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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Frage wie Rechenzentrum Netz-

werke von der Integration von Software De�ned Networking pro�tieren kön-

nen. Hierfür werden einige für Rechenzentren essentielle Netzwerkkompo-

nenten mit einem neuen OpenFlow Ansatz konzipiert, mit der Absicht sie in

Netzwerk-Grundfunktionen zu überführen, basierend auf dem entkoppelten

Steuerungs- und Daten-Konzept von Software De�ned Networking.

Die untersuchten Netzwerk-Grundfunktionen sind typische Komponenten

wie sie in nahezu jedem Rechenzentrum vorkommen, dies zeigt den praktis-

chen Hintergrund für die durchgeführte Betrachtung und Analyse. Die in

dieser These betrachteten Netzwerk-Grundfunktionen, im speziellen Lastbal-

ancierung, QoS Überlagerungen und Weiterleitung sowie eine Firewall, wer-

den separat untersucht und evaluiert basierend auf dem Netzwerk Anwen-

dungs-Konzept laufend auf einem Netzwerk-Betriebssystem. Der spezi�sche

Rahmen ist isolierte Leistungsergebnisse zu sammeln und zu veri�zieren ob

dieser Ansatz zu einer grundsätzlichen Verbesserung des heutzutage vorherr-

schenden Rechenzentrum Netzwerk Designs führt.

Die vorgestellten Komponenten sind prototypisch entwickelt und imple-

mentiert, um Messwerte auf einem OpenFlow Prüfstand mit Namen OFELIA

TUB Insel, zu sammeln. Die Leistungs-Ergebnisse der Messungen werden be-

nutzt um die Machbarkeit dieses Ansatzes für die Nutzung in einem realen

Rechenzentrum zu vergleichen und zu bewerten.





Abstract

This dissertation deals with the question how data-centers networks can ben-

e�t from the integration of Software De�ned Networking. Therefore some

data-centers essential network components are revised with an new Open-

Flow approach in order to transfer them to network primitives based on the

decoupled control- and data-plan paradigm introduced by Software De�ned

Networking.

The investigated network primitives are typical components how they ap-

pear in nearly every data-center, this builds the practical background for the

conducted consideration and analysis. The in this thesis covered network

primitives, in particular load balancing, QoS overlays and forwarding, and a

�rewall, will be explored and evaluated separately based on the network appli-

cation concept running on top of a network operating system. The particular

scope is to collect isolated performance results and verify if this approach in

general can lead to an enhancement of the todays predominated data-center

network designs.

The introduced components are prototypical developed and implemented

to collect measurements on an OpenFlow networking testbed called OFELIA

TUB island. The performance results of the measured samples are used to

compare and rate the feasibility of this approach for an application in a real

data-center environment.





Contents

1 Introduction 1

1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 11

2.1 The Software De�ned Networking Paradigm . . . . . . . . . . 12

2.1.1 OpenFlow . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 OpenFlow Control-Plane Tools . . . . . . . . . . . . . . . . . 16

2.3.1 OpenFlow Controllers . . . . . . . . . . . . . . . . . . 17

2.3.2 Network Virtualization . . . . . . . . . . . . . . . . . . 17

3 Testbed for Evaluation 21

3.1 Open Flow in Europe: Linking Infrastructure and Applications 22

3.2 General Distributed Testbed Architecture . . . . . . . . . . . 23

3.3 The TUB Island . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Packet Filtering 31

4.1 Packet Filters and Perimeter Networks . . . . . . . . . . . . . 32

4.2 Distributed Packet Filter Architecture . . . . . . . . . . . . . 34

4.3 Implementation of oftables . . . . . . . . . . . . . . . . . . . . 39

ix



4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Load Balancing 45

5.1 Multiple Services Load Balancing . . . . . . . . . . . . . . . . 46

5.1.1 Load Balancing Network Service Implementation . . . 50

5.1.2 Forwarding Performance Evaluation . . . . . . . . . . . 51

5.2 Load Balancing Performance Optimization . . . . . . . . . . . 54

5.2.1 Modi�ed Load Balancing Procedure . . . . . . . . . . . 55

5.2.2 Adaptation of the Service Implementation . . . . . . . 58

5.2.3 Performance Comparison . . . . . . . . . . . . . . . . . 59

5.3 Multipath for Broadcast Domains . . . . . . . . . . . . . . . . 62

5.3.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Rack-to-Rack Multipath for OpenFlow Networks . . . 63

5.3.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . 65

6 Quality of Service 73

6.1 OpenFlow Network Overlays . . . . . . . . . . . . . . . . . . . 74

6.1.1 Quality of Service via Ethernet . . . . . . . . . . . . . 75

6.1.2 Opportunities with OpenFlow . . . . . . . . . . . . . . 76

6.1.3 QoS aware Network Service Architecture . . . . . . . . 78

6.1.4 End-to-End QoS Overlay Evaluation . . . . . . . . . . 82

6.2 Control-Plane Scalability . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Adapted Concepts . . . . . . . . . . . . . . . . . . . . 87

6.2.2 Hierarchical Controller Extension Approach . . . . . . 89

7 Conclusion 95

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Acronyms 99

Bibliography 103







Chapter 1
Introduction

�The future belongs to those who prepare for it today.�

- Malcolm X

Contents

1.1 Motivation and Scope . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . 7

Since the birth of the Internet with the �rst interconnects of mainframe

computers, the ARPANET [61, 62], till today's data-centers and networks

related technology has signi�cantly changed [44]. The amount of data and

devices, the processing speed, and available bandwidth has dramatically in-

creased, but local area networks are still built with concepts and restrictions of

the beginning of Carrier Sence Multiple Access with Collision Detection (CS-

MA/CD) [1]. All achieved improvements concerning the forwarding process

and the forwarding decisions use existing or additional information which is

added to the packet header [33] and special decentralized equipment which is

able to deal with this information. These standards evolve Ethernet and ad-

dress a particular problem: in the case of the Spanning Tree Protocol (STP)

this is a loop free redundant physical topology.

In contrast, a new promising approach called Software De�ned Networking

(SDN) [27] came into play. SDN opens up a completely new perspective on
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networks and the way they are able to work. Furthermore, this technology

delivers the opportunity to completely evolve the way of data forwarding by

providing a standardized interface for an external control logic to specialized

network management control applications, which allow several new use-cases

without impact on any legacy technology. It e.g. provides networking sub-

strates with the feasibility to act �exible and dynamically on the requirements

of processing or storage elements connected to them. Moreover, it promises

to deliver an innovative networking backbone architecture for data-centers,

campus-networks and probably also carrier-networks with the aim to provide

fast, dynamic and application speci�c e�ective packet forwarding. SDN is

the key component for an intelligent and on demand network management

on top of the physical substrate without required changes of the existing Open

Systems Interconnection (OSI) layers [73] or the associated protocols.

1.1 Motivation and Scope

Basic network innovations in general and particularly in data-centers are dif-

�cult due to the closed nature of proprietary switches and routers. They

are usually closed boxes with vendor speci�c features and management. In

contrast, the idea of SDN is to bring todays networks to a software-de�ned

application platform. This concept and the OpenFlow [46] protocol, as open-

source implementation in particular, build the background for the developed

new data-center networking approach.

Data-centers rely on high-speed networks with fail-over mechanisms and

avoidance of bottlenecks, to provide availability and the best possible relia-

bility. These aspects are essential requirements for hosting services and data

with a guaranteed service performance and scalability to provide the best pos-

sible service related end-user experience. Other services like the Storage Area

Network (SAN) require special Quality of Service (QoS) parameters to realize

a high throughput and/or a low latency. Summarizing this requirements data

center networks are staying on the following three pillars:
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• Availability

• Scalability

• Reliability

These pillars build the parameters for the physical network design. The

SDN technology o�ers the opportunity to enhance and unify all these pro-

cesses. It acts as a central instance for network allocation and processing

compared to the current decentralized method. This simpli�es the entire

process from the con�guration until the management, and delivers alterna-

tive approaches to e.g. increase the network performance on the same physical

topology. In other words, using SDN does not require a completely new de-

sign of the physical infrastructure or technology. It evolves the forwarding

process and makes it smart by using a comprehensive and outsourced control

logic with knowledge about the entire network, its state and loads for pro-

viding the most reasonable forwarding path to the corresponding application

or communication partner. The bene�ts for data-centers are customized net-

work services and applications, are optimized for the required features and

available topology. Moreover, quick network improvements and innovations

are no longer a problem and can be deployed in a very short time period due

to the centralized nature of the overall management and control design.

This thesis postulates an approach for an alternative data-center network

concept based on SDN. It is focused on SDN data-center network services.

These services will cover and improve the currently predominated manage-

ment and operational design without the need of rearrangements in the phys-

ical topology. This approach reduces the operational complexity by intro-

ducing the concerning OpenFlow based network services which are cover-

ing the further explained networking task. These tasks are transfered into

network primitives to improves the forwarding process itself and dispose of

conventional proprietary legacy equipment. In particular, to provide and

supply clients with services and a proper service experience, the afore men-

tioned requirements (availability, scalability, and reliability) have to be en-

forced in data-centers. This is usually covered by three main components,
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a Firewall (FW), a Load Balancer (LB) and a QoS related forwarding and

network overlay. This is realized as depict in �gure 1.1. The �gure shows all

these components and where they usually located in the data-center forward-

ing path. The scope of this thesis is to develop and implement a revised and

uni�ed OpenFlow approach of the introduced components in particular and

the concept in general.

Figure 1.1: Schematic data-center tra�c forwarding

The basic idea of this approach is to cover a typical data-center use-

case and to demonstrate how this can be migrated, realized, and improved

based on the SDN concept. So this thesis is basically a proof of concept

work where all afore mentioned parts are explored, investigated and evaluated

separately. Nevertheless, as far as possible all evaluation results are based

on a special testbed with OpenFlow enabled switches which are producing

repeatable results with realistic values how they would appear in a data-

centers environment. This means that the presented results are transferable

concerning their signi�cance.

These SDN application and the resulting impact will be further explained

in the respective chapters as summarized in section 1.3. This thesis is mainly

about the questions how powerful these solutions are and what this new net-

working concept can achieve based on common data-centers network topolo-

gies. Therefore, every network application will be introduced, scienti�cally

explored and evaluated on real packet forwarding hardware as far as possible.
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1.2 Contribution

The legacy forwarding procedure and design which were introduced in sec-

tion 1.1 are transfered and redesigned. Features of the dedicated network

equipment, as depict in �gure 1.1, are integrated into a central SDN manage-

ment concept. Furthermore, redundant and over-provisioned resources are

used to optimize scalability tasks. Finally, a global and dynamic QoS man-

agement environment guarantees a reliable service experience. This improves

the current state of art concept with:

• transfer of specialized networking tasks to network primitives also known

as Network Function Virtualization (NFV)

• exemplary implementation and evaluation of SDN services for a data-

center Network Service Chaining (NSC) approach

• a comprehensive network management concept for a typical data-center

NSC

• avoidance of special and proprietary network equipment

• avoidance of bottlenecks and single point of failure concepts

Multiple parts of this thesis, covering the identi�ed opportunities and in-

troduced subtopics, have been previously published in the following scienti�c

and international peer reviewed publications:

Conference Papers

1. Marc Koerner and Odej Kao. Multiple service load-balancing with open-

�ow. In Proceedings of the 13th International Conference on High Per-

formance Switching and Routing (HPSR), IEEE, pages 210�214. IEEE

publishers, 2012

2. Marc Koerner. The ofelia tub-island an europe-wide connected open�ow

testbed. In Proceedings of the 38th IEEE Conference on Local Computer

Networks (LCN), pages 452�455, Sydney, Australia, oct 2013. IEEE

publishers
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3. Marc Koerner and Odej Kao. Optimizing open�ow load-balancing with

l2 direct server return. In Fourth International Conference on Network

of the Future (NoF'13), IEEE, pages 1�5, Pohang, Korea, oct 2013

4. Marc Koerner and Herbert Almus. Hla - a hierarchical layer application

for open�ow management abstraction. In Fourth International Confer-

ence on Network of the Future (NoF'13), IEEE, pages 1�4, Pohang,

Korea, oct 2013

5. Marc Koerner, Alexander Stanik, and Andreas Kliem. An approach for

QoS constraint networks in cloud environments. In Fourth International

Conference on Network of the Future (NoF'13) (NoF'13), IEEE, pages

1�3, Pohang, Korea, Oct 2013

6. Marc Koerner and Odej Kao. Oftables: A distributed packet �lter.

In The 6th International Conference on Communication System and

Networks (COMSNETS), pages 1�4, Bangalore, India, jan 2014

7. Marc Koerner and Odej Kao. Evaluating sdn based rack-to-rack multi-

path switching for data-center networks. volume 34C, pages 118�125.

Elsevier, 2014

8. Alexander Stanik, Marc Koerner, and Leonidas Lymberopoulos. Sla-

driven federated cloud networking: Quality of service for cloud-based

software de�ned networks. volume 34, pages 655�660. Elsevier, 2014

9. Marc Koerner, Alexander Stanik, and Odej Kao. Applying qos in soft-

ware de�ned networks by using ws-agreement. In Cloud Computing

Technology and Science (CloudCom), Proceedings of the 2014 IEEE 6th

International Conference on, volume 2, pages 893�898. IEEE Computer

Society, December 2014

10. Thomas Renner, Alexander Stanik, Marc Koerner, and Odej Kao. Portable

sdn applications on the paas layer. In Utility and Cloud Computing

(UCC), Proceedings of the 2014 IEEE/ACM 7th International Confer-

ence on, pages 497�498. IEEE Computer Society, December 2014
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11. Constantin Gaul, Marc Koerner, and Odej Kao. Design and imple-

mentation of a cloud-federation agent for software de�ned networking.

In Proceedings of 2015 IEEE International Conference on Cloud Engi-

neering (IC2E 2015), pages 323�328, Tempe, AZ, USA, March 2015.

IEEE

Journal Papers

12. Marc Koerner, Herbert Almus, Hagen Woesner, and Tobias Jungel.

Metrics and measurement tools in open�ow and the ofelia testbed. In

Lecture Notes in Computer Science (LNCS) 7586, pages 123�134, Hei-

delberg, 2013. Springer

13. Marc Sune, Leonardo Bergesio, Hagen Woesner, Tom Rothe, Andreas

Koepsel, Didier Colle, Bart Puype, Dimitra Simeonidou, Reza Neja-

bati, Mayur Channegowda, Mario Kind, Thomas Dietz, Achim Auten-

rieth, Vasileios Kotronis, Elio Salvadori, Stefano Salsano, Marc Koerner,

and Sachin Sharma. Design and implementation of the ofelia fp7 facil-

ity: The european open�ow testbed. Computer Networks (COMNET),

61:132 � 150, 2014. Special issue on Future Internet Testbeds - Part I

14. Alexander Stanik, Marc Koerner, and Odej Kao. Service-level agree-

ment aggregation for quality of service-aware federated cloud network-

ing. IET Networks Journal, -:1�6, 2015

1.3 Outline of the Thesis

This section gives a brief overview about the structure of this thesis. It

also re�ects and introduces the three main coverage areas of the OpenFlow

management- or rather control-applications required in data-centers as ex-

plained in section 1.1.

Every chapter explores one distinguished area and describes the concern-

ing approach as well as opportunities for improvements with the correspond-

ing OpenFlow solution, as shown in �gure 1.2. The remaining chapters are

structured as follows:



8 CHAPTER 1. INTRODUCTION

Firewall Load Balancer Quality of Service

Network Operating System

Software Defined Networking Substrate

Chapter 4 Chapter 5 Chapter 6

Figure 1.2: Typical data-center network service chain

Chapter 2: Background provides a state of the art analysis for network-

ing in data-centers and the service related requirements. The SDN paradigm

is explained and the OpenFlow protocol and other used technologies will be

introduced.

Chapter 3: Testbed for Evaluation describes the detailed structure, or-

ganization, and composition of the local OpenFlow testbed, called OFELIA

TUB island. This testbed was used to evaluated the exemplary implementa-

tions of the network applications which are presented in this thesis in order

to verify their feasibility on real OpenFlow enabled network equipment. This

chapter gives a detailed explanation about the used hard- and software com-

ponents and builds the basis for the classi�cation of the outcomes.

Chapter 4: Packet Filtering points out opportunities for packet �lter-

ing in OpenFlow networks. Further an approach for an innovative distributed

packet �lter tool with iptables similar interface is introduced. The alpha ver-

sion of this innovative decentralized application for distributed packet �ltering

is evaluated, to show the impact and bene�ts of tra�c pre-�ltering and �ne

granular perimeter networks.

Chapter 5: Load Balancing introduces novel load balancing procedures

and describes the demonstrator implementation for a SDN based LB solution.

A common load balancing concept is realized on the OpenFlow concept. In

particular, network service based load balancing concepts are introduced and
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samples based on the implemented network application prototypes are evalu-

ated and compared. Especially the �rst commonly host based load balancing

approach used in data-centers is further revised in this chapter, in order to

address the identi�ed performance issues of the underlying switching devices

and their capabilities.

Chapter 6: Quality of Service introduces some QoS design aspects and

realization concepts for QoS constraint SDN and the herewith connected

Quality of Experience (QoE). The chapter starts with new opportunities

for QoS enforcements in OpenFlow networks and investigates realization

concepts and challenges, which will �nally be applied and exemplary evalu-

ated. Moreover, this chapter goes deeper into a Private Network-to-Network

Interface (PNNI) related design concept for the OpenFlow control-plane, to

increase the scalability and separate responsibilities under technical and non-

technical aspects for large scaled SDN networks. In particular, this addresses

the fundamental problems concerning the centralized SDN based control-plan

concept for large scaled OpenFlow environments.

Chapter 7: Conclusion will provide a �nal summary of the used methods.

The chapter is closing this thesis with a prospect on further research in the

area of OpenFlow data-center networks.





Chapter 2
Background

�We can draw lessons from the past, but we cannot live in it.�

- Lyndon B. Johnson

Contents

2.1 The Software De�ned Networking Paradigm . . . 12

2.1.1 OpenFlow . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Nomenclature . . . . . . . . . . . . . . . . . . . . . . 14

2.3 OpenFlow Control-Plane Tools . . . . . . . . . . . 16

2.3.1 OpenFlow Controllers . . . . . . . . . . . . . . . . 17

2.3.2 Network Virtualization . . . . . . . . . . . . . . . . 17

This chapter provides an overview with regards to the applied technology

and further introduces some basics for chapter 4, 5, and 6, where conceptual

opportunities to improve or at least migrate data-center networks and network

services to SDN are proposed. Moreover, the testbed installation for the

evaluation presented in chapter 3 is based on the technology and concepts

brie�y introduced in the following sections.

First, a brief de�nition and explanation of the SDN paradigm itself is

given. Then the OpenFlow technology will be explained and considered as en-

abler for the in sec. 1.1 introduced new approaches. Finally, a brief overview

about OpenFlow controllers and network virtualization tools is given. The
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network virtualization tools are used to develop the network services and

create testbed.

2.1 The Software De�ned Networking Paradigm

Software De�ned Networking basically describes a complete new networking

paradigm. The �rst time it was proposed 2008 in [46] by introducing the

idea of OpenFlow. The paper basically describes an innovative new design

approach for Ethernet driven networks and can be summarized with two main

di�erences compared to the traditional Ethernet networks.

• decoupled control- and data-plane

• logically centralized network intelligence

The introduced paradigm proposes a separation of the forwarding hard-

ware (data-plane) and the control logic (control-plane) of packet forwarding

elements. The control logic is introduced as a centralized software driven con-

trol entity. It contains informations about the entire network compose of the

many data-planes. This architecture again is later abstracted and condensed

in a generalized description of the entire SDN paradigm [27]. The introduced

SDN described henceforth a layered model with an additional application

layer on top of the control layer/control-plane:

• Application layer

• Control layer

• Infrastructure layer

The proposed changes may seem trivial, still, the consequences for the

entire networking area are not conceivable. The proposed paradigm e�ects the

basement of actual network devices architectural design. Further it in�uences

the way the devices (or more precisely the network in general) is supposed to

work.
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Computer Hardware

App 1

Operating System

App N

Network Substrate

App 1

Network Controller

App N

Figure 2.1: Comparison of computer and SDN application abstraction

This is basically comparable to the way of computer platforms and appli-

cations had evolved due to the introduction of the Operating System (OS), as

depict in �gure 2.1. From a speci�c application created to run on dedicated

computer hardware to an Operating System based scheduling and manage-

ment of applications on top of the OS dependent Input/Output (I/O) system,

Hardware Abstraction Layer (HAL), and process model.

2.1.1 OpenFlow

The OpenFlow[22] approach aims to create a vendor independent, standard-

ized interface for adding and removing �ow entries, some sort of Forwarding

Information Base (FIB) entries, on switches and routers or even more pre-

cisely using the terminology of this thesis packet forwarding elements. Thus,

the network �ows can be de�ned dynamically based on the current network

state and the expected load. The implementation is based on an Application

Interface (API), which allows the modi�cation of the �ow tables represent-

ing e.g. the forwarding decisions on a particular switch. The �ow tables

consist of �ow entries, as depict in �gure 2.2. They represent the mapping

information between a header information and the action(s) to be executed

if a packet matches this particular header. Moreover, the �ow entries do

also contain di�erent counters which e.g. simplify the statistic analysis. The

header matching pattern is basically used for the matching process against

the Ethernet packet-header of an incoming packet. Switching or routing op-

eration like forward or rewrite and forward the incoming packet to a speci�ed



14 CHAPTER 2. BACKGROUND

port or ports are typical actions attached to the �ow entries. For every pro-

cessed packet the �ow entry counters are incremented regarding the packets

attributes, e.g. byte length. More information are provided in the regarding

OpenFlow speci�cation.

Figure 2.2: Abstract OpenFlow forwarding model

OpenFlow is today's best explored and mostly deployed SDN solution.

Moreover, OpenFlow (OF) is a protocol implementation which exactly follows

the SDN approach. Meanwhile, from the �rst research based publication till

today's further standardization by the ONF [52], it is more or less the most

established SDN solution in the market. Actually it has made its way into

switching products from various vendors and is already included to their

product portfolio.

2.2 Nomenclature

Since SDN is a relative new technology this section will brie�y introduce

some nomenclatures used within this thesis to clarify the terminology used

in the following chapters. Thus, it's ensured that all readers have a common

understanding.
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Packet Forwarding Element

Packet forwarding element is a generalized term for any networking device

� a piece of physical hardware which is designed to forward packets � which

is capable to forward Ethernet based network packets. Thereby it does not

matter if the device is also able to process or to modify the packet. Usual

devices are repeater, hubs, switches, routers and so on.

Network Appliance

A Network appliance is usually a dedicated piece of hardware. It is designed,

constructed and deployed within the network topology to serve a particular

purpose and realize a speci�c network function. Usual network appliances

in ever enterprise network are for instance �rewalls, deep packet inspection

�rewalls, routers or load-balancers.

Network Operating System

As introduced in section 2.1 SDN uses a controller which is outsourcing the

control intelligence. This controller does not only implement the regard-

ing underlying SDN protocol it further provides an API for network appli-

cations.Due to these functions the synonym Network Operating System is

widely used. Both terms are usually describing the same software component

which implements the SDN protocol, e.g. OpenFlow, and directly communi-

cates with the packet forwarding elements.

Network Functions

A network function describes a particular function to transform or process

network packets. It can basically described as a set of orders how to proceed

and process a particular packet or �ow. These processing orders are encap-

sulated in some sort of logical block similar and comparable with a software

module.
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Network Function Virtualization

NFV describes a network function which is implemented and realized as an

network application. It's running on a SDN controller or network OS instead

of on a network appliance.

Network Service

A network service equals a network appliance when it's considered from the

operational perspective. It usually provides a particular network function

which is implemented on the principles of NFV. The distinguishing aspect

is, that a network service is rather the operator perspective on a network

function.

Network Service Chaining

Network service chaining describes a concept for the orchestration of network

services as the introduced �rewall, load-balancing and QoS forwarding in

section 1.1. Network service chaining is a very contemporary topic and is

meanwhile also called network function chaining.

Flow

A crucial term for the technical sections is the �ow de�nition. The �ow

terminology henceforth used is the abstract de�nition of a vectored point

to point connection. This connection is drawn over one or multiple packet

forwarding elements and based on parameters speci�ed by the packet header

�elds and the associated action or actions.

2.3 OpenFlow Control-Plane Tools

This section brie�y introduces tools which were used in the development

process of the di�erent network services presented in the following chapters

and the deployment of the testbed as well as presented in chapter 3.
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2.3.1 OpenFlow Controllers

Nowadays several OpenFlow controllers like OpenDaylight, Trema, NOX,

POX, Floodlight are available. OpenFlow controllers are basically provid-

ing a particular programming language API to wrap the OpenFlow protocol

and provide a comfortable enviroment for the rapid network application devel-

opment. Everything started with NOX [31] donated by Nicira to the research

community. The NOX controller provides developers with the opportunity

to build C/C++ or phyton applications on top of the framework. It was

basically the �rst available OpenFlow controller which was used in a vari-

ety of research evaluations at this time, also for the �rst implementations

and evaluations [38] for this thesis. Often controller do not only wrap the

OpenFlow standard[22], they usually provide even an SDN ecosystem. This

means they have a multitude of basic functions like the network topology de-

tection. These controllers allow the fast development of general networking

applications or even the previously introduced virtualized network functions.

Modern object-oriented programming and design patterns controllers like

Floodlight [49] became more convenient. This controller for instance provides

a versatile framework for developing OpenFlow applications with Java. An-

other opportunity to use Floodlight or to build applications with it is to use

the Representational State Transfer (REST) API, which is provided by the

Static Flow Pusher module. REST is a Hypertext Transfer Protocol (HTTP)

based web-service API [60] which provides several advantages, e.g. an easy

Command Line Interface (CLI) usable design. This makes it very simple

to interact with the controller. For example: if all OpenFlow switches have

successfully connected by just sending the concerning REST command, the

evaluation becomes very easy.

2.3.2 Network Virtualization

SDN opened the closed and distributed management nature of network for-

warding elements and networks in general. It provides a completely new op-

portunity to consider networks as a software controllable hardware resource.

It is the basic enabler for a lot of new and innovative network applications
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and o�ers a new approach and understanding of network virtualization. The

consequences are very widely spread. They reach from a simple Virtual Local

Area Networks (VLAN) similar separation or encapsulation mechanism up

to a full virtualization of network resources or even the network in general,

which is well known from the cloud computing.

FlowVisor

The FlowVisor tool was the �rst development in this new direction. It was

the logical consequence of the demand or question, how to use di�erent con-

trollers at the same time on the same substrate. So the question was how to

share the physically available resources to e.g. test di�erent network appli-

cations without larger interference. The idea for a tool called FlowVisor was

born. FlowVisor is just an OpenFlow control channel proxy server with an

additional administrative interface to de�ne the regarding user policies.

The user is getting a network slice which is connected to his controller.

FlowVisor is only evaluating the OpenFlow commands according to the previ-

ously de�ned slice policies and enforces them. In detail, it forwards OpenFlow

control messages which are not violating the slice policies. It drops messages

and send back an error message for commands which are doing this.

This makes it possible to use several controllers and applications on the

same physical network. For instance, it provides the opportunity to test new

algorithms directly on the productive network without in�uencing it [66].

OpenVirteX

Actually FlowVisor was very successful, but unfortunately the basic design

and its principals are only working for the protocol 1.0 standard. When

multiple �ow tables were introduced with the OF version 1.1 it was clear that

another solution needs to be found. Again, an innovative idea was realized,

the full network virtualization.

OpenVirtex is using an internal Internet Protocol (IP) mapping mecha-

nism which maps every tra�c entering the OpenVirteX controlled network

at the ingress packet forwarding element to an internally managed IP class A
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private network address. This is used to separate tra�c belonging to di�erent

users/controllers. It is completely transparent, since the user gets a full vir-

tualized network [13]. He is even not able to draw any conclusions about the

underlying physical topology, similar to a full virtualized host is not aware

about the underlying hardware.

OpenVirtex is currently available in an alpha version. Unfortunately re-

cent investigations [28] concerning the usage of this tool in research environ-

ments, like the in chapter 3 described OFELIA TUB testbed, are indicating

that not yet the entire possible feature set is completely implemented and

working. Still, this implementation is the �rst real open source SDN based

network hypervisor [14].





Chapter 3
Testbed for Evaluation

�Equipped with his �ve senses, man explores the universe around him and

calls this adventure Science.�

- Edward Powell Hubble
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This chapter introduces the evaluation platform called OFELIA TUB is-

land, which was used to evaluate the di�erent exemplary implemented net-

work services which will be presented in the following chapters.

Moreover, it contains and describes a major part of this work and thesis in

terms of building and operating an innovative OpenFlow testbed addressing

the world wide SDN research community since 2010. It builds the foundation

for all network services which will be introduced and explored in the following

chapters and presents a self-contained scienti�c innovation and contribution.

The following sections in this chapter are slightly modi�ed citation of the

in section 1.2 listed publications [35]. They further contain selected contents

from the also in section 1.2 listed publications [71].
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Altogether they are building the biggest OpenFlow testbed outside the US,

which is still growing due to new testbeds which are joining e.g. the Federal

University of Uberlândia (UFU) in Brazil. Fig. 3.1 depicts an overview of

the current islands. With the growing amount of islands also the diversity

of equipment increases. Actually, the federated testbed contains nearly any

kind of networking substrate, from normal packet switches with copper and

�bre links over optical switches up to wireless nodes. Furthermore, network

equipment from several vendors like NEC, ADVA, HP, Pronto, Arista as well

as Xilinx NetFPGA's is used, just to mention some of them. Active and

operating OFELIA islands which are also participating in the federation are

depict in �gure 3.1 and are further listed with their concerning a�liation in

table 3.1.

City Country A�liation

Barcelona Spain i2CAT
Berlin Germany TUB
Bristol United Kingdom UNIVBRIS
Castelldefels Spain CTTC
Catania Italy CNIT
Ghent Belgium iMinds
Pisa Italy CNIT
Rome Italy CNIT
Trento Italy CREATE-NET
Uberlandia Brazil UFU
Zurich Switzerland ETH

Table 3.1: Federated OFELIA islands

3.2 General Distributed Testbed Architecture

OFELIA is designed for providing an independent standalone island operation

and to become part of the distributed testbed with further federation options.

Therefore, the following two main building blocks will be introduced, the soft-

and hardware architecture for an OFELIA testbed.



•

•

•
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the RML. The SCML is also called the federation layer, because it can be

used to expose resources to other federated testbeds, as done in OFELIA. The

top layer is the ECML, which is used to manage the project as well as a used

collection of resources, called slice. It sends resource requests to the SCML

which is aware of the availability and waits for the regarding response. The

OCF generally provides the entire software stack, as depict by �g. 3.2, and

a template for the implementation of RML applications for testbed speci�c

resources, like the Berlin Open Wireless Lab (BOWL) [5] nodes at Technische

Universität Berlin (TUB).

The hardware or more precisely the network architecture consists of three

networks, separated by their purpose and simplifying the federation process.

The purpose and connection between these networks, depict by 3.3, can be

reduced to three di�rent access levels.

• Management Network (MGMT)

• User Control Network (CTL)

• Experimental Network (EXP)

The MGMT is an out-band control network, exclusively for the local

testbed provider and administrators, also called island manager. This net-

work ensures the remote administration of physical and virtual testbed de-

vices, and also enforces security through this separation. In contrast, the

CTL is an island/OFELIA testbed comprehensive management network for

users of the facility. It provides the users access to their project related

resources and the control applications, e.g. the Expedient. The CTL is a

routed private class A network which could be directly accessed by the user

through an OpenVPN[55] tunnel. The last but most interesting network is

the EXP. This is an island comprehensive plain L2 OF network and gives

the user the opportunity for any kind of network experiment which possible

on the regarding physical provided infrastructure.

Related to federation scenarios the CTL uses a star topology in order to

avoid loops in the control part. The concerning hub is the iMinds-island in

Gent, Belgium (BE) with the TUB island as backup hub. If the main hub is
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separates the di�erent networks and provides Internet connectivity to the

devices.

Figure 3.4: Simpli�ed physical network topology at the TUB island

Name Model Comment

NEC1-3 NEC IP8800/S3640-48TW Up and running
HP1 HP 5400 Up and running
NetFPGA 2x Xilinx Virtex-II Pro 50 FPGA Maintenance
VMS1-2 E3-1240 4xCore with 16GB RAM Up and running
Ixia Ixia T1600 + 3x 4port GBit line cards Up and running
IBM 2xXeon 4xcore 2.4 GHz 6GB RAM Up and running

Table 3.2: Equipment hosted at TUB island

The OCF is one of the key components for the TUB island experiment

management. It is a multi-layer software stack, as mentioned in sec. 3.2 and

shown in �g. 3.2, which is able to build a testbed comprehensive management
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system on top of the physical OFELIA infrastructure. It provides a web-

based User Interface (UI) called Expedient and supports all steps for creating

experiments and allocating resources. This tool supports the whole experi-

mental life-cycle. It communicates and visualizes resources with the help of

plug-ins which are connected to the corresponding AM's, in this particular

case the Virtualization Technology (VT) manager and the opt-in manager.

The VT manager aggregates and administrates the VMs which are hosted on

the Virtual Machine Server (VMS)s, as shown by �g. 3.5, supported by the

OCF libvirt agents. The OpenFlow �owspace is allocated through the Opt-

in manager, with the help of the OpenFlow slicing tool FlowVisor [65, 66].

Expedient, VT, Opt-in and FlowVisor are encapsulated in VMs on the IBM

server. The VMS installation hosts a default Debian 6.0 image for the par-

avirtualized user VMs. This image contains several OpenFlow tools, e.g. the

NOX [31, 74] OF controller, for a fast and easy experiment starting point. In

general the researcher is free in his decision and can also download additional

software packets like the FloodLight [49] if he prefers a special controller or

wants to try a pre-developed piece of software.

Figure 3.5: OCF installation at TUB island



3.4. EXPERIMENTS 29

Fig. 3.4 shows the physical topology of the equipment listed in tab. 3.2.

The di�erent colored lines are representing the di�erent networks mentioned

in sec. 3.2. The blue interconnections stand for the OF EXP network, which

is completely under experimenters control concerning allocated resources and

IP con�guration. The green connections are CTL related, which is used by

the experimenter to access the resources. It is a private network with �xed

IP addresses for every island. The black lines are the TUB internal MGMT

interconnects. The picture further shows the additional connection, realized

with an OpenVPN bridge, to connect BOWL network. The wireless BOWL

nodes are in the integration process. They are attached to a TUB island

project under control of the German Telekom Laboratories those who are

the BOWL operators. The T-Labs work on an AM and the corresponding

Expedient plug-in to integrate them into the TUB island and make them

available as resources.

3.4 Experiments

In October 2013 there were 14 active projects only on TUB-island, the Berlin

OFELIA site. Furthermore, the TUB-island provides resources for three more

federated and co-located projects on other OFELIA testbeds. Besides the

periodically scheduled commissioning tests, TUB has also used the testbed

for several research evaluations. For example the developed OpenFlowS load

balancer for multiple services was evaluated on the local island. The concept

and the measurement samples collected on the TUB island were published

[38] to the networking research community. Moreover, an early version of the

load balancer was presented as a demo [3] a few month before at the GENI

Engineering Conference (GEC) 13 in Los Angeles.

Also other OFELIA project partners demonstrated their research results

and the concerning publications collected on the federated testbed in the

area of virtual topologies [64, 24], inter-testbed network virtualization [29]

and Information Centric Networking (ICN) [80, 47]. Additional publications

from people not involved in the project [67, 15] also demonstrates the excellent

research opportunity for scientists.





Chapter 4
Packet Filtering

�Sometimes a cigar is just a cigar.�

- Sigmund Freud
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Firewalls are a powerful instrument to protect networks and enforce se-

curity. They are very common and every data-center or enterprise network

needs and uses them. Moreover, they are building the �rst line of protection

between the public Internet and the data-center. For the data-center service

chaining model this means that an incoming data inquiry or service request

has �rst to pass a �rewall network service as presented in �gure 4.1.

This chapter provides a design approach and evaluation for a �rewall net-

work service on the basis of a network application. The contents appearing

in the following sections are selected and slightly modi�ed citations of the in

section 1.2 listed publication [41]. The mentioned application, its additional

pros, as well as the potential impact will be explained in detail. Di�erent

aspects of network protection based on packet-�lters are explained, which
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Firewall Load Balancer Quality of Service

Network Operating System

Software Defined Networking Substrate

Figure 4.1: Firewall network service chain link

�nally leads to the network service proposal as innovative distributed �re-

wall concept. The introduced concept combines several established and new

technologies to a powerful �rewall application named �oftables�, which is able

to cover security requirements of data-centers and enhances this operational

bottleneck.

4.1 Packet Filters and Perimeter Networks

Nowadays, complexity of the Internet has reached a level where IPv4 ad-

dresses are running out. Quantities of data with several contents are dis-

tributed all over the world. With the rising amount of data more people also

focus on the sensitivity of the data and the corresponding security. The pri-

vacy issue is one of the most important requirements and challenges today,

especially for personalized data. Firewalls are supposed to provide a power-

ful protection mechanism for data and networks. They can be separated into

two main areas: The network �rewalls, which work on the lower International

Organization for Standardization (ISO) OSI layers, typically layer three till

four, and those which work on the higher layers called application �rewalls.

Network �rewalls are also called tra�c or packet �lters. They �lter network

tra�c by characteristics of the packet header. Usually they are deployed and

operate on routers, where they decide which tra�c is allowed to pass the

router from one network to another. On the other hand, many application

�rewalls are working on hosts and observe processes or the process data. An

exception are for instance proxy servers or deep packet inspection �rewalls,
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which are also located in the network path, but have a closer look into the

payload a packet is carrying. They also work as packet �lters, but are very

expensive due to their specialized hardware for the payload data analysis at

line rate. However, �rewalls which are working with packet �ltering based

on the header pattern are security tools which are used in every enterprise

network.

The security level of a facility and the accessibility demands for its ap-

plications and services is crucial for the concerning network design. Security

network designs can be distinguished into three security separation concepts:

Networks in top-secret areas are typically totally isolated. They consist of

private network with no link to the Internet, they are strictly physically sep-

arated and provide only internal data communication. These networks are

not public accessible. Furthermore, there are public available networks which

are typically only protected by a �rewall. These �rewalls usually allow all

incoming tra�c related to the provided services, e.g. web-sites or e-mail.

Between these concepts are perimeter networks [83], which are often called

Demilitarized Zone (DMZ). A single DMZ consists of the �re-walled Internet

link and semi accessible network behind, as well as the not external accessible

internal zone protected by a second �rewall beyond the DMZ. These networks

are usually designed to provide di�erent services hosted by the servers in the

perimeter network for external and internal usage. Internal means all local

e.g. workstations behind the second �rewall, which are not supposed to be

externally accessible. This basically re�ects the two di�erent user groups �

trusted and untrusted � and their corresponding access authority depending

on their physical network location.

Sometimes, depending on the authority level of the departments in for

instance a university, it is required to block tra�c between di�erent locations

in the internal network. For example �ltering or blocking tra�c between

student computer pools and university departments. The typical solution is

to separate them into sub-networks and route and �lter tra�c on layer three

between the sub-networks. In this scenario the �lter rules can be directly

deployed on the router to de�ne and categorize tra�c which is allowed to

pass the concerning network border. To avoid separate wiring for each of
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these networks, they are typically separated with VLAN tags based on the

IEEE 802.1Q standard [2]. The virtual separated tra�c is forwarded by the

access switch to the aggregation switch and usually up to the core network

where the router is located. The router �rewall inspects and approves the

tra�c and sends it via the VLAN gateway the same way back. This tra�c

overhead and the other security issues due to e.g. faked VLAN tags do not

provide a secure network solution at all.

A good example for a packet �lter �rewall is the iptables [4] application.

It is a traditional multilayer [48] �rewall for Linux hosts and routers with all

usual architectural modules of a packet �lter. Distributed �rewalls are an ap-

proach to improve a regular packet �lter concept like iptables. These �rewalls

have many advantages, e.g. better reliability and scalability as described in

[19]. The introduced approach uses IPSEC[16] and provides a decentralized

host to host protection mechanism, which can extend the �lter mechanism

between networks in general. With regards to OpenFlow the Floodlight con-

troller has also a module which enables a packet �lter opportunity. It provides

an Access Control List (ACL) for �ltering tra�c at the ingress switches of

the OpenFlow network. Unknown �ows are processed in a reactive manner

and are compared to the rule list. After being approved by the ACL they can

pass the entire network without additional examination. This example shows

the relevance and importance of this topic.

4.2 Distributed Packet Filter Architecture

The fundamental purpose of �rewalls, or as in this particular case port-�lter

based �rewalls, are a couple of security demands. Firewalls are providing

con�dentiality and integrity in networks. They are blocking or permitting

tra�c to protect sensitive resources or data from unauthorized access. It is

an enforcement mechanism of access control policies between networks, or

more precisely trusted and untrusted networks, which could also be a semi

trusted perimeter network. The oftables tool is extending this approach by

also enforcing security policy e.g. between neighboring hosts. The oftables

concept goes beyond every of the former mentioned concepts in section 4.1 and
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delivers a completely decentralized, scalable and reliable �rewall application

with an approved management concept. This approach introduces a clean

and modular architecture and controller independent design with a central

persistent storage and a decentralized administration interface. The admin-

istrative interface uses a command line administration and parametrization

which is similar to iptables. Furthermore, the implementation could later

be easily adopted to other controllers without reimplementing the applica-

tion core components. This is also working for the central �lter rule storage

database, which can be replaced as well.

The major bene�t of the presented approach in this section is that the

�rewall rules are distributed over several devices. This increase the process-

ing performance or more precisely the processing speed, by also providing

a much �ner granularity. Basically, in this context granularity means that

oftables enables tra�c �ltering between any ports of a switch. This o�ers the

opportunity to avoid several attack scenarios, which will not be covered by

regular �rewalls. Basically network attacks can be di�ered in two scenarios,

consisting of external- and internal attacks. Common �rewalls are separating

into trusted and untrusted networks, as mentioned in section 4.1 and secure

the internal network against the external as well as attacks which are coming

from this network.

In contrast, distributing �rewall rules over the switches in a network create

several perimeter networks. This allows to avoid internal or insider attacks by

e.g. subverted hosts. It increases the processing speed by reducing the length

of the �lter rule chains. Rule chains are typically all processed on one device

and sequentially checked against the packet header. Moreover oftables map

the �lter rules into the Ternary Content Addressable Memory (TCAM) of the

switches. TCAM processes look-ups in parallel and also supports wild-card

matching. This is an innovative mechanism to distribute �lter rules and the

concerned look-ups to every switching node in the network. This can also

reduce the overall network load by early packet drops and the avoidance of

a single inspection unit where the tra�c has to pass-through �rst. The afore

described VLAN routing overhead can also be avoided.

Basically two insertion modes for �ow entries can be di�ered. These modes
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Figure 4.2: System concept

are proactive and reactive. Reactive means the insertion of a �ow entry by

the controller into the switch as result of a packet-in message, received from

the switch. Packet-in messages are sent to the controller, if a packet with-

out matching �ow entry is detected. Proactive means insertion of prede�ned

�ow entries without the OpenFlow noti�cation message by the switch. To

reproduce the behavior of a normal learning switch, it is common to use a

reactive controller mode to insert �ow entries with the corresponding com-

munication partner destination port and the Media Access Control (MAC)

address. Reactive �ow processing is a good approach in this particular case,

but can also result in performance restrictions in the data-path depending

on the processing speed of the controller and the number of packet-in mes-

sages to process. However, the oftables architecture is focused on a proactive

processing concept to avoid any in�uence on the processing performance of

the data-path and other processing units. This is achieved by a pro-active

�rewall rule installation with the concerned �ow entries.

The iptables application provides several default chains, input, output,

forward, pre- and post-routing. In contrast, the oftables application uses only

the input chain. This is not a restriction, it is a conclusion of the multiple

controller network approach with prede�ned �rewall rules. The oftables ap-

plication only enforces dropping of packets, which violate security restriction,

de�ned by the regarding �ow entries on the switches. Every other operation

is a task which will be processed by another network service, after approval

through the oftables. In other words, features like forwarding or routing are
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in this case processed by the regarding OpenFlow �oodlight module and are

not part of this �rewall application. This provides a clear separation con-

cerning the network REST services and avoids interference e�ects with other

application modules on the controller.

The rule speci�cation string/command can contain every matching pat-

tern from ISO/OSI layer one until four, supported by OpenFlow. This means

in detail:

• Device (switch or router data-path ID)

• Interface (number)

• MAC header (eth-type, vlan, src-mac, dst-mac)

• Network header (src-ip, dst-ip)

• Transport protocol (tcp, udp, port-number)

Also wild-cards are allowed and completely supported in every layer and

are part of the regarding header and concerned matching pattern. They can

deliver additional network performance by e.g. pre-�ltering tra�c. The input

chain can be used with an accept or a drop policy. The usual procedure to

formulate rules is to use accept rules if the general policy is drop and vice

versa. The default mode for oftables is the accept policy. This mode is almost

the ideal default solution for the proposed oftables application, because pre-

de�ned dropping rules are supposed to match against several packet types.

The bene�t of this concept is that with oftables installed �ow entries with no

action are dropping the forbidden packets or �ows before they where given to

any other controller, e.g. switching. This is ensured by the regarding �ow en-

try priority, wherewith installed in the �ow tables. This is a straight forward

solution if we consider the technical background of the underlying technology.

Using a drop policy and accept rules can also be realized but makes things

more complicated. Thus, this was not implemented. Nevertheless, the follow-

ing enumeration will brie�y point out some opportunities for an engineering

solution based on the in section 4.3 presented implementation.
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1. The �rst solution is to have one special �ow entry which, re�ects the

drop policy. This can be realized by a �ow entry with a layer one till

four wild-card matching header pattern and a low execution priority

for a �nal packet dropping order. In case that the switch is not �nding

an appropriated other �ow-entry in its table, this special entry will

�t and drop the packet. The accept rules have to use the forward to

"CONTROLLER" action, which encapsulates the packet and sends it

like a regular unknown incoming packet in a reactive manner from the

switch to the controller. This triggers the reactive regular processing

of another service, for example the MAC learning switch. The only

requirement is that the other service has to use a higher priority for the

�ow entries as the drop entry from oftables.

2. Another opportunity to realize such a drop policy, is the logical negation

of the �lter rules. This means, that the policy engine has to reformu-

late the rules with a logical negated content by taking care on the rule

statement itself. This is de�nitively a very TCAM exhausting method,

because a simple accept rule will end up in a huge amount of block-

ing rules or more precisely �ow entries. Since the TCAM amount is

restricted and currently one of the issues in OpenFlow- and OpenFlow

hybrid switches, this method is not recommended.

3. OpenFlow version 1.1.0 [23] and later versions and the hardware re-

lated implementation switches support multiple �ow tables. This can

be used to realize the mechanism mentioned in 1 to separate the rules

into two tables. The �rst table is used by oftables to �lter and the other

tables can be directly used for a service speci�c application. With this

procedure a matching packet will be directly forwarded with the corre-

sponding action to the next table, before it reaches the drop entry of the

�rst one. The only problem is that still not every OpenFlow hardware

switch supports this version.

The oftables �lter rules are stored in a database. This raises the question

why a separate storage is required, even if the rules are permanently stored
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in the �ow-tables of the switches. The answer is simple and bound to the

architectural concept. Other network services or applications are supposed to

write �ow entries to the �ow tables as well, which makes it inalienable, that

oftables have to di�er exactly which rules are under its own administration.

Storing the rules in a database also simpli�es the rule administration by

multiple oftables instances and enables the multiple operator administration.

Moreover, the continuous polling of �ow tables is avoided, which again reduces

the utilization in the control channel.

4.3 Implementation of oftables

The oftables system architecture consists of two software abstractions layer.

On the bottom of this design is the hardware substrate, presented by a net-

work composed out of OpenFlow switches. Above is the Floodlight controller,

which builds the �rst software abstraction layer. Flodlight is using the Open-

Flow 1.0 protocol to connect to the switches. The oftables implementation

again is connected to the northbound interface of Floodlight using its REST

API and the StaticFlowPusher module. An additional database is used to

store the deployed rules.

Figure 4.3: Application module diagram

To support a platform comprehensive and independent application run-

time environment the implementation is based on the Java Software Devel-

opment Kit (SDK). Oftables consists of six main modules, as depicted by

�gure 4.3. These modules are the core implementation and build the basis

for this packet �lter, as described in sec. 4.2.
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• Con�g Parser: The function con�guration parser module is to read

the local con�guration �le, which speci�es network address of the Flood-

light controller and the address of the Structured Query Language

(SQL) database. The con�guration �le also includes the database ac-

cess credentials, table name and the regarding database type, which

speci�es concerning java connector.

• REST Connector: This module implements a connector for the com-

munication with the REST interface of the controller. Basically, using

methods with prede�ned strings, wrapping method parameter values

and sending these strings via socket interface to the Floodlight REST

interface.

• DB Connector: The database connector is a SQL wrapper class with

the opportunity to change the underlying database type by using an

other database driver. This module provides all methods for the inter-

action with the database to store and request �lter rules.

• CLI Interpreter: The CLI interpreter is the �rst implementation for

a user interface. The interpreter parses the CLI call arguments for

oftables internal processing. It can also be used interactively or even in

a shell script.

• Flow Stats: This module provides a list functionality and displays a

statistic output with the number of dropped or accepted packets and

the referenced rules.

• Policy Engine: The policy engine is the main module which coordi-

nates all in- and output values and delegates their data to the regarding

communication module. It combines all application logic and provides

a deterministic program behavior.

The following example application calls are demonstrating how oftables

can be used as a packet �lter. As previously mentioned the parametrization

for the program call is nearly the same as it is for iptables. The abbreviations

used in this example are −dp for the OpenFlow switch data-path id, which
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expects an address notation similar to the IPv6 address [32] style. The −i

speci�es the input interface of the speci�ed switch and the −nwd parameter

represents the network destination address. Every �lter parameter, as men-

tioned in section 4.2, has an abbreviation for the �lter rule de�nition which

can be listed with the well known −h option. The following �ctive examples

give an insight how the tool can be parametrized, shown in listing 4.1 and

4.2, and a possibility how an oftables use-case can look like.

• switch seven in the access network has the unused switch-port number

12 in a student room, where every incoming tra�c will be dropped with

this rule

Listing 4.1: Example parametrization for oftables

o f t a b l e s −A −dp : : 0 7 − i 12 DROP

• switch two in the aggregation network gets instructed with this rule

to block tra�c from department A connected at switch-port three to

department B (netmask)

Listing 4.2: Example parametrization for oftables

o f t a b l e s −A −dp : : 0 2 − i 3 −nwd 10 . 0 . 1 . 1 / 24 DROP

4.4 Evaluation

The experimental evaluation is based on the OFELIA TUB island infrastruc-

ture. This particular testbed was created in scope of the OFELIA [8] project

as introduced in chapter 3. The oftables prototype implementation contains

only the CLI parser and the REST Connector module described in section

4.3. This provides an opportunity to evaluate the general distributed �lter

model and evaluate the general approach as well as the performance behavior

with pre-�ltered network tra�c. Figure 4.4 shows the allocated resources for

the evaluation on the afore mentioned testbed.

The samples are collected on dedicated Ethernet links, to provide the

full physical throughput capacity at the the VM servers (VMS1 & VMS2)
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Figure 4.4: Experimental slice setup at the OFELIA TUB Island

interfaces. The experimental setup is further composed out of four VMs

distributed over these two servers, using a port and vlan based network slice

spanning over three switches. The allocated switches are data-path id ::04:01

until ::04:03. The �rst server is used to host the following three VMs: a sender

(S), the background tra�c emitter (BT) and the receiver (R). The �rewall

VM (FW) is located on the second server. The FW is directly placed as usual

in network path and con�gured with bridged interfaces (eth1 & eth2) without

any IP assignment. This con�guration forwards any layer two tra�c, as long

it does not match a �lter rule. The collected values are measured with iperf

in the User Datagram Protocol (UDP) mode. This con�guration was used

for the background tra�c (BT → R) and also the regular productive tra�c

(S → R). The data induction rate was 800 MBit per second. All VMs are

para-virtualized with the Xen hypervisor.

For having a reference sample an iptables derivate called ebtables was

used. This �rewall application was installed on the FW VM and �nally a

�lter rule with the source mac address of virtual machine which is injecting

the background tra�c was assigned, as shown in listing 4.3.

Listing 4.3: Experimental ebtables parametrization

eb tab l e s −A FORWARD −s 0 2 : 0 4 : 0 0 : 0 0 : 0 0 : 5 7 −−pro to co l IPv4 −−ip−
pro to co l UDP −−ip−de s t ina t i on−port 5001 −j DROP

The same �lter is now applied with oftables, but with the additional pa-

rameter of the switch which takes over the �ltering process in this sample, as
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The oftables �lter rules were deployed during run-time using Floodlight

with the learning switch application for layer two packet forwarding. All three

ebtables samples are showing clearly, that the shared bandwidth between the

regular tra�c and the interfering background tra�c ends up in a smaller

transfer rate and higher packet drops caused by the output queue. With con-

stant background tra�c and ebtables iperf detects 44 % packet drops, com-

pared to the oftables scenario which has only the usual 2.2% packet drops

of a regular and not disturbed transmission. The impact on the transmis-

sion rate is mainly caused by the shared link to the �rewall. The aggregated

transmission exceeds the 1 GBit link capacity and causes the intended be-

havior. Nevertheless, this is an excellent example result which shows clearly

the di�erence of a regular �rewall compared to �ltering with oftables.

Summarizing the oftables bene�ts, this application is an innovative �re-

wall which can be used in addition to the established and usual packet �lters.

It builds a new approach and further point of view regarding packet �lters in

Ethernet networks. Which is archived by enabling tra�c �ltering on switches.

Furthermore, the �ltering process itself is enhanced by using TCAM look-ups

and the distribution of the �lter-rules across the network infrastructure. This

provides a completely new �rewall granularity, which evolves the general per-

spective on perimeter networks. The iptables related management interface

provides a well known �lter rule administration environment for network op-

erators the application can be used as a central management point by several

operators at the same time. Altogether, this application could be powerful

new security enhancement tool for local area networks.



Chapter 5
Load Balancing

�Design is not just what it looks like and feels like. Design is how it works.�

- Steve Jobs
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Load balancers often have a centralized management and control function

in data-centers and ensure the availability and scalability of their services.

They basically distribute every incoming service requests to an array of re-

dundant servers to split the workload and provide an appropriate response
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time to the service consumer. This procedure usually guarantees a �xed

minimum amount of response time to serve the clients and provide a proper

QoE.

Due to decisive and centralized role load balancers have a disadvantage:

they mostly present a single point of failure in the core network. In the worst

case this could e�ect all services and their availability. The problem is usually

addressed by complex clustering solutions. These solutions require an often

complex administrative competency of the concerning proprietary hardware

equipment.

Firewall Load Balancer Quality of Service

Network Operating System

Software Defined Networking Substrate

Figure 5.1: Load balancing network service chain link

While current load balancers are mostly implemented and deployed as

speci�c hardware components, also called network appliances, this chapter

evaluates several approaches regarding the previously introduced correspond-

ing network service paradigm, as highlighted in �gure 5.1. The following

sections 5.1, 5.2 and 5.3 are selected and modi�ed citations of the in section

1.2 listed and previously published peer reviewed publications [38, 39] and

[40].

5.1 Multiple Services Load Balancing

The contribution of this section is an approach and prototype to process load

balancing directly on top of the local network infrastructure as introduced

by the network service concept. Therefore, the load balancing strategies

are included in the implementation of the regarding network application.

The evaluation of this concept is based on multiple controllers running a
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service depended network application � one controller with the concerned

network application per service � that forwards the incoming tra�c to the

corresponding redundant server cluster.

The distributed and dedicated nature of this concept o�ers the opportu-

nity to adapt the balancing policies to an a-priori known processing pattern,

but also to the current load conditions of the network. Furthermore, fail-

over mechanisms can be implemented easily, as the controllers can handle the

management for two or more services, if necessary. The data-center network

topology is usually redundant by concept, which also eliminates the physical

single point of failure issue. Even more, the controller is able to take the

connections and status of the switches and servers into account and can pro-

vide features like OSPF, port-channels or the multi-path concept described

in section 5.3.2 to improve the workload and network performance. With a

network service which covers the load balancing, it is feasible to distribute

service requests from a single IP up to a subnet and forward them to the

concerned application servers. Another bene�t is that OpenFlow provides a

native statistic environment based on the �ow statistics. This is further to be

considered as an additional input for the load balancer logic and balancing

algorithm. Additionally, with server agents it would also be possible to adapt

the balancing algorithm according to the server workload. All this opportu-

nities deliver a comprehensive load balancer design which considers servers

and network utilization for the balancing policies.

To use di�erent network load balancing applications in parallel, a speci�c

separation mechanism is required. This is realized for the following controller

application with the OpenFlow network slicing tool FlowVisor[66, 65]. Figure

5.2 shows an example of a visualized sliced network with four slices. Thus,

each of the server pairs can handle one service. In the depicted case the

servers of a slice are neighbors, but generally the slicing technique allows any

possible combination between them. Slices can be de�ned and con�gured

by using any �ow entry matching pattern as speci�ed in the OpenFlow 1.0

speci�cation. FlowVisor is not supporting any recent versions due to technical

design restrictions. Still, this mechanism allows a �exible extension of the

overall approach: if a particular load balancing service is completely utilized
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the slice can be extended at runtime. The concept o�ers the opportunity

to use a �exible combination of servers, switches and slices for every load

balanced service and the corresponding controller load balancer service. It

is further an opportunity to distribute the forwarding utilization from one

packet forwarding device to several devices, which improves the performance

and also covers reliability aspects.

Figure 5.2: Example with four load balancing slices

The actual load balancer network service prototype is using the NOX

[31] controller platform. It was developed as a NOX application module

and implements a round robin load balancing algorithm. Modules which are

supposed to be executed, must be speci�ed in the program call and will be

loaded during the NOX startup procedure. The controller again is encapsu-

lated with a network slice and is attached to FlowVisor over the OpenFlow

control channel.

If a new service request is detected on the network substrate layer and

indicated by an unknown packet due to a client service request, it is passed

to the FlowVisor application. Depending on the header information of the

packet and its slice policies FlowVisor decides to which controller it must be

forwarded. For instance, an incoming packet with the destination port 80 is
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forwarded to the controller application which handles the HTTP load bal-

ancing. In general, a new service request, respectively �ow request, is always

delegated from FlowVisor to the corresponding controller. The controller

again sends the �ow entires back to FlowVisor, where they are validated

based on the slice policy and forwarded to the corresponding switches be-

longing to the concerning slice. These �ow entries contain the packet header

rewrite information for the Network Address Translation (NAT) based bal-

ancing procedure, and also the output port for the �nal packet forward.

Src. IP Dst. IP NewDst. IP Ctl

1.2.3.4:12345 5.6.7.8:80 10.0.0.10:80 A
2.3.4.1:23451 5.6.7.8:80 10.0.0.11:80 A
3.4.1.2:34512 5.6.7.8:21 10.0.1.10:21 B
4.1.2.3:45123 5.6.7.8:80 10.0.0.12:80 A
1.2.4.3:51234 5.6.7.8:21 10.0.1.11:21 B
... ... ... ...

Table 5.1: Incoming packet header rewrite example with the corresponding
controller mapping

Src. IP Dst. IP NewSrc. IP Ctl
10.0.0.10:80 1.2.3.4:12345 5.6.7.8:80 A
10.0.0.11:80 2.3.4.1:23451 5.6.7.8:80 A
10.0.1.10:21 3.4.1.2:34512 5.6.7.8:21 B
... ... ... ...

Table 5.2: Outgoing packet header rewrite example

Table 5.1 and table 5.2 are examples for the in both directions processed

packet header rewrite. This rewrite is necessary to realize the NAT based

load balancing with was brie�y introduced with the tables. The tables are

also indicating the mapping between the requested service, represented by

the regarding Transmission Control Protocol (TCP)/UDP port number, and

the corresponding controller. The �rst rewrite is usually triggered and pro-

cessed based by a detected new incoming packet, while the second rewrite

is processed on the already known and outgoing packet. This process is in-

dependent from the physical network part (core/aggregation/access). It can
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be processed for instance on the ingress/egress switching nodes of the access

network but also on the core network router. Clients form the Internet do

in any case only notice that all inquiries are processed by one single entity.

This is usually the physical load balancer appliance, which is replaced by the

introduced load balancing network service in this case.

5.1.1 Load Balancing Network Service Implementation

The load balancer network-application implementation is based on the pre-

viously described NOX plug-in. A simple round robin algorithm was used to

evaluate the Destination Network Address Translation (DNAT) load balanc-

ing performance on the SDN equipment. The plug-in is implemented in C++

and executed on the NOX runtime environment. The implemented plug-in is

structured into the following three main parts.

• In the �rst implementation part all packets are dropped which should

not be processed or forwarded by the load balancer, like Link Local

Discovery Protocol (LLDP) packets.

• The second part covers the Address Resolution Protocol (ARP) re-

quests. These broad- and unicasts are processed in a special manner,

in order to simulate the virtual load balancing device. This is directly

covered and implemented by using the send_open�ow_packet method

from the NOX API with an ARP response. This method provides an

opportunity to advise the switch to send out a custom de�ned Ethernet-

Frame bit pattern.

• In the third and last part, all tra�c between the clients and servers

is handled by deploying the �ow-entries for a MAC and IP address

rewriting of the source and destination address. Therefore a linked list

is maintained where all processed client requests are temporarily cached

with their source IP, source port, and server destination IP, until the

�ow entry for the server response is installed in the �ow table.

In general, the entire process is established by setting up �ow modi�cation

entries for a forwarding between a client and one of the servers with a partial
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replacement of the layer two and three packet header �elds. The forwarding

and replacement operation is processed with a total of �ve OpenFlow actions

associated with one entry per direction. This entry again, consists of the pre-

viously mentioned layer two and three rewrite actions as well as the regarding

output action. Eventually all actions are executed by the switch, so that the

measured performance has a direct correlation to the switching node and not

to the controller. The load balancing prototype uses an idle and permanent

hard �ow timeout of �ve seconds. This means that every �ow entry is re-

moved from the switch internal �ow table if the client server connection is

not used for �ve seconds. This is a best practice value for the performance

evaluation following in section 5.1.2. This stands in contrast to a productive

environment where the �ow entry timeout needs to be adapted depending on

the demands of the service to load balance.

5.1.2 Forwarding Performance Evaluation

The experimental evaluation of the implemented prototype is focused on the

OpenFlow load balancer performance which is delivered by the packet for-

warding elements and the feasibility of the proposed concept. The measured

values are collected by using the load balancer NOX load balancing plug-in

implementation as described in sec. 5.1.1 for maintenance of the �ow en-

tries. All measurements are collected within FlowVisor slices. The samples

are processed on the in sec. 3.3 described testbed.

Parameter Mode Average Value

Latency ICMP 2.066 ms
Bandwidth untagged 7.89 MBit/s
Bandwidth tagged 6.46 MBit/s

Table 5.3: Measurement of average values in a single slice

The �rst sample was collected as reference, on a physical port based slice

with no interfering tra�c. Figure 5.3 shows the measured latency between

two virtual machines, which are located on two di�erent physical hosts within

the slice. Figure 5.4 again shows the measured bandwidth between these
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The measured bandwidth is only around one percent of the overall per-

formance which can be achieved on this particular hardware by using NOX

with the regular switching (L2 based forwarding) plug-in. The reason for this

is that the used hardware is not capable to process OpenFlow modi�cation

actions for OSI layer three in hardware.

As a conclusion this network service implementation is basically able to

provides a complete NAT based load balancing, but the achieved performance

on the switching hardware is not suitable for the use in a productive envi-

ronment. Another option is the �at load balancing, which works only with

destination NAT. In this procedure the load balancer needs to be the network

gateway as well, which is in con�ict with the isolated network application ap-

proach in this thesis. In general, bringing both network applications together

is an opportunity to reduce the rewrite complexity by the four byte long client

IP address. Still there is still the layer three action for the sever IP rewrite

and the further application has to handle the entire routing as well.

5.2 Load Balancing Performance Optimization

During the evaluation in sec. 5.1.2 it was observed that, the NAT based

load balancing method has some major performance issues. The performance

restriction belongs to the processed header rewrite operation. Especially net-

work address rewrite operations are currently redirected from the Application

Speci�c Integrated Circuit (ASIC) to the embedded core of the switch, where

they are processed in software. This is the identi�ed reason for the perfor-

mance issues. Moreover, this behavior is currently shown by all OpenFlow en-

abled switches which were evaluated within the testbed. Switches are typical

layer two devices and most of the used ASICs or OpenFlow vendor implemen-

tations on the switch are not able to process layer three header manipulations

with line-rate. They usually solve this in software on the embedded Central

Processing Unit (CPU).

There is a procedure for layer two load balancing which is called Layer

2 Direct Server Return (L2DSR) [20]. The idea of this concept is that a

load balancer in the local server network forwards and distributes service
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requests and packets directly to an array of servers with the same virtual

IP address, equal to the load balancer's network address (MAC). The LB

solely substitutes the destination MAC address and forwards the packet. This

mechanism is called MAC address translation (MAT) and works similar to

NAT. The server which is answers the request forwards the packets directly

back to the router in the local broadcast domain. This procedure is adapted

in the following section in order to improve the performance of the previously

introduced load balancing service on switching devices.

5.2.1 Modi�ed Load Balancing Procedure

This section introduces the fundamental idea how to use the existing Open-

Flow enabled switch hardware to deploy a full functional load balancer, which

is able to deliver line-rate forwarding performance. The focus of this particu-

lar approach is a modi�ed load balancing concept, which considers the packet

header rewrite opportunities of OpenFlow. As previously mentioned, a load

balancing approach working on network layer has not enough performance for

a proper load balancing solution as needed by comercial data centers. The

further explained optimized model uses a known layer two concept to improve

the forwarding performance on the OpenFlow devices. Therefore a L2DSR

similar architecture is considered for a slightly modi�ed implementation of the

network service, which is setting the forwarding rules for the load balancing.

Figure 5.6: Adapted L2DSR load balancing concept

As depicted in �gure 5.6 the application servers are directly connected to

an OpenFlow switch in a routed data-center broadcast domain. The Open-
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Flow controller application, which is labeled with LBC, is responsible for the

load balancing and decouples the servers against the rest of the network in

order to avoid address con�icts. As described in sec. 5.2, L2DSR works usu-

ally with virtual server IPs. This is not needed in this particular approach,

because the servers are isolated through the OpenFlow switch or more pre-

cisely through the way the network service is advising the switch to handle

the tra�c. First of all, the modi�ed network service is not directly forward-

ing any L2 tra�c with the �switch�. That means, it blocks ARP broadcasts,

processes, and answers them directly. Thus, the controller forces the switch

to act as a device with an own non-transparent interface. This is covered by

handling every kind of address resolution tra�c to the legacy network and by

advertising the associated MAC and IP of this virtual device. The IP must

also be assigned to every server in the server network where the load bal-

anced service is hosted. This technique is the reason for avoiding the source

and destination IP rewrites. Table 5.5 explains this procedure, which is also

considered in the following paragraph. Internal address resolution requests

by the servers are directly answered by the switch, the information of the

cached MAT table maintained and stored in the network service application.

All MAC broadcasts are not �ooded: neither in the server network nor in

the data-center network. Thus, layer-three address con�icts due to the same

IP addresses of the application servers are prevented. If there is no cached

MAT information available, the switch forwards the packet by replacing the

MAC address with its own assigned address and answers the request, if it

gets the reply from the requested machine. The switch forwards tra�c with

its associated IP and rewrites the destination MAC address with an address

from the server MAC pool. The forwarding MAC address depends on the bal-

ancing algorithm and decides �nally which server receives the client request.

Furthermore the packets of the server reply on the way back to the client are

also forwarded with a modi�ed source MAC. The switch solely removes the

server source MAC address and replaces it with its own, similar to a network

routing operation. This ensures a deterministic L2 addressing in the legacy

network and avoids network addressing con�icts. The particular di�erence

compared to routing is that the LB not only separates the broadcast domains,
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it also forwards the tra�c which is appointed to the server array by using a

load balancing algorithm for the tra�c distribution among these servers with

the same network address. The controller has the information of the mapping

between the source IP and the destination MAC and uses this knowledge for

a state-full packet transfer between client and server due to a �xed �ow entry.

# Src. MAC Dst. MAC Src. IP Dst. IP

1 Cn Reth0 Cn OFSeth0

2 Reth1 OFSeth0 Cn OFSeth0

3 Reth1 Sn Cn OFSeth0

4 Sn Reth1 OFSeth0 Cn

5 OFSeth0 Reth1 OFSeth0 Cn

6 Reth0 Cn OFSeth0 Cn

Table 5.5: L2 header modi�cations

The following example will give a better understanding of this packet

processing and forwarding procedure. Table 5.5 shows all manipulations con-

cerning the packet header on the way through the example network, as depict

in �g. 5.6. In particular, the described header modi�cations are reaching from

the packet arrival at the router, over the implemented load balancer, up to

the server where the requested service is hosted and vice versa:

1. An arriving packet with the IP of the load balancer � in this particular

case the IP, which is associated with the OpenFlow switch by its LB

network service � is forwarded into the local network.

2. Therefore, the router replaces the source and the destination address

in the layer-two header of the packet. It is the usual routing operation

which every router is using. The network destination address of the

packet is the OpenFlow switch (OFS) with his emulated IP and MAC

address.

3. The switch forwards the packet to one of the servers in the server

network array and replaces the destination MAC address again. The

chosen MAC address and of the corresponding server depends on the
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MAC/server pool as well as on the selected load balancing algorithm.

The destination IP is not replaced, because both IP addresses are iden-

tical. This means that Sn and OFSeth0 use identical IP addresses in

order to avoid the layer three rewrite.

4. Also the source IP is not modi�ed because the server directly replies to

the requesting device.

5. The OFS forwards the packet and replaces the source MAC address. It

is again changed to the OFS MAC.

6. Finally, the router is forwarding the packet by a standard routing op-

eration to the client in the Internet

With this procedure it is required to handle the described load balancing

as well as the redundant server array with a black box model. This means,

there is no communication between the server nodes or within the legacy

network. It is essential that no ARP tra�c leaves the OpenFlow switch,

otherwise it will cause a layer two address con�ict. In contrast, the bene�t is

that every processing node in the LB server array is an identical replication of

a certain image template and that is totally encapsulated. The only di�erence

is the layer two address of the physical host.

5.2.2 Adaptation of the Service Implementation

The implementation is generally based on the previously introduced NOX

load balancing plug-in by using some modi�ed OpenFlow actions and a MAT

address list instead of a NAT list. It has no dependencies to other plug-ins

and is designed as stand-alone network service application. The plug-in is

written in C/C++ and uses the packet modi�cation architecture and model,

which was introduced in section 5.2.1.

The implementation is separated into two di�erent main parts. The �rst

part is dealing with the ARP requests and replies and forces the switch to re-

act on any kind of ARP message. This means the switch interface is forced to

act as an independent device. Processing ARP lookups is a slow operation,
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because every interaction needs to be processed and approved by the load

balancing network service. In contrast, the rewrite and forwarding actions

with the manipulation of the L2 address are processed by OpenFlow actions

executed on the switch. These are comparatively fast operations, because the

controller approves the �ow for the entire data-exchange only once. Every

further following packet which matches the FlowMod-Entry is directly mod-

i�ed and forwarded by the network service without additional approval. The

actual forwarding entries of this approach consist of a matching pattern and

two OpenFlow actions. The �rst action is the manipulation assignment for

the destination MAC address. The second action is the output action which

causes the forwarding of the packet.

Basically, the crucial functions of this implementation are responsible for

the ARP mapping and processing, pushing the L2 rewrite FlowMods and

handling the load balancing. Some additional functions are implemented and

used to management and maintain the LB entries and the concerned ARP

mappings. The method which is responsible for the LB matches every incom-

ing new packet except LLDP or ARP. If a new incoming �ow is detected,

the networks service directly applies the �ow rules with the rewrite informa-

tion and deploys them as a �ow entries on the switch. It is works the same

way as explained in section 5.1.1. The used algorithm maps a server MAC

address depending on the requesting source IP of the client and stores this

information in the internal LB mapping table. The entry is removed, if the

corresponding �ow expire event from the switch is received.

5.2.3 Performance Comparison

This section is about the comparison of the forwarding performance within

the investigated approaches. The evaluation of the former presented DNAT

measurement results are directly compared to the results which were collected

with the modi�ed MAT network service. Therefore, the data-path forwarding

performance for both approaches is directly compared to each other regarding

latency and bandwidth, as shown in �gure 5.7 and 5.8.

Besides the �ow entry installation time, at the beginning of every trans-
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Figure 5.7: Latency

mission, the revised approach presents a considerable performance gain. The

obtained performance gain is achieved due to the avoidance of any layer three

rewrite operations as presented in section 5.1.1. The optimized approach with

the a MAT based load balancing mechanism only uses layer two packet header

rewrite modi�cations which are completely supported and processed on the

ASIC. This is also indicated through the decreased CPU utilization of the

embedded core. The embedded core load was closely to idle, in contrast to

the previously measured NAT based implementation where it reached a uti-

lization of approximatly 95 percent. This re�ects the estimated behavior of

a typical layer two forwarding hardware which is in this particular case a

switch.

The values presented in �gure 5.7 and 5.8 were again collected with the

iperf and ping application in the OFELIA testbed described in section 3.1.

They are measured between the client and server VM's of VMS1 and VMS2
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Figure 5.8: Throughtput

L3DNAT L2DSR

Latency: 2.066 ms 0.445 ms
Throughput: 6.46 MBit/s 939 MBit/s

Table 5.6: Measurement average values

to evaluate the forwarding performance of the two load balancing approaches

based on the regarding OpenFlow enabled hardware of the testbed. In both

diagrams the black series shows the outcome of the DNAT implementation

while the red chart presents the revised layer-two implementation.

As shown in �gure 5.7 and also summarized in table 5.6, the latency was

reduced to a quarter of the previously taken NAT sample. Moreover, the

Round-Trip Time (RTT) scatter was reduced to a minimum of 0.2 ms with a

standard deviation of 27 ns, while TCP throughput was increased up to 939

MBit per second. This means an overall increased throughput of 145 times

and a latency decrease to an average of about 0.5 ms. The only exception
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is the �ow entry set up time which was measured for the �rst packet with a

RTT value of 7.62 ms. Altogether, this revised approach is capable to realize

load balancing on OpenFlow switches as used in the testbed.

5.3 Multipath for Broadcast Domains

Nowadays a certain data-centers network topology is the so called fat-tree

topology, where the Top of Rack (ToR) switches use a redundant connection

to the aggregation network and connect at least two aggregation switches in

order to provide reliability, and thus, redundancy for the inter rack and core

network tra�c. This concept with an increasing interconnection capacity to

the upper network layers is usually deployed to avoid bottlenecks and to have

fail-over mechanisms if an aggregation switch fails. The physically redundant

connections to di�erent aggregation switches can be used to realize a concept

called �rack to rack multi-path� which is introduced in this section. It goes

slightly beyond the current state of the art in this area. It basically describes

a procedure for transferring the realization concept for port channels to the

redundant wired aggregation network. It is a very basic SDN network service

approach for a typical data-center use-case without getting network operators

fear loops or nondeterministic network behaviors.

5.3.1 State of the Art

Section 5.1 showed the opportunities which are o�ered by OpenFlow regard-

ing load balancing. These opportunities were used to create a load balancer

network service, which uses regular OpenFlow capable switches in order to

distribute client requests directly to an array of redundant servers. The in-

troduced approach is a typical data-center use-case for a virtual network

appliance using OpenFlow. It used a procedure to forward destination NAT

manipulated packets from the ToR switch to the physical nodes and vice

versa. The approach has some major performance issues due to the not in

hardware supported OpenFlow L3 rewrite actions. In 5.2 a revised concept

was presented which uses a MAT based approach and which is able to deliver
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nearly line-rate. In this section the previously presented load balancing ap-

proaches are extended by a concept for the next higher intermediate network

topology layer, with the aim to optimize throughput between di�erent nodes.

Previous scienti�c explorations with similar topics uses for instance an

OpenFlow software emulated network ring topology with Mininet [75] and a

particular IP based path separation, as described in [30]. The in [45] proposed

approach is similar to the one presented in section 5.3.2, but the presented

evaluation just uses a software emulated topology. Others approaches again,

use Multipath TCP (MPTCP) [79] in combination with OpenFlow to enhance

the data transfer rate in a tra�c engineered network. Another interesting area

to enhance the available network throughput and reduce packet drops is the

L2 multipath approach, which is a special form of load balancing. The multi-

path opportunities introduced by the Transparent Interconnection of Lots of

Links (TRILL) standard [57] and described in [56] by using di�erent VLAN

tags to separate and share the load are considered. This approach is very

similar, the redundant wiring between the ToR switch and the aggregation

network is used to distribute di�erent �ows over redundant physical avail-

able network connections. In contrast, the following approach deals with real

OpenFlow equipment as it appears in data-centers. It is focused on the evalu-

ation of the feasibility and the achievable performance in such an environment

by using an OpenFlow multipath scenario.

5.3.2 Rack-to-Rack Multipath for OpenFlow Networks

This section introduces the actual OpenFlow multipath approach. It works

similar to TRILL approach but does not require an additional packet header

encapsulation, because OpenFlow already provides all required capabilities

due to its out-band control concept. Nevertheless, the SDN based solution

which is proposed in this section, also requires a mechanism to separate and

to distinguish the �ows. This is a requirement, but OpenFlow provides the

opportunity to use any header �eld which is de�ned for the �ow entry packet

matching process introduced by the concerning OpenFlow standard and sec-

tion 2.1.1. If the network hardware supports OpenFlow version 1.0 every
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packet header �eld from the Ethernet header till the transport protocol port

can be used for the separation process. Moreover, it completely di�ers re-

garding to the �exibility of �ow separation patterns. While one �ow is e.g.

identi�ed by its IP another �ow can be identi�ed and separated by the trans-

port protocol. This can be changed on demand for every �ow and the re-

spective application purpose. This separation concept provides an innovative

granularity for the tra�c separation compared to the afore mentioned con-

cepts like TRILL or Multiple Spanning Tree Protocol (MSTP) based VLAN

mechanisms.

The �ow concepts which are supported by OpenFlow are building the basis

for the network application presented in this section. The separation oppor-

tunity which was previously introduced on a �ow based concept is now used

to di�er and distribute the inter rack tra�c between several ToR switches.

Therefore, di�erent routes are used between the redundant wiring of the in-

volved aggregation switches in a pod. This means, that all �ows which di�er,

can also be distributed between all available routes from any source to any

destination inside or between a pod1.

Figure 5.9: Basic load balancing example with two �ows on two di�erent
paths

This network service application is able to enhance the data transfer-

rate between the access- and aggregation- or aggregation- and core-layer.
1A pod is a block of racks grouped by ToR and aggregation switches which are connected

to the core network as a unit
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It is especially appropriate for data exchange or more precisely data I/O

intensive applications, catchword big-data use-cases. For instance, with an

infrastructure manager like OpenStack[54] and the multipath network service

combination, a comprehensive VM and network scheduler can be used to �nd

an optimized solution for data I/O intensive VM communication and their

distribution. In general, this is also limited by the amount of inter rack �ows

and physical links between e.g. the ToR and aggregation switches. There is

no way to completely avoid tra�c congestions, but at least the proposed cloud

middle-ware composition is able to reduce this e�ect and distribute the tra�c

with a smart and accurate VM placement and network multipath approach.

To avoid �ow based tra�c congestions caused by communicating hosts, as

shown in �gure 5.11, the infrastructure manager should use opportunity to

optimize network performance by placing VMs on a physical host node with

an unused network path, as depict by �g. 5.10.

Figure 5.10: Example with four �ows using four di�erent paths

5.3.3 Measurements

The section is supposed to validate the proposed architecture and to investi-

gate the feasibility regarding performance aspects in a multipath scenario for

data-centers. Therefore, measurements were performed on a topology which is

similar to the one depict by �gure 5.9. The measured values were collected on

the OFELIA TUB island. According to the use-case depict in �gure 5.9, the



66 CHAPTER 5. LOAD BALANCING

Figure 5.11: Flow overlay example with four �ows using four di�erent paths
in one overlay

evaluation was processed on the testbed and used two access switches (NEC1

and NEC2) and two aggregation switches (NEC3 and NEC4). Furthermore,

four VMs were booked (two on each server) to evaluate the simultaneous

data transmission between each pair. This setup o�ers the opportunity for

the simultaneous end-to-end tra�c transfer over two di�erent �ow paths as

previously described in section 5.3.2.

A → NEC1 → NEC3 → NEC2 → X (5.1)

X → NEC2 → NEC3 → NEC1 → A (5.2)

B → NEC1 → NEC4 → NEC2 → Y (5.3)

Y → NEC2 → NEC4 → NEC1 → B (5.4)

Therefore, two bidirectional �ow paths between the four VMs were de-

ployed. Each �ow path with a dedicated physical Ethernet interface mapping

(AVMS1:eth1; BVMS2:eth2; XVMS2:eth2; YVMS2:eth1) for every VM. A �fth VM

was used for the OpenFlow Floodlight [49] controller installation in version

v.0.9, including the Static Flow Pusher module. This module was used to

pre-install the �ow entries by using a proactive �ow installation installation.

The �ow entry installation was executed for all the involved switches. The
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network paths with c available capacity, so f(x, y, z(c)).

In spite of the promising results more investigations regarding the scal-

ability and complexity in usual data-center L2 domains and the concerning

amount of devices are required. Nevertheless, this OpenFlow network service

provides an additional optimization opportunity as demonstrated. The redun-

dant network infrastructure provides additional resources which were used to

enhance the network performance in the regular operation mode. Further-

more, this approach comes without the need of additional port-channel or

MSTP based VLAN encapsulations. The entire mechanism is a straight for-

ward realization on the opportunities the OpenFlow based SDN technology

o�ers. The evaluation is based on real switching hardware and shows clearly

that this is a reasonable and feasible approach for common fat-tree networks.





Chapter 6
Quality of Service

�I never think of the future - it comes soon enough.�

- Albert Einstein
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More and more services and applications like Voice over IP (VoIP) rely

on QoS aspects. QoS is actually a growing topic and enabler for several new

applications. Especially OpenFlow and its opportunities for an application

speci�c dynamic on-demand network QoS adjustment and support are very

promising regarding the expected impact for this sector, e.g. bandwidth on

demand.

This chapter introduces concepts and approaches to realize and cover cer-

tain QoS aspects in OpenFlow networks. In particular, it will introduce and
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describe approaches for the last link in the presented network service chain,

also highlighted by �gure 6.1.

Firewall Load Balancer Quality of Service

Network Operating System

Software Defined Networking Substrate

Figure 6.1: Quality of Service network service chain link

The following sections are about approaches for QoS in OpenFlow net-

works and the concerned experimental evaluation. Moreover, the chapter is

closed by an approach for the OpenFlow control plan scalability, which is a

basic requirement to realize QoS network services. The content presented in

the regarding sections are slightly modi�ed and selected citations of the in

chapter 1 section 1.2 listed publications [43, 42, 70, 69] and [36].

6.1 OpenFlow Network Overlays

The broad range of Infrastructure as a Service (IaaS) products o�ers the op-

portunity to outsource or manage infrastructures as a cloud. In this process,

customers or users are able to request several VMs and con�gure them ac-

cording to their requirements. Nowadays, also network services are o�ered

which allow customers to group VMs in Virtual Local Area Networks (VLAN)

[82, 81]. This enables logically isolated private clouds where the infrastructure

provider delivers the resources and the customer has complete control over

the entire virtual networking environment. However, the network services

are o�ered without QoS parameter and do not respect the current utiliza-

tion of the service provider's underlying physical infrastructure. Also the

infrastructure provider is not able to optimize or adapt the utilization of its

infrastructure depending on the current available capacities. The �exibility

of IaaS is currently very limited when it comes to network resources. For
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instance, the topology, routing policies and QoS characteristics between VMs

in the cloud [43].

The OpenFlow technology enables this innovative mechanism to control

exactly the networks used in this area [78, 25]. Moreover, it provides the

opportunity to manage the network and the concerning capacity itself as a

service. In particular, con�guration and behavior of the SDN can be con-

trolled by one entity and changed on demand. The properties of the underly-

ing network and its connected servers can therefore be treated as a resource.

However, the full range of SDN capabilities is not utilized in today's infras-

tructure managers. Furthermore, SDN is already uses to facilitate future data

center networks, but the bene�ts are often not passed to the customer.

6.1.1 Quality of Service via Ethernet

Realizing QoS constrained data �ows in Ethernet networks with guarantees

regarding timing, latency or bandwidth was covered by several approaches,

e.g. Di�erentiated Services Codepoint (DSCP) with Type of Service (ToS)

�eld or VLAN based Class of Service (CoS) with the Priority Code Point

(PCP) �eld [17, 51]. These are common representatives which exploit a QoS

based priority mechanism, CoS for OSI layer 2 and DSCP for layer 3, to reduce

possible delays in switching devices [18]. These approaches require decentral-

ized set-up procedures, sometimes special hardware, and deliver only soft

probabilistic guarantees. These guarantees are suitable for e.g. Voice over

IP applications, but may fail in conjunction with requirements regarding soft

real time or even deterministic behavior [68]. Enabling Ethernet networks

to match these requirements and bridging the gap to usually used �eld-bus

networks, was a challenge especially treated by the industrial automation do-

main, leading to several Real Time Ethernet (RTE) solutions. In order to

gain real time behavior on top of Ethernet networks, the non-deterministic

CSMA/CD MAC protocol used in Ethernet has to be bypassed. This can

be achieved through usage of full-duplex switched Ethernet. However, RTE

solutions still have to handle non-deterministic delay introduced in switching

devices due to busy ports. Several approaches exist to overcome this issue



76 CHAPTER 6. QUALITY OF SERVICE

[26]. However, the achieved mitigation of delays do not cover the require-

ments of �eld-bus domains and are heavily in�uenced by non real time nodes

participating in the same network. Moreover, having only eight CoS state

values, limits the number of possible gradations and may fail in case of many

QoS enforced data �ows and complex end-to-end overlays.

6.1.2 Opportunities with OpenFlow

The major challenges for a QoS approach are to minimize non-deterministic

delays in switching devices and allow a dynamic and centralized management

of QoS parameters with a �ne-grained distinction between the data �ows.

These QoS constrained data �ows should be dynamically deployable within

a network. OpenFlow is exactly the technology which enables opportunities

to implement a network service which is covers these requirements. Due to

the detailed information about all data �ows in the OpenFlow network, the

network service can make assumptions about the switching device workload

and therefore may reduce the afore mentioned delays. One of the recently

appeared OpenFlow speci�cations [53] (v1.3) provides basically two direct

mechanisms to enforce QoS with OpenFlow:

1. Meter tables consist of meter entries, which are used to de�ne simple

QoS constraints per �ow or respectively �ow entry. These entries have

one or more rate limits and a type �eld, which describes how to further

process the �ow, if the corresponding allocated rate is exceeded, e.g.

drop packets.

2. Port queues provide an additional mechanism to implement more com-

plex QoS constraints. They are part of the packet-scheduler and can be

combined with meter entries. These queues, also depict in �gure 6.2, are

attached to physical ports and can be con�gured with QoS parameters,

e.g. minimum guaranteed rate or queue length. Flow entries which are

mapped to this queue will enforce to be processed accordingly to the

queue con�guration.
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Figure 6.2: OpenFlow switch block diagram

These mechanisms give the opportunity to realize a network comprehen-

sive QoS overlay, by distributing the total available bandwidth over several

�ow and queue bands. This means an end-to-end connection with its par-

ticular QoS constraints, sharing the same physical connection with others.

A usual procedure for this strategy is for example an aggregation of sub-

bands with a ten percent idle overhead to ensure the promised bandwidth

and quality, as depict in �gure 6.3.

Figure 6.3: Flow overlay example

Requirements which cannot be achieved have to be rejected during the

QoS negotiation or e.g. hand-it-over to another redundant wired connection,

as introduced in section 5.3.2. In addition, OpenFlow can also in�uence the
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processing behavior of other legacy forwarding elements in the network path,

by modifying the common layer two PCP or layer three ToS �elds in the

packet header, as described by Other opportunities to implement QoS would

be to rewrite the ToS �eld when forwarding packets similar to Di�Serv [9].

Adding information this to the �ow entries attached rewrite action is fur-

ther an opportunity to integrate legacy devices into the central QoS network

service control concept. The pre-con�gured PCP can be used in combina-

tion with a dynamically rewritten packet header at the SDN network edge to

enforce QoS on a legacy device or network part.

6.1.3 QoS aware Network Service Architecture

To cover QoS management requirements as they appear in infrastructure

management software like OpenStack [54] the network service was designed

with a web-service based API. This API is connected to a business logic for

example and provides an high level booking system for the regarding QoS

overlay connection in the network. It o�ers the opportunity to the business

logic to monitor and book QoS constraint network resources on a �ow basis.

This business logic which is used for the later presented evaluation was an

Service-Level-Agreement (SLA) negotiation frontend which will be treated as

black-box system and is not further explained in the following sections. The

presented SLA4SDN system consists of two separate software parts: the SLA

frontend and the SDN backend. The backend again and the mechanism to

enforce QoS will be further explained now.

Frontend-Backend Interconnection

The web service interface between the SLA frontend and the SDN backend

provides three main functionalities: discoverRoutes, checkRoute, and estab-

lishRoute. These operations are described in detail below and are illustrated

in the overall architecture, shown in �gure 6.4.

discoverRoutes This operation retrieves all possible routes between two

nodes. Therefore, this operation requires two IP addresses as parameters
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Figure 6.4: SLA4SDN architecture and interfaces

which are the two endpoints between all discovered routes are. All possible

routes are returned with an unique identi�er and a maximum bandwidth.

checkRoute This operation checks the current utilization or from another

poit of view the available capacity of a route. This operation is required

to ensure that the available capacity has not changed between the discovery

process and the establishment of a route. Therefore, the unique identi�er is

passed as parameter by calling the checkRoute operation and as a result the

available bandwidth is returned.

establishRoute This operation establishes the route between two nodes in

the network with an advertised QoS. In particular, this operation requires

the selected route identi�er, the minimum bandwidth, the maximum band-

width, and the expiration date as parameters. In order to map the bandwidth

boundaries to a SLA, the maximum bandwidth is the user's request and the

minimum bandwidth is the service provider's guarantee. If the expiration of

a service is reached, the route will be deleted.
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SDN backend implementation

When the SDN backend web service discoverRoutes is called by the SLA fron-

tend, the backend probes the network to �nd all available �ow paths from

host A to host B. Afterwards, the available bandwidth for every identi�ed

path is retrieved. Therefore, the maximum available bandwidth on the par-

ticipating links is subtracted by the already booked connections, so that a

potential bottleneck can be identi�ed. These results are sent to the SLA

frontend in order to provide the required utilization of the network substrate

to negotiate the QoS level for the virtual network overlay. After these prop-

erties are successfully negotiated and an agreement is completed, the SLA

frontend sends these regarding properties to the backend to �nally book the

concerning connection. On each switch along this path the �ow entries are

required to build this connection are installed. Thus, the exclusive layer two

route for the regarding user is assembled. In order to realize a QoS tra�c

shaping, OpenFlow 1.0 provides an enqueue action. Flows can process an

incoming packet by enqueue it in a speci�c output queue which is attached

to a physical port, as depict in �gure 6.2. While information of these queues

can be queried via OpenFlow, the con�guration requires a separate manage-

ment interaction over a CLI or NetConf [10]. These output queues provide

throughput limiters with a maximum and minimum rate. Con�guring this

rate usually requires the con�guration of the vendor dependent management

interface, which is not accessible by design in the common SDN real hardware

based OpenFlow testbeds like OFELIA [8] or GENI [6]. Therefore, it was de-

cided to use the software switch implementation called Open vSwitch (OvS)

[12] for the evaluation of this particular approach as presented in section 6.1.4.

The described implementation uses the Floodlight controller and its internal

Java API. The key components and structure of the backend are depict in

�gure 6.5 and described in detail in the following paragraphs.

FrontendConnector In order to receive requests from the SLA frontend,

the FrontendConnector exposes three web services and thus provides an in-

terface to the CircuitControl module. The bene�t of this design is, that the



6.1. OPENFLOW NETWORK OVERLAYS 81

SDN backend
FrontendConnector

JavaAPI

Floodlight: CoreModules

TopologyManagerCircuitControllerPathFinder

QueueAPI

OpenFlow Network

OpenFlow CLI

Figure 6.5: SDN backend components

SLA frontend and the SDN backend are completely decoupled and can be

distributed and scaled over several machines.

CircuitControl This is the core module of the SDN backend. It exposes

methods to obtain information about the network and methods to adjust

it. This module is directly called and wrapped by the FrontendConnector.

The SLA4SDN system is currently limited in its functionalities concerning

the o�ering and establishment of connections with a particular QoS band-

width capability and guarantee. Side tasks of this module are to �nd layer

two routes between the given end-points and to establishing the regarding

paths. It has a generic design and other extensions (e.g. query and adjust

network properties), which can be easily extended in this module along with

the additional modules which then perform these tasks.

PathFinder This module is to �nd available and appropriated paths. It

directly interacts with the CircuitControl to calculate these paths depending

on the network topology. Using depth-�rst search the PathFinder determines

all paths between two arbitrary nodes in the network.
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TopologyManager The TopologyManager keeps track of the general state

of the network. Therefore, it uses the Floodlight API to register a listener

function to get noti�ed about any changes related to the switches, ports, links

and other topology relevant information. In addition, this module also stores

all information about already booked routes, associated queues and their

properties, the installed �ow-entries, and the already allocated bandwidths

in the network. Based on this information, the TopologyManager is also in

charge of calculating the remaining bandwidth for all paths discovered by the

PathFinder.

QueueAPI This interface module invokes a CLI to the Open vSwitch ovs-

vsctl control tool in order to create, con�gure and modify the concerning rate

limiters which are assigned to a particular queue. These rate limiters are

building the substrate dependent bandwidth enforcement mechanism in the

presented system. Depending on the switches, the network is composed of,

the QueueAPI module itself can be replaced by another version containing

the vendor speci�c queue con�guration commands.

6.1.4 End-to-End QoS Overlay Evaluation

The presented results are focused on the basic veri�cation of the deployed

overlay connection and the validation of the concerned bandwidth bound-

aries. The SLA4SDN prototype and the concerning dynamically deployed

QoS constraints are evaluated on an OvS based OpenFlow network using the

Mininet v. 2.0.0 [11] environment. The maximum throughput capabilities

of the emulated Mininet network are directly related to the underlying com-

puter hardware. The presented performance measurements were processed

on a laptop equipped with an AMD E-350 1.6 GHz CPU, further one of the

two physical available cores was exclusively assigned to the Ubuntu Linux

Mininet VM by using VirtualBox as a hypervisor.

The emulated network itself is composed out of six hosts, labeled with H1

to H6 and two switches, SW1 and SW2. The hosts are combined into two

groups with three hosts each, which are connected to an aggregation switch
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Figure 6.6: Network architecture

on each side. The aggregation switches again are directly connected to each

other, as depict in �gure 6.6. The focus of the evaluation is the behavior of

the shared connection in between the switches and its ability to ful�ll the

speci�ed throughput.

This is processed in two scenarios with two �ows (H1 
 H2 and H3 


H4) with narrow-band throughput (T ) guarantees pretended by the frontend

and enforced by the concerning queue con�guration, as described in equation

6.1 and 6.2. The third �ow (H5 
 H6) is used to emulate the background

tra�c and utilize the network to maximum capacity. In the �rst scenario the

background tra�c is processed by �ow-entries using the regular OpenFlow

"OUTPUT" action. In contrast, in the second scenario an OpenFlow "EN-

QUEUE" based on an additional queue forwards also the background tra�c.

This third queue with a generously con�gured lower and upper rate limiter,

as described in equation 6.3, is used instead of the default queue and takes

over its function.

(H1 
 H2) =


Tmin = 8MBit/s

Tmax = 10MBit/s


(6.1)

(H3 
 H4) =


Tmin = 20MBit/s

Tmax = 25MBit/s


(6.2)
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All three connections are measured simultaneously, to verify that the re-

quested bandwidth is not violated. However, the transmission is started with

an o�set for each joining connection, to explore the e�ects and in�uences on

the overlay in the shared aggregation part. Therefore, the bandwidth be-

tween every host-pair is measured with iperf in TCP mode. As previously

mentioned, the �rst two connections are deployed with a particular band-

width rate, while the third one is used to simulate the background tra�c and

to utilize the network to almost maximum capacity. This means, that the

third transmission without an accurate throughput guarantee will be a�ected

when the other transmissions are starting. All samples are collected over �ve

minutes. The �ows with bandwidth guarantees are joining with one and two

minutes o�set and a total transmission duration of two minutes.
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Figure 6.7: Throughput measurement - Queues are con�gured for two �ows

The outcomes of both samples are depicted in �gure 6.7 and 6.8. Fig-

ure 6.7 shows the measured throughput values of all three connections for

the �rst scenario. In this scenario two queues with rate limiters are used to

enforce QoS for the H1 
 H2 (blue) and the H3 
 H4 (red) connection.

The last connection between H5 
 H6 (green) again, is simulating the pre-

viously mentioned background tra�c by using best-e�ort forwarding. This

transmission (H5 
 H6) utilizes the network with the maximum available

capacity, which is roughly 120Mbit/s. After 60 seconds, when the second
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transmission (H1 
 H2) starts, the throughput of the best-e�ort connec-

tion drops immediately. The sample is showing a similar behavior when the

third transmission (H3 
 H4) starts. It is evident that the QoS bandwidth

requirements of the second and third transmission are ful�lled during the

entire sample time. In contrast, the best-e�ort tra�c is automatically ad-

justed by the Open vSwitches in order to ensure the allocated bandwidth

for the other transmissions. The samples of the second scenario are showing

the same behavior, but a slightly lower variation compared to the best-e�ort

background tra�c measurements in the �rst scenario. Nevertheless, the sam-

ples are clearly indicating that the requested bandwidth for the transmissions

are ful�lled in both scenarios.
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Figure 6.8: Throughput measurement - Queues are con�gured for all �ows

(H5 
 H6) =


Tmin = 20MBit/s

Tmax = 100MBit/s


(6.3)

Summarizing the outcome of the conducted measurements, the evalua-

tion was successful in terms of demonstrating that the presented approach

is able to ensure a certain bandwidth for an end-to-end connection on a

shared network interconnection. Upon a thorough examination of the charts,

it becomes clear that the background tra�c which is handled by the default
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queue has some drawbacks. First of all, the simulated best-e�ort tra�c in

the �rst scenario has an identi�able higher throughput variation. Further-

more, it is also showing a disproportionate throughput drop compared to

the additional utilized throughput of the joining �ow. For instance, when

the transmission H1 
 H2 also depict in �gure 6.7 starts, it is observed

that the background tra�c throughput drops from approximately 110Mbit/s

to 80Mbit/s, although the additional throughput amount consumed by the

joining transmission is only 10Mbit/s.

In the second scenario, when an extra background tra�c queue with a

broad bandwidth range between the minimum and maximum rate limiter

was used, a slightly more deterministic behavior concerning the throughput

aggregation is achieved. As depict in �gure 6.8, the maximum utilization from

the background tra�c has slightly decreased, but the variation is reduced to

a minimum compared to the sample of the �rst scenario. Moreover, the

drop of background tra�c when the other transmissions, H1 
 H2 and

H3 
 H4, are starting is nearly proportional to the consumed bandwidth

of the additional transmissions. This makes it much easier to manage and

calculate the overall network utilization and predict the available capacity in

relation to all end-to-end overlays.

Concluding this particular QoS based evaluation, the second scenario is

delivering a more reliable behavior, by explicitly con�guring and using queues

for all connections even if they have not met any particular QoS bandwidth

requirement. On the other hand, the maximum overall network utilization in

this sample decreased basically from 110Mbit/s to around 90Mbit/s.

6.2 Control-Plane Scalability

A completely di�erent approach to scale OpenFlow networks and provide

QoS is considered in this section. Software de�ned networks usually separate

the control plane from the data plane of the network devices. Typically,

the network control is a centralized piece of software running on a dedicated

server. On large networks, consisting of thousands of active network devices,

the performance of the central network control is expected to be an issue.
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To overcome this problem and avoid congestions in the control palne the

centralized approach must be extended to a distributed control plane design.

The concept proposed in this section addresses and solves this problem

at least theoretically by taking the scalability issue in general into account.

Therefore, the introduced solution avoids any restrictions regarding the design

and the use of the software de�ned network. In principle, the application does

not require any changes of existing protocols; it is supposed to be as trans-

parent as possible and supports recursive instances. The principle behind

the following introduced concept, is the separation of large networks into an

appropriate number of smaller networks i.e. network aggregates. The basic

idea is that each of those networks will have its own network controller. This

network controller again will provide additional functionalities which allow

the controlled network to be represented as a single virtualized network de-

vice to the next higher hierarchical layer. To summarize, a network with its

ingress and egress links is represented as a virtual network device, e.g. an

OpenFlow switch, with the concerning number of input and output ports.

The �rst hierarchical layer therefore consists of a number of those virtu-

alized network devices, each representing its small underlying network aggre-

gate. The interconnection of the ports of the network devices is represented

by the ingress and egress links between the small networks on the underlying

layer. Because every presentation of a network on layer n is a virtual switch

on layer n+ 1, this layer behaves just like a regular network.

6.2.1 Adapted Concepts

The proposed hierarchical concept is based on designs which were introduced

by the developers of the hierarchical PNNI [76], de�ned and implemented as

part of the Asynchronous Transfer Mode (ATM) network technology. Nu-

merous performance evaluations, e.g. [58, 21] elaborated the advantages of

this hierarchical concept. Regarding scalability, Cisco for example states in

its PNNI Reference Guide [72] that for today's very large scale or future net-

works a hierarchy of up to three till four layers could be su�cient to cover

the entire network management.
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The hierarchical approach results in a signi�cant reduction in topology

information since network controllers outside a sub-network only see other

networks represented as single switches. Each network controller on layer n is

using detailed topology information concerning its own sub-network. Further

details are not required, because the end-to-end connectivity setup is done

based on the virtualized switches on the layers above. Based on this, it can

be expected � but of course has to be proven � that our approach will be a

suitable solution to avoid scalability driven performance issues regarding the

network controller bottleneck in large scaled SDN topologies.

Based on the advantages of the SDN approach, the realization of a sim-

ilar hierarchical layering in OpenFlow [46] networks is by far less complex

compared with PNNI. The main bene�t shown in the following parts is the

separated control plane. The instance involved in the layering is just the

controller, which has to be partly extended. In contrast to ATM, there is no

need for a so-called peer group leader selection process.

A good example for a virtualization mechanism based on OF is FlowVisor

(FV) [65, 66]. This application is a transparent policy aware OpenFlow proxy

sever. It enables network slicing and provides the opportunity to use a con-

troller per slice. ADVisor [64] and VeRTIGO [24] are implementations based

on FV and extend the application with an additional virtualization layer, in

terms of building virtual topologies on the physical substrate. Both tools

provide a special form of slicing by exposing the switches or parts of the

switches to a controller application. Moreover, the approach in [77] is about

a multi-controller network, where the controllers are synchronizing each other

to improve the scalability and availability of the regarding sub-network.

Many benchmarking approaches [34, 63] focus on the controller perfor-

mance, which is measured with the established �ows or outstanding packets

compared to the network size by the number of switches. This suggests that

the entire approach of a hierarchical management layer is also interesting in

terms of controller performance gains through a reduced amount of devices

to be managed by a sub-network similar separation.
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6.2.2 Hierarchical Controller Extension Approach

OpenFlow generally assumes a central network management with the com-

plete and deterministic knowledge of the network topology. This is a major

point in the concept to provide an intelligent forwarding, related to the ser-

vice requirements or the network topology. Intelligent in this context means

a speci�c �ow based forwarding with an appropriated path. This generally

di�ers from legacy switched forwarding, where every forwarding element is

only learning its local path assignments, which is a particular form of �ow

switching. Nevertheless, with increasing network size the �ow management

of a single controller will reach its limit due to the rising amount of new �ows

and the regarding processing requests from the switches to the controller.

This fact indicates the need for a multiple controller approach, as presented

in sec. 6.2.1, to cover the management of large scale or multi-tenant SDN

networks.

Figure 6.9: Example for two layers of HLA datapaths

The hierarchical control layer approach, which is presented here, will go

beyond any of the former mentioned solutions and introduce a new point

of view for the management of multi-tenant OF networks and their interac-

tion. This concept is about a non-transparent presentation of sub-networks

as switches. This mechanism presents a special type of network topology ag-

gregation. This means in detail, that the controller of the next higher layer
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n + 1 will notice a speci�c sub-network as a single OF switch. The switch

ports which are exposed to this controller are a summarized collection of the

edge-switch-ports from the concerning sub-network with connection to an

other network or provider, which is under control of the corresponding layer

n+ 1 controller. Figure 6.9 depicts a typical PNNI related network architec-

ture which is directly adopted to the Hierarchical Layer Application (HLA)

approach. Every circle is a packet forwarding node and the black �lled circles

are representing the ingress and egress nodes, also described with δedge in the

equations, with links to other networks. They are surrounded by the net-

work borders which are encapsulated by an HLA controller and can be again

considered as switching node in the next higher layer. This is a theoretical

aspect of the model and can be done on every higher or lower layer.

A brief mathematical consideration of the concept will re�ect that the

proposed application is able to reduce the management complexity with a

growing number of hierarchical and accordingly vertical layers. The follow-

ing equations use the parameter δ for a number of switches in the regard-

ing sub-network. Sub-network in this context does not necessarily mean an

IP sub-net, it general describes a composition of OF switches in a closed

management-unit or domain. The iteration parameter i is used for the hierar-

chical layer n and j for the regarding sub-netm in a layer, with {δ, i, j, n,m} ∈
N+. To compare this particular concept, the following equations build the

number of switches to be managed in total δall, by FV δFV in an inter-domain

approach and with the HLA δHLA proposal.

δall =
n

i=1

m
j=1

δ(i, j) (6.4)

δFV =
n

i=1

m
j=1

δedge(i, j) (6.5)

δHLA =
n

i=n

δ(i) = δ(n) (6.6)
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⇒ δall ≥ δFV ≥ δHLA (6.7)

In conclusion of equation 6.7, the presented management approach clearly

shows that HLA signi�cantly decreases the number of devices to be managed

for the next higher layer. Only in the worst case scenario they are equal,

but the usual case will be an exponential decreasing behavior of devices to be

managed per abstraction layer compared to the FV approach. In contrast, the

HLA concept performs with a constant amount of devices and sub-networks

per layer. Nevertheless, it has to be emphasized that FV traces and presents

a completely di�erent approach. This thesis is not focused on denigrating

FV, this example was just chosen due to its versatility and the ability to

reproduce a similar behavior.

To get a better understanding of the concept, the following brief real world

scenario is explained under the assumption of a completely SDN enabled and

comprehensive network including the required extensions for the optical back-

bone network part. Usually, universities have several departments. This is

the �rst layer in this example. In every department the regarding adminis-

trator has control over his network and can also provide department speci�c

requirements or topologies it only exposes the links to the core network by

using the proposed application. The interconnects between the departments

and the additional forwarding hardware in the core network is managed by

the Network Operations Center (NOC) of the university, which is the sec-

ond abstraction layer. If a host in the access network contacts another host

in another university, the national research and education network is used.

The regarding provider processes the forwarding in the same way as it was

explained for the universities, but in a much larger scale. This is the third ab-

straction layer, similar to the architecture depicted by �g. 6.10. This process

can be continued in the same way.

The introduced concept presents the usual procedure for today's network

management. Every sub-network, or in a lager scale every provider, has �xed

handover points where the corresponding network management unit takes

over the control for the further tra�c forwarding. Every local network is
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Figure 6.10: HLA OpenFlow network example with three layers

under control of the concerned network operators and is not exposed to the

provider. This is exactly the key idea which provides the opportunity to build

an hierarchical management application by keeping the SDN paradigm. The

management handover point in this approach is the HLA. The data-path

handover is given through the connected links of the network. The presented

application is a network controller with an additional northbound OpenFlow

API. This additional interface is used to emulate an OpenFlow switch, which

hides the internal network topology and exposes only the external links in

form of its interfaces of a single switch. This completely encapsulates the

network and makes the forwarding path to an internally managed process.

Again, the provider can deal with the same concept to expose the control for

its links to the next higher institution and so on. This approach basically pro-

vides a concept for reducing management complexity and tenant controlled

network size of SDN comprehensive substrates. Furthermore, the processing

in the data-path of an aggregate is under control of the local network con-

troller. In contrast the control between the aggregates is done by the next

higher layer controller and can for example use a completely di�erent routing

strategy.

An other useful side e�ect of this control plane design is that the name-

space, in this particular case the data-path IDs, used in a sub-network, can

overlap. Moreover, the provider or management instance of the next higher

layer can declare data-path ids to use, similar to the internet provider asso-
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ciated IP address for example, without in�uencing sub-net internal assign-

ments. The proposed model has no negative e�ects concerning the SDN

paradigm in general. All characteristics of SDN and the o�ered opportunities

can be realized. The only exception is that the new elementary unit is now

a single aggregate which isolates the control plane size in the aggregate. The

aggregate itself is not restricted in its size, but in order to avoid problems

due to the growing scale, the proposed concept is also a good candidate to

be considered for building smaller structures. In conclusion, a sliced network

architecture created with a tool like FV is now restricted to an sub-network

but can still be used to create network slice in it.





Chapter 7
Conclusion

�Nothing endures but change.�

- Heraclitus
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This chapter concludes this thesis and provides a summary with the clas-

si�cation of the herewith achieved outcomes. It will further brie�y describe

the limitations of the presented approach. Finally, it closes with a short

perspective with regards to the introduced data-center network services.

7.1 Summary

This thesis introduced new and innovative concepts to realize the usual ingress

data-center network service chain. Therefore, the typical data-center network

appliances like �rewall, load balancer, and QoS packet forwarding were re-

designed and transferred to OpenFlow network applications. The services

were revised according to the SDN paradigm. Thus, services were further

designed and realized by considering the NFV concept. All the conceptual

developed services are evaluated on an innovative OpenFlow testbed which
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was especially created for such purposes. The presented overall approach pro-

vides a dynamic scalability of these services while unifying and decoupling

the management interface using the SDN technology.

The state of the art of the presented network appliances was investigated,

revised, and transferred to the SDN based network function approach. Thus,

new concepts, methods, and the opportunities provided by the SDN tech-

nology were considered to address and overcome restrictions of the currently

predominating deployments. Therefore, an innovative SDN research testbed

was created and further used to evaluate the proposed and developed network

services and applied methods. The entire OFELIA testbed was composed of

a federation of di�erent OpenFlow network testbeds from international part-

ners. The testbed provided researches access to heterogeneous SDN and com-

putational resources by using the slice based federation architecture approach.

The experiences which were conducted in cooperation with the partners with

regards to the technology, methods, architecture, and limitations built the

basis for the design of the developed new network services. The introduced

�rewall network service approach was revised with a completely distributed

�ltering approach which is administrated from a decentralized management

interface. A common DNAT load balancer network service was evaluated

with the new technology and improved by using a MAT based balancing

method distributing the requests to the redundantly deployed application

servers. Moreover, a method for multipath �ow switching in Ethernet based

broadcast networks was presented to increase the overall throughput in re-

dundant wired network parts. The proposed QoS forwarding approach is

applying a global end-to-end overlay connection between hosts which were

using a dynamically controlled enqueue mechanism in order to create a real

time Ethernet similar network behavior. The further presented PNNI Open-

Flow network OS extension provides a model to increase the control channel

scalability. The developed network services, approaches, and results were

published in a total of 14 scienti�c papers.

The presented outcomes are restricted, because the scalability was basi-

cally not considered due to di�erent limitations of the experimental setup,

as for instance the testbed size. This is a weak point, since all presented
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network services are basically under high utilization in productive data cen-

ters environments. Nevertheless, the presented work is evaluating the general

opportunity by using the SDN technology in order to deploy these virtual

network appliances as network services in data-center networks. The pro-

posed concepts and evaluation results are demonstrating the feasibility based

on today's OpenFlow enabled physical network equipment.

7.2 Future Work

The presented network service concepts and the concerned realizations are

a �rst step into a dynamic data-center NSC paradigm. With the raising

performance and speci�c ASICs designed which directly supports OpenFlow

actions in hardware, it will be possible to overcome the currently investigated

performance limitations. Moreover, also the OpenFlow speci�cation progress

and the increasing amount of functions will further provide more opportuni-

ties to address the identi�ed QoS di�culties. Altogether, this thesis indicates

that the introduced methods for data-center NSC have the potential to rev-

olutionize the resource management and administration in this data center

network area.
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ACL Access Control List

AM Aggregate Manger

API Application Interface

ARP Address Resolution Protocol

ASIC Application Speci�c Integrated Circuit

ATM Asynchronous Transfer Mode

BOWL Berlin Open Wireless Lab

BSD Berkeley Software Distribution

CLI Command Line Interface

CoS Class of Service

CPU Central Processing Unit

CSMA/CD Carrier Sence Multiple Access with Collision Detection

CTL User Control Network

DMZ Demilitarized Zone

DNAT Destination Network Address Translation

DSCP Di�erentiated Services Codepoint

ECML Experiment Control and Management Layer

EU European Union

EXP Experimental Network
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FV FlowVisor

FW Firewall

GEC GENI Engineering Conference

GENI Global Environment for Network Innovations

HAL Hardware Abstraction Layer

HLA Hierarchical Layer Application

HTTP Hypertext Transfer Protocol

I/O Input/Output

IaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

ICN Information Centric Networking

IP Internet Protocol

ISO International Organization for Standardization

L2DSR Layer 2 Direct Server Return

LB Load Balancer

LLDP Link Local Discovery Protocol

MAC Media Access Control

MAT MAC address translation

MGMT Management Network

MPTCP Multipath TCP

MSTP Multiple Spanning Tree Protocol

NAT Network Address Translation

NFV Network Function Virtualization

NOC Network Operations Center

NSC Network Service Chaining

OCF OFELIA Control Framework
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OF OpenFlow

OFELIA Open�ow in Europe: Linking Infrastructure and Applications

OS Operating System

OSI Open Systems Interconnection

OSPF Open Shortest Path First

OvS Open vSwitch

PCP Priority Code Point

PNNI Private Network-to-Network Interface

QoE Quality of Experience

QoS Quality of Service

REST Representational State Transfer

RML Resource Management Layer

RTE Real Time Ethernet

RTT Round-Trip Time

SAN Storage Area Network

SCML Slice Control and Management Layer

SDK Software Development Kit

SDN Software De�ned Networking

SLA Service-Level-Agreement

SNMP Simple Network Management Protocol

STP Spanning Tree Protocol

SQL Structured Query Language

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

ToR Top of Rack

ToS Type of Service
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TRILL Transparent Interconnection of Lots of Links

TUB Technische Universität Berlin

UDP User Datagram Protocol

UFU Federal University of Uberlândia

UI User Interface

US United States

VLAN Virtual Local Area Networks

VM Virtual Machine

VMS Virtual Machine Server

VoIP Voice over IP

VT Virtualization Technology
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