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Abstract

The dissociation of oxygen molecules on the Al(111) surface is an important model
reaction for the adsorption of simple molecules on metal surfaces. Numerous ex-
periments have shown that the initial sticking probability of thermal oxygen molecules
impinging onto Al(111) is only about one percent. An obvious explanation would be
the existence of energy barriers along the dissociation pathway that could only be
overcome by molecules of higher energy. In fact, sticking coefficients of almost unity
have been measured at higher kinetic energies. However, previous density-functional
theory (DFT) studies on this system did not yield sizeable energy barriers.

To investigate this problem the well established “divide and conquer” approach is
employed. First, the adiabatic full-potential six-dimensional potential-energy surface
(PES) taking into account all molecular degrees of freedom is calculated on a dense
grid using DFT. Subsequent presentation of the PES by a neural network technique
enables to perform extensive molecular dynamics runs and thereby to take reliable
statistical averages. A sticking coefficient close to unity is obtained independent of
the kinetic energy, in agreement with the conclusion from preceding DFT studies, but
in strong disagreement with experimental data.

Concluding that essential physics is missing in the adiabatic description of the disso-
ciation process, the standard approach is extended by implementing a spin-constrained
DFT method into the DMol® code. This approach is an improvement over standard
fixed-spin-moment calculations as it allows to keep the spin-triplet located on the oxy-
gen molecule while keeping the metal surface in a singlet state. With this new tool
the possible role of non-adiabatic effects during the dissociation event is explored,
which could arise from a low transition probability from the initial triplet state of
the gas phase Os molecule to the singlet ground state of the adsorbed atoms. The
resulting triplet-constrained PES exhibits energy barriers in most entrance channels
towards dissociation, and molecular dynamics runs confined to this diabatic PES
yield a significantly reduced sticking coefficient. Non-adiabatic effects in form of a
non-instantaneous spin-flip during the dissociation process could therefore well ac-
count for the low sticking probability of thermal oxygen molecules. A quantitative
determination of the sticking curve is, however, prevented by the inaccuracies in the
energetics provided by present-day DFT functionals.






Zusammenfassung

Die Dissoziation von Sauerstoffmolekiilen auf der Al(111) Oberflache ist eine wichtige
Modellreaktion fiir die Adsorption einfacher Molekiile auf Metalloberflichen. Zahl-
reiche Experimente haben gezeigt, dass die anfangliche Haftwahrscheinlichkeit ther-
mischer Sauerstoffmolekiile beim Auftreffen auf die Al(111) Oberflache nur etwa ein
Prozent betrégt. Eine einfache Erklarung wére die Existenz von Energiebarrieren auf
dem Dissoziationsweg, die nur von Molekiilen hoherer kinetischer Energie tiberwunden
werden konnen. Tatsachlich wurden fiir hohere kinetische Energien Haftkoeffizienten
nahe eins gemessen. Im Gegensatz dazu ergaben bisherige Untersuchungen dieses
Systems mit Dichtefunktional-Theorie (DFT) keine nennenswerten Energiebarrieren.

Um dieses Problem zu untersuchen wird der etablierte ,,divide and conquer” Ansatz
verwendet. Zuerst wird dazu unter Beriicksichtigung aller molekularen Freiheitsgrade
die sechsdimensionale Energichyperfliche (PES) mit Hilfe von DFT auf einem dichten
Gitter von Punkten berechnet. Die anschlieende Darstellung dieser PES durch ein
Neuronales Netz ermoglicht die Durchfithrung umfangreicher, statistisch verlasslicher
Molekulardynamik Simulationen. Unabhangig von der kinetischen Energie wird ein
Haftkoeffizient von etwa eins erhalten, der gut mit Folgerungen aus fritheren DFT
Studien iibereinstimmt, aber im Widerspruch zum Experiment steht.

Da in der adiabatischen Beschreibung des Dissoziationsprozesses anscheinend we-
sentliche Physik nicht beriicksichtigt wird, wird dieses Standardverfahren durch die
Implementierung einer Randbedingung fiir den Spin in das DMol® Programm er-
weitert. Dies ist eine Verbesserung des tiblichen ,.fixed-spin-moment” Verfahrens,
die ermoglicht, den Triplett-Spin auf dem Sauerstoffmolekiil zu lokalisieren, wahrend
die Metalloberflache im Singulett-Zustand bleibt. Mit diesem neuen Verfahren wird
die mogliche Rolle nicht-adiabatischer Effekte wahrend des Dissoziationsvorgangs
untersucht. Diese Effekte konnen auftreten, wenn die Ubergangswahrscheinlichkeit
vom anfanglichen Triplett-Zustand des O, Molekiils in der Gasphase zum Singu-
lett-Zustand der adsorbierten Atome klein ist. Die resultierende Triplett-PES weist
Energiebarrieren in den meisten Dissoziationskanélen auf. Aus diesem Grund ergeben
auf diese diabatische PES beschrankte Molekulardynamik Simulationen einen deut-
lich reduzierten Haftkoeffizienten. Die niedrige Haftwahrscheinlichkeit thermischer
Sauerstoffmolekiile kénnte daher durch nicht-adiabatische Effekte in Form eines ver-
zogerten Spin-Umklapp-Prozesses erklart werden. Eine quantitative Bestimmung der
Haftkurve ist allerdings aufgrund der unzureichenden Genauigkeit gegenwartiger DFT
Funktionale nicht méglich.
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One thing I have learned in a long life:
that all our science, measured against reality,
18 primative and childlike
- and yet it is the most precious thing we have.
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Chapter 1

Introduction

In recent years the interaction of oxygen molecules with metal surfaces has gained a
central role in surface science due to its fundamental importance for many techno-
logically relevant processes like heterogeneous catalysis and corrosion. Only a detailed
investigation of the underlying elementary steps at an atomic scale, e.g. physisorption,
chemisorption, dissociation, diffusion, and desorption, can yield a deeper understand-
ing, which at present is still very limited even for the most basic process, namely the
interaction of an individual molecule with a surface. For these studies “simple” and
well-defined model systems are required, which allow to address all aspects of the
adsorption event in a concerted effort by experiment and theory and help to establish
a firm basis for further investigations.

One such, and maybe even the most important, model system for the interaction
of oxygen molecules with metal surfaces is the dissociative adsorption of oxygen on
the single-crystal Al(111) surface. This system is appealing for both, theory and ex-
periment, since aluminium has a rather simple electronic structure and because the
low-index Al(111) surface offers a comparably simple geometric arrangement. In the
past 30 years a wealth of experimental data has been accumulated using essentially
all available techniques, and also numerous theoretical studies of many aspects of
this interaction have been performed. Yet, in spite of these efforts still several key
aspects of this apparently simple system have not been understood. Two promi-
nent examples are the adsorption mechanism and the sticking probability, which is
the ratio of successful sticking events to the total number of molecule-surface colli-
sions. Concerning the mechanism, several contradictory models like abstraction [1, 2],
dissociative chemisorption [3] and the so-called “hot atom” motion [4,5] have been
proposed mainly based on different interpretations of scanning tunnelling microscopy
(STM) results.

Both quantities are entangled and one can view the sticking probability as maybe
the more basic one. It is typically determined by the very first interaction of the
molecule with the surface, and only if this is understood, a proper discussion about
the ensuing adsorption mechanism can be attempted. With respect to molecular
sticking, it has been unambiguously shown in many independent experiments that
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the sticking probability of thermal oxygen molecules is only about 1 % [6-12]. Fur-
thermore, using a molecular beam experiment [9] it was found that the sticking prob-
ability increases with translational kinetic energy! and reaches a saturation value of
about 90 % only for kinetic energies higher than 0.5 eV. A likely explanation for this
finding would be the existence of energy barriers towards dissociation that cannot
be overcome by low energy, thermal molecules. Inspired by these experiments theo-
retical studies addressed the oxygen-aluminium interaction by calculating parts of the
multi-dimensional potential-energy surface (PES), which in principle should contain
all information on the energy barriers. For this purpose usually density-functional
theory (DFT) [13,14] is used, which is presently established as a standard tool for
large systems, in particular in theoretical surface science, often offering a reliable
compromise between accuracy and efficiency. The result, however, was very surpris-
ing in that basically no energy barriers could be identified, which could account for
the low sticking probability. In contrast to experiment, the sticking probability was
accordingly expected to be very high and independent of the kinetic energy of the
oxygen molecule. This discrepancy between experiment and theory reflects a lack
of understanding of this elementary process that is very disturbing, and affects also
further theoretical studies on other, more involved aspects of the adsorption process
like the dissociation mechanism. Additionally, consequences for similar systems are
completely uncertain as long as the origin of this discrepancy has not been found.
Consequently, the main objective of this thesis is to gain a deeper understanding
of the dissociation process and to identify the origin of the low sticking probability
of thermal oxygen molecules. Several scenarios are possible: So far, only parts of
the PES of the oxygen dissociation on Al(111) have been calculated for a limited
number of molecular orientations in rather small surface unit cells. Additionally, all
conclusions about the sticking probability have been drawn from a mere inspection
of the PES without an explicit calculation of the sticking curve from first-principles,
i.e. all dynamic aspects of the dissociation event have hitherto not been addressed.
It might well be that slow molecules are steered systematically to non-dissociative
pathways by the multi-dimensional surface potential. This can only be taken into
account by molecular dynamics (MD) simulations based on this PES, which allow to
explicitly follow the molecular trajectories by solving the classical equations of motion.
That a full treatment of the dynamics can be important for understanding sticking
has indeed been shown e.g. for the Hy dissociation at metal surfaces [15-17]. Another
approximation that is often made is the neglect of the mobility of substrate atoms,
which has been shown to be valid for example for the adsorption of Hy on Pd(100) [18],
while the mobility is important for Hy on Si(100) [19]. For O on Al(111) the appli-
cability of this frozen surface approximation cannot be taken for granted considering
the almost equal masses of Oy and aluminium atoms. Besides, all calculations for this

1Since the present work is mainly concerned with the determination of the sticking probability as
a function of the translational kinetic energy of the molecules towards the surface, the term “kinetic
energy” in this work generally refers to translational energy. It has also been shown in experiment
that the sticking probability increases slightly for vibrationally excited molecules [9].
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system so far have been based on density-functional theory, which is often accurate
enough, but also has some prominent failures due to the only approximate treatment
of exchange and correlation in its current implementations. Finally, the adiabatic
nature of the PES per se has been questioned for this system [9, 20-24]. The adiabatic
description of the dissociation process is equivalent to a molecular trajectory on the
Born-Oppenheimer PES [25], assuming an instantaneous relaxation of the electronic
structure to its ground state with the changing nuclear coordinates. Due to the
dynamic nature of the adsorption process, which necessarily gives rise to a competition
of time scales of nuclear and electronic motion, non-adiabatic effects might play an
important role. According to this model, the oxygen molecule, which in the gas
phase has a spin-triplet ground state, could be confined to the initial diabatic neutral,
spin-triplet PES for some time during its approach to the surface. In contrast to
the hitherto studied adiabatic potential-energy surface, this triplet PES might show
energy barriers, which could provide an explanation for the low sticking probability
of thermal oxygen molecules.

In the present work most of these aspects have been addressed to investigate the
origin of the low sticking probability of thermal oxygen molecules. First, to establish
a firm reference, the adiabatic potential-energy surface has been calculated as accu-
rately as possible and far more detailed than before. The almost complete absence
of sizeable energy barriers towards dissociation could be confirmed. Using a neural
network [26, 27| interpolation technique a continuous representation of this PES could
be obtained, which allowed to calculate a statistically significant number of MD tra-
jectories and in turn a sticking curve based on first-principles for this system for the
first time. The sticking probability was found to be about unity, independent of the
kinetic energy, in contrast to experiment. Consequently, dynamical steering effects
can be excluded as origin of the low sticking probability. Tests including the substrate
motion via direct ab initio MD have also eliminated the mobility of substrate atoms
as a possible explanation. Substrate motion only becomes sizeable and relevant at a
later stage of the adsorption process, when the oxygen has come much closer to the
surface. The description of the system by the approximate exchange-correlation func-
tional in DFT has been assessed by reference calculations on the free oxygen molecule,
bulk aluminium and the clean and oxygen-covered Al(111) surface. Comparison of the
obtained structures and energetics with experimental data shows a good agreement,
an exception being the well-known overestimation of the binding energy of the free
oxygen molecule. Yet, this should not sensitively affect the sticking probability, since
the PES represents differences of DFT energies and the errors are expected to cancel.
Closer to the surface a strong interaction with the aluminium sets in, the electronic
structure becomes very different from the free molecule and the well understood rea-
sons for the overbinding in Oy do not apply anymore. This seems confirmed by our
calculations applying different exchange-correlation functionals, which yield basically
the same sticking curve, while the binding energy of the free oxygen molecule shows a
sizeable functional dependence. However, one should stress that the small remaining
uncertainty can only be ruled out by an improved treatment of exchange and correla-

3
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tion being more accurate than present-day functionals used in DFT, which is beyond
the scope of this work.

Having thus shown that the adiabatic PES is most probably not able to explain the
experimental sticking curve, a model has been developed to assess the possible role of
non-adiabatic effects. The basic idea is that the molecule might continue approaching
the metal surface on the initial diabatic neutral spin-triplet PES, even when the
adiabatic ground state becomes energetically more favorable. This idea is not new,
but while previous studies mainly focussed on charge transfer from the surface to the
molecule as source of non-adiabaticity [21,28,29], in this work the molecular spin has
a central role. This comes about, since the free oxygen molecule has a triplet ground
state, whereas the adsorbed atoms are in a singlet state. In the suggested two-state
model the molecule approaches the surface on the diabatic, neutral spin-triplet PES
and a relaxation to the adiabatic ground state is assumed to be inhibited as long as
the coupling between the diabatic triplet and singlet PESs is weak. This should be a
good approximation beyond a certain distance from the surface, before the coupling
to other diabatic PESs (e.g. for charged molecules) starts to play a role. To be able
to account for the low sticking probability in this non-adiabatic model, the neutral
triplet PES necessarily has to exhibit energy barriers towards dissociation. Validating
the possible existence of such energy barriers requires the detailed calculation of this
diabatic PES, for which before the beginning of this thesis appropriate methods were
hardly (or only conceptionally) available. A complete description of the dissociation
process then could be accomplished by including further diabatic PESs. A spin-triplet
could be imposed on the system by using the fixed-spin-moment approach [30-33].
Unfortunately, tests showed that at small molecule-surface separations the majority of
the spin is transferred to the aluminium surface. This does not correspond to the spin-
triplet PES we want to describe, in which the molecule is in a triplet state while the
surface is in a singlet state for all configurations. Following an early concept suggested
by Dederichs et al. [34], a very general constrained density-functional method has been
developed and tested in the course of this project, which in principle allows for the
calculation of diabatic potential-energy surfaces of arbitrary charge and spin states
of the oxygen molecule within the limitations provided by DFT. This constrained
DFT approach has been applied to calculate the neutral spin-triplet potential-energy
surface using two different exchange-correlation functionals to evaluate the reliability
of the results. Sizeable energy barriers of up to almost 1 eV have been found, and
subsequent MD simulations yielded a significantly reduced sticking probability for
kinetic energies lower than 0.5 eV in excellent agreement with experiment. This clearly
shows that in principle non-adiabatic effects could indeed explain the experimental
findings. However, the absolute height of the energy barriers shows some dependence
on the chosen exchange-correlation functional and for one functional a few barrier-
free dissociation channels exist, which has substantial effects on the calculated sticking
curve. Due to this uncertainty a quantitative agreement with experiment could not be
obtained, and further calculations building on the results of this thesis, but employing
an improved description of exchange and correlation would be desirable.

4



Chapter 1. Introduction

The computed sticking curves for molecular motion confined to either the adiabatic
or the spin-triplet diabatic PES represent extreme cases with an immediate and an
infinitely slow relaxation of the electronic structure to the adiabatic ground state.
The real dissociation process likely involves transitions between the triplet and fur-
ther diabatic PESs. From the idea of a hindered spin-relaxation, the spin-singlet
PES appears as a most appropriate alternative diabatic PES. While the developed
constrained DFT method would in principle allow to compute this singlet PES, the
singlet energy obtained from DFT itself is unfortunately not accurate enough to pro-
vide a reliable description of the singlet PES due to a well known deficiency of current
jellium-based exchange-correlation functionals. Consequently, the crossing of the sin-
glet and the triplet PES can be determined only in an approximate way, which does
not allow to calculate transition matrix elements quantitatively. So far, therefore
transitions between the diabatic states have not been included in our model. Still, it
is very likely that the reduced sticking probability of thermal molecules found in the
triplet MD is untouched by these transitions, because the onset of the energy barriers
is rather far away from the surface, in a region where the coupling between the triplet
PES and other diabatic PESs is still very small.

The main conclusion of the present work is therefore that non-adiabatic effects could
well be able to describe the low sticking probability of thermal oxygen molecules at
Al(111), while other remaining explanations like dynamic effects or substrate mobility
could be ruled out. The framework for the calculation of diabatic PESs has been laid
out, and subsequent work will have to focus on an improved description of exchange
and correlation to conclusively settle the prevailing discrepancy with the experimental
data by a quantitative calculation of the sticking curve based on diabatic energy
surfaces.

The present work is organized as follows: In Chapter 2 the state of current re-
search on the interaction of oxygen molecules with the Al(111) surface is summarized
showing that non-adiabatic effects, which are explained in Chapter 3, may play an
important role for this system. The “divide and conquer” approach for the calcula-
tion of sticking curves employed in this work is presented in Chapter 4. The required
potential-energy surfaces are calculated using density-functional theory, the basics of
which are given in Chapter 5, followed by a description of its implementation in the
DMol? code in Chapter 6. The neural network technique used for the interpolation
of the potential-energy surface is briefly summarized in Chapter 7 together with its
application in molecular dynamics simulations in Chapter 8. Before these methods
are applied to the oxygen dissociation on Al(111) the description of oxygen and alu-
minium provided by density-functional theory is tested by calculations for the free
oxygen molecule, bulk aluminium, and clean and oxygen-covered Al(111) surfaces in
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Chapter 9. The calculation of the adiabatic potential-energy surface for the oxygen
dissociation on Al(111), its interpolation and the resulting sticking curve are pre-
sented in Chapter 10, completed by a study of the role of surface mobility. The
model for the inclusion of non-adiabatic effects is introduced in Chapter 11. It re-
quires the development of a constrained DFT formalism, which is explained in detail
in Chapter 12 and has been applied to the calculation of the sticking curve based on
the spin-triplet potential-energy surface reported in Chapter 13. The applicability to
other diabatic potential-energy surfaces is critically reviewed in Chapter 14, and the
effect of transitions between these diabatic energy surfaces is discussed in Chapter 15.
Finally, some aspects of the adsorption mechanism are investigated in Chapter 16.
The results are summarized in Chapter 17 and perspectives for further studies are
given. Appendix A contains the benchmark calculations that have been performed to
identify a suitable DFT code, whose accuracy is illustrated by the convergence tests
in Appendix B. Finally, Appendix C gives additional information on the mapping of
the potential-energy surfaces.



Chapter 2

Oxygen on Al(111):
Status of Current Research

One of the most important model reactions for the interaction of oxygen molecules
with metal surfaces is the dissociative adsorption of oxygen on the Al(111) surface.
In the past 30 years a large number of experimental as well as theoretical studies has
been carried out for this system. Aluminium is an important construction material,
which is very light and has the interesting property that it is protected from corrosion
by the formation of a thin oxide layer, which is only a few atomic layers thick [35]
and can be generated in a controlled way by exposing aluminium to a highly oxidizing
environment. Aluminium oxide, Al;Og, is abundant on earth and forms an important
support for catalysts in chemical industry. Therefore, the interest in its structural and
electronic properties is very high, and soon the interaction of oxygen with aluminium
became a prototype system for studying metal oxide formation.

Of all low index surfaces of aluminium, the (111) surface is energetically most
favorable [36,37]. Its structure is shown in Fig. 2.1. The atoms are arranged in a
face centered cubic (fcc) lattice with ABCABC stacking along the (111) direction and
an approximate interlayer spacing of 2.3 A. Neither the clean nor the oxygen-covered
Al(111) surface shows any reconstruction making this system a good candidate to gain
a deeper understanding of the interaction of oxygen with metals. From a theoretical
point of view the Al(111) surface is very appealing, because aluminium is a simple
sp band nearly-free electron metal and may be well described even by the jellium
approximation. Therefore, understanding the interaction of oxygen molecules with
the Al(111) surface could establish a valuable reference system for the adsorption on
more complex metals, higher index surfaces or pre-covered surfaces like in transition
metal catalyzed processes.

The investigation of the dissociative adsorption of oxygen on the Al(111) surface
started in the 1970’s [6], and in the past decades almost every available experimental
technique has been used to gain insight into the elementary steps of this process [38].
Surprisingly, the experimental characterization of the phases formed by adsorbed oxy-
gen turned out to be very difficult, which has several reasons. First of all, the Al(111)
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Figure 2.1: The Al(111) surface.

surface shows a strong affinity to oxygen and other elements making the preparation
of well defined clean surfaces with low defect and impurity concentrations and re-
producible experimental results very hard. To obtain a clean Al(111) surface many
repeated cycles of sputtering and annealing at about 700 K are required [10,39].
It has been shown by Brune et al. [5,8] by the analysis of scanning tunnelling mi-
croscope (STM) images that even in the absence of signals in Auger electron spec-
troscopy (AES), which indicates a “clean” surface, still a remarkable amount of im-
purities can be present. Additionally, experiments are complicated by the coverage-
dependent complex coexistence of different oxygen species like isolated atoms, islands
of chemisorbed atoms and oxide grains. Accordingly, the first experiments focussed
on structural aspects, i.e. the determination of the preferred adsorption sites. Low
energy electron diffraction (LEED) investigations have shown [40,41] that the (1x1)
overlayer structure of the clean Al(111) surface is preserved in the initial stages of
oxygen adsorption, but the intensity of the diffraction spots increases. From these
data it was concluded that well ordered islands of oxygen atoms are formed, which
was also concluded from X-ray photoelectron spectroscopy (XPS) [42,43]. At increas-
ing oxygen coverage the LEED pattern disappears, because an amorphous oxide is
formed [40,44]. To identify the adsorption site of oxygen in the initial adsorption
stage high-resolution electron energy loss spectroscopy (HREELS), AES and XPS
have been used. Two different HREELS peaks were found and the existence of an
oxygen double layer with oxygen atoms being adsorbed in the fcc hollow sites and
subsurface sites was concluded [45-48]. The existence of a subsurface site was also
supported by work function measurements, which yielded only a small increase and
in some cases even a decrease in the work function upon adsorption [6,7,42,49]. On
the other hand, the existence of subsurface oxygen was excluded by medium energy
ion scattering (MEIS) [49, 50] and negative direct recoil spectroscopy [51]. In spite of
these contradictory results it was commonly agreed that at 300 K the oxygen islands
slowly start to transform into the oxide, which can be identified by a characteristic
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vibrational mode at 820-865 cm~' in HREELS spectra [39]. This process can be
accelerated by increasing the surface temperature.

A new era of experimental studies began when the first STM images of the oxygen-
covered Al(111) surface became available in 1992 [5, 8, 52]. Atomically resolved images
by Brune et al. showed single isolated oxygen atoms with an average distance of about
80 A at very low oxygen coverages (05=0.0014 monolayers), when the surface was at
room temperature in ultra high vacuum (UHV). At increased oxygen exposure small
islands of chemisorbed oxygen start to form, confirming the attractive interaction
between the oxygen atoms as had been earlier found by LEED, and at a coverage
of about 0.2 monolayers (ML) the first oxide nuclei form at the borders of the is-
lands, i.e. long before a coverage of 1 ML has been reached. By comparison of
STM images with theoretical results it was found that the STM images might well
be explained without referring to subsurface oxygen atoms [8]. This very detailed
information stimulated further experimental work and a closer investigation of the
existing HREELS and XPS data. Finally, the HREELS modes were reassigned to
on-surface chemisorbed oxygen atoms in different local environments [53], i.e. at the
interior and the perimeter of islands. By a close examination of oxygen 1s XPS spec-
tra and comparison to Hartree-Fock cluster calculations also the XPS data could be
reassigned to these species [54], and the postulated subsurface oxygen in the early
adsorption stage was abandoned. The reason for this long standing discussion was
identified as the immobility of the oxygen atoms at room temperature, which inhibits
the island growth by oxygen diffusion on the surface. Consequently, an exceptionally
high ratio of oxygen atoms is located at the borders of small islands, resulting in
unexpectedly strong peak intensities of this species in XPS and HREELS. Now it is
commonly agreed that oxygen chemisorbs at the fcc site both experimentally [55] and
theoretically [4,56]. The determined distance of the oxygen atoms in the fcc sites
from the surface atoms varies strongly with experiment, but the most accepted layer
distance is about 0.7 A above the surface as determined by LEED [57, 58], normal
incidence standing X-ray wavefield absorption (NISXW) [35] and surface extended
X-ray absorption fine structure (SEXAFS) [44,59]. This has also been confirmed by
density-functional calculations [4, 56, 60].

Having established the structure of the initial on-surface adsorption phase formed on
Al(111), the interest turned to the dynamics of the adsorption process. This was again
initiated by the STM images of Brune et al. [5,8,52]. By comparing images taken at
different surface temperatures they showed that the immobility of the chemisorbed
oxygen atoms at room temperature is caused by a diffusion barrier of about 1 eV.
Thus, to explain the large separation of the isolated oxygen atoms at low coverages,
they postulated a “hot atom” (also called “hot dimer” or “high transient mobility”)
mechanism, in which the excess energy freed during adsorption is transferred into a
transient mobility of the oxygen atoms along the surface. Due to the inability to
dissipate the energy gained on adsorption instantaneously, this mobility was expected
to explain the large distance between the atoms. The likelihood of this mechanism
was investigated theoretically employing molecular dynamics simulations based on
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Figure 2.2: Models proposed for the adsorption mechanism of oxygen on Al(111). In (a) the abstrac-
tion mechanism is shown, in which the molecule is steered towards a perpendicular orientation with
respect to the surface. This leads to an adsorption of the atom being closer to the surface while the
second atom is reflected back into to gas phase as a neutral atom. (b) is the “normal” dissociative
chemisorption, which is the consequence of a parallel approach to the surface. In this case both
atoms are adsorbed close to each other on the surface.

model potentials [61,62]. They showed that the mechanism suggested by Brune et
al. is not able to explain the atomic separations, since the strong corrugation of the
surface soon leads to a randomization of the diffusion yielding a much smaller average
distance. Results from Monte Carlo simulations, which aimed to reproduce the distri-
bution of oxygen atoms on the surface, are contradictory in that some simulations are
compatible to the hot atom mechanism [63,64] while others suggest the dominance
of different mechanisms [65] like abstraction or “normal” dissociative chemisorption.
Both mechanisms are shown schematically in Fig. 2.2. In the abstraction mecha-
nism [66] the approaching molecule is steered into a perpendicular orientation to the
surface. Then the atom being closer to the surface adsorbs while the second atom
is ejected back into the gas phase [1,20,61]. This process is energetically allowed,
because the adsorption energy of a single oxygen atom exceeds the O, binding energy
by about 1-2 eV, which has been obtained from density-functional theory [4,67]. A
variation of the abstraction mechanism is the “cannon-ball” mechanism, in which the
ejected atom does not possess a kinetic energy component perpendicular to the sur-
face high enough to escape into the gas phase. Still, due to its high kinetic energy, it
is able to fly over the surface at a larger distance where the potential-energy surface
corrugation is small, and finally it is adsorbed far away from the original impact site.
Consequently, the trajectories of both atoms are very different, in contrast to the “hot
atom” mechanism, in which the adsorption energy is transferred into kinetic energy
of both atoms. On the other hand, in the “normal” dissociative chemisorption mech-
anism the approaching oxygen molecule is steered into a parallel orientation towards
the surface and both atoms adsorb close to each other.

In recent years there have also been several experiments questioning the validity of
the “hot atom” mechanism. Schmid et al. [3] performed STM studies under the same
conditions (300 K) as Brune et al., but interpreted the images as pairs of adsorbed
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oxygen atoms. As the two oxygen atoms of the pairs are separated by only 1 to 3 lattice
constants they doubted a high transient mobility. They also excluded the abstraction
mechanism by their interpretation of the STM features as dimers. In return the
validity of these statements was questioned by Binetti et al. [1,68] and Komrowski et
al. [2] by the detection of single oxygen atoms ejecting from the Al(111) surface by laser
spectroscopy, thus supporting the abstraction model. Additionally, Binetti et al. [1, 68]
and Komrowski et al. [2] performed further STM experiments. In order to investigate
the energy dependence of the absorption mechanism they used a molecular beam of
defined kinetic energy to deposit the oxygen molecules. At low kinetic energies they
found mainly isolated oxygen atoms and concluded that the abstraction mechanism
dominates, while at a kinetic energy of 0.5 eV the ratio of abstraction to normal
dissociative chemisorption becomes unity. The identification of the depressions in
the STM as single oxygen atoms by Brune et al. was confirmed by illustrating that
the apparently elongated shape attributed to dimers by Schmid et al. [3] could in
fact be a snapshot of a continuously changing shape. At present these contradictory
interpretations of the STM data have not been resolved and conclusive theoretical
investigations of the adsorption mechanism based on first-principles do not exist.

Another fundamental property of the oxygen-aluminium system is the initial stick-
ing probability of oxygen molecules impinging on the clean Al(111) surface. The initial
sticking coefficient S is defined as the ratio of successful adsorption events to the total
number of molecule-surface collisions on a clean surface. It has been measured for the
first time in 1977 by Gartland to be about 0.03 for thermal molecules at room tem-
perature [6]. Many other experiments, which are listed in Table 2.1, have confirmed
this surprisingly low value. The most detailed sticking data have been provided by
Osterlund et al. [9] using a molecular beam experiment employing the method of King
and Wells [69]. In this experiment the initial sticking probability has been measured
as a function of the kinetic energy of the oxygen molecules. The obtained sticking
curve is shown in Fig. 2.3. For thermal energies the sticking probability is found to
be about 1 %, while the sticking probability rises continuously with increasing kinetic
energy and reaches a saturation value of 90 % at about 0.5 eV. From this data it has
been concluded that the sticking is an activated process, i.e. there are energy barriers
towards dissociation which efficiently prevent slow molecules from dissociative adsorp-
tion. A significant dependence of the sticking probability on the surface temperature
has not been found, but vibrational excitation can enhance the sticking probability.

In contrast to this study Zhukov et al. measured the sticking probability as a
function of the surface temperature using HREELS and XPS [10, 11] and found slight
variations of the sticking probability with a minimum value of 0.015 at 250 K and a
maximum value of 0.07 at 600 K. They concluded the existence of a weakly bound
mobile molecular precursor, which accounts for the increase of the sticking probability
between 250 K and 600 K, because a higher surface temperature promotes the passage
of the barrier towards adsorption. For higher temperatures, when the oxide becomes
the dominating structure on the surface, the sticking probability decreases again,
suggesting that the sticking at the oxide is a non-activated process.
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So Ref. Method

0.03 Gartland 1977 [6] Auger Electron Spectroscopy

0.02 Bradshaw et al. 1977 [7] X-ray Photoelectron Spectroscopy
0.005 | Brune et al. 1993 [§] Scanning Tunnelling Microscopy

0.014 | Osterlund et al. 1997 [9] Molecular Beam Experiment

0.01 Zhukov et al. 1999 [10] X-ray Photoelectron Spectroscopy

0.02 Zhukov et al. 1999 [11] X-ray Photoelectron Spectroscopy

0.0051 | Lee and Lin 2001 [12] Ion Bombardment Induced Light Emission

Table 2.1: Sticking probabilities of oxygen on Al(111) obtained by different experimental techniques.
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Figure 2.3: Initial sticking probability Sy for an oxygen molecule impinging on a clean Al(111) surface
as a function of its kinetic energy for normal incidence. The data have been obtained in a molecular
beam experiment [9] employing the method of King and Wells [69].

In general, the low sticking probability of oxygen on Al(111) could be explained
by the existence of energy barriers towards dissociation. To identify these barriers
several groups calculated parts of the adiabatic potential-energy surface using density-
functional theory [22,24,70-73]. Unfortunately, almost no energy barriers could be
found. According to theory the sticking probability should then be very high and
independent of the kinetic energy of the molecule. There are several possible expla-
nations for this failure of adiabatic density-functional theory. One possibility would
be the inability of current implementations of density-functional theory to describe
the energetics of the interaction of an oxygen molecule with the aluminium surface
accurately enough to determine the barriers. This assumption would be supported
by the rather poor description of the gas phase oxygen molecule by state-of-the-art
density-functional theory [74,75]. Another possibility is that the adiabatic nature of
the DF'T potential-energy surface does not properly describe the physics of the ad-
sorption process, and that non-adiabatic effects would have to be taken into account
to explain the experimental data. A dominant role of non-adiabatic effects in this
system has been suggested in several studies [9, 20-24].
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Chapter 3

Non-Adiabatic Effects

The adiabatic description of the dissociation process in standard density-functional
theory is based on the Born-Oppenheimer approximation [25]. It states that for
each configuration of the nuclei during the molecular approach to the surface the
electronic structure instantaneously relaxes to the ground state. This cannot be taken
for granted due to the dynamic nature of the adsorption process [76], which leads to a
competition of time scales for the nuclear and electronic motion. If the time scales do
not decouple perfectly, this could result in a continued motion on the initial diabatic
state, which becomes an excited state due to the presence of the aluminium surface.

The first studies of such non-adiabatic effects were carried out for the case of crossing
energy levels during the collision of two atoms [77-82]. In such a collision event a
charge transfer from one atom to the other can occur when the energy of an ion pair
becomes lower than the energy of the two neutral atoms below a certain distance Z..
In this case, the neutral and the ionic potential-energy surfaces form two diabatic
states 1§ and 9§ of the system, which cross at the atomic separation Z.. This is
shown schematically in Fig. 3.1. For an interatomic distance smaller than Z. the
state 1 is lower in energy, and for a distance larger than Z, state ¢ is energetically
favorable. By a combination of ¢¢ and ¢ the adiabatic ground state 12 can be
constructed, if the coupling H}, of the two diabatic states is known. The adiabatic
ground state has the lowest energy for all interatomic separations and approaches
the diabatic states asymptotically for very large and very small distances. A second
combination of the diabatic states yields the excited adiabatic state 13, which forms
an upper bound to the diabatic energies. Both adiabatic states do not cross, they
have an “avoided crossing”, and the energy difference of both adiabatic states at Z.
is twice the coupling |Hj,| of the two diabatic states [83]. The energies ET, of the
adiabatic states are related to the diabatic energies EiQ [84] by

BB 1
%ii\/(Eii—Eg)qul]H{QP . (3.1)

Therefore both, the adiabatic and the diabatic states, are apt to describe a two-state
system, and the Hamiltonian is typically expressed in the adiabatic basis {¢%, 5} or

L2
El,2 =
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Figure 3.1: General two-state curve crossing problem.

equivalently in the diabatic basis {1¢,1$}. For an increasing interatomic distance
both representations become identical due to the absence of coupling. The Hamilto-
nian H in the adiabatic representation is diagonal, while the Hamiltonian H’ in the
diabatic representation contains the off-diagonal coupling matrix elements H{, and
H!,, which have the same absolute value, but are complex conjugate.

_( Ha O . Hy Hiy
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If the atoms move infinitely slow, the system will follow the adiabatic ground state
¢, and this is exactly what is assumed in the prevalent description of dissociation
processes at surface. However, in case of a finite velocity the state of the system will
become a linear combination of both adiabatic states, i.e. a certain probability for a
non-adiabatic transition exists. A non-adiabatic transition is defined as a transition
from the adiabatic state ¥ to state ¥§ [83], and is equivalent to a continued motion
on the initial diabatic energy surface beyond the crossing point. The probability of
such a non-adiabatic transition increases with the atomic velocities, since less time is
available for the electrons to adapt to the rapidly changing nuclear positions, and has
the highest value at the crossing distance Z., because then the required energy for
the transition is smallest.

The importance of non-adiabatic effects is not restricted to atomic collisions. Also
for the interaction of molecules with surfaces non-adiabatic effects have been ac-
counted for experimental observations. In this case the two or more states are
energy levels of the molecule!, and their energetic order is modified by the presence
of the surface finally giving rise to level crossings. In particular for metal surfaces the

'In general, also excited states of the surface could be taken into account.
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validity of the Born-Oppenheimer approximation is questionable, because the con-
tinuum of energy levels allows for electronic excitations by an infinitesimal amount of
energy [84-86]. A prominent example is the dissociative adsorption of Cly molecules
on a potassium surface [20, 87]. It has been suggested that the Cl, dissociates into a
Cl™ ion and a neutral chlorine atom by a harpooning mechanism, which is basically
a tunnelling of an electron from the metal surface to the molecule at a comparably
large distance, e.g. approximately 4 A for the dissociation of chlorine on potassium.
The emerging unoccupied 3p level of the chlorine atom is below the Fermi level of
the metal. This excited state decays by the emission of Auger electrons, which are
called exoelectrons, if their kinetic energy is higher than the work function of the
metal enabling them to leave the surface. There are also several studies about non-
adiabatic effects in the oxygen adsorption on metals like cesium [88], magnesium [89],
lithium [90] and silver [91]. In case of the oxygen molecule another possible source of
non-adiabatic effects apart from charge transfer is its spin-triplet ground state. It has
been shown by Kato et al. [92,93] that the energy dependence of the initial sticking
probability of oxygen on the Si(001) surface may be explained by a hindered spin-flip
from the triplet ground state of the free molecule to the singlet ground state of the
adsorbed atoms, because the probability of a change of the spin state, which would
be required for an adiabatic approach to the surface, is very low.

The assumption that non-adiabatic effects are important for the oxygen dissociation
on Al(111) is supported by several experiments. In 1974 Kasemo had shown that
upon the adsorption of oxygen on Al(111) photons are emitted [89]. This chemi-
luminescence results from electronic transitions from excited molecular states into
the ground state. These excited states could be created when unoccupied molecu-
lar states are shifted below the Fermi level of the metal during the approach of the
molecule to the surface. A prerequisite for this model is that charge transfer is slow
compared to the molecular motion. Another experimental evidence is the detection
of exoelectrons [94], which form another possibility for electronic relaxation. Both
experiments have been interpreted as clear evidence for non-adiabatic effects. First
attempts based on simple theoretical models have also been made to include non-
adiabatic effects in the calculation of the sticking curve of oxygen on Al(111) [21,28].
Yet, even a qualitative understanding of the experimental sticking curve based on first-
principles is still lacking. This is particularly disturbing, because the sticking proba-
bility is strongly related to other interesting aspects of the adsorption process like the
heavily disputed adsorption mechanism. As long as the first interaction of the oxygen
molecule with the surface, which determines the sticking probability, is not described
correctly, it is also not possible to make reliable statements about other aspects of
the dissociation process. A major obstacle for a detailed theoretical investigation
of non-adiabatic effects in molecular sticking is the problem of calculating the rel-
evant diabatic potential-energy surfaces accurately from first-principles [85]. The
purpose of the present work is therefore to examine the possible role of non-adiabatic
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effects in the interaction of oxygen molecules with the Al(111) surface based on DFT,
and to analyze if these effects can provide an explanation for the low sticking proba-
bility found in experiment.
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Calculation of Sticking Curves

To gain a deeper understanding of the origin of the discrepancy between theory and
experiment concerning the sticking probability, the sticking curve of oxygen molecules
impinging on the clean Al(111) surface has to be calculated from first-principles,
i.e. using DFT. This way the effect of molecular steering can be analyzed, which is
particularly important when slow molecules approach the surface [15-17], and cannot
be deduced from a mere inspection of the potential-energy surface as done in previous
work [24].

In general, sticking curves can be obtained from molecular dynamics simulations.
These simulations have to take into account that the sticking probability is a statisti-
cally averaged quantity, which in experiment is composed of a macroscopic number of
individual molecular trajectories. To obtain statistically relevant sticking probabili-
ties that can be compared with experiment, a large number of trajectories has to be
calculated, covering the whole configuration space of the molecule when it approaches
the surface. This large number of trajectories, typically several thousand for the stick-
ing of a diatomic molecule, has furthermore to be calculated for many different initial
kinetic (translational) energies of the molecule possibly taking into account also differ-
ent vibrational and rotational states. This would require a prohibitive computational
effort, if direct ab initio [95-97] molecular dynamics simulations would be employed,
i.e. if for each intermediate configuration of the molecule the energies and forces would
have to be calculated from first-principles. For large systems, this approach typically
allows for a calculation of about 50 trajectories only. An alternative way to provide
the energies and forces would be to construct an empirical potential, which would
allow for a very fast calculation of the energy and forces. However, the price for such
an efficient potential is still a far lower accuracy in the energies and forces, since no
existing functional form can reliably treat the effects of hybridization that so much
determine the molecule surface interaction. To overcome these problems and to com-
bine the advantages of ab initio molecular dynamics with the efficiency of empirical
potentials, a “divide and conquer” approach has been proposed [17]. In this approach
the evaluation of the potential-energy surface from first-principles is decoupled from
the molecular dynamics in that the procedure is split up into three independent steps.

19



Chapter 4. Calculation of Sticking Curves

In the first step the potential-energy surface for the molecule-surface interaction
is calculated for a dense grid of configurations in six dimensions taking into account
only the degrees of freedom of the oxygen molecule. The validity of this frozen surface
approximation has to be tested carefully, e.g. by comparing the shape of the PESs
obtained from a calculation with a frozen and a fully relaxed substrate. Typically,
density-functional theory is presently used for the mapping of the potential-energy
surface, because it is very accurate but also efficient enough to handle large systems,
which are necessary to model the interaction of an isolated molecule with the sur-
face. Still, only a finite number of about 1000 energy points can be calculated. To
provide energies and forces for arbitrary molecular configurations, which is required
for the molecular dynamics simulations, the discrete mesh of energy points is interpo-
lated to a continuous potential-energy surface. The interpolation of high-dimensional
potential-energy surfaces is a formidable task, but in recent years several methods
have been developed for this purpose. In this work a neural network technique has
been applied, that has proven to be very well suited for the interpolation of potential-
energy surfaces [26,27]. Tt provides energies and forces about five orders of magnitude
faster than direct ab initio calculations with only a small fitting error. In the final
step, classical molecular dynamics simulations are performed for thousands of different
trajectories and for many different kinetic energies to obtain a statistically significant
sticking curve.

This approach is general and can be applied to any type of potential-energy sur-
face, adiabatic and diabatic. In the following chapters the methods employed in the
individual steps of the “divide and conquer” technique will be introduced and finally
employed in the calculation of the sticking curves based on the adiabatic ground state
as well as on the diabatic spin-triplet potential-energy surface.
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Density-Functional Theory

5.1 The Many-Body Problem

Understanding and predicting material properties without relying on experimental
data has been the aim of first-principles calculations since their advent about 80
years ago. All information about a system composed of N electrons and M nuclei
can in principle be obtained from the many-body Schrédinger equation. In its time-
independent, non-relativistic version it is given by

HY (r;,R)) = BV (r,R;) . (5.1)

H is the many-body Hamilton operator providing the total energy E of the system
when applied to the many-body wave-function ¥ (r;, R;) that depends on the nuclear
positions R; and the electron coordinates r; [86]. The Hamiltonian itself has five
main contributions: The kinetic energy operators T, and 7T, of the nuclei and the
electrons, the electron-electron interaction V.., the repulsion of the nuclei V,,, and the
electrostatic interaction between the electrons and the nuclei V..

H:Tn"i_Te_’_‘/ee_f'Vnn"_‘/ne (52)

In atomic units the components of the Hamilton operator are

T, = 1% ! \% (5.3a)
n = m] i ’ .
1 N
T. = —§Zv§ : (5.3b)
=1
N N 1
Ve = >0 : (5.3¢)
=55 I — 1
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_ ¢ J
Vin = sz Rj| : (5.3d)

i= 1]>z

and Vi, = ZZ

i=1j= llrl_ J|

, (5.3e)

where m; is the mass of nucleus j in multiples of the electron mass, Z; the nuclear
charge and V? the Laplacian operator acting on particle i.

The difficulties in solving Eq. (5.1) arise from the large number of variables the
many-body wave-function ¥ depends on. For a system consisting of NV electrons and
M nuclei there are 3N +3M degrees of freedom, i.e. three spatial coordinates for each
electron and for each nucleus. A first simplification can be achieved by taking into
account the large difference in masses between the electrons and the nuclei. Therefore,
the electrons move much faster than the nuclei and to a good approximation the
positions of the nuclei can be assumed to be static, i.e. they can be treated as
parameters. In this way the motion of the electrons is separated from the motion of
the nuclei, which now form an “external” potential to the electrons. The kinetic energy
of the nuclei can be set to zero and the nuclear-nuclear repulsion term in Eq. (5.2)
enters the total energy expression as a constant. This is the Born-Oppenheimer
approximation (BOA) [25]. Even though the number of degrees of freedom has now
been reduced to 3N, the remaining electronic many-body problem is still far too
involved to be solved exactly, except for the simplest cases like a free hydrogen atom
or one-electron ions. The remaining electronic Hamiltonian is given by

N M
H, = T+Vne+Vee:——ZV2 Y +ZZ (5.4)
=1 i=1j=1 |r1 R’J| i=1 j>1 |rZ - J|
The electronic Schrodinger equation is
HV, (r;) = BV, (r;) (5.5)

with W, (r;) being the electronic wave-function. The first numerical scheme to solve
this equation quantitatively to obtain an approximate wave-function and the total
energy has been suggested by Hartree and Fock [98,99] in the 1930’s. Since the in-
troduction of the Hartree-Fock (HF) method wave-function based techniques have
undergone an enormous development [100,101]. More advanced approaches to solve
the many-body problem based on wave-functions are for example the Mgller Ples-
set perturbation theory (MP2, MP4, ...) [102], configuration interaction (CI) [100],
coupled cluster methods (CC) [100] and multi-configuration self-consistent field meth-
ods (MCSCF and CASSCF) [103].

Additionally, with density-functional theory (DFT) a powerful alternative based on
the electron density as the central quantity instead of the wave-function has become
a very popular and successful quantum mechanical approach to solve the many-body
problem [13, 14, 104].
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5.2 The Early Days of Density-Functional Theory:
The Thomas-Fermi Model

The electron density was used for the first time to calculate the total energy of a
system by Thomas and Fermi in the late 1920’s. The electron density p is defined as
the integral of the many-body wave-function over all but one spatial coordinates of
all electrons multiplied by the number of electrons N.

o(r) = N/.../|\If(r1,r2,...,rN) 2drs..dry (5.6)

where r refers to the spatial coordinates of the density and the r; to the coordinates
of the individual electrons. The justification for this approach has been given be
Hohenberg and Kohn about 35 years later [105]. In contrast to the wave-function
the electron density p is an observable, and like the wave-function it contains all
information required to define the system: cusps in the electron density mark the
positions of the nuclei, the value of p at the nuclei contains information on the nuclear
charges [106] and the integration of the electron density is the electron number N.

/ p(r)dr = N (5.7)

Thomas and Fermi tried to express the energy of a system as a functional of the
electron density [107,108]. This ansatz leads to a reduction from 3N to 3 coordinates.
The energy is given by the Thomas-Fermi kinetic energy functional depending only on
the density as well as by classical terms for the electron-electron and electron-nucleus
interaction. Then the energy is minimized with respect to the density to obtain the
ground state energy of the system.

However, for many-electron atoms and many-atom systems the results were not
very satisfying. Molecules calculated with the Thomas-Fermi approach are unstable,
because the sum of the energies of the isolated atoms is lower than the energy of the
molecule. The reasons are that in the Thomas-Fermi model exchange and correlation
are completely neglected and that the kinetic energy is approximated by the kinetic
energy of non-interacting electrons in the homogeneous electron gas. In 1930 Dirac
added an expression for the exchange energy [109] depending only on the density but
still the correlation was not taken into account. Nevertheless, this model is historically
very important, because it was the first attempt to establish an energy expression
using exclusively the electron density as the basic variable.
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5.3 From a Model to a Theory:
The Hohenberg-Kohn Theorems

In 1964 density-functional theory was established as a theory by two theorems of
Hohenberg and Kohn [105], who showed that the ground state density can indeed be
used to replace the complex wave-function. They showed that the external potential
Vet 18 (to within a constant) a unique functional of p; since, in turn, Ve fives H we
see that the full many-particle ground state is a unique functional of p.” [105]. So the
density uniquely defines the Hamilton operator and therefore the energy of a system.
Hohenberg and Kohn have given a simple proof of this theorem. Accordingly, the
electronic ground state energy Ej can be obtained as a functional of the ground state
density po.

Ey = Elpo] = Te[po] + Eee[po] + Enelpo] = Enelpo] + Fuk|po] (5.8)

This equation defines the Hohenberg-Kohn functional Fyk [p], which is independent
of the system, i.e. it is universal, but unfortunately no exact expressions for its
components Fe.[p| and T.[p] are known. However, FE.[p| can be written as a sum of
the Hartree energy Ey[p|, which is the interaction of a charge distribution with itself

Eulp] = % / %drdr' , (5.9)

r/

and a non-classical part E,q[p], which contains the self-interaction correction, the
exchange and the Coulomb correlation. In summary, there is a one-to-one corres-
pondence between the external potential and the ground state density of a system.
Consequently, the expectation value of any observable is also a unique functional of
the exact ground state electron density. This is often called the first Hohenberg-Kohn
theorem.

The second Hohenberg-Kohn theorem states that the energy is minimal for the
ground state density resulting from the external potential. This enables the use of the
variational principle to calculate the exact ground state density if the energy func-
tional is known. Any density different from the ground state density yields a higher
total energy than the true ground state density. However, it should be noted that
the functional Fuk[p] is not known and instead approximations have to be used. As
a consequence the obtained ground state energy is not an upper bound to the true
ground state energy any more, but within a given approximation to Fyk[p] the varia-
tional principle can only be used to find the ground state density and its corresponding
energy for this approximated functional form of Fyk|p].
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5.4 From a Theory to a Practical Tool:
The Kohn-Sham Equations

The Hohenberg-Kohn theorems set the foundations of density-functional theory, but
still an efficient scheme to obtain the ground state density and energy was missing.
This was developed in 1965 when DFT turned from a theory to a practical tool by
the introduction of the concept of a non-interacting reference system by Kohn and
Sham [110]. With this approach it is not required anymore to use the unknown kinetic
energy density-functional T, [p]. Instead the kinetic energy is separated into the kinetic
energy Ty of a system of non-interacting electrons, which can be calculated exactly
using

=»WZ¢ (r) V26, (r)dr (5.10)

and an unknown component T, which contains the corrections resulting from the
electronic interaction. The single-particle Kohn-Sham orbitals ¢; are determined un-
der the constraint to reproduce the density of the fully interacting many-body system
in a self-consistent way from the Kohn-Sham equations

frsdi (r) = €i¢i (r) . (5.11)

The Kohn-Sham operator fks is an effective one-electron operator and is given by

fics =~V Vexe [6] + Vi I + Ve [ (5.12)

Vext[p] is the external potential due to the nuclei and is often combined with the
classical Hartree potential Vi [p] and the exchange-correlation potential Vxc [p] to the
effective potential Vg [p]. The eigenvalues ¢; are Lagrange multipliers that ensure the
orthonormality of the Kohn-Sham orbitals. The density constructed from the Kohn-
Sham orbitals ¢; and their occupation numbers f; is the same as the density of the
interacting system.

pr) =2 0] (r) i(r)- [ (5.13)

The ¢; are functionals of p and consequently the kinetic energy is still given as
a functional of p in an indirect way. The remaining part T¢ of the true kinetic
energy is combined with the non-classical contributions to the electron-electron in-
teraction E,q[p] in the exchange-correlation functional Fxc[p]. Therefore, Exclp]
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contains everything that is unknown, and it is related to the exchange-correlation
potential Vxc in Eq. (5.12) in that the latter is its functional derivative with respect
to the density.

ot - Exclt

In summary, the Kohn-Sham equations replace the minimization of E [p] by the so-
lution of the single-particle Schrédinger equations of non-interacting electrons. This
means that the universal Hohenberg-Kohn functional is expressed in the form

(5.14)

g =Ts + By + Exe (515)

and all many-body effects are included in Exc[p]. It should be noted that the single-
particle orbitals ¢; are not the wave-functions of electrons, nor are the eigenvalues
single-electron energies in a strict physical sense. Only the density and the total
energy have a physical meaning. So far the Kohn-Sham equations do not contain any
approximation and are in principle exact. However, we still do not know the exact
form of the exchange-correlation functional, which is required to calculate the ground
state density and energy.

5.5 Exchange-Correlation Functionals

With the introduction of the Kohn-Sham formalism most contributions to the total
energy can be calculated exactly. The remaining unknown parts are assembled in the
exchange-correlation functional. Therefore good approximations to Exc[p] are crucial
to obtain reliable results in a DFT calculation. Unfortunately, in contrast to wave-
function based methods there is no systematic way how better and better results can
be obtained.

The first attempt to find an explicit expression for Exc[p] was based on the homoge-
neous electron gas. This is a uniform electron distribution on a positive background
charge distribution for overall charge neutrality. The basic assumption is that ex-
change and correlation depend only on the local value of the density. Consequently,
this is called the local-density approximation (LDA). One approximates the real inho-
mogeneous electron density as a sum of small cells each of which has a homogeneous
electron density. It is assumed that Exc[p(r)] at position r is identical to EXPA[p(r)]
of the homogeneous electron gas of the same density. The exchange-correlation func-
tional is then given by

B o)) = [ () Exe (p () dr (5.16)
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where Exc (p(r)) is the exchange-correlation energy per particle of the homogeneous
electron gas. EXPA can further be split up into the exchange and the correlation
contributions E¥PA and EEPA. The exchange part can be given analytically in case

of the homogeneous electron gas.

BP0 = [ pte) (<2) {122 ar (5.17)
4 s

The correlation energy is only numerically known from quantum Monte Carlo cal-
culations by Ceperley and Alder [111] and can be parameterized to be used in DFT
calculations. The two most prominent parameterizations have been done by Vosko,
Wilk and Nusair [112] and by Perdew and Wang [113], which give usually very similar
results.

Although the local-density approximation is a rather unrealistic model for real sys-
tems, it has been the standard functional until the 1990’s with often surprisingly good
results comparable to Hartree-Fock for many systems. However, the LDA typically
overestimates binding energies and underestimates bond lengths, and for systems with
less homogeneous electron densities the results using the LDA are often disappoint-
ing. Still, the importance of the LDA lies in that the homogeneous electron gas is the
only system for which the exchange-correlation functional is known, and all improved
functionals to date are based on this approach. Such improvements can be achieved
by including the first derivative of the electron density Vp(r) yielding the generalized
gradient approximation (GGA), in which Ex¢[p(r)] is given by

ESEM [p(r)] = [ £ (p (1), Vplr))dr . (5.18)

Including the gradient of the density results in much better binding energies compared
to the LDA making GGA functionals the most important class of functionals in current
DFT. Many GGAs exist differing in the functional form of exchange and correlation.
In most cases GGA energies are more reliable than LDA results, but due to their
non-unique definition there is typically a certain variation in the energies obtained
from different GGA functionals.

These days the development of new and better functionals is still an active field
of research. Fxc is far smaller in value than all other contributions to the total
energy, and usually density-functional theory is used to calculate the energy difference
between different systems. In this case the errors in the exchange-correlation energy
often cancel to a large extent, and this is the reason why approximations to Fxc lead
to reliable results in most cases.

Two important GGA functionals, which have been used in this work, have been
proposed by Perdew, Burke and Ernzerhof in 1996 (PBE) [114] and by Hammer,
Hansen and Ngrskov in 1999 (RPBE) [74]. The PBE functional has been constructed
in a way to fulfill physical constraints rather than fitting to experimental data [115].
The basic idea behind this functional was to mimic the PW91 functional of Perdew
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and Wang [116], which is basically an analytical fit to a numerically determined first-
principles GGA, but to find a simpler functional form by neglecting energetically
irrelevant terms. The RPBE functional is based on the same expression for correlation
as PBE, but the functional form of the exchange term is different, while the same
physical boundary conditions as in the PBE case are still fulfilled [74]. Therefore,
both functionals have the same physical justification, and differences in the obtained
results are indicative of the uncertainty in present GGA functionals.

5.6 Spin-Density-Functional Theory

Many systems of interest possess an odd number of electrons and even some systems
with an even number of electrons have to be treated as radicals, when two electrons
occupy a doubly degenerate orbital [117], the oxygen molecule being a prominent ex-
ample. While the results obtained from DFT as described so far are quite satisfactory
for closed-shell systems, for the investigation of these open-shell systems an extension
is required. Improved results can be obtained by using approximate functionals that
depend on the spin-densities p! and p' instead of the total density p. This leads to the
formalism of spin-density-functional theory [118,119]. In analogy to restricted and un-
restricted Hartree-Fock calculations one can define restricted (RKS) and unrestricted
(UKS) Kohn-Sham methods, which use the same spatial orbitals or different spatial
orbitals for both spin orientations, respectively, representing non-spin-polarized and
spin-polarized DFT. In unrestricted Kohn-Sham calculations the ¢! and ¢} Kohn-
Sham orbitals experience different potentials which provides additional flexibility in
the calculations resulting in a better description of open shell systems [120].

Spin-density-functionals are used for exchange and correlation and therefore two
effective potentials VJH and Ve%f appear in the Kohn-Sham equations.

V| ot = or ) (5.19)

where o represents the spin. The spin orbitals ¢¢ are formed by a spatial orbital
and a spin function. The spin-polarized version of LDA is called local-spin-density
approximation (LSD) [118] and the exchange-correlation functional is then given by

B [0 (). 0 (0)] = [ o) Exc (o7 (1) 0" () dr (5.20)

Like in the restricted Kohn-Sham scheme, in this case the Hohenberg-Kohn theorem
is valid stating that there exists a one-to-one correspondence of the spin-dependent
potentials V% and the spin densities. For calculations on spin-polarized species like
most free atoms and some molecules like O the use of the UKS scheme is mandatory
to obtain meaningful energies.
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5.7 Applications in Solid State Theory

Crystalline solids and surfaces are characterized by a practically infinite number of
atoms, and their positions are related by certain symmetries inherent to the crystal
structure. The only way to describe these systems within density-functional theory is
to make use of these symmetry properties in order to reduce the system size to the
unit cell of the bulk solid or the surface by applying periodic boundary conditions
(PBC). The translational symmetry is taken into account in the construction of the
Hamiltonian and the wave-functions by applying the Bloch theorem [121]. It states
that the wave-function of a periodic system can be written as a product of a plane

wave e’ and a function with the lattice periodicity uy(r).

gbk(r) = eikruk(r) (521)
uk(r) = wug(r+T) (5.22)

k is a wave vector within the first Brillouin zone and T is a vector of the Bravais
lattice. The one-electron wave-functions ¢y (r) are called Bloch functions.

To determine the total energy of a crystal a summation over the eigenvalues of the
occupied single-particle states has to be performed. For periodic systems this sum over
orbitals generalizes into an integration over the first Brillouin zone. By making use of
the symmetry in the unit cell the integration over the Brillouin zone can be further
reduced to the integration of the irreducible part of the Brillouin zone. In practical
calculations the latter is replaced by a summation over discrete points in reciprocal
space, called k-points, which have to be as representative as possible for the whole
Brillouin zone. Several methods have been suggested for an efficient summation, a
prominent example being the tetrahedron method [122].

While the description of surfaces by density-functional calculations would in prin-
ciple be possible by using just two-dimensional periodicity, in practice the same pro-
cedure as for bulk solids is often applied. The surfaces are then modeled by slabs,
which consist of several layers of atoms of infinite extension in two dimensions by
applying appropriate boundary conditions. Additionally, the periodicity is artificially
maintained also in the third dimension by infinitely repeating the slab in the direction
perpendicular to the surface as shown in Fig. 5.1. This approach leads to two surfaces
on both sides of the slab, and one has to make sure that the slab is thick enough to
avoid interactions between these surfaces. Ideally, the atoms in the middle of the slab
should have the physical properties of bulk atoms. The interaction between different
slabs is prevented by a large vacuum region. By the formation of ordered adsorbate
layers or reconstructions the symmetry of the surface can be reduced necessitating
the use of larger surface unit cells, called supercells.

Another approach to model surfaces is to use large clusters. While the geometries
of adsorbed molecules are usually satisfying (if the clusters are large enough), the
binding energies show a very slow convergence making clusters a less appropriate
model for metal [86] and semiconductor surfaces [123].
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Figure 5.1: Top view (a) and side view (b) of Al(111) slabs with 1 monolayer of oxygen atoms
adsorbed on both sides.

5.8 Summary

Density-functional theory offers a way to perform calculations on all types of systems
with generally good accuracy and efficiency. Exchange and correlation are in prin-
ciple included, but in practical implementations only in an approximate way, which
is the major source of error of this method. The construction of reliable exchange-
correlation functionals is a difficult task. Some prominent deficiencies of density-
functional theory using LDA and GGA functionals are the severe underestimation of
band gaps in semiconductors [124], the inability to describe van der Waals interac-
tions [125, 126], the instability of negative ions and the prediction of metallic properties
of strongly correlated systems such as NiO and FeO [127], which are antiferromagnetic
insulators. The accuracy of structural parameters and binding energies strongly de-
pends on the employed functional. The LDA typically tends to overestimate binding
energies and underestimate bond lengths, while GGAs show the opposite behavior.
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Additionally, in density-functional theory the many-body wave-function is not acces-
sible, and the single-particle eigenvalues of the Kohn-Sham orbitals strictly have no
physical meaning, although they are often very good approximations to the energy
levels of the electrons. The great success of ab initio methods and density-functional
theory in particular has lead to the 1998 Nobel prize for John Pople and Walter Kohn
underlining the importance of these techniques.
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Chapter 6

The Density-Functional
Implementation DMol?

6.1 Introduction

Due to the steadily growing importance of density-functional theory in many fields, a
large number of implementations has become available. Although they are all based on
the same theoretical foundation, the actual realizations of density-functional theory
can be significantly different. Historically, there are two main types of implemen-
tations either using plane waves or localized basis functions as basis set or as part
of the basis set. While the first have their origin in calculations on solids applying
periodic boundary conditions, for which plane waves are particularly useful, the lat-
ter have mainly been used in the chemistry community which is primarily interested
in the properties of molecules. In recent years, however, the borders have started
to vanish. Codes employing plane waves have been extended by localized functions
establishing highly accurate all-electron approaches like the “linearized augmented
plane wave” method (LAPW) [128-130] and the “augmented plane wave + local or-
bital” (APW+lo) method [131, 132]. On the other hand, many DFT codes employing
localized basis sets have been extended to handle periodic boundary conditions. For
the project of this thesis, intensive benchmark calculations have been performed to
find the optimal density-functional code for the problems to be studied. The require-
ments are high both in accuracy, as accurate barrier heights are crucial for the correct
description of the dynamics of the adsorption process, and in efficiency, as the map-
ping of six-dimensional potential-energy surfaces requires the calculation of a huge
number of energy points based on rather large unit cells. Finally, the all-electron code
DMol? [133] has been chosen because of its high efficiency and accuracy. Details of
the performed benchmark calculations and comparisons to other DF'T codes are given
in Appendix A.

In almost all density-functional codes employing localized basis sets the molecular
orbitals ¢;(r) are constructed as a linear combination of n basis functions x;(r), which
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do not change during the calculation.

1) =3 i) 0.1

To obtain these Kohn-Sham orbitals the expansion coefficients ¢;; have to be opti-
mized. Practically all DFT codes are based on this equation, but they differ in the
type of basis functions y(r) employed. In the case of DMol® the basis functions are
localized numerical atomic orbitals.

The name DMol is an abbreviation for “density-functional calculations on mole-
cules”, and in fact the original DMol code [133] was intended to do only calculations
on atoms, molecules and clusters without periodic boundary conditions. Recently,
an extension to handle periodic boundary conditions was implemented and the code
was renamed to DMol®, now being able to handle calculations with and without
periodic boundary conditions [134] on an equal footing. In the following sections the
characteristic methods used in the DMol? approach to density-functional theory are
introduced. The focus will be primarily on aspects of the DMol® approach which differ
from other density-functional implementations, namely the basis set, the numerical
integration schemes and the calculation of the electrostatic potential.

6.2 The Atomic Orbital Basis Set

The most important feature of the DMol® approach is the use of localized atomic or-
bital basis functions. They are potentially the most efficient basis functions available,
because they already show important properties like a cusp at the nucleus, square
integrability and exponential decay for large distances from the nucleus, which are
hard do reproduce with other basis sets. Another advantage is that in the limit of
dissociating molecules the individual atoms are (almost) perfectly described by their
own atomic orbitals as basis functions minimizing the basis set superposition error,
which can be a serious source of error in other types of localized basis sets like the
very popular Gaussian functions [100], if too small basis sets are chosen. However,
atomic orbitals cannot be handled analytically, because their exact shape depends
on the nuclear and atomic charges. Consequently, they require a purely numerical
integration technique that will be described in the next section. The main philosophy
behind the DMol® approach is that this technique is applied in a consistent way to
all integrations involving the basis functions. Another advantage of atomic orbitals is
that they are easily applicable to all types of compounds, with and without periodic
boundary conditions, while the required number of basis functions is very small in
both cases.

In the beginning of a DMol® calculation the basis functions are determined from
a separate self-consistent density-functional calculation on free spherical atoms for
all elements that are present in the system. With this approach the orbitals are
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Basis set | Oxygen Ng(O) | Aluminium Np(Al)
minimal | O: 18,282p 5 Al: 15,25,2p,35,3p 9

dn 0%t: 252p 9 Al%*: 35.3p 13

dnd N: 3d 14 B: 3d 18

dnp =dnd 14 Be: 3p, N: 4f 28

all B: 3d 19 =dnp 28

Table 6.1: Basis sets for oxygen and aluminium. Np(O) and Ng(Al) are the total numbers of basis
functions per atom for oxygen and aluminium. The element symbols represent the nuclear charge
used to construct the basis functions.

automatically adapted to the chosen exchange-correlation functional. Due to the
spherically symmetric potential the basis functions can be calculated and fully defined
by a radial grid which typically consists of 500 points. For the ensuing application
of the basis functions to polyatomic systems the radial functions are multiplied with
spherical harmonics.

The smallest possible basis set is called minimal and consists of all orbitals that are
occupied in the ground state of the free atoms. They are determined in a calculation
of a neutral atom. This basis set provides qualitative results at most. Basically, all
functions that are bound eigenfunctions of some spherical potential can be used [135]
to improve the basis set, which opens the way to use also other types of basis func-
tions than the eigenfunctions of neutral atoms. Another important class of functions
used in DMol? is formed by the atomic orbitals of free positive ions. Usually one
or two electrons are removed from the neutral atom and in this way a second set of
orbitals is obtained. Basis sets consisting of the minimal basis and of additional ionic
basis functions for the valence electrons are called double numeric, dn for short, in
analogy to double zeta basis functions frequently used in quantum chemistry. The
basis set can be further improved by adding orbitals of a higher angular momentum,
i.e. polarization functions. These are very important to accurately describe chemical
bonding. Typically, polarization functions are determined from so-called hydrogenic
atoms. These are one-electron atoms with an arbitrary nuclear charge and the elec-
tron being confined in a certain orbital, typically in d or f orbitals. This allows to
generate a wide range of possible polarization functions by varying the nuclear charge,
which also does not need to be integer. Basis sets including additional polarization
functions are available in DMol® for the whole periodic table. They are called dnd
(double numeric plus d-functions) and dnp (double numeric plus polarization func-
tions). Even more polarization functions are added in the all basis set. In order to
make the overlap matrix better conditioned, orbitals of the second and further basis
subsets are Schmitt orthogonalized against the basis functions of the minimal set. As
an example the radial parts of the basis functions of an aluminium atom are shown
in Fig. 6.1. In Table 6.1 the basis sets for oxygen and aluminium as applied in this
thesis are listed.

A clear disadvantage of an atomic orbital basis set is that there is no systematic
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Figure 6.1: Radial basis functions of an aluminium atom. The basis functions of the minimal basis
set are shown in black and blue. The additional basis functions taken from a positively charged
aluminium atom in a dn basis set are shown in red. The polarization functions obtained from
hydrogenic atoms included in the dnd and dnp basis sets are shown in green.

way to improve it. The construction of basis sets requires a lot of experience as
well as testing and has a clear “trial and error” component. Several basis sets are
available in the basis set library of DMol®. Comparisons with highly accurate density-
functional codes employing basis sets that can be systematically improved, like the
LAPW method in the WIEN2k implementation [136], have been made for this project.
They have shown that the basis sets available in the DMol? library provide basically
the same accuracy. Details of these comparisons are given in Appendix A. However,
the number of basis functions required for a given accuracy in case of DMol? is far
smaller. As the bottleneck in DF'T calculations on large systems is the diagonalization
of the Hamiltonian, which scales like the cube of the number of basis functions, DMol?
is therefore much faster than current LAPW and APW-lo implementations for large
systems and makes the extensive potential-energy surface calculations required for the
present work feasible.

At large distances from the nuclei the wave-functions decay exponentially. This
can be exploited by truncating the basis functions at some cutoff radius. By a soft
confining potential it is ensured that the basis functions do not have any discontinuities
in value and in their derivatives at the cutoff radius. This real-space cutoff has to be
tested carefully. The finite range of the basis functions drastically reduces the number
of integrations as only matrix elements for nuclei have to be calculated, which are
closer than twice the cutoff radius. For large systems this results in linear scaling.
On the other hand, cutoff radii, which are too small, can affect the shape of the
basis functions reducing the quality of the basis set. Typical cutoffs which are a good
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compromise between efficiency and accuracy are about 9-10 bohr.

While plane waves are a natural choice for calculations using periodic boundary
conditions, the applicability of localized atomic orbitals in this case is less obvious.
To fulfill the requirements of the Bloch theorem each basis function y, centered at
nucleus p is translated to all positions of nucleus p in all image unit cells at positions
n by the lattice vectors T,. The basis functions now become the Bloch functions
@k(r) depending on the k-point k.

K= 3 M T,) (6.2)

n—=—oo

The Hamilton and overlap matrix elements are calculated by

HY, = > €T < \DIH|XD >=< ¢ H|ok > (6.3)
and Slljy = Z ekTn XZ|X;‘ >=< gpmcpllf > . (6.4)

The single particle states ¢ are constructed from the periodic Bloch basis functions.

gbi‘" = Z cﬁ‘j"gp;‘ (6.5)
=1

In summary, the use of atomic orbitals as basis functions offers a lot of advantages
for the present study. First, the number of basis functions is smaller than for other
basis sets like LAPW or APW++lo at the same accuracy. The basis set superposition
error is minimized and molecules and solids can be handled with the same type of
basis functions. Additionally, the use of atomic orbital basis functions enables to deal
with the electrostatic interaction in a particularly efficient way as will be shown in
Section 6.4. Drawbacks are the somewhat unsystematic construction of the basis set
and the complicated numerical integration techniques that are required to calculate
the matrix elements.

6.3 Numerical Integration

Once the basis functions have been defined, a way to represent them in a practical cal-
culation has to be found. While other types of localized basis functions like Gaussian
type orbitals [100] can be given analytically, atomic orbitals require a purely numeri-
cal treatment. Three-dimensional numerical integration is applied in most DFT codes
for example to calculate the exchange-correlation matrix elements. In DMol? it has a
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particularly essential role, because it is used for the calculation of all matrix elements,
which poses no limitations on the form of the basis functions, making the use of an
atomic orbital basis possible at all.

An efficient way to calculate the integrals is to use a partitioning technique that
is based on the fact that atoms retain much of their identity even in a molecular or
solid environment. The idea is to decompose an integral of a complex function f(r)
over all space, i.e. over all atoms, to a summation of integrals over simpler functions
fa(r) centered at the nuclei . f might be for example f = ¢;(r)Hp,(r).

[ 1@ =3 [ fatryie =3 [ $e)pa(r)dr (6.6)

The functions f,(r) can be calculated from f(r) by multiplying f(r) with a partition
function p,(r) centered at atom «. Many partitioning schemes have been suggested in
the literature. Bader introduced a scheme relying on density gradients [137], but the
boundaries of the atomic regions are hard to calculate. Voronoi polyhedra or Wigner-
Seitz cells are easy to construct, but these approaches make no use of the spherical
symmetry close to the nuclei [138]. In DMol?® a technique based on the partitioning
scheme proposed by Hirshfeld [139] is employed. It is based on the “stockholder
principle”: The free atoms are used as reference and all changes in the density at a
point in space due to the interaction of the atoms is partitioned among the individual
atoms according to the ratio of the densities of the non-interacting free atoms at this
point in space. Mathematically, a function g,(r) is chosen for each center a. In case
of a Hirshfeld charge analysis g,(r) would be the atomic electron density. Then for
each atom « the partition function can be defined as

r) — ga(r)
Pel) = 5 )

In general g,(r) is a sharply peaked function which typically is large close to the
atom it is centered at and small close to all other atoms. The denominator leads to
a normalization of the partition functions making the functions f,(r) sum up exactly
to the original function f(r). The partition functions can be made dependent on the
atom sizes by including the electron densities p, of the free atoms a. Typical choices
for g, are p? or p,/r? [133]. There are no strict boundaries separating the space
between the atoms and the partition functions of neighbored atoms can overlap. The
resulting smooth decay of the partition functions is particularly apt for numerical
integration. The principle of the partition functions is demonstrated in Fig. 6.2.

The atom-centered functions f,(r) can easily be integrated with an angular-radial
product scheme. For this purpose the integrals over the atom-centered functions can
be evaluated numerically using suitable integration grids. The construction of these
grids is crucial for the accuracy and efficiency of the whole method. Most current grids
are based on the work of Becke [140]. The single-center integrations are separated

(6.7)
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Figure 6.2: Principle of the partitioning scheme used in DMol®. The function p around two centers
A and B to be partitioned is shown in (a). In (b) examples for sharply peaked functions ga and gg
centered at the atoms A and B are given, which can be used according to Eq. (6.7) to construct the
partition functions pa and pg shown in (c). Multiplication of f with ps and pp leads to the atomic
centered functions pa and pg which sum up to p and can be integrated individually.

into radial and angular parts. The angular part consists of integrations over points
located on the surfaces of spheres of different radii centered at the nuclei. The radii
of these shells are determined by the radial grid. Because of the fast oscillations of
the wave-functions close to the nuclei a dense sequence of shells is required in this
region. The lower values of the basis functions far from the nucleus are less critical in
the numerical integration and fewer shells are sufficient. The number of radial points
N, is given by

N, =s-14Z +2)'* . (6.8)

s is a scaling factor that can be adapted to increase the radial density of the grid, but
typically a value of 1 is sufficient. Z is the nuclear charge making sure that heavier
elements with a more complex electronic structure are sampled more accurately by a
denser sequence of integration shells.

The angular distribution of the integration points is done according to a scheme
introduced by Lebedev [141-144]. He suggested grids on the unit sphere of various
point densities, which are determined by spherical harmonics up to a certain order.
Some examples are given in Fig. 6.3. Close to the nuclei only a few integration points
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Figure 6.3: Integration points on the unit sphere. The point distributions of different orders intro-
duced by Lebedev [141-144] possess octahedral symmetry and allow to reduce the computational
effort by taking into account the molecular symmetry.

on each sphere are sufficient because of
the low angular dependence of the elec-
tronic structure, but far from the nu-
clei schemes of higher orders have to be
applied. The Lebedev scheme is par-
ticularly useful, because the point ar-
rangements possess octahedral symme-
try. If the system of interest contains a
high symmetry, it is possible to trans-
fer the symmetry of the molecule to the
grid points and integrate only over a
irreducible wedge of points. The full
system is then taken into account via
weights assigned to these points. The
full atomic integration mesh is a super-
Figure 6.4: Integration grid for an oxygen atom. The position of all spheres of different radii
full mesh is a superpos%tion'of all spherical Lebedev and typically consists of a few thou-
meshes of different radial distance from the nucleus . . .
and consists of 3287 points in this example. sand points. In Fig. 6.4 the full integra-
tion mesh of an oxygen atom is shown.
Finally, the three-dimensional integra-
tion mesh of the many-atom system is
a superposition of individual atomic meshes. It should be noted that a too sparse
integration mesh can result in “numerical noise”, because inaccurate integrations can
lead to arbitrary changes in the total energies as demonstrated in Fig. 6.5.

6.4 The Electrostatic Potential

The calculation of the electrostatic potential is often a time consuming step in a DF'T
calculation using localized basis sets. To simplify the calculation of the required inte-
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Figure 6.5: Total energy of an aluminium atom as a function of the real space cutoff for the basis
functions for two different integration meshes. Both meshes consist of a constant number of points
but as the cutoff increases the meshes have to cover more space, i.e. the point density decreases.
While the fine mesh with many points provides accurate total energies for all cutoffs, the coarse mesh
with fewer points is not dense enough for a precise integration beyond a cutoff of 10 bohr, and the
total energies start to oscillate.

grals many DFT codes using localized basis sets replace the electron density obtained
from the eigenstates by some fitted auxiliary density. This results in the introduction
of an auxiliary fitting basis set with adherent fitting errors. In DMol® the partitioning
scheme presented in the previous section paves the way for a very efficient and accu-
rate calculation of the electrostatic potential without relying on a fitting technique. In
a first step the total electron density is partitioned into atomic contributions p,(r) for
each atom « in the system. This enables the use of the single-center Poisson equation
relating the electrostatic potential V,, to the density p, at this center.

V2V, = —47p, (6.9)

In a second step the atom-centered densities are projected onto spherical harmonics
Y. m attached to the atoms.

1 1
patn() = = / Yot (0, 0)pa(r, 0, 6)d0de (6.10)

In this way multipoles centered at the atoms are obtained, and for each multipole
the density is represented by a one-dimensional radial density pa (7). Sampling the
projected density components at many radii gives a flexibility to the charge density
representation which goes far beyond the one obtained with density fitting procedures.
Although the multipolar expansion of the charge density has to be truncated, the
truncation errors are usually far smaller than in density fitting procedures. For each
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of these one-dimensional multipole densities p,;.m(r), Poisson’s equation is solved
separately with high accuracy by replacing p, and V,, in Eq. (6.9) by sums over all
multipole densities and potentials. In the last step the resulting multipole potentials
Viarm(r) are reassembled to obtain the electrostatic potential of the atom-centered
densities. Finally, these are combined to the electrostatic potential of the full system.

For calculations with periodic boundary conditions an Ewald summation [145] has
been implemented [146]. In this method an auxiliary charge density consisting of
Gaussian broadened point charges at the atomic sites and an exactly opposite second
auxiliary charge density are introduced as well as a uniform background charge to
compensate the point charges of the crystal lattice. Now the potential is calculated in
two steps. The potential from the first auxiliary density and the uniform background
charge density can be calculated in reciprocal space, whereas the potential of the
second auxiliary density and the point charges rapidly converges in real space. To
make use of the one-dimensional multipolar charge densities pam,(r) the Ewald
method has been extended to multipole lattices. Because of the finite extent of the
atom-centered charge densities only within the basis function cutoff radius the radial
details of the electron density have to be taken into account resulting in a modified
real space part of the Ewald summation [146].

In summary, DMol® uses a basis set free expansion and projection technique to
decompose the total density into one-dimensional multipolar densities, for which
Poisson’s equation can be used to obtain one-dimensional potentials that are reassem-
bled to obtain the electrostatic potential of the full system. In contrast to traditional
density fitting schemes, which scale like the cube of the system size [138], for large
systems this approach is very efficient and scales with the square of the system size
for molecules and linearly with system size for calculations using periodic boundary
conditions [146].

6.5 The Eigenvalue Problem

In contrast to plane wave basis sets, localized basis functions centered at different
atoms are not orthogonal to each other. Therefore a special technique is required to
determine the eigenvalues and the eigenvectors of a given Hamiltonian. The procedure
will be described here in detail because this will be of importance for the implementa-
tion of the spin-constrained density-functional method described in Chapter 12. The
non-orthogonality of the localized basis functions is reflected by an overlap matrix S
which is not equal to the unit matrix I. To determine the eigenvectors and eigenvalues
of a given Hamilton operator for each spin o, first the Hamilton and overlap matrix
elements are calculated by numerical integration.

HZ-U]- = <Xi’HO-‘Xj> (611)
Sz” = <Xi|Xj> (612)
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The problem is that these matrix elements are not given in an orthonormal basis
representation. Therefore the secular equation to be solved is

H° - \°S=0 . (6.13)

A is the diagonal matrix containing all the eigenvalues. This eigenvalue problem has
to be transformed into the standard form with an orthogonal basis representation.
Therefore the matrix U has to be determined by a Cholesky factorization [147].

S=U"U (6.14)

Using U, which now contains all information from the overlap matrix, the eigenvalue
problem can be transformed to the standard form.

(UD)THU! — \(UT)'SU' = H — AT = 0 (6.15)

Then the transformed Hamiltonian H’ represented in an orthogonal basis can be
diagonalized to yield the eigenvectors ¢’ in the orthogonalized basis representation
and the eigenvalues ¢;, which do not depend on the representation. In the last step
the eigenvectors have to be transformed back to the non-orthogonal atom-centered
basis.

c=U"'¢ (6.16)

6.6 The Harris Functional

In DMol? the total energy is not calculated according to the Kohn-Sham functional
but using the Harris functional [148,149]. Contrary to the usual applications of the
Harris functional, in which non-selfconsistent charge densities are used to obtain crude
energy estimates in just one iteration, in DMol® the Harris functional is applied to
obtain accurate densities in a standard self-consistency cycle. The total energy FE\q
according to the Harris functional is

Ve
Eilp', p"] Z 77 + Exclp', p'] /pa Vxo,o + g)dr

Z ZZﬂ

(6.17)
ﬁ;éa Rﬁ‘

The f7 are the occupation numbers of the Kohn-Sham orbitals ¢¢ of spin o. The
reason for using the Harris functional instead of the Kohn-Sham functional is that
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then errors due to inaccuracies in the charge density enter the total energy only in
second order. These inaccuracies can arise from imperfect self-consistency, basis set
limitations and limitations of the numerical integration. In contrast to the Kohn-
Sham functional the Harris functional has a saddle point at the correct Kohn-Sham
density [138, 150, 151], but both functionals are stationary for the same densities and
yield the same total energies, which is a basic requirement for the applicability of the
Harris functional.

In a typical calculation the total energies are in the range of 10° eV. However, one
is usually interested in binding energies with respect to some reference system. These
binding energies, which are in the order of 1 eV and should have a precision of about
0.01 eV, are very sensitive to numerical noise as they are differences of large numbers.
Instead of total energies only binding energies E};,q with respect to the free spherical
atoms are calculated in DMol® to reduce the numerical noise, and when needed, the
total energies are restored by adding the total energies E'S{ = of the free reference
atoms.

Etot = Ebind + Z E:‘Egm (618)

The direct calculation of the binding energy is done by subtracting the densities of
the free spherical atoms from the total densities in the integrands for the evaluation
of the Hamilton matrix elements [149].

6.7 Summary

Apart from the features mentioned in the previous sections many other aspects of the
DMol? approach are of interest. The forces are calculated according to the Hellmann-
Feynman theorem [152,153]. Due to the localized basis functions a Pulay correc-
tion [154] of the forces is required. More precise forces can be obtained by taking into
account the imperfect self-consistency of the charge density [152]. Scalar relativistic
effects based on the approaches of Koelling and Harmon [155] and of Takeda [156]
can be included via local pseudopotentials in all-electron calculations [157]. These
additional potentials are localized around the nuclei and include the effects of the
mass-velocity and Darwin terms. To improve the convergence of the self-consistent
determination of the ground state density a very efficient Pulay charge density mixing
scheme is implemented [158-160] that can reduce the number of required iterations
drastically. Geometry optimizations can be done with the “eigenvalue follow” (EF)
algorithm [161, 162]. Molecular dynamics calculations are available based on the Ver-
let algorithm [163]. All algorithms have been implemented in DMol? in a way to take
full advantage of any symmetry of the system under consideration. Apart from the
standard all-electron calculations DMol? also offers to use pseudopotentials to speed
up calculations [164] by approximately one order of magnitude for large systems of
heavy elements at the price of a slightly lower accuracy.

44



Chapter 6. The Density-Functional Implementation DMol3

All in all, DMol® is a very accurate and fast code (cf. Appendix A). The matrix
setup, the calculation of the density on the mesh as well as the Pulay orbital derivative
terms are scaling linearly with system size [165]. Therefore, the diagonalization of the
Hamilton matrix scaling like the cube of the system size soon becomes the dominant
term for DMol3, but the efficient basis set keeps the dimension of the matrix very
small.
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Chapter 7

Neural Network Interpolation

7.1 Fitting Potential-Energy Surfaces

Even extensive first-principle studies of potential-energy surfaces can only provide
a limited number of energy points, typically of the order of 1000, due to the high
computational costs of these calculations. On the other hand, for the calculation of
a sticking curve the sticking probability has to be calculated for about 20 different
kinetic energies. Each of these sticking probabilities must be based at least on a few
thousand molecular dynamics trajectories to obtain statistically meaningful results.
Finally, each of these trajectories requires the energies and forces for some hundred
different configurations. The total number of energy calculations required to deter-
mine a sticking curve is therefore of the order of 107, which is far beyond what can
be obtained from direct ab initio calculations. This dilemma can be solved by fitting
a continuous potential-energy surface to the ab initio energy points provided on a
finite grid, to make energies and forces available for arbitrary molecular geometries.
In recent years a lot of effort has been spent in the development of corresponding in-
terpolation schemes [86], each of which has particular advantages and disadvantages.
Basically, these schemes can be classified into two different categories, “mathematical”
approaches and “physical” approaches.

Mathematical methods in general do not require any knowledge about the func-
tional form of the potential-energy surface. They are designed to be very flexible, but
typically also require more ab initio data points than physical approaches. A simple
example for a mathematical method is the interpolation using cubic splines [147]. For
two- or three-dimensional potential-energy surfaces splines are very efficient, but the
interpolation error using splines increases rapidly with the number of dimensions, and
for problems with more than about four degrees of freedom splines become imprac-
tical [166]. A method that is applicable also for the interpolation of six-dimensional
potential-energy surfaces is the modified Shepard interpolation [167]. In this method
the potential close to an ab wnitio point is expanded as a second-order Taylor series.
The potential of a new configuration is then constructed as a weighted sum over the
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Taylor expansions with respect to many DFT points. The DFT data set does not
need to be known completely in the beginning of the fit, but can be extended by
running classical molecular dynamics simulations and adding further DFT points in
frequently visited regions of the PES or in regions that are not well fitted. The latter
can be identified by comparing the predicted energies with respect to the individual
Taylor expansions. In this way, the convergence of the fitted potential-energy surface
as a function of the number of points can be tested systematically. Another method
that has been used recently [26,27] for the fitting of six-dimensional potential-energy
surfaces is the neural network approach [168,169]. In principle, this very flexible and
highly non-linear technique allows to fit any real-valued function to arbitrary accu-
racy. First applications have shown that the performance of this method is very well
suited for molecular dynamics simulations of dissociation events [26,27]. A detailed
description of this technique will be given below. Another mathematical method is
genetic programming [170]. In this method the parameters of some analytic func-
tions as well as the functional forms themselves are optimized simultaneously. To find
the optimal functional form varying combinations of simple basis functions are used.
However, this method so far has not been employed to more than three dimensional
potential-energy surfaces. A method, which is at the borderline between pure math-
ematical fits and physical fits, is to use reasonable analytic functions with several
adjustable parameters [17,86,171-174]. These functions, which are rather inflexible,
have to be selected to represent the symmetry of the system correctly, and the closer
they are to the real shape of the potential the more accurate fits can be obtained.
Unfortunately, these functions are very hard to find, and if not chosen carefully, ana-
lytical functions may easily introduce artefacts into the potential. A variation within
the analytical fit approach is the use of the corrugation reduction method [175-179].
The idea of this method is to reduce the corrugation of the potential-energy surface
by removing the energies due to the interaction of the individual atoms with the sur-
face. This requires the additional calculation of a three-dimensional potential-energy
surface for the atom-surface interaction. The advantage of this method is that the
modified potential-energy surface is much easier to fit since most of the surface site
dependence, i.e. the corrugation, of the potential is removed. In principle, many tech-
niques could be used to fit this smoothed PES, but so far in most cases a combination
of splines and analytic functions has been used. Drawbacks of this method are that it
cannot be extended easily to more than six dimensions and its inherent restriction to
non-spin-polarized systems. Spin-polarized molecules like Oy change their spin state
upon adsorption, making the spin state to be used in the atomic potential-energy
surface ill-defined.

Examples for physical fitting schemes are the tight-binding and the embedded atom
method. In the tight-binding method [180-183] the quantum mechanical nature of
bonding is taken into account explicitly. The quantities to be parameterized are the
elements of the Hamilton and the overlap matrices as a function of the interatomic
distances in an atomic basis representation. The resulting secular equation has to
be solved by a matrix diagonalization making this method rather time consuming
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compared to mathematical fits. However, in the tight-binding method the number of
required DFT data points is drastically reduced for a given fit accuracy. The basic
idea of the embedded atom method (EAM) [184-186] as a semi-empirical potential
form is to embed each atom into the electron density of all other atoms of the sys-
tem. Then, the total energy is the sum of the embedding energy that includes all
many-body effects and an electrostatic repulsion term for the interaction between the
nuclei. An extension of the embedded atom method is the modified embedded atom
method (MEAM) [187], that also includes angular dependent terms to account for
covalent bonding. Being developed mainly for bulk materials so far no applications
of the embedded atom method to potential-energy surfaces for the dissociation of
molecules on surfaces exist, and in general its applicability to these systems has been
questioned [188].

In summary, a fitting scheme suitable for all types of problems does not exist. In
general, mathematical fitting methods are very fast in the calculation of energies and
energy gradients. Their disadvantages are the rather large number of required ab
initio data points (typically a few thousand), their inability to extrapolate energies
beyond the configuration space spanned by the DFT energy points and their rapidly
increasing complexity with the dimensionality of the problem. Physical schemes, on
the other hand, require less DFT data points (typically a few hundred), possess a rea-
sonable extrapolation capability and allow in principle an easier extension to higher
dimensionality. Their drawback is the higher computational effort, for example due to
the diagonalization of matrices in case of the tight-binding method, or their inappli-
cability to the dissociation of molecules at surface in case of EAM, respectively. For
these reasons a mathematical fitting method, namely the neural network technique,
will be used in this project. Previous work has shown that this method is particu-
larly suitable to be combined with molecular dynamics simulations [26, 27], because
the calculation of the energies but also of the forces is very fast and accurate. The
following sections introduce the neural network technique as well as its application in
molecular dynamics simulations.

7.2 Neural Networks

Inspired by the neural signal processing in biological systems [189], the first artificial
neural networks (NN) have been introduced in 1959 [190]. Since then neural network
techniques have become a standard tool in many fields of research. They have proven
useful in applications like pattern recognition and classification problems (digitizing
handwritten text [191], finger print identification [192], heart diseases diagnostics [193]
and speech recognition [194]) and analysis of complex data (prediction of stock mar-
ket performance [195] as well as DNA and protein structure analysis [196-198]). It
is also well known that neural networks are well suited for the fitting of non-linear
functions of one or more variables [199,200]. They are very flexible, do not require
any assumptions about the functional form of the underlying physical problem and
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Figure 7.1: Structure of a 2-3-1 feed-forward neural network. The circles represent the nodes, that
are connected with the nodes in the adjacent layers by the weights wfj The bias adds a constant to
each node in the hidden and output layers to adapt the position of the non-linearity intervals of the
activation functions. The function values yf are calculated according to Eq. (7.1).

are in principle able to fit any function to arbitrary accuracy. A few years ago the
first applications of neural networks to the interpolation of potential-energy surfaces
have been published [166,201]. Recently, Lorenz, Grof and Scheffler proved the ap-
plicability of neural networks in molecular dynamics simulations on high-dimensional
potential-energy surfaces [26, 27|, which motivated their use in the present work. Since
a very detailed description of the relevant aspects of neural networks can be found in
[26], only a short summary of the neural network technique and its modifications for
the current project will be given here.

Many different types of neural networks exist adapted to the problems they are
applied to. For functional fittings the class of multilayer feed-forward neural net-
works [168, 169] has shown to be particularly useful, and consequently this is the net-
work type that will be applied in this work to fit the six-dimensional potential-energy
surface for the oxygen dissociation on the Al(111) surface. The general structure of a
feed-forward neural network is shown schematically in Fig. 7.1. It consists of several
layers each of which contains one or more nodes represented by the grey circles. In
the given example the two nodes in the input layer represent the two variables of
the function to be fitted. The function value corresponds to the node in the out-
put layer. Between the input layer and the output layer one hidden layer with three
nodes is located. The term hidden layer is used because the numerical values at the
nodes of this layer are just auxiliary quantities without a particular meaning. Each
node ¢ of a certain layer is connected with the nodes j in the subsequent layer via
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Figure 7.2: Activation functions used in neural network fits. (a) shows the sigmoid function and (b)
the hyperbolic tangent function.

weights wfj, where k represents the index of the target layer. On each node all the

values from the nodes of the preceding layer are summed up after being multiplied
by the connecting weights. On the resulting sum a non-linear function f, is applied.
This function is called activation function, transfer function or basis function of the
network. Typically, activation functions are sigmoidally shaped functions, but also
other types of functions like Gaussians can be used. The sigmoid and the hyper-
bolic tangent function are exemplified in Fig. 7.2. A requirement for an activation
function is its differentiability, because for the weight optimization the derivatives of
these functions with respect to the individual weights have to be calculated. The
importance of the activation functions lies in that they introduce the non-linearity in
the neural network, which allows to fit all types of functions. For very large or very
small arguments the activation functions converge to a constant number, but for a
certain interval the output changes significantly in a non-linear way. The bias unit
shown in Fig. 7.1 acts as an adjustable offset to adjust the position of the non-linearity
interval of the activation functions. Then the obtained function value of each node is
passed to all the nodes of the subsequent layer and multiplied with the corresponding
connecting weights. In a feed-forward neural network the nodes within one layer are
not interconnected, but it is possible to add direct links from the nodes in the input
layer to the output layer nodes, which can be useful if there are linear dependencies
between the input and output data. In the output layer the values are collected and
the output value is calculated by applying an activation function, which in this case
is typically a linear function to avoid any constraints on the possible range of output
values. Another characteristic feature of the feed-forward neural network is that the
information is transferred only in one direction through the network, from the input
via the hidden layers to the output layer, which is different in other network types. In
general, each layer including input and output layers can contain many more nodes
than in the simple example shown in Fig. 7.1, and also more than one hidden layer is
typically used.
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All in all the neural network defines a complicated non-linear function relating the
input values to the output values. This function can be given analytically and it
depends on many parameters, the weights wfj The value yf of node j in layer k can
be obtained from the values y*~! of all nodes i in the preceding layer k& — 1 and from
the connecting weights by

o= g (it + ) (r.)

ng is the bias weight for the activation function f* acting on node j. In case of yj’g
referring to a node in the first hidden layer (k = 1) the y*~' in Eq. (7.1) are the i input
values (coordinates) of one data point, for which in this work the symbol G; will be
used. Using Eq. (7.1) the complete functional form of the full neural network can be
constructed. For a given set of weights the output 3? of the three layer neural network
shown in Fig. 7.1 is defined by the vector G = (G;,G3) of all input coordinates of
one data point.

3 2
ﬁ@bﬁ@@+2@ﬂ@%+z@@» (7.2
= i=1

To label uniquely the structure of a multilayer feed-forward neural network a short
hand notation has been established. A “2-3-1 t1” network consists of 2 input nodes,
3 nodes in one hidden layer and one output node. The “t” represents the use of a hy-
perbolic tangent activation function in the hidden layer and the “I” stands for a linear
activation function in the output layer. For the sigmoid function the abbreviation “s”
is used.

A priori it is not known which network architecture will be best for a given fitting
problem and empirical tests are necessary to find the optimum number of hidden
layers and nodes as well as the best activation functions. Too few nodes in the
hidden layers will result in underfitting, i.e. important features of the PES will be
smoothed out. Too many nodes increase the flexibility of the network and can lead
to overfitting, i.e. artificial features appear in the function, which do not have any
physical justification [166]. Therefore, one should try to use the smallest possible
architecture that yields the desired accuracy. Small networks can also be used to
achieve a limited smoothing of the DFT data that might be wanted to reduce the
numerical noise in the DF'T energies. However, care must be taken that the general
shape of the potential-energy surface remains correct. Compared to splines neural
networks are less sensitive to noise or outliers, but the latter have to be watched with
caution as also real physical extrema might get lost if the PES is not sampled on a
dense enough grid. There are no constraints on the coordinates of the input data
points. They do not need to be located on a regular grid, but they necessarily have to
include all important characteristics of the potential-energy surface, like the positions
of energy minima and maxima, energy valleys and reaction barriers.
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7.3 Weight Optimization

The intended application of the neural network in this work is to predict energy
values for arbitrary input configurations G. Therefore, the connecting weights have
to be known, and a neural network fit is nothing else but finding the optimal set of
weights. The weights are determined in an optimization process based on a set of
known output values, i.e. the DFT data points. In the context of neural networks
the optimization of the weights is called learning and is done using standard iterative
optimization algorithms. The latter require a cost function I" which is minimized in
the learning process. For a given set of weights w the cost function is the sum of the
squared differences between the actual outputs of the neural network y;(w, G;) and
the known correct target values 7;(G;).

D=3 ly (w,Gy) — T (Gy) P (73)

A full optimization cycle in which each data point is presented once to the network
is called an epoch. The new updated weight for an epoch p is calculated from the
corresponding weight of the previous epoch ©—1 and the derivative of the cost function
with respect to this weight.

or
wfj(ﬂ) = wfj(ﬂ —1) - 77@ ) (7.4)

where 0 < 1 < 1 is the learning rate. If n is a constant this is basically a steepest
descent algorithm, but also more sophisticated schemes like conjugate gradients and
quasi-Newton methods [147] can be used. In order to start the optimization procedure
an initial guess for the weights is required. Usually random numbers are used for
this purpose. In the fitting process care must be taken that neither overfitting nor
underfitting occurs. Therefore, several checks have to be done to analyze the quality
of a fit.

A very simple but efficient test is to compare parts of the fitted high-dimensional
potential-energy surface that can easily be visualized, i.e. two-dimensional cuts, with
corresponding images of the original DFT data. Artificial wiggles in between the
DFT data points are a clear indication of overfitting. Another method that should
be used is to split up the DFT data set into two subsets. The first subset, which
typically contains about 90 % of the data points, is used to optimize the weights
of the network and is called the training data set. The remaining data points form
a test set that is not used to optimize the weights. Since the DFT energies of the
test points are known, they can be used to check the accuracy of a fit by comparing
the values predicted by the neural network with these exact values, establishing a
measure for the interpolation capability of the neural network. In the ideal case the
division of the whole data set into the training and the test set is done randomly.
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Figure 7.3: Evolution of the root mean squared errors (RMSE) of the training and test data sets in
a neural network fit.

However, one has to make sure that all data points which represent extrema of the
potential-energy surface are included in the training set. Then in each epoch of the
optimization process the root mean squared error (RMSE) can be calculated for both
data sets (training and test set).

RMSE = $ 1 fj (i —T)° (7.5)

ni3

where n is the number of data points in the respective data set. A typical evolution
of the RMSE of the training and test data as a function of the optimization epochs is
shown in Fig. 7.3. In the first epochs the errors of both data sets decrease rapidly with
the test error being higher in value. This can be expected as these data points are
not included in the training of the network. Then the test error reaches a minimum
and afterwards increases slowly, while the training error is reduced continuously. The
epoch in which the test error reaches its minimum corresponds to the set of weights
with the best prediction accuracy for unknown data points. Afterwards overfitting
occurs in that on the one hand the fit of the training points still improves but the
regions in between the training points are less accurately reproduced. Another general
indication of overfitting is a large discrepancy between the RMSE of the training and
test points. To our experience, it is acceptable to have a test RMSE at most twice as
high as the training RMSE. A higher ratio is an indication of a poor fit.

While the RMSE of the training set is a good measure for the overall accuracy
of a fit, it gives little information on the individual regions of the potential-energy
surface, which might be of different importance for the later application of the fit.
An example are very high energy regions if the application is to perform molecular
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dynamics simulations on the interpolated potential-energy surface: Regions with a
potential-energy higher than the initial kinetic energy of the molecule will never be
reached in the molecular dynamics, and consequently a lower accuracy would be
tolerable, while energy barriers and minimum energy paths should be modelled very
accurately. To check the fit quality for the different regions individually, the data of
the training set can be split up into different groups according to energy and molecular
geometry. After the weight optimization the determined optimal set of weights can
be used to calculate the mean absolute deviation (MAD) of these groups separately.

1 n
MAD = — > lyi — Tl (7.6)
=1

This allows a detailed insight into the quality of the fitted potential-energy surface.
The accuracy of a fit in the individual regions can be controlled by assigning error-
weights w; to the data points, which must not be confused with the weight parameters
wfj of the neural network. In the optimization of the neural network the purpose of
the w; is to modify the errors of the individual training points and therefore the cost
function to achieve a more accurate neural network fit in important regions of the
potential-energy surface.

7.4 The Kalman Filter

In general, there are two types of learning procedures, on-line learning and off-line
learning. In the latter case the whole training data set is presented to the neural
network and afterwards the weights are updated, then the next epoch starts. In on-
line learning the weights are updated after the presentation of each data point. The
advantage of the latter method is a faster convergence in terms of required epochs
and a higher probability of not getting trapped in local minima. On the other hand,
most standard optimization schemes like conjugate gradient or quasi-Newton schemes
can only be used in off-line learning.

An optimization scheme that can be applied to on-line learning is the Kalman
filter [202,203]. It was originally developed for the estimation of parameters from
measurements that are generated in real time [204,205], i.e. when the full data set
is not available. Basically, the Kalman filter is a set of mathematical equations that
allows to estimate the state of a linear dynamic system. As neural networks constitute
non-linear functions, the original Kalman filter cannot be applied directly. Therefore,
the extended Kalman filter (EKF) has been developed, which is based on the idea to
linearize each new data point around the actual value of the estimate, i.e. the set of
weights. These days the Kalman filter is frequently used in neural network fits [26,
205,206]. Applying the Kalman filter the cost function I'(k) at the presentation of
data point k is
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I'(k) = zk:efx(k:)’f—i : (7.7)

where e; = T;(G;) — y;(w, G;) is the error of data point 4, which is the difference
between the correct target value 7;(G;) and the output value y;(w, G;) of the neural
network, that in turn depends on the weights and the input values. Equation (7.7)
represents a weighted consideration of all previous updates i, the weighting being
controlled by a forgetting factor A(k) that increases continuously with & and reaches
a saturation value of 1 for very large k. Due to the exponent, A\(k)*~% is large for the
most recent updates and exponentially decaying for past updates. The value of A\(k)
itself is given by

AK) =AMk —1)+1— X . (7.8)

The starting value A(0) is typically chosen empirically between 0.95 and 0.99 and A\
is a constant between 0.9900 and 0.9995 [26]. The rather complicated equations of
the extended Kalman filter can be derived from the minimization of Eq. (7.7), details
can be found in 26,207, 208].

The drawback of the Kalman filter is that it is computationally very demanding to
adapt the weights after the presentation of each individual data point. However, the
computational effort can be reduced by taking into account that data points, which
are already fitted rather accurately, will cause only small changes in the weights.
Therefore it is possible to reduce the computational demand by setting a threshold
value £ for the error of a data point. Only if the fitting error of a point is higher than
this threshold value, which is typically given as a fraction of the root mean squared
error of the whole data set, the weights will be adjusted. Otherwise the weights will
not be changed and the neural network proceeds to the next training point. If this
threshold is applied, the method is called adaptive extended Kalman filter. For all
neural network fits in this work the adaptive extended Kalman filter has been applied
instead of quasi-Newton methods to enable the more efficient on-line learning. In
Fig. 7.4 the course of a neural network fit applying the extended Kalman filter is
shown schematically.

Once an accurate set of weights is available, the calculation of the energies using the
neural network is about 5 orders of magnitude faster than the original first-principles
calculations. The price to be paid is the additional fitting effort, as typically many
fits for different network architectures have to be carried out to find the best fit
empirically. The total computational effort to find an accurate fit is in the order of a
few self-consistent DFT energy calculations.
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Figure 7.4: Schematic course of a neural network fit for a given number of epochs employing the

extended Kalman filter.
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Chapter 8

Molecular Dynamics Based on
Neural Networks

8.1 Introduction

To perform molecular dynamics simulations, the forces on the nuclei, i.e. the deriva-
tives of the potential-energy surface with respect to the nuclear coordinates, are re-
quired. One possibility would be to evaluate the derivatives numerically using finite
differences, which is an elaborate task for high dimensional potential-energy surfaces.
A more precise method is to calculate the analytic derivatives of the potential-energy
surface. This requires not only to have a continuous representation of the potential-
energy surface, but it must also be differentiable, which is fulfilled by a neural network
interpolation and has been used already in the weight optimization. The derivatives
Fg, of the total energy with respect to the input parameters GG; can be obtained from
the neural network by

Fa,(G) = - ; (8.1)

where we have used the variable E for the output of the network as it represents
the potential-energy. Using analytic derivatives it is guaranteed that the forces are
consistent with the energies and in particular that the forces are zero at local minima
of the potential-energy surface. If the system of interest would be a molecule in the
gas phase this would be all that has to be done, and the forces could be used directly
in the classical equations of motion to describe the dynamics of the system. For the
dissociation of a molecule on a surface, which has a periodic potential, further steps
are required to provide the energies and forces for arbitrary molecular configurations.
The necessary extensions of the neural network technique will be described in the
next sections.
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Figure 8.1: Irreducible part of the Al(111) surface. The mirror planes are represented by the dashed
lines and the threefold rotational axes by the black triangles. The surface atoms are symbolized by
the grey circles.

8.2 The Role of Symmetry

The Al(111) surface is highly symmetric. Apart from the translational symmetry there
are three different mirror planes and three 3-fold rotational axes perpendicular to the
surface located at the top, fcc and hep sites. Therefore, the (1x1) unit cell of the
Al(111) surface has six times the size of the irreducible wedge, which is spanned by the
top, fcc and hep sites as shown in Fig. 8.1. To avoid redundant calculations, the DF'T
energies are calculated for molecular positions inside the irreducible wedge only. The
coordinate system, which is employed in the mapping of the six-dimensional potential-
energy surface is shown in Fig. 8.2. Basically, it is a superposition of a Cartesian
coordinate system for the center of mass of the molecule and a spherical coordinate
system for the molecular orientation and bond length. @ is the angle between the
molecular axis and the surface normal, ¢ is the angle between the positive z-axis and
the projection of the molecular axis into the xy-plane, X, Y and Z are the center of
mass positions of the molecule and d is the oxygen-oxygen bond length.

The DFT data points cover only a small fraction of the configuration space that
is accessible to the molecule in molecular dynamics simulations. As a consequence,
training the neural network only with this data set does not provide energies and forces
for configurations outside the irreducible wedge. For this reason the coordinates X,
Y, Z, 0, ¢ and d cannot be used directly as input for the neural network. Instead, the
coordinates can be classified into two types, the “periodic” coordinates X, Y, 6 and
¢ which cause periodic oscillations of the energy values when changed continuously,
and the “non-periodic” coordinates d and Z. The lateral symmetry represented by
X and Y has two different components. The first component is the translational
symmetry of the Al(111) surface given by the lattice vectors @ and b (cf. Fig. 8.1). One
possibility to include this translational symmetry is to translate an arbitrary molecular
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Figure 8.2: Six-dimensional coordinate system employed in the mapping of the potential-energy
surface for the oxygen dissociation on the Al(111) surface.

configuration back into the unit cell, which is known to the neural network, before
the energies and forces are calculated. This requires that the whole configurational
space spanned by the (1x1) unit cell is known to the network. To achieve this,
the second component of the lateral symmetry has to be taken into account, which
is the symmetry within the unit cell. Here a simple translation is not sufficient,
because the incorporation of the symmetry due to the mirror planes and rotational
axes is far more involved. A straightforward but not very elegant way would be to
unfold the DFT data set calculated for the irreducible wedge into the whole unit cell
and train the neural network with this extended data set. This procedure has two
clear disadvantages. First, the data set is significantly increased slowing down the
optimization of the network weights. More severe is a second problem: Learning the
energies for the whole unit cell means that configurations, which are equivalent by
symmetry and must have the same energies, are fitted independently. Therefore, the
fit accuracy can be different for equivalent points and different energies can emerge.
This artificial symmetry breaking has to be avoided. In order to circumvent the
problems related to the periodicity of the potential-energy with respect to the four
coordinates X, Y, # and ¢ it has been suggested to use so-called symmetry functions,
which automatically map arbitrary molecular configurations into the irreducible wedge
of the unit cell [26,27]. Although a slightly different method has been used in the
present work that is introduced in Section 8.4, in the next section a brief summary
on molecular dynamics simulations based on symmetry functions will be given to
motivate the development of a more general method.

8.3 Molecular Dynamics Based on Symmetry
Functions
The basic idea in the application of symmetry functions is that any molecular con-

figuration is mapped into the irreducible wedge of the unit cell before the energy is
calculated by the neural network. Then it is sufficient if the training data set for the
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neural network includes only the DFT data points in the irreducible wedge, and no
expansion of the data into the full unit cell needs to be done. A consequence of the
mapping is that the coordinates X, Y, 6 and ¢ cannot be used as input for the neural
network directly. Instead, they are mapped on periodic functions, whose values then
are provided as input to the neural network, i.e. E(X,Y,Z. 0, ¢,d) is replaced by
E(Gy,Gs...), the Gi(X,Y, Z,0,¢,d) now being the function values of the symmetry
functions which form the input for the neural network. Basically this is a coordinate
transformation of the DFT data set. The forces then can be obtained according to

9G,; O
e

F, = (8.2)

with a representing one of the original coordinates X, Y, Z, 0, ¢ and d, respectively.
It is important to note that the mapping is always done only in one direction, from the
original 6 coordinates to the symmetry function values in both cases, in the training
of the network and in the request of energies and forces for new configurations. It
is not necessary to reconstruct the original set of coordinates belonging to a set of
G;, which allows for a high flexibility in the choice of symmetry functions. Also their
number is not constrained to the dimensionality of the potential-energy surface, the
reason of which will be given below.

The mapping procedure is similar to an analytic fit in that the symmetry functions
have to reproduce the symmetry of the surface correctly. However, in contrast to an
analytic fit they do not need to reproduce the DFT energies in value. This is done by
the neural network, which is now trained to assign the DFT energies to the symmetry
function values ;. For each molecular configuration outside the irreducible wedge
an identical set of symmetry function values for a configuration inside the irreducible
wedge does exist. These two configurations are equivalent by symmetry, and are
automatically assigned the same energies by the neural network, since the set of input
coordinates G; for the neural network is identical in both cases.

There are some requirements that have to be strictly fulfilled by the symmetry
functions in order to be applicable in molecular dynamics. First of all, two inequivalent
molecular geometries must not yield the same set of function values, because in case of
these two geometries having different potential-energies the neural network would have
to fit contradictory data, i.e. two different energies to the same configuration resulting
in poor fits. All symmetry functions have to be continuous and differentiable. They
have to describe correctly at least the translational symmetry of the surface unit cell,
but preferably also the correct symmetry within the unit cell, so that all geometries
within the unit cell which are equivalent by symmetry are mapped on the same set of
function values G.

A drawback of this method is that the symmetry functions have to be chosen
very carefully. Any symmetry included in the analytic symmetry functions inevitably
becomes a symmetry property of the interpolated potential-energy surface. This effect
can be particularly harmful in molecular dynamics simulations, because symmetry
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elements like mirror planes strongly affect the rotational motion of the molecules.
Therefore, it is desirable to reproduce the symmetry of the molecule surface system
as exact as possible. In general, suitable analytic symmetry functions are hard to
find and often this is possible only for very simple systems like an atom interacting
with a surface. Already for a six-dimensional potential-energy surface constructing
appropriate functions is a very tedious task, because complex functions depending on
many coordinates arise. As an example we will investigate the angular dependence
of these functions for a homonuclear diatomic molecule interacting with the Al(111)
surface.

The energies have a periodicity of 180° and 360° concerning the angles # and ¢
(cf. Fig. 8.2), respectively. Changing the values of the angles by these amounts
corresponds to the identity operation. Additionally, both angles are coupled in that
rotating ¢ by 180° and replacing 6 by 180° — @ (mirroring at a plane parallel to the
surface) is also an identity operation. If the center of mass of the molecule is located
on a mirror plane or a high symmetry site of the surface, the rotational symmetry is
increased in a complex way. At a high symmetry site like the fcc site, the periodicity
with respect to ¢ becomes 120° for a tilted molecule and even 60° for a molecular
orientation parallel to the surface (6 = 90°). Therefore, the resulting symmetry
functions depend simultaneously on 6, ¢, X and Y in a complex way. So far, it was
not possible to derive symmetry functions which exactly match the symmetry of the
real system without introducing artefacts.

In the present work an attempt was made to find an alternative method to the use of
symmetry functions, which offers the same advantages, but which can be constructed
easily for all types of surfaces in a systematic way. This alternative method has been
found in using symmetrized and antisymmetrized Fourier terms and is described in
the following section.

8.4 The Fourier Method

In the previous section it has been demonstrated that finding appropriate symmetry
functions is a difficult task and that it is not always possible even for systems of
moderate complexity to construct these functions. Therefore, in the course of this
project a general scheme was developed to include the full symmetry of the surface
exactly without having to use empirically derived symmetry functions!. The aim was
to find an approach that is valid for all types of surfaces and that can be systematically
derived and is applicable to molecular dynamics simulations. In the Fourier method
the analytic symmetry functions depending on the molecular coordinates X, Y, Z, 6,
¢ and d are replaced by Fourier functions, which have extrema at the high symmetry
sites defining the irreducible wedge and depend on individual atomic coordinates. In

'The original idea to use the individual atomic coordinates and the concept of symmetrizing and
anti-symmetrizing was developed by S. Lorenz for atomic distances, but so far this method had not
been tested or implemented.
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case of a hexagonal surface these are the top, fcc and hcp sites. For a quadratic
surface cell the high symmetry sites would be the top, bridge and fourfold hollow site,
so the method is general and applicable to other types of surfaces as well. For each
of the high symmetry sites a two-dimensional Fourier term depending on the lateral
coordinates X and Y is constructed.

To illustrate the procedure it is instructive to have a look at a simpler problem, the
potential of a single atom interacting with a surface. No angular dependence exists
and the system is fully defined by the three coordinates X, Y and Z of the atom.
Functions that have the required symmetry properties are Fourier terms with maxima
at the three high symmetry sites of the surface. The Fourier terms are

fin = :cos (27r ((X - X0+ % (v - m)) t cos (477% v - m)

+cos (27r <(X _ X — % (v — m))) ] exp —%Z) (8.3a)
fee = :cos (27r ((X - i)+ = (¥ - Y}))) + o6 (jg (v - Yf))

+ cos (27r <(X ~Xp) - % (Y - v0) > } exp (_%z) (8.3b)

)
fhep = |:COS (271' ((X - Xn)+ % (Y — Yh))

+
eos (2r (0= %) = S (=1 ) [ oo (- 52) (8.30)

Equation (8.3a) has maxima at all top sites, Eq. (8.3b) at all fcc sites and Eq. (8.3¢) at
all hep sites. The coordinates X and Y are given in units of the surface in-plane lattice
constant. The exponential term depending on the height Z ensures that the function
values become independent of the lateral position of the atom for large distances. This
is a basic requirement, because for large distances the atom does not interact with
the surface and the energy must be independent of the actual X and Y coordinates.
X and Y; define the position of the top site, X; and Y; the position of the fcc site and
Xy, and Y}, the position of the hep site. The three equations are plotted as a function
of the X and Y coordinates of the atom in Fig. 8.3.

The position of the atom can now uniquely be defined by the three function values
frop, free @and fiep in the same way as it would be defined by giving the three distances
to the high symmetry sites. Distances, which have also been tested for their appli-
cability, cannot be used as symmetry functions when forces are needed, because they
show discontinuities in the derivatives when the atom leaves the irreducible wedge of
the surface and enters a neighboring wedge. This is because for the calculation of the
distance always the position with respect to the closest high-symmetry site of each
kind has to be used, which is equivalent to a backfolding into the irreducible wedge
of the unit cell. This differentiability problem can be avoided when Fourier terms
are applied as shown in Eq. (8.3), since the latter are continuous and differentiable
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Figure 8.3: Fourier terms for an atomic potential. The three Fourier terms of Eq. (8.3) are plotted as
a function of the X and Y coordinates of the atom in units of the lattice constant a. The positions
of the top layer surface atoms are marked by the white circles. The absolute function values have
no physical meaning, only the correct symmetry is required.

everywhere in space, in particular also at the borders of the irreducible wedge. Conse-
quently, the potential of an atom interacting with a surface can perfectly be described
by three Fourier terms defining the position of this atom.

To derive the Fourier method for a six-dimensional potential-energy surface we start
with the same approach and define a set of three Fourier terms for each of the two
oxygen atoms. The coordinates of the two oxygen atoms X, Y, Z;, Xo, Y5 and Zs
are:

X, = %dsin(a)cos(@—l—X (8.42)
Yi = Ldsin(8)sin(g) +Y (8.4b)
7 = %dcos(0)+Z (84c)
X, — —%dsin(&)cos(qSH—X (8.4d)
Yo = —idsin(0)sin(g) +Y (8.4¢)
Zy = f%dcos(ﬂ)th (8.4f)

Using these atomic coordinates the Fourier terms for both atoms can be constructed.
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Jtopt = {Cl — cos (27T ( )+ \}5 (Y1 — Yt)>) — cos <i1/7% (Y1 — Yt)>

— cos (27r< - X)) - — (Y1 n))) + Zf] 727 (8.5a)
b = ool ) )

— cos (% ( (Y1 m)) + Zf] e737 (8.5b)
= |1 con (20 ( X+ e 0= 10)) ) —oos (2 - i)

— cos (27r< —Xy) - —3 (Y — Yh)>) + Zf} cem37 (8.5¢)
anz = |1 cos (2m ( Xo— X+ 5= (=10 ) —eos (L (1270 )

— cos (% ( (Y2 - 1@))) + Zg] e"37 (8.5d)
i = om0 ) o5

—cos (27 [ (X3 — Xy) ——(YQ—Y) 72| e 37 (8.5¢)
R T
hep2 = { | — cos (27T ( Xy — Xn) + 7 (Y2 Yh))) cos (\/3 (Y2 Yh))

— cos (27r ((X2 —Xy) — ﬁ (Yy — Yh))) + Zg} e 37 (8.5f)

The X and Y coordinates are again given in units of the in-plane surface lattice
constant. In contrast to the Fourier terms of the single atom case here a constant C';
has to be added to the negative cosine functions to shift all function values into the
positive range for reasons that will be explained below. Another modification is the
addition of the terms Z? and Z2 that introduce the different heights of the atoms to
make a distinction between molecular orientations with different 8 values but identical
projections into the xy plane possible. Just like in the atomic case the exponential
term =7 has the function to make the site- and angular dependence of the potential
vanish for large molecule-surface separations.

As the two oxygen atoms appear individually with their Cartesian coordinates X7,
Y: and Z; as well as X5, Y5 and Z5, so far the function values depend on which
atom is assigned to which number and both atoms are not equivalent (and could
thus be applied to heteronuclear molecules like CO). A straightforward solution for
homonuclear molecules like O5 would be to supply each data point twice to the neural
network with both possible assignments to cover the full configuration space. This
method is not very elegant in that not only the amount of data points is doubled, but
also in that two (identical) geometries, which must have the same potential-energy
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are learned separately and can be assigned different energies by the neural network.
A better solution is to modify the functions by symmetrizing and anti-symmetrizing
the Fourier terms. With this procedure no information is lost, but the two atoms
become indistinguishable. The symmetrization and anti-symmetrization are done by
calculating the sums and differences of Fourier terms of both atoms referring to the
same symmetry site and squaring the results. Six functions are obtained.

Gi = (fiopt + frop2)® (8.62)
Ga (ftop1 — frop2)? (8.6b)
Gs = (frect + frec2)? (8.6¢)
Gi = (ficer — frec2)’ (8.6d)
Gs = (faept + frcp2)” (8.6¢)
Go = (fuepr — frp2)” (8.6f)

The square in these equations is the reason for the introduction of the constant C; in
Eq. (8.5). The function values of the sum of cosine terms in Eq. (8.3) range from -1.5
to +3.0, i.e. the pure Fourier term can be negative. Without adding a constant the
information of the sign would be lost upon squaring, and function values which differ
only by the sign would be equal afterwards. Therefore, the range of values of the cosine
sum is shifted, to make sure that they are positive before being squared. Throughout
this work a value of C; = 3.0 is used. As mentioned above for a heteronuclear diatomic
molecule this step is not required making the functions for the neural network simpler
for the prize of a higher number of required DFT data points due to the reduced
symmetry. The 6 symmetrized and anti-symmetrized functions in Eq. (8.6) are shown
in Fig. 8.4 for a molecular orientation of # = 90° and ¢ = 30° as a function of the
center of mass coordinates X and Y. For this plot the bond length is fixed at 1.3 A
and Z is constant at 2.1 A. The rather complex shape of these functions compared to
Fig. 8.3 is a consequence of the superposition of two atomic components.

Using the Fourier terms both atoms are folded back into the irreducible wedge of the
surface unit cell individually for arbitrary molecular configurations. The information
on the relative position of the atoms is therefore lost. Both atoms originally being
located in the same wedge can yield the same set of function values as an interatomic
distance of several lattice constants. To include this information another function is
added which is nothing but the molecular bond length d.

Gr=d (8.7)

Supplying redundant information to the neural network in general does not pose a
problem. On the contrary, additional functions of the input variables can assist the
learning process, if the functional form is related to the physical problem, i.e. the
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Figure 8.4: Plot of the six symmetrized and anti-symmetrized Fourier terms of Eq. (8.6) as a function
of the X and Y center of mass coordinates of the molecule in units of the in-plane lattice constant
a. The positions of the top layer surface atoms are marked by the white circles. In all plots the
molecule has a distance of 2.1 A from the surface, a bond length of 1.3 A and an angular orientation
of 8 = 90° and ¢ = 30°. The absolute function values have no physical meaning, only the correct
symmetry is required.

shape of the potential-energy surface. To test this, additional functions are con-
structed: One term that just depends on the center of mass distance of the molecule
from the surface is added (Gg), and three additional Fourier terms with extrema at
the top, fcc and hep sites whose arguments are the center of mass coordinates X and
Y are included (Gg - G11). These functions increase the flexibility of the network
while not altering the symmetry.

Gs = e 2% (8.8)
Gy = [cos (271' ((X - X))+ % (Y — Yt)>) + cos (% (Y — Yt))
+ cos (27r <(X—Xt) - % (Y_m)) ] exp (%z) (8.9)
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o = [ (-0 ) e (5 )
+cos(z7r<x Xi) - (Y - yfmp( ) (8.10)
Gy = [ < (X Xn) +—Y Yh)>+cos( Y — Yh))

+ cos (27r <(X —Xy) - — (Y - m)) ] exp ( ) (8.11)

Careful tests have been performed to ensure that the symmetry properties of the
surface are exactly reproduced by all 11 functions. In order to determine the symmetry
properties, the functions can be considered as an 11-dimensional vector. The molecule
is then placed at a certain symmetry site, i.e. parallel to the surface above an fcc site,
and rotated around ¢. If the correct 6-fold symmetry is present, the combination of
the 11 vector elements should possess the same periodicity. Exactly this has been
found. Additionally, the three-fold rotational symmetry of a tilted molecule at the
same site and the two-fold rotational symmetry at the bridge site could be reproduced
correctly, as well as that of many other tested configurations.

Finally, we have obtained a method based on functions that can be constructed
systematically and that have exactly the symmetry of the system. All functions are
continuous and differentiable. In contrast to symmetry functions, which have to be
designed for each particular surface individually, the presented Fourier method is
independent of the surface and can easily be applied to all types of periodic surfaces
by an analogous construction procedure, no matter if the unit cells are hexagonal or
rectangular and irrespective of the size of the unit cell.

8.5 The Classical Equations of Motion

To perform molecular dynamics simulations Hamilton’s equations of motion have to
be solved. They relate the time derivatives of spatial coordinates () and momentum
coordinates P to the partial derivatives of the Hamilton operator of the system with
respect to momentum and position.

. oH
Qi = b, (8.12a)
: oH
P = - 12
; 50, (8.12b)

The Hamiltonian H for the nuclear coordinates using the coordinate system shown
in Fig. 8.2 is given by a kinetic energy term due to the center of mass motion of the
molecule, a kinetic energy term due to the internal degrees of freedom of the molecule
and the potential-energy term depending on the set of all coordinates Q.
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H=_! (P2+P2+P2)+L o b +V(Q) (8.13)
2mo, * Y z 20, \ "¢ A " @2sin?0

Here, mo, is the absolute mass of the oxygen molecule and po, is its reduced mass.
The P; are the momenta with respect to the 6 coordinates that define the molecular
configuration.

The equations of motion can be solved by standard techniques like the Verlet algo-
rithm or the more sophisticated Bulirsch-Stoer method. In the Verlet algorithm [163]
a constant time step is used, and the configuration at time ¢ + dt is calculated from
the configuration at time ¢ and the velocity at time t + %dt, which can be obtained
from the velocity at time ¢ and the forces. The Verlet algorithm will be used in the ab
initio molecular dynamics simulations in Section 10.5. The more advanced Bulirsch-
Stoer method [147] is more efficient, because a variable time step can be used, that
can significantly speed up the calculation of the trajectories, but also increases the
accuracy in strongly corrugated regions of the potential-energy surface by reducing
the time step. The main idea is that the molecular configuration at a time ¢ + dt itself
is considered as a function of the step size dt. The step corresponding to the initial
step size is successively split up in smaller and smaller intervals, and the predicted new
configuration is fitted to a function of the size of these intervals. Then this function
is extrapolated to infinitesimally small time intervals. Depending on the convergence
of the predicted configuration with decreasing interval size, which is a measure for
the complexity of the potential-energy surface, the time step dt is either reduced or
increased. The Bulirsch-Stoer method will be used in all classical molecular dynamics
simulations, which are based on neural networks, because of its high efficiency and
accuracy.

8.6 Summary

The neural network provides an efficient and accurate method to obtain energies and
forces for arbitrary molecular configurations, which is required for the intended molec-
ular dynamics applications. The symmetry of the Al(111) surface is considered in the
neural network since it speeds up the fitting process and ensures that the full sym-
metry of the potential-energy surface is taken into account without approximations.
The neural network code used in this project has been developed by Lorenz, Grof3
and Scheffler [26,27]. Only small modifications have been made in the present work,
mainly concerning the implementation of the Fourier method described in the pre-
vious section. Based on this interpolation classical molecular dynamics simulations
have been performed, which will be presented in Chapters 10 and 13.
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Chapter 9

Reference Calculations

Before the sticking properties of oxygen on Al(111) can be addressed, some reference
calculations have to be performed to ensure that the system is described reliably by
density-functional theory. Calculations on the free oxygen molecule, on bulk alu-
minium, and on the clean and oxygen-covered Al(111) surface have therefore been
carried out. The results are summarized in the following sections.

9.1 The Oxygen Molecule

In its spin triplet 3Eg_ ground state molecular oxygen is a diradical according to the
general definition of diradicals as molecules with two electrons occupying a doubly
degenerate orbital [209]. In case of O, this is the antibonding 27* state, which forms
the highest occupied molecular orbital. In Fig. 9.1 the molecular orbital diagram of
the oxygen molecule is shown schematically for the triplet 3Eg_ ground state, and also
for the two most prominent excited 'A, and 12; singlet states. These states differ
only in the occupation of the 27* orbitals. There are three energetically degenerate
32; triplet states, two degenerate 'A, singlet states and one 12; singlet state. Two
of the three 32; states can be represented by a single Slater determinant and are
called “high-spin” triplets (configurations (e) and (f)). Like the singlet states, the
“low-spin” triplet is constructed as a linear combination of two Slater determinants,
since the configurations (a), (b), (¢) and (d) do not correspond to physical states of
the system. This is because open-shell determinants are no eigenfunctions of the total
spin operator S?, unless all open shell electrons have parallel spin [100], which is the
case for the triplet configurations (e) and (f) only. By pairwise symmetrizing and
anti-symmetrizing the Slater determinants (a) and (b) as well as (c¢) and (d) and by
using the Slater determinants of configurations (e) and (f), six wave-functions can be
constructed [117].
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$1(1)¢1(2) - ¢2(1)¢2(2)- (@(1)B(2) - f(1)(2)) (9.1a)

agour o= g

Bt W5 = 6062 + 66| (a(DBE) - 1)) (9.10)
B0 = L6060 + 606 @)] @05 - s0)ae) (910
W = 5606 - e0)a )] @WEe) + S1aw@) (9.14)
S0 = 5 [0e@ - 6] (aae) (o.10)
v = |06l - e @] (06R) (0.1)

¢1 and ¢ refer to the spatial functions and « and ( to the spin functions. According
to the Pauli principle, each wave-function has to be antisymmetric with respect to
interchange of two electrons. The three singlet states 17, 15 and 9§ have antisym-
metric spin functions and symmetric spatial functions, while the three triplet states
W5, 1 and 1§ have symmetric spin functions and antisymmetric spatial functions. As
mentioned above, all three singlet states v}, 5 and 5 as well as the triplet state
Y} are combinations of two Slater determinants. vf and 1§ are single-determinant
wave-functions.

First, the 3Zg_ triplet ground state will be investigated. Formally, Kohn-Sham DFT
based on LDA and GGA functionals is a single-determinant method [211,212], i.e.
the Kohn-Sham orbitals used to construct the density form one Slater determinant.
However, no reference to this “wave-function” is made and states corresponding to
wave-functions being linear combinations of two or more Slater determinants have
to be treated with great care [213-216] when using the LDA or GGA. This aspect
will be discussed below in the context of the singlet states of the oxygen molecule.
In case of the triplet state, two of the three configurations, the high-spin triplets,
are described by single Slater determinants and do not pose a problem in Kohn-
Sham DFT. However, for the low-spin triplet this is different, and the question arises,
if the three degenerate 32; states will have the same energy in DFT. In general,
DFT applying LDA and GGA functionals yields the same total energy for different
configurations only if the charge and spin densities are identical. This is the case for
the high-spin triplets ¢ and 1§ corresponding to configurations (e) and (f) in Fig. 9.1,
which can be directly obtained from standard spin-polarized DFT calculations. They
form the ground state of O,. On the other hand, the low-spin triplet ¢} has another
spin symmetry (M = 0) and spin-density and is therefore not necessarily degenerate
with the high-spin triplets [215]. Before investigating the two-determinant low-spin
triplet ¢} in more detail, we will first have a closer look at the properties of the
high-spin triplet state.

It is well known that the binding energy of the 3Zg ground state of O, is not accu-
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Figure 9.1: Schematic molecular orbital diagram of the oxygen molecule in its triplet 32; ground
state and the two excited singlet states 'A, and 122‘. These states differ only in the occupation
of the 27* state shown in grey. By occupying this state with two electrons 6 configurations can be
constructed as shown on the right side. There are three energetically degenerate SEg’ states, two
degenerate ' A states and one 'S} state. Two of the three >, states, (e) and (f), can be represented
by a single Slater determinant and are called “high-spin” triplets. Like all singlet states, the “low-
spin” triplet is constructed as a linear combination of two Slater determinants (cf. Eq. (9.1)). The
energy differences have been taken from experiment [210]. The mixing of s and p character in the
20 and 20" orbitals has been neglected in this scheme.
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rately described by current exchange-correlation functionals [75]. However, there are
encouraging studies on the dissociation of oxygen molecules at transition metal sur-
faces [181,217-219] using density-functional theory, which suggests that some of the
errors in the description of gas phase oxygen molecule cancel in the PES
describing its interaction with a surface. It is therefore crucial to understand the
exact reasons behind the errors in the gas phase description and to assess to which
extent they affect the potential-energy surface we aspire to compute, or where we cor-
respondingly have to critically check the obtained results. For the discussion of the free
04 molecule fundamental physical properties like the binding energy, the equilibrium
bond length and the vibrational frequency in the spin triplet 32; ground state have
been calculated. Five different functionals have been used (LDA [113], PBE [114],
PWO91 [116], BLYP [220] and RPBE [74]) to estimate the functional dependence of
these quantities. The calculations have been carried out without periodic boundary
conditions employing a basis function cutoff of 9 bohr, an all basis and the default
integration grid (iomin=1, iomaz=5, thres=0.0001, rmaxp=9 bohr, s=1.0), which
is identical to the basis set that will be used in the calculation of the potential-energy
surface. To obtain converged vibrational frequencies a higher cutoff of 14 bohr had to
be employed. The also required calculations of the free oxygen atom have been done
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using a large cutoff of 18 bohr and a denser integration mesh (iomin=1, iomax=7,
thres=0.000001, rmaxp=18 bohr, s=1.5, cf. Appendix B) to obtain fully converged
total energies eliminating the convergence of the atomic calculations as possible source
of error.

In all calculations the correct high-spin triplet ground state of the oxygen molecule
has been found, i.e the spins of the two electrons are aligned and the integrated spin
density corresponds to a triplet state. The obtained binding energies are listed in
Table 9.1, the bond lengths are given in Table 9.2, and the vibrational frequencies
are summarized in Table 9.3. In all tables also experimental and theoretical values
from the literature are included. The zero point energy (ZPE) of the oxygen molecule,
which is about 0.1 eV [210, 221-223], has not been taken into account in the calculation
of the binding energies. It is also not considered in the calculation of the bond length,
which is taken to be the minimum-energy bond length of the molecule, and in the
vibrational energy.

The comparison of the binding energies shows that all tested exchange-correlation
functionals yield a remarkably overestimated bond strength (“overbinding”). The
worst description is provided by the LDA with an overbinding of more than 2 eV
compared to the experimental value of 5.1 eV [224], but also all GGAs show errors
of more than 0.5 eV. In contrast to the binding energy, the deviations of the DFT
bond lengths from experiment (1.207 A [210]) shown in Table 9.2 are rather small for
all tested functionals. The shortest bond is found for the LDA as a consequence of
the strongest overbinding. The vibrational frequencies do not show a clear trend, but
DFT with LDA or GGA functionals is known for deviations in the frequencies in the
order of 10 % [104].

The reason for the exceptionally large error in the binding energy obtained from ap-
proximate exchange-correlation functionals has been investigated in detail by
Gunnarsson and Jones [75]. They argue that the exchange energy in the LDA (cf.
Eq. (5.17)), which is also an important contribution to the exchange energy in all
GGAs, is a rather bad approximation for the exchange energy. However, in the cal-
culation of binding energies, which are differences of DFT energies, the errors usually
cancel to a large extent yielding rather reliable binding energies. Nevertheless, for Oq
and a few other molecules this is not true, and large errors can result. To understand
this phenomenon, Gunnarsson and Jones refer to the “exact”! exchange energy EXY
in Hartree-Fock theory.

E}IgF _ ZZ// ¢i(X1)¢;(X1)¢j(X2)¢f(X2)dxldx2 (9.2)

T — 13

The integrand is a product of four single-particle wave-functions and has therefore a
complex nodal structure. By using this equation, in Hartree-Fock theory the nodal

!The description of exchange in Hartree-Fock is exact under the assumption that the wave-
function of the system can be represented by a single Slater determinant.
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Ey, (eV) | Reference
7.428 DFT, LDA, noZPE this work
6.099 DFT, PBE, noZPE this work
6.074 DFT, PW91, noZPE this work
5.750 DFT, BLYP, noZPE this work
5.646 DFT, RPBE, noZPE this work
5.116 experiment [224]
5.123 experiment [225]
7.10-7.30 | DFT, LDA, noZPE [74]
7.577 DFT, LDA, ZPE [226]
7.590 DFT, LDA, ZPE [114]
7.572 DFT, LDA [227]
6.202 DFT, PW91, ZPE [114]
5.864 DFT, PW91, ZPE [226]
5.966 DFT, PW91 [228]
5.84-6.06 | DFT, PW91, noZPE [74]
5.81-5.99 | DFT, PBE, noZPE [74]
6.149 DFT, PBE, noZPE [229]
6.245 DFT, PBE, ZPE [114]
5.51-5.59 | DFT, RPBE, noZPE [74]
5.754 DFT, revPBE, noZPE [229]
5.53-5.63 | DFT, revPBE, noZPE [74]
5.782 DFT, BLYP, ZPE [226]
5.933 DFT, BLYP [227]
5.205 DFT, B3LYP, ZPE [226]
1.253 Hartree-Fock [227]
1.431 Hartree-Fock, ZPE [114]
5.100 Mgller Plesset order 2 [227]
4.294 Quadratic Configuration Interaction

Single and Double Excitations [227]
5.200 Coupled Cluster Single

and Double Excitations, noZPE [221]
4.710 Quantum Monte Carlo, noZPE [230]
4.844 Quantum Monte Carlo, ZPE [231]

Table 9.1: Molecular binding energies of Os in its 3Eg ground state. The binding energy ranges of
Ref. [74] indicate the dependence on the chosen pseudopotential. The zero point energy is approx-
imately 0.1 ¢V (included=ZPE, not included=noZPE, otherwise no information on the zero point
vibration is given).
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d (A) | Reference

1.210 | DFT, LDA) this work
1.224 | DFT, PBE this work
1.224 | DFT, PW91 this work
1.236 | DFT, BLYP this work
1.229 | DFT, RPBE this work
1.207 | experiment 210
1.211 | DFT, LDA 152
1.223 | DFT, LDA 232
1.215 | DFT, LDA 227
1.218 | DFT, PW91 228
1.239 | DFT, BP86 233
1.240 | DFT, BLYP 227

[232]
[227]
[228]
[233]
[227]
1.168 | Hartree-Fock [234]
[227]
[234]
[227]
[234]
[234]

1.168 | Hartree-Fock 227
1.163 | Hartree-Fock 234
1.246 | Mgller Plesset order 2 227
1.242 | Mgller Plesset order 2 234
1.211 | Mgller Plesset order 3 234
1.206 | Configuration Interaction

Double Excitations [234]
1.221 | Quadratic Configuration Interaction

Single and Double Excitations [227]
1.193 | Dynamic Monte Carlo [230]

Table 9.2: Molecular bond length of O in its 3Eg ground state obtained from the minimum energy
configuration. The zero point vibrations have not been taken into account.

v (em™!) | Reference
1592 DFT, LDA this work
1527 DFT, PBE this work
1502 DFT, PW91 this work
1464 DFT, BLYP this work
1597 DFT, RPBE this work
1580 experiment 210
1642 DFT, LDA 227
1518 DFT, BLYP 227
1998 Hartree-Fock 227
1413 Mgller Plesset 2 [227]
1639 Quadratic Configuration Interaction

Single and Double Excitations [227]
1665 Dynamic Monte Carlo [230]

Table 9.3: Vibration frequencies of Os in its 32; ground state. The zero point vibrations have not
been taken into account.
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structure is explicitly taken into account in the calculation of the exchange energy
in that parts of the integrand with different sign cancel each other in the integration
reducing the Hartree-Fock exchange energy.

Formally, Hartree-Fock theory and DF'T can be expressed by very similar equations,
with a few, but very important, differences. The most important difference for the
present discussion is that in Hartree-Fock calculations only the exchange is taken into
account and correlation is completely neglected, while in DFT both are included in
the exchange-correlation functional [104]. If the latter were known exactly, the correct
oxygen binding energy would be obtained. However, the very simple approximation
to the functional form of the exchange energy employed in the LDA does not take into
account the nodal structure of the single-particle states. Therefore, in DFT no partial
cancellation of the integrands occurs (cf. Eq. (5.17)), and the exchange energy can be
significantly overestimated in some cases. Usually, this is not critical in the calculation
of binding energies, i.e. energy differences, if both species, the molecule and the free
atoms, have a similar nodal structure. Then, the errors would be comparable in
both cases and cancel each other, but this is not true for the oxygen molecule. The
highest occupied orbital of an oxygen atom has p-character (I = 1), while the 27*
orbitals of the oxygen molecule can be characterized as d-like (I = 2) [75] due to the
two nodal planes along and perpendicular to the molecular axis. Consequently, the
cancellation of errors in the exchange energy does not work in case of the oxygen
molecule. Another prominent failure of DFT for the same reason is the Fy molecule
with a binding energy error of 1.7 eV for the LDA [75]. In general, this applies to all
first row dimers with more than half-filled p-shells. On the other hand, if the latter are
only up to half-filled, the highest occupied molecular orbital is the bonding 7 orbital,
which has p-character like the constituent atoms giving rise to a much better binding
energy due to an efficient error cancellation.

The dominant role of an overestimated exchange energy in the overbinding of O4
in DFT is also supported by the absence of overbinding in Hartree-Fock theory (cf.
Table 9.1), but due to the neglect of correlation in HF the absolute deviation from
experiment is much worse (4 eV) than in DFT. Further, an almost perfect binding
energy is obtained with the B3LYP hybrid functional [226], which uses a mixture of
Hartree-Fock exchange and LDA exchange, as well as Becke’s B88 [235] exchange?.
The overbinding of the oxygen molecule is also reduced when GGA functionals are
used instead of the LDA. This is because these functionals explicitly take into account
the gradient of the electron density in form of a reduced density gradient. The more
inhomogeneous system, i.e. the isolated atom, has a higher average reduced density
gradient and experiences a decrease of the exchange-correlation energy relative to
the less inhomogeneous molecule [115]. Consequently the binding energy is reduced,
but still a significant overbinding is present for the oxygen molecule even within the

2While this underlines the importance of the exchange energy, the numerical agreement is not
surprising since the mixing ratio of the different exchange terms has been obtained by fitting to a
set of molecules including Oq.
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GGAs.

Apart from the triplet ground state also the excited singlet states of the oxygen
molecule are of interest, because the 'A, singlet potential-energy surface is one of the
diabatic energy surfaces possibly being involved in the adsorption process. A suitable
quantity to assess the accuracy of this singlet surface is the singlet-triplet gap AFEgr,
which is defined as the energy difference between the 32; triplet ground state and
the 'A, singlet state of the free Oy. This quantity is known from experiment to be
about 0.98 eV [210].

In Kohn-Sham DFT there are in principle two possibilities to calculate an oxygen
molecule in a singlet state, based on restricted and unrestricted DFT, respectively.
It should be noted that while DFT in principle is exact and allows to calculate the
total energy as a functional of the density only, in practical calculations spin-densities
are introduced to increase the flexibility, which is necessary to compensate for some
deficiencies in current functionals. In case of a spin-restricted, i.e. non-spin-polarized,
DFT calculation the spin-up and the spin-down densities are the same, and conse-
quently the magnetization-density is zero at each point in space. This corresponds
to an occupation of 0.5 electrons for each spin in each of the 27* orbitals under the
constraint of equal spatial functions for both spins in unrestricted DFT, which yields
the same energy as a restricted calculation under these conditions. For the PBE and
the RPBE functionals the obtained singlet-triplet gaps are listed in Table 9.4 (“re-
stricted”). They are clearly higher than the experimental splitting, and the reason is
that in non-spin-polarized DFT there is no way to distinguish between the 'A, singlet
states 1] and 15, the 12; singlet state 5 and the low-spin 3Eg_ triplet state ], be-
cause the densities of these states are identical. Since the energy depends only on the
density, in DFT these states are artificially degenerate. It is somewhat surprising that
even a triplet state is included in this “singlet” calculation, but this has been found
also for many other systems [214,215]. In summary, only a crude approximation to
the singlet state can be obtained from spin-restricted DF'T, yielding a singlet-triplet
gap being about 0.2 eV larger than the experimental value with respect to the 'A,
state due to the admixture of other states.

The second approach to the singlet O, is to use spin-unrestricted, i.e. spin-polarized,
DFT calculations. As unrestricted DFT per default yields the high-spin triplet ground
state of the oxygen molecule, the occupation numbers have to be constrained to cal-
culate a singlet state. The correct occupations referring to the two 'A, states ¢ and
15 would correspond to 0.5 electrons in each 27* orbital of each spin. However, these
occupation numbers yield the same total density and spin-density as the 12; state,
which in turn is indistinguishable from the low-spin triplet state [215], and correspond
to the spin-restricted calculation. Consequently, we are facing again the dilemma that
current exchange-correlation functionals do not take into account the symmetry of the
states. Actual calculations using these occupations reduce to the spin-restricted re-
sult. To overcome the mixing of the 'A, and the 12; states it has been suggested
to approximate the wave-function by a single determinant to obtain different charge
and spin-densities for both singlets [214]. This could be justified when assuming that
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Figure 9.2: Molecular orbital diagram of the “singlet” oxygen molecule calculated using spin-
unrestricted DFT. Due to the single-determinant form an unphysical symmetry-broken spin-density
is obtained, since the spin-up and spin-down orbitals are degenerate, but have different spatial parts.

spatially separated orbitals are only weakly interacting systems [215]. Basically each
of the determinants (a), (b), (c) and (d) in Fig. 9.1 could be used to initialize the
DFT calculations, and we found that in a self-consistent calculation only the deter-
minants (c) and (d) can be obtained. This is because doubly occupying an orbital
increases the energy of this orbital, which in turn has the consequence that the spatial
parts of the spin-up and spin-down orbitals become very different in order to lower
the energy, which in the end yields the same configuration as starting directly from
determinants (c) or (d). The molecular orbital diagram of the obtained unrestricted
“singlet” molecule is shown in Fig. 9.2, and the corresponding singlet-triplet gaps are
listed in Table 9.4 for the PBE and the RPBE functional (“unrestricted”). Indepen-
dent of the functional® they are about 0.4 eV in agreement with gaps reported in
the literature [233,236], which is significantly smaller than the experimental value of
0.98 eV with respect to the 'A, state. To understand this discrepancy it is instruc-
tive to analyze the single-particle states and occupations of the unrestricted singlet
calculation. It is immediately clear that this configuration based on a single Slater
determinant cannot be a correct singlet state, since both orbitals describe regions in
space with net spin-densities of opposite spin breaking the molecular symmetry, which
is not allowed for a pure singlet state. An analysis of the Slater determinant (c) in
Fig. 9.1 corresponding to the unrestricted calculation shows that it can be obtained
as a linear combination of the states ¢§ and Y, i.e. it is a mixture? of a singlet and
a triplet state [213].

3The independence of the functional clearly shows that the poor description of AEgr is not related
to the overbinding in the high-spin triplet O5. Since the nodal structure of the orbitals for the triplet
and the singlets are identical, the errors in the exchange energies cancel in the calculation of AFEgt.

41t should be noted that although the single Slater determinant is a mixture of two wave-functions,
this is not true for the spin density, which is different from the spin densities of the 12; state and
the low-spin triplet.
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AFEgr (V) | Reference

0.392 PBE, spin-unrestricted this work
1.138 PBE, spin-restricted this work
0.393 RPBE, spin-unrestricted this work
1.171 RPBE, spin-restricted this work
0.98 experiment [210]
0.40 DFT, BP86, spin-unrestricted [233]
0.43 DFT, PW91, spin-unrestricted [236]
1.1 DFT, PW91, spin-restricted [237]
0.495 Mgller Plesset order 4, spin-unrestricted [238]
1.134 Multi-configuration self-consistent field [239]

Table 9.4: Singlet-triplet gaps of Os.

1 1
V2 V2

This phenomenon is called “spin-contamination” in the quantum chemistry commu-
nity [234], and often the triplet contribution to the singlet state is quantified by
calculating the expectation value of the total spin operator < S? > [120,233,238].
Typically, values close to 1 are found, which correspond to an equal mixture of a
singlet (< S? >=0) and a triplet (< S? >=2) in qualitative agreement with Eq. (9.3).
The singlet-triplet gaps obtained from a single determinant are significantly under-
estimated, and it has been suggested to extrapolate the energy of the singlet state
by removing the triplet energy, which is called “spin-projection” [238]. The triplet
energy is assumed to be equal to the high-spin triplet energy, which is somewhat
inconsistent since the triplet contribution originates from the low-spin triplet, whose
DFT energy is not known. The spin-projected singlet-triplet gap calculated using the
high-spin triplet is typically similar to the experimental gap with respect to the 'A,
state, but usually no clear statement is made, if this gap refers to the 'A, or the 12;
state [120,233]. As the determinant in Eq. (9.3) cannot be constructed as a linear
combination of the 'A, states ¢} and 5 the similarity to the 'A, state seems to
be coincidental. Besides, the applicability of the spin-projection technique has been
questioned. It has been shown that spin-projection can lead to wrong potential-energy
surfaces having discontinuities in the first derivative [240]. This is because e.g. for
the dissociation of a closed shell molecule the singlet ground state is well described
by a restricted calculation close to the equilibrium geometry, while beyond a certain
bond length higher multiplets contribute to the total energy.

The failure of density-functional theory in the description of states being composed
of several Slater determinants, like the 'A, state of the oxygen molecule, has been
attributed to a deficiency of current exchange-correlation functionals [214]. While in
wave-function based methods the system is characterized by the quantum numbers
L, My, S and Mg, in density-functional theory the present approximate exchange-

(61(1)62(2)e(1)B(2) — $2(1)61(2)B(1)a(2)) (45 + 1) (9.3)
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correlation functionals do not contain the dependence on these symmetry proper-
ties. In the literature this is known as the “multiplet problem” of density-functional
theory [104]. While each charge and spin density can be constructed from a single
Slater determinant, for the wave-function this is not true. It has been shown in detail
by Ziegler and Baerends [213,241] and by von Barth [214] that the exchange energy
expression employed in the LDA suggested by Slater [242], which is also an integral
part of all GGA functionals, is only correct for states, i.e. wave-functions, that can be
represented by a single Slater determinant. This would e.g. be the case for the high-
spin 3Eg_ ground state of the oxygen molecule. A strict derivation of the exchange
term starting from the Schrodinger equation yields four components, two of which
correspond to the spin-up and spin-down exchange terms of the homogeneous elec-
tron gas used in density-functional theory. The remaining two terms are not included
in the LDA, which is a good approximation only for systems that can be represented
by a single Slater determinant, since in this case these terms vanish. In all other cases
significant errors can be introduced by neglecting these terms. Consequently, Ziegler
and Baerends recommend not to use exchange-correlation functionals based on the
exchange of the homogeneous electron gas for multi-determinant states.

Apart from density-functional theory also other single-determinant methods, like
Hartree-Fock theory or Mgller Plesset perturbation theory, are not able to correctly re-
produce the singlet states of Oy, because the Hartree-Fock exchange energy expression
is derived assuming explicitly a single-determinant wave-function [100]. However, the
singlet-triplet splitting can be calculated accurately [117] by multi-reference methods
like MCSCF [103] augmented by dynamical correlation using configuration interaction
(MCCI) or perturbative approaches (MCPT).

Finally, the binding energies, equilibrium bond lengths and vibrational frequencies
of the singlet state have been calculated from spin-restricted and spin-unrestricted
calculations as described above. The results are summarized in Table 9.5. Although
these calculations do not properly describe the singlet states, they can provide an es-
timate for the dependence of these quantities on the actually chosen approximation to
the singlet state. The differences between the restricted and the unrestricted calcula-
tions concerning the bond length and the vibrational frequencies are very small. The
binding energies reflect the differences in the singlet-triplet splitting (cf. Table 9.4)
and the functional dependence of the overbinding (cf. Table 9.1). A direct comparison
to experiment is not possible since no well defined states can be calculated in DFT.

In summary, there are two major deficiencies in the description of the oxygen
molecule caused by using only an approximation to the unknown correct exchange-
correlation functional. First, the oxygen binding energy in the 32; state is sig-
nificantly overestimated. From the results obtained using different functionals we
conclude that at least gradient-corrected functionals are necessary to investigate the
dissociation of Oy on Al(111), although also the binding energies obtained with the dif-
ferent GGAs are still remarkably off from the experimental value by more than about
0.5 eV. Particularly the PBE and the RPBE functionals seem to form two extrema
within the tested GGA functionals, the deviations from experiment being about 1 eV
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Epina (eV) | v (em™1) [ d (A) | Reference

6.402 1584 1.210 | restricted (LDA) this work
4.945 1513 1.226 | restricted (PBE) this work
4.920 1512 1.225 | restricted (PW91) this work
4.605 1449 1.237 | restricted (BLYP) this work
4.463 1486 1.231 | restricted (RPBE) this work
6.909 1589 1.210 | unrestricted (LDA) this work
5.691 1521 1.225 | unrestricted (PBE) this work
5.675 1520 1.225 | unrestricted (PW91)  this work
5.356 1458 1.236 | unrestricted (BLYP) this work
5.242 1495 1.231 | unrestricted (RPBE) this work
4.139 1509 1.216 | A, experiment [210]
3.480 1433 1.227 | 'S} experiment [210]

Table 9.5: Binding energies, frequencies and bond lengths of “singlet” O5. The zero point vibrations
have not been taken into account.

and 0.6 eV, respectively. Those two functionals have therefore been chosen to map
the potential-energy surfaces for the oxygen dissociation on Al(111), to obtain an es-
timate for the uncertainties due to the exchange-correlation functional. Nevertheless,
the overbinding will not strongly affect the shape of the potential-energy surface for
the oxygen dissociation on Al(111), because the latter represents energy differences of
similar configurations of the Oy molecule, and the errors due to the poor description
of the oxygen binding energy are expected to cancel each other to a large extent,
at least far away from the surface. Closer to the surface a strong interaction with
the aluminium atoms, i.e. hybridization, sets in, and in this situation the electronic
structure becomes completely different from the free Oy molecule. Consequently, the
above mentioned reasons for the overbinding in O, do not apply anymore.

The second problem, the significantly underestimated singlet-triplet splitting in un-
restricted DFT due to the poor description of the singlet state by current approximate
exchange-correlation functionals, does not affect the diabatic triplet potential-energy
surface due to the single-determinant nature of the high-spin triplet state. The triplet
PES is most important for the present work, as non-adiabatic effects can only ac-
count for the low sticking probability of oxygen molecules, if energy barriers exist on
this energy surface. However, a full consideration of non-adiabatic effects will also
have to include transitions to other diabatic energy surface, an important example
being the singlet energy surface. From our calculations of the free oxygen molecule we
conclude that an “accurate” description of the singlet states is available neither from
spin-restricted nor from spin-unrestricted calculations. A wrong energetic position of
the singlet surface with respect to the triplet state is obtained, i.e. the singlet-triplet
splitting is overestimated in restricted DFT and underestimated in unrestricted DFT.
Therefore, only the qualitative shape of the singlet PES can be obtained.
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Figure 9.3: Properties of bulk aluminium obtained using the PBE functional. (a) shows the total
energy of bulk aluminium as a function of the lattice constant (in units of the experimental lattice
constant), the line indicates the energy curve obtained from a fit according to Eq. (9.4). (b) shows
the band structure and the density of states of bulk aluminium (spurious peaks are caused by the
tetrahedron method [122]).

9.2 Aluminium

9.2.1 Bulk Aluminium

Bulk aluminium has a face centered cubic (fcc) structure, in which each atom is
coordinated by 12 nearest neighbors. A fundamental property of bulk aluminium is
its equilibrium lattice constant, which has to be known accurately to construct the
slabs representing the Al(111) surface. To determine the lattice constant, the total
energy of bulk aluminium has been calculated for 9 different lattice constants, i.e. the
experimental lattice constant of 4.05 A [121], as well as lattice constants increased
and decreased by up to £4 % in 1 % steps. The calculations have been done using a
basis function cutoff of 9 bohr, a dnd basis, a mesh of 12x12x12 k-points (72 k-points
in the irreducible wedge of the Brillouin zone) and a Fermi broadening of 0.1 eV
employing the LDA, PBE and RPBE functionals. The bulk properties are converged
with respect to these parameters, which has been confirmed by the convergence test
calculations summarized in Appendix B. The obtained energy curve as a function
of the lattice constant is shown in Fig. 9.3(a) for the PBE functional. From these
energies the minimum energy lattice constant can be determined using Murnaghan’s
equation of state [243,244].

ByV
By(By — 1)

Vo, Vo

E(V) = B(Vp) + By(1 = 32)(37)% =1 (9-4)

V' is the volume of the unit cell, V} is the equilibrium volume, By is the bulk modulus
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and B( the derivative of the bulk modulus with respect to pressure p. The bulk
modulus is defined as the second derivative of the energy with respect to the volume
and can also be obtained from Eq. (9.4).

i v (22) v (2E) o3

The lattice constants and bulk moduli defined this way are listed in Table 9.6 for
each functional and compared to experimental and theoretical data available in the
literature. Additionally, the cohesive energy E.., has been calculated, which is defined
as

Econ = %(Ebulk - N- Eatom) . (96>
N is the number of aluminium atoms in the unit cell, and Ey g and FE,i, are the
total energies of a bulk atom and a free atom respectively®. Finally, also the density
of states and the band structure or bulk aluminium have been calculated using the
PBE functional. They are shown in Fig. 9.3(b).

The calculated lattice constants, bulk moduli and cohesive energies are in excellent
agreement with data reported in the literature. The LDA tends to overbind and
yields a significantly too high cohesive energy, and a too small lattice constant. The
overbinding is not present using the PBE functional, which yields very similar results
to the PWO1 functional [114]. DFT data on aluminium using the RPBE functional
are not available in the literature, but the characteristic weaker binding [74] compared
to the PBE functional is also found here, which manifests mainly in the lower cohesive
energy, while the lattice constant is only about 1% larger than the PBE value.

9.2.2 The Al(111) Surface

The lowest energy surface of aluminium is the close packed, unreconstructed Al(111)
surface [36, 37|, although the Al1(100) and Al(110) are only slightly less stable. It can
be characterized by physical quantities like the work function, the geometry changes
due to relaxation and the surface energy. To test the accuracy of the description of
the Al(111) surface using DMol® these quantities have been calculated for a 7 layer
Al(111) slab geometry with a vacuum size of 30 A. Tests have been done to ensure
that the slab is thick enough to provide a reliable model for the surface. The two
outermost aluminium layers have been fully relaxed while the atoms of the 3 central
layers have been kept fixed at bulk positions. The calculations have been done using

5The atomic calculation has been done employing a dnp basis and a basis function cutoff of
18 bohr to obtain a completely converged total energy of the atom. A cutoff of 9-bohr yields an
approximately 0.13 eV higher total energy. No periodic boundary conditions have been used in the
atomic calculation.
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Reference ap (A) By (GPa) FEcon (eV)
this work (AE, LDA) 3.994 84.5 4.025
this work (AE, PBE) 4.051 76.1 3.447
this work (AE, RPBE) 4.082 72.9 3.161
[225] (experiment) 4.041 — 3.36
[121] (experiment) 4.05 72.2 3.39
[67] (PP, LDA) 3.06 — —
[245] (PP, LDA) 3.97 83 4.09
[246] (PP, LDA) 3.96 80.8 4.06
[245] (PP, PW91) 4.05 79 3.52
4] (PP, PWO1) 4.042 70.5 —
[246] (PP, PW91) 4.032 72.0 3.51

Table 9.6: Bulk properties of aluminium. PP indicates the use of pseudopotentials, while AE refers
to all-electron calculations.

the same basis parameters as for bulk-aluminium and a k-point mesh of 12x12x1
k-points (19 k-points in the irreducible wedge of the Brillouin zone). The changes
in the layer spacings due to the relaxation between the first and the second layer,
A1s, and between the second and the third layer, Ass, with respect to the bulk layer
distance are given in Table 9.7. We find a slight outward relaxation of about 1 % of
the first metal layer for all functionals tested in this work, which is in good agreement
with experimental and theoretical values from the literature.

The surface energy v can be calculated from the total energy of the relaxed alu-
minium slab Fg,p,, the bulk energy per atom Ej,,; and the surface area A per surface
unit cell,

1
24

The values obtained for the LDA, PBE and RPBE functionals are given in Table 9.8
and compared to experimental and theoretical values. The trend of the surface ener-
gies with respect to the functional reflects the generally anticipated binding properties
of the functionals, in that the LDA yields the highest and the RPBE functional the
lowest value.

The work function ¢., which is the energy required to remove an electron from the
surface, is determined from the electrostatic potential in the center of the vacuum
region ¢, and the Fermi energy er of the slab.

gl (Esiab — N - Bpui) (9.7)

(z)e = ¢oo — €F (98)

The calculated work functions for the three functionals are listed in Table 9.9. The
experimental work function is best reproduced by the LDA, while the PBE and RPBE
values differ from experiment by about 0.2 and 0.3 eV respectively.
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Reference Az (%) Ags (%)
this work (LDA) 14 -0.4
this work (PBE) 420 0.1
this work (RPBE) 1.2 0.8
247] (LEED) T09£05 —
248] (LEED) 17 +03  +05 £ 0.7
249] (LEED) 422 —
[67] (LDA) +1 2
250] (LDA) +0.8 +0.5
4] (PWO1) +1.06 1153
24] (PWO1) +1.08 -0.10

Table 9.7: Relaxation of the clean Al(111) surface.

Reference v (meV/A?) Reference Pe (eV)
this work DFT, LDA 83 this work, DFT, LDA 4139
this work DFT, PBE 70 this work, DF'T, PBE 3.998
this work, DFT, RPBE 61 this work, DFT, RPBE |  3.944
[251] experiment 71.3 [256] experiment 4.24
[252] experiment 73 [250] (LDA) 4.25
[253] experiment 72 [257] (LDA) 4.275
[254] DFT, LDA 79.3 255] (LDA) 4.17
[255] DFT, LDA 52 [60] (LDA) AT
[37] DFT, LDA 70 [254] (LDA) 4.54
[36] DFT, PBE 74.8 [4] (PWO1) 4.085

Table 9.8: Surface energy of the Al(111) surface. Table 9.9: Work function of the Al(111) surface.

9.3 The Oxygen-Covered Al(111) Surface

The last system we have to investigate before we can proceed to the dissociation of
O, at Al(111) is the oxygen-covered Al(111) surface. The purpose of this chapter is
two-fold. First, it is a good test to show that DMol® provides an accurate description
of the stable adsorption sites, i.e. the local minima of the PES we want to study
later on. Therefore, the equilibrium structures of (1x1) and (2x2) slabs with oxygen
atoms adsorbed at the fcc, hep, top and bridge sites have been calculated and com-
pared to earlier published results. Second, the variations in the obtained results when
using different exchange-correlation functionals are of interest, because this gives a
first feeling of functional dependencies of the potential-energy surface for the oxygen
dissociation on Al(111).

The most stable adsorption site for oxygen atoms on the Al(111) surface is the
threefold fcc hollow site [4,5,35,55,67]. This site is shown in Fig. 9.4, together with
other on-surface sites, like the hcp, top and bridge sites. The oxygen binding energies
and equilibrium structures have been calculated employing a 7 layer aluminium slab
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top view

Figure 9.4: On-surface adsorption sites of oxygen on the Al(111) surface.

and a vacuum size of 30 A. The oxygen binding energy Fina at a given coverage
¢ is defined as the difference of the energy of the oxygen-covered slab Eju o and
the energies of the clean aluminium slab FEa; as well as the binding energy of the
free oxygen molecule Eying0,. Due to the inversion symmetry of the slab oxygen is
adsorbed on both sides. Consequently the number of oxygen atoms N has to be taken
into account.

1 N
Foina = —— (EAI,O CEa- o Ebmd,OQ) (9.9)

N 2
For an oxygen coverage of 6o = 1 monolayer (ML, defined as the fraction of oxygen
atoms to the number of first layer metal atoms) a (1x1) slab and for a coverage of
0o = 0.25 ML a (2x2) slab has been used. All calculations have been done employing
the same basis set applied in Section 9.1 and a 12x12x1 k-point mesh in case of the
(1x1) and a 6x6x1 k-point mesh in case of the (2x2) supercells (19 and 13 k-points
in the irreducible wedge of the Brillouin zone, respectively). In all cases the positions
of the oxygen atoms and the outermost two aluminium layers were allowed to relax.
All energies have been extrapolated to 0 K [258] and the atomic positions have been
optimized using the gdiis (geometry optimization by direct inversion in the iterative
subspace) algorithm [158] until the forces were below 5 mRy bohr~!. The obtained
oxygen binding energies are listed in Table 9.10 for the (1x1) slabs and in Table 9.11
for the (2x2) slabs. The layer separations between the first and the second aluminium
layer, Aqo, and between the second and the third layer, Az, as well as the distance
of the oxygen layer from the first aluminium layer Ag a; and the oxygen-aluminium
bond length do ) are summarized in Tables 9.12 and 9.13. In case of the (2x2) slabs
the layer separations have been calculated by averaging over all 4 aluminium atoms
within one layer. All data show, that the LDA yields the strongest and the RPBE
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Ehina (eV)
site this work this work this work Kiejna and
Lundqvist [4, 56]
LDA PBE RPBE PWI1

fee -5.312 (0.000) -4.681 (0.000) -4.437 (0.000) -4.782 (0.000)
hep | -5.101 (0.211)  -4.474 (0.208) -4.223 (0.214)  -4.612 (0.170)
bridge | -4.098 (1.214) -3.544 (1.138) -3.350 (1.087) —

top -0.463 (4.850) -0.165 (4.517) -0.033 (4.404) —

Table 9.10: Oxygen binding energies at different adsorption sites of a (1x1) Al(111) slab obtained
from Eq. (9.9). The values in brackets are the binding energies with respect to the binding energy
at the fcc site.

functional the weakest binding, which is also reflected by the bond lengths. The same
trend in the oxygen binding energy with respect to these functionals has also been
found by Hammer et al. [74] on several transition metal surfaces. In agreement with
experiment the fcc site is most stable, and the oxygen atom has a vertical distance of
about 0.7 A from the first metal layer (35,44, 57-59]. The only qualitative difference to
previously published data concerns the binding energy in the fcc site of a (2x2) slab.
In Ref. [67] the PW91 functional is found to give a stronger binding than the LDA.
This is in contrast to our PBE data, which should perform very similar to PW91 [114],
and also their absolute value of the binding energy is much too large compared to
other calculations using the same functional [4,24, 71]. Other calculations using the
PWO1 functional [4,24,71] yielded binding energies very similar to our PBE value.
The reason for this discrepancy might either be due to the pseudopotential employed
in [67], or more probably due to the non-selfconsistent post-GGA procedure that was
applied, i.e. the PW91 binding energy was calculated using a slab geometry relaxed
within the LDA, and the gradient correction to the binding energy was obtained from
a non-selfconsistent calculation using the LDA density. The latter possibility is also
supported by an excellent agreement between the absolute values of the LDA binding
energies determined in Ref. [67] and in the present work.

Finally, also calculations of oxygen atoms adsorbed in the fcc site of a (3x3) alu-
minium slab have been carried out corresponding to a coverage of % ML. The results
are given in Table 9.14. The oxygen binding energies for all functionals are shown in
Fig. 9.5 as a function of the supercell size. It can clearly be seen that the absolute
value of the binding energy decreases with increasing cell size indicating an attractive
interaction between the oxygen atoms. This is in excellent agreement with the STM
experiments of Brune et al. [5,8] showing islands of chemisorbed oxygen atoms and
also with previous DFT studies [4].
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Eying (eV)
site this work this work this work Ref. [4,56]
LDA PBE RPBE PWI1
fec ~4.840 (0.000) -4.215 (0.000) -3.932 (0.000) -4.312 (0.000)
hep | -4.397 (0.443) -3.785 (0.430) -3.505 (0.427) -3.992 (0.320)
bridge | -3.986 (0.854) -3.432 (0.783) -3.190 (0.742) —
top | -1.558 (3.282) -1.222 (2.993) -1.066 (2.866) —
site Ref. [67] Ref. [67] Ref. [24] Ref. [71]
LDA PW91 PWOI1 PWI1
fec 4776 (0.00) <500 (0.00)  -4.527 (0.000) 4.3 (0.000)
hep 441 (0.35)  -4.63 (0.37) — —
bridge | -3.97 (0.79)  -4.25 (0.75) — —
top 170 (3.06)  -2.06 (2.94) — —

Table 9.11: Oxygen binding energies at different adsorption sites of a (2x2) Al(111) slab obtained
from Eq. (9.9). The values in brackets are the binding energies with respect to the binding energy

at the fcc site.

this work, LDA
site Aqo (%) Aos (%) AO,AI (A) dO,Al (A)

fee +1.0 -2.1 0.725 1.785
hep +2.2 -1.8 0.739 1.790
bridge +1.1 -1.8 0.902 1.676
top -2.0 +0.1 1.672 1.672

this work, PBE
site | Arp (%) Aas (%) Ao (A)  doar (A)

fee +1.5 -2.1 0.743 1.807
hep +3.0 -1.3 0.757 1.812
bridge +1.8 -1.3 0.919 1.697
top -1.3 +0.1 1.694 1.694

this work, RPBE
site Agg (%) Agz (%) Ao,al (A) do,Al 4)

fee 0.9 3.0 0.742 1.824
hep +2.2 2.2 0.757 1.830
bridge | +1.0 2.2 0.916 1.709
top 2.0 0.6 1.701 1.701

Kiejna and Lundqvist [4], PW91
site VAN (%) Aos (%) A07A1 (A) dO,Al (A)

fee +3.93 -1.36 0.709 1.796

Table 9.12: Equilibrium structures for oxygen adsorbed at different adsorption sites of a (1x1)

Al(111) slab.
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this work, LDA
site JAND (%) Aos (%) AO,AI (A) dO,Al (A)

fee +0.5 -1.3 0.803 1.842
hcp +1.6 -1.3 0.817 1.852
bridge +0.8 -1.4 0.950 1.759
top +1.1 -0.8 1.461 1.670

this work, PBE
site JAND (%) Aos (%) AO,AI (A) dO,Al (A)

fce +1.3 -0.8 0.837 1.870
hep +2.5 -0.7 0.871 1.882
bridge +14 -0.7 1.019 1.781
top +2.0 +0.0 1.514 1.693

this work, RPBE
site JAND (%) A23 (%) AO,AI (A) dO,Al (A)

fee +0.5 -1.6 0.840 1.884
hep +1.8 -1.5 0.883 1.899
bridge +0.8 -1.5 1.050 1.787
top +1.0 -0.6 1.576 1.699

Kiejna and Lundqvist [4], PW91
site | Aip (%) Ass (%) Aoar (A)  doai (A)
fec +2.47 -1.16 0.772 —

Table 9.13: Equilibrium structures for a quarter monolayer of oxygen adsorbed at different adsorption
sites of a (2x2) Al(111) slab.

this work this work this work

LDA PBE RPBE

Fpina(fce) (eV) -4.692 -4.076 3777
Aol (A) 0.763 0.816 0.846
do.a (A) 1.846 1.867 1.881
Ao (%) +0.2 +1.3 +1.3
Aoz (%) -1.8 -0.6 -0.6

Table 9.14: Oxygen binding energies, oxygen-aluminium bond lengths do a1 and layer distances A
for 6o = § adsorbed in the fcc hollow site of a (3x3) slab.
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Figure 9.5: Oxygen binding energy as a function of the supercell size using different functionals.
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Chapter 10

The Adiabatic
Potential-Energy Surface

10.1 Calculation of the Adiabatic
Potential-Energy Surface

The calculation of the adiabatic potential-energy surface for the dissociation of oxygen
molecules on the Al(111) surface is one of the most important parts of this project. An
accurate mapping of this energy surface combined with a reliable fit allows to perform
molecular dynamics simulations to obtain the sticking curve for oxygen molecules on
the Al(111) surface from first-principles for the first time. Due to the almost complete
absence of energy barriers reported for the parts of the potential-energy surface in-
vestigated so far [22,24,70-73], a high sticking probability is very likely to be found.
Nevertheless, it is not possible to estimate the steering effect by the surface poten-
tial on the molecular trajectories without performing multi-dimensional dynamical
studies. Slow molecules might be steered systematically to certain surface sites and
angular orientations which can have a strong effect on the sticking properties [15-17].
To account for the possibility of such steering effects, performing a statistically sig-
nificant number of molecular dynamics runs is the only available tool. The finally
obtained adiabatic sticking curve will be an important reference when going beyond
the adiabatic approach to investigate the possible role of non-adiabatic effects.

A (3x3) slab geometry has been chosen to map the adiabatic potential-energy sur-
face. Tests have shown (cf. Appendix B) that in a (2x2) slab, which has hitherto been
used exclusively in the literature, the lateral interactions between oxygen molecules
in neighbored cells can still be significant. For some geometries they can be of the
order of 0.2 eV, which is the same order of magnitude as the expected energy barriers.
This becomes obvious when looking at the lattice constant of a (2x2) unit cell, which
is about 5.7 A. The criterion for dissociative adsorption employed in this work is a
doubling of the O, bond length compared to the value 1.2 A of the free molecule. In
case of a molecule oriented parallel to the surface the oxygen atoms are at this bond
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length already rather close to their periodic images. By testing several supercells of
different sizes we found that only a (3x3) supercell is large enough to allow for an
accurate mapping of the potential up to a bond length of 2.4 A for arbitrary molecular
orientations with negligible lateral interactions (cf. Appendix B). Therefore, this cell
size has been used in all calculations. Since the aluminium lattice constants obtained
for the PBE and the RPBE functional are very similar (cf. Section 9.2), the PBE
lattice constant has been used for all calculations. The adsorption of oxygen molecules
on Al(111) gives rise to large surface dipole moments which are rather long ranged.
As in DMol? no dipole correction [259] is yet implemented, oxygen has to be adsorbed
on both sides of the slab to neutralize the dipole field by inversion symmetry. How-
ever, adsorbing oxygen molecules on both sides of the slab requires a rather thick slab
of 7 aluminium layers to avoid interactions between the oxygen atoms through the
slab (cf. Appendix B). Consequently, in total the supercell employed here consists
of 63 aluminium atoms and 4 oxygen atoms. It is shown in Fig. 10.1. Interactions
between the oxygen molecules through the vacuum can easily be avoided by choos-
ing a large vacuum, which does not cause additional computational costs employing
atomic orbital basis functions of finite range. The potential-energy surface is mapped
up to a molecule-surface distance of 10 A. Taking into account both surfaces and
an additional vacuum of 10 A between the image oxygen molecules when they have
the maximum distance from the surface, a total vacuum thickness of 30 A is suffi-
cient. In the calculation of potential-energy surfaces for molecule-surface interactions
a standard procedure is to employ the frozen surface approximation [17], i.e. only the
degrees of freedom of the molecule are taken into account and the substrate is fixed
reducing the dimensionality of the potential-energy surface to six, which allows for a
systematic mapping. This is a rather drastic approximation and its validity has to
be checked carefully for each system. In order to investigate its applicability to the
dissociation of oxygen on Al(111) we have performed detailed studies of the effects
of substrate mobility, which are summarized in Section 10.5. We found that in the
typical barrier region, i.e. for Z > 2 A, the motion of the aluminium atoms due
to the approaching oxygen molecule is negligible. Only for smaller molecule-surface
separations large forces are acting on the substrate atoms making this approximation
questionable. At this late stage of the dissociation process the mobility of substrate
atoms will have a clear effect on the dissociation mechanism and on the dissipation
of the adsorption energy. Consequently, for the calculation of the sticking curve the
frozen surface approximation is not critical, and in this project the surface atoms
have been fixed at their bulk position, because the clean Al(111) surface only shows a
marginal outward relaxation of about 1 % of the bulk layer separation (cf. Section 9.2
and Ref. [4] and [56]).

Apart from the supercell setup well converged basis set parameters for the DFT
calculation are equally important. Corresponding tests have been performed very
carefully, since on the one hand the obtained energies should be sufficiently accurate
to find barriers of about 0.1 eV, while on the other hand thousands of calculations have
to be performed. The efficiency of the calculations is therefore also very important.

94



Chapter 10. The Adiabatic Potential-Energy Surface

@ ® @

Figure 10.1: Structure of the (3x3) supercell employed in the mapping of the adiabatic potential-
energy surface.

For all calculations a basis function cutoff of 9 bohr has been used together with an
all basis for the oxygen atoms and a dnd basis for the aluminium atoms. For this
cutoff the default integration mesh (iomin=1, iomax=5, thres=0.0001, rmazp=9
and s=1) is of sufficient accuracy. To improve the convergence of the calculations a
Fermi broadening with an electronic temperature of 0.1 eV has been employed!, and
the energies have been extrapolated to zero temperature [258]. A k-point mesh of
4x4x1 k-points has been used. This corresponds to 10 k-points in the irreducible
wedge of the first Brillouin zone for the lowest possible symmetry of the system. This
set of k-points has been used for all calculations, irrespective of a possibly higher
symmetry due to the molecular configuration, to obtain directly comparable energies.
Test calculations showing the convergence of the system with respect to the k-point
mesh, the basis set and the basis function cutoff are given in Appendix B. To check
the functional dependence, the potential-energy surface has been calculated using the
RPBE [74] and the PBE [114] functionals. Even though both functionals belong to
the class of GGA functionals and perform much better than the LDA in case of the
oxygen molecule, they have been shown to yield rather different binding energies of
the oxygen molecule [74] (cf. Section 9.1), which allows to estimate the uncertainties
in our results due to the treatment of exchange and correlation.

The six-dimensional potential-energy surface has been mapped by calculating many

'Some geometries are extremely hard to converge, in particular when nearly-free oxygen atoms
far away from the surface emerge. In an attempt to improve the convergence, a Broyden charge
density mixing scheme [260-263] has been implemented in DMol? in this project, but it has shown
to be slightly inferior to the already included Pulay mixing scheme [159, 160].
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two-dimensional cuts, in which the energy is given as a function of the bond length d
and the center of mass distance of the molecule from the surface Z. Due to their shape
these cuts are commonly called “elbow plots”. All other degrees of freedom, i.e. the
angles # and ¢ and the lateral coordinates X and Y, remain fixed in the elbow plots.
The configuration space referring to these four dimensions is mapped by calculating
elbow plots for many different surface sites and many different molecular orientations.
The employed coordinate system is shown in Fig. 8.2. This way the six-dimensional
adiabatic potential-energy surface has been mapped by calculating 38 elbow plots at
the high symmetry fcc, hep, top and bridge sites for perpendicular, parallel and several
tilted molecular orientations. The 38 molecular orientations of the calculated elbow
plots are listed in Appendix C. The symmetry of the surface has been fully exploited
in that only energies for points within the irreducible wedge of the unit cell have
been calculated, which is shown in Fig. 8.1. The points to construct the elbow plots
have been selected manually on an irregular grid to avoid calculations of energetically
irrelevant geometries. This also allows for a denser sampling of very important parts
of the energy surface, i.e. barrier regions and minimum energy pathways. The zero
point of the potential-energy is defined as the total energy for an infinite molecular
distance from the surface, the molecule having its equilibrium bond length of 1.224 A.

10.2 Properties of the Adiabatic Potential-Energy
Surface

Some of the obtained elbow plots are shown in Fig. 10.2 and 10.3 for the RPBE and
the PBE functional, respectively. In case of the RPBE functional we find several
elbow plots with shallow energy barriers of up to 0.1 eV, while in case of the PBE
functional none of the calculated elbow plots shows a barrier towards adsorption.
Apart from one elbow plot discussed below this is in excellent agreement with all
previous studies [22,24,73|. Direct comparison of the elbow plots obtained with the
PBE and the RPBE functionals shows that the RPBE potential-energy surface is less
attractive. This is a general feature of the RPBE functional [74] and is consistent
with the calculations on the free oxygen molecule and on the oxygen-covered Al(111)
surface in Section 9.3. The energy difference between the PBE and the RPBE PES
is far smaller than the binding energy difference of the free Oy obtained for these
functionals (cf. Section 9.1), which is about 0.5 eV, as long as the bond length is
close to the value of the free molecule. It can therefore be concluded that the strong
overbinding of the O, molecule does not play a significant role in case of the adiabatic
PES due to an efficient error cancellation that occurs, since the PES represents only
energy differences of very similar molecular configurations.

The elbow plots shown in Fig. 10.2(a) and 10.3(a) correspond to a molecule oriented
perpendicular to the surface above an fcc site. A stretching of the bond length in this
orientation with a slightly increasing center of mass height Z would correspond to
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an abstraction mechanism, because in this case an elongation of the bond length
can only be realized when one atom approaches the surface while the other atom is
reflected into the gas phase. A small local minimum at d = 1.4 A and Z = 1.7 A
has been found in agreement with previous studies of this elbow plot [24,73]. The
parallel orientations shown in Fig. 10.2 and 10.3 (b), (d), (e) and (f) all give rise
to a dissociation with both atoms adsorbing on the surface. The elbow plot shown
in Fig. 10.2(f) for a molecule above the bridge site shows an energy barrier, which
has also been reported in independent studies [22,24,73]. In [22] the barrier has
been found only in case of the RPBE functional (£}, = 0.14 ¢V), while the BP86
functional [235,264] did not yield a barrier. In [24,73] the barrier has been found
for all four tested functionals, PW91 [116], PBE [123], revPBE [229] and RPBE [74],
but only one barrier height of F;, = 0.2 eV is given without referring to one of the
functionals. As shown in Fig. 10.2(f) in the present work a barrier of 0.08 eV has been
found for this molecular orientation using the RPBE functional, while in case of the
PBE functional no barrier exists (Fig. 10.3(f)). The reason for this difference between
our study and the work of Yourdshahyan et al. in case of the PBE functional might
be the pseudopotential approach or the smaller (2x2) unit cell employed in [24, 73].
The only molecular orientation which does not permit the dissociation of the oxygen
molecule is shown in Fig. 10.3(c) and 10.2(c). In this configuration the molecule is
oriented perpendicular to the surface above a top site. Due to the comparably small
adsorption energy of an oxygen atom at a top site (about 4 eV with respect to the
free atom) and the rather high binding energy of the oxygen molecule (5.1 eV [224]),
a dissociation is not possible for energetic reasons in this orientation. However, none
of these elbow plots is able to describe a real dissociation event, because the molecule
is not constrained to move in two dimensions. When the molecule approaches the
surface, its angular orientation and lateral positions will change making predictions
based on the inspection of two-dimensional cuts of the potential-energy surface very
difficult.

A problem when calculating the adiabatic potential-energy surface for the dissocia-
tion of oxygen on Al(111) with standard DFT implementations is the charge transfer
from the metal to the oxygen molecule that occurs even for very large molecule-surface
separations. This is because the antibonding 27*! orbitals, which are unoccupied in
the free molecule, are lower in energy than the Fermi energy of the metal. As the
states in a DF'T calculation are filled in energetic order, electron density is transferred
from the aluminium to the oxygen molecule, which shifts up the energy level of the
27*1 orbitals until they are aligned with the Fermi level. For separations between 5
and 10 A the charge transfer to the molecule is of the order of a few percent of an
electron as shown in Fig. 10.4(a). This charge transfer into the 27*! orbitals affects
the convergence of the total energy with increasing separation from the surface and
also the spin state of the molecule, because due to the charge transfer the spin triplet
of the oxygen molecule is slightly reduced. Both effects are shown in Fig. 10.4 (b)
and (c), respectively. The charge and the spin of the oxygen molecule have been de-
termined using two different methods, the Mulliken population analysis [265] and the
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Figure 10.2: Two-dimensional cuts through the six-dimensional adiabatic potential-energy surface
calculated using the RPBE functional. For some molecular orientations shallow energy barriers exist.
The white circles represent the calculated DFT energy points. The substrate has been frozen in the
geometry of the bulk-truncated surface. The energy zero point corresponds to an oxygen molecule
in the triplet ground state at an infinite distance from the surface without any charge transfer.
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Figure 10.3: Two-dimensional cuts through the six-dimensional adiabatic potential-energy surface
calculated using the PBE functional. None of the calculated elbow plots shows energy barriers. The
white circles represent the calculated DFT energy points. The substrate has been frozen in the
geometry of the bulk-truncated surface. The energy zero point corresponds to an oxygen molecule
in the triplet ground state at an infinite distance from the surface without any charge transfer.

99



Chapter 10. The Adiabatic Potential-Energy Surface

Hirshfeld analysis [139] to estimate the uncertainties inherent to such charge analysis
methods. For large separations of the molecule from the surface both methods be-
come exact and yield the same results. The obtained molecular charges start to differ
for distances smaller than 5 A and become very large in the interaction region closer
to the surface, but the determined spin states seem to be rather consistent in both
methods in the plotted range. To understand the charge transfer from the surface to
the molecule, calculations of a charged free oxygen molecule have been carried out.
The energetic position of the 27*! orbital is shown as a function of the charge of the
molecule in Fig. 10.5. The Fermi energy obtained from a calculation on the clean
aluminium slab is -4.522 eV and also shown in this figure. From these data it can be
concluded that in the limit of an infinite molecular distance from the surface still a
charge g = —0.014 e is transferred to the molecule. In Chapter 13 it will be shown how
this charge transfer can be avoided and what the consequences for the total energy
are.

When the oxygen molecule approaches the surface, the energetically more favorable
orientation is initially perpendicular to the surface. This is in agreement with previous
studies [24]. Closer to the surface a parallel orientation is preferred. The approach
is accompanied by a continuous charge transfer from the surface to the molecule and
a reduction of the triplet spin until finally the singlet state of the adsorbed atoms
is reached. For a molecule oriented perpendicular to the surface above an fcc site
the partial density of states (DOS) of the oxygen 2p states is shown in Fig. 10.6 for
several molecular distances from the surface. 6 A above the surface the 27 and 27*
states of the oxygen molecule are very localized sharp peaks. Due to the slight charge
transfer mentioned above, the 27*! state is just above the Fermi level and filled only
by a small fraction of an electron. When the molecule approaches the surface, the
states broaden and up and down spin-densities become more similar, which is the
reason for the reduction of the spin of the molecule. At Z = 2.2 A both spin-densities
have become almost identical. The evolution of the total spin of the system can be
monitored by integrating the spin-density of the whole system. This has been done
and the spin has been found to decrease from 90 % of the spin of the free molecule
at Z = 3.5 A continuously to 10 % at Z = 1.9 A. To a good approximation this
is independent of the molecular orientation. Below Z = 1.8 A the spin vanishes
completely.

10.3 Interpolation of the Adiabatic
Potential-Energy Surface

Having calculated the adiabatic potential-energy surface for two different functionals
on a grid, the next step is to find a reliable fit to obtain the adiabatic energies for
all possible molecular geometries as required for the molecular dynamics simulations
of the sticking process. This has been done using the neural network technique and
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Figure 10.4: Charge, spin and energy as a function of the molecular distance Z from the surface. (a)
shows the total charge ¢ on the oxygen molecule obtained from a Mulliken population analysis [265]
(black line) and from a Hirshfeld analysis [139] (dashed line). In (b) the total spin of the oxygen
molecule is shown for these two methods. In (c¢) the energy of the system is plotted with respect to
an arbitrary zero point at Z = 10 A. The values have been obtained with the PBE functional for a
molecule oriented parallel to the surface above an fcc site (geometry 2 in Appendix C).
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Figure 10.5: Energetic position of the 27*! orbital of a free oxygen molecule as a function of the
molecular charge ¢g. The black line indicates the Fermi level ep a; of a clean Al(111) slab. The zero
point of the energy corresponds to the vacuum level in the calculation of the free molecule, which is
very close to the vacuum level of the potential in the Al(111) slab calculation.
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Figure 10.6: Partial density of states (DOS) of the oxygen 2p states for several molecular distances Z
from the surface calculated with the RPBE functional. The oxygen molecule is oriented perpendicular
to the surface above an fcc site and the bond length is fixed to 1.224 A (geometry 1 in Appendix C).
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the Fourier method described in Chapters 7 and 8. Our intention is to perform
molecular dynamics simulations up to a kinetic energy of 1 eV with a potential-energy
of zero corresponding to an infinite separation between the molecule and the surface.
Consequently, our primary aim is to fit the potential-energy surfaces as accurately
as possible up to potential-energies of about +1 eV. For higher potential-energies a
less accurate fitting is acceptable as this region of the PES is not accessible in the
molecular dynamics runs.

First, the DFT data set has to be prepared for the fitting. In case of the PBE
functional a total of 1723 ab initio data points has been calculated. To focus the fit
on the most important part of the potential-energy surface all points with a bond
length larger than 2.4 A or a center of mass distance from the surface of more than
6.0 A have been removed from the data set. The remaining number of points is 1649.
For 46 different molecular orientations 4 (d,Z)-points with an energy of +5.0 eV and
the coordinates (d=1.2 A, Z=0.0 A), (d=1.0 A, Z=0.8 A), (d=1.2 A, Z=0.5 A) and
(d=1.0 A, Z=0.0 A) have been added to the data set?>. These 184 high energy points
are not necessary, but help the neural network to fit the very repulsive energy region
close to the surface. These points could have been calculated also by density-functional
theory, but this region is not accessible in the molecular dynamics due to the high
potential-energy, and therefore precise energies are not required. These points do
not reduce the quality of the fitted potential-energy surface at all, as can be seen in
the comparison of the calculated and the fitted elbow plots in Fig. 10.9. Another
modification of the data set has to be done to define a common zero point for the
potential-energy surface. The goal is to get a potential that just depends on the bond
length of the molecule at large distances from the surface when there is no interaction
between the molecule and the surface present. The DFT data points are available
for distances up to 6.0 A from the surface for all calculated elbow plots, but due to
numerical noise in the DFT data at this distance, differences of the total energies
between different molecular orientations of the order of a few meV are still present.
Considering that the neural network fit will produce an additional fitting error for
these energies, it cannot be taken for granted that the potential-energy in the molec-
ular dynamics runs will be independent of the molecular orientation at this distance.
To make sure that all molecular dynamics trajectories start with the same potential-
energy, the data set has to be modified in two steps. First, the numerical noise in the
DFT data has been removed by defining the energy of the point (d=1.224 A, Z=6.0 A)
as the zero point for each molecular orientation, i.e. the energies for each elbow plot
have been shifted individually by typically 1 or 2 meV to obtain a common reference
zero point. However, this does still not guarantee that the neural network will yield
exactly this energy in the fit. Without changing the shape of the potential-energy
surface, the zero points (d=1.224 A, Z=6.0 A) for each molecular orientation have
therefore been copied to points (d=1.224 A, Z=D A) in the vacuum with zero energy,

2Tt has been tested that the actual choice of this energy has no effect on the fit quality as long as
it is large compared to the kinetic energy of the molecule.

103



Chapter 10. The Adiabatic Potential-Energy Surface

10
8, -
> 6 i
8 POOOOOOG. £OOOOO00Y
W4 B
I ° o ]
< o

2" e »° |eeoriginal ||
i %oy RO damped|]

OL———L 1 1 Feggee® | . T T
-4 -3 -2 -1 9 1 2 3 4

Figure 10.7: Damping of high potential-energies to a maximum value E;=5 eV in order to reduce
the range of values (example of a parabolic potential) for the neural network fit. For the molecular
dynamics only energies up to +1.0 eV are of interest, which are not affected by the damping.

D having values of 7.0, 8.0, 9.0 and 10.0 A. These additional points are sufficient for
the training of the neural network to obtain a very low fitting error for the zero point
of the potential-energy, which is typically well below 1 meV. These points could have
been obtained also by density-functional theory, but because of the artificial charge
transfer due to the relative position of the Fermi energy of the metal and the oxygen
27*} states described in the previous section, the total energy would converge only
very slowly without adding relevant physics. Finally, the potential-energy of all points
with an energy being higher than a threshold energy E; has been scaled down to a
value between (E; — 1 eV) and E; as shown exemplary in Fig. 10.7 for a parabolic
potential using an equation that ensures continuous derivatives.
E for E < E,
E = { E. —exp(Ey—1eV — E) for E > E; (10.1)

The actually chosen value for E; is 5 eV. The resulting reduced range of values in-
creases the accuracy of the neural network for small energy differences. After these
extensions the full data set consists of 2236 energy points, 2157 are used to train the
network weights and 79 randomly chosen points are used in the test set.

Apart from the network architecture and the parameters of the Kalman filter, the
quality of the fit in certain regions of the potential-energy surface can be controlled
by assigning weights w to the fitting errors of the data points. Points that should
be accurately fitted will be assigned high weights, but points which are not very
important, for example due to a very high potential-energy, will be assigned low
weights. Unfortunately there is no general prescription how the actual weights should
be selected to obtain a suitable fit. Therefore, several sets of weights have been tested
empirically. Certainly, a good fit of the minimum energy path in the entrance channel
will be of crucial importance. Such points are correspondingly given the highest
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Points w
E<leV 2.0
d=1224 AN (28A<Z<484A) 1000.0
d=1224ANZ>48A 5000.0
(121 A <d<149A) AN (15 A <Z<26A)A(-1.0eV < E< +1.0¢eV) 11.0
d=13AANZ=21A 1067.0

Table 10.1: Set of weights assigned to the data points for fitting the adiabatic potential-energy
surface.

weights. The best set of weights found for fitting the adiabatic potential-energy
surface obtained with the PBE functional is defined in Table 10.1.

All in all 54 different fits have been performed to interpolate the PBE potential-
energy surface using different network architectures, parameters and weights. Finally,
the best fit found employs a 11-38-38-1-tl architecture with Ay = 0.99770 and \(0) =
0.98000 having 1977 connecting weights to be optimized. The adaptive filter has not
been used. The obtained average errors of the training and test data are 0.038 eV
and 0.062 eV, respectively. Two PBE-DFT elbow plots are shown in Fig. 10.9 and
compared to the corresponding plots based on the full six-dimensional neural network
interpolation. Like for all other calculated elbow plots the agreement is excellent.

Apart from the overall fitting error the quality of the fit in certain regions of the
potential-energy surface is of interest. 14 groups of points have therefore been defined
using energetic and geometric criteria, and the mean absolute deviations (MAD) have
been calculated individually for these groups. The results are given in Table 10.2. The
points with a potential energy lower than 1 eV (group 1), which are most relevant for
the molecular dynamics, are fitted significantly better than the points with £ > 1 eV
(group 2). The points along the minimum energy path in the physisorption region
have a very high accuracy, the MAD being less than 1 meV (group 3). In Fig. 10.8,
the fitted neural network energies are plotted against the original PBE DFT energies
in two different scales. An error-free fit would correspond to a line with a slope of
one. As can be seen the number of points with significant fitting errors is very small.

The adiabatic potential-energy surface obtained with the RPBE functional consists
of 1369 DFT energy points. The same steps as described for the PBE functional have
been done to prepare the data for the neural network fit yielding all in all 2136 energy
points, 2067 of which are used in the training set and 69 randomly chosen DFT points
form the test set. 80 different fits have been carried out employing many different
network architectures, neural network parameters and weights. The best fit results
from a 11-40-40-1-tl network with the parameters Ay = 0.99770 and A\(0) = 0.98000 of
the adaptive Kalman filter. The same set of fitting weights w as for the PBE data set
has shown to yield the best fit (Table 10.1). The mean absolute errors of the training
data points and the test data points are 0.022 eV and 0.050 eV respectively. The errors
of the individual point groups are listed in Table 10.2 and show that the quality of this
fit is excellent, which is also confirmed by the agreement of the elbow plots based on
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RPBE PBE

Group Points Points MAD (eV) Points MAD (eV)
1 E <1leV 1563 0.0147 1693 0.0281
2 E>1eV 573 0.0449 543 0.0704
3 d=1224 ANZ>28A 763 0.0006 391 0.0007
4 d=1300AANZ=21A 46 0.0031 11 0.0016
5 d=1500AANZ=244A 46 0.0408 40 0.0388
6 d=1200AANZ=22A 45 0.0347 39 0.0489
7 d=1200AANZ=28A 11 0.0118 40 0.0198
8 d=1400 A AN Z=28A 45 0.0283 39 0.0228
9 d=1200AANZ=17A 45 0.0444 40 0.0490
10 d=1500AANZ=17A 45 0.0321 39 0.0509
11 d=1400ANZ=18A 46 0.0351 52 0.0676
12 d=1300AANZ=25A 46 0.0200 40 0.0240
13 d=1224 ANZ=35A 46 0.0015 17 0.0022
14 d=1224 ANZ=28A 44 0.0018 14 0.0033

Table 10.2: Mean absolute deviations (MAD) of different groups of points for the best fits of the
adiabatic potential-energy surface calculated with the RPBE and the PBE functional.
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Figure 10.8: Plot of the fitted energies of the training set as a function of the original PBE-DFT
energies in two different scales. The line represents a perfect, error-free fit.

the DFT data with the elbow plots obtained from the six-dimensional neural network
fit. Based on these fits, a large number of molecular dynamics trajectories can now
be calculated to obtain the sticking probability for different initial kinetic energies.
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Figure 10.9: Comparison of two elbow plots obtained from the six-dimensional neural network inter-
polation ((b) and (d)) with the corresponding two-dimensional plots of the original DFT data ((a)
and (c)) for the PBE functional.

10.4 Molecular Dynamics on the Adiabatic
Potential-Energy Surface

The sticking curve obtained for the RPBE and the PBE functional is shown in
Fig. 10.10 and compared to the experimental sticking data [9]. For each kinetic energy
2000 trajectories have been calculated starting at 9.5 A above the surface with random
initial orientations and lateral positions to get statistically meaningful results. Like
in the experiment [9] the molecules hit the surface at normal incidence. A trajectory
is terminated when the molecular bond length increases to 2.4 A (dissociation), or
when the molecule-surface separation increases beyond 6.0 A after a preceding closer
approach (reflection). For both functionals, the sticking probability is almost unity
independent of the kinetic energy, which is in strong disagreement with experiment.
In case of the PBE functional this is immediately obvious due to the absence of energy
barriers towards dissociation. Yet, also the shallow energy barriers found for some el-
bow plots calculated with the RPBE functional do not reduce the sticking probability.
This has two reasons: First, the height of these barriers is very small and can be over-
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Figure 10.10: Adiabatic sticking curve. The black diamonds represent the experimental data, the
empty diamonds represent the sticking probabilities obtained from the adiabatic molecular dynamics
simulations. Both functionals, PBE and RPBE;, yield the same adiabatic sticking curve.

come even by thermal molecules in most cases. Second, slow thermal molecules can
easily be steered towards the energetically most favorable entrance channels, which
do not have energy barriers. At this point careful tests to determine the dependence
of the sticking curves on the actual fit, the number of trajectories, the initial height
of the molecules at the beginning of the trajectories and many more parameters have
been carried out. We found that all fits, independent of the quality of the fit, yield
basically the same adiabatic sticking curves since the most prominent feature of the
potential-energy surface, the absence or small height of energy barriers is generally
well reproduced by the neural network. Giving details of the sticking probabilities
obtained using different parameters is accordingly not very instructive for the adia-
batic potential-energy surface. A detailed investigation of these effects will therefore
be given in Chapter 13 for the sticking curves based on the spin-constrained triplet
potential-energy surface, for which equivalent tests have been carried out.

Finally, it can be concluded that the low sticking probability of thermal oxy-
gen molecules impinging on the Al(111) surface cannot be explained by calculations
based on the adiabatic potential-energy surface obtained from state-of-the-art density-
functional theory. Consequently, dynamical steering effects can be excluded as source
for the discrepancy between experiment and theory. There are two remaining expla-
nations for this result. Either current GGA functionals are not sufficiently accurate
to describe the dissociation of the oxygen molecule, which is not very likely due to the
error cancellation in the oxygen binding energy in the PES, or the adiabatic descrip-
tion of the dissociation process is not appropriate. In the remainder of this work we
will focus on the latter aspect, but before we can proceed to the investigation of the
role of non-adiabatic effects, the validity of the applied frozen surface approximation
will be demonstrated by a study of the effects of mobile substrate atoms.
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10.5 Ab initio Molecular Dynamics

Due to the large mass of the oxygen molecule and the high adsorption energy set free
in the dissociative adsorption event of an oxygen molecule on Al(111) it is a priori not
clear whether the frozen surface approximation employed in the calculation of the six-
dimensional potential-energy surface is justified. Motion of the substrate atoms under
the influence of the approaching oxygen could affect barrier heights and molecular
steering, and will certainly also have an effect on the final adsorption mechanism. To
investigate the effect of the mobility of the substrate atoms, “on-the-fly” ab initio
molecular dynamics simulations based on the adiabatic potential-energy surface have
been carried out using the DMol?® code. For each geometry step the energy and forces
are obtained from a fully self-consistent density-functional calculation.

Direct ab initio molecular dynamics runs are computationally extremely demand-
ing. A typical simulation of one single trajectory consisting of 200 geometry steps
costs as much as calculating 4 elbow plots. Since only a semi-quantitative assess-
ment of the effects of substrate mobility is aspired by these simulations, the em-
ployed slab geometry and the calculational parameters have been modified compared
to the ones employed in the mapping of the six-dimensional potential-energy surface.
The slab thickness of the (3x3) supercell has been reduced to 5 layers. A 3x3x1
k-point mesh yielding 9 k-points in the irreducible wedge of the Brillouin zone has
been employed together with a dnd basis for oxygen and aluminium. The effects of
these reductions are comparably small, as can be seen in the convergence tests in
Appendix B. The PBE functional has been used to represent exchange and corre-
lation, because this functional yields a more attractive potential-energy surface than
the RPBE functional giving rise to a stronger molecule-surface interaction. All other
parameters are identical to those described in Section 10.1.

Trajectories have been calculated for 12 different initial molecular orientations (geo-
metries 1-12 in Appendix C) starting at Z=3.5 A above the surface to minimize the
number of DF'T calculations in the region of weak interactions. Two different initial
kinetic energies have been used, namely £ = 0.05 eV and E = 1.00 eV, to cover the
low and high energy limit. The lower energy is slightly higher than thermal energy
for two reasons: First, a slightly higher initial velocity of the molecule reduces the
number of calculations for separations with weak interactions while on the other hand
according to experiment the sticking probability should still be very small [9]. Second,
the slightly higher kinetic energy accounts for the reduction of the potential-energy
that is present already at 3.5 A above the surface. Therefore, starting the molecular
dynamics runs at 3.5 A with a slightly higher kinetic energy has the same effect as
starting very far from the surface at zero potential-energy and thermal kinetic energy
(0.025 eV) and subsequently converting the potential-energy gain in kinetic energy
during the run. As the slab consists only of 5 metal layers, only the outermost surface
layer atoms are allowed to move in all three dimensions in the molecular dynamics
runs. The initial position of all metal atoms is like in bulk aluminium.

Employing a Verlet algorithm [163], a constant time step of 2.5 fs has been chosen.
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This should be sufficiently small to account for the fastest vibrations occurring in the
system. This has been tested by comparison with the vibrational frequency obtained
for a free oxygen molecule. The frequency was found to be v = 4.57 - 10*3s~! from a
Fourier transform of the vibrations in a molecular dynamics run on the free oxygen
molecule under the same conditions, but with a smaller time step of 0.05 fs and
a run time of 200 fs. The obtained frequency is in very good agreement with the
experimental value of v = 4.737 - 10"s™! [266]. This frequency corresponds to a
vibration period of about 22 fs, thus being ten times larger than the time step of the
molecular dynamics simulations of oxygen dissociation on Al(111). Each trajectory
consists of 200 time steps covering a total time of 500 fs which is long enough to
model the first impact of the molecule and the resulting motion of the oxygen and
aluminium atoms. Longer runs would not provide a more realistic picture since no
mechanism for energy dissipation is included in the dynamics. In order to conserve
the energy, a NVFE ensemble, i.e. constant particle number, volume and energy, has
been applied.

The motion of the aluminium atoms in all calculated trajectories at both initial
kinetic energies clearly shows that a significant mobility sets in only when the molecule
is getting closer than 2.5 A to the first aluminium layer, which has to be compared to
the position of the energy barriers. If the oxygen-induced motion of the aluminium
atoms is significant already at the onset of the barriers, the system will be able to
respond to the approaching oxygen molecule by a rearrangement of atomic positions
effectively changing the barrier heights. While the adiabatic potential-energy surface
does not show energy barriers giving rise to a low sticking probability, the onset of the
sizeable barriers on the diabatic spin-triplet energy surface, that will be introduced
in Chapter 13, is typically about 3 A above the surface making the region of strong
interaction with the surface atoms at distances smaller than 2.5 A inaccessible for
thermal molecules. We therefore conclude that the sticking of low energy molecules
will not be appreciably affected by the mobility of the substrate atoms. This is in
agreement with the experiments of Osterlund et al. [9], in which at most a very
weak dependence of the sticking probability on the surface temperature has been
found. Only for molecules, which can overcome the barriers and get very close to
the surface, the motion of the aluminium atoms will play a significant role. Yet,
these molecules stick on the surface even in case of the frozen surface approximation.
For the specific task of calculating the sticking curve, the mobility of the substrate
atoms will be essentially negligible. Nevertheless, closer to the surface the motion
becomes extremely large demonstrating that without consideration of this mobility
the investigation of the final dissociation mechanism is not possible.

For all but one of the investigated trajectories we find a dissociation of the oxygen
molecule. The only exception is an oxygen molecule oriented perpendicular to the
surface above the top site (geometry 7 in Appendix C). Due to symmetry reasons
the molecule in this case is confined to this orientation, and as shown in Fig. 10.2(c)
a dissociation in this particular geometry is energetically not possible. However,
statistically this case is of negligible importance. In Fig. 10.11 the heights of the
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Figure 10.11: Vertical positions of the two oxygen atoms (red) and the 9 top layer aluminium atoms
(blue) in a molecular dynamics trajectory as a function of the simulation time. Initially the molecule
is located parallel to the surface at a height of 3.5 A above a fcc hollow site (§ = 90°, ¢ = 60°,
geometry 3 in Appendix C). The initial kinetic energy towards the surface is 0.05 eV. Due to the
initial bulk-like positions the aluminium atoms start to relax slightly outwards. A strong interaction
sets in after 100 fs when the oxygen atoms are closer than 2.5 A to the surface resulting in several
collisions, the first of which occurs at 140 fs. The aluminium atoms start to move strongly with
vertical elongations of up to 2 A.
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Figure 10.12: Comparison of the vertical positions of the two oxygen atoms as a function of the
simulation time obtained from an on-the-fly ab initio molecular dynamics simulation (black lines)
and from the divide and conquer approach employing the frozen surface approximation (dashed line).
In both cases the molecule is initially located parallel to the surface at a height of 3.5 A above an
fee hollow site (6 = 90°, ¢ = 60°, geometry 3 in Appendix C). The initial kinetic energy towards
the surface is 0.05 eV. Up to 140 fs the trajetories are essentially identical, which corresponds to a
molecule-surface separation of less than 2.0 A. Then due to collisions with mobile substrate atoms
in case of the ab initio molecular dynamics the two trajectories start to differ. In case of the frozen
surface in the neural network based molecular dynamics the molecule stays parallel to the surface all
the time, while in case of the mobile substrate atoms the motion is more complex and the molecule
changes its angular orientation.

oxygen and first layer metal atoms are shown as a function of the simulation time
for one trajectory. Initially, the molecule is oriented parallel to the surface above an
fce site and has a kinetic energy of 0.05 eV. In the first 100 fs there is no significant
interaction between the molecule and the surface, and the constant molecular velocity
towards the surface is determined by the initial kinetic energy. Then, when the
molecule is getting closer than 2.5 A to the surface, a strong interaction sets in, and
the molecule is accelerated towards the surface while at the same time aluminium
atoms are pulled out of the surface. The first collision, which can be identified by
the change in the direction of motion, occurs at 140 fs. In the further course of
the dissociation almost all surface atoms start to move strongly, the most prominent
clongation being about 2 A.

Another interesting possibility to test the validity of the frozen surface approxima-
tion is to compare a trajectory obtained from an on-the-fly ab initio molecular dy-
namics run with a trajectory from the six-dimensional divide and conquer approach
calculated under the same conditions within the frozen surface approximation, i.e. the
same initial position and kinetic energy, but based on the neural network fit. The ver-
tical positions of the oxygen atoms for both cases are shown in Fig. 10.12 as a function
of the simulation time. In both cases the molecule follows the same trajectory for the
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first 140 fs, which would also be the case if the substrate had been fully relaxed for
the mapping of the six-dimensional PES. Only then, when the molecule is closer than
2.0 A to the surface, the trajectories start to differ due to the influence of the mobile
substrate atoms. This is much closer to the surface than the onset of the energy
barriers in case of the spin-constrained triplet potential-energy surface in Chapter 13.
This proves both, the validity of the frozen surface approximation in the region of
the potential-energy surface being relevant for the sticking of thermal molecules and
also the high quality of the neural network interpolation, because the direct ab initio
molecular dynamics can be regarded as an error-free, perfect fitting scheme. Identical
trajectories therefore underline the high accuracy of the neural network fit.

Recently, a paper was published by Ciacchi and Payne [267]. They performed ab
initio molecular dynamics simulation based on the Car-Parrinello scheme [96] to study
the dissociative adsorption of oxygen on Al(111) as well as the early stages of oxide
formation. In agreement with our studies they find a strong mobility of substrate
atoms and oxygen atoms temporary being in subsurface positions. However, like our
ab initio trajectories, their simulations are based on the adiabatic potential-energy
surface, which at least with the currently available functionals leads obviously to a
description of the dissociation process which is in contrast to experiment.

Having shown that the frozen surface approximation is applicable to the calculation
of the sticking curve for the oxygen dissociation on Al(111) without introducing errors
in the obtained sticking probabilities, we are now able to proceed to the investigation
of the role of non-adiabatic effects in the adsorption process.
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Chapter 11

Non-Adiabatic Effects:
The Model

It has been speculated for a few years now [9,22, 73] that non-adiabatic effects could
be the reason for the experimentally found low sticking probability of thermal oxygen
molecules impinging on the Al(111) surface. The basic idea behind this assumption
is that the electrons do not have enough time to relax to the ground state during the
approach of the oxygen molecule to the surface. This is supported by the molecular
dynamics simulations reported in the previous chapter showing that the approach
and the dissociation are very fast processes taking only about 0.5 ps in the adiabatic
approximation. Correspondingly, the oxygen molecule will continue moving on the
initial diabatic neutral spin-triplet potential-energy surface for some time, instead of
switching to the energetically more favorable adiabatic ground state potential-energy
surface through spin relaxation and charge transfer. The low probability of such
transitions is of course crucial for the model and has to be verified at a later stage.
A detailed discussion of this aspect will be given in Chapter 15. However, first of all
the qualitative shape of the possibly involved diabatic PESs has to be investigated.
If no energy barriers towards dissociation exist on the initial neutral triplet diabatic
PES, non-adiabatic effects cannot account for the low sticking probability of thermal
oxygen molecules and an investigation of the transition probability is obsolete.
Therefore, to investigate the possible role of non-adiabatic effects in the dissociation
of oxygen molecules on the Al(111) surface, the relevant diabatic PESs have to be
calculated. Due to the large charge transfer from the metal to the oxygen upon
adsorption and due to the different spin states of the free O, molecule and adsorbed
oxygen atoms, the definition of the diabatic potential-energy surfaces is not a trivial
task. So far there have been several attempts to obtain the diabatic potential-energy
surfaces qualitatively from empirical potentials [21,29,68] or from very simple one-
dimensional models [28]. Both approaches are not very satisfying and there is a clear
need for a multi-dimensional calculation of the diabatic PESs from first-principles.
For the dynamic adsorption process two possible models for the diabatic PESs
emerge, one is based on charge transfer and the other one focusses on the spin change
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in the molecule upon dissociation. Both models have in common that the first diabatic
potential-energy surface is that of a neutral oxygen molecule in a spin-triplet state.
A finite lifetime of the O, molecule on this triplet potential-energy surface exists,
and transitions are induced by a coupling with other energetically close lying diabatic
PESs at some distance to the surface. And this is, where the two models differ.

The suggested charge transfer model [28,268] is based on an electron-hole pair ex-
citation. When the O, molecule approaches the surface, an electron from the metal
is transferred into an unoccupied 27* orbital of the molecule establishing the second,
ionic diabatic PES. Further ionic energy surfaces can be constructed by additional
electron transfers. This process is well defined for large molecule-surface separations,
but then the probability of this process will be very small. However, when the interac-
tion with the surface sets in, the 27*! orbitals cannot be clearly identified any more due
to hybridization and the atomic charges are not well defined. The molecular charges
obtained from different partitioning methods like the Mulliken analysis [265] or the
Hirshfeld analysis [139] can be significantly different, which is a problem for both, the
neutral and the ionic potential-energy surface. To circumvent this general problem,
Lundqvist and coworkers used unmodified hybrid orbitals to obtain an approximation
of the ionic potential-energy surface by means of an extended ASCF method [268, 269].
The aluminium contribution to these states is completely neglected. This leads to un-
certainties in the total energies and so far no energy barriers could be found with this
approach [270]. A high-dimensional mapping of the diabatic potential-energy surfaces
using this method has not been done so far.

The model employed in this work focusses on the spin of the oxygen molecule.
That spin effects can indeed be important has been shown for the oxygen adsorp-
tion on silicon [92,93], and a possible role for the oxygen-aluminium system has also
been suggested [22]. From the initial neutral spin-triplet energy surface the molecule
could change its spin for example by a spin-flip of an electron in the 27* orbital or
by exchange of electrons with the metal surface. In both cases the second diabatic
potential-energy surface to be calculated is a spin singlet potential-energy surface
and the reduction of the spin from triplet to singlet happens in one step. Using the
spin as the central quantity causes similar difficulties as in the case of the charge,
because also the spin cannot be assigned uniquely to individual atoms in interacting
systems. This is mainly a problem for the triplet potential-energy surface, because
in case of the spin-singlet PES the spin is zero for every atom and no assignment
has to be made, which is one advantage of this model. The investigations concern-
ing the charge transfer in Chapter 10 have shown that for medium molecule-surface
separations around 3 A the spins are less sensitive to the partitioning method than
the atomic charges. If the expected energy barriers will be located at this distance,
which has to be confirmed, the spin state of the molecule can be determined rather
reliably and is independent of the method. If necessary, based on the actual spin a
projection method could be developed to obtain a pure triplet oxygen state reducing
the problem of hybridization.

Of course the real adsorption process can involve charge transfer and a spin change,
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Figure 11.1: Schematic one-dimensional energy diagram of the potential-energy surfaces in the spin
model as a function of the molecular distance Z from the surface. The adiabatic ground state (black
line) has the lowest energy for all distances and does not show an energy barrier. For large distances
the diabatic triplet potential-energy surface (black dotted line) of the neutral molecule is close to
the adiabatic PES, but they are not identical due to the artificial charge transfer at all distances in
the adiabatic case. When the molecule is approaching the surface on the triplet PES there might be
a shallow physisorption well and possibly there might be an energy barrier F}, towards dissociation
at a distance Zp,. The singlet diabatic potential-energy surface (grey dotted line) is lower in energy
than the triplet PES close to the surface, while far away the singlet PES is higher in energy by an
amount equal to the triplet-singlet gap AFgr of the free molecule. The triplet and singlet PES cross
at a distance Z. and an energy FE..

and therefore no strict separation of both models is possible. Constructing the ionic
potential-energy surface by transferring one electron from the surface to the molecule
necessarily reduces the molecular spin to a doublet. On the other hand, the sin-
glet potential-energy surface of the finally adsorbed molecule will have to account
for charge transfer. How this may be achieved in the spin model will be described
in Chapter 14. Finally, in both models the initial diabatic potential-energy surface
corresponds to a neutral oxygen molecule in a triplet spin state and the difference
between both methods is in the approximations made in the calculation of the triplet
energy surface. A transition to the second diabatic PES, which is different in the two
models, will result in sticking in both cases.

In the spin model applied here the two involved diabatic potential-energy surfaces
need to fulfil some requirements. The triplet PES should be identical to the adiabatic
energy surface in the asymptotic limit of a very large molecule-surface separation.
However, this is not true since due to the artificial charge transfer from the metal to the
molecule the energy of the adiabatic PES is too low. Consequently, the neutral triplet
PES would be a more suitable starting point for molecular dynamics simulations. On
the other hand the singlet PES should be identical to the adiabatic PES of an adsorbed
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molecule for small separations. While for the neutral triplet PES the molecule is in
a triplet and the surface in a singlet state without any charge transfer between the
two subsystems, in the latter case both subsystems are in an overall singlet state and
the charge transfer corresponds to the adiabatic electronic ground state. A correct
description of these two boundary conditions is a basic requirement for the diabatic
potential-energy surfaces is this simple two-state model, which is shown schematically
in Fig. 11.1. The adiabatic potential-energy surface has the lowest energy for all
molecule-surface separations. At large separations Z the triplet PES is somewhat
higher than the adiabatic PES since the lowering of the energy due to the artificial
charge transfer is prevented. Closer to the surface there might be a physisorption
well, possibly followed by an energy barrier F},. Showing the existence of this barrier
is essential to prove the importance of non-adiabatic effects. Once the barrier is
overcome, the molecule might adsorb on the surface although being in a triplet state,
but less strongly bound than in the singlet state. Still, the lifetime on the triplet
PES will be very short close to the surface due to the coupling to other diabatic
PESs. With increasing separation from the surface the singlet state quickly rises in
energy and crosses the triplet PES at a distance Z. from the surface. For very large
separations from the surface the singlet curve is higher in energy than the triplet state
by an energy equal to the experimental singlet-triplet gap AFEgr of the free oxygen
molecule, which is about 0.98 eV [210].

Based on this concept, the first step towards a quantitative verification of the im-
portance of non-adiabatic effects in the oxygen dissociation is an accurate calculation
of the spin-triplet potential-energy surface in six dimensions, combined with the iden-
tification of eventual energy barriers towards dissociation. The method developed
for this task is explained in the following chapters. Then the possible role of other
diabatic energy surfaces like the spin-singlet PES or an ionic PES as suggested in the
charge transfer model [268] and the effect of transitions between the diabatic energy
surfaces are discussed in Chapters 14 and 15.
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Spin-Constrained
Density-Functional Theory

12.1 The Fixed-Spin-Moment Approach

To investigate the possible role of non-adiabatic effects in the dissociation of oxygen
molecules on the Al(111) surface it is necessary to go beyond the standard adiabatic
DFT ground state formalism. We need to calculate the diabatic potential-energy
surfaces of the triplet and the singlet oxygen molecule interacting with the aluminium
surface as accurately as possible.

First attempts to use density-functional theory to calculate total energies for other
states than the global ground state have been started shortly after the introduction of
spin-polarized density-functional theory in the 1970’s. Gunnarsson and Lundqvist [118]
extended DF'T to calculate the lowest excited state of each symmetry establishing the
so-called ASCF method. A few years later very general constraints have been pro-
posed by Dederichs et al. [34] to investigate problems connected with general charge
and magnetization fluctuations in solids. They suggested to extend standard ground
state density-functional theory to include arbitrary constraints by a Lagrange multi-
plier that can be interpreted as an additional potential in the Hamiltonian. Adjusting
this potential allows to define the constraint and to calculate the ground state of the
constrained system, while a potential of zero would correspond to the unconstrained
global ground state. An application of this method is to constrain the occupation of
certain atomic orbitals by a projection potential which acts only on some angular mo-
mentum while the other electrons in the system are allowed to relax. They recognized
that these constrained ground state calculations could be important for magnetism,
and in case that the magnetization in a cell is constrained, the additional potential
can be interpreted as a magnetic field. However, this promising method has so far
rarely been applied in full generality, the most important applications being studies
on non-collinear magnetism and spin dynamics [271].

A simplified version of this very general approach that has become a standard tool in
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density-functional theory [30-33] is the fixed-spin-moment (FSM) method. It allows
to calculate the total energy as a function of the overall magnetization of the system
and has been introduced in 1984 [272]. In contrast to standard DFT calculations, in
which the total number of electrons N is fixed and the electron numbers of each spin
NT and N are varied to minimize the total energy, the constraint of fixed NT and N
is introduced in the fixed-spin-moment approach. Consequently, two Fermi energies
EL and e% are obtained [31]. This procedure can be interpreted as applying an external
magnetic field that enforces a net overall magnetic moment M on the system given
by M = NT — N

A frequent application of the fixed-spin-moment method is the investigation of phase
diagrams of magnetic bulk materials [30], as it allows to vary the magnetic moment
arbitrarily and thus to get total energies as a function of the magnetization. A severe
limitation of the fixed-spin-moment approach is that no control over the location of
the spin-density in the system is possible. Nevertheless, due to its simplicity the
fixed-spin-moment approach is the only method that is routinely available in most
density-functional codes. As a first step towards the calculation of the spin-triplet
potential-energy surface we therefore explored, if the fixed-spin-moment approach
can be used to obtain a reliable description of this diabatic energy surface.

12.2 Application of the Fixed-Spin-Moment
Approach

By definition the fixed-spin-moment approach yields an overall triplet state of the
system. However, a priori it is not clear if the spin will be located on the oxygen
molecule when the molecule-surface interaction sets in at smaller separations. In
order to investigate the location of the spin and the effect of the overall triplet on
the potential-energy surface, a series of fixed-spin-moment calculations has been per-
formed. For 12 molecular orientations (geometries 1-12 in Appendix C) elbow plots
have been calculated using the PBE functional. None of the elbow plots shows any
energy barrier. Additionally, two elbow plots have been recalculated using the RPBE
functional to check the functional dependence yielding the same result. The em-
ployed supercells and calculational parameters are identical to those of the adiabatic
potential-energy surface (cf. Chapter 10). The two elbow plots obtained with the
RPBE functional are shown in Fig. 12.1.

The investigation of the spin distribution between the oxygen molecule and the
surface cannot be done unambiguously, because no method is available to uniquely
assign charges and spins to certain atoms. To get a qualitative picture a Mulliken
population analysis has been done. It shows that for a molecule-surface separation of
3.5 A about 10 % of the spin is centered at aluminium atoms and for a molecule-surface
distance of 2.1 A even about 60 % of the spin are on the aluminium atoms. This will be
illustrated by a spin-density plot in Chapter 13 (Fig. 13.6). The delocalization of the
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Figure 12.1: Elbow plots for the oxygen molecule oriented perpendicular (a) and parallel (b) to the
surface above an fcc site. The calculations have been done using the fixed-spin-moment method for
an overall spin-triplet state employing the RPBE functional. The white dots represent the DFT
calculations, in which the surface atoms have been fixed at bulk positions. No energy barriers exist
on this PES. The energy zero point corresponds to an oxygen molecule in the triplet ground state
at an infinite distance from the surface without any charge transfer.

spin might be a reason for the absence of energy barriers. To verify this assumption
a method has to be found to calculate a more precise triplet potential-energy surface,
i.e. the spin-triplet should be as localized as possible on the oxygen atoms and the
aluminium surface should stay in an overall singlet state. This is a much stronger
constraint than the fixed-spin-moment approach and more in the spirit of Dederichs
et al. [34]. However, such a spin-constraint was not implemented in DMol®, nor in
any other available DFT code. We therefore further developed and implemented a
spin-constraint, as will be described in more detail in the next sections.

12.3 Spin-Constrained Density-Functional Theory

To confine the triplet spin on the oxygen molecule for arbitrary molecular geometries,
in particular for small separations from the surface, and to maintain the singlet state
of the aluminium surface, we first need to find a way to measure the spin of these two
subsystems. For this purpose we are making use of the atomic orbital basis set used
in DMol® [133]. Each basis function can be assigned either to an oxygen atom or to an
aluminium atom, depending on the atom it is centered at. This is the same procedure
as in a Mulliken population analysis [265]. In contrast to a Mulliken population
analysis here we are not interested in calculating atomic charges and spins but we
want to find total occupations and spins for defined subsystems. We are doing this
by a projection of each single-particle state onto the subspace spanned by the oxygen
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and aluminium basis functions, respectively. All basis functions centered at oxygen
atoms form the oxygen subsystem and all basis functions centered at aluminium atoms
form the aluminium subsystem. Every single-particle eigenstate ¢X of the system is a
linear combination of oxygen and aluminium basis functions x;, which for calculations
using periodic boundary conditions are replaced by k-dependent Bloch basis functions
©¥ [121] (cf. Eq. (6.2)). o represents either spin-up or spin-down and k is referring
to the k-point.

Pr7 = Z gt (12.1)

Now, each state ¢ can be split up into an oxygen part pl(‘)‘;i and an aluminium part
plg‘{,i. This is done taking into account the non-orthogonality of the atomic orbitals
by the overlap matrix elements S;-‘k

pS, = < OCNOkS, >= > af Shay (12.2a)
J=1k=1

PR = <Olek >=D" > deskde (12.2b)
7=1k=m+1

where n is the total number of basis functions and m the number of oxygen basis
functions. c 7 is the j-th element of the eigenvector of state i, spin ¢ and k-point k.
%2 is the oxygen component of ¢¥7 ie. all coefﬁments referring to aluminium
basis functions have been set to zero. Correspondingly ¢ ke, is the aluminium com-
ponent of ¢% with the oxygen coefficients being zero. The normalization condition
p02 L+ i = 1 holds for each state by construction, because Pxe 0, T ?,741 = ¢¥° and
can be used to reduce the computational effort in that just one of the double sums in
Eq. (12.2) needs to be calculated and the other can be obtained via the normalization
condition.

Having split up each single-particle state into an oxygen part and an aluminium
part, now the partial densities of states (pDOS) can be constructed for oxygen and
aluminium and for both spin orientations so that all in all four partial densities of
states result. In Fig. 12.2 the oxygen parts of the single-particle states up to the Fermi
level are shown for two different molecular positions as a function of the eigenstate
number.

Summing up separately the oxygen parts and aluminium parts of each state over

all occupied states ¢ for each subsystem yields the electron numbers N(T)Q, N(l)z, Nk
and N il for each subsystem and each spin.

NG, = ;ZZZ fE SKe (12.3a)

i j=1k=1
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Figure 12.2: Decomposition of the spin-up single-particle state for an oxygen molecule parallel to
the surface above an fcc site (f = 90°, ¢ = 30°) in a (3x3) supercell. In (a) the molecule is 6 A
above the surface with a bond length of 1.224 A and the states are either pure oxygen (plc‘)‘;’i =1)or
aluminium states (pléil = 0) due to the weak interaction at this separation. In (b) the molecule is

2.1 A above the surface with a bond length of 1.3 A. In this case hybridization with the aluminium
states of the surface sets in and many valence states have oxygen and aluminium contributions. The
data have been obtained for the I' point in a calculation using 10 k-points in total.

N§ o= D05 S fledyskdy (12.3b)
k

i j=1k=m+1

fk is the occupation number of state i. The spin S of each of the two subsystems
is then the difference between the electron numbers of both spin orientations of each
subsystem.

So, = Nb, —N§, (12.4a)
Sa = N — N (12.4b)

Having established a method to quantify the spin we can now start to modify the
spins by changing the occupations of the subsystems. Therefore, the N electrons of
the system are distributed in the four partial densities of states in a way that yields
exactly the spin and charge in the two subsystems that we want to obtain. For the
(3x3) supercell (containing 2 oxygen molecules and 63 Al atoms, N = 851) used
here, the electron numbers are N(T)2 = 18, N(l)2 — 14, and N}, = N}, = 409.5. This

123



Chapter 12. Spin-Constrained Density-Functional Theory

corresponds to an overall singlet of the aluminium surface and a triplet on each of the
two oxygen molecules. To guarantee the correct occupations in both oxygen molecules
they have to be equivalent, which is automatically true due to the applied inversion
symmetry!. We obtain four Fermi energies 6;02, 6{%702, e; A and 6%;7 A1» Which are in
general all different. If the Fermi energies were degenerate at this stage the ground
state spin of the system would be exactly what we need and nothing else would have
to be done. However, if the Fermi energies are different they have to be modified to
conserve the spin configuration, because in the course of a standard DF'T calculation
the states are filled in energetic order and only one averaged Fermi energy would be
obtained corresponding to the adiabatic spin configuration.

To conserve the spin, the Fermi energies have instead to be equal in value when the
single-particle states are filled according to their energetic order. There are several
possibilities to implement this. The oxygen Fermi energies could be shifted to the
aluminium Fermi energies and vice versa and also all Fermi energies could be shifted
to their average value. However, these shifts have to be done under the constraint
that the electron numbers that can be filled in the subsystems up to the Fermi level
remain constant. We have chosen to shift the oxygen Fermi energies to the aluminium
Fermi energies as shown schematically in Fig. 12.3 for one of the two spin orientations.
In order to shift only the oxygen subsystem, we need a method that affects only the
oxygen part of each single-particle state, because the method has to be general to be
able to deal with hybridization. In case of hybridization shifting the complete state
would not change the relative positions of the oxygen and aluminium Fermi energies.
Affecting only a part of each state will in the end result in different compositions of
the single-particle states with respect to oxygen and aluminium basis functions, which
is the flexibility we need.

In a first step the Fermi energies are therefore aligned separately for each spin,
i.e. €p o, = €pa- This is done by applying an additional auxiliary field HEX° on the
oxygen part of each eigenstate. The auxiliary field is added to the standard DFT
Hamiltonian HX’ to form a new effective Hamiltonian H*. Like H¥° the auxiliary
field depends on the spin and on the actual k-point. This can be written in terms of
the corresponding matrices.

HY = H” + HY = Hy" + A€} - P, (12.5)

The auxiliary field consists of a “strength” Aef = €f o) — €% ,, Which is the difference
in Fermi energies that has to be overcome, and a projection matrix Pl(‘)2 into the
oxygen subspace that ensures that the aluminium part of each state is not affected.
The form of the projection operator Pcl)‘2 into the oxygen subspace is given by

'The extension of the method presented here to more than two subsystems should be straightfor-
ward, i.e. each oxygen molecule could also be occupied individually.
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Figure 12.3: Schematic procedure to align the Fermi energies for one spin orientation ¢. In (a) the
total density of states for an arbitrary molecular orientation is shown. Using Eq. (12.2) the total
density of states can be split up into the partial densities of states of the oxygen and aluminium
subsystems as shown in (b). Filling these partial densities of states with an arbitrary number of
electrons yields Fermi energies €f o, and €7 4, that are different in the general case. Therefore these
Fermi energies have to be aligned under the constraint of constant electron numbers as shown in (c).

P = 3 (et Slemet) (120

The summation is done only over the m oxygen basis functions, while a summa-
tion over all n basis functions would yield the identity operator. Due to the non-
orthogonality of the atomic orbital basis functions y; and the derived Bloch basis
functions ¥, the formalism of a dual basis employing covariant and contravariant
basis functions has to be used [273,274]. The definitions of the covariant Bloch basis
functions ©¥ and the contravariant Bloch basis functions ¢ are

(N = gs;z)l«obr , (12.72)
o) = Z s (12.7h)
(W = Vzi:lskw , (127¢)
and [¢) = 3 [p"9SE (12.70)

with (S¥)~! being the inverse overlap matrix. For covariant and contravariant basis
functions the following orthonormality relation holds,

<Mk > = <ol >=4; (12.8)

where 9;; is the usual Kronecker Delta.
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Consequently, there are two equivalent formulations? of the projection operator that
could be used.

P, = Y er >< o (12.9a)
=1

m
P5, = Y l¢™ >< pik| (12.9b)
i=1
Both formulations yield non-Hermitian matrices. This is why an equally weighted
linear combination of the two possible projection operators has been used in Eq. (12.6)
to obtain Hermitian matrices.

The method can be significantly simplified since it can be shown that the element
Pgm of the projection operator is equal to the overlap matrix element Szkj if 2 and
both refer to oxygen basis functions. In case of either ¢ or j being an oxygen basis
function and the other index referring to an aluminium basis function, sz’ij is equal
to 1 3 Sk Finally, for ¢ and j both pointing to aluminium basis functions Pé‘z’l-j is
Z€ero, because the aluminium pDOS must not be affected by the auxiliary field. To
show this we use the definitions of the covariant and contravariant basis functions in
Eq. (12.7). Inserting these expressions in (12.6) yields for the projection operator

Pk = (sz <¢E|+ii|¢‘;><sfy>—l<¢;|) (12,10

p=171=1 v=1 =1

Then the matrix elements P(l)‘%ij are given by

P55 = <¢§‘|Pé‘2|s0?> (12.11a)
O EEARE
p=171=1
Py |s0‘§>(5‘§y)‘1<90‘5|> o) (12.11b)
v=1 =1

1 m n
= (2 e e

2The equivalence can be proven using the definitions of the covariant and contravariant basis
functions (Eq. (12.7)):

Z lpi >< ‘Pi‘ = ZZ |l > SuiZ(Svi)71 <= ZZZ lp* > Sui(Sl/i)71 < oyl
[ 7 1% v [ 1% v

SN It >0 <ol = |t >< @l

poov u
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Figure 12.4: Structure of the projection matrix into the oxygen subspace Pl(‘)z and its relation to the
overlap matrix SK.

+2 > (el (%) 7 Heile)) ) (12.11c)
v=1\A=1
1 m n m n
T2 (ZZ )7S D0 >0 SASK) 15;3) (12.11d)
p=1l7=1 v=1 =1
1 (& m
) (Z_: Sinus + Z_:léwSL‘j> (12.11e)

1; for i<mAj<m
= { Slz. for i<mvVvji<m (12.11f)
0 for i>mAj>m
The structure of the projection operator is shown schematically in Fig. 12.4.

The new modified Hamiltonians obtained from Eq. (12.5) are diagonalized and the
resulting eigenvectors are used to construct new partial densities of states having
Fermi energies €f o) and € o, closer to each other. Self-consistency is reached for
each ¢ in an internal self-consistency-loop for each electronic DFT iteration until the
Fermi energies are aligned to an arbitrary precision. In practical calculations it was
found that converging the Fermi energies is very difficult, if the oxygen molecules
are far away from the surface. In this case no hybridization occurs and the pure
oxygen states start to oscillate around the Fermi level. However, it is not necessary
to perfectly align the Fermi energies in this particular case, because our final interest
is in the spins and occupations of the subsystems. In the absence of hybridization,
€% 0, can be anywhere in between a state that has to be occupied and a state that
has to be unoccupied without changing the spin state, i.e. the physics of the system.
In practical calculations not the Fermi energies, but the spins or the occupations of
the subsystems can therefore be used as convergence criterion, which strongly reduces
the computational costs. The convergence criterion used in this work is a maximum
deviation of 4+0.005 electrons in each subsystem which causes uncertainties in the
total energies of less than 10 meV. Additionally, the convergence of the strength of
the auxiliary field, i.e. the difference in Fermi energies, can be significantly improved

l\’)\»—t
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by using sophisticated algorithms like the Pulay mixer [159,160], which has been
implemented for this purpose in the inner self-consistency cycle. In the first few DFT
iterations typically about 5 to 10 inner iterations are required, but often close to
electronic self-consistency of the DF'T calculation no further changes in the strength
of the field are necessary, reducing the computational effort close to that of a standard
DF'T calculation in the last iterations. In the end, we then have obtained equal Fermi
energies for each spin.

e = 6;’0226;A1 (12.12a)
€ = €ho, = €hal (12.12b)

To align also the Fermi energies elT; and ell;, the densities of states for spin-up and
spin-down, i.e. the eigenvalues €7, are in a second step shifted against each other by

Ae = %(e} — €, to their average Fermi energy ep.

el = 1 — Aep (12.13a)

(3

eV = e + Aep (12.13b)

This step fixes the total spin of the system, which is necessary, since so far only the
electron distribution between the oxygen and aluminium subsystem has been modi-
fied still allowing for a redistribution of electrons between the two spin orientations.
In principle, this last step is an alternative formulation of the fixed-spin-moment ap-
proach working with only one Fermi energy instead of the usual two Fermi energies eIT?
and ell;, because in this step only N' and N' are fixed. Having now set the total spin
of the system as well as the occupations of the subsystems, the final self-consistent
DFT-solution has the spin-triplet located on the oxygen molecule while the metal
surface is still in a singlet state. However, it should be noted that this method is far
more general, and by changing the occupation numbers of the subsystems in principle
arbitrary diabatic potential-energy surfaces can be calculated including other spin and
charge states.

The eigenvectors and eigenvalues of the modified Hamiltonians can directly be used
in the standard routines of the DMol?® code, but still a correction term for the total
energy is required because of the applied auxiliary field and the shift of the eigenvalues.
This can be derived from the auxiliary field and the energy shift, which are both
known. The contribution due to the shift of the eigenvalues is

AEgif, = Aﬁzzn:(fim - fiki) ) (12'14)

k i=1

with f¥° being the occupation numbers of state i. The correction term due to the
auxiliary field can be derived from the total energy expression (6.17), because the
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auxiliary field is known. Only the sum over all eigenvalues k7 has to be corrected due
to the modified Hamiltonian, and all remaining terms in Eq. (6.17), which depend
only on the electron density, have been summarized as Eg.

B = >3 &7fi + En (12.15a)
k o 1
= YO < HTHN| > I+ B (12.15b)
k o =1
= D3> < T + Hy'lor > fi7 + Er (12.15¢)
k o =1
= SES (<ol > e
k o =1
+ < 7| Hp |7 > f}“’) + Eg (12.15d)
= FEso+ g+ Er (12.15¢)

FElot is the uncorrected total DFT energy including the energy of the auxiliary field, F'g
is the energy due to the auxiliary field and Fsc is the sum of all eigenvalues calculated
from the standard DFT Hamiltonian but employing the single-particle states obtained
using the spin-constraint. Inserting Eq. (12.1) and the auxiliary field matrix in the
expression for Eg yields the explicit form of Eg.

Be=3 33> > af -ar - Hgy- £ (12.16)
k o 1

The triple summation over all single-particle states and basis functions makes the
calculation of Eg rather time consuming. Therefore, the energy correction term is
calculated only once after self-consistency of the DFT calculation has been reached.
Finally, the corrected energy E of the spin-constrained calculation is

E = Esc + Er + AEgis = Frot + AEghisy — Ep. (12.17)

It is important to note that this method is completely parameter free and forms a
fully self-consistent DF'T method. The auxiliary field is a self-adjusting field that has
a configuration-dependent strength which is determined self-consistently without any
additional input except for the chosen occupations of the subsystems. The latter of
course are based on a scheme that assigns electrons to certain atoms of the system
and therefore, like other partitioning schemes, it is problematic for small molecule-
surface separations. However, the separation of the system into two subsystems using
projections onto atomic orbitals is an obvious and natural choice in this context
and becomes exact for large Z where no hybridization is present. Furthermore, it
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is important to note that with this procedure the partial densities of states are not
frozen and shifted statically, but in each interaction the single-particle states are
flexible to vary the contribution of each basis function freely while the auxiliary field
is determined self-consistently. Therefore, both, the molecule and the surface, have
a completely relaxed electronic structure under the given constraint. In particular
this allows for a local spin-polarization of the surface aluminium atoms close to the
oxygen molecule. This is not a real absolute magnetization but a local decrease of
spin-up-density and an increase of spin-down-density. The overall spin of the surface
remains a singlet. This effect will be shown in Fig. 13.6 for the triplet PES.

From the computational side the determination of the strength of the auxiliary
field forms an additional internal self-consistency cycle within each DFT iteration
that requires the calculation of the eigenvalues and eigenvectors for each k-point and
therefore is rather time consuming. However, for the tested systems only the very first
DF'T iterations require several inner iterations and also the overall DFT-convergence
is generally much improved speeding up calculations, because the oscillation of states
around the Fermi level is reduced. All in all, the costs of calculations using the spin-
constraint are therefore about the same as the costs of standard adiabatic calculations.

An advantage of the spin-constraint presented here is that with this method all
other parts of the DFT code can be used without further modification, and formally
the full ground state machinery of DFT can be applied. In Fig. 12.5 the course of a
DFT calculation employing the spin-constraint is shown schematically. Care must be
taken that the modification of the Hamiltonian and the analysis of the eigenvectors
are done in the representation of the atom-centered basis functions and not in the
orthogonal basis that is used for the diagonalization of the Hamiltonian as described
in Chapter 6. The whole formalism can also be used for calculations without periodic
boundary conditions. In this case all indices k referring to the k-point are omitted
and all Bloch basis functions ¢¥ are replaced by the non-periodic basis functions ;.
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Figure 12.5: Flow chart of a DFT calculation employing a spin-constraint.
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Spin E (eV) NT NI
restricted -31.744 = FEg 1 1
unrestricted | -31.744 = Eg 1 1
FSM 0.0 -31.744 = Eg 1 1
FSM 2.0 -21.478 = Er 2 0

Table 12.1: Total energies of a free hydrogen molecule in different spin states. A fixed-spin-moment
calculation (FSM) of spin 2 yields the triplet energy Er, while a standard DFT calculation provides
the singlet ground state energy FEs.

12.4 A Simple Test System

Once the spin-constraint has been implemented in DMol?, a simple test system has
to be found that allows fast calculations and that can easily be compared with known
correct results. A requirement for this system is that it can be divided into two
subsystems and at least one of the two subsystems should be able to switch from
one state to another, e.g. from a singlet to a triplet state and vice versa. The most
simple system consists of two hydrogen molecules. One hydrogen molecule mimics
the oxygen molecule and the other the aluminium surface. Depending on the relative
spin orientations of the electrons in the hydrogen molecule it can be either in a triplet
state (1o]',10*™) or in the singlet (10]*,10!1) ground state. Using the spin-constraint
DFT formalism one hydrogen molecule can now be switched from singlet to triplet
while the other is not affected by the auxiliary field and stays in the singlet state.

In order to establish a firm reference, first the total energies of a free hydro-
gen molecule in different spin states are calculated using standard density-functional
theory. For this simple system a fixed-spin-moment approach is sufficient to calculate
the triplet state of the hydrogen molecule providing an exact reference. All calcula-
tions are performed using a cutoff of 9 bohr for the basis functions, an all basis set
and the PBE functional. A bond length of 0.752 A is used for the molecule. For these
calculations it is not relevant whether the total energies are absolutely converged. It
is only important to obtain comparable energies, i.e. the parameters must be the
same in all calculations. In Table 12.1 the obtained total energies for the free hy-
drogen molecule are listed. The triplet spin molecule is unstable with respect to the
dissociated atoms, but this is not of interest here as we compare fixed configurations
without relaxing the system.

The calculations on the extended system consisting of two hydrogen molecules are
carried out in a large cubic box with a side length of 20 A with periodic boundary
conditions. Only the I' point is used. The molecules are oriented parallel to each
other with a distance of 7 A to avoid any interaction between the molecules. A spin-
unrestricted calculation yields a total energy of -63.489 eV, which is exactly twice
the energy of the afore calculated isolated free singlet molecule proving the absence
of interactions between the two molecules. The same we also find for all other spin
states listed in Table 12.1.
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Spin E (eV) N\ Ny N, N

restricted | -63.489 = 2- Es 1.0000 1.0000 1.0000 1.0000
unrestricted | -63.489 = 2 - Eg 1.0000 1.0000 1.0000  1.0000
FSM 0.0 -63.489 = 2 - Fs 1.0000 1.0000  1.0000  1.0000
FSM 2.0 -53.223 = Es + Er  2.0000 0.0000 1.0000 1.0000
FSM 4.0 -42.956 = 2- Ep  2.0000 0.0000 2.0000 0.0000
SC SS -63.489 = 2- Fs 1.0000 1.0000  1.0000  1.0000
SC ST -53.223 = Es + Er  1.0000 1.0000 1.9999 0.0001
SC TS -53.222 = Es + Er  1.9999  0.0001 1.0000 1.0000
SC TT -42.955 = 2 - By 1.9999  0.0001 1.9999  0.0001

Table 12.2: Total energies of two hydrogen molecules separated by 7 A as a function of the spin
configuration. The restricted and unrestricted calculations both yield non-spin-polarized hydrogen
molecules and the total energy is twice the energy of the isolated restricted molecule. The fixed-
spin-moment calculations (FSM) set the total spin of the system and yield the spin configurations
given in the last four columns. The asymmetric spin configuration for the total spin of 2.0 is a result
of the default start spin distribution in DMol® trapping the system in a local spin minimum. In
the spin-constrained (SC) calculations the occupations are fixed from the beginning to singlet (S) or
triplet (T) for the individual molecules. Occupations of 0.0001 for the minority spin have to be used
to determine the Fermi energies. All energies are also assigned to combinations of the energies of the
free singlet (Fg) and triplet (E1) molecules. A Hy bond length of 0.752 A is used for all calculations.

Now we can use the spin-constrained DF'T method to divide the total system into
two subsystems each of which is formed by one hydrogen molecule. We will call the
subsystems Hjy 4 and Hy 5. We want to switch molecule A from a singlet to a triplet
state while molecule B stays in a singlet state and vice versa. The overall spin of the
system then should be a triplet. In contrast to a fixed-spin-moment calculation with
the same overall spin, we now can exactly specify which spin is assigned to which
molecule. For the spin-constrained calculations we use the occupations le = 1.9999,
N/i = 0.00013, Ng = 1.0000 and Né = 1.0000. By exchanging the occupation numbers
it is possible to keep subsystem A in a singlet state and to switch subsystem B to
the triplet spin configuration. The results of some test calculations are summarized
in Table 12.2.

The results show that the total energies obtained from the spin-constrained (SC)
calculations are exactly the sums of the energies of the free molecules with the re-
spective spin configurations and the spins on both molecules can be switched in an
arbitrary way. The fixed-spin-moment calculation with an overall triplet spin (FSM
2.0) does not lead to two doublet states on both molecules because in DMol? by de-
fault the start spin-density to initialize a spin-polarized calculation is located on one
single atom. Therefore the initial symmetry is broken and the system gets trapped
in a local spin minimum. For this simple system this could be avoided by choosing
another initial spin configuration. However, in the general case of more complex sys-

3To determine the Fermi energies it is necessary to fill a small fraction of an electron in the
spin-down states of subsystem A. We checked that this has no influence on the total energy.
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Figure 12.6: Comparison of the total energies of a system consisting of two hydrogen molecules.
The total energy is given as a function of the intermolecular distance. The energies have been
calculated with the fixed-spin-moment approach (FSM) confining the total spin to a triplet and with
a spin-constraint forcing a triplet state on one molecule and a singlet state on the other molecule.

tems, the state we are interested in will not necessarily be a local minimum and thus
not accessible by fixed-spin-moment calculations, while it still can be calculated using
the spin-constraint.

Another possibility apart from the total energy to identify the physical states of the
two subsystems of the spin-constrained calculations is to compare the composition
of the eigenvectors and the eigenvalues with the corresponding values of the free
molecules. Also these tests show clearly that the spin states enforced by the constraint
are identical to those of the free singlet and triplet molecules.

So far, the two hydrogen molecules have been separated by 7 A to avoid interactions
between the subsystems. Now we want to investigate the effect of interactions. For
this purpose we reduce the distance between the molecules and monitor the potential-
energy for a fixed-spin-moment of an overall triplet spin and a spin-constraint of a
triplet located on one molecule and a singlet on the other one. The energies are
shown as a function of the distance between the two molecules in Fig. 12.6. For larger
separations the energies and spin configurations are the same in both cases, i.e. one
molecule is in a triplet state and one is in a singlet state. For a distance smaller than
3 A, the molecules start to interact and in case of the fixed-spin-moment calculation
the spin delocalizes on both molecules, because due to the wave-function overlap the
system can escape the local spin minimum mentioned above. This flexibility is the
reason for the lower total energy in case of the fixed-spin-moment calculation for small
separations. The spin-constrained calculation fixes the triplet on one molecule in all
calculations. This additional constraint is the reason for the higher energy.

The calculations on the hydrogen molecules clearly show that the spin-constrained
density-functional method is working reliably. Thus, we now can start applying this
approach to investigate the dissociation of oxygen molecules on the Al(111) surface.
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The Spin-Triplet Potential-Energy
Surface

13.1 Calculation of the Triplet Potential-Energy
Surface

The calculation of the triplet potential-energy surface employing the spin-constrained
density-functional method introduced in Chapter 12 is done in the same way as has
been described in Chapter 10 for the adiabatic potential-energy surface. For both
functionals, RPBE and PBE, 38 elbow plots with the molecular configurations shown
in Appendix C have been calculated!'. For both functionals six representative elbow
plots are shown in Fig. 13.1 and 13.2, respectively. In contrast to the adiabatic PES
sizeable energy barriers exist with heights of up to about 0.9 eV as assumed in the
model introduced in Chapter 11. In general, for the RPBE functional the height of the
barriers is larger by about 0.3-0.4 eV compared to the PBE functional. A functional-
dependence of this order of magnitude has not been found for the adiabatic potential-
energy surface. The reason for the larger deviations between the two functionals in
case of the barrier heights of the triplet PES might be that the different functional

'To reduce the CPU time required for the mapping of the six-dimensional triplet potential-
energy surface only the PBE energies have been calculated fully self-consistently. Based on these
self-consistent charge densities one DFT iteration using the RPBE functional has been calculated to
obtain the RPBE energies. This procedure has been used frequently in the literature before [74] with
only small uncertainties in the resulting relative energies. Errors could arise, if pseudopotentials are
used [245], which does not pose a problem for the all-electron calculations in the present work. To
check the applicability of this approach, all in all 96 different molecular configurations distributed
over 12 elbow plots, with particular emphasis on the barrier region, have been calculated fully
self-consistently using the RPBE functional and also non-selfconsistently starting from the PBE
densities. A comparison shows that the average error in energy differences is 1.3 meV while the
maximum error found is 6 meV. This is at least one order of magnitude smaller than the barriers
at which we eventually aim. Correspondingly, we concluded that the much less time-consuming
non-self-consistent calculations do not introduce a significant error in this case.
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Figure 13.1: Two-dimensional cuts through the six-dimensional spin-triplet potential-energy surface
calculated using the RPBE functional. The white dots represent the calculated DFT energies. The
substrate has been frozen in the geometry of the bulk-truncated surface. The energy zero point
corresponds to an oxygen molecule in the triplet ground state at an infinite distance from the surface
without any charge transfer.
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Figure 13.2: Two-dimensional cuts through the six-dimensional spin-triplet potential-energy surface
calculated using the PBE functional. The white dots represent the calculated DFT energies. The
substrate has been frozen in the geometry of the bulk-truncated surface. The energy zero point
corresponds to an oxygen molecule in the triplet ground state at an infinite distance from the surface
without any charge transfer.
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form of the exchange part in both functionals [74] is particularly sensitive to the spin
configuration of the system, which is significantly different between the adiabatic PES
and the spin-triplet PES in the region where the maxima of the energy barriers are
located. In the adiabatic PES most of the spin has already disappeared in this region,
while in case of the triplet potential-energy surface the full triplet is still conserved. As
has been found for example for the adsorption of CO and NO molecules on transition
metal surfaces [74], the PBE functional is more attractive than the RPBE functional,
which is in agreement with our findings. As a consequence of this difference in binding,
the spin-triplet potential-energy surface calculated with the PBE functional does not
show energy barriers with respect to the infinitely separated subsystems for 6 of the
38 calculated elbow plots. In all 6 geometries the molecule is oriented parallel to the
surface and its center of mass is above an fcc, hep or bridge site (geometries 2, 3, 5,
6, 11 and 13 in Appendix C).

Apart from the functional, the height of the barriers depends strongly on the
molecular orientation and lateral position. Therefore, a more detailed mapping of
the barrier region than in the adiabatic case has been done to ensure an accurate
description of the potential-energy surface for the subsequent molecular dynamics
simulations. As shown in Fig. 13.3, apart from the high symmetry fcc, hep, top
and bridge sites energy points with a bond length of 1.3 A and a center of mass
distance from the surface of 2.1 A have been
calculated for all possible angular orienta-
tions of the molecule at 11 additional “off-
symmetry” sites by sampling the angles 6
and ¢ in 30° intervals. The bond length and
the distance to the surface of these points
have been chosen such that they are located
on the energy barriers for most molecular
configurations. The six-dimensional shape of
the energy barrier towards dissociation is in
turn mapped very accurately, which allows
to properly account for steering effects in the
molecular dynamics simulations.

Having calculated the spin-triplet poten-
tial-energy surface it is instructive to analyze
the charge and spin distributions between
Figure 13.3: Surface sites within the irre- the two subsystems. Fig. 13.4 shows the to-
ducible part of the unit cell used for the map- tal spin and charge of the oxygen molecule
ping of the barrier region of the potential- as a function of the center of mass distance
energy surface. from the surface. The numbers have been

obtained for a molecule in a parallel orien-
tation towards the surface above a fcc site
(geometry 2 in Appendix C) using the PBE functional. For comparison the corres-
ponding numbers of the adiabatic calculations are also included (cf. Fig. 10.4). As can
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clearly be seen, the spin obtained from the Mulliken analysis corresponds to an ideal
triplet for all molecule-surface separations in contrast to the adiabatic calculation,
in which the spin decreases with the distance to the surface. However, also for the
triplet calculations the Hirshfeld spin is decreasing for distances below 3 A. This is a
consequence of the way the spins are assigned to the two subsystems in the Hirshfeld
analysis. In the latter the spin at each point in space is distributed among all atoms
in a ratio that corresponds to the ratios of the electron densities of the free atoms in
the same configuration, which is in conflict with our projection onto atomic orbitals.
Nevertheless, in contrast to the adiabatic PES also in case of the Hirshfeld analysis
of the triplet PES the full triplet is conserved, but an increasing part of the spin is
assigned to the aluminium. The Mulliken analysis is based on the same philosophy
as our projection technique and therefore reproduces exactly the triplet spin on the
oxygen molecule. The same arguments also hold for the charge distribution. It is
interesting to note that the artificial charge transfer from the metal to the oxygen
molecule at large separations, which is due to the energetic position of the oxygen
27*} orbitals as discussed in Chapter 10, completely disappears when the constrained
DFT is used, because now the occupations are fully controlled and these states are
shifted above the Fermi level. Consequently, the total energy of the system converges
to a constant value for separations larger than 6 A, as can be seen in Fig. 13.4(c). This
distance can therefore be identified as the separation at which the molecule-surface
interaction sets in within our DFT description keeping in mind that van der Waals
interactions are not properly included in density-functional theory [275].

In order to investigate the origin of the energy barriers of the triplet PES it is
instructive to analyze the spin-density for a molecular configuration at the energy
barrier. This is shown in Fig. 13.6 for a molecule parallel to the surface above an fcc
site employing the RPBE functional. The molecular configuration corresponds to the
point (d = 1.3 A, Z = 2.1 A) in Fig. 13.1(b). The positions of all atoms in the two-
dimensional cut are shown in Fig. 13.5. In Fig. 13.6(a) the spin-density of an isolated
oxygen molecule in its spin-triplet ground state without the aluminium slab is given
for reference. In (b) the strongly reduced spin-density of an adiabatic calculation
is shown. The integrated adiabatic spin-density amounts to 0.064 instead of 2.0 for
the ideal triplet. The spin-density in (c) corresponds to a triplet fixed-spin-moment,
calculation. Although the integrated spin-density still corresponds to a triplet, a large
amount of the spin has been transferred to the aluminium slab, which is the reason
why the fixed spin moment calculations in Chapter 12 did not yield an energy barrier.
In (d) the spin-density for the triplet spin-constrained DFT calculation is plotted.
The spin-triplet is localized on the oxygen molecule causing a depletion of spin-up-
density in the surrounding region of the metal surface shown in blue due to the Pauli
repulsion of like spins. This Pauli repulsion is the origin of the energy barrier. As the
metal surface is in an overall singlet state, the displaced aluminium spin-up-density
is delocalized in the slab, but no overall net magnetization of the slab is present. On
the other hand, in the fixed-spin-moment calculations the triplet spin is located on
the slab to a large extent, while the spin of the molecule is significantly reduced.
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Figure 13.4: Charge, spin and energy as a function of the molecular distance Z from the surface
obtained from the adiabatic and the triplet spin-constrained calculations. (a) shows the total charge
g of the oxygen molecule obtained from a Mulliken population analysis (black line) and from a
Hirshfeld analysis (dashed line). In (b) the total spins of the oxygen molecule are shown for these
two methods. In (c¢) the energy of the system is plotted with respect to the triplet energy, which
is converged for Z > 6 A. The values have been obtained with the PBE functional for a molecule
oriented parallel to the surface above an fec site (geometry 2 in Appendix C, 6 = 90°, ¢ = 30°).
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Figure 13.5: Orientation of the two-dimensional cut through the slab and atomic positions for the
spin-density plot in Fig. 13.6.
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Figure 13.6: Spin-density plots for a molecule with a bond length of 1.3 A oriented parallel to the
surface 2.1 A above an fcc site (geometry 2 in Appendix C) obtained with the RPBE functional.
This molecular configuration corresponds to a position on the triplet energy barrier. In (a) the
spin-density of a free Oz molecule in its triplet ground state without the aluminium slab is shown.
(b) gives the reduced spin-density in the adiabatic calculation. In (c) the spin-density distribution
for a triplet fixed-spin-moment calculation is shown, while (d) refers to a triplet spin-constrained
calculation. The position of the atoms is shown in Fig. 13.5
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13.2 Interpolation of the Triplet Potential-Energy
Surface

The preparation of the DFT data sets for the neural network interpolation is done in
the same way as described in Chapter 10. In total 2870 ab initio points are available
for the RPBE functional and 2917 points for the PBE functional. Adding high energy
points in parts of the potential-energy surface not accessible for the molecular dynam-
ics and extending the energy surface up to Z = 10 A into the vacuum as described
in Chapter 10 finally yields 3768 points for the RPBE functional and 3819 points for
the PBE functional. In case of the RPBE functional 96 of the DFT energy points are
chosen randomly and used as independent test set to control the prediction capability
of the network, for the PBE functional the test set consists of 97 points.

To find an accurate fit of the spin-triplet PES, for the RPBE PES 64 fits using differ-
ent network architectures, weight assignments and parameters have been performed.
For the PBE functional 48 fits have been carried out. For the RPBE functional the
best fit found results from a 11-40-40-1-tl network employing the same set of weights
that has been used in the fitting of the adiabatic PBE energy surface (Table 10.1).
The parameters of the Kalman filter, which has not been used in its adaptive version,
are A(0) =0.98000 and Ay =0.99770. The mean absolute deviation for the training and
test data points are 0.023 eV and 0.033 eV, respectively. In case of the PBE PES the
best fit found is also based on a 11-40-40-1-t1 network architecture, but a different set
of fitting weights for the data points listed in Table 13.1 has been used. In this case
the adaptive Kalman filter has been employed with the parameters A(0) =0.98000 and
Ao =0.99670. The obtained mean absolute deviations are 0.035 eV for the training
set and 0.031 eV for the test set. Surprisingly, here the average error of the test data
points is smaller than the error of the training points. This is because most of the test
points are located close to the minimum energy path and the barrier region, which
are both much better fitted than the rather large amount of high energy points in the
training set.

The analysis of the fit quality has been done in the same way as for the adiabatic
potential-energy surface. All 38 calculated elbow plots, but also the additional points
at off-symmetry sites are accurately reproduced. The mean absolute deviations for
several groups of data points are given in Table 13.2. It can be seen that the part
of the potential-energy surface with £ < 1 eV is fitted very accurately, while the
less important high energy part has an approximately 4 times higher average error.
To illustrate the precision of the neural network fit in the barrier region, for a point
(d =13 A, Z = 2.1 A), which is located close to the maximum of the barrier for
most molecular orientations, the neural network energies are compared to the DFT
energies for the 38 calculated RPBE elbow plots in Fig. 13.7. The comparison shows
an excellent agreement and all energies are accurately reproduced. The energy value
of geometry 11 is slightly negative because for this molecular orientation (parallel to
the surface above a bridge site) the barrier is located at a larger distance from the
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Points w
E <1leV 2.0
d=1224 A ANZ>284A 1000.0
(121 A <d<149A)AN(15A<Z<26A)A(-1.0eV <E < +1.0eV) 11.0
d=13AANZ=214A 167.0

Table 13.1: Set of weights assigned to the data points for fitting the spin-triplet potential-energy
surface obtained with the PBE functional.

RPBE PBE
Group Points Points MAD (eV) Points MAD (eV)
1 E<leV 2778 0.0117 2994 0.0201
2 E >1eV 990 0.0568 825 0.0874
3 d=1224AANZ>28A 1336 0.0014 1338 0.0016
4 d=1300AANZ=214A 315 0.0160 314 0.0314
5 d=1500ANZ=24A 46 0.0457 46 0.0343
6 d=1200ANZ=22A 46 0.0360 46 0.0313
7 d=1200ANZ=28A 44 0.0052 44 0.0137
8 d=1400 AN Z=28A 46 0.0288 46 0.0235
9 d=1200AANZ=17A 45 0.0551 45 0.0509
10 d=1500AANZ=17A 45 0.0616 45 0.0692
11 d=1400AANZ=18A4A 45 0.0355 45 0.0583
12 d=1300AANZ=254A 46 0.0108 46 0.0181
13 d=1224AANZ=354A 118 0.0023 119 0.0032
14 d=1224 ANZ=28A 118 0.0041 117 0.0038

Table 13.2: Mean absolute deviations (MAD) of different groups of points for the best fit of the
spin-triplet potential-energy surface calculated with the RPBE and the PBE functional.

surface at about Z =3.0 A (cf. Fig. 13.1 (e)).

13.3 Molecular Dynamics on the Triplet Potential-
Energy Surface

Based on these fits, molecular dynamics simulations have been done on the spin-triplet
potential-energy surface for both functionals. These simulations are complementary
to the molecular dynamics simulations on the adiabatic potential-energy surface in
that the latter allows for instantaneous charge transfer and spin reduction when the
molecule approaches the surface, while for the triplet molecular dynamics no charge
transfer and no change in spin is allowed at all. This corresponds therefore to an
infinite lifetime of the molecule on the diabatic triplet energy surface. The real ad-
sorption process might be somewhere in between these two limits since transitions
might occur, but in order to evaluate the relevance of non-adiabatic effects it has to
be shown first that motion on the triplet potential-energy surface can yield a reduced
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Figure 13.7: Comparison of the fitted and the RPBE DFT energies for a point in the typical barrier
region (d = 1.3 A, Z = 2.1 A) for 38 different molecular geometries (cf. Appendix C).
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Figure 13.8: Sticking curves obtained from molecular dynamics runs on the spin-triplet potential-
energy surface. The black diamonds represent the experimental data. The grey diamonds represent
the sticking probabilities obtained with the PBE functional and the empty triangles the RPBE
sticking probabilities.

sticking probability at all. The resulting sticking curves are shown in Fig. 13.8 and
compared to the experimental sticking data. For each kinetic energy 2000 trajectories
with random initial configuration starting at Z = 9.5 A have been calculated. For
both functionals a significant reduction of the sticking probability compared to the
adiabatic case can be observed (cf. Fig. 10.10). However, at first sight the two sticking
curves seem to be qualitatively different. The RPBE sticking curve reproduces the
shape of the experimental sticking curve very well, since due to the presence of energy
barriers for all molecular orientations the sticking probability of thermal molecules is
basically zero. With increasing kinetic energy the barriers can be overcome for more
and more molecular orientations and the sticking probability is rising to a value of
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about 90 %, which is very similar to the experimental saturation value.

The sticking curve based on the PBE triplet PES is very similar to the RPBE curve
for medium and high kinetic energies. The upshift compared to the RPBE curve
can be explained with the systematically lower energy barriers in case of the PBE
functional and provides a kind of “DF'T error bar”. However, in contrast to both,
the RPBE curve and the experimental sticking curve, for thermal molecules the PBE
sticking probability is also very high, about 87 %. The reason for this high sticking
probability is the absence of energy barriers for a few molecular orientations. Thermal
molecules approach the surface very slowly and have sufficient time to change their
orientation and lateral position corresponding to the shape of the surface potential.
The majority of low energy molecules is therefore steered into the barrier-free entrance
channels and can adsorb on the surface. This steering effect becomes less efficient
with increasing kinetic energy, because then the molecules have less time to reorient,
and consequently the sticking probability drops to about the experimental sticking
curve. This difference in the sticking probabilities of thermal molecules obtained with
the two functionals illustrates how critical small energy differences in the potential-
energy surface can be for the resulting sticking curve. Although the PBE triplet
energy surface is clearly less attractive than the adiabatic potential-energy surface,
in the typical barrier region the energy of some configurations is only about -20 meV
yielding no net barrier. If this energy would be only by about 50 meV higher, both
functionals would yield qualitatively the same triplet sticking curve, because then
thermal molecules could not adsorb on the surface. However, state-of-the-art density-
functional theory is apparently not able to provide the required accuracy here, and it
would be desirable to calculate the barrier heights with more precise methods like local
correction schemes for an improved description of exchange and correlation [276, 277].
Nevertheless, the qualitative reduction of the sticking probability based on the diabatic
triplet PES, which cannot be obtained from the adiabatic PES using either functional,
is untouched by these uncertainties.

As mentioned above, the triplet sticking curve forms just one extreme case in which
all types of transitions to other diabatic energy surfaces are neglected. Clearly, these
transitions will occur, at least if both atoms are adsorbed on the surface according
to a “normal” dissociative adsorption mechanism, because adsorbed oxygen atoms
are in a singlet state and charge transfer from the metal to the oxygen atoms takes
place. The consequences of these transitions for the sticking curve will be discussed
in Chapter 15.

This chapter will be concluded by some remarks on the reliability of the sticking
curves with respect to the fit and statistical arguments. So far each sticking curve
was derived from one particular fit which is expected to represent the six-dimensional
potential-energy surface accurately. This fit has been carefully selected in all cases but
a quantitative measure for the deviations in the sticking curves for different fits would
be desirable. In Fig. 13.9 the sticking curve based on the RPBE triplet potential-
energy surface obtained from two independent fits of the same accuracy is compared.
“Fitl” is the fit described above, and “fit2” employs a 11-40-40-1-t] network, an
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Figure 13.9: Sticking curves for two different neural network fits. The data have been obtained by
molecular dynamics runs on the spin-triplet potential-energy surface using the RPBE functional.
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Figure 13.10: Sticking curves for different numbers of trajctories per kinetic energy. The data have
been obtained by molecular dynamics runs on the spin-triplet potential-energy surface using the

RPBE functional.

Points w
E<leV 25.0
d=1.224 AAZ>28A | 500.0
d=13AAnZ=21A | 1670
d>1.6 A 10.0

Table 13.3: Set of weights assigned to the data points for fit 2 in Fig. 13.9.
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adaptive Kalman filter with the parameters A(0) =0.98000 and Ao =0.99770 and
the weights given in Table 13.3. Although the network architecture is the same in
both fits, the network weights are completely different due to the different use of
the Kalman filter and the fitting error weights. The two sticking curves are very
similar and it can be concluded that the uncertainty in the sticking probabilities with
respect to the applied fit is about 5 %. Tests with a number of other fits confirmed
this uncertainty estimate. Another question is if the 2000 random trajectories at each
kinetic energy are sufficient to obtain statistically reliable sticking curves. In Fig. 13.10
the RPBE triplet sticking curve is shown for different numbers of trajectories. For
less than 100 trajectories per energy strong oscillations appear, but then the sticking
curve converges and the curves based on 1000 and 2000 trajectories are basically
indistinguishable.
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Chapter 14

Further Diabatic Potential-Energy
Surfaces

To obtain a more realistic picture of the dissociation process, transitions from the
initial neutral spin-triplet PES to other diabatic PESs have to be included in the
model. Two important alternative diabatic PESs are e.g. the singlet potential-energy
surface, which corresponds to the ground state spin of the adsorbed atoms, and an
ionic potential-energy surface, which emerges if one electron is transferred from the
metal to the oxygen molecule. By transferring further electrons a series of ionic PESs
can be constructed, but here we will focus on the first transfer only, and in short
this PES will be called the “ionic PES”. The energetic order of the singlet PES and
the ionic PES determines the coupling to the triplet energy surface at large molecule-
surface distances, and thus ensuing transitions between these states when the molecule
approaches the metal surface.

The constrained density-functional method derived in Chapter 12 is very general
and allows in principle to calculate any spin and charge state by distributing elec-
trons accordingly into the oxygen and aluminium spin-up and spin-down subsystems.
Consequently, this method is not limited to the calculation of the neutral spin-triplet
potential-energy surface, but should also allow to calculate further diabatic potential-
energy surfaces. In the following sections its applicability to the singlet PES and the
ionic PES will be explored.

14.1 The Singlet Potential-Energy Surface

The singlet potential-energy surface is defined by a spin-singlet on the oxygen molecule
and also on the metal surface. Standard density-functional theory offers two ways to
calculate this energy surface. The first way is to perform spin-restricted, i.e. non-spin-
polarized, DFT calculations. In this method the individual spin-up and spin-down
densities are the same since the spatial orbitals for both spin orientations are identi-
cal. As described in detail in Section 9.1 these calculations do not allow to distinguish
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between the A, and 12; singlet states and the low-spin triplet in current implemen-
tations of DF'T since these states have the same charge density. The second possibility
for the calculation of the singlet energy surface would be the use of fixed-spin-moment
calculations with an overall singlet spin, i.e. NT — N! = 0. However, we found that
these calculations are very sensitive to local spin minima for large molecule-surface
separations. Depending on the spin-density used to initialize the DFT calculation
for large molecule-surface separations these local minima can correspond to a triplet
oxygen molecule whose spin is compensated by an opposite spin-density in the metal
surface. This is clearly not the singlet energy surface we want to calculate. On the
other hand, if by choosing a suitable starting density in the fixed-spin-moment ap-
proach a singlet oxygen molecule is obtained, i.e. N(T)z = N(l)g, the calculation reduces
to the spin-restricted result! with degenerate spin-up and spin-down orbitals having
the same spatial part. The fixed-spin-moment approach does therefore not offer any
advantages over spin-restricted calculations and will not be used in this work.

Another possibility to calculate the singlet potential-energy surface is to employ the
spin-constrained density-functional approach in a similar way as in the calculation of
the triplet PES, but to assign the same number of electrons to spin-up and spin-down
orbitals in both subsystems. For the (3x3) supercell used in this work containing 63
aluminium atoms and two oxygen molecules the occupation numbers of the subsystems
are accordingly: N(T)2 = N(%Q = 16, and N}, = N, = 409.5. The main question is,
whether it is possible to decouple the oxygen molecule completely from the surface as
it has been achieved in case of the 32; triplet ground state. In Fig. 14.1 two elbow
plots obtained using the RPBE functional are shown for the spin-restricted and for
the singlet spin-constrained density-functional calculations. All in all, 4 elbow plots
(geometries 1, 2, 8 and 12 in Appendix C) have been calculated using spin-constrained
DFT and 12 elbow plots (geometries 1-12 in Appendix C) using spin-restricted DFT
for the PBE and the RPBE functional employing the same parameter set as for the
adiabatic and the spin-triplet PESs.

According to Fig. 14.1 for large molecule-surface separations the spin-restricted PES
has a significantly higher energy than the singlet obtained from the spin-constrained
DFT calculation. For Z=6 A the energy differences to the spin-triplet PES are
0.937 eV and 0.397 eV, respectively, independent of the molecular orientation. The
difference between these energies can be understood by a comparison to the results
obtained for the free oxygen molecule in Section 9.1. Using the RPBE functional, the
free spin-restricted oxygen molecule has a singlet-triplet splitting of AEgr=1.171 eV,
and the unrestricted calculation yields a splitting of AFgp=0.393 ¢V (cf. Table 9.4)
with respect to the triplet ground state, while the experimental singlet-triplet splitting
is about 0.98 eV [210]. Obviously, the spin-constrained singlet calculation yields an
oxygen state corresponding to the spin-unrestricted calculation of the free molecule,
with a similarly too low singlet-triplet splitting. This has been confirmed by compar-

'The computational costs are doubled compared to a restricted calculation due to the formally
unrestricted calculation.
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Figure 14.1: Singlet elbow plots for two different molecular orientations (geometries 1 and 2 in
Appendix C) calculated using two different methods. (a) and (b) have been obtained by standard
restricted (non-spinpolarized) DFT calculations, and (¢) and (d) by singlet spin-constrained DFT.
All shown elbow plots have been obtained using the RPBE functional, and the zero point of the
energy is the same as for all potential-energy surfaces in this work. The white dots represent the
calculated energy points. The substrate has been frozen in the geometry of the bulk-truncated
surface. The energy zero point corresponds to an oxygen molecule in the triplet ground state at an
infinite distance from the surface without any charge transfer.

ing the energy levels and occupations in both cases, and the obtained state for large
molecule-surface separations corresponds exactly to a superposition of the undisturbed
energy levels of the metal surface and the free unrestricted “singlet” molecule, which
in fact corresponds to a mixture of the 12; singlet state and the low-spin triplet Os.
Consequently, using the spin-constrained DFT method, we can control the state of
the oxygen molecule basically in the same way as for the free molecule. This would
exactly be what we need, but on the other hand, as explained in Section 9.1, the
description of the singlet state with current gradient-corrected exchange-correlation
functionals is very poor. By approximating the singlet state with a single-determinant
wave-function, which is equivalent to using a symmetry-broken density, we therefore
necessarily have to deal with the adherent severe underestimation of the singlet-triplet
splitting.
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Further inspection of Fig. 14.1 shows that close to the surface the spin-restricted
energy is lower than the energy obtained from the spin-constrained calculations. This
is because, like in case of the triplet PES, the spin-constrained singlet PES does not
allow for charge transfer from the metal surface to the molecule at all distances. Thus,
the spin-constrained singlet PES does not represent the ground state of the system
when the oxygen atoms are adsorbed on the surface and further ionic PESs would have
to be taken into account for a complete description. The spin-restricted PES, on the
other hand, does not include any constraint concerning the charge distribution, and
has the same energy as the adiabatic PES close to the surface. In terms of charge the
spin-restricted PES is “adiabatic” in that always the lowest energy charge distribution
is obtained. This rises the question if like in case of the adiabatic PES a finite charge
transfer from the metal to the oxygen molecule occurs even at very large molecule-
surface separations. This is indeed the case. For Z=6 A a sizeable charge transfer of
about 0.12 e has been found, which is approximately 10 times larger than in case of
the adiabatic PES for the same molecular configuration (cf. Chapter 10). In order
to estimate the charge transfer for an infinite molecule-surface separation, like in case
of the adiabatic PES, calculations of a charged free spin-restricted oxygen molecule
have been carried out. In Fig. 14.2 the energetic position of the 27* level is shown as
a function of the molecular charge®. In excellent agreement with the slab calculation
the 27* level is aligned with the Fermi level of the clean Al(111) slab (ep o1=-4.522 ¢V)
for a charge transfer of about 0.12 e. This comparably large charge transfer lowers
the total energy of the spin-restricted PES and is the reason for the reduced singlet-
triplet splitting of 0.937 eV mentioned above, compared to the value of 1.171 eV for
the free restricted molecule. The good agreement of the singlet-triplet splitting with
experiment is therefore just due to an error cancellation in that the charge transfer
lowers the energy while the admixture of the 12; state and the low-spin triplet O,
increases the total energy.

In summary, the singlet PES obtained from spin-constrained DF'T has a clearly too
low energy for medium and large molecule-surface separations, i.e. in the region of
the PES we have identified before as most important for molecular sticking. This is a
consequence of the single-determinant approximation to the underlying state yielding
a symmetry-broken spin-density as described in Section 9.1. Close to the surface the
energy is higher than the adiabatic ground state due to the absence of charge transfer.
This indicates that further diabatic PESs should be included for a complete model. It
is a priori not clear, if the spin-constrained singlet PES provides more reliable energies
in this region, because the present strong hybridization has two consequences: On the
one hand the oxygen molecule is not well defined anymore making the inaccuracies
in the description of the singlet state obsolete. On the other hand the projection of
the Kohn-Sham states on the atomic orbitals becomes, although mathematically well
defined, an arbitrary choice to define the oxygen and aluminium subsystems. For large

%In case of a restricted calculation the 27*T and 27*! orbitals are degenerate and no distinction
is possible.
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Figure 14.2: Energetic position of the 27* orbital of a free spin-restricted oxygen molecule as a
function of the molecular charge ¢. The black line indicates the Fermi level ep a1 of a clean Al(111)
slab. The zero point of the energy corresponds to the vacuum level in the calculation of the free
molecule, which is very close to the vacuum level of the potential in the Al(111) slab calculation.

molecule-surface separations the spin-restricted PES is energetically a much better
approximation to the 'A, state, but only due to a fortuitous error cancellation. Yet,
even without the energy lowering as a consequence of the unphysical charge transfer
the singlet-triplet splitting would be significantly closer to experiment than in case of
the spin-constrained result. Close to the surface a basically adiabatic charge transfer
reduces the spin-restricted energy to the adiabatic ground state. This implies that,
as mentioned above, the spin-restricted PES is in fact a mixture of several diabatic
PESs of different charge. From this analysis it can be concluded that there is no easy
way to obtain the singlet PES from present-day density-functional theory. A more
detailed discussion of the consequences for the transition probability from the triplet
to the singlet PES will be given in Chapter 15.

14.2 The Ionic Potential-Energy Surface

Another diabatic potential-energy surface, which has been suggested to play an impor-
tant role in the oxygen dissociation on Al(111) [28], is the ionic potential-energy sur-
face. It can be obtained by transferring one electron from the metal surface to the oxy-
gen molecule, which therefore is in a spin-doublet state. In principle, the calculation
of this energy surface can be done using the constrained density-functional method
by assigning the corresponding electron numbers to the two subsystems (N(T)2 =18,
Ncl)2 = 16, and N}, = N}, = 408.5). This has been done for five molecular orien-
tations (geometries 1, 2, 8 11 and 12 in Appendix C) for the PBE and the RPBE
functionals. Two examples are shown in Fig. 14.3 for the RPBE functional. Close
to the surface the energy is rather low because of a charge transfer comparable to
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Figure 14.3: Tonic elbow plots for two different molecular orientations (geometries 1 and 2 in Ap-
pendix C) calculated using the constrained DFT method. All calculations have been done using
the RPBE functional. The white dots represent the calculated energy points. The substrate has
been frozen in the geometry of the bulk-truncated surface. The energy zero point corresponds to
an oxygen molecule in the triplet ground state at an infinite distance from the surface without any
charge transfer.

the ground state of the system. At Z=2.5 A the energy starts to rise strongly with
increasing molecule-surface separation.

However, the obtained energies have again to be treated with care for several rea-
sons. For large separations the potential-energy should correspond to the difference
between the work function of the Al(111) surface (4.24 eV [256]) and the electron affin-
ity of the oxygen molecule (0.440 eV [225,278]), i.e. approximately 3.8 eV according
to experiment. This energy should be obtained also from the constrained DFT cal-
culations, because for large molecule-surface separations the oxygen and aluminium
states are well defined due to the absence of hybridization. The problem that arises
is a consequence of the supercell approach chosen to model the aluminium surface
in this work. While the (3x3) unit cell consisting of 7 aluminium layers is definitely
large enough to obtain reliable energies when large electrostatic charges are absent,
this is not necessarily true for the ionic energy surface due to the rather long range
of the Coulomb potential. An additional complication is that oxygen is adsorbed on
both sides of the slab. When an electron is transferred from the surface to each of
the molecules, the slab becomes therefore doubly charged, which is energetically very
unfavorable. At large molecule-surface separations we correspondingly find too high
potential-energies, e.g. 5.8 eV at Z=5 A practically independent of the molecular ori-
entation. This suggests to interpret the obtained results on the ionic potential-energy
surface only in a qualitative way. A more accurate determination of this surface would
require a slab without inversion symmetry to avoid the doubly charged aluminium.
This, however, cannot be handled in the present version of DMol® because of the miss-
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ing dipole correction [259]. Most probably also larger supercells would be required to
reduce the electrostatic interaction between the neighbored unit cells.

Yet, despite all these deficiencies, also according to experiment the ionic PES should
be approximately 3 eV higher in energy than the 'A, singlet state at large molecule-
surface separations. Consequently, the latter is expected to couple much stronger to
the triplet PES, and thus should be more important for the sticking probability of
thermal molecules in the region of the barrier onset.
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Chapter 15

The Role of Electronic Transitions

Up to now our molecular dynamics simulations have been restricted to two extremes,
the adiabatic limit corresponding to an instantaneous relaxation of the electronic
structure to the ground state, and the spin-triplet limit without any change in the
charge or spin state. These two extreme cases allowed to answer the question if
non-adiabatic effects could in principle account for the low sticking probability of
oxygen on Al(111), i.e. do barriers exist and how do they affect the sticking curve
if no transitions occur. A more refined model has to include transitions between
different diabatic energy surfaces. At least at some energy range this will most likely
increase the absolute values of the sticking probability. In principle, the adiabatic
PES is a combination of all diabatic states, and the molecule is moving simultaneously
on all of them with a certain amplitude. A slow molecule will therefore follow the
adiabatic potential, if a strong coupling and consequently a high transition probability
is present. To include these effects, the final intention must be to perform molecular
dynamics simulations simultaneously on all suitably coupled diabatic PESs to obtain
a quantitatively correct sticking curve over the whole kinetic energy range of interest.
This is a very ambitious goal that requires the knowledge of all relevant diabatic PESs
and their couplings. In this chapter the progress made in the present work is evaluated
in the context of a possible strategy towards this goal.

The first step necessarily must aim to provide accurate potential-energy surfaces.
These attempts up to now have been exclusively based on density-functional theory,
usually in the adiabatic limit [22,24,70-73]. The constrained DFT approach intro-
duced in the present work allows now to also calculate arbitrary diabatic PESs with
DFT accuracy. Another approach is the extension of the ASCF method [118] to sur-
faces, currently being developed by Lundqvist and coworkers [268,269]!. From the

'In the surface-extended ASCF method first an adiabatic DFT calculation is carried out. Then
the occupations of the states are modified in that one electron in a particular state is removed and
filled into a formerly unoccupied state. Under the constraint of these occupations a self-consistent
calculation is performed. The clear drawback of this method is that, in contrast to the constrained
DFT method introduced in the present work, in case of interacting subsystems the hybridization is
completely neglected, which can significantly affect the obtained energies.
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diabatic and the adiabatic energies the coupling |H],| between two diabatic states
can be obtained. For a two-level system Eq. (3.1) holds, and one needs three of the
four energies, two adiabatic energies Ef, and two diabatic energies EiZ. Rearranging
Eq. (3.1) yields

, 1 21 2
H,| = \/(2 (E{‘+E§)—E%) - (B -ED)" (15.1)

However, this expression is valid only for a two-level system, and becomes more com-
plex in the general case of N diabatic PESs. The Hamiltonian in the diabatic repre-
sentation is then

Hy, Hi; -+ Hiy
!/ ! N
o= | o e (15.2)
Hy, - - Hhy

Basically, for each pair of diabatic PESs an individual coupling strength H {j has to be
determined, which depends on the molecular configuration. Another, yet unsolved,
problem is that for a large number of diabatic states an under-determined set of
equations arises, because the number of coupling matrix elements is higher than the
number of diabatic energy surfaces.

The configuration dependence of the couplings enters via the respective PESs, which
are therefore of fundamental importance. In Fig. 15.1 the adiabatic ground state
energy and several diabatic energies obtained in this work are shown for the PBE and
the RPBE functional. The energies correspond to molecular configurations along the
reaction paths on the initial spin-triplet PES for two different molecular orientations,
above an fcc site oriented perpendicular and parallel to the surface. The corresponding
triplet elbow plots are shown in Fig. 15.1(a) and (d), respectively. In the energy
diagrams in Fig. 15.1(b), (c), (e) and (f) the energies along the reaction path have
been projected on the Z-axis for molecule-surface separations between 2 and 5 A.
(b) and (c) refer to the perpendicular orientation in elbow plot (a), while (e) and
(f) are assigned to the parallel orientation in elbow plot (d). At all distances, the
adiabatic PES has by definition the lowest energy. At molecule-surface separations
larger than 3 A the triplet PES is energetically the most favorable of all diabatic PESs.
Between 2.5 and 3 A above the surface other diabatic PESs cross the triplet state.
It is interesting to note that the sequence of these crossings is very similar for both
functionals, but the energies are systematically higher for the RPBE functional. This
increase of energy barriers using the RPBE functional has also been found for other
systems [279,280]. As a consequence, the relative energies of the two functionals are
similar and the couplings are not expected to depend qualitatively on the functional.

Initially, at large molecule-surface separations, the oxygen molecule moves on the
triplet PES, which should be identical to the adiabatic ground state. However, this
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Figure 15.1: Energies along the reaction path for two different molecular configurations calculated
using the PBE and the RPBE functional and projected on the Z-axis for molecule-surface separations
between 2 and 5 A. (a) shows the reaction path (white line) on the RPBE-triplet elbow plot for a
molecule oriented perpendicular to the surface above an fcc site. In (b) the energies of all considered
diabatic PESs along this path are shown for the RPBE functional. (c) contains the energies for the
PBE functional using configurations on the very similar PBE-triplet reaction path (not shown). In
(d) the reaction path for a molecule oriented parallel to the surface above an fcc site is shown for
the RPBE functional. The corresponding diabatic energies are shown in (e), while (f) contains the
PBE energies. “SC” denotes the spin-constrained singlet PES and “ionic” the superoxide PES with
one electron transferred from the aluminium to the molecule.
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is not the case in the adiabatic calculations due to the artificial charge transfer from
the surface to the molecule discussed in Chapter 10. The adiabatic PES is there-
fore too low in energy and converges at an infinite distance from the surface to the
wrong energy, which is approximately 20 meV lower than the triplet energy. This
yields an unphysical coupling at all distances from the surface, because according to
Eq. (15.1) the coupling between the triplet and any other diabatic PES is zero only
if the triplet energy is exactly identical to the adiabatic ground state. Consequently,
it cannot be identified, at which molecule-surface separation a physically reasonable,
although initially weak, coupling sets in. Another uncertainty in the energies far
away from the surface and affecting all PESs is the incorrect treatment of van der
Waals interactions in DF'T since present-day exchange-correlation functionals depend
only on the local density and density gradients, while van der Waals interactions are
non-local in nature. Still, many functionals yield an energy lowering which could be
interpreted as a physisorption well caused by an overlap of charge densities, as has
been shown for example in studies on rare gas dimers [275]. The resulting energy
changes are very small, typically well below 0.1 eV and irrelevant for the interpreta-
tion of DFT energies, but for molecule-surface separations of more than about 3 A
this is the same order of magnitude as the energy difference between the adiabatic
and the triplet PESs. However, at a distance of 6 A the overlap of charge densities
becomes very small having no effect on the energy any more, as has been shown for
the spin-constrained singlet and triplet calculations, which reach a constant energy
beyond Z=6 A.

The next major question that arises is which diabatic PES gives rise to the split-
ting between the triplet and the adiabatic PES by coupling to the triplet state. As
discussed in Chapter 11 there are two simplified models, a charge transfer model and
a spin-flip model for the non-adiabatic effects. To assess the role of charge transfer a
series of ionic PESs can be calculated, i.e. the superoxide PES “Al(111)" 4+ O3”, the
peroxide surface “Al(111)**+03~" and further ionic states of the adsorbed atoms [21].
These are not accessible by standard DFT, but a calculation is possible using the
ASCF method if hybridization effects are neglected, which however can be a strong
and uncontrolled approximation [269]. In the previous section it has been shown that
the “superoxide” ionic PES in principle is also accessible using the constrained DFT
formalism, but for accurate energies a larger supercell would be required (like in the
ASCF method). Nevertheless, for large molecule-surface separations the ionic PESs
are significantly higher in energy than the 'A, singlet state. The 'A, state is there-
fore a more likely diabatic coupling state at a large molecule-surface distance and has
been investigated in more detail in the present work. As can be seen in Fig. 15.1,
the uncertainty in energy with respect to this state is unfortunately particularly large,
since far from the surface the spin-restricted and the spin-constrained (SC) singlet dif-
fer significantly. As discussed in Chapter 14 the spin-constrained singlet calculation
yields a far too low singlet-triplet gap, while the spin-restricted calculation includes
also a sizeable charge-transfer contribution. Consequently, a reliable singlet PES is
presently not available, and these uncertainties in both the singlet and in the adia-
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batic energy as well as the functional-dependence of the barrier heights of the triplet
PES so far prohibit a straightforward application of the two-state model described in
Chapter 11.

Still, from Fig. 15.1 it can be concluded qualitatively that the crossing between
the triplet and other diabatic PESs occurs roughly at a distance between 2.5 and
3 A above the surface with a slight dependence on the molecular orientation. The
coupling is largest at the crossing, which is clearly closer to the surface than the
onset of the barriers. The latter exhibit a strong functional dependence, as shown
in Chapter 13, adding further uncertainty to the exact position and energetics of the
level crossings. Most of these problems are related to the implementation of exchange
and correlation in present-day DFT, and obviously this is as far as one can get with
current functionals. Before the coupling of the diabatic states can be addressed,
a more precise way to determine the diabatic energies using a different treatment
of exchange and correlation has to be found. The price of going beyond DFT is
unfortunately a significantly higher computational demand of the calculations, and a
high-level treatment of electron correlation like in configuration interaction [100] or
coupled cluster approaches [100] is currently unfeasible for a direct mapping of six-
dimensional PESs of surface systems. Still, an assessment of the barrier heights could
be done for representative configurations, particularly exploiting the near-sightedness
concept, i.e. using the higher level calculations only for corrections of the DFT total
energies [276,277]. With our present understanding from Chapter 13 this is most
important for the triplet PES, but also some functional dependence in the shape of
the adiabatic PES could be resolved (cf. Chapter 10). Concerning the triplet PES
a suitable way to constrain the occupations in the wave-function based calculations
would have to be found. As the constrained DFT approach described in Chapter 12
is by construction not limited to DF'T, in principle it should be applicable to other
electronic structure methods based on localized basis functions as well.

Concluding that the quantitative calculation of coupling matrix elements is cur-
rently limited by the approximate DFT energetics, some qualitative considerations
can still be done. In Fig. 15.2 the energy diagram of Fig. 15.1(b) is shown. Addi-
tionally, the turning points of a thermal molecule and of a molecule with a medium
kinetic energy of 0.25 eV are included. The singlet PES is represented by the spin-
restricted calculations, keeping in mind the too low energy due to charge transfer
with adherent uncertainty of the exact location of the crossing point. Due to the still
comparably large energy difference to the singlet PES the part of the triplet PES
accessible to the thermal molecule is expected to couple only weakly to the singlet
state. Consequently, the transition probability? is expected to be very small. This
suggests that the molecule would be confined to the triplet PES, cannot get close to
the surface and is finally reflected into the gas phase. On the other hand, the medium

2The probability of a transition between the 'A, and the 3Eg_ state for an oxygen molecule in the
gas phase due to spin-orbit coupling is very small. In experiment it has been found that the lifetime
of the 'A, state is about 45 minutes at low gas pressures [223].
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Figure 15.2: Turning points of a thermal (E=0.025 eV) and a medium energy (F=0.25 eV) oxygen
molecule approaching the Al(111) surface on the triplet PES oriented perpendicular to the surface
above an fcc site (cf. Fig. 15.1(b)). The thermal molecule cannot get closer than 3.5 A to the
surface. At this distance the coupling to the singlet PES, here represented by the spin-restricted
PES, is rather small. The medium energy molecule is getting very close to the crossing point where
the maximum coupling between the diabatic PESs is present.

energy molecule can get much closer to the crossing point where the strongest coupling
is present. Consequently, eventually induced transitions might increase the sticking
probability for this kinetic energy. Higher energy molecules (£ > 0.9 eV) can over-
come all barriers on the triplet PES and stick on the surface regardless of whether
or not transitions take place. In summary, this implies that a significant change of
the sticking probability is only expected for medium kinetic energies, leaving the low
sticking probability found for thermal molecules in the triplet limit untouched by
transitions. However, as long as the exact position of the curve crossing and the
exact barrier height on the triplet PES are not known, this simple model cannot be
confirmed. Still, there is some experimental evidence that the 3Eg_ state of O can
have a very long lifetime (defined as the inverse of the transition probability) even in
the presence of a metal surface. Menzel and coworkers [281] identified for example an
oxygen molecule in its paramagnetic triplet state physisorbed on the Pt(111) surface
below 30 K.

Assuming that the PESs could be obtained accurately by a different treatment of
exchange and correlation, the next step towards a quantitative sticking curve would
be to include transitions between the diabatic PESs. For the oxygen dissociation
on Al(111) two studies based on simple model potentials have been done in this
direction [21, 28].

Katz et al. [21,29,68] used wave packet dynamics to obtain populations of four
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diabatic PESs, the neural physisorption PES, the superoxide PES, the peroxide PES,
and a PES describing the adsorbed atoms. Due to the lack of precise potentials, the
diabatic states have been modelled by empirical functions. The atomic structure of
the surface was furthermore completely neglected, reducing the dimensionality of the
problem to three. Additionally, for the non-adiabatic coupling between each pair of
states estimated parameters have been used in a combination with a function decaying
exponentially with increasing distance from the surface. This generic model underlines
the need for precise ab initio potentials, but also gives an idea what could be done by

combining suitable PESs with quantum dynamics®.

In the second study Hellman et al. [28] estimated the sticking probability from a
simple one-dimensional model based on a combination of DFT using the Thomas-
Fermi-Weizsécker approximation to the kinetic energy functional [107,108] and em-
pirical functions. They took into account the neutral physisorption state as well as the
ionic superoxide PES, and included transitions by an empirical function introduced
by Langreth and Nordlander [282] that decays exponentially with the distance from
the surface, which in turn was represented by a jellium model.

Both studies yield a reduced sticking probability for thermal molecules. However,
due to their empirical character, i.e. parameters fitted to experiment and the neglect
of most degrees of freedom, a more precise calculation of the sticking curve based on
high-dimensional ab initio PESs is highly desirable. This holds in particular since
it has been shown in Chapter 13 that small changes in the PES can have a large
impact on the sticking curve. The strong surface-site dependence of the PESs, which
has been neglected in both studies, is out of question. Both models also have in
common that they assume an exponentially increasing transition probability when
the molecule approaches the surface. For a model containing only a small number
of coupling states this would be in contrast to the fact that the coupling is highest
at the curve crossing. Yet, this probably does not introduce large errors, as closer
to the surface many curve crossings might occur that open many ways for electronic
transitions. An alternative approach yielding the same conclusion is to use the width
of the oxygen 27" levels in the DOS as a measure for the electronic interaction with
the surface. From the peak width I' the lifetime 7 = % could be estimated. This has
been done within our calculational setup for a molecule oriented perpendicular to the
surface above an fcc site. The lifetime at a certain distance was found to be in the
same order of magnitude as the time the molecule spends closer to the surface than
this point. All in all the trajectory from the onset of noticeable level broadening to
the turning point and back to the vacuum takes less than 1 ps for a thermal molecule
on the triplet PES. Still, this simple DOS model does not account for spin-flip effects
as the DOS only indicates electronic interaction in general, i.e. for example exchange
of electrons with the surface. In this context a spin-flip within the molecule could be

3Wave packet dynamics for other systems, e.g. the laser induced desorption of NO from a NiO(100)
surface, have been carried out by Kliiner et al. [171]. These calculations have been based on accurate
low-dimensional PESs obtained from CI calculations.

163



Chapter 15. The Role of Electronic Transitions

realized by an exchange of an electron with the surface in that an electron of spin «
is transferred from the molecule to the surface and in return an electron of 3 spin
reduces the former triplet to a singlet. This process, however, is energetically activated
since the unoccupied 27*! orbital is higher in energy than the formerly occupied 27!
orbital.

A very promising method to perform dynamical studies on several coupled PESs in-
cluding transitions is the surface hopping method of Tully and coworkers [283, 284]. It
is a mixed quantum-classical dynamics method in which the atoms move classically on
multi-dimensional PESs; while the electronic degrees of freedom are treated quantum
mechanically. The essential component is a self-consistent treatment of the classical
and the quantum subsystems in that the Hamiltonian acting on the electrons depends
on the nuclear coordinates, so that in turn the forces on the nuclei are determined by
the quantum state of the system. The wave-function of the system is a linear com-
bination of basis functions, which can either be the diabatic or the adiabatic states.
For each quantum state there is a distinct classical path, and the transitions between
these states are determined by a non-adiabatic coupling vector. While the molecule
moves on the PES of one particular quantum state, the amplitude of each electronic
quantum state is calculated. By choosing a suitable hopping algorithm it is ensured
that a large number of trajectories yields the correct population of each state [86].
However, due to the lack of accurate potentials, the surface hopping method has not
been applied to the dissociation of molecules on surfaces so far.

In summary, the bottleneck towards simultaneous multi-dimensional dynamics on
several PESs is presently the accuracy of the underlying potential-energies. Before
the present work was begun, to our best knowledge no method had been imple-
mented to calculate diabatic PESs from first-principles. By the introduction of the
constrained DF'T method this has now in principle become possible. Still, deficiencies
of present-day DF'T prevent the calculation of most diabatic PESs with sufficient ac-
curacy forming now the main obstacle on the way to a quantitatively correct sticking
curve.
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The Adsorption Mechanism

Finally, in this chapter some aspects of the adsorption mechanism will be discussed.
The two most prominent models for the dissociation process these days are abstrac-
tion [1,2,68], in which one atom is adsorbed on the surface and the other atom is
reflected back into the gas phase, and “normal” dissociation with both atoms being
adsorbed close to each other on the surface [3] (cf. Fig. 2.2). While the calcula-
tions performed during this project certainly do not allow for conclusive statements
about the mechanism, we briefly touch on aspects concerning the energetics, the sub-
strate mobility and the final spin state, which already provide some basis for ensuing
investigations directly addressing the nature of the adsorption mechanism.

Concerning the energetics, both mechanisms are exothermic and therefore allowed.
The energetics of the abstraction mechanism is illustrated in Fig. 16.1 showing the
energy of an oxygen atom as a function of its distance from an unrelaxed (3x3) slab at
three different high symmetry sites for the PBE and the RPBE functionals. In order
to obtain the same zero point for the energy as for the six-dimensional potential-
energy surfaces calculated so far, a second oxygen atom has been included, which is
located very far from the surface in its *P ground state. Consequently, this energy
diagram can be regarded as an extension to the adiabatic potential-energy surface for
molecules oriented perpendicularly to the surface having a very large bond length.
The energy gain upon adsorption at the most stable fcc site is about 1.1 eV and
about 0.3 eV at the bridge site, while adsorption at the top site is energetically not
possible, because the binding energy at the top site is approximately 2 eV lower than
the dissociation energy of the oxygen molecule. The energy differences between the
PBE and the RPBE functional are surprisingly small since the higher binding energy
in the oxygen molecule in case of the PBE functional is almost perfectly compensated
by the higher oxygen adsorption energy on the surface. Relaxing the surface would
lower the energies by approximately 0.5 eV, which has been determined in Section 9.3
by relaxing a (3x3) slab with one oxygen atom adsorbed in a fcc site. In total, in case
of an abstraction mechanism the excess energy therefore amounts to approximately
1.5 eV, while for a “normal” dissociative chemisorption event about 8.5 eV are gained
due to the additional binding energy of the second atom to the surface.
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Figure 16.1: Potential of an oxygen atom above the fcc, bridge and top sites as a function of the
distance from the unrelaxed surface. The second oxygen atom of the oxygen molecule is located at
an infinite distance from the surface in its triplet 3P ground state. The energy zero point corresponds
to an oxygen molecule in the triplet ground state at an infinite distance from the surface without
any charge transfer.

The adsorption energy can be dissipated by transferring energy to the aluminium
atoms, i.e. by eventually exciting phonons! [85]. These effects of substrate mobility
have been neglected in the six-dimensional molecular dynamics simulations employing
the frozen surface approximation, since they are not relevant for the sticking of ther-
mal molecules as explained in Chapter 10. As a consequence, the energy is completely
converted into kinetic energy of the dissociating oxygen atoms yielding too high final
velocities. Apart from providing a mechanism for energy dissipation, the mobility of
the substrate atoms gives rise to very complex trajectories due to multiple atomic
collisions and local structural changes, which can strongly affect the dissociation
mechanism. This has been shown by high-dimensional ab initio molecular dynam-
ics simulations in Section 10.5. However, the main purpose of these high-dimensional
studies was to investigate the applicability of the frozen surface approximation to
the calculation of the sticking curve at large molecule-surface separations. To ob-
tain detailed information on the dissociation mechanism much longer runtimes would
be required to identify oxygen atoms eventually leaving the surface. Finally, these
molecular dynamics simulations can also not be based on a single energy surface. To
cover the full trajectories from the initial triplet ground state of the molecule far from
the surface to the final dissociation products, eventual transitions between several
diabatic PESs would have to be included in addition to the substrate mobility, which
is a formidable task.

Apart from the energetics and the substrate mobility another important aspect is
the different final spin state of the oxygen atoms in the abstraction and the “normal”

'In principle, the energy would even be sufficient to completely remove aluminium atoms from
the surface, which costs about 3.5 eV per atom.
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dissociation mechanism. In the “normal” dissociative chemisorption both atoms are
adsorbed on the surface and the spin of the system changes from triplet to singlet.
In the abstraction mechanism all in all no spin-flip is required since the ground state
of the ejected neutral oxygen atom is a 3P triplet state and the initial spin of the
molecule can be carried away from the surface without a change in the spin state. This
might well be the reason for the apparent dominance of the abstraction mechanism
for thermal oxygen molecules found in experiment [2].

This assessment is vaguely supported by the following analysis of the triplet-PES.
In Fig. 16.2(b) the spin distribution between two oxygen atoms as obtained from a
Mulliken analysis is shown for several molecular configurations along a reaction path
in an elbow plot of the RPBE triplet-PES. In this elbow plot, which is shown in
Fig. 16.2(a), the molecule is oriented perpendicular to the surface corresponding to
an abstraction process. Far away from the surface the spin is equally shared by both
oxygen atoms. For a strongly elongated bond length closer to the surface the majority
of the spin is transferred to the oxygen atom with the larger distance to the surface.
This corresponds to the initial state of the formation of a free oxygen atom in its triplet
3P ground state. In Fig. 16.2(c) the spin distribution is shown for the adiabatic case
and the same molecular configurations. For large molecule-surface separations the
adiabatic spins are very similar to the triplet case except for a slight reduction of the
total spin due to the artificial charge transfer from the surface discussed in Chapter 10.
Closer to the surface the spin is reduced and completely vanishes below Z=2 A. Then,
the spin is recovered for bond lengths larger than about 1.8 A, and like in the triplet
case the majority of the spin is located on the oxygen atom being farther away from
the surface. Both trajectories, on the adiabatic as well as on the spin-triplet PES,
would therefore yield an abstraction mechanism if the molecule was confined to this
elbow plot.

The real dissociation process, however, does not correspond to this simple picture.
This becomes obvious when looking at the barrier heights at the initial spin-triplet
PES. The lowest barriers are found for molecules oriented parallel to the surface,
but these trajectories would not yield abstraction. Therefore, a complex molecular
steering would be required, and very close to the surface the molecules would have
to end up in a perpendicular orientation. This cannot be studied without taking
into account the surface degrees of freedom. Another prerequisite for an abstraction
process based exclusively on the spin-triplet PES is that the transition probability
to other diabatic potential-energy surfaces has to be very low even in regions close
to the surface that have to be passed by any dissociating molecule. Whether this is
true is unknown since the transition probabilities are not yet available. However, once
a molecule has overcome the barriers on the triplet PES, an abstraction mechanism
could also occur after a transition to the adiabatic PES. Still, this applies only to
a very small fraction of all impinging thermal molecules since the majority does not
dissociate at the surface due to the energy barriers on the triplet PES.

In summary, the six-dimensional potential-energy surfaces calculated in this work
provide only a very limited insight into the adsorption mechanism. They have been
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Figure 16.2: Spin on the two atoms O1 and O2 of an oxygen molecule oriented perpendicular to
the surface above an fcc site (O2 is the atom being closer to the surface). In (a) the triplet spin-
constrained elbow plot obtained with the RPBE functional is shown. The white circles represent
DFT data points close to the reaction path. In (b) for these configurations the spins on the two
oxygen atoms for the triplet spin-constrained calculations are shown. For all configurations they add
up to a full triplet spin. Configuration 1 corresponds to a nearly free oxygen molecule and the spin
is equally distributed on both atoms. For configuration 11, which has a strongly elongated bond
length, the majority of the spin is centered at the atom farther away from the surface. In (c) the
corresponding spins in the adiabatic case are shown. Far away from the surface the spin is slightly
lower than a triplet due to charge transfer. For configurations 6-9 basically no spin-polarization
exists, but for strongly elongated bond lengths like in the spin-constrained calculation a free oxygen
atom in the 3P state emerges.

168



Chapter 16. The Adsorption Mechanism

obtained and applied under the assumption that the mobility of the substrate atoms
is negligible, which is fulfilled for molecule-surface separations above about 2.5 A.
Closer to the surface the complexity increases drastically, as energy dissipation, elec-
tronic transitions between several diabatic energy surfaces and the motion of metal
atoms have to be included to be able to follow the dissociation process until the dis-
sociation products can be identified unambiguously. The required high-dimensional
potential-energy surfaces cannot yet be mapped systematically, and consequently the
only available technique would be direct “on-the-fly” ab initio molecular dynamics
simulations extended to include energy dissipation and electronic transitions, which
is beyond what is possible by present-day first-principle methods. Accordingly, only a
few studies directly addressing the adsorption mechanism based on empirical diabatic
potentials and completely neglecting the atomic structure of the surface have been
performed to date [21].
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Summary and Outlook

The present work attempts reaching a better understanding of the dissociation pro-
cess of oxygen molecules impinging on the Al(111) surface. Due to its fundamental
importance, the main focus has been on the determination of the sticking coefficient,
which is defined as the ratio of sticking events to the total number of molecule-surface
collisions. In order to explain the experimentally determined low sticking probability
of thermal oxygen molecules [9], many aspects of the adsorption event have been in-
vestigated systematically employing established methods as well as techniques, which
have been developed in the course of this project.

In the first part of this work the six-dimensional adiabatic potential-energy sur-
face (PES) representing the molecular degrees of freedom during the dissociation
process has been calculated in detail. All calculations on the oxygen-aluminium sys-
tem done so far have been based on density-functional theory, but the reliability of
DFT for systems involving oxygen has been questioned due to the significant overes-
timation of the binding energy of the free molecule by present-day functionals. Thus,
several exchange-correlation functionals have been tested for the free oxygen molecule.
The PBE [114] and the RPBE [74] functional have been found to represent two ex-
tremes within the gradient-corrected functionals, yielding the strongest and the lowest
overbinding, respectively. Consequently, all calculations in this work have been done
using both functionals to somehow estimate the functional dependence of the obtained
results. The absence of sizeable energy barriers towards dissociation found in previous
studies of parts of the adiabatic PES [22,24, 70-73] could be confirmed. While the
PBE functional does not yield any barriers, in case of the RPBE functional a few
shallow barriers of up to 0.1 eV have been identified. Still, the energetic differences
between both functionals are far smaller than in case of the free molecule. This in-
dicates an efficient error cancellation, which occurs because for these barriers only
energy differences between parts of the PES matter that represent energies of very
similar configurations of the oxygen molecule. Only close to the surface the oxygen-
oxygen bond is significantly elongated due to a very strong hybridization with the
Al(111) surface density, constituting then a situation very different from the dissocia-
tion of a free molecule. In conclusion, the sticking coefficients based on the adiabatic
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PES should be quite reliable in particular since no significant differences between the
PBE and the RPBE functional were found.

The sticking probability is a statistically averaged dynamic quantity. Consequently,
a mere inspection of low-dimensional cuts through the adiabatic PES is not sufficient
to account for dynamical steering effects, and only a large number of molecular dy-
namic simulations can yield a reliable sticking curve. This had not been done for this
system before the course of this work. In order to calculate the sticking curve, a con-
tinuous representation of the adiabatic PES has been obtained using a neural network
interpolation scheme [26,27,201], which has proven to reproduce the DFT energies
very accurately. To incorporate the symmetry efficiently, a new method based on
Fourier functions has been implemented and tested in the neural network code. This
representation of the PES enabled to perform a large number of molecular dynamics
simulations to obtain a statistically reliable sticking curve for the oxygen dissocia-
tion on Al(111) from first-principles. The sticking probability was found to be close
to unity independent of the kinetic energy of the molecule, and independent of the
exchange-correlation functional. Due to the absence of sizeable barriers in the PES,
this result was somewhat expected, but remains in contrast to experiment. Conse-
quently, dynamical steering towards non-dissociative pathways could be excluded as
origin of the low sticking probability.

A possible source of error in the molecular dynamics simulations is the applied frozen
surface approximation, i.e. only the degrees of freedom of the oxygen atoms have been
taken into account. Due to the very similar masses of the oxygen molecule and the
aluminium atoms the validity of this approximation cannot be taken for granted, and
the mobility of aluminium atoms might strongly affect the molecular trajectories.
The applicability of the frozen surface approximation has therefore been investigated
by extensive high-dimensional ab initio molecular dynamics simulations, which took
the mobility of the aluminium atoms explicitly into account. In all trajectories the
approaching oxygen molecule had a significant influence on the substrate motion only
for molecule-surface separations well below 2.5 A, which is in turn much closer to
the surface than the typical position of energy barriers towards dissociation. This
suggests that the frozen surface approximation is justified in this case, eliminating
another possible explanation for the experiment-theory discrepancy.

Having confirmed that the low sticking probability of thermal oxygen molecules can-
not be explained by state-of-the-art adiabatic DF'T, the possible role of non-adiabatic
effects was explored. A simple two-state model has been developed based on the differ-
ent spin states of the free molecule and the adsorbed atoms. While the free molecule
has a spin-triplet ground state, the adsorbed atoms are in a singlet state and thus a
spin-flip has to occur at some stage during the adsorption event, if both atoms are
adsorbed. Assuming that the probability for a spin-flip from the triplet state to the
singlet state is very low far away from the surface, an approaching oxygen molecule
might be confined to the initial neutral spin-triplet PES for some time. If the latter
PES exhibits energy barriers in this region, this might well explain the experimen-
tal low sticking probability. Unfortunately, before the present work was begun no
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method to calculate the diabatic triplet PES was available. The only standard tech-
nique to fix the spin of a system to a certain value has been the fixed-spin-moment
approach [272]. The applicability of this method was carefully examined, but it was
found that although the total spin of the system can be confined to a triplet, for
small molecule-surface separations the majority of the spin-density is delocalized in
the aluminium slab. The diabatic spin-triplet PES we are interested in, however, is
characterized by a spin-triplet centered at the oxygen molecule and an aluminium
surface in a singlet state for all molecular configurations.

With no available technique allowing for a calculation of the triplet PES, a con-
strained DFT method in the spirit of Dederichs et al. [34] has been developed, imple-
mented, tested and applied to the oxygen dissociation on Al(111). The basic idea of
this approach is to split up the system into an oxygen and an aluminium subsystem
making efficient use of the localized basis set of the DMol® code. The occupations of
each spin orientation in both subsystems can be controlled by a projection technique,
that allows for a self-consistent solution of the Kohn-Sham equations under arbitrary
constraints on the spin and charge states of the subsystems. This constrained DFT
method has been applied to calculate the diabatic spin-triplet PES in all six molecular
dimensions. This triplet PES shows sizeable energy barriers towards dissociation up
to 0.9 eV for most molecular orientations. To evaluate if these barriers could account
for the low sticking probability of thermal oxygen molecules, molecular dynamics sim-
ulations based on a neural network interpolation have been carried out. The obtained
sticking curve shows unambiguously a significant reduction of the sticking probability.
For kinetic energies higher than about 0.2 eV the qualitative agreement with exper-
iment is excellent and independent of the chosen functional. However, for thermal
molecules the sticking probability exhibits a strong functional dependence caused by
dynamic steering effects together with the varying barrier heights on the triplet PES.
While the RPBE functional yields barriers for all molecular orientations and conse-
quently gives rise to a sticking probability of basically zero for thermal molecules,
in case of the PBE functional a few barrier-free entrance channels exist. Slow,
thermal molecules are then steered to these channels and stick on the surface in most
cases. To obtain an accurate quantitative sticking probability for thermal molecules,
more precise barriers would therefore be required than can be provided by present-day
gradient-corrected DFT functionals. Still, the main conclusion is that sizeable energy
barriers on the adiabatic PES do not exist. Only taking into account non-adiabatic
effects, i.e. an initial confinement of the molecule to the neutral spin-triplet PES,
yields a reduced sticking probability.

The molecular dynamics simulations on the triplet PES represent only the limit
of an infinite lifetime of the molecule on this PES and can be regarded as being
complementary to the adiabatic case, in which an instantaneous relaxation of the
charge and spin state occurs at all nuclear positions. It is tempting to conclude that
the triplet limit might be a reasonable approximation for thermal molecules, which
cannot get closer than 3 to 3.5 A to the surface due to the emerging energy barriers.
At this distance the energy of other diabatic PESs is still clearly higher resulting in
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only a weak coupling. However, this has to be proven in future work, and a more
refined model would have to include also further diabatic PESs like the singlet PES
and several ionic PESs as well as the coupling of these states. This would enable
to perform dynamics simultaneously on all of these PESs, which will be required to
obtain a quantitative agreement with the experimental sticking curve. In principle,
the constrained DFT approach also allows for the calculation of other diabatic states
like the singlet or the ionic PES. While the latter is not expected to pose a general
problem when large enough supercells are used, the description of the 'A, singlet
state in DFT-GGA is very poor, yielding a far too low singlet-triplet splitting. As
an alternative model for this state spin-restricted DFT calculations have been tested.
Due to an artificial charge transfer from the surface to the molecule accurate energies
could unfortunately not be obtained, the energy lowering being about 0.2 eV for very
large molecule-surface separations. In the adiabatic case this energy lowering induced
by the charge transfer amounts to about 0.02 eV.

In summary, the accurate determination of diabatic PESs remains an important and
most challenging task towards a quantitatively correct sticking curve. In the present
work it has been shown, that non-adiabatic effects might well provide an explanation
for the experimentally found low sticking probability of thermal oxygen molecules.
However, present-day density-functional theory does not provide the accuracy to de-
termine reliable barrier heights, which are decisive for the precise shape of the sticking
curve, in particular at low kinetic energies. The situation might be improved by local
correction schemes [276,277], but these so far have not been applied to diabatic states
and suitable constraints might be necessary. Only when the problems concerning the
sticking probability have been fully solved, a reliable assessment of further questions
like the adsorption mechanism will become possible. Still, in this case new difficulties
emerge in that the investigation of the adsorption mechanism requires to follow the
trajectory also in the region of the PES, where substrate mobility and dissipation
effects play an important role.

Apart from these theoretical challenges also further experiments could help to shed
light on the role of non-adiabatic effects in the oxygen dissociation on metal surfaces.
To investigate the role of the singlet state of the oxygen molecule, the energy-resolved
sticking curve of a beam of oxygen molecules in the 'A, singlet state would be very
helpful. According to the qualitative shape of the singlet PES calculated so far, a
very high sticking probability independent of the kinetic energy would be expected
since no energy barriers seem to be present on this PES. Additionally, energy resolved
sticking curves on further sp metals like e.g. magnesium would be important to
explore trends in the periodic table. Similar to the Al(111) surface also for magnesium
chemiluminescence and exoelectron emission have been observed in the presence of
oxygen [89], which are commonly accepted as indication for non-adiabatic effects.
Unfortunately, these elements are very hard to handle because of their comparably
low melting points and high affinity to impurities.

Experimental indications for non-adiabatic processes in the oxygen-dissociation on
many other metal surfaces like cesium [88], lithium [90] and silver [91] exist, and

174



Chapter 17. Summary and Outlook

also other diatomic molecules, e.g. Cly [20] and NO [285] show non-adiabatic effects
opening up a wide and to a large extent unexplored field for further experimental and
theoretical studies.
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can only be to make two questions grow
where only one grew before.
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Appendix A

Benchmarks

A.1 Introduction

The aim of this benchmark was to find an appropriate DF'T code for the calculation of
the six-dimensional potential-energy surface for the dissociation of oxygen molecules
on the Al(111) surface. Results obtained for bulk aluminium as well as for clean and
oxygen-covered Al(111) slabs using different DFT codes were therefore compared. The
ideal code has to provide a high accuracy, since an accurate determination of barrier
heights is very important for the dynamics of the adsorption process. Additionally, it
should be very fast, because thousands of energy points have to be calculated to map
the potential-energy surface reliably.

In case of bulk aluminium the physical quantities of interest were the cohesive
energy FE.,, and the equilibrium lattice constant ag. The experimental values are
E.n = 3.39 eV/atom [121] and ay = 4.0496 A [225]. These quantities have been
determined at two different levels of accuracy. The measure for the accuracy of a
calculation was the difference between the cohesive energy of the actual calculation
and the best cohesive energy that can be obtained (“converged’) with a very large
basis set for each DFT code. A “coarse” calculation should have an error in the
cohesive energy less than or equal to 100 meV with respect to this reference value, an
“accurate” calculation should have an error of 20 meV or less. For the Al(111) surface
the quantity of interest was the oxygen binding energy of a full monolayer of oxygen
atoms in a (1x1) cell, and of a quarter monolayer in a (2x2) cell.

The tested codes were the all-electron codes DMol® [133] and WIEN2k [136] (em-
ploying the LAPW and the APW+lo methods), as well as the pseudopotential code
fhi98md [95]'. All calculations have been carried out using the PBE functional [114]
for exchange and correlation.

On the computational side the memory requirements and the CPU time were of
interest. Unless stated otherwise, all calculations have been carried out on a Compaq

'The LAPW calculations have been performed by Mira Todorova, the APW-+lo calculations by
Jutta Rogal, and the thi98md calculations by Cathy Stampfl.
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ES45 workstation (4x ev68 1000 MHz CPUs, 4GB RAM per CPU). The measurement
of the CPU time has been done on a fully loaded machine, i.e. 4 running calculations,
one of them for the benchmark, to simulate a realistic working environment.

The tables in the following sections contain the parameters used for the differ-
ent codes, as well as the results. In the DMol? calculations the parameters rmaxp
and s control the radial part of the integration mesh, and iomax and tomin con-
trol the angular part. The accuracy parameter thres determines the actually used
integration quality and 7., is the real space cutoff for the basis functions. In the
WIEN2k calculations EY; is the applied plane wave cutoff and G2, is the cutoff for
the potential expansion, both refer to the interstitial region. LM, ., is the maximum
angular momentum for the potential expansion and [, is the maximum angular mo-
mentum for the wave-function expansion inside the muffin tin spheres. [, . is the
maximum angular momentum for off-diagonal matrix elements in the Hamiltonian.
Ryt is the muffin tin radius separating the muffin tin region from the interstitial.
The value AFE,,, indicates the derivation of the calculated cohesive energies from the
reference value obtained with a highly converged parameter set for each code. The
Al-pseudopotential used in the fhi98md calculations has been tested previously [286].

A.2 Bulk Aluminium

To determine the equilibrium lattice constant using the Murnaghan equation (cf.
Section 9.2) calculations for 9 different lattice constants from 0.96 a¢ to 1.04 ag in
steps of 0.01 ay have been carried out for the coarse and accurate parameter set. In
order to calculate the cohesive energy, the total energy of an aluminium atom FEiom
is required. As the atomic calculations in DMol? are very fast (a few seconds at most)
and since in DMol?® the total energies of atoms converge slower with increasing basis
function cutoff than the energies of bulk calculations, the atomic reference energies
have been calculated with a highly converged parameter set (cf. Table A.1) using
occupations according to Hund’s rule. The resulting atomic energy has been used as
reference for all calculations. The bottleneck for the determination of the cohesive
energies with DMol? is the slower bulk calculation. For the other codes the atomic
reference requires expensive calculations, because the atom has to be calculated in
an asymmetric large unit cell employing periodic boundary conditions. In all other
codes the atomic reference calculations have therefore been carried out with the same
parameter set as in the bulk calculations. The employed unit cell has dimensions of
13x14x15 bohr®. The parameters used for the atomic and bulk calculations are listed
for DMol? in Table A.1, for the LAPW method in Table A.2, for the APW+-lo method
in Table A.3 and for the thi98md code in Table A.4. The equilibrium lattice constants,
cohesive energies and required computer resources are summarized in Table A.5.
The obtained lattice constants and cohesive energies are very similar for all codes.
Only in case of the thi98md code the lattice constant is slightly larger than for the all-
electron methods. The fastest code for the bulk calculations is the thi98md code, but
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free atom bulk aluminium

coarse accurate
basis set dnp dnd dnp
Teut (bohr) 17 9 10
k-points none | 4x4x4 10x10x10
iomax 7 5 7
omin 1 1 1
thres 0.000001 | 0.0001 0.000001
rmaxp 17 9 10
S 2.000 1.000 1.500
total CPU time (s) 10 56 750
memory (MB) 26 56 117
iterations 12 9 9

Table A.1: Parameters and results for the free aluminium atom and bulk aluminium using the DMol?

code.
atom in box bulk aluminium

coarse accurate | coarse accurate
Ryr (bohr) 1.7 1.7 1.7 1.7
G?.. (Ry) 196 196 196 196
LM pax 6 6 6 6
Imax 12 12 12 12
lnspan 6 6 6 6
EPY (Ry) 16 20 16 20
k-points 1x1x1 Ix1x1 | 6x6x6 10x10x10
total CPU time (s) 2324 24868 48 83
memory (MB) 152 243 39 40
iterations 14 52 11 11

Table A.2: Parameters and results for the aluminium atom in a box and bulk aluminium using the

WIEN2k code employing the LAPW method.

also the WIEN2k code is significantly faster than DMol®. This is, on the other hand,
compensated by the very fast atomic calculations, which are very time-consuming
with WIEN2k. The CPU times for the atomic and bulk calculations are compared
in Fig. A.1, and the obtained cohesive energies and lattice constants are shown in

Fig. A.2.
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atom in box bulk aluminium

coarse accurate | coarse accurate
Ryt (bohr) 1.7 1.7 1.7 1.7
G?.. (Ry) 196 196 196 196
LM pax 6 6 6 6
Linax 12 12 12 12
s 6 6 6 6
EPY (Ry) 10 15 10 15
k-points 1x1x1 1x1x1 | 6X6x6 10x10x10
total CPU time (s) 378 2687 34 47
memory (MB) 7 137 39 39
iterations 11 11 7 7

Table A.3: Parameters and results for the aluminium atom in a box and bulk aluminium using the
WIEN2k code employing the APW+lo method.

atom in box bulk aluminium
coarse accurate | coarse accurate
ENY (Ry) 10 20 10 20
k-points 1x1x1 1x1x1 | 4x4x4 6x6x6
total CPU time (s) (14) (36) (5) (25)
memory (MB) 14 26 5 7
iterations 7 10 10 21

Table A.4: Parameters and results for the aluminium atom in a box and bulk aluminium using the
thi98md code. The bracketed CPU times have been scaled since the numbers have been obtained on
another machine which is roughly a factor of 1.5 slower than the ES45 used for the other codes.
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© 1000 O
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Figure A.1: Total CPU time requirements to reach self-consistency for the aluminium atoms (a) and
for the bulk calculations (b).
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DMol? WIEN2k LAPW
coarse  accurate | coarse accurate
ap (A) 4.037 4.030 | 4.021 4.032
ao (Gexp) 0.998 0.995 | 0.993 0.996
Eecon (eV) -3.477 -3.399 | -3.374 -3.377
AEcon (eV) 0.063 -0.015 | 0.021 0.018
total CPU time (s) 56 750 48 83
memory (MB) 56 117 39 40
iterations 9 9 11 11
WIEN2k APW+lo thi98md
coarse  accurate | coarse accurate
ap (A) 4.063 4.034 | 4.059 4.054
ao (Gexp) 1.003 0.996 | 1.002 1.001
Eecon (eV) -3.501 -3.390 | -3.331 -3.387
AEcon (eV) 0.099 0.012 | 0.074 0.018
total CPU time (s) 34 47 5 25
memory (MB) 39 39 5 7
iterations 7 7 10 21

Table A.5: Equilibrium lattice constants, cohesive energies and hardware requirements obtained with
the different DFT codes.
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Figure A.2: Cohesive energies (a) and equilibrium lattice constants (b) obtained for bulk aluminium.
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A.3 The Clean and the Oxygen-Covered Al(111)
Surface

The oxygen binding energy, which has been used as a measure for the accuracy of the
slab calculations, has been obtained using the equation

Ehing = NL (Eoar— No - Eo — Eal) . (A1)
0

No is the number of oxygen atoms adsorbed per unit cell, Epa is the total energy
of the adsorbate system, Fq is the energy of an isolated oxygen atom and E,, is the
energy of the clean aluminium slab. The slab consists of 7 aluminium layers and the
atoms are fixed at their bulk positions. The oxygen atom is located 0.709 A above
the fcc site. To determine the oxygen binding energy, the energy of the free oxygen
atom has to be calculated. This has been done in the same way as described for
the aluminium atom in the preceding section. The parameters and results for the
calculations on the oxygen atom are listed in Tables A.6 for DMol?, Table A.7 for the
LAPW method, Table A.8 for the APW+lo method and in Table A.9 for the thi98md
code.

basis set all
Teus (bohr) 20
k-points —
iomax 7
omin 1
thres 0.000001
rmaxp 20
s 2.000
total CPU time (s) 7
memory (MB) 27
iterations 11

Table A.6: Parameters and results for the calculation of the oxygen atom using DMol?.

The parameters and results for the clean and oxygen-covered (1x1) slabs are listed in
Tables A.10, A.11, A.12 and A.13 for the different codes. The corresponding values
for the clean and oxygen-covered (2x2) slabs are given in Tables A.14, A.15, A.16
and A.17. The required CPU times for the oxygen-covered (1x1) and (2x2) slabs
are compared in Fig. A.3, the oxygen binding energies are shown in Fig. A.4. For
the (1x1) slabs DMol? is faster than all other benchmarked codes. For the (2x2)
slabs the difference in performance between DMol® and LAPW in case of the accurate
calculations is about a factor of 35, and a factor of 28 with respect to the APW+lo
method. The obtained binding energies are very similar. The highest binding energy is
found for the thi98md code for the (1x1) and for the (2x2) slabs. The lowest binding
energy results from the APW+lo method in both cases, but the LAPW values are
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coarse accurate

for (1x1) for (2x2) | for (1x1) for (2x2)
RO+ 1.3 1.3 1.3 1.3
EPY (Ry) 19 20 25 25
k-points 1x1x1 1x1x1 1x1x1 Ix1x1
G2« (Ry) 196 196 196 196
Imax 12 12 12 12
I 6 6 6 6
total CPU time (s) 5990 6885 18947 18974
memory (MB) 215 242 401 401
iterations 15 14 14 14

Table A.7: Parameters and results for the calculation of the oxygen atom employing the LAPW
method.

coarse accurate
ROt 1.3 1.3
EP% (Ry) 17 20
k-points 1x1x1 1x1x1
G2 .« (Ry) 196 196
Imax 12 12
S 6 6
total CPU time (s) 3620 5820
memory (MB) 172 242
iterations 15 12

Table A.8: Parameters and results for the calculation of the oxygen atom employing the APW+lo
method.

coarse accurate
EYY (Ry) 48 62
k-points 1x1x1 1x1x1
total CPU time (s) 157 235
memory (MB) 85.4 128
iterations 4 4

Table A.9: Parameters and results for the oxygen atom using the fhi98md code.

very similar. The binding energies obtained with DMol® are about 1 % higher than
the WIEN2k results.
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Clean Slab O-covered Slab

coarse accurate | coarse accurate
basis set oxygen — — all all
basis set aluminium dnd all dnd all
Teus (bohr) 8 9 8 9
k-points TxT7x1 TXTx1 | Tx7x1 TxT7x1
omazx 5 5 5 5
omin 1 1 1 1
thres 0.0001 0.0001 | 0.0001 0.0001
rmaxp 8 9 8 9
S 1.000 1.000 1.000 1.000
Ehing (eV) — — | -7.747 -7.829
AEbind (eV) - - 0.086 0.004
total CPU time (s) 342 1384 660 2529
memory (MB) 53 106 62 118
iterations 17 17 19 21

Table A.10: Parameters and results for the (1x1) slab calculations for DMol?.

Clean Slab O-covered Slab

coarse  accurate | coarse  accurate
Rg/[lT 1.7 1.7 1.7 1.7
Ry — — 14 1.3
ETY (Ry) 19 25 19 25
k-point mesh 8x8x1 12x12x1 | 8x8x1 12x12x1
G? .. (Ry) 196 196 196 196
Imax 12 12 12 12
Inspa 6 6 6 6
Eping (eV) — — | -7.827 -7.776
APFhing (eV) — — 0.056 0.005
total CPU time (s) 8118 44978 8509 53737
memory (MB) 182 238 182 239
iterations 23 22 26 24

Table A.11: Parameters and results for the (1x1) slab calculations employing the LAPW method.
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Clean Slab O-covered Slab

coarse accurate | coarse accurate
Ry 1.7 1.7 1.7 1.7
R+ — — 1.3 1.3
ETY (Ry) 17 20 17 20
k-point mesh HxHx1 8x8x1 | 5xHx1 8x8x1
G?.. (Ry) 196 196 196 196
Imax 12 12 12 12
Insy o 6 6 6 6
Eying (eV) — — | -7.798 -7.754
APFying (eV) — — 0.043 0.001
total CPU time (s) 2634 8659 3142 9695
memory (MB) 182 182 182 182
iterations 22 21 24 22

Table A.12: Parameters and results for the (1x1) slab calculations employing the APW+lo method.

Clean Slab O-covered Slab

coarse accurate | coarse accurate
EYY (Ry) 48 62 48 62
k-points 6x6x1 6x6x1 | 6x6x1 6x6x1
Eping (eV) — — | -7.858 -7.921
APFhing (eV) — — 0.080 0.017
total CPU time (s) 1807 3632 2702 5666
memory (MB) 105 159 137 203
iterations 38 39 41 44

Table A.13: Parameters and results for the (1x1) slab calculations using the thi98md code.

Clean Slab O-covered Slab

coarse accurate | coarse accurate
basis set oxygen — — all all
basis set aluminium dnd all dnd all
Teus (bohr) 8 9 8 9
k-points 6x6x1 8x8x1 | 6x6x1 8x8x1
iomax 5 7 5 7
omin 1 1 1 1
thres 0.0001  0.000001 | 0.0001 0.000001
rmaxp 8 9 8 9
s 1.000 1.500 1.000 1.500
Eping (eV) — — | -7.192 -7.232
AEbind (GV) — - 0.041 0.001
total CPU time (s) 1682 18573 2236 21275
memory (MB) 91 269 86 238
iterations 17 19 21 22

Table A.14: Parameters and results for the (2x2) slab calculations using DMol®.
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Clean Slab O-covered Slab

coarse  accurate | coarse  accurate
R 1.7 1.7 1.7 1.7
ROr — — 1.3 1.3
EPY (Ry) 20 25 20 25
k-point mesh 4x4x1 10x10x1 | 4x4x1 10x10x1
G?.. (Ry) 196 196 196 196
Imax 12 12 12 12
Insyan 6 6 6 6
Eping (eV) — — | -7.158 -7.188
APFEhing (eV) — — 0.007 0.023
total CPU time (s) | 588404 3286368 | 394250 2506789
memory (MB) 882 1512 883 1513
iterations 46 38 37 28

Using Iterative Diagonalization:

Ehina (eV) - - -7.099 -7.188
APFhing (eV) — — 0.066 0.023
total CPU time (s) | 164764 908984 | 88982 758087
memory (MB) 882 1512 883 1513
iterations 47 48 25 34

Table A.15: Parameters and results for the (2x2) slab calculations employing the LAPW method.

Clean Slab O-covered Slab

coarse accurate coarse accurate
RyT 1.7 1.7 1.7 1.7
R{r — — 1.3 1.3
EMY (Ry) 17 20 17 20
k-point mesh 3x3x1 11x11x1 3x3x1 11x11x1
G?.. (Ry) 196 196 196 196
lmax 12 12 12 12
Inspay 6 6 6 6
Eiot (eV) -185001.491  -185001.644 | -189100.060 -189100.996
Eping (eV) — — -7.127 -7.174
AEbind (eV) — — 0.027 0.020
o (eV) -3.901 -4.046 -3.837 -3.904
total CPU time (s) 124264 807465 115648 1025995
memory (MB) 636 896 639 898
iterations 31 21 29 26

Using Iterative Diagonalisation:

Eping (eV) — — -7.125 -7.171
APFEyina (eV) — — 0.029 0.017
total CPU time (s) 100949 763498 82106 596160
memory (MB) 699 987 701 988
iterations 66 61 51 45

Table A.16: Parameters and results for the (2x2) slab calculations employing the APW+1o method.
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Clean Slab O-covered Slab

coarse accurate | coarse accurate
ENY (Ry) 48 62 48 62
k-points 4x4x1 6x6x1 | 4x4x1 6x6x1
Ebind (eV) — — -7.297 -7.318
APFEying (eV) — — 0.001 0.020
total CPU time (s) 16969 78726 42331 172312
memory (MB) 656 1498 599 1814
iterations 34 54 136 136

Table A.17: Parameters and results for the (2x2) slab calculations using the thi98md code.
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and (2x2) (b) slabs.
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A.4 Conclusion

Even in an extensive benchmark project it is impossible to test all parameters that
might have an influence on the accuracy and on the performance. One example is
the mixing factor for the charge density, which can significantly change the number
of iterations necessary to reach self-consistency. However, it will not change the final
results. In all calculations a reasonable constant value (usually 0.1) has been chosen.
Further parameters, which have not been tested, are the box dimensions for the atomic
calculations using WIEN2k and thi98md. Additionally, the muffin tin radius in case
of WIEN2k, which can have a strong influence on the performance, as well as the
pseudopotentials in case of fhi98md remained unchecked. In case of DMol® the 5
parameters defining the integration mesh have not been tested individually, but have
been increased simultaneously in a consistent way. Additionally, only built-in basis
sets have been used. As the calculations using the thi98md code have been done on a
different machine, an estimated scaling factor of 1.5 has been applied to convert the
CPU times.

Several other physical quantities have also been tested to compare the different
codes. For the bulk calculations the density of states, the band structure and the
bulk modulus have been determined. For the slab calculations the density of states,
the work function and in case of the (2x2) slabs with a quarter monolayer of adsorbed
oxygen atoms also the forces on the oxygen atom and the top layer aluminium atoms
have been checked. The overall agreement between all tested codes is excellent with
slight deviations for the pseudopotential code thi98md. While the CPU time require-
ments for the bulk calculations are comparably high for DMol?, for larger systems like
the (1x1) and in particular the (2x2) slabs the DMol® code is much faster than the
WIEN2k code using the LAPW and APW+lo methods, but also clearly faster than
the thi98md code.

All in all there are no significant differences in the obtained results. However,
the fastest code for large systems is clearly DMol3. As the calculation of the six-
dimensional potential-energy surface is done using larger (3x3) supercells, the dif-
ference can be expected to be even larger. In conclusion, for all calculations in this
project the DMol?® density-functional code is used.
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Convergence Tests

B.1 Introduction

One of the main sources of error in a DFT calculation is the approximate exchange-
correlation functional. However, the numerical accuracy of density-functional calcu-
lations depends also on many parameters that are specific for the actually chosen
implementation of density-functional theory. One of the most important quantities
in this respect is the basis set. In DMol® the basis functions are atomic orbitals and
the available basis sets are formed by groups of these atomic orbitals as described in
Chapter 6. Consequently, in contrast to DFT codes using for example plane waves
as basis functions, in DMol® the basis set cannot be improved systematically, and
the convergence of the physical properties has to be tested using many different basis
sets. Two quantities are related to the basis set: the basis function cutoff r.., which
determines the spatial extension of the basis functions, and the integration grid within
this cutoff radius. The integration grid is specified by 5 parameters (cf. Chapter 6).
The parameters tomin und tomax define the lower and upper bound for the angular
point distributions on the spherical integration shells. The actually used scheme is
determined internally according to a numerical precision parameter thres. The spa-
tial extension of the integration grid is determined by rmaxp, which is generally set
equal to the basis function cutoff r., in this work. The radial density of shells can be
scaled by the factor s according to Eq. (6.8). In addition, the Brillouin zone has to
be represented accurately by a set of discrete k-points. Besides these implementation-
dependent parameters also the slab geometries have to be chosen in a suitable way
for the problem of interest. This mainly refers to structural parameters like the slab
thickness, the vacuum size between the slabs and also the lateral dimension of the
supercell.

Many tests have been performed at all stages of this project to ensure that the
obtained results are converged with respect to these parameters. In the following sec-
tions some examples of the parameter determination will be given for bulk aluminium,
for oxygen-covered (1x1) aluminium slabs and for the (3x3) supercell used in the cal-
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culation of the potential-energy surfaces for the oxygen dissociation on Al(111). All
tests have been carried out using the PBE functional only, because the convergence
with respect to the k-points and to the basis set does not depend much on the actually
chosen functional.

B.2 Bulk Aluminium

As already described for the benchmark calculations in Appendix A, the cohesive
energy of aluminium has been used as a measure for the precision of the bulk calcu-
lations. In Fig. B.1 the convergence of the cohesive energy obtained from Eq. (9.6) is
shown as a function of the k-point-mesh for basis function cutoffs from 8 to 12 bohr.
The largest basis set available for aluminium (dnp) has been used in combination with
a dense integration grid (iomin=1, iomax=7, thres=0.000001, rmaxp=rcy, s=1.5).
The calculations have employed the experimental lattice constant of 4.041 A [225] and
the primitive unit cell containing just one aluminium atom instead of the conventional
cubic cell consisting of 4 atoms. The cohesive energy obtained for the highest cutoff
and the largest number of k-points (17x17x17 mesh, 165 k-points in the irreducible
wedge of the Brillouin zone) is -3.413 eV per atom (experiment: -3.36 eV [225]). Ac-
cording to Fig. B.1 a basis function cutoff of 9 bohr and a k-point mesh of 12x12x12
k-points (72 points in the irreducible wedge) are sufficient to reproduce the cohesive
energy with an error of less than 30 meV. For this cutoff a less dense integration
grid with the parameters iomin=1, tomax=>5, thres=0.0001, rmaxrp=rcy and s=1.0,
which is the default grid in DMol3, yields only a small uncertainty of about 10 meV.
Finally, the basis set has been tested with this set of parameters. In DMol?® four
built-in aluminium basis sets are available. The minimal and dn basis sets are not
sufficiently accurate due to the absence of polarization functions. However, the dnd
basis yields a cohesive energy of -3.422 eV, which is very close to the dnp value of
-3.413 eV. Therefore, the dnd basis has been used for all bulk calculations.

B.3 Al(1x1) Slabs

To determine the required basis function cutoff, the k-point mesh, the basis set and
the integration grid for calculations on oxygen-covered (1x1) slabs, three different
(1x1) slabs consisting of 7 aluminium layers and a vacuum of 30 A have been con-
structed. In these slabs a full monolayer of oxygen atoms is placed 0.7 A above the
fce site, 0.7 A above the hep site and 1.8 A above the top site, respectively, which
corresponds to the approximate equilibrium distances at these adsorption sites. In or-
der to determine the accuracy of the calculations, the oxygen binding energy at these
three adsorption sites as defined by Eq. (9.9) has been monitored as a function of
the calculational parameters. Additionally also the convergence of the binding energy
difference between the hcp and the fcc site as well as between the top and the fcc site
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Figure B.1: Convergence of the cohesive energy FE.o, of bulk aluminium for several basis function
cutoffs as a function of the k-point mesh calculated with the PBE funtional and a dnp basis set
employing the experimental lattice constant.

has been checked.

To find a suitable basis set, calculations employing different basis sets, a basis func-
tion cutoff of 10 bohr, a k-point mesh of 12x12x1 k-points (19 k-points in the irre-
ducible wedge of the unit cell) and the default integration mesh (iomin=1, iomax=>5,
thres=0.0001, rmaxp=re., s=1.0) have been carried out. The results are shown in
Fig. B.2. To obtain reliable oxygen binding energies a dnd basis is sufficient to de-
scribe the aluminium atoms. This basis set has also been used for the determination
of the lattice constant and therefore does not introduce any strain in the slab (the
larger dnp basis set yields basically the same lattice constant). For oxygen the largest
available all basis will be used, which yields slightly improved values compared to the
dnd basis for this element. Due to the small number of oxygen atoms in the system
using the largest oxygen basis set does not increase the computational demand sig-
nificantly. With this combination of basis sets the absolute oxygen binding energies
have an uncertainty of about 80 meV (1 % of the binding energy) with respect to the
all basis set, and the binding energy differences for different sites are converged to
about 20 meV.

To determine the required basis function cutoff the same parameters as for the basis
set tests have been employed. An all basis has been used for oxygen and aluminium.
The obtained binding energies and binding energy differences are shown in Fig. B.3
for basis function cutoffs from 7 to 12 bohr. For a cutoff of 9 bohr the binding energy
differences are converged to about 20 meV and the absolute binding energies to within
40 meV. Therefore, this cutoff is used in all calculations.

The convergence of the binding energies and binding energy differences as a function
of the k-point mesh is shown in Fig. B.4. The same parameters as for the basis set tests

195



Appendix B. Convergence Tests

-5.0¢ a1 L5
r I N
-5.5f - 1 [
F B -20- B
-6.0f 1 i
3 I
T5-6.5¢ B =250 1
LU_E E /:/ E Lu'_ﬁ
1.0 |22 fec n 7
[ |mm hcp -3.0r- 8
-7.5- [
-(a) 7 -(b) ]
-80 - | | | | | -35 - | | | | |
O mnO dn O al O dndO al O all O mnO dn O all OdndO al O all
Al minAldn Aldn Aldnd Al dnd Al dnp Al minAldn Aldn Aldnd Al dnd Al dnp
0.45— \ \ ‘ ‘ —  5.0r
o @
3 13 45" ]
8 035 18
g8 ; 1 8— 4.0r 5
< 0.30} . C;é
W (a5 ]
Y o025 14 35
ool A 0 ) U] A St 0 7 ) ) [
7 OmnO dn Oal OdndO al O all "~ OmnO dn O al O dnd O all all
Al mnAldn Aldn Aldnd Al dnd Al dnp Al minAldn Aldn Al dnd Al dnd Al dnp

Figure B.2: Determination of the basis set required to describe a monolayer of oxygen atoms in a
(I1x1) supercell. In (a) the binding energies for oxygen atoms adsorbed at the fcc and the hep sites
are shown for different basis sets. In (b) the binding energy above a top site is plotted. In (c) the
difference between the oxygen binding energy at the fcc site and the hep site is shown, and in (d)
the binding energy difference between the top site and the fcc site is given.

have been employed, and an all basis has been chosen for oxygen and aluminium. For
a mesh of 12x12x1 k-points the absolute binding energies are converged to within
20 meV and binding energy differences to about 10 meV with respect to a much
denser mesh. Additionally, a 12x12x1 mesh has the advantage that it permits the
calculation of larger supercells with a commensurable k-points distribution, i.e. a
6x6x1 mesh for a (2x2) slab, a 4x4x1 mesh for a (3x3), and a 3x3x1 mesh for
a (4x4) slab yield directly comparable energies due to equivalent k-point positions
covering all cell sizes of interest in this thesis.

The noise of the obtained binding energies due to the numerical evaluation of the
matrix elements has been estimated by using several integration meshes of different
point densities. The list of employed meshes is given in Table B.1 and the resulting
binding energies and binding energy differences are shown in Fig. B.5. For these
calculations a k-points mesh of 12x12x1 points, a cutoff of 9 bohr as well as an
all basis for oxygen and a dnd basis for aluminium have been chosen as determined
above, because it is important to make sure that the integration grid is appropriate
for the actually employed cutoff. The results show that for a cutoff of 9 bohr basically
all tested integration meshes yield errors in the oxygen binding energies and binding
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Mesh | iomin itomax thres rmaxp S

M1 1 4 0.0001 9 1.0
M2 1 5 0.0001 9 1.0
M3 1 6 0.00001 9 1.5
M4 1 7 0.000001 9 1.5
M5 1 8 0.000001 9 2.0

Table B.1: Parameters of the integration meshes tested for a full monolayer of oxygen atoms adsorbed
in a (1x1) slab.
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Figure B.3: Determination of the basis function cutoff required to describe a monolayer of oxygen
atoms adsorbed in a (1x1) supercell. In (a) the binding energies for oxygen atoms adsorbed at the
fce and the hep sites are shown as a function of the basis function cutoff. In (b) the binding energy
above the top site is plotted. In (c) the difference between the oxygen binding energy at the fcc and
the hep site is shown, and in (d) the binding energy difference between the top site and the fec site
is given.

energy differences of well below 10 meV. Therefore mesh M2 has been chosen, which
corresponds to the default mesh of DMol?.

For all tests carried out so far a reasonable slab geometry consisting of 7 aluminium
layers separated by a large vacuum of 30 A has been employed. However, also these
structural parameters have to be tested to avoid interactions between the oxygen
atoms through the slab or through the vacuum. In Fig. B.6 the oxygen binding
energy at an fcc site is shown as a function of the number of aluminium layers in
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Figure B.4: Determination of the k-point mesh required to describe a monolayer of oxygen atoms
adsorbed in a (1x1) supercell. In (a) the binding energies for oxygen atoms adsorbed at the fcc and
the hep sites are shown as a function of the mesh size. In (b) the binding energy above a top site
is plotted. In (c) the difference between the oxygen binding energy at a fcc site and a hep site is
shown, and in (d) the binding energy difference between the top site and the fcc site is given.

the slab. A slab consisting of 7 aluminium layers is thick enough to obtain a binding
energy converged to within 20 meV. In Fig. B.7 the total energy for a slab with
oxygen adsorbed at the fcc sites is given as a function of the vacuum thickness for
a 7 layer aluminium slab. The zero point for the energy has been chosen for a very
large vacuum size. For a vacuum larger than 6 A the energy is converged to within
10 meV, but in general a larger vacuum will be chosen, because this does not increase
the computational demand of the calculations using a localized atomic orbital basis
set of finite spatial extent.
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Figure B.5: Determination of the integration mesh required to describe a monolayer of oxygen atoms
adsorbed in a (1x1) supercell. In (a) the binding energies for oxygen atoms adsorbed at the fcc and
the hep site are shown for the meshes listed in Table B.1. In (b) the binding energy above the top
site is plotted. In (c¢) the difference between the oxygen binding energy at a fcc site and a hep site
is shown, and in (d) the binding energy difference between the top site and the fcc site is given.
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ers in the slab.
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Figure B.8: Convergence of the oxygen binding energy for a molecule oriented parallel to the surface
1.5 A above an fcc site and a bond length of 2.4 A as a function of the supercell size.

B.4 Al(3x3) Slabs

The determination of accurate but efficient parameters for the calculation of the oxy-
gen binding energies in the (3x3) supercell employed for the mapping of the potential-
energy surface is of particular importance, because many thousand calculations will
be performed with this parameter set.

To investigate the adsorption process of a single oxygen molecule, lateral interac-
tions between the oxygen molecule and its periodic images have to be avoided by
choosing a large enough supercell. The strongest interactions can be expected when
the molecule is oriented parallel to the surface with a bond length of 2.4 A, which
is the largest bond length that is employed in the calculation of the potential-energy
surfaces. For a molecule located 1.5 A above an fcc site parallel to the surface (geom-
etry 3 in Appendix C) the binding energy has been calculated for several supercells
of different size. The calculations have been carried out using the same basis set
parameters as for the calculations of the (1x1) slabs and a 4x4x1 k-point mesh em-
ploying the PBE functional. The obtained binding energies are shown in Fig. B.8 as
a function of the supercell size. While for this molecular geometry remarkable lateral
interactions are still present in a (2x2) cell, the change in binding energy between a
(3x3) and a (4x4) supercell is only about 70 meV even for this extremely stretched
oxygen molecule. Therefore a (3x3) slab is large enough to model accurately the
potential-energy surface, the most important parts of which will have a far smaller
remaining interaction due to a shorter oxygen-oxygen bond length.

While the required number of aluminium layers in the slab is not expected to differ
from the oxygen-covered (1x1) slabs tested above, the vacuum size has to be chosen
large enough to allow for the mapping of the potential-energy surface also for very
large molecule-surface separations up to 10 A. The required vacuum thickness depends
on two interactions, first the interaction of the oxygen molecule with the surface and
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second the interaction between two oxygen molecules in neighbored slabs through the
vacuum due to the inversion symmetry of the system. As can be seen in Fig. 13.4 in
case of the adiabatic potential-energy surface the energy only asymptotically reaches
a constant value, when the molecule-surface separation is increased. This is due to
the charge transfer from the metal to the molecule described in Chapter 10. At a
molecule-surface separation of 10 A the remaining interaction is sufficiently small
(below 20 meV). Therefore, the required vacuum size due to the molecule-surface sep-
aration on both sides of the slab is 20 A in total. The remaining interaction between
the two oxygen molecules through the vacuum can be described to an excellent ap-
proximation by the interaction between two free oxygen molecules. This is because
the two oxygen molecules in the neighbored supercells are closest when their distance
to the surface is largest, i.e. when the charge transfer is very small. The energy of
a system of two interacting oxygen molecules is shown in Fig. B.9 as a function of
the center of mass distance of the molecules. Both molecules have the equilibrium
bond length of 1.224 A of the free molecule and their bonds have been aligned to
minimize the distance of the closest atoms for a given center of mass distance. The
calculations have been done using a basis function cutoff of 9 bohr, an all basis and
the PBE functional, i.e. under the same conditions as the potential-energy surface.
Periodic boundary conditions have not been applied. As can be seen, the interaction
becomes negligible at a center of mass separation of 6 A. Therefore, a total vacuum
thickness of 30 A between the aluminium slabs should be absolutely sufficient for the
calculation of the potential-energy surface for molecule-surface separations of up to
10 A.

The convergence of the binding energy of an oxygen molecule in a (3x3) supercell
as a function of the calculational parameters is expected to be very similar to the
(1x1) cells. Nevertheless, due to the fundamental importance of these parameters for
the mapping of the potential-energy surface, the convergence has been tested using
two different molecular configurations, (d=2.4 A, Z=1.5 A) and (d=1.0 A, Z=1.7 A),
for a molecule parallel to the surface above an fec site (geometry 3 in Appendix C).
In Fig. B.11 the basis set test is shown. Fig. B.10 illustrates the dependence of the
binding energy on the k-point mesh, and Fig. B.12 shows the convergence with respect
to the basis function cutoff. In agreement with the tests on the (1x1) slabs a dnd
basis for aluminium combined with an all basis for oxygen, a k-point mesh of 4x4x1
k-points and a basis function cutoff of 9 bohr provide a reliable description of the
potential-energy surface for the oxygen dissociation on Al(111).
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Figure B.9: Convergence of the interaction energy of two neutral oxygen molecules as a function of
their center of mass distance.
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Figure B.10: Convergence of the binding energy of an oxygen molecule with respect to the k-point
mesh in a (3x3) cell. In (a) the binding energy of an oxygen molecule parallel to the surface (d=2.4 A,
Z=1.5 A, geometry 3 in Appendix C) above an fcc site is shown. In (b) the binding energy difference
between two different configurations (E(d=1.0 A, Z=1.7 A)-E(d=2.4 A, Z=1.5 A)) is plotted.
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Figure B.11: Convergence of the binding energy of an oxygen molecule in a (3x3) supercell with
respect to the basis sets chosen for the description of the oxygen and aluminium atoms. In (a) the
binding energy of an oxygen molecule parallel to the surface (d=2.4 A, Z=1.5 A, geometry 3 in
Appendix C) above an fec site is shown. In (b) the binding energy difference between two different
configurations (E(d=1.0 A, Z=1.7 A)-E(d=2.4 A, Z=1.5 A)) is plotted.
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Figure B.12: Convergence of the binding energy of an oxygen molecule in a (3x3) supercell with
respect to the basis function cutoff. In (a) the binding energy of an oxygen molecule parallel to
the surface (d=2.4 A, Z=1.5 A, geometry 3 in Appendix C) above an fcc site is shown. In (b) the
binding energy difference between two different configurations (E(d=1.0 A, Z=1.7 A)-E(d=2.4 A,
Z=1.5 A)) is plotted.
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Sampling of Potential-Energy
Surfaces

For the mapping of the six-dimensional potential-energy surfaces of various spin states
elbow plots have been calculated for 38 different molecular orientations. The geome-
tries are listed below. The coordinates refer to Fig. 8.2. The top view shows only a
few of the surface atoms of the (3x3) supercells that have been used in the calcula-
tions. Taking into account the symmetry of the surface these orientations cover the
full orientational configuration space for all combinations of # and ¢ in 30° steps above
the top, fcc and hep sites. Due to its reduced symmetry, not all of these combinations
are covered in case of the bridge site.

Geometry 1 Geometry 2
X/a = 0.5 X/a = 0.5
Y/a = 1/(2-V3) Y/a = 1/(2-V3)
0 = 0° 0 = 90°
¢ = 0° ¢ = 30°
Geometry 3 Geometry 4
X/a = 0.5 X/a = 00
Y/a = 1/(2-V3) Y/a = 1/V3
0 = 90° g = 0°
¢ = 60° o = 0°
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