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Abstract: The SARC architecture is composed of multiple processor types and a set of 
user-managed direct memory access (DMA) engines that let the runtime scheduler overlap 
data transfer and computation. The runtime system automatically allocates tasks on the 
heterogeneous cores and schedules the data transfers through the DMA engines. SARC's 
programming model supports various highly parallel applications, with matching support 
from specialized accelerator processors. 

On-chip parallel computation shows great promise for scaling raw processing performance 
within a given power bud-get. However, chip multiprocessors (CMPs) often struggle with 
programmability and scalability issues such as cache coherency and off-chip memory 
bandwidth and latency. 

Programming a multiprocessor system not only requires the programmer to discover 
parallelism in the application, it also requires mapping threads to processors, distributing data 
to optimize locality, scheduling data transfers to hide latencies, and so on. These 
programmability issues translate to a difficulty in generating sufficient computational work to 
keep all on-chip processing units busy. This issue is attributable to the use of inadequate 
parallel programming abstractions and the lack of runtime support to manage and exploit 
parallelism. 

The SARC architecture is based on a heterogeneous set of processors managed at runtime in a 
master-worker mode. Runtime management software detects and exploits task-level 
parallelism across multiple workers, similarly to how an out-of-order superscalar processor 
dynamically detects instruction-level parallelism (ILP) to exploit multiple functional units. 
SARC's runtime ability to schedule data transfers ahead of time allows applications to tolerate 
long memory latencies. We thus focus the design on providing sufficient bandwidth to feed 
data to all workers. Performance evaluations using a set of applications from the multimedia, 
bioinformatics, and scientific domains (see the “Target Applications” sidebar for a description 
of these applications) demonstrate the SARC architecture's potential for a broad range of 
parallel computing scenarios, and its performance scalability to hundreds of on-chip 
processors. 
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The SARC architecture targets a new class of task-based data-flow programming models that 
includes StarSs, [1] Cilk, [2] RapidMind, [3] Sequoia, [4] and OpenMP 3.0.[5] These 
programming models let programmers write efficient parallel programs by identifying 
candidate functions to be off-loaded to worker processors. StarSs also allows annotating the 
task input and output operands, thereby enabling the runtime system to reason about intertask 
data dependencies when scheduling tasks and data transfers. 

Programming Model 
StarSs, the programming model used in this article, consists of a source-to-source compiler 
and a supporting runtime library. The compiler translates C code, with annotations of the 
task's inputs and outputs, into a common C code with calls to the supporting runtime library. 
We chose a software runtime manager to avoid tying the architecture to a particular 
programming model and its runtime system. 

In StarSs, the runtime system manages both data and task scheduling, which do not require 
explicit programmer intervention. This is similar in spirit to out-of-order processors that 
automatically detect data dependencies among multiple instructions, build the dynamic data-
flow graph, and dispatch instructions to multiple functional units. However, in this case, the 
data-flow graph is not bounded by the instruction window, the granularity of instructions is 
much larger, and it does not require in-order commit to support precise exceptions. 

An Asymmetric Chip Multiprocessor 
Figure 1 shows a logical view of the SARC architecture. It is an asymmetric CMP that 
includes a few high-performance master processors and clusters of worker processors that are 
customized to a target application domain. For example, the SARC instance for the H.264 
advanced video codec features different accelerator processors for the context-adaptive binary 
arithmetic coding (CABAC) (entropy decoding) and the macroblock decoding (inverse 
discrete cosine transform [IDCT], motion compensation, deblocking filter, and so on).  

 
Figure 1. Schematic of the SARC architecture. The number of masters, workers, level-2 (L2) blocks, and 
memory interface controllers is implementation dependent, as is their on-chip layout. 
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Master processors 

Master processors execute the master threads. They are responsible for starting up the 
application at the program's main() subroutine. From there, the application can spawn 
multiple parallel threads that will be allocated to other master processors. Because these 
processors' main functionality is to sequentially spawn tasks for the workers to execute, their 
single-threaded performance is critical to the system as a whole. They therefore have a high-
performance out-of-order design. 

Because they run the only threads whose data-access patterns are not known to the runtime 
system (the master thread inputs and outputs are not annotated), the masters only access 
memory through the cache hierarchy. All masters have coherent level-one (L1) instruction 
and data caches that rely on the replacement policy and the coherency protocol to exploit 
locality. 

Worker processors 

Workers off-load task execution from the masters. In addition to the regular cache hierarchy 
provided to the masters, workers feature a local scratchpad memory. The scratchpads are 
mapped into the application's logical address space, and are accessed through regular 
load/store instructions. This means that memory accesses from a worker must go through the 
translation look-aside buffer (TLB) in their memory controller to be steered toward their 
scratchpad, a remote scratchpad on another worker, or through the cache hierarchy to the off-
chip memory. 

To avoid the latency penalty involved in sequential TLB and scratchpad/cache accesses, 
workers first check a logically indexed and tagged write-through L0 cache. In addition, the L0 
cache behaves like a vector cache, and allows unaligned vector load/store operations.[6] An 
unaligned L0 access can potentially cause two cache misses: one for each half line. Both L0 
misses will be resolved by two properly aligned LI accesses. Because LI and L2 caches will 
only service L0 misses, they do not need to support such unaligned accesses, thus improving 
their efficiency. 

To avoid coherency problems between the distributed scratchpad memories and the cache 
hierarchy, the LI caches in both masters and workers can only capture addresses in the 
DRAM physical range. That is, the memory addresses mapped to any of the scratchpad 
memories are not cacheable. 

In addition, each worker features a DMA controller that allows the runtime to overlap data 
transfer and computation. The DMA controller can copy data from the local memory to off-
chip memory or to a remote local memory (and vice versa). Details on the implementation 
virtualization, transfer between scratchpads, and the DMA interface are available elsewhere.[7] 
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Target Applications 

Our evaluations used four widely used applications representative of different domains: the H.264/advanced 
video coding (AVC) decoder from the multimedia domain, the FASTA Smith-Waterman protein sequence 
alignment from the bioinformatics domain, and the dense matrix multiply kernel and Cholesky decomposition 
from the scientific domain. 

H.264/AVC decoder 

We developed two parallel versions of the FFmpeg H.264 decoder. Both versions are based on macroblock-
Ievel parallelism, which is more scalable than other parallelization approaches such as slice-level or frame-
level parallelism.[1] 

The first version, referred to as the 2D-wave, is based on the work of Van der Tol et al.,[2] and exploits 
intraframe macroblock-level parallelism. Each macroblock depends on the reference area in the reference 
frames and neighboring macroblocks. This leads to a diagonal wave of parallelism progressing through the 
frame. The second version, referred to as the 3D-wave, exploits both intraframe and interframe macroblock-
level parallelism. The 30-wave is based on the observation that interframe dependencies have a limited spatial 
range because motion vectors are typically small. It is therefore possible to start decoding the next frame as 
soon as the reference macroblock has been decoded, even if the decoding of the current frame is not finished. 
This strategy increases the amount of available parallelism significantly beyond what the 2D-wave provides, 
without increasing the decode latency of individual frames.[3] 

Smith-Waterman 

The protein sequence alignment problem has multiple levels of parallelism. Most frequently exploited is the 
embarrassingly parallel situation in which a collection of query sequences must be aligned to a database of 
candidate sequences.[4] In the SARC project, we developed a parallelization strategy to address the problem of 
aligning only one query sequence to a single candidate based on the FASTA Smith-Waterman code.[5] The 
most time-consuming part of the algorithm computes the sum of the diagonals in a dynamically generated 
matrix, which leads to a 2D wavefront parallelism similar to the one for the H.264 decoder. 

The amount of parallelism depends on the size of the compared sequences. A pair of sequences of 4 M and 30 
K symbols provides sufficient parallelism to keep 256 processors busy processing blocks of 16 K elements. 
Longer sequences, such as full genomes, provide sufficient parallelism for even more cores. 

Matrix multiply 

Matrix multiplication is a well-known parallel problem that has been heavily optimized for many 
architectures. We start from a blocked algorithm and spawn each block multiplication as a task. Each block of 
row x column multiplications builds a dependency chain, but there are many independent dependency chains 
to exploit parallelism. We chose matrix multiply because it is a well-known problem that lets us analyze our 
architecture under predictable circumstances. It also puts the highest pressure on the memory architecture. 

Cholesky decomposition 

The Cholesky decomposition, or Cholesky triangle, is a decomposition of a symmetric, positive-definite 
matrix into the product of a lower triangular matrix and its conjugate transpose. As Figure A shows, the 
blocked version of the Cholesky decomposition results in an irregular intertask dependency pattern. However, 
coding such a dependency pattern in the SARC programming model is fairly simple because the runtime 
library dynamically builds the dependency graph, so it dynamically detects and exploits the parallelism. The 
available parallelism in Cholesky depends on the graph's maximum width, and diminishes as the algorithm 
progresses. As we show in the main article, this limits the application's scalability. 
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Figure A. Intertask dependency graph of a small 6 x 6 Cholesky decomposition 
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Shared L2 Cache 

All off-chip memory traffic goes through a distributed (or banked) shared L2 cache that 
captures both misses from the L1 caches and DMA transfers to and from off-chip memory. 
The L2 cache's distributed structure eliminates the need to maintain coherency across L2 
blocks, because a datum is mapped to a particular bank based on its physical address. In 
addition, the cache structure enables the use of fine-grained interleaving to increase cache 
bandwidth on consecutive address access. Because the architecture relies on DMAs to transfer 
data to and from workers, the L2 cache typically encounters coordinated accesses to multiple 
cache lines. Fine-grained interleaving lets the cache serve multiple parts of a single DMA 
request in parallel, and increases the effective bandwidth experienced by the request. 

The cache's distributed nature leads to a nonuniform cache access time. However, as we show 
later, the architecture handles long (and variable) latencies without impacting performance. 
Thanks to the runtime management of data transfers, applications for the SARC architecture 
can exploit the distributed cache's size and bandwidth benefits without suffering any of the 
latency penalties. 

Because the local memory addresses are not cached on the LI, the L2 cache only needs to 
maintain coherency with the LI caches. Such a coherency engine is simplified because:  

• the shared L2 cache is inclusive of all L1 caches, thus directory state is kept in L2, and 
is only needed per L2 line; and 

• the directory only keeps per-cluster presence bits (not per-LI bits), and 

invalidations are broadcast inside each concerned cluster. 

Memory interface controllers 

The on-chip memory interface controllers (MICs) connect the chip to the off-chip DRAM 
modules. Each MIC supports several DRAM channels. Internally, each MIC maintains a per-
channel request queue, and uses a simple first-in, first-out (FIFO) scheduler to issue requests 
to the DRAMs. Therefore, requests to a given channel are handled in order, but they can 
execute out of order with respect to requests sent to another channel. 

Given that the MIC will interleave requests from many worker processors, the DRAM bank 
page buffer will likely not be reused for two consecutive requests. For this reason we use a 
closed-page DRAM policy.[8] 

Similar to the shared cache design, the global address space is interleaved across the different 
MICs in a fine-grained manner. Given the bulk nature of memory accesses caused by the 
common use of DMA transfers, such a fine-grained interleaving provides better memory 
bandwidth because it parallelizes a typical DMA transfer both across MICs and across 
channels inside each MIC. 
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Network on chip 

A scalable architecture such as SARC must be capable of connecting hundreds of on-chip 
components. We used the hierarchical K-bus organization for our simulations. A K-bus is a 
collection of buses. When a node wants to transmit something through the network, it requests 
permission from the K-bus arbitrator. If there is no previous request for communication with 
the same destination port, the node is dynamically assigned one of the buses. For example, a 
4-bus can accept up to four simultaneous data transfers in a given cycle, as long as no two 
have the same destination port. 

As Figure 1 shows, we organized SARC workers in clusters of eight processors. Each cluster 
uses a 2-bus for its intracluster network. The cluster has a single (full-duplex) port connecting 
it to the global interconnect. In a 256-worker SARC configuration, the global NoC connects 
32 clusters, 16 masters, 32 cache blocks, and two memory controllers: a total of 82 nodes, not 
counting the 1/0 controllers. For the purpose of this article, we used a 16-bus for the global 
NoC. 

Sarc Accelerators 
The SARC worker processors are based on different designs, depending on the target 
application domain. 

Media accelerator 

The SARC media accelerator (SARC-MA) is an application-specific instruction set processor 
(ASIP) based on the Cell synergistic processor element (SPE). Our goal with this design was 
to show that adding a few (at most a dozen) application-specific instructions can achieve 
significant (more than a factor of 2) performance improvements. We chose the Cell SPE as 
the baseline because it is already optimized for computation-intensive applications but not 
specifically for H.264 video decoding. 

To select the application-specific instructions, we thoroughly analyzed the H.264 macroblock-
decoding kernels. We then added 14 instructions, some of which can process different data 
types, to the Cell SPE's instruction set architecture (ISA). 

One deficiency of the SPE is that it does not support scalar operations. Therefore, we did not 
add a full scalar ISA but rather a few scalar instructions that had proved to be most useful, 
such as load-scalar (into the preferred slot) and add-scalar-to-vector-element. Another 
deficiency of the Cell SPE is that it does not support clipping operations that saturate an 
operation's result. The SARC-MA supports clip, saturate-and-pack, and add-saturate-and-
pack. 

Often, a simple fixed-point operation is immediately followed by another simple fixed-point 
operation that depends on the first operation's result, causing a significant number of stall 
cycles. We can eliminate these stall cycles by collapsing these operations into a single 
operation, thereby allowing independent operations to continue in the pipe-line. The SARC-
MA therefore supports several collapsed operations, such as add-and-shift, multiply-truncate, 
and multiply-add. 
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Another supported instruction is the swap-odd-even instructions, which swaps the odd-
numbered elements of the first vector operand with the even-numbered elements of the second 
vector operand. This instruction accelerates matrix transposition. 

Finally, the SARC-MA supports an intravector instruction that performs an 8-point 1D IDCT. 

The instruction latencies have been estimated conservatively and have been based on the 
latencies of similar SPE instructions. Figure 2a shows the speedups and instruction count 
reductions achieved by the SARC-MA compared to the SPE for the considered H.264 kernels. 
These results show that we can obtain significant performance improvements by supporting a 
handful of application-specific instructions. These improvements directly translate to area cost 
savings. The full details are available elsewhere. [9] 

Bioinformatics accelerator 

The SARC bioinformatics accelerator (SARC-BA) is also an ASIP based on the Cell SPE. 
After inspecting the most time-consuming kernel of ClustalW and Smith-Waterman, we 
identified three new instructions that together significantly improve performance. 

Computing the maximum between two or more operands is a fundamental operation often 
used in sequence-alignment kernels. Consequently, we added the Max instruction to the SPE's 
ISA to replace an operation that would otherwise need two SPE instructions. The analyzed 
kernel uses the Smith-Waterman recurrent formula that subtracts the penalties from the upper 
and left scores in the dynamic programming matrix. [10] Then, it computes the maximum value 
with saturation at zero. We also added two instructions to speed up this processing: Max3z 
computes the maximum of three input vectors and 0, and Submx computes max {a – b, c}. 

Figure 2b depicts the speedups and instruction count reductions for the forward pass function, 
the most time consuming kernel of ClustalW. For Max and Max3z, the speedup is larger than 
the reduction in executed instructions. The reason is that these two instructions replace a 
sequence of instructions that create dependencies. Collapsing them into a single instruction 
saves many dependency stall cycles, further contributing to the total speedup. Overall, the 
new instructions improve performance by 17 percent.  
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Figure 2. Speedup and dynamic instruction count reduction of the SARC media accelerator (SARC-MA) over 
the Cell synergistic processor element (SPE) (a) and of the SARC bioinformatics accelerator (SARC-BA) over 
the Cell SPE. 

 

Scientific vector accelerator 

The polymorphic register file plays a central role in the SARC scientific vector accelerator 
(SARC-SVA). Given a physical register file, the SARC-SVA lets us define 1D and 2D logical 
vector registers of different sizes and shapes. Figure 3 illustrates its organization, assuming 
that the physical register file contains 128 × 128 elements. When defining a logical vector 
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register, we need to specify its base address, horizontal length, and vertical length. The 
register file organization (RFOrg) special-purpose registers (SPRs) store the logical registers' 
parameters.  

 

 
Figure 3.  The polymorphic register file, that supports 1D-2D register operations. 

 

The SARC-SVA micro architecture supports both 1D and 2D register operations 
simultaneously using the same instructions. Conditional execution is implicitly supported by 
defining a bit mask register for each logical register. By adding three extra bits to each RFOrg 
entry, we can also specify the data type (32/64-bit floating point or 8/16/32/64-bit integer) 
stored in the logic register, therefore avoiding the need to duplicate the instructions for each 
supported data type. 

The Cell SPE implementation of the dense matrix multiplication is already highly optimized. 
IBM reports 98 percent efficiency for the hand-scheduled assembly implementation.[11] In 
addition, we need only 48 instructions compared to IBM code's 1,700. This will reduce the 
number of instructions dynamically executed by at least 35 times. Because this number does 
not change with the number of lanes, we are more interested in our code's efficiency. Figure 4 
shows the performance results compared to an ideal (100 percent efficient) Cell SPE.  

https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-3-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-3-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-3-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-3-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-3-large.gif
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Figure 4.  The SARC scientific vector accelerator (SARC-SVA) dense matrix multiplication performance and 
efficiency. Using 16 vector lanes, simulation results show a speedup of around 3 times. With 32 vector lanes, we 
estimate a speedup of approximately 5 times. 

 

Figure 4 also shows that we can obtain similar efficiency at the synergistic processor unit 
(SPU) when using four vector lanes (95 percent). For 16 vector lanes, we estimate the 
efficiency at 84 percent. The reason for this behavior is that we did not use any blocking 
technique to overlap the local store loads and stores with computation. Therefore, the time 
required to perform memory transfers starts dominating the execution time when we use more 
vector lanes. 

 

Performance Analysis 
To evaluate the SARC architecture, we developed a trace-driven simulator called TaskSim. It 
provides cycle-accurate simulation of the entire SARC architecture, including the NoC, 
DMAs, caches, MICs, and DRAMs. 

TaskSim is highly scalable because workers need not be simulated at the instruction level. 
Because task computation itself does not affect any component other than the worker (and 

https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-4-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-4-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-4-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-4-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-4-large.gif
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vice versa), tasks can be abstracted as atomic CPU bursts. TaskSim thus simply accounts for 
task computation time as if the worker executes a single instruction whose runtime is read 
from the trace file. TaskSim can therefore accurately model workers by only simulating their 
DMA transfers and task synchronizations, which are simulated alongside all other 
architectural components at the cycle level. This technique allows TaskSim to scale and 
accurately model the SARC architecture with hundreds of workers. 

To guarantee that changing the number of simulated processors does not break application 
semantics, traces also include intertask dependency information. This information lets 
TaskSim group all tasks dispatched by the master in a single task list and dynamically 
schedule them to the simulated worker processors. The dependency information must verify 
the scheduling correctness, so that no task is scheduled before all its predecessors have 
finished, although the scheduling order might differ from that of the original trace because of 
the increased number of worker processors. Table 1 lists the baseline architectural settings 
used throughout this article. 

The H.264 traces we used for this article correspond to the 2D-wave and 3D-wave processing 
of 100 frames of the pedestrian area video at full high-definition, 25 frames per second (fps) 
from HD-VideoBench[12] (see the “Target Applications” sidebar). The SARC H.264 instance 
uses one master processor and four CABAC processors. The number of processors in the 
scalability charts refers to the number of SARC-MA worker instances. The 2D-wave version 
can be seen as a specific case of the 3D-wave with only one frame in flight. The 3D-wave 
version supports a maximum of eight frames in flight. 

We obtained the Smith-Waterman traces from a Cell implementation of the FASTA search 
algorithm. The SARC software instance uses one master processor and several SARC-BA 
worker instances. 

We obtained the matrix multiply traces from a Cell implementation using the optimized 64 × 
64 block multiplication kernel included in the Cell SDK. The SARC scientific instance uses 
one master processor, one helper processor, and several SARC-SVA worker instances.  

 
Table 1. Baseline SARC simulation parameters. 
 

Table 2 summarizes some important characteristics of the SARC target applications. We 
obtained the execution time of individual tasks in the corresponding SARC accelerators using 
a separate cycle-accurate CPU model that extends the Cell SPE with either the media or bio 
instructions and functional units, or implements the multidimensional vector scientific 
accelerator. To isolate the impact of worker specialization from the impact of parallel 
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scalability, all results presented correspond to the performance speedup relative to the SARC 
configurations with only one baseline Cell SPE worker.  

 
Table 2. Characteristics of the SARC applications. 
 
The use of local memories for workers in the SARC architecture isolates task execution, so 
tasks only interact with the worker's local memory and do not generate external memory 
traffic. None of the target SARC applications uses the Ll caches on the worker processors, 
because annotating the task inputs and outputs lets the runtime system automatically move all 
the data in and out of the local stores. 
 

Parallel scalability 

Figure 5 shows how performance improves as we increase the number of workers. The 
simulation parameters are those detailed in Table 1.  

 
Figure 5. Parallel scalability of the SARC architecture. The graph shows the performance of the applications as 
the number of workers is increased. 
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Our results show perfect linear scalability for matrix multiply, our massively parallel 
benchmark. This shows that the application's parallelism has no architectural limitation. More 
importantly, it shows that the block multiply tasks do not incur significant memory stalls, as 
would be the case in any cache-based architecture. 

The results for H.264, Cholesky, and Smith-Waterman show a different behavior. They scale 
linearly up to a point (16 workers for H.264–2D and 80 workers for H.264–3D, 96 for 
Cholesky and Smith-Waterman), and then only obtain diminishing returns. This limitations 
are not due to architecture bottle-necks; no resources are being overcommitted. 

In Smith-Waterman, the sequential part starts to dominate the total duration. What was only 1 
percent in the serial version accounts for 70 percent with 256 workers. In Cholesky, the 
number of parallel tasks diminishes as the algorithm progresses. H.264–2D simply lacks 
parallelism; the 2D-wave implementation has sufficient macroblocks for 60 workers in full 
High Definition (HD). The number of frames in flight (in this case, the value is limited to 8) 
limits the parallelism in H. 264–3D. Increasing the number of frames in flight will increase 
parallelism but result in a bigger memory footprint and higher memory bandwidth. 

Impact of memory latency 

Throughout this article, we have stressed that the SARC memory hierarchy is designed for 
high bandwidth, sometimes at the expense of latency. Such a design policy is based on the 
SARC runtime management system's ability to automatically schedule data transfers in 
parallel with the previous task's computation, achieving a double-buffering effect. 

Figure 6a shows the performance degradation of our target applications as we increase the 
memory latency. (From this point on, all figures show the performance relative to the 
configuration with 256 workers.) For this experiment, we replaced the shared L2 and DDR 
memory system for an ideal conflict-free memory with a configurable latency ranging from 1 
cycle to 16 K cycles. Note that the average DDR3 latency is between 150 and 250 cycles. On 
top of the raw memory latency is the added cost of traversing the SARC hierarchical NoC.  

Our results show that performance for matrix multiply, Cholesky, and Smith-Waterman does 
not degrade until memory latency reaches 1 K cycles or higher. DMA transfers are 16 Kbytes 
in size, which requires 2,000 cycles at 8 bytes per cycle. An additional 1 K-cycle latency only 
increases total transfer time by 33 percent. Furthermore, double buffering helps to effectively 
hide latencies. Not only are higher latencies than the regular DDR3 DRAM tolerated, but the 
cache latency itself is completely irrelevant, because it will always be faster than the off-chip 
memory. 

H.264’ s latency tolerance is much lower because it cannot fully benefit from the double-
buffering runtime optimization. Not all the DMA transfers in the macroblock processing can 
be scheduled in advance, because the reference macroblock is not known until halfway 
through the decoding process. That is, the latency for accessing the reference block 
immediately translates to an increased macroblock decoding time. However, performance 
only degrades by 15 and 11 percent for a memory latency of 512 cycles for the 2D-wave and 
3D-wave versions, respectively. The 3D-wave is more latency tolerant because transfers and 
computation from different frames can overlap. 
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Figure 6. Impact of different architecture configuration parameter on the SARC architecture: memory latency 
(a), L2 cache bandwidth (b), and L2 cache size (c). 
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These results support our claims about the SARC architecture's latency tolerance. Such 
tolerance is not due to the architecture itself (even if bulk data transfers are dominated by 
bandwidth) but it would not be possible if the architecture does not let the DMA controllers 
overlap the transfers with computation. 

Impact of memory bandwidth 

Given our finding that performance is only limited by memory bandwidth, and not latency, 
we must provide sufficient bandwidth to the worker processors. For example, matrix multiply 
tasks take 25.8 microseconds, and require transferring up to 64 Kbytes of data in and out of 
the local memory (depending on data reuse). This translates to an average bandwidth 
requirement of 1.42 Gbytes per second per worker, and an estimated 363 GBps for all 256 
workers. 

Clearly, the limited pin count prevents us from providing such bandwidth from off-chip 
DRAM. We consider eight off-chi p DRAM channels to be a realistic design point, based on 
current pin restrictions. (The IBM Power6 already features two on-chip memory controllers 
and eight DRAM channels.) These would provide only 102.4 GBps using eight DDR3–1600 
DIMMS. The distributed L2 cache must provide the rest of the bandwidth. 

Figure 6b shows the performance degradation of the 256-worker SARC configuration as we 
reduce the L2 bandwidth from 32 L2 banks (819.2 GBps) to only one 12.8 GBps bank. Our 
results for matrix multiply, Cholesky, and H.264–3D show that they are the most bandwidth-
demanding applications, as Table 2 suggests. Performance degrades about 10 percent for 
204.8 GBps, and then drops dramatically for 102.4 GBps or lower bandwidth. H.264–2D and 
Smith-Waterman require much less memory bandwidth, and do not show significant 
performance degradation unless fewer than two L2 banks are used (51.2 GBps, half the off-
chip bandwidth). H.264–3D scales more than H.264–2D at the cost of more memory 
bandwidth: going from 819.2 GBps to 102.4 GBps results in a 36 percent performance loss. 

These results are a clear motivation for the fine-grained interleaving strategy we use in our 
multibank L2 cache. Although it leads to nonuniform latencies, it increases bandwidth, and 
our runtime system can hide the extra latency. As our results show, bandwidth is the critical 
factor limiting the SARC architecture's performance. We still need to check the cache's size 
requirements to capture the working set and avoid resorting to the limited off-chip pins. 

Because we cannot provide sufficient off-chip bandwidth to support the large number of 
worker processors, most of the working set must be captured on-chip and serviced from the 
shared L2 cache. Distributing the cache across 32 blocks, each having multiple banks 
providing 25.6 GBps, gives sufficient concurrency to sustain the required 819.2 GBps 
bandwidth. 

Impact of L2 cache size 

Figure 6c shows how performance degrades as we reduce the L2 cache size from the baseline 
128 Mbytes (32 blocks of 4 Mbytes each) to 32 Kbytes (32 blocks of 1 Kbyte each). The 
cache latency is fixed at 40 cycles, independent of the block size, but previous results have 
shown that performance does not depend on the latency. The off-chip bandwidth is limited to 
eight DRAM channels, or 102.4 GBps. 
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Our results show that Smith-Waterman's performance does not degrade as we reduce the 
cache size. This is to be expected, because previous results have shown that the off-chip 102.4 
GBps are enough, even if all accesses miss in the cache. 

Performance analysis for H.264–2D shows some performance degradation for cache sizes 
smaller than 1 Mbyte. The 1- Mbyte L2 size is sufficient to capture one reference frame, and 
so serves the latency-sensitive DMA transfer from cache instead of off-chip DRAM. 

H.264–3D has a smaller performance degradation. This is due to the prefetch effect that 
results from processing multiple frames in flight. This effect appears because most of the 
motion vectors point to the colocated macroblock-that is, the macroblock in the reference 
frame that has the same coordinates as the current macroblock. 

Finally, matrix multiply and Cholesky show a stronger dependency on cache size, as they are 
the most bandwidth-demanding applications. For matrix multiply, performance degrades 
significantly unless we can fit a whole row of matrix A and the full matrix B in the cache. 
This size depends on the workload and adds up to 64 Mbytes in our test case. Larger matrices 
would require more cache. 

The Cholesky working set used for our experiments is too large to fit in cache (512 Mbytes), 
so we observe how larger caches can better capture the temporal locality of the irregular task 
dependency graph. 

Our baseline configuration with 128 Mbytes only provides 512 Kbytes per worker. That is 
only twice the amount of local store available to them, and is a common size ratio in current 
multicore implementations. Given that 128 Mbytes would seem reasonable for a 256-worker 
chip, we conclude that the distributed on-chip L2 cache can effectively filter the off-chip 
memory bandwidth. 

Impact of specialization 

Figure 7a shows the SARC architecture's scalability, this time using the SARC domain-
specific accelerators instead of the baseline worker processor.  

 

https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-7-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-7-large.gif
https://ieeexplore.ieee.org/mediastore/IEEE/content/media/40/5640598/5567090/5567090-fig-7-large.gif
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Figure 7.  Scalability of the architecture with specialized accelerators: speedup measured against one accelerator 
(a) and speedup measured against one general worker processor (b). 

 

Our results show worse parallel scalability than what was presented in Figure 5 for the 
baseline worker processor. Some applications scale to only half the number of processors as 
before. When using the faster SARC accelerators, the improved compute performance 
translates to increased bandwidth requirements from what is described in Table 2. Essentially, 
the 819.2 GBps of bandwidth provided by the L2 cache, and the 102.4 GBps of off-chip 
memory are not enough for such fast workers. 
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This is most visible for the most bandwidth-demanding benchmark, matrix multiply, for 
which the nonaccelerated architecture achieves almost perfect speedup for 256 workers (see 
Figure 8), whereas the accelerated architecture achieves only about 128. 

We see the same effect for Cholesky, although to a lesser extent because it is less bandwidth 
demanding. Because the Smith-Waterman accelerator is only 17 percent faster than the base 
processor and because it is not very bandwidth demanding, the accelerated architecture 
provides a speedup of about 17 percent irrespective of the number of workers. H.264–2D has 
low bandwidth requirements, and also does not suffer any scalability impact due to the faster 
SARC-MA worker. For H.264–3D, the given bandwidth is enough to sustain the accelerated 
cores' scalability, but there is a 11 percent reduction in speedup compared to the 
nonaccelerated cores. 

Figure 7b shows the combined impact of scalability and accelerators. This figure compares 
the performance speedup for the accelerated workers with the baseline Cell SPE worker. The 
bandwidth limitations encountered by faster workers prevent the SARC architecture from 
achieving speedups over 256 (for 256 workers). However, a comparison of the results to those 
in Figure 5 shows that SARC can achieve the same performance of the baseline architecture 
using fewer workers, translating to lower area and power requirements for a given 
performance target. H.264 also shows the impact of the improved worker, reaching a 
combined speedup of 32 and 128 times, for the 2D and 3D, that we could not achieve with the 
baseline workers. 

The SARC architecture offers scalability with the number of workers and combines well with 
an heterogeneous set of domain-specific accelerators to achieve the desired performance level 
at a lower cost and power. We believe that the SARC architecture offers an excellent 
framework for continued research and development of scalable heterogeneous accelerator-
based architectures and programming models. 

Our experience developing this architecture shows that features such as data transfer engines 
(DMA in our case), heterogeneous processors (be it single ISA, or multi-ISA), distributed 
storage, and variable access latencies will be required for efficient designs. Equally important 
is that such features can be orchestrated by a smart runtime management layer, hiding the 
complexity to the programmer, and making this kind of design commercially viable.  
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