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Abstract

Vehicle-to-vehicle (V2V) communication is a key technology to enable safer, more efficient,
and more comfortable road traffic. The stringent reliability and latency requirements of V2V
messages necessitate efficient radio resource management given the scarce spectrum and the
dynamic vehicular environment. Under cellular network coverage, the resource allocation
can be centrally coordinated by a base station (BS), which can efficiently ensure collision-free
transmissions. When out of coverage, vehicles resort to distributed mechanisms, which yet
suffer from degraded communication quality due to the vehicles’ limited local view.

In this thesis, we propose a novel approach for V2V communications in expected,
delimited out-of-coverage areas (DOCAs), whereby a centralized scheduler pre-assigns
resources to the vehicles via the BSs surrounding the area, before vehicles enter it. We first
explore the feasibility of this approach by exploiting the road and data traffic information
available in coverage to reserve and provision the resources. While the required number of
resources does not grow prohibitively with increased reliability targets, the rate of successful
V2V transmissions gets highly impacted by various factors such as vehicle mobility, thus
necessitating efficient means to cope with uncertainties in DOCAs.

As a predictive method for resource allocation, we propose a vehicular reinforcement
learning scheduler, VRLS, which is applicable to DOCAs that vary in vehicle density, mobil-
ity, wireless channel characteristics, and resource configurations. VRLS can significantly
increase resource utilization efficiency by requiring fewer resources than state-of-the-art dis-
tributed scheduling solutions to support the same reliability targets. Nevertheless, considering
that the performance of learning-based solutions may degrade upon parameter distributions
much beyond their training environment, we propose a hybrid scheme that combines the
centralized RL-based and the distributed sensing-based scheduling approaches. We show
the performance benefits of such a solution under heavily congested road traffic due to an
accident, as compared to either of the centralized or the distributed solutions.

Finally, we shift our focus to those areas under network coverage where vehicles suffer
from rather short and unpredictable coverage interruptions to the BSs. We consider an
extension of our RL-based approach for this problem. The proposed solution performs better
than the state-of-the-art baseline in the cases of coverage losses, especially under high traffic
load and lower frequency of scheduling updates, otherwise delivering similar performance.





Zusammenfassung

Die Kommunikation zwischen Fahrzeugen (Vehicle-to-Vehicle, V2V) ist eine Schlüsseltech-
nologie für einen sichereren, effizienteren und bequemeren Straßenverkehr. Die strengen
Anforderungen an die Zuverlässigkeit und Latenz von V2V-Nachrichten erfordern angesichts
des knappen Spektrums und der dynamischen Verkehrslage eine effiziente Verwaltung der
Funkressourcen. Bei einer Mobilfunknetzabdeckung kann die Ressourcenallokation zentral
von einer Basisstation (BS) koordiniert werden, die effizient kollisionsfreie Übertragungen
gewährleisten kann. Außerhalb der Netzabdeckung müssen die Fahrzeuge auf verteilte Ver-
fahren zurückgreifen, die jedoch aufgrund der eingeschränkten lokalen Sicht der Fahrzeuge
eine schlechtere Kommunikationsqualität zur Folge haben.

In dieser Arbeit wird ein neuartiges Verfahren für die V2V-Kommunikation in erwarteten,
abgegrenzten Gebieten ohne Netzabdeckung (delimited out-of-coverage areas, DOCAs)
vorgeschlagen, bei dem ein zentraler Scheduler den Fahrzeugen über die umliegenden BSs
Ressourcen zuweist, bevor die Fahrzeuge in das Gebiet einfahren. Es wird zunächst die
Machbarkeit dieses Konzepts untersucht, indem die in der Abdeckung verfügbaren Straßen-
und Datenverkehrsinformationen zur Reservierung und Bereitstellung der Ressourcen genutzt
werden. Während die benötigte Anzahl an Ressourcen mit zunehmenden Zuverlässigkeit-
szielen nicht übermäßig ansteigt, wird die Rate erfolgreicher V2V-Übertragungen durch
verschiedene Faktoren wie der Fahrzeugmobilität stark beeinflusst, sodass effiziente Wege,
um mit den Unsicherheiten in den DOCAs zurechtzukommen, erforderlich sind.

Als prädiktive Methode für die Ressourcenallokation wird ein Vehicular Reinforcement
Learning Scheduler (VRLS) vorgeschlagen, der auf DOCAs anwendbar ist, die in Bezug auf
Fahrzeugdichte, Mobilität, Funkkanaleigenschaften und Ressourcenkonfigurationen variieren.
Der VRLS kann die Effizienz der Ressourcennutzung erheblich steigern, weil er weniger
Ressourcen benötigt als verteilte Scheduling-Lösungen nach dem Stand der Technik, um
die gleichen Zuverlässigkeitsziele zu unterstützen. Allerdings ist zu bedenken, dass die
Leistung von auf Lernen basierenden Lösungen bei Parameterverteilungen, die weit über
ihre Trainingsumgebung hinausgehen, beeinträchtigt sein kann. Daher wird ein hybrides
Verfahren vorgeschlagen, das die auf zentralisiertem verstärkendem Lernen basierenden und
die auf verteiltem Sensing basierenden Scheduling-Konzepte kombiniert. Es werden die
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Leistungsvorteile einer solchen Lösung bei stark überlastetem Straßenverkehr aufgrund eines
Unfalls im Vergleich zu einer zentralisierten oder verteilten Lösung gezeigt.

Schließlich wird der Fokus auf die Bereiche mit Netzabdeckung verlagert, in denen
Fahrzeuge unter eher kurzen und unvorhersehbaren Unterbrechungen der Netzabdeckung zu
den BSs leiden. Der vorgeschlagene, auf verstärkendem Lernen basierende Ansatz, wird auf
dieses Problem erweitert. Die vorgeschlagene Lösung schneidet bei Abdeckungsverlusten
besser ab als der Stand der Technik, insbesondere bei hoher Netzauslastung und geringerer
Häufigkeit von Scheduling-Updates, wobei ansonsten eine ähnliche Leistung erzielt wird.
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Chapter 1

Introduction

1.1 Background and Motivation

Mobility is one of the pillars of human civilization: transportation of people and goods is
essential for economic existence [1]. Across the centuries, the advances in industrialization
and transportation systems have mutually benefited each other. On the other side, the safety
of individuals has been being threatened by road transport, with a growing impact. Annually,
road traffic accidents claim more than 1.3 million lives worldwide, making them the leading
cause of death for children and young adults [2]. The most significant risk factors include
human errors, such as speeding and distracted driving, besides unsafe vehicles and road
infrastructure. In addition to safety, road traffic is also challenging our society and nature
due to congestion that results in increased travel times and air pollution.

The ever-growing societal and economic impact of road traffic since the mid-twentieth
century has led to a family of technologies named intelligent transport systems (ITS) [3]. ITS,
and in particular cooperative-ITS (C-ITS), aims to provide innovative services for safer, more
efficient, and smarter road transport [4]. Based on the ever-evolving needs and challenges of
road transport, ITS applications cover a wide variety of use cases, ranging from collision
avoidance systems to highly automated driving, from infotainment services to remote vehicle
diagnosis, where vehicular communication is a key enabler technology [5].

Commonly referred to with the umbrella term “vehicle-to-everything” (V2X), vehicular
communications entail the following two-way connectivity between the vehicles and the
entities around them, as illustrated in Figure 1.1:

• vehicle-to-vehicle (V2V): vehicles communicate with other vehicles.

• vehicle-to-infrastructure (V2I): vehicles communicate with the infrastructure around
them, such as traffic signals or tolls – collectively referred to as roadside units (RSUs).
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Vehicle-to-Vehicle 
(V2V)

Vehicle-to-Pedestrian 
(V2P)

Vehicle-to-Infrastructure 
(V2I)

Vehicle-to-Network 
(V2N)

e.g., emergency
 braking

e.g., road construction 
5 km ahead

e.g., traffic light
turning green

e.g., pedestrian at 
zebra-crossing ahead

Vehicle-to-Everything (V2X)

Fig. 1.1 Connectivity enabled by vehicle-to-everything (V2X) communications (based on [6]).

• vehicle-to-pedestrian (V2P): vehicles communicate with pedestrians, cyclists, drivers,
or passengers, via the hand-held devices carried by them.

• vehicle-to-network (V2N): vehicles communicate with the mobile network, e.g., to
access cloud services on the Internet.

V2X communications unlock awareness among the users of the road traffic, beyond
the capability and range of humans or other technologies such as sensor-based systems
(e.g., cameras and radars) [7]. By communicating with their surroundings, vehicles can
“see” around corners, blind spots, or “through” other vehicles, which allows more time and
information to warn drivers and take suitable action. When integrated with other systems,
such as intelligent driving applications, V2X would allow vehicles to cooperate, and therefore
avoid accidents, drive in a fuel-efficient way, and offer enjoyable journeys.

Currently, V2X communications are supported by two families of standardized radio
access technologies (RATs):

1. WAVE/ITS-G5: Wireless Access in Vehicular Environments (WAVE) [8] and Dedicated
Short Range Communications (DSRC) [9] in the United States, together with its
European counterpart ITS-G5 [10]. It is the first family of standards that introduced a
radio technology to support V2V as well as V2I communications, based on the IEEE
802.11p standard [11], which is a Wi-Fi-based technology.

2. Cellular V2X (C-V2X): C-V2X is based on the Fourth Generation Long Term Evo-
lution (4G LTE) and the Fifth Generation New Radio (5G NR) wireless standards
developed by the 3rd Generation Partnership Project (3GPP) [12]. C-V2X offers direct
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V2V communications, as well as V2P, V2I, and V2N communications based on the
mobile cellular radio technology.

Significance and Characteristics of V2V Communications

Among the V2X connectivity opportunities, V2V plays an especially important role in
establishing road safety and efficiency. V2V communication takes place over the direct link
between the vehicles in proximity using short-range communications, and can be established
anytime and anywhere, in an ad hoc manner, without the need for vehicles to associate
themselves with an access point, e.g., a base station (BS) in the case of cellular networks1,
to join the network. Utilizing such direct, peer-to-peer links for local traffic leverages the
following potential gains [14], [15], [16]:

• Hop gain: A single transmission over the single hop between the vehicles would use
radio resources more efficiently as compared to multiple transmissions required when
relaying the data via an intermediate network node or nodes such as BSs. In addition,
by eliminating additional processing or transmission delays at the relaying node, the
time it takes to deliver information can be reduced.

• Proximity gain: Closer distance between the vehicles as compared to longer distances
to the BS (or any network access point in general) results in more favorable channel
conditions. With such links, V2V transmissions can make use of higher data rates at
lower transmission power (or lower power consumption at the same data rate), and
lower propagation delays.

• Reuse gain: Shorter distances between the vehicles require less transmit power to
achieve good transmission quality, which in turn also minimizes the interference to the
other links using the same resources. By spatially reusing the radio resources among
the vehicles, overall spectral efficiency of the network can be increased.

With the above gains, V2V communication enables an efficient way to serve vehicular
data traffic by offering power savings, higher data rates, lower delays, robustness to the
absence or failure of network access points or infrastructure, and by offloading the links
between the BSs and other users in the case of cellular networks.

V2V communication predominantly forms the basis for the most safety and traffic effi-
ciency applications in ITS via cooperative awareness, that is, the knowledge of the presence

1Communication of vehicles with each other via the cellular network infrastructure is rather referred to as
“V2N2V” communications in the literature [13].
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and status of surrounding vehicles [17]. This is achieved by vehicles periodically broadcast-
ing, i.e., regularly “announcing” their location, speed, bearing, etc. to their surroundings by
transmitting frequent messages, e.g., every tenth of a second [18]. In addition, in case of
unexpected events, such as an emergency braking or a road warning, vehicles notify their sur-
roundings by transmitting event-triggered messages [19]. To allow efficient use of the radio
resources and prevent congestion of the communication channel, the message generation rate
is in general variable, such as based on the vehicle speed (faster the vehicle more frequent
the messages), dynamics (e.g., new message generation upon direction change), properties
(e.g., police car transmitting more frequent messages), and events (e.g., higher message rate
upon sudden slowdown) [18], [19], [20].

V2V communications pose stringent quality of service (QoS) requirements, where the
transmitted messages need to be delivered with high reliability in a certain time limit (referred
to as latency) [21]. The required reliability should be ensured at a certain communication
range to account for the timely reaction of the vehicles, which depends on the use case as
well as the velocity of the involved vehicles [22]. Further, the use cases should operate under
expected vehicle densities according to the scenario (e.g., rural or urban, day or night, etc.),
which in turn implies that the communications system should also support a high load of data
traffic when necessary [23]. Given the scarce spectrum, maintaining the required QoS for
V2V communications, therefore, calls for efficient ways of resource allocation.

Radio Resource Allocation for V2V Communications

Conventionally, there exist two approaches to radio resource allocation for V2V commu-
nications: distributed and centralized [24], as illustrated in Fig. 1.2. With the distributed
approach, vehicles autonomously select the radio resources that they will transmit, mainly by
sensing whether the resources are occupied by other vehicles’ transmissions or not. In the
centralized approach, resources for V2V transmissions are coordinated by a central entity
available, e.g., via cellular networks, based on the vehicle requests.

Among the standardized RATs, C-V2X offers a centralized resource allocation mode
where the resources for V2V communication are coordinated by the BS [12]. C-V2X also
offers a distributed resource allocation mode, in which vehicles select resources autonomously
based on the specified sensing algorithm, without the need for a BS. The WAVE/ITS-
G5 utilizing the Wi-Fi-based IEEE 802.11p standard also relies on a specific distributed
scheduling scheme based on carrier-sensing mechanisms [11].

The distributed approach has the advantage of not relying on a central coordinator, such
as a BS in the case of cellular networks, hence also eliminating the necessity of a network
infrastructure deployment. On the other hand, the lack of a centralized controller complicates
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Request

Scheduling by
Network Entity

Scheduling by Vehicles 
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Control signalling

in-coverage in- or out-of-coverage

Fig. 1.2 Two approaches to radio resource allocation for V2V communications.

the resource allocation task. Since sensing measurements of the vehicles are local and
transient, V2V transmissions become prone to the so-called “hidden node problem”, whereby
vehicles can only hear their immediate neighbors but no other nodes in the network. This
results in conflicts in resource selection, thereby degrading the communication performance
especially in high density and high mobility scenarios. While several techniques, such as
cooperation between the vehicles, can mitigate the hidden node problem, these, however,
create inefficiencies in terms of resource utilization, such as by requiring additional signaling,
delay the transmissions, reduce the throughput, and necessitate complicated measures to be
implemented preferably by all vehicles.

In the centralized approach, the global view of the network at the centralized entity allows
an interference-free assignment of resources, which brings more efficient resource utilization.
Initial studies evaluated the centralized scheme in cellular networks in comparison to various
distributed schemes, where more than 65% increase in the effective communication distance
(the distance at which at least 95% of relevant V2V messages are received successfully) is
shown in [25], and around 125% increase of the inter-vehicle range at which 90% packet
reception rate is achievable is shown in [26], under the same traffic density. Among the
recent works, a centralized resource allocation algorithm in [27] is shown to outperform the
distributed scheduling specified by the cellular standard with a packet reception rate close to
the upper bound (no resource collisions) under low load, and by almost doubling the distance
at which 90% reception rate is achieved, under high load.
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Intermittent Coverage Problem

Although centralized resource allocation offers superior V2V communication performance
over distributed approaches, the availability of the entity coordinating the resources is not
always guaranteed. Specifically, in cellular networks, vehicles can lose connectivity to
the BSs at any time [28]. This intermittent coverage problem could be due to insufficient
infrastructure deployment, such as a lack of BSs covering the entire roadway, creating so-
called “coverage gaps”. Further, despite any deployment, vehicles may still travel through
areas that physically impede their connection to the BSs, such as tunnels. More inevitably,
highly dynamic vehicular environment may result in sudden changes in wireless channel
(e.g., deep fading due to blocking objects), interrupting the links between the vehicles and
the BSs. In addition, external interference such as originating from a malicious source or
an adjacent frequency band may also cause unsuccessful signal reception on these links
(as well as on the V2V links), which we however leave out of our scope. While coverage
gaps or areas such as tunnels or underground spaces outside the coverage could be known to
the network operator, thus being expected and predictable, more abrupt and shorter losses
“within coverage” are rather unpredictable.

Upon losing connectivity to the centralized entity managing the V2V communication
resources, irrespective of the reason or type of the loss, vehicles have to resort to distributed
resource allocation, which is, however, not efficient from the resource utilization perspective
as emphasized above. Depending on the traffic demand and the availability of resources,
along with the characteristics of the interruptions (e.g., duration and location), intermittent
network coverage could severely impact the performance of V2V transmissions, mainly in
terms of reliability and latency. Given that the service requirements of V2V applications
must be satisfied irrespective of cellular network coverage, intermittent coverage poses a key
but often omitted problem that needs to be addressed in V2V communications.

From a conventional resource management perspective, various approaches can tackle
this problem. The most straightforward one is to provision additional resources. This is,
however, not feasible given the scarce and costly spectrum. Alternatively, lower data traffic
could be admitted to the available resources. On one hand, transmission parameters of
vehicles, e.g., message transmission rate, can be adjusted via admission or congestion control.
While avoiding violation of quality guarantees for specific services, these methods restrict,
e.g., the lower-priority ones, and further require mechanisms that can adapt to dynamic load
conditions. On the other hand, fewer vehicles can be admitted to the road sections of interest,
such as by lane closures or varying the road speed limitations. While such mobility measures
can establish road safety, they create additional congestion and delays in road traffic. The
intermittent coverage problem thus necessitates more efficient methods of resource allocation.
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1.2 Goals, Contributions, and Outline of the Thesis

In this thesis, we are concerned with the impact of intermittent connectivity between the
vehicles and the cellular network infrastructure managing the V2V resource allocation, on the
performance of V2V communications. In this regard, we aim at efficient utilization of radio
resources while ensuring reliable inter-vehicle communication under variable circumstances
of cellular network connectivity. To this aim, we provide novel methods for resource
allocation with the intend of filling the above-mentioned performance gap between the
centralized and distributed ways of scheduling. Our main approach follows the question
whether we can exploit the benefits of centralized radio resource allocation to enhance the
performance of V2V communications under expected and unexpected intermittent coverage
conditions. Differing from previous approaches, we propose a centralized solution that
provides resources for V2V communications proactively, before the vehicles experience
any coverage interruptions. Our focus primarily lies on V2V communications in known or
expected areas outside the cellular network coverage. We then extend our solutions also to
the areas with (poor) coverage, where vehicles rather suffer from unexpected and relatively
shorter connectivity interruptions to the BSs.

Fig. 1.3 provides the outline of this thesis work. Chapter 2 introduces the relevant
background and related work. We first provide an overview of ITS and V2X communications
and elaborate on the need for V2V communications. We then present existing resource
allocation (RA) techniques applicable to V2V communications and how the standardized
RATs address the RA problem. Later, we review and analyze the performance of the state-
of-the-art RA methods and expand on the intermittent coverage problem. In the remaining
of Chapter 2, we turn our attention to the domain of artificial intelligence (AI) and machine
learning (ML). Our focus is on reinforcement learning (RL), which we apply in our proposed
methods. We review the basics and various types of RL algorithms and present the specific
algorithm that we employ. We finalize Chapter 2 by surveying the applications of RL to the
resource allocation problems in V2X communications.

Chapter 3 presents the system model we consider in this study, followed by the definition
of the key performance metrics we utilize to evaluate the proposed algorithms. We have
employed realistic models for vehicular road and data traffic, as well as wireless communica-
tions, and considered mainly simulation as a research tool in our evaluations. The remaining
of Chapter 3 describes our simulation environment. We have combined widely-accepted
simulator software, and developed additional functionalities to support V2V communication
protocol based on the cellular standard. To implement our RL-based solutions, we have
re-used openly available ML software libraries, and developed an interface that enables
interaction between our RL model and the network simulator.
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We begin our study with an exploratory work in Chapter 4. We study the feasibility
of the idea of reserving and provisioning resources for V2V communications in known,
delimited out-of-coverage areas (DOCAs) by a centralized entity, which assigns resources
to each vehicle at the “edge” of such areas, before the vehicle enters the area. We first
analyze the required amount of resources to support desired V2V communication reliability
where vehicles utilize resources reserved for them, without any scheduling overhead. This
preliminary analysis, therefore, gives an initial understanding of the boundaries of the
resource allocation problem. The results indicate that the required amount of resources
depends much more on the data traffic load (which would be impacted by the vehicle density
and message generation rate) and size of the DOCA as compared to target reliability, hence
serving as a guideline to consider these factors when allocating the resources for a DOCA.

We first analyze the required amount of resources to support desired V2V communication
reliability where vehicles get non-interfering resources, thereby constituting an ideal scenario.
This preliminary analysis, therefore, gives an initial understanding of the boundaries of the
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resource allocation problem. The results indicate that the required amount of resources
depends much more on the data traffic load (which would be impacted by the vehicle density
and message generation rate) and size of the DOCA as compared to target reliability, hence
serving as a guideline to consider these factors when allocating the resources for a DOCA.

Reserving resources can be primarily beneficial for event-triggered messages, e.g., due
to accidents, as these can not be pre-scheduled but typically require high reliability and low
latency. On the other hand, the characteristics of the periodic type of traffic (e.g., periodicity,
size, etc. per vehicle) that takes place in a DOCA can be well-known beforehand. Therefore,
for this type of traffic, we propose pre-scheduling by a centralized entity. The entity has
access to the BSs delimiting the DOCA, from which it obtains relevant information collected
from the vehicles, and in turn, provides the scheduling outcomes to them as they approach
the DOCA. The scheduling decisions are taken heuristically based on the predicted future
locations of the vehicles and the resulting propagation and interference conditions among
them, together with the latency requirements of V2V messages. We evaluate the performance
of such a scheduler under varying characteristics of DOCA (traffic densities, vehicle speeds,
transmit powers, etc.). Our results show that the rate of successful transmissions gets highly
impacted by the prediction errors combined with varying conditions in the DOCA. Chapter 4
concludes that while the idea of pre-allocating resources for V2V communications in expected
out-of-coverage areas is feasible, utmost importance is needed to take vehicular mobility,
density, traffic load, and wireless channel characteristics into account when scheduling the
resources. This calls for efficient, flexible, and practical algorithms as a solution.

While the mainstream approach for resource management is to formulate an optimization
problem and solve it optimally or sub-optimally depending on the performance-complexity
trade-offs, this becomes infeasible in vehicular networks due to their highly dynamic na-
ture [29]. Such approach becomes even more challenging in our case since the resource
allocation task relates to an out-of-coverage area where the conditions are constantly chang-
ing and only limited information from the area is available. Instead, machine learning
methods could become useful. In particular, reinforcement learning (RL) has been proven to
be successful in tasks having time-varying dynamic environments under uncertainty, and re-
cently found promising applications in the wireless communications domain [30]. In RL, the
problem is addressed by designing a reward signal that correlates with the ultimate objective,
and the learning algorithm can automatically find out a satisfactory solution to the problem
by training its policy to maximize the reward [30]. The possibility of flexibly designing
such a reward signal makes RL-based approaches in particular attractive, as this avoids exact
modeling of the system and designing the objective using conventional approaches [30].
Motivated by the successful applications of RL to the resource management problems in
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general [31], and to the vehicular networks in particular [29], we propose an RL-based ap-
proach for centrally scheduling the V2V communication resources. The proposed RL-based
scheduler utilizes the information pertaining to the DOCA such as the occupancy of radio
resources it obtained from the BSs delimiting it, and trained with the reward signal that we
designed to maximize the reliability of V2V transmissions in the DOCA.

In Chapter 5, we first study the feasibility of such an RL-based solution by considering
several sanity-check scenarios having a limited number of vehicles and resources, and basic
mobility. These scenarios allow us to compute the optimal performance of a scheduler, and
compare our solution with respect to that. Our evaluations show that the RL scheduler can
learn to avoid resource collisions, namely concurrent or interfering transmissions, where it
can converge to near-optimal solutions and outperform the existing distributed scheduling
schemes in the considered settings. While our encouraging results motivated us to consider
more complex and realistic scenarios, we had to modify our RL design to address desirable
performance requirements in different target scenarios. It would be, however, impractical to
re-design, re-train, and re-evaluate a new RL solution every time the environment changes,
even if such a change is substantial. A practical RL-based solution should be applicable to
different and varying conditions in the environment, which are natural to vehicular networks.

In Chapter 6, to overcome the above-mentioned challenges of RL, we propose a unified
solution called Vehicular Reinforcement Learning Scheduler (VRLS). VLRS is designed by
unifying the state information and the reward signal input to the RL model, besides its other
components, so that the structure of the solution remains the same irrespective of what kind
of setting it is applied to. This enables broad applicability of VRLS to different practical
scenarios having arbitrary sizes of out-of-coverage area, with any number of vehicles inside,
utilizing an arbitrary number of resources in time and frequency. Further, such a design
facilitates efficient and practical training over simpler and simulated environments. We
show that, with limited or no retraining, the learning performed by VRLS over simplified
environments can be transferred to a set of more realistic, complex environments varying
in terms of mobility, wireless channel characteristics, area size, network load, and traffic
within the scope of the practical settings we consider. VRLS outperforms the state-of-the-art
distributed scheduling solution in terms of resource utilization, by reducing the packet loss
by half in case of overloaded network conditions and performing very close to the maximum
possible level under low load, while achieving a similar level of fairness and latency.

Nevertheless, a trained policy of VRLS may not tackle all possible circumstances in the
environment it will be deployed. Namely, there could occur some unexpected or extreme
situations such as a road congestion due to an accident, or cases for which the scheduling
policy might not be trained. In these cases, the actions of the scheduling agent may simply
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become infeasible. In fact, VRLS assigns each vehicle only a single resource, and in the case
of persistent resource collisions, vehicles would not have a chance to utilize another resource
for their V2V transmissions. In order to overcome this problem, we propose a hybrid resource
allocation solution in Chapter 7, which combines our centralized RL-based approach with
the distributed sensing-based scheduling approach, for areas outside the network coverage.
In this method, while the centralized RL scheduler “recommends” a subset of resources
to each vehicle for their V2V transmissions in the DOCA, the vehicles determine their
final resources by dynamically performing sensing on these resources in an autonomous
manner. Consequently, resource allocation task is adapted to transient and local conditions
of the vehicular network that might not always be predictable by the central scheduler. Our
evaluations show that while this approach performs on a par with VRLS under expected
conditions, the benefit comes into play under non-ideal conditions in the environment, such
as when a road accident creates a congested, stop-and-go traffic. The hybrid solution can,
therefore, supplement VRLS by interceding upon detection of such unexpected conditions in
the network (e.g., the vehicular density increasing beyond a threshold, reported performance
metrics not matching to requirements, etc.).

Finally, in Chapter 8, we turn our attention to the areas where vehicles suffer rather from
shorter and unexpected interruptions on the cellular links to the centralized scheduler, such
as due to poor channel conditions. Such imperfections are often omitted in the literature. In
contrast, the proposed heuristics for scheduling V2V communications often require a high
frequency of scheduling updates, thus increasing their dependency on the reliability of these
links, in addition to incurring heavy signaling overhead. Therefore, more efficient algorithms
that can operate at least equally well under realistic, intermittent coverage conditions are
needed. Our solution targeting this problem, named iVRLS (in-coverage VRLS), is based on
our centralized RL-based approach as in VRLS. Differently, owing to the cellular coverage,
iVRLS can collect more accurate and up-to-date knowledge of the vehicular mobility and
data traffic, and can provide rather frequent resource assignments that are possible anytime
and anywhere, however at the cost of increased signaling overhead. Resource assignment
of iVRLS is based on the estimated current and future interference conditions among the
vehicles’ transmissions until the next assignment, whereby the next assignment might be
delayed by any coverage loss. Besides iVRLS, we propose a simple enhancement to the
existing centralized schedulers such that vehicles keep using their present resources in case
they experience any connectivity interruptions to the scheduler, until they connect back.
Our performance evaluations under realistic, non-ideal coverage conditions show that in
comparison to a state-of-the-art centralized scheduling algorithm in [32], iVRLS achieves
similar performance under a relatively low traffic load. With a high load, iVRLS can make



12 Introduction

more efficient use of the resources by delivering marginally better V2V communication
reliability while requiring a lower rate of scheduling updates. In the case of coverage losses,
iVRLS yields marginally larger V2V distances at which given target reliability is achievable.
As such, iVRLS offers a robust alternative to existing schedulers under varying network
coverage conditions.

With Chapter 9, we conclude the thesis by summarizing our contributions and providing
an outlook for further research.

1.3 Publications by the Author

During this thesis work, the author has published the following papers. The pre-published
parts of the thesis in these papers are indicated with a footnote at the beginning of each
corresponding chapter.

1. [33] T. Sahin and M. Boban, “Radio Resource Allocation for Reliable Out-of-Coverage
V2V Communications,” 2018 IEEE 87th Vehicular Technology Conference (VTC
Spring), 2018, pp. 1-5, doi: 10.1109/VTCSpring.2018.8417747.
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Chapter 2

Background and Related Work

2.1 Intelligent Transport Systems and Vehicular Commu-
nications

Intelligent Transport Systems (ITS) refer to a collective set of technologies that provide
services for different modes of transport and traffic management, aiming to enable safer and
better-informed users, and more coordinated, “smarter” use of vehicles and transport net-
works, with a particular focus on road transport [3], [4]. ITS is standardized by international
as well as local bodies, such as the International Organization for Standardization (ISO), and
the European Telecommunications Standards Institute (ETSI) in Europe, respectively. The
developed standards are subject to global and local regulatory frameworks, e.g., as defined
by the International Telecommunication Union (ITU) and the Federal Communications
Commission (FCC) in the United States (US).

While ITS provides technologies installed at the roadside or in vehicles, the recently estab-
lished area of Cooperative ITS (C-ITS) is based on the communication between these systems.
C-ITS encompasses a wide range of applications based on vehicular communications for the
goal of travel safety, minimizing environmental impact, improving traffic management, and
maximizing commercial and public benefits of transportation. Vehicular communications en-
able many C-ITS services ranging from cooperative awareness among vehicles to automated
driving. These services would not have been possible or not as efficiently achievable via other
technologies, such as sensor-based systems [5]. With vehicular communications, vehicles can
exchange information indicating their existence and status, as well as conditions relating to
their surroundings, such as forward collisions or road hazards. Further, vehicles can make use
of each other’s sensor data shared via vehicular communications. This information exchange,
in turn, enables vehicles to cooperate with their surroundings and coordinate their actions,
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Fig. 2.1 A landscape of V2X communications.

such as realizing a lane-changing maneuver, managing an intersection, or driving together in
groups, all in a safe, efficient, and automated manner. In this way, vehicular communications
enable vehicles to anticipate and avoid dangerous situations, reduce collisions, and potentially
save lives, besides mitigating traffic congestion and energy consumption, and enhancing the
overall travel experience.

Figure 2.1 provides a landscape of vehicular communications as envisioned by C-ITS.
Vehicular communications involve a variety of network entities and components, different
types of communications among them, and wireless technology standards enabling these
communications. In the following, we provide an overview of these and introduce the related
terminology that we use in this thesis.

Communicating Entities

Vehicular communications involve the following communicating entities [13]:

• Vehicles: road vehicles carrying people or goods on public roads and highways,
such as cars, buses, trucks, and motorcycles. Vehicles are equipped with an on-
board unit (OBU) to communicate, which consists of a set of components, interfaces,
and functionalities [42]. These include ITS applications, positioning and security
processors, communication protocol stacks, antenna connectors, etc. required to
support underlying V2X communication technology.

• Vulnerable road users (VRUs): non-motorized road users such as pedestrians, cy-
clists, pets, etc., as well as vehicles with less than four wheels such as mopeds and
motorcycles [43]. VRUs are equipped with usually hand-held devices to communicate,
which contain ITS applications and can support different communication technologies.
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• Roadside units (RSUs): communication unit connected to stationary roadside infras-
tructure such as traffic lights and variable road signs. The road traffic management
equipment installed along the roadside conveys traffic or traveler information to passing
drivers, and is equipped with ITS applications that can support different communica-
tion technologies. RSUs may have a wired or wireless long-range backhaul connection,
e.g., to the cellular network.

• Cellular base stations (BSs): stationary radio transceivers that provide mobile users
(such as vehicles and VRUs) wireless access to the cellular network. Each BS serves
a certain area, referred to as a cell. Depending on its size, the area served by a BS is
called a macrocell, microcell, picocell, etc. [44]. Together with the users they serve,
BSs constitute a radio access network (RAN) [45]. RAN is then connected to the core
network, which provides access to the global Internet. Multiple BSs, e.g., serving a
particular area, can be connected to a centralized RAN controller that provides several
radio functionalities such as radio resource management [45].

The broad term vehicular network refers to the wireless interconnection of vehicles as
well as other communicating entities surrounding them like the ones listed above. A narrower
term, vehicular ad-hoc network (VANET), refers to the wireless network formed solely by
vehicles (as well as RSUs in some cases) in an ad hoc manner, i.e., without any dependency
on any other infrastructure [46].

Types of Vehicular Communications

As introduced in Chapter 1, vehicles can have the following types of communications, which
denote the endpoints (source and destination) of the information exchange [13], [47]:

• Vehicle-to-vehicle (V2V): exchange of information between vehicles, also referred to
as inter-vehicle communication (IVC).

• Vehicle-to-infrastructure (V2I or I2V): exchange of information between a vehicle
and a roadside infrastructure using an RSU.

• Vehicle-to-pedestrian (V2P or P2V): exchange of information between a vehicle and
a pedestrian or any other VRU using a hand-held device.

• Vehicle-to-network (V2N or N2V): exchange of information between a vehicle and a
cloud server such as hosting ITS applications or services, via cellular network using
BSs.
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In this thesis, we use the terms V2V, V2I, and V2P to refer to the short-range communica-
tion taking place on the direct wireless link between the respective entities in close proximity.
The data exchange between different endpoints could also take place indirectly using the
cellular network, which are referred to as V2N2V, V2N2I, and V2N2P communications [13],
respectively. All above ways of communication are collectively referred to with the umbrella
term vehicle-to-everything (V2X) communications.

Fundamentals of Vehicular Communications

V2X communications involve the following fundamental properties of wireless communica-
tion [44]:

• Modes of communication: Transmission over the wireless medium is broadcast by
its nature. Namely, a transmitted message from a network entity can be received
by multiple entities in proximity regardless of the intended receiver of the message.
However, the actual message sent can be intended as a unicast that targets a specific
recipient, or as a multicast to address a group of recipients. While unicast communica-
tion is also referred to as point-to-point or one-to-one communication, multicast and
broadcast communications are also referred to as point-to-multipoint or one-to-many
communications.

• Half-duplex radio: Radio devices on vehicles are subject to so-called half-duplex
constraint, which prevents them to transmit and receive at the same time in the same
frequency band. This requires coordination of transmissions in time, e.g., to avoid
simultaneous transmissions among vehicles that intend to address each other.

• Data transmission and the communication channel: V2X messages are transmitted
in packets by the digital radio equipment of the vehicles. A message can be transmitted
in one or more packets depending on its size. Each packet carries a certain number of
bits, which may include error detection/correction and control information besides the
data payload. Packets are transmitted over the wireless medium using certain amount
of radio resources, with a certain modulation and coding scheme (MCS). A packet can
be retransmitted multiple times to increase its reception probability. In this thesis, we
assume that a message is always transmitted using a single packet, and without any
retransmissions.

While the wireless medium has the broadcast advantage, where the same transmitted
message can be simultaneously received by multiple receivers, hence not requiring
multiple transmissions, this turns into a problem in case multiple users transmit at the
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same time and frequency, where their transmissions mutually interfere with each other.
Depending on the relative power and the coding of the interfering signals, interference
can result in erroneous receptions. Successful reception of a single packet depends on
the signal-to-interference-and-noise ratio (SINR) at the receiver. SINR reflects how
strong the received, desired signal is in relation to the interfering signals and noise.
The received instantaneous SINR per individual radio resource can be mapped into a
single effective metric over the utilized set of resources, which is required to be larger
than a threshold for successful reception, depending on the MCS used to transmit the
packet.

Besides the interference and noise, radio channel over which the packets are transmitted
is further susceptible to the following impediments that impact the SINR. First, the
transmitted signal gets attenuated with distance, due to the dissipation of the radiated
power, referred to as path loss. Second, any object between the transmitter and receiver
can absorb, reflect, scatter, or diffract the signal, by attenuating its power, which is
called as shadowing or large-scale fading. Third, in addition to or instead of the
direct path between the transmitter and the receiver, called as line-of-sight (LOS)
path, transmitted signal can reach receiver via several propagation paths or multi-path
components (MPCs), each having a different amplitude and phase. Superposition of
MPCs give rise to variations of the received signal over short distances in the order of
the signal wavelength, called as small-scale fading.

Characteristics of Vehicular Communications

Vehicular communications exhibit several distinctive characteristics as compared to other
types of communication networks. On one hand, they come with several attractive features,
as follows [46]:

• Higher power: While device power is usually an issue in mobile networks, in the case
of vehicles, the onboard battery can continuously provide energy for communication
and processing purposes, without its lifetime posing any problem.

• Higher computational capability: On-board units of the vehicles can offer signifi-
cant computing, communication, and sensing capabilities, unlike traditional mobile
communication devices.

• Predictable mobility: Vehicular mobility tends to follow certain patterns, e.g., gov-
erned by road topology, speed limits, traffic flow, and planned route. Location informa-
tion of vehicles is often available via satellite or radio-based positioning technologies.
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Given the average speed and current velocity of a vehicle as well as the road trajectory,
its future position is predictable.

On the other hand, vehicular communications need to cope with several challenges as in
the following [46], [48]:

• Large scale: Unlike traditional networks with a limited number of users, vehicular
networks may involve many participants, in principle spanning the entire road network,
with a high amount of data traffic per user.

• High mobility: Vehicles travel in a wide range of mobility settings, alternating over
time and space. In rural areas, vehicles may reach up to 500 km/h of relative speeds,
where only a few vehicles per km are present. On the opposite extreme, highly dense
traffic jams may occur during rush hours in the city centers. Separate motions and
trajectories of different vehicles further create dynamically changing network topology
where links between nodes frequently connect and disconnect, otherwise yielding
variable inter-node gaps.

• Environmental conditions: The vehicular environment poses unfavorable channel
conditions involving multiple blocking or reflecting objects such as buildings, vehicles
(both static and mobile), and vegetation (e.g., trees) [49].

• Security and privacy: Vehicular networks raise concerns about security and privacy
towards their successful deployment. On one hand, it is essential to avoid life-critical
information to be modified, truncated, or inserted by an attacker, where only authorized
users are allowed to manipulate the exchanged data. On the other hand, the privacy of
the vehicular users should be respected, e.g., in terms of guaranteeing their anonymity
and non-traceability.

Standardized Radio Access Technologies for V2X

Real-world deployment of vehicular communications involves diverse stakeholders ranging
from car manufacturers to telecommunication equipment vendors, and from public transport
authorities to mobile network operators. Therefore, interoperability of communications
between them becomes a key issue, which can be assured via standardization of the underlying
technology. Standardization helps maximize safety and quality while supporting regulation,
legislation, as well as the enlargement of the vehicular communications technology market.

Presently, V2X communications are supported by two families of standardized radio
access technologies (RATs): the Wi-Fi-based WAVE/ITS-G5 and the cellular V2X (C-V2X)
standard, as shown in Fig. 2.2.
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Fig. 2.2 Standardized radio technologies for vehicular communications.

• WAVE/ITS-G5 standard: Wireless Access in Vehicular Environments (WAVE) [8], [50]
and Dedicated Short-Range Communications (DSRC) in the United States, together
with its European variant ITS-G5, is the first standard introduced for vehicular commu-
nications. The radio technology allows ad hoc communications between vehicles, as
well as V2I communications between the vehicles and RSUs, without requiring any
network infrastructure. The communication is based on the IEEE 802.11p standard
(and its upcoming successor IEEE 802.11bd). IEEE 802.11p was developed as an
amendment to the wireless local area network (WLAN) standard IEEE 802.11, to
enable wireless communications in a vehicular environment.

The word “dedicated” in DSRC refers to the dedicated 75-MHz spectrum at 5.9 GHz
band allocated by the FCC for ITS operations. The term “short-range” refers to the
communication that takes place over hundreds of meters, which is shorter than the
distance typically supported by cellular technology [9]. The European counterpart of
the standards ITS-G5 (G5 stands for the 5.9 GHz frequency band also allocated for
ITS services in Europe) is developed by ETSI [10], which shares great similarities
with DSRC [51].

• Cellular V2X (C-V2X) standard: C-V2X is the mobile cellular radio technology
that supports vehicular communications based on the Fourth Generation Long Term
Evolution (4G LTE) and the Fifth Generation New Radio (5G NR) wireless cellular
standards developed by the 3rd Generation Partnership Project (3GPP)1 [12]. C-V2X

1During the course of this thesis work, the LTE C-V2X standard has been transformed from a preliminary
research work into first real products, whereas 5G NR C-V2X standard was not yet available.
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offers V2V, V2I, V2P, and V2N communications. V2N communication takes place over
the traditional uplink (UL) and downlink (DL) that are used for one-way communication
from the vehicles to the cellular base station (BS), and from the BS to the vehicles,
respectively, as illustrated in Fig. 2.3. V2V and V2P communications take place
over the interface termed sidelink (SL), which enables direct two-way communication
using a separate transceiver. Depending on whether RSUs are implemented as BSs
or cellular user equipment, V2I communication in cellular networks takes place over
uplink/downlink or sidelink, respectively.

For sidelink communications, the cellular standard offers two modes: centralized and
distributed. In the centralized mode, resource allocation for V2V (as well as V2P or
V2I) communication is coordinated by the BS. In the distributed mode, vehicles (and
other user entities) do resource allocation autonomously without the need for a BS,
thus it can take place outside the cellular network coverage as well, without any need
for a cellular network infrastructure deployment.

Cellular Network Coverage Conditions

V2X communications may take place within the following scenarios in terms of the cellular
network coverage [52]:

• In-coverage: communicating vehicles are all located within the coverage of one or
more BSs that can serve the vehicles.

• Out-of-coverage: communicating vehicles are all located outside the coverage of a
BS, i.e., without any access to the cellular network, such as when traveling through
parts of roads lacking cellular deployment, e.g., tunnels or underground spaces.

• Partial coverage: when at least one of the communicating vehicles is within the
coverage of a BS while at least another one is outside.
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Fig. 2.4 ITS use cases and communications requirements (based on [7], [20], [21], [47]).

2.2 ITS Use Cases and the Need for V2V Communications

Types of messages

An overview of ITS use cases to be supported by vehicular communications with associated
requirements is provided in Fig. 2.4. As introduced in Chapter 1, the basis for most of the
traffic safety and efficiency applications is formed via i) local regular broadcast of periodic
status messages; and ii) event-triggered messages that indicate hazard warnings. The first type
of message is periodically broadcast from vehicles to constantly inform their surroundings
about their position, speed, direction, etc., in order to establish cooperative awareness.
Cooperative awareness message (CAM) [18] and the basic safety message (BSM) [53] are
such messages specified by the ETSI and SAE (the US Society of Automotive Engineers)
standards, respectively. The second type of message is triggered upon various events, e.g., to
inform vehicles about unexpected conditions, such as road hazards. While ETSI has specified
the decentralized environmental notification message (DENM) [19] for this purpose, SAE
has specified various of such messages, e.g., emergency vehicle alert (EVA) and traveler
information message (TIM), for different purposes, respectively [53].
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Rate of messages

Among different types of messages, CAMs are expected to constitute 70% of the traffic
load [54]. Generation of CAM is governed by the cooperative awareness basic service,
which defines, in particular, the message generation rate. To allow efficient use of the radio
resources and prevent channel congestion, the actual generation time interval is in general
variable. The time-dependent behavior of the vehicles, such as their speed and changes in
their direction, and the fact of being a special vehicle (e.g., an ambulance) influence the
message generation rate [18]. To illustrate, vehicles transmit with the minimum packet
generation periodicity of 1 Hz while moving at a speed of 14.4 km/h or below, while the
maximum packet generation periodicity (i.e., 10 Hz) is reached when they travel at 144
km/h or above. Further, even at the same constant speed, a new message is triggered if a
vehicle changes its direction at least for 4◦, thus impacting the time interval between two
consecutive CAMs. Event-triggered messages are also transmitted in a periodic manner for a
limited time duration, with a minimum frequency depending on the use case, including the
vehicle speed and transmission range. To illustrate, for a vehicle broadcasting that a safety
function (e.g., braking) is out of its normal condition upon detecting it requires at least 1 Hz
message frequency, whereas warning the following vehicles of a sudden slowdown of the
traffic requires transmission of DENMs with at least 10 Hz [20].

Latency and reliability of messages

Transmitted messages need to be received within a maximum allowed time, referred to
as latency. Latency denotes the one-way, end-to-end, maximum tolerable time from the
generation of a packet at the source application until it is received by the destination appli-
cation [21]. The maximum latency requirement is derived from the application operating
requirements. While ITS services have a typical latency requirement of 100 ms, advanced
use cases involving a high degree of automation can have a latency requirement as stringent
as 3 ms.

ITS applications also demand the messages to be received using the communication
system with high reliability, which is specified in terms of the probability that the recipient
gets the transmitted packet within the specified latency. A commonly used metric to measure
radio-layer message reception reliability is packet reception ratio (PRR), also known as
packet delivery ratio (PDR), which can be simply expressed as the average ratio between the
number of neighbors correctly decoding a packet at a given distance and the total number of
neighbors at the same distance2. The reliability is in general related to the required latency;

2We provide the formal definition of PRR in Section 3.2
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the lower the latency requirement of a transmission, the higher the expected reliability. For
rural or highway scenarios, minimum reliability is specified as 80% of probability that the
recipient gets a message within 100 ms [22] for the basic ITS services. Whereas the advanced
services have more diverse and stringent requirements with up to 99.999% reliability and
3 ms of latency. It should be however noted that many of the use cases could also be supported
using more lenient reliability or latency values at the cost of less optimal operation (e.g., in
the case of platooning, larger distances between vehicles) [7].

Range of message reception

The required reliability of message reception needs to be ensured at a minimum communica-
tion range between the transmitter and the receiver to allow timely action by the applications
(e.g., considering the driver’s reaction time). The range is determined depending on the use
case and the velocity of the involved vehicles. For instance, while warning messages in an
urban intersection need to be received at a range of 50 m, messages transmitted by vehicles
traveling on a highway with absolute speeds at 280 km/h require a range of 320 m [47].

Density of vehicles

Finally, the use cases should operate under an expected density of vehicles, e.g., expressed in
terms of the number of vehicles per km2. This also indicates that multiple vehicles within
the same area run the same (and potentially additional) use cases in parallel. For example, at
rural intersections, a vehicle density of 1500 vehicles/km2 is expected, whereas the maximum
density in urban scenarios is expected to be 10000 vehicles/km2 [23]. Besides the type of the
area, the actual vehicle density would also depend on the time of the day, weather conditions,
traffic congestion, etc. There is also a correlation between vehicle density and speed in
general, e.g., the more vehicles are on a road, the slower their speeds are [47].

General remark

Although none of the above ITS use cases demand high requirements in all dimensions
simultaneously, when combined, they call for a communications system that is able to
support high traffic load, high reliability, low latency, and long range.

The necessity of V2V communications

In the following, we discuss why V2V communications is necessary to address the challeng-
ing requirements of ITS applications when compared to other wireless technologies or ways
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Table 2.1 Comparison of communication technologies for vehicular communications (derived
from [55] and [56]).

Capabilities V2V V2N Wi-Fi UWB BT&ZB VLC Radar NTN DTV
Range (approximate) 1 km 10+ km 1 km 10-30 m 10-100 m 20 m 2 km 0.1-600+ km 40 km
One-way to vehicle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

One-way from vehicle ✓ ✓ ✓ ✓ ✓ ✓ ✓

Two-way ✓ ✓ ✓ ✓ ✓ ✓

Point-to-point ✓ ✓ ✓ ✓ ✓ ✓ ✓

Point-to-multipoint ✓ ✓ ✓ ✓ ✓

Latency 0.2-1 ms 1 ms - 3.5 s 3-5 s 200 µs 200 ms ? ? ? 10-30 s

of communication. Table 2.1 summarizes different candidate technologies with respect to
their capability to support vehicular communications.

• V2V communications intend line-of-sight or near line-of-sight direct communications
between vehicular peers in close proximity3 without needing to connect to a network
access point. This enables a two-way unicast, multicast, and broadcast communication
from and to vehicles within around a few hundred to thousand meters, depending
on the underlying radio technology. As compared to longer-range and/or multi-hop
communications, such as cellular V2N or V2N2V, V2V communications offer the
advantages of the hop gain, proximity gain, and reuse gain that we introduced in
Chapter 1. These gains allow low propagation delay and end-to-end latency, high
data rates at low transmission power, and high spectral efficiency. Early works have
shown that utilizing direct communications between the users can achieve better
performance in terms of capacity, throughput, power efficiency, and spectral utilization
compared to infrastructure-based communications using UL/DL (e.g., cf. [57], [58]).
Further, the non-necessity of a centralized control enables a flexible organization of
communications in an ad hoc manner.

• Cellular V2N and V2N2V communication is based on the long-range communica-
tions between the user and the BS that can take place across long distances. While
microcells can typically cover a radius of 500 m, macrocells can reach a radius of
10 or even 30 km [59]. The communications between vehicle and BS can be carried
out in a unicast fashion as traditionally supported by cellular networks. The recent
specifications have also introduced the support for broadcast and multicast vehicular
traffic on DL, i.e., from BS to vehicles [37]. The cellular network can support high
data rates with low-to-medium latency. However, initial field trials presented in [60]

3While we focus on the V2V communications, the same also applies to V2I and V2P communications
between the vehicles and nearby infrastructural or pedestal nodes.
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with a simple setup involving a single BS and three vehicles show that the V2N2V
communications yield around two times larger latency than direct V2V communica-
tions. Moreover, the simulation results in [61], [62], and [63] show that increasing the
vehicular density can further increase the latency by up to two orders of magnitude
when unicast DL messages are considered. Yet additional latency is expected due to
forwarding and processing at the cellular core network when multiple BSs are involved.
Another prominent drawback of V2NV communications is that vehicles need to be
under cellular network coverage to communicate, which may not be possible at all
times.

• Wi-Fi is a medium-range communication technology between the user device and
an access point of a local area network (LAN), based on the IEEE 802.11 series of
standards. Using Wi-Fi, vehicles can connect to a wireless access point of a LAN
within tens to hundreds of meters (e.g., home LAN when garaged), which enables
extensive upload and download of non-time-critical data [55]. However, Wi-Fi lacks
the support for highly mobile users. In addition, similar to cellular systems where
vehicles connect to BSs, Wi-Fi requires the association of vehicles with an access point
to communicate, thus requiring them to be within the range of a LAN.

• Ultra Wide Band (UWB) is a technology for transmitting data by spreading the
radio energy over a very wide frequency band (typically larger than 500 MHz) with
a very low power spectral density [59]. While the low power spectral density limits
the interference potential with conventional radio systems, the high bandwidth allows
very high data throughput. The largest limitation of UWB for vehicle communications,
however, is its limited range, which is typically up to a few tens of meters.

• Bluetooth and Zigbee are other short-range wireless communication technologies.
While they are low cost, low power [44], and can serve V2I communications channels
for stationary vehicles in close proximity (e.g., electronic payments at fast food drive-
thrus), their operation is limited in terms of range and latency considering mobile and
safety-critical communications required by ITS applications [55].

• Visible light communications (VLC) make use of visible portion of the electromag-
netic spectrum at 430−790 THz band to transmit and receive information [64]. Such
high frequency enables extreme data rates reaching up to 500 Mbps over relatively
short distances of several meters [65], and is not interfered with by the highly crowded
parts of the spectrum at lower frequencies. The advent of light-emitting diodes (LEDs)
progressed the use of VLC, making several standards already available. Producing
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light has much lower energy consumption as compared to radio-frequency-based
communication devices, and the light sources such as head and tail lights that are
already available on the vehicles can be utilized for this purpose. VLC technology,
however, is severely limited by several factors including disturbance of the transmis-
sion due to flickering lights, susceptibility to weather and ambient conditions, noise
and interference coming from irrelevant light sources in the environment, and its
inability to operate under non-LOS conditions [64], which are all common in vehicular
environments.

• Radar (radio detection and ranging) is a technology primarily used for sensing the
environment based on the principle of measuring the time of flight between the emitted
signal and its received echo, typically operating at the millimeter-wave spectrum.
Besides its sensor application as common in vehicular domain, radar can be also used
for communication purposes [66]. However, the most limiting factor would be the
two-way wireless communication capability and the need for line-of-sight between
the transmitter and the receiver. While the messaging capability of radar can allow
vehicles to derive useful information from the roadside, any system that can support a
realistic data payload is not yet on the development horizon [55].

• Non-terrestrial networks (NTNs) offer high-capacity connectivity to their users
via satellites, high-altitude platform systems (HAPS), and unmanned aerial vehicles
(UAVs), especially in remote areas without terrestrial networks [67]. However, inher-
ently larger link budgets and higher propagation delays associated with aerial networks,
the differential delay introduced due to larger service area that impacts the random
access procedures, and high Doppler shift between the aerial devices and vehicles may
jeopardize safety-critical communications, thereby making the design of these systems
not trivial [68]. Last but not least, the operation of NTNs is limited by their coverage,
i.e., they can not offer connectivity in tunnels or underground environments, and are
highly prone to atmospheric errors such as due to solar activity.

• Terrestrial Digital Radio and Digital Television (DTV) enable transmission of digital
audio and video signals, respectively, at large communication ranges. While these
technologies could potentially use terrestrial datacasting to communicate with vehicles,
such applications have generally a broadcast nature, where the same information is
sent to all the vehicles at the same time (e.g., announcement of lane closures, detours,
malfunctioning traffic signals, etc.). In addition, the regional coverage aspect and one-
way (radio station-to-vehicle) nature of these technologies prevent them from meeting
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wireless communications requirements of the vehicle safety applications considered
by ITS [55].

In summary, when compared to other ways of communication, direct, short-range com-
munications between vehicles, i.e., V2V communications, can uniquely meet the basic
communications requirements of the applications presented in Section 2.2. Nevertheless,
several issues such as service degradation in congested scenarios, difficulty coping with the
compromised line of sight, and security problems remain a challenge for V2V communica-
tions.

2.3 Radio Resource Allocation for V2V Communications

As introduced in Section 2.1, V2V communications have stringent requirements that need
to be satisfied, most significantly in terms of reliability and latency, which are far more
demanding than that of traditional communications due to the safety-critical nature of the
messages. The requirements need to be satisfied in a very dynamic environment, where vehi-
cles unexpectedly appear and disappear within each other’s communication range. Diverse
relative speeds among the vehicles further result in varying distances between the transmitters
and receivers. Moreover, the communication involves a high load of data traffic due to the
transmission of frequent messages by a large number of vehicles, especially in dense situa-
tions such as during rush hours or traffic congestion. Achieving highly reliable, low-latency
V2V communications within such a challenging environment in a resource-efficient manner
depends highly on the approach taken to allocate the radio resources.

In this section, we first survey various possible techniques of radio resource allocation
for V2V communications, which could be performed at different levels by different network
protocol layers. Next, we present the resource allocation methods specified by the two
standardized RATs, namely the IEEE 802.11p and the cellular. We then analyze the perfor-
mance of the state-of-the-art resource allocation methods, including the standardized ones,
by reviewing the works evaluated them. Finally, we elaborate on the intermittent cellular
network coverage problem and its impact on the radio resource allocation performance for
V2V communications.

2.3.1 Techniques of Radio Resource Allocation

Spectrum Allocation

The radio spectrum is a scarce resource that has to be allocated to many different commu-
nication systems and applications. The spectrum allocation policy should also consider
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Fig. 2.5 Spectrum utilization options for V2V communications (adapted from [69] ©2014
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technological advances in radios to make spectrum allocation more efficient and flexible. At
frequencies in the order of several GHz, wireless radio components come with reasonable
size, power consumption, and cost. However, this frequency range of the spectrum has been
getting extremely crowded. Therefore, technological developments to enable high-frequency
systems would greatly reduce the spectrum shortage with the same cost and performance.
Nevertheless, as the frequencies get higher, path loss becomes larger with omnidirectional
antennas, thereby limiting the communication range [44].

The spectrum for V2V communications can be allocated in different ways, as illustrated in
Fig. 2.5. V2V communications can make use of licensed bands or unlicensed bands. Licensed
bands are assigned by regulatory bodies to specific mobile network operators. Whereas the
unlicensed bands are open to any system subject to certain operational requirements. From
the cellular networking point of view, the operation of V2V communications using licensed
and unlicensed bands are also referred to as in-band and out-band operation, respectively [69].
In the case of in-band communications, V2V communications can use disjoint subbands
from the cellular UL/DL transmissions. Such an approach is referred to as overlay V2V
communications. On the other hand, the localized nature of direct links between vehicles
allows the reuse of the same radio resources used for cellular UL/DL transmissions at the
same time. This approach, called underlay V2V communications, under favorable conditions,
enables the so-called reuse gain, thereby increasing the overall spectral efficiency of the
system.

It is also possible that different RATs can co-exist at the unlicensed bands. Namely, V2V
communications using the cellular and the IEEE standard can share the same spectrum. In
this case, additional solutions, e.g., those based on the “listen-before-talk” mechanism, are
required to mitigate the negative impact of the mutual interference between different tech-
nologies [71]. Related to the spectrum sharing problem, one interesting idea is the notion of
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Fig. 2.6 Spectrum designations at 5.9 GHz in various countries (based on [74], [75], [76]).

a smart or cognitive radio. By sensing its radio environment, this type of radio can determine
the frequency, time, and space, as well as other transmission parameters such as modulation
and coding [59]. Such an approach would offer employing new frequency bands and oppor-
tunities for V2V communications. However, many technology and policy challenges need to
be overcome before deploying such a radical spectrum allocation method [56].

For allocating and controlling the radio spectrum usage, most countries have government
agencies in charge. In the United States, the spectrum for commercial use is allocated by the
Federal Communications Commission (FCC). FCC first time allocated the 75-MHz spectrum
in the 5.9-GHz band (5.850-5.925 GHz) to support the DSRC-based ITS applications, in
1999 [72]. This spectrum is divided into seven 10-MHz wide channels, as shown in Figure 2.6.
FCC had initially designated the DSRC as the technology standard for ITS services. However,
DSRC has not been meaningfully deployed, leaving the critical 5.9 GHz band mostly unused
for decades. Based on this, the FCC has decided to transition away from DSRC services.
Their recent announcement designates cellular V2X as the new technology standard for
safety-related transportation and vehicular communications, due to its recent momentum.
For this, FCC has reserved a part of the 5.9 GHz band for the cellular technology to enable
substantial deployment of ITS services [73]. The order in November 2020 reallocated the
lower 45 MHz of the 5.9 GHz band (5850-5895 MHz) from DSRC to unlicensed use for
technologies such as Wi-Fi, and concluded that the United States should move forward with
C-V2X in the 5895-5925 MHz portion of the band.

In Europe, spectrum regulations for the frequency range 5855-5925 MHz are technology-
neutral and specified for the use of safety-related ITS services by the European Commission
Decision in March 2020 [75]. In China, the decision in October 2018 assigned 5905-5925
MHz for V2V and V2I communications in two separate 10-MHz channels, using the cellular
standard only. The 5855-5925 MHz band is also allocated to the use of ITS services in
various other countries such as Australia, Korea, and Singapore [76]. In Japan, different from
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other countries, two bands are allocated for ITS at 755.5–764.5 MHz and 5770–5850 MHz,
respectively.

While V2V communication using the LTE V2X standard is expected to operate at the
5.9 GHz ITS band, the succeeding 5G NR standard allows the spectrum resources to be also
allocated from the licensed bands that are assigned to specific cellular network operators [37].

Admission and Congestion Control

Given the limited spectrum, vehicular networks necessitate control of wireless network
resources to provide the required QoS for the ITS services. In vehicular networks, the number
of nodes participating in communications is not always known, and more importantly, should
not be restricted. Therefore the resource allocation mechanisms must properly scale with
the varying vehicular density. While sparse traffic is common in off-peak hours or expected
during the early stages of the market deployment, high traffic conditions can be expected
during peak hours or in small areas such as urban crossroads. In the latter case, the data
traffic can be seriously heavy, especially considering the safety messages such as CAMs
(cf. Section 2.2) that are transmitted by all vehicles frequently (typically ten times per s).
These circumstances further worsen the collision problem, which leads to applying admission
control or congestion control mechanisms.

Admission control (AC) is the task of estimating the state of the network’s resources and
deciding which application data traffic can be admitted to the resources without requiring
more resources than available and without violating previously made QoS guarantees [77].
AC is a standard procedure in cellular networks, which is typically performed by the BSs for
the users in the cell they serve. This takes place when a user first time joins the network or
hand-offs from another cell [78].

It is possible to perform AC in various ways. While optimal AC schemes are preferable,
they are not always achievable, especially in realistic scenarios with large problem sizes and
complex system parameter interdependence. As a result, heuristics and intelligent techniques
are commonly used to find suboptimal AC schemes. AC schemes can be further classified as
proactive (parameter-based) or reactive (measurement-based) [79]. Proactive schemes admit
or reject the incoming traffic based on predictive/analytical evaluation of the QoS constraints.
Whereas the reactive schemes make the admission based on the QoS measurements following
the start of a transmission attempt.

AC targets controlling various communication performance metrics as desired, such
as signal quality, traffic blocking or dropping probability, packet-level QoS parameters,
and transmission rate [79]. For controlling signaling quality, AC can take interference,
i.e., SINR levels, resource loading, effective bandwidth, power allocation feasibility, or
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transmitted/received power into account. Packet-level QoS parameters include the packet
delay or packet dropping rate.

A special case of AC is congestion control, which targets the avoidance of congested
communication channels. Congestion control adjusts the communication parameters such as
the transmission rate, transmission power, and modulation among others, in order to control
the congestion level on the channel and guarantee reliable communications [80]. Congestion
control is especially relevant for vehicular communications. The performance challenges
associated with high-density traffic are among the major obstacles to the widespread adoption
of vehicular communication technologies. Irrespective of the underlying technology, V2V
communications can face a congested radio environment due to limited spectrum combined
with high vehicular density and frequent message exchange. This is commonly referred to
as scalability problem. Congestion control techniques play an important role to manage
channel load and radio interference, especially when an extension to the allocated frequency
spectrum is not possible.

To determine the network congestion, V2V communication technologies usually employ
channel utilization-based sensing mechanisms involving several measured metrics. The
metrics include channel busy ratio, number of neighbors, and channel occupation ratio [81],
as well as message relevance-based assessment (e.g., based on message and vehicle con-
text) [82]. In turn, several parameters are adjusted to control the congestion, based on
the employed algorithm. The most considered parameters are the packet generation rate,
transmission power, and modulation and coding scheme [81]. Besides adjusting the trans-
mission parameters, vehicles may also simply drop the packet transmission (and/or any
re-transmissions) as in the case of admission control [80].

Medium Access Control

In order to allow many vehicles to share a finite amount of radio spectrum simultaneously
and benefit from the capacity of the communication channel, the available resources must
be divided among the vehicles. This is the responsibility of the multiple access schemes or
protocols, also referred to as medium access control (MAC).

One straightforward MAC scheme is to partition the channel in time, frequency, code,
or space domain (as well as their combinations), and statically dedicate each partition to
a vehicle. Such multiple access schemes are referred to as static time division multiple
access (TDMA), frequency division multiple access (FDMA), code division multiple access
(CDMA), and space division multiple access (SDMA), respectively. While this approach
would ensure no collisions and uninterrupted transmissions, it is rather suitable for applica-
tions with deterministic or continuous stream of data, such as voice or video. In the case of
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V2V communications, which mainly consists of periodic and aperiodic messages, the traffic
is rather bursty. This type of traffic would leave the allocated resources underutilized, hence
wasting them.

For applications with bursty traffic, random access strategies are commonly used to
efficiently assign the channel to the active users. In random access techniques, also known
as “contention-based” MAC schemes, users attempt to access the channel without (or with
minimal) coordination. In the simplest approach, users can transmit data packets as soon as
they are formed, which is the principle of the ALOHA protocol [83]. In case of collisions,
packets are retransmitted after a random time. However, in this approach, users can start
their packet transmissions at any time, and any partial overlap of two or more packets would
damage the successful reception of all packets. Such partial overlap of transmissions could
be avoided if all packet transmissions are aligned in time by synchronizing the users, which
is the idea behind the slotted ALOHA protocol [84]. In slotted ALOHA, the time is divided
into slots of a certain duration, and packet transmissions can only take place at the beginning
of each time slot. This simply improves the maximum achievable throughput by a factor of
two as in an unslotted ALOHA system.

In order to achieve much greater efficiencies of channel usage, MAC protocols that listen
to the channel before transmission can be utilized, which exploit the information about
the other users. This is the premise behind the carrier-sense multiple access (CSMA) [85]
mechanisms. CSMA can be interpreted as a “listen before talk” mechanism, where users
delay their transmission if they detect that another user is currently transmitting, based
on energy-sensing. CSMA can be further combined with a collision avoidance technique
(referred to as CSMA/CA), which can be summarized as follows [9]. User that has data
to transmit first monitors the wireless channel for activity, through energy detection. If the
sensed channel is idle, the user begins the transmission. Otherwise, it performs a random
backoff, namely waits for a number of time slots before transmission. This backoff timer is
also known as contention window. The countdown is paused during any non-idle interval.
After transmitting, the sender user waits for an acknowledgment (ACK) from the recipient. If
it does not receive the ACK within a timeout interval, it re-transmits the data after performing
another random backoff. Data sent to a group is not acknowledged and is sent only once.

The most important challenge associated with the sensing-based mechanisms is the
well-known hidden-node problem, where each node, i.e., vehicle, can only hear its immediate
neighbors but no other nodes in the network [44]. This results in simultaneous transmissions
coming from vehicles that are not able to sense each other interfering at a receiver located
between them. As such, contention-based mechanisms can not guarantee successful trans-
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missions or delay them. This creates problems for V2V communications considering the
real-time safety-critical applications [86], [87].

A common way to avoid packet collisions due to hidden nodes is to utilize a handshake
before transmission [44]. Such collision avoidance is established by the transmitters first
indicating a request to send, and transmitting only after they receive an acknowledgment from
the intended receiver(s) - known as the RTS/CTS (request to send/clear to send) mechanism.
However, this mechanism and similar ones that rely on the receiver’s feedback incur additional
signaling. Further, they are infeasible for broadcast or multicast transmissions, which
constitute most of the vehicular traffic (primarily, safety) since multiple receivers are involved
[88], [89], [90].

Random access protocols work well with bursty traffic when there are many more users
than available resources yet these users rarely transmit. In the case of long series of packets
as in vehicular traffic, random access works poorly because most transmissions result in
collisions [44]. In this case, performance can be improved by assigning resources to the users
in a more systematic fashion through transmission scheduling. For scheduled access, the
available spectrum is partitioned into time-, frequency-, code-, or space-division resources,
i.e., based on TDMA, FDMA, CDMA, and SDMA, respectively (as well as combinations
thereof). Transmission of each user can be scheduled on different resources in a way to
avoid conflicts with neighboring users while making the most efficient use of the available
resources. In distributed settings, i.e., without a central coordinator, users need to exchange
control packets to coordinate among themselves and/or inform each other about the schedule
of their transmissions. This however yields a high communication overhead. In addition, even
in scheduling-based access protocols, some form of random access is required in distributed
settings to make the initial reservation for the subsequent data transmissions.

A collision-free and efficient usage of the resources can be achieved when a centralized
entity conducts the scheduling. By gathering information about users’ transmissions, resource
utilization, etc., the scheduler can efficiently coordinate the resource allocation. In vehicular
networks, such a centralized scheduling entity could be an RSU, a cellular BS, or simply one
of the mobile vehicular users acting as a cluster head.

Physical Layer Techniques

In addition to the above-mentioned MAC and higher-layer techniques, resource allocation
could be also performed at the physical layer via various means. The most prominent ones
include the multicarrier modulation, multiple antennas, transmission repetition, and link
adaptation techniques.
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Multicarrier modulation can achieve efficient usage of the spectrum, which realizes trans-
missions by dividing the data stream into much narrower subchannels rather than using the
wideband channel. Orthogonal frequency-division multiplexing (OFDM) is such a modula-
tion scheme, which encodes the data symbols by modulation onto closely spaced orthogonal
subcarrier signals that constitute subchannels [44], [59]. In this way, a high-rate data stream
is split into a number of low-rate streams that are transmitted over parallel, narrowband
subchannels. The number of substreams is chosen to ensure that each subchannel has a
bandwidth less than the coherence bandwidth of the channel, thereby relatively flat fading
is experienced by the subchannels. Besides, with the use of guard intervals, OFDM can
eliminate the inter-symbol interference on each subchannel. OFDM can be efficiently imple-
mented digitally, and has been adopted by the standardized RATs for V2V communications,
i.e., the IEEE 802.11p [11] and the cellular LTE and 5G NR sidelink [37].

The transmitted subchannels in OFDM need not be contiguous, so a large continuous
block of the spectrum can be also shared among different users. This creates the possibility
to combine OFDM with multiple access using frequency separation, referred to as orthogonal
frequency-division multiple access (OFDMA), besides the time and coding separation of
the users. The cellular standard for the sidelink utilizes a similar multiple access method
called single-carrier frequency-division multiple access (SC-FDMA) [12]. In SC-FDMA,
transmissions take place using a single carrier that offers higher transmit power efficiency
and reduced cost of the power amplifier as compared to OFDMA.

Another technique to increase resource utilization efficiency is to employ multiple anten-
nas at the transmitter and/or receiver sides. This technique can benefit the communications
in three ways [59]: i) diversity gain, where the same information can be transmitted over
different antennas, and combined or selected at the receiver side to increase the probability
of successful reception by exploiting statistically independent channels; ii) capacity gain
via spatial multiplexing, where multiple data streams can be transmitted in parallel using
multiple-input multiple-output (MIMO) systems; and iii) SDMA, where multiple users can
transmit using the same time and frequency, yet utilizing different directions established via
beamforming by different antennas.

Another way to realize diversity at the physical layer is to repeat the transmission (after a
period that achieves decorrelation), based on the receiver feedback. This procedure is referred
to as automatic repeat request (ARQ) [59]. Alternatively, instead of discarding a corrupt
packet, the receiver can store and exploit all it receives, e.g., by combining information
from different transmission attempts, for successful decoding. This approach is called
hybrid ARQ (HARQ). While these schemes are simple and efficient, they also have several
restrictions [59]. ARQ requires the presence of error-detection code, and HARQ may involve
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additional coded bits to provide a stronger error correction capability, accompanying the
data. In addition, a feedback channel is required, which should be also well protected against
errors. Further, the time required to receive the feedback, and retransmit if necessary, incurs
additional latency in the transmission of data packets.

When the knowledge of the transmission channel, known as the channel state information
(CSI), is available, the transmitter can exploit this information to adapt various parameters
of its transmission based on the varying link conditions. This technique is known as link
adaptation, comprising adaptive coding and modulation, and power control. The transmitter
can choose the modulation format and coding rate that are best matching to the current
situation of the link [59]. When the channel quality is good, e.g., having high SNR, a
higher-order modulation, i.e., modulation format requiring less bandwidth can be selected to
allow a higher data rate for each user (or allow more users while keeping their rate constant).
Higher formats, however, are more sensitive to noise and interference, resulting in larger
reuse distance. In OFDM, different modulation or coding can be selected for each subcarrier,
which can be also updated in time. A similar adaptive technique can be applied to control
transmit power as well. However, while higher transmit power reduces the probability of
error among two nodes, this can cause significant interference to other nearby nodes, thereby
requiring an optimization considering all nodes in the vicinity. CSI-based adaptive techniques
are difficult to realize in practice also due to that they require the channel to be reciprocal,
i.e., not changing its state between the time learning the channel and transmitting accordingly.
Such an assumption is too optimistic for the case of highly dynamic vehicular networks [91].
In addition, CSI-based approaches become infeasible in the case of broadcast or multicast
transmissions.

2.3.2 Resource Allocation in IEEE 802.11p

IEEE 802.11p defines the physical layer and MAC specifications for the WAVE/ITS-G5
standard for V2V communications [11]. IEEE 802.11p protocol is a variant of the 802.11a
adapted to the dynamic conditions of vehicular environments. The notable modifications in-
clude reducing the data rate for more reliable communications at high speeds, and eliminating
the LAN-based “handshaking” to reduce the system latency from seconds to milliseconds.

At the physical layer, the 802.11p protocol uses OFDM with a channel bandwidth of
10 MHz and 8 Modulation and Coding Schemes (MCS), offering a maximum rate of 27
Mbps. At the MAC layer, the 802.11p adopts the Enhanced Distributed Channel Access
(EDCA) protocol, which combines the CSMA/CA protocol with support for differentiated
services. To control the channel load to avoid situations where the channel load exceeds the
total available capacity, Decentralized Congestion Control (DCC) mechanisms as described
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in Section 2.3.1 are introduced. These techniques are designed to meet the requirements
of ITS applications, especially in terms of high reliability and low latency for road safety
applications. DCC algorithms for the DSRC-based V2V communications are specified by
the SAE J2945/1 [92] standard in the US, and the ITS-G5 based V2V communications by
the ETSI 102 687 [93] standard in Europe.

IEEE 802.11p has the advantages of easy deployment, low cost, being a mature technol-
ogy, and its native capability to support V2V communications in ad hod mode. However, it
is subject to scalability problems and unbounded delays, and does not provide deterministic
QoS guarantees [86]. Besides, due to its short-ranged radio, IEEE 802.11p can only offer
limited connectivity. In order to support future vehicular applications that have stringent
requirements, the IEEE has been working on a new protocol for V2V communications,
named 802.11bd [94]. The main design goals include bringing higher throughput and higher
reliability than IEEE 802.11p, together with a larger communication range, and support for
speeds up to 250 km/h, mainly by improving the physical layer [95].

2.3.3 Resource Allocation in the Cellular Standard

V2V communications in the cellular networks utilize the sidelink (SL) interface, as men-
tioned in Section 2.1. SL was first introduced in LTE to support device-to-device (D2D)
communications technology targeting public-safety and commercial use cases, with static
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users in mind. The standard has enhanced the specifications targeting V2V communications
to mainly support the high mobility and high user density in vehicular environments.

V2V communications take place within the resource pools configured by the cellular
network operator for the SL, both in LTE and 5G NR C-V2X4. A resource pool is organized
into subchannels over the frequency domain and slots over the time domain, and can be
configured in different sizes, as illustrated in Figure 2.7. The cellular network operator can
configure different resource pools for transmissions and receptions such as belonging to
different V2V applications, different users, or different areas. Further, different resource
pools could be (pre-)configured for in-coverage and out-of-coverage users to avoid any
interference between them. When multiple transmit pools exist, reception pools can be
configured to cover (i.e., overlap with) all transmit pools, so that the users can receive
transmissions of other vehicles transmitting in pools different from theirs. In addition, an
exceptional resource pool can be (pre-)configured for users to utilize upon experiencing
exceptional conditions such as radio failure or connection loss to the BS, or handover failures
when transitioning between different BSs. Resource pool configurations are provided by the
BSs to the users via regular broadcast or dedicated messages on DL. The (pre-)configured
information can be provided to the user devices in their integrated circuit cards or as a factory
setting as well.

Within a resource pool, the transmission of a packet takes place in units of frequency
subchannels and time slots. For each SL data transmission, users also transmit an associated
SL control information (SCI) using the SL control channel. The SL control channel shares
the same slot as the SL data channel as illustrated in Fig. 2.8. SCI indicates the resources
scheduled for the associated SL data, and carries the necessary information to decode it. To
receive other vehicles’ transmissions, a vehicle monitors only the control channel (rather
than the whole resource pool), and determines whether an SCI has been transmitted. After
decoding the SCI, the vehicle can then use it to decode the associated SL data.

The cellular standard offers two resource allocation modes to schedule SL transmissions
for V2V communications, as mentioned earlier: i) centralized BS-scheduled mode, and ii)
distributed user-autonomous scheduled mode. These modes are referred to as mode 3 and
mode 4 in the LTE standard, respectively; and as mode 1 and mode 2, in the 5G NR standard,
respectively. The numbering follows the earlier terminology introduced for device-to-device
(D2D) communications in older releases of LTE, as shown in Fig. 2.9.

For the distributed resource allocation mode, the cellular standard does not specify a
particular congestion control algorithm but defines the related metrics and possible counter-

4Although there exist differences between the LTE and NR standards in terms of the structure of the resource
pools (cf. [12]), we stick to their commonalities in this section.
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measures to reduce the channel congestion in the ETSI specification 103 574 [96]. SAE has
been also developing mechanisms under the SAE J3161/1 [97] specifications. Nevertheless,
the DCC algorithms specified for the WAVE/ITS-G5 standard by SAE or ETSI can be also
utilized for the V2V communications in the cellular standard.

In the following, we provide the details of the centralized and the distributed resource
allocation modes. As the distributed mode, we present the LTE mode 4 algorithm, which we
use as one of the benchmarks in our evaluations. We here note that the specifications of its
successor standard 5G NR mode 2 were not available during the preparation of this thesis
work.
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Centralized Resource Allocation Mode

In the centralized resource allocation mode, a scheduling entity residing at the cellular BS
coordinates the transmissions between the vehicles. For their V2V transmissions, vehicles
first send a scheduling request (SR) to the BS over the uplink control channel. The SR
indicates the size of the V2V transmission. In turn, a scheduling assignment (SA) sent from
the BS to vehicles on the downlink control channel via the DL control information (DCI)
message indicates the allocated resources (i.e., the subchannels and slots) for that vehicle’s
transmission. This approach is called dynamic scheduling. The centralized mode alternatively
supports the allocation of periodically repeating resources (called semi-persistent scheduling
(SPS) in LTE, and configured grant (CG) in 5G NR), for a periodic type of V2V traffic.
For this type of scheduling, vehicles report their traffic characteristics to the BS, containing
information about the periodicity and size of their messages. In turn, BS configures the
vehicles with resources matching their requirements. Multiple SPS (or CG) configurations
could be simultaneously activated for a vehicle to support different types of periodic V2V
traffic. Despite defining mechanisms for centralized resource allocation, the cellular standard
does not specify any particular algorithm for resource allocation, hence leaving it up to the
implementation of the cellular network operators or vendors.

Traditionally, the scheduling entity resides at each BS, which allocates resources to the
users it serves via a single transmission/reception point. However, recent developments
in cellular networks focus on virtualized and splitted architectures, where different layers
of the protocol stack are instantiated on different elements located in different parts of the
network. In this framework, BSs can be realized with many remote radio heads deployed at
different serving locations, which are in turn connected to a unit that is responsible for the
MAC functionality, i.e., assignment of time/frequency resources to vehicles. Several such
units can be further connected to a central unit that handles upper-layer protocols, such as
the allocation of resource pools for different vehicles or areas. Multiple of these flexibly
splitted units can be further interfaced with a RAN intelligent controller (RIC) deployed at
the edge of the network. RIC can handle near-real-time or non-real-time functionalities, such
as session management of vehicles, load balancing across different cells, slicing of network
resources for vehicular services, and even training of machine-learning algorithms over data
provided by the RAN [98].

Distributed Resource Allocation Mode – the LTE Mode 4 Algorithm

In the distributed resource allocation mode of the cellular standard, vehicles autonomously
make semi-persistent resource (re-)selections from the (pre-)configured resource pool for
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Fig. 2.10 Illustration of distributed scheduling mechanism LTE mode 4. Subchannels
sensed with large power (represented with darker brown colors) are excluded from selection
(crossed). Selected subchannel (green) among the remaining ones is utilized to transmit
semi-persistently [39] ©2022 IEEE.

V2V communications, based on sensing [99], [100]. Specifically, in the LTE mode 4
algorithm, as illustrated in Fig. 2.10, upon a message generation at time tgen, vehicle selects
a single subchannel from an upcoming resource selection window between tgen +T1 and
tgen +T2. The vehicle can transmit using the selected subchannel on a periodic basis for
Cresel times, i.e., semi-persistently, where Cresel takes a random value from a predefined
interval. After Cresel transmissions, the vehicle makes a new resource re-selection with
probability 1−Pkeep, otherwise keeping the same subchannel by setting a new random value
for Cresel. Each resource (re-)selection is based on sensing results of the past 1000 ms from
tgen, excluding the slots the vehicle transmitted, as no sensing was conducted due to the
half-duplex radio constraint. The vehicle further excludes the subchannels where it sensed an
average received power larger than a predefined threshold Thrsense. It sorts the remaining
subchannels with respect to their average Received Signal Strength Indicator (RSSI), and
selects a subchannel randomly from the top 20% (the lowest RSSI).

The sensing mechanism enables vehicles to find a “free” subchannel, or, in case of
heavy resource use, a subchannel with relatively low interference. On the other hand, the
randomization aims at mitigating the persistent resource conflicts due to multiple vehicles
continuously selecting the same subchannel. Nonetheless, since sensing measurements are
limited in time and space, vehicles in mode 4 are prone to the well-known hidden-node
problem. To illustrate, if vehicles far apart cannot sense each other’s transmissions and select
the same subchannel, their transmissions can interfere on a receiver located between them.
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2.4 Performance of Radio Resource Allocation Methods for
V2V Communications

It is a difficult task to establish a fair comparison between different resource allocation
mechanisms proposed so far in the literature for V2V communications since each of them
assumes different architecture, underlying technology, a specific class of applications, and
operation under certain scenarios and conditions.5 Nevertheless, by categorizing them with
respect to several aspects, it is possible to analyze and compare certain characteristics of
different approaches to resource allocation.

The most compelling approach to radio resource allocation for V2V communications is
to have a distributed scheme when compared to centralized or clustered schemes. Distributed
schemes, which constitute the majority of the proposed methods in the literature, do not
require any central coordinator to manage the channel access and assign resources, and
can better adapt to dynamic topology changes without intervention. However, the dynamic
assignment of resources to each vehicle in such a distributed and ever-changing environment
is a challenging task.

The contention-based methods such as the IEEE 802.11p, work fine under sparse vehicular
density. However, they cannot handle dense traffic environments. Transmission collisions
are inevitable when the network load is high since vehicles randomly access the channel
when they have data to transmit. Such an approach can not guarantee QoS requirements for
critical road safety applications, mainly in terms of low latency and high packet delivery rate
[104], [105]. Further, broadcast safety messages without handshake and acknowledgment
mechanisms increase the collision probability due to hidden nodes. Several techniques
have been proposed to improve the scalability of contention-based MAC protocols under
heavy load conditions. These are mainly based on adaptively adjusting the transmission
parameters such as the minimum contention window and the transmission power control,
with the 802.11p standard in mind [106].

Among the contention-free techniques in the literature, TDMA-based approaches have
formed a majority, due to several benefits such as not requiring frequency synchronization or
code assignment algorithms as in the case of FDMA or CDMA techniques, respectively [87].
While contention-free protocols can provide bounded latency, they require a regular exchange
of control messages in order to maintain the schedule and time synchronization among all the
vehicles in the network. To illustrate, in order to establish a conflict-free reservation, vehicles

5For the reader’s reference, among the methods discussed here, detailed reviews of the resource allocation
techniques for V2V communications within the framework of the standardized RATs, i.e., the cellular and
the IEEE 802.11p could be found in [24], [101], and [102]. Comprehensive reviews of resource allocation
mechanisms based on non-cellular technologies can be found in [87] and [103], and in their references.
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need to periodically broadcast frame information that contains the slot ID and their states to
all their one-hop neighbors, which incurs significant communication overhead, especially in
dense scenarios. Further, due to the lack of a central coordinator to schedule time slots, the
possibility of access and merging collisions still exists. Various approaches take advantage of
the road and traffic flow characteristics to reduce such collisions in a distributed manner by
pre-allocating sets of time slots to vehicles based on their location (e.g., road segment, lane),
speed, direction, etc. [107], [108], [109]. These, however, often require complex methods
to determine certain thresholds over space between vehicles to enable resource use among
them.

More recently, hybrid mechanisms are proposed, which combine contention-based and
contention-free access by dividing the time into two periods for medium access and slot use,
respectively. While offering better performance in network throughput, access delay, and
stability, they require careful adjustment of the interval ratio according to the varying vehicle
density.

Various distributed resource allocation schemes with similar techniques have been also
proposed for the cellular standard to support V2V communications, during or even before
the standardization efforts developing the LTE mode 4 algorithm. This line of research was
initially based on advancing the prior resource allocation techniques developed for D2D
communications in the cellular standard, where the users are assumed to be static or have low
mobility. In this context, different sets of users are pre-configured with different resource
pools, in which they do contention-based resource allocation. In [110], vehicles make use
of the position information transmitted by other vehicles, in order to choose the resources
from the resource pool for V2V transmissions without any central supervision. In [111],
the resource pools are created in a time-orthogonal manner, with respect to orthogonal road
traffic crossing the intersections. Further, vehicles perform sensing-based resource selection
inside each pool. Similarly, in [112], an additional resource pool is allocated exclusively
for vehicles inside the intersections. Authors further consider a highway scenario, where
time-orthogonal resources are allocated for equal sections along the road, spatially alternating
in the two directions. At the same time, a separate resource pool orthogonal in frequency is
used by the vehicles driving in the fast lanes.

Performance of LTE mode 4 is evaluated in numerous works [113], [114], [115], [116],
[117], [118], and [119]. These studies have analyzed how the performance of V2V commu-
nications varies in terms of reliability and latency, with respect to changing parameters of
the mode 4 algorithm such as Pkeep and Thrsense, under varying environmental conditions in
terms of vehicle density, etc. Remarkably, the results demonstrate that the parameters of the
mode 4 algorithm need to be carefully tuned, and a unified parameter configuration needs
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to be adopted by all vehicles in order to maximize the V2V communication performance,
especially in high-density scenarios.

Several works have focused on improving the performance of mode 4. Most of them
target the persistent collision problem due to (re-)selection of the same resources by different
vehicles. Authors in [120] and [121] propose reserving resources at each resource selection
instance and alternately using them to mitigate the collision probability. Other works propose
exchange of information among the vehicles, such as channel measurements [122], locations
[123], or status and reservation information of resources [124], [125], [126]. Revisions to
the sensing mechanism are also proposed in several works, mainly by considering different
weighting strategies for selecting the resources as in [127] and [128]. Overall, while proposed
extensions to mode 4 enhance the reliability and latency of V2V transmissions, they either
require additional signaling or increase resource occupancy, hence making them less efficient
from the resource utilization point of view. In addition, the parameters of the extended
methods require careful optimization in order to achieve desired performance, which needs
to be determined and continually adjusted according to highly dynamic conditions in the
environment. This increases their implementation complexity, and reduces the probability of
realizing their full benefits in practice. Detailed reviews of the works related to the distributed
resource allocation mode in cellular networks for V2V communications can be found in
[101] and [102].

The above-mentioned drawbacks and limitations of the distributed resource allocation
methods can be avoided by utilizing a hierarchical or centralized topology where the resource
allocation is managed by a central node. In VANETs, such an access mechanism can be
realized with cluster-based approaches, where vehicles in a small area can be grouped
into a cluster, and one vehicle in each cluster is selected as the cluster head to act as a
local central entity that coordinates the channel access and assigns resources for the group.
Such topology aims to reduce the overhead in the one-hop neighborhood by centralizing
the resource allocation function at the cluster head. Related works include [90], [129],
[130], as well as [131] that utilizes predefined clusters among the vehicles based on the
number of hops between them. Clustered protocols can effectively avoid access collisions,
provide fair channel access, and increase throughput via spatial reuse of resources. However,
the high mobility of the vehicles affects the stability of the cluster heads, which leads
to network problems and performance degradation. The main related challenges are the
communication overhead due to the exchange of messages required to elect a cluster head,
and to maintain and manage the cluster members in a highly dynamic topology, as well as
the inter-cluster interference problem when two or more clusters approach each other [87].
In addition, clustered methods are not suitable for high vehicle density scenarios, where their
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performance degrades due to the high collision rate caused by the inter-cluster interference
problem [87].

Another approach to enable centralized resource allocation is based on the idea of
exploiting the presence of RSUs and their large transmission range to coordinate the resources
for vehicles in a contention-free way, thus ensuring real-time and reliable delivery of V2V
messages. Several TDMA-based MAC protocols that utilize RSUs to assign time slots and
disseminate the control information are proposed in [105], [132], [133], which can reduce
the channel allocation delay and scheduling overhead. These methods comprise two stages,
in which vehicles first send requests to RSU for resources upon entering the coverage of
an RSU and receiving its beacon message containing its identity. In turn, RSU allocates a
particular non-colliding resource to each vehicle, and broadcasts the allocation map to all
vehicles in its area. The proposed methods show clear advantages over distributed scheduling
methods, especially in terms of packet loss rate and transmission delay, while using the same
amount of resources and achieving less communication overhead and improved fairness for
the channel access. However, given that RSUs are fixed nodes,the main challenges in these
solutions are therefore the short stay period of vehicles in an RSU region, and the inter-RSU
interference in overlapping regions of different RSUs. The latter problem is addressed by the
methods proposed in [105] and [134] where separate neighboring RSU areas are allocated
with different orthogonal frequencies, and frequencies are reused along the road, thereby
achieving high throughput and low access delay.

Cellular networks offer an attractive alternative to sole usage of RSUs for centralized
scheduling of V2V communications, thanks to the wide availability of BSs deployed along
roads with large area coverage, high capacity, mobility support, and centralized architec-
ture [135]. Early works have evaluated the performance of the centralized scheduling in
cellular networks for V2V communications in comparison to the competitive IEEE-based
standards that are based on distributed resource allocation, prior to the specification of the
distributed scheduler mode 4 in LTE. In [25], the proposed centralized resource allocation
method based on LTE is shown to outperform the IEEE 802.11-based distributed scheme
in terms of higher spectrum efficiency and lower latency. The effective V2V communi-
cation distance can be increased by more than 65% or, for the same relevance distance,
the number of supported vehicles can be increased by a factor of six. In [136], impact of
different centralized scheduling schemes (called as sequential vs. simultaneous; the former
resembling TDMA solutions based on IEEE 802.11p) and resource allocation policies (based
on channel quality feedback; with and without frequency reuse) were evaluated. While the
simultaneous scheme significantly reduces the average time required for the exchange of
information among the platoon members, reporting of channel quality improves the resource
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utilization, and frequency reuse ensures high-reliability, low-latency, and high-capacity V2V
transmissions that enable very short inter-vehicle distances in the platoon. In [137], authors
compare the performance of another proposed centralized scheme based on the cellular
standard with a distributed scheduling method that was proposed prior to the standardization
of LTE mode 4, besides the IEEE 802.11p. In particular, the proposed method outperforms
both distributed methods, where it can achieve a 10% larger packet reception ratio and a 10
times lower update delay than the IEEE 802.11p standard.

Authors in [138] compare the performance of the centralized and distributed scheduling
modes in LTE, i.e., mode 3 and mode 4, as well as the IEEE 802.11p, by considering a
platoon scenario under different vehicle densities. LTE mode 3 is shown to greatly improve
the performance compared to mode 4 and IEEE 802.11p, enabling shorter inter-vehicle gaps
of 0.8 m with a guaranteed crash rate ≤ 1% irrespective of the surrounding traffic density,
which translates into higher traffic efficiency and safety. This is achieved by higher reliability
and shorter latency of the V2V transmissions via efficient resource reuse that cannot be
achieved by distributed methods. Despite providing very low latency, 802.11p is shown to
suffer from the increasing collisions with the load, and mode 4 is prone to collisions due to
re-selection or persistent usage of the same resources by the vehicles in proximity, as also
shown in other studies, e.g., in [139] and [140]. In [138], it is also shown that LTE mode 4
can outperform IEEE 802.11p in the case of periodic traffic due to its semi-persistent resource
scheduling, whereas the resource re-selection parameters require careful tuning to prevent
persisting collisions. Better scaling of mode 4 is due to its channel access mechanism, which
is based on semi-persistent transmission, unlike CSMA/CA that is purely contention-based.

State-of-the-art algorithms found in the literature for the centralized scheduling of V2V
communications in cellular networks propose heuristics based on locations of vehicles to
enable resource reuse [32], [137], [141], [142]. A resource allocation algorithm designed
for superior reliability is proposed in [141], called allocation with Maximum reuse Distance
(MD). MD uses a simple yet powerful heuristic, which allocates time resources to all vehicles
in cyclic order following their positions. Thus, MD tries to maximize the average distance
between the vehicles using the same resource, with the goal of minimizing interference. MD
is analytically shown to outperform other centralized scheduling algorithms in the literature
from [137] and [142], as well as the random resource allocation. Yet, as also the authors
indicate, MD is far from practical implementation in reality. The scheduling assignments are
required to be sent for all vehicles in the environment simultaneously at a time, repeating
with the V2V message generation rate, thus leading to impractical processing and signaling
overhead. Besides, MD considers only a single resource in the frequency dimension for the
assignments (hence could only assign different time resources).
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A more practical version of MD is proposed in [32], with a similar name Maximum Reuse
Distance (MRD), which also shares the same goal of maximizing the distance between reused
resources as MD. When a vehicle requests a resource, MRD finds the time resource that is
used by the farthest vehicle with respect to the requesting vehicle, and finds the frequency
resource sharing the found time resource, in the same way. In case there remain unused
resources in the resource pool, then, instead, MRD assigns one of them randomly. MRD does
not rely on heavy processing and signaling as MD, as it schedules vehicles asynchronously,
in multiples of their message generation periodicity, by sending a single assignment to a
single vehicle at a time. MRD is also shown to outperform the same benchmark algorithm
in [137].

There are several other centralized resource allocation algorithms in the literature, how-
ever, considering impractical assumptions. An early work [143] within the framework of
D2D communications in cellular networks proposes an algorithm based on power control,
using the channel state information (CSI) of all V2V links, which becomes infeasible in
broadcast scenarios. Authors in [144] consider an algorithm based on clustering of vehicles
and applying graph-based solutions for a road intersection scenario, again using the channel
information on the V2V links reported by the vehicles. Other clustering-based methods
proposed in [145] and [146] by the same authors are also challenging in terms of implemen-
tation due to their requirement of careful re-forming of clusters as vehicles move, which
brings impractical complexity and processing overhead to the scheduler. Applicability of
some other cluster-based solutions such as [147] are also limited to unicast or multicast V2V
scenarios. There is also a large number of works assuming underlay conditions, i.e., V2V
communications using the resources shared with cellular uplink and/or downlink communi-
cations, such as [148] and [91], and the others in their references. These studies, however,
share the common optimization task of maximizing the sum rate and prioritizing the V2I
(or V2N) links, and require at least partial knowledge of CSI consisting of slowly varying
parameters (path loss and shadowing).

Alongside the centralized and distributed solutions, there is a limited amount of work
in the literature on hybrid approaches that combine centralized and distributed methods
for scheduling V2V communications. The work in [149] proposes the coexistence of two
radio interfaces per vehicle, enabling switching between direct D2D-based communications
with centralized resource allocation mode and distributed 802.11p-based communications
for latency optimization. A more relevant hybrid approach is proposed by [150], where
scheduling of vehicular users by base station is followed by distributed scheduling to reduce
the base station loading in terms of signaling and computation. In the distributed mode,
vehicular users select resources that are divided into geographical zones, by estimating
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Fig. 2.11 A network coverage map showing parts of roads lacking LTE coverage (areas
without purple hexagons) in a region close to Munich, Germany (screenshot from the
interactive application in [151]).

co-channel interference and comparing them with threshold values determined by the base
station, for the purpose of maximizing link reliability and sum rate.

2.4.1 Intermittent Cellular Network Coverage Problem

Omnipresence of network infrastructure such as RSUs and BSs that can provide centralized
resource allocation functionality for V2V communications is not guaranteed. In general,
deployment and operation of network infrastructure is challenging due to required network
planning, additional costs, and their management and maintenance. In particular, for vehicular
networks, ubiquitous presence of an infrastructure surrounding all vehicles at all times is
practically inconceivable [152]. Despite any deployment, vehicles may still travel through
areas where connection to the network infrastructure is physically impeded, such as inside
tunnels. More inevitably, sudden changes on the wireless channel conditions (e.g., deep
fading due to blocking objects) are also possible, resulting from highly dynamic vehicular
environments, which impact the connectivity to the network infrastructure.

Coverage degradation may arise due to multiple reasons [28], among which we are
interested in the two following typical ones in this thesis:

• Expected coverage interruption happens in certain pre-known areas such as road
sections without network infrastructure deployment, e.g., road tunnels, often referred to
as coverage gaps or holes in the network. Upon entering such areas, users completely
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lose the connectivity to the network infrastructure, prohibiting transmission of any
type of signal on both ways. Network operators are typically aware of these areas.

• Unexpected coverage interruption happens due to unexpected conditions in the
propagation environment under the presence of the network infrastructure. It could be
caused by a sudden blockage of the link between the users and the network infrastruc-
ture due to the motion of vehicles or other objects in their surroundings. Additionally,
a malicious attack or unintended interference may also avoid successful transmission
of data between the users and the network infrastructure, which we however leave
out of the scope of our study. Unexpected coverage interruptions are therefore rather
temporary, local, yet unpredictable as compared to expected coverage interruptions.

From the perspective of resource allocation for V2V communications, when vehicles lose
the connectivity to the central coordinator located at the network infrastructure, centralized
resource allocation mechanisms will fail, and vehicles will have to resort to distributed
mechanisms. Depending on the network conditions such as availability of the resources
and the traffic demand, combined with the characteristics of the interruption (e.g., duration,
location, etc.), performance of the V2V transmissions could get severely affected, leading
to deterioration in continuity and reliability of services. Given that the QoS requirements
of V2V applications need to be satisfied irrespective of network coverage [12], intermittent
coverage poses one of the key problems that need to be addressed in V2V communications.
This important problem has unfortunately not been treated much in the literature.

In cellular networks, the intermittent coverage problem is expected as one of the key
problems, where the links between the BSs and vehicles get interrupted. The problem could
arise during early deployment stages due to lack of BSs supporting LTE or NR C-V2X
communications, or due to insufficient deployment to cover the entire roadway. To illustrate
the actual deployment problem with regards to availability of cellular networks, in the UK,
only 66% of the main roads is covered by all 4G (LTE) operators in 2021 [153]. Similarly,
users in Germany spent on average 77% of their time with a 4G or better connection in
2019, otherwise connecting to 3G and 2G networks [154]. The analysis covers all network
operators in 401 rural and urban districts where the users are most commonly frequent.
Fig. 2.11 taken from an interactive coverage-map published by the German Federal Network
Agency exemplifies a geographical area around the city of Munich where parts of the roads
lack LTE coverage provided by one of the network operators [151]. The problem is much
worse in the case of 5G, which is being newly deployed [155]. In the US, 51-92% of
the interstate highways are covered by 5G, depending on the operator, according to an
analysis in 2021 [156]. Whereas in Germany, 5G is reported in 2022 to be available only
18% of the time across the motorways [157]. Besides the limited deployment of cellular
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network infrastructure, the deployment of the C-V2X related protocols and functionalities
are only at a primeval stage [158], [159]. Field trials in [160] demonstrate how the quality
of communications between the vehicles and the network degrade when vehicles travel at
locations far from the BS antenna site, i.e., at “cell edge” areas. Such conditions are shown
to degrade the performance of vehicular applications using V2N communications.

As per the cellular standard specifications for V2V communications [12], in the case of
connection interruptions to the BS, which controls the resource allocation, vehicles need to
switch their resource allocation mechanism. Specifically, upon experiencing the connection
interruption long and often enough (e.g., up to a configurable timer), vehicles have to stop
using their BS-scheduled resources and resort to a random resource selection procedure
using the exceptional resource pool. Vehicles then switch to sensing-based resource selection
mechanism (mode 4 in LTE or mode 2 in NR) after they start sensing and collect observations
for sufficiently long time (1000 ms). The standard does not offer any other mechanisms to
tackle the intermittent coverage, e.g., in case of expected interruptions.

A preliminary analysis of the mode switching procedure is conducted in [161]. Besides
the case of forced switching, as in the case of unexpected loss of the cellular BS coverage,
authors take account of different switching strategies. The proposed switching decisions are
based on cost functions considering the load conditions of the cell or the SINR of the signal
transmitted from the BS and received at the vehicle. Authors further decompose the mode
switching procedure into subsequent stages, and analyze the impact of different strategies on
the switching latency. The same authors evaluate impact of mode switching on the reliability
of V2V packet transmissions in [162], in a scenario considering a highway with adjacent
regions of cellular coverage and non-coverage. In the case of high traffic load, successful
packet reception probability goes down from 90% to 60% when vehicles switch from the
centralized to the distributed resource allocation (i.e., from mode 3 to mode 4) using the same
amount of radio resources in the considered scenario. In another study by the same authors
[163], latency of the switching procedure is evaluated to be in the range of 100− 150 ms
depending on the traffic density, and packet reception probability is shown to deteriorate by
nearly 50% in the worst case in a realistic road traffic scenario with a highway tunnel.

2.5 Reinforcement Learning

In this section, we review the fundamentals of reinforcement learning (RL) and deep learning
by taking the sources [164] and [165] as a reference, respectively, and following their notation.
After accommodating the necessary background, we provide a taxonomy of RL algorithms.
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ArtificiaI Intelligence
Programs with ability to process information and decide like humans

Machine Learning
Algorithms with ability to learn without being explicitly 
programmed 

Deep Learning
Learning from vast data using multi-
layered artificial neural networks 

Fig. 2.12 Deep learning as a part of broader concept of machine learning within the context
of artificial intelligence (adapted from [165]).

Finally, we present the specific RL algorithm called Asynchronous Advantage Actor-Critic
(A3C), which we consider in our proposed methods.

RL is a computational approach to the overall problem of learning and decision-making
to achieve goals [164]. Different from other computational approaches, RL captures the
paradigm of learning found in nature, where an animal explores its environment and interacts
with it in order to gather food and other rewards. With that, RL puts an emphasis on learning
performed by a goal-directed agent based on direct interaction with its environment, i.e., from
experience, without requiring exemplary supervision or complete models of the environment.
Interactions of the agent with the environment reinforce (or inhibit) particular patterns of
behavior depending on the resulting reward (or penalty).

RL has recently led to exciting achievements that were previously out of reach for a
machine. The applications span a wide range from self-driving vehicles to robotics, from
healthcare applications to financial investments. The recent revolution of RL to solve complex
and diverse tasks across numerous domains is thanks to its combination with deep learning,
where RL utilizes deep artificial neural networks.

2.5.1 Deep Learning

Deep learning is a subset of machine learning (ML) methods within the overall context of
artificial intelligence (AI), as represented in Fig. 2.12. Deep learning utilizes multi-layered
artificial neural networks to automatically extract useful patterns or features in raw data,
and uses them to learn to perform the task [166]. Traditional ML approaches use hand-
engineered features to perform a task. Such an approach is time-consuming, fragile, and not



2.5 Reinforcement Learning 53

The Perceptron Multi-output Perceptron Single-layer Neural Network Deep Neural Network 

x1

x2

xm

Σ y

w1

w2

wm

Input Weights Sum Activation
function

Output

𝑦𝑦 = 𝑓𝑓 �
𝑖𝑖=1

𝑚𝑚

𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

x1

x2

xm

y1=f(z1)z1

z2 y2=f(z2)

𝑧𝑧𝑖𝑖 = �
𝑗𝑗=1

𝑚𝑚

𝑥𝑥𝑗𝑗𝑤𝑤𝑗𝑗,𝑖𝑖 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑧𝑧𝑖𝑖)

x1

x2

xm

z1

z2

z3

zn

y1

y2

w(1) w(2)
f(z1)

f(z2)

f(z3)

f(zn)

𝑧𝑧𝑖𝑖 = �
𝑗𝑗=1

𝑚𝑚

𝑥𝑥𝑗𝑗𝑤𝑤𝑗𝑗,𝑖𝑖
(1)

Inputs OutputHidden

𝑦𝑦𝑖𝑖 = 𝑓𝑓 �
𝑗𝑗=1

𝑛𝑛

𝑔𝑔(𝑧𝑧𝑗𝑗)𝑤𝑤𝑗𝑗,𝑖𝑖
(2)

x1

x2

xm

w(1)

zk,1

y1

y2
⋯

w(k)

⋯
zk,2

zk,3

zk,4

𝑧𝑧𝑘𝑘,𝑖𝑖 = �
𝑗𝑗=1

𝑛𝑛𝑘𝑘−1

𝑔𝑔(𝑧𝑧𝑘𝑘−1,𝑗𝑗)𝑤𝑤𝑗𝑗,𝑖𝑖
(𝑘𝑘)

x1

x2

xm

w(1)

zk,1

y1

y2
⋯

w(k)

⋯
zk,2

zk,3

zk,nk

Fig. 2.13 From a perceptron to a deep neural network (adapted from [165]).

scalable in practice, while highly relying on engineering skills and domain expertise. The
key advantage of deep learning is to avoid this by automatically using a general-purpose
learning procedure, and learning underlying features directly from data in a hierarchical
manner. The theory of deep learning dates way back to the 1950s. However, its application
has recently experienced a revival due to the greater availability of data, processing hardware,
and open-source software tools such as TensorFlow [167].

Deep Neural Networks

The fundamental building block of deep learning is just a single artificial neuron, also known
as a perceptron. Neural networks are composed by stacking and layering perceptrons. As
illustrated in Fig. 2.13, perceptron takes a set of inputs x1, ...,xm, each multiplied with a
corresponding real-valued weight w, and adds them together. The result is then passed
through a non-linear activation function f that produces the final output y. The purpose of
activation functions is to introduce nonlinearities into the network to deal with nonlinearities
in data, as illustrated in Fig. 2.14, which is extremely important in real-life applications.
Common examples of non-linear activation functions include the sigmoid, hyperbolic tangent
(tanh), and rectified linear unit (ReLU) functions.

Multiple perceptrons could be stacked together to create a multi-output neural network,
as shown in Fig. 2.13. Since the input is densely connected to every weight of all perceptrons,
this structure is also called dense layer or fully connected layer. A single-layered neural
network further contains a single hidden layer between its inputs and outputs, as shown in
Fig. 2.13. Different from the input and output layers, hidden layers are typically unobserved
and not strictly enforced either, thus called hidden. The example in Fig. 2.13 is a generic
feedforward neural network architecture. The term neural network architecture refers to how
the neurons, i.e., perceptrons, are connected to each other.Finally, a deep neural network is
composed by stacking multiple hidden layers, as illustrated in Fig. 2.13.
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Fig. 2.14 Linear (left) and non-linear (right) activation functions to create boundaries for
classifying task of a scattered data (adapted from [165]). While linear functions can only
produce linear decisions no matter the network size, non-linearities allow the network to
approximate arbitrarily complex functions.

Without hidden layers, a neural network can represent only a very small fraction of
possible input-output functions. However, a neural network with a single hidden layer with a
sufficient number of perceptrons can approximate any continuous function. This is referred
to as universal approximation property of one-hidden-layer neural networks [168]. Yet, both
experience and theory show that approximating the complex functions needed for many AI
tasks is made easier by deep neural networks with many hidden layers. The successive layers
in a deep neural network increasingly abstract the representations of the “raw” input. Each
perceptron in the network provides a feature contributing to a hierarchical representation of
the overall input-output function of the network [164].

Convolutional Neural Networks

Deep convolutional neural network (CNN) is a type of neural network that has proven
to be very successful in practice, including the above-mentioned impressive applications
performed by RL. This type of network is distinguished for processing high-dimensional
data arranged in arrays, such as images. Convolutional neural networks are advantageous
over traditional fully-connected networks, by overcoming their limitations in several aspects.
First, fully connected neural networks can only take one-dimensional and fixed-size inputs,
thus requiring down-sizing and flattening of higher-dimensional data. Such processing, in the
case of images, reduces two-dimensional pixel values into one dimension, thereby losing any
spatial information [169]. The idea of the convolutional neural network is to connect patches
of multi-dimensional input data to the hidden layer neurons. Each neuron is connected to a
region of the input, and the spatial structure is preserved by using a sliding window to define
connections [165]. In order to extract particular features, convolution neural network applies
a set of weights, i.e., “filters” to a given patch locally. The input is element-wise multiplied
with the filter weights and the output is summed, followed by shifting the patch [165]. This
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Fig. 2.15 Key components of reinforcement learning (based on [170]).

corresponds to the convolution operation, hence giving the convolutional neural network its
name. Second, in the case of a large number of variables in data, a fully connected network
requires a much larger number of weights to be trained. Typically, an image with several
hundreds of pixels would already lead to several tens of thousands of weights in the case of a
fully connected network with a hundred neurons in its first hidden layer [169]. On the other
hand, in convolutional neural networks, multiple filters are applied, while the weights of each
filter are shared spatially.

2.5.2 Key Components of Reinforcement Learning

In the core of an RL algorithm lies the agent, which is the learner and decision maker. Agent
interacts with its environment, which comprises everything outside the agent. During the
interaction, the agent selects actions and environment responds to them presenting new
situations to the agent, as illustrated in Fig. 2.15. The actions also give rise to rewards
from the environment, which the agent tries to maximize over time by choice of its actions.
Everything inside the agent is known and controllable, while its environment is incompletely
controllable and may not be completely known.

Specifically, the agent and the environment interact over a sequence of time steps t =
0,1,2, .... At each time step t, the agent receives some representation of the environment’s
state st , which is a concrete and immediate situation in which the agent finds itself. Based
on st , the agent selects an action at from the set of possible actions that the agent can take
in the environment. One step later, in part of its action’s consequence, the agent receives
a numerical reward rt+1 and finds itself in a new state st+1 of the environment. This gives
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a rise to sequence of state-action-rewards as s0,a0,r1,s1,a1,r2,s2,a2,r3, .... The time steps
do not need to correspond to fixed intervals of real time, but rather can refer to arbitrary
successive stages of decision making and acting. The agent’s goal is to maximize the total
amount of reward it receives, which is in general expressed by a specific function of the
reward sequence, called return Rt . In the simplest case, the return is the sum of the future
rewards

Rt = rt+1 + rt+2 + rt+3 + ...+ rT , (2.1)

starting from time step t until the final one T , considering an episodic task. In episodic tasks,
the agent-environment interaction breaks into natural parts, such as plays of a game, trips
through a maze, or any other type of recurring interactions. It is also common to consider
return as a discounted sum of rewards as

Rt = ∑
i=t

γ
iri+1, (2.2)

by multiplying future rewards with a discount factor 0 ≤ γ ≤ 1. γ is used to adjust the
importance the agent pays to immediate rewards in comparison to future ones. Note that the
returns at successive time steps hold the following recursive property, which is important to
RL algorithms:

Rt = rt+1 + γRt+1. (2.3)

The agent’s behaviour is formally expressed by a policy π , which is a mapping from
the states of the environment it perceives to the actions to be taken when in those states. A
stochastic policy π(a|s) is expressed as the probability of selecting action at = a given a
state st = s. The reward signal founds the primary basis for altering a policy: if a selected
action leads to a low reward, then the policy may be changed in order to select another
action in the same situation in the future. On the other hand, actions do not only influence
immediate rewards, but also subsequent situations, i.e., states, and through them, the future
rewards. Namely, actions may have long-term consequences, involving delayed reward.
Thus, a correct action choice requires foresight or planning. It may be better to sacrifice
immediate reward to gain more long-term reward.

While reward signal reflects what is good or bad in an immediate sense, a value function
specifies what is good in the long run to the agent. The value vπ(s) of a state s is defined
as the total amount of reward an agent can expect to accumulate over the future, i.e., the
expected return, starting from that state, using the agent’s current policy π . It is denoted as
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vπ(s) = E[Rt |st = s] and vπ is called state-value function for policy π . Similarly, value of
taking action a in state s under a policy π is denoted as qπ(s,a) = E[Rt |st = s,at = a] and qπ

is called as action-value function for policy π . Values indicate the long-term desirability of a
given state by taking into account the subsequent states and rewards that are likely to follow.

Another component of some RL systems is a model of the environment. The model is
defined by the dynamics function p(s′,r|s,a) = Pr{st = s′,rt = r|st−1 = s,at−1 = a} of the
environment, which consists of probability of a state and reward occurring at time t, given
particular values of the preceding state and action, for all s′, s, r, and a. Namely, given a state
and an action, the model can predict the resultant next state and reward. Such well-defined
formulation of transition probabilities constitutes a Markov decision process (MDP), which is
a mathematically idealized form of the RL problem, enabling precise theoretical statements
to be made. Optimal policies and value functions for finite MDPs with complete knowledge
can be reliably computed by Bellman equations or using dynamic programming methods
such as policy iteration. However, in practice, learning an optimal policy rarely happens.
In most of the RL problems either the MDP model is not known or it is too large to be
practically utilized by the agent. In particular, extensive memory and computation per time
step would be required to create accurate approximations of value functions, policies, and
models. In cases when a problem has the bottleneck of constructing an accurate model of the
environment, model-free methods become advantageous.

Model-free agents estimate the value functions vπ and qπ from experience. As an example,
if the agent follows policy π and maintains an average of returns that it encounters for each
state (or each state-action pair), then the average will converge to the state’s actual value
vπ(s) (or qπ(s,a)) as the number of times the agent’s visit per state (and action) approaches to
infinity. For a task with small number of states, it is possible to form such approximations by
using arrays or tables with each entry corresponding to each state (or action-state pair). Such
RL methods are called tabular methods. However, majority of practical cases of interest has
a large number of states, where keeping a table becomes not feasible. Besides an extensive
memory required for such table, any encountered state will likely to have been never seen
before. It would be therefore necessary to generalize from previous encounters with states
that are somehow similar to the unseen ones. Function approximation is such technique
enabling to construct a function by taking examples from it. Using this method, referred to
as approximate solution method, agents could learn to maintain vπ and qπ as parametrized
functions, with number of parameters much less than the number of states. As an example, a
linear function of state features could be used for this purpose, with parameters being the
weights of each feature. More generally, the function could be computed by a deep neural
network, with parameters being the connection weights of the network.
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In the following, we review the methods that estimate the value function without any
model of the environment, namely the model-free prediction, which forms the basis of the
RL algorithms provided later in Section 2.5.3.

Model-free prediction

The simplest idea to estimate the value function is the so-called Monte Carlo (MC) learning.
MC estimates the expected return of a state by its empirical mean, that is, by averaging
the return over samples or experiences collected upon visiting that particular state through
multiple episodes. After each episode, the value function is updated to estimate the mean, in
an incremental fashion as

v(st)← v(st)+α(Rt− v(st)) (2.4)

(in the simplest case α = 1/N(st), where N(st) is the number of visits), thus moving the mean
estimate in the direction of error. As a limitation, MC works only with episodic problems,
and requires the agent to reach to the end of the episode to collect the actual return Rt before
making any updates.

An alternative method to MC learning is temporal-difference (TD) learning, which can
learn from incomplete episodes, with the concept of bootstrapping. Bootstrapping substitutes
the actual return with its existing estimate as:

vπ(s) = E[Rt |st = s] (from definition) (2.5)

= E[rt + γRt+1|st = s] (from Eq. 2.3) (2.6)

= E[rt + γvπ(st+1)|st = s]. (2.7)

Update of the value function with TD learning thus takes the form

v(st)← v(st)+α(rt+1 + γv(st+1)− v(st)), (2.8)

where rt+1 + γv(st+1) is called the TD target, and δt = rt+1 + γv(st+1)− v(st) is called
the TD error. With such updates, TD can learn online, i.e., step-by-step, as opposed to
episode-by-episode learning by MC. On the other hand, TD target is biased estimate of
vπ(st) as compared to actual return Rt used by MC, which is unbiased estimate of vπ(st).
Yet, TD target has much lower variance than the return, as it contains a single random
action-transition-reward tuple as compared to many random actions, transitions and rewards
in the return. The idea of TD learning could be generalized as n-step predictions, that is,
the estimate of the value function after n steps could be used to update the original value
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Fig. 2.16 Types of reinforcement learning algorithms (adapted from [170]).

function as

v(st)← v(st)+α(R(n)
t − v(st)), (2.9)

where R(n)
t = rt+1 + γrt+2 + ...+ γn−1rt+n + γnv(st+n) is the n-step return. Given this

formulation, n-step methods span a spectrum with TD methods at one end with n = 1, and
MC methods at the other end with n = ∞.

2.5.3 Reinforcement Learning Algorithms

RL algorithms can be classified based on whether they have a value function that they
represent, whether they have a policy that they represent, or whether they have both, as
illustrated by the Venn diagram in Fig. 2.16 [170].

Value-based Methods

The agents that learn values of actions and select actions based on their estimated values are
called value-based agents. Given the estimated value function, the simplest action selection
rule is to select the action with the highest estimated value, that is the greedy action with
respect to the value function.

Greedy action selection exploits current knowledge to maximize immediate reward,
however does not try seemingly poor actions at all to see if they might really be better.
A simple alternative is to select a random action every once in a while, i.e., with small
probability ε . This allows the agent to randomly explore states that it might otherwise never
see. Methods using this near-greedy action selection rule are called ε-greedy methods. An
advantage of these methods is that, in the limit where the number of actions goes to infinity,
each action will be sampled infinitely number of times, thus ensuring the estimate q(s,a) to
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converge. However, such asymptotic property does not guarantee a practical effectiveness in
practice. The need to balance exploration vs exploitation arises as a distinctive challenge of
RL.

Value-based methods involving v(s) requires the model of the MDP, as one needs to
explicitly estimate the value of each action to suggest a policy. If the model is not known, then
the alternative would be to estimate action-values q(s,a) rather than state values, and make
the greedy policy improvement over them. The method that applies TD learning to estimate
q(s,a) is called SARSA, as an acronym for state-action-reward-state-action, indicating the
updates based on a transition from state-action pair to state-action pair as:

q(st ,at)← q(st ,at)+α(rt+1 + γq(st+1,at+1)−q(st ,at)). (2.10)

Another type of value-based RL method is Q-learning, which uses the following updates in
its simplest form:

q(st ,at)← q(st ,at)+α(rt+1 + γ max
a

q(st+1,a)−q(st ,at)). (2.11)

Q-learning is exactly like SARSA, except it does not follow the same policy it uses to select
actions when evaluating the target to update the value function, but considers an action choice
in a greedy fashion by simply taking the maximum value of q over it. Instead of using tabular
methods, the value function can be represented as q(s,a;w) using a function approximator
with a set of parameters w, such as a deep neural network. Function approximation is a
powerful, scalable way of generalizing from a state-space much larger than the memory
and computational resources. Deep Q-network (DQN) is such RL agent proposed in [171]
and [172], which yielded the impressive result of achieving beyond human-level control in
famous Atari video games.

While value-based methods are shown to learn super-human policies, they exhibit several
very important downsides, even on relatively simple tasks. First, the agent can only handle
discrete action spaces and is usually successful in small action spaces. Second, since policy
in value-based methods is deterministically (or ε-greedily) computed from the maximization
of the value function, it can not learn policies that can be stochastic, i.e., changing according
to some probability distribution. A typical example is the rock-paper-scissors game, where a
deterministic policy can be easily exploited, while a uniform random policy is optimal [170].
Third, in some problems, it could be more convenient to represent a policy than the value
function, where the value function is complicated to approximate whereas the policy could
be more compact.



2.5 Reinforcement Learning 61

To address these challenges, one could instead resort to policy-based methods. Policy-
based methods directly optimize the policy that governs the action selection instead of relying
on the value function. This idea constitutes the basis of policy gradient methods, which can:
i) learn specific probabilities for taking the actions, thus learn a stochastic policy; ii) learn
appropriate levels of exploration and approach deterministic policies asymptotically; and iii)
naturally handle continuous action spaces [164].

Policy Gradient Methods

Policy gradient methods learn a parameterized policy π(a|s,θ) = Pr{at = a|st = s,θt = θ}
that predicts the probability distribution of actions given a current state s, with parameters θ .
The action selection could be, for example, according to an exponential softmax distribution
over parameterized numerical preferences h(s,a,θ) formed for each state-action pair:

π(a|s,θ) = eh(s,a,θ)

∑b eh(s,b,θ)
, (2.12)

where the denominator normalizes the action probabilities in each state to sum to unity. The
action preferences themselves could be parametrized arbitrarily, such as using a deep neural
network, where θ is the vector of all connection weights of the network.

Policy parametrization with softmax in action preferences has the following advantages
as compared to ε-greedy action selection over action values as done by the value-based
methods. While there is always a non-zero (i.e., ε) probability of selecting a random action
in ε-greedy approach, approximate policies can approach a deterministic policy. Namely,
if the optimal policy is deterministic, then the selection probabilities of optimal actions
will be driven infinitely larger than the suboptimal actions. The second advantage is that,
parameterized policies with softmax in action preferences also enable selection of actions
with arbitrary probabilities. This allows action preferences to produce optimal stochastic
policy (if permitted by the parameterization) in case of problems where the best approximate
policy is non-deterministic (e.g., the rock-paper-scissors game).

In policy gradient methods, the RL agent aims at decreasing the probability of actions
that result in low reward, while increasing the probability of actions resulting in high reward.
The loss function of training policy gradient algorithms takes the form

−Rt lnPr{at = a|st = s,θt}, (2.13)

namely the log-likelihood of selecting an action given a state, multiplied by the return. The
updates to the policy parameters take the gradient descent that minimizes the loss function,
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hence the name policy gradient:

θt+1← θt +αRt∇ lnπ(at |st ,θt). (2.14)

The update increases the parameter vector in the direction proportional to the return, and
inversely proportional to the action selection probability. The former favors the actions that
yield the highest return, whereas the latter avoids the actions that are frequently selected to
be at an advantage.

Actor-Critic Methods: Learning Both Value Function and Policy

Note that the updates required for policy-gradient methods as in Eq. 2.14 would require
full return to be calculated for each time step by summing all future rewards until the end
of the episode. Thus, the learning procedure would be of Monte-Carlo type (the exact
policy-gradient algorithm is called REINFORCE, see [164]), which has the main drawbacks
of requiring full episodes to be completed and exhibiting high variance, thus leading to slow
learning, as discussed in Section 2.5.2. A more efficient variation would be to subtract a
baseline function from the return R to reduce the variance of gradient estimation without
changing its expected value, hence the direction of the descent. A good choice of a baseline
function is the estimate of the state value, v(st). In this case, the value function also needs
to be estimated, for which one can use the methods approximating the value function as
described in Section 2.5.2. The idea of combining the policy-based with value-based methods
finally bring us to the actor-critic methods.
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The proposition of using the value function estimate v in the policy gradient methods
can be generalized to use v for estimating the actual return as well. As in TD learning, the
estimated value can be used to construct one-step return rt+1 + γv(st+1,w), which is often
superior to the actual return in terms of its variance and computational ease, even though
introducing bias. Yet, the extent of the bias can be flexibly modulated with n-step returns.
The estimated value can this way assess the action selection as in policy evaluation methods.
When the state-value function is used to assess actions in this way, it is called a critic and the
policy is called an actor, and the overall policy-gradient method is termed an actor–critic
method.

Considering the one-step case, actor-critic methods replace the full return in Eq. 2.14
with the one-step return, besides using the learned state-value function as the baseline:

θt+1← θt +α[rt+1 + γv(st+1,w)− v(st ,w)]∇ lnπ{at |st ,θt}. (2.15)

Thus, the TD error [rt+1+γv(st+1,w)−v(st ,w)] is used to scale the policy gradient. This
term is also called as advantage, as it indicates how much additional reward can selecting
an action at a particular state bring, as compared to value of being in that particular state in
general. This common variant of actor-critic methods is also called as advantage actor-critic
methods. The natural method to learn state-value-function to be combined with the updates
in Eq. 2.15 is one-step TD.

In general, the actor-critic agent learns two sets of parameters by the critic and the actor,
as illustrated in Fig. 2.17. The critic updates the value function parameters w using any
policy evaluation method, such as TD learning, and evaluates the actions taken by the actor,
also using the same TD target. The actor takes the actions, and updates the policy parameters
θ in the direction suggested by the critic, using any policy gradient method.

Actor-Critic for Continuing Problems

RL agents often deal with environments with continuing problems, for which the interaction
between agent and environment goes on without terminating or start states, i.e., without any
episodes. In such problems, episodic return formulation in Eq. 2.1 becomes infeasible as T
and R would go to infinity. Instead, an average reward setting is considered for continuing
problems [164]. In the average-reward setting, the quality of a policy π is defined as the
average reward r(π), while following that policy:

r(π) = lim
h→∞

1
h

h

∑
t=1

E[rt |s0,a0:t−1 ∼ π] (2.16)
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Returns in the average-reward setting are defined in terms of differences between rewards
and the average reward:

Rt = rt+1− r(π)+ rt+2− r(π)+ rt+3− r(π)+ . . . (2.17)

also known as the differential return. Similarly, TD errors are expressed in differential form
as:

δt = rt+1− r̄t + v(st+1,wt)− v(st ,wt) (2.18)

where r̄t is an estimate of the average reward r(π) at time t. With the use of average reward
setting, the discounted reward formulation introduced in Eq. 2.2 also becomes unnecessary,
since the average of the discounted returns is always r(π)/(1− γ), which is essentially equal
to the average reward (cf. Section 10.4, [164] for the proof).

Algorithm 1 gives the complete pseudo code for the one-step actor–critic for the con-
tinuing case, where the critic updates w by TD learning, and the actor updates θ by policy
gradient using the TD error [164].

Algorithm 1 One-Step Actor-Critic for Continuing Problems [164]
1: Initialize policy parameters θ and state-value weights w arbitrarily
2: Initialize r̄, e.g., to 0
3: Initialize s
4: loop until convergence
5: Take action a∼ π(·|s,θ), observe s′, r
6: Calculate TD error, δ ← r− r̄+ v(s′,w)− v(s,w)
7: Update estimate of the average reward, r̄← r̄+βδ

8: Update weights, w← w+αδ∇v(s,w)
9: Update parameters, θ ← θ +αδ∇ lnπ{a|s,θt}

10: s← s′

11: end loop
12: return θ ,w

Asynchronous Advantage Actor-Critic (A3C): Training Multiple Actors in Parallel

The actor-critic algorithm has the drawback that the agent only observes a certain region
of state space at a time, which can improve its policy in that region, while performing sub-
optimally in other regions of the state space. Besides, since the agent updates its parameters
and weights based on consecutive states and actions, the updates are correlated, which contain
similar states and actions, thus, again limiting the generalization capability of the agent.
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As a solution, the authors in [173] have developed a new paradigm for deep learning. In
this approach, multiple learners are executed on multiple instances of the environment in a
parallel, asynchronous manner. The parallelism allows the learners’ data to be uncorrelated,
as they experience a variety of different states at any given time, exploring different regions
of the state space. In addition to stabilizing learning, using multiple parallel learners reduces
the training time roughly linear in the number of parallel learners. This simple yet effective
idea is applicable to a large set of fundamental RL algorithms, enabling a robust usage of
deep neural networks. The actor-critic variant, called Asynchronous Advantage Actor-Critic
(A3C), is shown to significantly outperform the other asynchronous versions of the standard
RL algorithms on a variety of different tasks [173]. In A3C, multiple parallel actors collect
experience from their own environment asynchronously, and update the parameters of a
global policy and a value function that is shared by all parallel actors, as illustrated in
Fig. 2.18. A3C also generalizes the one-step actor-critic algorithm with the idea of n-step
bootstrapping, due to its benefits in terms of reducing the bias in learning as explained
in Section 2.5.2. Algorithm 2 presents the pseudocode of the A3C algorithm from the
actor-learner’s perspective [173].

2.6 Reinforcement Learning in Resource Allocation for Ve-
hicular Communications

RL has recently attracted the area of wireless communications. Despite being recent, it has
found a wide range of applications, particularly targeting the recent and next generation
of wireless networks including Internet of Things (IoT) [227], heterogeneous networks
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Algorithm 2 A3C (per actor-learner) [173]
1: Initialize global shared policy parameters θ and state-value weights w
2: Initialize actor-learner-specific parameters θ ′ and weights w′, and counter t = 1
3: loop until convergence
4: Reset gradients, dθ ← 0 and dw← 0
5: Synchronize actor-learner-specific parameters, θ ′← θ and w′← w
6: tstart ← t
7: Initialize first state s
8: loop until terminal state or for tmax steps
9: Take action a∼ π(·|s,θ ′), observe s′, r

10: t← t +1
11: end loop

12: R =

{︄
0 if terminal state
v(st ,w′) else (bootstrap from last state)

13: for i ∈ {t−1, . . . , tstart} do
14: Calculate n-step return, R← ri + γR
15: Accumulate gradients wrt. w′, dw← dw+∂ (R− v(si,w′))2/∂w′

16: Accumulate gradients wrt. θ ′, dθ ← dθ +(R− v(si,w′))∇ lnπ{ai|si,θ
′}

17: end for
18: Perform asynchronous update of θ and w using dθ and dw, respectively.
19: end loop

Table 2.2 Overview of works applying RL to resource allocation for V2X communications
(derived from [24], [175], [176], [177], [178], [179], [180], and their references).

Problem RL Method and References Objective

Optimization
of underlay

V2V and V2N

DQN: [181], [182], [183], [184], [185],
[186], [187] DDPG: [188]

Minimizing interference to V2N links while meeting the
latency constraints of V2V messages

ACRL: [189] DQN: [190], [191] DDPG: [192] Jointly optimizing mode selection and resource allocation
DQN: [193], [194], [195] Reducing channel state information-related signaling overhead

V2V channel
allocation

DQN: [196] Reducing queueing delay or transmit power
DQN: [197] Minimizing age of information

V2V collision
management

Q-learning: [198], [199], [200], [201]
DQN: [202]

Optimizing contention window size selection

DQN: [203] Optimizing cognitive radio channel selection

V2N uplink/
downlink

scheduling

Q-learning: [204], [205], [206]
DQN: [207], [208]

Maximizing number of vehicle download requests on DL

Q-learning: [209] DQN: [210] Optimizing UL/DL frame ratio
Q-learning: [211], [212] DDPG: [213] Optimizing DL beamforming

User association,
load balancing,
vertical handoff

Q-learning: [214] Optimizing spectrum sharing between cellular V2N and Wi-Fi
Q-learning: [215] Optimizing mobility management between RSUs and BSs
Q-learning: [216] Optimizing load balancing across macro, pico, femto cells
A3C: [217] Vehicle-cell association for maximizing sum rate

Vehicular cloud
optimization

PI: [218] DQN: [219], [220], [221], [222]
A2C: [223] A3C: [224] BE: [225] SAC: [226]

Joint optimization of networking, caching, and computing
resources
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(HetNets) [228], unmanned aerial vehicle (UAV) networks [229], and satellite communica-
tions [230]. When combined with deep learning, RL has been shown to be an effective tool to
address various problems and challenges of communication across different network layers,
including network access, resource management, routing, traffic balancing, and security.
Application of deep RL to wireless communications and networking are surveyed by several
works such as [175], [176], and their references.

The application of RL in vehicular networks is also in its nascent phase. An overview
of applying ML techniques to the challenges of vehicular networks is presented in [231]
and [232], where the authors put a special emphasis on applying RL in particular for network
resource management. The authors point out that the highly dynamic nature of vehicular
networks challenges the conventional methods for resource management. Traditional methods
typically formulate an optimization problem and solve it optimally or suboptimally depending
on the complexity-performance trade-off. As the network topology and channel quality in
vehicular networks vary continuously, such a conventional approach potentially needs to be
rerun every time a minor change occurs, hence yielding huge overhead. Instead, RL could be
an alternative effective solution, which interacts with, and adapts its actions to the unknown
environment. Besides, RL natively supports the sequential decision-making encountered in
the resource allocation problems [233].

In the rest of this section, we review the literature on works applying RL for the resource
allocation problem in vehicular communications. As summarized in Table 2.2, we have
categorized the works with respect to different problems they address and the RL method
they utilize. The related surveys can be found in [24], [177], [178], [179], and [180]. We
finalize the section by providing a summary and our general remarks on applying RL to our
problem.

Optimization of Underlay V2V and V2N Communications

The majority of works applying RL to the resource allocation problem in V2X networks
aims at optimizing an underlay operation of V2V and V2N links, considering decentralized
schemes. In the considered problem, vehicles make resource selection based on local
observations, which are independent of V2N communications that take place between the
vehicles and a base station. With the assumption that orthogonal resources are allocated
for V2N links beforehand, the objective is to minimize interference to V2N links while
meeting the latency constraints of V2V messages. A common approach to the problem in
the related works is to model it as a multi-agent RL task, where each vehicle is regarded
as an agent, making its own decisions on resource allocation. In [181] and [182], authors
consider scenarios with broadcast and unicast V2V messages, respectively, and combining
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both in [183]. In the proposed method, vehicles select a sub-channel and a power level for
their V2V transmissions, based on their local observation (state) of the environment. The
state information characterizing the environment is defined as the instantaneous channel
information of the V2V link and V2N link, the interference level and selected sub-channels
of neighbors in the previous time slot, the remaining amount of traffic of the transmitting
vehicle, and the remaining time to meet the latency constraints. In the broadcast scenario, the
number of times that the V2V message has been received by the vehicle and the distance
to the vehicles that have broadcast are additionally considered in defining the state. The
performance evaluations show better V2N link capacity and a larger ratio of satisfied V2V
links when compared to random resource allocation and the clustering-based heuristic scheme
in [147] that utilizes the position information of vehicles. The proposed scheme in [184]
further considers a per-packet-priority metric for the same objective.

In the above-mentioned works, DQN-based RL methods are utilized, and it is assumed
that a single deep neural network is shared across all vehicles for their actions. A performance
gain with respect to [183] is shown by the same authors in [185] and [186], as well as in [187]
when each vehicle has its own DQN for the resource allocation purpose, trained independently.
Also in [188], each vehicle, as an agent, explores the environment in a distributed fashion
and makes strategy decisions based on its own observations. Authors further consider
non-orthogonal multiple access (NOMA) technology to reuse the V2N spectrum for V2V
communications and deem the transmission power to be allocated as a continuous variable,
and employ a deep deterministic policy gradient (DDPG) algorithm to handle such action
space.

Several works consider further enhancements to the distributed learning setting targeting
better joint optimization of V2V and V2N links. Authors in [189] address the problem of
joint resource allocation and mode selection between cellular V2N and V2V links, using
an actor-critic RL (ACRL) algorithm instead of Q-learning based approach common to the
above-mentioned works. The proposed method further considers vehicular users with poor
learning performance to transfer learning from expert users to enhance learning efficiency and
convergence speed. In [190], authors utilize a multi-agent double deep Q-learning (DDQN)
algorithm to tackle the same problem. The study in [191] additionally considers resource
sharing between V2V pairs in different modes for the same problem, while tackling it with
a federated learning setting considering limited local training data at vehicles. Another
study [192] considers a different use case involving multiple platoons where platoon leads
(PLs) attempt to access the frequency spectrum aiming at disseminating the V2V messages
between their followers while keeping an updated connection with the RSU. The objective is
to minimize the age of information (AoI) at the RSU, which is defined as the amount of time
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elapsed since the most recent information update available from a corresponding platoon.
The spectrum access is modeled as a multi-agent RL problem, where the state observed by
the PL contains the CSI of the V2V and V2N channels, previous interference from other
platoons to PL, the AoI of PL, the remaining intra-platoon payload, and the remaining time
budget. The action of each PL consists of the subchannel selection and mode selection of
PL, and the power control, determined by a twin delayed deep deterministic policy gradient
(TD3) algorithm. The gains are shown with respect to a simpler DDPG algorithm in terms of
intra-platoon data rate, average AoI, and V2V message transmission probability.

As a drawback, all of the proposed schemes above require instantaneous CSI of the
links, as well as a high amount of information exchange between the vehicles at each step of
resource allocation. To cope with this problem, authors in [193] propose a distributed learning-
based CSI compression scheme and a centralized decision-making architecture to maximize
the sum rate of all V2V links. The same objective of reducing the signaling overhead while
jointly optimizing the V2V and V2N links is also tackled with a centralized approach in [194].
The proposed scheme is based on clustering of base stations and vehicles, and a DQN-based
RL technique for resource allocation. Authors in [195] consider fast-varying channels due to
vehicle mobility, and exploit recent advances in recurrent neural network (RNN) to tackle this
issue without relying on CSI information. Instead, the observation space consists of sensed
channel interference measurements, as well as remaining payload size and time budget. Based
on this, the vehicular agent decides its own selection of sub-channel and transmission power
level to maximize the sum throughput of V2N links while meeting the latency and reliability
requirements of V2V links. The developed algorithm shows comparable performance with a
CSI-involved version, as well as the NR V2V resource allocation mode 2.

V2V Channel Allocation

Several works consider V2V communication without underlay operation in the V2N bands.
Authors in [196] propose a channel allocation scheme with the aim of striking a tradeoff
between the queuing delay and the transmit power consumption of vehicles. In the proposed
scheme, RSU clusters the vehicle pairs into disjoint groups based on their geographical
locations, and makes channel allocation based on the vehicles’ local state indicating their
channel quality, position information, and queue status. The authors decompose the single-
agent problem into a decentralized SARSA algorithm with vehicle pairs as agents. In order
to tackle the partial observability and the curse of high dimensionality in the local state-
space faced by each vehicle pair, the authors propose LSTM (long short-term memory) and
DQN-based techniques. In [197], the same authors target the problem of minimizing the
AoI metric in V2V communications. The RSU is proposed to make decisions on frequency
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band allocation and packet scheduling within an MDP framework using the geographical
locations, CSI, packet arrivals, and AoI of transmissions between each vehicular pair as the
state information input to a DQN with LSTM layer.

V2V Collision Management

Another line of works proposes contention-based MAC protocols using RL to tackle the
challenges of distributed resource allocation in VANETs. In [198], authors come up with a
Q-learning based algorithm for unicast V2V traffic, which dynamically adjusts the contention
window (CW) size at each vehicle to avoid packet collisions using position information,
without relying on RTS/CTS to solve the hidden node problem. The proposed scheme is
shown to provide a significantly higher packet delivery ratio, lower end-to-end delay, and
higher fairness than the original IEEE 802.11p scheme (with/without RTS/CTS, for different
CW sizes). Authors in [199] extend the problem to broadcast V2V communications, utilizing
again a Q-learning-based algorithm that takes binary feedback (ACK/NACK) as the reward.
Evaluations show an increase in packet delivery ratio of V2V broadcast transmissions by
37.5% as compared to IEEE 802.11p under high-density traffic. The same authors improve
their method by utilizing a different reward function to trade throughput and fairness of
users for lowering transmission latency or the opposite, in [200]. Authors in [202] propose
using state representation that includes CW values received from neighboring vehicles,
corresponding success rates, and frequency values to adjust the CW of the ego vehicle. The
setting is also extended to multi-channel operation of DSRC standard. Proposed algorithm
shows 21% improvement of packet delivery ratio when compared to a simpler algorithm
utilizing only ego-CW information for the state representation, however, requiring additional
information exchange between the vehicles to establish richer state information. Contrary to
the above-mentioned works that increase or decrease the CW exponentially, authors in [201]
propose linear adjustment of CW using Q-learning that takes the current CW size, last
transmission status, the queue size, and the estimated number of neighboring vehicles as state
information. The gain is shown in terms reduced rate of failed transmissions as compared
to conventional exponential back-off in IEEE 802.11p. In [203], authors consider cognitive
radio (CR) operation, where RSUs periodically sense the channels with regards to their
occupancy probability to get information about cognitive channel availability. RSU selects
the optimal CR channel after the processing of the sensed data, and provides this to the
vehicles upon request. Marginal gains have been shown in terms of average delay and packet
delivery ratio as compared to existing CR protocols.
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V2N Uplink/Downlink Scheduling

Several other works focus on centralized managing of the resources by applying RL to
schedule downlink V2N links. Authors in [204] target maximizing the number of vehicle
download requests with an MDP framework using discretized states to establish an optimal
RSU scheduling policy. The same authors incorporate the objective of energy consumption
of the RSU in [207], and extend the problem to multiple RSUs in [208]. With the aim of
serving the vehicles on downlink with minimized waiting time for safety messages, the
authors consider a continuous state space and handle this by employing a DQN. In [205],
the authors propose a Q-learning algorithm to find a policy that minimizes the number of
services requested by vehicles that fail to meet deadlines. Authors in [206] further utilize
V2V links to cooperatively relay the downlink data within a cluster of vehicles, with the aid
of RL-based scheduling. The study in [209] proposes a Q-learning scheme for BS to choose
the UL/DL ratio of time slots in the same frequency band. By considering the predicted future
network situation, the scheme is shown to outperform a conventional policy in throughput.
The same authors extend the problem to heterogeneous networks involving macro and small
cells and different users in terms of mobility (vehicles, VRUs, and UAVs) in [210]. In this
study, network performance is improved by considering states of historical time sequence as
well as incorporating deep belief neural network to their Q-learning algorithm. The authors
in [211] consider the concept of virtual cell formation to serve a user from multiple RSUs
simultaneously. They evaluate the impact of various RL-based approaches to the problem of
user-RSU association and determine downlink beamforming weights based on CSI. The same
authors further integrate the minimization of energy consumption to the problem in [212].
Authors in [213] aim at reducing the average packet delivery latency between BS and
vehicles in an intersection scenario by adjusting the downlink beam directions considering a
MIMO system. The proposed algorithm based on DDPG can achieve optimal average delay
performance as compared to traditional methods, especially under non-stationary channels,
where vehicles travel at high and time-varying speeds.

User Association, Load Balancing, Vertical Handoff

Authors in [214] target the problem of sharing of unlicensed spectrum by cellular V2N
communications and Wi-Fi users. Based on the proposed Q-learning scheme taking the
system state as input, the base station adjusts the duty cycle of the unlicensed channel,
which is shown to enhance overall communication capacity and ensure fair co-existence
between the two technologies. On the other hand, a vertical handover control between
cellular V2N and 802.11p V2I links is treated by a fuzzy Q-learning algorithm in [215]



72 Background and Related Work

to ensure seamless mobility management of vehicular users between RSUs and cellular
base stations deployed along the road. In the proposed scheme, RSUs, as learning agents,
take various information reported by vehicles into account, which includes average received
signal strength level, vehicle velocity, and data type, and also consider the traffic load to
make handoff decisions. Along this line, [216] proposes an RL-based algorithm to associate
vehicular users to heterogeneous base stations of macro, pico, femto types for the purpose
of balancing the network load among them, based on the information of traffic load and
received strength of the pilot signal by the vehicles. In [217], authors consider vehicle-cell
association in mmWave communication networks to maximize the network-wide sum rate
while guaranteeing a minimum threshold service rate for all vehicles. In the proposed
distributed RL method, every RSU operates as a local A3C agent that associates users based
on the channel observations, experienced rate of vehicles, threshold violation, and the reward
function capturing the optimization problem.

Vehicular Cloud Optimization

Some works use RL to manage resources in V2X networks not only for communication but
also for computation, storage, etc. in a joint manner, targeting various objectives such as the
revenue of network operators per vehicle. The vehicular cloud, which consists of various
OBUs, RSUs, and remote cloud servers, brings the concept of different types of resources
together. The aim is to provide a pool of processing, sensing, storage, and communication
resources that can be dynamically provisioned for vehicular services [234]. The analysis
in [218] highlights the drawbacks of traditional approaches to manage the configuration
of such resources. Instead, the benefits of an MDP-based approach using policy iteration
(PI) are shown considering virtual machines that serve ITS services, which have abstracted
resources for processing, sensing, storage, and communication. In [219], networking, caching,
and computing for vehicular networks are considered jointly, where vehicles offload their
computation tasks to the virtual resources. The proposed Q-learning algorithm optimizes
the selection of base stations with the best channel quality. The sum data rates of V2N
links are constrained by their backhaul capacity. The same authors improve their method by
utilizing CNNs and combining techniques of double and dueling deep Q-networks in [220]
and [221], respectively. They generalize their framework to smart city applications in [222].
These works, however, assume fixed statistics of the variation in resources such as wireless
communication channels and computing capabilities. The authors in [223] handle the same
problem in environments with variations involving diverse scenarios. They tackled this by
combining hierarchical RL with meta-learning and adapting the A2C algorithm (advantage
actor-critic, the synchronous variant of the A3C algorithm). Authors in [224] employ the
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A3C algorithm to determine which base station to assign to the vehicle, and whether the
computation task should be offloaded to the edge server. The decisions are made based on the
computation capability and communication link capacity of each base station. The proposed
method in [225] targets delay-optimal resource allocation for V2N links between software-
defined virtual BSs and vehicles, using Bellman equations (BE). The scheme operates at two
stages taking large timescale factors (traffic density), and short timescale factors (perfect CSI
and queue state information knowledge per vehicle) measured by base stations, respectively.
Different from the above-mentioned works, authors in [226] take into account the diversity
and difference of services in vehicular networks with respect to their QoS requirements, and
further consider two modes (V2N and V2V) for content delivery. The proposed approach
utilizes proximal policy optimization (PPO) and soft actor-critic (SAC) algorithms to reduce
the action space dimension.

Summary and Remarks

In summary, RL has found successful applications in vehicular networks for resource allo-
cation tasks, majorly in terms of optimizing the coexistence of V2V links with V2I links
or different access technologies, as well as orchestrating network resources jointly for com-
puting, storage, and communication. The majority of the works have applied value-based
RL methods, including Q-learning for problems with relatively small state spaces, and DQN
or its variants such as DDQN for large state spaces. The remaining of the works consider
actor-critic-based RL methods such as A3C, SAC, or DDPG to handle the continuous action
space in their problems.

Up to our best knowledge, there is no specific RL-based solution targeting the resource
allocation problem for V2V communications under intermittent network coverage. Besides,
the state information required by the proposed RL-based resource allocation methods in
the literature often demands instantaneous and detailed knowledge of the communication
channels. Collecting such information by vehicles becomes infeasible due to highly dynamic
V2V links, especially when broadcast or multicast communications considered. Further,
in the case of centralized coordination of resources that we consider in approach, usage of
such collected information may not be possible under intermittent connectivity between the
vehicles and the coordinating entity.

In our solutions, we have decided to employ an actor-critic RL method, namely the
state-of-the-art A3C algorithm described in Section 2.5.3, due to several reasons. First,
despite the popularity of value-based methods, such as DQN, actor-critic methods have
theoretical advantages over them, as well as over policy-based methods. Notably, actor-critic
methods exhibit lower variance and faster learning, as we described in Section 2.5.3. Next,
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as we elaborate in the following chapters, our problem setting bears an environment that
is difficult to model as an MDP, and the state space we consider is continuous and huge.
Therefore, applying traditional or tabular RL methods, e.g., dynamic programming or Q-
learning, becomes infeasible, calling for function approximation techniques such as deep
learning. When combined with deep learning, A3C has been shown to deliver superior
performance over other prominent RL algorithms including DQN [173]. In Chapter 5, we
extend the basic A3C algorithm presented in Section 2.5.3 to make it applicable to continuous
tasks (as opposed to episodic ones), which we encounter in our problem setting.



Chapter 3

System Model and Simulation
Environment

This chapter first presents a precise description of our system model, namely the vehicular
network environment, and our assumptions to study the proposed methods in this thesis,
in Section 3.1. Section 3.2 defines the metrics we utilize to evaluate the performance
of the proposed algorithms. In our evaluations, we have mainly adopted simulation as a
research tool. Simulations offer a more viable, flexible, and cost-effective approach, in a
more controlled and safer environment as compared to experimenting with real vehicles
and wireless networks, which is also taken by the majority of research work on vehicular
networks [235]. Section 3.3 describes the simulation environment we have developed to
conduct performance evaluations, where we have combined widely-utilized simulation tools
and extended with necessary functionalities to support the considered system model.

3.1 Vehicular Network Environment Model

3.1.1 Data Traffic

We consider a vehicular network where vehicles transmit and receive single-hop V2V
messages via direct communication. Message traffic is assumed to be of two types: periodic
and event-triggered (i.e., aperiodic). A typical example of periodic traffic is the regular
broadcast of vehicle information such as position and speed, as in cooperative awareness
messages (CAMs) [18], whereas aperiodic traffic is triggered on events to warn vehicles
such as of an accident, as in the case of decentralized environmental notification messages
(DENMs) [19], as introduced in Section 2.1.
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In line with the 3GPP evaluation assumptions [236] and studies in the literature [237], [238],
we model1 the first type of traffic with messages of fixed size Sm and periodicity Tm, and the
second type of traffic by a generation of a single message of size Sm upon random events,
whose arrivals, assuming statistical independence of such events from each other, follow a
Poisson distribution. The Poisson model is a widely-used and acknowledged method for
characterizing discrete uncommon events like car accidents [239].

In our evaluations, we primarily consider broadcast type of messages, which are one-to-
many transmissions sent from a single vehicle to all other vehicles around, as it constitutes
the major part of V2V use cases, enabling situational awareness. Nevertheless, we further
consider unicast messages, of periodic type, which are one-to-one transmissions sent from a
single vehicle to another specific one, in our evaluations in Chapter 4.

3.1.2 Cellular Network Connectivity

We consider an area comprising a two-way highway segment as shown in Fig. 3.1, with J
lanes per direction. Along the road, a cellular network is deployed where vehicles can connect
to base stations (BSs). While under the BS coverage, vehicles transmit their V2V messages
using the radio resources scheduled by a centralized entity. As discussed in Section 2.3.3,
such scheduling entity is deployed at the edge of the cellular network, with access to the
BSs. Via BSs, vehicles communicate with the scheduler by signaling the control information
required for the resource allocation.

With regards to connectivity between the vehicles and the BSs (hence the scheduler2),
we distinguish between two main settings:

(i) V2V communications in an area where no communication between the vehicles and
the BSs is possible at all. As discussed in Section 2.4.1, such area can be a road tunnel.
We consider a road section outside the coverage of BSs located at its two ends, i.e.,
delimiting it, as illustrated in Fig. 3.1. Thus, we call this area as delimited out-of-
coverage area (DOCA). DOCA is assumed to be of length LDOCA. BSs deployed at
each end of DOCA are able to serve the vehicles just before (after) they enter (exit)
DOCA. We assume that the existence of DOCA, as well as its location, length, etc. are

1According to the ETSI specifications [18], [19], while periodic by default, the periodicity of CAM
transmissions can be adjusted depending on vehicular mobility and traffic load, and DENM transmissions might
contain bursts of several periodic messages. We evaluate the impact of the different modes of traffic separately,
by following previous research work (e.g., [80], [117]) and applying the traffic models proposed in 3GPP [236].
This approach makes the analysis easier and enables us to generalize our results to any type of V2V traffic
beyond the CAM and DENM applications.

2We assume no loss of communication between the BSs and the scheduling entity.
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Fig. 3.1 Vehicular network environment containing a delimited out-of-coverage area (DOCA).
In coverage, vehicles send scheduling request (SR) to the centralized scheduling entity via
base station (BS) to request resources for their V2V transmissions. In turn, vehicles are
informed about the allocated resources via scheduling assignment (SA).

known to the network operator, such as via map data. DOCA is the main setting we
consider in our evaluations throughout Chapters 4-7.

(ii) V2V communications under the coverage of the BSs, however communication between
the BS and vehicles experiencing unexpected interruptions due to path loss and fading
characteristics of the environment3. Compared to DOCA, this type of coverage losses
are much shorter, local, and also unpredictable. We consider this setting in our
evaluations in Chapter 8, also in combination with the first setting.

Communication between the vehicles and the BSs takes place over the uplink (UL) and
downlink (DL) that use resources different than the ones used for V2V communication.
Assuming a frequency division duplex (FDD) operation, UL and DL are both assumed
to occupy a 10 MHz of bandwidth, centered at 2.1 GHz, utilizing COST-Hata channel
model [240]. Vehicles and BSs are assumed to transmit with fixed-power on UL and
DL, respectively, with omni-directional antennas. We utilize the error model for the links
introduced in the ns-3 LTE LENA project, which provides an accurate and lightweight
abstraction of the errors [241]. This error model accounts for the intermittent connectivity
mentioned above, namely the loss of the control messages between the BSs and the vehicles
that are used to schedule V2V messages.

3Note that we exclude the possibility of an external interference (e.g., due to an attacker or resulting from
adjacent frequency bands) similarly blocking the communications, which we mentioned in Section 2.4.1.
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Fig. 3.2 Radio resources and the resource pool configured for V2V communications.

3.1.3 V2V Communication Resources

For V2V communications, we consider a dedicated frequency band of 10 MHz bandwidth at a
carrier frequency of 5.9 GHz, namely the ITS band introduced in Section 2.1, hence separate
from the bands used for UL/DL communications. In line with the 3GPP specifications [12],
V2V communication takes place in a dedicated resource pool configured by the cellular
network operator within this band. We denote the pool configuration by CK×M, where K
is the number of subchannels and M is the number of slots that the pool contains, over the
frequency and time domains, respectively, repeating over time with fixed periodicity T p.
Following the 3GPP assumptions [236], a transmission of a single V2V message occupies a
single time-frequency resource ri ∈CK×M, which is referred to as a transmission block (TB).
A TB consists of a single time slot and a single frequency subchannel containing sufficient
number of resource blocks (RBs) to carry the message, given the message size Sm and the
employed modulation and coding scheme (MCS). The considered pool, thus, contains a total
of R = K×M TBs, or simply referred to as resources.

As shown in Fig. 3.1, when served by BSs, vehicles can send scheduling request (SR)
to the scheduling entity to request resources for their V2V transmissions, which contains
information about their V2V traffic, such as Sm and T m. In turn, vehicles are informed about
the scheduling decision by the scheduling assignments (SAs) sent via BSs. In line with the
3GPP standard, the SA indicates which time-frequency resource to use for transmitting their
V2V message in the next available instance of the resource pool. We assume that vehicles
are synchronized with each other as well as with the BSs, without consideration of any
synchronization errors. To help making the scheduling decisions, the scheduling entity can
request vehicles or BSs to report information regarding the mobility of vehicles, such as their
location, speed, etc.
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3.1.4 V2V Radio Propagation and Interference Model

Vehicles are assumed to have fixed transmission power PTx to transmit their V2V messages.
Transmitted V2V messages are subject to path loss and fading effects of the wireless channel,
besides the interference from any other transmission using the same resource. Successful
reception of a packet depends on the signal-to-interference-plus-noise ratio (SINR) at the
receiver. The SINR of a single transmission at receiver j from transmitter i is:

SINRi j =
PTx|hi j|2

σ2 +∑
L
l=1,l ̸=i PTx|hl j|2

, (3.1)

where PTx is the transmit power of the transmitter, and |hi j|2 denotes the channel coefficient
between the transmitter i and the receiver j, which accounts for the path loss and fading effects
of the wireless channel on the transmitted signal. σ2 is the noise power, and the summation
term in the denominator denotes the interference due to the other vehicles l = 1, ...,L using
the same TB as i. The SINR depends on the interference level of the other transmissions
using the same TB, under the path loss and fading effects of the propagation channel. V2V
channel model is assumed to consist of realistic path loss with shadowing fading according
to WINNER+ B1 model [242].

To evaluate whether a received packet can be successfully decoded or not, we use the
model developed by the US National Institute of Standards and Technology (NIST) [243],
which maps the SINR at the receiver to transport block error rate (TBLER) for the cor-
responding received packet, given the utilized MCS. Vehicles are further assumed to be
equipped with half-duplex (HD) radios for V2V communications, that is, they can either
transmit or receive, but can not do both at a given time slot [244]. We therefore distinguish
the following types of errors in reception of V2V messages:

• HD error: Vehicles transmitting at the same time are not able to receive each other’s
message (e.g., resources r1 and r5 sharing the same slot in Fig. 3.2). We refer to
unsuccessful reception of messages due to HD limitation as HD error or conflict,
and the relation among the TBs in the same slot causing this phenomenon, as HD
constraint.

• Collision error: Messages transmitted by different vehicles using the same resource,
i.e., the same slot and the same subchannel, may, depending on the propagation
conditions, interfere and lead to decoding errors at the receiver, which we refer to as
collision errors.
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• Propagation error: Further, unsuccessful receptions could also result from the channel
effects, e.g., due to path loss and shadowing that considerably reduce the received
SINR (or SNR), which we refer to as propagation errors.

3.1.5 Vehicular Mobility

For the vehicular mobility, we utilize the realistic Krauss car-following model [245] combined
with the lane-changing model [246] implemented by the mobility simulator SUMO [247],
which is a popular tool widely used in the vehicular community. The models take several
factors into account, such as the desired velocity, following distance, number of lanes,
etc., which lead to realistic simulation of mobility conditions, including a stochastic driver
behavior. Vehicle arrivals into the considered section of the highway follow a Poisson
distribution, which is shown to satisfactorily approximate the free-flowing traffic and has
found well-established applications in modeling vehicular mobility (cf. [248], [249], and
their references). In the utilized models, vehicles adhere to the maximum speed set for the
highway, where a speed value is selected once for each vehicle entering the area from a
normal distribution N (µ,σ2). By varying the mean µ and the standard deviation σ of this
distribution, we adjust the vehicle density and dynamicity in the considered area as desired.

3.1.6 Training Environment

For training the RL models proposed in Chapters 5-8 before their deployment, we utilize a
simpler model of the environment, in terms of mobility and radio propagation. As we discuss
in the respective chapters, such a simplified environment model enables a computationally
efficient, hence faster way of training the RL agent, which we also used for prototyping
and developing our RL algorithms. We also utilize this model in Chapter 4, where our
evaluations focus on feasibility analysis, neglecting the intricate impacts of the wireless
channel and vehicular mobility. In this model, vehicles travel at constant speeds, randomly
selected from a normal distribution. To account for a realistic distribution of inter-vehicle
gaps, vehicles are initially distributed uniformly random on the considered road section, yet
they are assumed to return back from the opposite direction with an exponentially distributed
time offset upon leaving the area. Radio propagation in the environment is abstracted with
the protocol model [250], assuming fixed circular V2V transmission ranges of RTx m. With
this model, unsuccessful receptions are assumed to result from any transmission whose range
intersects with another one using the same resource, at the receiver, besides the errors due to
HD radio operation.
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Fig. 3.3 Illustration of packet reception ratio (PRR) calculation.

3.2 Key Evaluation Metrics

As introduced in Chapter 1, ITS use cases have stringent QoS requirements, most prominently
in terms of reliability of V2V communications and awareness of vehicular users. Our
objective is to provide methods enabling more efficient utilization of radio resources to
support V2V communications. We translate such requirements into the following measurable
key performance indicators to evaluate our proposed methods in the following chapters.

• Packet reception ratio: We quantify the reliability of V2V transmissions with packet
reception ratio (PRR), which is a metric specified by the 3GPP standard [236]. For a
single message transmitted from vehicle i, the PRR is calculated by Xi/Yi, where Yi

is the number of vehicles located within the range (a,b) from the transmitter, and Xi

is the number of vehicles with successful reception among Yi. A simple calculation
is illustrated in Fig. 3.3. In the case of unicast messages, this definition adapts Y = 1,
namely a single targeted receiver [251]. PRR for all vehicles in the environment
is then calculated for a series of messages consecutively transmitted by them in a
given time interval as (∑V

i=1 ∑
Ni
n=1 Xi,n)/(∑

V
i=1 ∑

Ni
n=1Yi,n) with Ni denoting the number

of generated messages by vehicle i, and V is the number of vehicles [236]. We measure
PRR for all vehicles in the environment every 10 s, for a total duration of 1000 s,
and show, for a certain transmitter-receiver range in meters, the mean, the median
with its 95% confidence interval, as well as the 1st, 25th, 75th, and 99th percentiles
of these measurements. We also compute PRR as a function of transmitter-receiver
distance, using 20-m bins. In this case, we show the mean and the standard deviation
as a function of distance for easier readability of the data.
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PRR indicates the quality of the link between the vehicles, yielding the effective or
reliable communication range, as well as the maximum communication distance [252].
The effective communication range is the maximum distance between the vehicles at
which PRR is equal to or larger than a given threshold (e.g., 80%). Whereas, maximum
communication range is the maximum distance where PRR is greater than zero. As
introduced in Section 2.2, reliability requirements of V2V applications greatly vary
with PRR values ranging between 80−99.999% at ranges of 20−1000 m depending
on the use case involving different scenarios (e.g., highway or urban) and vehicle
speeds [47], [253]. As a reference in our evaluations, we consider a target of 80% PRR
at 100 m as a baseline requirement, which is crucial in terms of avoiding imminent
crashes between the vehicles, taking the braking reaction time into account [254].

• Resource utilization: As introduced in Section 2.2, the vehicular communication
system needs to satisfy various reliability requirements specified in terms of PRR and
communication range, under varying traffic loads, such as impacted by the density
and velocity of the vehicles on the road and their V2V message generation rate,
all depending on the scenario and the use case(s) to be supported. The reliability
performance of a scheduler would highly get impacted by the V2V communication
traffic demand and the number of resources available to serve this traffic. Therefore,
to account for practical analysis, we evaluate the PRR performance of the algorithms
under different V2V data traffic loads. In particular, in Chapters 6 and 8, we go beyond
the baseline PRR requirement we consider, and consider PRR targets of 80%, 90%, and
95% for different numbers of available resources in the allocated resource pool (i.e., R).
From this data, we also derive the required amount of resources by the algorithms to
ensure PRR targets at different communication ranges (e.g., 100, 200, 400 m), which
are representative of different use cases introduced in Section 2.2.

Another resource utilization metric we consider relates to the usage of UL/DL resources
(i.e., different than V2V resources), which are used for control signaling between the
vehicle and the BS (used to access the scheduling entity) for resource allocation
purposes. In the in-coverage setting we consider in Chapter 8, V2V messages are
dynamically scheduled as opposed to one-time scheduling assignment per vehicle in the
case of a DOCA. Therefore, for this setting, it is desirable to achieve the required V2V
reliability with minimum control signaling overhead, hence consuming fewer resources.
We therefore further evaluate the impact of the scheduling update rate, namely the
frequency of the SAs sent by the scheduler to the vehicles via BSs, on the achievable
reliable V2V communication range under different traffic loads in Chapter 8.
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In Chapter 4, where we dimension the resource allocation problem for V2V communi-
cations, we measure the required amount of resources based on the congestion status
of the resources. We first define the probability of overloading of resources as:

P[Overload] =

⎧⎨⎩1, if R < A.

0, otherwise.
(3.2)

where A is the number of resources occupied by the V2V traffic. Assuming aperiodic
V2V traffic, which follows a Poisson distribution as introduced in Section 3.1, we have

P[k ≥ R] = 1−
R−1

∑
k=0

e−λ λ k

k!
, (3.3)

where λ is the arrival rate of events. The non-overloading probability 1−P[Overload]
would reflect the reliability of V2V transmissions, which is given by

Rel = e−λ
R−1

∑
k=0

λ k

k!
. (3.4)

By solving Eq. 3.4 for R, we determine the required amount of resources needed to
achieve a given target reliability Reltarget. In Chapter 4, we evaluate required R to
support different reliability targets under different communication loads (varied by the
vehicle density) in the environment.

• Latency: An important scheduling metric is the latency of V2V messages. Latency for a
single message is measured by the time difference between its generation and succesful
reception at the application layer of the transmitter and the receiver, respectively. V2V
application requirements set a maximum value on the latency of the messages. For
the majority of applications introduced in Section 2.1, the typical requirement is a
maximum latency of 100 ms [47]. In our evaluations, we report the mean value of the
latency measured for all scheduled packets meeting this deadline.

• Admission rate: In Chapter 4, we consider that messages that can not be scheduled
within the allowed maximum latency value are not admitted for transmission, i.e.,
dropped. The transmissions may not be scheduled such as due to resource conflicts
preventing a successful reception. We, therefore, calculate the ratio of the number
of scheduled transmissions to the total number of requested transmissions from the
scheduler, which we refer to as “admission rate”. As mentioned in Section 2.3.1,
admission control (or congestion control) targets keeping channel load at or below a
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target level where the messages can be reliably delivered. Therefore, for the overall
goal of maximizing vehicles’ awareness of each other, an acceptable admission rate
would be the maximum one that results in attaining other communication requirements
such as PRR and latency.

• Packet inter-reception time: While PRR indicates the rate of lost V2V messages, it does
not tell about the “burstiness” of the losses, i.e., whether or how much these losses are
consecutive. Bursty losses may create “blackouts” of awareness at the receivers, which
take relatively long times and considerably degrade the performance of the applications.
Packet inter-reception (PIR) time is a metric used to evaluate the “situational awareness”
of the vehicles in case of periodic V2V message traffic [255]. PIR is defined as the time
elapsed between two successive successful receptions at a certain vehicle, transmitted
from another one within a given range [236]. V2V applications typically require a
maximum value of PIR in the order of a few seconds [256]. Whereas its mean value is
ideally desired to be close as much as possible to the message generation periodicity.
In our evaluations, we provide the mean and the percentiles of PIR measured for all
messages generated in the vehicular environment.

• Fairness: Given that the PRR is calculated for all V2V transmissions belonging to all
vehicles in the entire environment, this does not reveal whether all vehicles experience
the same (or similar) reliability. Therefore, we additionally use the following metric to
evaluate fairness among the vehicular users: the PRR j will be computed separately for
each vehicle j, as described above, and afterwards the standard deviation of the mean
values of per-user PRRs will be estimated. We therefore expect the calculated standard
deviation to be close to zero as much as possible in ideally fair conditions.

• Mutual awareness: We use the mutual awareness metric [17], [257] to study the
impact of PRR on the performance of applications running over V2V links. Authors
in [257] propose awareness probability PA as an intermediate metric that relates
communication quality of service and application performance. PA is defined as
“probability of successfully receiving at least n packets from a transmitter within the
application tolerance time window T ”, i.e., PA = ∑

k
n
(︁k

n

)︁
pn(1− p)k−n, where p is the

PRR at the transmitter-receiver range of interest, and k is the number of packets sent
during T [257]. Thus, PA reflects the communication performance in the form of
PRR, i.e., reliability, and is used to evaluate its impact on the performance of V2V
applications. Each V2V application can set requirements on awareness probability PA,
as well as on n and T . Requirements of several applications are exemplified in [257],
which we also provide in our evaluations.
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3.3 Simulation Environment

3.3.1 Available Simulation Tools

During the preparation of this thesis work, there were no simulation tools available that
can do the following at the same time: i) simulate V2V communications based on the
cellular standard; ii) simulate vehicular mobility; and iii) have interface to implement ML
algorithms that can run in the network. Majority of the available tools for simulating vehicular
communications were developed as modules for well-established network simulators such as
OMNeT++ [258] and ns-3 [259], and by integrating the existing mobility simulators such
as SUMO that is widely used by the vehicular community [247]. Examples include Veins
[260] and its extension Artery [261], which couple the model of WAVE and ETSI ITS-G5
protocols implemented in OMNet++, respectively, together with SUMO. Another example
was iTETRIS [262], which implemented the WAVE protocol in ns-3, also in combination
with SUMO. VSimRTI [263] was also offering multiple network simulators combined with
different traffic simulators. None of these simulators, however, were providing the support for
the cellular standard for V2V communications. With regards to cellular networks, available
system-level simulators were able to simulate only uplink/downlink communications, such
as the SimuLTE module [264] developed in OMNeT++, and the LENA LTE module [265]
developed in ns-3. More recently, a module supporting cellular D2D communications in
ns-3 was released by NIST [266]. The NIST LTE D2D module has extended the LENA LTE
module to support sidelink communications. The module also includes the implementation
of the above-mentioned error model for the V2V communications, developed by NIST [243].

To implement ML, and in particular RL algorithms, several numerical computational li-
braries were available, such as the widely used Tensorflow [167] and Keras [267]. There were
also widely-used simulation environments available for developing, testing, and deploying
the algorithms, such as MuJoCo [268] or Gym [269]. These environments simulate physical
control tasks or game-playing, for which ML solutions could be applied for. However, none
of them are related to communication networks. A recent tool called ns3-gym [270] was
released, which provided an interface to ns-3 for implementing RL algorithms for networking
problems, based on the Gym framework.

To implement our models, we have developed our own simulation environment also
by combining and extending the several simulation tools available in the literature. As
illustrated in Fig. 3.4, our simulation environment consists of three main parts: i) network
simulator implemented in ns-3; mobility simulator SUMO; and iii) RL model and its training
environment implemented in Python. We describe the details of these in the following.
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Fig. 3.4 Implemented simulation platform.

3.3.2 Vehicular Network Simulation

To simulate the vehicular network environment model described in Section 3.1, we have
utilized the well-established network simulator ns-3. We also use ns-3 for the performance
evaluations of the considered algorithms. Different from the rest of the chapters, the analysis
and the algorithms we present in Chapter 4 are implemented and evaluated using MAT-
LAB [271].

For our simulations, we have employed the above-mentioned LTE D2D module in ns-3,
developed by NIST [266]. We have utilized the version d2d-ns-3.22 that was available during
the preparation of this thesis work, in combination with the ns-3 version ns-3.22. These
software are openly-available in [272] and [273], respectively. We have implemented the
following extensions in ns-3 to support full-stack V2V communication protocol based on the
Release 14 of 3GPP LTE specifications [12], which was the available release of the standard
during the time of our implementation. Our extensions are summarized in Table 3.1.

At the application (APP) layer of the user nodes, we have extended the BSM application
(BsmApplication) available in the ns-3 WAVE module, to generate and receive periodic and
aperiodic types of V2V messages of certain size, as modeled in Section 3.1.1. We have also
implemented the measurement of our evaluation metrics PRR, latency, and PIR, as defined
in Section 3.2, by extending the WaveBsmStats that is used to collect and manage statistics.
The calculations are based on the time stamp and vehicle IDs of the transmitted and received
V2V messages at the APP layer.

At the radio resource control (RRC) layer of the user nodes (LteUeRrc), we have im-
plemented resource pool configuration as modeled in Section 3.1.3. At the medium access
control (MAC) layer of the BS (LteEnbMac), we have implemented the scheduling function-
ality in line with the LTE resource allocation mode 3 as described in Section 2.3.3. While
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Table 3.1 Overview of the main changes and extensions we introduced to the NIST LTE D2D
module in ns-3.

ns-3 class Our extensions to the NIST LTE D2D module in ns-3 [266]
BsmApplication - Generation and reception of periodic and aperiodic V2V messages
WaveBsmStats - Measurements of PRR, PIR, and latency of V2V messages
LteUeRrc - Configuration and processing of sidelink resource pools

LteEnbMac
- Scheduling of V2V transmissions by connecting to RL model and sending
the collected information related to state and reward of the RL model
- Indicating the scheduling assignments to vehicles via DCI

LteUeMac
- Processing of DCI in the case of centralized scheduling of V2V messages
- Resource selection mechanism for the autonomous scheduling of V2V
transmissions based on LTE mode 4

LteUePhy
- Sensing mechanism for the autonomous scheduling of V2V transmissions
based on LTE mode 4
- V2V transmission power level

PropagationLossModel - WINNER+ B1 channel model for V2V communications
IsotropicAntennaModel
LteSpectrumPhy

- Antenna related parameters for V2V communications

LteSpectrumValueHelper - Carrier frequency and bandwidth for V2V communications

we reuse the scheduling requests of vehicles on the UL control channel, the DL control
information (DCI) message is modified to indicate the resource allocation from the configured
resource pool for V2V messages. Whenever a vehicle sends a resource allocation request,
the scheduler calls the RL model in Python via the socket connection we implemented
(cf. Section 3.3.4), and transmits the necessary state and reward information based on the
information it collected from the network such as past resource allocations, vehicle locations,
PRR, etc. In turn, it receives the action selection of the RL model and transmits this info to
vehicles in the form of DCI indicating the selected subchannel and time slot in the resource
pool.

At the MAC and the physical (PHY) layer of the user nodes (LteUeMac and LteUePhy),
we have implemented the LTE resource allocation mode 4 that consists of resource sensing
and selection mechanisms as described in Section 2.3.3, utilizing the resource pool configured
at the RRC layer.

To align with the 3GPP evaluation assumptions [236] as described in Section 3.1.4, we
have adjusted the parameters of the pathloss and fading model under PropagationLossModel
for the V2V channel model, IsotropicAntennaModel and LteSpectrumPhy for the antenna
parameters, and LteUePhy for the transmission power levels. We have defined a new carrier
frequency and operation bandwidth for the V2V communications in LteSpectrumValueHelper.
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3.3.3 Vehicular Mobility Simulation

To simulate the mobility of vehicles, we have used the openly available realistic road traffic
simulator SUMO [247]. We have created the considered highway section described in
Section 3.1.5 using the graphical road-network editor of SUMO, called netedit [274]. In
particular, we created an edge (road section) in between two nodes (road junctions), as well as
the number of lanes per direction and the maximum speed allowed on the road. On this road,
we introduce the vehicular traffic via flow definitions of SUMO, which create repeated vehicle
emissions at each junction. We define a flow per road direction by specifying the vehicle type
and the probability of emitting a vehicle each second. The probability determines the rate of
vehicle arrivals based on the Poisson distribution in our model. Vehicle type is specified by
the length, maximum speed, and maximum acceleration and deceleration of vehicles that
control the car-following model. For these parameters, we use the default settings for the
vehicle type of passenger car provided in SUMO [275]. The speed of each arriving vehicle
is selected from a normal distribution, with a mean value that can be specified as a factor of
the maximum speed limit, and the standard definition, according to the settings we consider.

The vehicle flows are simulated with a specified duration, from which floating car data
(FCD) is generated. FCD contains the location and speed of vehicles along with other
information for every vehicle at every time step, starting from the time they are generated at
the junctions, with a granularity of 1 s and a precision of 1 cm. The built-in TraceExporter
function of SUMO converts FCD output to a trace file format that is readable by ns-3 [276].
We generate the trace files from the time when steady-state road traffic is reached in each
simulation, i.e., after excluding the warm-up period. We input the created trace files from
SUMO to ns-3 for each network simulation. Ns2MobilityHelper function in ns-3 takes the
location, speed, and direction of vehicles as input to configure the mobility of “nodes” in
the network [277]. While vehicles are created and removed at different times continuously
during a simulation in SUMO, all of the network nodes in ns-3 are need to be created before
any simulation of the network. We, therefore, create a sufficient number of nodes in ns-3 to
accommodate all vehicles generated in SUMO, while turning their radio functionality on or
off as they enter or leave the considered simulation area, respectively.

3.3.4 RL Model Implementation

We have implemented our RL models presented in Chapters 5-8 using Python [278]. We
have used the openly available TensorFlow library for machine learning purposes, such as
to create neural networks or compute gradients, and NumPy [279] for other computational
purposes. For the A3C algorithm, we have used the openly available implementation in [280]
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as the baseline. We have modified the neural network structure, state, action, and reward
definitions, as well as the training parameters according to our RL model.

To enable the interaction of the RL model with the vehicular network environment, we
have coupled the RL model implemented in Python with the network simulator ns-3 written in
C++ by using a socket programming similar to the implementation in [270]. By establishing
a two-way connection, the RL model collects data (such as the information on the state of the
network input to its algorithm or the reward it gets from the environment) from the simulated
network. In turn, the RL model signals its actions back to the network environment.

For training our RL model, we have implemented the environment model described
in Section 3.1.6 in Python. We have established the same two-way connection between
the RL model and the training environment, to signal the state, action, and reward of the
algorithm correspondingly.





Chapter 4

Feasibility of Centralized Resource
Allocation for V2V Communications in
Predictable Out-of-coverage Areas

4.1 Motivation and Contribution

In this chapter, we explore a new approach for allocating radio resources for vehicle-to-vehicle
(V2V) communications taking place in known out-of-coverage areas that are delimited by the
cellular network connectivity, namely the DOCA as defined in Section 3.1.2. As discussed in
Chapter 1 and Section 2.4.1, we are motivated by the fact that such coverage gaps would exist
invariably during early network deployment or under unpreventable situations even in full
deployment due to physical obstructions such as buildings or tunnels. Given that distributed
schedulers are inefficient in terms of handling resource utilization as compared to centralized
schedulers, and the conventional centralized schedulers are not designed for assigning
resources beyond the network coverage, we explore whether and how a centralized network
entity can do in-advance radio resource allocation for vehicles approaching predictable
out-of-coverage zones, in which vehicles communicate with each other.

We begin this chapter by evaluating the required amount of resources that needs to be
reserved for V2V services that rely on event-triggered messages. Since events generating this
type of traffic, such as emergency braking, crash notifications, etc., occur rather unpredictably,
the V2V messages can not be pre-scheduled. Instead, vehicles can utilize the reserved
resources for them to achieve certain rate of collision-free transmissions. We evaluate the
behavior of the required amount of resources with respect to vehicle density and DOCA size,

Parts of the text and parts of the results in Chapter 4 have been published in [33] ©2018 IEEE.
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for different reliability targets. Our results indicate that the required amount of resources
depends majorly on the rate of the V2V message traffic, while an increase in the reliability
target does not have such a significant impact.

On the other hand, while the same reservation approach can be also applied for the
periodic type of V2V data traffic, more efficient allocation of resources becomes possible
since characteristics of this type of traffic are rather deterministic and known beforehand.
Following this idea, for the periodic type of V2V traffic, we propose a centralized heuristic
scheduler that pre-schedules the resources to the vehicles before they leave the coverage
and enter the DOCA. The scheduling decisions are based on the predicted future locations
of vehicles, which, along with propagation conditions, determine the interference on a
specific resource, as well as the HD errors. For this purpose, the centralized scheduler
collects information about the vehicles such as their velocity, density, and message traffic.
We evaluate how imperfections in predicted locations impact the performance of V2V
communications, such as in terms of the rate of successful receptions, in comparison to
an ideal case where the perfect knowledge of vehicle locations in DOCA is assumed to be
known. We evaluate the performance of V2V communications under varying densities of
vehicular traffic, different distributions of vehicle speeds, various transmission powers, and
DOCA sizes. Our results show that the rate of successful transmissions gets highly impacted
by the prediction errors when combined with varying conditions in the out-of-coverage area.

This chapter aims at analyzing the boundaries of our resource allocation problem, where
we consider reservation of resources for aperiodic V2V traffic, and pre-scheduling of re-
sources for periodic V2V traffic, assuming perfect and imperfect predictions of vehicle
locations. For our evaluations in this chapter, we utilize the model defined in Section 3.1.6
that has simple mobility and radio propagation, as our main focus is a feasibility analysis,
neglecting the intricate impacts of the wireless environment. Our results indicate that while
the idea of reserving and pre-scheduling resources for V2V communications taking place
in known out-of-coverage areas is feasible, the resource allocation task should carefully
consider the mobility conditions as well as the data traffic load of the vehicles, which serves
us as a guideline for the remaining chapters.

In the rest of this chapter, we present our proposed methods for resource reservation
and pre-scheduling in Section 4.2. Section 4.3 presents our evaluations results. Finally,
Section 4.4 concludes the chapter.
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V2V Services

Event-triggered traffic: 

aperiodic messages, e.g., 
DENMs, emergency braking 

Regular traffic:

periodic messages, 

e.g., CAMs, platooning

Better known beforehand 

Pre-schedule resources for DOCA

Event-triggered, unexpected

Reserve resources for DOCA

Fig. 4.1 Proposed approach to handle different V2V services.

4.2 Proposed Method

We propose a centralized entity to manage the radio resources for V2V communications,
which particularly requires access to the road and the message traffic information. The BSs
delimiting the DOCA are proposed to collect this information from the vehicles entering
(exiting) the DOCA. The collected information is then used to make decisions by the
centralized scheduler. Our solution regarding the radio resource management comprises of
two main parts, as summarized in Fig. 4.1: i) resource reservation for the event-triggered
services with aperiodic V2V traffic in DOCA; and ii) pre-scheduling the regular services
having periodic V2V traffic in DOCA.

4.2.1 Resource Reservation for Event-Triggered Services in DOCA

As event-triggered messages can not be pre-scheduled before the vehicles enter the DOCA,
we propose the centralized entity to reserve a portion of the available radio resources for such
services, in order to still reliably support them. In order to calculate the amount of resources
that needs to be reserved, we use the following formulation.

Recall that we have defined the probability of non-overloading of resources in Section 3.2
(Eq. 3.4) as:

Rel = e−λ
R−1

∑
k=0

λ k

k!
. (4.1)



94
Feasibility of Centralized Resource Allocation for V2V Communications in Predictable

Out-of-coverage Areas

where R is the number of available resources and λ is the arrival rate of services. For
aperiodic V2V traffic,

λ = γ×min(2RTx,LDOCA)×λ evt, (4.2)

assuming a single, one-dimensional collision domain, where γ is the vehicle density
within DOCA given by number of vehicles per unit distance, and λ evt is the probability of
an event per unit distance leading a vehicle to generate an event-triggered V2V message.
Depending on its size LDOCA and the transmission range of the vehicles, the DOCA may
contain one or more collision domains. As described in Section 3.1.6, we model the trans-
mission range of vehicles as fixed circular range with radius RTx in this chapter, assuming
the protocol model. Based on this, we distinguish between two cases:

Case I: DOCA is a single collision domain

In this case, we have LDOCA ≤ 2RTx, hence Eq. 4.2 becomes λ = γ×LDOCA×λ evt. Within
the DOCA, the transmissions will interfere with each other if they use the same TB.

Case II: DOCA is not a single collision domain

In this case LDOCA > 2RTx, and λ does not grow above 2RTx, i.e., λ = γ × 2RTx× λ evt.
Instead, Poisson arrivals follow a memory-less property for each collision domain, and
different V2V transmissions within DOCA can use the same TB, if they are taking place far
enough from each other (i.e., at different collision domains). In other words, in Case II, the
spatial reuse of radio resources is possible.

If we solve Eq. 4.1 for R, we determine the required amount of resources needed to
achieve a given target reliability Reltarget for the event-triggered services.

4.2.2 Pre-scheduling the Periodic Services in DOCA

In the case of regular periodic V2V messages, instead of static reservation of resources, the
vehicles can be provided with a pre-scheduled resource assignment that they dynamically
utilize, as characteristics of these transmissions (such as timing and periodicity) are pre-
known. For this purpose, we propose that the centralized entity determines the pre-schedule
by utilizing the information sent by the vehicles along with their scheduling requests (SRs).
Such information is requested and collected by the BSs before vehicles enter the DOCA.

SR contains the identifications (IDs) of the transmitter and the receiver vehicles (in the
case of one-to-one transmissions), their current position and velocities, as well as T m of
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the V2V messages to be transmitted in DOCA. Based on the collected information, the
centralized entity predicts the future trajectories of the vehicles for the time they will be
inside DOCA. Predicted location information is then used to determine the pre-schedule for
each vehicle, as we describe in the following.

Regarding Case I, the pre-scheduling task is trivial. Namely, for each requested trans-
mission, the scheduler can only assign a new TB in order to avoid any collision with the
other transmissions taking place inside the DOCA. Considering Case II, reuse of the TBs
is possible among different collision domains within the DOCA, which requires a decision
mechanism reliably assigning them. We elaborate on the latter, as follows.

For each incoming SR, the scheduler goes through the requested transmissions starting
from the first arrived one, and attempts to assign each transmission to a TB that does not
violate the constraints of reliability and half-duplex, based on the protocol model. Specifically,
starting from the first among K subchannels at the requested time to transmit, a TB is assigned
if all of the following apply: i) the targeted receiver vehicle is within the transmission range
RTx of the transmitter vehicle; ii) both vehicles are not previously scheduled for any other
reception or transmission (half-duplex constraint); and iii) no other vehicle scheduled for
a transmission in that TB is closer than RTx to the receiver vehicle; and iv) the transmitter
vehicle is not within RTx of a vehicle that was previously scheduled for another reception in
that TB. In case none of the K subchannels are available at the requested time to transmit,
the scheduler continues by checking the TBs in the next time slot, and repeats the checking
process until a TB satisfying the all conditions is found. Note that the outcome of the
schedule would delay each transmission by the number of time slots that had to be skipped
during the check.

An example schedule is shown in Fig. 4.2, considering a simple case with a DOCA
having a single-collision domain. Vehicles A, B and C send SRs to the BS respectively,
requesting transmissions with different T m, which are all assumed to collide if assigned
to the same TB. Therefore, the second message of vehicle B, B2, is scheduled in the next
available subchannel at f 1. C2, requested for t4, could only be scheduled in the next slot (t5,
f 0) since all subchannels are occupied at the requested time slot, hence it experiences a delay
of 1 time slot.

To account for the the maximum amount of tolerable latency T max for V2V messages,
we introduce another constraint to the pre-schedule. If a message has to be delayed for a
duration larger than T max, then the message is dropped, i.e., not admitted to the schedule.
Such a situation may happen when there is a high demand on the radio resources among the
vehicles, e.g., due to a larger γ .
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Fig. 4.2 An example schedule on the radio resource grid according to scheduling requests
(SRs) sent by vehicles A, B and C. Vehicles are informed about their schedule by the
scheduling assignments (SAs) sent via the base stations (adapted from [33] ©2018 IEEE).

The scheduler informs the vehicles about the schedule by sending scheduling assignments
(SAs) timely before they enter the DOCA. SA is an array of values indicating the allocated
subchannel and slots, as exemplified in Fig. 4.2, where vehicles look up the TBs to transmit
the messages during their traversal of DOCA. On the other hand, they inform the BSs
about their exit from DOCA, so that the scheduler can better adapt the schedule for future
transmissions, e.g., by re-allocating the emptied resources.

4.3 Evaluation

In our evaluations, we utilize the system model as described in Sections 3.1 and 3.1.6 with
the parameters provided in Table 4.1 with their default values. We vary the value of the
parameters in our analysis on resource reservation as well as to evaluate their impact on the
scheduling performance in the following subsections.

Except for our results in Section 4.3.1 where we analytically solve Eq. 4.1, evaluations in
the following are based on the measurements collected from DOCA for a sufficiently large
duration to have statistically meaningful results, starting after which a steady-state level of
the road and the message traffic are reached in the simulated setting.

4.3.1 Resource reservation for event-triggered V2V services

Figure 4.3 shows the result of numerical simulations for the required number of resources
R to support event-triggered V2V services under given reliability requirements, by solving
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Table 4.1 Simulation parameters (adapted from [33] ©2018 IEEE).

Length of the DOCA, LDOCA 1000 m
Probability of events triggering V2V messages, λ evt 0.05 events/vehicle/m
V2V transmission range, RTx 75 m
Arrival rate of vehicles at the DOCA, λ arr 3 vehicles/s/direction
Slot duration 25 ms
Number of subchannels, K 5
Message periodicity of each vehicle, T m {25,50,75} ms with equal probability
Maximum allowed latency, T max 100 ms

0

Vehicle density [veh/km]

50

100

1500Size of DOCA [m]

500

1000
0

25

15

10

5

20

R
e

q
u

ir
e

d
 u

n
it
 r

e
s
o

u
rc

e
s

Reliability = 99.999%

Reliability = 99.99%

Reliability = 99.9%

Reliability = 99%

Fig. 4.3 Required unit resources R as a function of DOCA size LDOCA and vehicle density γ ,
with respect to different reliability targets [33] ©2018 IEEE.

Eq. 4.1. Specifically, we assume a perfect resource allocation: one that assigns the V2V
messages in non-overlapping resources without any scheduling overhead.

The results indicate that the increase in reliability does not penalize the system pro-
hibitively. This is in contrast with the efficiency penalty on the physical layer, where increase
in reliable transmissions would be costlier in terms of the spectral efficiency [281]. Fur-
thermore, Fig. 4.3 shows that γ , as well as LDOCA, have a more significant effect on the
required resources than the target reliability. The results provide design guidelines for a
DOCA resource allocation, which should be sensitive to vehicle density changes and adapt
both the amount of resources reserved as well as the schedule according to the vehicle density
and mobility in DOCA.
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4.3.2 Impact of the Predictions and Vehicle Velocities on the Pre-Scheduling
Performance

In this subsection, we evaluate the performance of the proposed pre-scheduling algorithm,
impacted by the imperfections of the predicted vehicle velocities used to determine the
interference conditions on the resources. Rather than concentrating on how the predictions
are made, we analyze the consequences of different types of predictions on the scheduling
performance, where the vehicle velocities are predicted to be less than, equal to or over the
actual values.

In our evaluations, we consider two mobility scenarios: a) all vehicles travel with a
constant speed of 30 m/s; and b) vehicles have random constant speeds uniformly distributed
between 20 and 30 m/s. For the first scenario, we evaluate the performance of the scheduler
when the vehicles are predicted to have the same constant speed of 5, 15, 30, 35 and 45
m/s, as well as random constant speeds uniformly distributed between 5− 15, 15− 25,
25−35, 35−45 and 45−55 m/s. For the second case, we evaluate the effect of vehicles
being predicted to have the same constant speed of 5, 15, 25, 35 and 45 m/s, together with
the predictions of random constant speeds distributed uniformly between 5−15, 20−30,
25−35, 35−45 and 45−55 m/s.

In the considered setting, all pre-scheduled services are assumed to be periodic unicast
(one-to-one) messages. In particular, each vehicle has a message traffic with random T m, to
be transmitted to the vehicle following behind it at the time it is entering the DOCA, and
desires to maintain this communication for the rest of the time they are inside the DOCA
together. Such transmissions represent the typical use case of platooning vehicles, where
each member of a group vehicles driving together sends a unicast message to inform the one
behind [136].

We evaluate the performance of the scheduler in terms of the rate of successful receptions,
i.e., PRR within RTx, and the rate of unsuccessful receptions classified with respect to type of
errors, as well as other KPIs, which we list in Table 4.2. The results are provided in Fig. 4.4
and 4.5, respectively for the scenarios (a) and (b), for different cases of predicted and actual
velocities of the vehicles as described above.

As expected and can be seen from Fig. 4.4 and 4.5, correct predictions achieve the largest
Sch’d & Successful, hence Successful Transmission Rate. Accordingly, both KPIs decrease
with the predicted speeds deviating from the actual values. To illustrate, when vehicles are
predicted to be all traveling at 35 m/s instead of their actual speeds of 30 m/s, Successful
Transmission Rate decreases around 40%.

Note that even with correct predictions not all transmissions could be scheduled (i.e.,
Admission Rate is less than 1). This is because for some Rx-vehicles, it is not possible to
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Table 4.2 Scheduling KPIs (adapted from [33] ©2018 IEEE).

Percentage of transmissions classified as:
Sch’d & Successful: scheduled, transmitted and successfully received, i.e., PRR within RTx

Sch’d but RxIsFar: scheduled and transmitted, however the Rx-vehicle is actually
outside the transmission range of the Tx-vehicle, hence not successfully received, i.e.,
propagation error
Sch’d but RxRecInterf: scheduled and transmitted, however the Rx-vehicle is actually
subject to interference resulting in unsuccessful reception, i.e., collision error
Drop’d & RxIsFarIndeed: not admitted to the schedule since the Rx-vehicle is
predicted to be outside the transmission range of the Tx-vehicle, and this turns out to be true
Drop’d dueRxIsFar butNot: not admitted to the schedule due to the previous reason,
however the Rx-vehicle is actually traveling within the transmission range of the Tx-vehicle
Drop’d Else: not admitted to the schedule due to any other reason, e.g., Rx-vehicle is
predicted to receive interference at that time instance, or due to HD constraint

Other KPIs:
Admission Rate: the ratio of the number of scheduled transmissions to the total number
of requested transmissions
Successful Transmission Rate: the ratio of the number of successful transmissions that
were requested, to the number of transmissions admitted in the case of a correct
predictor (correctly predicting the actual velocities of the vehicles)
Average Latency: the mean value of the latency experienced among all scheduled
transmissions, in ms

schedule them given the system constraints K and T max, without any interference during at
least some part of their time within DOCA, or they might not be within the transmission
rage of the Tx-vehicle. It can be observed for the correct predictions in Fig. 4.5 that both
occasions rise, as the relative speeds of the vehicles increased.

Considering the cases where vehicles are predicted to be slower, the percentage of Drop’d
Else considerably increases, besides the transmissions Sch’d but RxRecInterf, all due to the
errors in the predicted positions of the interferers. Consequently, Admission Rate can drop
below 0.5 if the velocities are predicted as low as 5 m/s.

On the other hand, when the vehicles are predicted to be faster, Sch’d but RxRecInterf are
present with larger percentages, in addition to the occurrences of Drop’d & RxIsFarIndeed
and Drop’d dueRxIsFar butNot. This can be explained by our assumption that each vehicle
transmits to the vehicle following itself. If the vehicle entered the DOCA is predicted to be
faster, then the corresponding Rx-vehicle is thought as being left far behind it, hence the
messages are (erroneously) dropped. Similarly, interferers are also thought to be away from
the Rx-vehicles, resulting in higher Admission Rates.

For the cases of vehicles having different relative speeds, as provided in Fig. 4.5, the
percentage of Drop’d & RxIsFarIndeed is more pronounced than Drop’d dueRxIsFar butNot,
due to Rx-vehicles now being able to overtake their Tx-vehicles, and even moving farther
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Fig. 4.4 Impact of speed predictions on the scheduling performance. All vehicles have the
same speed: 30 m/s (adapted from [33] ©2018 IEEE).

than their transmission rage apart. This also results in considerable percentage of Sch’d but
RxIsFar, especially if the vehicles are all predicted as having the same speed.

Regarding Average Latency, it is interesting to observe the trend where it decreases by
predicting the vehicles to be faster. Such predictions assume less collisions, resulting in more
admissions to the schedule, hence the transmissions experience less delay (although they
eventually collide).

4.3.3 Impact of the V2V transmission range

In this subsection, we evaluate the impact of the V2V transmission range RTx on the schedule.
The range is practically determined according to many factors in the network, such as the
transmit power of the vehicle antenna, propagation losses and fading on the radio channel.
Thus, it is possible for the system to operate under many different RTx. Here, we consider the
cases of RTx = 45 m and RTx = 100 m, reported in and Fig. 4.6 and Fig. 4.7, respectively, in
addition to the case of RTx = 75 m in the previous section (Figures 4.4 and 4.5), and compare
the measured KPIs of the schedules based on them.
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Fig. 4.5 Impact of speed predictions on the scheduling performance. Vehicles have random
constant speeds, uniformly distributed between 20 and 30 m/s (adapted from [33] ©2018
IEEE).

The transmission range is also referred to as “interference” range, since it determines the
size of the area where any vehicle inside will receive interference from the transmitter vehicle,
if it is not the intended receiver. Accordingly, increasing this range increases the number
of vehicles receiving interference, given the same vehicle density on the road. Increased
size of the transmission range considerably increases the ratio of dropped transmissions due
to predicted interference (Drop’d Else), in addition to yielding higher average latency in
the scheduled transmissions. Similarly, the ratio of scheduled transmissions suffering from
unforeseen interference (Sch’d but RxRecInterf ) also increases.

A smaller V2V transmission range also results in larger ratio of transmissions that can
not be received by the Rx-vehicles that are further away from the Tx-vehicles. In case of
vehicles traveling with the same speed, predicting them to have different speeds increases the
ratio of transmissions that are dropped (Drop’d dueRxIsFar butNot) due to predicting the
Rx-vehicle likely to move away from the receiver. Contrarily, when vehicles have different
speeds, predicting them to have the same speed increases the ratio of scheduled transmissions
being not received due to Rx-vehicle actually moving away from the Tx-vehicle (Sch’d but
RxIsFar). In the case of correct predictions, larger ratio of transmissions are dropped due to
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Rx-vehicles residing outside the V2V transmission range (Drop’d & RxIsFarIndeed) when
the range is smaller.

4.3.4 Impact of the Vehicle Density

In this subsection, we evaluate the impact of the rate λ arr, the number of vehicles arriving in
both directions per second, on the schedule. From this rate, it is possible to determine the
vehicle density γ on the road, namely the two-way traffic volume in terms of the number
of vehicles per a unit section of the highway, given a constant flow. Traffic volume is an
important parameter in the design of transportation systems, regarding, e.g., the capacity of
the roads. Even for the same road, it takes different values on an hourly or a seasonal basis.

In our case, we are concerned about the radio resource usage by the vehicles on a given
highway segment, which is mainly based on the requested number of transmissions. In fact,
demand on the radio resources is proportionally related to λ arr. Correspondingly, for a fixed
value of λ arr, increasing the frequency of V2V message traffic would also create the same
effect on the system. We are interested in how the schedule gets affected by different vehicle
densities. For this, KPIs are provided for the values of λ arr = 1 and λ arr = 5, in Fig. 4.8
and 4.9, respectively, besides our previous results for λ arr = 3 in Figures 4.4 and 4.5. Other
system-level parameters are kept constant, i.e., LDOCA = 1000 m and RTx = 75 m.

It is clear that, with the increased density of vehicles, the ratio of the transmissions not
admitted to the schedule increase (i.e, Drop’d Else), mostly due to the predicted interference,
in addition to the larger average latency incurred in the schedule. Erroneous predictions in
case of higher density of vehicles result in increased rate of scheduled transmissions that are
not successfully received (i.e., Sch’d but RxRecInterf ). The proportion of vehicles suffering
from interference due to any transmission taking place essentially increase as in the case of
increased size of the V2V transmission range, however this time due to larger number of
vehicles within the same transmission range.

On the other hand, lower road traffic density might result in larger proportion of intended
Rx-vehicles residing outside the transmission range of Tx-vehicles, thus not necessitating
scheduling such transmissions. Fig. 4.8 shows a considerable proportion of such transmis-
sions (i.e., Drop’d & RxIsFarIndeed) in case of λ arr = 1. Similarly, predicting Tx-vehicles to
be slower or faster result in increased ratio of transmissions that are scheduled however not
received by the Rx-vehicle or dropped unnecessarily, respectively (i.e., Sch’d but RxIsFar
and Drop’d dueRxIsFar butNot).
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distributed between 20 and 30 m/s.

Fig. 4.6 Impact of speed predictions on the scheduling performance with V2V transmission
range of RTx = 45 m.
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Fig. 4.7 Impact of speed predictions on the scheduling performance with V2V transmission
range of RTx = 100 m.
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(a) All vehicles having the same speed of 30 m/s.
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Fig. 4.8 Impact of speed predictions on the scheduling performance with the rate of arriving
vehicles λ arr = 1 vehicle/second.
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Fig. 4.9 Impact of speed predictions on the scheduling performance with the rate of arriving
vehicles λ arr = 5 vehicles/second.
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Fig. 4.10 Impact of speed predictions on the scheduling performance for DOCA size LDOCA =
500 m.

4.3.5 Impact of the DOCA Size

The size of the DOCA determines the duration for which the vehicles travel inside it. The
proposed scheduler estimates the future positions of the vehicles based on their predicted
velocities, which is assumed to be constant over time. Accordingly, in case of wrong
predictions, the deviation between the actual and the estimated positions of the vehicles
increases with time, i.e., as the DOCA gets larger.

In Fig. 4.10, we report the results for the scenario with a DOCA of length LDOCA = 500 m,
which is smaller than the scenario with LDOCA = 1000 m reported in Figures 4.4 and 4.5. We
observe that a larger size of DOCA results in lower rate of successfully received transmissions,
where ratio of dropped transmissions are increased in the case of wrong predictions on the
positions of the vehicles. In the case of perfect predictions, a larger DOCA size still results
in lower rate of successful transmissions, which is due to the increased proportion of vehicles
receiving higher level of interference within the DOCA.



106
Feasibility of Centralized Resource Allocation for V2V Communications in Predictable

Out-of-coverage Areas

4.4 Conclusions

In this chapter, we conducted an exploratory study on allocating resources for V2V commu-
nications in a known out-of-coverage area, namely for a DOCA. Differing from the state of
the art, we proposed the resources for V2V transmissions in DOCA to be pre-allocated by a
centralized network entity, whereby allocations are communicated to the vehicles via BSs
before they enter DOCA. For the aperiodic type of V2V traffic (e.g., emergency braking,
crash notifications, etc.), we proposed to reserve resources, since such messages can not
be scheduled beforehand. We analyzed the required amount of resources to achieve the
target reliability of V2V applications. Our preliminary analysis showed that the amount of
reserved resources needs to be adapted with respect to vehicle density changes. Following,
for the periodic type of V2V traffic, which can be pre-scheduled (e.g., CAM transmissions,
platooning, etc.), we have proposed a centralized scheduler that provides a pre-schedule to
each vehicle for its transmissions throughout the DOCA, before entering it. The scheduler is
proposed to make predictions, e.g., regarding the vehicle positions, to allocate resources for
successful receptions, based on the information it collects from the vehicles. We analyzed
how imperfect predictions and variations in vehicular velocities impact the pre-scheduling
performance in terms of reliability, admission rate, and latency, under varied vehicular mo-
bility, density, wireless channel conditions, and DOCA size. Overall, our results indicate
that the proposed idea of pre-allocating resources for V2V communications in expected
out-of-coverage areas is feasible. However, the rate of successful transmissions gets highly
impacted by the prediction errors, when combined with the varying conditions in the vehic-
ular environment. Thus, resource allocation for out-of-coverage V2V communications in
practice calls for a flexible scheduler design.



Chapter 5

Learning to Schedule V2V
Communications in Predictable
Out-of-coverage Areas

5.1 Motivation and Contribution

In Chapter 4, we explored the potential performance of centrally allocating the resources
for V2V communications in areas outside the cellular network coverage. Our preliminary
analysis showed that efficient prediction mechanisms would be necessary to make resource
allocation, considering the vehicular mobility, density, traffic load, and wireless channel
characteristics. In this chapter, we propose a reinforcement learning (RL) based approach to
predictively schedule the resources for V2V communications outside the coverage. We are
motivated by the recent success of RL in similar decision-making problems under uncertainty,
as discussed in Section 2.6.

The proposed scheduler learns to allocate the resources by using the information available
from the vehicular environment, such as the occupancy of radio resources, and the reward
signal that we have designed to maximize the reliability of V2V transmissions in DOCA.
We have utilized the state-of-the-art asynchronous advantage actor-critic (A3C) algorithm
introduced in Section 2.5.3, and extended it for our continuous-task setting to train the
scheduling policy that we represent by a deep neural network. The trained policy schedules
the available resources for periodic V2V transmissions in DOCA for the vehicles before they
exit the network coverage.

Parts of the text, and the results in Chapter 5 have been published in [34] ©2018 IEEE.
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As covered in Section 2.6, application of machine learning (ML) to any resource al-
location problem targeting vehicular communications is in its infancy. To the best of our
knowledge, ML for a centralized scheduler managing the resources of V2V communications
has not been treated in the literature yet. To exploit V2X-specific information for resource
pre-allocation, we resort to RL, which was shown to apply well to a wide range of problems,
such as games involving large combinatorial space, image recognition, and robot move-
ment [164], and was recently applied to resource scheduling in vehicular networks [29] (cf.
Section 2.6). We are interested to observe if and how it could be useful to satisfy the stringent
requirements of V2V use cases outside coverage, such as in terms of reliability and latency.
Towards this goal, in this chapter, we perform an exploratory study using several relevant
V2V scenarios to investigate if a centralized scheduler can learn to perform resource (pre-
)scheduling reliably. In particular, we evaluate the reliability performance of the proposed
RL scheduler in specifically-designed sanity-check environments, such as with a certain
number of resources and vehicles in a single collision domain, for which the optimal schedule
is easily computable, and compare its performance with the existing resource allocation
schemes. To observe the scheduling strategy it develops, we further trace and analyze the
individual actions of the scheduler, as well as the convergence behavior during its training.
Our results show that the proposed RL-based scheduler can achieve performance as good
as or better than the state-of-art distributed scheduler, often outperforming it. Besides, the
learning process completes within a reasonable time (ranging from a few hundred to a few
thousand epochs), thus making the RL-based approach a promising solution for scheduling
V2V communications outside the network coverage.

The rest of this chapter is organized as follows. In Section 5.2, we present our RL-based
scheduler design. Section 5.3 presents the results of our evaluations. Finally, Section 5.4
concludes the chapter.

5.2 Deep Reinforcement Learning Scheduler

We design a learning scheduler that manages the V2V radio resources for DOCA, whose
model is as described in Section 3.1. The scheduler assigns resources to each vehicle before
it enters DOCA; the resources will be used by that vehicle throughout its travel in DOCA.

5.2.1 RL Model and the Training Algorithm

We apply RL to determine the scheduling policy. As introduced in Section 2.5.2, RL
considers a setting where an agent is interacting with its environment by applying a policy
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Fig. 5.1 RL framework applied to our scheduling problem (adapted from [34] ©2018 IEEE).

that determines the agent’s behavior on selecting from the available actions, based on the
available information, or perceived states of the environment.

Figure 5.1 depicts how we apply this framework to our scheduling problem. Whenever
a new vehicle is about to enter the DOCA, a new action should be taken by the agent. The
action consists of assigning a single time-frequency resource, i.e., a TB, to the vehicle.
The assignment is performed according to a policy π : π(at |st)→ [0,1], which defines a
probability distribution over the set of available actions, namely selecting one of the R TBs.

Given the possible number of resources and vehicles (both possibly in thousands or more),
there are many potential pairs of (state,action), making the tabular solutions infeasible for
this problem [164]. We therefore propose to apply approximate solutions, where the policy
is represented by a deep neural network (DNN) with a set of adjustable policy parameters
θ , i.e., π(a|s,θ). As discussed in Section 2.5, the benefits of applying such solution are
twofold: i) it makes the learning process much faster, as the number of policy parameters are
typically much smaller than the number of (state,action) pairs; and ii) it learns through raw
observations and requires no prior information about the task in hand and the model of the
environment.

To train the policy parameters, we make use of the state-of-the-art A3C algorithm defined
in Section 2.5.3, which applies an actor-critic RL method. The actor-critic algorithm used in
our solution involves training two DNNs, one which is used to represent the policy, referred
to as the actor network, and the other one which is used to represent state values, referred to
as the critic network (see Fig.5.2). The value of a state under the policy π is defined as the
expected rewards received by that state in a long run. We denote by v(st ,w) the value of state
st while following π , represented by a critic network with parameters w. The state values
are used as a critic when training the policy parameters. Similar to [173], we apply policy
gradient method to train the parameters of the actor and the critic networks, i.e. θ and w.
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Fig. 5.2 Components of the A3C algorithm (adapted from [34] ©2018 IEEE).

Thanks to the policy gradient theorem [164], an exact expression on how the performance is
affected by the policy parameters can be driven for such methods. This ensures performance
improvement at each step and hence provides strong convergence properties for policy
gradient methods. Besides, using separate networks to represent the state values and the
policy removes the possible bias and dependencies introduced when applying policy gradient
methods, which in turn accelerates the learning.

Our resource allocation problem requires a continuing task: the agent needs to allocate a
resource whenever a new vehicles arrives at the DOCA. This is in contrast to the episodic
tasks, where the sequence of actions could be broken down into natural episodes, such as
plays of a chess game, each having a starting and a terminating state. We therefore extend
the basic version of the A3C algorithm by replacing its discounted reward setting, which is
suitable for episodic tasks, with the average reward formulation that is suitable for continuing
problems as described in Section 2.5.3. The extended algorithm is provided as Algorithm 3.

We utilize Algorithm 3 with multiple learning actors, each interacting with a different
random instance of the environment. Each instance starts with a random assignment of
resources to the vehicles, and a random action taken. After a certain period of interaction and
experience with the environment, called an epoch, each actor updates the parameters of the
DNNs used for learning the policy and the state values. These parameters are then globally
shared by all actors.

5.2.2 State Information, Reward, and Deep Neural Networks

We have designed the state information provided to the RL agent considering two different
vehicular environments:
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Algorithm 3 Extended A3C Algorithm for Continuing Problems (per actor-learner)
1: Initialize global shared policy parameters θ and state-value weights w
2: Initialize actor-learner-specific parameters θ ′ and weights w′, and counter t = 1
3: loop until convergence
4: Synchronize actor-learner-specific parameters, θ ′← θ and w′← w
5: Generate an epoch of length T , {s0,a0,r1, . . . ,sT−1,aT−1,rT} following π(·|·,θ ′)
6: for t = 0,1, ...,T −1 do
7: n← T −1− t (number of steps until end of epoch)
8: Calculate n-step differential return, bootstrapped from the estimated value of the

last reached state, Rt = rt+1 + rt+2 + · · ·+ rt+n + v(st+n+1,w′)−nr̄
9: Calculate TD error, i.e., advantage, δ = Rt− v(st ,w′)

10: Update estimate of the average reward, r̄← r̄+βδ

11: Accumulate gradients wrt. w′, dw← dw+αδ∇v(s,w′)
12: Accumulate gradients wrt. θ ′, dθ ← dθ +αδ∇ lnπ(a|s,θ ′)
13: end for
14: Perform asynchronous update of θ and w using dθ and dw, respectively.
15: end loop

E1) A DOCA of a single collision domain, assuming all vehicles are within the transmission
range of each other. Given these conditions, reception of a message is successful if no
other transmission takes place on the same radio resource scheduled (i.e., no collision),
and the receiver is not scheduled to transmit at the same time, as imposed by the half
duplex (HD) constraint.

E2) A DOCA of multiple collision domains, where pathloss and fading effects are taken into
account. Hence, successful reception of a message requires the signal-to-interference-
plus-noise ratio (SINR) at the receiver to be larger than a certain target level, which
depends on the distance between the transmitter and the receiver, as well as the
interference level from other transmissions using the same radio resource, besides
the half-duplex constraint. Reusing the same radio resource is possible, when the
transmitters are sufficiently far from each other so that the SINR does not drop below
the target level.

E1 helps us to identify the scheduler performance, and the ability of RL to avoid HD
constraint and assigning interfering resources, while abstracting the effects of channel
conditions. Whereas, E2 enables a realistic evaluation of our proposed RL scheduler.

For E1, we design the state information to represent the number of vehicles each resource
is assigned to. Given this input, the actor DNN provides the policy determining which
resources to be assigned to the vehicle entering DOCA. Therefore, both state information
and the policy output have the same size equal to the number of total resources R = K×M in
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Fig. 5.3 Example representations of different state information (adapted from [34] ©2018
IEEE).

the resource pool having K subchannels and M slots. An example of state representation is
provided in Fig. 5.3(a). A resource pool consisting of K = 2 subchannels and M = 10 slots
(i.e., containing a total of 20 TBs r1,r2, ...r20) is utilized by the scheduler. In Fig. 5.3(a),
we represent the resource occupancy of the pool with colors. White colored TBs (e.g., r3

and r12) indicate that they are not assigned to any vehicles inside DOCA, striped ones (e.g.,
r1 and r11) indicate that a TB is assigned to a single vehicle, and dark-gray-colored TBs
(e.g., TB r2 and r5) are assigned to more than a single vehicle. This way, we quantize the
number of vehicles each TB is assigned to, which reduces the state-space considerably,
and consequently accelerates the learning process. The quantized state information is still
sufficient as the resources used by any number of vehicles greater than one vehicle will
result in collisions, due to the assumption that all vehicles are in the transmission range of
each other in E1. We represent each element of the state vector with −1 if a resource is not
scheduled to any vehicle, with 0 if it is scheduled to a single vehicle, and with 1 if that TB
is scheduled to more than one vehicle inside DOCA. Accordingly, the state vector of the
example in Fig. 5.3(a) is st = [0,1,−1,−1,1,0, ...,0,−1], as provided in Fig. 5.3(b). Given
such st , one preferable action would be at = r3, namely the scheduler assigning the TB r3 to
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a new vehicle entering DOCA, which will not result in any collisions and half-duplex errors
with the vehicles already traversing the DOCA.

For E2, we consider a more realistic and complex environment, where the reuse of
the radio resources is possible. For such decisions to be given by the scheduler, a state
information containing quantized counts of resource occupancy as in E1 would not be
sufficient. It is critical to know which resource was scheduled, to which and how many
vehicles, and also when it was scheduled, as vehicles travel across the DOCA using the same
resource. Therefore, we utilize the following structure. The state information of E2 has a
matrix structure of size 3 by N, as illustrated in Fig. 5.3(c), where each of the first N− 1
columns contains information corresponding to each of the N−1 previous actions taken, and
the last column representing the information about the current vehicle requesting resource
from the scheduler, just before entering the DOCA. For each action or column, the first row
represents the time passed since the previous action was taken, rounded to the closest integer
number of seconds (e.g., 0, 1, 2, etc.). The second row is the direction of the vehicle for
which the action is taken (i.e., 1 for from west to east, and −1 for from east to west). Finally,
the third row is the index i of TB ri scheduled by that action (e.g., 7, 12, etc.). For the last
column, i.e., corresponding to the current vehicle requesting resource, 0 is put in the first row
as the time passed, it’s direction is entered in the second row, and a dummy variable −1 is
inserted into the third row, as it’s resource is yet to be assigned by the current action to be
taken. Following, in the next state, the elements of the matrix will be shifted to left by one,
with the entries of the last vehicle being updated with actual values, and the information of
the next vehicle entering the DOCA that needs to be assigned a resource is appended to the
right end of the matrix. Such a state representation contains all the necessary information
from the environment in a compact form, whose size is independent of the number of vehicles
and resources available in the network.

The goal of the learning agent is set to maximize the reliability of transmissions taking
place in DOCA. We use the reliability metric PRR as defined in Section 3.2. Specifically,
after each action, the reward collected from the environment is defined to be +10 in case
PRR≥ 90% for all transmissions, and −10× (1−min(PRR)), otherwise, where minimum
PRR of any of the transmissions is used. For E2, in order to avoid any under-utilization of
any resources by the scheduler, we have also modified the reward definition as −10× (1−
min(PRR))−R0, where R0 is the number of resources that are not assigned to any vehicle in
that state.

The implemented DNN for both actor and critic consists of 2 convolutional layers
followed by 2 fully connected ones. All layers have tanh as the activation function, except
the last one using linear function in the case of critic network, and softmax function in the
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case of actor network, to output the value function and the action probabilities respectively.
When processing the state information of E2, which has 2D structure as compared to 1D
state information for E1, rows of the 2D state information are separately fed into different
convolutional layers as the input. Output of each layer are then merged and fed to the second
convolutional layer together, followed by a single fully connected layer.

5.3 Evaluation

5.3.1 Simulation Setup

In our evaluations, the DOCA is assumed to be of length LDOCA = 500 m, having a single lane
per direction, each 4 m wide. We consider a constant density of vehicles in the environment, in
order to simulate a constant load of V2V communication traffic for a more tractable analysis
of the algorithms. To achieve this, similar to the mobility model described in Section 3.1.6, a
certain number of vehicles are initially assumed to be within DOCA, traveling at the same
constant speeds, and upon their exit, they are assumed to return back to DOCA from the
opposite direction after a random time offset exponentially distributed with a mean of 2.5 s,
to account for realistic Poisson distribution of inter-vehicle gaps [236]. Vehicles are assumed
to generate broadcast V2V messages of size Sm = 190 Bytes, each occupying a single TB,
with a periodicity of T m = 100 ms.

In the case of E1, we consider three scenarios, designated E1-A, E1-B, and E1-C, which
differ with respect to vehicle densities and the number of resources. In scenario E1-A, 10
vehicles reside in DOCA, all traveling at 140 km/h, where a resource pool consisting of 1
subchannel and 10 slots is utilized by the scheduler. In scenario E1-B, 12 vehicles travel
at 140 km/h, this time having a resource pool of 2 subchannels, and 10 slots. In the latest
scenario, E1-C, there are 24 vehicles traveling at 70 km/h residing in DOCA, utilizing a
resource pool with the same size of 2 subchannels, and 10 slots. Our choice of the scenarios
is motivated by the goal of representing the following three cases of network condition; E1-A:
loaded, without half-duplex (HD) constraint, E1-B: under-loaded, with HD constraint; and
E1-C: over-loaded, with HD constraint. The transmit power of the vehicles are set to its
allowed maximum value of 23 dBm [282] in E1, without consideration of any path loss, in
order to simulate a single collision domain.

In E2, we consider a single scenario where 30 vehicles are traveling at the speed of
50 km/h across the DOCA, and where a resource pool of 2 subchannels by 10 slots is
available. This scenario is used to evaluate the potential of our RL solution on reusing
resources which will overcome the drawbacks of the overloaded situation. In order to enable
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Table 5.1 Simulation parameters (adapted from [34] ©2018 IEEE).

E1-A E1-B E1-C E2
Number of vehicles 10 12 24 30
Vehicle speed 140 km/h 140 km/h 70 km/h 50 km/h

Resource pool
1 subchannel 2 subchannels
10 slots 10 slots

DOCA size
500 m of a straight highway,
1 lane per direction, 4 m lane width

Vehicle spatial distribution Poisson with 2.5-s inter-vehicle distance on average [236]
Transmission power 23 dBm (the maximum allowed value) –5 dBm
V2V message size and period 190 B, 100 ms
Slot duration 1 ms

V2V channel model in E2 [236]

Pathloss model
LOS in WINNER+B1 with antenna height = 1.5 m;
pathloss at 3 m is used for distance < 3 m

Shadowing fading
Log-normal distributed with 3 dB standard deviation,
and decorrelation distance of 25 m

resource reuse within the considered DOCA size of 500 m, transmission powers of the
vehicles are reduced to −5 dBm (as opposed to transmitting with the maximum power of
23 dBm in E1). This way, the power received beyond 100 m away from the transmitter
is reduced to around noise power level, which in turn enables reusing the same resource
at around a distance of 200 m. Moreover, the realistic channel model according to 3GPP
evaluation assumptions is adopted, with details provided in Table 5.1.

As described in Section 3.1.6, the RL agents for each scenario are initially trained in an
environment simplified in terms of the propagation model, assuming a V2V transmission
range of RTx = 120 m. For training the A3C algorithm, each instance of the environment
is generated using a different random seeds of the simulation. For the reward calculation,
PRR is measured at 0−100 m Tx-Rx distance for the transmissions taking place between
each action, as described in Section 3.2. The evaluation environments and scenarios are
summarized in Table 5.1, together with the corresponding values of the parameters utilized
in each of them.

5.3.2 Comparison

In this section, we evaluate and compare the performance of the trained centralized RL
scheduler with two baselines: the sensing-based distributed scheduling mode 4 from the
3GPP standard [12] as described in Section 2.3.3, and a centralized scheduler assigning
random resources to the vehicles entering DOCA. Simulation of the vehicular environment
is carried out using the realistic network simulator ns-3 [259], and the vehicular mobility
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Fig. 5.4 Mean (green, dashed, denoted), median (red) with 95% confidence interval around
(notches), 25th and 75th percentiles (box), and 1st and 99th percentiles (whiskers) of PRR for
the proposed centralized RL scheduler, distributed mode 4 algorithm [236], and a centralized
scheduler assigning random resources [34] ©2018 IEEE.

simulator SUMO [247] as described in Section 3.3. The key performance indicator (KPI)
we are interested in is the PRR as defined in Section 3.2. We report the results in terms of
the mean, median (with 95% confidence interval), and percentiles of PRR measured for the
range 0−100 m between the transmitters and the receivers. Fig. 5.4 shows the results for the
considered scenarios.

For E1-A, RL scheduler is able to perform at 100% PRR (after eliminating the transient
phase that starts from the state of randomly assigned resources), which is achieved by learning
to allocate time-orthogonal resources to each vehicle in DOCA. As the number of vehicles
inside the DOCA is equal to the number of resources, no collision would occur, and all the
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vehicles can hear each other all the time. Mode 4 is able to achieve a mean PRR of 96.3%,
where the performance degradation comes from the randomness in its resource selection
algorithm. After each sensing period, vehicles select the resource to transmit randomly
among the best 20% resources according to their sensing results (as described in Section
2.3.3). In our case, each vehicle selects one of the two best resources out of 10 at random,
which results in collisions if an occupied resource is selected. As one of the two selected
resources will always be occupied for the case of the last (10th) vehicle selecting a resource,
collision happens with a probability of 5% (1/2×1/10) on average, which is in line with
our simulation results. The scheduler assigning random resources acts as a reference for the
remaining two algorithms, as it performs the worst with a mean PRR of 70.1%. The optimal
performance, however, could be also achieved using a round-robin scheduler assigning time-
orthogonal resources to the vehicles entering DOCA. In that sense, scenario E1-A serves as a
sanity-check, where RL scheduler is shown to perform optimally.

In E1-B, performance of both RL scheduler and mode 4 is degraded, due to introduced
HD constraint in the environment. Whenever a vehicle transmits, it does not hear the other
transmissions taking place at the same slot on the next subchannel. Nevertheless, RL can
achieve a performance of 96.5% average PRR as compared to mode 4 (93.2% average PRR).
The strategy that the RL scheduler learns in this scenario is to allocate resources orthogonal
both in time and frequency as much as possible. As there are 2 more vehicles than the number
of slots, RL scheduler tries to assign them to different subchannels, rather than assigning to
the occupied subchannel at each slot, hence most of the time resulting only in half-duplex
reception errors among 2 vehicles instead of any collision error affecting the reception of all
vehicles. Hence, again, the RL scheduler manages to find the near-optimal solution. On the
other hand, random resource allocation performs better than in Scenario A, as the network is
in an under-loaded condition with higher probability of assigning non-colliding resources,
compared to a loaded one.

Scenario E1-C represents the overloaded network conditions, in addition to the HD
constraint. Therefore, collisions are unavoidable in any case since all vehicles are assigned
resources (i.e., no admission control), which results in a considerable amount of performance
degradation in case of all algorithms. In this scenario, RL scheduler develops a strategy
where it tries to maximize the number of non-colliding resources, namely assigning them
orthogonally in time and frequency as much as possible, as in E1-B, this time scheduling
all the remaining vehicles onto one or two resources where they collide. In the best case,
19 vehicles in DOCA are scheduled to orthogonal resources, and the remaining ones are

“Best” in this context is defined as the lowest energy sensed on the resource.
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all being assigned the single resource left, which results in a mean PRR of about 75%. RL
scheduler performs slightly better than mode 4, and provides a mean PRR of 69.1%.

Scenario E2 allows for the reuse of the resources, which results in an overall better
performance compared to the overloaded case of scenario E1-C. PRRs up to 94% are
achievable by RL, even in the case of a higher number of vehicles in DOCA. Compared to E1,
RL makes use of additional state information obtained from the environment, as explained in
Section 5.2.2. Looking at specific state-action pairs, we observe that most of the time RL
(re)uses the same resource in either of the directions while allowing some time gap between
each reassignment. Moreover, thanks to the modified reward definition for E2, it yields a
very low number of unused resources.
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Table 5.2 RL model parameters (adapted from [34] ©2018 IEEE).

E1-A E1-B E1-C E2
State information size 10×1 20×1 20×1 (N = 30)×3
Number of actions per epoch 20 30 48 120
Number of training epochs 400 1400 1200 930

Learning rates of actor-critic 10−4 10−4 10−4, and 10−5
10−3

⌊1+0.01×#ep1.1⌋for #ep > 1000
Layers of actor-critic DNNs 2 convolutional + 2 fully connected 2 conv. + 1 FC
Number of learning actors 16

5.3.3 Learning Performance

To analyze the convergence of the RL scheduler, we show the learning curves in terms of the
collected average reward by the RL agent with respect to the number of training epochs, in
Fig. 5.5, for all four scenarios. Detailed training parameters for each scenario are provided
in Table 5.2. Note that we are more interested in the convergence behavior, rather than the
actual value of the average reward that the agent has been converged to.

As can be observed from Fig. 5.5, it takes around 350 epochs for the RL agent to converge
for scenario E1-A to an average reward of around 9.6. On the other hand, scenarios E1-B,
E1-C, and E2 require more epochs for the algorithm to converge to a certain level of average
reward, mainly due to larger state-space they contain. Particularly, the algorithm converges to
an average reward of around −3.1 after around 900 epochs in E1-B. In E1-C, the algorithm
converges to an average reward of around −5.7 at around 1200th epoch. In order to assure
convergence for scenario E1-C, we further tuned the learning rates of the actor-critic DNNs,
which is shown to have an impact on the learning performance of the A3C algorithm [173].
Specifically, we reduced both from 10−4 to 10−5 after the 1000th epoch, as we started to
observe oscillations on the average reward that are also visible from Fig. 5.5(c). For E2, the
agents were able to converge to an average reward of around−2.7 on the simple environment
they were trained, in around 760 epochs. The agents were then continued to be trained in the
actual environment, in also which their performance was evaluated in Section 5.3.2. Due to
longer simulation times, number of training epochs in the realistic environment were limited
to around 170 epochs. However, it is expected to have better performance with an extended
training. Learning rates are set to an initial value of 10−3 and reduced exponentially with the
number of training epochs (#ep) to enable better convergence.
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5.4 Conclusions

In this chapter, we proposed an RL-based approach for scheduling the resources for V2V
communications inside a DOCA in a centralized way. We were motivated by the necessity of
an efficient and flexible scheduler to predictively allocate resources, which we concluded
in Chapter 4, and recent successful applications of ML techniques in resource allocation
problems. The proposed RL scheduler learns how to assign resources to vehicles solely
through interaction with the vehicular environment. In particular, we designed the state
information of the environment and the reward signal for the RL model, which are processed
using deep neural networks, and we extended the state-of-the-art A3C algorithm to train our
model.

In specifically-designed DOCA environments varying from simple to complex, and
from under-loaded to over-loaded, including half-duplex and realistic channel conditions,
we investigated the performance of our solution through simulations. In the considered
environments, the proposed RL-based centralized scheduler learned to develop strategies that
allowed it to: i) assign fully orthogonal resources in scenario E1-A; ii) avoid HD constraint
to the extent possible in E1-B; and iii) to group excess transmissions in case of network
overload to a small set of resources in E1-C, thus allowing remaining transmissions to have
no collisions. Furthermore, in a more realistic environment, E2, it achieved the reuse of
resources by taking the direction and arrival time of the vehicles into account, which lead to
success in dealing with an overloaded scenario. Moreover, insights from evaluating a simple
environment, E1, helped us to better design the RL agent for a realistic environment, E2.
In comparison to existing resource allocation schemes, namely the distributed scheduling
algorithm mode 4 from the 3GPP standard and a centralized scheduler allocating resources
randomly, the proposed RL-based scheduler achieved as good as or better performance
in terms of reliability of V2V transmissions, often outperforming them in the considered
settings. Furthermore, the learning process takes a reasonable time, within a few hundred to
thousand epochs, thus making the RL-based approach a promising solution for scheduling
V2V communications under intermittent network coverage.



Chapter 6

VRLS: Vehicular Reinforcement
Learning Scheduler

6.1 Motivation and Contribution

In Chapters 4 and 5, we scoped the problem of scheduling V2V communications in expected
delimited out-of-coverage (OOC) areas, and explored the ability of a centralized reinforce-
ment learning (RL) scheduler to “pre-schedule” the V2V transmissions for OOC, respectively.
We showed that there lies a strong promise in using RL to efficiently schedule periodic V2V
transmissions for OOC areas on highway that experience different vehicular and data traffic.
Our encouraging results in Chapter 5 motivate us for further work, in particular, to consider
more complex vehicular environments outside the network coverage. On the other hand,
RL has its own domain-specific challenges that require careful consideration, especially in
pursuance of a practical solution.

We observe that, in Chapter 5, each time we consider a different vehicular environment,
we were required to redesign (hence also retrain) our RL model to reach a desirable per-
formance. Specifically, we modified the state representation, reward definition, as well as
the structure of the underlying DNN when the environment changed considerably (e.g., in
terms of vehicle density, speeds, or the structure of the resource pool), in order to guarantee
convergence to a “good” policy through learning. Such an approach becomes impractical for
arbitrarily different new environments that V2V communications need to support, and the
policy learned in one environment cannot be used as a starting point in another environment.
In real-world problems, it is likely that the conditions in a given environment, such as road
traffic mobility or data traffic load in a V2V communication network, would change over time.

Parts of Chapter 6 including the results have been published in [35] ©2019 IEEE and [39] ©2022 IEEE.
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It would be impractical to redesign, retrain, and reevaluate a new RL solution every time
the environment changes, even if this change is substantial. Therefore, a single RL-based
solution should be applicable to varying conditions in the environment.

In addition, considering that the RL model is trained “off-line”, i.e., before its deployment,
it is also desirable to learn a policy that is applicable to different environments of interest
without further training. This would eliminate the need of training a new agent from scratch
every time an unseen (yet similar) condition arises in the deployed environment. Furthermore,
it would offer the possibility to train the agent in a simpler, simulated environment, saving
from the burdens of real-world training. In particular, training and deploying RL solutions in
the real world is costly due to following reasons:

• Training an RL agent in a real-world setting is considerably slower than training it in a
simulated environment because of the limited availability of data samples.

• Collecting data from an actual vehicular network is expensive, or might not be even
possible considering the additional signaling and processing overhead it incurs.

• Any undesirable outcomes of an RL agent still under training might threaten the
safety-critical V2V use cases.

Existing literature indicates that the above challenges of RL is not specific to our appli-
cation in vehicular networks, but rather a general problem of deep learning encountered in
different fields. Typically, RL solutions in the literature are designed, trained, and evalu-
ated in the same environment that has a specific distribution of (or even fixed) parameters.
However, particular design choices tailored for a specific setting may not work as well or
even be applicable when the parameters of the environment change significantly. Specifically,
recent studies report the challenge of deep RL, where standard algorithms and architectures
are shown to perform poorly in case changes (e.g., noise) applied to the environment [283].
For example, authors of [284] show that the famous deep RL algorithm [171], which is
trained to play Atari games and shown to outperform humans, fails completely when simple
modifications are applied to the environment (e.g., adding pixels to the screen). Various
approaches are proposed by these recent works, such as changing the state representation,
applying a different DNN architecture, or training the agent from scratch, in order to achieve
applicability and the desired performance of the RL agent in different environments, as
fine-tuning is not always effective (cf. [283], [284], and their references).

In this chapter, we propose Vehicular Reinforcement Learning Scheduler (VRLS), a
unified RL approach to overcome the above-mentioned challenges for scheduling V2V
communications. To achieve this, our VRLS design most importantly focuses on having a
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unified state representation of the vehicular environment, along with the other RL components
whose structures remain the same irrespective of the setting they are applied to. Further, the
state representation contains relevant information for the resource allocation problem in a
condensed manner. In particular, the input to the RL model accommodates variables that
convey the resource utilization status within the road section outside the network coverage,
which can represent any number of vehicles, size of the road, resource pool configuration, etc.
This allows the applicability of the proposed RL model to various environments of interest,
as well as facilitates training over simplified ones. The proposed state representation captures
the information about the traffic load on each resource, potential interference to the vehicle
entering the area, and the vehicle density, per the direction of the traffic, while accounting for
the half-duplex constraint among the resources. Similarly, the reward provided to VRLS is
unified in a way to reflect our overall goal of maximizing the reliability of V2V transmissions
irrespective of the number of resources or vehicles.

Our evaluations in this chapter yield the following contributions:

• VRLS improves the performance of scheduling V2V communications, in terms of
reduced packet error rates achievable in DOCA, compared to state-of-the-art algorithms.
We evaluate VRLS in several sanity-check scenarios, and show that it can learn near
optimal policies in all these cases.

• We train VRLS in simplified and simulated vehicular environments, and show that
it can be deployed with limited or no retraining, in realistic, complex environments,
varying in terms of mobility, wireless channel characteristics, OOC area size, network
load, and traffic.

• We evaluate the performance of VRLS in terms of reliability, resource utilization
efficiency, user fairness, latency, and packet inter-reception time, as well as the impact
of network quality of service on the V2V applications, in comparison to the state-
of-the-art distributed scheduler mode 4. In terms of reliability, VRLS reduces by
half the packet loss of mode 4 in highly loaded conditions, and performs close to the
theoretical maximum in low-load scenarios. VRLS requires much less number of
resources to achieve reliability targets of the V2V applications, as compared to mode
4, especially at higher reliability targets that needs to be satisfied for relatively larger
transmitter-receiver distances. Further, VRLS does not compromise on fairness across
the vehicular users, while achieving similar latency and higher mutual awareness as
compared to mode 4.

• Considering that the network might need to operate differently configured resource
pools in terms of the number of resources in time and frequency, e.g., to support differ-
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ent V2V services, we show that VRLS can be trained across multiple predetermined
resource configurations at once to support any of them by learning a single policy.

In the rest of this chapter, Section 6.2 describes VRLS, Section 6.3 presents the evaluation
results, and Section 6.4 delivers our conclusions.

6.2 VRLS: Vehicular Reinforcement Learning Scheduler

As in Chapter 5, we formulate the centralized resource pre-allocation problem for the DOCA
with a single-agent RL problem, where VRLS acts as the agent on the vehicular network
environment. Based on the observed state st of the environment at each discrete instant t in
which a new vehicle arrives at the DOCA, VRLS takes an action at , which is to assign a
single time-frequency resource to that vehicle. The actions of VRLS are based on its trained
policy π , which we model as a deep neural network (DNN). The agent is trained with a
reward signal rt+1 provided upon each action, indicating how “good” the action was. In turn,
the training goal of the agent is to maximize the total reward it receives in the long run. To
train VRLS, we use the A3C algorithm we extended in Algorithm 3 we provided in Chapter 5.
We utilize Nactor actor-learners in parallel. Each actor-learner updates the shared global
parameters of the DNNs that represent the policy and the value function, after collecting
epochs of experience, where each epoch consists of a sequence of state-action-reward tuples
of length Lepoch.

6.2.1 State Information

We devise the state st to provide the agent with information on how the resources are utilized
at each instant t a vehicle is entering the DOCA. Formally, st is a matrix (shown in Fig. 6.1)
with each row representing a resource (TB) in the resource pool, and the columns providing
the following information:

• C: number of vehicles each resource is assigned, normalized to the maximum number
of vehicles that the DOCA can accommodate (derived by J×LDOCA/Lveh, considering
the case where all lanes are fully occupied). C represents whether the resources are
free and, if not, how much loaded. The vehicle density in the DOCA could also be
obtained from C by accounting for the sum of the allocated resources in proportion to
the calculated maximum number of vehicles.

• ∆x: distance from the entrance point of the DOCA to the latest vehicle the resource
was assigned to, normalized to LDOCA. The distance is estimated by multiplying the
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amount of time passed since the vehicle went out of coverage by the average speed
vavg of the vehicles in the DOCA, as their speed might vary over time. ∆x represents
how far the potential interferers are, hence facilitating spatial reuse of each resource.

• The order of the columns represents the direction of the vehicle entering the DOCA.
The first pair of columns provides C and ∆x for the vehicles traveling in the same direc-
tion as the vehicle entering the DOCA, while the second pair provides the information
from the opposite direction of the DOCA.

Algorithm 4 details how st is calculated. The following variables are input for each
vehicle i inside the DOCA: time of its entry ti, assigned resource ri, traveling direction (i.e.,
east or west) di; as well as the average speed of the vehicle traffic vavg and the current time
tnow. The algorithm first updates the distance ∆xi of vehicles by multiplying the time passed
since their entry, with the average speed. The vehicles that exited the DOCA are excluded
from the list. Then, for each resource r in the resource pool and for each road direction d, the
algorithm finds the vehicles using that resource and traveling in that direction. The number
of found vehicles is normalized and entered in st as the value of C for the respective resource
r and the direction d. Next, among the found vehicles, the algorithm finds the closest one to
the entry point of the DOCA entry at the given direction, i.e., with min(∆xi), and updates the
variable ∆x in st with the normalized value of min(∆xi) for the respective d and r. Finally,
the pairs of the columns in st are ordered with respect to the entering vehicle’s direction.

Algorithm 4 Calculation of the state representation st input to VRLS (adapted from [39]
©2022 IEEE)
Require: ti,ri,di ∀i,vavg, tnow

1: Update vehicle distances: ∆xi← vavg(tnow− ti) ∀i
2: Remove vehicle if it left the DOCA (∆xi > LDOCA)
3: for each resource in the pool r = 1,2, ...,K×M do
4: for each road direction d = {east,west} do
5: Find vehicles using the same resource in the same direction (check if di ==

d && ri == r)
6: Update C of the respective d and r with the number of found vehicles
7: Sort distances of found vehicles to find min(∆xi)
8: Update ∆x of the respective d and r with min(∆xi)
9: end for

10: end for
11: Order the columns of st w.r.t. the direction of the entering vehicle
12: return st

st is applicable to any number of resources and vehicles, and any DOCA size, thanks to
the normalized state variables. An example st is illustrated in Fig. 6.1 for a simple scenario
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Fig. 6.1 State representation of a simple exemplary scenario in the DOCA provided to the
DNN of VRLS [39] ©2022 IEEE.

with 4 resources and a DOCA of LDOCA = 250 m, where a maximum of 50 vehicles of
Lveh = 5 m can fit per lane.

6.2.2 Action Definition

The agent takes an action at , at each instant t a vehicle is about to enter the DOCA. In case
multiple vehicles enter at the same instant, the corresponding actions are taken in random
order. Action denotes assigning a single time-frequency resource, i.e., a TB, which the
vehicle uses for its V2V transmissions through the DOCA. Accordingly, the action-space
is a vector of K×M TBs in the resource pool configured in the network. VRLS gives the
decision on which TB to be assigned at time t by its policy π . The policy is a mapping
π(at |st)→ [0,1]K×M from the state st of the environment at t, to a probability distribution
over the set of possible actions (the TBs in the resource pool). The TB to be assigned is
selected at random according to this distribution.

6.2.3 Deep Neural Network Architecture

The large space of possible combinations of vehicles and resources makes tabular RL methods
infeasible for this problem [164] (cf. Section 2.5.2). This leads us to apply approximate
solution methods by utilizing a DNN to represent the policy. DNN consists of a set of
adjustable parameters θ , i.e., π(at |st ,θ) that maps a given state to action probabilities.

We utilize a convolutional neural network (CNN) to model πθ . At the input layer, we
utilize 4 sets of convolutional filters, each processing a different column of st , as illustrated
in Fig. 6.1. Each set contains 16 1D convolutional filters of length 10 and applies a tanh
nonlinearity. The output of these filters is then concatenated and input to the hidden layer of
the CNN, which is another convolutional layer with 32 1D filters of length 10. The output
layer of the CNN is a fully-connected layer with the number of units equal to the number of
actions, i.e., K×M TBs available in the configured resource pool. The softmax activation
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function is applied at the output to produce a probability distribution over the actions, from
which the TB to be assigned is selected at random.

6.2.4 Data Augmentation

The output of convolutional layers is variant to the order of the input data they process, due
to the convolution operation. Although this is useful for their most common applications,
such as processing images or audio that present naturally ordered data (e.g., ordered pixels in
space), this feature poses a limitation in our case. The policy of VRLS should not depend
on the order of resources presented in st , but rather on the information provided about them.
That said, the HD constraint depends on the order of resources in the resource pool, as the
HD error is caused by using the resources in the same slot (cf. Section 3.1.4). For example,
the two pool configurations C4×5 and C2×10 have different HD constraints, although both
have the same number of resources, and there is no information in the state representation to
differentiate between them.

To address this challenge, we resort to data augmentation methods. Data augmentation
is commonly utilized in deep learning, e.g., for image classification tasks, where the agent
is made to learn becoming invariant to the modifications of the data, e.g., image rotation,
clipping, etc., by providing the agent with such modified inputs during the training, as applied
in [285] and [286]. In our case, we apply data augmentation by randomly shuffling the order
of resources first in time and then in frequency. The rows of st and the resource selection
probabilities at the output layer of the DNN follow this order. To illustrate our method,
consider the example in Fig. 6.1. A raster-scan ordering of the resources in the resource pool
is [r1,r2,r3,r4]. We first group the resources sharing each slot (corresponding to “columns”
of the resource pool), and randomize the order of these groups. This yields a raster-scan
ordering of, e.g., [r2,r1,r4,r3]. Then, we group the resources sharing each subchannel,
i.e., the “rows” of the pool, and randomly shuffle the order of the “rows”. This way, the
convolutional network becomes invariant to the order of resources in time or frequency, while
being able to infer the HD constraints among the resources.

In Appendix A, we provide several other design options for the DNN architecture and data
augmentation we have considered for VRLS, along with the one proposed here. We compared
their performance in terms of learning performance and reliability of V2V messages. Our
results showed that the proposed design here achieves the best performance in both terms.
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6.2.5 Reward Definition

We impart our main goal of maximizing the reliability of transmissions taking place in DOCA
to the reward signal rt+1 provided to the agent upon its each action at . Specifically, we define
the reward as a linear function of the reliability metric PRR: rt+1 =−10× (1−PRR). PRR
is computed at a certain range of interest for all transmissions within the DOCA since the
last action, i.e., in between each vehicle arrival to the DOCA. The range at which the PRR
is measured for the reward could be determined by several factors, such as the distance at
which a target PRR value needs to be satisfied; additionally, it can also be limited by the
transmission power of the vehicles. In case no transmissions take place between consequent
actions, e.g., when two vehicles enter the DOCA almost at the same time, we provide the
reward of the previous action to the agent.

6.3 Evaluation

In this section, we first compare the performance of VRLS with the state of the art, including
the RL scheduler we designed in Chapter 5. We then demonstrate the ability of VRLS to
handle resource conflicts including the half-duplex (HD) constraint under various resource
pool configurations and settings that enable a tractable analysis, where the optimal schedule
is computable. Later, we evaluate the performance VRLS achieves in case of more complex,
realistic scenarios, under varying mobility, density, wireless channel, and message traffic
inside the DOCA. Following, we show how VRLS can handle multiple differently configured
resource pools in parallel. In the last two subsections, we analyze the learning performance
of VRLS and elaborate on its practical aspects including a complexity analysis, respectively,
for implementing VRLS in the real world.

6.3.1 Training Environment Model and Methodology

The training environment (denoted as “E0”) has basic vehicular mobility and wireless channel
characteristics, as described in Section 3.1.6, which enables an efficient training thanks to
reduced simulation time. The communications in the training environment is abstracted by
the protocol model [250], using a transmission range of RTx = 120 m. The mobility is simple
with 30 vehicles having the same constant speed of 50 km/h, initially placed uniformly at
random inside a DOCA of length LDOCA = 500 m with J = 1 lane/direction of 4 m width.
Upon exiting the DOCA, the vehicles are returned back from the opposite direction after
a time offset ∼ Exp(0.4), leading to an average inter-vehicle gap of 2.5 s [236]. The V2V
resource pool in the network is assumed to be configured with C2×10, i.e., 2 subchannels by
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Fig. 6.2 Comparison of VRLS to the state of the art (our solution proposed in Chapter 5 de-
noted with “RL”) in a multi-collision-domain (MCD) DOCA. Mean (green, dashed, denoted),
median (red) with 95% confidence interval around (notches), 25th and 75th percentiles (box),
and 1st and 99th percentiles (whiskers) of PRR (adapted from [35] ©2019 IEEE).

10 slots to generate loaded conditions with a V2V message traffic that has a fixed periodicity
of T m = 100 ms.

The training is conducted using Nactor = 16 actors in parallel, each interacting with a
different instance of the environment in epochs of length Lepoch = 60. For the computation
of the reward during the training, PRR is measured at 0− 100 m Tx-Rx distance for the
transmissions taking place in between each action, as described in Section 3.2.

6.3.2 Comparison of VRLS and State-of-the-art Algorithms

We first compare the performance of VRLS with our solution proposed in Chapter 5, as well
as the distributed scheduling algorithm mode 4 from the 3GPP standard [12] (as described in
Section 2.3.3), and the random resource allocation performed by a centralized scheduler.

We evaluate the performance of the algorithms in an overloaded network scenario with
multiple collision domains inside DOCA, denoted as “MCD”. To achieve this condition, 30
vehicles are assumed to be traveling in DOCA (of 500-m length with single lane per direction),
with an available resource pool configured with 2 subchannels by 10 slots, i.e., C2×10, where
their transmission ranges are limited to around 120 m by adjusting the transmission powers.
As in the training environment, vehicular density in DOCA is constant where vehicles return



130 VRLS: Vehicular Reinforcement Learning Scheduler

Table 6.1 Simulation parameters (adapted from [35] ©2019 IEEE).

MCD SCD-i SCD-ii SCD-iii
Maximum number of vehicles 30 10 4 5
Resource pool configuration C2×10 C2×10 C10×2 C4×5

DOCA
LDOCA = 500 m of a straight highway,
J = 1 lane per direction, 4 m lane width

Vehicle speed 50 km/h
Vehicle distribution Poisson with mean of 2.5-s distance [236]
V2V transmission power PTx –5 dBm 23 dBm (the maximum value)
V2V message size and periodicity Sm = 190 Bytes, T m = 100 ms
Mode 4 Pkeep 0
Number of actions per epoch 60
Actor-critic learning rates 10−3/(1+0.01×#ep1.1)

V2V channel model [236]

Pathloss model
LOS in WINNER+B1 with antenna height = 1.5 m;
pathloss at 3 m is used for distance < 3 m

Shadowing fading
Log-normal distributed with 3 dB standard deviation,
and decorrelation distance of 25 m

back to DOCA from the opposite direction once they leave it, and assumed to travel at
constant speeds. Different than the training environment, path loss and fading effects on the
wireless channel are introduced into the evaluation environment with parameters in Table 6.1.
We report the performance of the RL agents after a limited re-training (for 200 epochs) on
the new environment. Further details of the evaluation assumptions are provided in Table 6.1.

We present the results of the algorithms in Fig. 6.2 in terms of the PRR measured at
0−100 m range between the transmitters and receivers, as described in Section 3.2. Under
the considered settings, VRLS outperforms the other schedulers by reaching up to 93% PRR.
Specifically, we observe a significant improvement on low percentiles. The performance gain
with respect to our previous RL scheduler is mainly achieved by the difference in our design
of the state representation described in Section 6.2.1.

In terms of the developed policy, VRLS learns to divide the resource pool dynamically
into two directions of the highway, proportional to the density of each direction, while
performing resource reuse per direction. This way, resources are efficiently utilized while
aiming to minimize the collisions, with the trade-off controlled by the received award. On the
other hand, HD errors occur due to agent’s allocations, which in this scenario is unavoidable
given the overloaded conditions of the network. In majority of such cases, subchannels
sharing the same slot are assigned to vehicles moving in opposite directions. Such vehicles
would not be able to listen to each other when passing each other for a short duration of
time. However, this type of allocation degrades the PRR to a lesser extent compared to the
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Fig. 6.4 Performance of VRLS on a single-collision-domain (SCD) DOCA, with added com-
plexity to mobility, in scenarios SCD-i, SCD-ii, and SCD-iii. Mean (green, dashed, denoted),
median (red) with 95% confidence interval around (notches), 25th and 75th percentiles (box),
and 1st and 99th percentiles (whiskers) of PRR [35] ©2019 IEEE.

impact of alternative policies, e.g., HD errors or collisions that would otherwise occur more
persistently in the same direction.

6.3.3 Learning the Half-duplex Constraint

Our evaluation in the previous subsection demonstrated VRLS capability to reuse TBs,
and prevent collisions in an overloaded MCD scenario. In this subsection, we evaluate the
performance of VRLS in scenarios that specifically require its capability of learning and
solving the HD constraint, given different configurations of the resource pool, as shown
in Fig. 6.3. In particular, we consider a single-collision-domain (SCD) DOCA, where all
vehicles inside are able to sense each other’s transmissions, and any resource reuse leads
to collision. Fig. 6.3 shows the three resource pool configurations. The first two scenarios
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represent the two extremes of a resource pool configuration: SCD-i) C2×10: 2 subchannels
by 10 slots, and SCD-ii) C10×2: 10 subchannels by 2 slots. For SCD-i and SCD-ii, we
simulate a maximum number of 10 and 4 vehicles, respectively. The third scenario (SCD-iii)
lies in between: 4 subchannels by 5 slots (i.e., C4×4), and we simulate 5 vehicles. These
settings are chosen such that any HD errors would decrease the PRR considerably, and
the optimal resource allocation is possible only if the HD relation among the resources is
learned by the scheduler. Differing from the previous evaluations, we also introduce an
added complexity to the vehicular mobility, where after leaving, vehicles return to DOCA
after a time offset distributed exponentially at random with a 2.5 s mean, which introduces
time-varying vehicular density inside DOCA.

The performance of the RL agent for each scenario is shown in Fig. 6.4 in terms of
PRR.We observe that VRLS can easily adapt to each of the settings, and performs near
optimal in all scenarios (i.e., close to the analytical maximum), after a training of around 500
epochs. In SCD-i and SCD-iii, 100% PRR is achievable analytically, if the TBs assigned to
vehicles are all orthogonal in time (i.e., chosen from different slots). In SCD-ii, in case all
four vehicles are inside the DOCA, then in the best case, two vehicles are assigned different
subchannels in one slot and two in another, yielding a PRR of 66.7% (limited by the HD
constraint). Higher PRRs are achievable in the case of fewer number of vehicles traveling
through DOCA.

In SCD-i, a single HD error due to an assignment of two resources non-orthogonal in time
would analytically lead to 97.7% PRR, which can be observed in around 25% of the cases. In
SCD-ii, a single HD conflict would result in a PRR of 50%, observed in less than 25% of the
cases. In case of SCD-iii, the agent is able to achieve a similar performance, having a single
HD conflict in 1% of the cases, which results in a PRR of 90%. Moreover, occasionally
in SCD-ii, there are fewer than four vehicles traveling in DOCA, where a single HD error
between two vehicles would yield a PRR of 0%. The trained RL agent is successfully able to
yield non-zero PRRs more than 99% of the time.

On the other hand, compared to HD errors, any collision error (due to assignment of the
same TB to more than a single vehicle) would reduce the PRR to a greater extent. As an
example, in SCD-i, assigning the same TB to a single pair of vehicles in DOCA would result
in an analytically derived PRR of 80%. Such cases were only observed in less than 1% of the
time, which shows the success of the RL agent on avoiding the collisions. Overall, the results
show the ability of VRLS to learn and deal with the HD constraint, in addition to avoiding
the collisions, achieved in three different resource pool configurations.
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Table 6.2 Simulation parameters (adapted from [39] ©2022 IEEE).

Realistic Evaluation Environments
E1-L E1-HL E2-L E2-HL

Mobility model Straight highway section with 4-m lane-width; vehicle length Lveh = 5 m

– Highway scenario
J = 1 lane/direction, no overtaking J = 2 lanes/direction, with overtaking

LDOCA = {500,1000} m LDOCA = {500,1000} m

– Vehicle speeds ∼N (120,12) km/h ∼N (50,5) km/h ∼N (120,36) km/h ∼N (50,15) km/h

– Dynamics
Poisson arrival per direction with ∼ Exp(0.4) [236]

Realistic SUMO mobility [247]

Network model
Complete LTE V2X protocol stack in ns-3 [259] [266] [265]

Bandwidth = 10 MHz (50 RBs) with 32 RBs active; Carrier frequency = 5.9 GHz

1 subchannel = 16 RBs, 1 slot = 1 ms, MCS index = 9

V2V channel model
3GPP Channel Model [236] with Path loss: LOS model in WINNER+B1 with

antenna height = 1.5 m; path loss at 3 m is used for distances < 3 m

Shadowing fading: log-normal distr. with 3 dB std. dev. and 25 m decorr. distance

PTx = {–5,23} dBm; Thermal noise level = –174 dBm/Hz

1 Tx and 2 Rx omni-directional antennae with 3 dBi gain and 9 dB Rx noise figure

Message traffic model Sm = 190 Bytes; T m = 100 ms for periodic [236], and Xevt = 1/ s for aperiodic traffic.

Resource pool
C2×10 (2 subchannels by 10 slots) and C2×50 (2 subchannels by 50 slots),

periodically repeating with 100 ms

Mode 4 Configuration Parameters
T1 = 4 ms [236], T2 = {14,54} ms, Cresel ∼ Unif[5,15] [100], Pkeep = 0, T hrsense = –120 dBm

VRLS Training Parameters
Nactor = 16; Lepoch = 60; α = 10−3/(1+0.01×#ep1.1)

6.3.4 Realistic Evaluation Environment Models and Methodology

We now evaluate the performance of VRLS trained on the simple environment E0, over realis-
tic environments accommodating various mobility, density, wireless channel conditions, and
message traffic in the DOCA. Table 6.2 provides an overview of the considered environments
and their parameters.

We consider two realistic evaluation environments denoted as “E1” and “E2”. E1 has
a single lane per direction, which obliges vehicles to drive in an ordered manner, thus
representing a use case similar to platooning. Whereas, E2 has two lanes per direction, which
yields more dynamic mobility due to the second lane allowing overtaking. We consider two
DOCA lengths of LDOCA = 500 m and LDOCA = 1000 m for both environments. The vehicle
arrivals to the DOCA follow a Poisson distribution with rate 0.4/s (mean of 2.5 s inter-arrival
time) per direction as per the 3GPP evaluation assumptions [236]. The vehicles follow
a stochastic driving behavior by randomly varying their speeds based on the utilized car-
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following and lane-changing models [245], [246], which depend on, e.g., average speed, road
length, etc., hence making the mobility even more realistic in the evaluation environments.
We vary the mean and variance of the vehicle speeds in both environments to create different
loads of the vehicular traffic over time and space. Specifically, we consider two scenarios
in terms of vehicle density, denoted as loaded (“L”) and highly loaded (“HL”), both in E1
and E2, where the mean speed of the vehicles is set to 120 km/h and 50 km/h, respectively
(i.e., the slower, the denser). Further, the speeds among the vehicles are normally distributed,
where we set the variance to 10% and 30% of the mean values in E1 and E2, respectively.
The higher variance of speeds in E2 increases the occurrence of vehicle take-overs across the
two lanes.

Unless otherwise stated, the vehicles generate a periodic V2V traffic with T m = 100 ms
and Sm = 190 B (as common to CAMs [236]). We set the MCS index as 9 and the number
of RBs per subchannel as 16 to fit the transmission of a single message of 190 B into a
single subchannel. In order to simulate loaded (and highly loaded) channel conditions in our
evaluations, we assume that the resource pool consists of 2 subchannels in the frequency
domain (within an overall V2V bandwidth of 10 MHz) and 10 slots in the time domain
(hence denoted by C2×10) unless otherwise stated, considering the number of vehicles and
their V2V message generation rate. We accordingly set the length of the resource selection
window of the mode 4 algorithm to 10 ms with T1 = 4 [236] and T2 = 14 ms. T1 is to allow a
processing time for the vehicles before they transmit their V2V messages, and T2 sets a limit
on the maximum latency of the transmissions. Pkeep is set to 0, which leads to a dynamic re-
selection of resources as much as possible, and has been shown to improve the reliability by
avoiding persistent collisions especially under (highly) loaded channel conditions as in [287].
To enable multiple collision domains within smaller DOCA lengths (500 m), we set the
V2V transmit power as −5 dBm, which yields a maximum communication range of around
200 m. This allows us to simulate environments with fewer vehicles, thus taking shorter
simulation times. Nevertheless, we evaluate the performance of the algorithms also with the
transmission power set to its allowed maximum value of 23 dBm [282] in Section 6.3.8. The
further parameters related to the environment models, training of VRLS, and configuration
of mode 4 are as listed in Table 6.2.

6.3.5 Reliability Performance

In Fig. 6.5, we compare the reliability of VRLS and mode 4 in E1 and E2 with loaded (L)
and highly-loaded (HL) traffic with two DOCA sizes of LDOCA = 500 m and 1000 m, using
different subfigures. The plots provide the mean (solid curve) and the standard deviation
(shaded region) of the average PRRs calculated in 10 s intervals, for a simulation duration of
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(c) E1-HL, LDOCA = 500 m
(speeds ∼N (50,5) km/h).
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(g) E2-HL, LDOCA = 500 m
(speeds ∼N (50,15) km/h).
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(speeds ∼N (50,15) km/h).

Fig. 6.5 Performance of VRLS and distributed scheduling algorithm mode 4 in the DOCA
environments E1 and E2 with different vehicular mobility scenarios. PRR vs Tx-Rx distance
shown with mean (solid curve) and standard deviation (shade) [39] ©2022 IEEE.
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Table 6.3 Percentages of packet loss due to scheduling, and mean latency in E1 and E2 [39]
©2022 IEEE.

E1-L 500m E1-L 1000m E1-HL 500m E1-HL 1000m E2-L 500m E2-L 1000m E2-HL 500m E2-HL 1000m
Tx-Rx[m]VRLSMode 4VRLSMode 4VRLSMode 4VRLS Mode 4VRLSMode 4VRLSMode 4VRLSMode 4VRLS Mode 4

0-20 10.6 16.6 25.9 35.0 18.2 26.0 32.8 51.9 9.0 16.6 25.6 36.7 11.7 21.3 30.5 47.9
20-40 5.1 18.6 15.4 34.8 12.6 32.1 25.8 58.8 7.3 19.5 27.7 41.8 10.1 27.6 28.5 56.5
40-60 5.0 21.4 12.8 37.8 14.7 40.9 29.2 70.1 7.6 22.7 31.4 46.5 10.6 33.7 33.7 66.4
60-80 5.3 26.8 15.8 45.4 18.9 47.0 34.9 77.0 8.7 26.7 37.7 51.4 12.4 38.7 36.8 72.8

80-100 7.4 27.9 17.2 48.4 26.7 51.1 46.0 78.6 11.7 30.4 43.4 54.8 17.8 42.5 42.2 74.4
100-120 3.6 17.1 12.2 34.5 20.4 32.8 35.6 51.6 6.5 19.4 30.8 35.2 12.6 27.4 29.7 48.4
120-140 8.5 13.1 7.9 20.6 16.6 21.0 22.9 27.6 9.5 15.3 19.2 21.2 12.5 17.6 19.6 26.3

Latency [ms] 9.43 7.80 9.40 7.89 9.40 8.79 9.41 7.96 9.39 8.25 9.30 8.04 9.44 8.80 9.36 7.92

1000 s (excluding the initial warm-up phase of 200 s due to the initial random assignment of
resources).

Fig. 6.5 shows that VRLS achieves better performance than mode 4 in all of the consid-
ered scenarios. VRLS is typically able to maintain a higher PRR over larger transmission
ranges in both E1 and E2. The performance of mode 4 degrades more with the increasing
distance between the transmitters and the receivers, mainly caused by the hidden-node prob-
lem leading to packet collisions. Beyond 100 m, the path loss effect of the wireless channel
becomes dominant, and inevitably reduces the PRR of both algorithms.

To isolate the errors due to scheduling, in Table 6.3, we numerically show the percentage
of the packet losses due to the scheduling of the algorithms. The percentages at each
transmitter-receiver (Tx-Rx) range are calculated as the difference between the achieved
mean PRR and a reference value giving the maximum possible mean PRR in the environment.
The reference values represent an ideal scenario, which assumes that there are always
sufficient resources for all transmissions, and the packet losses are only due to propagation
errors. For convenience, we also plot the maximum possible PRR as a reference curve in Fig.
6.5(a), 6.5(e), and in Fig. 6.7.

From Table 6.3, we observe that VRLS has superior performance compared to mode 4 in
all scenarios. Within a 100 m of Tx-Rx range, VRLS maintains a higher rate of successful
packets. Beyond this range, the packet losses are predominantly caused by the propagation
loss rather than the scheduling, given the low transmit power. In scenarios E1-L and E2-L
with LDOCA = 500 m, VRLS shows a performance close to the ideal scenario. The PRR for
both algorithms is degraded considerably with the increased vehicular density, as well as the
increased DOCA size that impact the interference conditions. In the highly-loaded scenarios,
the collisions increase due to the allocation of the same resources to different vehicles. In
such cases, although both algorithms perform sub-optimally given the limited number of
resources, VRLS results in half the packet losses compared to mode 4.
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We examined the policy that VRLS learned by observing the course of states and actions.
VRLS develops a strategy to divide the resource pool dynamically into two directions of the
highway, in proportion to the data traffic demand. Simultaneously, VRLS performs resource
reuse per direction, hence mitigating the hidden-node problem. Given the loaded conditions,
HD errors in the network become inevitable even though the collisions could be avoided.
Namely, vehicles can be allocated to different subchannels, yet sharing the same time slot. To
illustrate, with C2×10, when there are 20 vehicles in the DOCA, each of the 10 slots would be
shared by two vehicles using different subchannels in order to avoid any resource collisions.
Yet, such an allocation would result in HD errors among these vehicles when they enter
within each other’s communication range. In fact, in such loaded scenarios, the probability
of unsuccessful transmissions due to HD errors would be even larger if the pool consisted
of fewer slots and more subchannels (e.g., C4×5) as more vehicles would be required to use
the different subchannels sharing each slot to avoid any collision errors. We evaluate and
observe such different resource pool configurations in Section 6.3.12. Yet, VRLS learned to
assign the resources with HD conflicts, i.e., the subchannels sharing the same time slot, to
vehicles in the opposite directions rather than to the nearby vehicles in the same direction.
Such assignment strategy results in comparatively fewer HD errors, as those vehicles pass by
each other for a shorter duration of time. The outcome is especially observable in E1. The
single-lane traffic in E1 results in a minimum inter-vehicle distance of about 40 m within a
lane. The Tx-Rx distances below 40 m have a reduced PRR, which occurs only as a result of
the vehicles from opposite directions passing by each other. Compared to E1, the second
lane in E2 enables the vehicles to overtake each other, hence resulting in a more dynamic
environment. Subsequently, the distance between the vehicles in the same direction can take
any value, resulting in a smoother decrease of the PRR with the increasing Tx-Rx range,
as compared to E1. The trained VRLS policy is efficiently deployable in such a dynamic
environment with varying vehicular density and network load over time and space, where it
can deliver higher reliability than mode 4.

6.3.6 Impact of Communication Quality of Service on V2V Applications

We evaluate the impact of PRR on the performance of V2V applications, by utilizing the
awareness probability PA introduced in Section 3.2. As an illustrative example, the lane-
change warning application requires at least n = 3 messages to be received within T = 1 s
with PA = 99% to make the neighboring vehicles aware of the intended maneuver [257]. Fol-
lowing our assumption of 10 Hz message frequency, i.e., k = 10, and assuming independent
message errors, this translates into a PRR requirement (i.e., p given PA) of 61.12%. In our
multi-lane environment E2, VRLS can achieve such a PRR at up to a 120 m of range for
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Fig. 6.6 PRR evaluation of VRLS and mode 4 with aperiodic V2V traffic in the environment
E2-HL with LDOCA = 1000 m. PRR vs Tx-Rx distance shown with mean (solid curve) and
standard deviation (shade) [39] ©2022 IEEE.

LDOCA = 500 m (see Fig. 6.5(e) and 6.5(g)), and up to around 80 m in LDOCA = 1000 m (Fig.
6.5(f) and 6.5(h)). In comparison, mode 4 achieves around 100 m and 80 m of an awareness
range in LDOCA = 500 m under the loaded and highly-loaded traffic, respectively. In the case
of LDOCA = 1000 m, mode 4 yields an awareness range of 30 m for the loaded scenario, and
cannot satisfy the requirement at all for the highly-loaded scenario.

6.3.7 Performance under Aperiodic V2V Traffic

We further evaluate the performance of VRLS under event-triggered V2V traffic. The vehicles
are assumed to generate a message upon each event, where the event arrivals for each vehicle
follow a Poisson distribution with a rate of 1 event/s (Xevt = 1/s). In Fig. 6.6, we report the
PRR performance of the algorithms in scenario E2-HL with LDOCA = 1000 m by considering
aperiodic traffic only (not coexisting with periodic traffic). The event-triggered traffic results
in less frequent V2V message generation as compared to the periodic traffic, which effectively
creates a lower network load. Accordingly, the performance of both algorithms is increased
(observed also in other scenarios), with VRLS achieving a PRR very close to 100% up to
a range of 80 m. The results show that the policy learned by VRLS for the periodic traffic
is applicable to the aperiodic type of traffic as well. On the other hand, mode 4, which is a
solution primarily designed for periodic V2V traffic, underperforms in this setting.
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Fig. 6.7 PRR evaluation of VRLS and mode 4 in comparison to maximum possible value
(reference) with PTx = 23 dBm and C2×50 in E2-L with LDOCA = 1000 m. PRR vs Tx-Rx
distance shown with mean (solid curve) and standard deviation (shade) [39] ©2022 IEEE.

6.3.8 Performance under High Transmit Power and Larger Resource
Pool

For all of the results above, the vehicle transmit powers are set to PTx =−5 dBm, whereas
the allowed maximum for V2V transmissions is 23 dBm [282]. We selected −5 dBm to
enable multiple collision domains for smaller DOCA lengths (500 m). This allowed us to
simulate environments with fewer vehicles, thus taking shorter simulation times. To ensure
that the performance of VRLS holds for larger and arguably more realistic communication
ranges, we evaluate the performance of the algorithms with the transmission power set to
23 dBm for all vehicles in E2-L with LDOCA = 1000 m. In order to compensate for the
increased interference caused by the high-powered transmissions, we consider a pool that
consists of 2 subchannels and 50 slots, i.e., C2×50, which is five times larger than the resource
pool configuration C2×10 we have considered so far. For this scenario, VRLS is trained in E0
as well, but utilizing the resource pool C2×50.

Results of the algorithms are provided in Fig. 6.7, where we see that both algorithms
achieve very high reliability, close to 100% PRR at shorter Tx-Rx distances, owing to
sufficiently provisioned resources. VRLS delivers marginally higher PRR than mode 4 at
almost all Tx-Rx ranges. The results demonstrate that VRLS is trainable on environments
having different resource pool configurations, and that the learned policy is applicable to
scenarios with different transmission ranges. The small percentage of packet losses in the
environment results mainly from propagation errors, but also due to HD or even collisions to
small extent. In case of mode 4, vehicles cannot sense the slots they transmit on (due to HD
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constraint), thus there exists a probability of selecting resources used by other vehicles that
might interfere or collide. In case of VRLS, although the learned policy avoids allocating the
same resource to more than a single vehicle, it is challenging for the agent to learn the HD
constraints in such a large and sparse state-space, where some of its assignments lead to HD
errors.

6.3.9 Performance under Larger DOCA Size

We extend our evaluations to consider larger sizes of DOCA, especially to see the impact of
longer periods of intermittent coverage on the reliability of resources scheduled by VRLS.
After a vehicle arrives at the DOCA, interference conditions it experiences throughout the
DOCA evolve over time, where the increase in DOCA size would make the task of efficient
resource reuse across the DOCA even more difficult. In Table 6.4, similar to Table 6.3, we
provide the percentages of packet losses due to scheduling of VRLS and mode 4, for the
Tx-Rx range of 80-100 m, for different environments varying in terms of the DOCA size.

In the case of E1, since vehicles travel on a single lane per direction, interference
conditions among the vehicles reusing the same resource in the same direction are not
expected to change considerably over time. Our results in Table 6.4 for the environment
E1-HL verify this hypothesis by showing that a larger DOCA size does not considerably
impact the PRR of the algorithms in case of having only one-way traffic. On the other hand,
with the addition of vehicle traffic from the opposite direction, the rate of resource collisions
in E1 considerably increases with the size of the DOCA, since vehicles get longer exposure to
the interference they experience from the vehicles reusing the same resource on the opposite
direction. In the case of VRLS, where vehicles use their assigned resources persistently
throughout the DOCA, the rate of resource collisions shows a larger increase with the size
of DOCA, as compared to mode 4, where vehicles continuously re-select their resources
based on the updated sensing results. In the case of E2, due to the extra lane in each direction
offering an additional degree of freedom to the vehicles, further mobility deviations lead to
diverse interference conditions within the DOCA over time, as its size gets larger. Our results
in Table 6.4 show that larger DOCA in the case of E2 also yields a considerable increase in
the rate of resource collisions for both algorithms.

6.3.10 Resource Efficiency

We observe in the above evaluations that the PRR highly depends on the network load
and interference conditions in the environment, where the reliability requirements of V2V
applications may not be satisfied under a given amount of traffic demand and available
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Table 6.4 Percentages of packet loss due to scheduling under different DOCA sizes.

Environment LDOCA VRLS Mode 4
E1-L 500 m 7.4% 27.9%
E1-L 1000 m 17.2% 48.4%
E1-L 2000 m 30.0% 65.4%

E1-HL 500 m 26.7% 51.1%
E1-HL 1000 m 46.0% 78.6%

E1-HL one-way traffic 1000 m 22.1% 65.4%
E1-HL one-way traffic 2000 m 25.2% 68.2%

E2-L (PTx = 23 dBm, C2×10) 1000 m 20.3% 28.6%
E2-L (PTx = 23 dBm, C2×10) 5000 m 37.4% 55.4%

resources. Therefore, for more practical conclusions, we evaluate the resource efficiency
of the algorithms as defined in Section 3.2. Namely, we first evaluate the maximum V2V
distance at which different target PRR requirements can be satisfied by different algorithms
for the given communication traffic load under different numbers of resources available in
the network. We then evaluate the minimum number of resources required to achieve a given
reliability target.

In Table 6.5, we provide the reliable V2V communication distance in meters, calculated
as the maximum distance at which given PRR targets of 80%, 90%, and 95% can be achieved
for different resource configurations of C2×10, C2×20, C2×50, thus, for a total number of
20, 40, and 100 resources, respectively. We provide the results considering the realistic
setting with vehicle transmit powers set to 23 dBm in scenario E2-L with LDOCA = 1000 m.
Results in Table 6.5 show that VRLS outperforms mode 4 in terms of better making use
of the available resources by achieving the given target reliability at larger distances. The
performance gain is especially larger in cases of fewer resources available or higher reliability
targets, where VRLS can guarantee the target reliability at V2V distances up to four times
larger than that of mode 4.

Using the results in Table 6.5, we then derive the minimum required number of resources
for each algorithm to achieve a reliability target at different distances between vehicles. We
provide the results in Table 6.6 for reliability targets of 80%, 90%, and 95% mean PRR at
distances of 50, 100, 200, and 400 m. We use least-squares fitting in case no data points
are available from the measurements in Table 6.5. Results in Table 6.6 show that VRLS
requires fewer resources to achieve a reliability target at all distances. While mode 4 shows a
quadratic increase in the required number of resources to achieve a reliability target at larger
distances, the number of resources required by VRLS shows rather a logarithmic increase.
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Table 6.5 Reliable communication range for different PRR targets under different number of
resources.

Number of
Resources, R

80% PRR 90% PRR 95% PRR
VRLS Mode 4 VRLS Mode 4 VRLS Mode 4

20 200 m 75 m 100 m 50 m 50 m 0 m

40 330 m 270 m 250 m 150 m 200 m 50 m

100 500 m 470 m 450 m 300 m 400 m 200 m

Table 6.6 Required number of resources to achieve different PRR targets.

Reliable
Comm. Range

80% PRR 90% PRR 95% PRR
VRLS Mode 4 VRLS Mode 4 VRLS Mode 4

50 m 9 13 16 20 20 40

100 m 12 20 20 30 25 59

200 m 20 35 32 61 40 100

400 m 59 75 80 140 100 200

This behavior of the algorithms becomes especially visible in the case of larger reliability
targets. VRLS requires at most half of the resources required by mode 4 to achieve a 95%
mean PRR for all ranges under consideration.

6.3.11 User Fairness, Packet Inter Reception, and Latency

Although our solution gives an equal opportunity to all vehicles to transmit in the DOCA
by allocating resources, the PRR results do not provide the information on whether fairness
is ensured, i.e., the PRR of a certain group of users is not sacrificed in favor of system-
wide performance. In Fig. 6.8, we provide the mean and the standard deviation of the
per-user average PRRs, to evaluate the variation of reliability across the users. The results
are presented for the highly-loaded environment E1-HL with LDOCA = 500 m. We observe
that VRLS is able to deliver its performance without sacrificing user fairness. Both VRLS
and mode 4 achieve a similar variation of mean PRR across the users, where the standard
deviation is around 0.025 considering all Tx-Rx ranges.

In Fig. 6.9, we report another per-user performance metric, PIR (cf. Section 3.2), in the
environment E2-HL with LDOCA = 500 m, measured within a 50 m of Tx-Rx range, in terms
of mean and percentiles. We observe that VRLS achieves better performance than mode
4, the latter resulting in at least 25% larger PIR on average. Note that for both algorithms,
all quartiles of the PIR are at 100 ms, which is equal to T m. We have observed that the
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Fig. 6.8 Per-user mean PRR of VRLS and distributed scheduling algorithm mode 4 on the
environment E1-HL with LDOCA = 500 m; shown with mean (solid curve) and standard
deviation (shade) [39] ©2022 IEEE.
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Fig. 6.9 PIR performance of the algorithms in E2-HL with LDOCA = 500 m, shown with
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0−50 m (V: VRLS, M: Mode 4, values in ms) [39] ©2022 IEEE.

relative PIR performance of the algorithms in the other scenarios are also similar, where
VRLS achieves a mean PIR close to 100 ms, at most reaching 106 ms, and mode 4 resulting
in mean values ranging from around 115 ms up to 200 ms that mainly increase with the
network load. For the high-transmit-power scenario in Fig. 6.7, as the best case, VRLS and
mode 4 can achieve a mean PIR of 100.4 and 100.6 ms, respectively. Combined with our
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analysis in Section 6.3.6, it is evident that VRLS is able to provide superior awareness to the
vehicular users while maintaining fairness, which benefits the V2V applications.

We report the mean latency measured in all evaluation scenarios in the last row of
Table 6.3. Note that the messages are at least delayed by the processing time across the
communication layers, which is assumed to be 4 ms [236], and at most delayed by the
time-length of the resource pool, which is 10 ms, plus the processing time, as all messages
are scheduled within the utilized resource pool by both algorithms. Both VRLS and mode 4
yield a similar latency of around 9 ms, on average.

6.3.12 Handling Different Resource Pool Configurations

The network operator might need to configure different resource pools that may vary in terms
of the number of resources in time and frequency, i.e., K and M, e.g., to serve different V2V
services with different traffic requirements or depending on the availability of resources.
Therefore, we are interested in studying whether and how VRLS can handle a set of different
resource pools configured with different number of resources in time and frequency, with
a single training. Note that the pool configurations are usually a part of network planning;
thus the configuration information would be available before operating the scheduler. Given
this information, having a single policy that can achieve an appropriate performance level
under all different configurations would be desirable, instead of training multiple ones that
can only operate on a specific configuration. That said, it is a challenge to learn and solve
the HD and collision constraints of different pools at once by a single policy, as each has a
different impact on the performance. Such an approach requires careful consideration of the
state and the other RL components.

We describe our method to train a single policy for multiple resource pool configurations
as follows. Consider a set of different resource pool configurations {CK1×M1

1 , CK2×M2
2 , ...} to

be operated by the network, where each pool Ci consists of a different number of subchannels
Ki and slots Mi. We first determine a superset (“master”) pool configuration CKms×Mms

ms ,
which can accommodate any configuration in the set. Accordingly, the dimensions of Cms

are selected as Kms = max(K1,K2, ...) and Mms = max(M1,M2, ...). VRLS is provided with
a state- and an action-space having the same number of resources as in Cms, i.e., Kms×Mms.
As illustrated in Fig. 6.10, considering a case where the network operates four different
resource configurations {C2×10

1 , C4×5
2 , C5×4

3 , C10×2
4 }, a master pool of C10×10

ms accommodates
all four; thus the state- and the action-space of VRLS consist of 100 resources. We provide
the different pool configurations to different groups of actors training the VRLS policy in
parallel. Each group of actors i is trained with the pool configuration Ci, where we only
“disclose” the resources of Ci within st by replacing the rows corresponding to other resources
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Fig. 6.10 Training VRLS with multiple resource pool configurations in parallel (adapted
from [39] ©2022 IEEE).
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Fig. 6.11 PRR performance of VRLS on different resource pool configurations CK×M having
K subchannels and M slots, with mean (green, dashed, denoted), median (red), 25th and 75th

percentiles (box), and 5th and 95th percentiles (whiskers) [39] ©2022 IEEE.

with the row vector [1,1,1,1]. Further, if the actor selects such a resource, we provide a
large negative reward and execute no actions until the actor selects a resource within its own
pool. With such training, we aim at limiting the action selection of the policy only to the
represented subset of the resources in st .
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In the following, we evaluate our solution for four different configurations {C2×10
1 , C4×5

2 ,
C5×4

3 , C10×2
4 }. VRLS is trained from scratch with a total of 40 actors in parallel, in four

groups of 10 actors. Each group is provided with one of the four different configurations. If a
actors selects a resource outside its configuration, a reward of rt+1 =−10 is provided. In turn,
to compensate for the higher variance in the rewards, the training epoch length is increased to
200 actions. We evaluate VRLS in a DOCA similar to E0, with 10 vehicles initially placed
on the highway with transmission range RTx = 500 m, resulting in a single collision domain
(transmissions using the same TB are assumed to collide). Such a simple setting enables a
deterministic calculation of performance bounds and better evaluation of whether the learned
policy can deal with the constraints of the different resource pools. Namely, in the case of
C2×10

1 , when all 10 vehicles reside in the DOCA, a 100% PRR would be achievable only if
vehicles were assigned to TBs in different slots. With C4×5

2 , the allocation for all 10 vehicles
would be optimal if all TBs were assigned orthogonally first in time, then in frequency.
Every transmission would be received by all other vehicles except the one transmitting in
the same slot, due to the HD constraint. Thus, the best assignment of TBs would result in
eight successful receptions out of nine receiving vehicles, yielding an 88.8̄% PRR. Similarly,
in the case of C5×4

3 and C10×2
4 , when all of 10 vehicles exist in the DOCA at the same time,

orthogonal assignment of TBs first in time and then in frequency would yield 82.2̄% and
55.5̄% PRR, respectively.

In Fig. 6.11, we report the performance of VRLS when applied to the network with
different resource pool configurations, in terms of the PRR measured up to a 500 m of Tx-Rx
range. We observe that VRLS yields a mean PRR almost equal to the calculated bounds
of 1.0, 0.8̄, 0.82̄, and 0.5̄ for the configurations C2×10

1 , C4×5
2 , C5×4

3 , and C10×2
4 , respectively.

Note that the larger PRRs are reached when fewer than the maximum of 10 vehicles reside
in the DOCA. VRLS is able to achieve such performance by learning a single policy that can
handle distinct constraints of HD and collisions for different pools simultaneously.

6.3.13 Learning Performance

We provide the learning curves of VRLS in the training environment E0 with different
resource pool configurations that we considered throughout our evaluations, in Fig. 6.12.
The curves represent the average reward collected by the trained actors versus the number of
training epochs. VRLS converged to a stable performance level after around 1000 epochs
when trained with a single resource configuration C2×10 as per Section 6.3.5. With the larger
resource pool of C2×50 as per Section 6.3.8, it took around two times longer for the agent
to converge. This is because of additional exploration required by the increased state and
the action space. VRLS obtained a larger average reward in the case of C2×50 owing to the
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Fig. 6.12 Learning curves of VRLS on the training environment E0 with resource pool
configuration C2×10 (left), C2×50 (center), and with multiple configurations {C2×10
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4 } (right) [39] ©2022 IEEE.

sufficiently provisioned resources in the network. When VRLS is trained with four resource
pool configurations in parallel, i.e., with {C2×10

1 , C4×5
2 , C5×4

3 , C10×2
4 } as per Section 6.3.12,

it took a longer time for the algorithm to converge as compared to the training with a single
pool configuration. This is due to the different collision and HD constraints posed by each
different resource pool configuration that VRLS needs to learn, as well as the larger state
space, which results in slower convergence. The collected reward is smaller as it represents
the average of dissimilar performance levels on the different pools reported in Fig. 6.11. The
overall performance is largely converged, which could be yet further optimized, such as via
exhaustive training on the desired configuration, or with a larger number of actors, however,
calling for increased training time and resources.

6.3.14 On Real-world Implementation of VRLS

We train and evaluate the performance of VRLS in simulative environments. Yet, the proposed
methods might as well be implemented in a real-world vehicular network. In a real-world
scenario, network vendors or operators would implement VRLS as an intelligent controller
deployed at the edge of the network and integrated into the radio access network (RAN),
thanks to the enabling architecture envisioned for 5G and beyond networks [98], which we
have discussed in Section 2.3.3. Within this architecture, BSs deployed at the entrance/exit of
the DOCA can be realized as remote radio units. While these radio units serve physical layer
functions, they are connected to a centralized entity that is responsible for resource allocation
and other higher-layer functionalities, where VRLS can be implemented. By implementing
VRLS, operators would aim at ensuring seamless quality of V2V communications when
vehicular users experience coverage losses. This would in turn ensure safer and more efficient
road traffic. With regards to deployment and operation costs of VRLS, since being a logical
entity, it can be implemented as software and can make use of the processing hardware
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available at the network infrastructure. Additional processing power is necessary to train the
RL agent (with high processing requirements and possible need to pre-train in the simulated
environments), and to operate it (with relatively low processing requirements). VRLS can
again benefit from the fact that in 5G RAN, there are more computational resources deployed
at the network edge to train learning algorithms [98].

To train and operate VRLS, the BSs delimiting the DOCA would collect and report the
required data constituting the state information input to VRLS as described in Section 6.2.1.
The BSs can easily keep track of the time of entry ti and assigned resource ri for each vehicle,
autonomously, thus not requiring any additional signaling between the vehicles and the BS.
Further, the BSs can obtain the information pertaining to di and vavg from the regular V2V
traffic such as CAMs that vehicles transmit, thus again not requiring any additional signaling.
The collected information at the BSs is forwarded to the centralized agent when an action is
required. In turn, the actions of VRLS, namely the resource allocation, will be signaled to the
vehicles via the BSs, before they enter the DOCA from the respective direction. Considering
a pool configuration of CK×M, signaling of an assigned resource would consist of log(K×M)

bits of information. Assuming a vehicle traffic of 0.4 vehicles/s/lane arriving at a DOCA
with 3 lanes per direction [236], and a pool of C2×100, this would correspond to ∼ 8 bits/s of
downlink data traffic per BS.

In Table 6.7, we provide the algorithmic complexity of VRLS during its real-time
operation (i.e., online inference phase), by decomposing it into two stages: i) the calculation
of st as given by Algorithm 4; and ii) the processing of st by the trained CNN to select the
resource as described in Section 6.2.3. In stage (i), assuming V vehicles inside DOCA, the
Step 1 of the Algorithm 4 would take V multiplications, followed by the search of length V
in Step 2. At Step 5, for each resource and direction, i.e., 2KM times, the algorithm makes a
search again of length V . Sorting operation at Step 7 can be implemented with O(V logV )

complexity. Altogether, stage (i) yields a time-complexity of O(KMV logV ). In stage (ii),
the input layer processes each column of st of length KM by 16 convolutional filters of size
10, followed by element-wise activation function over 16(KM− 10+ 1) elements at the
layer output. Thus, a total of 4×16(10+1)(KM−10+1) operations are performed at the
input layer, which brings a time complexity of O(KM). The hidden layer with 32 filters
of length 10 performs 320 multiplications over the concatenated output of the input layer,
which has size Scon = 4× 16(KM− 10+ 1). This amounts to 32(10+ 1)(Scon− 10+ 1)
operations at the hidden layer, thus having a time complexity of O(KM). At the output layer,
fully connected layer with KM units performs KM32(Scon−10+1) multiplications, which
brings O(K2M2). Having greater complexity than previous ones, this layer determines the
complexity of stage (ii). Altogether, when both stages are combined, VRLS yields a time
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Table 6.7 Algorithmic complexity of VRLS (adapted from [39] ©2022 IEEE).

Time complexity Space complexity

Stage (i): Calculation of st

(Steps of Algorithm 4)

Step 1: O(V )

Step 2: O(V )

Step 5: O(KMV )

Step 7: O(KMV logV )

Overall: O(KMV logV )

3V +2+4KM variables
(ti,ri,di ∀i = 1, ...,V , vavg, tnow, and st)
Overall: O(V +KM)

Stage (ii): CNN processing

Input layer: O(KM)

Hidden layer: O(KM)

Output layer: O(K2M2)

Overall: O(K2M2)

Input layer: 4×16×10 variables
Hidden layer: 32×10 variables
Output layer: 32× (4×16(KM−10+1)−10+1)×KM variables
Overall: O(K2M2)

Total O(K2M2 +KMV logV ) O(K2M2 +KM+V )

V : number of vehicles within DOCA; K, M: number of subchannels and slots of the resource pool configured for V2V communications.

complexity of O(K2M2 +KMV logV ) during its real-time operation, thereby allowing a
practical implementation.

In terms of memory requirements, the algorithm in stage (i) stores 3V +2+4KM variables
(3 per vehicle, vavg, tnow, and st having 4KM entries), which results in a space complexity of
O(V +KM). At stage (ii), CNN stores a total of 4×16×10, 32×10, and 32× (4×16×
(KM−10+1)−10+1)×KM parameters at its input, hidden, and output layer, respectively,
hence yielding a space complexity of O(K2M2). Overall, space complexity of VRLS is
O(K2M2 +KM+V ), which is practical from the implementation point of view.

For training VRLS, it is possible to collect the reward signal from the network also in a
real-world implementation. For example, vehicles could keep track of sent/received V2V
message IDs with time and location stamps, which they report to the BSs after going back to
the coverage. In turn, the BS calculates the PRR using this information to derive the reward.
Such report sent by each vehicle would consist of the IDs and time/location stamps of the
messages it has transmitted and received during its past travel within the DOCA. We illustrate
the incurred overhead with an example setting as follows. Assuming an average vehicle
speed of 50 km/h with an arrival rate of 0.4 vehicles/s/lane, there will be 173 vehicles in a
DOCA of 1000 m with 3 lanes/direction at a given time, on average. It would take 72 s on
average for a vehicle to travel through the DOCA, where it transmits 720 V2V messages, and
receives at most 123840 messages from other vehicles, assuming a message transmission rate
of 10 MHz (i.e., T m = 100 ms [236]) per vehicle, and all transmissions being successfully
received by all vehicles. Further assuming that vehicle IDs are represented with 10 bits of
information, and it takes 16 bits to represent the timestamp [18] and 64 bits to represent the
location stamp of each message [288], each vehicle would then collect and report 1.40 MB
of information to the BS. This would correspond to around 1.69 MB/s of uplink traffic per
BS on average. The delay in gathering the information does not pose a limitation for training,
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since the agent acquires experience (the sequence of state-action-reward tuples) in batches
before each training step.

On the other hand, training VRLS in simulative environments (and, if needed, re-training
during a real-world usage) would circumvent numerous challenges associated with real-world
training from scratch. By simulation, it is easier to create and collect sufficient data; hence
the training becomes more flexible and less time-consuming. Besides, the costs of additional
signaling and processing overhead at the network entities and at the vehicles required to
collect data would be avoided.

6.4 Conclusions

In this chapter, we proposed VRLS, a unified RL-based approach to centrally scheduling
V2V communications in a DOCA. We showed that VRLS outperforms the state-of-the-art
V2V scheduling algorithms by: i) learning about the collisions in the case of non-orthogonal
resource assignment to nearby vehicles; and ii) learning that half-duplex (HD) constraint
needs to be accounted for. Moreover, VRLS can be trained on a wider range of environments
and resource configurations than what would be practically doable in the real world. By
training in simulated vehicular environments, VRLS can learn a scheduling policy that is
robust and adaptable to environmental changes.

In terms of V2V communication reliability, VRLS outperforms the state-of-the-art mode 4
scheduler by reducing the packet loss by half in case of overloaded network conditions, and
performing very close to the maximum possible level under low load. To achieve the
reliability targets required by the V2V applications, VRLS requires a much smaller number
of resources, while providing higher reliability at larger V2V distances in comparison to
mode 4. Furthermore, while achieving similar fairness and V2V communication latency as
mode 4, VRLS provides higher awareness among the vehicles.

VLRS has achieved such performance thanks to our design that considered a unified state,
reward, and action definition for the RL model so that the structure of all three components
remains the same, irrespective of what kind of setting they are applied to. Most importantly,
for the state representation, we have aimed at capturing the fundamental features of the
vehicular environment that are in particular relevant to resource allocation, such as resource
utilization and interference conditions, instead of trying to represent every detail in the
environment such as velocity of each individual vehicle. We have further organized this
information in a condensed manner such that the size of the state information does not
grow with the number of vehicles or the area size. In addition, we have arranged the state
variables in a way to respect the separate directions of the road traffic and the half-duplex
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constraints among the resources. The structure of the DNN we have considered allowed
efficient processing of the state information to make decisions on the resource allocation.
The policy of the scheduler, i.e., the DNN, was trained with a reward directly reflecting our
goal of maximizing the reliability of V2V transmissions, again irrespective of the number
of vehicles or resources. These design principles allowed broad applicability of VRLS to
different practical scenarios we considered, varying in terms of vehicle density, resource pool
configuration, and radio propagation conditions. Further, such design eliminated the need for
targeted (re-)training in complex, realistic environments.





Chapter 7

Hybrid Centralized Reinforcement
Learning and Distributed Sensing
Scheduler for V2V Communications

7.1 Motivation and Contribution

As introduced in Section 2.3, conventionally there are two approaches to scheduling V2V
communications: distributed and centralized. While the distributed approach does not require
any network infrastructure, and hence can operate irrespective of any network coverage, it
is not efficient from the resource utilization point of view. A centralized scheduler can do
resource allocation more efficiently, by maintaining a global view of the network based on
the collected information from vehicles related to their traffic, mobility, etc. On the other
hand, the centralized approach is also limited by the information available from the vehicular
environment. Any unseen or unexpected conditions on the V2V links may degrade the
communication performance. This becomes especially an important challenge as we consider
the problem of coordinating the resources for V2V communications taking place beyond the
network coverage. Furthermore, the approach we have taken in the earlier chapters, to assign
a single resource per each vehicle only once (before it enters the out-of-coverage area), might
become unfeasible under certain conditions encountered outside the coverage.

While VRLS that we introduced in Chapter 6 is able to perform well under different
environments varying in terms of vehicular mobility or wireless channel conditions; as
an RL-based solution, its performance is subject to degradation when the distribution of
the environment variables goes much beyond the one that it encountered during training.

Parts of Chapter 7 including the results have been published in [36] ©2019 IEEE.
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Specifically, in this chapter, we evaluate its performance in the case of an exceptional event,
namely a traffic accident on the road creating over congestion and stop-and-go traffic. The
policy developed by VRLS for highly congested scenarios is to schedule all transmissions
above the channel capacity into a single resource that it “sacrifices” for the sake of saving
all other resources from collisions, similar to a congestion control mechanism. While this
policy would work up to a certain extent in a free flow of road traffic, it fails in the scenario
we consider in this chapter since a large number of vehicles using the “sacrificed” resource
queue up in the same vicinity due to the accident, and their transmissions collide.

In this chapter, motivated by the distinct challenges that both centralized (including our
RL-based) and distributed schedulers face, and also by the question of whether joining the
forces of centralized and distributed approaches together would bring any benefit as compared
to either of them, we propose a hybrid approach, which combines the centralized RL-based
solution with the distributed sensing mechanism. In this approach, we employ a centralized
RL scheduler, which first recommends a subset of resources to the vehicles going outside
coverage, with associated probabilities of selecting each resource. Using the allocated
subset of resources, vehicles locally apply an energy-sensing mechanism to determine the
final resource they will transmit their V2V messages by weighing and combining the RL-
recommended probabilities with the sensing results. With this approach, RL takes the global
network view into account and provides a high-level strategy for resource allocation, whereas
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the sensing mechanism selects among the RL-selected subset of resources based on local and
hard-to-predict (dynamic, ephemeral) conditions. Our ultimate goal in designing the hybrid
solution is to enable the benefits of RL-based centralized solution, while also ensuring that
the algorithm can adjust to a large range of unforeseen scenarios for which the RL agent
was not trained. Examples of such scenarios are extreme traffic jams, construction works,
wrong-way highway driving, etc.

In the literature, existing work on hybrid approaches that combine centralized and
distributed methods for scheduling V2V communications is limited, as we discussed in
Section 2.4. So far, the works mainly considered scheduling device-to-device (D2D) commu-
nication between users co-existing with cellular ones to optimize system-level performance
metrics [289], [290], [291]. Targeting vehicular users, the work in [149] proposes the co-
existence of two radio interfaces per vehicle, enabling switching between the centralized
cellular-based D2D and distributed 802.11p mechanisms for latency optimization. A hybrid
solution more relevant to our approach is proposed by [150], where vehicular users select
resources that are divided into geographical zones, by estimating co-channel interference
and comparing with threshold values determined by the base station, to maximize link relia-
bility and sum rate. To the best of our knowledge, no hybrid approach that targets resource
allocation for outside-coverage vehicular users has been yet proposed in the literature.

We evaluate the performance of our hybrid solution in terms of the reliability of periodic
broadcast V2V transmissions in a predicted out-of-coverage area, namely in DOCA, and
compare it with the centralized VRLS and the distributed mode 4 algorithms. Results indicate
that the hybrid approach outperforms both in highly dynamic scenarios, and is at least as
good in other scenarios. As such, the hybrid approach can complement VRLS, where it
can be employed upon detecting unusual conditions in the network, such as an accident, for
which the VRLS agent is not trained.

The rest of this chapter is organized as follows. Section 7.2 describes our proposed hybrid
method, Section 7.3 presents the evaluation results, and Section 7.4 concludes the chapter.

7.2 Hybrid Reinforcement Learning and Sensing Scheduler

The hybrid approach we propose is composed of two main components: a centralized
RL agent providing resource “recommendations” to the vehicles, and a resource selection
procedure by the vehicles that combines the recommendation and the sensing information
they collect. As illustrated in Fig. 7.1, the RL agent is responsible for allocating each
vehicle entering DOCA a probability distribution over the resources in the resource pool,
where probabilities indicate a preference of selecting each resource. The vehicle utilizes this



156
Hybrid Centralized Reinforcement Learning and Distributed Sensing Scheduler for V2V

Communications

information combined with its sensing information, each time it (re-)selects a resource for its
transmissions inside DOCA. The exact resource selection procedure per vehicle consists of
the following steps.

1. Gather the probability distribution over resources from the centralized RL scheduler
(via BS) timely before going OOC, and select the top 20% recommended resources (i.e.,
the ones with the highest probability values) according to the distribution. Keep the
selected set of resources throughout the DOCA, along with the associated probability
values.

2. Gather sensing results on the selected set of resources, by running a sensing window as
in the mode 4 algorithm to collect RSSI measurements from the last 1000 time slots,
and calculate the average RSSI value for each resource. For the resources that could
not be sensed (due to HD constraint), use the average of the calculated values of other
resources.

3. To determine the final resource to transmit, multiply the RL-recommended probability
values with the average RSSI values for each resource, and select randomly according
to the weighted distribution.

4. Use the selected resource for the next certain number of transmissions determined by
the random counter Cresel as in mode 4, then reselect a new resource by repeating the
steps 2 and 3.

The core idea of our algorithm is to have persistent recommendations on the resources
from the centralized RL-based scheduler, where it effectively provides a subset of resources
with selection weights, while letting the vehicle select the final resource considering the
sensing information it collects dynamically from its local environment. This way, the RL-
scheduler having the global view of the environment determines a high-level strategy for
resource allocation, whereas sensing helps the vehicle to select actual resources based on
transient and hard-to-predict conditions surrounding it.

7.2.1 Design of the RL Agent

We reuse our design of VRLS in Chapter 6 for the centralized RL-based scheduler, however,
in a probabilistic fashion to form and interpret the agent’s input and output, i.e., the state and
the action, respectively, as described in the following.

In order to allocate resources to the vehicles, the RL scheduler makes use of the in-
formation about outside coverage. The RL agent observes the state st of the environment,
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containing information about each resource regarding its utilization U , and the most prob-
able location X , per direction, at each time t a vehicle i enters DOCA. The agent then
outputs probability distribution Pi for that vehicle i, indicating probability of using each
resource in the resource pool, which sum up to unity. An example state representation is
illustrated in Fig. 7.2. Inside a DOCA of length LDOCA = 500, i.e., Xmax = 500 m, vehi-
cles with indices 1 to 5 have allocated probability distributions P1 to P5, at distances X1

to X5 (estimated at the scheduler by multiplying the time passed since each assignment
with the average speed of the vehicular traffic) measured from the respective entrances
of DOCA, and a new vehicle entering that needs to be yet allocated is given. There are
only 4 resources available in the resource pool, denoted with r1− r4. U is calculated as
the sum of probability values per resource that is previously assigned to the vehicles on
the corresponding direction. E.g., for r1, U for on the same direction as the entering ve-
hicle is calculated by adding P4 and P5, i.e., 0.0+ 0.8 = 0.8, or for the opposite direction
U is found by adding P1, P2, and P3, i.e., 0.1+ 0.0+ 0.1 = 0.2. On the other hand, X is
calculated by considering the conditional probabilities whether each vehicle is using the
resource or not, along with their estimated distances. E.g., X of r1 on the same direction as
the entering vehicle can be calculated by P4X4 +(1−P4)P5X5 +(1−P4)(1−P5)Xmax, i.e.,
0.0×150+(1−0.0)×0.8×400+(1−0.0)× (1−0.8)×500 = 420.
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We have designed the state space in a way to provide a compact representation of the
environment to the RL agent. U indicates how much each resource is occupied in each
direction, probabilistically, and X gives proximity information of the allocations, that is
essential for reusing the resources in each direction. Moreover, load per direction can
be derived by accounting for the total utilization from the first and the third columns.
Additionally, the representation carries the direction information of the incoming vehicle by
ordering the two pairs of columns by the respective same-direction first, and the opposite-
direction next. Note that, the representation requires only the available information at the
BSs. Namely, the state variables could be calculated on-the-fly by the cooperating BSs that
keep the track of their past allocations to the vehicles entering and leaving the DOCA at both
ends, and provide information to the central scheduler.

Following our VRLS design in Chapter 6, we further normalize the state variables with
respect to their maximum possible values Umax and Xmax, where Umax is derived by dividing
Xmax by the vehicle length. Our normalized state representation makes the agent capable
of dealing with different vehicular environments, irrespective of the number of vehicles,
resources, or size of the DOCA. In addition, normalized variables make the learning more
efficient by limiting the size of the state space. Furthermore, in order to avoid the unnecessary
dependency of the agent’s outcomes on the ordering of the resources in the state, we randomly
shuffle the rows of the state matrix when providing to the agent, while preserving the HD
relations, as proposed in VRLS (cf. Section 6.2).

Despite its compactness, our state space can contain many possible combinations of
resources and their utilization information, which leads us to apply approximate RL meth-
ods [164]. Accordingly, we parametrize the policy, as well as the value function that is used
to train it, using two DNNs called actor and critic networks, respectively, as in VRLS. Taking
the state representation as its input, the actor outputs the action probabilities, i.e., probability
of selecting each of the resources in the pool, as illustrated in Fig. 7.2. Following the VRLS
design, this is established by the fully connected final layer of the actor-DNN with number
of units equal to the number of resources in the resource pool. The layer utilizes softmax
activation function to produce the probability distribution over the units, i.e., resources.
However, differing from the VRLS agent that pre-selects a single specific resource to be
assigned to a vehicle based on this distribution, the agent in our hybrid approach provides
the complete probability distribution to the vehicle, leaving the final selection to it, using the
mechanism described in Section 7.2.

As in VRLS, we use Algorithm 3 we have provided in Chapter 5 to train the actor-critic
DNNs, by executing multiple actor-learners in parallel, which is shown to be more efficient in
time and asymptotic performance [173] (cf. Section 2.5.3). Each actor-learner interacts with



7.3 Evaluation 159

a different instance of the environment. After every epoch of state-action-reward sequence, it
updates the parameters of the DNNs used for the policy and the state values for all agents. For
the training, we use the same reward definition as that of VRLS (described in Section 6.2.5).

7.3 Evaluation

In this section, we evaluate and compare the performance of our hybrid solution with two
algorithms: centralized VRLS we presented in Chapter 6 and the distributed mode 4 scheduler.
We consider two specific scenarios that the VRLS and the hybrid RL agents may face in
reality: Scenario 1) an environment that has “regular” road traffic conditions and similar
characteristics to training environment of the agents; and Scenario 2) an environment which
has extreme, unexpected road traffic conditions, which are also never observed by the agents
during their training. We also consider the cases in between by extending Scenario 1 with
two variants: 1-a) V2V transmit powers increased to the maximum; and 1-b) speed deviation
of the vehicles is doubled, and evaluate how algorithms perform under these conditions
deviating from the training environment. The details of the evaluation environments and
the training environment of the RL agents are presented in the following subsections, and
summarized in Table 7.1.

7.3.1 Training Environment and Learning Performance

For training purposes, we consider a simplistic environment while respecting the main
characteristics of the vehicular network, with the goal of enabling a faster and efficient
training, as described in Section 3.1.6. A DOCA of 500-m-length with 30 constant-speed
vehicles, with their speeds drawn from∼N(75,25) km/h, is assumed. To maintain a constant-
load traffic, vehicles are wrapped-around upon leaving the DOCA, yet, with an exponentially
distributed time offset with 2.5 s mean [236]. A screenshot of the simulated mobility in the
environment is provided in Fig. 7.4(a). Vehicles transmit periodic broadcast V2V messages
with T m = 100 ms. We assume a resource pool of 2 subchannels and 10 slots, in order to
simulate loaded conditions, considering the number of vehicles in the environment. Wireless
channel model is abstracted to constant transmission ranges of RTx = 120 m, where an
unsuccessful reception is assumed if the ranges of the transmitters using the same resource
intersect, or due to the HD constraint. Further details are provided in Table 7.1.

Training of the hybrid and the VRLS agents are conducted on the same environment, with
training parameters presented in Table 7.1. For calculating the reward during the training
of both agents, PRR is measured at 0−100 m Tx-Rx distance, as described in Section 3.2.
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Fig. 7.3 Learning curve of the RL agent for the hybrid solution on the training environment.

Different than VRLS, when training the hybrid agent, vehicles (re-)select their resource
every 10 transmissions randomly according to the probability distribution they receive from
the agent, without incorporating any sensing mechanism during the training. Whereas in
training VRLS, a vehicle utilizes the same resource provided by the VRLS agent for its
all transmissions through the DOCA. We report the learning curve of the hybrid agent in
Fig. 7.3. The learning performance showed convergence after around 15000 epochs, which
is an order of magnitude larger than that of the VRLS agent (cf. Fig. 6.12). This is mostly
due to recurring re-selection of resources by the vehicles randomly, rather than utilizing the
one-off selected action (resource) provided by the agent, where the added randomness into
the environment makes learning difficult.

7.3.2 Evaluation Environments and Results

For the evaluation environments, we consider realistic channel model and mobility as de-
scribed in Section 3.1. We assume a DOCA of LDOCA = 1000-m length with two lanes per
direction. From both ends, vehicles arrive with a probability of 0.4/s [236], with time-varying
speeds initially drawn from a normal distribution, which also accounts for a time-varying
traffic load in DOCA. The simulation parameters are provided in Table 7.1.

We first evaluate the performance of the algorithms in Scenario 1, where vehicle speeds
are normally distributed around 120 km/h with 10% deviation, resulting in a total number of
vehicles between around 15 and 45 at a given time in DOCA. A screenshot of the simulated
mobility is provided in Fig. 7.4(b). In Fig. 7.5(a) and 7.5(b), we report the results for
PRR with the mean (solid curve) and the standard deviation (shaded area) over the distance
between the transmitters and receivers, in meters, and the PIR with mean and percentiles over
distances up to 50 m, respectively. In Fig. 7.5(b), we also report the proportion P that the
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Table 7.1 Simulation parameters (adapted from [36] ©2019 IEEE).

Training Environment
Evaluation Environments

Scenario 1 Scenario 2

DOCA size
Straight highway section; lane width = 4 m

500 m, 1 lane/direction 1000 m, 2 lanes/direction

Vehicle speeds
∼ N(75,25) km/h ∼ N(120,12) km/h ∼ N(120,72) km/h

∼ N(120,72) km/h

Vehicle mobility
30 vehicles with wrap- Poisson arrival per direction with ∼ Exp(0.4) [236];

around ∼ Exp(0.4)[236]; realistic SUMO mobility [247];

constant speeds stop-and-go traffic in Scenario 2

Message traffic Sm = 190 B, T m = 100 ms

Resource pool 10 slots by 2 subchannels

V2V Network and Channel Parameters of the Evaluation Environments [236]

Network
10 MHz (50 RBs) bandwidth at fc = 5.9 GHz with 32 RBs active,

1 subchannel = 16 RBs, 1 slot = 1 ms, MCS index = 9

Antennae
1 Tx and 2 Rx omni-dir. with 3 dBi gain and 9 dB Rx noise figure

Transmission power = {−5,23} dBm; Thermal noise level = 174 dBm/Hz

Path loss model
LOS in WINNER+B1 with antenna height = 1.5 m;

path loss at 3 m is used for distance < 3 m

Shadowing fading Log-normal distributed with 3 dB std. dev.; decorrelation distance of 25 m

Mode 4 Configuration Parameters
T1 = 4 ms, T2 = 14 ms, Cresel ∼Uni f [5,15], Pkeep = 0, T hrsense =−120 dBm

RL Training Parameters
Lepoch = 60; actor and critic learning rates of α = 10−3/(1+0.01×#ep1.1)

(a) Training environment.

(b) Evaluation environment Scenario 1.

(c) Evaluation environment Scenario 2.

Fig. 7.4 Screenshots of the training and evaluation environments, taken from the mobility
simulator SUMO [247].

PIR results are based on. P is the ratio of number of PIR measurements used for each plot,
normalized to the maximum of all algorithms. Note that PIR can only be measured when
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Fig. 7.5 Comparison of hybrid solution with the state-of-the-art in Scenario 1 [36] ©2019
IEEE.

more than a single reception from a specific transmitting vehicle takes place. Accordingly,
the measurements do not include blackouts, i.e., single or no reception at all from a vehicle.
Thus, P indicates the extent to which an algorithm experiences such blackouts (i.e., lower P
indicates more frequent blackouts).

By observing Fig. 7.5(a), we can see that the performance of the hybrid and the centralized
scheduler are similar and better than that of distributed mode 4 scheduler. This is in line with
our previous results for VRLS in Chapter 6, where it was able to outperform mode 4 in the
considered scenarios. Our results show that, under such conditions, the hybrid solution is
also able to achieve a similar performance. Here, note that the resource recommendations
of the hybrid agent are further combined with the sensing results. The policy developed
by both VRLS and the hybrid solution is to divide the resources per direction dynamically
depending on their load, while reusing them and avoiding collisions and HD errors as much as
possible. We could observe that the gain of the two solutions compared to mode 4 increases
with the distance between the transmitter and the receiver, maintaining a PRR degradation
softer than mode 4 up to distances of around 100 m, after which the path loss effect of the
channel dominates. Such performance is achieved by the similar policies learned by the two
schedulers, which respect the global dynamics, hence avoiding the hidden-node problem,
from which mode 4 algorithm suffers. Fig. 7.5(b) shows that the hybrid solution and VRLS
achieve similar PIR performance, whereas mode 4 performs the worst with around 30%
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Fig. 7.6 Comparison of hybrid solution with the state-of-the-art in two variants of Scenario 1:
a) transmit powers increased to 23 dBm; and b) speed deviations increased to 60%. Mean
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larger PIR, on average. Note that for all algorithms, all quartiles of PIR are at around 100 ms,
which is equal to Tm, and with similar P values observed. The similarity indicates equitable
comparison of the PIR measurements among the algorithms.

Next, we evaluate the performance of the algorithms in two variants of Scenario 1: a) with
transmit powers increased to the maximum value of 23 dBm; and b) with speed deviations
increased from 10% to 60%. We provide the PRR of the algorithms in Fig. 7.6. In variant
(a), V2V transmissions achieve higher transmission rates at larger distances due to increased
transmit power. However, the agents were not trained for such different channel behaviour. In
the end, hybrid solution and VRLS perform very similar, while mode 4 showing a marginal
difference to them, thanks to increased transmit powers enabling better sensing among
vehicles. Increased transmit powers also benefit PIR, where all algorithms equally achieve
a mean PIR of 100 ms. In the case of the scenario variant (b), higher speed deviation of
vehicles result in lower performance of all algorithms, as compared to original Scenario 1.
The PRR drops below unacceptable rates due to highly varying interference conditions in
a loaded environment. Nevertheless, the hybrid solution exhibits a similar performance as
VRLS, by outperforming mode 4.

In Scenario 2, we increase the speed deviations in the environment to 60%, as in Scenario
1-b, and yet further introduce an unexpected event in the DOCA environment, namely a
stop-and-go traffic, e.g., due to a road accident. Vehicles in one direction are stopped at a
specific location for 20 s that results in highly congested traffic and the so-called “accordion
effect” (as can be seen in Fig. 7.4(c)), with the total number of vehicles in DOCA at a given
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Fig. 7.7 Comparison of hybrid solution with the state-of-the-art in the congested period of
Scenario 2 [36] ©2019 IEEE.

time reaching up to around 80 (i.e., around 2.5 times the average number). The vehicles are
being stopped for 20 s starting from the 400th s until the end of the simulation at 1000th s.
We report the PRR of Scenario 2 in Fig. 7.7(a), where the measurements belong to the last
400 s of the simulation, hence representing the congested vehicular traffic. In Fig. 7.7(b), we
provide the PIR with the value of P for each of the measurements from the same (congested)
period of the simulation.

In Fig. 7.7, we first see that the overall absolute performance of all three algorithms
is worse than Scenario 1, which is mainly caused by the highly increased traffic load and
changing vehicular dynamics due to congestion. Similarly, the V2V resources become highly
congested, leading to PRR below acceptable levels. Under such extreme conditions, as
per the relative performance of the algorithms, Fig. 7.7(a) shows that the hybrid approach
can improve the PRR with respect to both VRLS and mode 4, while VRLS performing
occasionally worse than mode 4, especially at short ranges.

During the overloaded conditions in Scenario 2, the policy developed by VRLS is to
“dump” all vehicles above the “capacity” of the resources into a single specific resource,
where they all collide. This policy prevents the collisions on the rest of the resources by
sacrificing one of them, hence creating a sort of an admission control mechanism. However,
such a policy in case of queued-up vehicles that are in close proximity would result in
persistent collisions of the transmissions using the same resource. On the other hand, in the
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case of a hybrid algorithm, vehicles are provided with a subset of recommended resources
where they do not necessarily stick to a specific one that would create persistent collisions,
but alternate between them, thus enabling diversity across the congested resources over time
and space. The higher-level policy of assigning the resources according to load per direction
still applies, eventually leading to a performance better than the other algorithms. Fig. 7.7(b)
shows that PIR is larger than Scenario 1 for all algorithms, which is in line with their PRR
performance. VRLS achieves the best performance, followed by the hybrid and mode 4
algorithms having around 10% and 50% longer PIRs on average, respectively. However,
VRLS yields around 15% lower P compared to other algorithms, which indicates that VRLS
suffers from blackouts more frequently, which is a phenomenon that is not reflected by
the PIR measurements. Although the hybrid solution also yields slightly more persistent
collisions compared to mode 4, it achieves considerably lower mean PIR, which is largely
due to the much higher PRR it provides.

7.4 Conclusions

Motivated by the individual challenges that distributed and centralized schedulers face
in reality, and considering whether a combined approach can provide any performance
gains as compared to either of the approaches, we proposed a novel hybrid approach for
scheduling V2V communications that combines our centralized RL-based approach with the
distributed sensing-based mechanism. The proposed hybrid method incorporates long-term
recommendations from the RL agent on utilizing the resources, followed by the vehicles
selecting their final resources taking dynamical and local sensing information into account.
Consequently, the method combines the best of both worlds: i) the global view (based on
load, direction, etc.) and trained policy of the RL agent, and ii) the local view and the ability
of sensing on adapting to hard-to-predict events.

The benefits of our hybrid solution come into play in the case of highly dynamic and over-
loaded scenarios with unexpected conditions differing significantly from those experienced
during the training of the RL agent, such as a road congestion due to an accident. Under
such conditions, the hybrid solution achieves higher communication reliability compared to
the centralized RL or the distributed sensing scheduler alone, otherwise delivering similar
performance. Given such performance, the hybrid solution can substitute VRLS whenever
such unforeseen conditions are detected in the environment.

Nevertheless, training of the hybrid RL agent comes with the cost of longer training
times, i.e., an order of magnitude that of the VRLS agent. Further, as a solution that involves
a distributed component, the performance of the algorithm is also subject to vulnerabilities



166
Hybrid Centralized Reinforcement Learning and Distributed Sensing Scheduler for V2V

Communications

of the distributed resource allocation mechanism. To illustrate, selecting a higher percentage
of resources (i.e., greater than 20% that we considered) from the recommended set for
distributed sensing yielded worse performance, which we have not included in our evaluation
results. Similarly, we have also observed that the frequency of resource re-selection also had
an impact on the performance. Hence, the proposed technique can further benefit from the
enhancements to the distributed resource allocation mechanisms proposed in the literature (cf.
Section 2.4), as well as by different strategies to combine the centrally allocated resources
with the sensing results, e.g., via weighting techniques, which however require further
exploration and careful tuning of the algorithmic parameters depending on the deployed
setting.



Chapter 8

iVRLS: In-coverage Vehicular
Reinforcement Learning Scheduler

8.1 Motivation and Contribution

In the previous chapters, we focused on expected, delimited out-of-coverage areas, and
proposed centralized scheduling of V2V communications utilizing techniques based on
RL. In this chapter, we extend our centralized RL-based approach to the conventional in-
coverage scheduling problem. As introduced in Section 2.3.3, for centralized scheduling of
V2V communications under coverage, current solutions in the literature propose heuristics
based on the location information of vehicles to enable spatial resource reuse (cf. [32],
[137], [141], [142]). However, these algorithms typically assume ideal coverage conditions,
without any loss of the control signaling between the base station (BS) and vehicles, which
is used to request and assign the resources. Furthermore, the algorithms rely on high-
frequency, dynamic scheduling updates, which actually increase their dependency on the
control signaling reliability, besides resulting in high control signaling overhead. Therefore,
more efficient algorithms that can operate at least equally well under realistic, intermittent
coverage conditions would be beneficial.

In this chapter, we consider two ways to meet the design of such an improved solution. As
a first enhancement, we propose extending the longevity of the resource assignments under
coverage interruptions. Specifically, as mentioned above, legacy methods for centralized
resource allocation are not designed to cope with failures in the links between the vehicles
and the scheduling entity (e.g., a BS). As described in Section 2.4.1, upon detecting any
link failure, vehicles release their allocated resource, thus delaying or dropping their V2V

Parts of the results and Section 8.2 in Chapter 8 have been published in [38] ©2021 IEEE.
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transmissions. If they support the distributed resource allocation mode, they would resort to a
random selection of the resources from the configured resource pool under such exceptional
cases, and switch to the distributed resource allocation mode once the sensing results become
available. In this chapter, we rather consider an enhancement to the centralized scheduling
itself, and propose that, instead of deferring from transmissions, vehicles continue using
their allocated resources even if they detect any link failures to the scheduling entity, for a
(pre-)defined duration, e.g., until connecting back to the scheduler. This would mitigate the
degradation of V2V communication quality due to otherwise dropped or delayed transmis-
sions, or due to vehicles switching to autonomous resource allocation methods, which suffer
from inefficient resource utilization.

On top of this enhancement, we then propose iVRLS (in-coverage vehicular reinforcement
learning scheduler), a centralized RL-based solution similar to VRLS we presented in
Chapter 6. While VRLS is designed to pre-schedule resources for well-known out-of-
coverage parts of the route (e.g., a tunnel) via one-time scheduling assignments before
vehicles leave the coverage, iVRLS takes the advantage of resource assignments that are
possible at all times under coverage, and makes use of the instantaneous and exact knowledge
of vehicular mobility and data traffic. In particular, the RL model assigns each resource
based on the estimation of the current and future instances of interference conditions among
the vehicles until the next assignment, by taking their current resource allocation and velocity
into account. Whereas the next assignment might be delayed depending on any (expected or
unexpected) coverage loss that might occur.

For our performance analysis, we select the state-of-the-art centralized scheduling algo-
rithm MRD in [32] to serve as a baseline, due to its realistic and practical assumptions, as
well as its benchmarked performance, as discussed in Section 2.3.3. We further extend the
MRD operation with the enhancement proposed above, for a fair comparison with iVRLS.
In our evaluations, we first consider ideal coverage conditions, and show that, when the
frequency of the resource allocation is reduced, the performance of the centralized scheduling
algorithms degrades, thus creating a similar effect as coverage interruptions. We then extend
our evaluations to consider more practical scenarios with realistic coverage assumptions with
varying mobility and traffic load. In comparison to MRD, iVRLS achieves better performance
under lossy coverage conditions and a relatively low frequency of scheduling updates, thus
yielding less signaling overhead to achieve the same reliability targets. We also evaluate the
case where the proposed enhancement to centralized scheduling is not applied, i.e., vehicles
release their resources upon coverage interruptions. Such operation results in a considerable
amount of degradation and variance of V2V message reliability for both algorithms even
with the highest possible frequency of scheduling updates and a low traffic load.
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Fig. 8.1 In-coverage Vehicular Reinforcement Learning Scheduler (iVRLS) (adapted from
[38] ©2021 IEEE).

Finally, we evaluate the performance of the algorithms in specifically designed scenarios
that vary in terms of the deployment of BSs and tunnels (i.e., known out-of-coverage areas),
accounting for different coverage conditions in the network. While MRD, which is designed
with a perfect coverage assumption in mind, can better benefit from relatively good coverage
conditions; in case of coverage losses iVRLS yields marginally larger V2V distances at
which a given target PRR is achievable. Overall, we demonstrate that iVRLS offers a
unified, versatile solution for deployment irrespective of coverage, enabling simplified
implementation and robustness to coverage variations in the network.

In the rest of this chapter, Section 8.2 presents iVRLS, Section 8.3 provides our evaluation
results, and Section 8.4 draws the conclusions.

8.2 iVRLS: In-coverage Vehicular Reinforcement Learning
Scheduler

iVRLS targets the centralized scheduling problem using the framework of RL, as depicted
in Fig. 8.1. Our design of iVRLS is based on that of VRLS (cf. Section 6.2), with the
main differences being the definition of the state information of the environment, and the
possibility of taking actions anytime and anywhere within the coverage of the BSs.

8.2.1 State Representation

State representation st , at the instance t a vehicle is requesting a resource, contains the
information collected from the vehicular network environment in a compact and useful way.
We design st to indicate expected “interference” level Ir on each resource r in the configured
V2V resource pool, in case it was assigned to the requesting vehicle. We represent Ir by
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the inverse of the distance between the vehicles using the same resource and the requesting
vehicle, over current and future instances of their message transmissions. Specifically,
st = [Ir=1, Ir=2, ..., Ir=R] is a vector with number of elements equal to the number of resources
R in the resource pool, with each element Ir = Ii=1

r + Ii=2
r + Ii=3

r + ... representing the sum
of expected “interference” coming from the set of vehicles i = {1,2,3, ...} using the same
resource r. In case no vehicle using a given resource, Ir = 0. Otherwise, Ii

r for a single
vehicle i using the resource r is calculated as:

Ii
r =

1
NSR

(
1
|∆x|

+
1

|∆x+∆vT m|
+

1
|∆x+∆v2T m|

+ ...+
1

|∆x+∆v(NSR−1)T m|
),(8.1)

=
1

NSR

NSR

∑
n=1

1
|∆x+∆v(n−1)T m|

, (8.2)

where ∆x = xi− xreq and ∆v = vi− vreq are the relative distance and the speed between
vehicle i and the requesting vehicle, respectively. Therefore, the first term in the parentheses
represents the “current interference”, while every other term indicating the “expected inter-
ference” in the future, based on the changing positions of vehicles over time with message
generation periodicity T m, until the next scheduling event. Further, in case of a known
out-of-coverage area, such as due to a tunnel, the time to next scheduling event is calculated
by dividing the length of the tunnel to the average speed of vehicles in the environment. An
average over current and future instances is then taken to represent “overall” interference. In
order to avoid singularity, we further modify the denominator in the sum as:

Ii
r =

1
NSR

NSR

∑
n=1

1
max(∆xmin, |∆x+∆v(n−1)T m|)

, (8.3)

where ∆xmin > 0 is a fixed, minimum inter-vehicle distance. Overall, higher value of Ir in the
state representation indicates higher expected “interference” on a resource, in case assigned
to the requesting vehicle.

8.2.2 Action Definition

Same as VRLS, action at of iVRLS denotes assigning a single resource r to the vehicle
requesting at instance t, from the resource pool configured for V2V communications. iVRLS
selects the resource to be assigned based on its policy π(at |st)→ [0,1]R, which is a mapping
from state of the vehicular environment to a probability distribution over the set of possible
actions, i.e., R resources in the resource pool. The resource is then selected at random
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according to the distribution. In case more than one vehicle request a resource at the same
time, the actions are taken in a random order.

8.2.3 Reward, Policy Deep Neural Network, and the Training Algo-
rithm

In order to train iVRLS, we use the same reward definition as that of VRLS, reflecting
the reliability of V2V transmissions in the environment. Namely, rt+1 =−10× (1−PRR),
where PRR is measured for the range of interest, e.g., a certain communication range required
by a V2V use case. In case no transmission take place between the actions, e.g., when two
vehicles request a resource at the same time, the reward of the previous action is provided.

Given the large number of possible state and action combinations as in the case of VRLS,
we represent the policy of iVRLS with a deep neural network (DNN). DNN architecture is
the same as that of VRLS, yet only using a single 1D convolution layer at the input layer, as
state representation of iVRLS consists of a single vector. iVRLS is also trained using the
state-of-the-art A3C RL algorithm we extended (cf. Algorithm 3), as VRLS, using the same
parameters (cf. Section 6.3.1).

We have experimented with several other design options for iVRLS, in terms of dif-
ferent state representations and DNN architectures, besides the design provided here. In
Appendix B, we present other design options we considered and a comparison of their
learning performance. Our results show that the iVRLS design provided in this chapter offers
the best performance among the considered options.

8.3 Evaluation

In our evaluations, we utilize the system model described in Section 3.1 with the parameter
values summarized in Table 8.1, and using the following additional assumptions for the in-
coverage scheduling. Each vehicle sends SR with periodicity T SR = NSRT m (in multiples of
message generation frequency, T m), starting from its first message generation after connecting
to the BS. The vehicle then keeps using the same scheduled resource for its V2V transmissions
within a period, i.e., until the next SR/SA. Mobility information of vehicles is collected by
BS on demand; specifically, at every scheduling instance, which can be acquired via different
positioning methods such as based on radio-signaling or global positioning system [292].

Vehicles generate V2V messages of size Bm = 190 Bytes with periodicity T m, which
we vary in the evaluations. Configured V2V resource pool is assumed to consist of 2
subchannels and 10 time slots, each able to carry a single V2V message combined with
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Table 8.1 Simulation parameters (adapted from [38] ©2021 IEEE).

V2V message traffic Bm = 190 Bytes; T m: variable.

V2V resources Carrier frequency = 5.9 GHz; Bandwidth = 10 MHz (50 RBs) with
32 RBs active; MCS index = 9;

1 subchannel = 16 RBs, 1 slot = 1 ms; Resource pool of 2 subchannels
by 10 slots, periodically repeating with 80 ms.

V2V channel model 3GPP Channel Model [236] with Path loss: LOS model in WIN-
NER+B1; path loss at 3 m is used for distances < 3 m; Shadowing
fading: log-normal distr. with 3 dB std. dev. and 25 m decorr. dis-
tance.

V2V Tx power = {–5,23} dBm (scenario dependent); Thermal noise
level = –174 dBm/Hz; Antennae: 1 Tx and 2 Rx omni-directional
with 1.5 m height, 3 dBi gain, and 9 dB noise figure.

UL/DL channel model COST-Hata Channel Model [240] at 2.1 GHz with 10 dB shadowing
fading, 10 MHz (50 RBs) bandwidth;

BS DL Tx power = 30 dBm, vehicle UL Tx power = 23 dBm

BS antenna: isotropic with 30 m height and 5 dB noise figure.

the control information and protocol overhead. V2V and UL/DL channels are simulated
using realistic path loss and fading with parameters indicated in Table 8.1. In the state
representation of iVRLS, we set ∆xmin = 3 m, in accordance with the V2V path loss model
used in our evaluations.

8.3.1 Training of iVRLS

We train iVRLS before its deployment, in a setting with simpler mobility and communication
model as compared to evaluation scenarios, which enables faster training, as described in
Section 3.1.6. In the training environment, 50 vehicles are initially placed uniformly at
random on a 1000-m-long two-way highway without any tunnel, and travel with constant
speeds randomly selected from normal distribution ∼N (75,25) km/h. Upon their exit,
they return back to the highway from the opposite direction after a time offset ∼Exp(0.4) to
create an average time gap of 2.5 s between vehicles. V2V transmission range is assumed to
be of 120 m. Vehicle-to-BS links in the training are assumed to be error-free. Each vehicle
sends a scheduling request every T SR = 1000 ms with T m = 100 ms (i.e., NSR = 10). The
reward rt+1 is calculated using PRR measured at 0−100 m Tx-Rx distance, as described in
Section 3.2. We provide the training curve of iVRLS in Fig. 8.2. It shows the average reward
collected by iVRLS over the training epochs (each epoch is a sequence of 60 state-action-
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Fig. 8.2 Learning curve of iVRLS [38] ©2021 IEEE.

reward tuples). iVRLS converged to a stable performance level at around 20000 epochs in
the training environment.

Besides the training methodology presented here, we further evaluated the impact of
learning rate, as well as the frequency of scheduling requests on the training performance,
which we present the results in Appendix B. Our evaluations led us to consider the respective
values for the training parameters presented here.

8.3.2 Performance Under Ideal Coverage

We first evaluate the performance of in-coverage scheduling under ideal coverage conditions,
namely assuming no errors on the UL/DL signaling between the BS and the vehicles. We
evaluate the reliability performance of iVRLS, in comparison to MRD and VRLS, in the
environment E2-L with a highway length of 500 m as described in Section 6.3.4 (assuming
perfect coverage instead of a DOCA). To make a fair comparison, we have extended VRLS
for the in-coverage operation. Specifically, instead of the one-time assignments we considered
in the case of a DOCA, we consider that VRLS does scheduling whenever a vehicle sends
a scheduling request (as done by iVRLS and MRD). Similarly, we have extended the state
representation of VRLS to consider information from both in front of and behind the vehicles
when calculating ∆x and C, as opposed to considering only in front of vehicles (that was
calculated only when they enter DOCA).

We report the PRR of the algorithms as a function of distance in Fig. 8.3, for different
periods of scheduling requests T SR sent by the vehicles, assuming a message generation
period of T m = 100 ms. In order to provide insight into the practical implications of these
results, Table 8.2 shows the reliable communication range under different scheduling rates.
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TSR=100ms TSR=1000ms TSR=10000ms

MRD MRD

Fig. 8.3 PRR as a function of Tx-Rx distance in environment E2-L (cf. Section 6.3.4) with a
500 m highway length under ideal network coverage, for different scheduling request periods
T SR with V2V message generation period of T m = 100 ms.

Table 8.2 Reliable communication range as a function of desired PRR, for different scheduling
periodicities.

Scheduling Period
T SR

80% PRR 90% PRR 95% PRR
iVRLS MRD VRLS iVRLS MRD VRLS iVRLS MRD VRLS

100 ms 106 m 108 m 104 m 96 m 100 m 90 m 84 m 88 m 81 m

1000 ms 103 m 107 m 105 m 95 m 100 m 89 m 83 m 86 m 75 m

10000 ms 106 m 106 m 102 m 96 m 93 m 85 m 85 m 83 m 39 m

The range is calculated as the maximum distance at which the mean PRR is above or
equal to 80%, 90%, and 95%, considering requirements of different V2V applications (cf.
Section 2.2).

Our first observation is that, by comparing Fig. 8.3 and Fig. 6.5(e) in Chapter 6, given
the same amount of resources and traffic, the performance of centralized scheduling under
coverage is much higher in terms of reliability, as compared to a DOCA having the same
vehicular mobility and network conditions. Typically, around 10% larger PRR is achievable
within 100 m range with T SR = 100 ms, as compared to that of the DOCA. Similarly, we
observe that, by comparing Table 6.6 and Table 8.2, as the coverage conditions get ideal,
fewer resources become necessary to support the target reliability of V2V applications.

Secondly, given the same environment and amount of resources available, we observe
that the reliable communication range decreases with the lower rate of scheduling updates, in
the case of all algorithms. Considering the dynamic vehicular environment, more frequent
scheduling updates are required to maintain higher reliability of V2V messages, however,
which comes with the expense of increased UL/DL signaling.

Third, MRD and iVRLS achieve very close performance, better than that of VRLS, as
they are specifically designed for in-coverage scheduling. VRLS, which is extended for
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in-coverage operation, performs the worst among the algorithms, for all different rates of
scheduling updates.

8.3.3 Performance Under Realistic Coverage with Varying Mobility
and Traffic Load

Next, we evaluate the performance of iVRLS in comparison to MRD considering non-ideal
network connectivity. Namely, we consider errors on the UL/DL signaling between the BS
and the vehicles according to the model described in Section 3.1.2. We are interested in
how varying conditions of V2V traffic load and vehicular mobility impact the performance
of the schedulers under non-ideal coverage conditions. In terms of mobility, we consider
two scenarios: i) the environment E2-L with 1000 m length of a highway, as described in
Section 6.3.4; and ii) the stop-and-go traffic as described in Scenario 2 in Section 7.3, in the
same environment. For both scenarios, we evaluate the PRR achieved by the algorithms as a
function of distance, under different periods of V2V message generation T m and scheduling
requests T SR. We report the results in Fig. 8.4 and Fig. 8.5, respectively for the two mobility
scenarios. From the V2V applications’ point of view, the benefit of a better scheduler can be
seen as an increase in the effective communication range, given a certain message delivery
probability requirement. In Table 8.3, we provide the reliable communication range as a
function of the desired delivery ratio, under different traffic loads varied by the V2V message
generation periodicity T m and/or stop-and-go traffic (S&G), with T SR = 10000.

We again first observe from the results in Figures 8.4 and 8.5 that, centralized in-coverage
scheduling can make much more efficient use of V2V resources, even under non-ideal
coverage assumptions, as compared to out-of-coverage scheduling, when we compare our
results to those in Chapter 6 and Chapter 7. Specifically, under the same amount of resources
and traffic demand, reliable communication distance at which 80% PRR can be achieved is
increased by around 3.5 times.

Second, given the same rate of scheduling updates, the reliability performance of both
algorithms degrades with the increased traffic load, as expected, either due to an increased
V2V message generation rate or a larger number of vehicles due to stop-and-go traffic.
The degradation is much more pronounceable as compared to ideal coverage assumptions,
according to our results in Section 8.3.2. Specifically, when comparing the plots in Fig. 8.4,
for a scheduling update rate with T SR = 10000 ms, a five times increase in V2V message
generation frequency decreases the reliable communication distance at which 80% PRR
is achievable by around 16%. Similarly, by comparing the plots in Fig. 8.4 and Fig. 8.5,
for T SR = 10000 ms and T SR = 10000 ms, stop-and-go traffic yields around 25% shorter
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Fig. 8.4 PRR in E2-L (1000 m) for different message generation periods T m and scheduling
request periods T SR.

Table 8.3 Reliable communication range as a function of desired PRR, for different traffic
loads.

V2V traffic load
(T m)

80% PRR 90% PRR 95% PRR
iVRLS MRD iVRLS MRD iVRLS MRD

500 ms 106 m 106 m 95 m 97 m 84 m 85 m
200 ms 102 m 103 m 85 m 86 m 60 m 50 m
100 ms 89 m 87 m - - - -

200 ms (S&G) 80 m 77 m - - - -
100 ms (S&G) 52 m 48 m - - - -

reliable communication distance. iVRLS and MRD achieve similar performance in the case
of relatively low traffic load. However, under high load, iVRLS can make more efficient use
of the resources by delivering marginally better reliability while requiring a lower rate of
scheduling updates.
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Fig. 8.5 PRR in E2-L (1000m) with stop-and-go traffic for different message generation
periods T m and scheduling request periods T SR.

8.3.4 Performance without the Proposed Enhancement for Centralized
Scheduling to Support Intermittent Coverage

As discussed in Section 8.1, we propose a simple enhancement to centralized V2V scheduling
to account for intermittent network coverage loss, which is in general applicable to any
existing solution: upon experiencing the coverage loss, vehicles keep using their latest
resource assignments for V2V communications until they connect back to the scheduler
and request a new resource. In our evaluations in the previous subsections, we enabled this
enhancement to the MRD algorithm, in order to allow a fair comparison with iVRLS.

In this subsection, we demonstrate the impact of our proposed enhancement by evaluating
the PRR performance of iVRLS and MRD without our proposed enhancement, considering
the environment E2-L with 1000 m length of highway. Namely, vehicles release their resource
allocation in case of the loss of the control signaling between the BSs and the vehicles, used
for sending the scheduling requests and scheduling assignments. We provide the results
in Fig. 8.6. As observed from Fig. 8.6, average PRR of both iVRLS and MRD decreases
well below to desired rate of 80% within 0− 100 m range, and exhibits a large variance,
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Fig. 8.6 PRR in E2-L (1000m) where vehicles do not keep their existing resources in case
the control signaling between the BS and the vehicles is lost.

even under relatively low traffic load with the highest scheduling frequency as compared to
evaluations reported in Fig. 8.4. Without our proposed enhancement to centralized scheduling
under intermittent coverage, vehicles defer their resource allocations and can not transmit
their generated messages, which degrades the reliability of V2V communications.

8.3.5 Performance under Varying Coverage Conditions

In this subsection, we evaluate the performance of iVRLS in specifically designed realistic
scenarios that are representative of different network coverage characteristics. We consider
four scenarios, denoted A, B, C, and D, as illustrated in Fig. 8.7. All scenarios consist of a two-
way straight section of a highway, with 2 lanes per direction. In Scenario A, a single BS serves
a 1000 m-long area of road, with scheduling updates every 10 s (i.e., T SR = 10000 ms). We
set V2V transmit powers to a low value of−5 dBm, to enable multiple resource reuses within
the considered area. Vehicles travel with speeds distributed normally ∼N (75,45) km/h. In
Scenario B, smaller areas are served by BSs, with scheduling updates every 1 s. Vehicles
are assumed to travel with speeds distributed normally ∼N (120,36) km/h. Thus, sparser
and less varying road traffic, combined with more frequent scheduling offers better coverage
conditions as compared to Scenario A. Yet, Scenario B has a tunnel zone in its central part,
where no coverage available at all (vehicles can not send/receive any SR/SA). On the other
hand, V2V powers are set to a more realistic value, which is the allowed maximum of 23 dBm.
Scenario C is a variant of Scenario A, having a tunnel of 400-m length extending from its
mid-way to its east end. Scenario D is a variant of Scenario B, yet having only a single BS
deployed, which is located close to the center of the road (outside the tunnel), and vehicles
are assumed to transmit with powers of −5 dBm as in Scenario A and Scenario C. Common
to all scenarios, vehicles transmit broadcast V2V messages with periodicity T m = 200 ms.
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Fig. 8.7 Evaluation scenarios having different coverage conditions ((a) and (b) from [38]
©2021 IEEE).

BSs are deployed at the places as indicated in Fig. 8.7, with a 45 m longitudinal offset from
the center of the road.

We first present the performance of algorithms in Scenario A, separately at the central
section ([−250,+250] m) and at the edge sections ([−500,−250] and [+250,+500] m) of
the area, in Fig. 8.8. In the results, we report the PRR with mean and standard deviation,
measured as a function of transmitter-to-receiver distance. We observe that iVRLS performs
marginally better than MRD at all sections of the road, with a gain more pronounced at larger
transmitter-receiver distances. In case of edge sections of the road, vehicles suffer from larger
path loss to the BS, resulting in increased loss of scheduling requests and assignments, which
degrades the performance of both algorithms. In that case, iVRLS shows a larger gain over
MRD as compared to the central section of the road. Specifically, given a PRR target of 80%,
iVRLS can provide around 14% larger V2V communication range in areas close to the BS,
and 35% larger range at the edge of the coverage, in the considered scenario.

Next, in Fig. 8.9, we provide the results for Scenario B, from the two ends of the road
under (partial) coverage ([−1000,−250] and [+250,+1000] m), and from the very central
part of the tunnel ([−250,+250] m). Overall, compared to Scenario A, Scenario B has less
traffic load, accompanied with higher scheduling frequency, which results in overall higher
reliability of V2V transmissions. Also, higher transmit power increases the rate of successful
transmissions at larger transmitter-receiver distances, up to 800 m. Such ideal conditions
benefit the performance of MRD under the coverage, for which it is designed. It provides
marginally larger reliability of V2V transmissions in coverage. At close transmitter-receiver
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MRD MRD

(a) Central section.

MRD MRD

(b) Edge sections.

Fig. 8.8 PRR in Scenario A, measured as a function of Tx-Rx distance, at the central and the
edge sections of the road [38] ©2021 IEEE.

ranges, both iVRLS and MRD yield around 95% PRR in average, with values achievable
up to 100%. On the other hand, transmissions within the tunnel section of the road suffer
from degraded reliability. Under such conditions, iVRLS is able to yield higher performance
than MRD at almost all transmitter-receiver distances. Specifically, iVRLS can increase the
reliable communication range within the tunnel by 66% and 24% for target PRR requirements
of 90% and 80%, respectively.

In the tunnel section of Scenario B, we further evaluate the performance of other alterna-
tive schedulers for out-of-coverage V2V communications. Without our proposed enhance-
ment where vehicles keep using their scheduled resources beyond the coverage, one has
to combine such schedulers with the centralized in-coverage schedulers. In Fig. 8.10, we
provide the performance of the distributed scheduler mode 4 and our centralized solution
VRLS designed for out-of-coverage communications, besides the iVRLS. Fig. 8.10 shows
that, with our proposed method, extended centralized schedulers perform better than the
distributed scheduler mode 4 in this scenario. On the other hand, VRLS, designed solely for
out-of-coverage operation, outperforms both of the extended schedulers, as well as mode 4.
Accordingly, one could consider combining in-coverage solutions with VRLS for even better
reliability outside the network coverage, yet at the expense of increased cost and complexity.

In Fig. 8.11, we report the results for Scenario C, from the west section ([−500,0] m) and
the tunnel section ([0,+400] m) of the road. We observe from Fig. 8.11 that the performance
of both algorithms degrade in the case of the tunnel, similar to the case of the edge sections
in Scenario A, where vehicles suffer from intermittent coverage. Similar to our results in the
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Fig. 8.9 PRR in Scenario B, measured as a function of Tx-Rx distance, at the in-coverage
and the tunnel sections of the road [38] ©2021 IEEE.
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Fig. 8.10 PRR of algorithms in the tunnel section of Scenario B, measured as a function of
Tx-Rx distance [38] ©2021 IEEE.

previous scenarios, iVRLS yields marginally better PRR than MRD in the case of the tunnel
area, while the BS serving a small area of 500 m length yields good coverage conditions that
benefit the performance of MRD.

Finally, we provide the results for Scenario D in Fig. 8.12, from the in-coverage sections
([−1000,−500] m and [+500,+1000] m) and the tunnel section ([−500,+500] m) of the
road. In Scenario D, we observe from Fig. 8.12 that the performance of the algorithms
within the coverage and the tunnel sections of the road are similar, which is different than our
observations in other scenarios we considered, where performance of the algorithms under
coverage was relatively better. This is because of the BS being deployed at the center of
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Fig. 8.11 PRR in Scenario C, measured as a function of Tx-Rx distance, at the west and the
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Fig. 8.12 PRR in Scenario D, measured as a function of Tx-Rx distance, at the in-coverage
and the tunnel sections of the road.

the road with a larger distance to the served vehicles as compared to other scenarios, thus,
vehicles suffering from higher path loss under coverage. Vehicles at the edge sections of
the road get better coverage as they approach to the central section, which also improves
the reliability of the transmissions received by the vehicles within the tunnel. Similar to our
other results, iVRLS can provide a marginally better communication range within the tunnel,
as compared to MRD.

In summary, our evaluations in this chapter lead us to the following observations:



8.3 Evaluation 183

• Centralized scheduling of V2V communications gets more efficient under coverage,
thanks to the availability of instantaneous and global knowledge of the vehicular
environment at the scheduler. As the coverage conditions get more ideal in comparison
to the out-of-coverage areas, fewer resources become necessary to support the required
reliability of V2V applications.

• VRLS, when extended for scheduling under coverage, performs marginally worse than
iVRLS and MRD, which are specially designed for in-coverage scheduling.

• Without our proposed enhancement to centralized schedulers under intermittent cover-
age, the reliability performance of V2V communications degrade considerably even
with the highest possible frequency of the scheduling updates under a low traffic load.

• Results in Scenarios C and D show that the large path loss between the vehicles and
the network due to the non-ideal deployment of base stations degrade the reliability of
the V2V messages in a similar way to that of an out-of-coverage area such as a tunnel
on the road.

• While relatively good coverage conditions benefit MRD, which is designed assuming
perfect coverage conditions; in case of coverage losses, iVRLS yields marginally larger
V2V distances at which a given target PRR is achievable.

• Under coverage, more frequent message transmissions or larger density of vehicles,
such as due to stop-and-go traffic, degrade the reliability of the V2V transmissions
for all scheduling algorithms, due to the increased load on the resources, as expected.
The reliability can be improved by increasing the frequency of the scheduling updates,
which, however, incurs additional control signaling overhead.

• In the case of relatively low traffic load, iVRLS and MRD perform very similarly, while
iVRLS can make more efficient use of the resources by providing a larger reliable
communication range under high traffic load or relatively low rate of scheduling
updates.

8.3.6 Challenges of Deploying iVRLS

The performance gain of iVRLS comes with the cost of training and higher computational
complexity, as compared to the heuristic-based approaches, such as MRD. As with any
other RL solution, iVRLS requires training, which could be conducted offline, i.e., before
its deployment. On the other hand, during its operation, iVRLS needs to compute the state
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information of the environment and process it with its policy DNN, which incurs a higher
processing cost than the operations required by the heuristic algorithms. Despite these
challenges, iVRLS would be preferable for deployment to serve areas with rather non-ideal
conditions such as intermittent network coverage given its advantageous performance, where
area-specific training and operation could be performed.

8.4 Conclusions

Different from the previous chapters, where we considered V2V communications inside
expected out-of-coverage areas, in this chapter, we shifted our focus to in-coverage operation,
which is, however, vulnerable to unexpected and shorter coverage interruptions in reality.
Motivated by our results in the previous chapters showing the benefits of the RL-based
approach, we proposed iVRLS, an RL-based centralized scheduler for V2V communications,
specifically targeting imperfect network coverage conditions. To support such conditions,
state-of-the-art centralized schedulers could be extended by a simple method we propose,
where vehicles continue keeping their resources for their V2V transmissions during the
periods of coverage loss. Nevertheless, iVRLS performs better than the enhanced version of
a state-of-the-art heuristic algorithm under intermittent coverage conditions. In particular,
iVRLS can deliver a larger reliable communication range in the case of high traffic load
and less frequent scheduling of V2V messages, as well as within the road tunnels without
any network coverage. By utilizing the V2V communication resources more efficiently as
the network conditions move away from the ideal, iVRLS offers a robust alternative to the
existing schedulers across varying conditions of coverage.



Chapter 9

Conclusion and Outlook

The main goal of this thesis was to efficiently and practically address the resource allocation
problem for maintaining vehicle-to-vehicle (V2V) communication performance under inter-
mittent cellular network coverage conditions. To this aim, our main approach was based on
the idea of exploiting centralized coordination of resources for V2V communications in areas
suffering from intermittent coverage. We started by exploring reserving required resources
for expected out-of-coverage areas to satisfy the quality of service requirements, and whether
resources could be pre-scheduled by a centralized network entity efficiently, before vehicles
enter such an area. For these tasks, we proposed the centralized scheduler to make use of
the available information on its side, such as V2V data traffic demand, vehicle density, as
well as predicted mobility of vehicles. We evaluated how varying conditions outside the
coverage together with the imperfections in the predictions impact the performance of V2V
communications, such as in terms of reliability, latency, and resource utilization. We showed
that the idea of centrally reserving and pre-scheduling the resources is feasible. However, the
performance of the V2V communications is highly impacted by the erroneous predictions of
the scheduler when combined with the varying conditions outside the network coverage.

To make efficient predictions to schedule resources for expected out-of-coverage areas,
we proposed a novel approach based on reinforcement learning (RL), motivated by the recent
success of RL in many fields including vehicular communications. We proposed a centralized
RL agent that learns to assign resources to the vehicles by utilizing the information available,
such as the occupancy of resources. We showed that the RL-based scheduler can learn
strategies to avoid resource conflicts and make efficient resource reuse enabling it to achieve
better performance than the state-of-the-art solutions in terms of V2V packet delivery rate,
after reasonable training times. Nevertheless, as confronted commonly in RL-based studies,
our solution necessitated careful design considerations in terms of practical applicability
to diverse environments, which V2V communications need to support. To address this
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concern, we proposed a unified RL-based solution for scheduling V2V communications in a
diverse set of out-of-coverage areas that vary in terms of vehicle mobility, wireless channel
characteristics, and structure of the communication resource pool. We have evaluated the
performance of our solution in scenarios having different vehicular density and mobility,
V2V data traffic, transmit power, and resource pool configuration. The proposed RL agent
can learn a scheduling policy that is robust and adaptable to changes in the environment, thus
eliminating the need for targeted (re-)training in complex real-life environments. Specifically,
our solution reduces the packet loss rate by half as compared to a state-of-the-art distributed
scheduler in highly loaded conditions and performs close to the theoretical maximum level
in low-load scenarios. The RL scheduler requires much fewer resources as compared to
the distributed scheduler to achieve the reliability targets required by the V2V applications.
Further, the RL agent can provide higher awareness among the vehicular users, while
delivering similar fairness and latency as the distributed scheduler.

On the other hand, as RL-based solutions require training before their deployment, they
might encounter unanticipated network conditions during their operation, which they had
never experienced during training. Especially considering the outside of coverage, unexpected
or unnoticeable conditions within the vehicular environment may arise, such as due to road
accidents that are leading to heavy traffic, where the actions of the trained agent might
become unfeasible. Considering such conditions, where the information available at the
centralized scheduling entity becomes a limiting factor, we proposed a hybrid solution that
combines the centralized RL-based scheduling with the distributed scheduling approach. The
employed RL scheduler recommends a subset of resources to the vehicles going outside the
coverage. Whereas vehicles dynamically and locally apply an energy-sensing mechanism on
the recommended resources. They consequently select the final resource for their transmission
by weighing the RL-recommended probabilities with their sensing results. This way, we
combine the best of both worlds: the global view (V2V traffic load, mobility, etc.) and the
policy of the trained RL agent, with the local view of the vehicles enabling adaptation to
dynamic, unpredictable conditions. We showed the ability of such a solution to improve V2V
communication performance in a scenario with extreme traffic congestion due to an accident
outside the network coverage.

Finally, we shifted our focus onto the in-coverage scheduling of V2V communications,
in particular having imperfect connectivity between the vehicles and the BSs that provide
access to the centralized scheduling entity, which is contrary to the unrealistic assumptions of
the state-of-the-art solutions. As a basic enhancement to the existing centralized scheduling
approaches, we proposed that vehicles keep using their allocated resources upon intermittent
coverage loss until they can establish back the connection with the BS. Further, we proposed
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an RL-based centralized scheduler, similar to our solution for the out-of-coverage areas,
which in this case can benefit from the availability of instantaneous and exact knowledge
of the vehicular environment, and the possibility of resource assignments at all times, all
thanks to the network coverage. The results showed that our RL-based scheduler achieved
more efficient usage of resources by providing higher V2V communication reliability in
comparison to the enhanced version of a state-of-the-art scheduling algorithm under non-ideal
coverage conditions or high traffic load, and otherwise delivering similar performance.

We see several possible ways forward to extend this thesis work:

• Since we target the out-of-coverage problem for vehicular communications, we have
mainly considered highway scenarios in this work, with parts of the road lacking
cellular network coverage, which is the most typical case encountered in reality. The
predictive resource allocation concept for vehicles, however, could be extended to
urban scenarios or more complex road topologies, especially considering V2V com-
munications under coverage. Similarly, the idea of managing resources beyond the
network coverage could be extended for other types of direct device-to-device com-
munications (e.g., for industrial IoT or public safety applications) involving different
use cases, deployment scenarios, communication requirements, and wireless channel
characteristics.

• The centralized coordination of the resources for V2V communications taking place
outside the coverage could be extended with the idea of relaying, where vehicles could
exchange information with the resource management entity via multi-hop transmissions.
Such functionality could provide more dynamic and granular coordination of the
communication resources, yet at the cost of increased complexity, larger signaling
overhead, and higher latency.

• The resource allocation task we have considered could be extended to directional
transmissions, e.g., using multi-antenna systems, involving further mechanisms such
as beamforming and power control for the V2V transmissions at the physical layer, thus
further exploiting resource reuse over the spatial domain. Such extensions would bene-
fit unicast and multicast communications with directed transmissions, as envisioned for
the next generation of V2V use cases. Given the further increased combinatorial com-
plexity, it would be interesting to see whether and how RL can handle such resource
allocation problems.

• The way we have applied RL to the resource allocation problem could be also extended
in various ways. The impact of using different learning techniques, such as using graph-
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structured inputs, or distributed multi-agent approaches by combining the learning at
the centralized network entity and the vehicle sides could be studied.

• Finally, although we have used extensively realistic simulators, evaluated performance
on a variety of complex and realistic scenarios, and discussed the real-world impli-
cations of our approach, it would be necessary to see its performance in real life,
especially with regards to training and operating the RL models. It would be inter-
esting to observe and address the challenges arising in reality, which we might have
omitted.



Appendix A

Design of the deep neural network architecture and data
augmentation technique of VRLS

Design options

D1 Input layer: 4 separate 1D convolutional layers with tanh activation function, each
processing one of the 4 columns of st . Hidden layer: merging layer and a 1D convo-
lutional layer with tanh activation function. Output layer: fully connected layer with
softmax activation function. This is a conventional design for convolutional neural
networks, where similar architectures are utilized in many applications, such as [172],
[171] and [293]. We have used this design in Chapter 5 for the vehicular environment
E2.

D2 Same as D1, except that a maxpooling operation is added to the output of the hidden
layer. This is another conventional variant of convolutional neural networks, especially
widely used in image recognition and classification tasks, such as in [169] and [285].

D3 Input layer: single 1D convolutional layer with tanh activation function processing all
st . Hidden layer: maxpooling operation followed by a perceptron with tanh activation
function, repeated for number of subchannels in the resource pool (e.g., K = 2), each
processing the corresponding part of the input layer’s output. Output layer: fully
connected layer with softmax activation function. We have designed this option based
on the method proposed in [294] to overcome the dependence of actions on the ordering
of elements in st .

D4 Same as D3, except that another hidden layer is added before the output layer with a
single maxpooling operation followed by a perceptron as in D3. Based on [294], the
cascaded layers still hold the ordering property.
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Fig. A.1 Considered design options D1-D6 for DNN architecture and data augmentation.

D5 Same as D1, except that we do data augmentation as described in Section 6.2.4. We
have used this design for VRLS in Chapter 6, for the RL agent for hybrid scheduling
in Chapter 7, and for iVRLS in Chapter 8.

D6 Same as D1, except that we do data augmentation by randomly shuffling the resources
only in time domain, different than shuffling both in time and frequency domain as in
D5.

Fig. A.1 illustrates the design options D1-D6 described above.
In Fig. A.2 we report the learning curves of RL agents denoted A1-A6 using the

design options D1-D6. The agents are trained in the training E0 environment described in
Section 6.3.1. All agents utilize the same state and reward definitions in Section 6.2.

In Fig. A.3 we provide the V2V reliability performance of the RL agents A1-A6 evaluated
in the training environment E0, in terms of packet reception ratio (PRR) defined in Section 3.2.
For each agent, we report PRR measured at two ranges R1 = 0−50 m and R2 = 50−100 m
around the transmitters, in terms of the mean and percentile values of 10000 measurements
collected every 10 s from the environment.

From the results in Fig. A.2 and Fig. A.3, we make the following observations:

• Adding a pooling layer to the DNN leads to a higher variance in the asymptotic
performance of the agent (by comparing A1 and A2 in Fig. A.2). Similarly, A2 results
in a lower mean and higher deviation of PRR as compared to A1 as observed from
Fig. A.3.
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Fig. A.2 Learning curves of the RL agents A1-A6 that use the designs D1-D6, respectively,
in the training environment E0 described in Section 6.3.1.

• The architecture design considered in [294] (i.e., in A3 and A4) leads to faster conver-
gence in learning as could be observed from Fig. A.2. Agents with this design (A3
and A4) can achieve marginally lower performance than A1 (Fig. A.3). On the other
hand, this architecture is not practical as the number of maxpooling and perceptron
pairs in the hidden layer needs to be varied according to the number of subchannels in
the resource pool, thus requiring a different variant of the DNN to be trained for every
possible resource pool configuration.

• The data augmentation increases the convergence rate of learning, as observed by
comparing A5 and A6 with A1 and A2 in Fig. A.2. Further, shuffling of the resources
randomly both in time and frequency leads to a better performance in terms of PRR
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Fig. A.3 PRR performance of the RL agents A1-A6 in the environment E0, measured for
two ranges R1 = 0−50 m and R2 = 50−100 m around the transmitters, with mean (green,
dashed, denoted), median (red), 25th and 75th percentiles (box), and 5th and 95th percentiles
(whiskers).

with a relatively larger mean and less variance than shuffling the resources only in
time.

Our observations lead to the selection of the design option D5 for our RL agents in
the respective chapters, which achieves relatively fast convergence in training and the best
reliability performance in the considered environment among the examined options.
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Design and training of the iVRLS agent

State representation design options

S1 Same state representation as in VRLS (cf. Section 6.2.1), except that instead of ∆x,
we represent I as in iVRLS (cf. Section 8.2.1), for each direction. Namely, st has 4
columns, two for each road direction, representing the normalized number of vehicles
C each resource r assigned to, and the expected interference level Ir on that resource,
per direction, respectively.

S2 Same as S1, however, with a total of 2 columns, each representing the C and I for both
directions, respectively. That is, for each resource, information on both directions are
taken into account when calculating its C and I.

S3 State representation with a single column only for I containing information for both
directions. We have used this design for iVRLS in Chapter 8.

In Fig. B.1 we report the learning curves of the RL agents denoted A1-A3 utilizing the
state representations S1-S3, in the training environment described in Section 8.3.1. All agents
utilize the same action and reward definitions, as well as the same DNN architecture described
in Section 8.2. As could be observed from Fig. B.1, A1 and A2 show convergence after
around 10000 epochs, however with some variance in terms of performance. Whereas, A3
achieves the best performance with marginally larger average reward and much less variance,
after around 15000 epochs. The results indicate that separate state representation per road
direction, as well as representing the resource occupancy information become unnecessary in
the case of in-coverage scheduling, which leads us to select option S3 for iVRLS.
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Fig. B.1 Learning curves of the RL agents A1-A3 that use designs D1-D3, respectively, in
the training environment described in Section 8.3.1.

DNN architecture design options

We consider the following DNN architecture options in the design of the RL agent utilizing
the state representation S3:

D1 Similar design as used for VRLS (cf. Section 6.2.3), where only a single 1D convo-
lutional layer is utilized at the input layer, as S3 consists of a single column. The
hidden and output layers consist of another convolutional and a fully connected layer,
respectively, as in VRLS.

D2 Same as D1, however, the hidden convolutional layer is replaced by a fully connected
layer, with the number of units equal to the number of resources.

D3 All three layers (input, hidden, output) are fully connected, each with a number of
units equal to the number of resources.

We report the learning curves of the agents utilizing the DNN architectures D2 and D3 in
Fig. B.2 (D1 is utilized by the agent A3 in Fig. B.1). As Fig. B.2 demonstrates, replacing the
convolutional layers with fully connected ones highly degrades the learning performance. In
the case of D2, where the hidden layer is replaced with a fully connected layer, the agent
can achieve much lower average reward as compared to A3, even after a training of more
than 25000 epochs. In the case of D3, where all layers of the DNNs are fully connected, the
agent does not even show a sign of convergence within the first 1000 epochs, while D2 can
lead to a much faster convergence as could be seen from the magnifying box in Fig. B.2. As
discussed in Section 2.5.1, convolutional layers offer the advantage in terms of learning speed
and performance, thanks to much fewer parameters that need to be trained. We, therefore,
consider option A3 using D1 in our iVRLS design.
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Fig. B.2 Learning curves of the RL agents that use the DNN designs D2 and D3 with the
state representation S3, in the training environment described in Section 8.3.1.

Learning rate design options

We evaluate the impact of learning rate α on the learning performance of the RL agent. In the
design of VRLS and iVRLS we have considered α = 10−3/(1+0.01×#ep1.1), where the
learning rate gets smaller with the number of epochs in order to enable better convergence
properties as discussed in Section 2.5.1, starting from the initial value of 0.001. Besides this
considered option, we have evaluated the learning performance where we set the initial value
of α to 0.002, 0.005, 0.01, and 0.05. Except for the first value, we could not observe any
learning, i.e., the agents did not show any convergence in terms of collected average reward.
We provide the learning curve for the case 0.002 in Fig. B.3. It took around two times longer
for the agent to achieve a comparable performance with A3 that utilizes the initial value of
0.001, where it showed a larger variance after convergence. We have therefore considered
the initial value of 0.001 for the learning rate in our design.

Impact of the scheduling periodicity on training

We evaluate the impact of the frequency of scheduling updates on the training performance,
where each vehicle in the environment sends a scheduling request with periodicity T SR =

NSRT m (i.e., in multiples of T m), starting from its first message generation after connecting
to the network. We evaluate the learning performance of the agent A3 for the cases NSR =

{1,10,100} with the message generation periodicity T m = 100 ms, and report the learning
curves in Fig. B.4.

In the case of NSR = 1, all vehicles in the environment request a new resource for every
single V2V transmission. Such a large number of requests (growing with the number of
vehicles in the environment) within a short time makes it very difficult for the RL agent to
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Fig. B.3 Learning curve of RL agent A3, with the initial value of learning rate set to 0.002,
in the training environment described in Section 8.3.1.
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Fig. B.4 Learning curves of RL agent A3 with different periodicities of scheduling each
vehicle, expressed in multiples NSR of their V2V message generation periodicity T m, in the
training environment described in Section 8.3.1.

assess the quality of its actions. Namely, the reward reflecting the PRR calculated within a
very short duration (even less than the packet generation periodicity T m) might not represent
the reliability of the transmitted messages in the environment properly. Accordingly, the RL
agent can not converge to a stable performance level, with an increasing variance throughout
the training. On the other extreme, in the case of NSR = 100, the agent reaches a stable
performance level, however, capped at a smaller maximum of average reward due to the
lower frequency of scheduling updates. A smaller rate of scheduling requests coming from
the vehicles prevents the agent from observing the changing dynamics of the environment,
which makes its decisions sub-optimal. As a consequence, we utilize NSR = 10 when training
iVRLS, which leads to a stable performance level with a larger average reward than the other
cases.
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[39] T. Şahin, R. Khalili, M. Boban, and A. Wolisz, “Scheduling out-of-coverage vehicular
communications using reinforcement learning,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 10, pp. 11 103–11 119, 2022.

[40] T. Sahin and M. Boban, “Devices and methods for D2D communication,” Patent
WO2 019 174 744, Sep., 2019. [Online]. Available: https://patentscope.wipo.int/
search/en/detail.jsf?docId=WO2019174744

[41] T. Sahin, M. Boban, and M. Webb, “Network entity, user equipments and methods for
using sidelink resources,” Patent WO2 020 244 741, Dec., 2020. [Online]. Available:
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020244741

[42] “List of C-V2X Devices,” 5GAA Automotive Association, Technical report, 2021.
[Online]. Available: https://5gaa.org/wp-content/uploads/2021/11/5GAA_List_of_
C_V2X_devices.pdf

[43] ETSI TC ITS, “Intelligent Transport System (ITS); Vulnerable Road Users (VRU)
awareness; Part 1: Use Cases definition; Release 2,” Tech. Rep. ETSI TR 103 300-1
V2.1.1, September 2019.

[44] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[45] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband.
Academic press, 2013.

[46] H. Moustafa and Y. Zhang, Vehicular Networks: Techniques, Standards and Applica-
tions. Auerbach Publications, 2009.

[47] 3GPP, “Study on LTE support for Vehicle-to-Everything (V2X) services,” 3GPP, Tech.
Rep. TR 22.885, September 2015, v1.0.0.

[48] K. Laberteaux and H. Hartenstein, VANET: Vehicular Applications and Inter-
Networking Technologies. John Wiley & Sons, 2009.

[49] T. Abbas, Measurement Based Channel Characterization and Modeling for Vehicle-
to-vehicle Communications. Lund University, 2014.

[50] R. A. Uzcategui, A. J. De Sucre, and G. Acosta-Marum, “Wave: A tutorial,” IEEE
Communications Magazine, vol. 47, no. 5, pp. 126–133, 2009.

[51] A. Festag, “Cooperative intelligent transport systems standards in Europe,” IEEE
Communications Magazine, vol. 52, no. 12, pp. 166–172, 2014.

[52] M. Harounabadi, D. M. Soleymani, S. Bhadauria, M. Leyh, and E. Roth-Mandutz,
“V2X in 3GPP standardization: NR sidelink in Release-16 and beyond,” IEEE Com-
munications Standards Magazine, vol. 5, no. 1, pp. 12–21, 2021.

[53] SAE V2X Core Technical Committee, V2X Communications Message Set Dictionary,
SAE International Std. J2735, July 2020.

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019174744
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019174744
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020244741
https://5gaa.org/wp-content/uploads/2021/11/5GAA_List_of_C_V2X_devices.pdf
https://5gaa.org/wp-content/uploads/2021/11/5GAA_List_of_C_V2X_devices.pdf


References 215

[54] S. Bartoletti, B. M. Masini, V. Martinez, I. Sarris, and A. Bazzi, “Impact of the
generation interval on the performance of sidelink C-V2X autonomous mode,” IEEE
Access, vol. 9, pp. 35 121–35 135, 2021.

[55] The CAMP Vehicle Safety Communications Consortium, “Vehicle Safety Communi-
cations Project Task 3 Final Report Identify Intelligent Vehicle Safety Applications
Enabled by DSRC,” U.S. Department of Transportation, NHTSA, Tech. Rep. DOT
HS 809 859, 2005.

[56] S. Mumtaz, K. M. Saidul Huq, M. I. Ashraf, J. Rodriguez, V. Monteiro, and C. Poli-
tis, “Cognitive vehicular communication for 5G,” IEEE Communications Magazine,
vol. 53, no. 7, pp. 109–117, 2015.

[57] A. Pyattaev, K. Johnsson, S. Andreev, and Y. Koucheryavy, “Proximity-based data
offloading via network assisted device-to-device communications,” in 2013 IEEE 77th
Vehicular Technology Conference (VTC Spring), 2013, pp. 1–5.

[58] C.-H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen, “Resource sharing opti-
mization for device-to-device communication underlaying cellular networks,” IEEE
Transactions on Wireless Communications, vol. 10, no. 8, pp. 2752–2763, 2011.

[59] A. F. Molisch, Wireless Communications, 2nd ed. Wiley Publishing, 2011.

[60] K. Serizawa, M. Mikami, K. Moto, and H. Yoshino, “Field trial activities on 5G NR
V2V direct communication towards application to truck platooning,” in 2019 IEEE
90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–5.

[61] D. Martín-Sacristán, S. Roger, D. Garcia-Roger, J. F. Monserrat, A. Kousaridas,
P. Spapis, S. Ayaz, and C. Zhou, “Evaluation of LTE-Advanced connectivity options
for the provisioning of V2X services,” in 2018 IEEE Wireless Communications and
Networking Conference (WCNC), 2018, pp. 1–6.

[62] M. C. Lucas-Estañ, B. Coll-Perales, C.-H. Wang, T. Shimizu, S. Avedisov, T. Higuchi,
B. Cheng, A. Yamamuro, J. Gozalvez, M. Sepulcre, and O. Altintas, “On the scala-
bility of the 5G RAN to support advanced V2X services,” in 2020 IEEE Vehicular
Networking Conference (VNC), 2020, pp. 1–4.

[63] M. C. Lucas-Estañ, B. Coll-Perales, T. Shimizu, J. Gozalvez, C.-H. Wang, B. Cheng,
M. Sepulcre, S. Avedisov, T. Higuchi, and O. Altintas, “Analysis of 5G RAN configu-
ration to support advanced V2X services,” in 2021 IEEE 93rd Vehicular Technology
Conference (VTC2021-Spring), 2021, pp. 1–5.

[64] Z. MacHardy, A. Khan, K. Obana, and S. Iwashina, “V2X access technologies:
Regulation, research, and remaining challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, pp. 1858–1877, 2018.
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