2.61)

Most mGGA functionals use only τ because it is strictly positive and
thus avoids the divergence of the Laplacian near the nuclei. Perdew
and coworkers argued [143] that ∇2n or τ(r) essentially contains the
same information beyond what is contained in n and ∇n. But the use
of τ(r) requires the evaluation of an additional functional derivative,
namely

δτ(r)

δn(r)
(2.62)

This term is hard to evaluate since τ is not an explicit functional of n(r).
The majority of meta-GGAs do not evaluate the functional derivative
with respect to the density but with respect to the KS orbitals [144].
There are many mGGA functionals which have been developed so far,
for example, PKZB [145] and TPSS [139] functionals. And there are
also mGGA which include a fraction of the exact exchange: M05 [146],
M06 [147, 148], and M08 [149] suite of functionals devised by Zhao
and Truhlar. These functionals can have many parameters fitted to
barrier heights of chemical reactions and non-covalent interactions.

2.5.4 Hybrid functionals

Hybrid functionals are a class of approximations to the Exc energy
functional in DFT. These functionals include a fraction of exact
exchange from the Hartree-Fock exchange energy using KS orbitals.
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The exact exchange energy functional can be expressed as

EEXX
x = −1

2 ∑
pq

  ψ∗
p(r)ψp(r

′
)ψ∗

q (r
′
)ψq(r)

|r − r
′ | drdr

′
(2.63)

This type of functionals reduce the self-interaction error present in
local LDA, semi-local GGAs and mGGAs functionals. In this approach
one needs to evaluate the non-local exchange operator which in
turn increases the computational cost [150]. The functional called
PBE0 [151, 152], which has the form

EPBE0
xc = a0EEXX

x + (1 − a0)EPBE
x + EPBE

c (2.64)

mixes 25% (a0 = 1/4) of exact exchange (EEXX
x ) with 75% exchange

energy from the PBE functional. The value 1/4 is was chosen based on
considerations from fourth order many-body perturbation theory [121,
153]. Another important hybrid functional is B3LYP [154]. It has the
following form

EB3LYP
xc = a0EEXX

x + (1 − a0)ELDA
x + a1∆EB

x + (1 − a2)EVWN
c + a2ELYP

c

(2.65)
where ∆EB

x corresponds to only the gradient correction to the exchange
energy given by Becke [137], ELDA

x is the LDA exchange functional,
EVWN

c is the LDA correlation functional of Vosko, Wilk, and Nusair
(VWN) [127], and ELYP

c the GGA correlation functional of Lee, Yang,
and Parr. The functional contains three empirical parameters, a0 = 0.20,
a1 = 0.72, and a2 = 0.81 fitted to reproduce atomization energies,
ionization potentials, and proton affinities of molecules. This functional
was first implemented in the Gaussian code 03 [155]. This functional
is one of the most popular in the quantum-chemistry community due to
its good description of molecules and their vibrational frequencies.

All functionals discussed up to this point do not treat long-
range electron correlation and thus, fails to describe van der Waals
interactions. We now proceed to discuss methods for long range
electron correlation energy.

2.6 Random–phase approximation for elec-

tron correlation energy

The random-phase approximation (RPA) was originally proposed
by Bohm and Pines [156–158] for the electron gas, but recently
it has also been applied to periodic solids [159–161] and finite
systems [47, 58, 162]. This approximation is used for computing
the ground-state correlation energy of many-electron systems and
intrinsically treats long-range correlation and thus also accounts
for van der Waals interactions. This method has shown significant
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improvements over semi-local density functionals for description of
non-covalent interactions. RPA correlation energy in density functional
theory is most often calculated in a post-processing or in non-self-
consistent framework. Within this approach, the XC energy (in RPA) is
obtained by the contribution of the exact exchange energy and the RPA
correlation energy ERPA

c [163–165]

ERPA
xc = ERPA

c + EEXX
x . (2.66)

The functional form of the RPA correlation energy ERPA
c can be

formulated based on the adiabatic-connection fluctuation-dissipation
theorem (ACFDT) [65, 79]. In this case the correlation energy can be
written as

ERPA
c = − 1

2π

 ∞

0
dωTr[ln(1 − χ0(iω)v) + χ0(iω)v] (2.67)

where ω is the frequency, v is the bare Coulomb interaction and
χ0 is Kohn-Sham density-density response function. The reference
bare response function χ0 computed using the set of single-particle
occupied and virtual orbitals ψp(r) with corresponding energies ϵp and
occupation numbers fp determined from semi-local DFT, Hartree-Fock
or hybrid self-consistent field calculations such that [166, 167],

χ0(r, r
′
, iω) = ∑

pq

( fp − fq)
ψ∗

p(r)ψp(r
′
)ψ∗

q (r
′
)ψq(r)

ϵp − ϵq + iω
. (2.68)

The exchange part for the RPA, EEXX
x is evaluated as the exact exchange

energy (See Eq. (2.63)). The molecular orbitals and energies appearing
in Eq. (2.68) are obtained after solving KS equations self-consistently.
Using DFT orbitals while evaluating ERPA

xc has been shown to work very
well for extended systems including metallic ones, providing very good
lattice constants, bulk moduli, heats of formation, adsorption energies
and surface energies [128]. However, RPA shows poor performance
for short-range correlation. This limitation can be removed through
incorporating a local field factor [168, 169] into RPA-like equations, or
can be added on via an explicit density functional.

2.7 van der Waals (vdW) interactions in

density-functional theory

Van der Waals (vdW) or dispersion interactions are ubiquitous in nature.
They arise from quantum-mechanical fluctuations in the electron
density, which lead to instantaneous dipole moments and higher-order
multipole moments. The instantaneous multipole moments on one
atom induce multipole moments on the second atom in turn. The
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interaction of these multipoles results in an attractive force, known
as London dispersion forces [170]. The term vdW not only refers to
the dispersion interactions, but may also include permanent multipole-
multipole interactions and permanent multipole-induced multipole
interactions. Here, we use the term "vdW" to refer to dispersion energy.
The local (LDA) and semi-local (GGAs) functionals of DFT take into
consideration only the electronic density at point r and in its immediate
neighborhood. Therefore, the density and its gradient expansion have
no information of fluctuations in the density which arise beyond few
Ångström away from the point where they are evaluated and fail to
capture correlations beyond this scale. For example, in the LDA and
GGA functionals, the asymptotic interaction between two neutral atoms
decreases exponentially, instead of the expected characteristic 1/R6

tail [171]. Intense efforts have been directed towards the development
of efficient DFT functionals which include vdW interactions. This
section provides a brief overview of the available approaches to include
vdW interactions in density-functional theory.

2.7.1 Nonlocal vdW density functionals

The vdW density functionals (vdW-DF) are nonlocal in nature and
explicitly depend on the electron density. These functionals model
dispersion based on coupled local oscillators having a frequency
determined by the local density and its gradient. The coupling
responsible for dispersion interactions is introduced through a double
integration and the chosen form ensures the standard 1/R6 asymptote,
but does not account for more intricate non-additive many-body effects.
In the general vdW-DF framework, the XC energy takes the form

Exc = E0
x + E0

c + Enl
c (2.69)

where E0
x and E0

c are the exchange and correlation terms from local
functional respectively and Enl

c is the nonlocal part accounting for long-
range vdW interactions. The simplest form for the nonlocal correlation
energy is given by

Enl
c =

 

n(r)ϕ(r, r
′
)n(r

′
)d3

rd3
r
′

(2.70)

where the correlation kernel ϕ(r, r
′
) depends upon |r − r

′ |, and the
charge density and density gradients at r and r

′
. The interaction

kernel ϕ(r, r
′
) is governed by two properties: at what separation the

interaction appears and the difference in electron density at interacting
points. Depending on the kernel function used four main flavors have
been developed are vdW-DF [54] and vdW-DF2 [172] from Chalmers-
Rutgers collaboration, and the somewhat more heuristic VV09 [173]
and VV10 [174] functionals from Vydrov and van Voorhis. The nonlocal
vdW-DF functional has been applied to a broad range of molecules
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and materials [175] and has already provided useful predictions for
weakly interacting systems, such as molecular complexes, polymer
crystals, and molecules adsorbed on surfaces. Recent studies for
bulk crystals [176, 177] suggest that many challenges still remain,
particularly in more complex materials including extended solids.

2.7.2 Atom pairwise dispersion corrections

The long-range vdW energy between two non overlapping fragments
A and B of the physical system under study can be expressed as a
multipolar expansion

EAB
disp = −CAB

6

R6
− CAB

8

R8
− CAB

10

R10
· · · (2.71)

where CAB
n are the multipolar vdW coefficients. A widespread approach

to include long-range vdW interactions in DFT is to truncate above
expression to the dipole-dipole order and keep only the leading CAB

6 /R6

term. Now, the dipole-dipole CAB
6 vdW coefficient can be expressed in

terms of the so-called Casimir-Polder integral [77]

CAB
6 =

3

π

 ∞

0
αA(iω)αB(iω)dω (2.72)

where αA/B(iω) is frequency-dependent polarizability of A and B
evaluated at imaginary frequency. The heteronuclear CAB

6 vdW
coefficient of two fragments A and B can be expressed as [178],

CAB
6 =

2CAA
6 CBB

6

αB
0

αA
0

CAA
6 +

αA
0

αB
0

CBB
6

(2.73)

in terms of the homonuclear coefficients CAA
6 and CBB

6 and their
static (αA

0 and αB
0 ) polarizabilities. In semi-empirical corrections

the C6 coefficients of Eq. (2.73) are evaluated, and the term
−∑A ∑B>A CAB

6 /R6 is added to the exchange-correlation energy in
DFT, with a suitable damping function which avoids singularity when
R → 0 and couples to the underlying DFT functional. The general form
of this type of correction to the DFT energy is

EDFT+vdW = EDFT + fdamp(RAB)
CAB

6

R6
AB

(2.74)

where fdamp is the damping function which may contain one or more
empirical parameters. There are several methods which are based
on Eq. (2.74) and differ in the way C6 coefficients are determined or
the damping function is defined [179–188]. Among these DFT+vdW
approaches, the ones proposed by Grimme (DFT-D) [183, 184], Becke
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and Johnson (XDM) [187, 189] and Tkatchenko and Scheffler (TS) [1]
are the most popular.

In DFT-D methods, the computation of dispersion coefficients
is based on calculated atomic ionization potentials and static
polarizabilities. This approach employs purely empirical pairwise
corrections with fixed C6 coefficients irrespective of the environment of
the atoms [183, 184]. However, the environment of an atom crucially
influences its polarizability. The C6 coefficient for carbon for instance
can vary by as much as about 20% for different hybridization states sp,
sp2, and sp3 [181]. Therefore, the dispersion coefficients do depend on
the electronic structure. In general, vdW coefficients strongly depend
on the molecular environment of each atom [190, 191]. This issue
is somewhat overcome by DFT-D3 method wherein C6 coefficient are
coordination number (geometry) dependent [192].

Becke and Johnson proposed an environment-dependent dispersion
correction called exchange-dipole moment (XDM) model [189]. The
XDM model stipulates that the dispersion attraction between two
molecules is due to the dipole moment of the instant exchange
hole of one molecule and the induced dipole moment of the second
molecule. This model is conceptually simple and yet has been shown
to yield fairly accurate dispersion coefficients without empirical fitting
parameters. Furthermore, it can be applied to both intermolecular and
intramolecular interactions with a simple density-partitioning scheme
and with one or two fitting parameters. The XDM model is especially
appealing because it can be made to depend only on the electron spin
densities and their gradients, which are the same list of variables as most
of the local or semi-local functionals. The first one is the change given by
scaling the polarizabilities of atoms in molecules from their reference
values according to their effective atomic volumes. The second is
through the changes of the exchange hole, which are a response to the
chemical environment, but are also difficult to quantify in a precise
manner.

The alternative TS method [1] determines polarizabilities and vdW
CAB

6 coefficients as a functional of the electron density. Based on
Eq. (2.73), heteroatomic CAB

6 coefficients can be calculated from the
knowledge of their homoatomic counterparts. The TS method uses the
Hirshfeld partitioning scheme [193] to define ‘’atom in molecule‘’ vdW
Ceff

6AA coefficients. The effective coefficients Ceff,AB
6 in a atom specific

environment are calculated based on the values for the neutral free
atoms Ceff,AA

6 and defined as

Ceff,AA
6 =



ηeff,A

ηfree,A



κfree,A

κeff,A

2

Veff,A

Vfree,A

2

Cfree,AA
6

=



ηeff,A

ηfree,A



κfree,A

κeff,A

2 
r3neff,A(r)d3

r


r3nfree,A(r)d3r

2

Cfree,AA
6 (2.75)



2.7 van der Waals (vdW) interactions in density-functional theory 35

where Veff,A/Vfree,A will be termed as Hirshfeld volume ratio. The
proportionality constant

 ηeff,A

ηfree,A

κfree,A

κeff,A

2
= 1 (2.76)

is assumed and this approximation is valid for a large variety of
molecular materials [1]. In general κfree,A

κeff,A ̸= 1, since the static
polarizability of a molecule cannot be expressed as a sum over atomic
polarizabilities or in a case where the concept of atoms-in-molecules
cannot be applied. Such assumption to represent polarizability can fail
qualitatively for metallic or low-dimensional systems [194]. The TS
method allows the definition of effective static atomic polarizabilities in
a material as a functional of electron density and can be expressed as

αeff,A =



Veff,A

Vfree,A



αfree,A. (2.77)

The reference values for free atom isotropic static polarizability αfree,A

and vdW Cfree,AA
6 coefficients are taken from self-interaction corrected

time-dependent DFT calculations [195]. The effective density neff,A(r)
is obtained through Hirshfeld partitioning [193]

neff,A(r) = n(r)
nfree,A(r)

∑B nfree,B(r)
, (2.78)

where n(r) is the electronic density of the complete system, nfree,A(r)
is the density of the free atom, and the index B runs over all atoms of
the molecule, taken as free atoms, but in the position they would be
actually found in the molecule. The vdW energy in the TS method has
the following form [1]

ETS = − ∑
A,B

fdamp(RAB, R0
AB)

CAB
6

RAB
. (2.79)

The damping function employed takes the form

fdamp(RAB, Reff,AB
vdW ) =



1 + exp


− d
 RAB

sRReff,AB
vdW

− 1
−1

. (2.80)

The term Reff,AB
vdW = Reff,A

vdW + Reff,B
vdW in Eq. (2.80) is the sum of effective

van der Waals radii [1]. The effective vdW radius of an atom A in a
molecule can be obtained from its free-atom van der Waals radius via

Reff,A
vdW =



Veff,A

Vfree,A

1/3

Rfree,A
vdW . (2.81)
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Here, the vdW radius, Rfree,A
vdW , corresponds to half the distance between

two atoms where the Pauli repulsion balances the London dispersion
attraction [196]. The Rfree,A

vdW for neutral atoms can be obtained from
electron density at the minimum of potential energy for rare gas
systems. In practice, noting the value of electron density contour at
the equilibrium separation for rare gas dimers, the value for Rfree,A

vdW for
other elements in the same row of the periodic table (See Table (A.1))
can be derived (where the electron density is obtained using accurate
wavefuction. e.g. CCSD method).

The parameter d in Eq. (2.80) which controls the steepness of
damping function was set to 20 as it was found to have only a
minor influence on the results in the range between 12 and 45.
The parameter sR controls the distance, RAB, at which the damping
function approaches zero, and hence defines the onset of the dispersion
correction. The best value of sR thus depends on the functional
that is employed. It was determined for several exchange-correlation
functionals using the S22 database [197]. The latter contains accurate
binding energies of 22 non-covalently bonded dimers based on CCSD(T)
calculations extrapolated to the complete basis set limit. The 22
dimers are sorted into groups with predominant vdW-bonded character,
predominant H-bonded character and mixed complexes. Recently,
Marom et al. [198] assessed the performance of several representative
XC functionals for the S22 database, a dimer of NiPc molecules and
the layered solid hexagonal boron nitride, with and without including
vdW interactions based on the TS scheme. For all functionals tested,
the inclusion of vdW interactions improved the description of binding
energies. However, a many-body description of vdW interactions is
essential for extended molecules and molecular solids. In the following
section, we introduce a method which includes many-body interatomic
vdW interactions within the DFT framework [7].

2.7.3 Many–body interatomic van der Waals interac-

tions

Interatomic pairwise dispersion approaches based on the standard
C6/R6 summation formula were popularized by Grimme [179] and
are now among the most widely used methods [188, 190, 199]
for including the dispersion energy in DFT. Despite their simplicity,
these pairwise-additive models provide remarkable accuracy when
applied to small molecular systems, especially when accurate dispersion
coefficients (C6) are employed for the atoms in molecules [1, 198].
Only recently have efforts been focused on going beyond the pairwise
treatment of vdW contributions, for example, the importance of the
non-additive three-body interatomic Axilrod–Teller–Muto term [192,
200, 201] was assessed, as well as the role of non-local screening in
solids [202] and molecules adsorbed on surfaces [203].

Furthermore, an efficient and accurate interatomic many-body
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dispersion (MBD) approach has recently been proposed [7], which
demonstrated that a many-body description of vdW interactions is
essential for extended molecules and molecular solids, and that
the influence of many-body vdW interactions can already become
significant when considering the binding between relatively small
organic molecules [7, 204]. As mentioned earlier, the influence of
the local environment on the polarizabilities is taken into account
in the TS scheme by involving the ground-state electronic density
through Hirshfeld partitioning. However, the polarizability of an atom
is also influenced by the fluctuating dipoles originating at atomic
sites located at larger distances (electrostatic screening). Recently,
Tkatchenko and co-workers [7, 57] proposed a method, here referred
to as MBD@rsSCS, that accounts for both many-body dispersion
contributions and screening effects. This is achieved by modelling the
atoms in the molecule as a collection of spherical quantum harmonic
oscillators (QHOs), which are coupled to each other via dipole-
dipole potential (which is based on coupled fluctuating-dipole model
(CFDM) [205]). The Hamiltonian for this model system reads [7]

ĤMBD = −1

2

N

∑
p=1

∇2
χp

+
1

2

N

∑
p=1

ω2
pχ2

p +
N

∑
p>q

ωpωq
√

αpαqχpTpqχq,

(2.82)
where χp =

√
mpξp with ξp describing the displacement of the QHO

p from equilibrium and mp = 1/(αpω2
p). The key ingredients are the

characteristic excitation frequencies ωp, the polarizabilities αp, and Tpq,
a dipole-dipole interaction tensor, which we will address in more detail
below. After diagonalizing the Hamiltonian, the many-body dispersion
(MBD) energy can be obtained via

EMBD =
1

2

N

∑
i=1



λi −
3

2

N

∑
p=1

ωp (2.83)

where λi denotes the eigenvalues of the Hamiltonian. The general form
of this type of correction to the DFT energy is

EDFT+MBD = EDFT + EMBD (2.84)

where the EDFT self-consistent energy is obtained using local or semi-
local functionals.

As mentioned earlier in this chapter, the adiabatic-connection
fluctuation-dissipation (ACFD) theorem [64, 65, 79, 206, 207] gives
an exact expression for the exchange-correlation energy. One of the
most popular approximations to evaluate the correlation energy in
this framework is the random-phase approximation (RPA) [163]. In
fact, it can be shown that for the model system of QHOs coupled
via a dipole-dipole potential the correlation energy of ACFD-RPA
corresponds to the energy expression in Eq. (2.83) [56]. From this, we
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can see that the Hamiltonian in Eq. (2.82) captures screening effects
as well as many-body energy contributions. Local or semi-local DFT
exchange-correlation functionals already efficiently account for short-
range correlation. In order not to double count short-range correlation,
in the MBD@rsSCS method a range-separation approach is used. This
is realized by range-separating the dipole-dipole interaction tensor
T into a long-range part TLR and a short-range part TSR , where in
the many-body Hamiltonian (Eq. (2.82)) only the long-range part
is employed. In this way, the many-body Hamiltonian will include
long-range screening, but will lack short-range screening effects. To
account also for short-range screening effects, short-range screened
polarizabilities αrsSCS

p (and characteristic excitation frequencies) are
obtained, which are then used as input in the many-body Hamiltonian.
This is done again by modelling each atom in the molecule as a spherical
QHO and employing the self-consistent screening (SCS) equations from
classical electrodynamics [3, 5, 80]

αrsSCS
p (r, iω) = αTS

p (r, iω) + αTS
p (r, iω)

N

∑
p ̸=q

TSRαrsSCS
q (r, iω) (2.85)

where αTS
p (iω) denotes the frequency-dependent polarizability obtained

from the TS scheme, which already accounts for hybridization
effects [1]. The positions of the atoms (QHOs) are denoted by rp

and rq with rpq = |rp − rq|. By employing a short-range only dipole-
dipole interaction tensor TSR , the polarizablities αrsSCS

p (iω) capture
only short-range screening. The characteristic excitation frequencies
ωrsSCS

p (iω) are also obtained from the SCS equations described above.
In more detail, the self-consistently screened characteristic excitation
frequencies are calculated from the CrsSCS

6 coefficients, which are
obtained by integrating the Casimir-Polder integral (see Eq. (2.72))
using αrsSCS (see Refs. [1, 7]). The short-range part of the dipole-dipole
interaction tensor is given by

TSR,pq = (1 − f (rpq))Tpq (2.86)

where the dipole-dipole interaction tensor is defined as Tpq = ∇rp ⊗
∇rqV(rpq).

V(rpq) =
erf[rpq/

√
2σ]

rpq
(2.87)

is the Coulomb potential for the interaction of two spherical Gaussian
charge distributions at distance rpq , where σ =



σ2
p + σ2

q with σp =

(
√

2/παTS
p (iω))1/3 being the width of the Gaussian function. The

function f (rpq) is the Fermi-type damping function as used also in the
TS approach (see Eq. (2.80)). The parameter d in Eq. (2.80) is fixed
to 6, while sR is determined separately for each exchange-correlation
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functional by minimizing energy differences with respect to the S66×8
database [32]. In principle, TLR is defined as TLR = T − TSR . However,
T is frequency dependent, which is not computationally efficient. The
interaction potential is a function of the Gaussian width σ, which
depends on the polarizability, which is in turn frequency dependent.
As only the long range is described here, one can approximate TLR as
the product of the damping function and the dipole-dipole interaction
tensor of two point dipoles

TLR = f (rpq)∇rp ⊗∇rq

1

rpq

= f (rpq)
−3ri

pqr
j
pq + r2

pqδij

r5
pq

(2.88)

where the indices i and j denote the Cartesian components of rpq.
The evaluation of the MBD@rsSCS long-range correlation energy
can now be summarized in three steps. In the first step, the
polarizabilities are obtained in the TS scheme. Then, the short-range
(SR) range-separated self-consistently screened polarizabilites αrsSCS

are obtained using the SCS procedure defined in Eq. (2.85). Using
αrsSCS, ωrsSCS and the long-range dipole-dipole interaction tensor
TLR one can then evaluate the many-body long-range correlation
energy using Eq. (2.83). The performance of the MBD@rsSCS method
coupled with the PBE and PBE0 exchange-correlation functionals was
recently benchmarked. This model has provided improved qualitative
and quantitative agreement with both experimental results and
wavefunction-based benchmarks [204]. Interestingly, MBD correctly
predicts the experimentally known relative stabilities of the molecular
crystal polymorphs of glycine [208] and aspirin [209], for which
pairwise corrections fail. Recent reviews provide perspectives on the
role of non-additive dispersion effects in molecular materials and the
key successes of the MBD model [81, 210].





3
Approaches for computing (linear)

response properties

This chapter introduces different methods for computing electronic
response functions for molecular systems. The interaction of electrons
in molecules with external electric or optical fields is characterized
by induced electric multipole moments. For example, the induced
dipole moment is related to the electric field through the dipole
polarizability. The static electric dipole polarizability can be defined
as a measure of the distortion of the electronic density under the
effect of a static external electric field. The electronic response
function is of central importance for understanding many physical
or chemical processes. The linear response theory provides a powerful
technique for relating theory and experiments. A central quantity
in this context is the frequency dependent density-density response
function which is a crucial ingredient to many theoretical calculations.
This quantity is related to many methods such as time-dependent
density functional theory (TDDFT) [43, 44], symmetry adapted
perturbation theory (SAPT) [45, 46], fluctuation-dissipation density
functional theory [47–49], GW calculations [50–52], van der Waals
interactions [53–57] or random phase approximation (RPA) [58–60]
as well as beyond-RPA [61–63] methods via the adiabatic-connection
fluctuation-dissipation theorem [64, 65]. This chapter is organized
as follows: Initially, we introduce general properties of a response
function that maps an external field to a physical observable. Then, the
finite field approximation is discussed for computing the static electric
response. Finally, we discuss the state-of-the-art linear response coupled
cluster singles and doubles (LR-CCSD) method for computing static and
dynamic response function molecules and materials. In the following
section, we will discuss how a specific response function is connected
to a specific physical property.

41
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3.1 Response function

In spectroscopic experiments, an external field E(r, t) is applied to a
sample. The sample, which is a fully interacting many-electron system
from the theoretical point of view, responds to the external field. Then
the response can measured for some physical observable P

∆P = ∆P [E ]. (3.1)

In general, the dependence of the functional ∆P [E ] on E is very
complex, as it must reproduce the response for a field of any
strength and shape. However, if the external field is weak, the
response can be expanded as a power series with respect to the field
strength [211, 212]. The first-order response, also called the linear
response of the observable

δP (1)(r, t) =
 

χ(1)(r, r
′
, t, t

′
)δE (1)(r

′
, t

′
)dr

′
dt

′
(3.2)

is a convolution of the linear response function χ(1)(r, r
′
, t, t

′
), and the

field δE (1)(r
′
, t

′
), expanded to first order in the field strength. The

linear response function is nonlocal in space and in time, but the above
time convolution simplifies to a product in frequency space

δP (1)(r, ω) = χ(1)(r, r
′
, ω)δE (1)(r

′
, ω) (3.3)

The linear response function χ(1)(r, r
′
, ω) depends only on a single

frequency ω, which is a consequence of the homogeneity of time. At
every order in the field strength, each observable/field pair has its own
response function that is connected to a specific physical property. For
example, the first-order response of the dipole moment to a dipole
electric field in first order is the polarizability. The second-order
response of the same pair provides the hyperpolarizability, and the first-
order response of the magnetic moment to a homogeneous magnetic
field is the magnetic susceptibility.

3.2 The finite–field method

Molecular response property calculations require energy derivatives,
which can be symbolically represented by dE

dλ where λ is a parameter
that defines the electronic Hamiltonian Ĥ(λ). For example, λ can
correspond to the nuclear coordinate in the case of nuclear derivatives
or an external electric field in the case of polarization. The static dipole
polarizability tensor, αij, of a molecule is expressed as

µi = αijEj (3.4)
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where µi is the induced dipole moment, Ej is the magnitude of the
electric field, and i,j label Cartesian components [21]. Alternatively,
the static dipole polarizability can be written as partial derivatives with
respect to components of the electric field (in the limit E → 0),

αij = −
 ∂E

∂Ei∂Ej



E→0
(3.5)

where E denotes the total energy of a system. Using the Hellmann-
Feynman theorem [213, 214] Eq. (3.5) for the dipole polarizability, it
can be written as,

∂E

∂λ
=
∂Ĥ

∂λ



. (3.6)

The Hellmann-Feynman theorem describes how the energy E of a
system changes as the Hamiltonian of the system varies with respect to
the interacting parameter λ. In the present case, the total Hamiltonian,
Ĥ is the sum of the unperturbed Hamiltonian, Ĥ0 and the perturbed
Hamiltonian, Ĥ1 and the interacting parameter is the electric field
strength, Ei. The perturbation caused by an electric field E is expressed
as1

Ĥ = Ĥ0 + Ĥ1 (3.7)

Ĥ1 = −µ · E (3.8)

µ = ∑
i

qiri (3.9)

where qi is the charge of the particle i at the location ri. Since the
unperturbed Hamiltonian Ĥ0 is independent of the electric field it
follows from Eq. (3.5) and Eq. (3.6)that

∂E

∂Ei
=
∂Ĥ

∂Ei



=
∂Ĥ1

∂Ei



= ⟨µi⟩ (3.10)

The static response properties of a molecule can be also defined by
expanding the field dependent energy E(E) in a Taylor expansion

E = E(0)+
 ∂E

∂Ei



0
Ei +

1

2!

 ∂2E

∂Ei∂Ej



0
EiEj +

1

3!

 ∂3E

∂Ei∂Ej∂Ek



0
EiEjEk + · · ·

(3.11)
Differentiation of above Eq. (3.11) with respect to electric field Ei yields

∂E

∂Ei
=
 ∂E

∂Ei



0
+

1

2!

 ∂2E

∂Ei∂Ej



0
Ej +

1

3!

 ∂3E

∂Ei∂Ej∂Ek



0
EjEk + · · ·, (3.12)

The expectation value of the dipole moment in the presence of the
electric field is the sum of the permanent dipole moment and the

1E ∈ {Ei, Ej, Ek} are Cartesian components of the electric field
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contribution induced by the field

⟨µi⟩ = µ0
i + αijEj + βijkEjEk + γijklEjEkEl · ·· (3.13)

where αij is the dipole polarizability, βi,j,k is the first hyperpolarizability
and γijkl is the second hyperpolarizability tensors. For a spherically
symmetric system the principle components of dipole polarizability
are equal i.e. αxx = αyy = αzz. For clusters or molecular systems,
the polarizability can be formulated as the second derivative of the
energy or first derivative of the induced dipole moment with respect
to external perturbing field (See Eq. (3.12) and Eq. (3.13)), using an
accurate wavefunction.

In order to evaluate the dipole moment the finite-field method
described by Cohen and Roothaan [215] can be employed. In this
method the dipole moment is calculated by taking the first derivative
of the energy E(Ej) (See Eq. (3.12)) by the external field Ei using finite
differences [216] (the central approximation). As a result we get the
following 2-point expression for the dipole moment components

µi =
E(Ei)− E(−Ei)

2Ei
. (3.14)

Similarly, the polarizability is the second derivative of the interaction
energy by the external field Ei. The 3-point finite-difference
approximation (with errors of order E2

i ) gives

αij = −E(Ei, Ej)− E(Ei,−Ej) + E(−Ei, Ej) + E(−Ei,−Ej)

4EiEj
(3.15)

αii = −E(Ei)− 2E(0) + E(−Ei)

E2
i

. (3.16)

The energy values E can be obtained using any total energy
method described earlier by applying finite electric field, that include
wavefuction based methods such as HF (Section (2.1.3)), MP2
(Section (2.1.5)), CCSD (Section (2.1.6)) or using any density
functional approximation (Section (2.5)).

The choice of the applied homogeneous field should be done
very carefully. For this purpose, one should carry out a series of
calculations with different amplitudes of the external field E . From
these calculations, we can find out the range of the amplitudes of
the field where the property under the investigation does not change
significantly with the change of the amplitude E . The field from this
range only can be used for the further calculation of the dipole moment.
Sometimes for different properties different amplitudes of the external
field should be applied. In general, the method described above can be
only applied to compute the static polarizability.
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3.3 Frequency–dependent polarizabilities

The response of molecules to static and dynamic (time- or frequency-
dependent) perturbations, e.g. external electric fields, is of great
importance for a variety of fields. For example, the frequency-
dependent polarizability, describing the linear response to an electric
field, determines optical properties such as refractive indices, dielectric
constants, Verdet constants, and Raman intensities, as well as vdW
dispersion coefficients of long-range intermolecular interaction [217].
In particular the expression for the dipole expectation value can be
used to define the permanent dipole moment and the polarizability
and hyperpolarizabilities as discussed in Eq. (3.13). The notation can
be established by writing the formulas for the first three molecular
response functions [217]

µ1
i = αij(−ω, ω)Ej (3.17)

µ2
i = βijk(−ω3; ω1, ω2)EjEk (3.18)

µ3
i = γijkl(−ω4; ω1, ω2, ω3)EjEkEl (3.19)

The time-dependent field components are here taken to be the
complex forms which combine in the nonlinear interaction to give
an induced dipole component at the sum frequency, ∑ ωi. The
negative sign indicates an output frequency. The most direct approach
to the calculation of the time-dependent polarizabilities is to apply
standard time-dependent perturbation theory to the evolution of
the wavefunction in the time-dependent Schrödinger equation. The
wavefunction is formally expanded in terms of the complete set of
molecular eigenfunctions (ground Ψ0 and excited states Ψn ) and the
solutions are obtained in terms of matrix elements of the perturbation
between these states and the corresponding eigenvalues [217]. For
example, the dipole polarizability is a linear response function to an
oscillating electric field Eiexp(−iωt) and is defined by the following
expression

αij(ω) = ∑
n ̸=0



⟨Ψ0|µi|Ψn⟩⟨Ψn|µj|Ψ0⟩
ω − ωn + iη



− ∑
n ̸=0



⟨Ψ0|µj|Ψn⟩⟨Ψn|µi|Ψ0⟩
ω + ωn − iη



(3.20)
where the summation is over all discrete and continuous spectra
(the sum-over-states method). The main task here is to find a set
of excitation energies ωn and matrix elements ⟨Ψ0|µi|Ψn⟩. The
frequencies ω should be far from any absorption frequencies.

We are often interested only in the spherical average (or isotropic
component) of the polarizability tensor ᾱ(ω) = (1/3)αii(ω), which can
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be written as (disregarding the infinitesimal shifts ±η)

ᾱ(ω) = ∑
n ̸=0

fn

ω2 − ω2
n

(3.21)

where fn are the oscillator strengths

fn =
2

3
ωn ∑

i

|⟨Ψ0|µi|Ψn⟩|2 (3.22)

The oscillator strength fn gives the intensity in the absorption or
emission spectrum of the electronic transition from state |Ψ0⟩ to state
|Ψn⟩ corresponding to the excitation energy ωn. The knowledge of the
dynamic polarizability ᾱ(ω) thus gives access to the full absorption or
emission spectrum of the system.

3.4 Coupled–cluster response theory

The coupled cluster (CC) response theory is the state-of-the-art method
for computing molecular response properties. CC theory has been
introduced in Section (2.1.6). The linear response coupled cluster
method (LRCC) have been used for calculations of static and frequency-
dependent first (hyper)-polarizabilities and described extensively in
literature [218–224]. Here, we present only basic features of this LRCC
method. The polarizability can be obtained as the second derivative of
the coupled-cluster energy functional from the original energy formula
Eq. (2.36). In this thesis we are concerned with the LRCC method which
compute dynamic polarizability at imaginary frequency. In the next
subsection, we present in brief derivation of linear response function
for complex frequency (for comprehensive details Ref. [225–227]).

Response function for a complex frequency

The linear response function for a coupled-cluster wavefunction is

⟨⟨A; B⟩⟩ω =
1

2
Ĉ±ω P̂A,B⟨Φ|(1 + Λ)



A, T̂
(1)
B,ω



+


H, T̂
(1)
A,ω



, T̂
(1)
B,−ω



|Φ⟩ (3.23)

where Ĉ enforces time-reversal symmetry and P̂ permutes A and B.
Evaluating this quantity requires, in addition to the cluster amplitudes
T̂, the evaluation of the Λ amplitudes of gradient theory and the first-
order response with respect to operators A and B at both positive
and negative frequency [225–227]. For a purely imaginary frequency
(ωR = 0), the linear response function can be reduced to the following
contributions from the real and imaginary components of the response
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amplitudes,
⟨⟨A; B⟩⟩ωI

= ⟨⟨A; B⟩⟩R + ⟨⟨A; B⟩⟩I (3.24)

⟨⟨A; B⟩⟩R = P̂A,B⟨Φ|(1 + Λ)


A, T̂
(1)
B,R



|Φ⟩

+ ⟨Φ|(1 + Λ)


H, T̂
(1)
A,R



, T̂
(1)
B,R



|Φ⟩ (3.25)

⟨⟨A; B⟩⟩I = Ĉ±ωI ⟨Φ|(1 + Λ)


H, T̂
(1)
A,I



, T̂
(1)
B,−I



|Φ⟩ (3.26)

where T̂
(1)
O,R is the real component of the response amplitudes with

respect to operator O at static frequency and T̂
(1)
O,±I are the imaginary

components of the response amplitudes with respect to operator O at
frequency ±ωI. The operator Ĉ±ωI symmetrizes with respect to ωI to
preserve time-reversal symmetry, while P̂A,B is the interchange operator
for property operators A and B. In the case of dipole polarizabilities, A
and B are both dipole moment operators, and the polarizability is given
by

αij(iωI) = −⟨⟨µi; µj⟩⟩ωI
. (3.27)

The equations to compute imaginary-frequency response and dynamic
polarizabilities were implemented in NWChem by Jeff Hammond [228].
The connection between imaginary-frequency dynamic polarizabilities
and C6 coefficients can be derived using perturbation theory for long-
range intermolecular forces. To obtain C6 coefficients, the Casimir–
Polder integral must be evaluated numerically. The coupled cluster
response theory is an accurate way to obtain dynamical response of the
system. However, this method is very expensive and can be applied
efficiently to system with less then a few dozen atoms.

3.5 Time–dependent density–functional the-

ory (TDDFT)

Time Dependent Density Functional Theory (TDDFT) extends DFT to
model time dependent phenomena. Many excited states properties
can be obtained by directly solving the TDDFT equations given an
initial condition and a time-dependent external potential (which is
usually fixed for a system). TDDFT is an exact reformulation of the
time-dependent Schrödinger equation and can be applied to describe
in general time-dependent phenomena [229, 230]. TDDFT is based on
the Runge-Gross (RG) theorem [43]. It states that there is a one-to-one
correspondence between time-dependent density and time-dependent
external potential, vRG

eff (r, t),

vRG
eff (r, t) = vH(r, t) + vxc(r, t) + vext(r, t) (3.28)
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which is extension of the effective single-particle potential Eq. (2.50)
and the time-dependent density, n(r, t),

n(r, t) = ∑
i

|Ψi(r, t)|2. (3.29)

The time-dependent KS equations are written as follows,



− 1

2
∇2 + vRG

eff (r, t)


Ψi(r, t) = i
d

dt
Ψi(r, t). (3.30)

Solutions of above Eq. (3.30) for an electronic system yields the time-
dependent KS orbitals and time-dependent density, n(r, t). The exact
functional form of the time-dependent exchange-correlation potential,

vxc(r, t) =
δExc[n(r, t)]

δn(r, t)
(3.31)

is unknown, therefore in practice it needs to be approximated. In real-
time TDDFT the key quantity for electric response is the time-dependent
dipole that can be calculated directly from the electronic density and
the atomic charges, ZA, and positions, RA

µ(t) =


rn(r, t)dr − ∑
A

ZARA (3.32)

In this approach, to obtain the absorption spectrum one first excites
the system from its ground state by applying a uniform electric field of
the form Eext(r, t) = δ(t)E . The constant coefficient E should be small
enough for the system to remain in the linear regime. In practice, it is
more precise to apply the kick as a phase in the initial conditions Ψ(t =
0+) = Ψ(t = 0−)e−iEr. The Kohn-Sham equations are then propagated
forward in real time, and the time-dependent density n(r, t) is readily
computed. The polarizability is obtained by doing the propagation for
three perturbations, one along each axis, and then obtaining the time-
dependent dipole moment for each one of them, hence building the
µij(t) tensor, the first index indicates the components of the dipole and
the second the direction of the perturbation. The complex polarizability
tensor as a function of frequency ω, is then calculated as a Fourier
transform

αij(ω) =
1

E


e−iωt.[µij(t)− δijµi(0)]dt (3.33)

This approach has been used for a large variety of systems: metal
and semi-conducting clusters [231–234], aromatic hydrocarbons [235–
237], or protein chromophores [238, 239]. The advantage of real
time-propagation TDDFT is that non-linear response can be computed
as well. However, real-time TDDFT calculations can became rather
expensive for realistic systems. In the following section, we introduce
linear-response extension of TDDFT.
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3.6 Linear–response formulation of TDDFT

Many applications of TDDFT involve the calculation of optical
absorption spectra in the linear regime using the dipole approximation.
The results of such calculations can be compared with the findings
of spectroscopic experiments in case when the external perturbing
field is small. Despite the local nature of the effective single-particle
potential vKS, the full solution of the time-dependent Kohn-Sham
(TDKS) equations can be quite demanding for very large systems. On
the other hand, the calculation of physical observables like excitation
energies or polarizabilities of atomic and molecular systems requires
only the knowledge of the linear density response of the system. A
much simpler perturbative solution of the TDKS equations therefore
seems desirable. Linear response theory is a reformulation of the time-
dependent Schrödinger equation in a perturbative treatment. Following
Ref. [240], consider a small perturbation v1(r, t) which is applied at
time t0 to a many-electron system in its ground state

vext(r, t) =



v0(r) if t ≤ t0

v0(r) + v1(r, t) if t > t0

The system reacts to this perturbation with a time-dependent density
response which can be written as a functional Taylor series expansion

n(r, t)− n0(r) = n1(r, t) + n2(r, t) + n3(r, t) + · · · (3.34)

Here, n0(r) denotes the ground-state density of the unperturbed system
at t ≤ t0 and a lower index is used to indicate the order in the external
perturbation, such that, the first order perturbation is indicated by
v1. The exact first order density response n1(r, t) can be expressed
according to

n1(r, t) =
 

χ(r, r
′
, t, t

′
)v1(r

′
, t

′
)dr

′
dt

′
, (3.35)

where χ(r, r
′
, t, t

′
) denotes the density-density response function of the

interacting system

χ(r, r
′
, t, t

′
) =

δn[vext](r, t)

δvext(r
′
, t

′)






v0

(3.36)

Making use of the functional chain rule the interacting response
function can also be written as

χ(r, r
′
, t, t

′
) =

 
δn(r, t)

δvKS(r1, t1)

δvKS(r1, t1)

δvext(r
′
, t

′)






v0

dr1dt1 (3.37)
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Next, we take the functional derivative of Eq. (2.50) with respect to the
external potential

δvKS(r, t)

δvext(r
′
, t

′)
= δ(r − r

′
)δ(t − t

′
)+

 


δ(t − t1)

|r − r1|
+

δvxc(r, t)

δn(r1, t1)



δn(r1, t1)

δvext(r
′
, t

′)
dr1dt1. (3.38)

Inserting Eq. (3.38) into Eq. (3.37) we arrive at

χ(r, r
′
, t, t

′
) = χKS(r, r

′
, t, t

′
)+



dr1



dt1



dr2



dt2χKS(r, r1, t, t1)

×


δ(t1 − t2)

|r1 − r2|
+ fxc[n0](r1, r2, t1 − t2)



χ(r2, r
′
, t2, t

′
), (3.39)

where we have introduced the Kohn-Sham response function

χKS(r, r
′
, t, t

′
) =

δn[vKS](r, t)

δvKS(r
′
, t

′)






vKS[n0]

, (3.40)

and the so-called exchange-correlation kernel

fxc[n0](r, r
′
, t, t

′
) =

δvxc[n](r, t)

δn(r′
, t

′)






n0

, (3.41)

Eq. (3.39) is the central result of the TDDFT response formalism. It
is a Dyson-type equation which relates the interacting and the Kohn-
Sham response functions. Inserting the response Eq. (3.39) back into
Eq. (3.35) leads to the time-dependent Kohn-Sham equation for the
linear density response

n1(r, t) =
 

χKS(r, r
′
, t, t

′
)vKS,1(r

′
, t

′
)dr

′
dt

′
. (3.42)

The effective potential

vKS,1(r, t) = v1(r, t)+


n1(r
′
, t)

|r − r
′ | dr

′
+
 

fxc[n0](r, r
′
, t, t

′
)n1(r

′
, t

′
)dr

′
dt

′
,

(3.43)
contains the external perturbation v1, as well as the Hartree and
exchange-correlation contributions up to first order in the perturbing
potential v1. The result in Eq. (3.42), Eq. (3.43) shows, that the
exact linear density response n1(r, t) of an interacting system can be
written as the linear density response of a non-interacting system to
the effective perturbation vKS,1(r, t). For the treatment of excitation
energies and polarizabilities it is useful to consider the linearized Kohn-



3.6 Linear–response formulation of TDDFT 51

Sham Eq. (3.42) in frequency space. Inserting Eq. (3.43) in Eq. (3.42)
and performing a Fourier transform, the frequency-dependent linear
density response can be written as

n1(r, ω) =


χKS(r, r1; ω)v1(r1, ω)dr1

+
 

χKS(r, r1; ω)



1

|r1 − r2|
+ fxc[n0](r1, r2; ω)



n1(r2, ω)dr1dr2.

(3.44)

The Kohn-Sham response function χKS can be directly expressed in
terms of the static unperturbed Kohn-Sham orbitals ψk(r) = ψk(r, t0)
, their occupation numbers fk (with values 0 or 1), and their orbital
energies ϵk

χKS(r, r
′
; ω) = ∑

j,k

( fk − f j)
ψj(r)ψ

∗
k (r)ψ

∗
j (r

′
)ψk(r

′
)

ω − (ϵj − ϵk) + iη
. (3.45)

The summation extends over both occupied and unoccupied orbitals and
includes also the continuum states. We stress here that some functional
derivatives that have been considered in the present section rely on
the inverse mappings, vext(r, t) = vext[n](r, t), vKS(r, t) = vKS[n](r, t).
The existence and uniqueness of these mappings are guaranteed by
the Runge-Gross [43] and van Leeuwen’s theorem [241] so that all
functional derivatives are well defined. From the relation Eq. (3.41) it
can be seen that approximations for the exchange-correlation kernel fxc

can be obtained by evaluating the functional derivative of approximate
time-dependent Kohn-Sham potentials with respect to the density. The
most commonly used approximations for the kernel fxc include the
adiabatic LDA (ALDA) and the so-called PGG (Petersilka, Gossmann,
Gross) kernel [242]. The ALDA is based on the functional form of the
static LDA and given by

f ALDA
xc [n0](r, r

′
; ω) = δ(r − r

′
)

d2

dn2



nϵHEG
xc (n)







n=n0(r)

(3.46)

where ϵHEG
xc (n) is the energy density of the homogeneous electron gas

with density n. The PGG kernel reads

f PGG
xc [n0](r, r

′
; ω) = −2|∑k fkψk(r)ψ

∗
k (r

′
)|2

|r − r
′ |n0(r)n0(r

′)
(3.47)

and is derived from the exchange-only limit of the time-dependent
Kohn-Sham potential within the optimized effective potential theory of
TDDFT [240]. Both approximations are frequency independent which
has implications for the calculation of excitation energies within TDDFT.



52 Approaches for computing (linear) response properties

Important applications of the TDDFT response formalism include: The
calculation of excitation energies. Optical absorption spectra of atoms
and molecules which are accessible from the frequency-dependent
polarizability

αij(ω) = − 2

E


n
(i)
1 (r, ω)rjdr, i, j = x, y, z (3.48)

that emerges as response to a monochromatic perturbing potential
v
(i)
1 = Ericos(ωt). In general, the photoabsorption cross section tensor

σij(ω) is related to the tensor of the frequency-dependent polarizability
according to

σij(ω) =
4πω

c
Im[αij(ω)]. (3.49)

The calculation of van der Waals CAB
6 dispersion coefficients between

two molecules A and B, which can be computed using the Casimir-
Polder formula.

CAB
6 =

3

π

 ∞

0
αA(iω)αB(iω)dω. (3.50)

The response properties of a system can be calculated from a direct
propagation of the full TDKS equations in real-time with a weak
perturbing potential.

A key property of the TDDFT response formalism is that all involved
quantities are solely functionals of the ground-state density so that only
a much cheaper KS ground-state calculation has to be performed to
compute the induced density response. In general, the construction
of the bare response function, χKS(r, r

′
, ω) in Eq. (3.45), from single-

particle KS orbitals is one of the major computationally demanding
tasks.
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The molecular polarizability is an essential quantity for the description
of many physical and chemical processes, such as the scattering of light
by molecules, and intermolecular interactions. The theoretically derived
polarizabilities have been used in the verification of experimentally
determined values and, in the prediction of properties as well as the
design of new materials. Therefore, an accuracy of a few percent in
the calculated values is necessary for this purpose. The present chapter
provides a brief overview of the description of electronic polarizability
and van der Waals C6 coefficients of molecules using first-principles
techniques, and contrasting them with experimental measurements.
There are various methods for the calculation of molecular response
properties (as discussed extensively in Chapter (3)). Several ab initio

methods have become available for the accurate determination of
frequency-dependent polarizabilities. In particular, time-dependent
Hartree-Fock (TDHF) [243], time-dependent MP2 [244–247], and
coupled-cluster response theory [222, 248, 249] which have been
also used for the calculation of (hyper)polarizabilities. On the other
hand, time-dependent density-functional theory (TDDFT) provides an
efficient framework for calculating molecular response functions; this
includes real-time propagation as well as linear response methods. The
advantage of real time-propagation TDDFT is that all order responses
can be computed as well. This approach has been used for a large
variety of systems: aromatic hydrocarbons [235–237], metal and semi-
conducting clusters [231–234], and protein chromophores [238, 239].

A direct comparison of calculated and experimental polarizabilities
also requires the ability to calculate frequency-dependent polarizabili-
ties since experiments are mostly performed at nonzero frequencies. In
this work, calculations of static and dynamic molecular polarizabilities
are presented using various methods. Also, the underlying motivation
of this study is to explore the accuracy of commonly used electronic

53
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structure methods to calculate static dipole polarizability as well as
asymptotic vdW C6 coefficients for molecules. The static polarizability
calculations have been carried out using finite field method (as
discussed in Section (3.2) in Chapter (3)) using total electronic energy
using wavefunction based methods as well as using semi-local and
hybrid functionals in DFT. The dynamic polarizabilities are calculated
using the linear response coupled-cluster singles and doubles (LRCCSD)
method. Accurate experimental data for molecular polarizabilities and
vdW coefficients are considered as a reference for selecting the most
accurate electronic structure method. This chapter is organized as
follows: First, we introduce the experimental representative datasets
for static molecular polarizabilities and asymptotic vdW coefficients.
Then, we present the computational details for the calculations
performed for the present study. Moreover, we discuss the results
by comparing them with experimental measurements. Finally, we
present benchmark sets of electric static dipole polarizabilities of ≈7.5k
molecules and a large database (≈ 1.2k systems) of inter-molecular CAB

6
coefficients. The following section provides details about an extensive
dataset of experimental molecular polarizabilities and a set of vdW
C6 coefficients obtained from experimental (pseudo) dipole oscillator
strength distributions data.

4.1 Experimental reference datasets

4.1.1 Static polarizabilities

A straightforward technique for measuring polarizabilities is to deflect
the atoms in an inhomogeneous electric field. There are many reviews
of polarizability data, including experimental details [250]. The
experimental polarizabilities are mostly determined by measurements
of a dielectric constant or refractive index which can be very accurate
to ≈0.5%. However, the polarizabilities should be analyzed with some
caution as some of the results may contain contributions from the
optical frequencies [250]. The CRC Handbook of Chemistry and Physics
provides an annually updated list of polarizability values for atoms and
molecules [250]. Here, we have compiled a set of 238 small (organic)
molecules ranging from simple diatomic to polyatomic systems. The
experimental values for isotropic molecular polarizability are available
for this dataset [250] (See Table (A.4)).

In many cases, the polarizability is well approximated by a single
scalar value. However, the polarizability is a tensorial property and
in Cartesian reference frame it is a rank 2 tensor. The isotropic
polarizability αiso is defined as an average of principal components
of the polarizability tensor. To perform a rigorous analysis of
components of the polarizability tensor, we refer to data as compiled
by Thole [5] for various molecular systems. This data set contains
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small (organic) molecules ranging from simple diatomics (H2, CO
etc.) to polyatomic systems like cyclohexane. Importantly, for these
molecules, experimental data for the principal components of molecular
polarizability tensor are available as compiled in Ref. [5].

4.1.2 vdW coefficients from dipole oscillator strength

distributions

A variety of important properties of molecules can be evaluated
using the dipole oscillator strength distributions (DOSDs) data. The
DOSDs for an atom or a molecule is defined using (differential) dipole
oscillator strengths, ∂ f /∂ω, as a function of excitation energy ω,
from the electronic absorption threshold ω0 up to high energies. The
DOSDs is usually derived using the molecular photo-absorption and
fast electron inelastic scattering data [251–264]. These distributions
were constructed from extensive experimental information, including
discrete oscillator strength, photoabsorption, and high energy inelastic
scattering data, and were constrained to satisfy the Thomas-Reiche-
Kuhn sum rule and to reproduce available accurate refractivity and
dispersion measurements data for the dilute gases. As such, these
distributions represent a collection of the best information on the dipole
oscillator strength distributions available.

The DOSDs have been used to evaluate a variety of properties for
the atoms and molecules of interest including dipole-dipole dispersion
coefficients. In present work, we have assembled a dataset of
vdW C6 coefficients which are derived from DOSD information (See
Table (A.3)) [251–264]. This dataset contains CAB

6 coefficients for 1225
pairs of species that include atom-atom, atom-molecule and molecule-
molecule interactions. The DOSDs and the derived C6 coefficients are
based on experimental results with an estimated accuracy of ≈2%
[252, 253]. In the following section, we discuss the computational
methodology used to perform calculations in the present work.

4.2 Computational details

All DFT calculations were carried out with the FHI-aims package [265],
which implements full-potential, all-electron electronic-structure theory
with numeric atom-centered (NAO) basis functions. The FHI-aims all-
electron code offers accurate and efficient implementation of DFT with
(semi-)local, hybrid functionals and beyond DFT methods to obtain
ground-state properties of periodic and cluster systems, up to systems
with thousands of atoms. Furthermore, the molecular polarizabilities
have been determined via a finite field (FF) approach (as discussed
in Section (3.2)), by using positive and negative perturbing fields and
then calculating the polarizability from the changes in the induced
dipole moment (i.e. two-point finite differences). The polarizability
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can be obtained using methods described in Chapter (3) by applying a
finite electric field, that include wavefunction based methods or using
any density functional approximation (Section (2.5)). The choice of
the applied homogeneous field has been made very carefully. For this
purpose, one should carry out a series of calculations with different
amplitudes of the external field E . From these calculations, we can find
out the range of the amplitudes of the field where the property under
the investigation does not change significantly with the change of the
amplitude E . The field from this range only can be used for the further
calculation of the dipole moment.

A usual way of obtaining C6 coefficients is Cauchy series. In this
procedure the dynamic polarizability is fitted to Cauchy polynomial
and expansion coefficients of this series are related to vdW coefficients.
The method used in present work evaluate dynamic polarizability on
imaginary frequency argument. We have calculated the frequency-
dependent polarizability for atoms and small molecules using the linear-
response coupled-cluster method (LR-CCSD), as implemented in the
NWChem code [225–227]. The dynamic dipole polarizability tensor for
an atom and a molecule is obtained as function of frequency argument
iω, by solving linear response equations based on the converged
coupled cluster wave function including single and double excitations,
as discussed in Section (3.4). The vdW CAB

6 coefficients, for system
A and B determines the attractive dipole-dipole vdW interaction. The
CAB

6 coefficients are calculated using the Casimir-Polder formula as an
integral over imaginary frequency-dependent polarizability, α(iω). The
integral over dynamic polarizability on the imaginary axis was evaluated
by numerical quadrature scheme to obtain the CAB

6 coefficient. Here,
we used a 20 point Gaussian-Legendre quadrature rule to determine
the vdW CAB

6 coefficient. Due to the increasing computational cost of
correlated calculations with the number of electrons and basis functions,
the basis set limit could not be explored in all cases. Therefore, the
augmented d-aug-cc-pVDZ basis set been used for all p block elements
which allows us to obtain dynamic response for a molecule as large
as linear heptane. In following section, we compare experimental and
calculated polarizabilities and vdW C6 coefficients.

4.3 Results and discussion

4.3.1 Polarizabilities and vdW C6 coefficients from

linear response coupled cluster singles and

doubles theory for atoms and molecules

The electronic response of an atom or a molecule to time-varying
electric fields is more complex than the static behavior. Hence a more
sophisticated description of the polarizability is needed here than in
the static case. In particular, the antisymmetric part of the tensor
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polarizability can be nonzero. A system can absorb and emit photons
so the polarizability tensor consists of two parts: a dispersive part and
an absorptive part and they are related to one another by a Kramers-
Kronig transformation [266, 267]. The polarizability depends on the
frequency of the light inducing the dipole moment. However, as the
frequency increases to extremely high values, eventually the charges
are unable to follow the changing field and the polarizability then drops
to zero. The polarizability α(iω) is well-defined on the whole imaginary
axis. The dispersion of α(iω) is smooth and monotonic. Here, we first
discuss static polarizabilities calculated using accurate linear-response
coupled-cluster single double (LRCCSD) method.

The Table (4.1) provides isotropic and principal components of
the polarizability tensor for benzene calculated using the LRCCSD
method using a few basis sets. The relative principal components of

Table 4.1: The isotropic polarizability αiso, along with its three components
αxx, αyy and αzz (in bohr3) for benzene molecule calculated using LR-CCSD
method (in bohr3).

Basis set αiso αxx=αyy αzz Time1(s)
6-31G 51.2 67.7 18.3 1016
6-31++G** 64.9 77.0 40.9 6266
aug-cc-pVDZ 69.6 81.7 45.4 10064
d-aug-cc-pVDZ 69.9 82.1 45.5 18384
aug-cc-pVTZ 69.5 81.3 44.9 68723
Experiment [268–271] 71.28± 0.89 82.36 ±0.79 49.13 ±1.09

1 800 cpu for single response calculation at ω = 0.

polarizability tensor obtained using the LRCCSD method correlate well
with those obtained using experiment. The LRCCSD method correctly
captures anisotropy in molecular polarizability tensor of benzene. It can
be noticed that using Dunning’s correlation consistent basis sets which
include polarization functions by definition provide accurate scalar
and tensor polarizabilities. For benzene, Dunning’s basis sets greatly
outperform Pople basis sets of similar size for polarizability calculations
at the CCSD level of theory. However, the component of polarizability
tensor perpendicular to benzene plane is underestimated as compared
with experiment and would require more denser basis set to converge to
this limit. The LRCCSD calculations are difficult to converge especially
in the static case. Since LRCCSD calculations are computationally
demanding here we use the d-aug-cc-pVDZ basis set for all subsequent
calculations for molecules. This basis set can be augmented with
core functions for geometric or nuclear property calculations, and
with diffuse functions for electronic excited-state calculations, electric
response property calculations, and long-range interactions, such as
vdW forces. The Table (4.2) shows the three components of the
molecular static polarizability αxx, αyy and αzz, along with the isotropic
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Table 4.2: The isotropic polarizability αiso, along with its three components
αxx, αyy and αzz (in bohr3) for a database of molecules calculated using
LR-CCSD method along with experimental reference data taken from Ref.
[5, 269].

Experiment LRCCSD
molecule αiso αxx αyy αzz ∆α αiso αxx αyy αzz ∆α
H2 5.3 4.9 4.9 6.3 1.4 5.2 4.5 4.5 6.6 2.1
N2 11.9 9.8 9.8 16.1 6.3 11.8 10.2 10.2 14.9 4.6
O2 10.8 8.2 8.2 15.9 7.7 10.3 8.0 8.9 14.2 5.8
CO 13.2 11.0 11.0 17.6 6.6 13.3 11.9 11.9 16.1 4.1
Ethane 30.2 26.9 26.9 37.1 10.2 28.7 27.5 27.5 31.1 3.6
Propane 43.1 38.7 38.7 51.7 13.0 40.8 37.7 39.8 44.8 6.3
Cyclopentane 61.7 56.7 61.9 66.7 8.6 59.7 54.1 62.4 62.5 8.4
Cyclohexane 74.2 63.3 79.7 79.7 16.4 71.3 65.0 74.5 74.5 9.5
Dimethylether 35.4 29.6 33.3 43.1 12.0 34.0 31.1 31.8 39.2 7.8
P-dioxane 58.0 47.2 63.4 63.4 16.2 57.5 52.6 55.2 64.6 10.9
Methanol 22.4 17.9 21.8 27.6 8.5 21.6 20.3 20.7 23.7 3.2
Ethanol 34.3 30.4 33.6 38.9 7.4 33.7 31.4 33.6 36.2 4.2
Formaldehyde 16.5 12.4 18.6 18.6 6.3 18.1 13.1 18.3 23.0 8.5
Acetone 43.1 29.8 49.7 49.7 19.9 42.5 34.5 45.7 47.4 12.2
Acetonitrile 30.2 26.0 26.0 38.7 12.8 29.4 24.4 24.4 39.3 14.8
(CH3)3CCN 64.7 60.9 60.9 72.3 11.3 65.6 61.6 61.6 73.6 12.0
Methane 17.7 17.7 17.7 17.7 0.0 16.8 16.8 16.8 16.8 0.0
Benzene 69.7 45.1 82.0 82.0 36.9 69.7 45.4 81.8 81.8 36.4

static polarizability, αiso, and polarizability anisotropy1 ∆α for a set of 18
molecules calculated using LRCCSD theory compared with experimental
data [5]. The polarizabilities calculated using LRCCSD linear response
correctly reproduce relative principal components of polarizability
tensor as compared with experiments. For this set of 18 molecules
LRCCSD theory predicts isotropic static polarizabilities with accuracy of
3.1%. The mean average relative error2 (MARE) between experimental
polarizability anisotropy ∆α to that obtained using LRCCSD method is
31.7%. The source of such error on polarizability anisotropy ∆α could
be due to larger errors in relative values of the principal components
of the tensor. Discrepancies between theory and experiment for
the principal components of polarizability are of the order of 10%.
Therefore, errors of 10% in the principal components imply errors larger
than 50% in differences between components. In general to define the
polarizability tensor for a chiral material essentially requires (at the
most) six components of tensor. Also, the mean unsigned error on ∆α
is -19.6% with respect to experiments. The experimental studies did
not distinguish between αxx and αyy for propane molecule or between

1The anisotropic polarizability ∆α for any polyatomic molecule can be expressed as,

∆α =



1
2



(αxx − αyy)2 + (αxx − αzz)2 + (αyy − αzz)2


.
2Here, {ai} are the set of N reference values and by { fi} the corresponding N
calculated values. The individual errors with respect to the actual values are given by:
MARE = 100

N ∑
N
i=1 |

fi−ai
fi

| ; MRE = 100
N ∑

N
i=1

( fi−ai)
fi

.
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αyy and αzz for P-dioxane, formaldehyde and acetone, while electronic
structure calculation lead to visible difference in these components of
the polarizability [5].

So far we have analysed the static polarizabilities determined using
the LRCCSD method. Now, we discuss the dynamic polarizability
evaluated on the imaginary axis. We have selected a set of atoms and
molecules (See Table (A.1) and A.3). For these systems, accurate values
for vdW C6 coefficients are available from experimental dipole oscillator
strength distributions (DOSD) data [251–264]. The Figure (4.1)–

Figure 4.1: A) Correlation plots for van der Waals C6 coefficients computed
using LR-CCSD method with respect to accurate DOSD results from the
experiments for 1128 pairs of inter-molecular, CAB

6 coefficient. B) The relative
error for C6 coefficients derived using LR-CCSD theory with respect to DOSD
values for 1128 pairs (including atom-atom, atom-molecule and molecule-
molecule interaction).
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A shows the correlation plot for CAB
6 coefficients for 1128 pairs of

species that include atom-atom, atom-molecule and molecule-molecule
interaction calculated using LRCCSD method compared with CAB

6
coefficients derived from DOSD information [1, 252–264]. The MARE
for 40 pairs of homo-molecular, CAB

6 coefficients is 6.3% with respect
to experiments. The LRCCSD method predicts vdW coefficients with an
accuracy of 4.9% for 1128 pairs including atom-atom, atom-molecule
and molecule-molecule interaction with respect to DOSD data.

The calculated polarizabilities at imaginary frequency iω behave
correctly at large frequencies. Furthermore, the relative error
distribution between experimental and calculated vdW coefficients
using LRCCSD are shown Figure (4.1)–B. It can observed that there is
a systematic underestimation of C6 coefficients with respect to those
derived using DOSD data. These errors are most likely due to the
omission of higher-excited amplitudes and smaller basis set. The only
outliers for LRCCSD method are cases involving the N2O and SO2
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molecule (10–25% deviation), where DOSD values [263] are smaller
then those derived using LRCCSD theory. Furthermore, the source of
such errors is the incorrect description of static limit ω ≈ 0. Such
error in C6 coefficients can be eliminated by using accurate static
polarizability value in Eq. (2.73) for atoms and molecules. The MARE
for static polarizabilities calculated using LR-CCSD with respect to
experimental values [250] for 39 molecules is 4.9% (see Table (A.3)).
The accuracy of isotropic static dipole polarizabilities and vdW C6

coefficients for neutral free atoms in gas phase computed at LR-
CCSD level of theory with respect to self-interaction corrected TDDFT
values from the database of Chu and Dalgarno [195], is 3% and 5%,
respectively, for α(0), and C6 coefficients(See Table (A.1)). Moreover,
using accurate experimental static polarizability vdW C6 coefficients
for all 1128 pairs can be corrected using Eq. (2.73). This approach
provides a way to correct C6 coefficients derived using LRCCSD theory
and yields vdW coefficients with an accuracy of 3.4%. The Figure (4.1)–
B also shows the relative error distribution between DOSD reference
vdW coefficients and those calculated with TS method. The TS method
provides vdW coefficients with an accuracy of 5%. Therefore, the
LRCCSD theory provides static polarizabilities and vdW coefficients
accurate to few percent when compared with reliable experimental
values.

4.3.2 Static mean polarizabilities for a dataset of 7449

molecules

In the present section, we introduce a representative benchmark set
of electric static dipole polarizabilities of ≈7.5K molecules. Initially,
we discuss the static polarizability results obtained using different
electronic structure methods by comparing them with the experimental
dataset of 238 molecules. Finally, we present a dataset of 7211 small
organic molecules containing up to 7 heavy atoms including C, N,
O, S, and Cl obtained from GDB-13 database [272]. GDB-13 is the
largest freely available small molecule database. The most accurate
electronic structure method is then used to compute electric static
dipole polarizabilities of resulting dataset of ≈7.5K molecular systems.

In Section (4.1.1), we have presented a set of 238 small
(organic) molecules. The experimental values for isotropic molecular
polarizability are available [250] for this dataset. The geometries
for these molecules were initially obtained using molecular modeling
software ArgusLab [273] with molecular mechanics force field. This
database contains molecules ranging from simple diatomic (H2, N2, CO
etc.) to polyatomic systems with functional groups including alcohol,
ketone, amine and aromatic systems. The geometries of molecules
have been optimized with the PBE+TS functional using NAO tier2

basis set, as implemented in the FHI-aims package. The induced dipole
moments were obtained using electronic structure methods such as
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Hartree-Fock (HF) theory, semi-local and hybrid functionals such as
LDA, PBE, PBE0 as well as Tkatchenko-Scheffler (TS) method in DFT,
employing NAO tier2 basis function with the additional diffuse functions
from d-aug-cc-pVQZ gaussian basis set. A field strength of 0.0002 a.u.
has been used. The above basis set and field strength for induced
dipole moment calculations were selected based on a convergence
test for static polarizabilities for H2, N2, HCl and CO molecules (See
Appendices B.1). Furthermore, the molecular polarizabilities for 238
molecules were determined via a finite field (FF) approach (as discussed
in Section (3.2)), by using positive and negative perturbing fields and
then calculating the polarizability from the changes in the induced
dipole moment (i.e. two-point finite differences). The calculated
isotropic static polarizabilities for a set of 238 molecules are given
in Table (A.4). Most of the experimental data can be found in the
compilation of T. Miller [250].

Figure 4.2: A. Correlation plot for isotropic static molecular polarizability for
238 organic molecules from experiments compared with HF, LDA, PBE, PBE0
and TS method. B) The distribution relative errors (x-axis) for all molecules
using HF, LDA, PBE, PBE0 and TS method with respect to experimental
polarizabilities. The y-axis indicates corresponding polarizabilities of all
molecules normalized to unity with respect to isotropic polarizability of the
largest molecule.
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Figure (4.2)–A shows the comparison between experimental
isotropic static polarizability αiso and those calculated with HF, LDA,
PBE, PBE0 and TS methods (See Table (A.4) for more details).
The HF method yields mean absolute relative error (MARE) of
9.0% on experimental values for isotropic polarizabilities and it
systematically underestimates polarizabilities. In contrast, LDA and PBE
functionals provide MARE of 5.3% and 6.1%, respectively, predicting
polarizabilities which are slightly overestimated.
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The distribution of relative errors for different methods is shown in
Figure (4.2) B. The HF method predicts smaller polarizabilities which
can be noticed from the mean relative error (MRE) of –8.5%. It is
interesting to note that LDA and PBE functional yields MRE of 0.8%
and 2.7%, respectively. The result reported in Table (A.4) for the
hybrid functional PBE0 agrees better with the experimental data for
238 molecules with an accuracy of 4.6%. The high accuracy of the PBE0
functional for static polarizabilities has been noted previously [274].
The Figure (4.2) also shows isotropic static polarizabilities using TS
method. As discussed in Section (2.7.2) using atomic polarizabilities
in Eq. (2.77), the molecular polarizability can be obtained as sum
over atomic polarizabilities. Such simple approximation yields
isotropic polarizabilities for molecules with an accuracy of 12%, but
overestimates polarizabilities in most cases.

Furthermore, we have gathered geometries of 7211 molecules
containing up to 7 heavy atoms including C, N, O, S, and Cl from GDB-
13 database [272] derived using SMILES string representation [275,
276]. The equilibrium geometries for these systems are obtained via
optimization using PBE+TS functional [1, 277]. As discussed above,
the hybrid PBE0 functional provides isotropic static polarizabilities
with an accuracy of 4.6%. Therefore, we consider PBE0 functional as a
reference to obtain static polarizabilities of 7211 molecules. We perform
hybrid PBE0 calculation [152] to obtain induced dipole moments with
NAO tier 2 basis set including diffuse functions from d-aug-cc-pVQZ
gaussian basis set. The polarizability tensors for these systems are
obtained via numerical difference. Finally, we have the benchmark
database of electric static dipole polarizabilities of resulting dataset of
7449 molecular systems, which we will use to assess a coarse-grained
electrodynamic model developed in the next Chapter.

4.4 Summary

In conclusion, we have analyzed the performance of electronic structure
methods including HF, LRCCSD response theory and different exchange-
correlation functionals in DFT, including LDA, PBE, PBE0 and TS in
predicting electronic static polarizability with respect to a database
of experimental isotropic polarizabilities for organic molecules. We
have calculated accurate polarizabilities and vdW coefficients using
LRCCSD theory for molecules. The LRCCSD method yields homo-
molecular CAA

6 coefficients (for 40 pairs) with the accuracy of 6.3%
with respect to DOSD data. The MARE for 1128 pairs inter-molecular
CAB

6 coefficients is 4.9% which reduces to 3.4% when vdW coefficients
are corrected using accurate static polarizability values for atoms and
molecules. Therefore, LRCCSD method can be considered accurate
and feasible method for computing dynamic polarizabilities and vdW
C6 coefficients for small molecules. The hybrid functional PBE0 in
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DFT yields precise results for mean polarizabilities with an accuracy
4.6%, but still tends to slightly overestimate. The semi-local functionals
such as LDA and PBE provide MARE of 5.3% and 6.1%, respectively,
predicting polarizabilities which are slightly overestimated. Finally,
we have presented representative benchmark sets of electric static
dipole polarizabilities of ≈7.5K molecules and a large database of inter-
molecular CAB

6 coefficients. These datasets will be useful in comparing
static polarizabilities and vdW coefficients obtained using polarizability
model developed in present work and will be discussed in Chapter (5).





5
Coarse-grained electrodynamic model of

electronic polarization in materials

The effective treatment of complex processes of chemical and
biological relevance imposes practical choices in the construction
of the rigorous theoretical models. Accurate modeling of many-
body polarization and dispersion interactions is thus required to
understand novel phenomena in complex systems. These interactions
often determine the structure and properties of materials. The
availability of efficient and accurate methods for the calculation
of intermolecular interactions is the prerequisite for a successful
molecular simulation of liquids, mesophases [278], crystals [279],
composites and nanostructures [280]. Correct treatment of these
interactions is also necessary for the understanding of the dynamics
of relative phase stabilities, phase transitions and cohesion in multi-
molecular systems. A thorough knowledge of the electronic properties
of condensed matter systems is a first step required for the design
of novel opto-electronic [281], electrocatalysts [14], chemical/bio-
sensors [12, 13], nanoelectronics [11], nanoplasmonics [15], and other
complex systems [16, 17].

Currently, (semi)-empirical forcefield schemes (based on pairwise
approximation) are available for large-scale atomistic simulation of
condensed phase systems which allows calculations of dynamics or
cohesive energies for time scales of the order of seconds. In general,
forcefields need to be optimized using known experimental data or
results from ab initio calculations on a particular system under study.
Unfortunately, this approach is often limited and not transferable to
general materials. Quantum chemical wavefunction methods are
available which are fully ab initio. The main advantage of these
methods is that they do not use any empirical parameters. There
is a hierarchy of ab initio methods of varying complexity and predictive
ability for a system under study. However, these approaches are
computationally intensive and do not (yet) open a path to large-scale
atomistic simulation.

65
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The density-functional theory (DFT) is a widely used method to
predict structure and dynamics of matter. In DFT, the primary equations
are cast in terms of the electron density rather than the many-electron
wave functions. The ground state energy of a many-electron system is
determined up to an additive constant by the electron density. The DFT
is an exact ground-state theory, in practice only approximated forms
of the DFT are known. The majority of DFT applications to condensed
matter systems use the Kohn-Sham (KS) [42] formalism. This approach
provides the energy of a system as a functional of a noninteracting
wave function, which is a functional of the density. However, the
exact form of (exchange-correlation) energy functional is not known.
In particular, KS-DFT lacks in the correct treatment of the non-local
exchange-correlation term. Numerous approximations to the exchange-
correlation functional are available for the calculation of the electronic
structure properties of condensed phase systems [117] (as discussed
extensively in Section (2.5)).

Among various available methods for the calculation of ground
and excited properties of condensed matter systems, the time-
dependent density functional theory (TDDFT) [43, 44], symmetry
adapted perturbation theory [45, 46], fluctuation-dissipation density
functional theory [47–49], GW calculations [50–52], random phase
approximation (RPA) [53–60] as well as beyond-RPA [61–63] methods
are widely used. The key quantity required among these methods is the
linear density-density response function, χ(r, r

′
, ω).

The response function is of paramount importance. This quantity
is crucial for accurate prediction of the structural and electronic
properties of complex systems like surfaces, polymers, hybrid (in)-
organic interfaces, nanostructures, and biomolecules. The frequency
dependent density-density response function is usually obtained using
the Dyson equation [282, 283]. The response function is non-local and
a function of (continuous) single particle basis functions. In general,
the real-space representation of response function yields matrices too
large for explicit matrix algebra. Therefore, the evaluation of response
function is a computationally expensive task.

In this chapter, we introduce an atomistic electrodynamics response
model for molecules and materials. The present approach is based on
atomic response functions (ARFs) which model linear polarization for
a system that naturally incorporate the effects of the local chemical
environment and non-local screening. The ARF approach has been
successfully applied to study model systems (e.g. hydrogen-chain,
nanoribbons etc.) [205, 284–287]. The ARF method augments the
standard set of coordinates by a set of atomic dipoles which are intended
to represent the electronic degrees of freedom. In the spirit of the
BO approximation, the electrodynamics response is obtained via the
electronic degrees of freedom represented by the dipoles, while nuclear
degrees of freedom are kept fixed. Recently, ARF idea has been extended
in DFT framework to calculate non-local vdW interactions in complex
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materials [7, 81].

Many polarization models such as the Drude oscillator [288],
fluctuating charges [289], and induced dipoles [5] have been developed
and are mainly based on point dipole approximation. These models are
quite appealing as they reproduce mean polarizabilities satisfactorily
but overestimate the anisotropy of the polarizability [5]. However,
such methods have severe limitations as the parameters of the model
need to optimized using known experimental or ab intio data and also
leads to a phenomenon known as ’polarization catastrophe’ [3, 5]. This
occurs when polarizability of two mutually interacting inducible dipoles
diverge (or tends to infinity) at a (critical) finite distance [5, 290] due to
collective effects [291]. To avoid such unphysical effects, Thole [5] has
suggested various damping functions such as linear or exponential of
the Coulomb interaction affecting the corresponding interaction tensor.

In present work, ARFs are described using quantum harmonic
oscillators (QHOs) having spherical spatial charge distributions. The
ARF model mimics the coarse-grained (linear) electronic response of an
atom by replacing the actual set of electrons and protons with a single
negatively charged ’quasiparticle’ harmonically bound to a positively
charged heavy ’quasi nucleus’. The ground state density of a QHO
has s type symmetry and the density of the first excited state has p

type symmetry. Furthermore, the response function for an ARF (within
dipole approximation) can be modeled as a single dipole oscillator with
single excitation (resonant) frequency (s→p transition). The simplest
approximation is the one-term formula which is equivalent to the two-
point zeroth-order Padé approximant [1, 292].

The ARFs can be constructed as functional of the electron density
obtained using ground state DFT calculation to accurately capture
the response of valence electrons [1] for each atomic element. Thus,
each atom i in a material is associated with a single dipole oscillator
with a frequency-dependent polarizability [7, 81]. The effective
polarizability of an atom in a material is then defined through Hirshfeld
partitioning [193] of the electron density. Within this approach an ARF
includes hybridization, local exchange-correlation, and static charge
transfer effects [1]. Then, an ARF χ0,i for an atom i can be represented
by considering the response of the valence electrons into a single atom-
centered dipole oscillator at position Rp using

χ0,i(r, r
′
, iω) = αi(r, iω)∇rδ3(r − Rp)⊗∇

r
′ δ3(r

′ − Rp) (5.1)

The bare response function χ0(r, r
′
, iω) for a system of N ARFs, follows

as the direct sum over the individual ARFs,

χ0(r, r
′
, iω) = χ0,i(r, r

′
, iω)⊕ χ0,j(r, r

′
, iω)⊕ χ0,k(r, r

′
, iω)⊕ · · ·

· · · ⊕ χ0,N(r, r
′
, iω) (5.2)
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Thus, such an approach allows the definition of a bare response function
χ0[n(r)] as functional of electron density obtained with DFT rather
than explicitly derived using single particle orbitals. Interestingly, such
additive approximation for the response function utilizing the electron
density of a molecule and high-level reference data for the free atoms
already provide isotropic polarizabilities with an accuracy [81] of ≈12%
and asymptotic vdW C6 coefficients with an accuracy [1] of ≈5%.
However, this additive ansatz for the response function fails to capture
intrinsic anisotropy and the screening effects which stem from long-
range electrodynamic fluctuations.

The collective (dynamic) many-body polarization which can arise
in a system can be obtained from the solution of the Dyson-like
self-consistent screening (SCS) equation of classical electrodynamics
(using normalized propagators or dipole tensor) [3, 5, 6, 80, 293].
The method developed in this work is a synergistic coupling of
classical electrodynamics with quantum mechanical input data and
the electron density obtained using DFT calculation (which includes
(local) electron exchange-correction effects in an ARF) [7, 81]. The
formulation presented in this chapter builds upon and significantly
improves an earlier version of the ARF model [7], by preserving QHO
invariants, satisfying the dipole oscillator strength sum rule, and using
the correct spin-polarized electron densities for the free atoms to
construct promolecular density which maps valence electronic response
to a set of ARFs. As it will be shown, the proposed parameter-free
method which computes polarizability of finite gap materials as a
functional of ground-state electron density represents an accurate and
efficient way of calculating response properties of complex materials.
This method provides isotropic static polarizability with an accuracy
of 3.6% for ≈7500 molecules and 7.6% for vdW C6 coefficients for
an extensive database of gas-phase molecules when compared with
accurate reference data. The coarse-grained representation of the
response function in terms of ARFs reduces the computational cost by
several orders of magnitude compared to full electronic calculation.
This chapter is organized as follows: First we introduce the necessary
properties (i.e. wavefunction, density, polarizability, Coulomb potential)
of a QHO which will be useful to define the input required for the
ARF model. Then, we introduce a method to compute the interacting
(linear) response for a collection of ARFs. Furthermore, we describe a
procedure to construct bare response function as functional of electron
density obtained using DFT that maps atoms in a given (molecular)
system of interest to the model system of ARFs. Finally, we discuss
the results obtained using the ARF model applied to molecules and
non-metallic solids.
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5.1 The quantum harmonic oscillator (QHO)

model

The quantum harmonic oscillator model is one of the most important
system in quantum mechanics. The harmonic oscillator can be used to
describe vibrations in molecules as well as the phonons in solids. The
QHO can be characterized by three parameters, mass, frequency, and
charge. In QHO model, a quasi-particle (with charge −q) having mass
m and attached to a center at R (or a pseudo centre with background
charge +q) by a harmonic potential. The Schrödinger equation of a
spherically-symmetric three-dimensional harmonic oscillator can be
solved explicitly by separation of variables to obtain the eigenfunctions
and eigenvalues. The basics of the quantum harmonic oscillator model
will be discussed in the next section.

5.1.1 The Hamiltonian for QHO

The Hamiltonian for a spherically-symmetric three-dimensional
harmonic oscillator (in spherical polar coordinates centered at R) is
given by [294]

Ĥ = − 1

2ma
∇2

r +
1

2
maω2

r
2 (5.3)

r is the position coordinate of the particle, mass ma and frequency ω.
The Schrödinger equation can be solved explicitly by the separation
of variables to obtain the eigenvectors and eigenvalues. The general
formula for the normalized wavefunctions can be written as

ψklm(r, θ, ϕ) = Nklr
l L

(l+ 1
2 )

k



maωr2


exp


− maω

2
r2


Yl,m(θ, ϕ) (5.4)

where

Nkl =
m3

aω3

4π

1/42k+2l+3k!(maω
2 )l

(2k + 2l + 1)!!

1/2
(5.5)

is a normalization constant, Yl,m(θ, ϕ) is a spherical harmonic function,

L
(l+ 1

2 )
k



maωr2


are generalized Laguerre polynomials; k, l and m are

the quantum numbers and the energy eigenvalues

Eklm =


2k + l +
3

2



ω, (5.6)

respectively. The ground-state wavefunction of a QHO is

ψ0(r) =
maω

π

3/4
exp



− maω

2
r2


. (5.7)
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Therefore, the ground-state charge density of a QHO has the following
form

n0(r) =
maω

π

3/2
exp



− maωr2


. (5.8)

The term

σ =



1

2maω
(5.9)

is the spatial variance or spread of a QHO. Using this relation, a more
convenient expression for the QHO density distribution can be written
as

n0(r) =
 1

(2π)3/2σ3



exp


− r2

2σ2



(5.10)

The σ determines the width of the Gaussian. In general, this term is
called the standard deviation, and the square of it, σ2, the variance.
The σ can only take positive values, σ > 0. Such QHO representation is
isotropic. In the following section, we discuss in brief polarizabilities
for the QHO model derived using perturbation theory.

5.1.2 Polarizabilities for the QHO model

The polarizability of QHO model can be derived starting from the
second order perturbation theory. The following derivation can also
be found in Ref. [295, 296]. The frequency-dependent polarizabilities
using sum-over-states expression can be defined as

αℓm,ℓ′m′(ω) = ∑
n

⟨0|Q̂ℓm|n⟩⟨n|Q̂†
ℓ′m′ |0⟩

En − E0 + ω
+

⟨0|Q̂†
ℓm|n⟩⟨n|Q̂ℓ′m′ |0⟩
En − E0 − ω

(5.11)
where Q̂ℓm is the multipole-tensor operator in the spherical tensor
representation [295, 296]. The multipole-tensor operator is defined as

Q̂ℓm(r) = qRℓm(r)

= q rℓCℓm(θ, ϕ) = q rℓ


4π
2ℓ+1

1/2
Yℓm(θ, ϕ) ,

and n represents the eigenstates (k, ℓ′′, m′′), with En − E0 = (2k +
ℓ)ωn0. The matrix elements using QHO wavefunctions can be expressed
as

⟨0|Q̂ℓm|n⟩ ≡ ⟨000|Q̂ℓm|k ℓ′′m′′⟩

=


r



Ω
R00Y00



qrℓ


4π
2ℓ+1

1/2
Yℓm



Rkℓ′′Yℓ′′m′′ .
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This simplifies because Y00 = 1/
√

4π, and


Ω
YℓmYℓ′′m′′ = δℓ,ℓ′′δm,−m′′ ,

using the Kronecker δ.

⟨000|Q̂ℓm|k ℓ′′m′′⟩ =


q2

2ℓ+1 δℓ,ℓ′′ δm,−m′′



r
rℓR00Rkℓ .

where the full 3-quantum number representation is given explicitly.
There is a property unique to the k = 0 state which allows further
simplification, in that R0ℓ ∝ rℓR00, and hence differ only by a
normalization factor,

R0ℓ

N0ℓ



= rℓ
R00

N00



=⇒ rℓR00 = CℓR0ℓ,

where

C2
ℓ

=


N00

N0ℓ

2

= (2ℓ+ 1)!!


1
2maωn0

ℓ

, (5.12)

⟨000|Q̂ℓm|k ℓ′′m′′⟩ =


q2

2ℓ+1 δℓ,ℓ′′ δm,−m′′



r
CℓR0ℓRkℓ

= Cℓ


1

2ℓ+1 δ0k δℓ,ℓ′′ δm,−m′′ . (5.13)

Substituting this identity into (5.11) yields (here we drop dependence
on the angular frequency ω for simplicity),

αℓm,ℓ′m′ ≡ 2
q2C2

ℓ
/(2ℓ+ 1)

(0 + ℓ)ωn0
δℓℓ′ δmm′ ,

which can be simplified and expressed as isotropic polarizabilities αℓ,

αℓm,ℓ′m′ = αℓ δℓℓ′ δmm′ ,

where

αℓ =



q2

maω2
n0

 
(2ℓ− 1)!!

ℓ

 
1

2maωn0

ℓ−1
.

In the case of dipole polarizability where l = 1, the above equation
reduces to

α =
q2

maω2
n0

(5.14)

Consequently, substituting Eq. (5.9) (i.e. spread of a QHO), the dipole
polarizability of a QHO can be expressed in term of its spatial variance

α = 4maq2σ4 (5.15)

Therefore, the Eq. (5.15) relates polarizability to the charge, mass
and the variance of a QHO. In the following subsection we discuss the
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ground state energy and wave function of a QHO in an uniform electric
field and the relationship between various QHO invariants.

5.1.3 QHO in a uniform electric field

The ground state energy and wave function of a QHO model atom in
an uniform electric field, E , along the z-axis, are given by [295, 296]

E0 =
3

2
ω − 1

2
αE2 (5.16)

ψ0,E (r) =
 1

2πσ2

3/4
exp



− (r − R)2

4σ2



. (5.17)

where R is the QHO position (R = αE
q ẑ), q and α is the (effective) charge

and the polarizability of a QHO, respectively. It can be shown that there
exist non-vanishing induced (spherical) multipole moments of the QHO
model in a uniform field which are given by

Q̂l0 = q
αE

q

l
− qδl,0 (5.18)

Thus, the QHO model reduces to the dipole limit (l→1) for the uniform
field case and higher order responses such as hyperpolarizability, in
principle which can originate from a spherical distribution perturbed by
a uniform field are absent in the QHO model due to the lack of on-site
"anharmonic" terms.

The term σ is related to the (dipole) wave function ψ0,E (r) and the
corresponding charge density of the QHO. Therefore, the variance σ can
be used to define the (dipole) density distribution of a QHO model atom
(which will be discussed in the Section (5.3)). The QHO has a spatial
charge distribution and occupies certain "effective volume". Another
important quantity we require is the effective "volume" occupied by a
QHO and will be discussed in the next subsection.

5.1.4 Relationship between polarizability and volume

of a QHO

Classical models of the polarizability, such as the conducting sphere
model or the homogeneous electron gas model yield a polarizability
proportional to R3 where R is the radius of the sphere [19, 297]. This
implies that the polarizability can be expressed in terms of the volume,
V, of the sphere, i.e. α ≈ 4π

3 R3. In case of molecules, the correlations
between polarizability and volume have been empirically demonstrated
by Politzer and co-workers [298, 299]. The effective volume of a QHO
can be derived as spatial density-weighted integration over QHO charge
density. The volume occupied by the charge density, n0(r), can be
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defined using the following analytic integration

VQHO =


r3n0(r)d
3
r =

128

π

1/2
σ3 (5.19)

The above relation states that the volume of a QHO can be expressed
in terms of its spread. Therefore, the Eq. (5.19) can be used to relate
the polarizability and the volume of a QHO. Substituting Eq. (5.19) in

Figure 5.1: Schematic representation of the density distribution of conducting
sphere model having uniform density within radius R (blue circle) and one
dimensional representation of charge density of a QHO (black curve). The
shaded green region indicate the density of QHO outside certain radius R due
to continuous charge distribution.

Eq. (5.15), the relation between polarizability and the effective volume
of a QHO can be written as

α = 4
 π

128

4/3
maq2V4/3 (5.20)

Eq. (5.20) indicates that the polarizability α of a QHO is proportional
to V4/3, unlike α ∝ 4π

3 R3 ∝ V for a sphere of radius R. The
non-linear relationship between the polarizability and the volume
of QHO is due to its quantum property. Therefore, the exponent
4/3 is a result of QHO charge distribution which has a Gaussian
form which decays monotonically whereas the sphere model assumes
that the polarizability is strictly zero outside radius R, as illustrated
schematically in Figure (5.1). Therefore, such smoothly decaying
charge density of a single QHO is ideal to model coarse-grained electron
density of atoms. The Eq. (5.20) will be useful later when we will define
the effective polarizability of an atom embedded in a material and will
be discussed in the Section (5.3)). In the next subsection, we introduce
the dynamic polarizability for a single (dipole) oscillator.
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5.1.5 Dynamic polarizability of a single (QHO) oscil-

lator

The expression for the frequency dependent polarizability for a single
oscillator p can be written as [1, 7, 178]

αp(iω) =
α0

pω2
p

ω2
p + ω2

(5.21)

where the α0
p is the static dipole polarizability, and ωp is an effective

excitation frequency of an oscillator. There are many approximate
formulae for dynamic polarizability α(ω) while Eq. (5.21) allows to
define bounds on vdW two-body Cpq coefficients. If the two-body
isotropic coefficients of the homoatomic interactions are accurately
known, the crossing point of αp(iω) and α(iω) can be so chosen
such that αp(iω) overestimates α(iω) in certain ranges of ω and
underestimates α(iω) in other parts of the spectrum. The net result
that α(iω) when calculated using Casimir-Polder integral should yield
the correct value C

pp
6 .

The Eq. (5.21) is expressed in imaginary frequency argument and
therefore it is a monotonically decreasing function. The numerator
α0

pω2
p in Eq. (5.21) is the oscillator strength fp which can be related to

the effective charge (or electrons in valence region) in an atom

fp = α0
pω2

p (5.22)

The oscillator strength fp is a quantity that expresses the probability of
absorption or emission of radiation in transitions between energy levels
of a system. This is known as the Thomas–Reiche–Kuhn sum rule or
dipole oscillator strength sum rule [300].

The isotropic C6 term describing the vdW interaction between two
non-overlapping fragments p and q (in vacuum) is given by Casmir-
Polder intergral

C
pq
6 =

3

π

 ∞

0
αp(iω)αq(iω)dω (5.23)

where α(iω) is the frequency-dependent polarizability of p or q
evaluated at imaginary frequencies. In case of identical oscillators
p = q, integrating Eq. (5.23) using dynamic polarizability in Eq. (5.21)
yields

C
pp
6 =

3

4
(α0

p)
2ωp (5.24)

such that

ωp =
4

3

C
pp
6

(α0
p)

2
(5.25)
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Secondly, the oscillator strength sum in Eq. (5.22) turns out to be

fp =
9

16

(C
pp
6 )2

(α0
p)

3
. (5.26)

In order to define the dynamic polarizability in using Eq. (5.21) for
an atom or an atomic response function (ARF) in vacuum, we just
need the knowledge of accurate free atom static polarizability α0

p and
homo-atomic vdW C

pp
6 coefficient (See Figure (5.4)). So far we have

discussed necessary properties and relationships of QHO model. In the
next section, we describe a method to compute the interacting (linear)
response for a collection of ARFs.

5.2 The electrodynamics of atomic response

functions

Our system is composed of an assembly of atomic response functions
(ARFs). Each ARF consist of associated charge density distribution
which is described by a QHO. We assume that initially such distribution
does not overlap with density distribution of other ARFs. This
’assumption’ is necessary for the validity of the multipole expansions
of the potentials of the charge distribution at a point p in space. The
center of the region of unit p is located at rp . The nth rank (or nth
order) electric multipole moment [3, 6, 293] of unit p can be written as

µ
(n)
p = (n!)−1



n(r)(r − rp)
ndr (5.27)

where n(r) is the charge density at point r, the expression (r − rp)n

indicate the direct or polyadic product of the n factors r − rp and the
integration is over the charge density. The multipole moment polytensor
of unit p is the vector (µ

(1)
p , µ

(2)
p , µ

(3)
p · · · ) where each tensor µ

(n)
p is

arranged as an array of its components in standard order. Formally,
such polytensors are infinite arrays, though they are truncated at some
desired tensor rank for practical applications (e.g. n = 1 in case of
dipole moment).

The collective (dynamic) many-body polarization which can arise in
a system or for a collection of ARFs can be obtained from the solution
of the Dyson-like self-consistent screening (SCS) equation of classical
electrodynamics [3–6, 80]. In present approach atoms in a system are
considered as an arrangement of polarizable dipoles. According to
classical electrodynamics, the induced dipole in such a system satisfies
the equation

µ(r) = ¯̄α(r)E + ¯̄α(r)


¯̄T (r, r
′
)µ(r

′
)dr

′
(5.28)
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where ¯̄α(r) is the local polarizability, E is an (external) uniform electric
field, and ¯̄T is the dipole-dipole interaction tensor. For a collection of
N atoms, the induced dipole moment in a basis of atomic position, µp

at atom p is given in terms of the external polarizing field and the field
generated by neighboring dipoles which leads to following set of linear
response equations

µp = ¯̄αp[Ep +
N

∑
p ̸=q

¯̄Tpqµq] (5.29)

where ¯̄αp is the atomic polarizability tensor of atom p and ¯̄Tpq provides
dipole-dipole field connecting atoms p and q. The Eq. (5.29) can be
casted in a matrix representation as
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(5.30)

or as
Pµ = E (5.31)

with

Ppq =


( ¯̄αp)−1 if p = q
¯̄Tpq if p ̸= q

(5.32)

where P is a 3N × 3N matrix containing the inverse of the atomic
polarizability tensors ( ¯̄αp)−1 along the 3 × 3 diagonals and the non-
diagonal components correspond to the dipole interaction tensors. The
matrix P depends only on the atomic polarizabilities and on their
arrangement in space as described by the interaction tensors and not on
the external field. The inversion of matrix P produces Q, a generalized
polarizability matrix 1. Consequently, the induced dipole moment can
be rewritten as µ = QE . Within this formulation solving Eq. (5.29) will
give rise to the interacting non-local polarizability tensor for a system.

For a molecule, the molecular polarizability, ¯̄αmol, is just the response
to an uniform field. Therefore, the molecular polarizability tensor can
be obtained as a sum over all 3 × 3 submatrices Qpq

µmol =
 N

∑
p

N

∑
q

Qpq



E = ¯̄αmolE (5.33)

which after contraction yields a 3 × 3 matrix corresponding to the
polarizability tensor. Finally, the averaged molecular polarizability can

1Q = P−1 = (α−1 + ∑ T )−1
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be determined by taking the trace of the tensor ¯̄αmol.
The point-dipole approximation in Eq. (5.29) provides a reasonably

simple and straightforward formalism for treating a system as an
assembly of polarizable atoms at large interacting distances. In the
original point-induced dipole model by Applequist [301], the tensor
¯̄T is defined using the bare Coulomb potential, i.e. ϕ = 1

r . This model
reproduced mean polarizabilities satisfactorily but overestimated the
anisotropy of the polarizability [5]. Furthermore, at short distances the
interaction of the induced dipoles becomes too strong leading to even
shorter distances and consequently stronger interactions. This is known
as “polarization catastrophe” which also manifests in the ill-condition
of the interaction matrix Q. For small distances r, the values of the
¯̄T are in the same order of magnitude as the inverse values of the

polarizability. As a result, the inverse of the interaction matrix may
not be positive definite anymore leading to negative eigenvalues, i.e. ,
induced dipoles pointing in the opposite direction of the underlying
electric field [5]. In order to avoid such unphysical effects, Thole has
suggested many damping functions (such as linear and exponential)
of the Coulomb interaction affecting the corresponding dipole-dipole
tensor ¯̄T . In reality, atoms should be characterized by dipole-density
distributions that lead to finite molecular polarizabilities and stem from
Pauli exchange-repulsion at short inter-atomic distances. Therefore, the
tensor ¯̄T must be regularized (or damped) and this procedure will be
discussed in the following section.

5.2.1 Regularized dipole interaction tensor

The dipole-dipole tensor ¯̄T is the central quantity which describes
coupling between induced dipole moments. It is defined as negative
double-gradient of the Coulomb potential. For a pair of electrical point
charges p and q, the dipole-dipole interaction tensor can be obtained
using the Coulomb potential and is given by the expression

T pq
ij ≡ −∇Rp ⊗∇Rq

 1

R
pq



(5.34)

= −3Rp · Rq

R5
− δij

R3
. (5.35)

The problem when considering point charges is that the term Tij

diverges as |Rpq| → 0. Therefore, we need to renormalize the bare
Coulomb potential (1/R). In real systems, the electronic distributions
are also affected by Pauli exchange-repulsion effect at short interatomic
distances which needs to be modelled accurately. Since we are
modelling atoms using QHOs, the charge distribution of a QHO
has a Gaussian form as described in Section (5.1.1). The Coulomb
electrostatic energy between two Gaussian charge distributions can be
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evaluated by following integral equation [302]

ϕQHO(Rpq) =
  n(Rp − r1)n(Rq − r2)

|r12|
dr1dr2 (5.36)

where Rpq is distance between two charge distributions. Each
of these distribution is normalized to have unit charge such that


nQHO
p (r)dr=


nQHO

q (r)dr=1. For large separations Eq. (5.36)
reduces to the expression for the point charges. The integral in
Eq. (5.36) cannot be factorized in the Cartesian direction due to the
presence of the inverse operator r

−1
12 . The idea here is to re-express

inverse operator in terms of a one dimensional integral over a Gaussian
function which is separable in the Cartesian directions2. Furthermore,
using suitable coordinate transformation the integral in Eq. (5.36) can
be written in simple form (the detailed proof is given in Ref [302])

ϕQHO(Rpq) =
erf(Rpq/σpq)

Rpq
(5.37)

=
1

Rpq

2√
π

 Rpq/σpq

0
exp−x2

dx (5.38)

where erf is called the Gauss error function and σpq is the effective
spread (variance) of the Gaussian centered between two charge
distributions. Initially, we assumed that the QHOs were well separated
by a sufficiently large distance, allowing us to use the bare dipole-
dipole interaction potential to describe the inter-oscillator couplings.
Now considering the general case which involves shorter inter-atomic
distance, for any material with overlapping atomic wavefunctions.
The dipole-dipole interaction potential between oscillators p and q
is straightforwardly obtained from the regularized Coulomb potential ,

T pq =

 ∇Rp ⊗∇Rq ϕQHO if p ̸= q

0 if p = q,

and is therefore a 3 × 3 second-rank tensor with components given by

T pq
ij =


3Ri · Rj − R2

pqδij

R5
pq



erf


Rpq

σpq



− 2√
π

Rpq

σpq
exp



−
R2

pq

σ2
pq




− 4√
π

Ri · Rj

σ3
pqR2

pq
exp



−
R2

pq

σ2
pq



,

(5.39)

in which i and j represent the coordinates x, y, z in the Cartesian
reference frame, Ri and Rj are the respective components of the
interoscillator distance Rpq , and δij is the standard Kronecker delta.

2The Coulomb operator is expressed as 1
|r12| =

1√
π

 +∞

−∞
exp(−|r12|2x2)dx
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The advantage of this approach is that the above expression for the
dipole-dipole interaction potential attenuates the interaction between
oscillators at short distances converging to a finite value even in the
zero-distance limit. Furthermore, it becomes equivalent to the point
dipole-dipole interaction potential for large interoscillator distances.

The term σpq =


σ2
p + σ2

q , is an effective width obtained from

the Gaussian widths of oscillators p and q, that essentially determines
the correlation length of this interaction potential. The σ parameter
physically correspond to the spatial spread of the local dipole moment
distribution centered on a given oscillator. In classical electrodynamics,
the Gaussian width (variance) is directly related to the polarizability
and can be derived from the dipole self-energy. In the zero-distance limit
of the dipole-dipole interaction potential derived above in Eq. (5.39),
the spread of a QHO is related to polarizability and can be written
as [6]

σp =



2

π

αiso
p

3

1/3
. (5.40)

The idea in present work is to model σ, the variance QHOs, by the
position dependent dipole moment distribution for atoms in a system.
Conceptually, such dipole moment distribution could be derived using
quantum mechanical electronic density for neutral free atoms. The
details of this procedure will be discussed in the following section.

5.2.2 Quantum mechanically-based dipole potential

The fundamental quantity of the QHO model developed in this work is
the position dependent dipole moment density. The dipole polarizability
relates the response of a dipole moment to an external electric field.
Therefore, the term σ in Eq. (5.15) describes the spatial extent of the
local dipole density distribution centered on a given QHO. The dipole
density can be defined using the expectation value of the squared dipole
moment operator [189, 303–305]

⟨µ2⟩ =


∑
i

qiri

2
, (5.41)

where qi are charges in a system. For a spherically symmetric system or
atom, the dipole density may be written as

⟨µ2⟩ =


r2n(r)dr, (5.42)

where n(r) is electron density of an atom. In present work we
are modelling (linear polarization) charge density of atoms with
isotropic QHOs. The dipole potential ∇ri

⊗ ∇rj
|ri − rj|−1 between

two point charges decays as r−3, where r distance between two point
charges. Therefore, dipole potential in present ARF model should
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decay asymptotically as r−3 at long-range or at very large inter-atomic
distances. As discussed in Section (5.2.1), the term σpq, is an effective
width obtained from the Gaussian widths of oscillators p and q, that
essentially determines the correlation length of the dipole interaction
potential. The σp/q parameter physically correspond to the spatial
spread of the local dipole moment distribution centered on a given
oscillator (as shown schematically in Figure (5.2)). To accurately

Figure 5.2: Schematic illustration of two interacting ARFs in a material
having Gaussian variance σp and σq. The effective dipole correlation length

at short distances is given by Gaussian having variance σpq =


σ2
p + σ2

q

centered between QHOs p and q. In the limit σpq → 0 tends to point dipole
approximation.

model dipole potential due to a QHO charge density, ϕQHO(R − r) =
erf(|R − r|/2σ)/|R − r|, to that of neutral free atom we just need
variance σ of a QHO. The σ value can be derived using electron densities
obtained using an accurate electronic structure calculation for atoms
and the resulting dipole potential should decay as r−3 asymptotically.
In present work, we first obtain electron density n(r) for neutral atoms
using accurate wavefunction obtained using coupled-cluster (CC) theory
including single and double excitation (CCSD). The solution of the
Poisson equation

∇2ϕ(2)(r) = −4πr2n(r), (5.43)

for electronic dipole density distribution for free atoms results in dipole
potential, ϕ(2). The radial Poisson equation is solved numerically for
spherically symmetric atomic density using the Numerov method. We
ensure first that the Coulomb potential resulting from these accurate
atomic densities has correct r−1 asymptote and the integral over atomic
electron density provides correct number of electrons. Further we
fit this accurate dipole potential to the potential of a QHO charge
density distribution [6]. Note that, large for r, the erf function
approaches unity and the potential ϕ(r) approaches the point potential
ϕ(r) ≈ 1

r as shown in Figure (5.3). Therefore, the value for σfree

are extracted from the fit for the Gaussian potential in the region
larger than 1 bohr from the center of nuclei where erf → 1. The
variances for few neutral free atoms are provided in Table (5.1). In
the Section (5.1), we have discussed necessary properties of the QHO
response model. The Section (5.2) introduces a method to compute
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Figure 5.3: The potential from the spherical
Gaussian distribution of unit charge with
exponent σ = 1 (dashed red curve),
erf(r)/r, plotted as function of the distance
from the center of the charge distribution
and compared with the corresponding
potential from a point charge 1/r (thick
black curve) along with the erf(r) error
function (dashed blue curve).
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Table 5.1: The value of
variance of dipole density dis-
tribution σfree for few neutral
free atoms (in bohr).

σfree σfree

H 1.518 Zn 1.792
He 1.065 Ga 2.058
Li 3.164 Ge 1.915
B 1.824 As 1.756
C 1.509 Se 1.640
N 1.347 Br 1.540
O 1.266 Kr 1.309
F 1.118 Cd 1.733
Ne 1.012 In 1.972
Al 2.258 Sn 1.918
Si 1.978 Sb 1.813
P 1.735 Te 1.752
S 1.634 I 1.668
Cl 1.459 Xe 1.430
Ar 1.317

interacting polarizability for a collection of ARFs. In the following
section, we introduce a method called coupled atomic response in
matter (CARMA). This approach calculates interacting polarizability
for a system of ARFs and represents a synergistic coupling of classical
electrodynamics with quantum mechanical input data and the density
functional theory [7, 81].

5.3 Coupled atomic response in matter (CARMA)

The solution of the self-consistent screening equation for a set of
localized ARFs provides microscopic non-local polarizability for a
system. The (interacting) polarizability tensor based on the SCS
equation for an ARF can be written as

αSCS
p (r, iω) = α0

p(r, iω) + α0
p(r, iω)

N

∑
p ̸=q

Tpq(r, r
′
, iω)αSCS

q (r, iω),

(5.44)
where αSCS

p (iω) is the fully screened atomic polarizability tensor for a
given frequency of the electric field, which can be derived after solving
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the SCS equation.
The central quantities required to solve Eq. (5.44) are the

polarizability α0
p(r, iω) and the dipole-dipole field tensor Tpq(r, r

′
, iω)

which connects (polarizing) fields at position p and q. The polarizability
tensor for a molecular system can be expressed in terms of 3N× 3N
matrix in the basis of ARF coordinates. The frequency dependent
polarizability tensor for an ARF can be written as

α0
p(iω) =



α0
p[n(r)]ω

2
p[n(r)]

ω2
p[n(r)] + ω2



δij, (5.45)

where the static polarizability α0
p, the effective excitation frequency, ωp,

are defined as functional of ground-state electron density and Kronecker
delta function δij (with i, j = 1, 2, 3. tensor components). Now we
proceed to map the atoms in a given (molecular) system of interest to
the model system of ARFs. Each atom p in the molecular system will be
represented by a single ARF characterized by a Cartesian position vector
Rp and a corresponding frequency-dependent dipole polarizability
given by Eq. (5.45). We assume that the system which can be an
individual molecule or even condensed matter has a finite electronic
gap and can therefore be divided into effective atomic fragments. Here
we use Hirshfeld [193] partitioning scheme to divide an integral over
the entire molecular volume into a sum of atomic integrals. Each atomic
integral is evaluated on a spherical grid using numerical techniques.
Prior to the application of this partitioning scheme one must setup a
set of spherically averaged atomic densities for all elements that are
present in the molecular system of interest. For consistency, this needs
to be carried out with the same level of theory that is used for the
molecular calculations [193, 306–309]. The Hirshfeld partitioning of
the total electron density, n(r), into atomic fragment electron densities,
np(r), is utilized to obtained the effective volume of atom in a material
and is defined by

Vrel
p [n(r)] =

Veff
p

Vfree
p

=


r3wp(r)n(r)d3

r


r3n

spin,free
p (r)d3r

, (5.46)

where n(r) is the total electronic density and n
spin,free
p (r) is the density

of the free atom. The Hirshfeld atomic partitioning weight for a given
atom p is given by

wp(r) =
n

spin,free
p (r)

∑
N
q n

spin,free
q (r)

, (5.47)

where r is the distance from the nucleus of atom p, and the sum over
q runs over all atoms of the system. The electron density for neutral
free atoms calculated using spin-unrestricted calculations. Both n(r)



5.3 Coupled atomic response in matter (CARMA) 83

and n
spin,free
p (r) are obtained using the FHI-aims package [265], which

implements all-electron electronic-structure theory with numeric atom-
centered basis functions. The Hirshfeld weighing function wp(r) can
be derived using spin-restricted and spin-unrestricted calculation for
neutral free atoms. The spin-unrestricted calculation for free atoms
correctly provides the integer orbital occupation numbers for valence
orbitals unlike spin-restricted calculation.

We have outlined the details regarding the partitioning of the
electron density of a molecular system into ’atomic’ regions. Now
we processed to assign parameters in the ARF model as functional
of electron density. The central ingredient in the ARF model is the
static polarizability. The polarizability is often expressed in terms of
the volume, V. Classical models such as the homogeneous electron
gas model or the conducting sphere model yield a polarizability
proportional to R3, where R is the radius of the sphere [19, 297].
The methods (such as Becke and Johnson XDM model or Tkatchenko-
Scheffler method) which are based on a Hirshfeld scheme to partition
molecular polarizabilities in terms of atomic contributions assumes that
the polarizability is directly proportional to atomic ’volume’ [1, 187,
189, 310, 311], i.e. α ∝ V = 4π

3 R3. These methods define the effective
static polarizability of an atom in a material by scaling (accurate)
static polarizability of that atom with Hirshfeld volume ratio, Vrel

p . In
the Section (5.1.4)), we have discussed the relationship between the
polarizability and the volume of a QHO, i.e. α ∝ V4/3. Therefore, using
this relationship which is a consistent property of QHO, the effective
static polarizability for an ARF in a material as functional of electron
density can be defined as

(α0
p)

eff

αfree
p

=



Veff
p

Vfree
p

4/3

,

or as
α0

p[n(r)] = (Vrel
p [n(r)])4/3αfree

p , (5.48)

where Vrel
p is relative volume ratio obtained using the Hirshfeld [193,

307–309] partitioning scheme of electron density, αfree
p is the

reference free-atom static dipole polarizability which can be taken
from either experimental data or high-level quantum chemical
calculations [195](See Table (A.1)). The term Vrel

p depends on the self-
consistent electron density obtained using (semi-)local DFT functional
(in the current case using PBE [277] functional) and accounts for the
effect of the local charge distribution. Therefore, the Eq. (5.48) includes
hybridization, local exchange-correlation, and static charge transfer
effects [1]. This short-range information is an important ingredient in
the ARF model.

Furthermore, the ARF (within dipole approximation) can be
modeled as a single dipole oscillator with a single excitation frequency
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ωp (for s→p resonant transition for a QHO model atom) [1, 7].
Therefore, the excitation frequency ωp for an ARF can be defined
using accurate free atom static polarizability and homo-atomic vdW
coefficient (See Eq. (5.25) in Section (5.1.5)). The ARF model in
present work is developed to satisfy neutral free atom valence electron
sum rule. This is accomplished by defining the excitation frequency ωp

as a functional of electron density. The ’effective’ excitation frequency
then can be defined as

ωp[n(r)] =
4

3

Cfree
6

(αfree)2

 1

Vrel
p [n(r)]

2/3
. (5.49)

The Eq. (5.49) is consistent with the fact that excitation frequency for
QHO model is inversely proportional to effective volume of a QHO
(i.e. ωQHO

p ∝ V−2/3). The relationship (or scale factors) between local
atomic fragment volume with polarizability and excitation frequency
conserve sum rule (for effective charge) in a given ARF. In many cases,
the polarizability of system is dominated by the contributions from
valence electrons. Moreover, the oscillator strength of a given ARF is
given by Eq. (5.22) and its value depends only on input neutral free
atom parameters.

The final ingredient required to solve Eq. (5.44) is the dipole-dipole
tensor. The (regularized) dipole-dipole interaction tensor for ARF
model (see Eq. (5.39)), Tpq, requires only effective variance of local
(dipole) density distribution. The effective variance is defined as σpq =


σ2
p + σ2

q with respect to a Gaussian centered between ARF p and q.

The dipole-dipole propagator Tpq instantaneously connects polarizing
field at r and r

′
and assumes quasi-static approximation. The (dipole)

wave function for a QHO in field for frequency ω can written as

ψ0,ω(R − r) =
 1

2πσ2

3/4
exp



− (r − R)2

4σ2



, (5.50)

where the vector r is defined with respect to center (R = αω
q ẑ) of

a QHO (as discussed in the Section (5.1.3)). Therefore, the term
σ can be viewed as variance or expectation value of local (dipole)
moment distribution. In Section (5.2.2), we have discussed a method
to accurately model the variance σ of a QHO to that of neutral free atom
in vaccum. Using the relationship between volume and variance of a
QHO (see Eq. (5.19)), i.e. σ ∝ V1/3. The dipole moment distribution
for an atom in a material can be defined as

σp(r) =


Vrel
p [n(r)]

1/3
σfree

p , (5.51)

such that interaction potential also depends on electron density. The
dependence of σp on frequency argument iω or in complex plane can
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be very distinct. Here, we simply define a monotonically decreasing
frequency dependent dipole density for each ARF p is defined as

σp(r, iω) =



α0
p(iω)

α0
p(0)

1/4


Vrel
p [n(r)]

1/3
σfree

p . (5.52)

The CARMA method combines above ingredients to include short-
range overlap hybridization effects in polarizability, as well as long
range electrodynamic screening through SCS equation. For a system
containing N atoms, the response function or the polarizability matrix
P can be constructed such that the diagonal contains the inverse of
isotropic polarizability tensor via Eq. (5.45) and non diagonal term
include Tpq, the dipole tensor which connects atoms p and q (p, q =

1, 2, . . . , N) with coupling term σpq =


σ2
p + σ2

q where σp or σq is

defined by Eq. (5.52) for each frequency (iω). For an extended system,
the matrix P includes additional terms corresponding to the dipole
field due to periodic boundary conditions. Therefore, the Eq. (5.30)
becomes

P =











α−1
1 + ∑ T11′ T12 + ∑ T12′ ... T1N + ∑ T1N′

T21 + ∑ T21′ α−1
2 + ∑ T22′ ... T2N + ∑ T2N′

. . . .

. . . .

. . . .

TN1 + ∑ TN1′ . . α−1
N + ∑ TNN′











(5.53)

where p′ and q′ denote the atoms from the image cell (p , q = 1 , 2 , . .
. , N). The interactions of an atom with its own images are contained
in the diagonals and those with the images of other atoms are located
in the non-diagonal parts. The dipole field due to periodic images need
to included using a real space spherical radius R with respect to the
unit cell.

Furthermore, the inversion of matrix P yields a fully interacting
non-local polarizability tensor (matrix Q) of a system in the basis
of QHO position. The αSCS

system tensor is obtained as a summation
of atomic subblocks of matrix Qpq. After diagonalization of the
αSCS

system tensor, one can obtain the three principal components of
the total polarization matrix for a molecule or a crystal, and the
average value corresponds to the average of the trace as given by
αiso

system = (αxx + αyy + αzz)/3. Furthermore, this procedure can be
followed to derive the full polarizability αsystem spectrum as a function
of the imaginary frequency argument (iω) which is a monotonically
decreasing function. Consequently, the vdW coefficients of the system
can be calculated by integrating the polarizability over iω frequency.
The Gauss-Legendre integral approach can be used to evaluate C6

coefficients and a converged integral can be obtained by using finite (a
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20 point) numerical frequency grid. Thus, the resulting polarizability
αSCS

system(iω) now contains coupled atomic response accounted via short-
range and long-range electrodynamic screening [1, 3, 5–7, 293].
Therefore, the developed ARF model can be used to compute dynamic
polarizability efficiently of molecules as well as periodic (finite gap)
materials. The proposed polarizability model will be termed as coupled
atomic response in matter or CARMA. To assess the accuracy and
applicability of CARMA model, calculations are performed for a wide
variety of molecular system and will be described in the next section.

5.4 Results and Discussion

In this section, we discuss the results obtained using the CARMA model
applied to molecules and non-metallic solids. We use our scheme for
the calculation of static polarizabilities, vdW C6 coefficients, effective
oscillator strengths and oscillator strengths sums. The CARMA model
has been applied to calculate static polarizabilities of an extensive
database of molecules (≈7500 systems) and vdW C6 coefficients for
1225 pairs that included atom-atom, atom-molecule and molecule-
molecule interactions (as discussed in the Chapter (4)). Comparison
with values from the available experimental data as well as results from
the ab initio calculations leads to the conclusion that our results from
the CARMA approach are accurate. In the following section, we first
discuss the bounds on dipole oscillator strength distribution as well as
the relationship between dipole polarizability and electronic sum rule
for CARMA model.

5.4.1 Dipole oscillator strength sum rule

Certain moments of the dipole oscillator distribution of atoms and
molecules can be calculated from the theory using sum rules or deduced
from the experimental data. The oscillator strength sums or Cauchy
moments are important for the description of a variety of molecular
properties, for example, dynamic polarizabilities at real and imaginary
frequencies [253], inelastic scattering cross sections [312], Verdet
constants of atoms [313], vdW coefficients between atoms or molecules
and the paramagnetic contribution to the Cotton-Mouton constants of
atoms [314].

In response theory, the Cauchy moments are usually defined by the
sum-over-states formula which provides bounds on dipole oscillator
distribution. The first Cauchy moment of any dynamic property is the
static response property e.g. static dipole polarizability. The expressions
for the dynamic properties at imaginary frequency are also obtained
from the Cauchy moments. For example, the distribution of the
transition dipole strength function S(ω) provides an estimate of the
static electric dipole polarizability [315–317] for a system and can be
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expressed as

α =
 S(ω)

ω2
dω. (5.54)

The electronic f-sum rule also know as Thomas-Reiche-Kuhn (TRK) sum
rule [300, 316] reads

Ne =


S(ω)dω. (5.55)

This sum rule can be obtained as integral over the frequency dependent
response function or the electric-dipole strength distribution function
of a system. Since we are mapping valence electronic response to a set
of ARFs, therefore, polarizability resulting from CARMA model should
satisfy the valence f- sum rule. The effective number of electrons in
an ARF is given by fp = α0

pω2
p (as discussed in Section (5.1.5)). The

Figure (5.4) shows the oscillator strength fp defined for elements in
the periodic table as function of atomic number Z. The fp values are
tabulated using accurate neutral free atom static polarizability and
homo-atomic vdW C6 coefficients (See Table (A.1)). Since the free
atom parameter are derived using accurate many body calculations
which leads to shell-structure effect in the oscillator strength spectra
for neutral free atoms. Moreover, for a collection of N atoms, the net

Figure 5.4: The x-label indicate atomic number Z, while the y-axis shows
the effective valence electron Nvalence in an atomic species (excluding core
electrons) and the oscillator strength fp defined in Eq. (5.22) derived using
accurate free atom reference parameters (see Table (A.1))

 2

 4

 6

 8

 10

 12

 14

H He Ne Ar Kr Xe Rn

N
v
a
le

n
c
e
|α

0
p
ω

p
2

Z

K L M N P

Nvalence

α
0

pωp
2

charge in a system can be derived as sum over oscillator strength, fp,
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as,

Ne =
N

∑
p

fp =
N

∑
p

α0
pω2

p =
9

16

N

∑
p

(C
pp
6 )2

(α0
p)

3
. (5.56)

In case of CARMA model, the value of fp simply depends upon the input
static dipole polarizability α and the homo atomic vdW C6 coefficient
for neutral free atoms (See Figure (5.4) and Table (A.1)). In order
to compare accuracy of sum rule defined for CARMA model, we first
calculate reference electronic sum rule using (linear) optical absorption
spectrum for small organic molecules using TDDFT calculations. To
obtain the linear optical absorption spectrum of the system, we
follow the method proposed by Yabana and Bertsch [315], and excite
all frequencies of the system by giving some small momentum K
to the electrons. This is performed by transforming the ground-
state wavefunctions according to Ψi(r, δt) = eiKẑΨi(r, 0) and then
propagating them for some (finite) time. The spectrum can then be
obtained from the expression for the dipole strength function S(ω)

S(ω) =
2ω

π
Imα(ω), (5.57)

where the dynamical polarizability, α(ω), is essentially the Fourier
transform of the dipole moment of the system µ(t)

α(ω) =
1

K


dteiωt [µ(t)− µ(0)] . (5.58)

Within this definition, the TRK f -sum rule for the number of electrons,
Ne, is given by the integral in Eq. (5.55). These sum rules can
be used to check the quality of the calculations. The procedure
to calculate the dipole strength function is as follows. We perform
time-dependent DFT calculations using the Octopus code [318]. The
ion-electron interaction was modeled with norm-conserving Troullier-
Martins pseudopotentials [319]. The time-dependent dipole moments
µ(t) for small organic molecules (See Table (4.2)) are obtained by
propagating Perdew-Burke-Ernzerhof (PBE) Kohn-Sham wavefunctions
for finite time. The dynamic polarizability generally related to optical
absorption and in its most general form, a 3×3 tensor. This means
that to obtain the entire dynamic polarizability tensor of the molecule
we usually need to apply 3 different perturbations along x, y, z axis.
Furthermore, the dynamical polarizability, α(ω), is then calculated by
the Fourier transform of the time-dependent dipole moment of a system
µ(t) which gives the strength function S(ω). The completeness of
spectrum is checked by partially integrating the dipole strength function.
The Figure (5.5) shows the components of static polarizability tensor
and effective number of electrons Ne for benzene molecule obtained
using TDPBE calculation as a function of energy. The experimental
value of static polarizability for benzene molecule is 69.7 bohr3. While,
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Figure 5.5: The plot shows the convergence of static polarizability and Ne

sum rule for benzene obtained using dipole strength function. Each point in
curve is integral in Eq. (5.55) and Eq. (5.54) up to energy ω.
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TDPBE calculation provides slightly overestimated static polarizability
sum rule which is 70.6 bohr3. The number of ’effective’ valence
electrons in the benzene molecule is 18 (excluding filled core shell
electrons in atoms). Furthermore, for benzene molecule, the value for
Ne sum rule using TDPBE calculation can be determined using energy
ω value corresponding to the converged static polarizability (dashed
vertical line Figure (5.5)). Partially integrating Eq. (5.55) till the energy
corresponding to the converged static polarizability for benzene provide
Ne sum rule of 17.5 this value is consistent with available valence
electrons in the benzene. The correlation between the electronic Ne

sum rule derived using TDPBE calculations and the CARMA model along
with the TS method for a set of 18 molecules is shown in Figure (5.6).
In Section (5.3), we have introduced a procedure which defines ARFs as
a functional electron density. Using expression Eq. (5.48) and Eq. (5.49)
for single oscillator polarizability, the dependence of electron density
on oscillator strength cancel out. Therefore, the effective charge in
a system simply dependent upon input free atom parameters i.e. the
static polarizability and homo-atomic vdW C6 coefficient. The accuracy
of Ne sum rule for CARMA model with respect to TDPBE calculations is
10.5% (see Figure (5.6)) whereas using the TS method yields a mean
average relative error of 33%. The TS method includes the effect of
volume scaling in the effective static polarizability for a given ARF.
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Figure 5.6: Correlation of electronic f-sum rules obtained from TDDFT
calculation compared with CARMA model (black circle) and TS method (blue
triangle).
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However, using the definition for static polarizability from Eq. (5.48)
and excitation frequency Eq. (5.49) in Eq. (5.21) conserve oscillator
strength fp in the case of CARMA model. Therefore, the sum rule
obtained using the CARMA model better correlates with the reference
TDPBE calculations. In the following subsection, we discuss the CARMA
model applied to determine static and dynamical polarizabilities for
diverse sets of molecules ranging from simple diatomic (H2, N2, CO
etc.) to polyatomic systems with functional groups including alcohol,
ketone, amine and aromatic systems.

5.4.2 Static polarizability and vdW coefficients for a

linear chain of H2 molecules

For many molecules with near spherical symmetry, the polarizability
is well approximated by a single scalar constant. The isotropic
polarizability (αiso=(αxx + αyy + αzz)/3) is defined as average of
the principal components of the polarizability tensor. In general,
the redistribution of electronic charge for a molecular system under
influence of an external electric field cannot be characterized by a single
scalar value. This can be most clearly observed by considering a simple
diatomic molecule like H2. The H2 molecule has no permanent dipole
moment, but the charge distribution along the internuclear axis is large
compared to the distribution perpendicular to this axis. Therefore, we
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expect the charge separation induced by an external field to be greater
along the internuclear axis than along a perpendicular axis. Here,
we apply CARMA model developed in present work to calculate the
static polarizability tensor and vdW coefficient of the linear (H2)3 chain.
The linear (H2)3 chain consists of three H2 dimers with alternating
bond lengths (bond length of 2 Bohr inside the dimer and 3 Bohr
between the dimers). An accurate calculation of the polarizability of
such hydrogen dimer chains is considered to be a significant challenge
for electronic structure theory [286]. We have also calculated the
reference frequency-dependent polarizability for (H2)3 using the linear
response coupled-cluster method (LR-CCSD). The LR-CCSD method is a
state-of-the-art approach for computing static and frequency dependent
molecular polarizabilities, and it yields results that agree to ≈3% when
compared to reliable experimental values (as discussed in Chapter (4)).
The results for the isotropic and anisotropic C6 coefficients for this
chain at the TS, CARMA, and LR-CCSD levels of theory are shown in
Table (5.2). In TS method, the molecular polarizability is expressed

Table 5.2: The isotropic static polarizability and vdW C6 coefficients for the
linear (H2)3 chain calculated using the TS, CARMA and LR-CCSD levels of
theory. The α⊥ and α∥ components of polarizability are defined with respect
to the principal axis of the linear (H2)3 chain. The static polarizabilities are
defined in Bohr3 and the vdW coefficients are defined in Hartree·Bohr6.

αiso α⊥ α∥ C6,iso C6,⊥ C6,∥
TS 18.1 - - 105.6 - -
CARMA 25.2 14.6 46.2 209.1 91.1 604.3
LR-CCSD 28.8 17.0 52.4 238.0 114.7 638.8

as sum over atomic polarizability and does not capture anisotropy
in molecular polarizability. After solving SCS equation the CARMA
model correctly captures the dipole alignment (polarization) along
the (H2)3 chain, leading to a significant anisotropy that is in good
agreement with the reference LR-CCSD values. Moreover, the solution
of SCS procedure yields the full polarizability αsystem(iω) tensor of a
system as a function of the imaginary frequency argument. Therefore,
the isotropic and the anisotropic components vdW coefficients (C6,⊥
and C6,∥) can be calculated using the Casimir-Polder integral. The
Table (5.2) also shows the isotropic C6,iso and anisotropic (C6,⊥ and
C6,∥) vdW coefficients for (H2)3 chain at the TS, CARMA, and LR-CCSD
levels of theory. The parallel and perpendicular components of vdW
coefficients (C6,⊥ and C6,∥) for (H2)3 chain are in good agreement with
respect to those obtained using LR-CCSD calculations. The isotropic C6

coefficient is also noticeably improved when using the CARMA approach
in comparison to TS method. In the following section, we apply CARMA
model to calculate electric static polarizabilities and vdW coefficients of
benchmark datasets of molecules as discussed in Chapter (4).
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5.4.3 Performance of CARMA model for isotropic elec-

tric static polarizability and vdW coefficients of

molecules

In the Chapter (4), we have introduced representative benchmark
sets of electric static dipole polarizabilities for 7449 molecules and
vdW CAB

6 coefficients for 1225 pairs of species that include atom-atom,
atom-molecule and molecule-molecule interaction. Here, we use these
datasets to assess the performance of CARMA model in predicting static
polarizability and asymptotic vdW CAB

6 coefficients. Therefore, the
electric static polarizabilities and asymptotic vdW coefficients are then
calculated for this diverse set of molecules. The distributions of relative
errors for Tkatchenko–Scheffler (TS) method [1], TS+SCS [7] and
CARMA model with respect to the reference PBE0 polarizabilities for
≈7.5k molecules are in shown Figure (5.7)–(A). In TS polarizability

Figure 5.7: A) The plot shows the distribution of relative errors for isotropic
static polarizability of 7449 molecules calculated using TS (green-triangles),
TS+SCS (red-squares) and CARMA model (blue-circles) on the reference
PBE0 polarizabilities. B) The plot shows distribution of relative error for CAB

6

coefficients of 1225 pairs of atoms and molecules calculated using TS, TS+SCS
and CARMA model on experimentally derived vdW coefficients.

 40

 80

 120

 160

 200

−40−30−20−10  0  10  20  30  40

N
u
m

b
e
r 

o
f 
m

o
le

c
u
le

s

Relative error (in %)
 (A) 

TS
TS+SCS
CARMA

 10

 20

 30

−40−30−20−10  0  10  20  30  40

N
u
m

b
e
r 

o
f 
p
a
ir
s

Relative error (in %) 
 (B)

TS
TS+SCS
CARMA

model, the molecular polarizability is expressed as a sum over electron
density dependent atom hybridized polarizabilities. The TS method
provides isotropic molecular polarizabilities with an accuracy of 12.2%
on the benchmark set of electric static dipole polarizabilities for 7449
molecules and systematically overestimates polarizabilities. The atomic
response function model in present work relies on the definition that the
atomic polarizability of each atom in a system is defined as functional
of electron density, α[n(r)]. Moreover, the key quantities required
to obtain the polarizability tensor of a system (after solving the SCS
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equation) are effective static polarizability αp and the variance σp for
each atom in a system which are defined as functional of electron
density [1]. The TS+SCS model [7] uses definition of input αp and
σp given by Eq. (2.77) and Eq. (5.40), while for the CARMA model
inputs are defined by Eq. (5.48) and Eq. (5.51), respectively. Both TS
and TS+SCS method predicts isotropic polarizabilities within 12%
relative to those obtained using PBE0 functional. The TS method shows
a broad distribution of relative errors for static polarizabilities while
TS+SCS model has small standard deviation but still systematically
overestimates polarizabilities. The CARMA model predicts isotropic
static polarizabilities with an accuracy of 3.6% and this can be clearly
observed from the distribution of relative errors shown in Figure (5.7)–
(A). Furthermore, the mean average relative error on the principal
components of the polarizability tensor in comparison with PBE0
functional is 4.3%, 9.7% and 10.5%, for αxx, αyy, αzz respectively.

Similarly, the distributions of relative errors for 1225 pairs of vdW
coefficients obtained using TS method [1], TS+SCS [7] and CARMA
model with respect to the C6 coefficients derived using experimental
DOSD data are shown in Figure (5.7)(B). The TS method already
provides the vdW coefficients with an accuracy of 5.1% [1]. Moreover,
the TS+SCS model predicts slightly overestimated C6 coefficients
with an error bar of 6.3%. The CARMA model provides static
polarizability with good accuracy as compared with earlier TS+SCS
model [7]. Therefore, the CARMA model yields C6 coefficients with
an accuracy of 7.6% on the 1225 pairs of vdW coefficients which is
clearly observed from Figure (5.7)(B). The CARMA model provides an
accurate and efficient framework for calculating dynamic polarizability
tensor for molecules. In the following section, we analyse the dynamic
polarizabilities and vdW coefficients calculated using CARMA model
for 23 cubic extended solids.

5.4.4 Static polarizability and vdW coefficients in

solids

The electronic excitation spectrum of a material is generally described in
terms of a frequency dependent complex electronic dielectric function
ϵ(ω) = ϵ1(ω) + iϵ2(ω). The real part or the imaginary part contains
all the desired response information since the causality argument relate
the real and imaginary parts via the Kramers-Kronig transformation
and can be written as

ϵ1(ω)− 1 = n2(ω)− 1 =
2

π
P
 ∞

0

ω
′
ϵ2(ω

′
)

ω
′2 − ω2

dω
′
, ∀ω < ω0 (5.59)

where ω0 is the threshold frequency and n is the refractive index. The
frequency ω is assumed to be higher then vibrational modes therefore
only electronic excitations are being considered. A simple approximate
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formula for Eq. (5.59) for inter band transitions by individual oscillators
and recognize that each valence electron contributes one such oscillator
may be approximated by

ϵ2 − 1 = ∑
n

fn

ω2
n − ω2

(5.60)

which is Kramers–Heisenberg dispersion formula for an assembly
of weakly interacting atoms. In Eq. (5.60), fn is the electric-
dipole oscillator strength associated with transitions at frequency ωn.
Therefore, the usefulness of Eq. (5.60) depends on whether real solids
obey the single oscillator approximation with reasonable accuracy or
the experimentally observed values of the parameters fn and ωn. The
SO model has been applied to many different types of condensed-
matter systems. This method provides a simple connection between the
refractive index n(ω) and two SO parameters (E0 and Ed ) as

n2(ω)− 1 =
E0Ed

E2
0 − ω2

(5.61)

where ω is the photon energy, E0 is the single oscillator energy, and Ed

is the dispersion energy, which is a measure of the strength of interband
optical transitions [320]. The SO parameters have fundamental
physical meaning the refer to E0 effective energy gap related to the
direct band gap, and Ed is an interband strength parameter, which is
closely related to the chemical-bonding nature of a molecular material.
It is clear that the accuracy of the SO model depends greatly upon the
accuracy of experimental optical spectra. In reality, reliable optical-
spectrum measurement is a difficult task, as a large enough spectral
energy range must be measured, which is rarely done. In this section we
discuss CARMA model applied to compute the dynamic polarizabilities
for 23 non-metalic periodic crystal with cubic symmetry.

Figure (5.8) shows the static polarizabilities and van der Waals
C6 coefficient per unit cell for 23 IIIA–VA group solids (as compiled
in Ref. [202] and corresponding values are shown in Table (A.2)).
The reference values for static polarizabilities and van der Waals C6

coefficients per unit cell are obtained using experimental refractive
index data [202, 320]. Using the Clausius-Mossotti relation3, static
polarizabilities and C6 coefficients per unit cell were then obtained
using the single oscillator (SO) approximation [320]. The static
polarizabilities and dispersion coefficients have been compared using
four approaches: the SO model, the DFT-based CARMA model and
the TS method, together with the TD-HSE benchmark, which is
only available for the diamond- type solids and GaAs, as shown
in Figure (5.8). The TS and CARMA model overestimate static

3αunitcell =
3

4π V ϵ−1
ϵ+2 , Clausius-Mossotti formula which relates the dielectric function

ϵ to the polarizability, where V is volume of the cell.
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Figure 5.8: Calculated static polarizabilities (bohr3) and C6 dispersion
coefficients (hartree·bohr3 ) per unit cell for 23 IIIA–VA group solids using
the CARMA method, along with TS method and SO model [320]. The TDDFT
values are obtained from TDHSE dielectric function [202, 321]. All values are
calculated at the experimental unit-cell volumes (as compiled in Ref. [321]
and provided in Table (A.2)).
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polarizabilities and C6 coefficients per unit cell with respect to values
obtained using SO model which are available for 10 solids. The mean
average relative error for static polarizability for 10 solids obtained
using the TS method and CARMA model with respect to experimental
reference is ≈50% and ≈17%, respectively. The TD-HSE values are
accurate, but have a high computational cost. The SO model yields
a good prediction for the static polarizability, however, C6 dispersion
coefficients are underestimated due to the limited spectral range of
experimental measurements. The TS approach is found to overestimate
both the polarizability and dispersion coefficients, in line with its neglect
of the electrodynamic screening. Finally, the CARMA model yields good
results at a rather low computational cost: the vdW parameters are
considerably reduced with respect to the TS results due to the inclusion
of the long-range electrodynamic response, resulting in much better
agreement with the available TDDFT benchmark data.

5.5 Summary

Reliable methods for efficient calculation of the dynamic polarizability
of molecules and solids are required for modeling a multitude of
spectroscopic techniques, including optical absorption and refraction,
Raman spectroscopy, and circular dichroism. Efficient prediction of
electronic response properties is also necessary for the calculation
of screened exact exchange, van der Waals (vdW) interactions, and
coupling between nuclear and electronic degrees of freedom in
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materials. In principle, explicit excited-state first-principles techniques
could be utilized to determine electronic response properties. However,
these methods can be only applied to rather small systems and
become prohibitively expensive to study complex materials containing
thousands of atoms. To address this problem, we developed an efficient
non-empirical method (CARMA) for calculating response properties of
non-metallic molecules and solids based on coupled quantum harmonic
oscillators (QHO) that describe valence atomic excitations. This is
achieved by the synergistic coupling of the Tkatchenko-Scheffler type
polarizability for treating short-range hybridization effects with the
self-consistent Dyson-like screening (SCS) equation from classical
electrodynamics. The present formulation builds upon and significantly
improves an earlier version of the TS+SCS approach, by preserving
QHO invariants, satisfying the free-atom Thomas-Reiche-Kuhn sum
rule, and using the correct spin-polarized electron densities for the
free atoms. Using only the ground state electron density obtained
from first-principle density functional theory calculation and accurate
free-atom reference data, we obtain a performance of 3.6% for static
polarizabilities and 7.6% for vdW coefficients for a large database of
gas-phase molecules (∼7500 systems).



6
Scaling laws for van der Waals

interactions in nanostructured materials

The discovery and the ensuing burst of applications of carbon-based
nanomaterials, including fullerenes [322], carbon nanotubes [323],
single-layer and multilayer graphene (MLG) [324], have undoubtedly
revolutionized materials science, revealing bright prospects in nanotech-
nology and other related fields. Low-dimensional nanostructures have
been demonstrated to possess previously unexpected electronic [16],
optical [325], cohesive [194, 326] and thermal [327] properties. The
self-assembly of such nanostructures is often governed by the ubiquitous
van der Waals (vdW) interactions, the description of which requires the
usage of quantum electrodynamics [33, 55]. Despite this well-known
fact, most of the widely employed atomistic models for vdW interactions
in nanomaterials are based on a simple pairwise interacting ‘atoms-in-
molecules’ picture, ignoring the rather strong electrodynamic response
effects, which stem from long-range fluctuations in matter. For example,
recent work by Ruzsinszky et al. [326] showed that electrodynamic
effects can dramatically influence the vdW interaction between large
fullerene molecules.

Here we determine the microscopic polarizability and vdW
coefficients of molecules and materials, including electrodynamic
response effects, by utilizing a recently developed parameter-free
method based on a system of coupled quantum harmonic oscillators
(QHO) [7]. This method is applied to a wide range of carbon-based
nanomaterials, including fullerenes, carbon nanotubes and nanoribbons,
graphite, diamond, as well as single-layer and MLG. Our microscopic
calculations, valid at close and far (<10 nm) separations between
nanostructures, reveal that vdW interactions act at distances greater
than typically assumed and show unusual behaviour depending on the
dimensionality of the system. The peculiar vdW scaling laws lead to a
decreasing binding energy for a fullerene molecule adsorbed on MLG as
a function of the number of graphene layers, contrary to conventional
expectations.

97
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6.1 Methodology

We represent the N atoms in a given material as a collection of N
QHO, each of which is characterized initially by an isotropic frequency-
dependent dipole polarizability. To account for the local chemical
environment, we utilize the Tkatchenko-Scheffler prescription [1], in
which the static polarizability, αTS

i [n(r)], and the excitation frequency
ωTS

i [n(r)] for every i-th QHO are defined as functionals of the ground-
state electron density, n(r), obtained from a self-consistent quantum
mechanical calculation using DFT. We require that the response of the
material is not dominated by delocalized excitations and can therefore
be initially divided into effective atomic fragments. The Hirshfeld [193]
partitioning of the electron density is then utilized to account for the
local chemical environment surrounding each atom. As both parameters
( αi[n(r)] and ωi[n(r)] are referenced to highly accurate free-atom
reference data, short-range quantum mechanical exchange-correlation
effects are accounted for in these quantities by construction. In fact,
the frequency-dependent polarizabilties defined in this manner yield C6

coefficients that are accurate to 5.5% when compared with reference
experimental values for an extensive database of atoms and small
molecules [1].
To accurately capture the long-range electrodynamic response screening
and anisotropy effects beyond the local chemical environment, we
self-consistently solve the Dyson-like screening equation (SCS), see
equations (2)-(4), in Ref. [7]. In short, we solve the following
equation to determine the non-local (interacting) polarizability tensor
αSCS

pq (r, r
′
; iω), where p and q indicate the Cartesian components of

polarizability tensor.

αSCS(r, iω) = αTS(r, iω)− αTS(r, iω)×


Tpq(r, r
′
, iω)αSCS(r, iω)dr

′
,

(6.1)
where Tpq(r, r

′
, iω) is the dipole-dipole interaction tensor. Eq. (6.1)

can be written as a system of algebraic equations on the basis of
QHO positions. The interacting polarizability tensor αSCS

pq (r, r
′
; iω) is

obtained upon solving this system of algebraic equations, and in practice
amounts to an inversion of a 3N × 3N matrix at every frequency of
interest. The charge density distribution of each QHO required for the
calculation of Tpq(r, r

′
, iω) is defined as

nQHO
0 (r) = |ψQHO

0 (r)|2 =
exp[−r2/2σ2(iω)]

(2π)3/2σ3(iω)
, (6.2)

where σ represents the width of the Gaussian. An improvement of the
TS+SCS method published in Ref. [7] is used for all the results reported
in this paper. The σfree

i parameter corresponding to every free atom i is
obtained from the electron density computed with the coupled-cluster
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singles and doubles (CCSD) method, by fitting the dipole potential
resulting from this accurate electron density to a model QHO potential.
This allows us to reliably model interactions for interatomic distances
beyond ∼ 0.5 Å. For an atom in a material, and for each frequency of
the electric field, the σ(iω) parameter is defined by the aforementioned
TS prescription as [328]

σi(iω) =



αTS
i (iω)

αTS
i (0)

1/3

(VHirshfeld
rel )1/3σfree

i , (6.3)

where VHirshfeld
rel is the Hirshfeld volume ratio between an atom-in-a-

material and the free atom. This straightforward modification of the
TS+SCS method leads to an improved performance for molecular static
polarizabilities (7% mean absolute error on more than 7000 organic
molecules). The values of the employed parameters were obtained
from CCSD calculations for the free carbon atom and DFT electron
density calculations for all materials, and they are σfree

C =1.514 bohr,
VHirshfeld

rel =0.911 for the carbon atom in diamond, VHirshfeld
rel =0.884

for graphite, and VHirshfeld
rel =0.863 for sp2-bonded carbon in all the

other materials (slight variations of this value are observed in different
nanostructures, but these variations have negligible effect on the final
results). All DFT calculations have been performed using the full-
potential all-electron real-space code FHI-aims [265]. We employed
the PBE functional [277] for all DFT calculations. Special care has
been taken to use sufficiently large supercells to eliminate any possible
interactions with artificial periodic images for low-dimensional systems.
Typically, vacuum sizes of 500 Å were used for this purpose. Such
large unit cells do not substantially increase the computational cost in
real-space DFT codes. For molecular systems (fullerenes, GNRs), no
periodic boundary conditions were employed.

6.2 Application of CARMA model to carbon

nanostructures

6.2.1 Calculation of vdW coefficients

Here only the salient features of our method are described. We
refer the reader to ref. [7] and the Methods section for additional
details of our approach. We map a given molecule or material to a
system of QHO, with a single QHO assigned to every atom. The QHO
parameters are determined as functionals of the ground-state electron
density, obtained from density-functional theory (DFT) calculation of
the self-consistent electronic structure, using the Tkatchenko–Scheffler
(TS) method [1]. The QHOs are subsequently coupled through the
dipole–dipole potential, and the response of the fully interacting many-
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atom system is determined upon solving the self-consistent Dyson-
like screening equation [3, 5, 80]. The solution of the self-consistent
screening (SCS) equation yields the interacting frequency-dependent
polarizability for the system of interest, thus going beyond the standard
pairwise approximation. The fundamental equations of the employed
method are equivalent to ref. [7], with an improved mapping of the
interactions present in the full electronic system to the QHO model.
This simple yet effective modification leads to a noticeable improvement
in the description of the static polarizability for molecules and solids.

6.2.2 vdW coefficients of model systems

Before applying our method to carbon nanostructures, we investigated
its performance for fundamental carbon-based model systems: benzene,
C60 fullerene, graphite and diamond. For the polarizability and vdW C6

coefficients of small molecules, such as benzene, the conventional
‘atoms-in-molecules’ picture can be successfully employed. For
example, the TS method [1] leads to accurate values of α=74.4 bohr3

and C6=1,783 hartree·bohr6 for benzene, compared with reference
experimental values of α=71.3 bohr3 and C6=1,723 a.u. [250, 329]
(here and in what follows, the notation ‘a.u.’ is used to denote Hartree
atomic units). However, the TS method does not capture the anisotropy
in the polarizability [1], which arises mainly from the interaction
between the dipoles. Upon including the electrodynamic response
by solving the SCS equation, the anisotropy in the static polarizability is
significantly improved, whereas the isotropic vdW C6 coefficient is still
accurately determined (1,697 a.u.). Predicting accurate polarizability
and C6 coefficient for the C60 fullerene is a more demanding task
because of the coupling between localized sp2 bonds and excitations
delocalized over the C60 molecule. The experimental estimate for the
static polarizability of C60 is 8.6±0.9 a.u. per atom [330]. The SCS
method somewhat underestimates the static polarizability and yields
7.5 a.u. per atom. This is consistent with the fact that the inclusion
of excitations delocalized over the whole molecule will increase the
static polarizability of the C60 molecule. However, here our focus lies
on the C6 coefficients, which are obtained upon integration over the
imaginary frequency. The ‘metal-like’ delocalized excitations become
important only at rather low imaginary frequencies, and their inclusion
is not expected to appreciably change our conclusions. In fact, the
computed carbon–carbon C6 coefficient of 24.2 a.u. inside C60 is only
slightly lower than the time-dependent hybrid DFT (TDDFT) estimate
of 28.3 a.u. [331, 332]. Similarly accurate results are obtained for
solids, including graphite and diamond. For graphite, we determine
the C6 coefficient of 28 a.u., which is in good agreement with the
estimate done using the experimentally measured dielectric function
(24 a.u.) [333]. For diamond, the computed value of 22 a.u. agrees
rather well with the value of 17 a.u. determined from the experimental
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dielectric function [202]. We conclude that our method is capable of
accurately describing the frequency-dependent polarization and the
resulting vdW C6 coefficients for a wide range of molecules and solids.
We proceed to study the vdW C6 coefficients for carbon nanostructures
of different dimensionality.

6.2.3 vdW coefficients of carbon nanostructures

The main results are summarized in Figure (6.1), where we present
the C6 coefficient per carbon atom (see definition in the Methods
section) for nanostructures of different dimensionality, including zero-
dimensional fullerenes, one-dimensional single-wall carbon nanotubes,
two-dimensional single-layer and MLG, and three-dimensional graphite
and diamond. The C6 coefficient per carbon atom varies by
almost an order of magnitude among the different nanostructures,
with the lowest value found for small fullerenes and the largest
for graphene. These findings demonstrate that the conventional
approximation of fixed carbon–carbon C6 coefficient fails dramatically
when modelling vdW interactions between nanostructures. The
pairwise approximation is especially problematic when the interaction
between different nanostructures is studied, for example, binding
between fullerenes/nanotubes with graphene layers or graphite surface
(see below).

We proceed to analyse the C6 per carbon atom as a function of
system size for different classes of nanostructures. For the fullerene
family, the system size is defined by the fullerene radius. Therefore, as
shown in Figure (6.1), the C6 coefficient increases linearly as a function
of the fullerene radius. This leads to the following fitted scaling power
law as a function of the number of carbon atoms n, CC−C

6 ≈n2.35. In
contrast, a simple parwise approximation predicts CC−C

6 ≈n2. The faster
growth of C6 coefficients upon including electrodynamic response can
be explained by the polarization (depolarization) inside the fullerene
(vacuum) when increasing the fullerene radius. In fact, in the limit of
giant fullerenes, the C6 per carbon should approach that of a carbon
atom in a graphene layer. However, local curvature effects clearly
reduce the polarizability even for quite large fullerenes. The rapid
increase of C6 is in qualitative agreement with recent calculations
based on a representation of a fullerene as a hollow metallic sphere, in
which it was found that in the asymptotic regime of giant fullerenes,
CC−C

6 grows as n2.75 (ref. [326]). The smaller exponent found in our
work stems from a fit to smaller fullerene sizes and from the fact that
every carbon atom is modelled as a QHO. We consider this atomistic
representation as more realistic compared with modeling fullerenes as
hollow metallic spheres. In fact, recent TDDFT calculations suggest a
scaling power law of n2.2 for of fullerenes from C60 to C84 (ref. [332]).
Our model yields a very good agreement with TDDFT for these small
fullerenes, predicting a scaling of n2.25. In conclusion, three different
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Figure 6.1: vdW C6 coefficients per carbon atom (the C6 of the full system
divided by N2

C , where NC is the number of carbon atoms) for nanostructures of
different dimensionality, as calculated by the electrodynamic response model
of ref. [7]. The size ranges for different systems are as follows: (1) the radius
of fullerenes is varied from 2 to 12 Å; (2) the radius of single-wall carbon
nanotubes (SWCNT)-Armchair(n,n) and SWCNT-Zigzag(n,0) vary between 2
and 60 Å; (3) the graphene nanoribbons (GNRs) vary in radius from 5 to 50
Å; (4) the number of layers in multilayer graphene (MLG) varies from 2 to 30,
where each point on the plot corresponds to an increase of two layers

methods unambiguously demonstrate that the coefficient grows much
faster in fullerenes than a simple pairwise model would suggest.

For graphene nanoribbons (GNRs), the system size is defined by
the radius of the circle enclosing the GNR. In contrast to fullerenes,
the C6 coefficients of GNRs increase superlinearly as a function of the
GNR radius. There are significant edge-polarization effects in GNRs,
which lead to larger polarizability density as one goes away from the
centre of the GNR towards the edges. This behaviour is explained by
stronger polarization of ‘less constrained’ edge atoms. As expected, the
C6 coefficients of GNRs tend to that of single-layer graphene as the
GNR size grows.

Similar to the case of GNRs, the C6 coefficients of single-walled
carbon nanotubes (SWCNTs) grow superlinearly as a function of the
SWCNT radius. The vdW coefficients also depend on the chirality
of the SWCNTs, in general increasing faster for armchair nanotubes
than for zigzag ones. The superlinear increase of the C6 coefficient
for SWCNTs stems from the remarkable axial polarization that arises
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from the favourable alignment of the dipoles along the SWCNT axis.
In contrast, we find depolarization in the direction perpendicular
to the SWCNT. Both of these findings are in agreement with DFT
calculations [334]. However, our method is significantly more efficient
and allows the calculation of the microsopic polarization tensor even
for very large nanostructure assemblies containing many thousands of
atoms. Not unexpectedly, even more remarkable behaviour is noticeable
for single-layer graphene and MLG nanostructures. The carbon–carbon
C6 coefficient of 147 a.u. in two-dimensional graphene is 5.3 times
larger than that of three-dimensional graphite. This can be rationalized
by a substantial in-plane polarization in graphene on the expense of
depolarization in the direction perpendicular to the graphene layer. In
contrast, the interplay of interlayer and intralayer polarization leads to
a smaller C6 coefficient for carbon in graphite. Notably, the convergence
of the C6 coefficient from the graphene limit to the graphite limit is
exceedingly slow as a function of the number of graphene layers for
MLGs. We observe a linear behaviour for up to 30 stacked graphene
layers, and a naive linear extrapolation suggests that at least 90
graphene layers would be required to converge the carbon–carbon
C6 coefficient to the graphite limit. From the geometry point of
view, such an unusually slow convergence stems from noticeable
surface polarization effects for MLGs. Physically, this behaviour can
be explained by the self-consistent nature of electrodynamic response
equations that effectively couple all the interacting QHOs, leading to
effects that propagate much further beyond the decay of the standard
dipole–dipole ~R−3

AB interaction law, where RAB is the distance between
two QHOs.

6.2.4 vdW binding between carbon nanostructures

Having presented the peculiar scaling laws for vdW coefficients in
different carbon nanostructures, we now study the impact of our
findings for the interlayer-binding energy in graphite and the C60

fullerene interacting with MLGs. The interlayer-binding energy of
graphite has been a subject of intense investigation over the last
decade. Experimental measurements yield values from 31±2 meV
(ref. [335]) to 52±5 meV (ref. [336]) per carbon atom. State-of-the-
art theoretical calculations using the random-phase approximation
(utilizing Perdew–Burke–Ernzerhof (PBE) [277] wavefunctions) to the
electron correlation energy predicts a value of 48 meV per atom [337],
whereas quantum Monte Carlo calculations yield a larger value of
56 meV per atom [338]. The interlayer binding in graphite has been
frequently approximated as a sum of pairwise potentials with vdW
C6 coefficients obtained using the experimental dielectric function of
graphite (24 a.u.) or explicitly fitted to experimental measurements.
Such a simple approximation assumes that the carbon–carbon C6

coefficient is the same in graphene and graphite, and this result is
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far from reality as clearly illustrated in Figure (6.1) Electrodynamic
response effects lead to radically different polarization behaviour in two-
dimensional graphene and three-dimensional graphite. In Fig. 6.2, the

Figure 6.2: Graphite interlayer-binding energy as a function of the interlayer
distance d using the PBE functional with TS pairwise vdW energy (PBE-
TS, dotted black line, triangles) and PBE with self-consistently screened
(SCS) vdW energy (PBE-TS+SCS, solid black line, triangles). The measured
experimental-binding energy from ref. 25 is marked in red. Binding energy of
C60 fullerene on multilayered graphene as a function of number of graphene
layers, using PBE-TS (dotted blue line, diamonds) and PBE-TS+SCS (solid
blue line, diamonds) methods. The centre of the C60 molecule is located 7.5 Å
away from the closest graphene sheet.

interlayer-binding energy of graphite is presented as a function of the
distance between the layers. The pairwise approximation using the PBE-
TS method overestimates the binding considerably, by at least 30 meV
per atom. Accurate inclusion of electrodynamic response screening in
the PBE-TS+SCS method leads to interlayer-binding energy that agrees
exceptionally well with the measurements of Zacharia et al. [336],
as well as random-phase approximation [337] and quantum Monte
Carlo [338] calculations. The important improvement of the binding
energy in the PBE-TS+SCS method stems from a much larger C6

coefficient of graphene when compared with graphite. This results
in an increased vdW energy contribution for a carbon atom inside
graphene and a concomitantly smaller interlayer-binding energy.
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6.2.5 vdW binding between carbon nanostructures

Having presented the peculiar scaling laws for vdW coefficients in
different carbon nanostructures, we now study the impact of our
findings for the interlayer-binding energy in graphite and the C60

fullerene interacting with MLGs. The interlayer-binding energy of
graphite has been a subject of intense investigation over the last
decade. Experimental measurements yield values from 31±2 meV
(ref. [335]) to 52±5 meV (ref. [336]) per carbon atom. State-of-the-
art theoretical calculations using the random-phase approximation
(utilizing Perdew–Burke–Ernzerhof (PBE) [277] wavefunctions) to the
electron correlation energy predicts a value of 48 meV per atom [337],
whereas quantum Monte Carlo calculations yield a larger value of 56
meV per atom [338]. The interlayer binding in graphite has been
frequently approximated as a sum of pairwise potentials with vdW
C6 coefficients obtained using the experimental dielectric function of
graphite (24 a.u.) or explicitly fitted to experimental measurements.
Such a simple approximation assumes that the carbon–carbon C6

coefficient is the same in graphene and graphite, and this result is
far from reality as clearly illustrated in Fig. 6.1. Electrodynamic
response effects lead to radically different polarization behaviour in two-
dimensional graphene and three-dimensional graphite. In Fig. 6.2, the
inter-layer-binding energy of graphite is presented as a function of the
distance between the layers. The pairwise approximation using the PBE-
TS method [1] overestimates the binding considerably, by at least 30
meV per atom. Accurate inclusion of electrodynamic response screening
in the PBE-TS+SCS [202] method leads to interlayer-binding energy
that agrees exceptionally well with the measurements of Zacharia et
al. [336], as well as random-phase approximation [337] and quantum
Monte Carlo [338] calculations. The important improvement of the
binding energy in the PBE-TS+SCS method stems from a much larger
C6 coefficient of graphene when compared with graphite. This results
in an increased vdW energy contribution for a carbon atom inside
graphene and a concomitantly smaller interlayer-binding energy.

Finally, we illustrate how the peculiar scaling laws for vdW
coefficients in nanomaterials can lead to unusual binding behaviour
between nanostructures of different dimensionality. The binding energy
of a fullerene on MLGs is shown in Fig. 6.2 as a function of number
(n) of graphene layers beneath the fullerene. Conventionally, one
would expect the binding energy to increase with n, as shown by the
dotted blue curve in Fig. 6.2, as there are more atoms to interact with
(presumably equal to more polarization). In addition, a simple pairwise
model would lead to a quick convergence of the binding energy with
respect to n because of a rather quick R−6

AB decay of the pairwise vdW
energy for two atoms A and B. This simple view is, however, deceptive.
In fact, as n increases, the polarizability and C6 per carbon atom in
MLGs decrease (see Fig. 6.1). This leads to overall depolarization of
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the fullerene/MLG complex, and shows a decreasing binding energy
with increasing n. As the convergence of the C6 coefficient with n

is rather slow, the binding energy also converges slowly. We remark
that a fully anisotropic treatment of the vdW interactions is probable
to decrease the slope of the binding energy curve for C60 on MLGs.
However, it is noteworthy that the pairwise and the fully screened vdW
energy converge to different values of the binding energy, with the
latter yielding somewhat weaker binding. This is consistent with our
observations for the graphite interlayer-binding energy. We are not
aware of direct experimental measurements for the binding energy
of fullerene with graphite; however, we expect similar findings as
for the graphite interlayer binding, where the PBE-TS+SCS method
yields more accurate results than a simple pairwise approximation to
the vdW energy. The rather unconventional behaviour of the binding
energy for adsorption on MLGs with the number of layers n is a general
phenomenon for a variety of adsorbates, ranging from small molecules
to larger objects.

6.3 Discussion

To place our findings in the broader context of current understanding
of vdW interactions, we note that it is widely accepted that these
interactions are inherently non-additive (many-body) phenomena,
corresponding to correlations between fluctuating multipoles in
matter [33]. Interested readers are referred to the previous papers by
Axilrod and Teller [339], Bade [284] and Zwanzig [340] for the analysis
and explanations of many-body contributions to vdW interactions. The
seminal ideas proposed in this previous work to treat vdW interactions
beyond simple pairwise additivity have been utilized more recently to
study model systems, characterized by point polarizabilities, see for
example, the analysis by Cole [285], Donchev [205] and Dobson [286]
among others. The crucial idea of our method is to extend the
description from point-polarizable fluctuating dipoles to QHO extended
in space and described by dipole density distributions (see Methods and
ref. [6]). All the necessary parameters are determined from the self-
consistent electron density using state-of-the-art electronic structure
calculations, apart from the available high-level reference data for
atomic polarizabilities [7]. The efficiency and accuracy of our methods
make it possible to carry out calculations on a broad variety of real
materials. Recently, our methods have been implemented in the widely
used VASP code [341] and benchmarked for a set of pristine three-
dimensional solids. In this work, we significantly extend previous
observations on the importance of electrodynamic response effects to
more general nanostructures of lower dimensionality, including the
interaction between different nanostructures. The coupled QHO model
assumes that the material can be initially partitioned into well-defined
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atomic fragments. Thus, the possibility of hopping of electrons over long
distances is neglected. The coupling of screening and such delocalized
electrons can lead to other types of non-additivity not addressed in this
work. For example, Dobson et al. [194] and Misquitta et al. [342] have
identified peculiar asymptotic power laws for the interaction between
low-dimensional materials. Subsequently, it has been found that
these effects contribute very little at equilibrium separations between
nanostructures [337] The incorporation of delocalized electrons into
the coupled QHO model will be a subject of future work. In conclusion,
we have identified an unusual behaviour caused by electrodynamic
response in vdW interactions for nanostructured materials. Depending
on the dimensionality and the atomic arrangement of carbon atoms, the
vdW coefficients per carbon atom exhibit peculiar scaling laws that can
be exploited for controlling the self-assembly of complex nanostructures,
as recently suggested by experimental measurements [343, 344].





7
Towards efficient modeling of long-range

interactions in nanoscale systems

Efficient and accurate treatment of polarization has remained a
theoretical challenge. The polarization properties of molecules or
materials are useful in the description of various physical properties
as well as van der Waals (vdW) interactions. The first challenge
we encountered was exploring computational tools that should be
affordable for the calculation of vdW interactions in complex materials.
An important concept in the description of vdW interactions is the
density-density response function. The correlation energy of many-body
system can be obtained using the response function via the adiabatic-
connection fluctuation-dissipation theorem (ACFDT) [64, 65]. The
response function is usually calculated from the Kohn-Sham energies
and orbitals. However, this is computationally expensive, therefore
more efficient alternative approaches are required.

In Chapter (5), we have introduced a coarse-grained (CG)
electrodynamic model (CARMA) of electronic polarization in materials.
In this approach, the (interacting) response function, χCG(r, r

′
, iω), is

derived starting from spatially partitioned atomic response functions
as functional of the electron density. The accuracy and efficiency of
CARMA model has been demonstrated by calculating the polarizability
and vdW coefficients of a wide range of systems including molecules and
non-metallic solids compared with accurate reference data. Moreover
in Chapter (6), we have applied CARMA model to determine the
microscopic polarizability and asymptotic van der Waals (vdW) C6

coefficients of a wide range of carbon-based nanomaterials, including
fullerenes, carbon nanotubes and nanoribbons, graphite, diamond, as
well as single-layer and multi-layer graphene. Furthermore, we have
identified unique scaling laws in vdW interactions for nanostructured
materials. The vdW coefficients depend on the dimensionality
and the atomic arrangement of carbon atoms and demonstrate the
importance of treating vdW interactions beyond simple pairwise
additivity approximation.
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systems

Here we briefly discuss the possible improvements for the
electrodynamic response model, which would extend it to an even
wider range of important materials at the nanoscale.

The CARMA model discussed in Chapter (5) yields the full non-
local interacting response matrix as a function of quantum harmonic
oscillators (QHOs) positions. The QHO model possesses a response
to infinite order in the multipole expansion. The current model
restricts the response to the dipole approximation, effectively allowing
excitations only to the first excited state for every QHO due to the
dipole selection rule. In principle, the full response function can be
computed for a system of QHOs up to an arbitrary energy cutoff for
the excited states. This would allow us to treat multipole responses
higher than dipole (quadrupole, octupole, etc.). The CARMA model
can also be extended to represent every atom by several QHOs. The
primary challenge we encounter in calculating dynamic polarizability
of complex solid-state materials (with many thousands of atoms) is the
computational bottleneck of matrix inversion. The matrix inversion
problem can be cast in term of a generalized eigenvalue problem.
Moreover, the linear algebra library such as eigenvalue solvers for
petaflop-applications ELPA [345] coupled with CARMA model allows
calculating polarizability tensor for systems with many thousands of
atoms on modern computational hardware. Furthermore, the present
coarse-grained representation of the response function can be extended
to include oscillators which mimic charge hopping between atomic sites
(metallic excitations) [70–72].



8
Summary and Conclusions

Understanding the physical mechanism that connects polarization
properties of bio or nano structures is an ongoing and interdisciplinary
challenge. In principle, explicit excited-state first-principles techniques
could be utilized to determine electronic polarization properties of
materials. However, these methods are computationally expensive. In
the present work, we have developed an efficient scheme for modeling
linear electronic polarization using atomic response functions. This
model is a (synergistic) coupling of classical electrodynamics with
quantum mechanical input data and the electron density obtained
using density functional theory calculations. The accuracy of results
obtained using this model has been verified by comparing them with
experimental as well as theoretically derived spectroscopic constants,
such as electric static polarizability and asymptotic dipole-dipole van
der Waals coefficients. Moreover, the electrodynamic response model
has been applied to wide range of Carbon based materials depending
on the dimensionality and the atomic arrangement of Carbon atoms
at the nanoscale, yielding important insights into the capabilities
and limitations of current theoretical tools in predicting polarization
properties of materials. The present coarse-grained can be also
extended for modeling various spectroscopic techniques, including
optical absorption and refraction, Raman spectroscopy, and circular
dichroism. Efficient prediction of electronic response function is also
necessary for the calculation of screened exact exchange, van der
Waals (vdW) interactions, and coupling between nuclear and electronic
degrees of freedom in materials.
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Table A.1: The recomended values for isotropic static polarizability, αfree,A

(in bohr3), the homo-atomic van der Waals coefficient, Cfree,AA
6 (in hartree ·

bohr6), and vdW Radii, Rfree,A
vdW (in bohr) for neutral free atoms. The vdW

Radii, Rfree,A
vdW for respective elements are defined as discussed in Ref. [1].

Element Cfree,AA
6 αfree,A Rfree,A

vdW Ref. Element Cfree,AA
6 αfree,A Rfree,A

vdW Ref.
H 6.50 4.50 3.10 [195] Te 396.00 37.65 4.22 a

He 1.46 1.38 2.65 [195] I 385.00 35.00 4.17 a

Li 1387.00 164.20 4.16 [346] Xe 285.90 27.30 4.08 a

Be 214.00 38.00 4.17 [195] Cs 6582.08 427.12 3.78 [346]
B 99.50 21.00 3.89 [195] Ba 5727.00 275.00 4.77 a

C 46.60 12.00 3.59 [195] La 3884.50 213.70 3.14 b

N 24.20 7.40 3.34 [195] Ce 3708.33 204.70 3.26 b

O 15.60 5.40 3.19 [195] Pr 3911.84 215.80 3.28 b

F 9.52 3.80 3.04 [195] Nd 3908.75 208.40 3.30 b

Ne 6.38 2.67 2.91 [195] Pm 3847.68 200.20 3.27 b

Na 1556.00 162.70 3.73 [346] Sm 3708.69 192.10 3.32 b

Mg 627.00 71.00 4.27 [195] Eu 3511.71 184.20 3.40 b

Al 528.00 60.00 4.33 [195] Gd 2781.53 158.30 3.62 b

Si 305.00 37.00 4.20 [195] Tb 3124.41 169.50 3.42 b

P 185.00 25.00 4.01 [195] Dy 2984.29 164.64 3.26 b

S 134.00 19.60 3.86 [195] Ho 2839.95 156.30 3.24 b

Cl 94.60 15.00 3.71 [195] Er 2724.12 150.20 3.30 b

Ar 64.30 11.10 3.55 [195] Tm 2576.78 144.30 3.26 b

K 3897.00 292.90 3.71 [346] Yb 2387.53 138.90 3.22 b

Ca 2221.00 160.00 4.65 [195] Lu 2371.80 137.20 3.20 b

Sc 1383.00 120.00 4.59 [195] Hf 1274.80 99.52 4.21 a

Ti 1044.00 98.00 4.51 [195] Ta 1019.92 82.53 4.15 a

V 832.00 84.00 4.44 [195] W 847.93 71.04 4.08 a

Cr 602.00 78.00 3.99 [195] Re 710.20 63.04 4.02 a

Mn 552.00 63.00 3.97 [195] Os 596.67 55.06 3.84 a

Fe 482.00 56.00 4.23 [195] Ir 359.10 42.51 4.00 a

Co 408.00 50.00 4.18 [195] Pt 347.10 39.68 3.92 a

Ni 373.00 48.00 3.82 [195] Au 298.00 36.50 3.86 a

Cu 253.00 42.00 3.76 [195] Hg 392.00 33.90 3.98 a

Zn 284.00 40.00 4.02 [195] Tl 717.44 69.92 3.91 a

Ga 498.00 60.00 4.19 [195] Pb 697.00 61.80 4.31 a

Ge 354.00 41.00 4.20 [195] Bi 571.00 49.02 4.32 a

As 246.00 29.00 4.11 [195] Po 530.92 45.01 4.10 a

Se 210.00 25.00 4.04 [195] At 457.53 38.93 4.07 a

Br 162.00 20.00 3.93 [195] Rn 390.63 33.54 4.23 a

Kr 129.60 16.80 3.82 [195] Fr 4224.44 317.80 3.90 a

Rb 4691.00 319.20 3.72 [346] Ra 4851.32 246.20 4.98 a

Sr 3170.00 199.00 4.54 [195] Ac 3604.41 203.30 2.75 b

Y 1968.58 126.74 4.82 a Th 4047.54 217.00 2.85 b

Zr 1677.91 119.97 4.53 a Pa 2367.42 154.40 2.71 b

Nb 1263.61 101.60 4.24 a U 1877.10 127.80 3.00 b

Mo 1028.73 88.42 4.10 a Np 2507.88 150.50 3.28 b

Tc 1390.87 80.08 4.08 a Pu 2117.27 132.20 3.45 b

Ru 609.75 65.89 4.00 a Am 2110.98 131.20 3.51 b

Rh 469.00 56.10 3.95 a Cm 2403.22 143.60 3.47 b

Pd 157.50 23.68 3.66 a Bk 1985.82 125.30 3.56 b

Ag 339.00 50.60 3.82 a Cf 1891.92 121.50 3.55 b

Cd 452.00 39.70 3.99 a Es 1851.10 117.50 3.76 b

In 707.05 70.22 4.23 a Fm 1787.07 113.40 3.89 b

Sn 587.42 55.95 4.30 a Md 1701.00 109.40 3.93 b

Sb 459.32 43.67 4.28 a No 1578.18 105.40 3.78 b

aPresent work linear response coupled cluster singles and doubles (LR-CCSD).
bFor lathanides and actinide, the Cfree,AA

6 coefficients are constructed to satisfy valence
electronic sum rule using the static polarizabilities from Ref [347].
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Table A.2: The isotropic static polarizability α(0) (in bohr3) and van der Waals
C6 coefficients (in hartree · bohr6) calculated using the CARMA method for
23 semiconductor solids (per primitive unit cell containing two atoms). The
lattice constants are taken from the references cited in the table.

α(0) C6

TS SO [320] TDHSE [202] RPA@PBE TS+SCS CARMA TS SO [320] TDHSE [202] RPA@PBE TS+SCS CARMA
C [348] 21.8 11.0 11.1 11.0 14.1 13.7 160.4 58.0 66.9 63.1 89.5 86.7

BN [349] 25.5 - - 9.9 16.1 15.3 183.4 - - 54.2 99.0 93.8
BP [350] 42.7 - - 27.1 28.6 28.8 499.7 - - 246.6 292.1 299.1

SiC [351] 45.0 21.6 - 21.6 28.6 29.9 518.8 164.9 - 174.2 280.8 298.9
AsB [352] 46.8 - - 32.1 32.5 33.4 602.4 - - 329.3 370.6 388.4
GaN [351] 62.3 - - 22.2 35.0 44.2 637.2 - - 162.6 309.6 405.2
ZnS [353] 57.6 36.8 - - 44.0 48.2 771.8 365.7 - - 535.9 603.0

Si [354] 69.5 50.8 50.0 50.8 47.7 49.8 1128.4 615.9 667.9 639.1 676.1 726.7
CdS [355] 57.6 - - - 48.0 51.9 1063.3 - - - 819.8 912.0

ZnSe [356] 63.3 45.4 - 48.2 48.9 54.4 955.3 509.8 - 616.0 673.6 773.8
AlP [357] 79.2 - - 44.8 52.8 56.7 1187.4 - - 523.0 689.8 765.2

CdSe [355] 63.3 - - 62.7 52.7 58.0 1282.2 - - 875.0 986.7 1118.1
Ge [354] 77.9 60.7 60.6 68.1 53.6 59.0 1339.5 675.6 897.9 926.9 805.9 928.7

GaP [357] 80.7 47.5 - 48.0 53.0 60.5 1182.2 532.4 - 586.5 675.0 800.1
AlAs [357] 83.5 - - 52.1 56.8 61.2 1347.0 - - 675.0 804.1 898.5

GaAs [357] 84.9 55.1 55.8 59.6 57.1 65.0 1334.0 604.0 781.9 766.2 787.2 934.9
ZnTe [358] 76.5 61.7 - 64.8 59.3 67.3 1359.3 797.8 - 981.1 964.3 1131.8
CdTe [355] 76.6 73.9 - 76.5 63.6 71.3 1740.2 1091.2 - 1273.6 1337.0 1539.8

InP [357] 91.0 - - 61.5 64.0 75.9 1507.9 - - 808.1 937.3 1169.2
AlSb [357] 98.7 - - 70.7 68.6 75.9 1850.8 - - 1088.4 1135.9 1320.9

GaSb [357] 99.8 - - 80.8 68.1 79.2 1825.7 - - 1215.5 1098.9 1353.4
InAs [357] 95.3 - - 74.2 67.8 80.1 1682.9 - - 1026.0 1063.5 1325.1

Sn [351] 107.8 - - 98.6 77.5 91.6 2282.0 - - 1739.7 1456.0 1835.6
InSb [357] 110.4 - - 94.4 79.2 95.1 2235.6 - - 1550.1 1426.7 1823.4

Table A.3: The isotropic static polarizability, α(0) (in bohr3), and van
der Waals C6 coefficient (in hartree·bohr6) for molecules calculated using
linear response CCSD method. The experimental values for isotropic static
polarizabilities are taken from Ref. [250]. The values for CDOSD

6 coefficient
are taken from experimental dipole oscillator strength distributions (DOSD)
data. [252–264]

αExp(0) αLRCCSD(0) CDOSD
6 CLRCCSD

6
SO2 25.1 32.9 293.9 369.5
SiH4 36.7 32.0 343.9 335.2
NH3 14.2 14.6 89.0 86.1
N2O 20.7 24.2 184.9 231.6
N2 11.5 11.8 73.3 71.4
HF 5.4 5.8 19.0 19.7
HCl 17.7 16.4 130.4 116.7
HBr 24.4 22.5 216.6 198.1
H2S 25.5 26.4 216.8 230.0
H2O 9.8 9.9 45.3 46.2
H2 5.4 5.2 12.1 11.1
H2CO 18.9 18.2 165.2 143.4
CS2 59.0 58.4 871.1 955.4
COS 35.1 35.8 402.2 446.6
CO 13.2 13.3 81.4 79.4
CO2 19.6 18.3 158.7 161.0
Cl2 31.1 29.2 389.2 361.2
CH4 17.5 16.8 129.6 120.5
CH3OH 21.9 21.6 222.0 212.1
CH3OCH3 35.7 34.1 534.1 511.3
CH3NHCH3 43.0 38.7 647.8 627.9
CH3NH2 27.1 26.2 303.7 290.5
CH3COCH3 42.7 42.6 794.3 772.4
CH3CHO 31.0 30.8 401.7 400.7
CH3CH3CH3N 55.0 51.8 1063.1 1100.9
CH3CH2OCH2CH3 68.8 59.2 1563.4 1508.2
CCl4 70.9 69.7 2024.1 1959.3
C6H6 67.5 69.8 1722.7 1716.7
C5H12 67.4 65.6 1905.0 1827.2
C4H8 - 48.6 1130.2 1000.7
C4H10O - 58.6 1566.8 1487.2
C4H10 55.3 53.2 1268.2 1205.6
C3H8 42.4 40.9 768.1 714.9
C3H7OH 47.0 46.0 973.8 923.6
C3H6 38.2 36.7 662.1 567.0
C2H6 29.9 28.8 381.9 354.4
C2H5OH 34.5 33.8 535.2 507.1
C2H4 28.7 27.5 300.2 285.2
C2H2 22.5 22.8 204.1 195.7
C6H14 80.3 78.1 2649.9 2540.5
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Table A.4: The isotropic polarizability αiso for a dataset of 238 molecule
calculated using various methods (in bohr3). The experimental values for
isotropic static polarizabilities are taken from Ref. [250].

Molecule Exp. HF LDA PBE PBE0 TS CARMA
H2 5.3 4.6 5.0 5.3 5.6 4.6 4.0
N2 11.9 11.1 11.7 12.2 11.9 12.6 11.3
O2 10.8 9.7 0.0 10.9 10.3 10.1 9.2
CO 13.2 11.9 13.0 13.6 13.2 14.6 12.9
Dimethylether 35.4 31.0 35.1 36.0 34.5 39.2 32.3
Formaldehyde 16.5 16.1 17.7 18.8 18.1 19.0 15.9
Acetonitrile 30.2 27.7 29.9 30.7 30.0 32.5 28.8
(CH3)3CCN 64.7 62.0 68.2 68.7 66.7 79.2 67.9
H2O 10.1 7.8 9.2 10.6 10.1 10.3 8.5
Methane 17.5 15.5 16.9 17.4 17.1 18.9 14.8
Acetylene 22.5 21.2 21.5 23.5 23.6 24.8 21.0
Ethylene 28.7 26.5 26.9 28.3 28.1 29.4 24.3
Ethane 30.2 27.0 29.4 29.8 29.2 33.7 27.2
Propyne 41.7 33.8 35.9 37.8 37.3 39.2 35.3
Propene 42.2 38.2 40.2 41.5 40.7 44.3 37.5
Cyclopropane 38.2 34.4 36.9 37.6 36.8 43.7 35.6
Propane 42.4 38.5 42.4 42.7 41.6 49.1 40.0
1-butyne 50.0 45.8 49.4 51.1 50.0 54.4 48.9
1,3-butadiene 58.3 55.4 56.5 58.4 57.6 54.8 49.1
1-butene 53.8 50.5 54.1 55.1 53.9 59.6 51.1
Trans-2-butene 57.3 50.8 54.9 55.7 54.3 59.2 51.9
2-methylpropene 55.9 50.3 54.1 55.0 53.7 59.7 50.7
Butane 55.3 50.0 55.4 55.6 54.1 64.5 53.7
Isobutane 54.9 49.9 55.5 55.6 53.9 65.1 53.0
1,3-cyclopentasiene 58.3 54.9 57.7 59.6 58.4 64.7 53.4
1-pentyne 61.5 57.7 62.9 64.5 63.0 69.8 63.4
Trans-1,3-cyclopentadiene 67.5 69.1 72.9 74.5 72.8 69.6 64.4
Isoprene 67.4 65.8 68.6 70.2 68.8 70.2 61.6
Cyclopentane 61.7 55.9 61.1 61.6 60.0 74.0 59.4
1-pentene 65.1 62.3 67.5 68.4 66.6 75.0 65.4
2-pentene 66.4 62.9 68.7 69.4 67.4 74.4 66.0
Penetane 67.4 61.6 68.5 68.7 66.7 79.8 68.0
Neopentane 68.8 61.1 68.3 68.3 66.1 81.2 65.8
Benzene 67.5 65.9 68.3 70.2 69.4 74.4 62.2
1-hexyne 73.6 69.5 76.4 77.9 75.8 85.1 78.0
2-ethyl-1,3-butadiene 79.6 74.4 79.5 80.8 78.8 85.3 75.1
3-methyl-1,3-pentadiene 79.6 79.2 84.5 85.9 83.7 85.2 76.4
2-methyl-1,3-pentadiene 81.7 79.3 84.7 86.0 83.8 85.0 77.2
2,3-dimethyl-1,3-butadiene 79.6 76.0 80.4 81.7 79.9 85.6 74.4
Cyclohexene 72.2 67.0 72.4 73.2 71.3 85.1 69.7
Cyclohexane 74.2 67.2 74.3 74.4 72.2 90.6 72.7
1-hexene 78.6 74.1 81.0 81.8 79.5 90.3 80.0
Hexane 80.3 73.4 81.8 81.9 79.4 95.2 82.7
Toluene 79.6 78.4 83.0 84.8 83.2 89.6 77.4
1-heptyne 86.4 81.5 89.9 91.4 88.7 100.5 93.2
Methylcyclohexane 88.4 78.8 87.8 87.8 85.0 106.5 87.1
1-heptene 91.2 86.0 94.4 95.2 92.5 105.7 95.2
Heptane 91.8 85.2 95.1 95.1 92.2 110.6 97.8
Styrene 101.2 95.3 100.6 103.1 100.9 100.0 89.8
Ethylbenzene 95.8 90.0 96.1 97.7 95.7 104.8 91.7
o-xylene 100.6 90.3 96.9 98.5 96.3 105.0 91.5
p-xylene 92.5 91.2 98.3 99.7 97.4 104.6 93.6
m-xylene 95.8 90.9 97.8 99.3 97.0 104.7 93.1
ethylcyclohexane 107.3 90.2 100.6 100.4 97.2 121.9 101.2
n-octane 107.3 97.0 108.6 108.5 105.1 125.9 113.3
3-methylheptane 104.2 95.9 107.5 107.3 103.9 126.7 110.2
2,2,4-trimethylpentane 104.2 94.7 106.4 106.0 102.4 128.4 105.8
α-methylstyrene 108.3 104.9 111.9 113.9 111.2 115.4 103.2
Isopropylbenzene 108.0 101.6 109.3 110.7 108.1 120.9 105.1
1,3,5-trimethylbenzene 104.6 103.5 112.8 114.0 111.0 119.8 109.1
Isopropylcyclohexane 116.1 101.3 113.2 112.9 109.3 138.0 114.6
Nonane 117.2 108.9 122.0 122.0 118.1 141.3 128.9
Naphthalene 111.3 114.3 120.4 123.0 120.7 119.9 106.5
Durene 116.7 115.5 126.9 127.9 124.3 135.5 123.1
Tert-butylbenzene 116.1 112.7 122.0 123.2 120.1 137.1 117.9
Tert-butylcyclohexane 133.6 111.9 125.2 124.8 120.7 154.4 126.7
Decane 128.9 120.8 135.6 135.4 131.1 156.7 144.7
α-methylnaphthalene 130.6 126.6 134.6 136.9 134.1 135.3 121.3
β-methylnaphthalene 131.7 128.1 137.3 139.5 136.4 135.0 123.7
α,β,β-trimethylstyrene 132.5 127.6 137.9 139.5 135.8 145.7 131.5
Pentamethylbenzene 128.9 126.6 139.7 140.5 136.5 151.1 136.4
Undecane 141.9 132.8 149.1 148.9 144.1 172.0 160.7
Acenaphthacene 139.1 133.6 142.4 144.7 141.4 144.8 129.2
α-ethylnaphthalene 143.0 138.3 148.0 150.1 146.8 150.7 136.7
β-ethylnaphthalene 144.1 140.6 151.7 153.8 149.9 150.4 138.6
Hexamethylbezene 141.0 138.2 153.0 153.8 149.2 166.8 150.2
Dodecane 153.5 144.7 162.7 162.5 157.1 187.4 176.7
Flurene 146.3 146.2 157.5 160.3 156.2 154.9 143.6
Anthracene 171.4 173.2 184.9 188.0 183.6 165.4 156.5
Phenanthrene 248.3 163.6 175.6 178.8 174.5 165.5 153.4
p-di-tert-butylbenzene 165.3 160.8 178.1 178.3 172.8 199.8 177.9
pyrene 190.4 190.9 202.6 205.9 201.5 185.6 171.7
2,3-benflurorene 203.9 203.6 223.3 226.6 219.4 200.4 196.1
Naphthacene 217.8 242.6 262.1 265.6 258.1 210.8 210.8
1,2-benzanthracene 221.8 225.1 246.2 249.8 242.2 210.9 206.2
Chrysene 223.1 218.6 238.4 242.2 235.2 211.0 204.3
Triphenylene 209.7 209.5 227.5 231.3 225.0 211.1 200.5

Continued on next page



125

Table A.4 – continued from previous page

Molecule EXP HF LDA PBE PBE0 TS CARMA
1,3,5-tri-tert-butylbenzene 214.6 206.2 230.1 229.6 222.1 262.7 233.0
Coronene 286.8 285.4 312.1 315.9 307.1 271.4 260.5
Tetranitromethane 103.2 77.0 87.3 88.5 83.1 76.9 71.3
Formaldehyde 18.9 16.1 17.7 18.8 18.1 19.1 15.9
Formic acid 22.9 19.9 23.5 24.8 23.1 24.8 21.1
Formamide 28.3 24.1 28.4 30.1 28.2 29.0 25.0
Nitromethane 49.7 30.3 32.9 34.0 32.7 33.5 29.1
Methanol 21.8 19.2 21.4 22.6 21.7 24.4 19.9
Methylamine 27.1 23.3 25.9 27.4 26.3 28.9 23.7
Cynogen 53.9 31.6 33.3 34.5 33.8 31.4 30.6
Ketene 29.7 26.4 28.0 29.6 29.0 29.3 25.6
Acetonitrile 29.7 27.7 29.9 30.7 30.0 32.5 28.8
Acetaldehyde 31.0 27.7 31.6 32.4 30.9 34.1 28.7
Ethylene oxide 29.9 26.5 28.9 29.9 29.0 33.7 27.8
Acetic acid 34.4 30.7 35.4 36.4 34.6 39.5 33.8
Methyl formate 34.1 27.7 31.6 32.4 30.9 34.1 28.7
Acetamide 38.3 35.1 40.5 42.1 39.8 43.9 37.7
N-methyl formamide 39.9 35.5 40.9 42.4 40.2 43.4 37.0
Nitroethane 65.0 41.2 45.5 46.3 44.7 48.6 41.7
Ethylnitrite 47.2 40.9 46.5 47.3 45.3 48.8 41.4
Ethanol 34.5 30.7 34.7 35.5 34.0 39.7 32.6
Methyl ether 34.8 30.9 35.2 36.1 34.5 39.4 32.4
Ethylene glycol 38.5 34.3 38.9 40.5 38.6 45.5 38.5
Dimethyl sulfone 49.3 48.6 55.5 56.5 54.1 62.4 54.8
Ethanethiol 50.0 46.2 49.8 51.3 50.1 53.7 48.1
Ethyl amine 47.9 35.1 39.8 40.9 38.9 44.2 36.4
Dimethyl amine 39.8 35.1 39.8 40.9 39.1 44.0 36.3
Ethylene diamine 48.6 42.9 48.6 50.5 48.0 54.5 46.3
Malononitrile 39.1 40.4 43.3 44.6 43.4 46.2 44.1
Acrylonitrile 54.3 41.2 42.7 44.1 43.3 42.6 39.3
Pyrazole 48.8 45.5 48.2 50.2 49.0 53.2 44.8
Propenal 43.1 39.5 42.4 43.9 42.6 44.1 38.3
Propionitrile 42.3 39.3 42.7 43.5 42.4 47.6 42.0
Acetone 42.7 38.8 44.0 44.8 42.8 49.1 41.5
Allyl alcohol 51.6 42.5 46.0 47.7 46.1 50.1 43.5
Propionaldehyde 43.9 39.1 44.0 44.8 43.0 49.2 41.6
Propionic acid 46.6 41.8 47.8 48.7 46.6 54.7 46.8
Ethyl formate 46.4 41.9 47.8 48.7 46.6 54.7 46.9
Methyl acetate 46.8 42.2 48.4 49.2 47.1 53.7 46.4
Dimethyl carbonate 52.0 45.7 52.7 53.6 51.2 58.8 51.4
N-methyl acetamide 52.8 46.7 53.8 54.9 52.4 58.3 50.6
N,N-dimethyl formamide 52.7 47.3 54.4 55.4 52.9 58.4 49.8
Nitropropane 57.4 52.8 58.5 59.4 57.2 63.8 55.1
2-propanol 47.0 42.1 47.7 48.4 46.4 55.4 45.7
1-propanol 45.5 42.1 47.2 48.1 46.3 55.0 46.0
ethyl methyl ether 53.5 42.7 48.5 49.3 47.2 54.6 46.0
dimethoxy methane 52.0 46.8 54.0 55.2 52.5 59.9 51.7
2-Methoxyethanol 50.2 46.3 52.7 54.2 51.7 60.2 51.9
Propylamine 52.0 46.5 52.4 53.4 51.2 59.5 49.8
Isopropylamine 52.4 46.4 52.7 53.5 51.2 60.1 49.6
Trimethylamine 52.5 47.0 54.3 55.0 52.3 60.0 49.3
Fumaronitrile 79.6 59.4 63.6 65.0 63.1 56.1 56.7
Succinonitrile 54.7 52.5 57.1 58.3 56.6 61.5 58.3
Pyrimidine 57.6 54.9 58.2 59.7 58.3 62.5 52.6
Pyridazine 62.6 55.9 58.8 60.4 59.0 62.4 52.6
Diketene 54.0 50.7 55.6 57.1 55.1 58.8 53.8
Thiophene 65.3 60.5 63.0 65.3 64.3 68.6 59.5
Methacrylonitrile 54.0 52.6 55.8 56.9 55.6 57.8 52.7
Trans-crotononitrile 55.3 54.2 58.3 59.4 57.8 57.5 54.3
N-methylpyrazole 60.7 58.3 62.6 64.4 62.7 68.0 58.8
Crotonaldehyde 57.4 52.6 58.3 59.5 57.4 59.0 52.9
Methacrylaldehyde 56.0 52.1 56.3 57.5 55.8 59.5 51.8
Biacetyl 55.3 50.7 57.4 58.3 55.8 64.0 55.8
Acetic anhydride 60.1 54.2 62.8 63.8 60.7 68.5 61.2
Divinyl sulfide 73.6 74.3 79.8 82.0 79.8 73.8 71.7
Butyronitrile 56.7 51.1 56.1 56.7 55.1 62.9 56.0
Isobutyronitrile 54.3 50.7 55.6 56.2 54.6 63.2 55.1
Butanal 55.3 49.9 56.2 56.8 54.6 64.5 53.9
Methylethylketone 54.9 49.9 56.3 57.0 54.7 64.3 54.3
Trans-2,3-epoxy butane 55.5 49.8 55.6 56.3 54.3 64.2 55.4
Ethyl acetate 58.2 53.8 61.4 62.2 59.7 69.0 60.4
1,4-dioxane 58.0 52.1 59.8 60.8 57.7 70.5 57.5
2-methyl-1,3-dioxolane 63.7 51.6 58.4 59.3 56.8 69.7 57.4
Butyric acid 57.9 53.0 60.3 61.1 58.5 70.0 59.2
Methyl propionate 60.5 53.4 60.6 61.4 58.9 69.0 59.7
1-nitrobutane 70.2 64.4 71.5 72.3 69.8 79.2 69.5
2-methyl-2-nitropropane 69.5 62.9 70.0 70.6 68.1 80.0 66.7
Ethylether 58.9 54.4 61.8 62.5 60.0 69.8 60.0
1-butanol 59.9 53.7 60.2 61.1 58.8 70.3 60.0
2-methylpropanol 60.2 53.1 60.0 60.5 58.2 70.9 58.4
Methyl propyl ether 59.8 54.2 61.3 62.0 59.5 69.8 59.8
2-ethoxyethanol 62.6 58.0 66.6 67.7 64.6 75.5 65.9
Ethyl sulfide 72.9 70.4 77.5 78.7 76.4 84.3 76.4
Butylamine 91.1 58.0 65.2 66.2 63.7 74.9 64.1
Diethylamine 64.9 58.6 66.7 67.5 64.6 74.6 64.1
Pyridine 64.1 60.6 63.4 65.2 64.0 68.4 57.3
4-cyno-1,3-butadiene 70.9 75.0 79.0 80.8 78.8 67.9 66.8
1,5-dimethylpyrazole 72.3 69.9 75.9 77.5 75.3 82.9 72.9
Acetyl acetone 70.9 61.4 72.2 72.9 68.6 79.4 68.3
Valeronitrile 70.2 62.8 69.4 70.0 67.9 78.2 70.4
22-DMPN 64.7 62.0 68.2 68.7 66.7 79.2 67.9
Diethylketone 67.0 61.1 68.8 69.2 66.7 79.3 68.6
Methyl propyl ketone 67.0 61.5 69.5 70.0 67.3 79.5 69.1
Ethyl propionate 70.3 65.2 74.2 74.9 71.9 84.1 74.4
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Molecule EXP HF LDA PBE PBE0 TS CARMA
Methyl butanoate 70.3 65.1 74.2 74.8 71.9 84.3 74.6
Diethyl carbonate 76.3 69.5 79.8 80.6 77.2 89.0 80.3
Ethyl propyl ether 72.1 66.0 74.8 75.4 72.5 85.0 74.3
Tetramethyl orthocarbonate 87.7 75.2 86.4 87.4 83.4 99.9 85.3
p-dinitrobenzene 124.2 100.0 109.9 111.9 107.7 103.0 95.1
p-benzoquinone 97.9 74.5 78.5 80.3 78.3 79.0 69.5
Bitrobenzene 87.2 82.7 88.8 90.6 88.2 88.5 78.2
Phenol 74.9 70.0 74.8 76.9 75.1 80.1 68.5
Aniline 81.7 75.5 81.3 83.9 81.8 84.6 73.1
Phenylenediamine 93.1 84.9 94.3 97.5 93.8 94.5 84.4
Phenylhydrazine 87.1 84.5 92.4 95.0 92.0 94.3 82.6
1-ethyl-5-methylpyrazole 84.4 81.3 88.8 90.3 87.6 98.3 86.0
Ethyl acetoacetate 87.1 77.2 90.2 91.0 86.2 99.3 88.4
Dimethylketazine 105.3 91.9 103.6 104.3 99.9 102.9 93.4
Cyclohexanol 78.0 70.9 79.7 80.2 77.1 96.8 78.8
Amyl formate 95.8 77.6 88.3 89.0 85.5 100.1 89.7
Paraldehyde 120.8 79.5 91.6 92.2 87.9 106.4 94.4
Propyl ether 84.4 76.6 86.6 86.9 83.7 100.3 85.9
1,1-diethoxyethane 89.1 81.3 93.5 94.1 89.9 105.7 92.8
1,2-diethoxyethane 76.3 81.1 92.9 93.6 89.5 105.6 92.3
Triethylamine 90.3 81.2 94.1 94.5 89.8 106.2 89.6
Dipropylamine 89.7 80.7 91.8 92.2 88.4 105.3 89.5
P-cynonitrobenzene 128.2 101.1 111.1 112.9 108.7 102.0 97.7
bezonitrile 84.4 82.7 87.4 89.2 87.4 87.7 80.6
Nitroanisole 105.9 101.4 115.4 117.0 111.8 108.9 99.4
Anisole 88.4 82.5 89.5 91.5 89.0 94.9 82.5
o-anisidine 95.8 91.9 101.7 104.5 100.9 105.0 92.9
1,1-methylphenylhydrazine 99.9 97.1 107.5 110.0 106.2 109.7 96.5
Cyclohexyl methyl ether 90.4 82.7 93.1 93.4 90.0 111.5 92.5
2,4-dimethyl-3-pentene 91.1 83.3 94.0 94.1 90.7 110.9 94.1
Pentyl acetate 100.6 89.1 101.5 102.1 98.1 114.9 104.6
P-dicynobenzene 129.6 101.9 110.2 112.1 108.6 101.2 100.6
Quinoxaline 102.1 104.8 110.9 113.1 110.5 107.8 96.3
Acetophenone 101.2 92.0 100.1 101.9 98.9 104.5 93.0
2,5-dimethyl-1,4-benzoquinone 126.9 98.3 107.3 108.5 105.1 109.3 99.6
Phenetole 100.6 95.0 103.9 105.8 102.7 110.1 98.0
N-dimethylaniline 109.3 98.2 106.8 108.6 105.3 114.9 100.1
1,1-ethylphenylhydrazine 112.2 109.3 122.5 124.9 119.9 124.9 111.3
Ethyl sorbate 116.1 115.2 130.0 131.1 125.6 119.2 116.7
Tetramethyl cyclobutane-1,3-dione 125.5 92.0 104.3 105.1 100.8 120.8 104.1
Diethyl succinate 113.4 104.5 121.3 122.1 116.5 134.4 126.4
Butyl ether 116.1 101.4 114.8 115.2 110.9 131.1 119.3
Quinoline 105.9 108.8 115.3 117.7 115.2 113.8 101.4
Isoquinoline 110.9 108.0 114.3 116.7 114.2 113.8 101.0
Ethyl bezoate 114.0 107.8 119.2 120.9 116.9 124.4 112.9
Tripropyl amine 127.3 116.3 133.3 133.2 127.5 152.0 133.6
α-naphthylamine 131.6 123.9 133.2 136.5 133.0 130.2 117.1
β-naphthylamine 133.1 125.5 136.8 140.1 135.8 130.0 118.9
2-methylquinoline 125.9 122.5 132.3 134.4 130.9 128.9 118.7
1-methylisoquinoline 123.4 123.2 135.6 138.4 133.5 131.1 120.6
2,3-dimethylquinoxaline 126.2 131.9 144.4 146.2 141.5 138.3 129.1
1-naphthaldehyde 133.3 130.0 139.8 142.2 138.5 134.8 122.4
2-naphthaldehyde 135.4 132.9 145.1 147.5 143.0 134.8 125.6
Phenazine 158.1 164.7 175.4 178.2 173.7 153.2 145.6
4-nitrodiphenyl ether 166.7 155.9 174.3 176.8 169.7 164.1 153.3
Anthraquinone 165.1 160.9 178.0 180.4 174.1 169.2 159.5
Di-p-tolyl ether 168.0 160.8 174.9 177.2 172.2 180.2 168.0



B
Extra technical details

B.1 Technical details about finite-difference

approach

The static polarizabilities for H2, N2, HCl and CO molecules are
calculated based on a finite-difference approach (as discussed in
Section (3.2)). We here test the numerical convergence of static
polarizabilities for the parameters that include basis sets and effect
of varying external perturbing electric field. In general, it is well
known that a large basis set is required for an accurate calculation of
the polarizability and the effect of additional polarization and diffuse
functions in the basis set is quite considerable. The molecular static
polarizabilities are calculated using two procedures : 1) First as second
derivative of total electronic energy with external electric field, 2) as
first derivative of induce dipole moment with external electric field. The
isotropic static polarizability calculated with PBE0 functional for H2,
N2, HCl and CO molecules are shown in Figure (B.1). All calculations
were carried out with the FHI-aims package [265], employing numeric
atom-centered (NAO) basis functions and also including additional
diffuse functions from augmented basis sets for respective elements.
These convergence tests show that the first derivative of the induced
dipole moment with external electric field provides well converged
values for isotropic static polarizability.
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Figure B.1: Convergence of the (isotropic) static polarizability (y-axis) for
H2, N2, HCl and CO molecules calculated based on finite-differences with
varying external perturbing field (x-axis). The prefix "E" in legends indicate
finite-differences derivative with the total electronic energy and "D" with the
induce dipole moment. Whereas, tier1 and tier2 are NAO basis functions and
"d" indicate diffuse function from d-aug-cc-pVQZ basis set. The experimental
values for isotropic polarizabilities are taken from Ref. [250].
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Symbols

Ĥ Hamilton operator
∇2 Laplacian operator
n0 Ground-state electron density
ψ Wave function
E Electric field
χe Electric susceptibility
L Lorentz factor
ϵ Fermi energy
P Polarization
α Polarizability
ω Frequency
V Volume
fdamp Damping function
sR Scaling parameter in the TS method
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Abbreviations

ACFDT Adiabatic-connection fluctuation-dissipation theorem
ARF Atomic response function
BOA Born-Oppenheimer approximation
CARMA Coupled atomic response in matter
CC Coupled cluster
CCSD Coupled cluster singles, doubles
DFA Density-functional approximation
DFT Density-functional theory
DOSD Dipole oscillator strength distribution
GGA Generalized gradient approximation
HF Hartree-Fock
HK Hohenberg-Kohn
KS-DFT Kohn-Sham density-functional theory
LDA Local-density approximation
MAE Mean absolute error
MARE Mean absolute relative error
MBPT Many-body perturbation theory
MBD Many-body dispersion
ME Mean error
MP2 Möller-Plsset second-order perturbation theory
MRE Mean relative error
PBC Periodic boundary condition
PBE Perdew-Burke-Enzerhof
QMC Quantum Monte Carlo
QHO Quantum harmonic oscillator
RPA Random-phase approximation
SE Schrödinger equation
SO Single oscillator
TDDFT Time-dependent density-functional theory
TF Thomas Fermi
TS Tkatchenko-Scheffler
vdW van der Waals
XC Exchange-correlation
XDM Exchange-dipole moment

131





Acknowledegements

I would like to thank Prof. Matthias Scheffler for giving me the
opportunity to carry out my Ph.D. studies in the very interesting
atmosphere of the Fritz Haber Institute. I had the chance to meet
and discuss with many experts of the field, not to mention the easy
access to computational facilities and time. I would like to express
my deepest gratitude to my advisor, Prof. Alexandre Tkatchenko, who
has supported me throughout my thesis with patience and guided
me by his immense knowledge. I thank him for allowing and giving
me opportunity to work independently and add value to the research
work. A big thank goes to Prof. Robert A. DiStasio Jr. for sharing
your valuable insights in science throughout the last six years. I have
learned many things and I am grateful for your ideas and support.
I must acknowledge Prof. Shridhar P. Gejji for introducing me to
quantum chemistry and computational chemistry. I would also like to
record my sincere gratitude to department of chemistry at University
of Pune where I took my first lesson of research. I would also like to
acknowledge all my present and former colleagues from the Theory
Department. I would also like to thank Julia, Birgit, Carmen, and
Steffen for your support with all administrative help. A special thanks
goes to the van der Waals group for many fruitful discussions and
feedback. I must thank Guo-xu, Nicola, Victor, Jan, Johannes, Alberto,
Mausami and Fairoja thank you for your patience and explanations
during my PhD work. A special thanks goes to Gionni, for being a good
friend, for proofreading, and also for sharing your valuable insights
into the English language. Finally, I would like to thank my family and
my friends outside the Institute, especially Rinata, Anshuman, Neloy,
Biswajit, Biswadip, Moumita and many others. Finally, I am grateful to
my parents and many close family members who have been beside me
in every circumstances and this thesis is dedicated to them.

133





Bibliography

Bibliography

[1] Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals
interactions from ground-state electron density and free-atom
reference data. Phys. Rev. Lett. 102, 073005 (2009).

[2] DeVoe, H. Optical properties of molecular aggregates. II.
Classical theory of the refraction, absorption, and optical activity
of solutions and crystals. J. Chem. Phys. 43, 3199–3208 (1965).

[3] Felderhof, B. U. On the propagation and scattering of light in
fluids. Physica 76, 486–502 (1974).

[4] Applequist, J., Carl, J. R. & Fung, K.-K. Atom dipole interaction
model for molecular polarizability. application to polyatomic
molecules and determination of atom polarizabilities. J. Am.

Chem. Soc. 94, 2952–2960 (1972).

[5] Thole, B. T. Molecular polarizabilities calculated with a modified
dipole interaction. Chem. Phys. 59, 341–350 (1981).

[6] Mayer, A. Formulation in terms of normalized propagators of a
charge-dipole model enabling the calculation of the polarization
properties of fullerenes and carbon nanotubes. Phys. Rev. B 75,
045407 (2007).

[7] Tkatchenko, A., DiStasio, R. A., Jr., Car, R. & Scheffler, M.
Accurate and efficient method for many-body van der Waals
interactions. Phys. Rev. Lett. 108, 236402 (2012).

[8] Berne, B. J. & Pecora, R. Dynamic light scattering: with

applications to Chemistry, Biology, and Physics (Courier
Corporation, 2000).

[9] Feynman, R. P. & Zee, A. QED: The strange theory of light and

matter (Princeton University Press, 2006).

135

http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1063/1.1697294
http://dx.doi.org/10.1063/1.1697294
http://dx.doi.org/10.1063/1.1697294
http://dx.doi.org/10.1016/0031-8914(74)90155-4
http://dx.doi.org/10.1016/0031-8914(74)90155-4
http://dx.doi.org/10.1021/ja00764a010
http://dx.doi.org/10.1021/ja00764a010
http://dx.doi.org/10.1021/ja00764a010
http://dx.doi.org/10.1016/0301-0104(81)85176-2
http://dx.doi.org/10.1016/0301-0104(81)85176-2
http://dx.doi.org/10.1103/PhysRevB.75.045407
http://dx.doi.org/10.1103/PhysRevB.75.045407
http://dx.doi.org/10.1103/PhysRevB.75.045407
http://dx.doi.org/10.1103/PhysRevLett.108.236402
http://dx.doi.org/10.1103/PhysRevLett.108.236402


136 Bibliography

[10] Bruus, H. & Flensberg, K. Many-body quantum theory in

condensed matter physics: an introduction (OUP Oxford, 2004).

[11] Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat.

Mater. 6, 841–850 (2007).

[12] Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K.
Electrolyte-gated graphene field-effect transistors for detecting
pH and protein adsorption. Nano Lett. 9, 3318–3322 (2009).

[13] Schedin, F. et al. Detection of individual gas molecules adsorbed
on graphene. Nat. Mater. 6, 652–655 (2007).
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