
A NOTE ON THE EIGENVALUES OF SADDLE POINT MATRICES
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Abstract. Results of Benzi and Simoncini (Numer. Math. 103 (2006), pp. 173–196) on spectral
properties of block 2 × 2 matrices are generalized to the case of a symmetric positive semidefinite
block at the (2,2) position. More precisely, a sufficient condition is derived when a (nonsymmetric)
saddle point matrix of the form [A BT ;−B C] with A = AT > 0, full rank B, and C = CT ≥ 0, is
diagonalizable and has real and positive eigenvalues.
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1. Introduction. Many applications in science and engineering require solving
large linear algebraic systems in saddle point form; see [1] for an extensive survey. In
such problems, the system matrix often is of the form

[

A BT

B −C

]

,(1.1)

where A = AT ∈ R
n×n is positive definite (A > 0), B ∈ R

m×n has full rank m, and
C = CT ∈ R

m×m is positive semidefinite (C ≥ 0). The matrix in (1.1) is congruent to

the block diagonal matrix

[

A 0
0 S

]

, where S = −(C + BA−1BT ) with S = ST < 0.

Hence the matrix in (1.1) is indefinite with n positive and m negative eigenvalues,
which represents a significant challenge for linear solvers such as Krylov subspace
methods.

It has been noted by several authors (see [1, p. 23] for references), that the matrix

A ≡

[

A BT

−B C

]

,(1.2)

which is obtained from (1.1) by multiplying the second block row by (−1) is positive
stable, i.e. has only eigenvalues with positive real parts; see, e.g., [1, Theorem 3.6] for a
proof of this statement. What is even more appealing is that, under certain conditions,
the matrix A is diagonalizable with all its eigenvalues real and positive. This may be
advantageous when solving a linear system with A using a Krylov subspace method,
and in addition this gives rise to a three-term recurrence conjugate gradient type
method based on a positive definite inner product. The first instance of this fact has
been observed by Fischer et al. [4], who considered A with A = ηI > 0, and C = 0.
Recently, the results of [4] have been extended by Benzi and Simoncini [2] to matrices
A with A = AT > 0 and C = 0. The purpose of this note is to generalize these
results to A with a symmetric positive semidefinite (2,2) block C. This is of interest
in stabilized discretizations of Stokes and generalized Stokes problems; see, e.g. [3,
Chapters 5–6] and [2, Section 4] for examples.
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2. Main result. Consider a matrix A as in (1.2) with A = AT > 0, B of full
rank, and C = CT ≥ 0, and define the symmetric matrix

MC(γ) ≡

[

A − γI BT

B γI − C

]

,(2.1)

where γ is a yet to be specified real scalar. Note that the matrix M0(γ) (i.e. MC(γ)
with C = 0) is equal to the matrix G defined in [2, p. 182]. This relation and the
results for M0(γ) in [2] are key ingredients in our derivation below. An elementary
computation shows that

MC(γ)A = ATMC(γ) .(2.2)

We will now derive conditions on the blocks A, B, and C of A and on γ so that
MC(γ) is positive definite. If these conditions are satisfied, then

A = MC(γ)−1ATMC(γ) ,(2.3)

i.e., A is similar to its transpose by a symmetric positive definite similarity trans-
formation. From a classical result of Taussky [8, Section 3] it then follows that A is
similar to a real symmetric matrix. Since A is known to be positive real, we see that
a positive definite MC(γ) is a sufficient condition for A to be diagonalizable with all
its eigenvalues real and positive.

First note that MC(γ) is congruent to the block diagonal matrix

[

A − γI 0
0 S

]

, where S = (γI − C) − B(A − γI)−1BT .

Therefore a necessary (but not sufficient) condition in order to make MC(γ) positive
definite is that

λmin(A) > γ > λmax(C) .(2.4)

In the following we will restrict our attention to γ satisfying (2.4). In case A and C
are such that λmax(C) ≥ λmin(A), which particularly includes the case of singular A,
the approach presented here does not work, and we are unaware of any conditions that
guarantee A being diagonalizable with positive real eigenvalues. However, the case
λmin(A) > λmax(C) is of practical interest, particularly in the context of stabilized
discretizations of Stokes or generalized Stokes problems. For example, the stabilized
Stokes coefficient matrix in [3, p. 240] is of the form (1.1) with the (2,2) block given
by −C = −βh2D, where β is a nonnegative stabilization parameter and h is the mesh
size (here a uniform mesh is assumed for simplicity). The matrix D is symmetric
positive semidefinite and has norm 4, giving λmax(C) = 4βh2, which is is a very small
number unless the stabilization parameter β is chosen very large. In particular, for
any symmetric positive definite A, λmin(A) > λmax(C) holds for all β < 1

4
h−2λmin(A).

Next, using a standard result on the eigenvalues of symmetric matrices (cf. e.g. [5,
Theorem 8.1.5]),

λmin(MC(γ)) ≥ λmin

([

A − γI BT

B γI

])

+ λmin

([

0 0
0 −C

])

= λmin (M0(γ)) − λmax(C) .(2.5)
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Hence a sufficient condition so that MC(γ) is positive definite is

λmin (M0(γ)) > λmax(C) .(2.6)

To derive properties on A, B, C, and γ so that (2.6) holds, we consider the eigenvalue
problem M0(γ) [xT ; yT ]T = θ [xT ; yT ]T , or

(i) (A − γI)x + BT y = θx , and (ii) Bx + γy = θy .

If there exists an eigenvalue θ with θ = γ, then θ = γ > λmax(C) since we have
restricted our attention to γ satisfying (2.4). If θ 6= γ we can transform equation (ii)
into its equivalent form y = (θ − γ)−1Bx, which, inserted into (i) yields

(A − γI)x + (θ − γ)−1BT Bx = θx .

Note that we must have x 6= 0 for if otherwise equation (ii) would yield y = 0, a
contradiction to the fact that [xT , yT ]T is an eigenvector. After multiplying from the
left with xT and some algebraic manipulations we obtain the equation

θ + γ2
xT x

xT Ax
= θ2

xT x

xT Ax
+ γ −

xT BT Bx

xT Ax
.(2.7)

As in the proof of [2, Corollary 3.2], we can bound the left hand side of (2.7) from
above by θ + γ2/λmin(A), and the right hand side from below by

γ −
xT BT Bx

xT Ax
≥ γ − λmax(BA−1BT ) ,

which yields the following lower bound on θ,

θ ≥ γ −
γ2

λmin(A)
− λmax(BA−1BT ) .(2.8)

To maximize the lower bound on θ we set γ = γ∗ ≡ 1

2
λmin(A). This value of γ is also

used in [2], and it is there determined by a slightly different argument in the proof of
Proposition 3.1. With γ = γ∗, (2.8) becomes

θ ≥
1

4
λmin(A) − λmax(BA−1BT ) .(2.9)

Combining this with (2.6) shows that MC(γ∗) is positive definite when

λmin(A) > 4 ( λmax(C) + λmax(BA−1BT ) ) .(2.10)

Note that if (2.10) holds, and γ = γ∗, then the necessary condition (2.4) on γ is
satisfied. We summarize our discussion in the following theorem.

Proposition 2.1. Consider the matrix A as in (1.2) with symmetric positive
definite A ∈ R

n×n, B ∈ R
m×n of full rank m, and symmetric positive semidefinite

C ∈ R
m×m, and let γ∗ ≡ 1

2
λmin(A). If (2.10) holds, then the matrix MC(γ∗) in (2.1)

is positive definite, and A is diagonalizable with all its eigenvalues real and positive.

This proposition is a generalization of results previously obtained in [4, 2]:
Fischer et al. [4] consider A with A = ηI > 0 and C = 0. The condition (2.10)

then reads η > 2σmax(B), where σmax(B) denotes the largest singular value of B.
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This is precisely the condition derived in [4, pp. 531–532], and the matrix M0(η/2)
in (2.1) is equal to the matrix in [4, Equation (2.3)] multiplied by η/2.

Benzi and Simoncini [2, Section 3] consider A with A = AT > 0 and C = 0.
Their matrix G in [2, p. 182] is equal to M0(γ) in (2.1), and [2, Proposition 3.1] is
equivalent with Proposition 2.1 above. For the case C = βI ≥ 0, [2, Corollary 2.6]
shows that if λmin(A) ≥ 3β + 4λmax(BA−1BT ), then A has real eigenvalues. The
condition on β = λmax(C) in this special case is a bit weaker than (2.10). Note
however that (2.10) not only implies real eigenvalues but also diagonalizability of A.

In the terminiology of [6] and under the condition (2.10), the matrix A is normal of
degree one with respect to the symmetric positive definite matrix MC(γ∗). According
to [6, Theorem 3.1], A must be diagonalizable. If we write the eigendecomposition
as A = WΛW−1, where the eigenvalues and eigenvectors of A are ordered so that
the same eigenvalues form a single block on the diagonal of Λ, then MC(γ∗) must be
of the form MC(γ∗) = (WDWT )−1, where D is a symmetric positive definite block
diagonal matrix with block sizes corresponding to those of Λ, cf. [6, Theorem 3.1].
With Ŵ = WD−1/2, MC(γ∗) = (ŴŴT )−1, and thus

κ(MC(γ∗)) = ‖MC(γ∗)‖ ‖MC(γ∗)−1‖ = κ(Ŵ )2

(cf. [2, pp. 184–185], where a similar result is derived in a different way, and subse-
quently used to bound the residual norm of a Krylov subspace method applied to the
matrix A). An estimate for these quantities can be found as follows: First, by [5,
Theorem 8.1.5] and [2, Corollary 3.2],

λmax(MC(γ∗)) ≤ λmax (M0(γ)) ≈ λmax(A) ,

and second, by (2.5) and (2.9),

λmin(MC(γ∗)) ≥
1

2
γ∗ − (λmax(C) + λmax(BA−1BT )) .

Combining these two inequalities yields

κ(MC(γ∗)) =
λmax(MC(γ∗))

λmin(MC(γ∗))
≈

λmax(A)
1

2
γ∗ − (λmax(C) + λmax(BA−1BT ))

.

For C = 0 this result corresponds to the one given in [2, Corollary 3.2].
Since A is normal of degree one with respect to MC(γ∗), A admits an optimal

three-term recurrence for computing Krylov subspace bases that are orthogonal with
respect to the inner product generated by MC(γ∗), 〈x, y〉 ≡ yTMC(γ∗)x; see [6] for
details. Therefore, a three-term recurrence conjugate gradient type method based on
this inner product can be constructed. For a practical application of such method a
preconditioner that is symmetric positive definite with respect to this inner product
should be available, and the inner product matrix MC(γ∗) should be well condi-
tioned. While the condition number of MC(γ∗) depends on the conditioning of the
eigenvectors of A and can be estimated as shown above, the construction of such
preconditioners is an open problem.

Finally, as a simple example we consider the matrix

A =













1 0 0 b 0
0 2 0 0 b
0 0 3 0 0
−b 0 0 2c −c
0 −b 0 −c 2c













, b 6= 0 , c ≥ 0 .
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Elementary computations show that

λmin(A) = 1 , λmax(BA−1BT ) = b2 , λmax(C) = 3c ,

and hence the sufficient condition (2.10) becomes

1 > 12c + 4b2 .

If we choose b = 1/2, then this condition is not satisfied for any c ≥ 0, and indeed a
MATLAB [7] computation reveals that the matrix A is not diagonalizable for c = 0,
and has eigenvalues with nonzero imaginary parts for c > 0. On the other hand, if we
choose c = 1/12, then a MATLAB computation shows that A has five distinct real
and positive eigenvalues whenever |b| ≤ 0.4056855.
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