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ZUSAMMENFASSUNG 

Hybride Auswahlmodelle mit latenten Variablen zielen darauf ab,  immaterielle Attribute 

der Individuen und der Alternativen, wie z.B. Einstellungen, Wahrnehmungen usw. zu 

erfassen und dadurch die Vorhersagefähigkeit und den Realismus von diskreten 

Auswahlmodellen zu erhöhen. Obwohl deren Grundlagen bekannt und etabliert sind, 

wurden einige technische und theoretische Aspekte noch nicht umfassend untersucht; dies 

hat zu Kontroversen in der Literatur geführt. Diese Dissertation zielt darauf ab, einige 

dieser noch unklaren Aspekte zu identifizieren und ausführlich zu analysieren. Dadurch 

sollten klare Erkenntnisse bezüglich der Modellierung mit latenten Variablen gewonnen 

und neue methodologische Werkzeuge für angewandte Forscher bereitgestellt werden. 

Zunächst wird die Eignung der sequentiellen Schätzung von hybriden Auswahlmodellen 

diskutiert und es werden Bedingungen zur ihrer Nutzung als second-best-Ansatz 

abgeleitet. Dazu werden die Unterschiede in der Wirkung zwischen der Darstellung von 

Einstellungen und Wahrnehmungen durch latente Variablen analysiert. Es kann 

festgestellt werden, dass die Ersten Ähnlichkeiten mit sozioökonomischen Eigenschaften 

aufweisen, während die Zweiten den Attributen der Alternativen ähneln. Daher ist es 

empfehlenswert, systematische Geschmacksvariationen sowie Kategorisierungen zu 

betrachten. In diesem Sinne wird die Kategorisierung der latenten Variablen untersucht 

und ein neuer Ansatz zu ihrer Einbeziehung in das Modell vorgeschlagen. Aufgrund 

theoretischer als auch statistischer Vorteile ist dieser Ansatz den bislang existierenden 

Alternativen überlegen. Die Hypothese der Stetigkeit von Wahrnehmungs- und 

Einstellungsindikatoren sowie deren Auswirkungen wird analysiert. Es wird festgestellt, 

dass bei fehlender Berücksichtigung ihrer diskreten Art verzerrte Ergebnisse auftreten, 

insbesondere wenn die latenten Variablen eine hohe Variabilität aufweisen. Ferner werden 

neue methodologische Ansätze vorgeschlagen, um fehlende Einkommensangaben der 

Befragten zu betrachten bzw. um die Korrelation zwischen Präferenzen des gleichen 

Individuums in unabhängigen Wahlsituationen anzugehen.  

Stichworte: hybride diskrete Auswahlmodelle, latente Variablen, Einstellungen, 

Wahrnehmungen, Schätzmethoden, Stetigkeit von Indikatoren, latente Klassen, 

Kategorisierung, Elektrofahrzeuge, fehlende Information, Korrelation, Paneldaten.    
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ABSTRACT 

Hybrid choice models with latent variables aim to capture unobserved attributes of the 

individuals and the alternatives, such as attitudes, perceptions, etc., increasing the 

predictive capability and realism of discrete choice models. Even though, their fundaments 

are fairly well-established, some technical and theoretical issues have not been extensively 

analyzed, leading to controversies in the literature. This doctoral dissertation aims to 

identify and analyze some of these methodological issues, offering an in-depth discussion 

and clear insights on the way these issues should be treated, providing new methodological 

tools to help applied researchers to successfully develop their own models. 

First, the suitability of the sequential estimation of hybrid choice models is discussed, 

deriving conditions under which sequential estimation is a suitable second-best. The 

differences between latent constructs representing attitudes and perceptions are 

established with respect to how the former resemble socio-economic variables, while the 

latter depict attributes of the alternatives. Hence, considering systematic taste variations 

as well as categorizations may be advisable, when addressing perceptions and other similar 

constructs. Along these lines, a new approach to categorize latent variables that exhibits 

theoretical advantages as well as a better treatment of the error term than existing 

alternatives is proposed. The hypothesis of continuity of perceptual and attitudinal 

indicators as well as their implications is also analyzed, establishing that neglecting their 

nature leads to biased results and that the magnitude of this bias depends on the 

variability induced into the discrete choice component. 

Further, new methodological approaches are proposed to address missing income 

information and the correlation among the preferences of a given individual in independent 

choice situations. Both methods are tested in the context of preferences for 

electromobility. 

Keywords: hybrid discrete choice models, latent variables, attitudes, perceptions, 

estimation, continuity of indicators, latent classes, categorization, electric vehicles, 

missing information, correlation, panel structure. 
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1.1 About objectivity, subjectivity and decision making 

While most children dream of becoming a pilot, an astronaut or a fireman, I always 

dreamed of becoming a structural engineer. I had pretty clear notions of where I wanted 

to study and what I wanted to do after graduation. The years went by and I entered the 

university I always wanted in order to pursue my dream. Everything was going according 

to plan until my last semester when I had a change of heart. With that my journey in 

structural engineering came to an end and the one in transportation and behavioral 

economics began. What had changed? Why did I change my mind? I was still the same 

person according to all measurable attributes and the environment around me had not 

changed, but I had walked away from my childhood dream, taking with me a different 

mindset. 

The mechanisms behind decision-making have been largely discussed in the past. In fact, 

decision theory is an essential area of study in many fields, including psychology, 

economics, statistics, transportation, and marketing, to name a few. Even though, 

depending on the field, the complexity of the analysis, and the objectives of the analyst, 

the problem can be approached from multiple angles and a making variety of assumptions, 

there is a broad consensus that subjective, unmeasurable elements of decisions play as an 

important role as do objective measurable attributes in decision making. This way, it may 

be expected that individuals with different attitudes toward the environment or divergent 

political views might exhibit different preferences and valuations when facing a choice 

situation. Along this line, it is expected that the population will also favor an alternative 

perceived as more comfortable or reliable. Consequently, establishing how decisions are 

influenced by the intangible attributes of not just choice-makers but also the choice 

situation, including attitudes, perceptions, values, and mindsets, is critical for the further 

development of choice theory. 

The usual approach in economics with respect to decision-making in economics is to 

assume that choice-makers aim to maximize their perceived utility. This approach was 

firstly introduced by Pascal in the 17th century and since then has been continuously 

extended, refined and revised by many individuals: Bernoulli, Ramsey, Thurstone, von 
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Neumann, Morgenstern, Lehmann, McFadden, Kahneman and Tverski, among many 

others. Nevertheless, most specifications only allow for objective measurable characteristics 

of the individuals (e.g. socio-economic variables) and the alternatives (e.g. price) to be 

considered, while subjective attributes are assumed to be part of the modeling error 

(accounting for everything that is ignored by the analyst) or are indirectly captured as 

part of alternative specific constants. This way, including subjective attributes in models 

(into the utility) has remained unresolved. 

Early approaches to address this problem relied on the use of psychometric data and 

perceptual mappings. They were included directly into the model in order to improve 

predictability (Green and Wind; 1973; Recker and Golob; 1976). Further, Hauser and 

Koppelman (1979) introduced the use of latent factors to correlate stated perceptual 

rankings. These approaches are, however, criticized for their lack of predictive validity (as 

psychometric information is not available for non-surveyed individuals). Moreover, the 

suitability of this approach has been further criticized because indicators tend to be an 

expression of subjective appreciations rather than causes of behavioral changes (Ben-Akiva 

et al., 2002). Furthermore, psychometric data and perceptual mappings are highly 

dependent on the phrasing of survey questions (Tversky and Kahneman, 1981). 

Keane (1997) proposed the inclusion of latent attributes in the utility function. According 

to this approach, these attributes are inferred from individual choices and, hence, the 

method does not use information beyond the observed choices and the classic objective 

measurable attributes. But, in this case, it is necessary to assume that the latent variables 

are specific to the alternatives, while constant over individuals. 

Another approach is to use latent classes (Kamakura and Russell, 1989; Bhat, 1997) to 

identify groups of people exhibiting a distinctive behavior. The main criticism in this case 

refers to the latent classes not offering a clear picture of the reasons why these classes 

would behave in a particular way. 

By 2015 hybrid discrete choice models dominate the literature in addressing intangible 

elements (Ashok et al., 2002; Ben-Akiva et al., 2002; Bolduc and Daziano, 2010; v. Acker 

et al. 2013; among many others). Although initially proposed in the 1980s (McFadden, 

1986; Train et al., 1987), it was not possible at that time to overcome a series of technical 
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obstacles related to their estimation. With computational progress, however, this approach 

became a standard tool in discrete choice modeling. 

This approach assumes that the underlying unobservable characteristics of the individuals 

and attributes of the alternatives (represented trough latent variables) affect the expected 

utility that a given individual ascribes to a certain alternative. Along these lines, it is also 

assumed that these underlying latent variables also affect the way in which individuals 

behave, when stating their level of agreement with a set of sentences related or unrelated 

to the choice situation (psychometric indicators). Finally the approach assumes that the 

latent variables (accounting for unobserved intangible elements) can be expressed as a 

function of positively observed characteristics of the individuals and attributes of the 

alternatives. This way, the model aims to establish a correlation between observed and 

unobserved variables, in order to quantify their impact in the decision making process. In 

this framework, the psychometric indicators are no longer used directly into the modeling 

but are considered a tool to improve the identification of the latent variables. 

1.2 Motivation 

Even though the fundamentals for the estimation of hybrid discrete choice models are 

well-established (Walker, 2001; Ben-Akiva et al., 2002) and have been widely known for 

nearly 15 years, and that many significant technical issues have been resolved over time – 

such as joint modeling with revealed and stated preferences (Ben-Akiva et al., 2002), 

identification (Walker et al., 2007; Vij and Walker, 2014), mutually influenced latent 

constructs (Kamargianni et al., 2014) - other technical issues remained. This way, and 

despite the proliferation of papers relying on hybrid discrete choice models, an adequate 

way to consider latent variables, as well as their implications for policy making, has not 

been well-established (Chorus and Kroesen, 2014). Similarly, many studies rely on 

sequential estimation (a biased second-best estimation technique), but no attempts have 

been made to quantify this bias or to establish if the technique is a suitable alternative 

(Raveau et al., 2010). This is also true for other methodological issues, such as the 

hypothesis about the continuity of psychometric data, the discrete-continuous use of latent 

variables and their relation with the latent classes approach, the joint consideration of 
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several independent decisions, the use of latent variables to account for correlation among 

the answers provided by the same individuals (panel or pseudo-panel data), etc. 

Even though identifying and offering alternatives for all of these issues falls largely outside 

the scope of this doctoral dissertation, some of the most relevant unresolved issues 

surrounding the estimation of hybrid choice models are identified and analyzed in depth. 

This way, this work aims to offer clear insights on the way these issues should be treated 

when modeling with latent variables and to provide methodological tools to help applied 

researchers to successfully develop their own models.  

1.3 Theoretical framework 

1.3.1 Random utility theory and the Multinomial Logit model (MNL) 

Discrete choice models aims to depict the behavior of a given population facing a discrete 

choice as accurately as possible. Unlike traditional econometric models, focusing on 

continuous responses, discrete choice models consider a limited discrete number of possible 

outcomes, which are defined a priori by the analyst. This way, instead of relying on 

classical optimization algorithms, these models work on the basis of the comparison 

between available alternatives.  

In random utility theory (Thurstone, 1927; McFadden, 1974), it is assumed that 

individuals q belonging to a population Q behave rationally maximizing their expected 

utility (subject to any kind restrictions). This way, a given individual q will opt for 

alternative i among a choice set A(q), if and only if Uiq ≥ Ujq   j  A(q). 

As it is unrealistic to assume that the modeler is aware of all details affecting the decision 

making process (or that choice-makers have complete and perfect information), the 

expected utility is posed as the sum of a representative utility Viq (accounting for all 

attributes considered by the modeler) and a stochastic term εiq. This error term stands for 

all elements relevant to decision that are ignored in the representative utility. Thus, the 

expected utility can be expressed in the following manner: 

iq iq iqU V      [1.1] 
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This way, a given individual will opt for a certain alternative if and only if: 

( )iq iq jq jqV V j A q         [1.2] 

Then, grouping all deterministic components together: 

iq jq jq iqV V            [1.3] 

Hence, it is not possible for the modeler to establish which alternative would be selected in 

a given situation, but only to establish a probability Piq, with which an individual q will 

opt for an alternative i in his/her choice set. This probability may be expressed as follows: 

 Pr , ( )iq iq jq jq iqP V V j A q            [1.4] 

Thus, different assumptions regarding the nature of the error terms will lead to different 

specifications for this probability and to different kinds of discrete choice models (Train, 

2009; Ortúzar and Willumsen, 2011). 

Assuming independent and identically distributed (IID) Extreme Value Type 1 (EV1), 

error terms, leads to the well-known Multinomial Logit (MNL) model (Domencich and 

McFadden, 1975). Here, the difference εjq - εiq follows a Logistic distribution with mean 

zero and standard deviation . Under these assumptions, the probability of choosing 

alternative i is given by: 

 





j

V

V

iq jq

iq

e

e
P 



         [1.5],  

where  refers to the scale parameter of the Logistic distribution (and by extension of the 

Logit model) and relates to the unknown standard deviation  through the following 

equation:  

 
6

           [1.6]
 

However, as discrete choice models are based on utility differences, rather than on 

continuous values, neither the standard deviation nor the scale factor can be identified. 

Therefore, it is customary to normalize the scale parameter to one, without loss of 

generalization (Walker, 2002). 
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Regarding the representative utility, in most cases additive linearity is assumed. This way, 

the representative utility Viq can be expressed as:
 

iq ki kiq
k

V X     [1.7], 

where X represents a given attribute k for the individual q and the alternative i.  This 

specification can be understood as a first-order Taylor expansion of any multi-variable 

complex function (and therefore it is always valid in the neighborhood of the estimation 

point); further, if the attributes are also assumed to be linear, the estimated parameters θik 

can be directly interpreted as marginal utilities.  

The main advantage of this framework relies on its simplicity allowing, which facilitates 

the estimation of models, even with limited computational capability. Additionally one of 

the main properties of the MNLs is the independence of irrelevant alternatives, which 

implies that the ratio between the probabilities of choosing alternatives i and k does not 

depend on other alternatives available in the choice set. In fact:  

( ) ( )

iqiq kq

jq jq kq

VV V
iq

V V V
kq

j A q j A q

P ee e

P e e e

 

  

 

  

 

 
 

        [1.8] 

This characteristic arises from the assumptions regarding the distribution of the error 

terms (independent and identically distributed) and is also one of the main limitations of 

the model, as it does not allow considering correlated alternatives (i.e. correlation among 

the error terms). Additionally, the model does not allow for heteroscedastic error terms 

and, as all estimated parameters are considered to be fixed, the model does not allow for 

stochastic taste variations (Ortúzar and Willumsen, 2011). 

Several alternatives have been proposed to overcome these limitations, such as the Nested 

Logit model (NL, Williams, 1977; Daly and Zachary, 1978) or the Cross-Nested Logit 

model (CNL, Ben-Akiva and Bierlaire, 1999). More generally, all this structures (including 

the MNL) can be expressed using the Generalized Extreme-Value framework (GEV, 

McFadden, 1978). This structure allows for multivariate distribution of the error terms, 

while retaining a closed-form expression for the choice probabilities.  
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GEV models as well as Probit models (assuming normally distributed error terms) are not 

further discussed in the work, as hybrid choice models based on mixing distributions are 

preferred, but the reader is referred to Walker and Ben-Akiva (2011) for a good discussion. 

 1.3.2 The Mixed Logit model (ML) 

Mixed logit models (Cardell and Dunbar, 1980; Ben-Akiva and Bolduc, 1996) assume that 

the stochastic component of the model is given by the sum of the previously described, 

independently identically, EV1 distributed error term (εiq) and another stochastic element 

iq (mixing distribution) that can follow any distribution. This way, it is not only possible 

to account for heteroscedasticity and correlation between alternatives (as the additional 

stochastic elements are not subject to homoscedasticity and no-autocorrelation 

restrictions), but to consider any desirable functional form. This way, the utility function 

would be given by: 

iq ki kiq iq iq
k

U X             [1.9] 

In this case, and opposite to the MNL, the probability of choosing a given alternative 

cannot be longer depicted through a closed-form expression and it is necessary to integrate 

the choice probabilities over the probability density function of the mixing distribution. 

Hence, the probability of selecting a given alternative will take the following form (Train, 

2009): 

 
*

, ( , ; ) ( )i q iq kiq iq ki iq iqP P X f d         [1.10], 

where the first component P*
iq stands for the usual MNL probability (as in [1.5]) and f(iq) 

is the probability density function of the error component’s term. As this integral cannot 

normally be analytically resolved, it is necessary to rely on numerical techniques, as 

numerical integration or the simulated maximum likelihood (McFadden, 1986). 

Depending on the assumptions regarding the error terms, the ML framework allows 

addressing correlation among alternatives, correlation among individuals as well as 

stochastic taste variations. 
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1.3.3 Hybrid discrete choice models with latent variables 

As previously mentioned, this approach aims to integrate subjective non-measurable 

valuations in a discrete choice network. Hereby, immaterial constructs, liq, known as 

latent variables, are incorporated as part of the utility functions into discrete choice 

models. These latent variables are supposed to represent subjective elements affecting the 

decision, such as attitudes, perceptions, values, etc. and are constructed according to a 

Multiple Indicators Multiple Causes model (MIMiC; Zellner, 1970; Bollen, 1989). 

A MIMiC model is basically a structural equations model where the outcomes represent 

psychometric indicators (normally attitudinal or perceptual indicators) that are previously 

collected by the modeler (normally evaluating the level of agreement of the respondent 

with a carefully designed set of statements). These indicators, Iziq, are supposed to be a 

measured expression of underlying intangible attributes (e.g. attitudes or perceptions) and 

are explained by the latent variables through so called measurement equations [1.12]. As 

the latent variables cannot be directly observed, they are constructed as a function of 

measurable variables, through structural equations [1.11]. If we assume a linear additive 

specification for both sets of equations, this framework can be represented in the following 

manner: 

liq lri riq liq
r

s    
   

[1.11]
 

ziq zli liq ziq
l

I     
   

[1.12], 

where r, l, and z refer to exogenous variables, latent variables, and indicators, respectively. 

lri and zli are parameters to be estimated, while liq and ςziq are error terms. While the 

former error terms are usually assumed to be normally distributed with mean zero and a 

given covariance matrix (even though, as shown later, that under certain circumstances it 

may be advisable to assume a Logistic distribution for them), the distribution of the 

former depends on the assumptions and on the way the indicators are collected. Although 

indicators are traditionally assumed to be linear continuous expressions of the latent 

variables (Vredin-Johansson et al., 2006; Yañez et al., 2010; Daziano and Barla, 2012), this 

assumption neglects the way in which indicators are usually collected. As the indicators 
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are normally gathered using Likert scales (Likert, 1932), it may be advisable to consider 

them in an ordinal framework, such as the Ordered Probit or the Ordered Logit model 

(Greene, 2012; see chapter 4 for a further discussion).  

In order to include latent variables into discrete choice models, the utility function 

depicted in equation [1.7] must be redefined. Again, assuming a linear additive 

specification, the utility function for alternative i can be written as: 

iq ki kiq li liq iq
k l

U X               [1.13], 

where βli are parameters to be estimated. It is important to note that including the latent 

variables does not affect the structure of the error εiq, but it does indeed affect the overall 

error structure of the model, as the latent variables consider their own error terms. In fact, 

replacing [1.11] into [1.13]: 

iq ki kiq li lri riq li liq iq
k l r l

U X s                   [1.14] 

As observed from equation [1.15], the addition of this error term (associated with the 

latent variables) resembles the structure of the ML. Thus, the inclusion of the latent 

variables is similar to the inclusion of the error component in equation [1.9] (in terms of 

the error structure; see chapter 2 for a further discussion), meaning that the choice 

probabilities are no longer given by a closed-form expression. Indeed, the choice 

probabilities will be given by: 

 
*

, ( , ; , ) ( ; )i q iq kiq liq ki li liq lri liqP P X f d            [1.15], 

where P*
iq again stands for the MNL probabilities, as described in [1.5], and f(liq,lri) is 

the probability density function of the latent variables. Nevertheless, in this case the 

modeler is not only interested in the choice probabilities, but also in depicting the stated 

indicators as accurately as possible. Thus, it is convenient to consider an integrated 

likelihood function, such as: 



  

Introduction          11 

  

*

( )

( , ; , ) ( | ; ) ( ; )iqy

jq kjq ljq kj lj zlq zjq ljq zlj ljq lrj ljq
q Q j A q z

L P X P I f d       
 

      [1.16], 

where the first component stands for the probability of observing a given choice j, while 

the second component accounts for the probability of observing a given indicator. The 

variable yjq takes the value one if the alternative j is selected by individual q and zero 

otherwise. 

Figure 1.1 offers a graphical representation of a hybrid discrete choice framework. 

 

Figure 1.1 – Hybrid discrete choice model with latent variables.1 

1.3.4 Estimation 

Basically the estimation of hybrid discrete choice models can be performed in three 

different fashions: 

1. Sequential estimation. 
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2. Sequential estimation with integration over the domain of the latent variables. 

3. Simultaneous estimation. 

The first approach consists of evaluating first the MIMiC model, as an independent 

problem. Then, the expected values for the latent variables are calculated and 

incorporated directly into the DC model as fitted deterministic elements. Even though this 

approach leads to biased results (Ben-Akiva et al., 2002), it was the dominant approach in 

the early days due to its computational simplicity (Vredin-Johansson et al., 2006; Yañez 

et al., 2010; v. Acker et al., 2010). Even in 2015, the approach is still used as a second-

best alternative, when the number of observations and latent variables lead to prohibitive 

estimation times if other alternatives are followed. 

The second approach is similar to the previous one, but it considers the distribution of the 

latent variables when computing the choice probabilities. This approach leads to 

consistent but inefficient estimates, as it does not take into account all the available 

information (Ben-Akiva et al., 2002). Although Ben-Akiva et al. (2002) argue that as in 

this case it is still necessary to integrate the likelihood function, it could be preferable to 

estimate the model simultaneously, empirical evidence shows that this approach reduces 

substantially the estimation time (see chapter 3).   

Finally, the simultaneous estimation method leads to unbiased, consistent and efficient 

estimators, but it is associated with larger computational requirements. Nevertheless, it is 

the dominant approach (Daly et al., 2012; Hess et al., 2013, among many others), 

especially when dealing with only a few latent variables.  

For both sequential estimation methods, the MIMiC model is estimated independently. In 

this case, the estimation may be performed via the two-stage least squares regression 

(Pagan, 1986) or maximizing the likelihood (Goldberger, 1972). Bollen et al. (2007) show 

that both approaches lead to unbiased and efficient estimates, when assuming normally 

distributed error terms. For the purposes of this work, the maximum likelihood estimation 

is preferred (when relying on the sequential estimation), because of flexibility (it does not 

require assuming normally distributed error terms) and consistency issues (due to their 

error structure, discrete choice models are usually estimated maximizing the likelihood). 
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For estimating the discrete choice component (or the complete model in the case of the 

simultaneous estimation), the modeler relies on equation [1.16], whereas the βli are 

considered as fixed parameters for both sequential methods and the integral is ignored 

(and replaced by the expected values of the latent variables) when estimating the model 

without integration. 

As previously mentioned, the integral can be computed numerically or via simulation 

techniques. Numerical integration is the preferred approach when dealing with one or 

maximum two latent variables, but other alternatives should be favored when addressing 

more integrals. For the purposes of this work, the simulated maximum likelihood method 

(SML, McFadden, 1986) is used when considering several latent variables. 

The SML approach consists of generating a fixed number (S) of stochastic or pseudo-

stochastic draws *
ljq representing a given distribution. Equation [1.16] is then computed 

in the following manner: 

* *

1( )

1
( , ; , ) ( | ; ) ( ; , )iq

S
y

jq kjq ljq kj lj zlq zjq ljq zlj ljq lrj ljq
sq Q j A q z

L P X P I f
S

       
 

     [1.17], 

*
ljq can be randomly drawn or using low discrepancy sequences, such as the Halton 

(Halton, 1964) or Sobol (Sobol, 1967) sequences as well as the Modified Latin Hypercube 

Sampling (MLHS, Hess et al., 2006). 

1.3.5 Identification 

In general, discrete choice models require fixing at least one parameter associated with the 

distributions of the error terms in order to allow for identification (normally the scale 

factor ). Identification of MIMiC models is a more complicated task as, in this case, the 

number of, and which, parameters to be fixed will depend on the structure of the model. 

Stapleton (1978), however, shows that it suffices fixing the variances of the error terms of 

the structural equations. This approach does not lead to over constrained models. 
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For further considerations regarding identifiability of discrete choice and hybrid discrete 

choice models, the reader is referred to Walker et al. (2007) and Vij and Walker (2014), 

respectively. 

1.4 Overview of this dissertation 

This dissertation is basically based on six original research articles, all focusing on the 

modeling with hybrid discrete choice models and latent variables accounting for subjective 

elements, such as attitudes or perceptions. The work conducted during the doctoral 

studies has led, however, to eleven articles, some of which are not included in this 

dissertation. Table 1.1 presents an overview of all contributions:  

Table 1.1 – Overview of the contributions.1 
Contribution Published / Presented Role / Co-authors

Verkehrssicherheit und 
Zahlungsbereitschaft – ein Überblick 
zum Stand der Forschung. 

Zeitschrift für Verkehrswissenschaft 
84(3), 260-287.  

Lead authorship, including 
data collection, analysis and 
writing the paper. 

Heike Link and Uwe Kunert. 

On the variability of hybrid discrete 
choice models. 

Transportmetrica A: Transport Science 
10(1), 74-88.  

Lead authorship, including 
original idea, generation of the 
dataset, modeling, analysis and 
writing the paper.1 

Juan de Dios Ortúzar. 

Is Sequential Estimation a Suitable 
Second Best for Estimation of Hybrid 
Choice Models? 

Transportation Research Record: Journal 
of the Transportation Research Board 
2429, 51-58. 

Presented at 93rd Annual Meeting of the 
Transportation Research Board, 
Washington, D.C., USA, 12-16, January, 
2014. 

Lead authorship, including 
original idea, generation of the 
dataset, modeling, analysis and 
writing the paper. 

Juan de Dios Ortúzar. 

Bewertung der Angebotsmerkmale des 
Personenfernverkehrs vor dem 
Hintergrund der Liberalisierung des 
Fernbusmarktes. 

Zeitschrift für Verkehrswissenschaft 
85(2), 107-123. 

Presented at Konferenz Verkehrsökonomie 
und Verkehrspolitik, Berlin, Germany, 26-
27, June, 2014, as Einstellungen, 
Wahrnehmungen und die Liberalisierung 
des Fernbusverkehrs in Deutschland. 

Lead authorship, including 
original idea, survey design, 
data collection, modeling and 
analysis. 

Heike Link, Uwe Kunert and 
Juan de Dios Ortúzar. 

                                                 
1 The paper was initially submitted prior to starting the doctoral studies. 
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Contribution Published / Presented Role / Co-authors

Liberalization of the Interurban Coach 
Market in Germany: Do Attitudes and 
Perceptions Drive the Choice between 
Rail and Coach? 

Discussion Paper 1415, DIW-Berlin. 

Presented at Kuhmo-Nectar Conference of 
the International Transportation 
Economics Association, Toulouse, France, 
4-6, June, 2014, as Liberalization of the 
interurban coach market in Germany – 
An attitudinal problem?  

Lead authorship, including 
original idea, survey design, 
data collection, modeling, 
analysis and writing the paper. 

Heike Link, Uwe Kunert and 
Juan de Dios Ortúzar. 

The value of a statistical life in a road 
safety context – a review of the current 
literature. 

Transport Reviews 35(4), 488-511. Lead authorship, including 
data collection, analysis and 
writing the paper. 

Heike Link and Uwe Kunert. 

About attitudes and perceptions – 
finding the proper way to consider latent 
variables in discrete choice models. 

Transportation (forthcoming, DOI 
10.1007/s11116-015-9663-5). 

Presented at 3rd hEART Symposium of 
the European Association for Research in 
Transportation, Leeds, UK, 10-12, 
September, 2014. 

Preliminary version as Discussion Paper 
1474, DIW-Berlin. 

Lead authorship, including 
original idea, survey design, 
data collection, modeling, 
analysis and writing the paper. 

Heike Link, Uwe Kunert and 
Juan de Dios Ortúzar. 

The potential of electromobility in 
Austria: Evidence from hybrid choice 
models under the presence of unreported 
information. 

Transportation Research Part A: Policy 
and Practice 83, 30-41. 

Presented at Kuhmo-Nectar Conference of 
the International Transportation 
Economics Association, Oslo, Norway, 17-
19, June, 2015, as The potential of 
electromobility in Austria. An analysis 
based on hybrid choice models. 

Preliminary version as Discussion Paper 
1472, DIW-Berlin. 

Lead authorship, including 
original idea, modeling, 
analysis and writing the paper. 

Tibor Hanappi. 

Analyzing the continuity of attitudinal 
and perceptual indicators in hybrid 
choice models. 

Presented at 14th International 
Conference on Travel Behaviour Research 
(IATBR), Windsor, U.K., 19-23 July, 
2015. 

Currently under review by the Conference 
Committee for publication in a special 
issue. 

Lead authorship, including 
original idea, survey design, 
data collection (of one case 
study), modeling, analysis and 
writing the paper. 

Juan de Dios Ortúzar. 

About the categorization of latent 
variables in hybrid choice models. 

Presented at 4th hEART Symposium of 
the European Association for Research in 
Transportation, København, Denmark, 9-
11, September, 2015. 

Currently under review at an 
international journal. 

Lead authorship, including 
original idea, survey design, 
data collection (of one case 
study), modeling, analysis and 
writing the paper. 

Juan de Dios Ortúzar. 
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Contribution Published / Presented Role / Co-authors

Does transport behavior influence 
preferences for electromobility? An 
analysis based on person- and 
alternative-specific error components. 

Accepted for presentation at 14th World 
Conference on Transport Research, 
Shanghai, PR China, 10-15, July, 2016.  

Currently under review at an 
international journal. 

Single author 

 

As previously mentioned and due to thematic cohesion, this dissertation presents only a 

part of these contributions organized in six different chapters.    

1.4.1 Chapter 2: About the sequential estimation as second best2 

As previously mentioned, the simultaneous estimation method has overtaken the 

sequential approach as preferred estimation method for hybrid discrete choice models. 

Notwithstanding, the computational cost of the simultaneous estimation can still be 

prohibitive when models get more involved and in such cases sequential estimation can 

still be a potent option. In previous work, Bahamonde-Birke and Ortúzar (2014a) conduct 

a theoretical analysis that led them to identify a major bias affecting the sequential 

estimation method and proposed a correction term for the bias induced on the estimated 

parameters by the variability associated with the latent variables; however, they did not 

attempt to quantify this induced variability. In this chapter, it is attempted to determine 

the nature of the variability induced through the latent variables as well as the viability of 

relying on the sequential estimation method as an alternative (second-best) estimation 

tool, for cases when the complexity of the specification makes unfeasible to rely on 

simultaneous estimation.  

The results show that the sequential method behaves in an acceptable way (the bias can 

be avoided through the correction), when the variability associated with the latent 

variables is low in comparison with the error term of the discrete choice model. On the 

contrary, when this variability is considerable, the bias correction becomes an intricate 

matter and appropriate results cannot be guaranteed. 

                                                 
2 This chapter is based on the article: Bahamonde-Birke, F.J. and Ortúzar, J. de D. (2014). Is Sequential 
Estimation a Suitable Second Best for Estimation of Hybrid Choice Models? Transportation Research 
Record: Journal of the Transportation Research Board  2429 , 51-58. 
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1.4.2 Chapter 3: About attitudes and perceptions3  

This chapter provides an in-depth theoretical discussion about the differences between 

individual-specific latent constructs (representing attitudes, for example, but also other 

characteristics such as values or personality traits) and alternative-specific latent 

constructs (that may represent perceptions) affecting the choice-making process of 

individuals; it also presents an empirical exercise to analyze their effects. This discussion is 

important because the majority of papers considering attitudinal latent variables take 

these as attributes affecting directly the utility of a certain alternative, while systematic 

taste variations are rarely considered and perceptions are mostly ignored. 

The results of a case study show that perceptions may indeed affect the decision making 

process and that they are able to capture a significant part of the variability that is 

normally explained by alternative specific constants. Furthermore, the results indicate 

that attitudes may be a reason for systematic taste variations, and that a proper 

categorization of latent variables, in accordance with underlying theory, may outperform 

the customary assumption of linearity. 

1.4.3 Chapter 4: About the continuity of attitudinal and perceptual indicators4 

This chapter addresses the continuity of attitudinal and perceptual indicators in hybrid 

discrete choice models by comparing the consequences of treating the indicators as 

continuous or ordinal outcomes, given different assumptions about the way in which these 

are stated. Based on tradition and for computational reasons, such indicators are 

predominantly treated as continuous outcomes. This usually neglects their nature (as 

respondents are normally asked to state their preferences, or level of agreement with a set 

of statements, using a discrete scale) and may induce important bias. 

                                                 
3 This chapter is based on the article: Bahamonde-Birke, F.J., Kunert, U., Link, H. and Ortúzar, J. de D. 
(2016). About attitudes and perceptions – finding the proper way to consider latent variables in discrete 
choice models. Transportation (forthcoming, DOI 10.1007/s11116-015-9663-5). 
4 This chapter is based on the article: Bahamonde-Birke, F.J. and Ortúzar, J. de D. (2015). Analyzing the 
continuity of attitudinal and perceptual indicators in hybrid choice models. 14th International Conference 
on Travel Behaviour Research (IATBR), Windsor, U.K., 19-23 July, 2015. 



  

Introduction          18 

  

An analysis based on simulated data and real data (two case studies) is conducted, finding 

that the distribution of the indicators (especially when associated with non-uniformly 

spaced thresholds) may lead to a clear deterioration of the model’s predictive capacity, 

especially when assuming continuous indicators. Along the same line, higher relative 

variability among the latent variables increases the differences between both approaches 

(ordinal and continuous outcomes), especially concerning goodness-of-fit of the discrete-

choice component. It was not possible to identify a relation between the predictive 

capacity of both approaches and the amount of available information. 

Finally, both case studies using real data show an improvement in overall goodness-of-fit 

when considering the indicators as ordinal outcomes, but this does not translate in a 

better predictability of the discrete choices. 

1.4.4 Chapter 5: About the categorization of latent variables5 

Although hybrid choice models are fairly popular, the way in which different types of 

latent variables are considered into the utility function has not been extensively analyzed. 

Latent variables accounting for attitudes resemble socio-economic characteristics and, 

therefore, systematic taste variations and categorizations of the latent variables should be 

considered. Nevertheless, categorizing a latent variable is not an easy subject, as these 

variables are not observed and consequently exhibit an intrinsic variability. Under these 

circumstances, it is not possibly to assign an individual to a specific group, but only to 

establish a probability with which an individual should be categorized in given way. 

This chapter explores different ways to categorize individuals based on latent 

characteristics, focusing on the categorization of latent variables. This approach exhibits 

as main advantage (over latent-classes, for instance) a clear interpretation of the function 

utilized in the categorization process, as well as taking exogenous information into 

account. Unfortunately, technical issues (associated with the estimation technique via 

simulation) arise when attempting a direct categorization.  

                                                 
5 This chapter is based on the article: Bahamonde-Birke, F.J. and Ortúzar, J. de D. (2015). About the 
categorization of latent variables in hybrid choice models. 4th hEART Symposium of the European 
Association for Research in Transportation, København, Denmark, 9-11, September, 2015. 
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An alternative to attempt a direct categorization of latent variables (based on an auxiliary 

variable) is proposed and a theoretical and empirical analysis (two case studies), 

contrasting this alternative with other approaches (latent variable-latent class approach 

and latent classes with perceptual indicators approach) conducted. Based on this analysis, 

it is concluded that the direct categorization is the superior approach, as it offers a 

consistent treatment of the error term, in accordance with underlying theories, and a 

better goodness-of-fit. 

1.4.5 Chapter 6: About electromobility in Austria and modeling with missing 

information6 

This chapter analyzes the impact of the introduction of electromobility in Austria, 

focusing specifically on the potential demand for electric vehicles in the automotive 

market. Discrete choice behavioral mixture models considering latent variables are 

estimated, in order to address the potential demand as well as analyzing the effect of 

different attributes of the alternatives on the potential market penetration. It is found 

that some usual assumptions regarding electromobility also hold for the Austrian market 

(e.g. proclivity of green-minded people and reluctance of older individuals), while others 

are only partially valid (e.g. engine power is not relevant for purely electric vehicles). 

Along the same line, it is established that some policy incentives would have a positive 

effect on the demand for electrical cars, while others - such as an annual Park and Ride 

subscription or a one-year-ticket for public transportation - would not increase the 

willingness-to-pay for electromobility. This work suggests the existence of reliability 

thresholds concerning the availability of charging stations.  

Finally this chapter enunciates and successfully tests an alternative approach to address 

unreported information regarding income in presence of endogeneity and multiple 

information sources. It is concluded that, for this case, the presence of endogeneity and 

correlation makes both classical imputation techniques unsuitable. 

                                                 
6 This chapter is based on the article: Bahamonde-Birke, F.J. and Hanappi, T. (2016). The potential of 
electromobility in Austria. An analysis based on hybrid choice models. Transportation Research Part A: 
Policy and Practice 83, 30-41. 
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1.4.6 Chapter 7: About transport behavior, electromobility and person- and 

alternative-specific error components7 

The interconnection among different choices by the same decision-maker is fairly well 

established in the literature. Along this line, this chapter aims to identify how preferences 

for electromobility are affected by mode choices for regular trips. To this aim, a framework 

based on person- and alternative-specific error components (covariances) is proposed. The 

method aims to include individual-specific error components associated with the 

alternatives of a given experiment into another, and to analyze how the preference for a 

certain alternative in a given choice situation affects the individual’s preferences in 

another choice situation. 

The data for the analysis originates from two discrete choice experiments conducted in 

Austria during February 2013 (representative sample). Individuals were asked to state 

their preferences in the contexts of transport mode choice and vehicle purchase situations. 

The results indicate the existence of a strong correlation between the individuals’ 

preferences in both experiments. This way, individuals favoring private transport also 

favor conventional vehicles over electric alternatives, while individuals preferring public or 

non-motorized modes ascribe a higher utility to electric vehicles, especially to pure battery 

electric vehicles. 

Even though this chapter does not consider hybrid discrete choice models directly, it 

presents an alternative approach to deal with correlation between two independent 

experiments, outlining its differences with the latent variable approach. 

1.5 Concluding remarks 

Modeling discrete decisions is a key element in econometrics. It allows for deriving the 

trade-offs between different attributes, including willingness-to-pays for the improvement 

of certain features, as well as forecasting the behavior of given population exposed to an 

                                                 
7 This chapter is based on the article: Bahamonde-Birke, F.J. (2016). Does Transport Behavior Influence 
Preferences for Electromobility? An Analysis Based on Person- and Alternative-Specific Error 
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environment differing from the current conditions. For this reason, it is important that 

these models be as realistic as possible. Nevertheless, subjective elements affecting the 

decision-making process have normally been ignored when considering choice models. This 

way, it would have been nearly impossible for a modeler to predict I would never practice 

as a structural engineer after graduation, starting instead a journey in transportation and 

behavioral economics. He would have failed to account that my unquiet personality would 

not have been comfortable in an environment, where design guidelines and construction 

and security standards dominate over theoretical analysis and creative approaches 

(although for good reasons).    

Along these lines, hybrid discrete choice models with latent variables aim to capture these 

unobserved elements affecting decisions. This way, unobserved characteristics of the 

individuals, such as attitudes, values, mindsets, etc. as well as non-measurable attributes 

of the alternatives, such as perceptions are considered into the modeling, increasing 

substantially their realism and predictive capability. 

This work address several topics related to the estimation of hybrid choice models as well 

as the use, inclusion and correct interpretation of latent constructs. Further, it proposes 

new modeling approaches as well offering in-depth analysis of these subjects. This way, it 

aims to provide new methodological tools, to ease understanding and interpretation of 

hybrid choice models. 

First, the suitability of the sequential estimation as a second-best is discussed, being able 

to quantify its intrinsic bias as a function of the variability induced on the discrete choice 

component. In this way, it is possible to perform corrections when the induced variability 

is low. As a consequence, conditions under which sequential estimation is a suitable 

second-best are derived. 

Further, the differences between person-specific (e.g. attitudes) and alternative- and 

person-specific (e.g. perceptions) latent constructs as well as their implications are 

addressed. Furthermore, the way of collecting indictors in order to construct both kinds of 

latent constructs is discussed. It is possible to establish that alternative- and person-

                                                                                                                                           
Components. To be presented at 14th World Conference on Transport Research, Shanghai, PR China, 10-
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specific latent variables resemble attributes of the alternatives while person-specific 

constructs are similar to socio-economic variables. Therefore, it may advisable to consider 

systematic taste variations as well as categorizations, when addressing the latter. A case 

study shows that individuals may be categorized in different groups in accordance with 

their environmental attitudes, and that more environmentally conscious individuals 

exhibit a lower subjective value of time. 

Along these lines, the categorization of latent variables is explored and a new approach is 

proposed. The analysis shows that this new method outperforms existent alternatives 

offering a better treatment of the error term and clear interpretations of the categorized 

groups in accordance with the underlying theory.  

This work also addresses the hypothesis of continuity of perceptual and attitudinal 

indicators, establishing that neglecting their nature leads indeed to biased results. This 

bias, however, depends on the variability induced into the discrete choice component 

through the latent constructs, which is found to be low in our study cases. 

Further, the methodology is used to analyze a real case (the adoption of electromobility in 

Austria), proposing at the same time an innovative approach to deal with missing income 

information (relying on latent constructs). It is shown that classical approaches, such as 

imputation or dummy variables, lead to biased results, given the existence of endogeneity. 

Along these lines, it can be established that a favorable attitude toward the environment 

affects positively the willingness-to-pay for hybrid, plug-in and fully electric vehicles.   

Finally, an analysis about the correlation among preferences of the same individuals in 

independent choice situations is discussed. Addressing such issues through the latent 

variable approach is discussed, but it is concluded that alternative approaches may offer a 

better representation. Hence, a method based on person- and alternative-specific error 

components is proposed a successfully tested, showing that transport behavior and 

preferences for electromobility are indeed correlated. 

Further research should be oriented to the implementation of the technical contributions 

proposed in this work as well as analyzing the advantages of the proposed methods in 

                                                                                                                                           
15, July, 2016. 
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empirical applications. Along these lines, it may be interesting to compare the 

performance of the person- and alternative-specific error components method and hybrid 

choice models, when accounting for correlation among different choice situations. From a 

theoretical perspective, further research is required regarding the interactions among 

person-specific and alternative- and person-specific latent constructs, as cognitive 

dissonance may affect the way in which the environment is perceived leading to 

correlation and complex error structures. 
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8 This chapter is based on the article: Bahamonde-Birke, F.J. and Ortúzar, J. de D. (2014). Is Sequential 
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Record: Journal of the Transportation Research Board  2429 , 51-58.  
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2.1 Introduction 

Discrete choice models are an essential element in contemporary travel demand modeling 

and forecasting. Their current state-of-practice considers objective characteristics of the 

alternatives and the individuals as explanatory variables, and yields as output the choice 

probabilities of the alternatives included in their choice sets (Ortúzar and Willumsen, 

2011; Train, 2009). However, it is well-known that attitudes and perceptions play also a 

role in the decision making process. The usual approach to take these into account 

considers the estimation of a Multiple Indicators Multiple Causes (MIMiC) model (Zellner, 

1970; Bollen, 1989). Here unobserved, latent, variables are explained by a set of 

characteristics from the users and the alternatives (through so called structural equations) 

while explaining, at the same time, a set of perceptual indicators obtained from the 

individuals (through so called measurement equations). The joint use of MIMiC models 

and discrete choice (DC) models leads to the state-of-the-art hybrid choice models (Ashok 

et al., 2002; Ben-Akiva et al., 2002; Bolduc and Daziano, 2010; Raveau et al., 2012). 

In the last years, the literature has provided abundant empirical and theoretical evidence 

about the advantages of this approach and the use of hybrid discrete choice (HDC) models 

has gained substantial popularity (Yañez et al., 2010; Bahamonde-Birke et al., 2010; 

Daziano and Bolduc, 2013), among others. In their early days, the most usual form to 

estimate HDC models was the sequential approach (Yañez et al., 2010; Vredin-Johansson 

et al., 2010; v. Acker et al., 2013), as this method requires significantly less computational 

resources and guarantees consistent estimators when integrating over the latent variables 

(Ben-Akiva et al., 2002) or, at least, just a negligible bias when used without integration 

(according to the empirical results of Raveau et al., 2010). Nowadays, technical 

improvements and ever increasing computing power has allowed for extended use of the 

simultaneous approach, which guarantees consistent, unbiased and efficient estimators 

(Ben-Akiva et al., 2002; Bolduc and Daziano, 2010). Nevertheless this method is 

considerably more demanding that the sequential approach and the computational cost 

can still be prohibitive, especially when working with more complex MIMiC models and a 

significant number of latent variables (as each latent variable adds a dimension over which 

the likelihood function must be integrated).  
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Bahamonde-Birke and Ortúzar (2014a) examined the increase in model variability 

associated with the direct inclusion of non-observed (estimated) variables, and their own 

error terms, into the utility function of DC models in a sequential estimation context. 

They discussed the problem theoretically concluding that although this variability induced 

bias on the estimated parameters, the bias could be determined and quantified as a 

function of the error associated with the utility function and the variability induced 

through the latent variables. However, they did not attempt to quantify this induced 

variability. 

In this chapter we attempt to analyze the nature of the variability induced through the 

latent variables, which was treated as an unknown variable by Bahamonde-Birke and 

Ortúzar (2014a). The aim is to analyze both the possibility of correcting the 

aforementioned bias as well as the viability of relying on the sequential estimation method 

as an alternative (second-best) estimation tool for cases when the complexity of the model 

detracts from applying the simultaneous estimation approach.  

The rest of the chapter is organized as follows. Section 2.2 summarizes the models and 

estimation techniques considered. Section 2.3 extends the theory behind the 

aforementioned bias while section 2.4 sets up an experimental analysis (based on simulated 

data) to test the findings derived in section 2.3. Section 2.5 discusses the results of the 

experiment, and section 2.6 reports our conclusions. 

2.2 Theoretical background 

In Random Utility Theory (Thurstone, 1927; McFadden, 1974), it is assumed that 

individuals q (belonging to a given market segment Q) are rational decision makers who 

choose an alternative i (in their set of available alternatives A(q)) that maximizes their 

perceived utility (Uiq). In turn, this utility can be described as the sum of a representative 

component (Viq), considering all attributes that can be observed by a modeler, and an 

error term (εiq) describing unknown elements that affect utility but cannot be measured by 

the observer. In a discrete choice modeling framework, this leads to the following 

expression (Ortúzar and Willumsen, 2011): 
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iq iq iqU V           [2.1] 

Under the assumption that the error terms are independent and identically distributed 

following an Extreme Value Type 1 (EV1) distribution (with the same mean and 

variance ), the differences between the utilities associated with the alternatives follow a 

Logistic distribution with mean zero and scale , leading to the well-known Multinomial 

Logit (MNL) model (Domencich and McFadden, 2015); in this case, the probability of 

choosing alternative i is given by: 

( )

iq

jq

V

iq V

j A q

e
P

e














       [2.2] 

and  is inversely related to the standard deviation of the error terms: 

6




         [2.3] 

However, this scale parameter cannot be estimated, since any parameters in the 

representative utility function are multiplied by it (i.e. assuming a linear function as 

usual), so it is customary to normalize it to one (Walker, 2002). 

As mentioned above, the representative utility Viq is a function of attributes that can be 

measured by the modeler. Usually, DC models just consider level-of-service attributes 

(Xkiq, where k represents the kth attribute) that can be directly observed by the analyst 

(i.e. travel times and fares) as well as socioeconomic characteristics of the individual. 

However, when dealing with a HDC model, latent variables ( liq , where l represents the 

lth latent variable) are also included, but these are immaterial constructs that cannot be 

directly observed. Assuming a linear specification of the attributes in Viq, so that the 

estimated parameters θik and βli (related to the tangible attributes and latent variables, 

respectively) can be interpreted as marginal utilities, the representative utility function 

can be expressed as [2.4]. 

iq ki kiq li liq
k l

V X             [2.4] 
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and the usual approach to identify the latent variables relies on a MIMiC model. This 

requires additional information about the attitudes and/or perceptions of the individuals 

(normally gathered in the form of indicators). The MIMiC model considers that a group of 

latent variables, representing attitudes or perceptions, are explained by a set of observable 

characteristics of the individuals and the alternatives (siqr), while explaining a set of 

perceptual indicators. In this manner, the MIMiC model consists of a set of structural 

equations such as [2.5], explaining the latent variables (ηliq), and a set of measurement 

equations such as [2.6], which consider the latent variables as inputs to explain the 

perception/attitudinal indicators (yziq). 

liq lri riq liq
r

s            [2.5] 

ziq lzi liq ziq
l

y             [2.6] 

where the indices i, q, r ,l and z refer to alternatives, individuals, exogenous variables, 

latent variables and indicators, respectively. The error terms liq and ςziq can follow any 

distribution, but they are typically considered to be Normal distributed with mean zero 

and a certain covariance matrix. Finally, αlri and γlzi are parameters to be jointly 

estimated.  

Two approaches have been reported in the literature for the estimation of HDC models. In 

the simultaneous estimation method (Morikawa et al., 2002; Ashok et al., 2002), both 

structures (the DC model and the MIMiC model) are considered jointly. As mentioned 

above, this methodology yields unbiased, consistent and efficient estimators (Ben-Akiva et 

al., 2002), and for this reason this approach should be preferred. Unfortunately, the 

method is highly demanding in terms of computational resources and its cost can be 

prohibitive when dealing with a significant number of latent variables.  

As a second best alternative, several researchers (Vredin-Johansson et al., 2006; Yañez, et 

al., 2010, van Acker et al., 2011), have appealed to the sequential estimation method, 

which divides the problem into two stages, considering first the MIMiC component of the 

model as an isolated problem to evaluate the expected values of the latent variables. After 

that, these are incorporated directly into the DC model for estimation. 
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The sequential estimation can be performed in two ways. First, acknowledging that the 

estimated latent variables are in fact random variables, so that it is necessary to integrate 

the likelihood of the DC model over the domain of the latent variables for estimation. 

These approach guarantees consistent but inefficient results (Ben-Akiva et al., 2002). Even 

so there are no major reasons to favor this approach over the simultaneous estimation 

method, as both require integrating the likelihood function yielding computational costs of 

the same order of magnitude (though the sequential approach is slightly less demanding).  

The second way (which is the most popular one to conduct the sequential estimation of 

HDC models) assumes that the estimated latent variables are in fact deterministic 

variables. Under this assumption the estimation of the DC model is straightforward (both 

the specification of the likelihood function and of the required processing power), but it 

leads to biased and inconsistent estimates for the parameters. As the probability function 

associated with the logit model is non-linear, it cannot be assumed that the slope of the 

probability curve is constant over the space over which the density function of the latent 

variables distributes; hence the probability associated with the expected value of the 

latent variables is not representative of the probability for the domain, given that similar 

changes in the value of the latent variables (but in opposite directions), will have a 

different effect over the choice probabilities (“naïve approach”), as shown in the Figure 2.1 

(Train et al., 1987). 

 
Figure 2.1 – Bias from estimating HDC models using expected values for the latent 

variables without integration (Train et al., 1987).2 

When working with this approach, it is usually assumed that increasing the size of the 

sample can be sufficient to reduce the magnitude of the error, providing acceptable 



  

About the sequential estimation as second best      30 

  

estimators, as long as the variance of the latent variable´s random error is small (Ben-

Akiva et al., 2002). In the same line, the empirical evidence suggests, that there are no 

major discrepancies regarding the ratios of the estimated parameters as well as concerning 

the marginal rate of substitution between the attributes (Bahamonde-Birke et al., 2010; 

Raveau et al., 2010). 

Nevertheless Bahamonde-Birke and Ortúzar (2014a) were able to identify a major bias, 

which is not related to sample size but exclusively to the magnitude of the latent variable 

model´s variability. They found that when estimating a HDC model without considering 

the variability of the latent variables, an external error source is added directly into the 

DC model, deflating all estimated parameters according to the following proportion: 

1
2 2 2

2

6
1 LV DC 




 

  
 

       [2.7] 

where σ2
LV represents the error added through the inclusion of estimated non-observed 

parameters as non-stochastic variables and DC stands for model variability related to own 

error terms of the DC model. They did not propose a way to assess the magnitude of this 

extra variability (except when dealing with a priori known parameters in a controlled 

environment) and, therefore, expression [2.7] cannot be used to correct the estimates.  

2.3 Quantifying the extra variability 

When considering only the expected values of the latent variables the analyst is also 

adding an external source of error directly into the DC model to be estimated, so that the 

total discrepancy between the representative and perceived utility corresponds to the sum 

of the error term underlying the DC model and an extra error coming from the MIMiC 

model. In fact, replacing [2.4] and [2.5] in [2.1] we get: 

iq ki kiq li lri riq liq iq
k l r

U X s            
 

      [2.8] 

When estimating a HDC model using the sequential estimation method, the analyst 

assumes the existence of a single error term but this is, in fact, greater than the usual 
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error term associated with the DC model. This new error term can be represented in the 

following manner: 

( ) ( )HDC iq li liq DC iq
l

            [2.9] 

where ε(HDC)iq is the total error considered in the sequential estimation, while ε(DC)iq stands 

for the error term associated with the underlying discrete choice component of the model, 

as required when following the simultaneous approach. As a consequence, the model 

variability can be expressed as follows: 

2 2 2 2
HDC DC l l

l

             [2.10] 

where HDC
2 represents the model variability considered in the estimation, l

2 is the 

variability associated with the error terms of the MIMiC model´s structural equations and 

DC
2 stands for the variability of the underlying discrete choice model. To simplify the 

notation, from [2.10] onwards we assume, without loss of generality, that a given latent 

variable only affects the utility of a single alternative. If we consider that the parameters 

bi are deterministic and known a priori 2
l  are deterministic and known a priori, 

2 2
l l

l

  stands for the induced variability σ2
LV considered by Bahamonde-Birke and 

Ortúzar (2014a) in equation [2.7]. 

If we assume that the error terms of the MIMiC model´s structural equations (liq) follow 

a distribution which is equal to the difference between two IID EV1 distributions with 

different variance, it can be shown that both the underlying DC model and the HDC 

model to be sequentially estimated can be represented as Logit models. If this is not so, 

the crux of the argument does not change but the mathematics and interpretation of 

results would get much more involved. Also, theoretically the whole estimation of HDC 

models using the sequential estimation method would neglect the hypotheses of the Logit 

model; even so, empirical experience (Bahamonde-Birke et al., 2010; Raveau et al., 2010), 

provides evidence sustaining that this neglect does not have major implications over the 

estimates. Then, under the above assumption, equation [2.10] can be simply written as: 



  

About the sequential estimation as second best      32 

  

 
2 2

2 2
2 26 6 l l

lHDC DC

   
 

  
         [2.11] 

where λDC and λHDC are the scale parameters of the Logit models associated with 

underlying DC model and the HDC model to be estimated, respectively. The βl 

parameters, in turn, stand not for the parameters associated with the underlying DC 

model, but for the estimated parameters of the HDC model estimated sequentially; 

therefore, they are also deflated by its scale parameter, so that: 

* HDC
l l

DC

 


          [2.12] 

where β*
l are the parameters associated with the underlying DC model. Hence, equation 

[2.11] can be rewritten in terms of the parameters associated with the underlying DC 

model (again under the assumption that the βl parameters are deterministic and a priori 

known variables), which are those that would be recovered if the problem was approached 

properly (without the induction of bias): 

22 2
*2 2

2 2 26 6
HDC

l l
lHDC DC DC

   
  

   
        [2.13] 

Working on equation [2.13], the scale parameter HDC can be isolated as a function of DC 

and β*
l: 

2 4 2
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2 2 4 2
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2
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l l
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l l
lDC
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  


 



    
  


 




   [2.14] 

Figure 2.2 presents a graphical representation of the relation between HDC and DC (which 

actually represents the deflation of the parameters) following [2.14] as a function of the 

artificially induced variability *2 2
l l

l

   for different values of DC. 

As can be seen, HDC is equal to DC when no variability is added (as expected), and gets 

smaller in comparison with DC when the induced error increases, both in relative (smaller 

DC) and in absolute terms. The relation tends asymptotically to zero for all values of DC. 
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Figure 2.2 – Relation between λHDC and λDC.3 

As stated in the previous section, all estimated parameters of a DC model are deflated by 

the scale parameter . As this parameter is inversely related with the standard deviation 

of the error terms [2.3], it is clear that higher variability should imply smaller estimates, 

which is consistent with our findings and with the fact that a model affected by greater 

error terms is less informative (the smaller the parameter estimates, the more the 

estimated model tends to the equiprobable model). Hence, the sequential estimation of 

HDC models increases model variability and deflates the estimates, affecting the choice 

probabilities and decreasing artificially the model’s goodness-of-fit. 

One could suggest correcting the estimated parameters using equation [2.14] and fixingDC 

to one (to emulate the results of the simultaneous estimation). However this strategy 

suffers from theoretical problems and equation [2.14] is not useful in practice. First, it 

must be acknowledged that as the β*
l parameters are unknown (they should be estimated), 

they are not available to perform a correction (in contrast, thel values are known 

deterministic variables, as the modeler has to fit the variances associated with the MIMiC 

model´s structural equations to guarantee identification (Stapleton, 1978). Further, the β*
l 

parameters, which we had considered as fixed known deterministic variables, are in fact 

stochastic. This further increases the variability induced into the model and the increment 

depends on the nature of the model and the dataset. Hence, the result presented in [2.14] 

can only be understood as an upper limit and the real deflation associated with the use of 

the sequential estimation should probably be larger. 
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2.4 An experimental analysis 

To analyze our findings and to test how much the real deflation differs from the result 

derived above, we devised an experimental analysis based on simulated data. This allows 

to examine the research subject in a context free of undesired effects, while at the same 

time enabling to determine the magnitude of the theoretically expected deflation (the 

upper limit of HDC or the lower limit of the deflation), as the real parameters are an input 

of equation [2.14]. Following the tradition of Williams and Ortúzar (1982), we generated 

15 different samples, each of 25,000 simulated individuals, behaving in a compensatory 

manner in accordance with different utility functions. 

We considered a MIMiC model specification based on three explanatory variables, two 

latent variables and three perceptual indicators, though certain parameters were fixed at 

zero in some specifications, excluding latent variables or perception/attitudinal indicators 

from the modeling. Regarding the specification of the utility function, we considered two 

alternatives, each represented as the sum of one observed variable, a latent variable and 

an error term. The structure used in the generation of the dataset was the following: 

iq i iq i iq iqU X             

1 1 2 2 3 3iq i q i q i q iqs s s                 

zq zi iq zi iq zqy                [2.15] 

which is a simplified form of the structure presented in the equations [2.4], [2.5] and [2.6], 

where the sub-index i stands for an alternative, z for an indicator and q for an individual. 

This notation is consistent with the sub-indices in Table 2.1. 

All three explanatory variables (sri) were generated taking random draws from 

independent continuous uniform distributions, between zero and one, for each individual. 

The error terms of the measurement equations (ςzq) are distributed Normal with zero mean 

and unit variance. To vary the magnitude of the error induced over the utility function, 

the error terms associated with the structural equations of the MIMiC model (iq) have 

different variances, distributed Normal with zero mean and standard deviationi. The 
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observed variable (Xiq) taking part on the utility function was generated taking draws 

form a Normal distribution with mean 3.0 and standard deviation 1.4 for alternative one, 

and mean 4.0 and standard deviation 1.2 for alternative two. We fixed to one all 

parameters associated with the utility function and the scale parameters of the error terms 

associated with them, to simplify the evaluation of the bias. The values of the MIMiC 

model´s parameters for each sample, as well as the standard deviationsi of the error 

terms iq are also presented in Table 2.1. To dismiss potential misspecifications in the data 

generation process we estimated the model for all samples following the simultaneous 

approach, observing that the data was indeed properly recovered. 

Table 2.1 – Parameters used in the generation of the MIMiC model. 2 
Sample 11 21 31 12 22 32 11 12 21 22 31 32 1 2 

1 3 2 -1 0 0 0 0.7 0 0.5 0 0 0 1 0

2 3 2 -1 0 0 0 0.7 0 0.5 0 0 0 5 0 

3 3 2 -1 0 0 0 0.7 0 0.5 0 0 0 2 0

4 3 2 -1 0 0 0 0.7 0 0.5 0 0 0 0.5 0 

5 3 2 -1 0 0 0 0.7 0 0.5 0 0 0 0.2 0

6 0.5 0.2 0.3 0 0 0 3 0 1.5 0 0 0 1 0 

7 0.5 0.2 0.3 0 0 0 3 0 1.5 0 0 0 5 0

8 0.5 0.2 0.3 0 0 0 3 0 1.5 0 0 0 2 0 

9 0.5 0.2 0.3 0 0 0 3 0 1.5 0 0 0 0.5 0

10 0.5 0.2 0.3 0 0 0 3 0 1.5 0 0 0 0.2 0 

11 3 2 0 0 2 3 0.7 0 0.5 0.5 0 0.7 1 1

12 3 2 0 0 2 3 0.7 0 0.5 0.5 0 0.7 2 2 

13 3 2 0 0 2 3 0.7 0 0.5 0.5 0 0.7 0.5 2

14 3 2 0 0 2 3 0.7 0 0.5 0.5 0 0.7 2 0.5

15 3 2 0 0 2 3 0.7 0 0.5 0.5 0 0.7 0.5 0.5

2.4 Results and discussion 

Using the sequential approach (without integration over the domain of the latent 

variables) we estimated HDC models for all the samples, following the exact specification 
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used in the generation of the dataset. As expected, the parameters associated with the 

MIMiC part of the model were properly recovered, and there is no statistical evidence to 

reject the hypothesis of equality between the estimates and the target values for any 

parameter of all 15 samples (at a confidence level of 5%). The results obtained from the 

estimation of the DC models for the 15 samples are presented on Table 2.2. The notation 

is that used in equation [2.15] and the standard deviation of the estimates is shown in 

brackets. We have also included the expected induced variability *2 2
l l

l

   as well as the 

value for HDC calculated in accordance to equation [2.14], considering that theDC 

parameter was fixed to one. The calibration of the DC models was performed using 

Biogeme (2003). 

From Table 2.2 it is clear that the estimates obtained from the sequential approach are 

affected by the variability associated with the estimates of the latent variables, and it is 

not possible to recover the target values without performing a correction. Acknowledging 

this issue is important as, in some cases, the estimates are deflated by as much as three 

times their real values, affecting substantially the choice probabilities and the predictive 

capability of the models. 

To ease following the situation discussed, in Figure 2.3 we provide a graphic 

representation of the estimated parameters together with the proposed correction curve, 

given the different induced variabilities. The horizontal axis of the graph uses a 

logarithmic scale. 

In relation to the proposed expression for theHDC parameter, the empirical results 

indicate that there are not major discrepancies between the suggested upper limit forHDC 

and the real deflation affecting the estimates. In fact, it is not possible to detect significant 

differences between this upper limit and the real deflation, as long as the induced 

variability does not exceed a magnitude of two. Over this value the differences tend to 

increase in conjunction with the added variability and our proposed value cannot be 

considered a proper predictor of the deflation. 
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Table 2.2 – Estimation results of the DC model.3 

Sample 1 2 1 2 

*2 2
l l

l

 
 

HDC 

1 
0.870 

(0.0135) 
0.876 

(0.0125) 
0.866 

(0.0173) 
- 1 0.837 

2 
0.306 

(0.00884)
0.317 

(0.00796)
0.321 

(0.0114) 
- 25 0.475 

3 
0.636 

(0.0112) 
0.628 

(0.0103) 
0.629 

(0.0140) 
- 4 0.684 

4 
0.968 

(0.0145) 
0.954 

(0.0135) 
0.956 

(0.0174) 
- 0.25 0.939 

5 
0.988 

(0.0139) 
1.00 

(0.0139) 
1.05 

(0.0182) 
- 0.04 0.988 

6 
0.871 

(0.0176) 
0.846 

(0.0125) 
0.840 

(0.0894) 
- 1 0.837 

7 
0.295 

(0.0135) 
0.291 

(0.00869)
0.183 

(0.0993) 
- 25 0.475 

8 
0.645 

(0.0155) 
0.623 

(0.0107) 
0.642 

(0.0864) 
- 4 0.684 

9 
0.922 

(0.0183) 
0.963 

(0.0135) 
1.01 

(0.0863) 
- 0.25 0.939 

10 0.979 
(0.0186) 

0.983 
(0.0138) 

0.918 
(0.0791) 

- 0.04 0.988 

11 
0.747 

(0.0127) 
0.763 

(0.0125) 
0.783 

(0.0166) 
0.772 

(0.0166) 
2 0.765 

12 
0.504 

(0.0103) 
0.514 

(0.0102) 
0.502 

(0.0141) 
0.482 

(0.0141) 
8 0.602 

13 
0.618 

(0.0114) 
0.634 

(0.0112) 
0.637 

(0.0153) 
0.621 

(0.0153) 
4.25 0.677 

14 
0.639 

(0.0115) 
0.638

(0.0113) 
0.630 

(0.0154) 
0.612 

(0.0149) 
4.25 0.677 

15 
0.901 

(0.0320) 
0.884

(0.0312) 
0.832 

(0.0388) 
0.871 

(0.0387) 
0.5 0.896 

As a consequence, a correction based on this upper limit can be attempted and it should 

provide acceptable results when working with a small induced variability. Although this 

correction is not 100% reliable – for instance the results obtained for sample 1 are slightly 

biased (in terms of the magnitude) even after correcting the estimates and standard 

deviations – it provides clearly better estimates than working directly with the estimation 

results, making it possible to recover most target values. Even in those cases affected by a 

high variability (more than two in our tests) a correction of the deflation using this upper 
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limit offers clearly better results for forecasting (although still biased) than dealing with 

the original values. 

 
Figure 2.3 – Estimated parameters and expected deflation.4 

As stated before, the result presented in [2.14] cannot be used in practice since the β*
l 

parameters are unknown, but an alternative formulation based on the model estimates βl 

can be proposed working over expression [2.11]. In that case, the HDC parameter may be 

expressed as a function of DC and the βl . 

2 2 2
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

      [2.16] 

However, it is important to proceed very carefully when dealing with this formulation, as 

the βl parameters are also deflated by the HDC parameter, so that the inclusion of over-

deflated estimates (as can be expected, since we are working with an upper limit for HDC) 

could lead to an underestimation of the general deflation. Moreover, it is important to 

state that in this specification, the input variables are also stochastic estimates, implying 

that the HDC parameter is of the same nature. 

To illustrate this situation, we have computed HDC following the alternative formulation 

for our 15 samples. The results are shown in Table 2.3. As expected, the proposed form 

provides a good proxy forHDC, when the deflation is small, but underestimates the latter 

(even more), when the induced variability gets larger. 
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Table 2.3 - Comparison of deflation estimators.4 

Sample HDC 

[2.14]
HDC 

[2.16]

1 0.837 0.829
2 0.475 0.624
3 0.684 0.714
4 0.939 0.937
5 0.988 0.987 
6 0.837 0.837
7 0.475 0.814 
8 0.684 0.707
9 0.939 0.930 
10 0.988 0.990
11 0.765 0.759
12 0.602 0.793 
13 0.677 0.808
14 0.677 0.806 
15 0.896 0.905

 

Finally, it is important to acknowledge, that in line with the previous empirical evidence, 

the relation between the estimated parameters as well as the marginal rates of substitution 

between the attributes do not appear to be affected by any bias and the target values are 

properly recovered, despite the use of the sequential estimation method (the only 

exception could be the value associated with the latent variable in sample 7, but the large 

standard deviation associated with this estimate prevents rejecting any hypothesis of 

equality). 

2.6 Conclusions 

The estimation of HDC models following the sequential estimation approach is still widely 

used as a second-best estimation tool, because of the high computational costs of the 

simultaneous estimation method, especially when working with several latent variables. 

Notwithstanding, the estimators associated with this methodology are biased and 

inconsistent, as the estimates for the latent variables are introduced into the DC model as 

deterministic (observed) variables, inducing an extra error into the model. As the 

estimators are inconsistent, this bias cannot be reduced by increasing the size of the 

sample. 
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We expanded the theoretical analysis of Bahamonde-Birke and Ortúzar (2014a) to 

quantify the magnitude of this bias and to propose a correction term for the estimates. 

However, we were only able to identify an upper limit for the scale parameter associated 

with the deflation caused by the direct inclusion of the latent variables into the DC model.  

In the same line, we conducted an empirical experiment (based on simulated data) to 

analyze how much the real deflation differed from the quantifiable upper limit (bottom 

limit of the deflation), observing that the discrepancies were negligible for small induced 

variability. Hence, we argue that this upper limit is a good predictor for the real deflation 

when the induced variability is low and behaves appropriately as a correction term. When 

the induced error gets larger the upper limit underestimates the real deflation and 

therefore, the correction term is not able to guarantee unbiased estimators. 

We argue that performing this correction is highly recommended when approaching the 

estimation problem sequentially, as it corrects or diminishes (depending on the magnitude 

of the induced error) a significant bias affecting the predictive capability of the estimated 

models. Notwithstanding, and in accordance with other studies, our findings show that the 

marginal rates of substitution between the attributes are not actually affected by the 

estimation technique. Therefore our study supports the thesis that sequential estimation of 

HDC models is a suitable second best alternative when the focus is centered on finding 

marginal rates of substitution or willingness-to-pay measures.  

On the contrary, when the analyst expects to use the model for forecasting and for 

evaluation of choice probabilities, the suitability of the estimation technique must be 

properly evaluated. So, if the induced error associated with the variability of the latent 

variables is relatively small in comparison with the error terms intrinsic to the DC model, 

the estimation methodology should work in an acceptable manner if the correction term 

suggested in this chapter is applied. If this is not the case, other alternatives should be 

favored. 

Finally, it is important to remember that the most important reason to opt for the 

sequential over the simultaneous estimation method are the high computational costs 

associated with the inclusion of several latent variables. Unfortunately, it can be expected 

that the inclusion of several latent variables will imply the introduction of higher induced 
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variability into the DC model, causing the appearance of larger bias, detracting from the 

advantages of our simplified technique, making it a less suitable alternative. 

 



 
 
 
 

CHAPTER 39 
 

ABOUT ATTITUDES AND 
PERCEPTIONS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
9 This chapter is based on the article: Bahamonde-Birke, F.J., Kunert, U., Link, H. and Ortúzar, J. de D. 
(2015). About attitudes and perceptions – finding the proper way to consider latent variables in discrete 
choice models. Transportation (forthcoming, DOI 10.1007/s11116-015-9663-5). 
Available at http://dx.doi.org/10.1007/s11116-015-9663-5. 
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3.1 Introduction 

The last decades have seen discrete choice models (DCM) become a key element in travel 

demand modeling and forecasting (Ortúzar and Willumsen, 2011). Their current state-of-

practice considers objective characteristics of the alternatives and the individuals as 

explanatory variables, and yield as output individual probabilities of choice between 

different alternatives. It is also well known that individual specific latent attributes (i.e. 

attitudes) and alternative specific latent attributes (i.e. perceptions) play a role in the 

decision making process. The usual approach to take these into account considers the 

estimation of Multiple Indicator Multiple Cause (MIMiC) models, as suggested by Bollen 

(1989). The joint use of MIMiC models and DCM leads to state-of-the-art hybrid discrete 

choice (HDC) models (Ashok et al., 2002; Ben-Akiva et al., 2002; Bolduc and Daziano, 

2010). 

The transport literature has provided abundant empirical and theoretical evidence about 

the advantages of the HDC approach and the use of these models has gained popularity 

(v. Acker et al., 2011; Bahamonde-Birke et al., 2010; Raveau et al., 2012; Daziano and 

Bolduc, 2013; Paulssen et al., 2014; among others). Notwithstanding, attitudes and 

perceptions are usually not differentiated, ignoring that both may be expressions of 

different value judgments. While attitudes express a characteristic of the individuals 

toward life, society, etc. and are intrinsically related to them, perceptions are exclusively 

related to the way certain alternatives are perceived. Thus, an attitude resembles an 

individual’s socio-economic characteristic, while a perception is intrinsically associated 

with an alternative10. This difference has important implications and the way in which 

both should be treated in a DCM is completely different. In turn, this issue affects not 

only the way in which latent variables (LV) are estimated but almost all hypotheses 

concerning them. Hence, different assumptions ma have an effect on both the way the LV 

                                                 
10 Formally speaking these definitions do not only apply to attitudes and perceptions but to all kinds of 
individual-specific and alternative-specific latent attributes, respectively. Nevertheless, in this work we 
focus on attitudes and perceptions, as these are the most representative ones. We are grateful to an 
unknown referee for pointing this out to us. 
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are constructed through the MIMiC model as well as on the manner in which these 

constructs are reflected in the utility function of the DCM. 

This chapter aims to provide an in-depth discussion about the different ways to treat LV 

in DCMs. We discuss the implications of the latent constructs being individual or 

alternative specific and different approaches to deal with them. Along this line, we 

conduct an empirical experiment to test the aforementioned approaches (e.g. analyzing 

attitudinal LV in continuous and categorized fashions, or considering interactions between 

attitudinal LV and attributes of the alternatives). Furthermore we discuss strategies to 

deal with perceptual indicators that depend on different attributes of the alternatives; the 

latter allows constructing perceptual LVs that are sensitive to changes in the alternatives. 

The rest of the chapter is organized as follows. Section 3.2 offers a theoretical overview of 

HDC models, while Section 3.3 presents the above-described discussion. Section 3.4 

describes an experiment carried out to test the hypotheses of the previous section, and its 

results are discussed in section 3.5. Finally, section 3.6 summarizes our conclusions.  

3.2 Theoretical background 

Under the assumption of rational decision makers, it can be postulated that individuals q 

facing a set of available alternatives A(q), will choose the alternative i that maximizes 

their perceived utility. In a Random Utility Theory framework (Thurstone, 1927; 

McFadden, 1974), it is possible to represent this utility as the sum of a representative 

component (Viq) and an error term (εiq). When considering a Hybrid Discrete Choice 

(HDC) modeling framework (Ben-Akiva et al., 2002), the modeler attempts to depict 

abstract attributes as measurable variables in order to include them as part of the 

systematic utility. Hereby, immaterial constructs, known as latent variables ( liq ), are 

also included into the modeling. These variables are supposed to represent attitudes 

and/or perceptions (or other unobservable characteristics) of the individuals and, as 

cannot be directly observed, they must be constructed as a function of other positively 

observed variables. The usual approach to construct these latent variables (LV) relies on a 

MIMiC structure (Zellner, 1970; Bollen, 1989). Here, the LV are explained by a set of 
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characteristics of the individuals and the alternatives (siqr), through so called structural 

equations, while explaining, at the same time, a set of attitudinal and/or perceptual 

indicators (Iziq), previously gathered from the individuals, through so called measurement 

equations. If we assume a linear distribution for the indicators, this framework can be 

represented through the following equations: 

liq lri riq liq
r

s    
 
       [3.1] 

ziq zli liq ziq
l

I     
 
       [3.2] 

where the indices i, q, r, l and z refer to alternatives, individuals, exogenous variables, 

latent variables and indicators, respectively. The error terms liq and ςziq can follow any 

distribution but they are typically assumed to distribute Normal with mean zero and a 

certain covariance matrix. Finally, αlri and γzli are parameters to be jointly estimated.   

If we assume a linear specification in Viq, the utility function can be expressed as [3.3]. 

iq ki kiq li liq iq
k l

U X               [3.3] 

Under the assumption that the error terms εiq in [3.3] are independent and identically 

distributed (IID) Extreme Value Type 1 (EV1), the differences between the utilities 

associated with the alternatives follow a Logistic distribution, leading to the well-known 

Multinomial Logit (MNL) model (Domencich and McFadden, 1975). 

The estimation of both parts of the model should be performed simultaneously, as a 

sequential estimation considering first the MIMiC part as an isolated system and 

evaluating afterwards the expected values for the LV cannot guarantee consistent and 

unbiased estimators (Train et al., 1987; Ben-Akiva et al., 2002). However, empirical 

evidence sustains the thesis that the sequential estimation produces no major discrepancies 

regarding the ratios between the estimated parameters and, therefore, the marginal rates 

of substitution (Raveau et al., 2010; Bahamonde-Birke et al., 2010). Nevertheless 
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Bahamonde-Birke and Ortúzar (2014a, 2014b) prove that the estimators may indeed be 

affected by a significant deflation bias (affecting all estimated parameters).  

An intermediate path between the simultaneous and classical sequential estimation 

consists of estimating the model sequentially, but taking into account the variability of the 

LV. Despite the fact that this approach also requires integrating over the domain of the 

LV, it offers significant advantages in terms of computational costs. This approach leads 

to consistent but inefficient estimators (Ben-Akiva et al., 2002) and avoids the bias 

described by Bahamonde-Birke and Ortúzar (2014b). 

When estimating the model simultaneously, or sequentially integrating over the domain of 

the LV, the process is usually performed by simulated maximum likelihood, employing 

random draws to depict the probability distributions associated with the LV (Ben-Akiva 

et al., 2002; Bierlaire, 2003).   

3.3 Attitudes, perceptions and latent constructs in choice 

modeling 

Prior to discussing the different ways in which LV may be considered in a HDC-model, it 

is necessary to understand the difference between individual-specific (e.g. attitudes, but 

also other characteristics such as values or personality traits, etc.) and alternative-specific 

latent attributes (e.g. perceptions). The former may be considered as a mind-set or a 

tendency to act in a particular way based on the individual’s experience and temperament 

(Allport, 1935; Pickens, 2005). Therefore, in our approach indicators representing 

individual-specific latent constructs depend only on the individuals and are considered 

constant for all alternatives. Thus, one set of attitudinal indicators would be enough to 

describe the individual in question. Contrariwise, perceptions (although closely related to 

attitudes) may be interpreted as the process by which individuals experience their 

environment (Lindsay and Norman, 1972) and depend, therefore, on both the person and 

the stimuli (Pickens, 2005). As a corollary, perceptual indicators should be a function of 

both the individual and the alternatives. Even more, any variation in the alternatives may 
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lead to a different valuation of them, as every detail may affect the way in which the 

population perceives the various alternatives. Therefore, in order to analyze the role of 

perceptions and perceptual indicators, it is necessary to gather a new set of indicators for 

every alternative (defined as every possible combination of attributes) that the individual 

faces. 

This issue can lead to a significant increase in the information collected in the experiment, 

as normally the alternatives would consist of different attributes that are subject to 

variations. Therefore, it is mandatory to make certain simplifying assumptions. First, it 

may be assumed that certain attributes will not affect the way in which a given 

alternative is perceived and, consequently, this dimension may be excluded from the 

design (e.g. price may not affect accessibility indicators). Second, it can be assumed that 

the model is valid across individuals (avoiding the need that all of them state their 

perceptions for every combination of possible attributes, as long as some are faced with 

the remaining combinations). 

Once the indicators are gathered it is possible to construct the latent variables. Obviously, 

attitudinal variables will be related to attitudinal indicators and vice versa. Thus, while 

attitudinal variables must be solely explained by characteristics of the individuals (as no 

variation across alternatives will be observed), perceptions should be explained also by the 

attributes of the different alternatives in the experimental design. 

On the few examples when perceptual indicators are considered, researchers just allow one 

attribute of the alternatives to vary and then adjust independent alternative-specific 

models (one model per indicator set) that depend exclusively on the characteristics of the 

individuals (e.g. Yañez et al., 2010). These models are, therefore, insensitive to changes in 

the alternatives; moreover, as the model does not depend on the stimuli, it is disputable if 

it can adequately treat actual perceptions.  

Alternatively, different sets of indicators, associated with different combinations of 

attributes describing an alternative, may be treated jointly. This allows observing 

variation associated with these alternative-related attributes, and the model would be no 

longer indifferent to the stimuli. Although such an integrated HDCM would offer a poorer 

goodness-of-fit, as no ad-hoc model is being estimated for each independent attribute (or 
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combination of attributes, if more than one dimension is allowed to vary), it should reflect 

how certain attributes affect perceptions in a more adequate manner. If one follows this 

approach, it is possible to gather more than one set of indicators per person (associated 

with different combinations of the alternative’s attributes). In this case, correlation among 

the responses provided by the same individuals should be taken into account. 

Kamargianni and Polydoropoulou (2014) provide a good example in this regard by using 

the characteristics of the individuals’ living environment as explanatory variables to 

explain the perception of walkability. Even though they did not attempt to analyze 

directly how changes in the attributes affected the perceptions of specific individuals 

(gathering more than one set of perceptual indicators per individuals, for instance), nor if 

these attributes could be linked undoubtedly to the specific alternative, their approach 

appears appropriate to deal with alternative-specific latent constructs.   

Finally, the treatment of both kinds of variables (attitudes and perceptions) in the DCM 

should not be equal, as some attitudes, just as socio-economic variables (which affect the 

way in which the attributes of the alternatives are perceived), should be incorporated 

through systematic taste variations and not linearly into the utility function.   

Against this background, we distinguish three kinds of LV, which will be treated in our 

case study (see Section 3.4): 

a) Non-alternative related individual-specific latent attributes (e.g. attitudes): Most 

researchers working with HDC models consider this kind of variables (Bolduc and 

Daziano, 2010; Jensen et al., 2014, among many others). They represent general 

attitudes of the individuals toward their social and physical environment, such as a 

more ecological mind-set or a higher valuation of social status. Even when using 

variables that may be understood as perceptions, such as comfort and security, the 

modeler is, in fact, dealing with a non-alternative related attitude, as in this case the 

variable stands for the importance assigned by the individual to a given aspect and not 

to the perception of the alternative itself (Daziano, 2012). Thus, inferences such as 

“Alternative A is perceived as more comfortable” would not be accurate, but rather, 

“Individuals caring for comfort favor alternative A”, which is not equivalent. Chorus 

and Kroesen (2014) argue (in our opinion rightly) that this kind of models does not 
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allow deriving policy implications, as these attitudinal variables are intrinsic 

characteristics of the individuals (like sex or age) and therefore not sensitive to changes 

in the alternatives (longitudinal data could be an exception, as it allows capturing how 

attitudes may change depending on external circumstances, and thus deriving policy 

implications). In the same line, Chorus and Kroesen (2014) criticize the causal relation 

between attitudes and choices, as attitudes and stated attitudinal indicators may be 

indeed affected by the individual’s choices (e.g. the stated attitude toward the comfort 

provided by a given alternative, may depend on whether the alternative is selected). 

However, this criticism may be substantially reduced if no direct link can be 

established between indicators and choices. In that case, both would be indeed an 

expression of deeper underlying attitudes, such in the case of environmental attitudes, 

political views, values, and so on.   

As these variables resemble socio-economic characteristics, to identify the DCM they 

must be considered together with alternative specific attributes in the utility function. 

However, in most reported cases they are just considered in conjunction with 

alternative specific constants (Vredin-Johansson et al., 2006; Bolduc et al., 2008); this 

restriction may neglect important aspects of the decision, as it can be expected that 

individuals with different attitudes toward life exhibit a different valuation of the 

attributes of the alternatives, and therefore systematic taste variations should be 

allowed for (Ortúzar and Willumsen, 2011, page 279).  

Furthermore, similar to socio-economic variables, it is not clear that attitudes should 

have a linear impact on utility. Therefore, a categorization of the LV should be 

considered. For instance, it is plausible that a low or intermediate appraisal of security 

(or safety) may have no effect whatsoever over the decision, but a high concern could 

lead to a significantly different valuation. If this were the case, treating the variable 

linearly would not properly reflect individual behavior.  

Categorizing the LV offers also significant advantages in terms of flexibility, as it 

allows estimating different utility functions for every category, resembling a latent class 

model, but expanding it in order to account for the behavioral information. This 

categorization may be performed using a latent variable-latent class structure (Hess et 

al., 2013) or attempting a direct categorization (i.e. a dummy variable that takes a 

positive value if the LV surpasses a certain threshold). 
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b) Alternative related individual-specific latent attributes (e.g. attitudes): These variables 

are similar to those above, with the exception that attitudes are unequivocally related 

to a given alternative. Thus, they must be considered in conjunction with the 

alternative specific constants. For instance, Daziano and Barla (2012) allowed for the 

effect of a favorable predisposition toward automobiles or transit systems in this way. 

As in the previous case, systematic taste variations (within the same alternative) and a 

possible categorization should also be analyzed. 

c) Alternative-specific latent attributes (e.g. perceptions): These variables are alternative 

related (i.e. they exhibit a different valuation depending on the alternative considered) 

and as such they resemble observed attributes such as price or travel time; hence, both 

kinds of variables (observed and alternative-specific latent attributes) should be treated 

in the same fashion. In this case, both alternative specific and generic estimators may 

be considered. 

These variables allow evaluating how changes in alternatives may affect the 

perceptions, and thus the choices. As in this case the perceptions and indicators are 

driven by exogenous attributes of the alternatives, causality issues as described by 

Chorus and Kroesen (2014) may be overcome. 

Regarding the model’s identifiability, necessary and sufficient conditions have not yet been 

developed. Therefore, most studies relying on HDC models achieve identification by not 

letting some explanatory variables impact the utility of a given alternative, both directly 

and through a latent variable (Bhat, 2014)11. This is indeed a sufficient but highly 

restrictive condition and, especially when dealing with perceptual LV, the modeler may be 

forced to employ the same attributes in the structural equations as well as in the utility 

functions to represent behavior properly (e.g. air conditioning may have an effect over 

perceived comfort, but still have a direct impact on the decision due to other 

considerations). Under these circumstances identification must be analyzed on a case-by-

case basis (see Vij and Walker, 2014, for a good discussion about the identifiability of 

HDC models).   

                                                 
11 The authors are aware that some papers have relaxed this restrictive condition (e.g. Atasoy et al., 2010 
or Kamargianni et al., 2014), but the majority of papers on HDC just rely on it. 
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3.4 Case study 

Departing from usual practice (which typically considers only attitudes), we designed an 

experiment considering both attitudinal and perceptual indicators in a transport choice 

framework. This allowed us testing for the appropriate manner to consider both kinds of 

LV in a DCM, regarding the underlying theoretical concerns.   

We conducted a stated choice (SC) experiment where respondents were asked to choose 

between different interurban public transport alternatives in Germany (regional12 and 

intercity trains, and interurban coaches). The experiment was carried out in three waves 

(January 2014, March 2014 and April/May 2014), contacting both students and employees 

from two universities in Berlin (the Technische Universität Berlin and the Humboldt-

Universität zu Berlin), as well as employees of member institutions of the Leibniz-

Gemeinschaft13. After data cleaning the survey yielded a total of 1,832 responses. 

The questionnaire had four parts. In the first, respondents were asked to describe the main 

characteristics (fare, travel time, number of transfers, etc.) of their last trip with the 

regional and intercity trains of Deutsche Bahn. Respondents were also asked to state their 

general experience of traveling with Deutsche Bahn. It was considered that attributes such 

as fare or travel time, would have no effect over the indicators (which was confirmed in a 

pilot study), but that the number of transfers or the transport mode could. Participants 

were required to state their level of agreement with the statements below, using a ten-

point Likert scale which ranged from strongly disagree (1) to strongly agree (10), provided 

that the trip might be carried out with both transport modes (regional and intercity 

trains) and considering a given number of transfers (which was equivalent to that reported 

in the previous module, to ensure that respondents had previously faced the combination 

of attributes). 

 

                                                 
12 Regional trains should not be confused with commuter rail. In Germany, regional trains operate over 
long interurban distances, stopping more and over shorter distances than intercity trains. It is possible to 
travel across the country using only regional trains. 
13 The Leibniz-Gemeinschaft is one of the shelter associations of publicly funded research institutes in 
Germany. 
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I was able to relax during the trip (y11) Relax 

I felt secure from thefts and losses (y12) Security 

Traveling with heavy luggage was (would have been) uncomplicated (y13) Luggage 

The departure time was reliable (y14) Departure 

The arrival time was reliable (y15) Arrival 

It was possible to use the travel time productively (y16) Productivity

The station was easily accessible (y17) Station 

Purchasing the ticket was uncomplicated (y18) Tickets 

 

Respondents were also asked to state their level of agreement with these statements under 

the assumption that a bus carrier with no transfers would offer the service.  

The second part of the survey gathered travel behavior data as well as indicators related 

to traveler’s attitudes toward current political issues discussed in Germany, stating their 

level of agreement with the following sentences using again a 10 point Likert scale: 

I agree with the nuclear power phase-out (y21) NuclearPhaseOut

Environment protection is more important than economic growth (y22) Environment 

I am willing to pay a 25% surcharge on my electric bill to reduce CO2 emissions 
from coal power plants (y23) 

ElectricSurcharge

Highway tolls should be introduced to compensate CO2 emissions (y24) HighwayTolls 

Automobiles with higher engine power should pay more taxes (y25) CarTax 

Investing on the development of high-speed trains should be encouraged (y26) HSTrains 

New highways or additional lanes to the existing ones should be built (y27) Highways 

New high-speed rail lines should be built (y28) RailLines 

I agree with the introduction of speed limits on highways (y29) SpeedLimits 
 

The third part of the questionnaire was the SC experiment itself. Respondents were 

required to choose between a first (pivotal) alternative, representing the trip previously 

described, and a new travel alternative (either the same mode or a different one). 

Altogether, respondents were confronted with twelve choice situations; the first six used a 

pivotal alternative based on a trip with Deutsche Bahn regional trains and the last six 

considered a trip with Deutsche Bahn intercity trains. Alternatives were described in 

terms of their travel time, fare, number of transfers, mode of transport - regional trains 

(RE), intercity trains (FVZ) and coaches (LB) - and a safety level, represented through 

the number of severely injured passengers and the number of fatalities in the overall 
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network over a year for each mode (this value was highest for the coach alternative14). 

The appendix A presents a translated sample screen of the SP-experiment. 

The attribute levels of the alternatives were optimized maximizing the D-efficiency for a 

pivotal design as proposed by Rose et al. (2008). As it was not possible to personalize the 

attribute levels during the survey, they were fixed a priori based on the average levels of 

the attributes. These average levels, as well as the priors used for computing the D-error, 

were established in accordance with models previously estimated, based on the answers 

gathered during the pre-test of the survey (48 individuals). 

Finally, the fourth part of questionnaire requested socioeconomic information about the 

respondents. 

3.5 Model estimation 

3.5.1 Model structure 

To establish the structure of the MIMiC model, the indicators were analyzed using factor 

analysis to guarantee a correct specification of the LV (Atasoy et al., 2010). This way, it 

was possible to identify three components (with an eigenvalue greater than 1) explaining 

70% of the variance of the perceptual indicators (y11 to y18). In the same way, it was 

possible to establish that two factors (with an eigenvalue greater than 1) captured 54% of 

the variability associated with the attitudinal indicators (y21 to y29). Table 3.1 presents the 

rotated component matrices for both types of indicators. 

On the basis of these results, we constructed two generic and three alternative-specific LV 

(shown in bold in Table 3.115). The first was identified as Comfort, as it was related to 

indicators such as ease of access, relaxation, or an environment that was comfortable 

enough to be used productively. The second component was called Stress-free, as it was 

                                                 
14Because of the way the statistic was provided, as well as to avoid minuscule numbers, it was necessary 
to use numbers for the overall network. 
15 It is necessary to rely on heuristic criteria to define the structure of the LV model. This way, we used a 
Varimax rotation – to ease the identification of each variable with a single factor – and associated the 
indicators with a given latent construct when the absolute value of the loading factor was greater than 
0.5. 
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associated with situations causing tension during the trip, such as worrying about the 

luggage or personal security. The third component was identified as Reliability. 

Table 3.1 – Rotated component matrix of perceptual and attitudinal Indicators.5 
Indicator Comfort StressFree Reliability Indicator Green TrainFan 

Relax 0.548 0.591 0.171 NuclearPhaseOut 0.688 -0.029 
Security 0.144 0.782 0.132 Environment 0.726 -0.074 
Luggage 0.061 0.810 0.178 ElectricSurcharge 0.704 0.030 

Departure 0.117 0.245 0.892 HighwayTolls 0.658 0.214 
Arrival 0.280 0.125 0.867 CarTax 0.686 0.192 

Productivity 0.663 0.432 0.099 HSTrains 0.114 0.860 
Station 0.810 0.064 0.177 Highways -0.546 0.365 
Tickets 0.711 0.059 0.153 RailLines 0.046 0.891 

    SpeedLimits 0.610 0.082 

 

In the case of the attitudinal indicators, the first component was associated with having a 

Green attitude, including a negative predisposition toward automobiles (y24, y25, y27 and 

y29). The second component related to individuals who had a great appreciation for the 

development of trains and rail lanes (for this reason, this LV was called TrainFan). These 

results are interesting for our analysis as it was possible to identify a generic (Green) and 

an alternative related (TrainFan) attitude. 

3.5.2 MIMiC model components 

Given the complex structure and size of the dataset (1,832 individuals; 3,900 sets of 

perceptual indicators; eight latent variables – two generic and three alternative-specific 

variables16 - and 13,138 observed decisions), it was not computationally possible to 

perform a simultaneous estimation of the HDC model17. In addition, we wanted to analyze 

the effect of attitudinal LV both as continuous or as categorized variables, which 

complicated the structure of the model even more.  

                                                 
16 For each choice situation the alternative-specific LV depends on the alternatives. Therefore we have 
three LV (Comfort, Stress-free and Reliability) associated with the status quo alternative and another 
three related to the new option offered to the individual.   
17 We attempted it using PythonBiogeme, but observed that the optimization algorithm interrupted the 
computation without reaching convergence after approximately three weeks (unsuccessful linesearch). 
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Therefore, a sequential estimation considering the own variability of the LV and 

integrating over their domain was attempted. Thus, the MIMiC model was estimated first 

and the latent variables considered in the DCM component were constructed according to 

these estimates. In fact, it was necessary to estimate two different MIMiC models, one for 

the attitudinal variables and another for the perceptual indicators. 

The first only considered individual characteristics as explanatory variables. Figure 3.1 

presents the final structure of the selected model (several specifications considering 

additional socio-economic variables and other combinations of those shown were also 

considered), and Table 3.2 its estimated parameters. 

 
Figure 3.1 – Structure of the attitudinal MIMiC model.18

 5 

The second MIMiC model was estimated for the perceptual indicators. In this case, not only the 

characteristics of the individuals but also the attributes of the transport modes were considered as 

explanatory variables. It is also important to consider interactions between these two kinds of 

variables, as different population groups may perceive differently the attributes of the alternatives 

(i.e. systematic taste variations).  

It is important to note, that the model cannot be subdivided based on alternatives, as we 

are calibrating an integrated perceptual model, where the transport mode and the number 

of transfers do not describe the alternatives but are considered as further attributes. The 

                                                 
18 The different line types are only used to ease the understanding of the figure. 
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Table 3.2 – Estimated parameters for the attitudinal MIMiC model.6 
Explanatory  

Variable 
Estimate t- statistic

Attitudinal 
Indicator 

Estimate t- statistic

Green Attitude  Green Attitude 
University 0.258 4.134  NuclearPhaseOut 1.463 44.416 

ParentalHome -0.181 -2.815  Environment 1.178 49.917 

MiddleAge 0.298 6.124  ElectricSurcharge 1.666 51.02 

Old 0.497 3.713  HighwayTolls 2.14 51.02 

Woman 0.287 5.917  CarTax 1.628 46.489 

BahnCard 0.334 6.565  Highways -1.053 -37.228 

Car -0.524 -10.075  SpeedLimits 2.282 51.902 

TrainFan  TrainFan 
Old 0.282 2.048  HSTrains 2.088 49.695 

Woman -0.282 -5.639  RailLines 2.12 49.937 

BahnCard 0.333 6.356     
Car -0.058 -1.116*     

MiddleIncome 0.141 2.807     
HighIncome 0.128 1.66**     

(*)The variable was kept in the model as it is considered a policy variable and has the proper sign. 
(**) As the signs of the estimators were known a priori, a one-tailed test was performed (5% =1.645). 

structure of the estimated model is shown in Figure 3.2.  Here, Losses and Accidents 

indicate that the individual had suffered material losses during a trip in the past or had 

been involved in a train accident, respectively. The number of transfers is represented by a 

discrete variable ranging between zero and four, while BusUser indicates whether the 

individual had undertaken at least one trip using coach services during the last three 

years. Again identifiability was achieved by constraining the variance of the LV and the 

estimation was performed maximizing the likelihood. The estimation results are presented 

in Table 3.3.  

Altogether, there were 13,138 observations available for estimation. The potential 

correlation between the responses of a given individual (panel effect) was considered but 

not included in the final models since it was not statistically significant19. The latent 

variables Green and TrainFan were considered both linearly and categorized in two 

different levels. We attempted a direct categorization, with the dummies Green(+67%) and  

                                                 
19 A plausible explanation for the absence of correlation among the repeated responses of each individual 
relies in the fact that the alternatives presented were not related to a specific transport mode. 
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Figure 3.2 – Structure of the perceptual MIMiC model.6 

TrainFan(+67%) taking a positive value with the probability of the original LV being 

greater than a given threshold l. Thresholds were fixed to represent the fact that 

individuals belonged to the upper third of the population (regarding the distribution of 

these two LV).  As mentioned above, estimation was performed sequentially using 

PythonBiogeme (Bierlaire, 2003), integrating over the domain of the latent variables, so 

that the reported value for the log-likelihood refers only to the discrete choice component 

of each model. This takes the following form when the LV are considered as continuous 

variables:
 

( | , ; , , ) ( | ; , )L P y X f s d


               [3.4] 
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Table 3.3 – Estimated parameters for the perceptual MIMiC model.7 
Explanatory  

Variable 
Estimate t-statistic

Attitudinal 
Indicator 

Estimate t- statistic 

Comfort  Comfort 
HighIncome * LB -0.249 -2.958 Station 1.403 64.12 

Losses * RE -0.28 -3.577  Ticket 1.136 57.733 
Losses * FVZ -0.173 -2.028  Productivity 1.935 72.199
Accident * RE -0.243 -3.527  Relax 1.36 62.262
Accident * FVZ -0.217 -2.816     
BahnCard * FVZ 0.341 7.199     

FVZ 0.471 12.704     
LB -0.907 -23.639     

Transfers -0.161 -8.05     
Transfers * Woman -0.06 -1.765*     

Transfers * RE 0.059 2.448     
BusUser * LB 0.338 8.011     

MiddleAge * LB -0.282 -5.917     
Old * LB -0.522 -3.796   

Stress-free  Stress-free 
Losses * RE -0.539 -6.808 Relax 0.719 36.669
Losses * FVZ -0.468 -5.403  Luggage 2.119 72.975 
Accident * RE -0.188 -2.704  Security 1.546 64.834 
Accident * FVZ -0.246 -3.162    
BahnCard * FVZ 0.283 5.928    

FVZ 0.311 8.35    
LB 0.399 10.674    

Transfers -0.12 -5.965    
Transfers * Woman -0.144 -4.193    

Woman * RE -0.207 -4.56    
BusUser * LB 0.104 2.438   

MiddleAge * LB -0.128 -2.67   
Old * LB -0.462 -3.327   

Reliability  Reliability 
LB -0.227 -6.209 Departure 2.115 72.855 

FVZ 0.063 1.724*  Arrival 2.284 74.573 
Transfers -0.158 -7.921     

Transfers * Woman -0.099 -2.934   
HighIncome * FVZ -0.173 -2.07   

BahnCard * RE 0123 4.155   
BahnCard * FVZ 0.083 2.583   

BusUser * LB 0.185 1.773*   
MiddleAge * RE 0.133 2.974   
MiddleAge * FVZ 0.083 1.754*   
MiddleAge * LB -0.103 2.185   

Old * RE 0.133 0.974**   
Old * FVZ 0.166 1.212**   
Old * LB -0.347 -2.536   

(*) As the signs of the estimators were known a priori, a one-tailed test was performed (5% =1.645). 
(**) In spite of their low significance the variables were kept in the model as both the signs and magnitudes of the 
estimated parameters were consistent with the values obtained for the other age-related estimators. 
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or the following one when a latent variablec is categorized 

( | , ,0; , , ) ( | , , ) ( | , , )

( | , ,1; , , ) ( | , , ) ( | , , )

c

c

L P y X f s d P d s

P y X f s d P d s





           

           

    

    




  [3.5] 

Table 3.4 presents the estimation results for five different specifications; all are good 

models easily surpassing the typical test of being better that their market shares reference 

model (Ortúzar and Willumsen, 2011, pages 281-283). The first (Linear LV) considers all 

LV (generic and alternative-specific) in a linear fashion. The second (Categorical Green) 

categorizes the latent variable Green, while the third (Categorical LV) explores 

categorized specifications for both attitudinal LV. The fourth (No Stress-free) is similar to 

model Categorical Greene but ignores Stress-free (found not statistically significant in the 

second model20). Finally, the fifth (No Perceptual) ignores all perceptual LV.  

Two of the three perceptual indicators were found to be statistically significant. Thus, 

both the perception of reliability and comfort affect utility positively. On the contrary, the 

perception of a stress-free travel appears not to be statistically significant in the decision 

making process.  

Note that when the perceptual attributes are omitted, the mode specific constants become 

highly significant (model No Perceptual). However, when perceptions are integrated they 

capture a large part of the variability previously ascribed to them and these become either 

not significant (Regional Train), or their impact on the decision decreases (Coach). This is 

accompanied by a significant improvement in goodness-of-fit. 

These findings are in accordance with theory: the mode specific constants normally 

capture the omitted information regarding a specific alternative, but when perceptions are 

considered, this information is enriched and the importance of these constants decreases.  

 

 

                                                 
20 At a 5% significance level (1.645) performing a one-tailed test as estimator signs were known a priori. 
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Table 3.4 – Estimated parameters for the discrete choice model.8 

Variable 
Linear 

LV 
Categorical 

Green 
Categorical 

LV 
No    

Stress-free 
No 

Perceptual

Inertia 0.415 
(10.25) 

0.43 
(9.92) 

0.465 
(6.36) 

0.443 
(9.21) 

0.363 
(13.22) 

Coach (LB) -0.741 
(-3.42) 

-0.768 
(-3.37) 

-0.592 
(-2.51) 

-0.626 
(-3.01) 

-1.47 
(-12.46) 

Regional Train (RE) 0.0201 
(0.19) 

0.0338 
(0.31) 

0.134 
(0.98) 

-0.0147 
(-0.14) 

-0.407 
(-9.28) 

Travel Time -0.0233 
(-12.12) 

-0.0332 
(-10.97) 

-0.0384 
(-6.04) 

-0.0341 
(-9.85) 

-0.0266 
(-16.25) 

Travel Time * LV Green 0.00892 
(6.05) 

- - - - 

Travel Time * LV Green (+67%) - 
0.0266 
(7.89) 

0.0311 
(5.25) 

0.0271 
(7.31) 

0.0206 
(9.04) 

Ln(Price) * Very Low Income -6.77 
(-14.5) 

-7.09 
(-13.71) 

-8.17 
(-6.64) 

-7.34 
(-11.97) 

-5.91 
(-28.69) 

Ln(Price) * Low Income -5.95 
(-13.52) 

-6.23 
(-12.8) 

-7.13 
(-6.47) 

-6.46 
(-11.34) 

-5.1 
(-24.3) 

Ln(Price) * Middle Income -4.65 
(-10.71) 

-4.85 
(-10.36) 

-5.56 
(-5.92) 

-5.04 
(-9.41) 

-3.89 
(-14.49) 

Ln(Price) * High Income -3.5 
(-7.24) 

-3.69 
(-7.22) 

-4.15 
(-5.01) 

-3.83 
(-6.85) 

-2.9 
(-8.18) 

Safety Level -0.00519 
(-4.78) 

-0.00545 
(-4.8) 

-0.00616 
(-4.01) 

-0.00556 
(-4.63) 

-0.00419 
(-4.77) 

Transfers -0.355 
(-7.85) 

-0.369 
(-7.94) 

-0.434 
(-4.7) 

-0.418 
(-8.78) 

-0.49 
(-17.65) 

Comfort 0.661 
(3.47) 

0.679 
(3.41) 

1.15 
(3.03) 

0.84 
(3.9) 

- 

Reliability 0.368 
(1.69) 

0.395 
(1.68) 

0.145 
(0.61) 

0.354 
(1.51) 

- 

Stress-free 0.204 
(1.4) 

0.236 
(1.56) 

0.23 
(1.39) 

- - 

FVZ * TrainFan 0.54 
(3.25) 

0.554 
(3.19) 

- 
0.575 
(3.2) 

0.625 
(5.52) 

FVZ * TrainFan (+67%) - - 
-0.176 
(-1.02) 

- - 

Log-Likelihood -7 424.26 -7 412.27 -7 416.37 -7 413.75 -7 443.77 

 

Regarding the attitudinal LV, we found that the generic attitude Green affects the way in 

which travel time is perceived (i.e. it was possible to identify a systematic taste variation 

related to this attitude). The variable is statistically significant both when considered 

linearly and when it is categorized, reflecting the importance of the systematic taste 

variation. However, when the variable is categorized (Green+67%) the model gets a 

substantially superior goodness-of-fit (models Categorical Greene and Stress-free), 

suggesting a considerably better representation of behavior. This finding is in line with the 

perception that shorter travel times imply higher speeds and, therefore, more CO2 

emissions and a larger damage to the environment. Also, the fact that the effect of Greene 
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is not linear, is in agreement with the notion that only highly environmentally concerned 

individuals are willing to accept larger travel times to reduce ecological harm. 

When considering interactions between continuous LV and travel time or travel expenses, 

assessing the value of travel time gets more involved as the latent variables do not drop 

out of the equation when deriving the utility over travel time or cost. Therefore, the value 

of time will depend on the attitudes of the individuals and to obtain a societal value of 

time it would be necessary to integrate over all individuals. When a LV is considered in a 

categorized fashion, the analysis is straightforward and similar to the one performed, when 

working with latent classes, and the same applies for demand elasticities. 

Finally, as expected, our alternative related attitude (TrainFan) is statically significant in 

conjunction with intercity trains (FVZ). It was possible to detect a social group of train 

enthusiasts willing to favor the railways. However, this favoritism does not extend to 

regional trains. In this case, a model considering the variable in a categorized fashion (e.g. 

model Categorical Variables) does not outperform the linear specification. It was not 

possible either to identify a systematic taste variation within the alternative intercity 

trains.  

3.6 Conclusions 

The significant technical and methodological improvements in the estimation of HDC 

models during the last decade have not led to a significantly better understanding of the 

way in which perceptions affect the decision making process, as these aspects are mostly 

ignored by modelers. Even in the case of attitudes, which have been widely studied, the 

specification of latent variables has tended to be fairly simplistic and rarely departs from 

the linearity assumptions (fortunately latent class models have been an alternative in this 

regard), while the analysis of systematic taste variations in association with attitudes 

appears to be practically inexistent.  

This reticence may be related to deeper concerns about artificial constructs, such as latent 

variables and the information that can be acquired from them. Nevertheless, it should not 

be forgotten that we, as modelers, aim to depict reality in the best way possible and, 
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therefore, if we decide to work with latent variables, we should guide our efforts to 

represent the decision making process and the way in which the different variables take 

part in it as accurately as possible.  

This chapter ponders about the different ways in which attitudes and perceptions may 

affect the decision making process and derives practical recommendations about data 

collection and estimation issues. Basically, individual-specific latent attributes (e.g. 

attitudes) resemble socio-economic characteristics of the individuals, and thus they should 

be treated in a similar fashion. Hence, exploring alternatives as systematic taste variations 

(in conjunction with observable attributes of the alternatives) or through a categorization 

is highly recommended. Alternative-specific latent attributes (e.g. perceptions), on the 

other side, should be treated in a similar manner to the attributes of the alternatives. 

Along the same line, it is important for perceptual models, to consider the attributes of 

the alternatives as explanatory variables, to properly reflect the way in which perceptions 

arise in the population and to remain sensitive to changes in the alternatives.  

With regard to the collection of perceptual indicators, it is important that questionnaire 

design allows capturing variability in the indicators associated with changes in the 

alternatives. Attempting to analyze how various combinations of alternative attributes 

may affect a perceptual indicator, may lead to a significant increase in the information 

required; so, it is important to rely on a careful survey design and to determine a priori 

which attributes are relevant to the perception. 

We conducted an empirical analysis to test our hypotheses. This gave evidence sustaining 

the notion that perceptions may affect the way in which individuals ascribe utility to a 

certain alternative. In the same line, our empirical experiment suggests that perceptions 

may explain a significant portion of the variability normally captured by alternative 

specific constants, offering significant improvements in model goodness-of-fit. Also, our 

results support our hypotheses that attitudes may indeed be related to systematic taste 

variations and that attitudinal latent variables should be treated in the same manner as 

socio-economic variables.  

Although we were able to identify systematic taste variations with our data, as well as a 

categorization for latent variables that outperformed the linearity assumption, this does 
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not imply that every attitudinal latent variable should be considered in this way. Prior to 

estimation, or even better prior to constructing the experiment, the analyst should study 

which variables take part in the decision making process and decide the way in which they 

should be considered in accordance with underlying theory. 

Although not treated in this chapter, interactions among attitudes and perceptions 

represent an issue that should be considered in further research, as cognitive dissonance 

might affect the way in which different alternatives are perceived, leading to correlation 

and more complex error structures. 
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21 This chapter is based on the article: Bahamonde-Birke, F.J. and Ortúzar, J. de D. (2015). Analyzing 
the continuity of attitudinal and perceptual indicators in hybrid choice models. 14th International 
Conference on Travel Behaviour Research (IATBR), Windsor, U.K., 19-23 July, 2015. 
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4.1 Introduction 

The study of unobserved latent variables is a hot topic nowadays. When it cannot be 

assumed that the outcome satisfies the property of continuity (as in the case of discrete, 

ordinal or nominal variables), the modeler usually relies on unobserved continuous 

constructs; this way, it is assumed that the underlying factors, represented through latent 

variables, explain the observed non-continuous output. 

Discrete choice (DC) modeling (McFadden, 1974) is a special case of dealing with nominal 

variables. Here, it is assumed that individuals face a set of alternatives associated with a 

particular underlying utility function that depends on both the characteristics of the 

individuals and the alternatives’ attributes. Observed choices are considered to be the 

result of a maximization process, where individuals opt for the alternative associated with 

the highest expected utility. 

An important limitation of this framework is that it only allows for observed variables to 

impact utility. The effort of combining discrete choice models with other unobserved 

latent variables, accounting for unobserved factors that may be relevant in the decision 

making process, such as attitudes and perceptions, led at the 80s to propose the first 

versions of hybrid discrete choice (HDC) models (McFadden, 1986; Train et al., 1987), an 

approach currently based on the Multiple Indicators Multiple Causes (MIMiC) model 

(Zellner, 1970; Bollen, 1989). Here it is assumed that latent variables (associated with 

attitudes and perceptions) explain a set of indicators previously gathered from the 

individuals (through so called measurement equations), while being explained by a set of 

characteristics from the users and the alternatives (through so called structural equations). 

HDC modeling basically consists in the use of latent constructs associated with a MIMiC 

model as explanatory variables in a DCM framework. 

Despite not having a great impact in its origins (mainly due to computational issues), 

HDC modeling was revitalized during the last decade (Ben-Akiva et al., 2002). Since then, 

the approach has gained popularity and has become a standard tool in travel behavior 

research  (v. Acker et al., 2011; Ashok et al., 2002; Raveau et al., 2012; Alvarez-Daziano 

and Bolduc, 2013; Bahamonde-Birke and Ortúzar, 2014a; among many others). 
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Notwithstanding, the indicators are usually considered as a linear continuous expression of 

the latent variables (Vredin-Johansson et al., 2006; Bahamonde-Birke and Ortúzar, 2014b; 

Yañez et al., 2010; Alvarez-Daziano and Barla, 2012). This approach may induce an 

important bias, as respondents are normally asked to state their preferences, or level of 

agreement with a set of statements, using a discrete scale (Likert, 1932). Even if the 

modeler allows for the individuals to state continuous indicators, it is highly doubtful 

whether respondents would take this into consideration and decimal numbers may be 

underrepresented in favor of integers. Even more, it is a debatable point if the individual 

considers equally all values in the scale, as simplifying heuristics (Tversky and Kahneman, 

1974) may cause some levels to be ignored (leading for instance to an overrepresentation 

of the extremes and the midpoint).  

Therefore, the indicators should not be treated as discrete outcomes, but rather as ordinal 

ones (Daly et al., 2012). However, the impact of considering the indicators as ordinal 

outcomes has major implications in terms of computational costs, as model estimation gets 

considerable more involved, especially when considering specifications not leading to close-

forms expressions for the probabilities, such as Ordered Probit model (OPM). That is the 

reason why researchers considering ordinal indicators, tend to rely on the Ordered Logit 

model (OLM; Daly et al., 2012; Hess et al., 2013). 

4.2 Theoretical background 

When considering a MIMiC model, the analyst assumes the existence of latent variables, 

which are a function of positively observed explanatory variables and, eventually, of other 

latent constructs (Kamargianni et al., 2014; Link, 2015). This way, the above-mentioned 

structural equations may take the following form (assuming a linear specification): 

*X X                 [4.1] 

Here, andare vectors describing sets of jointly dependent endogenous latent 

constructs, X a set of exogenous observed explanatory variables and an error term that 

can follow any distribution, but is usually assumed to be normally distributed with mean 
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zero and a given covariance matrix.x and are matrices of parameters to be 

estimated.  

In a MIMiC structure, this set of equations will always be unidentified (it is mandatory), 

so that it is necessary to consider it in conjunction with a measurement equations set. The 

latter may be described in the following manner (again assuming a linear specification):   

XI X                 [4.2] 

where I is a vector of exogenous indicators and ς an error term, the distribution of which 

will depend on the assumptions regarding the indicators. Finally x andare matrices of 

parameters to be estimated.  

Sufficient and necessary conditions for identification of the equations’ sets are well-known 

(Bollen, 1989) and it is necessary to constrain either some parameters or the variance 

associated with the error terms of the structural equations22 (which is preferred in this 

work, given the fact that it simplifies selecting the parameters to be constrained). That 

being the case, the model can be estimated maximizing the likelihood function (once the 

structural equations have been reduced): 

( | , ; , , , ) ( | , *; , )L P I X f X d


                [4.3] 

As mentioned in the previous section, for the sake of simplicity as well as for historical 

reasons (the first models relying on this structure were based on that assumption; 

Morikawa et al., 1996; Ben-Akiva et al., 2002) the indicators have been considered 

continuously distributed. This way, assuming normally distributed error terms with mean 

zero and a diagonal covariance matrix for the measurement equations, the probability in 

equation [4.3] can be depicted in the following manner: 

1
( | , ; , , ) X

I I

I X
P I X   

    
 

    
  

 
    [4.4] 

                                                 
22 It is important to notice that it only applies when working with more than one measurement equations. 
In other case it is necessary to impose one additional constrain. 
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where are the elements in the diagonal of and are parameters to be estimated. 

stands for the pdf of the standard normal distribution. 

When the indicators are no longer considered to be a continuous response, but ordinal 

variables (as they indeed are), equation [4.4] does not longer apply. In this case the 

probability of observing a given output would be given by: 

1

1

( | , ; , , , ) ( | , ; , , , )

( | , ; , , , ) ( | , ; , , , )
n X n

n X n X

P I n X P X X

P X X P X X


 

              

                 




      
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[4.5] 

Here,are thresholds to be estimated and n describes a given level of the ordinal 

variable I. This has m different levels of I, ∞ and∞, with the intermediate 

thresholds increasing monotonically. Depending on the specification of the error term ς, 

which is normally assumed to be either normally or logistically distributed, with mean 

zero and diagonal covariance matrix, equation [4.5] will lead to an OPM or OLM 

framework, respectively.  

Combining a MIMiC model with a DC framework (considering latent variables into the 

utility function of one or more alternatives) leads to a HDC model, where under the 

assumption of additive linearity, the utility functions may be described in the following 

fashion:    

j XU X                [4.6] 

wherex and are vectors of parameters to be estimated and an error term that is 

usually assumed to follow an EV1 distribution with the same mean for all alternatives and 

a given covariance matrix. If the covariance matrix is considered to be diagonal, the choice 

probabilities will be given by a Logit model; if not the choice situation will be described by 

other member of the Generalized Logit family (for identifiability purposes some 

components of the covariance matrix must be constrained without loss of generality; 

Walker et al., 2007). A given alternative j will be selected if Uj>Uk ∀ k ≠ j; in this case 

the dummy variable yj takes a positive value. The likelihood function for the integrated 

framework will then take the following form: 
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( | , ; , , , ) ( | , ; , , , ) ( | , *; , )L P I X P y X f X d


                   [4.7] 

Observing equation [4.7], it is clear that the discrete choice component of the HDC model 

can be considered as just another measurement equation for the integrated framework, 

with the difference that its output is discrete and not ordinal. Moreover, when working 

with only one indicator, it would be enough to constrain the variances of the structural 

equations, as the discrete choice component will provide the additional information 

required to identify the model as it would be another indicator.  

4.3 Simulation exercise 

The main objective of this work is to compare the consequences of treating the indicators 

as continuous or ordinal outcomes, given different assumptions and distributions regarding 

the way in which they are stated. As both specifications cannot be directly compared 

statistically (given the underlying assumptions), we will conduct a qualitative analysis 

based on the likelihood for the overall model and for the discrete choice component only 

(which is the part, we aim to reproduce as accurately as possible23). Along the same line, 

we want to analyze if both specifications are affected by other characteristics of the 

sample, such as the variability of the structural equations (the importance of the 

stochastic part relative to the deterministic part which is independent of the 

normalization), the distribution of the indicators and the number of observations.  

For that reason, we conducted first a simulation exercise. This allows us to analyze the 

aforementioned effects in a controlled environment (free of undesired effects) as well as to 

vary the characteristics we want to examine, when generating the samples.   

                                                 
23 Focusing the analysis on parameter recovery is not expedient as magnitudes depend on the 
normalization, which is in turn, affected by the fact that in the estimation we are neglecting the 
assumptions used in the generation of the database.  
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4.3.1 Generation of the datasets 

Following Williams and Ortúzar (1982) we generated different samples of simulated 

individuals behaving compensatory in a binomial Logit framework, according to the 

following structural and utility equations: 

1 1 2 2 3 3 4 4X X X X                     [4.8] 

1 1 2 2X XU X X                  [4.9] 

Here, Xfollows a discrete uniform distribution across the population, taking the values 0 

and 1 (or, alternatively, Bernoulli distributed with q = 0.5). Similarly, Xfollows a 

discrete uniform distribution in the range [0; 2]. Xand Xare assumed to be continuous 

uniformly distributed across the sample in the ranges [0; 2] and [0; 3], respectively. 

Finally, Xand Xfollow normal distributions N(4, 2) and N(8, 1.5), respectively. 

All andparameters were fixed to 1 (to ease the comparison of the results). The error 

term of the reduced utility function is independent and identically distributed following a 

Logistic distribution with mean 0 and scale parameter 1 (in accordance with the binomial 

Logit framework) for all observations. Regarding the distribution of  we considered it to 

be normally distributed with mean 0 and three different cases (named Case 1, Case 2 and 

Case 3), which differ only on the variability of the parameter by assuming standard 

deviations equal to 0.5, 1 and 2, respectively. 

We also considered two indicators the measurement equations of which are simply the sum 

of a latent variable and an error term ς, which distributes standard Normal. However, 

the situation is not as simple as by using a Likert-scale we only allow for the stated 

indicators to take integer values between 1 and 5. Therefore, it is necessary to define the 

way to relate this continuous equation to discrete indicators. We considered six different 

cases:  

a) Case A: This corresponds to the simplest assumption, i.e. normalizing the results 

of the measurement equations, so that all are contained between 0 and 5, and then 

associating the results contained in the different quintiles of the distribution to the 
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respective level of the indicators. This case resembles the assumptions behind 

treating the indicators as continuous variables. 

b) Case B: Thresholds are established, so that the levels of the indicators have a 

uniform distribution. 

c) Case C: As above, but the distribution of the levels follows a discrete 

approximation of an inverted triangular distribution. This case attempts to depict 

an overrepresentation of the extremes. 

d) Case D: As above, but the distribution of the levels follows a discrete 

approximation of a triangular distribution. This case attempts to depict an 

overrepresentation of the intermediate levels. 

e) Case E: As above, but the distribution of the levels follows a discrete 

approximation of an exponential function of the form: 

1
( )

2

xe
f x

e





 

f) Case F: As above, but the distribution of the  levels follows a discrete 

approximation of an exponential function of the form: 

( ) xf x e e   

Figure 4.1 represents graphically the different cases considered.  

Altogether we generated 18 different samples of 25,000 pseudo-individuals. Additionally, 

and in order to test the influence of sample size we simulated populations of 5,000; 1,000 

and 500 individuals. In this case we considered all six distributions for the indicators, but 

only Case 2 regarding the variability of the structural equations.   

4.3.2 Estimation results 

Our first interest was the influence of the indicators’ distribution as well as of the 

variability of structural equations on the model results. With this goal we estimated 
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Figure 4.1 – Considered distributions for the indicators. Simulation exercise24.7 

models for the 18 full-size samples, considering two different specifications: in the first one, 

we treated the indicators as continuous outputs and assumed that the error terms of the 

measurement equations distributed Normal; in the second specification, we considered the 

indicators to be of an ordinal nature and assumed logistically distributed error terms for 

the measurement equations; this leads to an OLM specification. Even though given the 

fashion in which the data was generated it would be more appropriate to consider an 

OPM specification, we opted for the logistic distribution, as this is the most common 

assumption when dealing with ordinal indicators in HDC models (given its computational 

advantages).  

The models were estimated simultaneously using PythonBiogeme (Bierlaire, 2003). Taking 

advantage of the fact that we are dealing with only one latent variable the log-likelihood 

was computed via numerical integration. Table 4.1 presents results for the overall model 

for all cases analyzed. The upper results correspond to the assumption of discrete 

indicators while the inferior ones are related to the continuous specification. 

 

                                                 
24 The actual distribution of the indicators considered in Case A depends on the variability of the 
structural equations. The distribution presented in Figure 4.1 corresponds to Case 1A (slight variability). 
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Table 4.1 – Goodness-of-fit of the overall model. Simulation exercise.9 
Case A Case B Case C Case D Case E Case F 

Case 1 
-44,560.6 -69,244.4 -63,194.6 -61,367.4 -58,165.0 -63,240.4 
-44,520.5 -76,888.0 -88,821.7 -62,045.2 -66,678.6 -69,676.9

Case 2 
-46,874.2 -72,506.4 -66,258.0 -64,676.7 -61,426.4 -66,457.5 
-46,886.0 -79,939.7 -91,551.2 -65,347.4 -69,365.6 -72,582.8

Case 3 
-49,234.6 -74,317.8 -68,402.9 -66,808.3 -63,671.9 -68,478.3 
-48,140.6 -79,794.7 -91,524.9 -66,060.2 -69,402.5 -72,704.8

 

As can be observed, the log-likelihood depends strongly on the distribution of the 

indicators. In line with our expectations, a greater relative variability in the structural 

equations affects negatively the log-likelihood of the estimated model. Regarding the 

estimation’s assumptions, the discrete specification appears to clearly outperform the 

assumption of continuous indicators, when the distribution of the indicators is not linearly 

related to the continuous results of measurement equations (Case A). Additionally this 

former distribution provides the best overall fit, notwithstanding the assumptions 

considered in the estimation. The worst goodness-of-fit is associated with Case C 

(overrepresentation of the extremes), which is the case departing the most from the 

assumptions of Case A. 

To offer a better comparison between both assumptions for the indicators, Table 4.2 

presents the results for the logarithm of direct likelihood ratio (DLR; upper cell). The 

table also shows the logarithm of the DLR between both approaches considering the DC 

component of the model only (the likelihood of the model estimated under the OLM 

assumption is considered in the numerator of the DLR).   

Table 4.2 – DLR between both approaches under different variability.10 
Case A Case B Case C Case D Case E Case F 

Case 1 
-40.13 7,644.5 2,5627.3 677.8 8,513.6 6,436.6 
-0.045 1.577 3.391 0.096 3.044 1.665

Case 2 
11.79 7,433.3 25,293.2 670.7 7,939.2 6,125.3 
612.7 604.4 621.1 599.1 652.3 609.3

Case 3 
-1,094.1 5,476.9 23,122.0 -748.1 5,730.6 4,226.5 
1,910.9 1,823.8 1,900.4 1,800.6 1,892.2 1,838.8
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As mentioned before, the OLM specification clearly outperforms the continuous 

assumption in cases B, C, E and F, while the results are not conclusive for cases A and D 

(which present the most similar distribution of all considered cases). Nevertheless, the gap 

appears to diminish (or increase in favor of the continuous assumption), when the relative 

variability of the structural equation increases.  

More telling than the overall log-likelihood, however, is to consider only the log-likelihood 

associated with the DC component of the model; first, this part is equal in both 

specifications and second, when considering a HDC, the focus remains on predicting the 

observed choices as accurately as possible and not the indicators. In this case, we cannot 

observe any significant difference when the relative variability of the structural equations 

is small but the gap increases dramatically as this variability gets larger (in opposition to 

the log-likelihood of the overall model). This finding applies to all distributions considered 

for the indicators. 

Regarding the number of observations available for estimation, we have calibrated models 

considering different sample sizes, as described in the previous section. Table 4.3 presents 

the results for the logarithm of the direct likelihood ratio for the overall model and for the 

DC component. The results are normalized by the number of observations in order to 

make them comparable (the results are normalized to 500 observations). 

Table 4.3 – Log-DLR between both approaches under different sample sizes.11 
# of Obs. Case A Case B Case C Case D Case E Case F 

500  
5.184 164.732 513.641 14.134 184.892 142.275 
13.318 13.035 13.444 12.724 13.653 13.293

1,000 
8.263 167.259 537.652 17.707 170.015 147.154 
17.193 17.094 17.385 16.877 16.264 17.151

5,000 
-1.014 148.560 513.535 11.458 155.781 125.595 
10.410 10.335 10.667 10.124 14.082 10.497

25,000 
0.236 148.666 505.863 13.414 158.785 122.506 
12.253 12.089 12.423 11.982 13.045 12.185

 

As can be appreciated, there is no clear tendency regarding the goodness-of-fit and the 

number of observations used in the estimation. Moreover the gap between both 
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approaches (for the overall model and for the DC component only) appears to stay 

constant, notwithstanding the number of observations. 

Finally it must be remarked that, in this particular case, the convergence velocity of the 

continuous approach was about 50% superior, but it depends on the model structure and 

the starting values of the parameters.  

4.4 Case study 4.1 – Electromobility in Austria 

To provide further information for our analysis, we repeated our experiment considering 

real data. Our first case study comes from the DEFINE project and a web-based survey 

conducted in Austria during February 2013. The sample is representative for the Austrian 

society.  

The survey considered a SP-experiment and was set in the context of choosing between 

different options of electromobility (for details see Bahamonde-Birke and Hanappi, 2016). 

The vehicle purchase experiment used a labelled experimental design including four choice 

alternatives referring to one propulsion technology each: conventional vehicles (CV), plug-

in hybrid-electric vehicles (PHEV), hybrid-electric vehicles (HEV) and electric vehicles 

(EV). Each of the alternatives was described by the following attributes: purchase price 

(PP), power (PS), fuel costs (FC) and maintenance costs (MC). In addition to these 

attributes, the EV was further characterized by the following attributes: full driving range 

(RA), availability of charging stations (LS) and policy incentives (IM). Charging station 

availability varied across three categories (low, intermediate and high) and was described 

qualitatively within a separate pop-up box. Policy incentives included a Park and Ride 

subscription for one year (IM2), investment subsidies to support private charging stations 

(IM3), and a one-year-ticket for public transport (IM4). 

Additionally, attitudinal indicators related to the degree of agreement with eight different 

sentences were collected. Bahamonde-Birke and Hanappi (2016) considered the following 

five of them to construct a latent variable related to the environmental attitude of the 

individuals:  “I am an ecologically aware person” (EcAwareness), “I pay attention to 

regional origins when shopping foods and groceries” (LocalFood), “I buy ecologically 
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friendly products” (EcoFriendly), “Environmental protection measures should be enacted 

even if they result in job losses” (Protection) and “I pay attention to the CO2 footprint of 

the products I buy” (CO2Footprint). The level of agreement was stated using a six points 

Likert scale. Figure 4.2 describes the distribution of the indicators and Table 4.4 presents 

an overview of the variables that are relevant to our study25. 

 
Figure 4.2 – Considered distributions for the indicators. Case study 4.1.8 

As can be observed from Figure 4.2, the distribution of the indicators is quite variable. In 

some cases the mode is given by one of the central points (4), while in other the upper 

third is overrepresented, departing from the assumptions of the hypothesis of continuity. 

The shape of the distributions differs from the shapes considered in our simulation 

exercise, but broadly tend to depict an overrepresentation of the intermediate levels. 

We estimated two models following the approaches presented in the previous section. 

Again, taking advantage of having just one latent variable, the log-likelihood was 

computed using numerical integration. The results for the models assuming continuous 

(MCT1) and ordinal indicators (OLM1) are presented in Table 4.5. The results of the t-

test for statistical significance are presented in parenthesis and the log-likelihood for the 

                                                 
25 Bahamonde-Birke and Hanappi (2016) considered further variables and also estimated more involved 
models than the one considered in this study. For the purposes of this work, this specification is 
considered appropriate, as additional complexity would only add noise to our analysis as well as 
computational complexity.  Bahamonde-Birke and Hanappi (2016) considered the attitudinal indicators 
to be a continuous expression of the latent variable. 
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overall model as well as for DC component is also reported (the results for the 

measurement equations are omitted, as they are not suitable for comparison). 

Table 4.4 – Definition of the variables considered in the model. Case study 4.1.12 
Variable Definition 

MidSkill Dummy variable indicating a career and technical education.  

HighSkill Dummy variable indicating a college education or higher. 

Vienna Dummy variable indicating a residence in Vienna. 

Male Dummy variable indicating masculine gender. 

Old Dummy variable indicating individuals older than 60 years 

MidAge Dummy variable indicating individuals older than 35 years, but no older than 60 year. 

Carsharing Dummy variable indicating that the individual relies on Car Sharing on a regular basis. 

CarUser Dummy variable indicating that the individual drives to their main occupational activity on a regular basis. 

PP Purchase price in  €. 

FC, MC Fuel and maintenance cost in € / 100 km., respectively. 

PS Power of the engine in hp. 

RA Driving range in km. 

IM2, IM3, IM4 Dummy variables indicating the execution of the respective policy incentive. 

LSMid, LSHigh Dummy variables indicating medium or high availability of loading stations for EV. 

LV Green Latent variable Green. 

EcAwareness Attitudinal Indicator for “I am an ecologically aware person”. 

LocalFood Attitudinal Indicator for “I pay attention to regional origins when shopping foods and groceries”. 

EcoFriendly Attitudinal Indicator for “I buy ecologically friendly products”. 

Protection Attitudinal Indicator for “Environmental protection measures should be enacted even if they result in job 
losses”. 

CO2Footprint Attitudinal Indicator for “I pay attention to the CO2 footprint of the products I buy”. 

 

As can be observed, the differences between the parameters obtained following both 

approaches are minor and not statistically different. Nevertheless and in line with our 

expectations, the most notable differences are related to the structural equations and the 

parameters associated with the latent variable in the DC model. The overall goodness-of-

fit of the model considering ordinal indicators is much higher than the adjustment of the 

model neglecting the discrete nature of the indicators. Nevertheless, it does not translate 

into a better goodness-of-fit for the DC-component. Even more, the model considering 

continuous indicators predicts the choices stated by the individuals slightly better, which 

is counterintuitive as this model neglects the nature of the indicators. The difference 

between both models is however rather small and it cannot be concluded that one model 
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would predict choices consistently better than the other. The situation resembles the cases 

with low relative variability of the latent variables in the simulation exercise. 

Table 4.5 – Parameter estimates. Case study 4.1.13 
Variable Equation MCT126 OLM1 
Vienna S.E. LV Green -0.135 (-2.01) 0.138 (2.04) 
Male S.E. LV Green -0.286 (-4.72) 0.302 (5.01) 
HighSkill S.E. LV Green 0.599 (6.64) -0.591 (-6.58) 
MidSkill S.E. LV Green 0.346 (4.72) -0.342 (-4.68) 
Old S.E. LV Green 0.621 (7.24) -0.608 (-7.13) 
MidAge S.E. LV Green 0.384 (5.27) -0.374 (-5.17) 
Carsharing S.E. LV Green 0.634 (4.59) -0.645 (-4.62) 
CarUser S.E. LV Green -0.346 (-6.67) 0.356 (6.85) 
ASC_CV Utility CV 0 (fixed) 0 (fixed) 
ASC_HEV Utility HEV -0.079 (-0.38) -0.0744 (-0.36) 
ASC_PHEV Utility PHEV -0.456 (-2.09) -0.454 (-2.09) 
ASC_EV Utility EV -0.954 (-3.21) -0.928 (-3.16) 
PP Utility CV -1.14 (-9.4) -1.13 (-9.42) 
PP Utility HEV -1.71 (-24.11) -1.71 (-24.13) 
PP Utility PHEV -1.75 (-20.82) -1.75 (-20.84) 
PP Utility EV -1.29 (-12.7) -1.28 (-12.77) 
MC Utility CV, HEV, PHEV, EV -17.5 (-9.22) -17.5 (-9.22) 
FC Utility CV, HEV, PHEV, EV -18.9 (-16.37) -18.8 (-16.39) 
PS Utility CV 0.0284 (5.76) 0.0284 (5.77) 
PS Utility HEV 0.0338 (8.32) 0.0338 (8.34) 
PS Utility PHEV 0.0373 (8.51) 0.0373 (8.54) 
PS Utility EV 0.00269 (0.71) 0.00268 (0.71) 
PS * Male Utility CV -0.0163 (-4.21) -0.0163 (-4.21) 
PS * Male Utility HEV -0.0144 (-3.4) -0.0143 (-3.38) 
PS * Male Utility PHEV -0.0136 (-3.17) -0.0135 (-3.16) 
PS * Male Utility EV -0.00605 (-1.36) -0.006 (-1.36) 
MidAge Utility HEV -0.266 (-2.57) -0.256 (-2.5) 
MidAge Utility PHEV -0.389 (-3.72) -0.379 (-3.66) 
MidAge Utility EV -0.652 (-4.71) -0.632 (-4.68) 
Old Utility HEV -0.997 (-7.06) -0.982 (-7.06) 
Old Utility PHEV -1.26 (-8.48) -1.25 (-8.5) 
Old Utility EV -1.86 (-9.17) -1.82 (-9.28) 
LV Green Utility HEV 0.591 (5.3) -0.58 (-5.29) 
LV Green Utility PHEV 0.558 (4.88) -0.546 (-4.87) 
LV Green Utility EV 1.03 (6.23) -0.991 (-6.36) 
RA Utility EV 0.00326 (8.14) 0.00325 (8.18) 
LSMid Utility EV 0.163 (1.25) 0.165 (1.27) 
LSHigh Utility EV 0.694 (5.78) 0.693 (5.8) 
IM3 Utility EV 0.233 (2.25) 0.232 (2.25) 
Log-likelihood 
Overall Model 

 -16,620.586  -16,202.677  

Log-likelihood 
DC Component 

 -6,625.468  -6,626.086  

                                                 
26 Even though we considered the same specification reported by Bahamonde-Birke and Hanappi (2016), 
the results may exhibit minor variations given the estimation technique (numerical integration as opposed 
to simulated maximum likelihood).  
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4.5 Case study 4.2 – Modal choice in Germany 

In this SP experiment respondents were asked to choose between different interurban 

public transport alternatives in Germany (regional and intercity trains, and interurban 

coaches). The experiment was carried out in three waves (January 2014, March 2014 and 

April/May 2014), contacting students and employees of two universities in Berlin (the 

Technische Universität Berlin and the Humboldt-Universität zu Berlin), as well as 

employees of member institutions of the Leibniz-Gemeinschaft (for further details  see 

Bahamonde-Birke et al., 2016). Respondents were required to choose between a first 

pivotal alternative, representing a trip previously described, and a new one. Alternatives 

were described in terms of their travel time, fare, number of transfers, mode of transport - 

regional trains (RE), intercity trains (FVZ) and coaches (LB) - and a safety level. 

The original study considered several indicators, associated with different and complex 

latent variables. For the purposes of this work we only considered one latent variable 

(TrainFan), which is associated with the following two indicators: “Investing on the 

development of high-speed trains should be encouraged” (HSTrains) and “New high-speed 

rail lines should be built” (RailLines). Originally the indicators were stated in a 10-points 

Likert scale. For computational issues in this application (opposite to the original study), 

we reduced it to only five, aggregating consecutive levels. As in the previous case, Figure 

4.3 and Table 4.6 present the distribution of the indicators and an overview of the 

variables considered, respectively.  

 
Figure 4.3 – Distributions for the indicators. Case study 4.2.9 
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Table 4.6 – Definition of the variables considered in the model. Case study 4.2.14 
Variable Definition 

Old Dummy variable indicating individuals older than 50 years.  

Bahncard Dummy variable indicating ownership of a Deutsche Bahn yearly discount card. 

Woman Dummy variable indicating feminine gender. 

VeryLowIncome Dummy variable indicating a net income under 700€ p.m. 

LowIncome Dummy variable indicating a net income between 700€ and 1,500€ p.m. 

MiddleIncome Dummy variable indicating a net income between 1,500€ and 2,500€ p.m. 

HighIncome Dummy variable indicating a net income over 2,500€ p.m. 

Price Travel fare in €. 

TravelTime Travel time in minutes. 

Transfers Number of transfers. 

SafetyLevel Number of severely injured passengers and the number of fatalities in the overall network over a year. 

LV TrainFan Latent variable TrainFan. 

HSTrains Attitudinal Indicator for “Investing on the development of high-speed trains should be encouraged”. 

RailLines Attitudinal Indicator for “New high-speed rail lines should be built”. 

 

As in Case study 4.1, the distribution of the indicators exhibits an overrepresentation of 

the upper values, but in this case both distributions are rather similar and the upper levels 

appear to be uniformly distributed. They can be considered to be a mixture between cases 

B and D of the simulation exercise. 

Table 4.7 presents the results for models assuming continuous (MCT2) and ordinal 

indicators (OLM2). Again the log-likelihood was computed using numerical integration. 

The structure of the table is the same as in previous section. 

Table 4.7 – Parameter estimates. Case study 4.2.15 
Variable Equation MCT2 OLM2 
Inertia Utility Alternative 1 0.337 (13.48) 0.337 (13.48) 
FVZ Utility Alternative 1 and 0 (fixed) 0 (fixed) 
LB Utility Alternative 1 and -1.41 (-12.65) -1.41 (-12.62) 
RE Utility Alternative 1 and -0.415 (-9.59) -0.413 (-9.52) 
Travel Time Utility Alternative 1 and -0.0149 (-26.57) -0.0149 (-26.57) 
Ln(Price) * Very Low Income Utility Alternative 1 and -5.27 (-31.91) -5.27 (-31.9) 
Ln(Price) * Low Income Utility Alternative 1 and -4.69 (-26.28) -4.69 (-26.26) 
Ln(Price) * Middle Income Utility Alternative 1 and -3.62 (-14.98) -3.62 (-15) 
Ln(Price) * High Income Utility Alternative 1 and -2.52 (-7.81) -2.54 (-7.84) 
Safety Level Utility Alternative 1 and -0.00374 (-4.59) -0.00375 (-4.59) 
Transfers Utility Alternative 1 and -0.443 (-18.25) -0.443 (-18.25) 
FVZ * LV TrainFan Utility Alternative 1 and 0.293 (4.81) 0.298 (4.86) 
Log-likelihood 
Overall Model 

 -10,802.674  -10,548.544  

Log-likelihood 
DC Component 

 -7,460.603  -7,460.161  
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Along the line of the previous case study, the differences among the parameters calibrated 

following the two different specifications are not statistically significant and the major 

disparities are related to the structural equations models. Again, the overall goodness-of-fit 

of the model considering the discontinuity of the indicators is superior, but this time, in 

line with our expectations, the simulation exercise and the results by Daly et al. (2012), 

the proper treatment of the attitudinal indicators is also associated with a better 

adjustment in the DC-component. However, the difference between the goodness-of-fit for 

the DC-component is rather small and no conclusive result regarding the predictability of 

the HDC model, can be derived from the experiment. 

4.6 Conclusions 

Despite the fact that attitudinal and perceptual indicators normally exhibit a discrete 

nature (even if the modeler would allow for stating continuous values), based on tradition 

and on computational reasons they are still predominantly treated as continuous 

outcomes. Even though the number of studies treating indicators as they are (i.e. discrete) 

has risen in the last years, the importance of the bias imposed by treating them 

continuously has not been yet extensively analyzed.  

We conducted a study based on simulated and real data, to examine the effects of the 

usual assumptions concerning attitudinal and perceptual indicators. Along this line, we 

examined the effect of the relative variability of the latent variables, the distribution of 

the indicators and the number of observations. 

Based on simulated data we were able to show that discrete distributions (for indicators) 

associated with non-uniformly spaced thresholds are associated with a clear deterioration 

of the overall goodness-of-fit, and that this phenomenon considerably increases when the 

estimators are treated as continuous outcomes. A higher relative variability of the latent 

variables appears, however, to reduce the gap between both approaches.  

When focusing exclusively on the predictive capacity of the DC-component (which is the 

part, modelers usually center their efforts on), we discovered a clear worsening of the 

adjustment when treating the indicators continuously, as the relative variability of the 
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latent variables increased. This deterioration applies to all distributions considered and is 

negligible when this variability is small. Concerning the number of observations, it was not 

possible to observe a clear tendency regarding the differences between both approaches 

and the amount of available information.   

Finally, we tested these findings with real data. In both case studies analyzed, the 

distribution of the indicators departed from the traditional assumptions underpinning the 

hypothesis of continuity and, as expected, treating the indicators as ordinal outcomes 

offers a considerably better goodness-of-fit for the overall model. Unexpectedly, this 

improvement does not translate into a better predictive capacity of the discrete choices, as 

in the case associated with small relative variability of the latent variables in the 

simulation exercise. 

Although we were not able to establish that treating the indicators as ordinal variables 

when dealing with HDC models improves the model´s predictive capacity (when dealing 

with real data), it must be stressed that considering them as continuous neglects their 

nature and yields worse overall model goodness-of-fit. Therefore, we recommend 

considering indicators as ordinal outcomes. However, this treatment is associated with 

higher computational costs and, given the fact that there is no evidence of significant 

deterioration in forecasting abilities, a trade-off may be considered.  
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27 This chapter is based on the article: Bahamonde-Birke, F.J. and Ortúzar, J. de D. (2015). About the 
categorization of latent variables in hybrid choice models. 4th hEART Symposium of the European 
Association for Research in Transportation, København, Denmark, 9-11, September, 2015. 
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5.1 Introduction 

Although firstly suggested during the 80s (McFadden, 1986; Train et al., 1987), hybrid 

discrete choice models (HCM) did not become a hot topic in travel behavior research until 

revitalized by Ben-Akiva et al. (2002). Then, it was possible to solve a series of 

computational issues that had prevented this approach becoming a standard tool in 

discrete choice (DC) modeling. 

Starting from the usual hypotheses of discrete choice modeling (McFadden, 1974), HCM 

aim to enrich the model, taking into account unobserved characteristics of the individuals 

and of the alternatives. This way, indicators (usually stated on a Likert-scale; Likert, 

1932) related with attitudes toward life and perceptions about the alternatives on offer, 

are gathered from a sample of individuals. As these indicators are not considered 

attributes on their own, but rather an expression of underlying attitudes and perceptions, 

the modeler usually relies on a Multiple Indicators Multiple Causes (MIMiC) model 

(Zellner, 1970; Bollen, 1989), allowing for the identification of unobserved latent variables 

explaining the indicators. It is assumed that these variables also affect the typical utility 

function of the DC-model, enriching it with exogenous information captured through the 

indicators. 

Although this approach has become popular (v. Acker et al., 2011; Ashok et al., 2002; 

Daziano and Bolduc, 2013; Bahamonde-Birke and Ortúzar, 2014a; among many others), 

the way in which different types of latent variables are considered into the utility function 

has not been extensively analyzed; in fact, they are generally introduced in a simplistic 

additive fashion, while being explained only by characteristics of the individuals (Vredin-

Johansson et al., 2006; Yañez et al., 2010; di Ciommo et al, 2013). That being the case, 

Chorus and Kroesen (2014) argue (rightly) that these types of models do not allow 

deriving policy implications. 

On another hand, Bahamonde-Birke et al. (2016) argue that we must distinguished 

between attitudes (including attitudes toward alternatives and toward perceptions), based 

on the individual’s experience and temperament (Allport, 1935; Pickens, 2005) and real 

perceptions, related to the way in which individuals perceive their environment (Lindsay 
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and Norman, 1972), as the latter are influenced by the characteristics of the alternatives 

and not only by those of the individuals (Pickens, 2005). They state that attitudinal 

latent variables (in contrast with real perceptions) resemble the socioeconomic 

characteristics of the individuals and hence they should be treated in the same fashion. 

That being the case, systematic taste variations and categorizations of the latent variables 

should be considered, rather than just including variables accounting for attitudes in an 

additive fashion. For example, it may be preferable to identify environmentally aware or 

wealthy individuals, rather than attempting to associate them with a value in a 

continuous scale; moreover, it is highly disputable that this characteristics should have a 

linear impact on decisions.   

It is important to note that categorizing a latent variable would depict de facto a latent 

class model (Kamakura and Russell, 1989; Bhat, 1997) - beyond theoretical issues, related 

to causality - with every category representing a different latent class. In fact, by starting 

from a latent class model and attempting to enrich the identification of the classes by 

using indicators, the modeler could face a similar problem. 

This chapter provides a theoretical discussion about the different factors affecting the 

categorization of latent variables, as well as their consequences. In the same line, we 

consider previous attempts that have been conducted to deal with this problem. Finally, 

we propose an alternative way to categorize latent variables and test our hypotheses with 

the help of two study cases (real data). We compare the results obtained, following the 

previously described approaches and offer a discussion about the implications and 

assumptions of the various methods. This discussion offers valuable insights about the way 

in which attitudes should be treated in hybrid discrete choice models. 

5.2 Methodological framework 

In a HDC framework (Ben-Akiva et al., 2002), individuals are assumed to exhibit utility 

functions which take the following shape (under the assumption of additive linearity): 

j XU X                [5.1], 
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where X stands for observed attributes of the alternatives and characteristics of the 

individuals, while  is a vector representing the unknown latent variables. x and  are 

vectors of parameters to be estimated, and  an error term. If  is considered to follow an 

EV1 distribution with the same mean for all alternatives and a diagonal covariance 

matrix, the choice probabilities will be given by a Logit model. If the covariance matrix is 

not diagonal, other member of the Generalized Logit family may describe the choice 

situation; finally, assuming a Normal distribution leads to the Probit model. For 

identifiability purposes, some components of the covariance matrix must be constrained 

without loss of generality (Walker et al., 2007). A given alternative j will be selected if 

Uj>Uk ∀ k ≠ j; in this case the dummy variable yj would take a positive value.  

The latent variables are constructed in accordance with a MIMiC model and are a 

function of positively observed explanatory variables and, eventually, of other latent 

constructs (Kamargianni et al., 2014; Link, 2015).  This way, assuming a linear additive 

specification, these structural equations may be described in the following manner: 

*X X                 [5.2], 

where X, is once more the set of exogenous observed explanatory variables;  and  are 

vectors of latent constructs and  an error term following any distribution, but usually 

assumed to be Normal with mean zero and a given covariance matrix . Finally, x and 

 are matrices of parameters to be estimated.  

In this framework, the structural equations set is unidentified28, and it is mandatory to 

consider it jointly with a measurement equations set (for identifiability purposes, the 

utility function itself may be considered as an extra measurement equation; Bahamonde-

Birke and Ortúzar, 2015). Assuming a linear specification the latter may be represented as 

follows:   

XI X                 [5.3], 

                                                 
28 Even when considering both set of equations jointly, it is still necessary to fix certain parameters 
without loss of generalization (typically the variances of the structural equations) to achieve identification 
(Vij and Walker, 2014). 
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where I is a vector of exogenously gathered indicators and ς an error term, the distribution 

of which depends on the assumptions regarding the indicators; when considering the 

indicators as a continuous output, ς is usually assumed to be Normal (Vredin-Johansson et 

al., 2006; Daziano and Barla, 2012); in turn, when the indicators are considered to be of 

discrete nature, ς may be assumed to follow a Logistic distribution (Daly et al., 2012; Hess 

et al., 2013); in both cases the distributions have zero mean and a diagonal covariance 

matrix ; finally, x and  are matrices of parameters to be estimated.  

The estimation of the integrated framework may be performed sequentially (estimating 

first the MIMiC model and then considering the latent variables into the discrete choice 

component) or simultaneously. Nevertheless, estimating the model sequentially is not 

advisable as it may lead to biased results (Bahamonde-Birke and Ortúzar; 2014b). For 

simultaneous estimation, the likelihood function for the integrated framework would take 

the following form: 

 ( | , ; , , , ) ( | , ; , , , ) ( | , *; , )L P y X P I X f X d


                   [5.4], 

where the first part corresponds to the likelihood of the discrete choice component and the 

second stands for likelihood of observing the gathered indicators. The third component 

corresponds to the distribution of latent variables over which the likelihood function must 

be integrated. 

5.2.1 Categorizing a latent variable 

This is not an easy subject (in contrast with observed socio-economic characteristics such 

as income or age), as these variables are not observed and consequently exhibit an 

intrinsic variability. Under these circumstances, it is not possibly to assign an individual 

to a specific group but only to establish a probability with which an individual should be 

categorized in given way. Moreover, as latent variables do no exhibit an unequivocal scale, 

it is not easy to establish thresholds for the categorization, and as such the process 

appears to be rather arbitrary. 
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An intuitive approach to deal with the aforementioned problem would be to construct a 

dummy variable taking a positive value when a given latent variable c exceeds a certain 

threshold . This way, it would be possible to establish a probability with which a certain 

individual should be categorized in a given way, defining a latent class model indirectly 

(when the dummy variables are introduced into the utility function). Then, it should be 

possible to calibrate the threshold and the likelihood function would take the following 

form (assuming only two categories, but extending the framework for more categories is 

straightforward): 

( | , ,0; , , , ) ( | , ; , , , ) ( | , *; , )

( | , ,1; , , , ) ( | , ; , , , ) ( | , *; , ) (1 )

c

c

L P y X P I X f X d P

P y X P I X f X d P





              

              

    

     




[5.5], 

with the probability of an individual being categorized in certain fashion (Pc) given by: 

( | , , ) ( * 0)c c Xc c cP P s P X                     [5.6] 

Unfortunately HDC models do not exhibit a close form for the probabilities (given their 

complex error terms structure) and therefore they are estimated using simulation (Ben-

Akiva et al., 2002; Bierlaire; 2003). This way we do not observe a continuous distribution 

for the error term of the latent variable c, but rather a set of stochastic (or pseudo-

stochastic) draws describing a probability function. As a consequence, discontinuity issues 

arise, the threshold cannot be calibrated and a perfect convergence of the algorithm 

cannot be theoretically assured29.  

a) Latent variable latent class approach (LVLC) 

An alternative to overcome the problem above would be to rely on an auxiliary continuous 

distribution function, to establish the probability with which a certain individual would be 

categorized in given manner. This approach will lead to the latent variable/latent class 

specification (Walker and Ben-Akiva; 2002; Hess et al., 2013). This way the likelihood of 

                                                 
29 When considering the model sequentially by integrating over the domain of the latent variables, the 
model achieves perfect convergence, but the threshold remains unidentified and must be fixed a priori 
(Bahamonde-Birke et al., 2016).  
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the individual belonging to a certain latent class is given by the probability of the latent 

variable being smaller (or larger) than a threshold (to be calibrated), making use of the 

auxiliary function. If we assume this auxiliary function to be a Logistic distribution, 

equation [5.6], may be depicted as follows (Hess et al., 2013)30: 

( * )( )

1 1

1 1Xc c ccc XP
e e              

 
     [5.7], 

which is indeed a continuous expression. Unfortunately, this approach implies adding 

(artificially) the variability associated with the auxiliary distribution function (or of the 

latent class model, if we approach the modeling from this perspective) to the latent 

variable’s own variability . Even though it may be argued that the extra variability 

(which may be calibrated – note that in this specification  is perfectly identified) 

represents the error induced in the categorization process, there is no clear statistical 

justification for that. 

To avoid the inclusion of the extra variability, the modeler may exogenously fix at a 

high level, but when doing so mathematical issues arise. 

b) Latent class with psychometric indicators approach (LCPI) 

This approach (Hurtubia et al., 2014) does not attempt to categorize continuous latent 

variables per se, but rather to include psychometric indicators into a latent class 

framework. In this structure, it is assumed that the latent variable depends exclusively on 

positively observed characteristics of the individuals (X)31, while its error term follows a 

Logistic distribution with zero mean and scale parameter  (which has to be fixed without 

loss of generality). Under this assumption, the probability of an individual belonging to a 

certain class is given by:   

( )

1

1XCc XP
e   


        [5.8], 

                                                 
30 In the original specification Hess et al. (2013) multiply c by a parameter to be estimated and fix , 
but it is straightforward to see that both specifications are equivalent. 
31 Even though the model by Hurtubia et al. (2014) only considers characteristics of the individuals as 
explanatory variables, it is straightforward to extend it for attributes of the alternatives. 
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As can be observed, this approach overcomes the variability issues of the LVLC, 

considering only the logistically distributed error term. The main difference between this 

approach and the HDC framework is that in this case the latent variable does not impact 

directly on the measurement equations, but rather indirectly. This way the measurement 

equations are just a function of positively observed characteristics of the individuals (X) 

and the parameters to be calibrated depend on the latent class the individual is associated 

with. Thus, under this approach equation [5.3] exhibits the following structure: 

XCI X            [5.9], 

where xc is a latent class specific matrix of parameters. This leads to the following 

likelihood function (it is important to note that the original structure does not require 

integrating over the domain of the categorized latent variable, as the probability functions 

are given by closed-form expressions; it is straightforward to extend this approach in order 

to consider non-categorized latent variables): 

( | ,0; , , , ) ( | ,0; , , , )

( | ,1; , , , ) ( | ,1; , , , ) (1 )
c

c

L P y X P I X P

P y X P I X P

       
       

  
   

    [5.10], 

This approach offers computational advantages (as it requires no integration over the 

domain of the latent variables) as well as statistical consistency. One disadvantage relies 

on the fact that it does not allow for the latent variable to be considered directly 

(continuously) into the measurement equations. This may be necessary, for instance, when 

using a latent variable accounting for wealth (under the presence of unreported 

information; Sanko et al., 2014) in a categorized fashion (Bahamonde-Birke and Hanappi, 

2016), among other specifications. 

Additionally, it must be pointed out that the interpretation of results tends to be rather 

obscure, especially in the case of the measurement equations, as these may be related to 

the absence of causality assumptions inherent to latent-class models. Opposite to the HDC 

framework, where it is assumed that the stated indicators are an expression of underlying 

attitudes and perceptions, in the LCPI approach the indicators are a tool to improve class-

identification (individuals would be more or less likely to belong to a certain latent class 

given the indicators they have stated) and no assumptions regarding their causes are 
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made. Along the same line, the interpretation of the function used to categorize the 

individuals remains obscure (which is also a deficiency of latent-class models), as it is not 

easy to establish a clear meaning for it (opposite to the latent variables, for instance) and 

often it appears to be rather an ad-hoc function to classify the individuals. 

Finally, the complex structure of the LCPI framework (which requires the joint 

consideration of several sets of latent-class specific equations) is very demanding in terms 

of data variability. Hence, empirical identification issues arise and simpler structures must 

be favored for the categorizing function (at the expense of a theoretical interpretation).  

c) Direct categorization of latent variables approach (DCLV) 

Starting from the classical HDC framework (equations [5.1], [5.2] and [5.3]), we propose 

assuming an independent Logistic distribution with zero mean and given scale parameter 

(which can be fixed without loss of generality) for the error term c1of equation [5.2]32. 

Under this assumption equation [5.6] may be represented as a continuous expression. 

1 ( * )

1
( | , , ) ( * 0)

1Xc cc c Xc c c XP P s P X
e                           


     [5.11] 

In order to include the latent variable directly into the measurement equations (as in 

equation [5.3]), it is still necessary to rely on simulation. For that matter we can construct 

a second latent variable, which is equivalent to the original one, but includes a simulated 

error term c2, the specification of which is exactly the same as that considered in equation 

[5.11].33 This way the likelihood function is not subject to discontinuity issues, while it still 

may be integrated over the domain of the latent variables relying on simulation 

techniques.  

It is important to note that the DCLV framework would dominate the LCPI approach, as 

in this case is possible to include class specific parameters into the measurement equations 

(via the inclusion of a dummy associated with the categorized latent variable). 

                                                 
32 Just in the case of the latent variable to be categorized. The error of additional latent variables may 
follow any distribution. 
33 It is important to note that it would be necessary only to fix the scale parameter of one error term (the 
continuous or the simulated one) and the second could be estimated; but this is not advisable for 
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Nevertheless, it must be pointed out that the inclusion of latent class specific parameters 

must be carefully considered and be in accordance with any underlying hypotheses. In 

other case, the modeling would be subject to the same problems of the latent class 

structures (LC, LCPI) and, therefore, it may be advisable to omit using latent class 

specific parameters in the measurement equation. 

Thus, the general specification (considering latent class specific parameters in the 

measurement equations) for the likelihood function following the DCLV approach 

(considering only two categories) is the following:  

( | , ,0; , , , ) ( | , ,0; , , , ) ( | , *; , )

( | , ,1; , , , ) ( | , ,1; , , , ) ( | , *; , ) (1 )

c

c

L P y X P I X f X d P

P y X P I X f X d P





              

              

    

     




[5.12], 

5.2.2 Limitations 

The main limitation associated with all the approaches mentioned above, is the necessity 

of a continuous closed-form expression (as the Logistic distribution) for the categorizing 

function. This may appear to be a rather innocuous limitation, but it has major 

implications when working with panel data (or pseudo-panel data). In this case, 

integration over the domain of the latent variables should be performed on an individual 

level (e.g. via random panel effects; Bhat and Gossen, 2004). Although it is possible to 

include random panel effects, the fact that the error terms associated with the categorizing 

function are independent, would cause the categorization to be, at least to a certain 

extent, independent for all choices of the same individual. 

Another inconvenient is related with the non-monotonicity of the categorizing function. 

This leads to the existence of local optima and therefore the categorization’s threshold will 

depend on the starting value. Nevertheless, this problem is common to all latent class 

approaches. 

                                                                                                                                           
statistical and theoretical consistency (we are assuming that both variables represent the same error 
term). 
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5.3 Case studies 

To analyze the different approaches presented in Section 5.2, we compared them making 

use of empirical data. Even though in the previous section we allowed for the DCLV 

framework to consider latent class specific parameters in the measurement equations, it is 

highly disputable if it would be advisable (given the lack theoretical justification); 

moreover HDC models usually do not even consider positively observed attributes in the 

measurement equations. For that reason, in our analysis we will just consider latent 

variables as explanatory variables in the measurement equations, when following the 

LVLC and DCLV approaches (the structure of both approaches will only differ in the 

specification of the error terms). This allows for a direct comparison between both 

approaches. 

LCPI models exhibit a totally different structure and, therefore, a fair comparison is not 

possible. First, because of the aforementioned empirical identification issues, it would not 

be possible to consider the same degree of complexity for the categorizing function 

(structural equations). In fact, when doing so, it was only possible to work with one of five 

indicators in Case study 4.1 and with none (out of two) in Case study 4.2, and for that 

reason simpler specifications should be analyzed at the expense of the meaning of the 

classes being constructed. Second, a comparison of the goodness-of-fit would be spurious, 

as the LCPI must necessarily be more likely than models estimated according to the 

LVLC or DCLV specifications. In the LCPI classes are defined exclusively to maximize the 

goodness-of-fit and are not based on theoretical assumptions (additionally, the 

measurement equations would have more degrees-of-freedom). As a matter of fact, if we 

consider the likelihood of the discrete choice component only, it is clear that a simple 

latent class model (with no indicators) would outperform every competing approach 

(including the LCPI; Hurtubia et al., 2014), as in this case the latent classes do not have 

to satisfy, additionally, a distribution of indicators or theoretical assumptions.  

As a consequence we do not consider the LCPI in our empirical analysis, and our 

conclusions in this sense will be based exclusively on the aforementioned theoretical 

arguments.   
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5.3.1 Case study 5.1 - Electromobility in Austria 

Our first case study comes from the DEFINE project and a web-based survey conducted 

in Austria during February 2013. The survey considered a SP-experiment and was set in 

the context of choosing between different options for electromobility (Bahamonde-Birke 

and Hanappi, 2016). The sample was representative of the Austrian society and consisted 

of 1,449 respondents, where 787 of them were considered in the discrete choice experiment. 

This vehicle purchase experiment used a labelled experimental design, including four 

alternatives referring to different propulsion technologies: conventional vehicles (CV), 

plug-in hybrid-electric vehicles (PHEV), hybrid-electric vehicles (HEV) and electric 

vehicles (EV). Each alternative was described by the following attributes: purchase price 

(PP), power (PS), fuel costs (FC) and maintenance costs (MC). In addition to these 

attributes, the EV was further characterized by the following attributes: full driving range 

(RA), availability of charging stations (LS) and policy incentives (IM). Charging station 

availability varied across three categories (low, intermediate and high) and was described 

qualitatively using a separate pop-up box. Policy incentives included a Park and Ride 

subscription for one year (IM2), investment subsidies to support private charging stations 

(IM3), and a one-year-ticket for public transport (IM4). 

Additionally, attitudinal indicators related to the degree of agreement with eight different 

sentences were collected. Bahamonde-Birke and Hanappi (2016) considered the following 

five of them to construct a latent variable related to the environmental attitude of the 

individuals:  “I am an ecologically aware person” (EcAwareness), “I pay attention to 

regional origins when shopping foods and groceries” (LocalFood), “I buy ecologically 

friendly products” (EcoFriendly), “Environmental protection measures should be enacted 

even if they result in job losses” (Protection) and “I pay attention to the CO2 footprint of 

the products I buy” (CO2Footprint). The level of agreement was stated using a six points 

Likert scale (Likert, 1932). Table 5.1 presents an overview of the variables that are 

relevant to our study34. 

                                                 
34 Bahamonde-Birke and Hanappi (2016) considered further variables and also estimated more involved 
models than those considered in this study. For the purposes of this work, this specification was 
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Table 5.1 – Definition of the variables considered in the model. Case study 5.1.16 
Variable Definition

MidSkill Dummy variable indicating a career and technical education. 

HighSkill Dummy variable indicating a college education or higher.

Vienna Dummy variable indicating a residence in Vienna.

Male Dummy variable indicating masculine gender.

Old Dummy variable indicating individuals older than 60 years

MidAge Dummy variable indicating individuals older than 35 years, but no older than 60 year. 

Carsharing Dummy variable indicating that the individual relies on Car Sharing on a regular basis. 

CarUser Dummy variable indicating that the individual drives to their main occupational activity on a regular basis.

PP Purchase price in €.

FC, MC Fuel and maintenance cost in € / 100 km., respectively.

PS Power of the engine in hp.

RA Driving range in km.

IM2, IM3, IM4 Dummy variables indicating the execution of the respective policy incentive.

LSMid, LSHigh Dummy variables indicating medium or high availability of loading stations for EV.

LV Green Latent variable Green accounting for environmental awareness.

CLV Green Categorized latent variable Green accounting for individuals with high environmental awareness. 

EcAwareness Attitudinal Indicator for “I am an ecologically aware person”.

LocalFood Attitudinal Indicator for “I pay attention to regional origins when shopping foods and groceries”. 

EcoFriendly Attitudinal Indicator for “I buy ecologically friendly products”.

Protection Attitudinal Indicator for “Environmental protection measures should be enacted even if they result in job 
losses”. 

CO2Footprint Attitudinal Indicator for “I pay attention to the CO2 footprint of the products I buy”. 

  

We estimated two models following the approaches presented in the previous section, 

using PythonBiogeme (Bierlaire, 2003). Taking advantage of having just one latent 

variable, the log-likelihood was computed using numerical integration. The latent variable 

(LV Green) accounts for environmental awareness and was categorized in two levels. The 

inclusion of an individual specific dummy variable (accounting for environmentally 

concerned individuals) associated with the alternatives HEV, PHEV and BEV, was the 

only difference between both classes. The results for the models are presented in Table 5.2. 

The results of the t-test for statistical significance are presented in parenthesis and the 

log-likelihood for the overall model, as well as for the DC component only, are also 

reported (the results for the measurement equations are presented in the appendix B.1). 

The indicators were considered discrete outputs following an ordered logit (OLM) 

approach (Bahamonde-Birke and Ortúzar, 2015). 

                                                                                                                                           
considered appropriate, as additional complexity would only add noise to our analysis, as well as 
computational complexity. 
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Table 5.2 – Parameter estimates. Case study 5.1.17 
Variable Equation LVLC DCLV 

Vienna S.E. LV Green -0.333 (-2.56) -0.182 (-1.71) 
Male S.E. LV Green -0.597 (-5.58) -0.587 (-5.74) 
HighSkill S.E. LV Green 1.05 (6.16) 0.879 (5.89) 
MidSkill S.E. LV Green 0.536 (3.85) 0.477 (3.72) 
Old S.E. LV Green 1.09 (7.18) 0.955 (6.67) 
MidAge S.E. LV Green 0.657 (5.15) 0.615 (5.14) 
Carsharing S.E. LV Green 1.33 (4.9) 0.988 (4.99) 
CarUser S.E. LV Green -0.567 (-5.53) -0.474 (-5.7) 
Threshold C.F 3.76 (5.27) 2.23 (7.18) 
Scale C.F 0.538 (5.06) 1 (fixed) 
ASC_CV Utility CV 0 (fixed) 0 (fixed) 
ASC_HEV Utility HEV -0.0165 (-0.07) 0.0945 (0.41) 
ASC_PHEV Utility PHEV -0.235 (-0.94) -0.207 (-0.88) 
ASC_EV Utility EV -1.09 (-2.65) -0.982 (-2.36) 
PP Utility CV -1.21 (-7.92) -1.27 (-9.07) 
PP Utility HEV -1.8 (-22.39) -1.79 (-22.85) 
PP Utility PHEV -1.76 (-19.94) -1.77 (-20.48) 
PP Utility EV -1.66 (-9.79) -1.73 (-10.69) 
MC Utility CV, HEV, PHEV, EV -21.1 (-9.32) -20.6 (-9.6) 
FC Utility CV, HEV, PHEV, EV -21.4 (-14.96) -20.7 (-15.87) 
PS Utility CV 0.0327 (5.22) 0.0341 (5.74) 
PS Utility HEV 0.0353 (7.18) 0.0348 (7.37) 
PS Utility PHEV 0.0354 (7.2) 0.0367 (7.5) 
PS Utility EV -0.000269 (-0.05) -0.000232 (-0.05) 
PS * Male Utility CV -0.019 (-4.14) -0.0195 (-4.21) 
PS * Male Utility HEV -0.0164 (-3.38) -0.0164 (-3.38) 
PS * Male Utility PHEV -0.0155 (-3.16) -0.0162 (-3.26) 
PS * Male Utility EV -0.00302 (-0.55) 0.000491 (0.09) 
MidAge Utility HEV -0.266 (-2.5) -0.287 (-2.65) 
MidAge Utility PHEV -0.383 (-3.46) -0.374 (-3.48) 
MidAge Utility EV -0.784 (-4.55) -0.946 (-4.91) 
Old Utility HEV -1.18 (-5.82) -1.19 (-5.63) 
Old Utility PHEV -1.44 (-6.24) -1.35 (-6.07) 
Old Utility EV -2.55 (-9.02) -2.88 (-8.77) 
CLV Green Utility HEV 3.48 (6.86) 3.19 (6.56) 
CLV Green Utility PHEV 3.25 (6.08) 2.71 (4.84) 
CLV Green Utility EV 5.77 (8.5) 5.89 (9.83) 
RA Utility EV 0.00444 (6.25) 0.00459 (6.81) 
LSMid Utility EV 0.0121 (0.07) 0.0426 (0.25) 
LSHigh Utility EV 0.661 (4.22) 0.71 (4.43) 
IM3 Utility EV 0.306 (2.19) 0.305 (2.14) 
Log-likelihood 
Overall Model 

 -16,177.759  -16,169.571  

Log-likelihood 
DC Component 

 -6,612.876  -6,605.847  

 

As can be observed, the differences between the parameters obtained following both 

approaches are not large and many are not statistically different. This is valid for all 

parameters of the structural and measurement equations as well as for the utility 

functions, with the exception of the threshold parameter of the categorizing function. This 

parameter evidently exhibits a different value, as the LVLC approach is associated with a 

greater error and a wider distribution, implying that the threshold must be located further 

away from the expected value, in order to capture the same individuals.  
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Regarding goodness-of-fit, the DCLV approach exhibits a better performance than the 

LVLC. This superior adjustment is mostly explained by the discrete choice component. 

This result is in accordance with our expectations, as the LVLC considers an additional 

error component, which is indeed unnecessary for the estimation of the model. Along this 

line, the fact that the improvement in goodness-of-fit is mostly explained by the discrete 

choice component, is based on the fact that the categorization (and its additional error 

term) affects only the utility functions. 

5.3.2 Case study 5.2 - Modal choice in Germany 

In this SP experiment respondents were asked to choose between different interurban 

public transport alternatives in Germany (regional and intercity trains, and interurban 

coaches). The experiment was carried out in three waves (January 2014, March 2014 and 

April/May 2014), contacting students and employees of two universities in Berlin (the 

Technische Universität Berlin and the Humboldt-Universität zu Berlin), as well as 

employees of member institutions of the Leibniz-Gemeinschaft (for further details refer to 

Bahamonde-Birke et al., 2014). Respondents were required to choose between a first 

pivotal alternative, representing a trip previously described, and a new one. Alternatives 

were described in terms of their travel time, fare, number of transfers, mode of transport - 

regional trains (RE), intercity trains (FVZ) and coaches (LB) - and a safety level. 

The original study considered several indicators, associated with different and complex 

latent variables. For the purposes of this work we only considered one latent variable 

(TrainFan) again, which is associated with the following two indicators: “Investing on the 

development of high-speed trains should be encouraged” (HSTrains) and “New high-speed 

rail lines should be built” (RailLines). Originally the indicators were stated in a 10-points 

Likert scale. For computational issues in this application (opposite to the original study), 

we reduced it to only five, aggregating consecutive levels. Table 5.3 presents an overview 

of the variables considered. 

Again, models were estimated following the LVLC and DCLV approaches. Estimation was 

performed using PythonBiogeme and considering numerical integration for the 

computation of the likelihood function. Indicators were considered discrete outcomes 
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(OLM). Table 5.4 presents the results for both models. The structure of the table is the 

same as in the previous case (results for the measurement equations are presented, again, 

in the appendix B.2). 

Table 5.3 – Definition of the variables considered in the model. Case study 5.2.18 
Variable Definition

Old Dummy variable indicating individuals older than 50 years. 

Bahncard Dummy variable indicating ownership of a Deutsche Bahn yearly discount card.

Woman Dummy variable indicating feminine gender.

VeryLowIncome Dummy variable indicating a net income under 700€ p.m.

LowIncome Dummy variable indicating a net income between 700€ and 1,500€ p.m.

MiddleIncome Dummy variable indicating a net income between 1,500€ and 2,500€ p.m.

HighIncome Dummy variable indicating a net income over 2,500€ p.m.

Price Travel fare in €. 

TravelTime Travel time in minutes.

Transfers Number of transfers. 

SafetyLevel Number of severely injured passengers and the number of fatalities in the overall network over a year. 

LV TrainFan Latent variable TrainFan.

HSTrains Attitudinal Indicator for “Investing on the development of high-speed trains should be encouraged”. 

RailLines Attitudinal Indicator for “New high-speed rail lines should be built”.

Table 5.4 – Parameter estimates. Case study 5.2.19 
Variable Equation MCT2 OLM2 

Old S.E. LV TrainFan 0.207 -0.36 -0.093 -0.41 
Bahncard S.E. LV TrainFan 0.684 -5.41 0.673 -5.46 
Woman S.E. LV TrainFan -0.686 (-5.64) -0.663 (-5.75) 
MiddleIncome S.E. LV TrainFan 0.368 -3.19 0.426 -3.24 
HighIncome S.E. LV TrainFan 0.515 -2.53 0.606 -2.82 
Threshold C.F 0.622 (1.44) -0.346 (-0.59) 
Scale Parameter C.F 10 (fixed) 1 (fixed) 
Inertia Utility Alternative 1 0.336 -13.48 0.345 -13.48 
FVZ Utility Alternative 1 and 0 (fixed) 0 (fixed) 
LB Utility Alternative 1 and -1.17 (-12.65) -0.559 (-12.62) 
RE Utility Alternative 1 and -0.167 (-9.59) 0.448 (-9.52) 
Travel Time Utility Alternative 1 and -1.49 (-26.57) -1.56 (-26.57) 
Ln(Price) * Very Low Utility Alternative 1 and -5.29 (-31.91) -5.41 (-31.9) 
Ln(Price)  * Low Income Utility Alternative 1 and -4.7 (-26.28) -4.85 (-26.26) 
Ln(Price)  * Middle Income Utility Alternative 1 and -3.63 (-14.98) -3.8 (-15) 
Ln(Price)  * High Income Utility Alternative 1 and -2.54 (-7.81) -2.67 (-7.84) 
Safety Level Utility Alternative 1 and -0.00374 (-4.59) -0.00408 (-4.59) 
Transfers Utility Alternative 1 and -0.446 (-18.25) -0.46 (-18.25) 
FVZ * CLV TrainFan Utility Alternative 1 and 0.716 (4.93) 1.42 (5.27) 
Log-likelihood 
Overall Model 

 -10,543.642  -10,535.416  

Log-likelihood 
DC Component 

 -7,461.029  -7,453.871  
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While in Case 1 all estimators (aside from the threshold) were not statistically different in 

both models, in Case 2 the parameters associated with the categorized latent variable are 

statistically different. As the categorized latent variable is considered in conjunction with 

the modal parameter of the intercity trains, it also affects the remaining modal 

parameters. This difference may be attributed to the fact that changing the distribution 

(the variability) of the categorizing function may allow for identifying different groups of 

people. In fact, taking a look at the threshold parameters, it seems (accounting for the 

wider variability of the LVLC) that the thresholds have been set at a different level.     

Notoriously in this case, when following the LVLC approach, the parameter associated 

with the scale parameter of the categorizing function diverged (at least in computational 

terms). For that reason it was necessary to fix it as 10 (greater values would lead to 

computational issues, when computing the Fisher information matrix, but neither the 

estimates nor the final value of the log-likelihood would be majorly affected).  

Again, the DCLV approach offers a better adjustment than the LVLC model, which may 

be mainly related to a better explanation of the discrete choices. Interestingly in this case, 

the scale parameter of the LVLC model suggests that the categorizing function should be 

as similar to a Dirac delta function as possible. In this limit, the LVLC model would 

collapse to the DCLV. Nevertheless, achieving this limit (or getting close to it) is not 

possible due to computational limitations; therefore, it is impossible to get rid of the error 

induced through the LVLC approach. 

5.4 Conclusions 

Categorizing a latent variable or in general terms, defining the conditions to categorize 

individuals based on their latent characteristics should offer significant advantages in 

discrete choice modeling. Nowadays, the dominant approach for categorizing individuals is 

the latent class approach, but this method may be subject to criticism given its inherent 

lack of causality assumptions and the obscure interpretation of the functions used to 

define class-membership. Additionally, the approach does not take advantage of additional 

information, such as the perceptual and attitudinal indicators. This criticism may be 

overruled when latent-classes are used for identifying objective properties (such as missing 
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information, lexicographic respondents, etc.); however, when attempting to model 

attitudes, perceptions, values and other latent characteristics of the individuals, 

alternative approaches may be favored. 

In this work we explore different ways to improve the categorization of individuals, 

focusing on the categorization of latent variables. This approach exhibits, as main 

advantage, a clear interpretation of the function used in the categorization process (the 

latent variable), as well as taking exogenous information (perceptual and attitudinal 

indicators) into account. Unfortunately, technical issues (associated with the estimation 

technique via simulation) arise when attempting a direct categorization. Therefore, 

alternative strategies have been proposed.  

First, we considered the LVLC approach, which effectively overcomes these technical 

issues, but is associated with an artificial increase in the error. A second method is the 

LCPI approach, but it is guilty of the same deficiencies of latent class models: lack of 

causality assumptions, obscure interpretation of the class-membership function and 

additionally in this case, obscure interpretation of the measurement equations for the 

indicators and major issues related to empirical identifiability. It is important to mention 

that, by definition, this approach should offer superior goodness-of-fit than alternatives 

approaches, as the class-membership function is constructed to maximize the adjustment 

and not in order to satisfy a priori theoretical hypotheses; we consider this one of its 

major disadvantages. Finally, we propose an alternative way to attempt a direct 

categorization of latent variables (DCLV). This approach overcomes the error issues of the 

LVLC. 

We tested the aforementioned approaches with the help of two case studies. The LCPI 

approach was not considered (based on the just described theoretical concerns, as well as 

its empirical identifiability issues). Hence, we just considered the LVLC and DCLV 

approaches.  

In the first case study, it was not possible to establish the existence of major differences in 

the estimated parameters (aside from the threshold parameter), but in the second case 

study, the differences in the variability of the class-membership function led to a different 

categorization. In line with our expectations, the DCLV approach offered a superior 
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goodness-of-fit, as the LVLC introduced an additional error term. The improvements in 

goodness-of-fit were mainly explained by a better adjustment of the discrete choice 

component.  

Based on our empirical results and theoretical analysis, the DCLV appears to be the 

superior approach. On the one side, it offers a consistent treatment of the error term, 

which is in accordance with the underlying theory. Along this line, it offers a better 

performance than the LVLC approach, in terms of the goodness-of-fit. Finally, the 

approach performed stably (no identification issues) for the considered case studies 

(opposite to the LCPI). 

To end, it must be remarked that all approaches are based on non-monotonic categorizing 

functions leading to the existence of local optima. Therefore, different starting values must 

be evaluated. Additionally, is must be mentioned that the approaches do not allow 

considering the correlation among the responses provided by the same individual, when 

working with panel-data (at least to a certain extent). Further research must be 

conducted in this regard. 



 
 
 
 

CHAPTER 635 
 

 ABOUT ELECTROMOBILITY IN 
AUSTRIA AND MODELING WITH 

MISSING INFORMATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
35 This chapter is based on the article: Bahamonde-Birke, F.J. and Hanappi, T. (2015). The potential of 
electromobility in Austria. An analysis based on hybrid choice models. Transportation Research Part A: 
Policy and Practice 83, 30-41. 
Available at http://dx.doi.org/10.1016/j.tra.2015.11.002. 



  

About electromobility in Austria and modeling with missing information   103 

  

6.1 Introduction 

Both the coming scarcity and the negative environmental impact of fossil fuel resources as 

well as governmental guidelines are driving the automobile industry to focus on 

alternative, more efficient and cleaner, propulsion technologies. In addition, an increasing 

number of restrictive CO2 emission regulations (Fontaras and Dilara, 2012) accompanied 

with rising fuel prices (Macharis et al., 2010) have led to a significant change in the way 

that some characteristics of the automobiles are perceived. Consumers – and the public in 

general – are pushing for lower emission, more fuel efficient, and smaller engines (Fontaras 

and Samaras, 2010; Thiel et al., 2014).  

This attitudinal change has not only led to significant changes in market shares, favoring 

more efficient technologies (e.g. rise of diesel engines at the expense of less-efficient Otto-

cycle engines; Fontaras and Samaras, 2007), but also to an increased interest in alternative 

fuel vehicles. The new millennium has seen the composition of the car fleet change, with 

hybrid electric vehicles (HEV) playing an increasingly important role (Jenn et al., 2013). 

The expansion of other alternative engines, such as plug-in hybrid electric vehicles 

(PHEV) or battery electric vehicles (BEV) has been slower; mainly due to technical issues 

(Lu et al., 2013), user concerns (Egbue and Long, 2012), and economic hurdles 

(Dimitropoulos et al., 2013). However, the market expects significant sales increases when 

these issues are overcome (Eppstein et al., 2011; Lebeau et al., 2012; Shafiei et al., 2012; 

Hackbarth and Madlener, 2013; among many others). 

Along this line, numerous governments, including Japan (Åhman, 2006), the USA 

(Diamond, 2009) and members of the European Union (Kley et al., 2012) have introduced 

policies that promote electromobility, ranging from the development of the charging 

infrastructure to free or reduced price access to express lanes and parking. 

However, the adoption of electric vehicles is not only driven by economic benefits but also 

by the environmental concern of individuals. While the effectiveness of electromobility in 

reducing CO2 emissions is disputed by some (Sandy Thomas, 2012; Kasten and Hacker, 

2014), several studies show that a positive attitude toward the environment tends to 
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increase the willingness-to-pay for electromobility (Bolduc et al., 2008; Daziano and 

Bolduc, 2013; Jensen et al., 2013; Jensen et al., 2014; Sexton and Sexton, 2014).  

Although the perspectives of electric vehicles are extensively studied, to our knowledge 

only one attempt based on disaggregated data for Austria exists (Link et al., 2012). 

Pfaffenbichler et al., (2009) summarize other attempts to establish the acceptance of 

electromobility in Austria, but these studies rely either on plain attitudes toward 

alternative transportation modes (tns infratest, 2008; Auto Bild, 2006; Landmann et al., 

2009) or on current aggregated data and hypothetical scenarios (Haas, 2009; Enerdata, 

2009; Roland Berger Strategy Consultants, 2009). These approaches do not seem to be 

suitable for reliable prognoses, as the former make it impossible to derive functional 

models and the latter attempt to derive the demand for a certain transportation mode 

(whose attributes are unknown to the wider public, as the current market share of electric 

vehicles is very small; Link et al., 2012) based on the characteristics of other alternatives.   

Deriving reliable estimates for the future demand for electric vehicles is crucial, not only 

for the automobile and battery industries, but also for the electricity market, as the energy 

consumption of electric vehicles impacts electricity networks (Pieltain Fernández et al., 

2011; Schill and Gerbaulet, 2014). 

This chapter aims to analyze the acceptance of electric vehicles by the Austrian 

population as well as the perspectives of electromobility in the country, which, as 

previously mentioned, have only been cursorily studied in the past. This way, we provide 

functional models to analyze how different features of alternative powered vehicles may 

impact their adoption in Austria. Along this line, we analyze the impact that different 

incentive policies may have on the acceptance of electric vehicles, considering not only 

classical subsidies (as reported in the literature by Jenn et al., 2013; Zhang et al., 2014; 

among many others) but also policies encouraging the joint use of electrical vehicles and 

public transportation. Additionally, as we are forced to deal with unreported income under 

the presence of endogeneity and correlation with socio-economical characteristics of the 

individuals (making unsuitable the classic imputation techniques reported in the literature; 

Kim et al., 2007; Fosgerau and Bierlaire, 2009), we develop an alternative approach to 

address this problem, extending the method proposed by Sanko et al. (2014). The rest of 
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the chapter is organized as follows; Section 6.2 presents a brief description of our dataset 

as well as of the variables we are considering, while Section 6.3 offers a theoretical 

overview of the modeling background and enunciates our approach the deal with 

unreported income. Our results are discussed in section 6.4 and section 6.5 summarizes our 

conclusions. 

6.2 Description of the dataset 

Data was collected through a web-based survey conducted by a German commercial 

subcontractor (GfK) in February 2013. The sample of 1,449 respondents was drawn from 

an online panel and divided into two subgroups on the basis of screening questions and 

randomized selection. The first subgroup was assigned to a discrete choice experiment 

(DCE) on vehicle purchase. Participation in this experiment was restricted to individuals 

with a driver’s license and an explicit intention to buy a new vehicle in the near future. In 

total 787 respondents were selected into this subgroup.36 Individuals in the second 

subgroup did not receive the same DCE. 

Each respondent received nine independent choice scenarios, which took about 20-30 

minutes to complete; including the standard demographic questions. Although comparable 

studies sometimes restrict the number of choice scenarios to avoid a potential drop in 

attention, pre-testing of the questionnaire showed that respondents were generally 

comfortable with the load of information and the total duration. An important issue that 

emerged from this test was the relevance of the descriptions of (a) the propulsion 

technologies and (b) the availability of charging stations. While the choice scenarios were 

described within a simple table to facilitate comparison, additional pop-up boxes were 

used to convey more detailed information. This approach proved to be especially 

important to communicate e.g. the differences between hybrid-electric and conventional 

vehicles or improvements in the charging station network.  

                                                 
36 To strengthen the link between the hypothetical choice scenarios and the real purchase decision, 
additional information on observed driving behaviour and purchase preferences was used to individualize 
the choice sets. 
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Apart from the DCE, the survey also included an extensive questionnaire on socio-

economic background, mobility behavior and attitudes. Several detailed questions on 

household composition, educational attainment and occupational status were included in 

order to confirm self-reported measures of personal and household income. As regional 

structures are highly relevant for mobility behavior, additional emphasis was put on the 

federal structure and the degree of urbanization. In addition, the survey also included 

sections on car ownership and purchase, frequency and purpose of car use, as well as 

detailed information on recent and recurring trips.  

To further address heterogeneity in preferences among the respondents environmental 

attitudes were elicited in a separate section that included a set of eight preference 

statements. Each statement was aimed at a specific environmental issue and the 

respondents had to indicate the degree to which they agreed on a six point Likert scale. 

The following eight statements were included in the analysis: 

i. I am an ecologically aware person;  

ii. Climate protection is an important topic nowadays;  

iii. I believe many environmentalists often exaggerate climate problems;  

iv. I pay attention to regional origins when shopping foods and groceries;  

v. I buy ecologically friendly products;  

vi. Environmental protection measures should be enacted even if they result in job 

losses;  

vii. There are limits to growth that have been or will soon be reached by countries in 

the industrialized world; and 

viii. I pay attention to the CO2 footprint of the products I buy. 

Although this type of preference-statement data cannot be directly used as explanatory 

variables in a discrete choice model, it provides further information on the underlying 

preferences of the individuals. Therefore it is argued, for instance, by Breffle et al. (2011) 

that this type of data is crucial for improving the modeling of heterogeneous preferences 

within standard discrete choice models. Our approach to this issue is outlined in section 

6.3. In the context of this work, we only consider the information associated with the DCE 

on vehicle purchase. Nevertheless for estimating the models associated with attitudes 
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toward life and income (see next section), we consider the information provided by all 

individuals.  

Although the overall sample reflects the Austrian population in terms of employment 

status, lower-educated individuals and individuals from low-income households are 

somewhat under-represented. Due to the focus on vehicle purchase, individuals from 

households without car are also under-represented while those from households with more 

than one car are slightly over-represented. However, the overall sample is representative 

not only with regard to the age and gender structure, but also regarding to Austria’s nine 

federal states and the degree of urbanization (rural, sub-urban and urban). 

The vehicle purchase DCE was based on a labeled experimental design including four 

choice alternatives referring to one propulsion technology each: conventional vehicles 

(CV), plug-in hybrid-electric vehicles (PHEV), hybrid-electric vehicles (HEV) and battery 

electric vehicles (BEV). Each alternative is described in terms of the purchase price (PP), 

power (PS), fuel costs (FC), and maintenance costs (MC). In addition to these attributes, 

the BEV is further characterized by the full driving range (RA), availability of charging 

stations (LS), and policy incentives (IM). Charging station availability varied across three 

categories (low, intermediate and high) and was described qualitatively within a separate 

pop-up box. Policy incentives included a Park and Ride subscription for one year (IM2), 

investment subsidies to support private charging stations (IM3), or a one-year-ticket for 

public transportation (IM4). 

6.3 Methodological approach 

In order to derive a functional model to establish the preferences for electromobility, we 

rely on a disaggregated approach, specifically on discrete choice modeling (Ortúzar and 

Willumsen, 2011). This approach is based on the Random Utility Theory (Thurstone, 

1927; McFadden, 1974), which assumes that the utility a given individual (i) ascribes to a 

given alternative (q) can be represented in terms of a systematic utility (Viq), depending 

on the characteristics of the individual and the attributes of the alternative, as well as an 

error component accounting for omitted and incomplete information (εiq). This way, the 

utility ascribed to a certain alternative can be depicted as the sum of the error term and 
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the representative utility. Then the individual will opt for the alternative promising the 

higher utility. 

If it is assumed that the error terms follow an extreme value distribution type 1 (EV1) 

with equal mean and scale parameter , this difference distributes Logistic with zero mean 

and  scale. This leads to the well-known Multinomial Logit Model (MNL, Domencich and 

McFadden, 1975) and the probability of choosing alternative i is given by: 
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In this case, the scale parameter  cannot be identified and it is customary to normalize it 

to one, without loss of generality (Walker et al., 2007). Regarding the specification of the 

systematic utility, it is common to assume an additive specification of the observed 

attributes as well as of the possible interactions (it is noteworthy that it can be 

interpreted as a first-order Taylor expansion of a more complex specification).  

A limitation of this approach is that it only allows testing the impact of variables that 

were actually measured, such as prices or gender. Notwithstanding (as mentioned above) 

it is well established that immaterial non-measurable attitudes also play an important role 

in the willingness-to-pay (WTP) for given products or services. It is important to note 

that some variables may not have been accurately or completely reported (e.g. income), 

meaning that assumptions about the missing information are necessary.  

To address this problem, we rely on a hybrid discrete choice modeling structure (Ben-

Akiva et al., 2002). Here, the modeler assumes the existence of immaterial constructs 

called latent variables ( liq ), which are explained by a set of characteristics of the 

individuals and the alternatives (siqr), through structural equations. These variables are 

assumed to represent the unknown attitudes and perceptions or, similarly, the missing 

information. As this information cannon be directly observed, it is necessary to include 

error terms (liq), accounting for the uncertainty of the estimation. This way, the 

structural equations assume the following structure: 
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where αlri are parameters to be estimated and the index l refers to a certain latent variable. 

The error term liq can follow any distribution, but it is customary to consider a normal 

distribution with mean zero and a given covariance matrix. As observed, the system 

cannot be estimated without additional information; this additional information is 

provided by measurement equations that consider the latent variables as explanatory 

variables and yield a positively measured outcome as output, thus allowing for the 

estimation.  

Normally the output of the measurement equations are perceptual and attitudinal 

indicators (yziq), which are gathered exogenously making use of a subjective scale. This 

approach leads to a Multiple Indicators Multiple Causes (MIMiC) model (Zellner, 1970) 

that has two major advantages: first, it allows for identification and, more importantly, it 

enriches the model incorporating exogenous information, which is in fact closely related to 

the attitudes and perceptions (the stated indicators may be considered to be an expression 

of underlying attitudes and perceptions; Bollen, 1989; Ortúzar and Willumsen, 2011), 

providing further theoretical support for the model. Assuming a continuous distribution of 

the perceptual and attitudinal indicators, the measurement equations take the following 

form: 

 
y

ziq
 

lzi


liq


ziq
l
        [6.3], 

where the index z is referred to a given indicator and the parameters γlzi, must be 

estimated (simultaneously with the aforementioned structural equations). ςziq represents 

the error term, which, again, can follow any possible distribution, but is typically 

considered to be normally distributed with mean zero and a certain covariance matrix. 

The latent variables are then used in the representative utility function as explanatory 

variables in the same way as the observed attributes, with the difference that these 

variables exhibit an intrinsic variability. Therefore the model should be considered as a 

behavioral mixture model (Walker and Ben-Akiva, 2011). 
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The estimation of the hybrid discrete choice model (including latent variables) should be 

performed simultaneously, as the sequential estimation (considering first the MIMiC model 

as an isolated system) does not produce unbiased estimators (Bahamonde-Birke and 

Ortúzar, 2014a), unless the variability induced through the latent variables is negligible 

when compared to the model’s own variability (Bahamonde-Birke and Ortúzar, 2014b). 

When estimating the model simultaneously the modeler usually maximizes the following 

likelihood function (Ben-Akiva et al., 2002):  

( , ) ( | ; , ) ( | , , )ijL P X P y f s d


               [6.4], 

where the first term refers to the probability of the chosen alternative, as depicted in 

equation [6.1] (which, in turn, depends on observable characteristics of the individuals and 

of the alternatives of the alternatives iqX and on the latent variables liq ). The second 

term stands for the probability of observing a given indicator for a given individual and 

the last component represents the probability distribution of the latent variables. 

6.3.1 Treatment of unreported information and other income related issues 

The survey included questions regarding personal and household net income. Given the 

reluctance of individuals to reveal this information, respondents were not required to 

answer this question and 30.02% of the sample skipped these questions. A potential 

alternative addressing this problem is to construct a variable for all individuals skipping 

this question (Hall et al., 2006; Fosgerau and Bierlaire, 2009; among many others), but it 

is highly debatable if it can be assumed that individuals skipping the income questions 

behave in a similar way, since the underlying factors affecting the decision to skip the 

question vary widely. Another approach would be to impute these variables (Kin et al., 

2007), based on other characteristics of the individuals; but this could lead to endogeneity 

issues if the likelihood of omitting this question is also driven by income.  

Finally, it is not clear what kind of income variable (personal or household net income) 

should be included in the model, as, depending on the individual, the WTP may be 

affected to greater extent by the one or the other. As both variables are highly correlated, 
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it is not advisable to simultaneously include both in the utility function and the decision 

as to which variable is ultimately included should rely on theoretical arguments. 

To address this problem we construct a latent variable measuring wealth in a broader 

sense, defined by a structural equation considering the socio-economic characteristics of 

the individuals. The personal and household net incomes are considered to be measured 

indicators of the individual’s wealth, therefore explained by the latent variable through 

measurement equations. We use a discrete choice framework to model the decision 

whether to reveal information on personal and/or household income within the survey, as 

proposed by Sanko et al. (2014). To do this, we introduce a utility function associated 

with the likelihood of revealing income, which depends on the characteristics of the 

individuals as well as on the latent variable wealth, yielding as outcome the probability 

with which a certain individual would reveal their income. Figure 6.1 summarizes the way 

in which income is included in the model. 

The latent variable wealth is constructed for all individuals in the sample through the 

structural equations, but the measurement equations related to personal and household 

net income are only considered for the individuals reporting this information. As the 

model is considered jointly, the parameters of the structural equations adapt in order to 

reflect the information associated with the decision of reporting or not reporting the 

income (which may be driven by the individuals’ wealth), thus considering the information 

provided implicitly by individuals skipping the question and overcoming endogeneity 

issues. 

 

Figure 6.1 – Modeling framework for treating income information.10 
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Both personal and household net incomes are considered to be continuous outputs (as they 

were reported) and measurement errors are assumed to be independent, normally 

distributed, with mean zero. The error term associated with the utility of revealing income 

is considered to follow a Logistic distribution with mean zero and scale parameter 1, 

leading to a binomial logit framework.  

Finally, as a linear effect of the wealth on the decision making process is unrealistic, it is 

convenient to segment individuals into different categories. Therefore, the latent variable 

is categorized as proposed by Bahamonde-Birke et al. (2016). That being the case, 

equation [6.4] takes the following shape (when considering a categorization in two levels; 

straightforward for more levels): 

( , , 0) ( | ; , ) ( | , , ) ( | , , )

( , , 1) ( | ; , ) ( | , , ) ( | , , )

ij WC W

ij WC W

L P X P y f s d P d s
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



            

            

      

      




[6.5], 

where W stands for the latent variable wealth and WC for its categorized counterpart;   

is threshold to be calibrated. It is assumed that the error term associated with the 

structural equation of the LV follows a logistic distribution with mean 0 and standard 

deviation 1, allowing it to represent the probability of this being greater than the 

threshold through a closed-form expression (Logit). 

6.3.2 Treatment of the environmental concern 

As previously noted, empirical evidence suggests that environmental attitudes affect the 

willingness-to-pay for electromobility. To analyze this effect, we rely on a latent variable 

accounting for ecological concern. This variable is explained by characteristics of the 

individuals (making them more or less likely to exhibit a high environmental concern), 

while simultaneously describing the environmental indicators.  

The analysis reveals that not all of the indicators collected can be linked beyond doubt 

with greener attitudes. In fact, a factor analysis reveals that it is only possible to identify 

a high correlation for five of the statements (i, iv, v, vi and viii; see Appendix C.1). 
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Notwithstanding, an evaluation of the remaining indicators reveals that those are not 

actually related to their own attitudes but rather to an evaluation of either society (b and 

c) or the economy (g). Under these circumstances, the latent variable was constructed 

omitting these latter indicators.  

For identification purposes (without loss of generality), it is assumed that the variability 

of the error term of the structural equation is independent, normally distributed and with 

a standard variability equal to one. Similarly, the error terms of the measurement 

equations are considered to be normal distributed and uncorrelated. Along the same line, 

intercepts are only considered in the measurement equations (and not in the structural 

equations), due to identifiability issues.  

6.4 Estimation and results 

The models are estimated simultaneously, making use of PythonBiogeme (Bierlaire, 2003). 

To compute the maximum simulated likelihood, we utilize 500 MLHS (Modified Latin 

Hypercube Sampling; Hess et al., 2006) draws.  

Variables relevant for the model are presented in Table 6.1. As can be seen from the table, 

the wealth latent variable is categorized in order to reflect potentially divergent behavior 

by wealthier individuals. The categorization threshold was calibrated in accordance with 

equation [6.5]. Appendix C.2 presents the levels for the attributes considered in the DCE. 

Three different models are estimated. First, a classical multinomial logit model (MNL-P) 

considering the correlation among the answers provided by the same individuals (via 

random panel effects; Bhat and Gossen, 2004) was calibrated. Additionally, we estimate a 

behavioral mixture model (MBM1) considering the environmental concerns and a third 

model (MBM2) considering both environmental awareness and differences in income 

following the approach presented in Section 6.3.37  

                                                 
37 For the continuous latent variable (ecological concern), we integrate over the domain on individual 
level. For the categorized latent variable, the correlation among the answers provided by the same 
individuals is not taken into account due to computational issues associated with the estimation 
technique (simulated maximum likelihood; Ben-Akiva et al., 2002), which causes minor discontinuity 
issues to arise. 
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Table 6.1 – Definition of the variables considered in the model.20 
Variable Definition 

FullTime Dummy variable indicating that the individual works on a full-time basis. 

Married Dummy variable indicating that the individual is married. 

MidSkill Dummy variable indicating a career and technical education.  

HighSkill Dummy variable indicating a college education or higher. 

Suburban, Urban Dummy variables indicating a suburban residence or a urban residence. 

NCars Count variable indicating car ownership. 

NewCar Dummy variable indicating if the automobile mainly used by the individual was new at the moment of the 
purchase. 

Vienna Dummy variable indicating a residence in Vienna. 

Male Dummy variable indicating masculine gender. 

Old Dummy variable indicating individuals older than 60 years 

MidAge Dummy variable indicating individuals older than 35 years, but no older than 60 year. 

Carsharing Dummy variable indicating that the individual relies on Car Sharing on a regular basis. 

CarUser Dummy variable indicating that the individual drives to their main occupational activity on a regular basis. 

PP Purchase price in  €·105.  

FC Fuel cost in € / 100 km.  

MC Maintenance cost in € / 100 km.     

PS Power of the engine in hp.  

RA Driving range in km.  

IM2, IM3, IM4 Dummy variables indicating the execution of the respective policy incentive. 

Wealthy LV Wealth > threshold 

LSMid, LSHigh Dummy variables indicating medium or high availability of charging stations for BEV. 

EcAwareness Attitudinal Indicator for “I am an ecologically aware person”. 

LocalFood Attitudinal Indicator for “I pay attention to regional origins when shopping foods and groceries”. 

EcoFriendly Attitudinal Indicator for “I buy ecologically friendly products”. 

Protection Attitudinal Indicator for “Environmental protection measures should be enacted even if they result in job 
losses”. 

CO2Footprint Attitudinal Indicator for “I pay attention to the CO2 footprint of the products I buy”. 

 

The results for the estimated models are presented in Table 6.2. Linear measurement 

equations results are presented in Appendix C.3. The results of the t-test for statistical 

significance are presented in parenthesis. The final value for the log-likelihood is also 

reported, although it does not provide a significant insight into the goodness-of-fit of the 

different models as the number of measurement equations considered varies between them. 

As shown in Table 6.2, wealth negatively affects the likelihood of revealing income, which 

is in accordance with results previously reported in the literature (Turell, 2000). This way, 

imputing the income directly would have led to spurious results due to endogeneity issues. 

In a similar way, male and older individuals are more prone to reveal their income.  
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Table 6.2 – Parameter estimates for the different models.21 
Variable Equation MNL-P MBM1 MBM2 
Married S.E. LV Wealth - - 0.939 (9.59)
HighSkill S.E. LV Wealth - - 0.647 (4.63)
MidSkill S.E. LV Wealth - - 0.391 (3.59)
FullTime S.E. LV Wealth - - 0.699 (8.22)
Suburban S.E. LV Wealth - - 0.159 (1.67) 
Urban S.E. LV Wealth - - 0.382 (3.94)
NCars S.E. LV Wealth - - 0.659 (11.88)
NewCar S.E. LV Wealth - - 0.491 (5.99) 
Constant Utility Reveal Income - - 0.616 (3.22) 
LV Wealth Utility Reveal Income - - -0.152 (-2.36)
Male Utility Reveal Income - - 0.567 (4.58) 
Old Utility Reveal Income - - 0.656 (3.99)  
MidAge Utility Reveal Income - - 0.531 (3.83) 
Vienna S.E. LV Green - -0.258 (-3.27) -0.294 (-3.76)
Male S.E. LV Green - -0.281 (-4.61) -0.307 (-5.04)
HighSkill S.E. LV Green - 0.461 (4.5) 0.376 (3.61) 
MidSkill S.E. LV Green - 0.253 (3.02) 0.226 (2.72) 
Old S.E. LV Green - 0.68 (8.05) 0.611 (7.06)  
MidAge S.E. LV Green - 0.398 (5.45) 0.314 (4.3) 
Carsharing S.E. LV Green - 0.666 (3.48) 0.657 (3.69) 
CarUser S.E. LV Green - -0.229 (-3.55) -0.243 (-3.84)
Threshold   - - 1.91 (4.52) 
ASC_CV Utility CV 0 (fixed) 0 (fixed) 0 (fixed)
ASC_HEV Utility HEV 0.423 (0.64) 0.191 (0.28) 0.859 (1.16)
ASC_PHEV Utility PHEV -0.0551 (-0.08) -0.378 (-0.57) 0.16 (0.22) 
ASC_BEV Utility BEV -1.73 (-2.14) -2.26 (-2.85) -1.09 (-1.16)
PP Utility CV -1.89 (-5) -1.69 (-4.43) -4.93 (-4.79)
PP Utility HEV -2.36 (-24.27) -2.4 (- -5.64 (-5.64)
PP Utility PHEV -2.38 (-20.37) -2.3 (- -5.68 (-5.96) 
PP Utility BEV -1.62 (-10.44) -1.52 (- -7.21 (-3.73)
PP * Wealthy Utility CV - (-) - (-) 3.15 (3.38) 
PP * Wealthy Utility HEV - (-) - (-) 3.65 (3.85) 
PP * Wealthy Utility PHEV - (-) - (-) 3.73 (4.08) 
PP * Wealthy Utility BEV - (-) - (-) 5.59 (3.22)  
MC Utility CV, HEV; PHEV, BEV -31.2 (-12.09) -30.5 (- -31.8 (-11.42)
FC Utility CV, HEV; PHEV, BEV -31.5 (-20.68) -31.1 (- -31.7 (-18.63)
PS Utility CV 0.0557 (3.98) 0.0527 (3.73) 0.0655 (4.76) 
PS Utility HEV 0.0503 (9.02) 0.0511 (9.09)  0.0503 (8.55)  
PS Utility PHEV 0.0528 (8.92) 0.0522 (8.93) 0.0531 (8.45) 
PS Utility BEV 0.00666 (1.28) 0.00653 (1.27) 0.0133 (2.23) 
PS * Male Utility CV -0.0191 (-3.51) -0.0232 (-4.29) -0.0246 (-4.16)
PS * Male Utility HEV -0.0161 (-2.88) -0.0178 (-3.2)  -0.0198 (-3.26) 
PS * Male Utility PHEV -0.015 (-2.66) -0.0162 (-2.91) -0.0185 (-3.03)
PS * Male Utility BEV -0.00575 (-0.98) -0.00491 (-0.84) -0.0059 (-0.91)
MidAge Utility HEV -0.171 (-0.6) -0.377 (-1.3) -0.248 (-0.73)
MidAge Utility PHEV -0.276 (-0.97) -0.469 (-1.7) -0.31 (-0.96) 
MidAge Utility BEV -0.768 (-2.1) -1.13 (-3.1) -1.27 (-3.03)
Old Utility HEV -1.23 (-3.73) -1.44 (-4.36) -1.79 (-4.54)
Old Utility PHEV -1.59 (-4.77) -1.95 (-5.94) -2.2 (-5.65)
Old Utility BEV -2.35 (-5.6)  -3.13 (-6.72) -3.51 (-6.88) 
LV Green Utility HEV - (-) 0.794 (5.27) 0.619 (4.85) 
LV Green Utility PHEV - (-) 1.03 (7.49) 0.818 (6.84) 
LV Green Utility BEV - (-) 1.21 (6.97) 1.1 (6.39) 
RA Utility BEV 0.00529 (10.11) 0.00531 (10.12)  0.00606 (8.66) 
LSMid Utility BEV 0.312 (1.76) 0.296 (1.68)  0.307 (1.55) 
LSHigh Utility BEV 1.02 (6.34) 1.01 (6.36) 1.13 (6.14) 
IM3 Utility BEV 0.499 (3.62) 0.486 (3.56) 0.511 (3.2) 
Sigma CV Utility CV -2.82 (-21.56) 2.6 (21.47) -2.79 (-19.62)
Sigma HEV Utility HEV -1.05 (-7.18) -1.27 (-9.85) -1.06 (-7.57)
Sigma PHEV Utility PHEV 0.965 (6.81) -0.567 (-2.4) 0.981 (6.67)
Sigma BEV Utility BEV -2.45 (-15.81) 2.27 (14.9) 2.73 (12.74)
Log-Lilikelihood -5,130.4 -15,108.9 -18,671.1  
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Regarding the wealth variable itself, it is possible to confirm that highly skilled individuals 

as well as individuals working full time are more likely to earn higher incomes. Similarly, 

urban or suburban residency and the number of automobiles are positively correlated with 

wealth. Finally, married individuals tend to have higher incomes. It is not possible to 

establish a relationship between wealth and either gender or age. 

With respect to environmental concern, our results support the idea that male and 

younger individuals care less about the environment than their female and older 

counterparts, respectively. These findings are in line with previous empirical evidence 

(Vredin-Johansson et al., 2006; Bolduc et al., 2008; Daziano and Bolduc, 2013; Jensen et 

al., 2013; Bahamonde-Birke et al., 2016). Highly skilled individuals tend to exhibit more 

ecological attitudes, while individuals living in Vienna are less concerned about the 

environment than individuals living in smaller cities or in the countryside. As expected, 

the attitude toward the environment is reflected in the use of automobiles: green-minded 

individuals tend to rely more on carsharing and drive less often to their main occupational 

activity.  

Thus, the results show that environmental attitudes impact the preferences for 

electromobility. Despite the fact that it is not clear whether electric vehicles are actually 

greener than conventional vehicles, green-minded individuals ascribe greater utility to 

automobiles with electric engines. However, this preference does not impact all 

technologies equally, as pure electric vehicles are preferred. As expected, older individuals 

are more reluctant to adopt new technologies (Hackbarth and Madlener, 2013; Hidrue et 

al., 2011). 

As expected, higher fuel and maintenance costs negatively impact the utility ascribed to a 

certain alternative and it is not possible to identify a statistically different valuation of 

these two features, meaning than fuel and maintenance costs are perceived equally by our 

population. At the same time, the purchase price also negatively affects the utility 

associated with a given alternative. It is noteworthy that the disutility of the purchase 

price associated with the conventional vehicles is smaller than the disutility ascribed to 

the electric vehicles. A possible explanation for this phenomenon relies on the fact that 

conventional vehicles may be considered as a safer investment, as the market information 

for electric vehicles, such as resale price and depreciation, is likely unknown for large 
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segments of the population. Finally, the disutility of the purchase price is smaller for 

wealthier individuals, which is in line with our expectations. 

Regarding engine power, it is possible to establish that this is an important feature that 

positively affects utility when the alternatives considered include at least one conventional 

motor. When the propulsion choices are purely electric, this effect either vanishes (in 

models MNL-P and MBM1) or is very weak (model MBM2). Interestingly, women show a 

statistically significantly higher willingness-to-pay for bigger engines than men do; an 

effect that, to our knowledge, is not found in earlier literature. 

In line with previous findings, a greater driving range has a significant positive impact on 

the adoption of BEV (Hidrue et al., 2011; Daziano, 2013). The individuals exhibit a 

willingness-to-pay (WTP) for an added kilometer of driving range of 32.7 € / km, 34.9 € / 

km and 8.4 € / km (poorer) and 37.4 € / km (wealthier), according to the models MNL-P, 

MBM1 and MBM2, respectively. These WTP are consistent with the values presented in 

the Dimitropoulos et al. (2013) meta-study. However, and opposite to the findings of 

Dimitropoulos et al. (2013), we establish that our population perceives gains in the driving 

range linearly, as it was not possible to reject the hypothesis of linearity (which was tested 

with help of a Box-Cox transformation). It must be pointed out that our population 

should be considered as unexperienced regarding the use of electric vehicles, as Jensen et 

al. (2013) have shown that experiencing electric vehicles increase the WTP for an 

extended driving range. 

The wide-spread availability of charging stations positively impacts the utility ascribed to 

pure electrical vehicles. This contrasts with the fact that an intermediate level of charging 

station availability is not significantly better than a low availability level (at least, in the 

more complex model – or at a significance level of 5% in the other models). This 

phenomenon can be understood in light of the fact that at intermediate levels of service, 

the availability of charging stations is still unreliable and individuals would still most 

frequently charge their batteries at home, which suggests the existence of reliability 

thresholds. 

With regard to policy incentives, it is only possible to identify an increase in the 

willingness-to-pay for electrical cars associated with investment subsidies to support 
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private charging stations (IM3). No change of attitude could be identified in association 

with the incentives polices related to interactions with transit systems, such as a Park and 

Ride subscription (IM2) or a one-year-ticket for public transportation (IM4). This is an 

important topic, as Holtsmark and Skonhoft (2014) identify policy incentives as the main 

reason for the success of electric vehicles in Norway and according to our results subsidies 

aiming for the joint use of electric vehicles ant public transportation would not have the 

desired effects. Along this line, other alternatives such as direct subsidies (Potoglou and 

Kanaroglou, 2007; Holtsmark and Skonhoft, 2014) may have a higher impact. 

Finally, it is important to note that the analyzed features are quite orthogonal across the 

different models, meaning that including additional information does not significantly 

affect the relationship between the attributes of the alternatives (except in the case of 

socioeconomic characteristics - also considered in the MIMiC model) i.e. the omitted 

information is mostly captured by the alternative specific constants.   

6.5 Conclusions 

The expansion of electromobility is a major challenge facing the automobile industry. Its 

adoption and potential is debated in the economic, engineering, electric, and 

transportation literature, as its impact will depend on the characteristics of the 

alternatives provided to the market. Our research focusses on the effects of these 

attributes, providing a model that quantifies their impact on the potential of the 

electromobility. 

In this chapter we estimate several behavioral mixture models considering characteristics 

of the individuals and of the alternatives, environmental awareness as well as income 

information. To do this, we also present an alternative approach to deal with unreported 

income. Our results support the validity of this approach and the fact that the decision of 

revealing the income is related to the income itself. Along the same line, this decision is 

also correlated with other social-economical characteristics of the individuals. These 

findings are of crucial importance as the presence of endogeneity and correlation makes 

both classical imputation techniques (imputing missing data based on other attributes 
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available; Kin et al., 2007), as well as constructing a variable for all individuals not 

reporting the income, the dominant approaches in the literature, unsuitable. 

It is possible to establish that many of the typical assumptions regarding electromobility 

also apply to the Austrian market, with the reluctance of older people and the proclivities 

of environmentally-minded individuals proving true. In a similar fashion, it is established 

that engine power does not have a major effect when dealing with purely electrical 

vehicles. It may be of significant importance, as bigger engines require bigger batteries, 

which, in turn, represent one of the main costs of BEVs. Additionally we also determine 

that Austrian females appreciate bigger engines more than males do. 

The adoption of battery electric automobiles depends on an increased driving range and 

charging station availability as well as effective policy incentives. The WTP of the 

Austrian population for an added kilometer of driving range averages approximately 34 € 

/ km. Regarding the latter, our research supports the theory that proposed policy 

incentives must be properly evaluated, as some policies, such as a Park and Ride 

subscription or a one-year-ticket for public transportation, may have a significant cost to 

the government but no actual impact on the adoption of alternative fuel vehicles. The fact 

that incentive policies advocated to the joint use of electric vehicles and transit systems 

have no significant impact on the adoption of electromobility suggest that individuals 

buying electric vehicles have no major prior interest in public transportation. Nevertheless, 

despite of their insignificant effect on the adoption of electromobility, these policies may 

still have positive social outcome, as they may induce individuals acquiring electric 

vehicles to use the transit system. Further research is required in this regard. 

Finally, an intermediate level of availability of charging stations should not have a 

significant effect (in contrast with a high availability). This finding suggests the existence 

of reliability thresholds concerning the charging infrastructure. Therefore effort should 

focus on offering reliable coverage of charging stations. 
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38 This chapter is based on the article: Bahamonde-Birke, F.J. (2016). Does Transport Behavior Influence 
Preferences for Electromobility? An Analysis Based on Person- and Alternative-Specific Error 
Components. To be presented at 14th World Conference on Transport Research, Shanghai, PR China, 10-
15, July, 2016. 
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7.1 Introduction 

It is a well-established fact that travel preferences and behavior of the individuals are 

related to other travel-related decisions, such as car ownership or residential location 

(Golob, 1990; Dieleman et al., 2002, among many others). This correlation may rely on 

different characteristics of both decisions themselves and of individuals, including potential 

self-selection biases (Cao et al., 2009; v. Acker and Witlox, 2010), which significantly 

increases the complexity of the analysis. 

In a similar fashion, it may be expected that preferences toward the purchase of electrical 

cars could also exhibit a correlation with the travel behavior. Several assumptions, based 

on empirical evidence, support this hypothesis. This way, for instance, it may be expected 

that green-minded individuals would favor both public transportation (Vredin-Johansson 

et al., 2006) and electrical vehicles (Daziano and Bolduc, 2013; Jensen et al., 2013), while, 

at the same time, it may be argued that individuals already driving on a daily basis may 

be more willing to pay for electric vehicles due to their higher efficiency and lower 

operational costs (Offer et al., 2010).  

The potential demand for alternative powered mobility is well studied (Ehsani et al., 2009; 

Offer et al., 2010; Eppstein et al., 2011; Lebeau et al., 2012; Hackbarth and Madlener, 

2013, among many others). Thus, it is established that it is not only the objective 

characteristics of the alternatives but also underlying attitudes and perceptions that affect 

the acceptance of electromobility (Glerum et al, 2013; Jensen et al., 2014; Kim et al., 2014; 

Bahamonde-Birke and Hannapi, 2016). However, the relation between travel preferences of 

individuals and their willingness-to-pay for new propulsion technologies is not extensively 

analyzed.  Even when travel preferences are taken into account while analyzing 

electromobility preferences, these preferences are normally treated as exogenous 

information (He et al., 2012). 

To conduct this kind of analysis, it is convenient to simultaneously consider travel 

behavior information and preferences toward electromobility. For this, this work relies on 

the discrete choice (DC) modeling approach (McFadden, 1974) and considers a 
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simultaneous estimation of DC models on vehicle purchase and on modal choices. An 

intuitive approach to link both experiments is considering the underlying attitudes 

affecting both decisions making use of a hybrid discrete choice (HDC) framework 

(McFadden, 1986; Train et al., 1987, Ben-Akiva et al., 2002), which allows controlling for 

attitudinal characteristics of the population. However, as it is not possible to identify all 

attitudes affecting the decisions, the correlation between them may be underestimated. To 

avoid this problem, the modeling takes advantage of the pseudo-panel structure of the 

sample (with individuals facing more than one choice situation for each experiment). This 

way, the correlation among answers provided by the same individual in a given 

experiment may be incorporated into the other, offering a clear representation of the 

extent to which one decision is affected by the other. 

This chapter presents a method to correlate two independent DC experiments, based on 

stated-preferences (SP), making use of random panel effects (Bhat and Gossen, 2004). 

Additionally, it identifies the existence of correlation between modal choice and vehicle 

purchase decisions among the Austrian population; thus the simultaneous consideration of 

both models increase their explainability and offers clear insights on the way in which 

both decisions are interconnected.  

The rest of the chapter is organized as follows. Section 7.2 presents an overview of the 

theoretical approach and extends it in order to consider the correlation among different 

SP-experiments, while Section 7.3 offers a description of the dataset utilized to test the 

hypothesis. The results are discussed in section 7.4 and finally, section 7.5 summarizes the 

chapter’s conclusions. 

7.2 Methodological approach 

Under the assumption that individuals are rational decision makers, it can be postulated 

that individuals facing a set of available alternatives A, will choose the alternative i that 

maximizes their perceived utility. In accordance with Random Utility Theory (Thurstone, 

1927; McFadden, 1974), it is possible to depict this utility (Ui) as the sum of a 

representative component and an error term (ε), which, under the assumption of additive 

linearity, leads to the following expression (Ortúzar and Willumsen, 2011): 
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 iU X            [7.1], 

where X is a matrix standing for observed attributes of the alternatives and characteristics 

of the individuals and  is a vector of parameters to be estimated. If it is assumed for the 

error terms to be independent EV1 distributed with same mean (for all alternatives) and 

diagonal homoscedastic covariance matrix (), the choice probabilities will be given by a 

Multinomial Logit model (Domencich and McFadden, 1975; MNL). Nevertheless, the 

assumption of independence does not hold, when the observations arise from panel or 

pseudo-panel data, as in this case the observations associated with the same individual 

would be correlated.  

To approach this problem, it is useful to rely on Mixed Logit models (Cardell and Dunbar, 

1980; Ben-Akiva and Bolduc, 1996; ML). Here, it is assumed that the stochastic 

component of the model would be given but by the sum of the previously described 

independently identically EV1 distributed error term (ε) and other stochastic element that 

can follow any distribution. In this case, the utility function would take the following 

shape:   

iU X              [7.2] 

Here,  is an error component following a given distribution and whose covariance matrix 

() is not subject to homoscedasticity and no-autocorrelation restrictions (as long as the 

model is identified). This way, for instance, it can be accounted for correlation between 

individuals and alternatives. Under these assumptions, the likelihood function may be 

depicted as follows: 

( | , ; , , ) ( | )L P y X f d 


               [7.3], 

where the first component stands for the usual MNL probabilities (y is a vector taking a 

value of 1 if the alternative is selected and 0 otherwise), while the second term represents 

the distribution of the error term . As normally this representation will not lead to 

closed-form expressions for the probabilities, the likelihood function must be integrated 
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over the domain of the stochastic component , making use of simulated likelihood 

techniques (McFadden, 1986). 

To deal with panel or pseudo panel data it can be assumed that the error component  be 

common to all answers provided by the same individual (Bhat and Gossen, 2004; Walker 

et al., 2007). Thus, the total error would be given by the sum of the i.i.d. EV1 error term 

and a mixing distribution allowing for capturing the correlation among the choices of the 

same individual.39 In this case, the integration must be conducted at individuals’ level 

rather than choices. 

7.2.1 Dealing with several SP-Experiments  

When addressing two or more independent labelled SP-experiments, whose answers are 

provided by the same respondents, the situation is not different, as the choices of the same 

individuals are also correlated.  

If the experiments are treated independently, it would suffice to account for the 

correlation of the answers provided by the same individuals within the experiments (if it is 

assumed that both experiments consist of more than one choice situations). Thus, the 

utility functions would take the following shape (when assuming two labelled SP-

experiments, each consisting of three alternatives, which is the minimum to assure that 

the variability of all person- and alternative- specific error components be identified; 

Walker et al., 2007):40        
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12 12 12 12

13 13 13 13
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U X

U X

  
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  

   
   
   

  
21 21 21 21

22 22 22 22

23 23 23 23

U X

U X

U X

  
  
  

   
   
   

  [7.4] 

This framework would lead to the following likelihood function (which could easily be split 

into two independent models): 

                                                 
39 This approach work well for labelled experiments, but it does not appear to be suitable to address 
unlabeled data (Daly and Hess, 2010).  
40 Extending this framework for more SP-Experiments and alternatives is straightforward. 



 
About transport behavior, electromobility and person- and alternative-specific error 
components          125 

  

1 1 2 2

1 2

21

1 1 1 2 2 2

1 2 1 2

( | , ; , , ) ( | , ; , , )

( | ) ( | )

L P y X P y X

f f d d

   
 

 

   

   

      

    
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   [7.5] 

In this case, no bias is being induced into the modeling as the observations of the first 

experiment do not affect the outcome of the other and vice versa. This framework, 

however, does not allow for considering parameters common to both experiments or for 

analyzing the existence of a possible correlation among the answers provided in the first 

and in the second experiments. Nor would it be completely adequate to consider latent 

variables accounting for factors underlying to both experiments (unless it can be 

established or assumed that the latent variable is the only source of individual correlation 

among both experiments).   

This issue is of particular importance, as in many cases it may be interesting to analyze 

the correlation among different decisions, as it would offer a more accurate representation 

of the population. This correlation may have important implications in terms of policy-

making or predictability. Additionally, accounting for correlation may substantially 

increase the explainability of the joint model.  

An alternative to account for this correlation is to assume that the utility functions of 

given experiment are affected by the correlation among the answers provided by the same 

individual in another experiment. This way, the first set of utility functions depicted in 

equation [7.4] would be given by:  

11 11 11 11 11 21 12 22 13 23

12 12 12 12 21 21 22 22 23 23

13 13 13 13 31 21 32 22 33 23
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        
        
        

         

         

         

   [7.6] 

Here, 21,22 and23 represent the person- and alternative-specific error components 

(PASEC) accounting for correlation among the answers of the same individual, for a given 

alternative in the second experiment, while jkare parameters to be calibrated. As the 

PASECs are constant for all answers associated with the same individual, the model 

depicted in [7.6] would be unidentified and therefore it is necessary to constrain (without 

loss of generality) the parameters of a given alternative; thus the interpretation of the 
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parameters would be similar to the interpretation of alternative specific constants 

(Ortúzar and Willumsen, 2011) or parameters associated with socio-economic or 

attitudinal latent variables (Bahamonde-Birke et al., 2016). It is straightforward to extend 

this framework for the remaining set of utility functions. 

Then, the likelihood function for the joint model would be depicted in the following 

manner: 

1 1 2 2 1 2

1 2

21

1 1 2 1 1 2 1 2 2 2

1 2 1 2

( | , , ; , , , , ) ( | , , ; , , , , )

( | ) ( | )
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f f d d
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 

       

   

        

    

 
 [7.7] 

This framework may be extended in order to incorporate latent variables or classes (that 

may be reason for the existence of correlation). Nevertheless, this approach is clearly more 

extensive than considering latent variables or classes as the only source of correlation 

among the answers provided by the same individual, as it allows capturing not only the 

correlation associated with identified underlying attitudes affecting both choices, but also 

the correlation related to unidentified characteristics of the individuals. 

7.3 Description of the dataset 

The data for the analysis originates from a discrete choice experiment (DCE) conducted in 

Austria during February 2013 (representative sample), in which the individuals were asked 

to state their preferences in the context of vehicle purchase situations (Bahamonde-Birke 

and Hannapi, 2016). The sample of 1,449 respondents was drawn from an online panel and 

divided into two subgroups on the basis of screening questions and randomized selection. 

The first subgroup was assigned to a discrete choice experiment (DCE) on vehicle 

purchase. Participation in this experiment was restricted to individuals with a driver’s 

license and an explicit intention to buy a new vehicle in the near future. In total 787 

respondents were selected into this subgroup, with each respondent asked to answer 9 

independent choice scenarios. No restrictions were applied for the second subgroup 

assigned to the DCE on transport mode choice. Of the 938 respondents in this subgroup, 

73 individuals providing incomplete information were excluded. Both subgroups received 9 
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independent choice scenarios. In total, 276 individuals took part on both experiments.41 

Finally, the individuals were presented with a questionnaire covering socio-economic 

background, mobility behavior and attitudes. 

For this analysis, only the 276 individuals responding to both questionnaires are taken 

into account. Although the overall sample reflects the Austrian population in terms of 

employment status, lower-educated individuals and individuals from low-income 

households are somewhat under-represented. Due to the focus on vehicle purchase, 

individuals from households without car are also under-represented while those from 

households with more than one car are slightly over-represented. However, the overall 

sample is representative not only with regard to age and gender structure, but also 

regarding to Austria’s nine federal states and the degree of urbanization (rural, sub-urban 

and urban). 

The DCE on modal choice (DCE-MC) considered four labelled choice alternatives: private 

transportation (PV), public transportation - bus (PT-B), public transportation - train 

(including urban trains, PT-T) and non-motorized transportation (NMT). The PT 

alternative was described in terms of the free flow time (FFT), congestion time (CT), 

parking (PRK), toll (TL) and fuel expenses (FE), while both public transportation 

alternatives were depicted in terms of the travel time (TT), fare (TCK), interval (INT) 

and number of transfers (NT). The NMT alternative was characterized by its travel time 

and was subsequently subdivided in walking (WLK), cycling (BCL) and electric bicycles 

(EBC), so that each choice situation would present only one NMT alternative;42 hence, the 

sub-divisions of the NMT alternative cannot be considered to be labelled alternatives, but 

rather attributes of the labelled alternative NMT. Additionally, information regarding the 

last trip (with the same purpose and destination) was gathered, so that it is possible to 

construct an inertia variable (IN); this information, however, is only disaggregated at the 

level of private, public or non-motorized transportation, thus both public transport 

alternatives (PT-B and PT-T) are associated with the same inertia variable.  

                                                 
41 The survey duration for the individuals responding DCEs was of approx. 30 minutes (as compared to 
20 minutes for the remaining 1,173 individuals).  
42 Although electric bicycles are technically motorized vehicles, they were considered as part of the NMT 
alternative, as they are considered to be closely related to other NMT sub-alternatives. 



 
About transport behavior, electromobility and person- and alternative-specific error 
components          128 

  

The DCE on vehicle purchase (DCE-VP) was based on a labelled experimental design 

including four choice alternatives referring to one propulsion technology each: conventional 

vehicles (CV), plug-in hybrid-electric vehicles (PHEV), hybrid-electric vehicles (HEV) and 

battery electric vehicles (BEV). Each alternative is described in terms of the purchase 

price (PP), power (PS), fuel costs (FC), and maintenance costs (MC). In addition to these 

attributes, the BEV is further characterized by the full driving range (RA), availability of 

charging stations (LS), and policy incentives (IM). Charging station availability varied 

across three categories (low, intermediate and high) and was described qualitatively within 

a separate pop-up box. Policy incentives included a Park and Ride subscription for one 

year (IM2), investment subsidies to support private charging stations (IM3), or a one-

year-ticket for public transportation (IM4). 

To strengthen the link between the hypothetical choice scenarios and the real purchase 

decision, additional information on observed driving behavior and purchase preferences 

was used to individualize the choice sets. 

7.4 Estimation and results 

As equations [7.5] and [7.7] do not exhibit closed-form expressions, the estimation is 

performed via simulation making use of PythonBiogeme (Bierlaire, 2003). To compute the 

simulated likelihood, 1,000 MLHS (Modified Latin Hypercube Sampling; Hess et al., 2006) 

draws are utilized. Table 7.1 presents an overview of the variables that were found to be 

significant for the matters of the study. 

First, independent models for both experiments were calibrated taking the correlation 

within individuals into account (equation [7.5]). Subsequently, correlation terms among 

both experiments were introduced. For the purposes of this study, it was assumed that 

only the correlation among the answers in the modal choice experiment would affect the 

vehicle purchase experiment, and not vice versa. The hypothesis behind this reasoning is 

that individuals are familiar with modal choice decisions, and therefore a particular set of 

attitudes, perceptions and values (for which it is not being controlled) has been developed 

over time. Hence, this particular mindset may affect other (slightly related) decisions. In 

the case of the DCE on vehicle purchase considering electric vehicles (whose participation 
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in the market is still very low; Jenn et al., 2013), the modeler is dealing primarily with a 

hypothetical decision; thus attitudes, perceptions and values affecting this decision arise 

from other experiences and no particular mindsets related to this specific choice situation 

have been developed yet. 

Table 7.1 – Definition of the variables considered in the model.22 
Variable Definition 

Male Dummy variable indicating masculine gender. 

Old Dummy variable indicating individuals older than 60 years 

MidAge Dummy variable indicating individuals older than 35 years, but no older than 60 year. 

IN Inertia variable in DCE-MC. 

FFT, CT Free flow time and congestion time for PV in DCE-MC in min., respectively. 

PRK, TL, FE Parking, toll and fuel expenses for PV in DCE-MC in €., respectively. 

TT, INT Travel and interval time for PT-B, PT-T or NMT in DCE-MC in min., respectively. 

TCK Fare for individual ticket for PT-B or PT-C in DCE-MC in €. 

NT Number of transfers for PT-B or PT-T in DCE-MC. 

WLK, BCL, EBC Subdivision of the NMT alternative in DCE-MC: walking, cycling and electric bicycle, respectively. 

PP Purchase Price in DCE-VP in €·104. 

FC, MC Fuel and maintenance cost in DCE-VP in € / 100 km., respectively. 

PS Power of the engine in DCE-VP in hp. 

RA Driving range in DCE-VP in km. 

IM2, IM3, IM4 Dummy variables indicating the execution of the respective policy incentive in DCE-VP. 

Sigma Variability of the person- and alternative-specific covariances (xy for Uxy in eq. [7.6]).  

-PV Impact of person-specific covariance of alternative PV in DCE-VP (xy in eq. [7.6]). 

-PT-B Impact of person-specific covariance of alternative PT-B in DCE-VP. 

-PT-T Impact of person-specific covariance of alternative PT-T in DCE-VP. 

-NMT Impact of person-specific covariance of alternative NMT in DCE-VP. 

 

The results for the estimated models are presented in Table 7.2 (DCE-MC) and Table 7.3 

(DCE-VP). Even though the models were estimated jointly, the results for both 

experiments are presented separated for layout purposes. The model on the right 

(Independent Model) corresponds to the model estimated according equation [7.5], while 

the model on the left (Correlated Experiments) was estimated in accordance with equation 

[7.7]. The results of the t-test for statistical significance are presented in parenthesis. The 

final value for the overall log-likelihood is also reported. 
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Table 7.2 – Parameter estimates for the DCE-MC.23 

Variable Equation 
Independent

Model 
Correlated  

Experiments 
ASC PV Utility PT-B 0 (fixed) 0 (fixed) 
ASC_PT-B Utility PT-B -0.971 (-1.87) -0.392 (-0.44) 
ASC_PT-T Utility PT-T -1.86 (-3.31) -1.1 (-1.17) 
ASC_WLK Utility NMT -3.05 (-3.43) -2.89 (-2.83) 
ASC_BCL Utility NMT -3.64 (-4.07) -3.49 (-3.39) 
ASC_EBC Utility NMT -1.06 (-1.09) -0.99 (-0.8) 
Inertia Utility PV 0.613 (1.29) 1.33 (1.73) 
Inertia Utility PT-B 0.8 (1.61) 0.939 (1.42) 
Inertia Utility PT-T 1.52 (2.79) 1.41 (1.84) 
Inertia Utility NMT 3.31 (4) 2.17 (2.75) 
FFT Utility PV -0.116 (-10.24) -0.118 (-10.32) 
CT Utility PV -0.141 (-14.63) -0.141 (-14.53) 
TT Utility PT-B -0.104 (-11.39) -0.105 (-11.34) 
TT Utility PT-T -0.0841 (-8.82) -0.0852 (-9.04) 
TT Utility NMT -0.146 (-13.15) -0.143 (-13.64) 
INT Utility PT-B -0.0277 (-2.3) -0.026 (-2.14) 
INT Utility PT-T -0.0465 (-3.47) -0.0465 (-3.56) 
TL Utility PV -0.264 (-7.16) -0.266 (-7.14) 
PRK Utility PV -0.29 (-7.66) -0.292 (-7.76) 
FE Utility PV -0.145 (-1.38) -0.125 (-1.27) 
TCK Utility PT-B -0.34 (-8.55) -0.35 (-8.74) 
TCK Utility PT-T -0.313 (-8.19) -0.322 (-8.62) 
NT Utility PT-B -0.403 (-5.58) -0.42 (-5.77) 
NT Utility PT-T -0.56 (-7.33) -0.561 (-7.43) 
MidAge Utility NMT 1.65 (2.15) 2.24 (3.02) 
Old Utility NMT 1.79 (2.39) 1.66 (2.93) 
Sigma PV Utility PV 2.65 (12.71) 2.8 (15) 
Sigma PT-B Utility PT-B 0.492 (2.11) -0.943 (-6.88) 
Sigma PT-T Utility PT-T -1.25 (-5.95) -0.941 (-5.43) 
Sigma NMT Utility NMT 3.24 (9.49) 3.27 (11.06) 
Log-likelihood Overall -3,791.8 -3,759.1  

 

As can be observed from Table 7.2 the current transportation modes appear to play a 

significant role in the preferences stated by the individuals in the DCE, with the current 

choice favored over competing alternatives (inertia variables). Along this line, current 

preferences for non-motorized transportation have a stronger impact than the inertia 

associated with public and private transportation (the latter is not even significant at 

confidence level of 5%). 

The travel time associated with non-motorized alternatives has a stronger negative effect 

than in the case of private and public transportation. Further, it may be established that 

the travel time using transit systems (especially trains) have a lesser impact on the utility 

than the travel time by private vehicles, with congestion time being perceived as more 

displeasing than free flow time. These findings are in line with the literature (Quarmby, 

1967; Caussade et al., 2005; Wardman et al., 2012, among many others).   
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Table 7.3 – Parameter estimates for the DCE-VP.24 

Variable Equation 
Independent

Model 
Correlated  

Experiments 
ASC CV Utility CV 0 (fixed) 0 (fixed) 
ASC_HEV Utility HEV 1.28 (1.35) 0.807 (1.01) 
ASC_PHEV Utility PHEV 0.595 (0.63) -0.13 (-0.14) 
ASC_BEV Utility BEV -0.744 (-0.61) -1.75 (-1.48) 
PP Utility CV -2.36 (-3.53) -2.17 (-3.05) 
PP Utility HEV -2.71 (-15.35) -2.56 (-14.57) 
PP Utility PHEV -2.3 (-11.88) -2.37 (-11.79) 
PP Utility BEV -1.81 (-6.86) -1.98 (-6.81) 
MC Utility CV, HEV; -32.8 (-7.82) -32.9 (-7.83) 
FC Utility CV, HEV; -33.5 (-13.38) -32.9 (-13.11) 
PS Utility CV 0.0675 (3.02) 0.0525 (2.27) 
PS Utility HEV 0.0504 (5.38) 0.0434 (4.57) 
PS Utility PHEV 0.0466 (4.67) 0.0445 (4.42) 
PS Utility BEV 0.00488 (0.52) 0.00463 (0.49) 
PS * Male Utility CV -0.0227 (-2.5) -0.0134 (-1.44) 
PS * Male Utility HEV -0.0147 (-1.53) -0.0105 (-1.07) 
PS * Male Utility PHEV -0.0184 (-1.9) -0.0141 (-1.44) 
PS * Male Utility BEV - (-0.17) -0.00267 (-0.26) 
MidAge Utility HEV -0.513 (-0.97) -0.191 (-0.46) 
MidAge Utility PHEV -0.49 (-0.96) -0.298 (-0.52) 
MidAge Utility BEV -1.48 (-2.19) -1.07 (-1.21) 
Old Utility HEV -1.09 (-1.98) -1.15 (-2.71) 
Old Utility PHEV -1.14 (-2.13) -1.51 (-2.72) 
Old Utility BEV -3.13 (-4.25) -3.45 (-3.84) 
RA Utility BEV 0.00514 (5.8) 0.00538 (5.87) 
LSMid Utility BEV 0.154 (0.52) 0.184 (0.6) 
LSHigh Utility BEV 0.807 (2.97) 0.843 (2.98) 
IM3 Utility BEV 0.424 (1.86) 0.416 (1.77) 
Sigma CV Utility CV -2.34 (-12.56) -0.585 (-1.23) 
Sigma HEV Utility HEV -0.773 (-4.04) -0.775 (-4.15) 
Sigma PHEV Utility PHEV 0.535 (2.31) 0.533 (2.51) 
Sigma BEV Utility BEV -2.39 (-9.78) -2.14 (-9.72) 
a-PV Utility CV - (-) 0.2 (3.41) 
a-PV Utility HEV - (-) 0 (fixed) 
a-PV Utility PHEV - (-) -0.0268 (-0.44) 
a-PV Utility BEV - (-) -0.23 (-2.08) 
a-PT-B Utility CV - (-) -1.06 (-3.74) 
a-PT-B Utility HEV - (-) 0 (fixed) 
a-PT-B Utility PHEV - (-) 0.613 (2.78) 
a-PT-B Utility BEV - (-) 0.833 (2.77) 
a-PT-T Utility CV - (-) -1.43 (-3.86) 
a-PT-T Utility HEV - (-) 0 (fixed) 
a-PT-T Utility PHEV - (-) 0.46 (1.79) 
a-PT-T Utility BEV - (-) 1.06 (2.7) 
a-NMT Utility CV - (-) -0.333 (-4.23) 
a-NMT Utility HEV - (-) 0 (fixed) 
a-NMT Utility PHEV - (-) 0.0752 (1.29) 
a-NMT Utility BEV - (-) 0.325 (3.42) 
Log-likelihood Overall -3,791.8 -3,759.1  

 

The interval time (normally associated with the waiting time for public transportation) is 

associated with a lesser disutility than the travel time, which may be related to the fact 

that transit systems in Austria operate on schedule, and therefore higher interval times 
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are associated rather with less flexibility (regarding departure time) than with larger 

waiting periods.    

Regarding travel expenses, it is observed that toll and parking fees are perceived as much 

more discouraging that fuel costs (with the parameter associated with the latter not being 

statistically  significant). However, the disutility associated with toll and parking fees is 

less than the disutility associated with tickets for public transportation. Given the fact 

that it was allowed for multiple time and money parameters to be calibrated (related to 

different transportation modes and features) there is no uniform value of time (VoT), but 

it ranges between 23€-26 €/hr. for private transportation and 15€-18 €/hr. for public 

transportation. 

The number of transfers has a significant negative impact for both public transportation 

alternatives, while it can be established that middle-aged and older individuals favor non-

motorized alternatives. A statically significant correlation among the answers provided by 

the same individuals was identified for all alternatives. 

In general, major differences between the estimates following both approaches cannot be 

established. The main differences are related to changes in the ASCs and inertia variables 

(which are more sensitive to changes when using an alternative-specific correlation 

structure) as well as to a significant increase of the variability of the PASEC associated 

with the alternative TP-B.   

The estimates for the DCE-VP (Table 7.3) are in line with the results reported by 

Bahamonde-Birke and Hanappi (2016) using the complete database for the DCE-VP 

experiment (in this case, only the answers provided by the 276 individuals responding 

both questionnaires are being used). This way, it is possible to identify significant 

disutilities associated with the purchase price - opposite to Bahamonde-Birke and Hanappi 

(2016), this sample does not allow identifying a higher price disutility associated with 

BEVs-, a similar impact of both kinds of operational costs (fuel and maintenance costs), a 

positive impact of the engine power for all alternatives considering a conventional motor 

that does not extend to pure electric vehicles. Similarly, it can be established that women 

value increases in the engine power more than men do (a one-tailed test on statistical 

significance is performed as the sign is known a priori) or than older individuals ascribe a 
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lesser utility to electric vehicles. In the case of middle-aged individuals only a disutility 

associated with pure electrics vehicles can be statically identified. 

For this sample, the willingness-to-pay for an extended driving range is slightly less than 

reported by Bahamonde-Birke and Hanappi (2016), ranging between 27 €/km and 28 

€/km (depending on the model). It is observed that only one incentive policy (investment 

subsidies supporting private charging stations) has a significant impact on the adoption of 

BEVs. Along this line a high availability of charging stations have a positive effect, while 

a medium availability is statistically no different from poor availability.  

Concerning the comparison between the model considering independent experiments and 

the one taking the correlation into account, it may be concluded that the main differences 

are (as in the previous case) associated with the ASCs and the PASECs. While the 

PASECs are all significand for the independent model, for the correlated model it can be 

observed that the variability of the PASEC of alternative PV is substantially smaller, not 

being statistically different form zero (the variability of the PASECs does not exhibit 

significant differences between models for the remaining alternatives). Nevertheless, in this 

case the differences between parameter estimates appear to be larger than in the previous 

case. It may be explained by the fact that in this experiment, the impact of the correlation 

observed in the DCE-VP is being considered directly into the utility functions.  

Finally, it can be established that the correlation among the answers provided by the 

same individual in the DCE on modal choice has a significant effect on the answers 

provided in the DCE-VP, as most of the parameters accounting for correlation across 

experiments are statistically significant. Therefore, it can be concluded that the transport 

behavior indeed influences the preferences for electromobility. Additionally, a substantial 

increase of the predictive capability is observed with the goodness-of-fit of the model 

accounting for correlation clearly outperforming the independent model (the likelihood-

ratio test for equal predictive capability can be easily rejected). 

Table 7.4 presents an overview of the effect of the PASECs of the DCE-MC on the utility 

functions of the DCE-VP. Here, the estimated parameters (jk) are multiplied by 

variability (absolute value) of the PASECs in order to offer a better representation of the 
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extent, to which the utility functions of the DCE-VP are affected by these error 

component.  

Table 7.4 – Impact of the PASECs of the DCE-MC on the DCE-VP.25 
  PV PT-B PT-T NMV 

Sigma 2.8 0.943 0.941 3.27 
CV 0.56 -1.0 -1.35 -1.09 

HEV 0* 0* 0* 0* 
PHEV -0.08** 0.58 0.43** 0.25** 
BEV -0.64 0.79 0.99 1.06 

*Reference alternative 
**parameters not statistically different from zero 

 

As can be observed, individuals favoring private transportation (PV) in the modal choice 

experiment tend to favor conventional vehicles in the vehicle purchase experiment as well. 

Along this line, these individuals tend to dislike BEVs. Contrariwise individuals favoring 

public transportation or non-motorized alternatives ascribe a higher utility to BEVs and a 

relative disutility to CVs. It is not possible to identify a statistically significant correlation 

among travel behavior and preferences between HEVs and PHEVs (except in the case of 

PT-B users favoring PHEV). This is in line with our expectations, as HEVs and PHEVs 

are usually perceived as similar alternatives.  

These finding are line with the assumption that individuals concerned about the 

environment may favor both public or non-motorized transportation and electric vehicles.  

7.5 Conclusions 

It is well documented in the literature that apparently independent choices may be 

interconnected by underlying attitudes, preferences, perceptions or values of the decision-

makers. This way, it may be expected, for instance, that choices such as residential 

location or travel behavior exhibit a high correlation with car ownership. Along this line, 

it may be expected for correlation to arise every time choices of the same individuals are 

being modeled.  

This chapter proposes and successfully tests a method to treat correlation among the 

answers provided by the same individuals in independent stated-choice experiments. The 
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method relies on person- and alternative-specific error components (covariances) and aims 

to include individual-specific error components associated with the alternatives of a given 

experiment into another. This way, it is possible to analyze how the favoritism of given 

individual for a certain alternative in a given experiment affects the preferences of the 

same individual in another choice situation. This approach overcomes some shortcomings 

of alternative treatments, such as controlling for underlying attitudes (e.g. through latent 

variables or latent classes), as it allows for capturing the entire effect and not only the 

part associated with the modeled attitudes. 

This framework is utilized in order to analyze whether the transport behavior influence 

preferences for electromobility. The results show that the preferences for electromobility 

are strongly affected by the choices for the transportation mode of regular trips. Thus, it is 

possible to determine that individuals favoring private transportation also favor 

conventional vehicles over electric alternatives (and especially over pure battery electric 

vehicles). On the contrary, individuals preferring public or non-motorized transportation 

ascribe a higher utility to electric vehicles, especially to pure battery electric vehicles. 

As a possible explanation for the phenomena may rely on underlying environmental 

attitudes, it would be interesting to analyze how the correlation between both decisions 

would be affected, when the modeler controls for this environmental attitude (for instance, 

using latent variables or latent classes). Further research should be conducted in this 

direction.
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APPENDIX A 

Figure A1 - Sample screen of the SP-Experiment.11 

 
* The main characteristics of the experiment were translated to increase readability. 
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APPENDIX B  

Appendix B.1 

Table B1 - Parameter estimates for the measurement equations. Case study 5.1.26 

Variable Equation LVLC DCLV 

Scale M.E. EcAwareness 0.959 (16.14) 0.954 (16.1) 
Threshold 1 M.E. EcAwareness -3.25 (-15.18) -3.18 (-15.29) 
Threshold 2 M.E. EcAwareness 0.0152 (0.09) 0.0719 (0.42) 
Threshold 3 M.E. EcAwareness 3.05 (12.85) 3.1 (13.22) 
Threshold 4 M.E. EcAwareness 5.06 (14.74) 5.1 (14.9) 
Threshold 5 M.E. EcAwareness 7.01 (12.11) 7.05 (12.16) 
Scale M.E. LocalFood 1.18 (14.89) 1.22 (14.89) 
Threshold 1 M.E. LocalFood -1.76 (-9.58) -1.68 (-9.51) 
Threshold 2 M.E. LocalFood 0.655 (3.74) 0.692 (4.11) 
Threshold 3 M.E. LocalFood 2.59 (12.3) 2.59 (12.79) 
Threshold 4 M.E. LocalFood 4.23 (15.2) 4.2 (15.63) 
Threshold 5 M.E. LocalFood 7.17 (10.56) 7.09 (10.7) 
Scale M.E. EcoFriendly 0.988 (15.94) 1.02 (16.06) 
Threshold 1 M.E. EcoFriendly -2.68 (-12.98) -2.58 (-13.01) 
Threshold 2 M.E. EcoFriendly -0.727 (-4.12) -0.664 (-3.92) 
Threshold 3 M.E. EcoFriendly 1.28 (6.9) 1.3 (7.32) 
Threshold 4 M.E. EcoFriendly 2.88 (12.85) 2.88 (13.32) 
Threshold 5 M.E. EcoFriendly 6.77 (12.65) 6.69 (12.87) 
Scale M.E. Protection 0.442 (13.06) 0.446 (13.05) 
Threshold 1 M.E. Protection -7.7 (-13.42) -7.59 (-13.39) 
Threshold 2 M.E. Protection -3.33 (-11.57) -3.25 (-11.54) 
Threshold 3 M.E. Protection 1.3 (5.53) 1.34 (5.83) 
Threshold 4 M.E. Protection 4.12 (10.97) 4.14 (11.15) 
Threshold 5 M.E. Protection 8.04 (11.84) 8.03 (11.91) 
Scale M.E. CO2Footprint 0.951 (16.84) 0.95 (16.77) 
Threshold 1 M.E. CO2Footprint -4.39 (-17.52) -4.32 (-17.61) 
Threshold 2 M.E. CO2Footprint -1.92 (-10.27) -1.86 (-10.29) 
Threshold 3 M.E. CO2Footprint 0.276 (1.56) 0.329 (1.92) 
Threshold 4 M.E. CO2Footprint 1.89 (9.4) 1.93 (9.85) 
Threshold 5 M.E. CO2Footprint 5.31 (14.73) 5.35 (14.89) 

 

Appendix B.2 

Table B2 - Parameter estimates for the measurement equations. Case study 5.2.27 

Variable Equation LVLC DCLV 

Scale M.E. HSTrains 1.13 (8.48) 1.09 (7.6) 
Threshold 1 M.E. HSTrains -3.74 (-13.3) -3.77 (-12.42) 
Threshold 2 M.E. HSTrains -2.21 (-11.8) -2.21 (-11.3) 
Threshold 3 M.E. HSTrains -0.179 (-1.47) -0.16 (-1.37) 
Threshold 4 M.E. HSTrains 1.43 (10.12) 1.47 (10.56) 
Scale M.E. RailLines 2.03 (3.9) 2.23 (2.84) 
Threshold 1 M.E. RailLines -2.83 (-12.73) -2.74 (-11.66) 
Threshold 2 M.E. RailLines -1.5 (-10.01) -1.44 (-9.44) 
Threshold 3 M.E. RailLines 0.0287 (0.26) 0.0539 (0.53) 
Threshold 4 M.E. RailLines 1.4 (9.91) 1.4 (9.81) 



  

Appendix C          149 

  

APPENDIX C 

 

APPENDIX C.1 
Table C1 - Indicators’ principal component matrix.28 

Indicator Meaning  
i)  I am an ecologically aware person 0.714 
ii) Climate protection is an important topic nowadays 0.2 
iii) I believe many environmentalists often exaggerate climate problems -0.32 
iv) I pay attention to regional origins when shopping foods and groceries 0.738 
v) I buy ecologically friendly products 0.745 
vi) Environmental protection measures should be enacted even if they result in job 0.603 
vii) There are limits to growth that have been or will soon be reached by countries in 0.467 
viii)  I pay attention to the CO2 footprint of the products I buy 0.746 

 

APPENDIX C.2 
Table C2 - Levels for the attributes considered in the DCE.29 

Attribute CV HEV PHEV BEV 
PP - 140 140 140 

(% of reference) - 130 130 130 
 - 120 120 120 
 - 110 110 110 
 100 100 100 100 
 - 90 90 90 
 - 80 80 80 

PS 100 100 100 100 
(% of reference) - 95 95 - 

 - 90 90 90 
 - 85 85 - 
 - 85 80 80 
 - - - 70 
 - - - 60 

FC 0.10 0.10 0.10 - 
(€/Km.) 0.09 0.09 0.09 - 

 0.08 0.08 0.08 - 
 0.07 0.07 0.07 - 
 0.06 0.06 0.06 0.06 
 0.05 0.05 0.05 0.05 
 0.04 0.04 0.04 0.04 

MC 0.060 0.060 0.060 0.060 
(€/Km.) 0.055 0.055 0.055 0.055 

 0.050 0.050 0.050 0.050 
 0.045 0.045 0.045 0.045 
 0.040 0.040 0.040 0.040 

RA 500 500 500 - 
(Km.) - - - 350 

 - - - 280 
 - - - 210 

 - - - 140 
 - - - 70 
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APPENDIX C.3 
Table C3 - Parameter estimates for the linear measurement equations.30 

Variable Equation MNL-P43 MBM1 MBM2 
LV Wealth M.E. Household Net - - 0.778*103 (21.06)
Constant M.E. Household Net -  - 0.79*103 (6.66)
St.Dev. M.E. Household Net - - 0.626*103 (15.98) 
LV Wealth M.E. Personal Net - - 0.453*103 (17.27)
Constant M.E. Personal Net - - 0.723*103 (7.6) 
St.Dev. M.E. Personal Net - - 0.847*103 (38.67) 
LV Green M.E. EcAwareness - -0.564 (-24.33) -0.556 (-24.53) 
Constant M.E. EcAwareness - 2.56 (44.72) 2.49 (44.74) 
St.Dev. M.E. EcAwareness - 0.681 (41.37) 0.68 (41.12) 
LV Green M.E. LocalFood - -0.687 (-26.06) -0.675 (-26.33)
Constant M.E. LocalFood - 2.36 (34.47) 2.27 (34.15) 
St.Dev. M.E. LocalFood - 0.707 (37.44)  0.708 (37.69)  
LV Green M.E. EcoFriendly - -0.812 (-24.82) -0.796 (-24.68)
Constant M.E. EcoFriendly - 2.95 (36.48) 2.85 (36.26) 
St.Dev. M.E. EcoFriendly - 0.888 (38.44) 0.892 (38.54) 
LV Green M.E. Protection - -0.423 (-13.55) -0.418 (-13.59) 
Constant M.E. Protection - 3.35 (67.37) 3.29 (68.16) 
St.Dev. M.E. Protection - 1.04 (51.32) 1.04 (51.26) 
LV Green M.E. CO2Footprint - -0.789 (-25.31) -0.78 (-25.51)
Constant M.E. CO2Footprint - 3.49 (43.86)  3.39 (43.79)  
St.Dev. M.E. CO2Footprint -  0.896 (39.61)  0.893 (39.67)  

 

 

 

                                                 
43 No measurement equations were considered in this model. 
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